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Abstract

This paper presents a mathematical model of sliding, adhering contact be-
tween a rigid parabolic indenter and a multi-layered elastic solid, which is as-
sumed to comprise of a homogeneous coating bonded through a functionally-
graded transitional layer to a homogeneous substrate. The adhesive forces
in this investigation are modelled using Lennard-Jones potential and an it-
erative algorithm is proposed that solves for the contact pressure, surface
displacement and sub-surface stresses resultant within the layered solid. The
effects of surface adhesion and different material properties such as varying
coating/transition layer thickness and coating hardness on the solution of the
contact problem are subsequently investigated in detail.

The numerical approach presented in this paper demonstrates the sig-
nificance of having a suitable mathematical representation for the traction
distribution along the sliding, adhering contact. It is found that under weakly
adhering conditions, the assumption of only Coulombic traction suffices to
determine the displacements and subsurface stresses within the multi-layered
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solid. However, it is noted that stress concentrations within the material be-
gin to propagate through all three layers of the elastic solid with increased
surface adhesion, which could potentially induce plasticity and lead to ma-
terial ploughing under sliding. The proposed model allows us to further
investigate and improve our understanding of the combined effects of trac-
tion and boundary adhesion in sliding contacts, which can be used to inform
the design of materials needed in such conditions.

Keywords: Lennard-Jones potential, layered solids, contact mechanics,
surface adhesion, traction

1. Introduction

Engineering materials that possess an increased resistance to wear can
be achieved by introducing controlled gradients in the materials near their
surface [1]. These graded materials, known as functionally graded materi-
als (FGMs), exhibit either continuously or discretely varying physical and
mechanical properties throughout their depth, depending on the desired ap-
plication [2]. The graded properties of the FGM are commonly achieved
through surface modification processes such as thermal spray, physical or
chemical vapour deposition and laser heat treatment. The use of FGMs as
protective coatings is extremely beneficial in automotive applications such as
engine cylinder liners, gears and cams, as tribological studies have shown that
a significant amount of surface asperity interactions during operation can in-
duce wear, which in turn leads to a drop in mechanical efficiency [3, 4, 5].
It is therefore crucial to be able to accurately characterise and tailor graded
elastic coatings to achieve the desired tribological effects that can improve
wear resistance of machine elements.

A fundamental understanding of the characteristics of FGM coatings is
essential when selecting materials to suit the operating conditions of the de-
signed machine elements. This is often achieved by first using mathematical
models to investigate the effects of normal loading on the contact. In the
case of a homogeneous material, the classical theory of Hertz [6] may be
used to examine contact behaviour. However, with the miniaturisation of
machine elements, short-ranged intermolecular forces will increase in signifi-
cance, leading to boundary adhesion between opposing surfaces. Under these
circumstances, researchers may instead choose to apply the JKR [7], DMT
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[8] or Maugis-Dugdale [9] adhesive models to study the contact under the
influence of boundary adhesion. Unfortunately FGMs are not homogeneous,
which severely limits the usefulness of such classical models to investigate
contact behaviour.

The use of FGMs as protective coatings means that a coated base ma-
terial may be considered to be a layered solid. As an initial approximation,
Teodorescu and Rahnejat [10] modelled a coated system as two perfectly
bonded homogeneous layers and presented an iterative algorithm that may
be used to compute the contact footprint within the material under normal
loading. An alternative method was proposed by Chen et al [11] who used
the Equivalent Inclusion Method (EIM) to model elasto-plastic indentation
of layered materials. In a more recent development, Yu et al [12] and Wang
et al [13] studied the frequency response functions and fretting behaviour for
multilayered materials respectively, focusing on the subsurface stress propa-
gation across the layered solid.

The studies above assumed layered solid where each layer of coating con-
sists of homogeneous materials. For FGM coatings, the varying material
properties within the graded coating may be approximated using simple
mathematical functions whilst the substrate can still be considered to be
homogeneous. By applying a power law to describe the graded properties
within FGM layers, an analytical solution was proposed by Giannakopoulos
and Suresh [14] for a non-adhering three-dimensional graded elastic medium.
Guler and Erdogan [15] and Chidlow et al [16] consider the mechanical prop-
erties of the graded coating to vary exponentially throughout its depth and
construct solutions to the contact problem under study using Fourier trans-
form and Fourier series approximations respectively.

In addition to contact models developed for layered solids under normal
loading, there have been models developed that seek to solve adhesive con-
tact problems involving inhomogeneous materials. For an adhering elastic
layered solid under normal loading, Johnson and Sridhar [17] presented an
extended JKR adhesive model. In a similar investigation, Mary et al [18]
proposed a semi-analytical model that describes the behaviour of a graded
elastic layered solid within adhesive contacts. Sergici et al [19] applied a
Maugis type adhesive model to investigate the contact between a spherical
indenter and an elastic layered solid. More recently, Chidlow et al [20] and
Chong and Chidlow [21] introduced surface adhesion via the Dugdale and
Lennard-Jones potential respectively to simulate a rigid cylindrical geometry
indenting a graded elastic layered solid comprising a FGM perfectly bonded
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to a homogeneous substrate.
Whilst all of the models discussed above are very useful in different cir-

cumstances, they all assume that the contact involves only normal loading,
which is not sufficient to understand the tribological behaviour of a moving
machine element, such as the sliding of a piston ring on an engine cylinder
liner or even a cam on a tappet in an engine valve train analysis. Con-
tact models that seek to approximate the solution of such problems must
take account of combined normal loading and sliding of the contact in or-
der to provide meaningful predictions of the behaviour of the layered elastic
medium. In general, contact theories for combined normal and sliding be-
tween non-adhering surfaces are well understood with the tangential sliding
given by Amonton’s law [22]. For example, Hamilton and Goodman [22] and
Poritsky [23] analysed the case of a cylindrical and circular indenter sliding
on the surface of a homogeneous elastic medium.

For FGMs, Giannakopoulos and Pallot looked at the contact behaviour
of a flat and cylindrical punch on an elastic graded material subject to tan-
gential and normal load [24]. Guler and Erdogan [25] and Ke and Wang [26]
also proposed mathematical models for a selection of sliding frictional con-
tact problems involving rigid indenters of various shapes and a functionally
graded material. In order to better understand the performance of graded
elastic layered solids in such contacts, Chidlow and Teodorescu [27] focused
on characterising the influence of tangential traction induced by a cylindri-
cal indenter on the subsurface stresses of a multi-layered elastic solid with
an FGM transitional layer. For an adhering cylindrical indenter on a FGM,
Chen et al [28] investigated the effects of normal and tangential on the con-
tact behaviour of their selected problem.

This paper provides a thorough investigation of the effects of boundary
adhesion on a rigid parabolic indenter sliding along the surface of a multi-
layered elastic solid comprising a homogeneous coating bonded through a
functionally-graded transitional layer to a homogeneous substrate. A pre-
vious investigation by Chidlow and Teodorescu [27] showed that when the
layered solid described above experiences sliding, non-adhesive contact with
a rigid parabolic indenter, the magnitude of the maximum principal stresses
induced within the layered solid are highly dependent on the hardness of
the coating, the friction coefficient and the coating/interlayer thickness ra-
tio. It was observed that hard coatings are particularly sensitive to the coat-
ing/interlayer thickness ratio as dramatic increases in the maximum attained
stress and the location at which it occurs are observed as this parameter
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varies.
The work conducted within this paper uses the model derived by Chid-

low and Teodorescu [27] to describe the stresses and displacements within
the layered solid induced by adhesive contact between the solid and a rigid
punch using the Lennard-Jones force law. A new algorithm is then derived
which allows us determine how the presence of adhesion further affects the
behaviour of the stresses induced within the layered solid through contact
and whether the general trends observed in the case of non-adhesive contact
still hold true. To the best of the authors knowledge, the algorithm presented
in this work is the only model currently available that is capable of modelling
such contact problems.

2. Mathematical Model

Figure 1 illustrates the simulated contact problem, which involves a nor-
mally loaded rigid cylindrical indenter sliding over the surface of a multi-
layered elastic medium in a state of plane strain. The solid occupies the
lower half-plane bounded by y = 0 and is assumed to comprise of a finitely
thick homogeneous coating occupying −h1 ≤ y ≤ 0 (region 1) and FGM
transition layer occupying −h2 ≤ y < h1 (region 2) bonded to an infinitely
deep homogeneous substrate (region 3). Within the transition layer, the ma-
terial properties of the solid progressively change from those of the coating
to those of the substrate. The shear modulus of the solid is then modelled
as
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Figure 1: Schematic diagram for the investigated contact problem
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G(y) =


G1, −h1 ≤ y ≤ 0,
G0e

ζ(y+h2), −h2 ≤ y ≤ −h1,
G0, −∞ < y < −h2

. (1)

where

ζ =
1

h2 − h1

ln

(
G1

G0

)
,

which ensures that the shear modulus is continuous at the boundaries be-
tween layers. The assumption of combined normal loading and sliding of the
rigid cylindrical indenter on the surface of the solid allows us to deduce the
boundary conditions

σyy(x, 0) = −p(x) (2)

σxy(x, 0) = −q(x) (3)

where p(x) denotes the contact pressure and q(x) denotes the tangential
traction. As the coating and substrate are assumed to be perfectly bonded
to the interlayer, we also have the matching conditions

uj(x,−hj) = uj+1(x,−hj), (4)

vj(x,−hj) = vj+1(x,−hj), (5)

σ(j)
xy (x,−hj) = σ(j+1)

xy (x,−hj), (6)

σ(j)
yy (x,−hj) = σ(j+1)

yy (x,−hj), (7)

for j = 1, 2 where uj denotes the horizontal displacement and vj denotes the
vertical displacement within each region of the solid. In real terms, these
matching conditions ensure continuity of displacement and stress at each
interface between regions.

In addition to the boundary and matching conditions applied here, we
also insist that the following radiation conditions are fulfilled:

|uj|, |vj| → 0, x→ ±∞, (8)

|uj|, |vj| → 0, y → −∞. (9)

for j = 1, 2, 3. This ensures that the stresses and displacements induced
within the material decay to zero far away from the contact.
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It has been shown in classical studies of contact mechanics (e.g. [29]) that
the stresses within the solid may be evaluated from the following indefinite
integrals

σ(j)
yy = − 1

2π

∫ ∞
−∞

ξ2φ̂j(ξ, y)e−iξxdξ, (10)

σ(j)
xx =

1

2π

∫ ∞
−∞

φ̂′′j (ξ, y)e−iξxdξ, (11)

σ(j)
xy =

i

2π

∫ ∞
−∞

ξφ̂′j(ξ, y)e−iξxdξ, (12)

where φ̂j(ξ, y), j = 1, 2, 3 denotes the Fourier transform of the stress function
within each region of the solid, ′ denotes differentiation with respect to y and
i =
√
−1. The stress functions specific to the solid under study in this work

were computed in Chidlow and Teodorescu [27] and are detailed in full in
Appendix B.

Both the horizontal and vertical displacement of the solid may also be
determined in a similar way. Consideration of Hooke’s laws allows us to
determine that

uj(x, y) =
i

2πG(y)

∫ ∞
−∞

1

ξ

(
φ̂′′j (ξ, y) + ξ2φ̂j(ξ, y)

)
dξ, (13)

vj(x, y) =
1

4πG(y)

∫ ∞
−∞

1

ξ2

(
(1− ν)φ̂′′′j (ξ, y)− ζ(1− ν)φ̂′′j (ξ, y)

−ξ2(2− ν)φ̂′j(ξ, y)− νζξ2φ̂j(ξ, y)

)
dξ (14)

for j = 1, 2, 3. Full details of the quantities appearing in equations (10)-(14)
and a list of all model parameters are contained in Appendix B.

3. Deriving an iterative algorithm to solve the contact problem

3.1. Formulating the Algorithm

We are interested in simulating the effects of sliding, adhesive contact
between the solid surface and rigid indenter. The adhesive forces within this
work are simulated using the Lennard-Jones force law. This gives the contact
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pressure, p(x) as

p(x) = −8γ

3ε

((
ε

h(x)

)3

−
(

ε

h(x)

)9
)
, (15)

where the atomic equilibrium spacing is given as ε and the contact gap, h(x)
is defined as

h(x) = −α + ε+ hc(x) + v(x, 0) (16)

The term hc refers to the geometrical shape of the rigid indenter and the
term α is defined as the indenter approach. The normal load, P , applied
onto the surface of the solid can be calculated using

P =

∫ ∞
−∞

p(x)dx. (17)

We note here that as the applied pressure will only be non-zero in a finite
width interval, this integral will be easy to evaluate.

In order to solve the contact problem, all quantities are non-dimensionalised
using the transformations given in Appendix C. The applied contact pres-
sure and contact gap in terms of the new dimensionless co-ordinates are then

p(X) =
8

3

((
1

H(X) + 1

)3

−
(

1

H(X) + 1

)9
)
, (18)

H(X) = −∆c +Hc(X)− V (X) (19)

with

Hc(X) =
(
Rx −

√
R2
x − x2

)
/ε. (20)

The aim of the work is to compute the contact gap width, H, as this
then allows us to calculate the applied pressure via equation (18). In order
to achieve this, we rearrange equation (19) to obtain the residual function

R(X) = H(X) + ∆c −Hc(X) + V (X, 0), (21)

which will be identically zero if the exact contact pressure is used to compute
the surface deflection. Minimising the residual function, R(X) ensures an
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accurate approximation to H(X) and p(X) is obtained. This idea forms the
basis of the iterative algorithm used in this work.

!

Compute contact 
profile, H(X) 

Compute contact 
pressure, p(X) 

Compute surface 
traction, q(X) 

Compute FFT on 
p(X) 

Compute FFT on 
q(X) 

Compute surface 
deflection, U(X) 

and V(X) 

Calculate 
Residual, Ri 

Ri<1×10-4 ? 

Relax contact 
profile, 

H(X)=H(X)-ΩRi  

Compute 
subsurface 

stresses 

Terminate 

Define central 
deflection, Δc 

YES 

NO 

Figure 2: A flow chart of the proposed algorithm

The iterative procedure commences with an initial guess at the contact
gap denoted H0(X), which is used to calculate both P0(x) and Q0(x). The
dimensionless counterparts of the integrals appearing in equations (10)-(12)
and (13)-(14) are then evaluated using the Fast Fourier Transform (FFT).
Finally, the residual function R0(X) is calculated and the iteration is updated
using the formulae

Hi+1(X) = Hi(X)− ΩRi(X), (22)

for i = 0, 1, 2, ... where Ω is the relaxation factor. The iterative loop is
terminated when the criterion

max
(
Ri(X)

)
< 1× 10−4 (23)

is met, which ensures that an accurate approximation to the contact and
tangential pressures is obtained. This algorithm is summarised in figure 2,
whilst a selection of possible termination criteria are summarised in Table 1.
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This table shows that the termination criterion is chosen to ensure that the
maximum relative error in the contact pressure is less than 0.1%

Table 1: The effects of choosing different termination criterion on the solution of the
dimensionless contact pressure p(X)

Termination Simulation Averaged Maximum
Criterion time (s) Relative Relative

Error (%) Error (%)

1× 10−2 317 0.491 7.541
1× 10−3 464 0.028 0.646
1× 10−4 589 0.003 0.098
1× 10−5 731 - -

3.2. Evaluation of indefinite integrals

A key part of the algorithm presented here is the determination of the
horizontal and vertical displacement of the solid surface and the sub-surface
stresses. However, as can be seen in equations (10)-(14), these quantities are
defined in terms of inverse Fourier transforms which can be only be evaluated
numerically due to the complexity of the integrand.

Within this work, we use the inverse Fast Fourier Transform (IFFT) to
evaluate these quantities which requires the discretisation of both the spatial
and frequency variables. Hence, we let x occupy the finite interval [−L,L]
which is split into N − 1 sub-intervals of width ∆ and the frequency variable
ω = ξ/2π occupy the finite interval [−ωF , ωF ]. The nth and kth co-ordinates
in the spatial and frequency domains are then defined to be

xn = −L+ (n− 1)∆, (24)

ωk =
1

2N∆

(
2(k − 1)− (N − 1)

)
(25)

for n, k = 1, ...N . This discretisation allows us to implement the classical
IFFT algorithm of Cooley and Tukey [30], so N is taken to be a power of 2
here (N = 2γ for some integer γ). The reader is referred to [27] for a more
detailed explanation of the application of the IFFT process in this context if
required.
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4. Results and Discussions

4.1. Verification of contact model

In order to validate this model, we initially consider only normal con-
tact, so set η = 0, we compare our results against those produced using
the Maugis-Dugdale adhesive model applied to a homogeneous material and
coated substrate.

The Maugis-Dugdale model inherently assumes that adhesive forces are
constant within two specified regions: [−c,−a] and [a, c] where a represents
the contact half width of the Maugis-Dugdale model and c defines the outer
half width of the adhesive region. The Lennard Jones potential however
assumes that adhesive forces are continuous and decay to zero sufficiently
far away from the contact. A basis of comparison between the two models
applied to a homogeneous material was suggested by Wu [31] who used an
equivalent contact half width for the Lennard Jones model, given by the
formula

b = a+ 0.4(c− a), (26)

which was originally derived by Lantz et al [32]. We also use this approach
here to compare model predictions and assume that the contact half width
for the Lennard-Jones force law occurs at the minimum point of the pressure
distribution.

Figures 3(a) present the results obtained using both models for a homo-
geneous material whilst figure 3(b) depicts the set of results obtained for a
layered solid with a homogeneous coating of 50nm. Both sets of obtained
results agree well and give rise to a maximum relative error in the contact
pressure of 2.3% and 4.8% for the homogeneous case and coated case respec-
tively with surface energy, ∆γ of 10mJ/m2. The obtained relative errors
for the equivalent contact half widths are 2.3% and 4.1% for the homoge-
nous and coated case respectively when the surface energy is increased to
20mJ/m2. Given that the Maugis-Dugdale model assumes an adhesive pro-
file which possesses jump discontinuities whilst the Lennard Jones potential
is continuous everywhere, an error of less than 5% in this comparative study
is very good.
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(a) Homogeneous material
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(b) Single layer homogeneous coating of
50nm

Figure 3: Contact pressure distribution comparison between homogeneous material and
layered solid with homogeneous coating (δmax = 1nm and η = 0)

4.2. Investigating the full contact problem combining adhesion and traction

We now investigate the contact characteristicics of a rigid indenter sliding
over a multi-layered elastic solid (see figure 1) using the simulation parame-
ters given in Appendix D and taking the Young’s modulus of the substrate
to be 25 GPa. We initially investigate the effects of boundary adhesion (coat-
ing surface energy, ∆γ = 10mJ/m2) on the applied pressure and sub-surface
stress fields. The simulated parameters are selected to ensure that the con-
tact problem investigated falls within the adhesive transition region between
the DMT and JKR adhesive region as described using Tabor’s parameter
[33]. As a first approximation, a Coulombic traction, q(x) = ηp(x) is used to
describe the tangential motion, where η denotes the friction coefficient.
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4.3. The effects of boundary adhesion

Figure 4(a) shows the contact pressure distribution and surface deflec-
tion for a non-adhering rigid indenter in contact with a multi layered solid,
consisting of a soft coating satisfying µ1/µ0 = 0.5. At a maximum deflec-
tion or indentation of δmax = 1nm, it can be observed that the Hertzian-like
peak pressure is skewed towards the trailing edge of the contact when the
friction coefficient, η is increased. Similar characteristics are also observed in
[25, 26, 27]. The deflection along the leading edge is observed to be higher
than the trailing edge with increasing η. With the introduction of Lennard-
Jones type adhesion along the contact, the layered solid is attracted towards
the sides of the indenter, leading to bulging edges along the adhering region
(see figure 4(b)).
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(b) Adhering contact (∆γ = 10mJ/m2)

Figure 4: Contact behaviour considering the effect of boundary adhesion with increasing
traction for soft coating, µ1/µ0 = 0.5

Consideration of the contact pressure and surface deflection in isolation
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describe the interfacial contact behaviour but the sub-surface stress fields
must be determined to fully understand the characteristic of the contact
throughout the depth of the layered solid. In this study, the maximum
principal stress is computed as previous investigations by [21] and [27] have
used these stresses so an easy comparison with these investigations can be
made. Throughout this section, we produce results for two different types of
coatings: hard (µ1/µ0 = 2) and soft (µ1/µ0 = 0.5).

Figure 5 presents the sub-surface stresses for the pressure distributions
obtained for the soft coating in the previous figure. We observe that for
the case of non-adhering contact, the region of highest stress obtained shifts
upwards towards the trailing edge of the contact as the friction coefficient
increases. This is in accord with the observation made by Chidlow and
Teodorescu [27]. However, for the adhering contact, there are two distinct
regions of high stress which occur. These areas move progressively towards
the solid surface in the presence of increased friction and appear directly
underneath the parts of the solid surface which experience only adhesive
force. These areas of stress are much larger than those obtained for a non-
adhering contact and could potentially initiate plasticity that might lead to
material ploughing under sliding.
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(a) Non-adhering contact, η = 0 (b) Adhering contact, η = 0

(c) Non-adhering contact, η = 0.2 (d) Adhering contact, η = 0.2

(e) Non-adhering contact, η = 0.4 (f) Adhering contact, η = 0.4

Figure 5: Sub-surface stress plots considering the effect of boundary adhesion (∆γ = 10
mJ/m2) with increasing traction for soft coating, µ1/µ0 = 0.5

The contact pressure and surface deflection for the hard coating satis-
fying µ1/µ0 = 2 subject to the same contact conditions as the soft coating
previously considered are presented in figure 6. We note in this case that the
peak pressure along the contact increases for both adhering and non-adhering
contacts. This is because of the increased resistance towards deflection for
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the harder coating. However, the distortion of the peak pressure along the
contact towards the trailing edge becomes more apparent for the harder coat-
ing as compared to the softer one when η is increased. We also note that
whilst the harder coating is attracted to the sides of the indenter, there is no
evidence of bulging around the edges, which does occur for the softer coating.
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(b) Adhering contact (∆γ = 10mJ/m2)

Figure 6: Contact behaviour considering the effect of boundary adhesion with increasing
traction for hard coating, µ1/µ0 = 2.0

Figure 7 depicts the subsurface stresses corresponding to the pressure
curves in the previous figure. It is observed that because of the higher max-
imum contact pressure obtained for the harder coating, the layered solid
experiences higher stresses in comparison with the softer coating. Under
non-adhering conditions, the stress concentration expands towards the lead-
ing edge as the friction coefficient increases. The same is also true for adher-
ing contacts, with the exception that the stress concentration remains within
the coating or transition layer regardless of the value of η. When comparing
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the observations of both hard and soft coatings bonded to an identical sub-
strate for a given maximum deflection, the simulated results show that softer
coatings tend to experience less stress and provide lower resistance to sliding,
which reduces the possibility of plastic deformation occurring and leads to a
possibly lower wear rate.

(a) Non-adhering contact, η = 0 (b) Adhering contact, η = 0

(c) Non-adhering contact, η = 0.2 (d) Adhering contact, η = 0.2

(e) Non-adhering contact, η = 0.4 (f) Adhering contact, η = 0.4

Figure 7: Sub-surface stress plots considering the effect of adhesion (∆γ = 1.0 J/m2) with
increasing traction for hard coating, µ1/µ0 = 2.0
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4.4. The effects of coating thickness

We have already seen that the introduction of boundary adhesion dramat-
ically changes the subsurface stresses within a layered solid when compared
with non-adhering contacts. We now turn our attention to the effects of coat-
ing thickness on the solution of the contact problem. Figure 8 presents the
predicted contact pressure obtained for three different coating thicknesses.
It should be noted in each case that the interlayer thickness was taken to
be a fixed constant (50nm). We observe that for a central deflection of 1nm
and friction coefficient η = 0.4, the peak pressure for the soft coating reduces
as the coating thickness increases, whilst the opposite is true for the hard
coating. As the coating thickness is increased, it is also seen that the region
of highest stress shifts upwards towards the surface in the soft coating as a
result of reduced peak pressure (see figure 9). However, for the hard coat-
ing, the stress concentration propagates towards the coating/transition layer
interface within the FGM layer with increased peak pressure, which could
make the solid more susceptible to delamination of the coating.
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Figure 8: Contact behaviour considering coating thickness variation separated from the
substrate by a 50nm thick FGM transition layer (∆γ = 10mJ/m2, η = 0.4)
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(a) soft coating, µ1/µ0 = 0.5 (b) hard coating, µ1/µ0 = 2.0

Figure 9: Sub-surface stress plots considering coating thickness variation separated from
the substrate by a 50nm thick FGM transition layer (∆γ = 10mJ/m2, η = 0.4)

4.5. The effects of transition layer thickness

A further variable of interest in this problem is the thickness of the graded
transitional layer. Figure 10 illustrates that increasing thickness of the FGM
transitional layer produces a higher peak pressure for the harder coating
while the opposite can be observed for the softer coating. It can also be
seen that without the FGM transitional layer, a discontinuous stress distri-
bution is experienced by the layered solid (as shown in figure 11(a) and (b)).
This is analagous to the results we would expect to see for the case of two
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homogeneous yet distinct elastic layers bonded together [34].
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-60

-30

 0

 30

 60

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

C
on

ta
ct

 p
re

ss
ur

e 
(M

Pa
)

 x (µm)

leading trailing

(b) hard coating, µ1/µ0 = 2.0

Figure 10: Contact behaviour considering FGM layer thickness variation separating the
substrate from a 50nm thick coating (∆γ = 10mJ/m2, η = 0.4)
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(a) soft coating, µ1/µ0 = 0.5 (b) hard coating, µ1/µ0 = 2.0

Figure 11: Sub-surface stress plots considering FGM layer thickness variation separating
the substrate from a 50nm thick coating (∆γ = 10mJ/m2, η = 0.4)

4.6. Modifying the tangential traction

The analysis thus far has assumed Coulombic traction, which may not
accurately describe a sliding and adhering contact. This has been discussed
by researchers such as Briscoe and Kremnitzer [35] and Thornton [36]. In
[37], Derjaguin and Toporov expressed the traction force of adhering contact
as:

wQ = η (P + 2Pc) (27)
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where P is the applied normal load and Pc represents the pull-off force with
the condition that P > −Pc. Through expansion, equation (27) can be
rewritten as:

q(x) = ηp(x) + τ0 (28)

where τ0 represents the product of friction coefficient η with the pull-off force,
Pc. For a weakly adhering contact, the value of τ0 will be small in comparison
to the applied pressure, making the term negligible. Hence, this will reduce
the tangential force to Coulombic traction once again, where q(x) ≈ ηp(x).
However, if the term τ0 is of the same order of magnitude as the contact
pressure, p(x), which may be the case for softer substrates, the tractional
behaviour of the contact will be significantly influenced by the term τ0.

The effect of the term τ0 on the contact pressure and deflection within an
adhering contact can be seen in figure 12 for both the hard and soft coatings
already considered. Considering similar substrate with Young’s modulus of
25GPa, we can see here that as τ0 becomes larger in magnitude, the distortion
of the contact pressure becomes more visible. It is also interesting to note
that the trailing edge region of the contact seems to be more attracted to the
rigid indenter with higher values of τ0 for both the hard and soft coating.
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Figure 12: Contact characteristics with increasing τ0 values (∆γ = 10mJ/m2, η=0.4)

Figure 13 illustrates the transient behaviour of the location of the highly
stressed regions within the layered solid as the value of τ0 increases. The
critical stress values increase when τ0 increases for both types of coatings.
An interesting point to note is that the critically stressed region within the
softer coating tends to concentrate close to the trailing edge of the contact.
Unlike the softer coating, at more significant τ0 values, the stress for the
harder coating tends to spread sideways, resulting in a larger highly stressed
region.
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(a) 0 MPa (µ1/µ0 = 0.5) (b) 0 MPa (µ1/µ0 = 2.0)

(c) 10 MPa (µ1/µ0 = 0.5) (d) 10 MPa (µ1/µ0 = 2.0)

(e) 20 MPa (µ1/µ0 = 0.5) (f) 20MPa (µ1/µ0 = 2.0)

Figure 13: Sub-surface stress plots with increasing τ0 values (∆γ = 10mJ/m2, η=0.4)

5. Conclusions

This paper has proposed an iterative algorithm for the solution of the
contact problem concerning a rigid indenter sliding over and adhering to
the surface of a multi-layered elastic solid. The adhesive forces between the
indenter and solid are modelled using the Lennard-Jones potential, whilst the
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investigated multi-layered solid consists of a homogeneous coating bonded
through a functionally-graded transitional layer to a homogeneous substrate.

A selection of numerical results were presented that demonstrate the sig-
nificance of the combined effects of traction and boundary adhesion on the
layered solid. It was found that hard coatings tend to be more resistant
to the applied pressure as the surface displacemant is smaller than that for
a soft coating. The maximum principal stress in the hard coating is much
larger than that for a soft coating however and regions of very high stress are
observed to form beneath the surface. Another interesting finding from the
simulation also showed that increasing either the coating or FGM transition
layer thickness would result in a reduced peak pressure for a soft coating but
otherwise for the hard coating. The observations from the results mean that
the likelihood of material wear and possible failure is increased for a hard
coating.

Perhaps the most significant observation in this work is that a suitable
mathematical representation for the traction distribution along the sliding
adhering contact is critical in determining the performance of the layered
solid under pressure. The sliding behaviour within this work has been sim-
ulated using the assumptions of Coulombic traction and those of [37]. As
expected, the obtained results for a weakly adhering contact are very similar
in both cases due to the small pull-off force. It is however noted that as the
pull-off force increases, the maximum stress in both the hard and soft coating
increases and large regions of high stress begin to occur within all three lay-
ers of the solid. This indicates that the likelihood of material failure in both
hard and soft coatings increases as the contact exhibits stronger adhesion.

The mathematical approach proposed in the paper provides a platform
to better understand the combined effects of traction and boundary adhesion
for sliding contacts along a multi-layered solid, in order to aid the design of
application specific low-wear materials.
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Appendix A. Nomenclature

A Non-dimensional initial state of contact (−)
E0 Young’s modulus of the substrate (Pa)
E1 Young’s modulus on the surface of the coating(Pa)
G0 Shear modulus of the substrate (Pa)
G1 Shear modulus on the surface of the substrate (Pa)
G Shear modulus of the functionally graded coating (Pa)
Hc Non-dimensional undeformed contact geometry (−)
H Non-dimensional contact gap (−)
L Non-dimensional contact width (−)
P Applied normal load (N)
Pc Pull-off force (N)
Q Traction force (N)
R Indenter curvature radius (m)
Ri Residual term (−)
U Non-dimensional deflection in x-direction (−)
V Non-dimensional deflection in y-direction (−)
X Non-dimensional horizontal co-ordinate (−)
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Y Non-dimensional vertical co-ordinate (−)
a Contact half width for Maugis-Dugdale model (m)
b Equivalent contact half width for Maugis-Dugdale model (m)
c Outer half width for adhesive region (m)
h Contact gap (m)
hc Rigid indenter geometry (m)
p Contact pressure (Pa)
u Deflection in x-direction (m)
v Deflection in y-direction (m)
x Horizontal co-ordinate (m)
y Vertical co-ordinate (m)
Ω Relaxation term (−)
α Approach of indenter (m)
l Contact width (m)
ε Atomic equilibrium spacing (m)
ν Poisson’s ratio of the solid (−)
σyy Normal stress in the y-direction (Pa)
σxx Normal stress in the x-direction (Pa)
σxy Shear stress (Pa)
τ1 Principal stress (Pa)

Appendix B. Description of the Mathematical Model

We seek solutions of the stress functions within each region of the solid as
indefinite integrals which result from the application of Fourier transforms.
The definition of the Fourier transform used within this work is

f̂(ξ) =

∫ ∞
−∞

f(x)eiξxdx (B.1)

where f(x) is an arbitrary function.
Following [27], we find that the solutions of the transformed stress func-

tions are

φ̂1(ξ, y) =
(
C1 + C2y

)
e|ξ|y + (C3 + C4y)e−|ξ|y, (B.2)

φ̂2(ξ, y) =
4∑

n=1

Ane
λny, (B.3)

φ̂3(ξ, y) =
(
D1 +D2y

)
e|ξ|y (B.4)
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where

λ1 =

√
1

4
(α2 + 4ξ2) + iα|ξ|

√
ν

1− ν
+

1

2
α, (B.5)

λ2 = −

√
1

4
(α2 + 4ξ2) + iα|ξ|

√
ν

1− ν
+

1

2
α, (B.6)

λ3 = λ̄1, (B.7)

λ4 = λ̄2. (B.8)

The constants appearing in (B.2) and (B.4) are ξ-dependent and may be
computed from the relationships(

C1

C2

)
= Φ−1

(
P̂ (ξ)
ξ2

iQ̂(ξ)
ξ

)
, (B.9)(

C3

C4

)
= −e−2|ξ|h1

(
J1 − SW−1L1

)−1 (
H1 − SW−1G1

)
×

Φ−1

(
P̂ (ξ)
ξ2

iQ̂(ξ)
ξ

)
, (B.10)(

A1

A3

)
= W−1

(
e−|ξ|h1G1

(
C1

C2

)
+ e|ξ|h1L1

(
C3

C4

))
, (B.11)(

A2

A4

)
= −

(
T2K

(2)
2

)−1

T1K
(2)
1

(
A1

A3

)
, (B.12)(

D1

D2

)
= e|ξ|h2G−1

2

(
M1K

(2)
1

(
A1

A3

)
+M2K

(2)
2

(
A2

A4

))
. (B.13)
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The 2× 2 matrices appearing above are defined as

K
(i)
j =

(
e−λjhi 0

0 e−λ̄jhi

)
, (B.14)

Nj =

(
1 1
λj λ̄j

)
, (B.15)

Mj =

(
F(λj) F(λ̄j)
G(λj) G(λ̄j)

)
, (B.16)

Hj =

(
1 −hj
|ξ| 1− |ξ|hj

)
, (B.17)

Jj =

(
1 −hj
−|ξ| 1 + |ξ|hj

)
, (B.18)

Gj =

(
ξ2 2(1− ν)|ξ| − ξ2hj
−|ξ|ξ2 ξ2

(
(1− 2ν) + |ξ|hj

) ) , (B.19)

Lj =

(
ξ2 −

(
2(1− ν)|ξ|+ ξ2hj

)
|ξ|ξ2 ξ2

(
(1− 2ν)− |ξ|hj

) )
, (B.20)

Φ = H0 − e−2|ξ|h1J0

(
J1 − SW−1L1

)−1 (
H1 − SW−1G1

)
, (B.21)

S = N1K
(1)
1 −N2K

(1)
2

(
T2K

(2)
2

)−1

T1K
(2)
1 , (B.22)

W = M1K
(1)
1 −M2K

(1)
2

(
T2K

(2)
2

)−1

T1K
(2)
1 , (B.23)

Tj = NJ −H2G
−1
2 Mj (B.24)

for i, j = 1, 2, whilst

P̂ (ξ) =

∫ ∞
−∞

p(x)eiξxdx =

∫ a

−b
p(x)eiξxdx, (B.25)

Q̂(ξ) =

∫ ∞
−∞

q(x)eiξxdx =

∫ a

−b
q(x)eiξxdx (B.26)

are the Fourier transforms of the contact pressure and tangential traction.
The functions appearing in (B.16) are defined as

F(λj) = (1− ν)λ2
j + νξ2, (B.27)

G(λj) = (1− ν)λ3
j − α(1− ν)λ2

j − ξ2(2− ν)λj − ανξ2. (B.28)

The notation h0 = 0 has been adopted here to denote the solid surface, whilst
h1 and h2 represent the interface between the coating and transition layer
and transition layer and substrate respectively.
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Appendix C. List of the non-dimensionalisations used within this
work

H = h/ε− 1

Hc = hc/ε

∆c = α/ε

U = u/ε

V = v/ε

X = x/
√
εR

Y = Y/
√
εR

L = `/
√
εR

µ = [Rγ2/(E2ε3)]1/3

1

E
=

1− ν2
0

E0

+
1− ν2

1

E1

Appendix D. Simulation Parameters

Parameters Values Units

1. Rx 40 µm
2. ε 0.235 nm
3. ν 0.26 -
4. h1 50 nm
5. h2 100 nm
6. δmax 0.1 nm
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