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Carduus crispus, a Mongolian thistle has long been used in 
Chinese folk medicine for the treatment of colds, stomach 
problems and rheumatism. In 2002, pharmacological screening of 
an extract revealed significant cytotoxicity against some human 
cancer cell lines.1 The search for the active compounds led to the 
discovery of five novel alkaloids, crispine A–E (Figure 1). (+)-
Crispine A 1 and crispine B 2 have pyrrolo-[2,1-a]isoquinoline 
skeletons whereas crispine C 3 and crispine D 4 are isoquinoline 
alkaloids with guanidinyl side-chains. (+)-Crispine E is a 
tetrahydroisoquinoline with a guanidine derived propyl side-
chain at the C-1 position. On isolation, testing of these 
compounds against SKOV3, KB and Hela human cancer cell 
lines showed crispine B 2 to have significant cytotoxic activity.1 

Due to their novel structures and the potential of these 
compounds as pharmaceutical agents, there has been much 
interest in their synthesis.2-4 Crispine A 1 in particular has been 
prepared using a variety of methods,2 including a lipase-catalysed 

kinetic resolution of a C-1 substituted tetrahydroisoquinoline2n as 
well as by a stereoselective electrochemical cyanation of a chiral 
tetrahydroisoquinoline.2r Crispine B 2 has been prepared using a 
Bischler-Napieralski reaction,3 while (+)-crispine E 5 has been 
synthesised using asymmetric transfer hydrogenation as the key 
step.4b To date, there have been no reported syntheses of crispine 
C 3 or crispine D 4. Our research group has had a long-standing 
interest in the synthesis of guanylated natural products and  

 

Figure 1 Structures of crispine A 1, B 2, C 3, D 4 and E 5. 

medicinally active agents using in particular, various protected 
pyrazole-1-carboxamidines for the efficient incorporation of the 
guanidine group.5 Using this approach in combination with a 
Pictet-Gams reaction to effect the key step, we now report the 
first total synthesis of crispine C. 
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The first total synthesis of the isoquinoline alkaloid, crispine C is described in seven steps using 
a Henry reaction and the Pictet-Gams variant of the Bischler-Napieralski reaction to effect the 
key transformations. 
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Our strategy for the synthesis of crispine C 3 involved the 

preparation of a suitably functionalised phenethylamine that 
would be coupled with 4-aminobutyric acid (Scheme 1). The 
resulting amide was to be used in a Bischler-Napieralski type 
reaction to form the isoquinoline ring system and the synthesis 
would then be completed by the incorporation of the guanidine 
moiety. 

 

 

 

 

 

 

 

 

 

 

Scheme 1 Synthetic approach for the synthesis of crispine C 3. 

 

Our first attempt at the synthesis of crispine C 3 involved 
using 3,4-dimethoxyphenethylamine 6 as a starting material and 
a Bischler-Napieralski reaction to form a C-1 substituted 3,4-
dihydroisoquinoline (Scheme 2). 3,4-Dimethoxyphenethylamine 
6 was coupled with Cbz-protected 4-aminobutyric acid6 using 
EDCI as a coupling agent to give the corresponding amide 7 in 
89% yield. Amide 7 was then treated with neat phosphorus 
oxychloride to effect the Bischler-Napieralski reaction4b,7 and this 
gave 3,4-dihydroisoquinoline 8 in 73% yield. The next stage of 
the reaction sequence required dehydrogenation of 8 to complete 
the synthesis of the isoquinoline ring system. A number of well-
precedented methods were investigated including heating 8 in 
diphenyl ether at 170 °C in the presence of palladium on carbon,8 
as well as oxidation of 8 with selenium dioxide9 and DDQ.10 
However, all attempts led to decomposition or returned only 3,4-
dihydroisoquinoline 8. 

 

 

 

 

 

 

 

 

 

Scheme 2 Reagents and conditions: i. 4-Cbz-aminobutanoic acid, EDCI, 
DMAP, CH2Cl2, rt, 89%; ii. POCl3, ∆, 73%. 

 

While the oxidation of dihydroisoquinolines to give 
isoquinolines is well known, problems with electron-rich ring 
systems have been reported.11 These issues have been overcome 
by using the Pictet-Gams modification of the Bischler-
Napieralski reaction.12 A suitable substrate for this reaction was 
prepared in three steps from 3,4-dimethoxybenzaldehyde 9 
(Scheme 3). Initially, 9 was subjected to a Henry reaction13 with 
nitromethane which gave β-nitro alcohol 10 in 85% yield. 
Hydrogenation under standard conditions gave β-amino alcohol 

11 in quantitative yield and this was then coupled with 
phthalimido-protected butyric acid14 using EDCI to give β-amido 
alcohol 12 in 75% yield.15 With β-amido alcohol 12 in hand, this 
was subjected to the key Pictet-Gams reaction using phosphorus 
oxychloride. Although the reaction does proceed when performed 
neat, the best yield of 66% for isoquinoline 13 was obtained 
using toluene as a solvent. The phthalimido-protecting group was 
then removed using hydrazine. The resulting amine was then 
coupled with commercially available N,N’-bis(tert-
butoxycarbonyl)-1H-pyrazole-1-carboxamidine 14 in the 
presence of Hünig’s base which gave guanidine 15 in 82% yield 
over the two steps.5,16 Treatment of 15 with TFA to remove the 
Boc-protecting groups gave crispine C 3 in 73% yield. The 
spectroscopic data obtained for our synthetic material was in 
complete agreement with that reported for the natural product by 
Zhao and co-workers.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3 Reagents and conditions: i. CH3NO2, 4Å mol. sieves, DMSO, 
85%; ii. H2, 10% Pd/C, MeOH, 100%; iii. 4-Phth-aminobutanoic acid, EDCI, 
DMAP, CH2Cl2, 75%; iv. POCl3, ∆, toluene, 66%; v. hydrazine hydrate, ∆, 
EtOH; vi. 14, EtN(i-Pr)2, MeOH, 82% over two steps; vii. TFA, CH2Cl2, 

73%. 

In summary, the first total synthesis of crispine C is reported 
in seven steps and 25% overall yield. Although a two-step 
strategy involving a Bischler-Naperialski reaction followed by 
oxidation was unable to yield the C-1 substituted electron-rich 
isoquinoline, a more direct ring-forming process utilising a 
Pictet-Gams reaction was successful. The flexible approach 
described here is currently being used to prepare a wide range of 
isoquinoline ring systems with C-1 substituted guanylated side-
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 3 
chains. The results of these studies and well as biological 
evaluation of these novel compounds will be communicated in 
due course. 
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