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Abstract

This paper presents a semi-analytical algorithm for the determination of the contact half width

and surface pressure which results from both adhesive and non-adhesive contact problems involv-

ing functionally graded materials (FGM). The inhomogeneously elastic solid comprises a graded

elastic coating whose shear modulus depends exponentially on the vertical coordinate and a ho-

mogeneously elastic substrate. The solid is assumed to be in a state of plane strain and thus a

two-dimensional analysis is performed within this work.

Using the work of Chidlow et al. (2011a) as a starting point, we derive a pair of integral equa-

tions which may be used to determine approximations to the contact pressure when either the

surface deflection or the deflection gradient is known over the contact region. As these integral

equations are non-singular, we use Galerkin’s method to approximate the contact pressure and it

is found that relatively small trial spaces allow accurate computation of the pressure. Information

about the prescribed load is then used to formulate an iterative algorithm to determine the contact

half width.
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A selection of numerical results are presented using this method and it is found that the so-

lutions computed here compare favourably with those of other authors. A further investigation is

then conducted into the solution of adhesive contact problems using the assumptions of Maugis

(1992) and Johnson and Greenwood (2008) to inform the nature of the adhesive stresses outside

of the contact. It is found that both JKR-like and DMT-like behaviour can be observed in contact

problems involving FGMs.

1. Introduction

Functionally graded materials are inhomogeneous and consequently their properties (e.g me-

chanical, chemical) continuously change throughout their volume. As these materials can be de-

signed to possess certain characteristics, they are ideally suited for use as protective coatings.

However, a good choice of coating requires knowledge of the underlying properties of the sub-

strate and the physical context of the application. This information is usually obtained from a

combination of both theoretical studies and experimental data and thus the ability to model such

problems mathematically is crucial.

The classical problem of contact between a homogeneously elastic solid and a rigid body

was first solved by Hertz (1881) who provided analytical expressions for the pressures that re-

sult from contact between a homogeneously elastic medium and a cylinder (two-dimensional) or

a ball (three-dimensional). Additionally, he advanced analytical equations from which the contact

radius can be determined provided that the applied load is known in both cases. These results are

still used today and provide perhaps the only closed form solutions of the contact problem. How-

ever, as these results are valid only for a homogeneous solid, they cannot be used to model FGMs.
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A further limitation of the Hertzian model is that it does not allow for adhesion in the contact

between two bodies and predicts no contact between bodies under zero load. It has been observed

however that bodies with clean, dry surfaces exhibit strong adhesion and in fact give rise to a finite

non-zero contact area even under zero load. The inability of Hertzian theory to accurately model

such problems has resulted in researchers trying to find new models to describe adhesive contacts.

Possibly the most well known models in a three-dimensional context were proposed by Johnson

et al. (1971) and Derjaguin et al. (1975). Johnson et al. (1971) proposed that adhesion occurs only

within the contact and that infinitely large tensile stresses are experienced at the edges of the con-

tact whilst Derjaguin et al. (1975) hypothesised that adhesion occurs only outside of the contact

whilst the contact profile is given using Hertzian theory. It has been found that the JKR model

corresponds well to soft materials with large surface energy and radius whilst the DMT model

corresponds well to hard materials of small radius and low surface energy. Maugis (1992) then

proposed a Dugdale model to characterise the adhesion between solids which allowed the contact

radius and total load to be characterised as a function of a single variable λ . As λ increases from

zero to infinity there is a smooth transition between the DMT and JKR models. The only drawback

in this model is the difficulty in relating the contact radius and load directly to each other using

a single equation. This was remedied by Carpick et al. (1999) who presented a simple general

equation that approximates Maugis’s solution closely.

The work conducted on adhesive contacts in three-dimensional solids was generalised by John-

son and Greenwood (2008) to the two-dimensional line case. The authors used the assumptions

of Maugis (1992) to determine the adhesive forces outside of the contact whilst the adhesive force
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within the contact was determined using a Westergaard stress function. The contact pressure was

assumed to be given by Hertzian theory. Using a non-dimensional parameter λ similar to the so-

called ‘Tabor’ parameter introduced by Fuller and Tabor (1975), it was found that as λ increases

from zero to infinity, the contact model transitions smoothly between the two-dimensional DMT

and JKR models as was found in the three-dimensional case. This problem was also investigated

by Wu (2009) who used a Lennard Jones potential to determine numerical solutions to the contact

problem and found that his results compared well with Johnson and Greenwood for larger values

of the Tabor parameter but in the rigid body limit corresponding to λ → 0 his results behaved like

the two-dimensional Bradley (1932) model rather than the DMT model.

In addition to investigations on the adhesive nature of contacts that involve homogeneous ma-

terials, there has been some investigation into the adhesive behaviour of layered solids. This is

primarily because there are many applications (e.g biological tissues and soft bearing surfaces in

artificial joint replacements) where thin compliant layers are strongly affected by adhesion in con-

tact. Mary et al. (2006) presented a semi-analytical model that describes adhesive contact between

a layered solid and an axisymmetric indenter. The accuracy of this model was validated experimen-

tally and by comparison with numerical results produced using the finite element method (FEM).

Johnson and Sridhar (2000) derived a JKR-like model to describe adhesive contacts between a solid

comprising a homogeneously elastic coating bonded to a substrate and a rigid indenter. A selection

of numerical results for a variety of different coatings were presented and the authors found that

the JKR model using the elastic properties of the coating agreed well with their numerical results

when the coating is thick whilst the JKR model using the elastic layers of the substrate agreed well
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with their obtained results when the coating was thin. McGuiggan et al. (2007) compared experi-

mental results obtained for the surface force apparatus (SFA) which comprises three distinct layers

with numerical results obtained using FEM. The authors concluded that the obtained pull-off force

for a layered solid can vary significantly from that predicted by the JKR model for a homogeneous

material.

The majority of models propounded to solve contact problems involving inhomogeneously

elastic materials however consider only non-adhesive contact. Early attempts at modelling inho-

mogeneous materials comprising a distinct coating and substrate assume that the coating is homo-

geneously elastic whilst the substrate is rigid (e.g Hannah (1951)). If the additional assumption is

made that the homogeneous layer is very thin, analytical solutions for the contact pressure may be

derived (e.g Barber (1990)). We note however that this situation is far from realistic and thus these

models are severely limited in their application.

A popular idea which has been used with great success is to assume that the modulus of elas-

ticity within the FGM is isotropic in the horizontal directions and depends only on the vertical

coordinate in some pre-determined way. The most commonly used choices assume that the mod-

ulus of elasticity follows either a simple power law or an exponential variation. Giannakopoulos

and Suresh (1997) used both the power law and exponential approximations to derive analytical

solutions for the stresses and displacements induced within a three-dimensional body by the ap-

plication of a point force to the solid surface. These results were then compared to numerical

solutions computed using the finite element method (FE) and showed good agreement.

A technique that can be used to reduce the complexity of the full contact problem is to as-
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sume that the solid is in a state of plane strain. This allows the removal of one of the horizontal

variables from the problem and thus a simpler two-dimensional analysis may be performed. This

approach was used by Guler and Erdogan (2004) and separately by Ke and Wang (2006), Ke and

Wang (2007) who solved the two-dimensional contact problem using Fourier transform methods.

Utilising solutions that result from the application of point forces to the solid surface, these authors

formulated singular integral equations for the stamp problem which were solved using numerical

quadrature. Both sets of authors produce results which agree well with each other. An alternate ap-

proach used by Chidlow et al. (2011a), Chidlow et al. (2011b) formulates the sub-surface stresses,

displacements and contact pressure in terms of Fourier series. The underlying assumption used in

the derivation of these models is that as the induced stresses die very quickly away from the contact

area, the contact problem need only be solved in a small section of the solid rather than the solid

as a whole. The resulting models are theoretically analytic if the contact pressure is known exactly

but due to the infinite summations that arise some small degree of error will be incurred from the

truncation of these series. This approach was also used by Teodorescu et al. (2009) who presented

an iterative algorithm from which the contact pressure and contact radius resulting from contact

by a rigid cylinder may be determined. However these authors model the coating and substrate as

distinct yet homogeneous layers whilst Chidlow et al. (2011a) model the coating using the expo-

nential variation assumption.

The work contained within this paper considers both non-adhesive and Maugis-type adhesive

contacts that occur between a rigid punch and an inhomogeneously elastic solid comprising an

FGM coating-substrate. Using the work of Chidlow et al. (2011a) as a starting point, we derive
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an iterative algorithm (given by (46) and outlined in figure (4) for non-adhesive contacts, (74),

(77) and outlined in figure (10) for adhesive contacts) that allows the determination of the contact

footprint when both the surface deflection or its gradient and the total load are known. The pro-

posed algorithm is very simple in form as it requires only the computation of the coefficients in

the Fourier series expansion of the applied pressure which are calculated from a simple explicit

formula.

The layout of this paper is as follows. In section 2 we introduce the governing equations of the

contact problem and highlight the key results of Chidlow et al. (2011a). In section 3 we formulate

the integral equations that relate the pressure and surface deflection and derive an explicit formula

from which the coefficients in the Fourier series expansion of the pressure and thus the pressure

itself may be computed. In section 4, we present a selection of numerical results that validate the

accuracy of this solution technique. An iterative algorithm capable of approximating both the con-

tact half-width and contact pressure is introduced in section 5 and some results are presented using

this method. Finally, we conduct an investigation into the solution of adhesive contact problems in

section 6 and summarise our work and its implications in section 7.

2. FGM Modelling

2.1. Inhomogeneously elastic layered solid

Consider an inhomogeneously elastic solid in a state of plane strain occupying −L≤ x≤ L,−∞ <

y≤ 0. The solid is split into two distinct regions which represent a functionally graded coating of

thickness h and a homogeneously elastic substrate of infinite extent. The shear modulus within the
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solid is defined as

µ(y) =


µ1eαy, −h≤ y≤ 0,

µ0, −∞ < y <−h

(1)

so that the inhomogeneity of the coating is approximated using a simple exponential function. We

note that if µ1/µ0 > 1 then the coating is harder than the substrate whilst if µ1/µ0 < 1 the coating

is softer than the substrate. The Poisson ratio of both the coating and substrate are assumed to be

constant and equivalent and thus ν(c) = ν(s) = ν . Please note as Hooke’s laws do not apply for the

incompressible case ν = 0.5, we apply the constraint ν 6= 0.5 within this work.

P (x)

x = −L x = L

y = 0

y = −h

y→−∞

FGM Coating

Substrate

µ1

µ(y)

µ0

Figure 1: A definition sketch of the problem involving a pressure force applied normally to the solid surface.

A pressure force of the form

P(x) =


−p(x), |x| ≤ a,

0, |x|> a

(2)
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where a denotes the contact half-width is applied normally to the solid surface. The resulting

boundary value problem to be solved is then

∂σxx

∂x
+

∂σxy

∂y
= 0, (−L≤ x≤ L,−∞ < y≤ 0), (3a)

∂σxy

∂x
+

∂σyy

∂y
= 0, (−L≤ x≤ L,−∞ < y≤ 0), (3b)

σyy−P(x) = 0, (y = 0), (3c)

σxy = 0, (y = 0), (3d)

σxx = 0, (x =±L), (3e)

v = 0, (x =±L), (3f)

|u|, |v| → 0, y→−∞, (3g)

subject to the interfacial matching conditions

σ
(c)
yy −σ

(s)
yy = 0, (4a)

σ
(c)
xy −σ

(s)
xy = 0, (4b)

u(c)−u(s) = 0, (4c)

v(c)− v(s) = 0 (4d)

applied at y =−h. The functions u(x,y) and v(x,y) represent the horizontal and vertical displace-

ments within the solid respectively and the superscripts c and s denote the coating and substrate.

The designated boundary conditions specify a frictionless contact on the solid surface and ensure

that the coating and substrate are perfectly bonded at their interface. The boundary conditions at

x =±L and the radiation conditions as y→−∞ represent the limits in which the applied pressure
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ceases to effect the solid. A definition sketch of the contact problem is included in figure (1).

It was shown in Chidlow et al. (2011a) that the displacements induced in the coating can be

written as

u(c)(x,y) =
∞

∑
n=1

ξ
T
n (y)Ωn

 (1−2ν)
2µ0

Pn

0

cos
(

1
2

βn(x+L)
)

, (5)

v(c)(x,y) =−
∞

∑
n=1

ξ
T
n (y)ΓnΩn

 (1−2ν)
2µ0

Pn

0

sin
(

1
2

βn(x+L)
)

(6)

which hold for −h≤ y≤ 0 whilst in the substrate

u(s)(x,y) =
∞

∑
n=1

e
1
2 βn(y+h)

δn
ϕ

T (y)Ψn

 (1−2ν)
2µ0

Pn

0

cos
(

1
2

βn(x+L)
)

, (7)

v(s)(x,y) =
∞

∑
n=1

e
1
2 βn(y+h)

δn
ϕ

T (y)ΦnΨn

 (1−2ν)
2µ0

Pn

0

sin
(

1
2

βn(x+L)
)

, (8)

which hold for −∞ < y < −h. All of the quantities that appear above are defined in the appendix

whilst the coefficients Pn in the Fourier series representation of the pressure are defined as

Pn =
1
L

∫ L

−L
P(x)sin

(
1
2

βn(x+L)
)

,

=−1
L

∫ a

−a
p(x)sin

(
1
2

βn(x+L)
)

, (9)

where βn = nπ/L. The stresses within the solid resultant from the applied pressure force may be

computed from the displacements u and v using Hooke’s laws.
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3. Integral equations for the contact problem

The solutions outlined in the previous section give explicit expressions for the horizontal and

vertical displacements of a graded elastic solid at any point on or below its surface provided that

the contact pressure is known. In many contact problems however, the contact pressure is unknown

and instead information about the surface deflection and the nature of the contact (e.g. frictionless,

sliding) is given. We show below how the model of the surface deflection given previously can be

adapted to formulate integral equations from which the contact pressure can be approximated.

3.1. Recreating the contact pressure when the surface deflection is known

We initially note that the vertical displacement in the coating may be written as

v(x,y) =
∞

∑
n=1

Pn fn(y)φn(x) (10)

where fn(y) and φn(x) can be easily inferred from (6). In particular, evaluating (10) on the solid

surface y = 0 gives

v(x,0) = v̂(x) =
∞

∑
n=1

JnPnφn(x), (−L≤ x≤ L), (11)

with Jn = fn(0). Replacing all coefficients Pn appearing in (11) apart from the mth coefficient

with their equivalent expressions in (9) yields the first-kind Fredholm integral equation

v̂(x) = JmPmφm(x)− 1
L

∫ a

−a

∞

∑
n=1
n6=m

Jnφn(x)φn(t)p(t)dt (12)

which may be written in operator form as

v̂(x) = JmPmφm(x)− 1
L
(Km p)(x). (13)
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It should be noted that this operator is self-adjoint as the kernel of the integral operator satisfies

km(x, t) =
∞

∑
n=1
n6=m

Jnφn(x)φn(t) = km(t,x). (14)

We could attempt to approximate the contact pressure p(x) directly from (13). However, the

Fourier coefficients Pm appear explicitly in the expressions for the displacements given by (5)-

(8) and thus need to be computed during the solution procedure. We therefore choose to directly

approximate the coefficients Pm and form the approximation to the applied pressure in terms of its

Fourier series.

Assuming that v̂(x) is known throughout [−a,a], we can approximate Pm from (13) using

Galerkin’s method. This involves considering the weak form of (13) which is attained by mul-

tiplying by the functions χ j(x), j = 1, ...,M and applying the inner product defined as

( f ,g) =
∫ a

−a
f (x) g(x)dx,

where f and g are arbitrary functions of x. The weak form of (13) is then

(v̂,χ j) = JmPm(φm,χ j)− 1
L
(Km p,χ j) (15)

which holds for j = 1, ...,M. At this point, we introduce the approximation to the contact pressure

p(x) ≈
M

∑
i=1

biχi(x) (16)

which is used only within the confines of Galerkin’s method to determine Pm. Substituting (16)

into (15) then reveals the system of equations

(v̂,χ j) = JmPm(φm,χ j)− 1
L

N

∑
i=1

bi(Kmχi,χ j) (17)
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which may be more conveniently written as

V = JmPmΘm− 1
L

KT
mb, (18)

where

b =
(

b1,b2, ...,bM

)T

, (19)

V =
(

(v̂,χ1),(v̂,χ2), ...,(v̂,χM)
)T

, (20)

Θm =
(

(φm,χ1),(φm,χ2), ...,(φm,χM)
)T

(21)

are column vectors of length M and the M×M matrix Km has entries (Km)i j = (Kmχi,χ j).

Equation (18) relates the unknown coefficients bi, i = 1, ...,M to the Fourier coefficient Pm

and thus comprises M + 1 unknowns in M equations. An additional equation may be obtained by

substituting (16) into (9) which yields

Pm =−1
L

Θ
T
mb. (22)

Combining (22) with (18) allows us to obtain the approximation

Pm =
Θ

T
mK−T

m V
1+JmΘ

T
mK−T

m Θm
. (23)

As m is arbitrary, (23) can be used to approximate all of the coefficients in the truncated Fourier

series representation of the pressure

P(x) =
N

∑
m=1

Pmφm(x),

=
N

∑
m=1

Θ
T
mK−T

m V
1+JmΘ

T
mK−T

m Θm
φm(x). (24)

which holds for −L≤ x≤ L, N ∈ N.
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3.2. Indentation by a rigid punch

In the case of contact between an elastic solid and a rigid punch, the gradient of the surface

deflection v̂
′
(x) rather than the surface deflection itself will be known as the shape of the punch

will be given in the problem. In this case, we differentiate (13) with respect to x to give

∂v
∂x

(x,0) = v̂
′
(x) = JmP(x)φ

′
m(x)− 1

L

∫ a

−a

∞

∑
n=1,
n6=m

Jnφ
′
n(x)φn(t)p(t)dt. (25)

which can be written in operator form as

v̂
′
(x) = JmPmφ

′
m(x)− 1

L
(Lm p)(x) (26)

The integral operator Lm in this case is not self-adjoint as the kernel of the operator lm(x, t) 6=

lm(t,x).

Utilising Galerkin’s method to solve this equation in the same way as before gives the new

system

F = JmPmψm−
1
L

Λ
T
mb, (27)

where

F =
(

(v̂
′
,χ1),(v̂

′
,χ2), ...,(v̂

′
,χM)

)T

, (28)

ψm =
(

(φ
′
m,χ1),(φ

′
m,χ2), ...,(φ

′
m,χM)

)T

(29)

are column vectors of length M and the M×M matrix Λm has entries (Λm)i j = (Lmχi,χ j). Com-

bining (27) with (22) gives the approximation

Pm =
Θ

T
mΛ
−T
m F

1+JmΘ
T
mΛ
−T
m ψm

. (30)
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As before this equation holds for arbitrary m and thus we can determine approximations to the

coefficients of any required Fourier mode. In this case, the approximation to the applied pressure

is taken to be

P(x) =
N

∑
m=1

Θ
T
mΛ
−T
m F

1+JmΘ
T
mΛ
−T
m ψm

φm(x). (31)

which holds in the interval −L≤ x≤ L. It should be noted that the punch profile must be smooth,

v̂(x) ∈C1[−a,a], in order to ensure that the Fourier series of the pressure converges.

3.3. Choice of trial function

The principal advantage of Galerkin’s method is that relatively poor approximations to the

contact pressure via (16) will lead to good approximations to the Fourier coefficients Pn, n ∈ N.

The reader is referred to Porter and Stirling (1990) for greater detail.

A good choice of trial function will mimic the behaviour of the true pressure function. In the

examples we consider later, the pressure function is known to vanish at the edges of the contact.

As a result, we set

χ j(x) = sin
(

jπ(x+a)
2a

)
, j = 1, ...,M (32)

which has the property that χ j(±a) = 0. Evaluating the functionals appearing in (21) and (29)

using this particular choice of trial function gives

(φn,χi) = θi,n =



8(−1)mkπa
(aβ2m)2−(2kπ)2 sin

(mπa
L

)
, (i = 2k,n = 2m),

4(−1)m(2k−1)πa
(aβ2m−1)2−((2k−1)π)2 cos

(
(m− 1

2)πa
L

)
, (i = 2k−1,n = 2m−1)

0, otherwise

, (33)
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and

(φ
′
n,χi) = ωi,n =



4(−1)mkπaβ2m−1
(aβ2m−1)2−(2kπ)2 sin

(
(m− 1

2)πa
L

)
, (i = 2k,n = 2m−1),

2(−1)m+1(2k−1)πaβ2m
(aβ2m)2−((2k−1)π)2 cos

(mπa
L

)
, (i = 2k−1,n = 2m),

0, otherwise.

(34)

An immediate consequence of these results is that

(Kmχi,χ j) =



∑
∞
n=1,2n−16=m J2n−1θ2k−1,2n−1θ2l−1,2n−1, i = 2k−1, j = 2l−1,

∑
∞
n=1,2n6=m J2nθ2k,2nθ2l,2n, i = 2k, j = 2l,

0, otherwise

(35)

and

(Lmχi,χ j) =



1
2 ∑

∞
n=1,2n−1 6=m J2n−1β2n−1θ2k−1,2n−1ω2l,2n−1, i = 2k−1, j = 2l,

1
2 ∑

∞
n=1,2n 6=m J2nβ2nθ2k,2nω2l−1,2n, i = 2k, j = 2l−1,

0, otherwise

(36)

which results in large computational savings as if M is even, there will only be M2/2 non-zero en-

tries in the matrices Km and Λm whilst if M is odd, there will only be (M2−1)/2 non-zero entries

in matrix Λm and (M2 +1)/2 non-zero entries in Km.

The determination of (v̂
′
,χ j) will typically be fairly straightforward as the profile of the punch

and thus its gradient will be given as a continuous function making analytical evaluation of the

functional simple. The same will not usually be true for the determination of (v̂,χ j) as the deflec-

tion is more likely to be given as a list of discrete values. In this situation, a linear spline (Suli and

16



Mayers (2003) for example) may be fitted to the data and the functional can be calculated using

the piecewise linear function.

4. Numerical Results: Model validation

In this section we verify the accuracy of the solution techniques detailed previously. In all

examples given in this paper, the value L = 10a is used to compute results as it was shown in

Chidlow et al. (2011a) that this value optimises the balance between computational efficiency and

accuracy. Additionally, as we cannot in practise sum an infinite number of terms, all Fourier sums

appearing in this work will be truncated at a finite value N. This value will be explicitly stated at

the start of each example.

4.1. Example 1: Recreating a known pressure using surface deflection data

We consider the pressure function

p(x) = p0(a2− x2)
(

x+ cos
(

πx
2a

))
(37)

which is continuous everywhere in [−a,a]. Surface deflection data is computed for this pressure

using (6) subject to the parameter values ν = 0.25, µ1/µ0 = 2, h/a = 0.3 and N = 200. In this

example, we use (23) and (24) to derive approximations to the surface pressure.

Table (1) compares the exact Fourier coefficients P1, ...,P10 in the series expansion of (37)

against approximations computed using (23) by calculating the residual error. The formula used to

calculate this quantity is

RE =
|Pj− P̂j|

Pj
(38)
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Figure 2: Plots of the approximate pressure curves produced using (23) against the exact pressure given by (37) (blue

line). The approximations shown are M = 2 (red line), M = 5 (green line), M = 10 (magenta line).

where j ∈N and P̂j denotes the approximation to the Fourier coefficient. It can be observed that the

residual error in these approximations produced using M = 2 is less than 5% whilst when M = 5

the error drops to about 1%. As M increases further, the approximations become more and more

accurate as expected. In fact the approximate Fourier coefficients are accurate to within 0.01%

when a 10 term approximation is used (M = 10). Plots of the recreated pressure functions produc-

ing using these different values of M are shown in figure (2). It is observed that the approximate

pressure curve produced using M = 5 agrees almost everywhere with the true pressure curve whilst

the approximation computed using M = 10 is indistinguishable.

4.2. Example 2: Cylindrical stamp

It has already been seen in the previous example that the integral equation approximation given

in this work is highly successful when the surface deflection is known throughout the contact

region. We now consider a punch problem to further examine the accuracy of this method.
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Residual error in the approximation to the Fourier coefficients P1-P10

n Exact Solution M = 2 M = 5 M = 10 M = 20

1 -0.103020 0.018394 3.97×10−4 6.79×10−5 9.71×10−6

2 0.008316 0.048341 0.009019 6.01×10−4 1.107×10−4

3 0.101639 0.013056 2.46×10−4 2.95×10−5 9.83×10−6

4 -0.016284 0.046610 0.008597 6.75×10−4 1.23×10−4

5 -0.098919 0.002315 4.04×10−5 2.02×10−5 1.19×10−5

6 0.023572 0.043696 0.007933 6.36×10−4 1.27×10−4

7 0.094948 0.014050 4.634×10−4 1.05×10−4 4.21×10−5

8 -0.029886 0.039383 0.006993 5.35×10−4 1×10−4

9 -0.089849 0.036316 9.9×10−4 2.22×10−4 7.79×10−5

10 0.034987 0.033670 0.005774 4.86×10−4 1.43×10−4

Table 1: A comparison of the residual error in the approximation to the first 10 coefficients P1, ...,P10 appearing in the

Fourier representation of (37) compared with approximations computed using (23) for different values of M.

Consider indenting the surface of the solid by a rigid cylindrical stamp. The stamp profile is

approximated using a parabola so that the deflection on the solid surface is given as

v̂ =−ε0 +
x2

2R
(39)

where R is the radius of the stamp and ε0 is an as yet unknown constant which denotes the maxi-

mum deflection of the solid surface. It is easily seen here that

v̂
′
=

x
R

(40)
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Figure 3: Plots of the dimensionless contact pressure curves produced for the cylindrical punch in example 2. The

approximations shown are µ1/µ0 = 8 (blue line), µ1/µ0 = 1.0001 (red line), and µ1/µ0 = 1/8 (green line).

and thus

(v̂
′
,χ j) =


− 2a2

kπR , ( j = 2k),

0, ( j = 2k−1)

(41)

for the trial functions defined in (32).

It is our intention in this example to recreate the results of Ke and Wang (2006). In order

to do this, we take M = 30, N = 400, ν = 0.3, R/h = 0.8 and plot the dimensionless contact

pressure p(x)/µ0 for three different coatings: µ1/µ0 = 8,1,1/8 subject to the relative thicknesses

h/a = 10,10/3. It should be noted that the contact model used in this paper is not valid for a

homogeneous solid and thus in order to compare with the homogeneous solution of Ke and Wang,

we take the stiffness ratio to be almost but not identically 1 (the actual value is µ1/µ0 = 1.0001).

The results produced for this problem are depicted in figure (3) and show excellent agreement with

those given by Ke and Wang (2006) (compare with their figure 9).
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5. The full contact problem

It has been tacitly assumed in the previous sections that the contact half-width is given as part

of the problem. Unfortunately in many real problems this is not the case and typically a will need

to be determined as part of the solution procedure.

If the contact half-width is not known in advance of the problem, the total load W applied to

the solid surface will be given. The load is defined as

W =−
∫ L

−L
P(x)dx, (42)

=
∫ a

−a
p(x)dx (43)

which following simple integration of (24) may be written as

W = 4
∞

∑
n=1

(−1)nP2n−1 sin
(1

2aβ2n−1
)

β2n−1
. (44)

As it is known that the contact region increases in size as the total load increases, we deduce that

1) W (a) is a monotically increasing function,

2) each value of a gives rise to a unique total load for fixed material parameters (ν , µ0, µ1, h).

This information allows us to formulate an iterative algorithm to compute a.

Define the function f (a) as

f (a) = W −4
∞

∑
n=1

(−1)nP2n−1 sin
(1

2(aβ2n−1)
)

β2n−1
(45)

which will be identically zero if a is equivalent to the contact half-width. By choosing some initial

guess a0 to approximate a, we can use the secant method to update each guess and calculate the
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true contact half-width. The iterative formula used here is then

a j+1 = a j− δa f (a j)
f (a j +δa)− f (a j)

, (46)

for some δa > 0 and j = 1,2, .... It is anticipated that the value of a will typically be very small

in the vast majority of problems and thus a direct measure of the difference between a j+1 and a j

could potentially give a misleading estimate of the accuracy of the approximation to a. A better

choice is to stipulate that the true value of a is obtained when the criterion

|a j+1−a j|
|a j+1| < εa (47)

is met. This ensures that high accuracy in the approximation to a is achieved regardless of its

magnitude.

The solution procedure in full is then to calculate Pm, m∈N using either (23) or (30) (depending

on the problem) for each value of a j, determine f (a j) and f (a j +δ ) and update the approximation

to a using (46) until the contact half-width is found to a desired accuracy. A flowchart outlining

the steps in the solution procedure is given in figure (4).

5.1. Example

We test the iterative method proposed in this section by considering a more realistic prob-

lem. A rigid cylindrical stamp of radius 5cm and length 10cm makes contact with the surface of

an inhomogeneous solid which comprises a substrate made of steel (ν = 0.3, Young’s modulus

E1 = 1×1011Pa). The applied load resulting from the contact is 100N.
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-∫P(x)dx = W

Choose indenter profile

Choose initial guess a
0

Update a using (44), (45)

Compute approximation to the 
pressure using (23) or (30), (24)

a, P(x), P
n
 found

YES

NO

Figure 4: The steps in the iterative algorithm used to determine the contact half-width a and pressure p(x).

Our aim in this example is to consider how the inhomogeneity of the coating affects the pre-

dicted pressure curves. This may be achieved by comparing the predicted results for both hard

and soft coatings with those predicted by Hertzian theory. The contact half-width and maximum

pressure predicted from Hertzian theory are

ah =

√
2WR(1−ν)

πµ1
, ph =

2W
πah

which in this example give ah = 5.382µm and ph = 1.182× 107Pa. Unlike in our previous ex-

amples, the contact half-width is not known in advance of the solution and thus we cannot fix the

relative coating thickness h/a. Instead, we choose here to fix the ratio h/ah. It should also be noted

that we take N = 800 and δa = εa = 1×10−7 in this example.

Figure (5) depicts the predicted pressure curves for a selection of different coatings subject to

two different relative thicknesses h/ah. It is observed that the pressure curves for the harder coat-
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Figure 5: Plots of the predicted contact pressures induced within example 3 for two representative coating thicknesses.

The approximations shown are µ1/µ0 = 4 (blue line), µ1/µ0 = 2 (red line), µ1/µ0 = 1.0001 (green line), µ1/µ0 = 1/2

(magenta line) and µ1/µ0 = 1/4 (black line).

ings give rise to larger maximum pressures and smaller contact half-widths than those predicted

by Hertzian pressure whilst softer coatings produce smaller maximum pressures and larger contact

half-widths. These observations become more marked as the ratio h/ah increases as can be seen in

figure (5b).

It has been noted in figure (5) that although material inhomogeneity certainly leads to de-

partures from the predictions of Hertzian pressure, the differences are less marked as the ratio

h/ah decreases. In order to more fully consider this phenomenon, we see how the dimension-

less predicted maximum pressure pmax/ph and dimensionless contact half-width a/ah changes as

the ratio h/ah increases. These results are presented in figure (6) and it is seen that as the ra-

tio h/ah increases, the predicted maximum pressures and contact half-widths for both harder and

softer coatings diverge further and further from the Hertzian predictions. Conversely, when h/ah

is small, the results predicted for the inhomogeneous materials are similar to those predicted using
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Figure 6: The evolution of a) the dimensionless maximum pressure and b) the dimensionless contact radii for a

selection of graded elastic coatings as h/ah changes. The key used is identical to that in figure (5).

Hertzian theory. We can deduce that Hertzian theory may be used to determine solutions to the

contact problem in the limit h/ah→ 0 with a reasonable degree of accuracy. As the relative coating

thickness becomes larger, other methods must be sought to provide accurate solutions.

An alternate way of investigating the limitations of Hertzian theory is to calculate the sub-

surface stress field that results from the applied surface pressure. The choice is made here to

consider the Tresca principal stress field which may be defined at any point as

τ1 =
1
2

√
(σxx−σyy)2 +4σ2

xy. (48)

Please note that all of the sub-surface stress fields considered within this paper will be of Tresca

type and that the contour plots are non-dimensionalised with respect to the maximum Hertzian

pressure ph so that the results presented depict τ1/ph.

The non-dimensional sub-surface stress fields produced for the control case µ1/µ0 = 1.0001

and the hard and soft coatings µ1/µ0 = 0.5,2 subject to the two relative thicknesses h/ah = 0.1,1
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Figure 7: Dimensionless principal stresses τ1/ph for a) the control case µ1/µ0 = 1.0001, b) a thin soft coating, c) a

thin hard coating, d) a thick soft coating and e) a thick hard coating.
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are presented in figure (7). It may be seen that the stress field produced for the control case in

figure (7a) agrees very closely with the results obtained from the Hertzian pressure distribution

(see Johnson (1985) for example). We find in this case that τmax/ph = 0.301 which occurs when

y/ah =−0.796. These values agree well with those given by Hertzian theory.

The results presented in figures (7b-c) indicate that when the coating is thin, the sub-surface

stress fields obtained for the inhomogeneous solids are very similar to that of the control case. It

is found here that for µ1/µ0 = 2, τmax/ph = 0.306 and for µ1/µ0 = 0.5, τmax/ph = 0.297 which

occur when y/ah = −0.768 and y/ah = −0.808 respectively. These results are not dissimilar to

those given by Hertzian theory.

We observe in figures (7d-e) that as the coating becomes relatively thick, the stress fields pro-

duced for the hard and soft coating differ dramatically from those produced for the control case.

It is seen here that a large concentration of stress close to the solid surface is present in the softer

coating whilst there is a region of very low stress occurring immediately below the surface in the

harder coating. It is also found in this situation that when µ1/µ0 = 2, τmax/ph = 0.359 whilst

when µ1/µ0 = 0.5, τmax/ph = 0.262 which occur at y/ah = −0.687 and y/ah = −1.010 respec-

tively. These results reaffirm our conclusion that Hertzian theory is unable to provide accurate

solutions to the contact problem involving inhomogeneous materials outside of the limit h/ah→ 0.

The observations made in this example about the behaviour of the maximum principal stresses

are potentially significant in the determination of material failure. We have seen that under a fixed

load, hard coatings experience a larger maximum principal stress than soft coatings. This trend

becomes more exaggerated as the ratio h/ah increases which indicates that hard coatings become
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Figure 8: Plots of the evolution of the dimensionless contact half-width a/h and maximum contact pressure pmax vs

the dimensionless load W/µ0h. The key used here is the same as that in figure (5).

increasingly more likely to experience plastic flow as coating thickness increases whilst softer ma-

terials are less likely to fail. A more detailed discussion about the behaviour of the maximum

principal stresses is contained within Chidlow et al. (2011a).

As we have considered the behaviour of the maximum contact pressure, contact-half width

and principal stress under fixed load, we now investigate how these parameters behave when the

applied load is allowed to vary. In this situation we cannot non-dimensionalise the parameters in

the same way as before as the contact half-width and maximum pressure predicted using Hertzian

theory are load-dependent. Instead we consider how the dimensionless quantities h/a and pmax/µ0

vary with W̄ = W/µ0h. These results are plotted in figure (8) and indicate that whilst a and pmax

both increase with the load, the relationships are not linear (Guler and Erdogan (2007) suggest

that this relationship is approximately parabolic but please note when comparing results that our

non-dimensionalisation of the load and contact half-width is different to theirs). We further note

that under equivalent loads, the contact half-width is larger in magnitude for softer coatings than
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harder coatings whilst the maximum pressure is larger for harder coatings. These observations

reaffirm our earlier conclusions.

6. Adhesive contacts

We now show how to modify the proposed solution algorithm in this work to solve problems

of adhesive contact between a graded elastic solid and rigid punch. The vast majority of research

conducted on the subject of adhesive contacts has involved homogeneous materials and as such

is likely to be of limited use when studying adhesive contact problems involving inhomogeneous

materials. The aim of this section is therefore to conduct a preliminary investigation into adhesive

contact problems involving FGMS.

6.1. Integral equation formulation

Following the assumption of Maugis (1992) that adhesive forces outside of the contact are

constant, we take the total pressure applied to the solid surface as

P(x) =



σ0, −c≤ x≤−a

−p̂(x),−a≤ x≤ a,

σ0, a≤ x≤ c,

0, otherwise.

(49)

where σ0 = ∆γ/Z0, ∆γ is the work of adhesion (also called the Dupre surface energy) and Z0(> 0)

is the critical gap width at which the attractive forces between the solid and punch fall to zero. This

critical gap width occurs at x = c. We note in this problem that p̂(x) will be a combination of both
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adhesive and contact forces and satisfies

p̂(−a) =−σ0, (50)

p̂(a) =−σ0 (51)

which ensures continuity of P(x). A definition sketch of the adhesive contact problem is contained

in figure (9).
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Figure 9: A definition sketch of the adhesive contact problem.

At this point we introduce the parameter

λ = σ0

(
R(1−ν2)2

∆γµ2
1

) 1
3

, (52)

which has been used extensively (see Johnson and Greenwood (2008) for example) to characterise

adhesive behaviour in homogeneously elastic contact problems. We make reference to this param-

eter later to try and characterise adhesive behaviour in inhomogeneously elastic contact problems.
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We note in this problem that a much greater number of modes will be required to accurately

represent P(x) as a Fourier series as it will have slope discontinuities at both x = ±a and is dis-

continuous at x = ±c. In this situation, the previous formula used to evaluate Pm (30) becomes

inconvenient to use because the evaluation of the matrix Λm for each m involves a high compu-

tational cost. We outline an alternate method here from which the Fourier coefficients Pm can be

more efficiently calculated.

Substituting (9) into (10) allows us to construct the integral equation

v̂
′
(x) =

1
L

∞

∑
n=1

Jn

∫ L

−L
P(t)φn(t)φ

′
n(x)dt (53)

which holds everywhere in [−L,L]. Use of (49) then yields

v̂
′
(x) =

1
L

∞

∑
n=1

Jn

(
σ0

(∫ −a

−c
φn(t)dt +

∫ c

a
φn(t)dt

)
−
∫ a

−a
p̂(t)φn(t)dt

)
φ
′
n(x),

=
∞

∑
n=1

Jn

(
ζn− 1

L

∫ a

a
p̂(t)φn(t)dt

)
φ
′
n(x) (54)

where

ζn =
σ0

L

(∫ −a

−c
φn(t)dt +

∫ c

a
φn(t)dt

)
, (55)

n ∈ N. As the coefficients ζn involve only known quantities, they can be determined in advance

of the problem and hence serve only to modify the forcing term within the integral equation. As a

consequence, we may write the above integral equation as

v̂
′
(x)−

∞

∑
n=1

Jnζnφ
′
n(x) =−1

L

∞

∑
n=1

Jn

∫ a

−a
p̂(t)φn(t)φ

′
n(x)dt, (56)

which holds ∀x∈ [−L,L]. This equation may be solved as before using Galerkin’s method with the

exception that the trial functions previously used in the initial approximation given by (32) cannot
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be used as they will return a very poor approximation to p̂(x) near the edges of the contact as they

satisfy χ j(±a) = 0, j = 1, ...,M. This difficulty may be overcome by defining the new function

Q(t) = p̂(t)+σ0, −a≤ t ≤ a (57)

which satisfies Q(±a) = 0. Substituting (57) into (56) gives the new equation

v̂
′
(x)−

∞

∑
n=1

Jnρnφ
′
n(x) =−1

L

∞

∑
n=1

Jn

∫ a

−a
Q(t)φn(t)φ

′
n(x)dt (58)

where

ρn =
σ0

L

∫ c

−c
φn(t)dt. (59)

Multiplying (58) by the test functions χ j(x) and integrating over the contact area gives the system

(v̂
′
,χ j)−

∞

∑
n=1

Jnρn(φ
′
n,χ j) =−1

L
(L Q,χ j), j = 1, ...,M. (60)

Introducing the approximation

Q(x) ≈
M

∑
i=1

biχi(x) (61)

into (60) then gives the system

G =−1
L

∆
T b (62)

which may be rearranged to give

b =−L∆
−T G. (63)

The vectors used above are defined as

G =
(

(g,χ1),(g,χ2), ...,(g,χM)
)T

, (64)

b =
(

b1,b2, ...,bM

)T

(65)
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with

g(x) = v̂
′
(x)−

∞

∑
n=1

Jnρnφ
′
n(x), (66)

whilst ∆i j = (L χi,χ j), i, j = 1, ...,N. The Fourier coefficients Pn can then be computed from the

formula

Pn =−1
L

∫ a

−a
(Q(x)−σ0)φn(x)dx+ζn,

=−1
L

M

∑
i=1

bi(χi,φn)+
σ0

L

∫ c

−c
φn(x)dx,

=−1
L

M

∑
i=1

biθi,n +
4σ0

nπ
sin
(

βnL
2

)
sin
(

βnc
2

)
(67)

with θi,n given by (33) as before. This expression may be simplified to finally give

Pn =


− 1

L ∑
M
i=1 biθi,2m, (n = 2m),

− 1
L ∑

M
i=1 biθi,2m−1 + 4σ0

(2m−1)π (−1)m+1 sin
(

β2m−1c
2

)
, (n = 2m−1).

(68)

Many practical problems involving adhesive contacts will require the determination of both a and

c. The iterative algorithm proposed in section (5) may still be used here to determine the contact

half-width with a slight-modification which we discuss shortly. The value of c however needs to

be computed using other means. The next section details an efficient iterative solver which may be

used to compute this value.

6.2. Determining c: the case of a cylindrical punch

The point c represents the location at which the critical gap Z0 occurs. If we let ξ (x) denote

the gap at any point between the solid surface and the indenter, we see from its definition that
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ξ (c) = Z0. In the case of contact by a cylindrical punch, we may use (11) and (39) to write

ξ (x) = abs

(
−ε0 +

x2

2R
−

∞

∑
n=1

JnPnφn(x)

)
(69)

so that

Z0 = abs

(
−ε0 +

c2

2R
−

∞

∑
n=1

JnPnφn(c)

)
. (70)

The absolute value is used in (69) and (70) to ensure that the obtained gap-width is always positive.

We note that the maximum penetration depth −ε0 will occur at the origin in this case and will be

given by the formula

−ε0 =
∞

∑
n=1

JnPnφn(0), (71)

thus allowing us to write (70) as

Z0 = abs

(
c2

2R
+

∞

∑
n=1

JnPn
(
φn(0)−φn(c)

))
. (72)

This equation may be solved iteratively in an identical way to the contact half-width a by using the

secant method. Defining the function

η(c) = abs

(
c2

2R
+

∞

∑
n=1

JnPn
(
φn(0)−φn(c)

))−Z0 (73)

allows us to choose an initial guess c0 to c and iterate using the formula

ci+1 = ci− δcη(ci)
η(ci +δc)−η(ci)

(74)

for i≥ 0. As before, we deem that the true value of c has been found when

|ci+1− ci|
|ci+1| < εc. (75)
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6.3. Re-computing the contact half-width

In the case of adhesive contact considered here, the pressure applied to the solid surface is

non-zero in the interval (−c,c). Using (42), we see here that

W =−
∫ L

−L
P(x)dx,

=−
(

2σ0

∫ c

a
dx−

∫ a

−a
p̂(x)dx

)
,

=
∫ a

−a
p̂(x)dx−2σ0(c−a). (76)

This may be written in series form as

W = 4
∞

∑
n=1

(−1)nP2n−1 sin
(1

2(cβ2n−1)
)

β2n−1
(77)

which follows from (44). Using this new expression for the load in (45) and (46) allows us to com-

pute a iteratively as before. Note that although a does not explicitly appear in (77), all quantities

appearing in this equation are a-dependent.

A flowchart of the steps used to solve the adhesive circular punch problem is contained in

figure (10). It should be noted that this solution technique may be used to determine c in cases

of contact with arbitrary shaped punches. The only modification necessary is the insertion of the

desired profile into (70).

We use the initial guesses a0 = c0 = ah within this work as this value can be computed easily

from an explicit formula. Another possible choice would be to use the value of c computed from

Johnson and Greenwood (2008) but this requires further iterative calculations and is thus not used

here.
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Choose initial guess a_0

Choose initial guess c_0

Compute approximation to the 
Pressure using (56),(60),(62) 

ξ(c)=z
0
?

Update c using (72), (73)

NO

-∫P(x)dx = W

YES

Update a using (44),(45),(76)

NO
a, c, P(x), P

n
 found

YES

Figure 10: An outline of the method used to determine the solution of adhesive contact problems

7. Example: Adhesive circular punch

We conclude this work with an example of an adhesive contact problem. A graded elastic solid

is contacted by a rigid circular punch of radius 5µm and length 10µm with a resultant load of

200N. The Poisson ratio of the solid is taken to be 0.23 whilst the shear modulus of the substrate

is 1× 109Pa. The critical gap-width at which there ceases to be adhesion between the punch

and the solid is 3.51nm. As this value is of O(10−9)m, we choose δa = δc = 1× 10−12 and

εa = εc = 1× 10−6 here. We additionally choose N = 2000 to produce results for soft coatings

(µ1/µ0 < 1) and N = 3000 to produce results for hard coatings (µ1/µ0) > 1.

Our main objective within this example will be to determine the effects the parameter λ and

the relative coating thickness h/ah have on p̂(x), a, c and the Tresca-type sub-surface stress field.

Plots of the evolution of the parameters a and c in this problem for 0.3 ≤ λ ≤ 3 are presented in
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Figure 11: The evolution of the dimensionless parameters a/ah (blue lines) and c/ah (red lines) for four different

coatings of three different thicknesses. The solid lines represent h/ah = 0.1, the squares represent h/ah = 0.5 and the

diamonds represent h/ah = 1.
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figure (11). We can immediately see for the soft coatings in figures (11a) and (11b) that as the

value of λ increases, both a/ah and c/ah increase in magnitude. We also see that both parameters

start to coalesce as λ increases which indicates that the band width c− a over which adhesion

occurs decreases. This observation is in accord with those of Johnson and Greenwood (2008) for

a homogeneous solid. It is of further interest to note that as the relative coating thickness h/ah

increases, the magnitude of both a/ah and c/ah increase as well. This indicates that as the contact

becomes more adhesive, the predicted contact half-width of Hertz becomes less and less accurate

as it significantly underestimates the true value.

The behaviour of a/ah and c/ah for the harder coatings satisfying µ1/µ0 = 2 and µ1/µ0 = 3 are

presented in figures (11c) and (11d). We can immediately see here that both a/ah and c/ah increase

in magnitude and begin to coalesce as λ increases. These characteristics are in accord with those

observed for the softer coatings in (11a) and (11b). We notice here however that the values of a/ah

and c/ah decrease in magnitude as the relative coating thickness increases in magnitude. This is

a complete contrast to the observed behaviour for soft coatings as it indicates that the area over

which pressure is applied to the solid surface decreases as h/ah increases. We note however that

this behaviour agrees well with the trends that were previously seen in figure (5).

It is of further interest to determine how the dimensionless maximum contact pressure p̂max is

affected by both λ and h. Table (2) presents the maximum pressures applied on the solid surface

for a selection of different coatings subject to different relative thicknesses h/ah and values of λ .

We can immediately see from these results that the coating thickness has a significant effect on the

value of the maximum pressure. The two softer coatings experience a significant decrease in the
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maximum applied pressure as the value of h/ah increases whilst the two harder coatings experience

a significant increase in the maximum applied pressure. However, we also note that subject to

a fixed value of h/ah, an increase in λ makes almost no difference to the predicted maximum

pressure obtained for each different coating. This indicates that increased work of adhesion has

virtually no effect on the maximum pressure experienced during contact, an observation made by

Johnson and Greenwood (2008) for the homogeneous case.
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The predicted maximum pressure for a selection of different coatings and thicknesses

λ h/ah µ1/µ0 = 0.25 µ1/µ0 = 0.5 µ1/µ0 = 2 µ1/µ0 = 3

0.1 0.9622 0.9836 1.0152 1.0242

0.3 0.5 0.8614 0.9337 1.0634 1.0997

1 0.7837 0.8857 1.1392 1.2402

0.1 0.9639 0.9870 1.0283 1.0435

1 0.5 0.8628 0.9369 1.0759 1.1177

1 0.7849 0.8886 1.1531 1.2603

0.1 0.9674 0.9938 1.0534 1.0794

2 0.5 0.8659 0.9434 1.1011 1.1525

1 0.7874 0.8946 1.1792 1.2956

0.1 0.9718 1.0019 1.0795 1.1163

3 0.5 0.8696 0.9514 1.1295 1.1872

1 0.7907 0.9022 1.2078 1.3330

Table 2: The predicted maximum pressure p̂max for four coatings satisfying µ1/µ0 = 0.25,0.5,2,3. Each coating is

considered at three different thicknesses h/ah = 0.1,0.5,1 and subject to four different values of λ .

We conclude this section by considering the behaviour of the sub-surface stress (Tresca) fields

and total pressures produced for the soft coating µ1/µ0 = 0.5 and hard coating µ1/µ0 = 2 with

h/ah = 0.5 subject to four different values of λ . Figure (12) shows the total pressure forces acting

on the solid in this example. It is readily observed that the results produced for both the hard and
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Figure 12: The total pressure applied to the solid in the adhesive punch problems for two different coatings. The blue

line represents λ = 0.3, the red line λ = 1, the green line λ = 2 and the black line λ = 3.

soft coating are qualitatively similar as the region over which adhesion occurs decreases dramati-

cally as λ increases in magnitude whilst the value of σ0 significantly increases. It is seen for λ = 3

that there are very large negative pressures which occur on the edges of the contact and correspond

to high tensile stresses. This behaviour is similar to that predicted by the JKR model for a homo-

geneous solid. The curves produced for λ = 0.3 are qualitatively similar to those produced for

the DMT model in the case of a homogeneous solid as the pressure curves observed here have a

relatively small adhesive pressure and act over a wider area as compared to the results produced

for larger values of λ .

The sub-surface stress fields (Tresca) produced using the pressure curves above are depicted in

figure (13) and (14). We note that the change in λ has very little effect on the sub-surface stress

field within the soft coating except immediately below the points x = ±c where an increase in λ

and thus an increase in magnitude of the adhesive pressure yields a more pronounced principal

stress. In fact, the sub-surface stress field produced for λ = 3 indicates that the stresses at the
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points of pronounced adhesion are of the same order of magnitude as the maximum principal stress

attained below the surface. Finally, we observe that the maximum dimensionless principal stress is

approximately 0.25 which is less than the maximum stress predicted by Hertz (approximately 0.3)

which indicates that material failure is less likely here.

The results presented in figure (14) which correspond to a hard coating indicate that the actual

pattern of the sub-surface stress field is relatively unaffected by an increase in λ . However, we see

here that the maximum principal stresses occur immediately below the surface where the adhesive

pressures are applied and their magnitude is highly dependent on λ . The results presented for

λ = 0.3 and λ = 1 indicate that the maximum dimensionless principal stress is similar to that

predicted by Hertz whilst for λ = 2 and λ = 3 this value increases dramatically. These observations

lead us to deduce that the high tensile stresses experienced on the surface at x =±c will eventually

cause hard coatings to fail and experience plastic flow for λ sufficiently large. This information

could potentially be crucial in the design and manufacture of protective coatings.

8. Conclusions

Using the work of Chidlow et al. (2011a), we have formulated two non-singular integral equa-

tions of the first kind which utilise differing information to approximate the contact pressure ap-

plied on the surface of an inhomogeneous solid. The first integral equation assumes that the surface

deflection is known over the contact region whilst the second integral equation is valid for contact

by a rigid punch and assumes that the gradient of surface deflection is known within this region.

As both integral equations are non-singular, their solution may be approximated using classical

methods. The choice was made here to use Galerkin’s method and thus the integral equations were
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Figure 13: Contour plots of the principal stress field for the soft coating µ1/µ0 = 0.5 of thickness h/ah = 0.5 subject

to different values of the Tabor parameter.
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Figure 14: Contour plots of the principal stress field for the hard coating µ1/µ0 = 2 of thickness h/ah = 0.5 subject to

different values of the Tabor parameter.
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replaced by a system of algebraic equations. The integral equation approximations were further

extended by the derivation of an iterative algorithm based on the secant method used to simultane-

ously compute both the contact half-width and contact pressure.

A selection of numerical examples were presented to test the accuracy of the new approxi-

mations and it was found that the predicted results compare well with those of other authors. It

was also found that whilst our results compare well with the Hertzian contact model in the limit

h/ah→ 0, our model begins to predict markedly different results as the ratio h/ah increases. It was

further noted that harder coatings tend to experience larger maximum principal stresses than softer

coatings. These observations have been recorded by other authors (e.g. Teodorescu et al. (2009))

and provide a further check on the accuracy of this method.

This work concluded with a preliminary investigation into adhesive contact problems involving

graded elastic solids. The assumptions of Maugis (1992) were invoked to include the effects of ad-

hesion in the problem and an alternate integral equation was formulated to determine the pressure

that results from adhesive contact. An iterative algorithm capable of determining both the contact

half-width a and the new parameter c was proposed and used to produce numerical results for this

problem. The so-called ‘Tabor’ parameter λ was used to characterise the adhesive energy in the

problem and it was found that for λ < 0.3, the behaviour of the applied pressure is similar to that

of the DMT model proposed for a homogeneous solid whilst for λ > 3 the pressure behaves in a

similar way to that predicted by the JKR model. This indicates that whilst the quantitative pre-

dictions made by these models may not in general transfer to inhomogeneously elastic solids, the

qualitative predictions remain accurate. These observations are very suggestive and indicate the
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potential for further research in this area.

To summarise, the principal advantages of the solution techniques given in this work are

• the derived integral equations are non-singular and may be approximated using classical

methods

• unlike the majority of alternate solution techniques, the total stress field may be easily com-

puted at any point within the solid

• the underlying mathematical model is valid for graded elastic coatings which can be either

hard or soft as well as thick and thin

• our model is capable of solving both adhesive and non-adhesive contact problems

• the proposed iterative scheme to determine the constants a and c are very simple in form and

typically only a handful of iterations are needed to find both parameters to machine accuracy.

Appendix A. Contact model derivation

The following is a brief summary of how the contact model detailed in section 1 is obtained.

For a fuller discussion, the reader is referred to Chidlow et al. (2011a).

It is found by seeking separable solutions of the displacements u(x,y) and v(x,y) in the coating

that

u(c)(x,y) =
∞

∑
n=1

(
4

∑
j=1

a(n)
j eλ j,ny

)
cos
(

1
2

βn(x+L)
)

, (−h≤ y≤ 0), (A.1)

v(c)(x,y) =−
∞

∑
n=1

(
4

∑
j=1

γ j,na(n)
j eλ j,ny

)
sin
(

1
2

βn(x+L)
)

, (−h,≤ y≤ 0) (A.2)
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where

γ j,n =
2
(
(1−2ν)λ 2

j,n +α(1−2ν)λ j,n− 1
2(1−ν)β 2

n

)
βn
(
λ j,n +α(1−2ν)

) (A.3)

and the roots λ j,n satisfy the quartic equation

λ
4 +2αλ

3 +
(

α
2− 1

2
β

2
n

)
λ

2− 1
2

αβ
2
n λ +

β 2
n

16

(
β

2
n +

4α2ν

1−ν

)
= 0. (A.4)

Explicit formulae for these roots give

λ1,n =

√
1
4
(α2 +β 2

n )+
i
2

αβn

√
ν

1−ν
− 1

2
α, (A.5)

λ2,n =−
√

1
4
(α2 +β 2

n )+
i
2

αβn

√
ν

1−ν
− 1

2
α (A.6)

λ3,n =

√
1
4
(α2 +β 2

n )− i
2

αβn

√
ν

1−ν
− 1

2
α, (A.7)

λ4,n =−
√

1
4
(α2 +β 2

n )− i
2

αβn

√
ν

1−ν
− 1

2
α (A.8)

and so λ3,n = λ̄1,n, λ4,n = λ̄2,n. The general solution of the displacements in the substrate are found

to be

u(s)(x,y) =
∞

∑
n=1

(
C(n)

1 +C(n)
2 y
)

e
1
2 βny cos

(
1
2

βn(x+L)
)

, (−∞ < y <−h), (A.9)

v(s)(x,y) =
∞

∑
n=1

(
C(n)

1 +(y−δn)C
(n)
2

)
e

1
2 βny sin

(
1
2

βn(x+L)
)

. (−∞ < y <−h) (A.10)

The constants δn are defined as

δn =
2(3−4ν)

βn
. (A.11)
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Application of the matching conditions and surface boundary conditions given by (3c), (3d) and

(3f)-(3i) give the constants appearing in the general solutions of the displacements above as a(n)
1

a(n)
3

= W−1
n

 (1−2ν)
2µ0

Pn

0

 , (A.12)

 a(n)
2

a(n)
4

=−(T2,nK2,n)−1T1,nK1,nW−1
n

 (1−2ν)
2µ0

Pn

0

 , (A.13)

 C(n)
1

C(n)
2

=
e

1
2 βnh

δn

(
Z1,n−Z2,n(T2,nK2,n)−1T1,n

)
K1,nW−1

n

 (1−2ν)
2µ0

Pn

0

 . (A.14)

The 2×2 matrices appearing in (A.12), (A.13) and (A.14) are defined as

Wn = N1,n−N2,n(T2,nK2,n)−1T1,nK1,n, (A.15)

Tj,n = N j,n +
1
δn

M j,n, (A.16)

Z j,n =

 δn +h(1+ γ j,n) δn +h(1+ γ j+2,n)

1+ γ j,n 1+ γ j+2,n

 (A.17)

for j = 1,2. The remaining matrices are

K j,n = diag(e−λ j,nh,e−λ j+2,nh), (A.18)

M j,n =

 1
2(1−2ν)

(
4(1−ν)(1+ γ j,n)−βnδn

) 1
2(1−2ν)

(
4(1−ν)(1+ γ j+2,n)−βnδn

)
2(1−2ν)(1+ γ j,n)−βnδn 2(1−2ν)(1+ γ j+2,n)−βnδn


(A.19)

N j,n =

 −
(1

2νβn +(1−ν)λ j,nγ j,n
) −(1

2νβn +(1−ν)λ j+2,nγ j+2,n
)

λ j,n− 1
2βnγ j,n λ j+2,n− 1

2βnγ j+2,n

 , (A.20)
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j = 1,2. At this point we see that we may write the displacements in the coating as (5) and (6) with

ξn(y) = (eλ1,ny,eλ3,ny,eλ2,ny,eλ4,ny)T , (A.21)

Γn = diag(γ1,n,γ3,n,γ2,n,γ4,n), (A.22)

Ωn =

 W−1
n

−(T2,nK2,n)−1T1,nK1,nW−1
n

 . (A.23)

The displacements in the substrate may similarly be written as (7) and (8). The previously unde-

fined quantities appearing here are

ϕ(y) = (1,y)T , (A.24)

Φn =

 1 −δn

0 1

 , (A.25)

Ψn =
(

Z1,n−Z2,nT−1
2,n T1,n

)
K1,nW−1

n . (A.26)
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