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Two-dimensional contact mechanics problems involving
inhomogeneously elastic solids split into three distinct layers

S. J. Chidlow∗, M. Teodorescu†,∗1

∗
School of Engineering, Cranfield University, Cranfield, MK43 0AL, UK

†
Baskin School of Engineering, University of California at Santa Cruz, CA USA

Abstract

This paper is concerned with an investigation into the two-dimensional frictionless contact problem

of an inhomogeneously elastic material under a rigid punch and in particular the induced sub-

surface stress fields. The inhomogeneous solid is deemed to comprise three distinct regions which

represent a homogeneously elastic coating and substrate joined together by a functionally graded

transition layer whose shear modulus depends exponentially on the vertical coordinate. Using the

assumption that the effects of the contact pressure die quickly away from the contact region, we

formulate closed form solutions for the horizontal and vertical displacements of the solid which

are analytic if the contact pressure is known exactly. These solutions are further used to derive a

fast and efficient algorithm from which the contact footprint may be computed.

A selection of numerical results are presented using this method and it is found that our model

compares well with those of authors in two particular limiting cases. We then investigate the effects

of material inhomogeneity and coating thickness on the circular stamp problem and it is found that

hard coatings experience much larger contact pressures than soft coatings but act over a smaller

area. These effects are exacerbated by decreased interlayer thickness where hard coatings achieve
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their maximum pressure and soft coatings achieve their minimum. This has a knock-on effect on

the sub-surface stress fields as the maximum principal stress attained within hard coatings when the

interlayer is thin is much larger than when the interlayer is thick. This indicates that the maximum

principal stress is highly dependent on not only material inhomogeneity but interlayer thickness as

well.

1. Introduction

Contact mechanics problems involving inhomogeneous materials have received increasing at-

tention in recent years as our ability to manufacture more complex materials has advanced dra-

matically. However, the wide variety of assumptions that can be made about systems comprising

a coating-substrate has led to the development of a wide variety of models. The earliest such at-

tempts consider the substrate to be rigid and the coating homogeneous (e.g. Hannah (1951)). If the

additional assumption is made that the coating is thin, asymptotic solutions may be obtained which

allow considerable simplification of the solution (e.g. Jaffar (1989)). These models however are

generally far from realistic and are severely limited in their application.

A more accurate assumption is to model the coating and substrate as distinct yet homogeneous

layers which are perfectly bonded at their interface. This approach has been taken by several

authors such as Ma and Korsunsky (2004) who used Fourier transforms to formulate a pair of inte-

gral equations from which the normal and tangential pressure resulting from contact between two

dissimilar inhomogenenously elastic bodies or a rigid stamp and an inhomogeneous body can be

determined. An alternate model was presented by Teodorescu et al. (2009) who formulated a nu-

merical algorithm to approximate the contact footprint resulting from frictionless contact between
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a rigid circular punch and a layered solid. A selection of numerical results were then presented

indicating the effects of hard and soft coatings on the sub-surface stress fields.

As the properties of functionally graded materials (FGM) are continuously changing through-

out their volume, a better approximation is to assume that the shear modulus of the coating is

dependent on either the horizontal or vertical coordinate in some pre-determined way. The most

common assumptions take the shear modulus to follow either a power law or exponential variation.

Guler and Erdogan (2004) and Guler and Erdogan (2007) assumed that the coating follows an ex-

ponential variation and used Fourier transforms to formulate a pair of coupled integral equations

from which the contact pressures could be determined. Assuming Coulomb friction, the authors

presented a set of results for a flat stamp, circular stamp, triangular stamp and a wedge-shaped

stamp. This approach was also taken by Ke and Wang (2006) and Ke and Wang (2007) with the

exception that the coating was assumed to be split into an arbitrary number of layers where the

shear modulus in each one depends linearly on the depth coordinate. Both sets of authors present

results that are in excellent agreement with each other. An extension to the model of Ke and Wang

(2006) was presented by Yang and Ke (2008) who considered a coating-graded layer-substrate for-

mulation. The coating and substrate are both assumed homogeneous whilst the graded layer is split

into an arbitrary number of layers with piecewise linear shear moduli. The authors considered the

frictionless contact of a rigid circular stamp and presented a selection of results that validate their

model in two limiting cases.

This paper is concerned with the derivation of a new model to approximate the contact pressure

and contact half-width that results from contact between a rigid stamp and an inhomogeneously

3



elastic solid. The solid is comprised of a homogeneous coating and substrate joined together by

a functionally graded transition layer whose shear modulus depends exponentially on the depth

coordinate. We invoke the assumptions of Chidlow et al. (2011) that the effects of the applied

pressure die quickly away from the contact region in order to represent the horizontal and vertical

displacements within the solid using Fourier series. An iterative algorithm is then presented which

allows the fast and efficient solution of the contact problem.

The layout of this paper is as follows. In section (2) we formulate the contact problem which is

solved in section (3) when the contact pressure is assumed known. These solutions are examined

in more detail in section (4) and their limiting behaviour in three different cases considered. The

iterative algorithm used to compute the solution to the frictionless contact problem is presented in

section (5) and a selection of numerical results are presented in section (6). Finally, our work is

summarised in section (7).

2. Formulation of the problem

We consider an inhomogeneously elastic material in a state of plane strain occupying the region

−L ≤ x ≤ L,−∞ < y ≤ 0 which comprises three distinct regions. The upper layer (region 1)

occupies −h1 ≤ y ≤ 0 and represents a homogeneously elastic coating, the lower layer (region

3) occupies −∞ < y ≤−h2 and represents a homogeneously elastic substrate whilst the interlayer

(region 2) occupies −h2 ≤ y≤−h1 and represents a transitional layer where the material properties

progressively morph from that of the coating to that of the substrate. The shear modulus of the solid

4
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Figure 1: A definition sketch of the problem.

is then defined as

µ(y) =






µ1, −h1 ≤ y ≤ 0,

µ0e
α(y+h2), −h2 ≤ y ≤−h1,

µ0, −∞ < y <−h2

(1)

with

α =
1

h2 −h1
ln
�

µ1

µ0

�
. (2)

which ensures that the shear modulus is continuous everywhere. The Poisson ratio within each

layer denoted ν(i), i = 1,2,3 is taken to be constant and equivalent and so ν(1) = ν(2) = ν(3) = ν .

Suppose that an external pressure force of the form

P(x) =






−p(x), |x| ≤ a,

0, |x|> a

(3)
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where a denotes the contact half-width is applied normally to the solid surface (see figure (1)).

The state of stress at any point within the solid may then be computed by solving the following

boundary-value problem (BVP)

2µ(y)
1−2ν

�
(1−ν)∂u

∂x
+ν ∂v

∂y

�

x

+

�
µ(y)

�
∂u

∂y
+

∂v

∂x

��

y

= 0, −∞ < y ≤ 0, (4)

µ(y)
�

∂u

∂y
+

∂v

∂x

�

x

+

�
2µ(y)
1−2ν

�
ν ∂u

∂x
+(1−ν)∂v

∂y

��

y

= 0, −∞ < y ≤ 0, (5)

2µ1

1−2ν

�
ν ∂u

∂x
+(1−ν)∂v

∂y

�
−P(x) = 0, (y = 0), (6)

∂u

∂y
+

∂v

∂x
= 0, (y = 0), (7)

(1−ν)∂u

∂x
+ν ∂v

∂y
= 0, (x =±L), (8)

v = 0, (x =±L), (9)

|u|, |v| → 0, (y →−∞), (10)

subject to the matching conditions

u
(i)−u

(i+1) = 0, (y =−hi), (11)

v
(i)− v

(i+1) = 0, (y =−hi), (12)
�

ν ∂u
(i)

∂x
+(1−ν)∂v

(i)

∂y

�
−
�

ν ∂u
(i+1)

∂x
+(1−ν)∂v

(i+1)

∂y

�
= 0, (y =−hi), (13)

�
∂u

(i)

∂y
+

∂v
(i)

∂x

�
−
�

∂u
(i+1)

∂y
+

∂v
(i+1)

∂x

�
= 0, (y =−hi) (14)

for i = 1,2. The surface boundary conditions and matching conditions outlined above represent

frictionless contact and ensure that all three layers are perfectly bonded to each other. The radia-

tion conditions |u| → 0, |v| → 0 as y →−∞ ensures that the solution remains bounded whilst the
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boundary conditions at x = ±L represent the limits at which the applied pressure is hypothesised

to cease to effect the solid. The choice of L is discussed in more detail in section (6).

3. Solving the BVP

3.1. Separation solutions

We attempt to solve the BVP outlined above by seeking separation solutions of the form

u(x,y) = A(x) f (y), v(x,y) = B(x)g(y) which satisfy the boundary conditions on x = ±L. It is

easily verified that

u(x,y) = A0(y)+
∞

∑
n=1

An(y)cos
�

1
2

βn(x+L)

�
, (15)

v(x,y) =
∞

∑
n=1

Bn(y)sin
�

1
2

βn(x+L)

�
(16)

n ∈ �, βn = nπ/L satisfy the necessary conditions. As the boundary conditions at x = ±L are

the same within each region, we see that the form of the displacements in the coating, substrate

and interlayer are given by (15) and (16). Substituting (15) and (16) into (4) and (5) allows us to

determine the functions An(y) and Bn(y) in each layer and construct the general solutions

u
(1)(x,y) =C

(1)
0 +C

(2)
0 y+

∞

∑
n=1

�
(C(1)

n +C
(2)
n y)e

1
2 βny +(C(3)

n +C
(4)
n y)e−

1
2 βny

�
cos

�
1
2

βn(x+L)

�
,

(17)

v
(1)(x,y) =

∞

∑
n=1

�
(D(1)

n +D
(2)
n y)e

1
2 βny +(D(3)

n +D
(4)
n y)e−

1
2 βny

�
sin

�
1
2

βn(x+L)

�
(18)
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which hold for −L ≤ x ≤ L,−h1 ≤ y ≤ 0,

u
(2)(x,y) = A

(1)
0 +A

(2)
0 e

αy +
∞

∑
n=1

�
4

∑
j=1

A
( j)
n e

λ j,ny

�
cos

�
1
2

βn(x+L)

�
, (19)

v
(2)(x,y) =

∞

∑
n=1

�
4

∑
j=1

B
( j)
n e

λ j,ny

�
sin

�
1
2

βn(x+L)

�
(20)

where the roots λ j,n are defined as

λ1,n =

�
1
4
(α2 +β 2

n
)+

i

2
αβn

�
ν

1−ν
− 1

2
α, (21)

λ2,n =−

�
1
4
(α2 +β 2

n
)+

i

2
αβn

�
ν

1−ν
− 1

2
α, (22)

λ3,n =

�
1
4
(α2 +β 2

n
)− i

2
αβn

�
ν

1−ν
− 1

2
α, (23)

λ4,n =−

�
1
4
(α2 +β 2

n
)− i

2
αβn

�
ν

1−ν
− 1

2
α, (24)

which holds for −L ≤ x ≤ L,−h2 ≤ x <−h1 and

u
(3)(x,y) = E

(1)
0 +E

(2)
0 y+

∞

∑
n=1

�
(E(1)

n +E
(2)
n y)e

1
2 βny +(E(3)

n +E
(4)
n y)e−

1
2 βny

�
cos

�
1
2

βn(x+L)

�
,

(25)

v
(3)(x,y) =

∞

∑
n=1

�
(F(1)

n +F
(2)
n y)e

1
2 βny +(F(3)

n +F
(4)
n y)e−

1
2 βny

�
sin

�
1
2

βn(x+L)

�
(26)
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which hold for −L ≤ x ≤ L,−∞ < y < −h2. The constants appearing above are not independent

and are related through the identities

D
(1)
n =C

(1)
n −δnC

(2)
n , D

(2)
n =C

(2)
n , (27)

D
(3)
n =−(C(3)

n +δnC
(4)
n ), D

(4)
n =−C

(4)
n , (28)

F
(1)
n = E

(1)
n −δnE

(2)
n , F

(2)
n = E

(2)
n , (29)

F
(3)
n =−(E(3)

n +δnE
(4)
n ), F

(4)
n =−E

(4)
n , (30)

B
( j)
n =−γ j,nA

( j)
n , (31)

n ∈ N, j = 1, ...,4. The constants δn and γ j,n are defined as

δn =
2(3−4ν)

βn

, (32)

γ j,n =
2
�
(1−2ν)λ 2

j,n +α(1−2ν)λ j,n − 1
2(1−ν)β 2

n

�

βn

�
λ j,n +α(1−2ν)

� . (33)

As the roots λ j,n satisfy λ3,n = λ̄1,n, λ4,n = λ̄2,n, it follows that γ3,n = γ̄1,n, γ4,n = γ̄2,n.

3.2. Determination of the final solution

It is only left to determine the constants appearing in (17), (18), (25), (26), (19) and (20) using

the remaining boundary and matching conditions. We immediately see that the radiation conditions

|u|, |v| → 0 as y →−∞ can only be satisfied if E
(1)
0 = E

(2)
0 = E

(3)
n = E

(4)
n = F

(3)
n = F

(4)
n = 0. The

surface boundary conditions imply the system

Rn




C
(1)
n

C
(2)
n



+Sn




C
(3)
n

C
(4)
n



=− 1
2µ1




Pn

0



 , (34)
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whilst the interfacial matching conditions at y = −h1 and y = −h2 can be combined to yield the

relations



E
(1)
n

E
(2)
n



=
e

1
2 βnh2

δn



Z
(2)
1,nK

(2)
1,n




A
(1)
n

A
(3)
n



+Z
(2)
2,nK

(2)
2,n




A
(2)
n

A
(4)
n







 , (35)




A
(2)
n

A
(4)
n



=−
�

K
(2)
2,n

�−1
T
−1

2,n T1,nK
(2)
1,n




A
(1)
n

A
(3)
n



 (36)

and



C
(1)
n

C
(2)
n



=
e

1
2 βnh2

δn



Z
(1)
1,nK

(1)
1,n




A
(1)
n

A
(3)
n



+Z
(1)
2,nK

(1)
2,n




A
(2)
n

A
(4)
n



− e
1
2 βnh1Λn




C
(3)
n

C
(4)
n







 , (37)




C
(3)
n

C
(4)
n



= e
− 1

2 βnh1J
−1
n



T1,nK
(1)
1,n




A
(1)
n

A
(3)
n



+T2,nK
(1)
2,n




A
(2)
n

A
(4)
n







 . (38)

10



respectively. These equations may be readily combined to give the closed form solutions



A
(1)
n

A
(3)
n



=−e
− 1

2 βnh1

2µ1
Φ−1

n




Pn

0



 , (39a)




A
(2)
n

A
(4)
n



=
e
− 1

2 βnh1

2µ1

�
T2,nK

(2)
2,n

�−1
T1,nK

(2)
1,n Φ−1

n




Pn

0



 , (39b)




C
(1)
n

C
(2)
n



=− 1
2µ1δn

�
Z
(1)
1,nK

(1)
1,n −∆nJ

−1
n

Wn

−Z
(1)
2,nK

(1)
2,n

�
T2,nK

(2)
2,n

�−1
T1,nK

(2)
1,n

�
Φ−1

n




Pn

0



 , (39c)




C
(3)
n

C
(4)
n



=−e
−βnh1

2µ1
J
−1
n

WnΦ−1
n




Pn

0



 , (39d)




E
(1)
n

E
(2)
n



=− 1
2µ1δn

�
Z1,nK

(2)
1,n −Z2,nT

−1
2,n T1,nK

(2)
1,n

�
Φ−1

n




Pn

0



 . (39e)

together with C
(1)
0 = C

(2)
0 = A

(1)
0 = A

(2)
0 = 0. The quantities Pn, n ∈ N appearing above are the

coefficients in the Fourier series representation of the pressure and are defined as

Pn =
1
L

�
L

−L

P(x)sin
�

1
2

βn(x+L)

�
,

=−1
L

�
a

−a

p(x)sin
�

1
2

βn(x+L)

�
. (40)

These constants are by far the most important quantities that appear in the solution as they provide

a direct link between the applied surface pressure and the induced stresses and displacement. The

remaining quantities appearing in (39a)-(39e) are all 2× 2 matrices which are given explicitly in

11



the appendix.

4. Limiting cases

Under certain conditions, we can considerably simplify the solutions u and v appearing above.

We consider three particular examples here in order to confirm that our model reduces correctly in

these limits.

4.1. Case 1: Infinitely thick transition region

We initially consider the case h2 → ∞ which corresponds to removing the substrate from the

problem. Examination of the roots λ j,n, j = 1, ..,4 reveals that Re(λ1,n)> 0,Re(λ2,n)< 0 and so

K
(2)
1,n → 0

(K(2)
2,n )

−1 → 0

as h2 → ∞. We can now deduce that

Wn → T1,nK
(1)
1,n ,

Φn →
�

1
δn

Rn

�
Z
(1)
1,n −ΛnJ

−1
n

T1,n

�
+ e

−βnh1SnJ
−1
n

T1,n

�
K
(1)
1,n

12



and so



A
(1)
n

A
(3)
n



→−e
− 1

2 βnh1

2µ1
(K(1)

1,n )
−1

�
1
δn

Rn

�
Z
(1)
1,n −ΛnJ

−1
n

T1,n

�
+ e

−βnh1SnJ
−1
n

T1,n

�



Pn

0



 ,




A
(2)
n

A
(4)
n



→ 0,




C
(1)
n

C
(2)
n



→ 1
δn

�
Z
(1)
1,nK

(1)
1,n −ΛnJ

−1
n

T1,nK
(1)
1,n

�
Φ−1

n




A
(1)
n

A
(2)
n



 ,




C
(3)
n

C
(4)
n



→ e
− 1

2 βnh1J
−1
n

T1,nK
(1)
1,n




A
(1)
n

A
(3)
n





as h2 → ∞. It is easily verified that the expressions obtained for the constants here are equivalent

to those obtained for the problem of a finitely thick homogeneously elastic coating bonded to an

infinitely thick FGM.

4.2. Case 2: Removal of the coating

We now consider what happens to our solution if h1 = 0. An immediate consequence of this

assumption is that K
(1)
j,n , j = 1,2 reduce to the 2×2 identity matrices. Using this information and

13



setting h1 = 0 in the matrices appearing in (39a)-(39e)

Wn = T1,n −T2,n

�
T2,nK

(2)
2,n

�−1
T1,nK

(2)
1,n ,

Φn =
1
δn

RnZ
(1)
1,n +

1
1−2ν




1 0

0 1−2ν



T1,n

−




1
δn

RnZ
(1)
2,n +

1
1−2ν




1 0

0 1−2ν



T2,n




�

T2,nK
(2)
2,n

�−1
T1,nK

(2)
1,n .

The expression for Φn may be further simplified to give

Φn =
1

1−2ν




1 0

0 1−2ν





�
N1,n −N2,n

�
T2,nK

(2)
2,n

�−1
T1,nK

(2)
1,n

�

which when used in conjunction with (39a) yields



A
(1)
n

A
(3)
n



=− 1
2µ1

�
N1,n −N2,n

�
T2,nK

(2)
2,n

�−1
T1,nK

(2)
1,n

�−1




Pn

0



 .

Comparing these results with those of Chidlow et al. (2011) verifies that this solution corresponds

to that for a finitely thick functionally graded coating bonded to an infinitely thick substrate. We

may therefore conclude that the model derived in this work reduces to the correct limit as h1 → 0.

4.3. Infinitesimally thin interlayer

Suppose that the thickness of the graded interlayer is negligible so that (h2 − h1)/a � 1. By

considering (2), we see that this limit implies that

1
|α| = ε → 0

14



which we can use as the basis for an asymptotic analysis into the behaviour of our solution in this

case. Assuming that 1/α = ε is a very small parameter in (21) allows us to expand the square root

in a Taylor series and determine that

λ1,n =
1
2

βn

�
i
√

ρ +
βnε

2(1−ν)

�
+O

�
ε2� , (41)

λ2,n =−1
2

�
2
ε
+ i

√
ρβn +

β 2
n

ε
2(1−ν)

�
+O

�
ε2� (42)

and consequentially from (31)

γ1,n =
1

2(1−ν)
(2i(1−ν)

√
ρ −βnε) , (43)

γ2,n =− 1
8ν(1−ν)

(4(1−2ν)(1−ν)i
√

ρ −βnε) . (44)

These expressions may be substituted into the matrices appearing in (39a)-(39e) and they allow us

to deduce that

Z
(1)
2,nK

(1)
2,n (T2,nK

(2)
2,n )

−1
T1,nK

(2)
1,n = O(ε),

so at leading order

Φn =
1
δn

Rn

�
Z
(1)
1,nK

(1)
1,n −ΛnJ

−1
n

Wn

�
+ e

−βnh1SnJ
−1
n

Wn.

15



In this situation, the constants C
(1)
n and C

(2)
n may be computed from the formula




C
(1)
n

C
(2)
n



=− 1
2µ1δn

�
Z
(1)
1,nK

(1)
1,n −ΛnJ

−1
n

Wn

�� 1
δn

Rn

�
Z
(1)
1,nK

(1)
1,n −ΛnJ

−1
n

Wn

�

+ e
−βnh1SnJ

−1
n

Wn

�−1




Pn

0



 ,

=− 1
2µ1δn

�
1
δn

Rn + e
−βnh1SnΨ−1

n

�−1




Pn

0



 ,

=− 1
2µ1

�
Rn +δne

−βnh1SnΨ−1
n

�−1




Pn

0





where

Ψn = Z
(1)
1,nK

(1)
1,nW

−1
n

Jn −Λn.

Further use of (41) and (43) yields

Z
(1)
1,n =




h1(1+ i

√ρ)+δn h1(1− i
√ρ)+δn

1+ i
√ρ 1− i

√ρ



+O(ε),

K
(1)
1,n =




e
− i

2 βn

√ρh1 0

0 e
i

2 βn

√ρh1



+O(ε),

Wn =





1
2(1−2ν)

�
(1−2ν)−2i(1−ν)√ρ

� 1
2(1−2ν)

�
(1−2ν)+2i(1−ν)√ρ

�

2(1−ν)− i(1−2ν)√ρ 2(1−ν)+ i(1−2ν)√ρ





× βn

3−4ν

�
µ0

µ1
−1

�



e
− i

2 βn

√ρh1 0

0 e
i

2 βn

√ρh1



+O(ε),

16



so that

Ψn =
1�

µ0
µ1

−1
�×




−(2h1 +δn)

�
µ0
µ1

+(3−4ν)
�

2
βn

�
h

2
1βn

µ0
µ1

+(3−4ν)βnh
2
1 −4(1−ν)(1−2ν)δn

�

−2
�

µ0
µ1

+(3−4ν)
�

(2h1 −δn)
�

µ0
µ1

+(3−4ν)
�





and thus

Ψ−1
n

=
βn

�
µ0
µ1

−1
�

2δn

�
µ0
µ1

+(3−4ν)
��

(3−4ν)µ0
µ1

+1
�×




(2h1 −δn)

�
µ0
µ1

+(3−4ν)
�

− 2
βn

�
h

2
1βn

µ0
µ1

+(3−4ν)βnh
2
1 −4(1−ν)(1−2ν)δn

�

2
�

µ0
µ1

+(3−4ν)
�

−(2h1 +δn)
�

µ0
µ1

+(3−4ν)
�



+O(ε).

Comparing this result with the solution presented in the appendix (B.19) for a solid comprising

two perfectly bonded homogeneous layers, we see that

δnΨ−1
n

=

�
1− µ1

µ0

��
µ1

µ0
S
(1)
n −R

(1)
n G

−1
n

Hn

�−1
R
(1)
n . (45)

We can therefore deduce that as h2 − h1 → 0, the derived model for the full three-layer problem

reduces to that of a solid comprising two distinct yet homogeneous layers.

It has been verified in the three limiting cases outlined above that our model behaves like the

corresponding two-layer models that describe these simpler problems. We now turn our attention

to determining approximations to the surface pressure p(x) for a certain class of contact problems.

5. Contact by a rigid stamp

In the previous section, we derived the solution of the horizontal and vertical displacements

within each region that result from the application of a known pressure force to the surface of the

17



FGM. We now show how we may use these solutions to determine the solution of the frictionless

stamp problem.

5.1. Integral equation formulation

We note from (18) that the vertical displacement of the solid surface may be written as

v̂(x) = v(x,0) =
∞

∑
n=1

JnPnφn(x) (46)

where Jn and φn(x) are easily inferred from (39c) and (39d). Differentiating this expression with

respect to x gives

v̂
�
(x) =

∂v

∂x
(x,0) =

∞

∑
n=1

JnPnφ
�
n
(x). (47)

As the stamp profile is given as part of the problem, the exact form of the surface displacement

is prescribed and subsequently, the only unknowns present in (47) are the Fourier coefficients Pn.

Replacing all coefficients Pn, n ∈ N,n �= m in 47) using (40) gives

v̂
�
(x) = JmPmφ

�
m
(x)− 1

L

�
a

−a

∞

∑
n=1
n �=m

Jnφ
�
n
(x)φn(t)p(t)dt. (48)

which is a first-kind integral equation of Fredholm type. As this equation is regular, it may be

solved using Galerkin’s method (see Porter and Stirling (1990) for example) which involves con-

sideration of the weak form of (48). This may be attained by multiplying (48) by the test functions

χ j(x), j = 1, ...,M and integrating over the contact region, a process which yields

(v̂
�
,χ j) = JmPm(φ

�
m
,χ j)−

1
L
(L p,χ j) (49)
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with

(L p)(x) =
�

a

−a

∞

∑
n=1
n�=m

Jnφ
�
n
(x)φn(t)p(t)dt, (50)

( f ,g) =
�

a

−a

f (x)g(x)dx. (51)

for arbitrary functions f (x) and g(x). The principal advantage of using Galerkin’s method is that it

will provide highly accurate approximations to inner product quantities involving the contact pres-

sure p(x) even if the approximation to p(x) itself is poor. We therefore concentrate our attention on

the estimation of the Fourier coefficients Pn, n ∈ N and formulate an approximation to p(x) using

its Fourier series rather than directly estimating p(x) itself. With this is mind, we introduce the

approximation

p(x) =
M

∑
i=1

biχi(x) (52)

and substitute this into (49) which gives

(v̂
�
,χ j) = JmPm(φ

�
m
,χ j)−

1
L

M

∑
i=1

bi(L χi,χ j) (53)

for j = 1, ...,M. The M equations given by (53) can be written as the system

F = JmPmΩm − 1
L

τm
T

b (54)

with

b =
�

b1,b2, ...,bM

�
T

, (55)

F =
�
(v̂

�
,χ1),(v̂

�
,χ2), ...,(v̂

�
,χM)

�
T

, (56)

Ωm =
�
(φ

�
n
,χ1),(φ

�
n
,χ2), ...,(φ

�
n
,χM)

�
T

(57)
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and τ i j = (L χi,χ j) for i, j = 1, ...,M. As Pm is unknown, (54) comprises M + 1 unknowns in M

equations. We note however that we can obtain an extra equation by substituting (52) into (40)

which gives

Pm =−1
L
(φm, p), (58)

≈−1
L

�
φm,

N

∑
i=1

biχi

�
=−1

L

N

∑
i=1

bi(φm,χi) =−1
L

Θm
T

b (59)

where

Θm =
�
(φn,χ1),(φn,χ2), ...,(φn,χM)

�
T

. (60)

Re-arranging (54) for b and combining the result with (60) gives the result

Pm =
ΘT

m
τm

−T
F

1+ JmΘm
T τm

−T Ωm

(61)

which holds for m ∈ N. We can use (61) to determine an approximation to the coefficients of all

required Fourier modes and thus we can approximate the pressure induced through contact as well

as the sub-surface stress field within the solid.

A good choice of trial function will seek to mimic the behaviour of the unknown pressure

function. As this behaviour is dependent on the type of stamp used in the contact problem, a

different set of trial functions will need to be used in each problem to optimise the accuracy and

efficiency of the approximation. As the examples presented in section (6) consider contact by a

circular stamp, we take

χ j(x) = sin
�

jπ(x+a)

2a

�
(62)

j = 1, ...,M as it is known that the contact pressure will satisfy p(−a) = p(a) = 0.
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5.2. Computing the contact half-width

The full solution of the contact problem requires the determination of the contact pressure p(x)

and the contact half-width a. We outline an efficient algorithm below that allows the computation

of this parameter when the applied load (W) is known.

The total load applied to the FGM is defined as

W =−
�

L

−L

P(x)dx,

=
�

a

−a

p(x)dx (63)

which can be expressed in terms of a Fourier series as

W =−
∞

∑
n=1

Pn

�
a

−a

sin
�

1
2

βn(x+L)

�
,

= 4
∞

∑
n=1

(−1)n
P2n−1

β2n−1
sin

�
1
2

aβ2n−1

�
. (64)

By defining the function f (a) for a > 0 as

f (a) =W −4
∞

∑
n=1

(−1)n
P2n−1

β2n−1
sin

�
1
2

aβ2n−1

�
, (65)

we can solve f (a) = 0 using iterative techniques as we know that the zero of this function will be

the contact half-width. The choice is made here to use the secant method so that each subsequent

approximation to a is computed using the formula

am+1 = am − δ f (am)

f (am + ε)− f (am)
(66)

for m = 0,1, ... with the initial guess denoted a0 and δ > 0. As the value of a is typically very

small in magnitude, a direct estimate of the error between successive updates am and am+1 could
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be potentially misleading and so we deem that the true value of a has been found when

|am+1 −am|
am+1

< 1×10−6 (67)

which ensures that the approximation to a is highly accurate. We investigate the accuracy of this

approximation in the next section.

6. Numerical Results

6.1. Practical considerations

In this section, we present a selection of numerical results that compare the performance of

our model with those of other authors and investigate the effects of coating hardness and coating

and interlayer thickness on the solution of the contact problem. There are however some practical

considerations that need to be taken into account when using our model which we discuss first.

We initially note that the infinite summations that appear in (17), (18), (25), (26), (19) and (20)

cannot be used in practise and must be truncated at some finite value N. The value of N used in

each example will be stated explicitly.

In the examples considered in this section, we occasionally refer to the case µ1/µ0 = 1. We

cannot let µ1/µ0 = 1 exactly as we need to obtain four linearly independent roots of (21). We

therefore use the value µ1/µ0 = 1.00001 to produce results for the homogeneously elastic case.

The most important aspect of using this model is determining an appropriate value of L. The

value of L represents the horizontal limit at which the effects of the contact pressure are hypoth-

esised to cease to effect the solid. Taking L → ∞ will ensure high accuracy of our solution but it

will also be very expensive computationally as we will have to sum a very large number of wave
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modes and thus take. Conversely, if we take L to be much smaller, we will need to sum a relatively

small number of Fourier modes but we run the risk of neglecting information because the pressure

will still have an effect on the solid outside of our chosen interval. Clearly the choice of L is highly

important as it requires a compromise between computational efficiency and accuracy.

Chidlow et al. (2011) showed that the choice L= 10a in the case of a two-layer solid comprising

a graded elastic coating and homogeneous substrate is a good compromise between computational

efficiency and accuracy. We therefore take L = 10a in this work as it is found to be a good choice

here. This statement is borne out by the results presented in sections (6.2) and (6.3).

6.2. Example 1: Model validation with the coating removed

It was shown in section (4) that if h1 is identically zero, the three-layer model proposed here

reduces to the two-layer model described in Chidlow et al. (2011). We now wish to compare how

the model derived here compares with that derived by Guler and Erdogan (2007) by attempting to

replicate one of their examples.

Consider indenting the surface of the solid given in (1) by a rigid cylindrical punch. The

parameter values used in this example are ν = 0.3, a/R = 0.005, h/a = 2 and we take µ1/µ0 =

1/7,1,7. The dimensionless stress distributions σyy/µ1 and σxx/µ1 are presented in figure (2).

These results show excellent agreement with those of Guler and Erdogan (2007) (see their figure

(18)).

6.3. Example 2: Model validation for a thin interlayer

We endeavour to replicate the results of Ma and Korsunsky (2004) who considered the appli-

cation of a rigid cylindrical punch to the surface of an inhomogeneously elastic solid comprising
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Figure 2: Plots of a) σyy/µ1 and b) σxx/µ1 produced in example 1 for three different coatings. The blue line shows the

soft coating µ1/µ0 = 1/7, the red line the ‘homogeneous’ coating with µ1/µ0 = 1.0001 and the black line represents

the hard coating µ1/µ0 = 7.

two distinct yet homogeneous layers. The parameter values used in this problem are

ν = 0.33, R = 5×10−3
m, W = 15000N,

h1 = 2×10−5
m, E0 = 1.15×1011Pa

whilst µ1/µ0 = 0.5,1. In order to accurately reproduce these results, we take h2−h1 = 1×10−7
m

which ensures that the interlayer is very small in comparison to the coating thickness. The results

produced for this problem are presented in figure (3). They show good agreement with those of

Ma and Korsunsky (compare with their figure 3)). We obtain the values a = 33.26µm for the case

µ1/µ0 = 0.5 and a= 27.40µm for the case µ1/µ0 = 1 whilst Ma and Korsunsky obtain a= 33.10µ

m and a = 27.20µm respectively. This indicates that the residual error between results is less than

1% in both cases.
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Figure 3: Plots of the pressure p(x) produced in example (6.3). The blue line shows µ1/µ0 = 1 whilst the red line

shows µ1/µ0 = 0.5.

6.4. Example 3: The effects of coating thickness and varying load

We now consider an example that allows us to determine the effects that coating and inter-

layer thickness have on the contact half-width and applied pressure induced by contact with a rigid

cylindrical punch. The parameter values used in this problem are E0 = 1.15× 1011Pa, R = 5cm,

W = 200N and ν = 0.3.

We will mainly be considering the dimensionless contact half-width ā = a/ah and dimension-

less pressure p̄(x) = p(x)/ph within this example as they will allow us to compare our results with

those of Hertz and see how the inhomogeneity of the FGM affects the contact problem. The equa-

tions used to compute the predicted hertzian contact half-width and maximum contact pressure are

included below for brevity.

ah =

�
2WR(1−ν)

πµ1
, ph =

2W

πah

(68)

We produce results for five different coatings here satisfying µ1/µ0 = 0.25,0.5,1,2 and 4

subject to the three different relative layer thicknesses h1/ah = 0.1,0.5,0.9. The dimensionless
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pressure curves produced for this problem are presented in figure (4) whilst the corresponding

subsurface stress fields are presented in figures (5), (6) and (7).

We initially note in figure (4) that the predicted contact half-widths for the soft coatings (µ1/µ0 <

1) increase as the coating thickness increases whilst those predicted for the hard coatings (µ1/µ0 >

1) decrease. The opposite is true however for the maximum contact pressure which increases as the

coating thickness increases for the hard coatings and decreases for the soft coatings. These trends

were also observed in Chi for a solid comprising a graded-elastic coating and homogeneous sub-

strate. It is additionally observed that the predicted values of a and pmax diverge from the results of

Hertz by an increasing margin as the ratio h1/ah → 1. This indicates that the innate inhomogeneity

of the material under study affects the parameters in the contact problem by an increasing margin

as the interlayer shrinks and thus creates a sharper change in the material properties from coating

to substrate.

A further interesting feature that can be observed in this example is that an increase in coating

thickness coupled with a decrease in interlayer thickness exacerbates the trends described above.

We note that the maximum dimensionless contact pressure observed for the hard coating µ1/µ0 = 4

is approximately 1.3 when h1/ah = 0.1, 1.5 when h1/ah = 0.5 and 1.7 when h1/ah = 0.9 whilst

it is 0.8, 0.7 and 0.6 respectively for the soft coating µ1/µ0 = 0.25. This suggests that as the in-

terlayer shrinks and we tend to the case of two perfectly bonded distinct homogeneous layers, the

contact pressure will attain its maximum for a hard coating and minimum for a soft coating.

We can investigate this behaviour more closely by considering how the contact half-width

and maximum pressure changes as the ratio h1/h2 changes. The load is is taken to be 200N
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Figure 4: Plots of the dimensionless pressure curves p(x)/ph produced in example (6.4) for the three different coating

thicknesses shown. The blue line depicts µ1/µ0 = 4, the red line µ1/µ0 = 2, the green line µ1/µ0 = 1, the magenta

line µ1/µ0 = 0.25 and the black line µ1/µ0 = 0.25.
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Figure 5: Plots of the dimensionless stress fields τ1/Phertz for the coatings given above. This set of results corresponds

to the thin coating h/ah = 0.1.
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Figure 6: Plots of the dimensionless stress fields τ1/Phertz for the coatings given above. This set of results corresponds

to the medium coating h/ah = 0.5.
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Figure 7: Plots of the dimensionless stress fields τ1/Phertz for the coatings given above. This set of results corresponds

to the thick coating h/ah = 0.9.
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µ1
µ0

quantity h1/ah = 0.1 h1/ah = 0.5 h1/ah = 0.9

τmax/ph 0.25867877 0.24659909 0.24203556
0.5

ymax/ah -1.002 −1.074 −0.621

τmax/ph 0.30156241 0.30156272 0.30156291
1

ymax/ah -0.792 −0.792 −0.792

τmax/ph 0.36680373 0.39939964 0.45976487
2

ymax/ah -0.675 −0.675 −0.9

Table 1: The maximum principal stresses and the depth within the solid at which they occur for a range of coatings of

different thickness.

as before and the ratio h2/ah is fixed within each problem so that only the coating thickness h1

is allowed to vary. The dimensionless parameters a/ah and pmax/ph produced for three different

layer thicknesses are plotted in figures (8) and (9). It is easily seen that the behaviour of the contact

half-widths and maximum pressure become increasingly exaggerated as the interlayer becomes

increasingly thin. We see that hard coatings experience much larger contact pressures as h2/h2 →

1 whilst soft coatings experience much less pressure and thus we conclude that as h1/h2 → 1,

harder coatings will experience much larger maximum principal stresses whilst softer coatings

will experience will smaller ones. The maximum principal stresses produced for a selection of

different layer thicknesses and the position at which they occur are contained in table (1) and

support this conclusion. It is interesting to note in this situation that the position of the maximum

principal stress moves increasingly close to the interface y =−h2 as h1/h2 → 1 for harder coatings

whilst it moves closer to the surface for softer coatings.
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We conclude this example by investigating how the contact half-width and maximum pressure

change with increasing load. It has already been observed that subject to a fixed load, the maximum

contact pressure is larger for hard coatings but the contact region is larger for soft coatings and it

is of interest to investigate if this trend continues as the load becomes increasingly large.

In this investigation, we cannot use ah and ph to non-dimensionalise the contact half-width and

maximum pressure as these quantities are load dependent. We therefore consider the evolution

of the parameters a/h2 and pmax/µ0 as the total dimensionless load W/h2µ0 increases. The ratio

R/h2 = 5 is fixed in this problem whilst three different coating thicknesses are considered: h1/h2 =

0.1,0.5,0.9. The obtained contact half-widths and maximum contact pressures are presented in

figure (10). We see that as the total load increases, the differences between the contact half-widths

computed for hard and soft coatings and the maximum pressures become more marked. This is

more noticeable as the ratio h1/h2 increases in and we therefore deduce that the values of a and

pmax are more sensitive to the value of µ1/µ0 as the graded interlayer becomes thin.

7. Conclusions

We have derived a model which describes the horizontal and vertical displacements within an

inhomogeneously elastic solid which comprises a homogeneously elastic coating and substrate

joined together by a functionally graded transition layer. This model was then used to formulate an

integral equation from which the contact pressure resulting from the rigid stamp problem can be

determined. An iterative algorithm was then presented which further allows the contact half-width

to be determined.

Two numerical examples that have previously been considered by other authors were re-examined
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Figure 8: Plots of the evolution of the dimensionless contact half-width a/ah for three different coating thicknesses.

The blue line represents µ1/µ0 = 4, the red line µ1/µ0 = 2, the green line µ1/µ0 = 1.00001, the magenta line µ1/µ0 =

0.5 and the black line µ1/µ0 = 0.25.
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Figure 9: Plots of the evolution of the dimensionless maximum pressure pmax/ph for three different coating thick-

nesses. The key is the same as that used in figure (8).
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Figure 10: Plots of the dimensionless contact half-width h2/a against the dimensionless load for five different coatings.
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Figure 11: Plots of the dimensionless maximum pressure pmax/µ0 against the dimensionless load for five different

coatings.
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in this work and it was found that the solutions computed using our model are almost identical to

those appearing in the original work. A further numerical example was presented that attempted

to characterise the effects of varying coating and interlayer thickness as well as coating hardness

on the solution of the contact problem. It was found that harder coatings experience pressures that

have a larger maximum but act over a smaller region whilst softer coatings experience pressures

with a smaller maximum that act over a larger area. This trend was found to be increasingly exag-

gerated as the interlayer thickness became negligible and indicates that the thickness of the graded

elastic interlayer is directly responsible for changes in the maximum contact pressure and thus the

maximum principal stress. This is very significant in determining material failure as small changes

to the thickness of the coating and interlayer can lead to large differences in the resultant contact

pressure.
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Appendix A. Additional working for the full contact model

This section provides explicit expressions for the matrices appearing in section (3.2).

Λn =




2h1 +δn −2h

2
1

2 δn −2h1



 , (A.1)

Jn =
1

(3−4ν)




2(1−2ν)(1−ν)βn 2(1−ν)(1−2ν)(2(3−4ν)−βnh1)

−4(1−ν)βn 4(1−ν)βnh1



 , (A.2)

Rn =





1
2βn −2(1−ν)

βn −2(1−2ν)



 , (A.3)

Sn =





1
2βn 2(1−ν)

−βn −2(1−2ν)



 , (A.4)

Z
(i)
j,n =




hi(1+ γ j,n)+δn hi(1+ γ j+2,n)+δn

1+ γ j,n 1+ γ j+2,n



 , (A.5)

K
(i)
j,n =




e
−λ j,nhi 0

0 e
−λ j+2,nhi



 , (A.6)

Mj,n =




(1−2ν)

�
1−2ν −2(1−ν)γ j,n

�
(1−2ν)

�
1−2ν −2(1−ν)γ j+2,n

�

2
�
2(1−ν)− (1−2ν)γ j,n

�
2
�
2(1−ν)− (1−2ν)γ j+2,n

�



 , (A.7)

Nj,n =




−
�
(1−ν)γ j,nλ j,n +

1
2νβn

�
−
�
(1−ν)γ j+2,nλ j+2,n +

1
2νβn

�

λ j,n − 1
2βnγ j,n λ j+2,n − 1

2βnγ j+2,n



 , (A.8)
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Tj,n = Nj,n −
1
δn

Mj,n, (A.9)

Wn = T1,nK
(1)
1,n −T2,nK

(1)
2,n (T2,nK

(2)
2,n )

−1
T1,nK

(2)
1,n , (A.10)

Φn =
1
δn

Rn

�
Z
(1)
1,nK

(1)
1,n −Z

(1)
2,nK

(1)
2,n (T2,nK

(2)
2,n )

−1
T1,nK

(2)
1,n −ΛnJ

−1
n

Wn

�
+ e

−βnh1SnJ
−1
n

Wn (A.11)

for i, j = 1,2.

Appendix B. Modelling an inhomogeneous solid comprising two homogeneous layers

The following work describes a mathematical model of the displacements u and v within an

inhomogeneously elastic solid comprising two homogeneous yet distinct layers.

Using (17), (18), (25) and (26), we see that we may write the displacements within the coating

as

u
(1)(x,y) =

∞

∑
n=1

��
C
(1)
n +C

(2)
n y

�
e

1
2 βny +

�
C
(3)
n +C

(4)
n y

�
e
− 1

2 βny

�
cos

�
1
2

βn(x+L)

�
, (B.1)

v
(1)(x,y) =

∞

∑
n=1

��
C
(1)
n +(y−δn)C

(2)
n

�
e

1
2 βny −

�
C
(3)
n +(y+δn)C

(4)
n

�
e
− 1

2 βny

�
sin

�
1
2

βn(x+L)

�
,

(B.2)

which holds in the region −L ≤ x ≤ L,−h1 ≤ y ≤ 0 and the displacements within the substrate as

u
(2)(x,y) =

∞

∑
n=1

�
E
(1)
n +E

(2)
n y

�
e

1
2 βny cos

�
1
2

βn(x+L)

�
, (B.3)

v
(2)(x,y) =

∞

∑
n=1

�
E
(1)
n +(y−δn)E

(2)
n

�
e

1
2 βny sin

�
1
2

βn(x+L)

�
(B.4)

which holds for −L ≤ x ≤ L,−∞ < y <−h1.

We begin our attempt to solve for the constants within this problem by considering the inter-

facial matching conditions within this problem. These conditions which are applied at y = −h1
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are

u
(1) = u

(2), (B.5)

v
(1) = v

(2), (B.6)

σ (1)
yy = σ (2)

yy , (B.7)

σ (1)
xy = σ (2)

xy (B.8)

which ensure continuity of displacement and stress across the two layers. The conditions (B.5) and

(B.6) yield the system

e
− 1

2 βnh1Gn




C
(1)
n

C
(2)
n



+ e
1
2 βnh1Hn




C
(3)
n

C
(4)
n



= e
− 1

2 βnh1Gn




E
(1)
n

E
(2)
n



 (B.9)

where the matrices Gn and Hn are defined as

Gn =




1 −h1

1 −(h1 +δn)



 , (B.10)

Hn =




1 −h1

−1 h1 −δn



 . (B.11)

Equations (B.7) and (B.8) similarly reveal the system

µ1

µ0



e
− 1

2 βnh1R
(1)
n




C
(1)
n

C
(2)
n



+ e
1
2 βnh1S

(1)
n




C
(3)
n

C
(4)
n







= e
− 1

2 βnh1R
(1)
n




E
(1)
n

E
(2)
n



 . (B.12)

Finally the surface boundary conditions applied within this problem are the same as those used in

the full three-layer model, so that we obtain the final system

R
(0)
n




C
(1)
n

C
(2)
n



+S
(0)
n




C
(3)
n

C
(4)
n



=− 1
2µ1




Pn

0



 . (B.13)
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The matrices R
(i)
n and S

(i)
n , i = 0,1 are defined as

R
(i)
n =





1
2βn −

�1
2βnhi +2(1−ν)

�

βn −(2(1−2ν)+βnhi)



 (B.14)

with y =−h0 = 0 for notational convenience. We can combine (B.10), (B.12) and (B.13) to obtain

the results



C
(1)
n

C
(2)
n



=− 1
2µ1

Φ−1
n




Pn

0



 , (B.15)




C
(3)
n

C
(4)
n



= e
−βnh1

�
1− µ1

µ0

��
µ1

µ0
S
(1)
n −R

(1)
n G

−1
n

Hn

�−1
R
(1)
n




C
(1)
n

C
(2)
n



 , (B.16)




E
(1)
n

E
(2)
n



=




C
(1)
n

C
(2)
n



+ e
βnh1G

−1
n

Hn




C
(3)
n

C
(4)
n



 (B.17)

with

Φn = R
0
n
+ e

−βnh1

�
1− µ1

µ0

�
S
(0)
n

�
µ1

µ0
S
(1)
n −R

(1)
n G

−1
n

Hn

�−1
R
(1)
n . (B.18)

If we multiply the matrices appearing in this expression together, we find that

R
(1)
n G

−1
n

Hn =
1
δn




−1 h1 −2(1−nu)δn

2 −2((1−2ν)δn +h1)



 ,

µ1

µ0
S
(1)
n −R

(1)
n G

−1
n

Hn =
1
δn




(3−4ν)µ1

µ0
+1 2(1−ν)δn

�
1+ µ1

µ0

�
−h1

�
1+(3−4ν)µ1

µ0

�

−2
�
(3−4ν)µ1

µ0
+1

�
2
�

h1

�
1+(3−4ν)µ1

µ0

�
+(1−2ν)δn

�
1− µ1

µ0

��




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and thus
�

1− µ1

µ0

��
µ1

µ0
S
(1)
n −R

(1)
n G

−1
n

Hn

�−1
R
(1)
n =

�
µ0
µ1

−1
�

βn

2
�
(3−4ν)+ µ0

µ1

��
(3−4ν)µ0

µ1
+1

�×




(2h1 −δn)

�
(3−4ν)+ µ0

µ1

�
− 2

βn

�
h

2
1βn

µ0
µ1

+(3−4ν)βnh
2
1 −4(1−2ν)(1−ν)δn

�

2
�
(3−4ν)+ µ0

µ1

�
−(2h1 +δn)

�
µ0
µ1

+(3−4ν)
�



 .

(B.19)
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