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Abstract 

 
Fearful expressions are thought to warn of potential threat (Davis et al., 2011; Whalen, 

1998) and therefore, one response to seeing fear might be to react cautiously. Although previous 
studies have tested for an effect of seeing fear on visual perception, they have not tested for 
increased decision making caution. Here, I applied Hierarchical Drift Diffusion Modelling 
(Vandekerckhove, Tuerlinckx, & Lee, 2011a; Wiecki, Sofer, & Frank, 2013) to the results of 4 
experiments designed to test the idea that seeing facial expressions both impairs visual perception 
(Bocanegra & Zeelenberg, 2009a) and leads to changes in decision making caution. Standard 
statistical analyses showed that reaction times were slower following fearful compared to neutral 
expressions. Diffusion Modelling showed that the data were best described by increased caution 
and not impaired perception. Further experiments showed that: 1) happy expressions did not lead 
to increased caution (Experiment 3) and 2) people were less cautious after seeing sad compared to 
neutral expressions (Experiment 4). Overall, the results point to a new direction for research in 
this area – testing for differences in decision making caution following facial expressions and other 
emotion cues. 

 
Caution Follows Fear: Evidence from Hierarchical Drift Diffusion Modelling   
 
"A wealth of information creates a poverty of attention" (p. 41-42; Simon, 1971)  
Emotion is thought to help solve the problem of too much information by prioritising 

information relevant to our goals. Such prioritisation is thought to occur at a very early stage of 
processing by influencing perception and attention. For example, one set of studies have 
consistently recorded impaired visual perception following the presentation of fearful compared to 
neutral expressions (Bocanegra & Zeelenberg, 2009a; Borst & Kosslyn, 2010a; Nicol, Perrotta, 
Caliciuri, & Wachowiak, 2013a). Evidence for an early prioritisation is primarily based on the 
separate analyses of reaction times (RTs) and accuracy rates. The separate analyses of RTs and 
accuracy means that researchers may have overlooked one way in which people react to emotion 
cues - by reacting cautiously - slowing down in an attempt to be more accurate. Testing for 
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increased caution requires analysing the effect of emotion on the joint relationship between 
accuracy and RTs. Here, I use Hierarchical Drift Diffusion Modelling (Vandekerckhove et al., 
2011a; Wiecki et al., 2013) to test for both impaired perception and increased caution following 
fearful, happy and sad facial expressions. 
 Facial Expressions and Visual Perception 

Pioneering studies (Bocanegra & Zeelenberg, 2009; Phelps et al., 2006) have shown that 
seeing someone expressing fear has a profound effect on basic visual perception. For example, one 
study (Bocanegra & Zeelenberg, 2009) examined the effect of presenting a fearful face on 
observers’ sensitivity to the orientation of a Gabor patch. The authors varied the spatial frequency 
of the targets to examine whether the previous report of enhanced vision (Phelps et al., 2006) due 
to fear might be restricted to low spatial frequency information (LSF). The findings extended the 
results of an earlier study (Phelps et al., 2006) by showing that fearful faces both enhanced 
orientation sensitivity for the low spatial frequency information (LSF) and impaired orientation 
sensitivity for high spatial frequency information (HSF). Subsequent studies have replicated both 
enhanced and impaired visual perception following fearful expressions (Bocanegra, Huijding, & 
Zeelenberg, 2012; Bocanegra & Zeelenberg, 2011; Borst & Kosslyn, 2010a; Nicol et al., 2013a). 
Moreover, further research showed that the effects are not restricted to fearful facial expressions 
but occur following emotional auditory stimuli (Zeelenberg & Bocanegra, 2010), fear-conditioned 
stimuli (Lee, Baek, Lu, & Mather, 2014a; Lojowska, Gladwin, Hermans, & Roelofs, 2015) and 
emotional images (Song & Keil, 2013). 
Affecting Speed and Accuracy in Perception 

Why does emotion both enhance and impair vision? According to the Affecting Speed and 
Accuracy in Perception account (ASAP; Bocanegra, 2014) emotion induces an inhibitory 
interaction between the magnocellular-type (M-type) and parvocellular-type (P-type) channels in 
the visual system. M-type channels respond quickly to coarse-grained spatial (LSF) information 
whereas P-type channels exhibit a slower, more sustained response to fine-grained spatial (HSF) 
information (Breitmeyer & Williams, 1990; Callaway, 1998). Emotion is thought to potentiate the 
fast-acting M-type channels leading to increased sensitivity to LSF information while concurrently 
inhibiting the slower-acting parvocellular-type (P-type) channels leading to poorer sensitivity to 
HSF information. 

A challenge for the ASAP account and other accounts of the effects of emotion cues on 
attention and perception is accounting for a diverse effects of emotion cues on both RTs and 
accuracy rates. For example, emotion cues slow RTs in some experiments (e.g., Fox, Russo, & 
Dutton, 2002; Hodsoll, Viding, & Lavie, 2011) and speed RTs in others (e.g., Becker, 2009; 
Quinlan & Johnson, 2011), and also, improve and reduce accuracy in separate experiments 
(Sutherland & Mather, 2012). A notable feature of the ASAP account is that it takes a broader 
perspective by attempting to provide a framework for interpreting the effects of emotion stimuli on 
both RT and accuracy rates. The ASAP account specifies when emotion stimuli will affect RTs or 
accuracy depending on whether the task relies more on processing via either the P-type channel 
(for fine grained analyses) or the M-type channel (for coarse-grained analyses). For example, if a 
task requires identification and fast responses (typically required for RT paradigms involving a 
single stimulus) then the prediction is that emotion will slow-down RTs because identification 
relies relatively more on the slower and more sustained activation of the P-channel (Bocanegra, 
2014). However, for tasks that require identification and emphasize slower, accurate responses 
(typically required for multi-stimulus tasks identification) then the claim is that emotion will 
increase the response duration of the P-type channel leading to greater accuracy. This basic model 
was able to explain the results of multiple experiments in which participants judged faces with 
different spatial frequency information removed. For example, in support of the idea that the 
emotion modulates the P-channel (required for identification) one experiment (Experiment 1c; 
Bocanegra, 2014) showed that RTs were reliably slower for fearful (vs neutral) expressions when 
people were asked to judge the sex of a single fearful face with low-spatial frequency information 
removed. Overall, the ASAP account; 1) offers a compelling account of the dissociable effects of 
emotion on high and low spatial frequency information and 2) argues for a direct effect of emotion 
on vision – emotion modulates visual input prior to the attentional system (Bocanegra, 2014).  
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Evaluation. Beyond the results of experiments that have manipulated spatial frequency 

information it is not clear how the ASAP account might explain the effects of emotional stimuli on 
RT and accuracy in experiments that have neither controlled for nor manipulated the presence of 
spatial frequency information. For facial expressions specifically, experiments have reported a 
diverse set of findings including: 1) reductions in target detection accuracy following expressions 
presented in rapid sequence of images (de Jong, Koster, van Wees, & Martens, 2010; Maratos, 
2011; Peers & Lawrence, 2009; Sigurjónsdóttir, Sigurðardóttir, Björnsson, & Kristjánsson, 2015; 
Stebbins & Vanous, 2015; Vermeulen, Godefroid, & Mermillod, 2009) 2) increased target detection 
accuracy following fearful compared to angry expressions (Taylor & Whalen, 2014) 3) faster visual 
search for complex images following the presentation of a fearful face (Becker, 2009; Quinlan & 
Johnson, 2011) 4) slower RTs when fearful and other expressions are presented as task-irrelevant 
distractors  (Berggren, Richards, Taylor, & Derakshan, 2013; Fox et al., 2002; Georgiou et al., 
2005; Gupta, Hur, & Lavie, 2016; Hodsoll et al., 2011; Van Dillen & Koole, 2009) and 5) faster RTs 
for neutral probes following in the same location as a threat-related expression (e.g., Bradley, 
Mogg, Falla, & Hamilton, 1998). Although it is difficult to summarize the interpretation for each 
result (for reviews see; Mogg & Bradley, 2016; Yiend, 2010) a common interpretation of both RT 
and accuracy effects in these studies is that emotion biases the competition for limited resources - 
a competition that emotion stimuli are, as the result of evolutionary pressures, predisposed to win 
or influence.  
The speed-accuracy trade-off  

The many studies of emotion on attention and perception have tended to overlook a 
fundamental aspect of decision making under time pressure namely, the speed-accuracy trade-off; 
the ubiquitous finding that accuracy of a decision varies with the time taken to make a decision - 
speed correlates with accuracy (Schouten & Bekker, 1967; Wickelgren, 1977). The majority of 
previous studies into the effects of emotion on attention have not directly tested for an effect of 
emotion on the relationship between accuracy and RTs and therefore, we do not know to what 
extent the results might reflect a speed-accuracy trade-off. Intuitively though they might do. For 
example, fearful expressions are thought to warn of potential threat - a warning signal (Davis et al., 
2011; Taylor & Whalen, 2014; Whalen, 1998) -  therefore, responding cautiously by slowing down 
to avoid a mistake (trading speed for accuracy) is an intuitively plausible response to fearful 
expressions. For other emotional stimuli a speed-accuracy trade-off might lead to a different 
pattern. For example, people might dwell on emotionally arousing images - spend longer looking 
at them - and consequently they might rush a response when the target image appears - they trade 
accuracy for speed. In sum, the speed-accuracy trade-off is fundamental aspect of choice behaviour 
that has received little attention in research studies testing for the effects of emotion on perception 
and attention. 
Diffusion Model 

Distinguishing the effects of emotion on caution on the one hand and perception on the 
other is challenging using a single measure such as reaction time because it is difficult to 
determine whether a pattern of RTs or accuracy rates reflects either caution or an effect of emotion 
on either perception or attention. The Diffusion Model (Ratcliff, 1978; Ratcliff & McKoon, 2008) 
includes model parameters that index both caution and evidence accumulation and therefore, is a 
suitable way of determine if emotion affects caution, perception or both. It does this by modelling 
the distribution of RTs and both correct and incorrect responses in terms of separate, latent 
psychological processes.  
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- - - - - -Insert Figure 1 here - - - - - - 

 
Figure 1. The Diffusion Model (Ratcliff, 1978; Ratcliff & McKoon, 2008). Evidence accumulation begins at a 
starting point z, and proceeds toward absorbing boundaries that determine when the decision criterion is 
met and the accumulation process ends. The drift rate indicates how fast information accumulates toward a 
boundary. Non-decision times are modelled as the additional time needed for processing before and after 
the accumulation process. Non-decision time includes the time to encode the stimulus and prepare a 
response. Further parameters can also be included in the model (e.g., trial-by-trial variability in the starting 
point parameter z). 

--------------------------------- 
One way of understanding the Diffusion Model is to compare it to Signal Detection Theory 

(Macmillan & Creelman, 2005). The Diffusion Model extends signal detection theory by modelling 
signal detection as a dynamic process of evidence accumulation – the repeated sampling of 
information until a criterion has been reached. A graphic representation of the accumulation 
process and the 4 main Diffusion Model parameters is shown in Figure 1. To illustrate the 
Diffusion Model, consider the orientation detection task used previously to test for the effects of 
emotion on perception (Nicol et al., 2013) in which a person must detect whether a tilted Gabor 
patch is present or absent. On each trial evidence is repeatedly sampled until the accumulated 
evidence favours either the present or absent criteria. If the observer has particularly good vision 
or the stimulus is high contrast - then sensory information will accumulate rapidly toward the 
criteria for “tilt absent” or “tilt present”. The decision criteria for the “tilt present” and “tilt absent” 
responses are modelled as absorbing boundaries that determine when the criterion is reached and 
the accumulation process ends. Larger separation between the boundaries indicates greater 
caution because the person requires more evidence before reaching a decision. A narrow boundary 
separation indicates more liberal decision making. Finally, the Diffusion Model includes 2 further 
model parameters: 1) a starting point parameter (z), and 2) a parameter that indexes non-decision 
times (t or Ter). The starting point parameter (z) is an index of the starting point of the drift 
diffusion process. If the starting point parameter is higher in one condition, then this may 
represent a response bias toward one of the response options. Non-decision times (Ter) models all 
processes occurring before or after the decision for example, encoding processes (before) and 
response execution processes (after).  



Caution Follows Fear  5 
 

Current research 
Here, I used the Diffusion Model to test the idea that seeing facial expressions influences 

visual perception and also, decision making caution. To test these hypotheses, I used a modified 
version of a task used in previous research (Bocanegra & Zeelenberg, 2009b; Borst & Kosslyn, 
2010b; Nicol, Perrotta, Caliciuri, & Wachowiak, 2013b). Specifically, participants detected a tilted 
HSF Gabor patch that appeared after the brief presentation of a facial expression. I wished to 
minimize the influence of both shifts in visual attention and decision making noise (Dosher & Lu, 
2000) and therefore, following other researchers (Lee, Baek, Lu, & Mather, 2014b) all stimuli were 
presented in single, central location.  

Predictions. According to ASAP account, emotion will slow-down RTs when participants 
are required to judge a single HSF stimulus. For the Diffusion Model, the prediction is that 
impaired perception will be reflected in a reduction in the drift rate. Also, if people respond to 
fearful facial expressions as warning signals (Whalen, 1998) by becoming more cautious then the 
second prediction is that Diffusion Model  parameter that measures caution – boundary 
separation – will be higher following fearful compared to neutral facial expressions.  
Hierarchical Drift Diffusion Modelling and data analyses 

I used Hierarchical Drift Diffusion Modelling (Vandekerckhove, Tuerlinckx, & Lee, 2008, 
2011b; Wiecki et al., 2013) to isolate the psychological processes responsible for the effects of facial 
expressions on visual perception. Hierarchical Bayesian estimation is particularly suited to studies 
with relatively small number of observations (<48) per cell of the design because subject and 
group-level posterior estimates can reciprocally influence each other leading to greater statistical 
precision. A further more general advantage of Bayesian estimation is that it is possible to directly 
quantify uncertainty for a given experimental hypothesis by comparing the overlap between the 
(posterior) distributions of specific parameter estimates – a true confidence or credibility interval 
for an effect.   

Priors. In the Bayesian statistical approach the calculation of plausible values for specific 
model parameters requires the specification of priors. The HDDM toolbox includes informative 
priors to constrain estimates of the model parameters. The priors are based on analyses of 23 
published studies (Matzke & Wagenmakers, 2009) and I have used these in the current study.  

Convergence. HDDM is a Bayesian modelling approach that uses Markov Chain Monte 
Carlo (MCMC) simulations to estimate a range of plausible values for specific model parameters. 
MCMC chains were composed of 200 samples as a burn-in (to increase chain stability) and 4 
chains of 5000 iterations to estimate the posterior distribution of each parameter. Checks for 
chain convergence included both visual inspection of MCMC chains, histograms and 
autocorrelation plots and calculation of the R-hat (Gelman–Rubin) statistic. Convergence check 
plots for each experiment and also, the Gelman-Rubin statistic for each effect can be found in the 
online supplement. Also, in the online supplement I have included example code and the raw data 
for Experiment 4. 

Model Selection. I used the Deviance Information Criterion (DIC; Spiegelhalter, Best, 
Carlin, & Van Der Linde, 2002) as a criterion for assessing model fit. Although smaller DIC values 
indicate a better fit the reduction needs to be sufficiently large to justify an increased complexity. 
Reductions in the DIC greater than 5 are considered substantial (‘DIC’, n.d.) and therefore, I used 
a reduction in the DIC of 5 or more as the criteria for judging improved model fit and selecting a 
more complex model. Also in the online supplement (Sections 5 and 6) I have carried out an 
assessment of the quality of the model fit by simulating data from the posterior distribution of 
each fitted model and subsequently plotting the simulated (estimated) data against the observed 
data. This is a standard approach to quality assessment in Bayesian parameter estimation and is 
referred to as a posterior predictive check (Gelman et al., 2014). 

All models included person-specific estimates for the Ter (non-decision times), a (boundary 
separation), v (drift rate) and z (starting point) parameters. These parameters were estimated as 
draws from a group-level distribution centred on a mean μ and variance 𝜎2. For example, a specific 
person’s boundary separation parameter value (α) was estimated from a group-level normal 

distribution of boundary separation values with 𝜇𝛼 and variance 𝜎𝛼
2. This means that the group-

level parameters (e.g., the overall effect of fearful expressions across individuals) are adjusted for 
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individual differences. The group-level varying parameters are the parameters of interest and 
therefore, model selection was carried out comparing DIC values for model variants in which 
group-level parameters were either fixed or allowed to vary by expression.  

Initially, for each experiment, I tested eight different models in which the three parameters 
of interest (v, a, Ter) were either fixed or allowed to vary by expression across the eight model 
variants. In the empty model, all three parameters (v, a, Ter) were fixed across levels of 
expression. For each experiment, allowing the drift rate to vary by expression failed to improve 
model fit (as assessed by the lower DIC value relative to other models). Further testing was 
conducted to establish the validity of the initial model selection. Specifically, 2 further models were 
estimated (for each experiment) in which drift rates were allowed to vary as a function of degree of 
tilt of the Gabor patch and both degree of tilt and expression. This additional modelling was 
conducted to establish whether the modelling was sensitive to the effect of degree of tilt on drift 
rates and also, to establish whether adding degree of tilt might improve the ability to detect and 
effect of expression on drift rates. For all experiments, allowing the drift rates to vary as a function 
of degree of tilt improved model fit –DIC value was reduced. However, allowing drift rates to vary 
as a function of expression in addition to degree of tilt failed to lower the DIC value and therefore, 
for all final models degree of tilt for drift rates. A table of the DIC values for each experiment can 
be found in the online supplement (Section 3).  

Sample Size and Treatment of RT data. The design is based on a similar study (Nicol 
et al., 2013) with a similar number of observations per cell of the design. Nicol et al tested 20 
participants and recorded a mean reduction in orientation sensitivity due to fearful vs neutral 
expressions of .3. Although I used Bayesian analyses in this research, a frequentist power analyses 
(with correlation between measures set to .6) indicates that 28 participants is needed to replicate 
this effect.  

For treatment of RT data, responses that were either faster than 100 ms or slower than 
3000 ms were removed prior to modelling. This was carried out because Diffusion Modelling 
estimates can be biased by fast responses (Voss, Voss, & Lerche, 2015) and also, because the 
Hierarchical Drift Diffusion Modelling software (Wiecki et al., 2013) requires RTs greater 100 ms 
in duration to find initial sampling values. 

Mean RT and Signal Detection Analyses. To enable a comparison with previous 
research, both mean RTs and the signal sensitivity parameter d' were calculated for each 
participant for each expression type (fearful, neutral). The signal sensitivity parameter d' was 
calculated using the standard formula: z(hits) – z(false alarms) (Stanislaw & Todorov, 1999). The 
resulting mean RTs and mean d’ indices for each subject and each expression type were analysed 
in 2 separate Bayesian Linear Mixed Models. Modelling was carried out in the Stan modelling 
language (Carpenter et al., in press) using the rstanarm package (Gabry et al., 2016) as an interface 
between Stan and R (R Core Development Team, 2013). Weakly informative priors (the default for 
rstanarm) were used for all tests. All models included random intercepts for participants. MCMC 
chains were composed of 200 samples as a burn-in (to increase chain stability) and 2 chains of 
5000 iterations each.  All models converged.  

Experiment 1 
The aim of Experiment 1 is to establish whether people will also react cautiously to fearful 

expressions when they are asked to judge HSF target stimuli.  
Method 

Participants 
Twenty-eight psychology students from the Leeds Beckett University took part in the study 

in return for a course credit. There were 4 males (mean age = 20) and 24 females (mean age = 23). 
All participants provided written informed consent and received course credit for their 
participation. The experimental protocol was approved by the Department of Psychology Ethics 
Committee of the Leeds Beckett University. 
Stimuli and Apparatus 

The face stimuli were 6 digitized photographs were selected from the Ekman and Friesen 
pictures of facial affect  (Ekman & Friesen, 1976). The photographs were of 1 male and 2 females 
each displaying a fearful and neutral facial expression. The target stimulus was a high spatial 
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frequency Gabor patch (sinusoidal grating enveloped by a Gaussian mask; 6 cycles per degree) 
created using the python libraries packaged with PsychoPy (Peirce, 2007). The Gabor patch was 
either upright or angled equally often either 1, 2 or 3 degrees to the left or right. At a viewing 
distance of 60 cms the Gabor patch subtended 5.5°×5.5° of visual angle. Stimulus presentation and 
data collection were controlled by PsyToolkit (Stoet, 2010). 
Design and Procedure 

Participants completed 16 practice trials followed by 384 trials in a single block. On half the 
trials the Gabor patch was upright and on the remaining (192) trials the patch was angled (equally 
often) either 1, 2 or 3 degrees to the left or right. Trials were comprised of balanced factorial 
combinations of face identity and expression. In other words, every possible target type (e.g., a 
Gabor patch titled 1 degree to the left) was equally likely to appear after every possible face type 
(e.g., a male face displaying fear). 

All stimuli were presented in the center of gray background (RGB, 128,128,128). Every trial 
contained the following sequence of events with each event displayed for a specific duration (given 
in parentheses): 1) fixation cross (500 ms), 2) face (500 ms), 3) upright or tilted Gabor patch (75 
ms) 4) response interval (until response or 3000 ms) and 5) feedback (500 ms). Participants were 
told to: 1) start by looking at the fixation cross 2) look at the face and 3) press either the “m” key if 
the set of lines were tilted (either left or right) or “z” key if the lines were upright (not tilted). Visual 
feedback was given if a response was not given within 3 seconds (“too slow”) and also, for both 
correct (“correct”), incorrect (“error”) responses. 

Signal Detection and RT analyses. Mean RTs were slower following fearful (M = 1095, 
SD = 409) compared to neutral (M = 1062, SD = 431) expressions, β = 32.7, 95% CrI [14, 52]. For 
mean d-prime scores the effect of expression was not significant - the 95% Credibility Interval for 
difference between neutral (M = .92, SD = 0.70) and fearful (M = .87, SD = 0.72) expressions 
included zero, β = -0.1, 95% CrI [-0.2, 0.1]. 
HDDM results 

Initial model comparison of the DIC values across the 8 model variants showed that in the 
best-fitting model both boundary separation values and non-decision times were allowed to vary 
as a function of expression type. Allowing drift rates to vary as a function of degree of tilt improved 
model fit. Allowing drift rates to additionally vary as a function of expression did not lead to 
further improvements in model fit. 

- - - - - -Insert Figure 2 here - - - - - - 
 

2a – Experiment 1 2b – Experiment 2 

 
Figure 2–Posterior distributions for the boundary separation parameter for the fearful and 
neutral face conditions for Experiment 1 (2a) and Experiment 2 (2b), separately.    
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Insert Figure 3 here - - - - - - 

Figure 3 – Mean estimated effect of expression on boundary separation values for Experiments 1 
(fearful vs neutral), 2 (fearful vs neutral) and 4 (sadness vs neutral). Positive values indicate 
increased caution. Error bars are 95% Credibility intervals for the estimated effect. A difference of 
zero is represented as a dashed horizontal line at zero on the y axis. 

Boundary separation. Regression analyses of boundary separation supports the 
hypothesis that people increase decision making caution following fearful expressions. As shown in 
Figure 2a mean posterior estimates of boundary separation values were higher following fearful 
compared (M = 1.62; SD =0.07) compared to neutral expressions (M = 1.56; SD =0.05). The 
boundary separation effect for fearful expressions is shown in Figure 3 where it can be see that the 
posterior distribution for the increase in boundary separation for fearful (vs neutral) expressions 
did not contain zero, β = 0.06, 95% CrI = 0.03 to 0.09. 

 Non-decision times. Regression analyses of non-decision times showed that non-
decision times decreased following fearful expressions. Specifically, mean posterior estimates of 
non-decision times were slightly lower following fearful compared (M = .50) compared to neutral 
expressions (M = .51). The posterior distribution for the decrease in non-decision time for fearful 
(vs neutral) expressions did not contain zero, β = -0.006, 95% CrI = -0.01 to -0.001. 

 Drift rates. Regression analyses showed that drift rates were lowest for Gabor patches 
titled 1 degree (M = -0.01, SD = 0.11)  compared to all other conditions: 2 degrees (M = 0.63, SD = 
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0.11), β = 0.64, 95% CrI [0.55, 0.73] , 3 degrees (M = 0.95, SD = 0.11),  β = 0.96, 95% CrI [0.87, 
1.05] and 0 degrees (M = 0.77, SD = 0.10), β = 0.78, 95% CrI [0.70, 0.85] . 

 
 Discussion 

Results support the hypothesis that people react cautiously following exposure to fearful 
expressions. Mean RTs were slower and values of the Diffusion Model parameter that indexes 
caution (boundary separation) were higher for fearful compare to neutral expressions. The 
modelling results matter because a different conclusion might have been reached based solely on 
standard statistical analyses of either mean RTs. According to ASAP account (Bocanegra, 2014) 
emotional expressions slow down RTs in single-stimulus tasks that require analyses of HSF 
information. RT slowing was recorded but the modelling results suggest increased caution and not 
impaired perception underpins this behavioural effect. This is because Diffusion Modelling 
indicated that the effects of fearful expressions are best explained as reflecting differences in the 
boundary separation model parameter (representing increased caution) rather than differences in 
the drift rate (representing evidence accumulation). There was also a reduction in non-decision 
times following fearful compared to neutral expressions. This effect was not predicted and the 
effect was small (-0.006) and was not replicated in Experiment 2, and therefore, this effect is not 
discussed further. 

Experiment 2 
In Experiment 1, fearful expressions led to increased caution and reduced non-decision 

times. A key difference between the results of Experiment 1 and those reported in previous 
research is that mean signal sensitivity d' was lower (M =.89) than that used in previous studies 
(e.g., Bocanegra & Zeelenberg, 2009). Experiment 2 was an attempt to replicate the results of 
Experiment 1 using an easier task. Specifically, in Experiment 2 the angle of Gabor patch varied 
(on target present trials) from 2 to 4 degrees rather than the 1 to 3 degrees used in Experiment 1. 
Also, the number of face stimuli was increased to establish whether the effect generalises across 
different stimuli. 

Method 
Participants 

Twenty-eight psychology students from Leeds Beckett University took part in the study in 
return for a course credit. There were 7 males (mean age = 21) and 21 females (mean age = 20). All 
participants provided written informed consent and received course credit for their participation. 
The experimental protocol was approved by the Department of Psychology Ethics Committee of 
the Leeds Beckett University. 
Stimuli and Apparatus 

The face stimuli were 12 digitized photographs also selected from the Ekman and Friesen 
pictures of facial affect. The photographs were of three males and three females each displaying a 
fearful and neutral facial expression. The target stimuli were the same high spatial frequency 
Gabor patches (6 cycles per degree) used in Experiment 1, that were either upright or angled either 
2, 3 or 4 degrees to the left or right.  
Design and Procedure 

Participants completed 16 practice trials followed by 288 trials in a single block. Of the 288 
trials in the main block half contained a tilted target and half contained an upright target (absent 
trials). On the 144 target present trials the lines were angled (equally often) either 2, 3 or 4 degrees 
to the left or right. Fearful and neutral expressions were equally likely to precede either an upright 
Gabor patch or a tilted Gabor patch. All other details of the experiment were identical to that used 
in Experiment 1.  

Results 
Mean RTs were again slower following fearful (M = 554, SD = 203) compared to neutral (M 

= 540, SD = 199) expressions, β = 32, 95% CrI [14, 52]. For mean d-prime scores the effect of 
expression was not significant - the 95% Credibility Interval for difference between neutral (M = 
1.81, SD = 0.85) and fearful (M = 1.79, SD = 0.89) expressions included zero, β = -0.1, 95% CrI [-
0.02, 0.12]. 
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HDDM results 
Model selection.  The model in which the boundary separation value was free to vary as a 

function of the fixed effect of expression had the lowest DIC value (666) compared to either the 
null model (DIC = 669) or models in which either drift rates (DIC = 668) or non-decision times 
(DIC = 669) were free to vary as a function of expression. Although the model in which both drift 
rates and boundary separation values were free to vary had the lowest DIC value (DIC = 665) the 
decrease did not reach the criteria of a DIC of 5 or more. Allowing drift rates to vary as a function 
of degree of tilt improved model fit (DIC = 167). Allowing drift rates to additionally vary as a 
function of expression did not lead to further improvements in model fit (DIC = 171). 

 Boundary separation. Regression analyses of boundary separation once again supports 
the hypothesis that people increase decision making caution following fearful expressions. As 
shown in Figure 2b mean posterior estimates of boundary separation values were higher following 
fearful compared (M = 1.4, SD = 0.04) compared to neutral expressions (M = 1.36, SD = 0.04). The 
boundary separation effect for fearful expressions is shown in Figure 3 where it can be see that the 
posterior distribution for the increase in boundary separation for fearful (vs neutral) expressions 
did not contain zero, β = 0.04, 95% CrI [0.01, 0.06]. 

 Drift rates. Regression analyses showed that drift rates were lowest for Gabor patches 
titled 2 degrees (M = 1.06, SD = 0.18) compared to all other conditions: 3 degrees (M = 1.94, SD = 
0.18) , β = 0.88, 95% CrI [0.75, 1.01] , 4 degrees (M = 2.35, SD = 0.18) , β = 1.29, 95% CrI [1.16, 
1.42] and 0 degrees (M = 2.14, SD = 0.17), β = 1.08, 95% CrI [0.98, 1.18] . 

Discussion 
Results once again support the idea that people react cautiously to seeing fearful 

expressions because the Diffusion Model parameter representing caution was higher for fearful 
compared to neutral expressions. In contrast to Experiment 1, non-decision times did not differ 
between expression types.   

Experiment 3 
So far, results support the idea that people react cautiously to fearful expressions – they 

interpret fearful expressions as warning signals. However, this conclusion is based on a 
comparison between fearful and neutral facial expressions and consequently, it remains possible 
that the effect could be due to perceiving anything expressive, negative or emotional. Experiment 3 
addresses this issue by replacing fear with happiness (Experiment 3) and in a separate experiment, 
with sad facial expressions (Experiment 4).  

Method 
Participants  

Twenty-eight psychology students from Leeds Beckett University took part in the study in 
return for a course credit. There were 3 males (mean age = 19) and 25 females (mean age = 20).  
Stimuli, design and procedure 

The method was identical to Experiment 2 except that fearful expressions were replaced by 
happy expressions of the same individuals from the same stimulus set. All participants provided 
written informed consent and received course credit for their participation. The experimental 
protocol was approved by the Department of Psychology Ethics Committee of the Leeds Beckett 
University. 

Results and Discussion 
The effects of expression was not significant for analyses of either RTs or d'. Specifically, the 

95% Credibility Interval for differences in mean RTs following happy (M = 570, SD = 225) 
compared to neutral (M = 568, SD = 210) included zero, β = 2.3, 95% CrI [-5, 5]. Similarly, the 
95% Credibility Interval for differences in the d' scores following happy (M = 1.98, SD = 0.70) 
compared to neutral (M = 1.96, SD = 0.77) expressions also included zero, β = 0.01, 95% CrI [-
0.15, 0.07].  
HDDM results  

None of the 8 HDDM models that allowed specific model parameters to vary as a function 
of facial expression improved model fit compared to the empty model. Further testing showed that 
modelling drift rates to vary as a function of degree improved model fit compared to the empty to 
model. Adding expression to the latter model did not improve model fit. 
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Drift rates. Regression analyses showed that drift rates were lowest for Gabor patches 

titled 2 degrees (M = 1.25, SD = 0.16) compared to all other conditions: 3 degrees (M = 1.95, SD = 
0.16) , β = 0.69, 95% CrI [0.57, 0.81] , 4 degrees (M = 2.32, SD = 0.16) , β = 1.06, 95% CrI [0.93, 
1.19] and 0 degrees (M = 2.01, SD = 0.15), β = 0.75, 95% CrI [0.65, 0.85] . 

Experiment 4 
In Experiment 3 both standard traditional statistical analyses and the Diffusion Modelling 

results failed to support of the claim that increased caution is simply due to presenting a face 
expressing emotion in general. Nonetheless, it remains possible that seeing a negative expression 
rather than an expression associated with threat might also elicit a cautionary response. To test 
this idea, the happy expressions used in Experiment 4 were replaced with sad facial expressions. 
Sad expressions are sometimes perceived a request for help or comfort (Horstmann & Gernot, 
2003) and therefore, people are not expected to respond to sad expression with increased caution. 

Method 
Participants  

Twenty-eight psychology students from Leeds Beckett University took part in the study in 
return for a course credit. There were 5 males (mean age = 20) and 23 females (mean age = 19). All 
participants provided written informed consent and received course credit for their participation. 
The experimental protocol was approved by the Department of Psychology Ethics Committee of 
the Leeds Beckett University. 
Stimuli, design and procedure 

The method was identical to Experiment 3 except that happy expressions were replaced 
with photos of sad expressions of the same individuals from the same stimulus set. 

Results 
The effects of expression was not significant for analyses of either RTs or d'. Specifically, the 

95% Credibility Interval for differences in mean RTs following sad (M = 560, SD = 120) compared 
to neutral (M = 560, SD = 121) included zero, β = -0.02, 95% CrI [-7, 7]. Similarly, the 95% 
Credibility Interval for differences in the d' scores following sad (M = 1.76, SD = 0.99) compared to 
neutral (M = 1.91, SD = 1.05) expressions also included zero, β = -0.15, 95% CrI [-0.37, 0.07]. 
 
HDDM results 

 Initial model comparison of the DIC values across the 8 model variants showed that in the 
best-fitting model both boundary separation values and non-decision times were allowed to vary 
as a function of expression type. Allowing drift rates to vary as a function of degree of tilt improved 
model fit. Allowing drift rates to additionally vary as a function of expression did not lead to 
further improvements in model fit. 

 

 
4a 4b 
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- - - - - -Insert Figure 4 here - - - - - - 
Figure 4–Posterior distributions for the boundary separation parameter (4a) and non-decision 
times (4b) for the sad and neutral face conditions for Experiment 4. 

 
Boundary separation. Regression analyses of boundary separation supports the 

hypothesis that decision making caution decreases following the presentation of sad expressions. 
As shown in Figure 4a mean posterior estimates of boundary separation values were lower 
following sad compared (M = 1.40, SD =0.04) compared to neutral expressions (M = 1.44, SD = 
0.02). The boundary separation effect for sad expressions is shown in Figure 3 where it can be see 
that the posterior distribution for the increase in boundary separation for sad (vs neutral) 
expressions did not contain zero, β = -0.04, 95% CrI [-0.07, -0.01] 

 Non-decision times. Regression analyses of non-decision times showed that non-
decision times increased following sad expressions. As shown in Figure 4b, mean posterior 
estimates of non-decision times were higher following sad expressions compared (M = .21, SD = 
0.02) compared to neutral expressions (M = .19, SD = 0.02). The posterior distribution for the 
increase in non-decision time for sad (vs neutral) expressions did not contain zero, β = 0.017, 95% 
CrI [0.01, 0.02] 

Drift rates. Regression analyses showed that drift rates were lowest for Gabor patches 
titled 2 degrees (M = 0.94, SD = 0.16) compared to all other conditions: 3 degrees (M = 1.75, SD = 
0.16) , β = 0.81, 95% CrI [0.69, 0.93] , 4 degrees (M = 1.96, SD = 0.16) , β = 1.02, 95% CrI [0.89, 
1.14] and 0 degrees (M = 1.84, SD = 0.16), β = 0.90, 95% CrI [0.80, 0.99]. 

Discussion 
Decision making caution decreased following sad expressions – participants were more 

liberal – the opposite pattern to that recorded for fearful expressions. Moreover, non-decision 
times were slower for sad compared to neutral expression – again, the opposite pattern to that 
recorded for fearful expressions (in Experiment 1). 

These effects were not expected and therefore, given the possibility of the effect being due a 
noisy sample (Nosek, Spies, & Motyl, 2012) I increased the sample size by adding a further 18 
participants (N=46). I re-estimated the HDDM model in which boundary separation values and 
non-decision times were allowed to vary as a function of expression type and also, the model in 
which all 3 Diffusion Model parameters were allowed to vary as a function of expression. The 
model with 2 parameters remained the best fit (DIC =3656) compared to the 3 parameter model  
(DIC =3660) and again, for the larger sample, non-decision times were slower following sad (M = 
.20, SD = 0.01)  compared to neutral expressions (M = .19, SD = 0.01) , β = 0.01, 95% CrI = 0.07 to 
0.01 and also, the boundary separation values were lower for sad (M = 1.36, SD = 0.03)  compared 
to neutral expressions (M = 1.38, SD = 0.03) , β = -0.02, 95% CrI = -0.05 to -0.005). Also, the 
effects expression on boundary separation (β = -0.02, 95% CrI = -0.05 to -0.002) and non-
decision times (β = 0.01, 95% CrI = 0.007 to 0.015) remained after including the degree of tilt of 
the Gabor patch as a predictor in the regression model. Finally, analyses of d' scores for the larger 
sample indicated a small decrease in d’ following sad compared to neutral expressions, β = -0.14, 
95% CrI [-0.29, -0.008]. 

General Discussion 
Hierarchical Drift Diffusion Modelling provided several novel insights into perceptual 

decision making following the presentation of facial expressions. In support of the idea that fearful 
expressions warn of potential threat (Davis et al., 2011; Whalen, 1998), Diffusion Modelling results 
indicate that people respond cautiously following fearful expressions. Specifically, Hierarchical 
Drift Diffusion Modelling showed that the model parameter that describes response caution – 
boundary separation – was higher after exposure to fearful compared to neutral facial expressions. 
This effect was not recorded for either happy sad expressions. For sad expressions boundary 
separation values were lower and non-decision times were longer.  

A key implication of the modelling results is that slower RTs to targets following fearful 
facial expressions need not necessarily reflect an impairment or processing cost. Instead, the 
results show that such a pattern might reflect increased decision making caution. Studies have 
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typically interpreted RT slowing due to facial expressions as reflecting a processing cost and 
subsequently concluded that effects reflect an effect of emotion on either attention or perception. 
For example, a recent study found that RTs were reliably slower for fearful (vs neutral) expressions 
in one specific experiment in which people were asked to judge the sex of a single fearful with low-
spatial frequency information removed (Experiment 1c; Bocanegra, 2014). Based on this result it 
was concluded that emotion affects early visual processes by decelerating the onset latency of the 
P-type channel.  I also recorded RT slowing for high spatial information following fearful 
expressions. However, Diffusion Modelling using HDDM supports the conclusion that RT slowing 
was due to increased decision making caution rather than impaired perception. Specifically, in 
Experiment 1 and Experiment 2 boundary separation values were higher following fearful 
compared to neutral facial expressions but there was no evidence that fearful expressions impaired 
perception by reducing information accumulation (lowering drift rates).  

 A further implication is that models of how emotion affects visual perception may now 
need to consider a greater role for high-level decision making. In current models of emotion and 
attention high level influences are typically considered in terms of the task set or the availability of 
working memory resources. Often the distinction between top-down and bottom-up effects of 
emotion is made in the context of the biased competition model of attentional selection (Desimone 
& Duncan, 1995). According to the biased competition model stimuli compete for neural 
representation and this competitive process can be biased by either top-down goals or in a bottom-
up manner by the perceptual salience of the stimuli within the visual field. Top-down goals are 
typically used to refer to the task the participant is required to perform in the experiment (e.g., 
judge either the sex of a face or the emotion of a face). Based on the Biased Competition Model 
researchers have argued that emotional stimuli influence the attentional selection of neutral 
stimuli (Mather & Sutherland, 2011) and are themselves prioritized for selection (Wang, Kennedy, 
& Most, 2012). For an example of the former, the arousal-biased competition (ABC) model 
(Mather & Sutherland, 2011) explains enhanced recall of perpetually salient (neutral) information 
by claiming that emotional arousal enhances the selection of goal-relevant and perceptually salient 
stimuli and concurrently suppresses the selection of competing, lower-priority stimuli (Sutherland 
& Mather, 2012). The ABC model and other approaches do not consider speed-accuracy trade-off 
as possible top-down influence and therefore, it remains to be established whether such high-level 
decision making influences are needed to provide a complete description of the data that supports 
the ABC and other models (Bocanegra, 2014; Pessoa, 2015; Wang et al., 2012). 

The current research raises the possibility that differences in decision making caution may 
have been present in previous studies of the effects of fearful and other expressions on perception. 
Despite this, I think it is unlikely that all previous effects are due to caution. This is because 
researchers have done more than simply recording RTs and accuracy following facial expressions, 
they have manipulated temporal attention (e.g., de Jong et al., 2010; Sigurjónsdóttir et al., 2015; 
Stebbins & Vanous, 2015), spatial attention (e.g., Berggren et al., 2013; Bocanegra et al., 2012; Fox 
et al., 2002), perceptual load (Gupta et al., 2016; Hodsoll et al., 2011; Pessoa, Padmala, & Morland, 
2005) and other variables that are thought to affect the availability of attentional resources. The 
results of these studies are consistent with the prioritization of emotion stimuli for attentional 
selection and therefore, it would be remarkable if further analyses or research were to show that 
increased caution is responsible for these effects. Indeed, it is possible is that the effects of facial 
expressions on decision making caution and perceptual or attentional processes might co-exist. 
This is a possibility because the Diffusion Model indexes caution (or conservativeness) as a 
separate process from evidence accumulation and stimulus encoding. If the effects of facial 
expressions are mediated by attention then such effects will propagate onto the model parameters 
thought to affected by attention (Mulder & van Maanen, 2013; Nunez, Vandekerckhove, & 
Srinivasan, 2017; Smith & Ratcliff, 2009). For example, research (see Figure 2; Mulder & van 
Maanen, 2013). has shown that visual attention cues placed in the same versus an opposite 
location to a target both reduce non-decision times (supporting enhanced stimulus encoding) and 
increase the drift rate (supporting enhanced evidence accumulation). Therefore, in future studies it 
will be interesting to establish whether the effects of emotion on spatial attention will correspond 
to differences in the drift rate and non-decisions times. 
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 One unexpected result was the finding that non-decision times were longer and response 

caution was lower following sad compared to neutral expressions. Why might this pattern have 
emerged?  One rating study (Horstmann & Gernot, 2003) found that although facial expressions 
are typically described as expressing the emotional state of the sender – for example, fear 
expression are rated expressing a state of fear – they are sometimes perceived as behavioral 
intentions ("I am going to run away") or action requests (e.g., "help me"). For example sad 
expression were interpreted as a request for help or comfort and also as reflecting an intention to 
cry. Given such findings, one possibility is that people perceived sad expressions as a request for 
help and consequently allocated greater attention to sad compared to neutral expressions. 
Allocating attention to sad expression might have led to a processing bottleneck that delayed the 
encoding of the target (leading to longer non-decision times) and perhaps a subsequent hurried 
response in which participants traded accuracy for speed in an attempt to compensate for the 
delay. In other work (Tipples, in prep) I have recorded the longer no-decision times and reduced 
decision making caution  for highly arousing emotion images – images that are likely to receive 
increased attention - and therefore, the pattern for sad expressions  fits with this explanation.  

There was no effect of sad expressions on the standard measures of RT and accuracy 
(although for the larger sample there was a small effect on d’) and therefore, this research adds to 
the list of studies that have found that Diffusion Model can help identify process that are hard to 
detect using standard statistical methods (Krypotos, Beckers, Kindt, & Wagenmakers, 2015; Pe, 
Vandekerckhove, & Kuppens, 2013; White, Ratcliff, Vasey, & McKoon, 2010). For example, one 
study (White et al., 2010) recorded a consistent processing advantage for threatening words in 
high-anxious individuals despite the fact such effects were absent when the data were analysed 
using traditional analyses of RTs and accuracy. Another study (Pe et al., 2013) found that 
rumination and depression scores were associated with facilitated processing due to negative 
distracters but failed to find any effect using either accuracy or RTs as separate measures. 
Combined with the current results finding these studies demonstrate the usefulness of the 
Diffusion Modelling to study emotion and perhaps emotion disorders (White, Skokin, Carlos, & 
Weaver, 2016). 
Conclusion 

The research findings show that people make strategic adjustments in the evidence required 
to make a decision after see fearful and sad expressions – they are more cautious after seeing fear 
and less cautious after seeing sadness. For fearful expressions, the results concur with the idea 
(Whalen, 1998) that fearful expression warn of potential threat. Overall, the current results point a 
new direction for research in this area – testing the caution hypothesis using the Diffusion.  
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Figure Captions 
Figure 1. The Diffusion Model (Ratcliff, 1978; Ratcliff & McKoon, 2008). Evidence accumulation 
begins at a starting point z, and proceeds toward absorbing boundaries that determine when the 
decision criterion is met and the accumulation process ends. The drift rate indicates how fast 
information accumulates toward a boundary. Non-decision times are modelled as the additional 
time needed for processing before and after the accumulation process. Non-decision time includes 
the time to encode the stimulus and prepare a response. Further parameters can also be included 
in the model (e.g., trial-by-trial variability in the starting point parameter z). 
 
Figure 2–Posterior distributions for the boundary separation parameter for the fearful and 
neutral face conditions for Experiment 1 (2a) and Experiment 2 (2b).    

Figure 3 – Mean estimated effect of expression on boundary separation values for Experiments 1 
(fearful vs neutral), 2 (fearful vs neutral) and 4 (sadness vs neutral). Positive values indicate 
increased caution. Error bars are 95% Credibility intervals for the estimated effect. A difference of 
zero is represented as a dashed horizontal line at zero on the y axis. 

Figure 4–Posterior distributions for the boundary separation parameter (4a) and non-decision 
times (4b) for the sad and neutral face conditions for Experiment 4. 

 


