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Abstract

Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies

have suggested that it could also play a role in complex disorders, such as psychiatric dis-

eases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs)

along the genome, which are also defined as autozygosity regions. Genetic variants in

these regions have two alleles that are identical by descent, thus increasing the odds of

bearing rare recessive deleterious mutations due to a homozygous state. A recent study

showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that

recent inbreeding could play a role in the disease. To better understand the impact of auto-

zygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven

subjects with extremely high numbers of large ROHs that were likely due to recent inbreed-

ing and characterized the mutational landscape within their ROHs using Whole Exome

Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%;

empirical p-value = 0.0171) between genes inside ROHs affected by low frequency func-

tional homozygous variants (107 genes) and the group of most promising candidate genes

mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare

damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glu-

tamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into

the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia.

ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-fre-

quency variants and extremely rare variants that have a high impact on pivotal biological

pathways implicated in the disease. In addition, this study confirms that focusing on patients

with high levels of homozygosity could be a useful prioritization strategy for discovering new

high-impact mutations in genetically complex disorders.
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Background

Inbreeding is a well-established risk factor for recessive Mendelian diseases because it results

in the presence of autozygosity regions, which are long runs of homozygosity (ROHs) in

which the two alleles are identical by descent. These regions, indeed, increase the odds of bear-

ing rare, recessive, deleterious mutations in a homozygous state (reviewed in [1]). Whether

recent inbreeding contributes to the risk of complex diseases, such as schizophrenia, is less

clear. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients,

suggesting that large autozygosity regions due to recent inbreeding could play a role in the dis-

ease [2]. However, previous studies failed to detect a significant enrichment of rare recessive

deleterious homozygous variants in the schizophrenic population [3, 4]. Mating between rela-

tives accounts for fewer than 1% of marriages in industrialized countries [5]; therefore, the

appearance of rare homozygous risk variants should be an ultra-rare event that is difficult to

identify in the general population.

An established prioritization approach to identify these types of variants combines homozy-

gosity mapping with whole exome sequencing (WES) [6]. Indeed, variant selection based on

autozygosity regions has been used effectively to study the role of inbreeding and recessive

genotypes, not only in Mendelian disorders but also in the pathogenesis of complex disorders,

such as autism [7] and intellectual disability [8].

In the absence of pedigree information, a way to select patients with autozygosity regions is

by selecting patients with a high portion of their genome contained within long ROHs. Pat-

terns of homozygosity observed in different human populations suggest that large ROHs (sev-

eral Mb long) result largely from recent inbreeding, whereas short ROHs are also common in

outbred populations and derived mainly from population-level LD patterns [9, 10].

To better understand the impact of rare homozygous variants and of autozygosity on the

risk of schizophrenia, we selected, from a cohort of 180 Italian patients, seven subjects with

extremely high numbers of large ROHs and characterized the mutational landscape within

their ROHs using WES and gene set enrichment analyses.

Our results provide insights into the contribution of rare recessive mutations and inbreed-

ing as risk factors for schizophrenia.

Materials and methods

The study was approved by the ethics committee of Lombardy Region (NP1581-01/14/2014).

All participants provided written informed consent for DNA collection.

Patients

The study involved the 180 patients previously subjected to CNV analysis using the Affymetrix

Human Mapping GeneChip 6.0 arrays, as and reported by Magri and colleagues [11]. Recruit-

ment and eligibility criteria are described in more details elsewhere [11]. Briefly, patients were

enrolled, on a consecutive basis, from those voluntarily admitted to the Brescia University

and Spedali Civili Psychiatric Unit between 1997 and 2008. Patients were of both sexes (63%

males), with a mean age at recruitment of 39.1 years (sd = 12) (range = 17–76 years) and a

mean age at onset of 26.4 (sd = 8.2) (range 15–57). They were Caucasian, of self-reported Ital-

ian descent for at least 2 generations and were unrelated to one another. All patients satisfied

the DSM-IV-TR criteria for schizophrenia in the absence, during their lifespan, of co-morbidi-

ties with other DSM-IV-TR Axis I disorders, with the exception of nicotine and caffeine abuse.

They had a level of understanding and attention sufficient to give true informed consent.

Homozygous variants in schizophrenic patients
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Homozygosity analysis

ROHs were detected with the SVS7 software (Golden Helix) using genotype data already avail-

able [11]. ROHs larger than 4 Mb are indicative of autozygosity due to recent parental related-

ness [9, 10]. Therefore, to select patients with ROHs likely due to recent inbreeding, we first

selected those with at least one ROH larger than 4 Mb, and from those individuals, we selected

those with the highest number of large ROHs (subjects falling in the upper quartile).

Whole exome sequencing

WES was performed on gDNA using the AmpliSeq Exome kit (Life Technologies) and the

Ion PI Chip on the Ion Proton System (Life Technologies). Sequence alignment to Hg19

and variant identification were performed with the Torrent Suite v.4.2.1 and Torrent Suite

Variant Caller v.4.2.1 software. Because false-positive indels are a limitation of the Ion Torrent

technology, the raw VCF files containing the list of genetic variants identified in each sample

were filtered against an in-house developed list of false positive indels prior to annotation with

ANNOVAR [12]. Middle range and small CNVs were determined from aligned reads using

the germline CNV workflow in Ion Reporter 5.2. This tool is optimized for Ion Torrent data,

with a specific baseline for AmpliSeq Exome experiments. Only CNVs identified with high

confidence and consisting of< 100 kb were considered, because larger ones are better deter-

mined from genotyping array data. Raw sequencing data in the form of BAM files containing

aligned reads are available through the SRA archive (PRJNA377832).

Definition of candidate low frequency functional (LFF) variants in ROH

regions

Following the filtration criteria reported in Fig 1, three lists of candidate variants were com-

piled: low frequency functional (LFF) variants, LFF damaging variants (LFF-D), and “best can-

didate” mutations. The “best candidate” mutations were confirmed by Sanger sequencing and

genotyped in a cohort of 100 subjects (50 schizophrenic patients and 50 healthy controls) from

the Italian population to exclude population specific polymorphisms.

Gene set enrichment analysis

INRICH software [13] was used for gene set enrichment analyses of genes included in ROH

regions over KEGG pathways, Gene Ontology (GO) categories and genes already reported to

be associated with schizophrenia. The 1,826 genes included in the composite set of Purcell

(SZ-composite set) [14] and the 348 genes included in the 108 loci found to be associated with

schizophrenia by Ripke et al. (SZ-GWAS set) [15] were considered as genes associated with

the disorder. Web GESTALT [16] was used to test for the enrichment of LFF and LFF-D genes

in KEGG pathway and GO category gene sets. Finally, using random permutation, LFF and

LFF-D gene lists were individually tested for enrichment over the SZ-composite set and the

SZ-GWAS set.

Further details of the experimental procedures and data analyses are provided in S1

Appendix.

Results

Homozygosity analysis

Analysis of the SNP array data from the cohort of 180 Italian patients with schizophrenia

revealed the presence of 27 subjects carrying, overall, 102 ROHs larger than 4Mb. Among
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them, seven patients fell in the upper quartile for the greatest number of long ROHs. These

patients (ROH-individuals) had more than 4 long ROHs compared to a median value of 2 and

more than 22 Mb of their genome were included in these ROHs compared to a median value

of 8.7 Mb. ROH-individuals were further analyzed, extending the examination to all of their

ROHs > 1 Mb. Table 1 summarizes the identified ROHs (see S1 Table for details). The clinical

and demographic characteristics of the seven ROH-individuals are reported in the S1

Appendix.

Considering genes inside ROH regions of ROH-individuals, no significant enrichment was

observed in any specific Gene Ontology category, KEGG pathway or list of genes previously

reported to be associated with schizophrenia. S1 Fig shows the ROH regions and the regions

reported to be associated with schizophrenia.

Fig 1. Pipeline for filtration of low frequency functional variants.

https://doi.org/10.1371/journal.pone.0182778.g001

Table 1. ROH regions in ROH-individuals.

Patient Number of ROHs >1Mb Median dimension (bp) Max dimension (bp) Amount of the genome

within ROHs (bp)

Number of genes within ROHs

N˚ 1 26 2,468,705 13,889,443 82,551,340 764

N˚ 2 76 1,602,416 5,538,899 151,738,690 1,430

N˚ 3 28 2,610,206 12,005,057 108,730,336 861

N˚ 4 25 1,602,559 20,857,920 87,043,015 677

N˚ 5 51 2,890,666 12,377,762 219,863,310 1,538

N˚ 6 48 2,560,178 10,334,938 147,737,251 1,214

N˚ 7 42 3,268,145 9,268,459 144,180,390 1,216

https://doi.org/10.1371/journal.pone.0182778.t001
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Exome sequencing results

WES of ROH-individuals was performed with a mean coverage of 57–148X across the target

region and with 77–94% of the bases covered by a sequencing depth of at least 20X. The analy-

sis of the sequencing data led to the identification in each subject of 47,739–51,628 genetic var-

iants with transition versus transversion ratios (Ti/Tv) of 2.49–2.60, comparable with those

expected for human exomes (S2 Table). Considering only the ROH regions defined in S1

Table, each subject presented 991–1,988 variants, affecting 677–1,538 genes (Tables 1 and 2).

Since Patient 2 was carrier of the 3q29 deletion, the hemizygous region corresponding to

this deletion was not included as a ROH, but was anyway analyzed for the potential presence

of hemizygous damaging recessive mutations. No rare deleterious variants were observed.

Candidate variants in ROH regions

Overall, 119 low frequency functional homozygous variants (LFF, MAF < 0.05) falling within

107 genes were identified inside the ROH regions, with 56 variants mapping to 54 genes

expressed in the brain according to the EBI Expression Atlas database (FPKM > 1). WES-

based analysis of small and intermediate CNVs excluded hemizygosity for these variants. CNV

analysis revealed the presence of five small homozygous deletions inside ROHs, but all of them

overlapped with segmental duplicated regions or highly polymorphic CNVs. For this reason,

they were not considered for further analysis.

Among the LFF variants, 45 were predicted as damaging (LFF-D) (Fig 1). Table 2 reports

the results for each ROH-individual, while the lists of candidate genes are reported in S3 Table.

Four damaging variants, in four ROH-individuals, fulfilled the filtering criteria to be defined as

“best candidate”. These variants were missense mutations mapping in the following genes:

ANO2 (Anoctamin 2), FMN1 (Formin 1), MEGF8 (Multiple EGF-Like-Domains 8) and GAD1
(Glutamic acid decarboxylase 1). All of the “best candidate” variants were confirmed by Sanger

sequencing. They were novel or extremely rare variants mapping in ROHs larger than 3 Mb

and never reported in homozygosity in the three inspected variant databases (1000 Genome,

Exome Variant server and ExAC 0.2) (Table 3). Moreover, none of them were detected in a

cohort of 50 controls and 50 patients of Italian origin, confirming that they are neither common

variants of the local population nor enriched in the schizophrenic group of patients from this

population.

Applying the same “best candidate” criteria, we did not observe other homozygous variants

in well-documented schizophrenia genes outside the ROH regions.

Table 2. Number of variants in ROH regions.

Patient Variants LFF variants a LFF variants in genes expressed in brain LFF-D variants “Best candidate” variants

N˚1 1,064 15 (15) 6 (6) 7 (7)

N˚2 1,561 27 (25) 14 (14) 14 (14) 1

N˚3 1,217 24 (16) 7 (7) 4 (4) 1

N˚4 991 7 (7) 3 (3) 3 (3)

N˚5 1,988 24 (21) 13 (11) 9 (9)

N˚6 1,711 9 (9) 5 (5) 2 (2) 1

N˚7 1,579 14 (14) 8 (8) 6 (6) 1

All b 9,457 119 (107) 56 (54) 45 (45) 4

LFF = low frequency functional variants; LFF-D = low frequency damaging variants
a in parenthesis the number of genes affected by the variants.
b Total number of different variants

https://doi.org/10.1371/journal.pone.0182778.t002
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Gene set enrichment analysis in LFF and LFF-D genes

The analyses of LFF and LFF-D genes in single ROH-individuals, as well as considering all

seven ROH-individuals together, did not identify any significantly enriched KEGG or GO cat-

egory containing at least two genes (Benjamini & Hochberg multiple test correction).

However, a significant enrichment of genes from the SZ-composite set was observed in the

LFF genes (17%; empirical p-value = 0.0171). This enrichment was also suggestive among

LFF-D genes (18%; empirical p-value = 0.0710). The LFF and LFF-D genes overlapping the

SZ-composite set are listed in bold in S3 Table. No enrichment was found for genes mapping

in the SZ-GWAS set.

Discussion

Homozygosity mapping performed in 180 Italian patients with schizophrenia led to the identi-

fication of seven ROH-individuals whom we assumed were offspring of matings between rela-

tives based on the high number of large ROHs in their genomes. Indeed, the genome pattern

of homozygosity observed in different human populations suggests that large ROHs (several

Mb long) are mostly due to recent inbreeding. Short ROHs, in contrast, are also common in

outbred population and derived mainly from population-level Linkage Disequilibrium pat-

terns [9, 10]. Characterization of the ROH mutational landscape of these patients revealed that

genes affected by low frequency functional variants (LFF genes), despite not being enriched in

specific GO categories or KEGG pathways, have a significant overlap with genes reported in

the SZ-composite set of Purcell [14]. This set includes the most promising genes affected by

rare mutations in schizophrenic patients (e.g., de novo schizophrenia nonsynonymous muta-

tions, post synaptic density genes, calcium channel genes, and fragile X mental retardation

protein gene targets). This enrichment remained suggestive even when only the predicted

damaging mutations were taken into account. Since the enrichment was not the consequence

of an increased density of these genes inside the ROH regions, this result suggests that at least

some of the low frequency homozygous functional mutations identified are involved with the

clinical phenotype of the patients. Our results, therefore, point to the presence of rare homozy-

gous schizophrenic risk variants in subjects bearing long ROHs that are likely due to recent

inbreeding. That long ROHs regions could be enriched for homozygous schizophrenic risk

Table 3. List of “best candidate” variants.

Patient Variants a Gene

name

Gene ID cDNA

nucleotide

change

AA

change

SIFT

(Pred.)

PP2_HDIV

(Pred.)

MT

(Pred.)

PP

100V

Frequency b ROH

size c

N˚2 chr19:42840266G>A MEGF8 NM_001271938 c.1012G>A p.

Ala338Thr

0.90

(T)

0.999 (D) 1 (D) 5.141 Novel 3.3 Mb

N˚3 chr12:5963280G>A ANO2 NM_001278596 c.562C>T p.

Arg188Trp

0.00

(D)

1.000 (D) 1 (D) 4.955 0.0000664 6.9 Mb

N˚6 chr2:171687546A>G GAD1 NM_000817 c.391A>G p.

Thr131Ala

0.02

(D)

0.986 (D) 1 (D) 8.962 Novel 5.8 Mb

N˚7 chr15:33256378G>C FMN1 NM_001103184 c.2399C>G p.

Ser800Cys

0.06

(T)

1.00 (D) 0.99

(D)

9.435 0.00000828 4.0 Mb

SIFT: Sorting Intolerant from Tolerant algorithm; PP2_HDIV: Polyphen2_HDIV; MT: Mutation Taster; D = predicted as probably damaging, deleterious or

disease causing; T = tolerated.
a positions are referred to the Hg19 assembly.
b Frequency refers to allele frequency reported in the ExAC0.2 database; none of the variants have been reported in homozygous state.
c Size of ROHs where the “best candidate” mutations were identified.

https://doi.org/10.1371/journal.pone.0182778.t003
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variants is also suggested by a recent paper by Johnson and colleagues, who failed to identify

a reliable association between ROH burden and schizophrenia but found p-values that ap-

proached significant associations when large ROHs were considered separately [2]. Johnson’s

results and ours indirectly support the hypothesis reported by Szpiech and collaborators [17],

whereby long ROHs are more enriched for deleterious homozygous variants because they are

likely generated by a recent inbreeding event and natural selection has not had time to purify

them from deleterious alleles. Considering that subjects harboring long ROHs due to recent

inbreeding represent only a small fraction of schizophrenic patients, rare recessive deleterious

variants would be difficult to observe in a schizophrenic population without selecting for

patients who have long ROHs. This would probably explain why an increased burden of rare

recessive deleterious variants was not observed in previous studies [3, 4].

Application of strict filtration criteria to low frequency functional variants (LFF) led to the

identification of four “best candidate” mutations, mapping in the MEGF8, FMN1, ANO2 and

GAD1 genes.

The MEGF8 gene encodes for a single-pass type I membrane protein containing multiple

EGF-like domains and is reported to be involved in several developmental processes, including

axon guidance [18]. Homozygous recessive MEGF8 mutations have been described in five

patients with the Carpenter syndrome subtype associated with defective lateralization [19].

Mild to moderate intellectual disability have been observed in some Carpenter subjects

(OMIM:201000) although these symptoms have not been reported in the five cases with the

subtype due to MEGF8 mutations. A patient with a molecularly uncharacterized type of Car-

penter syndrome who was also suffering from schizophrenia was reported [20]. A MEGF8
mutation was found in the patient with the 3q29 deletion (patient 2), a CNV highly penetrant

in schizophrenia, but also associated with a range of other neurodevelopmental phenotypes

[21]. Thus, it is possible that, in our patient, the MEGF8 point mutation might contribute to

the general neurodevelopmental disease risk primarily conferred by the 3q29 deletion or

might more specifically modulate the schizophrenic phenotype.

The other three “best candidate” mutations identified affect genes involved in synaptic

transmission, in particular the GABA/glutamatergic pathways (Fig 2).

The FMN1 gene encodes for formin1, a protein involved in the formation of adherent junc-

tions and the polymerization of linear actin cables; it also plays a role in dendritogenesis and

synaptogenesis in mouse hippocampal neurons [23], where its expression levels are related to

the number of primary dendrites and glutamatergic synaptic inputs. A microdeletion encom-

passing part of the FMN1 gene has been recently reported in a patient with early-onset obses-

sive-compulsive disorder [26]; interestingly, this deletion includes the FMN1 exon (exon 5)

containing the described mutation.

The ANO2 gene belongs to a family of calcium-activated chloride channels (CaCCs), and it

is mainly expressed in olfactory sensory neurons [27] and photoreceptor termini [28]. This

gene is also expressed in hippocampal pyramidal neurons, where it encodes for CaCCs that

reside in the vicinity of voltage-gated Ca2+ channels to regulate spike duration and proximity

to NMDA receptors to modulate excitatory synaptic responses [22].

Finally, GAD1 is one of the two genes encoding for the enzymes that catalyze the produc-

tion of gamma-aminobutyric acid (GABA) from L-glutamic acid. Of the “best candidate”

genes, this is the most intriguing, because reduced GAD1 mRNA and protein levels have been

consistently observed in post-mortem brains of schizophrenia patients [29, 30]. Common poly-

morphisms in the proximal GAD1 promoter have also been suggested to act as genetic risk fac-

tors for schizophrenia [31–33]. The GAD1 missense mutation identified here, leading to the

substitution of a highly conserved amino acid residue, might result in reduced enzymatic activ-

ity, mimicking the effect of a down-regulation of protein expression. The identification of

Homozygous variants in schizophrenic patients
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novel and extremely rare damaging mutations in genes belonging to biological pathways

strongly implicated in the pathogenesis of schizophrenia suggests the involvement of rare

recessive deleterious genotypes in the etiopathogenesis of the disease. However, we are aware

that the actual impact of our “best candidate” homozygous variants on schizophrenic pheno-

type can only be inferred from large association studies.

The detection, in patients with high levels of homozygosity, of an enrichment of low fre-

quency functional variants in genes previously reported associated with schizophrenia and the

identification of four novel or extremely rare risk variants affecting pivotal pathways involved

in schizophrenia suggest that the clinical phenotype of these patients could be the result of the

interplay between strong risk variants and predisposing genetic backgrounds. This, once

Fig 2. Localization at the synaptic level of the FMN1, ANO2 and GAD1 gene products on a hippocampal neuronal circuit.

FMN1 protein and calcium-activated ANO2 chloride channels are expressed in the dendritic spines of excitatory synapses [22,

23], whereas GAD67 (the enzyme produced by the GAD1 gene) is expressed in the axonal termini of inhibitory GABAergic

interneurons. It has been shown that impairment of these genes induces: dendritic arborization abnormalities (FMN1) [23],

alterations in action potential duration and in the threshold for action potential generation (ANO2) [22], and the dysfunctional

synthesis of the GABA neurotransmitter (GAD1) [24]. At different levels, the impairment of these genes might affect the complex

excitatory/inhibitory balance across cortical circuits that is believed to be altered in schizophrenic patients [25].

https://doi.org/10.1371/journal.pone.0182778.g002
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again, supports the results of Szpiech and collaborators reporting that recent inbreeding mag-

nifies the occurrence of extremely rare strongly deleterious mutations, as well as of mild delete-

rious variants [17].

Despite the detailed genetic characterization of ROH regions, some limitations could have

affected our analysis. Based on data in the literature [9, 10], we had assumed that the high

number of large ROHs detected in the seven schizophrenic patients was the consequence of

recent inbreeding. However, we are aware that recent parental relatedness can be firmly

inferred only from pedigree information, which was not available for these patients.

Moreover, in these patients, we identified some novel/rare mutations and identified them

as risk factors for schizophrenia because they are deleterious and/or affect genes previously

implicated in the disease. The deleteriousness of these variants, however, is based only on bio-

informatics predictions. Future functional studies in cellular models are needed to confirm the

biological role of these variants.

Finally, this study was limited to the coding portion of the genome; thus the spectrum of

genetic variability relevant for schizophrenia was not fully addressed. Indeed, several loci asso-

ciated with the disorder in GWAS mapped to intergenic regions, suggesting an important role

of regulatory variants. An analysis of noncoding variants is therefore needed to fully under-

stand the role played by rare recessive variants in schizophrenia.

Conclusions

Despite the limitations reported, our results provide insights into the contribution of rare

recessive mutations and inbreeding as risk factors for schizophrenia. They suggest that ROHs

that are likely due to recent inbreeding harbor a combination of predisposing low frequency

variants and extremely rare variants with high impact in pivotal biological pathways implicated

in the disease. In addition, this study confirms that focusing on patients with high levels of

homozygosity could be a useful prioritization strategy to discover new high-impact mutations

in genetically complex disorders.
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S1 Table. ROH regions identified in ROH-individuals.
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S2 Table. Exome sequencing results.
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S3 Table. LFF and LFF-D gene lists.
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