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Abstract 
 

 

There is evidence to suggest that high altitude (HA) exposure leads to a fall in heart rate 

variability (HRV) that is linked to the development of acute mountain sickness (AMS). 

The effects of sex on changes in HRV at HA and its relationship to AMS are unknown. 

 

Methods 
 
 

HRV (5-minute single lead ECG) was measured in 63 healthy adults (41 men and 22 

women) aged 18-56 years at sea level (SL) and during a HA trek at 3619m, 4600m and 

5140m respectively. The main effects of altitude (SL, 3619, 4600 and 5140m) and sex 

(men vs women) and their potential interaction were assessed using a Factorial Repeated 

Measures ANOVA. Logistic regression analyses were performed to assess the ability of 

HRV to predict AMS. 

 

Results 
 

 
 

Men and women were of similar age (31.2 ±9.3 vs 31.7±7.5 years), ethnicity, body and 

mass index.   There was main effect for altitude on heart rate, SDNN (standard deviation 

[SD] of normal-to-normal [NN] intervals), RMSSD (Root mean square of successive 

differences), NN50 (number of pairs of successive NNs differing by >50 ms), pNN50 

(NN50 / total number of NNs), very low frequency (VLF), low frequency (LF), high 

frequency (HF) and total power (TP). The most consistent effect on post hoc analysis was 

reduction in these HRV measures between 3619 and 5140m at HA. Heart rate was 

significantly lower and SDNN, RMSSD, LF, HF and TP were higher in men compared 

with women at HA. There was no interaction between sex and altitude for any of the 

HRV indices measured. HRV was not predictive of AMS development. 
 
 
 
 
 

Conclusions



 

 

Increasing HA leads to a reduction in HRV. Significant differences between men and 

women emerge at HA. HRV was not predictive of AMS.



 

 

Introduction 
 

 

The assessment of heart rate variability (HRV) has rapidly evolved from what was 

predominantly a research tool to an increasingly appreciated clinical modality (1). Its 

most widespread translational use at present is in the assessment of psychological stress, 

physical fitness and the prevention of overtraining (1, 26). The improved portability and 

reduced cost of HRV-measurement equipment have also played a significant role in this 

regard.  HRV assessment relies on the detailed assessment of the variations in the time- 

intervals between consecutive heart beats which are subject to continuous autonomic 

control (26,28). From these data, the changes in the beat-beat intervals over time (time- 

domain analyses) can be more robustly quantified from as little as 1-5 minutes of 

recording (1,27,29). The beat-to-beat data can be further examined by frequency domain 

analysis whereby the generated sinusoidal waveforms of these intervals over time, are 

placed into various frequency components, allowing for a more in depth analysis of 

autonomic balance (26,28). 

 

An area of recent interest has been in the effects of high altitude (HA) on HRV 

(6-8, 20). HA exposure challenges several physiological systems that are heavily reliant 

on continuous autonomic control and are likely to influence HRV (7,8,21,22). Acute 

hypoxia and HA leads to marked sympathetic activation yet paradoxically there is also 

evidence of increased competing parasympathetic activity which contributes to the 

reduction in maximal heart rate in proportion to the altitude gained (7,8,19,21). 

Hypobaric hypoxia, cold, exercise, stress and fatigue, which are synonymous with HA 

exposure, are all known individually to influence HRV (8,16). 

 

There are data to suggest that acute hypoxia and HA exposure leads to a decline 

in HRV (8,20) with conflicting data on its potential link to HA-related symptoms and 

acute mountain sickness (AMS) (12,13,29). Published studies on HRV at HA have been 

derived from relatively small cohorts, with very little data on the effects of genuine



 

 

terrestrial, rather than simulated HA (6,12,13). Moreover, there has been an under- 

representation of women, in current datasets, despite their obvious physical and 

potentially important physiological differences compared to men. Resting heart rate tends 

to be higher in women than men, yet their stroke volumes and cardiac outputs are lower 

and these differences are sustained and even enhanced with hypoxia (5,14). Resting 

minute ventilation, which affects HRV, is relatively greater in women under both 

normoxia and hypoxia (23). Time-domain measures of HRV are typically higher in 

healthy men (<50 years) compared with age-matched women (5,14,24). However, the 

power spectral density (PSD) of HRV in females is usually characterized by less total 

power (TP), greater or similar high-frequency (HF) and lower low-frequency (LF) power 

and LF/HF ratios (14,27,28). 

 

There are some data to suggest that women may be also more vulnerable to both 

 
AMS development and worsening symptom severity compared with men (9,18,25). 

 
Given the possible sexual dimorphism in HRV and AMS incidence/severity coupled with 

the reported links between HRV and AMS an investigation of comparative HRV in men 

and women and its relationship to AMS development is warranted. 

 

In this study, we aimed to investigate, for the first time, the influence of sex on 

time and frequency-domain measures of HRV with increasing terrestrial HA and its 

potential link to AMS development. 

 
 
 

 
Methods 

 

 

Study design and participants 
 

 

Sixty-three healthy British Military servicemen aged >18years were included. They were 

all assessed at near SL (<200m) and again at three further altitudes during progressive 

HA ascent in the Dhaulagiri region of the Himalayas in March/April 2016. Health status



 

 

was confirmed following a detailed baseline questionnaire. For inclusion, all subjects 

needed to be low altitude dwellers and were required to be deemed medically fit for HA 

exposure by their medical practitioners. All participants were required to have 

successfully completed their mandatory military Personal Fitness Assessment 1.5 mile 

run in accordance with published standards (adjusted to age and sex) prior to inclusion. 

This run was undertaken in sports clothing on a flat surface. Subjects with a history of 

cardiac arrhythmias were excluded. The subjects were studied consecutively in groups of 

8-14 at sea level and at HA with a two-day stagger between successive groups.  All 

trekking groups followed an identical ascent and exercise recovery profile with similar 

morning wake times. Sea level (SL) baseline assessments were performed in the UK 

approximately six weeks prior to each departure. 

 
 
 

 
High Altitude Ascent and descent profile 

 
 

The subjects flew from the UK to Kathmandu (1400m) where they underwent two days 

of local acclimatisation (Days 1-3). Thereafter, they travelled by road over two days to 

1030m (Darbang). From there they commenced trekking on foot over the ensuing 11 

days to an altitude of 5140m (with an overpass of 5360m) before commencing their 

decent on foot to Marpha (2719m) and then by road back to Kathmandu. Research 

assessments were performed at SL and at static research camps at 3619m, 4600m and 

5140m during HA ascent. 
 

 
 
 
 
 

Physiological Assessments and Heart Rate Variability 
 
 

Oxygen saturations (SpO2) were measured using a Nonin Onyx (Nonin Medical Inc, 

Plymouth, Minnesota) pulse oximeter with sampling over approximately 15 seconds. 

HA-related symptoms were recorded using the Lake Louis Scoring (LLS) system. AMS



 

 

was defined as a LLS of >3 in the presence of headache (11,15).  HRV assessments were 
 

undertaken using dedicated battery-operated portable HRV devices which records a 

single lead ECG at a sampling rate of 250/second (CheckMyHeart Plus™ Daily Care 

Biomedical, Taiwan) as previously described (5). The first of the two surface ECG 

electrodes were placed at the right sternal edge at one finger breathe below the 

suprasternal notch and the second over the left 5th intercostal space at the mid clavicular 

line (i.e. cardiac apex).  Measurements were taken on fully rested subjects over a five- 

minute period in the early morning post-micturition and prior to breakfast or caffeine (6). 

All subjects were studied seated in a warm building at sea level and wearing warm 

clothing and in a tent at HA and were advised not to talk during HRV assessment. All 

stored recordings were exported via USB hook up for offline data analysis 

(CheckMyHeart Plus™ R30 V4, Daily Care Biomedical, Taiwan). 

 
The R waves of the stored ECG were used as the fucidal point to determine the beat to 

beat interval with full ECG disclosure. Non-normal-to-normal-(NN) intervals and ectopic 

beats were identified using customised software non-linear algorithms and were 

highlighted by colour coding within the HRV software to ease their identification. All 

ECG data was inspected in six second windows for further identification and manual 

editing of potential non NN intervals if necessary. All confirmed non NN intervals due to 

ectopy were excluded.   The average five-minute heart rate, and the SDNN, RMSSD, 

NN50 and pNN50 time domain measures, as previously described, were recorded 

(26,28). The SDNN refers to the standard deviation of the NN intervals from the acquired 

ECG. The RMSSD (Root mean square of successive differences) is the square root of the 

mean of the squares of the successive differences between adjacent NN intervals. The 

NN50 describes the number of pairs of successive NNs that differ by >50 ms and the 

pNN50 refers to the proportion of NN50 divided by total number of NN intervals. 



 

 

Frequency-domain analysis was performed using the non-detrend method of fast Fourier 

transformation (FFT) with full graphical display of the power spectral data. Key



 

 

frequency band data collected were the HF power (0.15-0.40 Hz), LF power (LF; 0.04- 

 
0.15 Hz), very low frequency power (VLF; 0.01-0.04 Hz), TP and the LF: HF ratio as 

previously defined (21,23). Normalized HRV values of LF (LFnu) and HF (HFnu) were 

calculated as a percentage of the total spectral power minus the VLF respectively (28). 

 
Ethics 

 

 
 

All participation was voluntary and all subjects underwent detailed written informed 

consent.  This study was approved by the Ministry of Defence Research and Medical 

Ethics Committee (MODREC) and was conducted according to the standards of the 

Declaration of Helsinki. 

 
 
 
 

 
Statistical analysis 

 

 
 

Data were analysed using GraphPad InStat version 3.05 and SPSS® statistics 

version 22 with all graphical figures presented using GraphPad Prism version 4.00 for 

Windows (GraphPad Software, San Diego, CA, USA). Sample size calculations were 

performed using a proprietary determined sample size calculator using (GraphPad 

StatMate version 2.00 for Windows). Data inspection and the Kolmogorov-Smirnov test 

was undertaken to assess normality of all continuous data, which were presented as mean 

± standard deviations and as the standard error of the mean (SEM) for figures. 

Categorical variables were compared using a Chi-Squared test. Comparison of unpaired 

data was performed using an independent t test and a Mann-Whitney test for parametric 

and non-parametric data respectively.  Correlations were performed using Pearson and 

Spearman rank correlation (±95% confidence interval, CI) for parametric and non- 

parametric data respectively.  A Factorial Repeated Measures ANOVA with Bonferroni 

correction (to minimise type I error) was performed to assess the main effect of sex (men 

vs women) over the four altitude time points (SL, 3619m, 4600m and 5140) and any



 

 

interaction of altitude x sex on HRV scores. Binary logistic regression analyses (enter) 

were undertaken to assess potential continuous HRV and other univariate predictors of 

AMS development (yes or no) and its coefficient (B). We also undertook an additional 

exploratory analysis of the categorical HRV measures of RMSSD <30ms, LF:HF >1.3 

and LFnu <20% that have been previously reported to be associated with AMS  (12,13) . 

Non-parametric data was log (Ln) transformed and normality confirmed for the ANOVA 

and logistic regression analyses. A two tailed P value <0.05 was considered statistically 

significant for all comparisons. 

 
 
 

 
Sample size calculations 

 
 

In a recent pilot study in Dhaulagiri, which included 12 subjects, we observed a non- 

significant but 11% (-7.9 ms) fall in the RMSSD time domain measure of HRV from 

baseline to 3600m, using identical HRV (CheckMyHeart Plus™) devices (6). Hence, by 

studying an even greater altitude of >5000m we calculated that a sample size of >18 

subjects in each group (men vs women) would have >80% power to detect a significant 

change in the RMSSD at HA at a significance level (alpha) of 0.05 (two-tailed). In 

another recent study Saleem et al documented that the SDNN was significantly higher in 

27 healthy men versus 18 healthy women (24). We estimated that a sample size of at 

 
least 18 women and >30 men studied across four differing altitudes would have sufficient 

power to detect a significant sex difference in HRV including SDNN. 

 
 
 

 
Results 

 

 

HRV data were available on 62 subjects at SL and at 3619 m and on 58 subjects at 

 
4600m and 5140m respectively. The men (31.2±9.3 years) and women (31.7±7.5 years) 

 
were well matched for age, ethnicity, smoking history and body mass index (table 1). As



 

 

expected, the men were on average taller and heavier with higher systolic blood pressures 

at baseline, with faster completion times for their mandatory annual 1.5 mile running 

fitness test (P<0.0001) (table 1). 

 

HA exposure led to a significant fall in SpO2 and an increase LLS among 

both men and women, compared to baseline with no effect for subject sex (table 2). Heart 

rate (five-minute average) increased at HA in both sexes, with women having 

consistently higher rates than men both at SL and at HA (table 2 and 4). 
 

 
 

There was a significant main effect for altitude on all time-domain measures of 

HRV. On post-hoc analysis this represented a significant reduction in time-domain 

measures of HRV most consistently between 3619m to 5140m (table 2 and 4; figure 1). 

There was a significant main effect for altitude on LF, HF and TP. This difference was 

again most marked on post-hoc analyses between 3619m and 5140m where significant 

reductions in LF, HF and TP were observed (table 3 and 4; Figures 2). 

 
Time domain measures of HRV were non-significantly higher in men at SL and 

significant differences emerged at HA, where all measures were notably higher in men 

(table 2 and 4; figure 1).  There was also a main effect for sex among the frequency 

domain measures of TP, LF and HF power which were all significantly higher in men at 

HA (table 3 and 4, figure 2). There were no interactions between sex (men vs women) x 

altitude (SL, 3619m, 4600m and 5140m) on any measures of HRV (table 4) or heart rate. 

 
SpO2 inversely correlated with LLS (r=-0.38; 95% CI -0.50 to -0.24; p<0.0001) 

and positively with RMSSD (r=0.16; p=0.02), SDNN (r=0.18; 0.05 to 0.30: p=0.007), 

VLF (r=0.17; 0.04 to 0.30; p=0.01), LF (r=0.16; 0.03 to 0.29; p=0.2) and TP (r=0.17; 

0.03 to 0.29; P=0.02). 
 

 

The prevalence of AMS increased at HA from 15.2% at 3619m to 27.3%  at 

 
4600m and 32.5% at 5140m (p=0.004). Reducing SpO2 (B -0.13; P<0.0001) and



 

 

increasing altitude (B 0.80; P <0.0001) and mean heart rate (B 0.03; P=0.04) were the 

only univariate predictors of AMS. None of the continuous measured HRV parameters or 

the categorical variable of subject sex (men vs women) were predictive of AMS. RMSSD 

<30ms, LF:HF >1.3 and LFnu <20% were not predictive of or associated with AMS. 
 

 
 
 
 
 

Discussion 
 
 

This is the largest study to assess the effects of HA on HRV, and to the author’s 

knowledge the first study to investigate the influence of sex on HRV at terrestrial HA. In 

this study HRV was influenced by HA. Minor sex-related differences in HRV that were 

observed at SL were sustained at genuine terrestrial HA. A link between HRV and 

symptoms of AMS were not found. 

 

We observed a significant fall in resting SpO2 and an increase in LLS with 

increasing HA. There was also a significant main effect for altitude on heart rate (which 

increased) and all the evaluated time-domain measured of HRV. The most consistent 

change was between 3619 and 5140m, and hence at higher altitude, where there was a 

significant fall in SDNN, RMSSD, NN50, PNN50, LF and HF power.  These findings 

are in keeping with published data that has shown a fall in time-domain measures of 

HRV at HA (12,13,29). These changes are in part explained by a number of factors 

linked to the HA environment. These include reducing sleep quality, extremes of cold 

and heat, physical exhaustion and increasing anxiety which are all known to adversely 

affect and reduce time domain measures of HRV (13,19,30). 

 
 
 

 
We also observed a significant main effect for sex on heart rate and time domain 

measures of HRV at HA, with men having consistently higher scores and greater 

variability. This is a novel finding. Whilst published data has shown a consistent trend to



 

 

higher time domain measures of HRV in young adult men versus women at SL (3,14,24). 

This is the first comparative study at HA. The trend to higher time domain HRV 

measures at SL became significant at HA. There was no interaction of altitude on sex on 

the time domain HRV parameters. This finding can be partly explained by the sex 

differences in heart rate which was consistently lower in the men. Heart rate is well 

known inversely correlate with all main time domain measures of HRV (28). 

 

We also observed a significant effect of altitude (SL, 3619m, 4600m and 5140m) 

on TP, VLF, LF and HF power. The most consistent finding, on post-hoc analyses was a 

reduction in these parameters at the highest altitude of 5140m vs sea level and 3619m. 

HA exposure was also associated with a significant main effect of sex with greater TP, 

LF and HF power among the men. Results from a very recently published meta-analysis 

of comparative HRV measures among men and women at SL, that included more than 

60,000 participants, demonstrated that when compared to that seen in women, PSD in 

men is generally characterised by lower HF power and greater LF, TP and LF/HF ratios 

(14). This is thought to reflect their higher resting sympatho-vagal tone (hence greater LF 

and LF/HF ratios) compared with women. Our LF data supports this previous data. 

However, contrary to the published data we found that HF power was actually higher 

with variable effects on LF/HF power among the men.  There are several potential factors 

that might explain these results. It is known that LF, HF power and their relative ratios 

(LF/HF) can be markedly influenced by a number of factors which include age, 

respiratory rate, recording length and heart rate (3,14,23,26,28). Whilst the ages were 

similar between the men and the women the greater heart rates in women would have led 

to the analysis of a higher number of beat-to-beat intervals, despite an identical recording 

period,  which could be an important  confounder. Secondly, whilst increasing heart rate 

and minute ventilation are HA are thought to relate to enhanced sympathetic activation 

there is also evidence of elevated parasympathetic neural activity (4,7,21,22). This 

increase in competing vagal activation at HA is thought to contribute to the reduction in



 

 

maximal heart rate at HA (7). LF power and the LF/HF ratio have been traditionally 

thought to represent sympathetic activation and net sympatho-vagal balance respectively 

with RMSSD and HF power reflecting parasympathetic nerve activity (28). However, 

there is evolving evidence to show that these arbitrary assumptions about the discrete 

autonomic effects these HRV measures, may be overly simplistic (2). 

 

Our identified sex-related dissimilarities in the time and frequency domain HRV 

measures at HA could also relate to differences in fitness levels. Indeed, the men in our 

study had higher time domain measures of HRV and lower 1.5 mile run times. Our 

findings could also relate dissimilarities in acclimatisation in men vs women. 

Acclimatisation encompasses the cumulative effects of multiple factors such as 

hydration, ventilation and enuresis that are known to influence autonomic balance and 

HRV (10). HRV, and in particular frequency domain analysis can be significantly 

affected by breathing pattern and ventilation, which are markedly affected HA where 

hypoxia driven hyperventilation predominates (14,17,18). In our study paced breathing 

during HRV assessments were not performed, but the participants were encouraged to 

relax and breathe normally.  The majority of published studies on HRV at HA have 

utilised spontaneous non-paced breathing, hence were keen to utilise a comparative 

methodology (7,9,10,24).  Our participants were assessed at far higher altitudes and 

under greater hypoxia than most of the previous HA HRV studies to date, hence the 

potential challenge to paced breathing was likely to have been greater. We anticipated 

that at 4600 and 5140m controlled breathing under significant hypoxia and a high 

ventilatory drive might paradoxically increase subject anxiety and perceived 

breathlessness.  By enforcing a similar paced breathing protocol in both men and women 

we risked neutralising genuine sex-related differences in HRV related to well-reported 

dissimilarities in ventilation between men and women at HA (2,19). Unfortunately, we 

did not measure comparative respiratory rate and ventilation among the men vs women.



 

 

This is an obvious limitation as sex-related differences in their spontaneous breathing it 

could have provided further insight into the observed differences in HRV identified. 

 

We did not observe a link between AMS and HRV in this current study. There is 

limited evidence linking changes in HRV to AMS, raising the prospect of using HRV as 

a non-invasive predictor of AMS development (9,10). In a previous study Karinen et al 

investigated 36 different healthy climbers ascending from 2400 m to 6300 m altitudes 

during five differing expeditions and noted that a lower RMSSD and HF at 2400m was a 

marker of AMS at 3000 to 4300m (10). However, contrary to our study, the speed of 

ascent varied between their five studied groups. Furthermore, they measured HRV over 

two rather than five minutes. In another study, of similar size (n=32), Hang et al noted 

that a HF% <20% (nu) or LF/HF ratio >1.3 at lower altitudes was predictive of AMS at 

3400m (9). These HRV parameters failed to be either associated or predict AMS in or 

study. Willie et al in a prolonged normobaric hypoxia study and our group in another 

recent study (ithlete RMSSD-derived HRV score), failed to identify a clear link between 

AMS and HRV supporting our data (16, 23). 

 

The potential reasons for the contradictory findings in HRV to predict AMS may 

relate to differences in study design, HA environment, ascent/hypoxic profile, HRV 

recording time as well as the actual HRV parameters measures.  Even the definitions of 

AMS that were used differed between these studies. For example, Karinen et al defined 

AMS as a LLS of >3 in their study whereas in the study by Willie they a LLS ≥4 was 
 

used to define AMS (10,24). In our study we used the Lake Louise Consensus definition 

 
(1992) for AMS, which is refers to LLS score of >3 in the presence of headache (4,8,12). 

 

It is well known that AMS is a highly complex and heterogeneous condition. Its 

causative mechanisms include changes in cerebral arterial blood flow and increased 

vascular permeability within the blood brain barrier, both of which may be influenced by 



 

 

local autonomic control (18). Whilst HRV reflects overall cardiac autonomic control it is 

relatively non-specific and is not indicative of local autonomic balance (2,18).



 

 

This study has several additional imitations that should be mentioned. The 

 
subjects were studied in consecutive groups of 8-14 two days apart and not all together in 

one batch. This was because of the large sample size for this type of remote field study 

and the need to undertake at HRV in the early morning pre-breakfast and caffeine.  We 

measured five minute HRV which may be more vulnerable to short-term sex and 

situational bias than that obtained from longer recordings (22). However, five minute 

HRV measurement is well-validated and endorsed by the current HRV Task Force 

Guidelines and is more potentially applicable to clinical practice than that of longer 

recordings (22). We included a larger proportion of men than women and cannot exclude 

the possibility of sample bias, despite their similarities in age, ethnicity, smoking history 

and body mass index. 

 

In conclusion our findings indicate that increasing HA was associated with a 

reduction in HRV which was most notable at 4600m and above.  There were significant 

sex related differences in HRV between men and women which were sustained at HA. 

There was no interaction between sex and altitude on any of the HRV parameters 

measured. These sex-related differences may reflect dissimilarities in their autonomic 

balance and acclimatisation to HA. HRV was not predictive of AMS. 
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Legends for Figures 
 

 

Figure 1 Comparative Changes in the RMSSD (mean ± SEM) among men and women at 

sea level and increasing high altitude. Post-test differences on repeated measures ANOVA: 

* versus sea level, ‡ 3619 vs 5140m, †3619 vs 4600m. 
 
 
 
 
 

Figure 2 Comparative Changes in Low frequency (LnLF) Power (mean ± SEM) among 

men and women at sea level and increasing high altitude. Post-test differences on repeated 

measures ANOVA: * versus sea level, ‡ 3619 vs 5140m. 
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Table 1 
 
 
 
 
 

 

Table 1: Baseline Demographics 
 

 

Demographic 
 

Overall 
 

Men 
 

Women 
 

P value* 

 

Number (%) 
 

63 (100%) 
 

41 (65%) 
 

22 (35%) 
 

 

Age, years (range) 
 

31.41 ± 8.7 (18-56) 
 

31.2 ± 9.3 
 

31.7 ± 7.5 
 

0.83 

 

Height (cm) 
 

173.4 ± 9.7 
 

177.1±9.3 
 

166.5±5.8 
 

<0.0001 

 

Weight (kg) 
 

72.5 ± 13.0 
 

77.4±12.1 
 

63.2 ± 9.3 
 

<0.0001 

 

Body mass index, kg/m2
 

 

24.0 ± 2.8 
 

24.2 ± 3.0 
 

23.5± 2.6 
 

0.36 

 

Systolic blood pressure 
 

(mmHg) 

 

132.1 ± 15.6 
 

136.9 ± 15.1 
 

123.7 ± 12.7 
 

<0.0001 

 

Diastolic blood pressure 
 

(mmHg) 

 

80.5 ± 14.6 
 

80.8 ± 12.4 
 

78.7 ± 10.7 
 

0.53 

 

Basic fitness test time 
 

(minutes) 

 

9.9  ± 1.3 
 

9.5 ± 1.1 
 

10.8 ± 1.2 
 

<0.0001 

 

Hormonal contraception 

 
(pill / implant) 

 

5 (7.9%) 
 

0 
 

5 (22.7%) 
 

<0.0001 

 

Ethnicity, % 
 

- Caucasian 
 

- Non Caucasian 

 
 
 

56 (88.9%) 
 

7 (11.1%) 

 
 
 

35 (85.4%) 
 

6 (14.6%) 

 
 
 

21 (95.5%) 
 

1 (5.5%) 

 

 
 
 
 
 

0.40 

 

Smoking status (%) 

 
- Never 

 
- Current 

 
- Ex 

 
 
 

51 (81.0%) 
 

4 (6.3%) 
 

8 (12.7%) 

 
 
 

33 (80.4%) 
 

4 (9.8%) 
 

4 (9.8%) 

 
 
 

18 (81.8%) 
 

0 (0%) 
 

4 (18.2%) 

 
 
 
 
 
 
 
 

0.23 

 

*p value refers to results of comparison of men vs women only 



 

 

Table 2 
 

 
 
 
 
 

Table 2 Changes in SpO2 and time domain measures of Heart rate Variability at sea level to 

increasing high altitude 

 

 
 

 Sea level 3619m 4600m 5140m Post-test Paired 
 

differences for 

effects of altitude 

SpO2 (%) 
 

-Men 
 

-Women 

 

 
97.7 ±1.3 

 

97.9 ± 1.3 

 

 
93.1 ± 3.2 

 

90.9 ± 4.5 

 

 
83.5 ± 6.0 

 

80.4 ± 8.5 

 

 
81.3 ± 5.3 

 

78.6 ± 5.4 

 

 
abcef 

Lake Louis Scores 
 

-Men 
 

-Women 

 

 
0.4 ± 0.6 

 

0.5 ± 0.9 

 

 
1.0 ± 2.1 

 

1.5 ± 2.4 

 

 
1.9 ±2.2 

 

2.3 ± 1.2 

 

 
1.5 ± 1.5 

 

1.3 ±1.4 

 

 
abc 

Mean heart rate/minute 
 

-Men 
 

-Women 

 

 
57.6 ± 9.0 

 

60.8 ± 9.7 

 

 
63.6 ± 12.0 

 

69.5 ± 9.4 

 

 
72.7 ± 15.2 

 

79.5 ± 12.8 

 

 
74.5 ± 15.7 

 

81.1 ± 11.8 

 

 
abcde 

SDNN (ms) 
 

-Men 
 

-Women 

 

 
78.1 ± 25.2 

 

76.0 ± 28.3 

 

 
94.8 ± 55.9 

 

74.6 ± 29.1 

 

 
85.0 ± 451.7 

 

52.5 ± 20.8 

 

 
72.1 ± 49.2 

 

51.4 ± 28.0 

 

 
abcde 

RMSDD (ms) 
 

-Men 
 

-Women 

 

 
67.0 ± 31.6 

 

59.6 ± 32.2 

 

 
93.2 ± 72.9 

 

60.8 ± 30.2 

 

 
76.2 ± 56.4 

 

37.3 ± 19.5 

 

 
62.2 ± 54.6 

 

41.5 ± 32.6 

 

 
cde 

NN50 
 

-Men 
 

-Women 

 

 
104.8 ± 38.6 

 

96.3 ± 54.6 

 

 
113.0 ± 76.0 

 

104.8 ±59.1 

 

 
105.5 ± 75.2 

 

54.4 ± 51.4 

 

 
81.9 ± 64.0 

 

60.0 ± 65.3 

 

 
ce 

pNN50 (%) 
 

-Men 
 

-Women 

 

 
37.8 ± 19.8 

 

32.8 ± 19.8 

 

 
39.6 ± 27.8 

 

32.2 ± 18.8 

 

 
34.1 ± 25.6 

 

14.7 ± 14.3 

 

 
26.5 ±22.2 

 

16.4 ± 18.8 

 

 
cde 

Results of post hoc paired differences with time (altitude) for both men and women: a, sea level vs 3619m; b 
 

sea level vs 4600m; c sea level vs 5140m; d, 3619m vs 4600m; e, 3619 vs 5140m; f 4600m vs 5140m 



 

 

Table 3 
 

 
 
 
 
 

Table 3 Changes Frequency domain measures of Heart rate Variability at sea level to 

increasing high altitude 

 

 Sea level 3619m 4600m 5140m Post-test Paired 
 

differences for 

effects of altitude 

Total power (ms2) 
 

-Men 
 

-Women 

 

 
7.87 ± 0.7 

 

7.75 ± 0.7 

 

 
7.95 ± 1.4 

 

7.73 ± 0.8 

 

 
7.86 ± 1.6 

 

7.05 ± 0.7 

 

 
7.34 ± 1.5 

 

7.0 ± 1.0 

 

 
cef 

VLF (ms2) 
 

-Men 
 

-Women 

 

 
6.06 ± 0.7 

 

6.16 ± 0.8 

 

 
6.11 ± 1.2 

 

5.92 ± 0.9 

 

 
6.00 ± 1.3 

 

5.44 ± 0.7 

 

 
5.62 ± 1.3 

 

5.28 ± 1.1 

 

 
ce 

LnLF (ms2) 
 

-Men 
 

-Women 

 

 
6.80 ± 0.8 

 

6.44 ± 0.7 

 

 
6.61 ± 1.4 

 

6.67 ± 1.0 

 

 
6.62 ± 1.7 

 

5.89 ± 0.9 

 

 
6.19 ± 1.4 

 

5.76 ± 1.0 

 

 
ce 

LnHF (ms2) 
 

-Men 
 

-Women 

 

 
6.55 ± 0.8 

 

6.23 ± 1.0 

 

 
6.87 ± 1.7 

 

6.36 ± 0.9 

 

 
6.50 ± 2.1 

 

5.47 ± 1.0 

 

 
6.09 ± 1.8 

 

5.43 ± 1.3 

 

 
e 

LF%, nu 
 

-Men 
 

-Women 

 

 
55.4 ± 15.9 

 

44.5 ± 18.8 

 

 
44.7 ± 18.0 

 

56.8 ± 15.6 

 

 
52.7 ± 17.9 

 

58.8 ± 16.4 

 

 
52.0 ± 18.8 

 

56.8 ± 20.6 

 

 
NS 

HF%, nu 
 

-Men 
 

-Women 

 

 
44.6 ± 15.9 

 

45.7 ± 18.4 

 

 
55.4 ± 18.0 

 

43.2 ± 15.6 

 

 
47.3 ± 17.6 

 

41.2 ± 16.4 

 

 
48.0 ± 18.8 

 

43.2 ± 20.6 

 

 
NS 

LF / HF 
 

-Men 
 

-Women 

 

 
1.7 ± 1.3 

 

1.4 ± 1.1 

 

 
1.0 ± 0.80 

 

1.6 ± 1.0 

 

 
1.6 ± 1.5 

 

2.1 ± 1.8 

 

 
1.6 ± 1.5 

 

2.2 ± 2.2 

 

 
NS 

NS, Non-significant; Results of post hoc paired differences with time for men and women 

combined: a, sea level vs 3619m; b sea level vs 4600m; c sea level vs 5140m; d, 3619m vs 

4600m; e, 3619 vs 5140m; f 4600m vs 5140m 

 



 

 

Table 4 
 

 
 
 
 
 

Table 4 Results of Two-way Repeated Measures ANOVA comparing the main effects of 

altitude (SL, 3619m, 4600m and 5140m) and sex (men vs women) on measures of heart rate 

variability 
 

 
 

Time (altitude)                         Sex                       Interaction 
 

  
F 

  
P value 

  
F 

  
P value 

  
F 

  
P Value 

 
SpO2 

  
165.20 

  

<0.001abcef
 

  
0.49 

  
0.48 

  
0.21 

  
0.89 

 

Lake Louis Scores 
 

 

4.30 
 

 

0.008abc
 

 
 

0.37 
 

 

0.55 
 

 

0.63 
 

 

0.60 

 

Mean heart rate 
 

 

47.3 
 

 

<0.001abcde
 

 
 

4.10 
 

 

0.04 
 

 

0.43 
 

 

0.73 

 

SDNN 
 

 

40.6 
 

 

<0.001abcde
 

 
 

4.00 
 

 

0.04 
 

 

1.14 
 

 

0.26 

 

RMSDD 
 

 

8.10 
 

 

<0.001cde
 

 
 

4.40 
 

 

0.04 
 

 

0.94 
 

 

0.43 

 

NN50 
 

 

8.20 
 

 

<0.001ce
 

 
 

3.20 
 

 

0.08 
 

 

0.82 
 

 

0.47 

 

PNN50 
 

 

10.7 
 

 

<0.001cde
 

 
 

3.50 
 

 

0.06 
 

 

0.94 
 

 

0.41 

 

SD1 / SD2 
 

 

1.89 
 

 

0.13 
 

 

4.90 
 

 

0.03 
 

 

0.34 
 

 

0.80 

 

Total power 
 

 

8.40 
 

 

<0.001cef
 

 
 

4.20 
 

 

0.04 
 

 

1.87 
 

 

0.14 

 

VLF 
 

 

7.10 
 

 

<0.001ce
 

 
 

2.00 
 

 

0.17 
 

 

1.76 
 

 

0.16 

 

LF 
 

 

7.10 
 

 

<0.001ce
 

 
 

3.80 
 

 

0.048 
 

 

1.70 
 

 

0.17 

 

HF 
 

 

5.80 
 

 

0.001e
 

 
 

5.80 
 

 

0.02 
 

 

1.26 
 

 

0.29 

 

LFnu 
 

 

0.39 
 

 

0.76 
 

 

3.10 
 

 

0.09 
 

 

1.70 
 

 

0.17 

 

HFnu 
 

 

0.39 
 

 

0.76 
 

 

3.10 
 

 

0.09 
 

 

1.70 
 

 

0.17 

 

LF / HF 
 

 

0.50 
 

 

0.70 
 

 

1.60 
 

 

0.20 
 

 

3.50 
 

 

0.07 

 

SpO2, oxygen saturations;  Results of post hoc paired differences with time (altitude) a, sea 
level vs 3619m; b sea level vs  4600m; c sea level vs 5140m; d, 3619m vs 4600m; e, 3619 vs 
5140m; f 4600m vs 5140m
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