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Abstract. This paper details a robust collaborative intrusion detection 

methodology for detecting attacks within a Cloud federation. It is a proactive 

model and the responsibility for managing the elements of the Cloud is 

distributed among several monitoring nodes. Since there are a wide range of 

elements to manage, complexity grows proportionally with the size of the Cloud, 

so a suitable communication and monitoring hierarchy is adopted. Our 

architecture consists of four major entities: the Cloud Broker, the monitoring 

nodes, the local coordinator (Super Nodes), and the global coordinator 

(Command and Control server - C2). Utilising monitoring nodes into our 

architecture enhances the performance and response time, yet achieves higher 

accuracy and a broader spectrum of protection. For collaborative intrusion 

detection, we use the Dempster Shafer theory of evidence via the role of the 

Cloud Broker. Dempster Shafer executes as a main fusion node, with the role to 

collect and fuse the information provided by the monitors, taking the final 

decision regarding a possible attack.  
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1 Introduction 

Adoption of Cloud technologies allows critical infrastructure to benefit from dynamic 

resource allocation for managing unpredictable load peaks. Given the public awareness 

of critical infrastructure and their importance, there needs to be an assurance that these 

systems are built to function in a secure manner. Appropriate security procedures have 

to be selected when developing such systems and documented accordingly. Most 

existing technologies and methodologies for developing secure applications only 

explore security requirements in either critical infrastructure or Cloud Computing. 

Individual methodologies and techniques or standards may even only support a subset 

of specific critical infrastructure requirements. Requirement based security issues can 

be quite different for these applications and for common IT Cloud applications but need 

to be considered in combination for the given context. 
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Automation has become an indispensable part of service provision and has increased 

exponentially as demand for digital services and interconnectivity has increased. The 

reliance on these systems has resulted in ICT playing a key role in the provisioning of 

services that critical infrastructures deliver to the general population. Disruptions in one 

part of an infrastructure may propagate throughout the system and have cascading 

effects on other sectors (Ten, Manimaran, & Liu, 2010). Critical infrastructure 

protection relates to application processes, electronic systems, and information stored 

and processed by such systems.  

The concern is that critical IT resources and information in Cloud systems may be 

vulnerable to cyber attacks or unauthorised access. The primary security concerns with 

Cloud environments pertain to security, availability, and performance. Many attacks 

are designed to block users from accessing services and providers from delivering 

services, i.e. Denial of Service (DoS) or Distributed Denial of Service (DDoS). Service 

providers may face significant penalties due to their inability to deliver services to 

customers in accordance with regulatory requirements and Service Level Agreements 

(SLA) (Rak et al., 2012). DDoS attacks are a serious and growing problem for corporate 

and government services conducting their business via the Internet. Resource 

management to prevent DDoS attacks is receiving attention, as the Infrastructure as a 

Service (IaaS) architecture, effectively ‘supports’ the attacker. When the Cloud system 

observes the high workload on the flooded service, it is likely the Cloud federation 

(which is the practice of interconnecting the Cloud computing environments of two or 

more service providers for the purpose of load balancing traffic and accommodating 

spikes in demand) will start providing more computational power in order to cope with 

it.  

Traditional network monitoring schemes are not scalable to high speed networks 

such as Cloud networks, let alone Cloud federations. It is clear that an Intrusion 

Detection System (IDS) alone cannot protect the Cloud environment from attack. If an 

IDS is deployed in each Cloud Computing region, but without any cooperation and 

communication, it may easily suffer from single point of failure attack. The Cloud 

environment could not support services continually, as it is not always easy for the 

victim to determine that is being attacked, or where the attack is originating from. A 

new and novel approach to the aforementioned problem is required, that is, providing 

Security as a Service in a Cloud federation. Our solution encompasses the following 

methodological attributes: 

 We represent Cloud Service Providers (CSPs) within a Cloud federation as 

interconnected domains.  

 Once a Belief is generated that an attack is underway (ba), this is sent to a Command 

and Control server (C2). The C2 queries the Cloud Broker, and the Broker checks 

the value against its stored values (as it may not have been published yet), and 

invokes a global poll procedure in which other C2s within the other domains are 

queried.  

 The Cloud Broker coordinates attack responses, both within the domain itself, and 

with other domains, and is facilitating inter-domain cooperation. 



 

 

─ Dempster-Shafer (D-S) is used to fuse the generated beliefs and make a system 

wide decision. This cooperation between CSPs ensures that the scalable defence 

required against DDoS attacks is in an efficient manner; aiming to improve the 

overall resilience of the interconnected infrastructure.  

 The development of a collaborative intrusion detection heuristic based on D-S theory 

of evidence, and the inclusion of confidence values for improved accuracy. 

─ We are improving the decision making precision and accuracy for autonomous 

information sharing in a federated Cloud environment via a two stage fusion 

process. 

2 Background 

The Cloud Computing paradigm is increasingly being adopted in critical sectors such 

as energy, transport, and finance. Deploying high assurance services in the Cloud 

increases cyber security concerns, as successful attacks could lead to outages of key 

services that have high socioeconomic implications. This exposes these infrastructures 

to cyber risks and results in demand for protection against cyber-attacks, even more 

than traditional systems. Critical security issues include: data integrity; user 

confidentiality; availability of data; and trust among entities. Securing applications and 

services provided in the Cloud against cyber attacks is hard to achieve due to the 

complexity, heterogeneity, and dynamic nature of such systems.  

Site management and monitoring has improved for critical infrastructure facilities as 

they have become more progressively connected to the Internet. The added convenience 

of connectivity, however, has turned the once-limited attack surface of these industries 

into a fertile landscape for cyber-attacks. Due to the potentially high profile effects of 

attacks to critical infrastructure systems, these industries have become even more 

attractive targets for cybercriminals (Trend Micro Incorporated, 2015). The sensitive 

nature of critical infrastructure services deems their protection critical, and their 

services hereof. This is predominantly caused by the inadequacies and limitations of 

current security protection measures which fail to cope with the sheer size and vast 

dynamic nature of the Cloud environment.  

Attacks and failures are inevitable; therefore, it is important to develop approaches 

to understand the Cloud environment under attack. The current lack of collaboration 

among different components within a cloud federation, or among different providers, 

for detection or prevention of attacks is the focus of our work (Á. MacDermott, Shi, & 

Kifayat, 2015). Our research focuses on maintaining the availability of the data, as 

previously described, the service in question could be financial, organisational, or on 

demand. Protecting the Cloud environment from DDoS attacks is imperative as these 

attacks can threaten the availability of Cloud functionalities.  

3 Security as a Service 

Detecting intrusion patterns in the Cloud environment involves looking for behavioural 

changes. This process could involve signature based detection for DoS attacks, which 



 

 

must be robust against noise data, and false positives and false negatives produced. 

Anomaly detection is an approach for detecting behavioural changes as these schemes 

often aggregate normal behaviour through their modelling of normal versus abnormal 

traffic. The main requirement of our solution is to provide protection for cri tical 

infrastructure services being hosted in the Cloud environment through novel intrusion 

detection techniques (Á; MacDermott, Shi, & Kifayat, 2015).  

Monitoring is a core function of any integrated network and service management 

platform. Cloud computing makes monitoring an even more complex infrastructure 

support function, since it includes multiple physical and virtualized resources and 

because it spans several layers of the Cloud software stack, from IaaS to PaaS, and 

SaaS. Using our Security as a Service method, collaborative intrusion detection is 

possible in a federated Cloud environment.  

The system uses a Cloud Broker to propagate information to the C2 entities in each 

CSP domain – this is in the form of Black lists and White lists. Monitoring nodes are 

used to observe changes or suspicious activities in local domains. These values are 

stored in a Grey list of ambiguous observations. For pre-emptive warning, Beliefs are 

generated and assigned to all subsets of possible outcomes based on the trigger.  

We assign Beliefs to the outcome in the form of, random attack variable x would 

have a basic probability assignment of { }, {attack}, {no attack}, and {attack, no 

attack}. { } represents an empty subset with a value of 0, whereas {attack, no attack} 

represents uncertainty, i.e. it could be either. An advantage of using D-S theory of 

evidence to fuse Beliefs is that the algorithm can start from an uncertain state and allow 

the observed evidences form in each of the subnets gradually. D-S utilises orthogonal 

sum to combine the evidences. We define the belief functions, describing the belief in 

a hypothesis A, as Bel1(A),Bel2(A); then the belief function after the combination is 

defined as: 

 

Bel(A) = Bel1(A)⨁Bel2(A) 
 

The mass function after the combination can be described as: 

 

m(A) = K−1 . ∑ m1(Ai)

Ai∩Bi=A

m2(Bj) 

 

Where K is called Orthogonal Coefficient, and it is defined as: 

 

K = ∑ m1(Ai)

Ai∩Bi≠∅

m2(Bj) 

3.1 Implementation 

Collaborative security between CSPs in a Cloud federation can offer holistic security 

to those in this scheme. Information sharing in this approach is automated which we 

conceive to be an important aspect of our approach. Dividing the system into domains 



 

 

makes the system more scalable, and Belief generation and sharing of threat 

information could be used as a warning of an imminent attack. Previous work of ours 

(Á. MacDermott, Shi, & Kifayat, 2015) details our simulations using Riverbed Modeler 

18.0 and convey how attacks could propagate throughout a Cloud federation. At this 

stage of the simulation, the main purposes were to analyse the role a Broker could have 

with autonomous sharing of information; the role of a single monitoring entity on the 

entire federation vs the C2s monitoring their own sub domains; and how an attack 

within a Cloud federation could affect the interdependent services present. 

Next, we are showing the actions to be taken in the simulation, from the point where 

an intrusion is believed to have been detected. The integration of the decisions coming 

from different IDSs has emerged as a technique that could strengthen the final decision. 

Sensor fusion can be defined as the process of collecting information from multiple and 

possibly heterogeneous sources and combining them to obtain a more descriptive, 

intuitive and meaningful result (Thomas & Narayanaswamy, 2011). Related work in 

the field of sensor fusion has been carried out mainly with methods such as probability 

theory, evidence theory, voting fusion theory, fuzzy logic theory, or neural network in 

order to aggregate information.  

Our implementation of our D-S for collaborative intrusion detection is in C#, and 

focuses on demonstrating the application of the fusion algorithm in an autonomous 

information sharing scheme. For proof of concept we are using a lower amount of 

entities to convey how the communication occurs and the information would be 

exchanged within the infrastructure; future work would involve expanding this solution 

to cope with a larger scale. Firstly, an IP address is entered into the program and the 

value is compared to the Black list and White list to see if the values are present.  

 

 

 

 

 

 

 

 

Fig. 1. Checking list values to determine if IP present 

 

When compared against the lists, if the IP address is in the Black list then the user is 

‘Blocked’ – source code for this is conveyed in Figure 2. 

 

 
Fig. 2. Blocked user key return 

 



 

 

If the entered IP address is present on the White list then the user is ‘Permitted Access’, 

as illustrated in Figure 3. The console outputs the other values from the White list, and 

this is also a separate file than can be viewed.  

 

 
Fig. 3. Value on white list 

 

If the entered IP address is not present on either list, the value is stored in the Grey list 

and assigned a threat value which we use to form the Belief. Hypothesis sets based on 

all values between 0 and 1 are included within the program, as well as mass values and 

plausibility functions.  

 

 
Fig. 4. Threat value ranges 

 

Figure 4 shows the threat value ranges used, and the ability to increase/decrease the 

associated risk due to occurrences on the list is also an option. Increased occurrences 

could cause the risk score to increase, e.g. beginning on the white list, moving to the 

grey list, but then being promoted to the black list. For a value over 70 this would trigger 

a Belief generation and the associated hypothesis values output. Figure 5 is an example 

of a threat score of 80 and the associated hypothesis set generated, and Figure 6 shows 

a score of 60. 

 

 
Fig. 5. Example hypothesis set generation for a threat score of 80 

 



 

 

This value is sent to the Broker and compared against the Black and White lists, as the 

information may not have been propagated to the C2s within the federation. The Broker 

then queries the adjacent monitoring entities and requests they generate a Belief based 

on the original value.   

 

 
Fig. 6. A belief generation of 0.6 

 

In the example of a Cloud federation, the Broker takes three belief values and fuses 

them together to make a system wide decision. The values would then be updated to 

the lists (White or Black) and calculations of these combinations are as follows:  

 

Belief combination of two values – 𝑩𝒆𝒍(𝑨) =  𝑩𝒆𝒍𝟏(𝑨) ⊕  𝑩𝒆𝒍𝟐(𝑨) 

(m1) we have belief that the proposition is true for just state Attack is m1({Attack}) = 

0.8) and similarly m1({No Attack}) = 0.1 with m1({Either}) = 0.1 

  

Then we take another assessment m2 with m2 ({Attack}) = 0.6, m2({No Attack}) = 0.3 

with m2({Either}) = 0.1 

 

The joint mass function would be m1,2(A)=(1/1-K) m1({Either})m2({Either}) with 

K= m1({Attack}) m2({No Attack}) + m1({No Attack}) m2({Attack}) = 0.8*0.3 + 

0.1*0.6 = 0.30 

  

So m1,2(A) = (1/1-0.30) *0.1*0.1 = 0.007 

 

Belief combination of three values - 𝑩𝒆𝒍(𝑨) =  𝑩𝒆𝒍𝟏(𝑨) ⊕ 𝑩𝒆𝒍𝟐(𝑨) ⨁ 𝑩𝒆𝒍𝟑(𝑨) 

(m1) we have belief that the proposition is true for state Attack which is 0.3 (i.e. 

m1({Attack}) = 0.8) and similarly m1({No Attack}) = 0.1 with m1({Either}) = 0.1 

  

Then we take another assessment m2 with m2 ({Attack}) = 0.6, m2({No Attack}) = 0.3 

with m2({Either}) = 0.1 

 

m3 associated values include {Attack}) = 0.0, m3({No Attack}) = 0.5 with m3({Either}) 

= 0.1  

 

The joint mass function would be m1,2,3(A) = (1/1-K) m1({Either})m2({Either}) 

m3({Either}) with: 

K = m1({Attack}) m2({No Attack}) + m1({No Attack}) m2({Attack}) + m1({Attack}) 

m3({No Attack}) + m1({No Attack}) m3({Attack}) + m2({Attack}) m3({No Attack}) + 

m2({No Attack}) m3({Attack}) = 0.8*0.3 + 0.1*0.6 + 0.8*0.5 + 0.1*0.0 + 0.6*0.5 + 

0.3*0.0 = 1 

  



 

 

So m1,2,3(A) = (1/1-1) *0.1*0.1*0.5 =  n/a - cannot divide by 0 

 

Belief combination of three values - 𝑩𝒆𝒍(𝑨) =  𝑩𝒆𝒍𝟏(𝑨) ⊕ 𝑩𝒆𝒍𝟐(𝑨) ⨁ 𝑩𝒆𝒍𝟑(𝑨) 

(m1) we have belief that the proposition is true for state Attack which is 0.3 (i.e. 

m1({Attack}) = 0.8) and similarly m1({No Attack}) = 0.1 with m1({Either}) = 0.1 

  

Then we take another assessment m2 with m2 ({Attack}) = 0.6, m2({No Attack}) = 0.3 

with m2({Either}) = 0.1 

 

m3 associated values include {Attack}) = 0.9, m3({No Attack}) = 0.05 with 

m3({Either}) = 0.05  

 

The joint mass function would be m1,2,3(A) = (1/1-K) m1({Either})m2({Either}) 

m3({Either}) with: 

K = m1({Attack}) m2({No Attack}) + m1({No Attack}) m2({Attack}) + m1({Attack}) 

m3({No Attack}) + m1({No Attack}) m3({Attack}) + m2({Attack}) m3({No Attack}) + 

m2({No Attack}) m3({Attack}) = 0.8*0.3 + 0.1*0.6 + 0.8*0.05 + 0.1*0.9 + 0.6*0.05 + 

0.3*0.09 = 0.73 

  

So m1,2,3(A) = (1/1-0.73) *0.1*0.1*0.5 = 0.01851 

4 Evaluation 

The use of D-S rule is mathematically possible only if 𝑚𝑎  and 𝑚𝑏are not conflicting, 

i.e. if there is a focal element of 𝑚𝑎  and a focal element 𝑧 of 𝑚𝑏 satisfying (𝑦 ∩ 𝑧) ≠
 ∅. Merging two belief masses with the conjunctive rule defined above produces a sub-

additive belief probability assignment, meaning that the sum of belief masses on focal 

elements can be less than one, in which case it is assumed that the missing or 

complement belief mass gets assigned to the empty set. If desirable, the normality 

assumption m( /0) = 0 can be recovered by dividing each belief mass by a normalization 

coefficient (Josang & Pope, 2012). This rule is associative, and the normalisation in   

D-S redistributes conflicting belief masses to non-conflicting ones, and tends to 

eliminate any conflicting characteristics in the resulting belief mass distribution. This 

rule of combination can be applied to avoid this particular problem by allowing all 

conflicting belief masses to be allocated to the empty set. 

When performing the belief calculations by two values the returned result is quite 

surprising. When comparing two high belief generations the assumption is that the 

combined belief value would also be a high number, however it is a lower value. The 

correlation between high belief values and low fused outputs suggests that the lower 

the fused output the higher the risk. The same is understood for two fused low belief 

values generate a high fused output, which would be a low risk. It is not clear if this is 

due to our calculations but these metrics have been compared on numerous belief 

fusions and this is a similar occurrence. The mass value must be between 0 and 1 but 

not inclusive as this seems to skew the calculations, e.g. using a value of 0 would render 



 

 

the combination calculation (m1, 2(A)) uncalculatable as you cannot divide by 0 which 

would be a pertinent value. A coefficient value of 1 would leave the combination 

calculation having to divide by 0 (1/1-1) which is an impossible calculation. Also, 

having a coefficient of 0 would give a negative risk output, which is also an unusable 

value.  

Implementing our Security as a Service solution, the below limitations of D-S can 

be evident: 

 Associative – for rule combination, the order of the information in the 

aggregated evidences does not impact the result. A non-associative 

combination is necessary for many cases. 

 Non-weighted – rule combination implies we trust all evidences equally. 

However, in reality, our trust on different evidences may differ, which means 

we should consider various factors for each evidence.  

We have demonstrated how D-S can provide collaborative intrusion detection, 

however there may be cases where the decision may be inaccurate, and if a domain 

under attack generation the Belief of origin then it would still need to take action against 

the condition. D-S when applied in an autonomous collaborative environment should 

apply a weight of confidence when the belief generation occurs. If CSPs collaboratively 

vote no attack, but one CSP is adamant it is being attacked, there should be a way to 

overrule the decision based on the strength of the associated trust or confidence value. 

The algorithm should be extended further to take this into consideration, and we 

propose a two stage collaborative detection process for conflicting decisions.  

Two stage D-S fusion for conflicting decisions is an option for solving this issue. 

Post Belief generation processing is needed for application to this area to facilitate 

information exchange for defence. Via the inclusion of confidence values the accuracy 

of decisions can be improved. Protecting the local services of the CSP but proactively 

warning others of the potential threat. If the fused decision is “No Attack” but the Belief 

of origin has a high confidence value, then the domain of origin would take action 

against the suspect observation, but send the Belief value 

(𝐵𝐴(𝐼𝑃, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒) to the Broker to store in its local Grey list. 

Should an adjacent CSP query the Broker regarding the suspect IP in the future, it has 

the information from the origin CSP. 

5 Conclusion 

We have presented our Security as a Service solution, a novel platform for the 

protection of infrastructure services in a federated Cloud environment. D-S theory is 

extended to meet the domain management needs and to facilitate autonomous sharing 

of information. The novel contributions of this project are that it provides the means by 

which DDoS attacks are detected within a cloud federation, so as to enable an early 

propagated response to block the attack, particularly by the interdependent CSPs within 

the federation. This is effectively inter-domain cooperation as these CSPs will 

cooperate with each other to offer holistic security, and add to the defence in depth.    

D-S is used to facilitate this autonomous sharing of information, and to fuse the 



 

 

generated beliefs to form a system wide decision. This cooperation between CSPs 

ensures the scalable defence required against DDoS attacks is in an efficient and cost 

effective way. Protecting the federated cloud against cyber-attacks is a vital concern, 

due to the potential for significant economic consequences. The effects of attacks can 

span from the loss of data, to the potential isolation of parts of the federation. Our 

simulations offer proof of concept, and deem the applicability of D-S to this area 

promising but still with evident limitations. 
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