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Abstract: We consider the existence and propagation of
nondi�ractive and nondispersive spatiotemporal optical
wavepackets in nonlinear Kerr media. We report analyti-
cally and con�rm numerically the properties of spatiotem-
poral dark line solitary wave solutions of the (2+1)D non-
linear Schrödinger equation (NLSE). Dark lines represent
holes of light on a continuous wave background. More-
over, we consider nontrivial web patterns generated under
interactions of dark line solitary waves, which give birth to
dark X solitary waves. These solitary waves are derived by
exploiting the connection between the NLSE and a well-
known equation of hydrodynamics, namely the (2 + 1)D
type II Kadomtsev-Petviashvili (KP-II) equation. This �nd-
ing opens a novel path for the excitation and control of op-
tical solitary waves, of hydrodynamic nature.
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1 Introduction
The propagation of high-intensity, ultra-narrow and ultra-
short light pulses in quadratic and cubic nonlinear media
is a complex multidimensional phenomenon which leads
to substantial spatiotemporal pulse rearrangement. The
spatiotemporal dynamics is in�uenced by the interaction
of various physical e�ects, in particular di�raction, mate-
rial dispersion and nonlinear response. This problem has
attracted strong interest over the past decades, leading
to the generation and the manipulation of high-intensity
femtosecond and attosecond pulses [1, 2].

During the 1990s, extensive research activities con-
cerning the self-focusing behavior of intense ultra-short
pulses have shown that the spatial and temporal degrees
of freedom have to be considered together [3–13]. When
the e�ects of di�raction, dispersion and nonlinearity be-
come comparable, the most fascinating result of space-
time coupling is the possibility to form light bullets or
spatiotemporal solitons. A strict constraint for the excita-
tion of spatiotemporal solitons is that the nonlinear phase
changes balance both the spatial front curvature and the
dispersion-induced chirp, leading to spatiotemporal fo-
cusing. A anomalous dispersion enables the possibility to
achieve bullet-type localized waves, while a normal dis-
persion rules out this possibility, while induces di�erent
behaviors such as temporal splitting and breaking.

During the 2000s, theoretical and experimental re-
search activities have demonstrated that localized dis-
tortionless (both nondi�ractive and nondispersive) wave
packets also exist with normal dispersion in the form of
X-wave solitons [14–16].

Counteracting the natural spatiotemporal spreading
of wave packets is a universal and stimulating task,
appearing in many �elds of science and applied re-
search, such as communications, optical data storage,
spectroscopy, material processing, Bose-Einstein conden-
sation, medical diagnostics, to name a few.

In this paper, we consider analytically and con�rm
numerically the existence and propagation of nondi�rac-
tive and nondispersive spatiotemporal solitons in self-
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focusing and normal dispersion Kerr media. At �rst, we
show the existence and properties of dark line solitary
waves of the (2 + 1)D nonlinear Schrödinger equation
(NLSE), which governs the propagation in self-focusing
with normal dispersion. Then, we consider nontrivial web
patterns generated under interactions of line solitons,
which give birth to dark X solitary waves. The analyti-
cal dark solitary solutions are derived by exploiting the
connection between the (2 + 1)D NLSE and the (2 + 1)D
Kadomtsev-Petviashvili (KP) equation [17], a well-known
equation of hydrodynamics. The latter constitutes the
natural extension of the well-known (1+1)D Korteweg-de
Vries (KdV) equation and it is widely employed in plasma
physics and hydrodynamics (see e.g.[17–21]) in its two dif-
ferent forms, the so-called KP-I type and KP-II type, de-
pending on the sign of the transverse perturbation to the
KdV equation.

Our results extend and con�rm the connection be-
tween nonlinear wave propagation in optics and hydrody-
namics, that was established in the 1990’s [22–27] and re-
cently extensively studied [28, 29].

2 Theoretical Procedures
The dimensionless time-dependent paraxial wave equa-
tion in Kerr media, in the presence of group-velocity dis-
persion, and by limiting di�raction to one dimension,
reads as [28]:

iuz +
α
2 utt +

β
2uyy + γ|u|2u = 0, (1)

where u(t, y, z) represents the complexwave envelope; t, y
represent temporal and spatial transverse coordinates, re-
spectively, and z is the longitudinal propagation coordi-
nate. Each subscripted variable in Eq. (1) stands for par-
tial di�erentiation. α, β, γ are real constants that represent
the e�ect of dispersion, di�raction and Kerr nonlinearity,
respectively. We refer to Eq. (1) as elliptic NLSE if αβ > 0,
and hyperbolic NLSE if αβ < 0. Of course, Eq. (1) may also
describe (2+1)D spatial dynamics in cubic Kerr media, ne-
glecting group-velocity dispersion; in this case t, y repre-
sent the spatial transverse coordinates, and z the longitu-
dinal propagation coordinate; moreover α = β > 0.

Writing u = √ρ exp(iθ), and substituting in Eq. (1), we
obtain for the imaginary and real parts of the �eld the fol-

lowing system of equations for (ρ, θ),

ρz+α (ρθt)t + β (ρθy)y = 0,

θz−γρ +
α
2

(
θ2t +

1
4ρ2 ρ

2
t −

1
2ρ ρtt

)
+

+ β2

(
θ2y +

1
4ρ2 ρ

2
y −

1
2ρ ρyy

)
= 0. (2)

Let us consider now small corrections to the stationary
continuous wave (cw) background solutions of Eqs. (2),
and set

ρ = ρ0 + ϵρ1, θ = θ0 + ϵθ1 (3)

with ρ0 constant, θ0 = γρ0z. ϵ is a small positive extension
parameter (0 < ϵ � 1).We introduce the variables η = ϵρ1
andϕ = ϵθ1 and assume the following scalings η ∼ ϕz ∼
ϕt ∼ O(ϵ), ∂t ∼ ∂z ∼ O(ϵ1/2), ∂y ∼ O(ϵ). Then we
obtain from Eqs. (2)

ηz + ρ0(αϕtt + βϕyy) + α(ηϕt)t = O(ϵ7/2),

ϕz − γ η + α2

(
ϕ2
t −

1
2ρ0

ηtt
)
= O(ϵ3). (4)

Introducing the coordinates τ = t − c0z, υ = y, ς = z (c0 =√−γαρ0), and noting that ∂ς ∼ O(ϵ3/2), from Eqs. (4) we
have

−c0ητ + ης + ρ0αϕττ + ρ0βϕυυ + α(ηϕτ)τ = O(ϵ7/2)

−c0ϕτ + ϕς − γη + α2

(
ϕ2
τ −

1
2ρ0

ηττ
)
= O(ϵ3). (5)

From the second of Eqs. (5), we obtain η = − c0γ ϕτ+ (higher
order terms); iterating to �nd the higher order terms, we
obtain

η = 1
γ

(
−c0ϕτ + ϕς +

α
2ϕ

2
τ −

α2
4c0

ϕτττ
)
+ O(ϵ3). (6)

By inserting (6) in the �rst of Eqs. (5), we have

ϕτς +
3α
4 (ϕ2

τ)τ −
α2
8c0

ϕττττ +
c0β
2α ϕυυ = O(ϵ3). (7)

Eq. (7) is known as the potential KP equation [20]. In
fact, from Eq. (7) we obtain the evolution equation for η,
namely, we have the KP equation at the leading order,(

−ης +
3αγ
2c0

ηητ +
α2
8c0

ητττ
)
τ
− c0β2α ηυυ = 0. (8)

Notice that, in the case α > 0, β > 0, γ < 0, we have the
KP-I type, and when α < 0, γ > 0, β > 0, the KP-II type.

Therefore,weunderline that the optical NLSE solution
u(t, y, z) of hydrodynamic KP origin [η(τ, υ, ς), ϕ(τ, υ, ς)]
can be written as [28, 29]:

u(t, y, z) =
√
ρ0 + η(τ, υ, ς) ei(γρ0z+ϕ(τ,υ,ς)), (9)
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with ϕ = −(γ/c0)
∫
τ η, τ = t − c0z, υ = y and ς = z.

Of interest in the optical context, the elliptic anoma-
lous dispersion and self-defocusing regime (α > 0, β >
0, γ < 0) leads to the KP-I regime, while the hyperbolic
normal dispersion and self-focusing regime (α < 0, γ >
0, β > 0) leads to the KP-II regime. Without loss of gen-
erality, we may set the following constraints to the coe�-
cients of Eq. (1), |α| = 4

√
2, β = 6

√
2, |γ| = 2

√
2; more-

over, we �x ρ0 = 1 (thus c0 = 4). Note that, with the pre-
vious relations among its coe�cients, in the case (α > 0,
β > 0, γ < 0) the Eq. (8) reduces to the standard KP-I
form: (−ης − 6ηητ + ητττ)τ − 3ηυυ = 0; in the case (α < 0,
γ > 0, β > 0) the Eq. (8) reduces to the standard KP-II form
(−ης − 6ηητ + ητττ)τ + 3ηυυ = 0.

3 Results and Discussion
Here, we focus our attention on the combined action of
di�raction and normal dispersion for self-focusing media,
thus we consider the optical NLSE–hydrodynamic KP-II
correspondence. The results that we derive below have rel-
evance also for di�erent contexts where the same hyper-
bolic NLSE applies, such as the propagation in suitably en-
gineered lattices giving rise to e�ective negative di�raction
[30, 31] (in this case t represents in Eq. (1) an additional
spatial variable).

3.1 NLSE dark line solitary wave
propagation

At �rst, we proceed to consider the existence and propaga-
tion of (2 + 1)D NLSE dark line solitary waves, which are
predictedby the existence of (2+1)DKPbright line solitons
[20, 21]. When considering the small amplitude regime, a
formula for an exact line bright soliton of Eq. (8) can be
expressed as follows [20]:

η(τ, υ, ς) = −ϵ sech2[
√
ϵ/2(τ + tanφ υ + cς)], (10)

where ϵ rules the amplitude and width of the soliton, φ
is the angle measured from the υ axis in the counterclock-
wise, c = 2ϵ + 3tan2φ is the velocity in τ-direction. No-
tice that c is of order ϵ. Moreover we obtain ϕ(τ, υ, ς) =√
ϵ tanh([

√
ϵ/2(τ + tanφ υ + cς)].

Figure 1 shows the analytical spatiotemporal envelope
intensity pro�le |u(t, y, z)|2 = 1+η(τ = t−coz, υ = y, ς = z)
of a NLSE dark line solitary wave, given by the mapping
(9) exploiting the KP bright soliton expression (10), in the
y − t plane at z = 0, at z = 10, and in the t − z plane at

Figure 1: Analytical spatiotemporal dark-lump NLSE envelope inten-
sity distribution |u(t, y, z)|2, shown in the y − t plane, at z = 0, at
z = 10, and in the t − z plane at y = 0. Here, ϵ = 0.1, φ = 0.01.

y = 0, for ϵ = 0.1 and φ = 0.01. The intensity dip of the
dark line solitary wave is −ϵ, the velocity c0 − c−3tan2φ =
4 − 2ϵ − 3tan2φ in the z-direction.

Next, we numerically veri�ed the accuracy of the
analytically predicted dark line solitary waves of the
NLSE. To this end, we made use of a standard split-step
Fourier technique, commonly adopted in the numerical
solution of the NLSE (1). We take the dark wave enve-
lope at z = 0 as the numerical input: u(t, y, z = 0) =√
1 + η(τ = t, υ = y, ς = 0) exp

[
iϕ(τ = t, υ = y, ς = 0)

]
,

where η is the line-soliton solution (10). Figure 2 shows
the numerical spatiotemporal envelope intensity pro�le
|u(t, y, z)|2 of a NLSE dark line solitary wave, which corre-
sponds to the analytical dynamics reported in Fig. 1.

As can be seen from the images included in Figs. 1–
2 the numerical solutions of the NLSE show an excel-
lent agreement with the analytical approximate NLSE soli-
tary solutions. Only a small low amplitude radiative emis-
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Figure 2: Numerical spatio-temporal dark-lump NLSE envelope
intensity distribution |u(t, y, z)|2, shown in the y − t plane, at z = 0,
at z = 10 and in the t − z plane at y = 0. Here, ϵ = 0.1, φ = 0.01.

sion can be detected at the beginning of propagation. The
NLSE–KP mapping works well also for higher value of ϵ.
We considered the e�ective energy E of envelope u:

E =
∫ ∫

(|u|2 − ρ0)dt dy,

and we de�ned the relative error function e = (E −
Eexact)/Eexact, where E represents the numerical e�ective
energy of the exciteddark solitarywave and Eexact is the ef-
fective energy of the solitary solution of KP-II origin. Figure
3 reports the error function e [%] as a function of ϵ. Notice
that ϵ = 1 is the maximum allowed value, since ρ0 = 1,
which gives a black dark solitary wave.

3.2 NLSE dark X solitary wave propagation

In the long wave context, the KP-II equation admits com-
plex soliton solutions, mostly discovered and demon-

Figure 3: Error function e [%] versus ϵ values. Here, φ = 0.

strated in the last decade [20, 21], whichmaydescribe non-
trivial web patterns generated under resonances of line-
solitons.

Here, we consider the resonances of four line solitons,
which give birth to the so-called O-type bright X-shaped
two-soliton solution of the KP-II (the nameO-type is due to
the fact that this solutionwas originally found by using the
Hirota bilinear method [20]). When considering the small
amplitude regime, the formula of theO-type solutionof Eq.
(8) can be expressed as follows [20],

η(τ, υ, ς) = −2 (ln F)ττ , (11)

where the function F(τ, υ, ς) is given by F = f1 + f2 with

f1 = (ϵ1 + ϵ2) cosh[(ϵ1 − ϵ2)τ + 4 (ϵ31 − ϵ32)ς]
f2 = 2

√
ϵ1ϵ2 cosh[(ϵ21 − ϵ22)υ].

ϵ1, ϵ2 are small real positive parameters which are related
to the amplitude, width and the angle of the O-type X-
soliton solutions.

The corresponding (2+1)D NLSE dark X solitary wave
u(t, y, z), is directly given through the mapping Eq. (9), by
exploiting the soliton expression for η(τ, υ, ς) in Eq. (11).

Figure 4 shows the spatiotemporal envelope intensity
pro�le |u(t, y, z)|2 = 1 + η(τ = t − coz, υ = y, ς = z) of a
(2+1)D NLSE dark X solitary wave of the hyperbolic NLSE.
The solution is shown in the (y, t) plane, at z = 0 and at
z = 10. In this particular example we have chosen ϵ1 =
0.2, ϵ2 = 0.001. Speci�cally, Fig. 4 illustrates a solitary so-
lution which describes the X-interaction of four dark line
solitons. The maximum value of the dip in the interaction
region is 2(ϵ1 − ϵ2)2 (ϵ1 + ϵ2)/(ϵ1 + ϵ2 + 2

√ϵ1ϵ2). Asymp-
totically, the solution reduces to two line dark waves for
t � 0 and two for t � 0, with intensity dips 1

2 (ϵ1 − ϵ2)
2

and characteristic angles ±tan−1(ϵ1 + ϵ2), measured from
the y axis. Next, we numerically veri�ed the accuracy of
the analytically predicted O-type dark X solitary wave of
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Figure 4: Analytical spatiotemporal NLSE envelope intensity distri-
bution |u(t, y, z)|2, in the (y, t) plane, showing the dark X solitary
wave dynamics, at z = 0 and at z = 10. Here, ϵ1 = 0.2, ϵ2 = 0.001.

the NLSE. As done previously, we took the dark wave en-
velope at z = 0 as the numerical input: u(t, y, z = 0) =√
1 + η(τ = t, υ = y, ς = 0) exp

[
iϕ(τ = t, υ = y, ς = 0)

]
,

where η is the X-soliton solution (11). Fig. 5 shows the
(y, t) pro�le of the numerical solution of the hyperbolic
NLSE at z = 0, and at z = 10. Numerical simulations and
analytical predictions are in excellent agreement. We esti-
mate the error between the asymptotic formula and the X
solitary wave in the numerics to be lower than 2%.

The proposed solutions propagate as X-shaped non-
linear invariant modes of the NLSE, being subject only
to a net delay due to the velocity c. The spatio-temporal
Fourier spectrum of these waves is also X-shaped (see Fig.
6). These features allow us to classify such modes in the
huge class of di�raction-free and dispersion-free X waves.
We emphasize, however, that there are di�erences with
respect to the more general nonlinear X wave solutions
reported in the literature for the (3+1)D hyperbolic NLSE
[14, 32]. In particular, the latter type of X waves exhibit
a characteristic decay 1/r along the spatial coordinate r
which is characteristic of Bessel functions constituting
the building blocks of X waves in the linear propagation
regime. Conversely, in the present case, the dark X solitary
waves have constant asymptotic, the line solitons. Never-
theless, the asymptotic state is compatible with 1D trans-
verse di�raction, a regimewhere the connections between

Figure 5: Numerical spatiotemporal NLSE envelope intensity distri-
bution |u(t, y, z)|2, in the (y, t) plane, showing the dark X solitary
wave dynamics, at z = 0 and at z = 10. Here, ϵ1 = 0.2, ϵ2 = 0.001.

the linear and nonlinear X-waves have not been exhaus-
tively investigated yet.

Figure 6: Normalized (dB) spatiotemporal NLSE envelope intensity
distribution in the (ky , ω) plane, at z = 0 of the dark X solitary wave
reported in Figs. 4-5.

Overall, these results provide a clear evidence that
theoretical and experimental phenomenologies of the hy-
drodynamic shallow water X waves dynamics can be
mapped into the realm of multidimensional spatiotempo-
ral nonlinear optics.
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3.3 Instabilities

Let us �nally discuss the important issue of the stability of
the predicted dark line and X solitary waves of the hyper-
bolic NLSE. Two instability factors may a�ect the propaga-
tion of these waves. The �rst one is the modulation insta-
bility (MI) of the continuous wave background. In the case
considered here (α < 0, β, γ > 0) MI is of the conical type
[33–35]. Generally speaking, MI can be advantageous to
form X waves from completely di�erent initial conditions
both in the absence [14] or in the presence [36] of the back-
ground. The secondmechanism is related to the transverse
instability of the line solitons that compose the asymptotic
state of theXwave [37].Wepoint out that such instability is
known to occur for the NLSE despite the fact that line soli-
tons are transversally stable in the framework of the KP-II
(unlike those of the KP-I) [17]. However, in our simulations
of the NLSE, these transverse instabilities never appears,
since they are extremely long range especially for shallow
solitons.

In fact, we found that the primary mechanism that af-
fects the stability of dark line and X solitary waves is the
MI of the background. As a result the onset of MI causes
the distortion of the solitarywaves due to the ampli�cation
of spatiotemporal frequencies which are outside the spa-
tiotemporal soliton spectrum. However, typically this oc-
curs only after tens of nonlinear lengths, usually beyond
the sample lengths employed in optical experiments. In-
deed, the e�ect of MI becomes visible only for distances
longer than those shown in Figs. 1-2, i.e. for z > 10 − 20.

4 Conclusions
We have analytically predicted and numerically validated
a class of dark line solitary wave solutions that describes
nondi�ractive and nondispersive spatiotemporal local-
ized wave packets propagating in optical Kerr media, in
the self-focusing and normal dispersion regime.Moreover,
we have reported non-trivial web patterns made of dark
line solitary waves, which generate X dark solitary waves,
of hydrodynamic essence. The key property of these so-
lutions is that their existence and interactions are inher-
ited from the hydrodynamic soliton solutions of the well-
known KP-II equation.

This �nding opens a novel path for the excitation and
manipulation of line and X waves in nonlinear optics and
in other areas where the NLSE applies, from Bose-Einstein
condensation to acoustics. In fact, the nonlinear dark line
and X solitary wave solutions of the NLSE are potentially

observable in the regimes investigated experimentally in
[15, 16, 31] and also in [10, 13, 38, 39]. Of course any �nite
energy realization of the present type of solutions should
consider a spatiotemporal envelope modulation of the X
solitarywave that decays to zero su�ciently slowly in (t, y)
when compared with the extension of the solitary central
notch, similarly to the case of dark solitons in (1+1)D [40]
and (2 + 1)D [41].
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