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Abstract: We consider the existence and propagation of
nondiffractive and nondispersive spatiotemporal optical
wavepackets in nonlinear Kerr media. We report analyti-
cally and confirm numerically the properties of spatiotem-
poral dark line solitary wave solutions of the (2 + 1)D non-
linear Schrédinger equation (NLSE). Dark lines represent
holes of light on a continuous wave background. More-
over, we consider nontrivial web patterns generated under
interactions of dark line solitary waves, which give birth to
dark X solitary waves. These solitary waves are derived by
exploiting the connection between the NLSE and a well-
known equation of hydrodynamics, namely the (2 + 1)D
type II Kadomtsev-Petviashvili (KP-II) equation. This find-
ing opens a novel path for the excitation and control of op-
tical solitary waves, of hydrodynamic nature.
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1 Introduction

The propagation of high-intensity, ultra-narrow and ultra-
short light pulses in quadratic and cubic nonlinear media
is a complex multidimensional phenomenon which leads
to substantial spatiotemporal pulse rearrangement. The
spatiotemporal dynamics is influenced by the interaction
of various physical effects, in particular diffraction, mate-
rial dispersion and nonlinear response. This problem has
attracted strong interest over the past decades, leading
to the generation and the manipulation of high-intensity
femtosecond and attosecond pulses [1, 2].

During the 1990s, extensive research activities con-
cerning the self-focusing behavior of intense ultra-short
pulses have shown that the spatial and temporal degrees
of freedom have to be considered together [3-13]. When
the effects of diffraction, dispersion and nonlinearity be-
come comparable, the most fascinating result of space-
time coupling is the possibility to form light bullets or
spatiotemporal solitons. A strict constraint for the excita-
tion of spatiotemporal solitons is that the nonlinear phase
changes balance both the spatial front curvature and the
dispersion-induced chirp, leading to spatiotemporal fo-
cusing. A anomalous dispersion enables the possibility to
achieve bullet-type localized waves, while a normal dis-
persion rules out this possibility, while induces different
behaviors such as temporal splitting and breaking.

During the 2000s, theoretical and experimental re-
search activities have demonstrated that localized dis-
tortionless (both nondiffractive and nondispersive) wave
packets also exist with normal dispersion in the form of
X-wave solitons [14-16].

Counteracting the natural spatiotemporal spreading
of wave packets is a universal and stimulating task,
appearing in many fields of science and applied re-
search, such as communications, optical data storage,
spectroscopy, material processing, Bose-Einstein conden-
sation, medical diagnostics, to name a few.

In this paper, we consider analytically and confirm
numerically the existence and propagation of nondiffrac-
tive and nondispersive spatiotemporal solitons in self-
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focusing and normal dispersion Kerr media. At first, we
show the existence and properties of dark line solitary
waves of the (2 + 1)D nonlinear Schrédinger equation
(NLSE), which governs the propagation in self-focusing
with normal dispersion. Then, we consider nontrivial web
patterns generated under interactions of line solitons,
which give birth to dark X solitary waves. The analyti-
cal dark solitary solutions are derived by exploiting the
connection between the (2 + 1)D NLSE and the (2 + 1)D
Kadomtsev-Petviashvili (KP) equation [17], a well-known
equation of hydrodynamics. The latter constitutes the
natural extension of the well-known (1+1)D Korteweg-de
Vries (KdV) equation and it is widely employed in plasma
physics and hydrodynamics (see e.g.[17-21]) in its two dif-
ferent forms, the so-called KP-I type and KP-II type, de-
pending on the sign of the transverse perturbation to the
KdV equation.

Our results extend and confirm the connection be-
tween nonlinear wave propagation in optics and hydrody-
namics, that was established in the 1990’s [22-27] and re-
cently extensively studied [28, 29].

2 Theoretical Procedures

The dimensionless time-dependent paraxial wave equa-
tion in Kerr media, in the presence of group-velocity dis-
persion, and by limiting diffraction to one dimension,
reads as [28]:

ﬁUyy""y'u‘zu:O, )]

au +
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2

where u(t, y, z) represents the complex wave envelope; ¢, y
represent temporal and spatial transverse coordinates, re-
spectively, and z is the longitudinal propagation coordi-
nate. Each subscripted variable in Eq. (1) stands for par-
tial differentiation. a, f, v are real constants that represent
the effect of dispersion, diffraction and Kerr nonlinearity,
respectively. We refer to Eq. (1) as elliptic NLSE if a8 > 0,
and hyperbolic NLSE if af < 0. Of course, Eq. (1) may also
describe (2+1)D spatial dynamics in cubic Kerr media, ne-
glecting group-velocity dispersion; in this case t, y repre-
sent the spatial transverse coordinates, and z the longitu-
dinal propagation coordinate; moreover a = 8 > O.
Writing u = /p exp(if), and substituting in Eq. (1), we
obtain for the imaginary and real parts of the field the fol-
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Let us consider now small corrections to the stationary
continuous wave (cw) background solutions of Egs. (2),
and set

p=po+E€PL, 0=0q+€b; (3)

with pg constant, 8y = vpoz. € is a small positive extension
parameter (0 < € < 1). We introduce the variables n = €p;
and ¢ = €6, and assume the following scalingsn ~ ¢, ~
¢t ~ 0@, 0 ~ 9 ~ O(?),dy ~ O(e). Then we
obtain from Egs. (2)

Nz + po(ade + Bdyy) + a('](;bt)t = 0(e"?),

pemn+§ (97 g ) 20D @

Introducing the coordinates T = t - coz, v =y, ¢ =z (cg =
/=7@pg), and noting that d¢ ~ O(e3/?), from Eqgs. (4) we
have

=CoMt + N¢ + poaerr + poPduy + aln)r = 0(67/2)

o+ =+ 5 (# - ooner ) 0D 6

From the second of Egs. (5), we obtain n = —%Od)ﬁ (higher
order terms); iterating to find the higher order terms, we
obtain

2
n= % (—C0¢T + ¢(; + %¢% - [:Lq)(l)rrr) + O(EB). 6)

By inserting (6) in the first of Egs. (5), we have

3a a? c
¢T(; + T((l)-%)r - 87(:0(1711'1'1' + %{f(ﬁvv = 0(63)- )
Eq. (7) is known as the potential KP equation [20]. In
fact, from Eq. (7) we obtain the evolution equation for 7,

namely, we have the KP equation at the leading order,

(—’lc '2’1

Notice that, in the case a > 0, § > 0,~ < 0, we have the
KP-I type, and when a < 0, v > 0, 8 > 0, the KP-II type.

Therefore, we underline that the optical NLSE solution
u(t, y, z) of hydrodynamic KP origin [n(7, v, ¢), ¢(7, v, ¢)]
can be written as [28, 29]:

u(t,y, z) = \/po + n(t, v, ¢) PV = (q)

2
a rlTTT)T_ zo(frluu— 0. (8)
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with ¢ = ~(y/co) [ n,T=t-coz,v=yand¢ =z

Of interest in the optical context, the elliptic anoma-
lous dispersion and self-defocusing regime (@ > 0, 8 >
0,7 < 0) leads to the KP-I regime, while the hyperbolic
normal dispersion and self-focusing regime (@ < 0, v >
0,8 > 0) leads to the KP-II regime. Without loss of gen-
erality, we may set the following constraints to the coeffi-
cients of Eq. (1), |a| = 4v2,B = 6v2,|y| = 2v/2; more-
over, we fix po = 1 (thus co = 4). Note that, with the pre-
vious relations among its coefficients, in the case (a > 0,
B > 0,~v < 0) the Eq. (8) reduces to the standard KP-I
form: (-n¢ - 6n1r + Nere)r — 3Nwy = 0; in the case (a < O,
~ >0, 8 > 0) the Eq. (8) reduces to the standard KP-II form
(_rIC —-6nnr+ rlTTT)T + 31w = 0.

3 Results and Discussion

Here, we focus our attention on the combined action of
diffraction and normal dispersion for self-focusing media,
thus we consider the optical NLSE-hydrodynamic KP-II
correspondence. The results that we derive below have rel-
evance also for different contexts where the same hyper-
bolic NLSE applies, such as the propagation in suitably en-
gineered lattices giving rise to effective negative diffraction
[30, 31] (in this case t represents in Eq. (1) an additional
spatial variable).

3.1 NLSE dark line solitary wave
propagation

At first, we proceed to consider the existence and propaga-
tion of (2 + 1)D NLSE dark line solitary waves, which are
predicted by the existence of (2+1)D KP bright line solitons
[20, 21]. When considering the small amplitude regime, a
formula for an exact line bright soliton of Eq. (8) can be
expressed as follows [20]:

n(t,v,¢) =—€ sech?[\e/2(t + tanpv +cg)l, (10)

where € rules the amplitude and width of the soliton, ¢
is the angle measured from the v axis in the counterclock-
wise, ¢ = 2¢e + 3tan’¢ is the velocity in 7-direction. No-
tice that c is of order €. Moreover we obtain ¢(t, v, ¢) =
Ve tanh([\/e/iz(r +tanguv + cg)].

Figure 1shows the analytical spatiotemporal envelope
intensity profile |u(t, y, z)|> = 1+n(1 = t-coz, V= y, ¢ = 2)
of a NLSE dark line solitary wave, given by the mapping
(9) exploiting the KP bright soliton expression (10), in the
y — t plane at z = 0, at z = 10, and in the t - z plane at
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Figure 1: Analytical spatiotemporal dark-lump NLSE envelope inten-
sity distribution |u(t, y, z)|?, shown in the y - ¢ plane, atz = 0, at
z=10,and inthe t -z planeaty = 0. Here, € = 0.1, ¢ = 0.01.

y = 0, for € = 0.1 and ¢ = 0.01. The intensity dip of the
dark line solitary wave is —€, the velocity co — c - 3tan?¢ =
4 - 2€ - 3tan’ ¢ in the z-direction.

Next, we numerically verified the accuracy of the
analytically predicted dark line solitary waves of the
NLSE. To this end, we made use of a standard split-step
Fourier technique, commonly adopted in the numerical
solution of the NLSE (1). We take the dark wave enve-
lope at z = 0 as the numerical input: u(t,y,z = 0) =
V1+n(t=t,v=y,¢=0)exp lig(r=t,v=y,6=0)],
where 7 is the line-soliton solution (10). Figure 2 shows
the numerical spatiotemporal envelope intensity profile
lu(t, y, z)|* of a NLSE dark line solitary wave, which corre-
sponds to the analytical dynamics reported in Fig. 1.

As can be seen from the images included in Figs. 1-
2 the numerical solutions of the NLSE show an excel-
lent agreement with the analytical approximate NLSE soli-
tary solutions. Only a small low amplitude radiative emis-
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Figure 2: Numerical spatio-temporal dark-lump NLSE envelope
intensity distribution |u(t, y, z)|2, shown in the y - ¢ plane, at z = 0,
atz=10and inthet-zplaneaty = 0. Here, e = 0.1, ¢ = 0.01.

sion can be detected at the beginning of propagation. The
NLSE-KP mapping works well also for higher value of e.
We considered the effective energy E of envelope u:

E- //W ~po)dtady,

and we defined the relative error function e = (E -
Eexact)/Eexact, Where E represents the numerical effective
energy of the excited dark solitary wave and Eeyq; is the ef-
fective energy of the solitary solution of KP-II origin. Figure
3 reports the error function e [%] as a function of €. Notice
that € = 1 is the maximum allowed value, since py = 1,
which gives a black dark solitary wave.

3.2 NLSE dark X solitary wave propagation

In the long wave context, the KP-II equation admits com-
plex soliton solutions, mostly discovered and demon-
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Figure 3: Error function e [%] versus € values. Here, ¢ = 0.

strated in the last decade [20, 21], which may describe non-
trivial web patterns generated under resonances of line-
solitons.

Here, we consider the resonances of four line solitons,
which give birth to the so-called O-type bright X-shaped
two-soliton solution of the KP-II (the name O-type is due to
the fact that this solution was originally found by using the
Hirota bilinear method [20]). When considering the small
amplitude regime, the formula of the O-type solution of Eq.
(8) can be expressed as follows [20],

n(t,v,¢)=-2(nF),,, (11)

where the function F(t, v, ¢) is given by F = f + f, with

f1 = (€1 + €2) cosh[(eq — €2)T + 4 (€3 - €3)c]

f> = 2\/€1€; cosh[(e? - €3)v].

€1, €, are small real positive parameters which are related
to the amplitude, width and the angle of the O-type X-
soliton solutions.

The corresponding (2+1)D NLSE dark X solitary wave
u(t, y, z), is directly given through the mapping Eq. (9), by
exploiting the soliton expression for n(t, v, ¢) in Eq. (11).

Figure 4 shows the spatiotemporal envelope intensity
profile [u(t,y,z)|> = 1+ n(t = t - coz,v = y,¢ = z) of a
(2+1)D NLSE dark X solitary wave of the hyperbolic NLSE.
The solution is shown in the (y, t) plane, at z = 0 and at
z = 10. In this particular example we have chosen €; =
0.2, €5 = 0.001. Specifically, Fig. 4 illustrates a solitary so-
lution which describes the X-interaction of four dark line
solitons. The maximum value of the dip in the interaction
region is 2(e1 — €)% (€1 + €2)/(e1 + €3 + 2,/€1€;). Asymp-
totically, the solution reduces to two line dark waves for
t < 0 and two for t > 0, with intensity dips 3(e; - €;)°
and characteristic angles +tan~'(e; + €,), measured from
the y axis. Next, we numerically verified the accuracy of
the analytically predicted O-type dark X solitary wave of
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Figure 4: Analytical spatiotemporal NLSE envelope intensity distri-
bution |u(t, y, 2)|?, in the (y, t) plane, showing the dark X solitary
wave dynamics, at z = 0 and at z = 10. Here, €; = 0.2, €; = 0.001.

the NLSE. As done previously, we took the dark wave en-
velope at z = 0 as the numerical input: u(t,y,z = 0) =
\/1+11(T=t,u=y,g=0)exp[i¢(‘r=t,v=y,g=0)],
where 7 is the X-soliton solution (11). Fig. 5 shows the
(v, t) profile of the numerical solution of the hyperbolic
NLSE at z = 0, and at z = 10. Numerical simulations and
analytical predictions are in excellent agreement. We esti-
mate the error between the asymptotic formula and the X
solitary wave in the numerics to be lower than 2%.

The proposed solutions propagate as X-shaped non-
linear invariant modes of the NLSE, being subject only
to a net delay due to the velocity c. The spatio-temporal
Fourier spectrum of these waves is also X-shaped (see Fig.
6). These features allow us to classify such modes in the
huge class of diffraction-free and dispersion-free X waves.
We emphasize, however, that there are differences with
respect to the more general nonlinear X wave solutions
reported in the literature for the (3+1)D hyperbolic NLSE
[14, 32]. In particular, the latter type of X waves exhibit
a characteristic decay 1/r along the spatial coordinate r
which is characteristic of Bessel functions constituting
the building blocks of X waves in the linear propagation
regime. Conversely, in the present case, the dark X solitary
waves have constant asymptotic, the line solitons. Never-
theless, the asymptotic state is compatible with 1D trans-
verse diffraction, a regime where the connections between
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Figure 5: Numerical spatiotemporal NLSE envelope intensity distri-
bution |u(t, y, z)|?, in the (y, t) plane, showing the dark X solitary
wave dynamics, at z = 0 and at z = 10. Here, €; = 0.2, €; = 0.001.

the linear and nonlinear X-waves have not been exhaus-
tively investigated yet.
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Figure 6: Normalized (dB) spatiotemporal NLSE envelope intensity
distribution in the (ky, w) plane, at z = 0 of the dark X solitary wave
reported in Figs. 4-5.

Overall, these results provide a clear evidence that
theoretical and experimental phenomenologies of the hy-
drodynamic shallow water X waves dynamics can be
mapped into the realm of multidimensional spatiotempo-
ral nonlinear optics.
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3.3 Instabilities

Let us finally discuss the important issue of the stability of
the predicted dark line and X solitary waves of the hyper-
bolic NLSE. Two instability factors may affect the propaga-
tion of these waves. The first one is the modulation insta-
bility (MI) of the continuous wave background. In the case
considered here (a < 0, 8, > 0) Ml is of the conical type
[33-35]. Generally speaking, MI can be advantageous to
form X waves from completely different initial conditions
both in the absence [14] or in the presence [36] of the back-
ground. The second mechanism is related to the transverse
instability of the line solitons that compose the asymptotic
state of the X wave [37]. We point out that such instability is
known to occur for the NLSE despite the fact that line soli-
tons are transversally stable in the framework of the KP-II
(unlike those of the KP-I) [17]. However, in our simulations
of the NLSE, these transverse instabilities never appears,
since they are extremely long range especially for shallow
solitons.

In fact, we found that the primary mechanism that af-
fects the stability of dark line and X solitary waves is the
MI of the background. As a result the onset of MI causes
the distortion of the solitary waves due to the amplification
of spatiotemporal frequencies which are outside the spa-
tiotemporal soliton spectrum. However, typically this oc-
curs only after tens of nonlinear lengths, usually beyond
the sample lengths employed in optical experiments. In-
deed, the effect of MI becomes visible only for distances
longer than those shown in Figs. 12, i.e. for z > 10 - 20.

4 Conclusions

We have analytically predicted and numerically validated
a class of dark line solitary wave solutions that describes
nondiffractive and nondispersive spatiotemporal local-
ized wave packets propagating in optical Kerr media, in
the self-focusing and normal dispersion regime. Moreover,
we have reported non-trivial web patterns made of dark
line solitary waves, which generate X dark solitary waves,
of hydrodynamic essence. The key property of these so-
lutions is that their existence and interactions are inher-
ited from the hydrodynamic soliton solutions of the well-
known KP-II equation.

This finding opens a novel path for the excitation and
manipulation of line and X waves in nonlinear optics and
in other areas where the NLSE applies, from Bose-Einstein
condensation to acoustics. In fact, the nonlinear dark line
and X solitary wave solutions of the NLSE are potentially
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observable in the regimes investigated experimentally in
[15, 16, 31] and also in [10, 13, 38, 39]. Of course any finite
energy realization of the present type of solutions should
consider a spatiotemporal envelope modulation of the X
solitary wave that decays to zero sufficiently slowly in (¢, y)
when compared with the extension of the solitary central
notch, similarly to the case of dark solitons in (1 + 1)D [40]
and (2 + 1)D [41].
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