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Abstract 

Pyocyanin, a toxin produced by Pseudomonas aeruginosa, offers potential as a biomarker for 

the indirect detection of this bacterium of major importance for infections in burns, woundcare 

and cystic fibrosis. 

Pad-printed carbon electrodes are herein explored using square wave voltammetry to detect 

pyocyanin in a range of buffered and biological media.  Third-order polynomial baseline fitting 

was explored to enhance the analytical sensitivity and extend the linear range to submicromolar 

concentrations. These modelling baselines showed excellent correlation with the experimental 

data, confirmed by high Interclass Correlation Coefficients of 0.995 – 0.998, and enabled the 

quantification of pyocyanin – with linearity extended down to 0.18M in Human Serum and 

0.336M in both Britton-Robinson buffer and Simulated Wound Fluid, and derived Limits of 

Detection of 0.17, 0.15 and 0.09M, respectively, in this proof-of-concept study.    

Therefore, the use of very simple, cost-effective printed carbon materials enabled the detection 

of clinically relevant concentrations of this important biomarker through a new baseline fitting 

model and offers a novel approach for point-of-care diagnostics where Pseudomonas 

aeruginosa infections are critical.  
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1. Introduction 

The ability to rapidly quantify biomarkers through point-of-care testing (PoCT) confers a huge 

advantage for the rapid diagnosis and controlled management of many diseases and conditions. 

New analytical methodologies and platforms are essential to drive these technologies forward 

thereby enabling PoCT to cover a wider range of diagnoses. An area where this is apparent is 

within woundcare and burns management; a recent eDEPLHI study found that clinician’s top 

research priorities included the development of wound diagnostics and the management of 

wound infections [1]. Research towards PoCT to enhance woundcare have been targeted 

through standard in-vitro diagnostic approaches, but also the emerging concept of smart-

bandages, capable of providing diagnostic information and detecting wound infection without 

the need for wound redressing using many electrochemical approaches [2-7].  

 

One biomarker we have previously suggested is pyocyanin – a toxin produced by Pseudomonas 

aeruginosa infections – of particular importance in woundcare, burns and cystic fibrosis. The 

ability to reliably and sensitively measure pyocyanin has been approached through 

electrochemical means, such as the use of gold-electrode arrays to map pyocyanin production 

through agar-diffusion model [8], commercial carbon strip electrodes [9,10], and carbon fibre 

and glassy carbon [11]. Previous research has shown that such technologies have been capable 

of producing small calculated Limits of Detection, but often being unable to quantify 

pyocyanin below 1M [9,11]. The ability to develop sensitive analytical technologies to 

quantify pyocyanin, enabling rapid diagnosis or more specific management, would be of 

benefit to patients and healthcare providers. Physiologically and diagnostically relevant 

concentrations have yet to be fully determined; concentrations as high as 130M have been 

identified in the sputa of cystic fibrosis patients [12], but more generally (and in wounds), 

concentrations <10M are more commonly found [13]. In terms of the physiological relevance 

of pyocyanin, a dose dependent formation of hydrogen peroxide in endothelial cells for 1 – 

50M pyocyanin, concentrations of 5-10M have been found to arrest cell growth, and 25M 

to induce apoptosis (14, 15).  

 

The research detailed herein explores the proof-of-concept use of a non-modified printed 

carbon electrode using square wave voltammetry through simple peak-current analysis, and 

analysis following third-order polynomial baseline fitting. The use of baseline fitting or 

subtraction models have attracted some interest in electroanalytical chemistry –with 
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asymmetric least squares and polynomial baselines shown to enhance detection, produce better 

calibration plots and enable lower Limits of Detection [16-20]. The research detailed here 

explores the potential use of a third-order polynomial baseline fitting to enhance pyocyanin 

detection (Limits of Detection, Quantification and Linearity) in buffered and authentic 

biological media.   

 

 

2. Material and methods 

2.1 Materials and Chemicals 

All chemicals used were of reagent grade and used without further purification. Britton 

Robinson buffer (BR) was prepared from 40mM of acetic, boric and phosphoric acids and 

adjusted to pH 7.0 prior to use. Simulated Wound Fluid (SWF) was prepared from 50% Equine 

Serum (Sigma Aldrich H1270) and 50% maximum recovery diluent (4.25 g/L NaCl (BDH) 

and 0.5g/L MC-19 Beef Extract (Lab M)). Human Serum (H6914) and pyocyanin (P0046) 

(from Pseudomonas aeruginosa (≥98%)), were purchased from Sigma-Aldrich, and kept 

frozen (-20°C) until use.   

 

2.2 Preparation of Pad Printed Electrodes 

The pad printing process of electrodes was performed as previously described [4]. Carbon 

Graphite Ink (Gwent Group-C2000802P2) was thinned with isophorone to produce an ink of 

consistent viscosity. After printing two carbon layers (~5m each), isophorone was evaporated 

through 18 hours in a fume hood and then heated at 90⁰C for 30min. Dielectric paste (Gwent 

Group) was diluted with Diluent (Gwent Group-S70204D5) and printed followed by the same 

evaporation and thermal treatment step, defining a working electrode of an exposed area of 

~5.6mm2. Electrical connection was made through conductive adhesive copper tape (Farnell, 

UK). 

 

2.3 Electrochemical experiments 

Electrochemical detection of pyocyanin was carried out in a three-electrode set-up using 

printed carbon working and counter electrodes, and a 3M NaCl Ag/AgCl reference electrode 

(BASi). All electrochemical measurements were performed using Square Wave Voltammetry 

(SqWV) [a=100mV, f=2.2Hz.] in 3ml of electrolyte, using a μAutolabIII (Eco Chemie) 

potentiostat and analysed through NOVA 1.10 software, at room temperature (20°C). Prior to 
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use, each electrode was electrochemically cleaned with SqWV in the corresponding electrolyte, 

for five scans -0.45 - +0.1V prior to addition of pyocyanin. The anodic limit was set (E<0.1V) 

to avoid electropolymerisation of pyocyanin [11].  

 

2.4 Third-order polynomial baseline fitting 

Third order polynomial baselines were applied in Nova v1.10 by fitting to acquired data points 

typically E= (a)-0.4, (b)-0.35, (c)-0.05 and (d) 0V in BRB, either side of the peak, with a 40mV 

cathodic shift for more alkaline pH. Such an approach was used to create a residual plot, of 

which the peak oxidation currents could be analysed and interpreted. At very high 

concentrations peak broadening required cathodic shift of data points (a) and (b) and anodic 

shift of data points (c) and (d) to linear sections flanking the peak.  

 

2.5 Limits of Detection and Quantification 

The Limits of Detection (LoD) and Quantification (LoQ) were determined as 3σ/Sensitivity 

and 10 σ/sensitivity, respectively, where σ is the standard deviation of blank measures (n=15), 

and sensitivity derived as: Mole-1 L-1. These could only be quantified for baseline fitted 

data due to the absence of anodic peaks observed at zero (and low concentrations) resulting in 

a standard deviation of zero for unfitted data.   

 

2.6 Statistical analysis 

Interclass correlation coefficients were calculated using IBM SPSSv21, with an ‘absolute 

fitting’ model, to assess correlation and the quantitative agreement between the baseline fitted 

model (third-order polynomial) and experimental data.  

 

 

3. Results and Discussion 

The simple carbon electrodes were found capable of detecting pyocyanin (Epa ~-0.2V: pH 

7.0), but offered reduced sensitivity at lower concentrations due to the shape of the underlying 

voltammogram (Figure 1A-C) whereby the basal/graphitic carbon baseline is non-linear across 

the potential range preventing the reliable peak current integration. The use of a third-order 

polynomial baseline fitting was explored to correct for the underlying shape prior to peak 

current integration to assess whether this method of data analysis may yield more sensitive 

quantification. This was first assessed in pyocyanin-free media to assess the correlation 

between the unfitted (raw) data and the fitted polynomial baseline corrected data. The analysis 



5 

 

of the full data set (n=278 data points / SqWV steps), shows a good agreement through the 

Interclass Correlation Coefficient (ICC), ranging from 0.986-0.993 for BR buffer, 0.992 for 

SWF, and 0.994 for HS. However, it is clear from all voltammograms shown in Figure 1, that 

there is an initial artefactual result at the starting (cathodic) potentials, therefore with the first 

two data points omitted the agreement for the working range for the SqWV (hereby defined as 

-0.446 to 0.1V) produced very strong correlations: BR buffer: ICC 0.995-0.997, and SWF and 

HS both ICC 0.998, indicating the potential applicability of this fitting mode. 

 

The overlaid voltammograms in Figure 1 detail pyocyanin-free and 5M pyocyanin in each 

media (lines 1 & 2), the resulting residual plots (lines 3 & 4) pertaining the difference between 

the unfitted (raw) and aforementioned fitting model (dashed fitting lines). The residual plots 

give rise to clearly defined oxidation peaks, as shown in Figure 1 (A-C) for all three media 

tested. Importantly, these voltammograms from biological media show no apparent 

interference from other electroactive species. As expected, there are differences in the peak 

heights, which may be attributed to the inherent differences in electrolyte properties, potential 

fouling from biological components, and pH of the media.  

  

Detailed calibration in the three selected media, Figure 2A-C, show the carbon electrodes are 

capable of producing a clear pyocyanin oxidation peak in each media. The repeated scans 

performed in establishing the calibration plots give rise to minor deviations in Epa, as detailed 

in Figure 2D. For the more complex biological media the overall trend remains as a shift 

towards more cathodic Epa values – which may be attributed to the weaker buffering capacities 

(potentially exacerbated by the smaller working volumes used in these experiments), or the 

presence of biological components which may be effecting the electrode surface (e.g. 

adsorption of proteins and fats).  

 

As shown for all media studied in Figure 3(A&B), a non-linear response is observed across the 

full range (0-100M) of pyocyanin concentrations studied for both the unfitted experimental 

data (Figure 3A) and baseline fitted data (Figure 3B). This matches the findings of previous 

research into carbon fibre and glassy carbon electrodes, where we have previously observed 

this non-linearity for carbon surfaces with higher edge-plane sites (i.e. anodised, but not plain, 

carbon fibre), and for glassy carbon electrodes. However, the differences between the unfitted 

and baseline fitted data are highlighted through the lower concentration (0-10M) calibration 
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plots shown for Human Serum (Figure 3C), where the different in axis-intercept and the linear 

range are clearly illustrated. For all three media tested, Table 1 highlights the basic analytical 

performance which were achieved throughout this initial testing in the different media.  

 

It is clear that the interpretation of unfitted data provides the quantification of pyocyanin, but 

due to the background voltammogram shape at the integration potentials, could not quantify 

pyocyanin below ~1-2.5M. However, as shown in Figure 3C, following the baseline fitting, 

the lower linear range expends to much lower concentrations of pyocyanin, reflected in the 

linear ranges that have been quantified for the three electrodes, shown in Table 1, down to 

0.183-0.336M across the three media tested. Not only does the baseline fitted data provide an 

enhanced linear range, but there is also a small increase in sensitivity (A/M) observed in 

each of the three media (BRB +4.0%, SWF +9.7%, HS +9.3%)  

  

Due to the clinical importance of measuring pyocyanin at low concentrations, the Limit of 

Detection was derived for the measurements performed, as shown in Table 1 for the baseline 

fitted data. The calculated Limit of Detection for the three electrolytes are similar; 0.150, 0.087 

and 0.169, for BR, SWF and HS respectively, and are in line with those reported in the 

literature using a range of electrode materials: 0.030 for carbon fibre in buffer, 0.6M 

for gold working electrode in buffer [20], and 0.160M for carbon electrode in heparinised 

blood [9].  

 

An advantage of using a baseline fitting formula rather than an experimental blank, is that once 

a sufficient evidence base has been generated and electrode reproducibility enhanced, the 

baseline equation can be applied in situations whereby a starting blank cannot be performed – 

and this proof-of-concept study has shown this enables the linear range to extend below 1M 

for all electrolyte/ media tested.  

 

4. Conclusions 

The use of a third-order polynomial baseline fitting model facilitated the submicromolar 

detection of pyocyanin by simple printed carbon electrodes including in biological media. 

Given the cost effectiveness and simplicity of the sensing materials required – the advances 

highlighted within may provide a simple approach to enhancing the sensitivity of voltammetric 

analysis and a potentially fieldable technology for a novel diagnostic tool.   
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Figure Legends: 

Figure 1. Square Wave Voltammograms for pad-printed carbon electrodes for in 5M pyocyanin[1], pyocyanin 

free media [2], third-order polynomial baseline fitting lines [dashed lines], and residual plots for 5M 

pyocyanin[3], pyocyanin free media [4]. A. Britton-Robinson buffer (pH 7.0), B. Simulated Wound Fluid (pH 

7.3), C. Human Serum (pH 8.35). 

Figure 2. Residual plots from third-order baseline fitted square wave voltammograms for the calibration of 

pyocyanin (0,0.183, 0.334, 0.667, 1, 1.5, 2, 3, 4, 5, 10M). For air saturated: A. Britton-Robinson Buffer (pH 7.0), 

B. Simulated Wound Fluid (pH 7.3) and C. Human Serum (pH 8.35). D. Epa for increasing pyocyanin 

concentration (0-100M) for the three electrolytes studied (raw and baseline-fitted data).  

Figure 3: Pyocyanin calibration plots for unfitted (A) and third-order polynomial baseline fitted data (B), for the 

full range of pyocyanin concentrations studied (0-100M); Britton-Robinson Buffer pH 7.0 (n=3) shown as mean 

+/-SD, SWF and HS performed in singlicate. C. Comparison of 0-10M Pyocyanin calibration plots in Human 

Serum for raw [HS] and baseline fitted data [HS*].  

 

 

Tables: 

Table 1. Analytical performance of the printed carbon electrodes in Britton-Robinson buffer, Simulated 

Wound Fluid, and Human Serum.  

 
Britton-Robinson (pH7) Simulated Wound Fluid Human Serum 

Raw P3BF Raw P3BF Raw P3BF 

Linear range (M) 1.0 - 10 0.336 - 10 1.5 - 20 0.336 - 20 2.5 - 20 0.183 - 20 

R2 0.9929 0.9918 0.9935 0.9930 0.9972 0.9973 

Sensitivity (A/M) 0.0809 0.0841 0.0536 0.0588 0.0214 0.0234 

LoD (M) - 0.150 - 0.087 - 0.169 

LoQ (M) - 0.501 - 0.290 - 0.563 
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Figure 2 
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Figure 3 

 


