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Abstract— This paper presents a CMOS circuit implementa-
tion of a spike event coding/decoding scheme for transmission of
analog signals in a programmable analog array. This scheme uses
spikes for a time representation of analog signals. No spikes are
transmitted using this scheme when signals are constant, leading
to low power dissipation and traffic reduction in a shared channel.
A proof-of-concept chip was designed in a 0.35µm process and
experimental results are presented.

I. INTRODUCTION

Configurable Analog Blocks (CABs) are the basic pro-

cessing units of Field Programmable Analog Arrays (FPAAs)

and are configured to perform different types of analog func-

tions [1]. The communication between CABs is an important

issue because traditional techniques like crossbars or switch

matrices [2] degrade the transmitted signals. These techniques

cause distortion of the signal due to voltage drops, parasitic

capacitances along wires and the switches and through signal

interference, limiting the size of analog arrays.

Pulse modulations are an alternative to these techniques.

They map the amplitude of analog signals onto the timing

domain. The use of these discrete-amplitude continuous-time

modulations allows greater system scalability than analog

routing methods. Synchronous versions were used in analog

arrays [3], but as they require a global clock signal, these mod-

ulations suffer from clock skew and high power consumption.

Asynchronous modulations are used in some biological

inspired systems [5] [6]. Recently, a spike event coding

scheme was proposed by the authors to transmit analog signals

between CABs [4]. It presents advantages over other pulse

modulations, such as transmission of information on demand

and, therefore, reduction in communication traffic, and low

energy dissipation, freedom from clock skew and low crosstalk

due to asynchronous coding.

In this paper we present a CMOS implementation of the

spike event coding scheme with programmable resolution.

First we review the working principles of the scheme. Later,

we describe the design parameters and the circuits used to

realize the coder. Finally, we present results from a tested

chip.

II. SPIKE EVENT CODING SCHEME

The spike event coding scheme [4] is shown in Fig. 1(a).

The spike event coder operates by generating a signal similar

to the input signal. In other words, a feedback signal z(t) is

   

channel    
x(t) e(t) y(t)

z(t)

z
R
(t)y

R
(t) x

R
(t)

Spike 
Generator

V
th1

c
1
(t)Coder Decoder

INTC

INTD LPF

k
I

k
I

V
th2

c
2
(t)

∫

∫

(a)

x(t)

z(t)

y(t) t

∆z(t)

t = t
1

1 2 N
p

...

t = t
0 1 N

n
...

δ

T ∆t
D

x(t)

(b)

Fig. 1. (a) Block diagram of the spike event coding scheme and (b) an
example of the behavior of the main signals. δ is the tracking step, T is the
spike width and ∆tD is the time interval between successive spikes.

forced to track the input signal x(t) by bounding the error e(t)
between them:

e(t) = x(t) − z(t) = x(t) −

∫

y(t)dt (1)

where y(t) is the coder output. This output is represented

either by positive or negative pulses with a short and fixed

duration (spikes). These spikes are produced by the spike

generator and transmitted both to the communication channel

and to the input of the feedback integrator (INTC).

Each positive or negative spike results in an incremental

or decremental change δ (tracking step) at the output of the

feedback integrator:

∆z(t) = δ (Np − Nn) (2)

where Np (Nn) is the number of previous positive (negative)

spikes since t0 as shown in Fig. 1(b).

Considering an ideal channel, the spikes are also transmitted

to the decoder integrator INTD, which presents the same



gain KI of the coder feedback integrator INTC. The decoder

output xR(t) is given by:

xR(t) ≈

∫

y(t)dt = z(t) = x(t) − e(t) (3)

with the decoder Low Pass Filter (LPF) removing high fre-

quency harmonics and averaging the signal zR(t). Therefore,

the maximum difference between the decoder output xR(t)
and coder input x(t) is |e(t)|max, which is defined by the

specification of the spike event scheme resolution:

|e(t)|max =
∆x(t)max

2NB − 1
(4)

where ∆x(t)max is the input dynamic range and NB is the

desired resolution in bits.

III. ANALOG VLSI IMPLEMENTATION

The spike event coding scheme was implemented in a

proof-of-concept chip for validation of the scheme. The layout

dimensions of the spike event coder are 240µm x 120µm using

AMS 0.35µm CMOS process.

In this section we describe the spike event coder and decoder

circuits implemented on chip: comparators, spike generator

and integrators. Both coder and decoder integrators were

implemented using the same design. The decoder LPF was

implemented off-chip, using an offline digital filter.

A. Comparators

In the block diagram in Fig. 1(a), the error e(t) is limited

by two comparators with different thresholds (Vth1 and Vth2):

|e| ≤ ∆Vth = |Vth1 − Vth2| (5)

From (4) and (5), the resolution of the spike event coding

scheme is a function of the thresholds of both comparators.

The design of the comparators can be implemented using

a preamplifier (PA) followed by a decision circuit (DC) and

an output buffer (OB) [7]. To provide the required ∆Vth,

capacitive or resistive dividers can be used at the comparator

input nodes. However, these dividers compromise the input

impedance of the circuit.

Another method to provide ∆Vth is to implement offset

comparators. Composite transistors can be used to provide the

offset [8], however this topology suffers from low dynamic

range. A programmable offset can also be generated by

another preamplifier which provide a respective ∆Ioff on the

decision circuit input [9]. Both impedance dividers and offset

comparators allow continuous resolution values to be used.

In this implementation, both outputs c1(t) and c2(t) are

generated by a compound comparator in Fig. 2. Instead of

using four preamplifiers, with two sensing the inputs x(t)
and z(t) and two providing different offsets, we use only

two preamplifiers. The preamplifier PAA outputs a differential

current ∆Ixz as the result of the comparison between x(t) and

z(t). Thus, the capacitive loads of these nodes are reduced

by using only one preamplifier. The other preamplifier (PAB)

provides a differential current ∆Ioff/2 according to ∆Vth/2
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Fig. 2. Block diagram of the compound comparator. Preamplilfier PAA
outputs a current ∆Ixz according to the inputs x(t) and z(t), while
preamplifier PAB generate a fixed offset current ∆Ioff /2. PAB outputs are
added or subtracted from PAA outputs and the results are applied to the
respective decision circuits (DC) and output buffers (OB).

M2

Ibias

M4

M1

M3

+ −

Vss

Vdd

B
1,2

A
1,2

PA

M5,7M6,8

M12 M11

Vdd

M13

M10 M9

M15

M17

M14

M16

C D

Vss

Vdd

M18

M19

Vout

DC

OB

Fig. 3. Circuit schematic of each of the compound comparator blocks.
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voltage on the inputs. The results of adding ( ∆Ixz+∆Ioff/2)

and subtracting (∆Ixz−∆Ioff/2) these currents are forwarded

to the decision circuits to speed up the comparison result.

Finally, output buffers generate the digital outputs.

Fig. 3 presents the preamplifier, the decision and the

output buffer schematic circuits implemented on chip. The

preamplifier is a transconductance amplifier with two identical

differential output currents at nodes (A1, B1) and (A2, B2).

The decision circuit is a positive feedback circuit and the

output buffer is a self-biased amplifier [10].

B. Spike Generator

The spike generator block can provide either a positive or a

negative spike according to the output state of the comparator.

When the error e > ∆Vth/2, a negative spike is transmitted.

Similarly, a positive spike is generated when e < −∆Vth/2.

Otherwise, no spikes are transmitted. The control circuitry

for this logic was implemented using a technique for the

design of asynchronous digital circuits [11]. These spikes can

be transmitted using switch matrices or any asynchronous

Medium Access Channel (MAC) protocol, like AER [12].
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increment of δd = T × I/Cint. For negative spikes, the complementary
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is not shown.

C. Integrators

In this implementation, the spike width T is used in the

integrator block to increment or decrement z(t) by δ. A

minimum interspike interval ∆tDmin = kT is also introduced

in the design to avoid overload on the communication channel

(“refractory period”). The coder output spike frequency is a

function of the magnitude of the input derivative and the coder

integration step:

f =

∣

∣

∣

dx(t)
dt

∣

∣

∣

δ
=

1

T + ∆tD
(6)

The first conclusion from (6) is that no spikes are transmitted

when the input derivative is zero, i.e. the input signal is

constant. This is true only after the feedback signal z(t) has

tracked the input signal x(t), i.e. e(t) ≤ ∆Vth.

We also conclude from (6) that the maximum output fre-

quency occurs when the input signal presents its maximum

absolute input derivative. From the specification of this deriva-

tive, ∆tDmin is defined and pulse width T is:

T =
δ

(k + 1)
∣

∣

∣

dx(t)
dt

∣

∣

∣

max

(7)

The integrator block includes programmable delay circuits

for the generation of T and ∆tDmin time intervals.

For an optimum performance, the tracking step δ is equal

to the difference between the thresholds ∆Vth of the com-

parators. Setting δ < ∆Vth, more output spikes will be

needed for the feedback signal z(t) track the input signal x(t).
Conversely, z(t) will oscillate for δ > ∆Vth. However, a

design margin is required because of the random offsets

present in the comparator due to process variations. Therefore,

the designed tracking step is:

δd ≤ ∆Vth − 6σ(Vos) (8)

where σ(Vos) is the comparator offset standard deviation.

We implemented the integrator block using a charge pump

integrator as shown in Fig. 4. A unipolar version of this type

of circuit driving resistors is used in steering current cells of

some Digital-to-Analog Converters (DACs).

When a negative spike arrives at the integrator input, the dec
signal turns high during an interval T , allowing currents 1.5I
and 0.5I flowing in transistors M22 and M23, respectively.

Similarly, for the case of a positive spike arrival, transistors

M20 and M21 provide symmetrical operation with inc and

inc signals. The resulting current I that discharges or charges

the integrating capacitor Cint is given by I = Cint × δd/T .

Therefore, the integration gain is given by KI = δd/T . When

there are no spikes, currents are driven to low impedance nodes

(d1-d4) through M24-M27 by setting the signal dp high.

The use of two different branches (M22 and M23 or M20

and M21) to both charge and discharge the capacitor reduces

charge injection on the integration node [13] at the cost of

doubling the power consumption required. If switches M20

and M21 (M22 and M23) have the same dimensions, the

charges injected from the gate to drain capacitance of the

complimentary switches cancel each other.

IV. CHIP RESULTS

We used two different input signals to test the chip: a speech

signal and a sine wave. The speech signal was sampled at 44.1

kSps with 8 bit resolution. The coder was designed to provide

a resolution of 6 bits. The coder input signal x(t), the decoder

integrator output zR(t) and the coder output spikes y(t) are

shown in Fig. 5(a). The same signals are presented in detail in

Fig. 5(b) to show the absence of coder output spikes when the

signal is constant or when its change is smaller than ∆Vth.

The resolution of the system was measured using a sine

wave input signal. The sine wave presents 1.0 Vpp amplitude

and 4.4 kHz frequency (fin) sampled at 555 kSps and the

coder was designed to provide a 4 bit resolution. A snapshot

of the input and output signals is presented in Fig. 6(a). Offline

filtering results are shown in the Fig. 6(b) for a digital LPF

with a cutoff frequency of 4.4 kHz, the same frequency as the

input signal.

The measured resolution of the pre-filter signal is 3.83 bits.

The resolution increases to 6.97 and 5.29 bits for post-

filter signals, using filter cut-off frequencies equals to fin

and 10fin, respectively. However, this resolution improvement

causes attenuation and phase shift of the signal. These results

are similar to the simulation values presented in [4]. The

measured power consumption of the coder is 0.4 mW, with

approximately 90% of if used by the comparator.

V. CONCLUSIONS

In this paper we described a CMOS implementation of a

spike event coding scheme. This scheme is intended to be

used to transmit analog signals inside a FPAA and/or between

different FPAAs using asynchronous events (spikes).

This scheme presents an efficient utilization of channel re-

sources and lower power consumption because no output activ-

ity is present when signals are constant. A chip was designed
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Fig. 5. (a) Coder input x(t) and decoder integrator output zR(t) for a
2.5Vpp speech signal. Negative (ON) and positive (OP) output coder spikes
are also shown at the bottom of the figure. (b) A detailed view of the same
waveforms to show the absence of spikes during the periods when the input
signal is constant.

in a 0.35µm process and the experimental results validate the

circuit design. This scheme is being implemented within a

small array of CABs developed by the authors [14] [15].
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