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ON THE SMOOTHNESS OF CENTRES OF RATIONAL CHEREDNIK ALGEBRAS IN

POSITIVE CHARACTERISTIC

GWYN BELLAMY AND MAURIZIO MARTINO

Abstract. In this article we study rational Cherednik algebras at t = 1 in positive characteristic. We

study a finite dimensional quotient of the rational Cherednik algebra called the restricted rational Cherednik

algebra. When the corresponding pseudo-reflection group belongs to the infinite series G(m, d, n), we describe

explicitly the block decomposition of the restricted algebra. We also classify all pseudo-reflection groups

for which the centre of the corresponding rational Cherednik algebra is regular for generic values of the

deformation parameter.

Dedicated, with admiration and thanks, to Ken Brown

and Toby Stafford on their 60th birthdays

1. Introduction

1.1. Rational Cherednik algebras were introduced by Etingof and Ginzburg in 2002. Since their introduction

they have been extensively studied and have been shown to be related to many other branches of mathematics

such as integrable systems, symplectic algebraic geometry and algebraic combinatorics. In this article we

continue the study, initiated in [6], [7], [2] and [1], of these algebras at t = 1 and over a field of positive

characteristic. We focus on the representation theoretic aspects of the story. In particular, we examine the

block structure of certain finite-dimensional quotient algebras called restricted rational Cherednik algebras.

We also look at the question of when the centre of the rational Cherednik algebra is smooth. These questions

are motived by the fact that the analogous problems for rational Cherednik algebras at t = 0 in characteristic

zero have important applications in symplectic algebraic geometry. Namely, it is know by work of Ginzburg

and Kaledin, [16], that the centre of the rational Cherednik algebra associated to a group W being smooth

(at generic deformation parameter c) is equivalent to the existence of a symplectic resolution for the quotient

singularity (V × V ∗)/W . For each complex reflection group W , it is now known for which parameters c the

centre of the corresponding rational Cherednik algebras at t = 0 in characteristic zero is smooth, see [14],

[17], [4], [26], [29], [3]. Our results are very similar in nature. The methods we develop, however, are new,

and in fact can be used to reprove many of the characteristic zero results.

1.2. Let us review our results. Further details can be found in the main body of the paper. Let W be

a pseudo-reflection group. The main results of the paper are valid under the following restriction on the

ground field:

k is an algebraically closed field of characteristic p > 0 with p - |W |.

Let V denote the reflection representation of W over k. Let S(W ) denote the set of reflections in W and let

c : S(W )→ k be a W -invariant function. To this data we can attach a k-algebra Hc(W ) called the rational

Cherednik algebra.
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Let V (1) denote the Frobenius twist of V . The centre of Hc(W ) is denoted Zc(W ). There is an injective

algebra homomorphism

k[V (1)]W ⊗ k[(V ∗)(1)]W ↪→ Zc(W ).

Factoring out by the unique graded, maximal ideal in this central subalgebra, one gets a finite dimensional,

graded quotient of the rational Cherednik algebra. This factor algebra is called the restricted rational

Cherednik algebra and is denoted Hc(W ). Simple modules for this finite dimensional algebra are in natural

bijection with the simple modules of the group W . Thus, the blocks of Hc(W ) give us a partition of the set

IrrW . Our first main result is an explicit combinatorial description of this block partition when W belongs

to the infinite series G(m, 1, n). In this case, the irreducible representations of W are naturally labeled by

P(m,n), the set of m-multipartitions of n. For each λ ∈ P(m,n), let Lc(λ) denote the corresponding simple

Hc(W )-module. For the definitions in the following statement and the proof of the following theorem, see

4.5.

Theorem. Let λ,µ ∈ P(m,n). Let a = (0, H1, H1 + H2, . . . ,H1 + · · · + Hm−1). Then Lc(λ) and Lc(µ)

belong to the same block of Hc(W ) if and only if

m−1∑
i=0

x(a
p
i−ai)Res λi(x

−(κp−κ)) =

m−1∑
i=0

x(a
p
i−ai)Res µi(x

−(κp−κ)).

Using this description of the blocks of the restricted rational Cherednik algebra Hc(G(m, 1, n)), some Clif-

ford theory also allows one to describe the blocks of the restricted rational Cherednik algebra Hc(G(m, d, n)),

see 4.6. Here G(m, d, n) denotes (in the Shephard-Todd classification) the normal subgroup of G(m, 1, n)

where we impose the restriction that d | m and either n > 2 or n = 2 and d is odd.

1.3. Our remaining results concern the smoothness of Zc(W ). In section 5 we relate the smoothness of

Zc(W ) to the representation theory of Hc(W ). Taking as our starting point the fact that the smooth and

Azumaya loci of Zc(W ) are equal, we use the restriction functors of [5] to establish the following.

Theorem. The following are equivalent:

(1) Zc(W ) is smooth;

(2) the blocks of Hc′(W
′) are singletons for all parabolic subgroups W ′ ⊆W .

Here, c′ denotes the restriction of c to S(W ) ∩W ′.

In the case that W = G(m, 1, n), we can apply the theorem together with the description of the blocks

from Theorem 1.2 to determine for which parameters c the centre Zc(W ) is smooth.

Corollary. The centre of Hc(G(m, 1, n)) is smooth if and only if c does not lie on the finitely many hyper-

planes in C defined by

κ ∈ Fp and ai − aj ± Cκ ∈ Fp, ∀ 0 ≤ i 6= j ≤ m− 1, 0 ≤ C ≤ n− 1.

We should note that an analogous version of the theorem and its corollary is true for rational Cherednik

algebras at t = 0 over the complex numbers. Using [29, Theorem 5.5], this gives an alternative way to

describe the parameter values where the centre is smooth, c.f. [18, Lemma 4.3]. The theorem also clarifies

the relationship between restricted Cherednik algebras and the smoothness of the centres Zc(W ).
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1.4. Since k = k and hence |k| = ∞, the corollary shows that the centre of Hc(G(m, 1, n)) is a smooth

algebra for generic values of the parameter c. One can ask more generally: for which pseudo-reflection

groups W is Zc(W ) smooth for generic values of the parameter c? Our final result answers this question.

Theorem. The centre of the rational Cherednik algebra Hc(W ) is never smooth if W is not isomorphic to

G(m, 1, n) or G4. If W is isomorphic to G(m, 1, n) for some m and n or to the exceptional group G4, then

the centre of Hc(W ) is smooth for generic values of c.

Our approach to proving Theorem 1.4 follows the same path as in [4] - we calculate the Poincaré polynomial

of the graded Hc(W )-modules Lc(λ) under the assumption that the dimension of these modules is maximal,

namely dimk Lc(λ) = pn|W |. This leads to a contradiction for many choices of λ. However, the naive

argument of loc. cit. is not sufficient in our case to calculate this Poincaré polynomial. Instead, we show

that Lc(λ) can be deformed (flatly) to a graded H0(W ) = D(V )oW -module. Using a result of Cartier’s on

D-modules with zero p-curvature, we study the graded W -character of this module at c = 0.

Remark. Theorem 1.4 and Corollary 1.2 provide a complete answer to [7, Question D] for rational Cherednik

algebras.

1.5. The paper is structured as follows. In section 2 we introduce notation and recall some facts about

pseudo-reflection groups. In section 3 we define rational Cherednik algebras and state their main properties.

The Dunkl-Opdam operators are introduced in Section 4 and are used to prove Theorem 1.2. Section 5 is

devoted to parabolic restriction and induction and their application in the proof of Theorem 1.3. Finally, in

section 6 we establish certain properties of D-modules in characteristic p and use these to prove Theorem

1.4.

1.6. Acknowledgements. The first author is supported by the EPSRC grant EP-H028153. The second

author was supported by the SFB/TR 45 “Periods, Moduli Spaces and Arithmetic of Algebraic Varieties”

of the DFG (German Research Foundation). The authors are grateful for the hospitality of the Max Planck

Institute for Mathematics in Bonn. The authors would like to thank Ulrich Thiel for suggesting that the

Euler element should distinguish the blocks for G4 at generic parameters, and for showing us an early version

of [35].

2. Basics

2.1. Definitions and notation. Let k be a field of characteristic p > 0. Let V be a finite dimensional

k-vector space and W a finite group acting linearly on V . An element s ∈W is called a pseudo-reflection if

the fixed space of s has co-dimension one. Let S(W ) denote the set of all pseudo-reflections in W . Then W

is said to be a pseudo-reflection group if W = 〈S(W )〉, a good reference on the theory of pseudo-reflection

groups is [25].

If the characteristic p of the field k does not divide the order of W then there are no transvections in S(W ).

One can check from the classification of pseudo-reflection groups, as recalled in [24], that this assumption

implies that W is the reduction mod p of a complex reflection group. Moreover, as noted in [34, §7.1],

our assumption implies that each pseudo-reflection s ∈ S(W ) is diagonalizable and hence the non-trivial

eigenvalue of s automatically belongs to k.
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2.2. Frobenius twists and group actions. Again, let V be a finite dimensional vector space over k

and let W be a finite group acting linearly on V . The Frobenius morphism Fr : k[V ] → k[V ] is the ring

homomorphism f 7→ fp. Denote by k[V (1)] the image of Fr but with twisted linear structure z ? f = zpf for

all f ∈ k[V (1)] and z ∈ k. Then Fr : k[V ]→ k[V (1)] is a k-linear isomorphism. Note that k[V ] is a finite, free

k[V (1)]-module of rank (dimV )p. It is easy to check that Fr is a W -equivariant ring homomorphism, so we

have an isomorphism FrW : k[V ]W → k[V (1)]W . In particular, the p-th powers of a generating set for k[V ]W

form a generating set for k[V (1)]W .

2.3. Representations of pseudo-reflection groups. Let W be a finite group and K be a finite field

extension of Q containing all the |W |th roots of unity. Let A be the localisation of the ring of integers of

K at the prime ideal generated by p ∈ Z and let L be the residue field of A. Note that L is a finite field

of order a power of p. With this setup we can define a decomposition map on characters of irreducible

representations as follows, see [15, § 7]. Let M be an irreducible KW -module. We can choose an A-lattice

MA in M so that the action of W on MA has structure constants in A. Let ML denote the reduction of

MA to L, which is naturally a LW -module. The decomposition map is the assignment χ 7→ χL, where χ, χL

denote the characters of M and ML, respectively. By [10, Corollary 17.2] and Tits’ deformation theorem,

[15, Theorem 7.4.6], we have the following.

Theorem. If p does not divide |W | then both KW and LW are split algebras and the decomposition map

defines a bijection between the irreducible characters of KW and LW .

In particular, it follows that, if k is algebraically closed of characteristic p not dividing |W |, then the

irreducible characters of kW are given by reducing the irreducible characters of CW to k.

2.4. p-coinvariant rings. Let W be a finite group and let K0(W ) denote the Grothendieck group of finite

dimensional W -modules. The image of λ ∈ kW -mod in K0(W ) is denoted [λ]. Let IrrkW be a complete set

of isomorphism classes of simple W -modules. We denote by IrrZW a complete set of isomorphism classes of

graded, simple W -modules. For a graded W -module M , we write cht,W (M) ∈ K0(W )[t, t−1] for its graded

character. The shift M [i] of M is the graded W -module such that M [i]j = Mj−i.

Assume that W acts on the k-vector space V . We endow the algebra k[V ] with its usual N-grading.

The coinvariant ring of W is k[V ]coW := k[V ]/〈k[V ]W+ 〉, and for each λ ∈ IrrW , we denote by fλ(t) the

corresponding fake polynomial, defined by

cht,W (k[V ]coW ) =
∑

λ∈IrrW

fλ(t) · [λ].

Definition. Let k[V (1)]W+ denote the invariant polynomials with zero constant term. The p-coinvariant ring

is defined to be the finite dimensional graded algebra k[V ]pcoW := k[V ]/〈k[V (1)]W+ 〉.

Now assume, moreover, that W is a pseudo-reflection group and that the characteristic of k is coprime

to |W |. Then, the Chevalley-Shephard-Todd Theorem (in this generality see [34, Theorem 7.4.1]) says that

k[V ]W is a polynomial ring. Let d1, . . . , dn be the degrees of a set of fundamental, homogeneous, algebraically

independent generators of k[V ]W .
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Lemma. There is an isomorphism of graded W -modules

k[V ]pcoW ' (k[V ]/〈k[V ]W+ 〉)⊗ (k[V ]W /〈k[V (1)]W+ 〉) (1)

' (k[V ]/〈k[V (1)]+〉)⊗ (k[V (1)]/〈k[V (1)]W+ 〉). (2)

Proof. Consider the inclusions of algebras

k[V ]W

##
k[V (1)]W

99

%%

k[V ]

k[V (1)]

;;

Choose a basis x1, . . . , xn of V ∗, homogeneous generators f1, . . . , fn of k[V ]W and a free homogeneous basis

b1, . . . , b|W | of k[V ] as a k[V ]W -module. For α ∈ Nn, let fα, respectively xα be the monomial fα1
1 · · · fαnn ,

resp. xα1
1 · · ·xαnn . Then there are free bases for k[V ] as a k[V (1)]W -module given by:

{fαbj | 0 ≤ αi ≤ p− 1, 1 ≤ j ≤ |W |},

and

{xαbpj | 0 ≤ αi ≤ p− 1, 1 ≤ j ≤ |W |}.

Taking the images of these bases in k[V ]pcoW yields the lemma. �

Remark. The isomorphism (1) implies that∑
i∈Z

[k[V ]pcoWi : λ]ti = fλ(t) ·
n∏
i=1

1− tpdi
1− tdi

for all λ ∈ IrrW .

3. Rational Cherednik algebras

In this section, we define the rational Cherednik algebra and the restricted rational Cherednik algebra.

Our presentation of Ht,c(W ) requires that S(W ) contains no transvections. Therefore, we assume throughout

this section that p, the characteristic of k, is coprime to |W |. There is a different presentation, given in [2],

of the rational Cherednik algebra which is valid when W contains transvection.

3.1. For s ∈ S(W ), fix αs ∈ V ∗ to be a basis of the one dimensional space Im(s − 1)|V ∗ and α∨s ∈ V a

basis of the one dimensional space Im(s − 1)|V , normalised so that αs(α
∨
s ) = 1 (this is possible due to our

assumption on p, see (2.1)). Let C denote the space of W -equivariant functions S(W )→ k and choose c ∈ C
and t ∈ k. The rational Cherednik algebra, Ht,c(W ), as introduced by Etingof and Ginzburg [14, page 250],

is the quotient of the skew group algebra of the tensor algebra, T (V ⊕ V ∗) oW , by the ideal generated by

the relations

[x, x′] = 0, [y, y′] = 0, [y, x] = tx(y)−
∑
s∈S

c(s)αs(y)x(α∨s )s, (3)
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for all x, x′ ∈ V ∗ and y, y′ ∈ V . We define a filtration F• on Ht,c(W ) via F0 = kW , F1 = kW ⊗ (V ⊕ V ∗)
and Fi = F i1 for i > 1. By [14, Theorem 1.3], there is an isomorphism of algebras

grFHt,c(W ) ∼= S(V ⊕ V ∗) oW. (4)

As a consequence, there is a vector space isomorphism

Ht,c(W ) ∼= k[V ]⊗ kW ⊗ k[V ∗]. (5)

There is also a Z-grading on Hc(W ) given by setting deg(W ) = 0, deg(V ) = −1 and deg(V ∗) = 1. Through-

out this article we assume that t 6= 0. Therefore, without loss of generality t ≡ 1 and we write Hc(W ) for

H1,c(W ). Let x1, . . . , xn be a basis of V ∗ and y1, . . . , yn ∈ V the dual basis. Define the Euler element in

Hc(W ) to be

h =

n∑
i=1

xiyi −
∑
s∈S

cs
1− λs

s.

One can easily check that [h, x] = x, [h, y] = −y and [h, w] = 0 for all x ∈ V ∗, y ∈ V and w ∈W . Therefore

the element hp − h belongs to the centre of Hc(W ).

3.2. Below we summarize the fundamental properties of Hc(W ). Proofs of all these statements can be found

in [7]. Since some of these statement seem to require that k be algebraically closed, we assume for the

remainder of section 3 that this is the case.

Proposition. Let H := Hc(W ) be a rational Cherednik algebra associated to (V,W ).

(1) The P.I. degree of H equals pn|W |.
(2) The centre Zc(W ) of H is an affine domain and the algebra H is a finite module over its centre.

(3) The smooth locus of Zc(W ) equals the Azumaya locus of H.

(4) The commutative subalgebras k[V (1)]W and k[(V ∗)(1)]W of H are central.

3.3. The restricted rational Cherednik algebra. Let L be a simple, graded Hc(W )-module. The centre

of Hc(W ) acts as a scalar on L and the grading on L implies that (k[V (1)]W ⊗ k[(V ∗)(1)]W )+ annihilates L.

Therefore, to study these simple, graded modules it suffices to consider a certain graded, finite dimensional

quotient of Hc(W ).

Definition. The restricted rational Cherednik algebra Hc(W ) is the finite dimensional quotient of Hc(W )

by the central ideal generated by (k[V (1)]W ⊗ k[(V ∗)(1)]W )+.

The algebra Hc(W ) is Z-graded and has dimension p2n|W |3. The PBW property (5) implies that

Hc(W ) ∼= k[V ]pcoW ⊗ kW ⊗ k[V ∗]pcoW ,

as vector spaces. Since k[V ]pcoW is a complete intersection, [13, Corollary 21.19] implies that it is Gorenstein

and thus equipped with a non-degenerate bilinear form. Then, the proof of [9, Theorem 3.6] shows that the

algebra Hc(W ) is symmetric.

Definition. Let λ ∈ IrrZ(W ). The baby Verma module ∆̄(λ) associated to λ is the induced module

∆̄(λ) = Hc(W )⊗A λ,

where A = k[V ∗]pcoW oW and the natural action of W on λ extends to A by making V act by zero.
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As was done in [17], we can apply the theory developed in [21] to the category Hc(W )-grmod of finite-

dimensional, graded, left Hc(W )-modules. The forgetful functor Hc(W )-grmod → Hc(W )-mod is denoted

F .

Proposition. Let λ, µ ∈ IrrZW .

(1) The baby Verma module ∆̄(λ) has a simple head L(λ).

(2) ∆̄(λ) is isomorphic to ∆̄(µ) if and only if λ = µ in IrrZW .

(3) The set {L(λ) | λ ∈ IrrZW} is a complete set of isomorphism classes of simple modules in Hc(W )-grmod.

(4) The set {F (L(λ)) | λ ∈ IrrZW} is a complete set of isomorphism classes of simple Hc(W )-modules.

Proposition 3.3 shows that there is a natural bijection, λ 7→ L(λ), between IrrkW and IrrHc(W ). Therefore

the blocks of Hc(W ) define a partition, which we call the block partition, of the set IrrkW . By Theorem 2.3,

our assumption that k is algebraically closed and p coprime to |W | implies that we can (and will) identify

IrrkW with IrrCW .

4. Blocks for G(m, d, n)

4.1. In this section we carry out calculations (in a similar spirit to [27]) which lead to a proof of Theorem

1.2. We begin by fixing notation. Let m ≥ 1, n > 1 be integers. Let Cm be the cyclic group of order m.

We fix a generator g ∈ Cm and let sij ∈ Sn denote the transposition which swaps i and j. We denote by

sj the simple transposition swapping j and j + 1. The group W = G(m, 1, n) is the semidirect product

Sn n (Cm)n. We write gli for the element (1, . . . , gl, . . . 1) ∈ G(m, 1, n) with gl in the ith place. Let V = kn

be the reflection representation of G(m, 1, n). Recall that we assume that p - |W |, so in particular p 6= 2.

Let η ∈ k be a primitive mth root of unity. We fix a basis {y1, . . . , yn} of V so that

gi(yj) =

ηyj if i = j

yj otherwise
and σ(yj) = yσ(j),

for all i, j and all σ ∈ Sn. Let {x1, . . . , xn} ∈ V ∗ be the dual basis. The conjugacy classes of reflections in

W are given by

{sijg−li glj : 0 ≤ l ≤ m− 1 and i 6= j}, (6)

and, for each 1 ≤ l ≤ m− 1,

{glj : 1 ≤ j ≤ n}. (7)

The parameter c is represented by (κ, c1, . . . , cm−1) ∈ kn, where c(sijg
−l
i glj) = κ and c(glj) = cl. Using this

notation, the definition of the rational Cherednik algebra becomes the following.

Definition. Let W = G(m, 1, n). Then Hc(W ) is the quotient of T (V ⊕ V ∗) oW by the relations:

[xi, xj ] = 0, [yi, yj ] = 0,

[yi, xi] = 1− κ
m−1∑
l=0

∑
j 6=i

sijg
−l
i glj −

m−1∑
l=1

cl(1− η−l)gli,

[yi, xj ] = κ

m−1∑
l=0

η−lsijg
−l
i glj .
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4.2. The Dunkl-Opdam operators. Let W = G(m, 1, n). A crucial feature in our arguments is the use of

Dunkl-Opdam operators. These are analogues of Jucys-Murphy elements for symmetric groups and (double)

affine Hecke algebras. Applications to rational Cherednik algebras of type G(m, d, n) were first considered

by Dunkl and Opdam, [12], and then extensively explored by Griffeth (and Dunkl), [19], [20], [11]. We begin

by defining these elements and in the subsequent subsection calculating various formulae involving them.

For all 1 ≤ i ≤ n, we define elements in Hc(W ):

zi = yixi −
1

2
+ κ

m−1∑
l=0

∑
1≤j<i

sijg
l
ig
−l
j −

m−1∑
l=1

clη
−lgli (8)

= xiyi +
1

2
− κ

m−1∑
l=0

∑
i<j

sijg
l
ig
−l
j −

m−1∑
l=1

clg
l
i. (9)

Remark. The zi’s defined above are not quite the operators defined by Dunkl and Opdam, but the

difference is minor. For more information, see [28, Remark 3.2].

In is an important fact proved by Griffeth, [19], that [zi, zj ] = 0 for all i, j (see also [28, Lemma 3.2]). Let

k[z1, . . . , zn] denote the algebra generated by the zi’s. By (4), this is a polynomial algebra. We denote by Er

and Pr the rth elementary symmetric polynomial and rth power sum in the zi, respectively. By convention,

E0 = P0 = 1. We will use the following result from [28, 4.4], whose proof goes through verbatim over the

field k.

Theorem. We have

[Er, x1] =
∑

1<j2<···<jr≤n

x1zj2 . . . zjr .

4.3. We now locate a useful subalgebra of the centre of the rational Cherednik algebra. We first give

some simple combinatorial formulae comparing differentiation of elementary symmetric functions with that

of elementary (Newton) power sums. We continue with the notation from 4.2. Let E′r = d
dz1

(Er) and

P ′r = d
dz1

(Pr) = rzr−11 . In this notation Theorem 4.2 reads

[Er, x1] = x1E
′
r. (10)

Recall Newton’s formula:

rEr =

r∑
i=1

(−1)i−1PiEr−i. (11)

Applying d
dz1

to (11) we get

rE′r =

r∑
i=1

(−1)i−1(P ′iEr−i + PiE
′
r−i). (12)

A straightforward induction argument using the fact that E′r = Er−1 − z1E′r−1 shows that

E′r =

r−1∑
i=0

(−1)r−i−1zr−i−11 Ei. (13)

We will need a simple preparatory lemma. Let Qn := (z1 + 1)n − zn1 .
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Lemma. We have

Qn+1 =

n∑
i=1

zn−i1 Qi + (n+ 1)zn1 .

Proof. The proof is by induction. The case n = 0 is clear. For n > 0, we have

Qn+1 = z1Qn +Qn + zn1 ,

and the induction step follows by a simple calculation which we leave to the reader. �

Proposition. For 1 ≤ r ≤ n,

[Pr, x1] = x1Qr.

Proof. The proof goes by induction on r. For r = 1 we have P1 = E1 and E′1 = 1. By Theorem 4.2,

[P1, x1] = x1.

Suppose r > 1. Then

(−1)r−1[Pr, x1] = [rEr +

r−1∑
i=1

(−1)iPiEr−i, x1]

= rx1E
′
r +

r−1∑
i=1

(−1)i(Pix1E
′
r−i + x1QiEr−i). (14)

The first line follows from rewriting Pr using (11), and the second line follows from the induction hypothesis

and (10). Now (14) equals

rx1E
′
r +

r−1∑
i=1

(−1)i(x1PiE
′
r−i + x1Qi(E

′
r−i + Er−i))

=x1

[
r∑
i=1

(−1)i−1(P ′iEr−i + PiE
′
r−i) +

r−1∑
i=1

(−1)i(PiE
′
r−i +Qi(E

′
r−i + Er−i))

]

=x1

[
r∑
i=1

(−1)i−1P ′iEr−i +

r−1∑
i=1

(−1)i(Qi(E
′
r−i + Er−i)

]

=x1

[
r∑
i=1

(−1)i−1izi−11 Er−i +

r−1∑
i=1

(−1)i(Qi(

r−i−1∑
k=0

(−1)r−i−k−1zr−i−k−11 Ek) +QiEr−i)

]
. (15)

Here the first line follows from the induction hypothesis, the second from (12) and the fourth from (13). For

a fixed 1 ≤ l ≤ r − 1, the coefficient of Er−l in (15) is equal to

(−1)l−1lzl−11 +

l−1∑
i=1

(−1)l−1zl−i−11 Qi + (−1)lQl,

which equals zero by the lemma above. By the lemma above, the coefficient of E0 is

(−1)r−1rzr−1 +

r−1∑
i=1

(−1)r−1zr−i−11 Qi = (−1)r−1Qr.

Therefore, we have [Pr, x1] = x1Qr as required. �
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4.4. We can now provide some central elements in Hc(W ). Recall from [28, 3.3] that there is an algebra

isomorphism ψ : Hc(W ) → Hc′(W ) where c′ = (κ′, c′1, . . . , c
′
m−1) is the parameter with κ′ = −κ and

c′l = ηlc−l for all l. The isomorphism ψ is given by ψ(xi) = yn−i+1, ψ(yi) = xn−i+1, ψ(si) = sn−i and

ψ(gi) = g−1n−i+1 for all i. Thus ψ(zi) = zn−i+1 for all i.

Theorem. For all 1 ≤ r ≤ n,

Pr(z
p
1 − z1, . . . , zpn − zn) =

n∑
i=1

(zpi − zi)
r ∈ Zc(W ).

Thus, k[zp1 − z1, . . . , zpn − zn]Sn ⊂ Zc(W ).

Proof. We continue to write Pm for the power sum in the variables z1, . . . , zn. We have
n∑
i=1

(zpi − zi)
r =

n∑
i=1

r∑
j=0

(
r

j

)
(−1)r−jzpji z

r−j
i =

r∑
j=0

(
r

j

)
(−1)r−jPpj+r−j .

Therefore by Proposition 4.3,

[

n∑
i=1

(zpi − zi)
r, x1] = x1

r∑
j=0

(
r

j

)
(−1)r−jQpj+r−j

= x1

r∑
j=0

(
r

j

)
(−1)r−j((z1 + 1)pj+r−j − zpj+r−j1 )

= x1

r∑
j=0

(
r

j

)
(−1)r−j((zp1 + 1)j(z1 + 1)r−j − (zp1)jzr−j1 )

= x1 [(zp1 + 1)− (z1 + 1)]
r − x1(zp1 − z1)r = 0.

The theorem now follows as in [28, Theorem 3.4]. The element Pr(z
p
1 − z1, . . . , zpn − zn) is symmetric in

the zi’s so it commutes with any σ ∈ Sn, see [19, Lemma 5.1]. Therefore this power sum commutes with

σx1σ
−1 = σ(x1) for all σ, and in particular with each xi. To see that the power sum also commutes with

the yi’s, we use the isomorphism ψ from the paragraph above. Applying ψ−1 to [Pr(z
p
1 − z1, . . . , zpn− zn), xi]

shows that [Pr(z
p
1 − z1, . . . , zpn − zn), yi] = 0 for all i. �

4.5. Blocks. We use an identical argument to the proof of [28, Theorem 5.5] to determine the blocks of

Hc(W ). Let us first change our parameters. We define h,H0, . . . ,Hm−1 ∈ k via

h = −κ and − cl(1− η−l) =

m−1∑
j=0

η−ljHj . (16)

We denote by P(m,n) the set of m-multipartitions of n, P(m,n) := {(λ0, . . . , λm−1) :
∑m−1
i=0 |λi| = n}. The

simple representations of kW are labeled by the set P(m,n); over the complex numbers this is standard

(see [22] or [33]) and the same holds for kW by reduction, cf. 2.3. In fact the construction from [33] is

also valid over k, since p does not divide |W |, so that we can find bases of irreducible kW -modules given by

eigenvectors of Jucys-Murphy elements for the group W cf. [28, §5.3].

We recall the notion of the (shifted) residue of a multipartition, for more details see [28, §5.2]. Let λ be a

partition, which we identify with its Young diagram. The content of a box b in λ is the number ct(b) := j− i,
where b lies in column j and row i of λ. The residue of a partition λ is the polynomial Resλ(x) :=

∑
b∈λ x

ct(b).

For λ = (λ0, . . . , λm−1) ∈ P(m,n) and a = (a1, . . . , am) ∈ km, let Res aλ :=
∑m−1
i=0 x(a

p
i−ai)Res λi(x

−(κp−κ)).
10



Theorem. Let λ,µ ∈ P(m,n). Let a = (0, H1, H1 + H2, . . . ,H1 + · · · + Hm−1). Then Lc(λ) and Lc(µ)

belong to the same block of Hc(W ) if and only if

Res aλ = Res aµ.

Proof. Since this follows the proof of [28, Theorem 5.5] closely, we shall sketch the argument, pointing out the

necessary changes to loc. cit. Using Theorem 4.4 together with Weyl’s Theorem for invariants of symmetric

groups (which is valid whenever p - |W |, see [34, Theorem 3.3.1]), it is enough to calculate the characters of

Pr(z
p
1−z1, . . . , zpn−zn) on each Lc(λ). The characters are determined by choosing a simultaneous eigenvector

vλ ∈ Lc(λ) for z1, . . . , zn. The eigenvalues for zpi − zi are evaluated as in [28, 5.4], and produce the desired

combinatorial description. �

4.6. Blocks for G(m, d, n). The blocks of Hc(W ) for W = G(m, d, n), where d | m and either n > 2 or

n = 2 and d is odd, can be calculated from Theorem 4.5 by using Clifford theory as in [3]. The resulting

description of the blocks is then analogous to that given in characteristic zero, see [28, 5.6].

5. Smoothness of centres for G(m, 1, n)

In this section we assume that k is a field of characteristic p and W is an arbitrary pseudo-reflection

group such that p is prime to the order of |W |. The main result of this section, Corollary 5.5, shows that the

centre Zc(W,V ) of the rational Cherednik algebra being a regular algebra is equivalent to the block partition

of Hc′(W
′) consisting of singletons for all parabolic subgroups W ′ of W . Our proof of this result is based

on identifying, as in [5], a certain completion of Hc(W ) with an algebra of matricies over a completion of

Hc′(W
′) for a suitable parabolic subgroup W ′ of W . Applying Corollary 5.5 to the results of the previous

section, we describe precisely for which parameters c the algebra Zc(W,V ) is regular when W = G(m, 1, n).

5.1. Dunkl embedding. Let α =
∏
s∈S αs. Let Vreg denote the set {v ∈ V | α(v) 6= 0}. Let D(Vreg) be

the algebra of crystalline differential operators on Vreg. For y ∈ V , the Dunkl operator associated to y is

Dy = ∂y +
∑
s∈S

c(s)

1− λs
αs(y)

αs
(s− 1) ∈ D(Vreg) oW.

By [14, page 280] there is an injective algebra morphism

Hc(W ) ↪→ D(Vreg) oW ; w 7→ w, x 7→ x, y 7→ Dy,

for all w ∈ W , x ∈ V ∗ and y ∈ V . This embedding becomes an isomorphism after localizing Hc(W ) at the

Ore set {αm}m≥0.

5.2. Completions. Let us recall the setup of [5]. Let W ′ ⊂ W be the stabilizer of a point b ∈ V and let

V = V/VW
′
. For any closed K-point b ∈ V (where k ⊂ K is a finite field extension), we write k[[V ]]b for

the completion of k[V ] at b, and we write k̂[V ]b for the completion of k[V ] at the W -orbit of b in V . Note

that we have k[[V ]]0 = k̂[V ]0. For any finitely generated k[V ]-module M , let

M̂b = k̂[V ]b ⊗k[V ] M.

The completion Ĥc(W,V )b is the algebra generated by k[̂V ]b, the Dunkl operators Dy for y ∈ V , and

the group W . Let c′ denote the restriction of c to S ∩ W ′. The algebra Ĥc′(W
′, V )0 is then defined

11



similarly. Let P = FunW ′(W, Ĥc(W ′, V )0) be the set of W ′-equivariant maps from W to Ĥc(W ′, V )0. Let

Z(W,W ′, Ĥc(W ′, V )0) be the ring of endomorphisms of the right Ĥc(W ′, V )0-module P . The following

proposition is proved over C in [5, Theorem 3.2], and has an identical proof over k.

Proposition. There is an isomorphism of algebras

Θ : Ĥc(W,V )b → Z(W,W ′, Ĥc′(W
′, V )0)

defined as follows: for f ∈ P , α ∈ V ∗, a ∈ V , u ∈W ,

(Θ(u)f)(w) = f(wu),

(Θ(xα)f)(w) = (x(b)wα + α(w−1b))f(w),

(Θ(ya)f)(w) = y(b)waf(w) +
∑

s∈S,s/∈W ′

c(s)

1− λs
αs(wa)

x
(b)
αs + αs(b)

(f(sw)− f(w)),

where xα ∈ V ∗ ⊂ Hc(W,V ), x
(b)
α ∈ V ∗ ⊂ Hc′(W

′, V ), ya ∈ V ⊂ Hc(W,V ) and y
(b)
a ∈ V ⊂ Hc′(W

′, V ).

Let e11 ∈ Z(W,W ′, Ĥc′(W
′, V )0) be defined by (e11 · f)(w) = f(w) if w ∈ W ′ and (e11 · f)(w) = 0 oth-

erwise. Then e11 is a primitive idempotent and Ĥc′(W
′, V )0 ∼= e11Z(W,W ′, Ĥc′(W

′, V )0)e11. The bimodule

e11Z(W,W ′, Ĥc′(W
′, V )0) yields a Morita equivalence between Ĥc′(W

′, V )0 and Z(W,W ′, Ĥc′(W
′, V )0).

5.3. Suppose that M is a finite dimensional Hc(W,V )-module and let SuppM denote the support of M

as a k[V ]W -module. If SuppM is the W -orbit of some closed K-point b ∈ V , then M is naturally a

Ĥc(W,V )b-module. In particular, the support of any simple Hc(W,V )-module is a single W -orbit and so is a

Ĥc(W,V )b-module. Let M be a Ĥc(W,V )b-module, then denote by Θ∗M the Z(W,W ′, Ĥc′(W
′, V )0)-module

given by transporting the Ĥc(W,V )b-action on M via Θ.

Definition. An Hc(W,V )-module M is called small if dimkM < |W |pn.

Proposition. A Hc(W,V )-module M is small if and only if e11Θ∗(M) is a small Hc′(W
′, V )-module.

Proof. Note first that e11Θ∗(M) is a Hc′(W
′, V )-module by restricting the Ĥc′(W

′, V )0-action. Let g1 =

1, . . . , gt be right coset representatives of W ′ in W . Then Θ∗(M) =
⊕t

i=1 gie11g
−1
i Θ∗M , with

dimk gie11g
−1
i Θ∗M = dimk gje11g

−1
j Θ∗M, ∀ i, j.

In particular, dimM < |W |pn if and only if dim e11Θ∗(M) < |W |pn/t = |W ′|pn. �

5.4. For the remainder of section 5, we assume that k is algebraically closed. Let Zc(W,V ) denote the centre

of Hc(W,V ).

Corollary. Keep notation as above. Then Zc(W,V ) is smooth if and only if Hc′(W
′, V ) has no small modules

M with SuppM = 0 for all parabolic subgroups W ′ ⊆W .

Proof. By Proposition 3.2 (3), Zc(W,V ) is smooth if and only if Hc(W,V ) has no small modules. Let M be a

small, simple Hc(W,V )-module and choose b ∈ V such that the support of M equals the W -orbit of b. Then

M extends to a Ĥc(W,V )b-module and Proposition 5.3 says that e11Θ∗(M) is a small Hc′(W
′, V )-module,

where W ′ is the stabilizer of b in W . Moreover, the support of e11Θ∗(M) is 0. Conversely, if there exists a

small Hc′(W
′, V )-module M ′ supported on 0 then this extends to a Ĥc′(W

′, V )0-module. Since Ĥc′(W
′, V )0
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is Morita equivalent to Z(W,W ′, Ĥc′(W
′, V )0) ∼= Ĥc(W,V )b, there exists some Ĥc(W,V )b-module M such

that M ′ ' e11Θ∗(M). Proposition 5.3 says that M is actually a small Hc(W,V )-module. �

5.5. Let M be a simple Hc(W,V )-module with SuppM = 0. We can define an induced module (cf. 3.3) as

follows. Let B = k[V ] oW and let E ∈ IrrW . Extend the W -action on E to a B-action by letting f ∈ k[V ]

act by f(0). Define

∆(E) = Hc(W,V )⊗B E.

By the support condition on M , the subspace M0 = {m ∈ M | V ∗ ·m = 0} of M is non-zero. It is a W -

submodule of M and we may assume without loss of generality that E ⊆M0. Therefore there is a surjective

homomorphism ∆(E)�M , which maps 1⊗E ⊂ ∆(E) to E ⊆M0 in the obvious way. Recall that Hc(W,V )

has a Z-grading. We make E into a graded B-module by setting E0 = E and Ei = 0 for all i 6= 0. We give

∆(E) a Z-graded module structure by inducing the graded structure on E. Since M is simple, there is some

a ∈ (V ∗)(1)/W such that ma ·M = 0, where ma denotes the maximal ideal corresponding to a. Define

∆(a,E) = (Hc(W,V )⊗B E)/ma · (Hc(W,V )⊗B E).

By our choice of a, there is also a surjective homomorphism ∆(a,E) � M . The grading on ∆(E) induces

filtrations on ∆(a,E) and M . We use the notation grZ to denote the associated graded objects with respect

to these filtrations.

Recall that a morphism f : M → N between filtered Hc(W,V )-modules is called a strictly filtered mor-

phism if f(FiM) = FiN ∩ f(M) for all i ∈ Z. The functor grZ is exact on short exact sequences of strictly

filtered morphisms. Note also that the surjection ∆(a,E)�M is strictly filtered by definition. The filtration

on ∆(E) is both exhaustive and separating, therefore the same is true of ∆(a,E). However, this module is

finite dimensional therefore we have Fi∆(a,E) = 0 and F−i∆(a,E) = ∆(a,E) for i� 0.

Proposition. The Hc(W,V )-module grZM has dimension dimkM and is annihilated by (k[V (1)]W⊗k[(V ∗)(1)]W )+.

Proof. Denote by Fi the ith piece of the filtration on M . By construction, F• is a decreasing filtration with

F1 = 0 and F−i = M for all i� 0. Thus dimk grZM =
∑∞
i=0 dimk F−i/F−i+1 = dimkM .

For the second statement, we show that grZ∆(a,E) ∼= ∆(0, E). The claim then follows since there is a

surjective map ∆(0, E)→ grZM . Consider the short exact sequence:

0→ ma · (Hc(W,V )⊗B E)→ ∆(E)→ ∆(a,E)→ 0,

where the left-hand term is given the induced filtration. By the PBW theorem and the Nullstellensatz,

grZma · (Hc(W,V )⊗B E) = k[(V ∗)(1)]W+ · (Hc(W,V )⊗B E). Since ∆(E) is graded, grZ∆(E) = ∆(E). Thus

grZ∆(a,E) ∼= ∆(0, E). �

Corollary. The following are equivalent:

(1) Zc(W,V ) is smooth;

(2) Hc′(W
′, V ) has no small modules M with SuppM = 0 for all parabolic subgroups W ′ ⊆W ;

(3) Hc′(W
′, V ) has no small modules M for all parabolic subgroups W ′ ⊆W ;

(4) The blocks of Hc′(W
′, V ) are singletons for all parabolic subgroups W ′ ⊆W .
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Proof. There are isomorphisms of algebras Hc′(W
′, V ) ' Hc′(W

′, V )⊗D(VW
′
) and

Hc′(W
′, V ) ' Hc′(W

′, V )⊗D(VW
′
),

where D(VW
′
) := D(VW

′
)/〈(k[(VW

′
)(1)]⊗ k[((VW

′
)∗)(1)])+〉. In particular, (2) and (3) are equivalent to

(2’) Hc′(W
′, V ) has no small modules M with SuppM = 0 for all parabolic subgroups W ′ ⊆W ;

(3’) Hc′(W
′, V ) has no small modules M for all parabolic subgroups W ′ ⊆W ,

respectively, where we have used the fact that D(VW
′
) is an Azumaya algebra. The equivalence of (1) and

(2’) is Corollary 5.3. Clearly (2’) implies (3’). For the converse, suppose that Hc′(W
′, V ) has a small module

M with SuppM = 0 for some parabolic subgroup W ′ ⊆ W . Then by the proposition, grZM is a small

module for Hc′(W
′, V ).

The equivalence of (3) and (4) follows from an identical argument to [17]. �

Remark. The proofs above are valid, mutando mutandae, for t = 0 and char k = 0.

5.6. Smoothness of centres of Hc(G(m, 1, n)). Let m,n be positive integers and assume that n > 1. Let

W = G(m, 1, n). In this section we give a proof of Corollary 1.3. As noted at the beginning of this section,

the idea is to use Corollary 5.5 (4) together with the results of section 4 to determine for which c the centre

Zc(W ) is smooth. Analogous results for the rational Cherednik algebra associated to G(m, 1, n) over C at

t = 0 are given in [18, Lemma 4.4] and, implicitly, in [26]. However, the techniques used there are completely

different to the elementary approach given here. Recall that the parabolic subgroups of W are of the form

Sk1 × · · · × Skt ×G(m, 1, n′), k1 + · · ·+ kt + n′ ≤ n.

Here Ski denotes the symmetric group on ki letters, and S0 = G(m, 1, 0) = {id} by definition. For such a

parabolic subgroup, the representation V is the reflection representation. Recall that c = (κ, c1, . . . , cm−1).

Recall the parameters a1, . . . , am from Theorem 4.5. Let Cm,n denote the set of all c such that either

κ ∈ Fp, or ai − aj ± Cκ ∈ Fp,

for some 0 ≤ i 6= j ≤ m − 1 and integer C such that 0 ≤ C ≤ n − 1. Thus Cm,n is a finite union of

hyperplanes in km.

Theorem. The algebra Zc(W ) is smooth if and only if c /∈ Cm,n.

Proof. Let us first suppose that c ∈ Cm,n. Recall that, for λ ∈ P(m,n),

Res aλ :=

m−1∑
i=0

x(a
p
i−ai)Res λi(x

−(κp−κ)).

Suppose that κ ∈ Fp. Then κp − κ = 0 and so Res a((n), ∅, . . . , ∅) = Res a((n)t, ∅, . . . , ∅). Thus by Theorem

4.5, Hc(W,V ) has a non-singleton block, and so Corollary 5.5 implies that Zc(W ) is singular. If m > 1 and

ai − aj − Cκ ∈ Fp for some 0 ≤ C ≤ n− 1, then

api − ai = apj − aj + C(κp − κ).

Without loss of generality i = 1 and j = 2, and then

Res a((n), ∅, ∅, . . . , ∅) = Res a(∅, (n− C, 1C), ∅, . . . , ∅) = xa
p
1−a1

n−1∑
i=0

x−i(κ
p−κ).
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Thus Hc(W,V ) has a non-singleton block and Zc(W ) is singular. A similar argument applies in the case

−n+ 1 ≤ C ≤ 0.

Suppose now that c /∈ Cm,n. We first show that Hc(W,V ) has only singleton blocks. For a contradiction,

suppose that there exist distinct λ,µ ∈ P(m,n) such that Res aλ = Res aµ. Since κ /∈ Fp, x−(κ
p−κ) 6= 1.

Each box b in the Young diagram of λi contributes x(a
p
i−ai)x−cont(b)(κ

p−κ) to Res aλ. Since λ 6= µ, there exist

1 ≤ i < j ≤ N and boxes b ∈ λi, b′ ∈ µj such that x(a
p
i−ai)x−cont(b)(κ

p−κ) = x(a
p
j−aj)x−cont(b

′)(κp−κ). Now

cont(b) and cont(b′) are integers such that −|λi|+ 1 ≤ cont(b) ≤ |λi| − 1 and −|µj |+ 1 ≤ cont(b′) ≤ |µj | − 1.

Thus api − ai = apj − aj + C(κp − κ) for some −|λi| − |µi| + 1 ≤ C ≤ |λi| + |µi| − 1. This means that

−ai + aj − Cκ ∈ Fp, and so c ∈ Cm,n, a contradiction.

We now want to prove the stronger statement that c /∈ Cm,n implies that Zc(W ) is smooth. Note that

Cm′,n′ ⊂ Cm,n for all m′ = 1 or m, n′ < n. Therefore c /∈ Cm,n implies that c′ /∈ Cm′,n′ for all m′ = 1 or

m, n′ < n. By the description of parabolic subgroups W ′ ⊂W given above, the previous paragraph implies

Hc(W ′, V ) has only singleton blocks for all W ′. By Corollary 5.5 this implies that Zc(W ) is smooth. �

Remark. (1) In the case m = 1, W is just the symmetric group Sn. Although V = kn is not the

reflection representation, we have Hκ(Sn, k
n) ∼= Hκ(Sn, k

n−1)⊗D(A1), where kn−1 now denotes the

reflection representation of Sn. The set C1,n is then identified with Fp ⊂ k.

(2) Note that the proof of the above theorem shows that for W = G(m, 1, n), the centre Zc(W ) is smooth

if and only if Hc(W,V ) has only singleton blocks.

6. Degenerations

The goal of this section is to give a proof of Theorem 1.4. Since the proof is rather long and technical, we

outline here, for the reader’s benefit, the basic idea. The key result is Lemma 6.7, which gives a formula for

the Poincaré polynomial of the simple, graded Hc(W )-module Lc(λ) under the assumption that dimk Lc(λ) =

pn|W |. Since Lc(λ) is finite dimensional, this Poincaré polynomial must be a Laurent polynomial. However,

the formula we derive is a rational function, which one can easily show is not a Laurent polynomial for

certain choices of the representation λ. This contradicts our assumption that dimk Lc(λ) = pn|W |.
To illustrate the difficultly in deriving the formula given in Lemma 6.7, it is best to contrast it with the

analogous result, [4, Lemma 3.3], for rational Cherednik algebras over C at t = 0. In the latter situation, the

baby Verma module ∆̄(λ) is isomorphic to C[V ]coW ⊗ λ as a C[V ] oW -module. If the support of Lc(λ) is

contained in the smooth locus of Zc(W,V ) then Lc(λ) ' CW as a W -module, and all composition factors of

∆̄(λ), as graded Hc(W )-modules, are just graded shifts of Lc(λ). Therefore, as graded W -modules, we have

[∆̄(λ)] = f(t)[Lc(λ)] for some Laurent polynomial f(t). Consider the occurrence of the trivial representation

on both sides of this equation: Lc(λ)triv ' C which implies that f(t) (up to a shift) is just the graded

multiplicity of the trivial representation in C[V ]coW ⊗ λ. It is easy to calculate this graded multiplicity.

However, in positive characteristic, ∆̄(λ) ' k[V ]pcoW ⊗ λ, as a graded k[V ] oW -module, and Lc(λ) '
(kW )⊕p

n

. We still get the same equation [∆̄(λ)] = f(t)[Lc(λ)] in the appropriate Grothendieck group,

but a priori have no idea what the grading is on the pn-dimensional space Lc(λ)triv. What is required is

a way to reduce the dimension of Lc(λ) from pn|W | to |W |. The way to do this is to use the DeRham

functor, as introduced by Cartier. Firstly, we show that both ∆̄(λ) and Lc(λ) form a flat family over the

line ` through c and 0 in the parameter space C. Therefore, we can specialize these modules at c = 0 to

get H0(W ) = D(V ) oW -modules ∆̄0(λ) and L(λ)c=0. The module L(λ)c=0 will no longer be irreducible
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but has same graded W -structure as Lc(λ). The module ∆̄0(λ) is equipped with a filtration such that

each subquotient is isomorphic to a graded shift of L(λ)c=0. Applying the DeRham functor to both ∆̄0(λ)

and L(λ)c=0 gives graded k[V (1)] oW -modules ∆̄0(λ)(1) and L(λ)
(1)
c=0 say. These modules still satisfy the

equation [∆̄0(λ)(1)] = f(t)[L(λ)
(1)
c=0], but now dimk L(λ)

(1)
c=0 = |W | and L(λ)

(1)
c=0 is just a graded copy of the

regular representation as a W -module. Similarly, ∆̄0(λ)(1) is isomorphic to k[V (1)]coW ⊗ λ. Thus, we are in

a situation completely analogous to the t = 0 over C situation describe above and the proof of Lemma 6.7

is complete.

We begin by describing, based on Cartier’s Theorem, the category of D(V )oW -module with p-curvature

zero.

6.1. p-curvature. Let k be a field of characteristic p > 0, V a finite dimensional k-vector space and

W ⊂ GL(V ) a finite group. Fix a basis x1, . . . , xn of V ∗ and ∂1, . . . , ∂n of V such that ∂i(xj) = δi,j . Let

A = k[∂1, . . . , ∂n, x
p
1, . . . , x

p
n] and SpecA = T ∗,(1)V.

The centre of D(V ) embeds in A and we write π : T ∗,(1)V → (T ∗V )(1) for the corresponding finite morphism.

We require a special case, Proposition 6.1, of a classical result, [23, Theorem 5.1], attributed to Cartier, on D-

module with zero p-curvature. We follow the presentation given in [23, §5]. Recall that ifD ∈ Der(V ) ⊂ D(V )

is a derivation, then Dp also acts as a derivation. We write D[p] for this derivation so that Dp −D[p] acts

trivially on k[V ].

Definition. Let M be a finitely generated D(V ) o W -module. The p-curvature of M is the map ψ :

Der(V )→ Endk(M) given by ψ(D) = ρ(D)p − ρ(D[p]), where ρ : D(V )oW → Endk(M) is the action map.

We say that M has zero p-curvature if ψ = 0.

Denote by D0 the full subcategory of D(V ) oW -mod consisting of modules with zero p-curvature.

Proposition. Let M ∈ D(V ) oW -mod. Let V (1) ⊂ (T ∗V )(1) be the zero section (defined by ∂p1 = · · · =

∂pn = 0).

(1) The module M has zero p-curvature if and only if M is scheme-theoretically supported on V (1) when

considered as a Z(D(V ))-module i.e. ∂pi ·M = 0 for all i.

(2) The “horizontal sections” functor DR : D0 → k[V (1)] oW -mod,

DR(M) := M∇ = {m ∈M | ∂i ·m = 0 ∀ i},

is an equivalence of categories with quasi-inverse DR⊥ : k[V (1)] oW -mod→ D0,

DR⊥(N) = Ind
D(V )oW
AoW N,

where A acts on N via the morphism A→ k[V (1)], ∂i 7→ 0.

(3) The equivalence DR restricts to an equivalence of graded categories grD0 → k[V (1)] oW -grmod.

The following operators where introduced in [23, (5.1.2)]. Their properties can be verified by direct

calculation.

Lemma. Let D(x) be the first Weyl algebra and M a D(x)-module with zero p-curvature.

(1) Define P =
∑p−1
i=0

(−x)i
i! ∂i ∈ D(x). Then P defines a k[xp]-linear operator on M such that P (M) ⊂

M∇, P |M∇ = id and P 2 = P .
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(2) Define the map T : M →M by

m 7→
p−1∑
i=0

xi

i!
P (∂i ·m).

Then T = idM .

Proof of Proposition 6.1. It is shown in [23, Proposition 5.2] that ψ is p-linear i.e. ψ(f1D1 + f2D2) =

fp1ψ(D1) + fp2ψ(D2) for all fi ∈ k[V ] and Di ∈ Der(V ). Since ψ(∂i) = ρ(∂i)
p for all i it is clearly necessary

that ρ(∂i)
p = 0, i.e. ∂pi ·M = 0, in order for M to have zero p-curvature. On the other hand, every element

D ∈ Der(V ) can be expressed as D =
∑n
i=1 fi∂i for some fi ∈ k[V ]; thus

ψ(D) =

n∑
i=1

fpi ∂
p
i

and ψ(D) ·M = 0 if ∂pi ·M = 0 for all i. This proves statement (1).

Now we prove statement (2). As in Lemma 6.1, define Pi =
∑p−1
j=0

(−xi)j
j! ∂ji and set P =

∏n
i=1 Pi. Let

M ∈ D0. Then Lemma 6.1 implies P defines a k[V (1)]-linear operator on M such that DR(M) = P (M),

PM∇ = id and P 2 = P . Note that the subspace M∇ of M is a W -submodule of M . Therefore we define

P̃ =
1

|W |
∑
w∈W

w · P,

so that P̃ is a W -equivariant projection onto M∇. Let

0→M1 →M2
φ→M3 → 0

be a short exact sequence in D0. Since P̃ ∈ D(V ), we have P̃ ◦ φ = φ ◦ P̃ . Therefore DR(φ) : DR(M2) →
DR(M3) is surjective and the left exact functor DR is actually exact. Similarly, since D(V )oW is flat over

AoW , DR⊥ is also an exact functor. If (∂1, . . . , ∂n) is the left ideal of D(V ) oW generated by ∂1, . . . , ∂n,

then DR⊥(k[V (1)] oW ) = D(V ) oW/(∂1, . . . , ∂n) and

DR

(
D(V ) oW

(∂1, . . . , ∂n)

)
=
AoW + (∂1, . . . , ∂n)

(∂1, . . . , ∂n)
' k[V (1)] oW

as a k[V (1)]oW -module. Since DR ◦DR⊥(k[V (1)]oW ) = k[V (1)]oW and the functor DR ◦DR⊥ is exact,

by choosing a finite presentation for each N ∈ k[V (1)] oW -mod, we get the standard diagram

(k[V (1)] oW )r //

��

(k[V (1)] oW )s //

��

N //

��

0

DR ◦DR⊥(k[V (1)] oW )r // DR ◦DR⊥(k[V (1)] oW )s // DR ◦DR⊥(N) // 0

where the first two vertical morphisms are isomorphisms and the rows are exact. This implies that the third

vertical morphism is also an isomorphism. Hence the natural transformation 1→ DR ◦DR⊥, coming from

the fact that DR⊥ is left adjoint to DR, is an isomorphism. Now take M ∈ D0 and consider the natural

morphism DR⊥ ◦DR(M) → M . Since DR is conservative, the fact that DR ◦DR⊥ = 1 implies that this

morphism is injective. On the other hand, if we define T =
∏n
i=1 Ti, where Ti : M →M ,

Ti(m) =

p−1∑
j=0

xji
j!
Pi(∂

j
i ·m),
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then Lemma 6.1 implies that T = idM . This proves that DR⊥ ◦DR(M)→M is surjective.

In (3), it is straight-forward to see that DR and DR⊥ send graded modules to graded modules. �

6.2. We continue with the same setup as in the previous subsection, but assume now that k is algebraically

closed. A point “ζ ∈ T ∗,(1)V ” will therefore refer to a closed k-point. The group W acts on T ∗,(1)V and

(T ∗V )(1) such that the map π is W -equivariant and satisfies

Wζ := StabW (ζ) = StabW (π(ζ)), ∀ ζ ∈ T ∗,(1)V.

For fixed ζ ∈ T ∗,(1)V and λ ∈ Irrk(Wζ), we define Vζ(λ) := Ind
D(V )oW
AoWζ

λ, where A acts on λ via the character

ζ.

Lemma. Fix ζ ∈ T ∗,(1)V and λ ∈ Irrk(Wζ). Then

(1) the D(V ) oW -module Vζ(λ) is simple;

(2) Vζ1(λ1) ' Vζ2(λ2) if and only if ζ2 ∈ W · ζ1 and, moreover, if wζ1 = ζ2 then λ1 ' λ2 via the

conjugation isomorphism w : Wζ1
∼−→Wζ2 ;

(3) Every simple D(V ) oW -module is isomorphic to Vζ(λ) for some ζ and λ.

Proof. Considered as an A-module, Vζ(λ) =
⊕

η∈W ·ζ(Vζ(λ))η where (Vζ(λ))η is set-theoretically supported

at η. Each (Vζ(λ))wζ is a D(V )o(wWζw
−1)-submodule of Vζ(λ) and Vζ(λ) will be a simple D(V )oW -module

if and only if (Vζ(λ))ζ = Ind
D(V )oWζ

AoWζ
λ is a simple D(V ) oWζ-module. If ζ = (a, α) with a ∈ V (1) then we

write (b, α) with b ∈ V for the unique closed point in π−1(ζ). Applying the Wζ-equivariant automorphism

xi 7→ xi − 〈xi, b〉 and ∂j 7→ ∂j − 〈∂j , α〉 to D(V ), we may assume without loss of generality that ζ = 0 and

Wζ = W . Let δ0 = Ind
D(V )
A k be the unique simple D(V )-module supported at 0 ∈ (T ∗V )(1); simplicity of δ0

follows from the fact that D(V ) is Azumaya of rank p2n and the dimension of δ0 is pn. Then V0(λ) = δ0⊗λ,

with W acting diagonally. The module V0(λ) is simple: let v1, . . . , vpn be a basis of δ0 such that v1 = 1 and

choose any 0 6= l =
∑
i vi ⊗ li ∈ V0(λ). Choose an i such that li 6= 0. Since D(V ) surjects onto Endk(δ0),

there is some D ∈ D(V ) such that D · vj = 0 for all j 6= i and D · vi = v1. Then D · l = 1⊗ li and we have

W · (D · l) = 1⊗ λ. Hence D(V ) oW · l = V0(λ). To show that the various V0(µ) are non-isomorphic, note

that

dimk HomD(V )oW (V0(λ), V0(µ)) = dimk HomAoW (λ, V0(µ)) = δλ,µ

because the space {v ∈ δ0 | ∂i · v = 0 ∀ i} is one-dimensional. Arguing geometrically as above shows the

second claim of the statement. The final statement is clear just by considering the socle, as a A-module, of

an simple D(V ) oW -module. �

6.3. Let 1 denote the trivial W -module. The following observation will be required later.

Lemma. Assume that p is prime to the order of W . Let N be a k[V (1)] oW -module such that DR⊥(N) is

isomorphic to pn copies of the regular representation as a W -module. Then N is isomorphic to the regular

representation as a W -module.

Proof. As a W -module, DR⊥(N) ' V0(1) ⊗ N . Therefore it suffices to show that the Brauer character χ

of V0(1) satisfies χ(w) 6= 0 for all w in W . Recall that V0(1) ' k[V ∗]/〈k[(V ∗)(1)]+〉. Let λ1, . . . , λn be the
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eigenvalues of w on V . Since we are calculating the Brauer character of V0(1), we assume that λi ∈ C for

all i. Then

χ(g) = Tr(g, V0(1)) =

n∏
i=1

1− λpi
1− λi

.

Since χ(g) ∈ C and p does not divide |W |, the product on the right hand side is non-zero. �

6.4. Lattices. In this section let k be an arbitrary algebraically closed field of characteristic ≥ 0. We

assume this level of generality since the results of this subsection may be of use in the study of restricted

rational Cherednik algebras at t = 0 over C. Let H denoted a Z-graded k[x]-algebra such that H is a finite,

free k[x]-module, where k[x] is graded with deg(x) = 0. Write ` = Spec k[x] and K = k(x). For α ∈ k,

we denote by Hα the specialization H ⊗k[x] kα of H at α. We assume that there exists a finite set I and

H-modules {∆(λ) |λ ∈ I} such that

(1) The module ∆(λ) is graded and free as a k[x]-module.

(2) For all α ∈ `, there is a bijection IrrHα ' I such that the simple, graded Hα-module Lα(λ), for

λ ∈ I, is the unique simple quotient of ∆α(λ), the specialization of ∆(λ) at α.

(3) There is a bijection I ' IrrHK such that the simple, graded HK-module LK(λ) is the unique simple

quotient of ∆K(λ).

Let M be a H-module. We say that M is a H-lattice if it is free, of finite rank, as a k[x]-module. Note

that if M is a H-lattice and N a H-submodule, then N is a H-lattice because k[x] is a principal ideal domain.

Lemma. There exists a composition series 0 = ∆0(λ) ⊂ · · · ⊂ ∆r(λ) = ∆(λ) of graded H-lattices such that

if Li(λ) = ∆i(λ)/∆i−1(λ), then Li(λ) is a graded H-lattice and Li(λ)K ' LK(λi) for some λi ∈ I.

Proof. Fix a graded composition series

0 = ∆0
K(λ) ⊂ · · · ⊂ ∆r

K(λ) = ∆K(λ)

such that ∆i
K(λ)/∆i−1

K (λ) ' LK(λi) for some λi ∈ I. Write φ : ∆(λ) → ∆K(λ) for the natural map. It is

an inclusion. We set

∆i(λ) = φ−1(∆i
K(λ)) = ∆i

K(λ) ∩∆(λ), ∀ i.

Then ∆i(λ) is a H-submodule of the H-lattice ∆(λ), hence it is a H-lattice. We have a H-morphism

φi : Li(λ) := ∆i(λ)/∆i−1(λ)→ ∆i
K(λ)/∆i−1

K (λ) = LK(λi). We claim that Li(λ) is a H-lattice. It suffice to

show that it is torsion-free with respect to k[x]. Let ā ∈ Li(λ) and 0 6= f(x) ∈ k[x] such that f(x)·ā = 0. Then

f · a ∈ ∆i−1(λ) = ∆i−1
K (λ) ∩∆(λ), which implies that a ∈ ∆i−1

K (λ) ∩∆(λ) = ∆i−1(λ). Hence ā = 0. Since

Li(λ) is a H-lattice and LK(λi) is a simple HK-module, φi will induce an isomorphism Li(λ)K ' LK(λi)

provided Li(λ) 6= 0. Let 0 6= b ∈ ∆i
K(λ) − ∆i−1

K (λ), then there exists some 0 6= g(x) ∈ k[x] such that

g(x)b ∈ ∆i
K(λ) ∩∆(λ) and g(x)b /∈ ∆i−1

K (λ). Therefore g(x)b ∈ ∆i(λ)−∆i−1(λ). �

6.5. By Lemma 6.4, for each λ ∈ I we have a graded H-lattice L(λ) := Lr(λ) such that ∆(λ)� L(λ). The

specialization of L(λ) to x = α ∈ k is denoted L(λ)x=α, to distinguish it from the simple module Lα(λ).

Lemma. There exists a prime ideal pCH such that p · L(λ) = 0.
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Proof. Let Ann1 = {I CH | GKdim (∆(λ)/I∆(λ)) = 1}. Since GKdim (∆(λ)) = 1, the set Ann1 is non-

empty. Since H is Noetherian, we can choose p ∈ Ann1 to be maximal with respect to inclusion. The claim

is that p is prime. Assume otherwise, so that there exist ideals I, J with IJ ⊂ p but I, J /∈ Ann1. Note that

∆/p ·∆ has GK-dimension one and is a finitely generated H/p-module. Therefore H/p has GK-dimension

one too. Since ∆/J∆ has GK-dimension zero, the short exact sequence

0→ J∆/p∆→ ∆/p∆→ ∆/J∆→ 0

implies, by [30, Proposition 8.3.11], that GKdim(J∆/p∆) = 1. However, J∆/p∆ is clearly a torsion H/p-

module. Therefore [30, Corollary 8.3.6] implies that the GK-dimension of J∆/p∆ is zero. This contradiction

implies that p is prime. Let M = ∆/p·∆. The H-submodule of M consisting of elements that are torsion with

respect to k[x] is a proper submodule of GK-dimension zero. Therefore quotienting out by this submodule we

may assume that M is torsion free and hence free, and that p ·M = 0. Moreover, MK is a non-zero quotient

of ∆K(λ) which implies that MK � LK(λ). This implies that p · LK(λ). Since L(λ) is a H-submodule of

LK(λ), we have p · L(λ) = 0 as required. �

Proposition. Let mλ = maxα∈`(dimk Lα(λ)).

(1) There exists a finite set `0 ⊂ ` such that dimk Lα(λ) = mλ ⇔ α /∈ `0.

(2) The rank of L(λ) equals mλ.

(3) The specialization of L(λ) at α is isomorphic to the simple Hα-module Lα(λ) for all α ∈ `− `0.

Proof. Let p be a prime ideal in H such that p · L(λ) = 0. Its existence is guaranteed by Lemma 6.5. Set

R := H/p so that L(λ) is an R-module. Since R is a prime ring, the image of k[x] in R is a domain. Therefore

the fact that R is a finite k[x]-module of GK-dimension one implies that R is a free k[x]-module. The map

π : SpecZ(R)→ Spec k[x] is finite. Let A denote the Azumaya locus of R. Since A is open and dense in the

irreducible variety SpecZ(R) and the map π is finite, the set π(SpecZ(R)−A) is a proper closed subset of

`. Therefore the set

`1 := `− π(SpecZ(R)−A) = {α ∈ ` | π−1(α) ⊂ A}

is open and dense in `. Since the specialization L(λ)x=α is a quotient of ∆(λ)x=α = ∆α(λ), the simple

module Lα(λ) is a quotient of L(λ)x=α. This implies that every Lα(λ) is an R-module and hence mλ is

bounded above by the P.I. degree of R. By definition, this bounded is achieved for all α ∈ `1. Fix some

α ∈ `1. Recall that LK(λ) = K · L(λ). Hence

dimK LK(λ) = rank k[x]L(λ) ≥ dimk Lα(λ).

On the other hand, since Lα(λ) is supported on the Azumaya locus of R and LK(λ) is a simple module

for the central localization RK of R, [30, Posner’s Theorem 13.6.5] together with [30, Kaplansky’s Theorem

13.3.8] imply that

dimk(Lα(λ)) = P.I.− degree(R) ≥ dimK dimK LK(λ) = rank k[x]L(λ).

Therefore we get the required equality. �
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6.6. We return to the case where k is algebraically closed of characteristic p > 0 and we assume that p is

prime to the order of W , a pseudo-reflection group. Recall that C is the space of parameters for H. We fix

a parameter c. Let c be a formal variable. We denote by Hc(W ) the rational Cherednik algebra defined

over k[c] such that the specialization of Hc(W ) at c = 1 is isomorphic to Hc(W ). Let K = k(c) be the field

of fractions of k[c]. Given λ ∈ Irrk(W ), let ∆̄c(λ) = Hc(W ) ⊗k[V ]oW λ be the corresponding baby Verma

module. It is a free k[c]-module of finite rank. Let ∆̄K(λ) = HK(W )⊗K[V ]oW K ⊗k λ be the corresponding

baby Verma module for HK(W ).

Lemma. (1) Every simple module λ ∈ IrrK(W ) is absolutely irreducible.

(2) The module ∆̄K(λ) has a unique simple quotient LK(λ).

(3) We have a natural identification of HK(W )-modules K ⊗k[c] ∆̄c(λ) = ∆̄K(λ).

Proof. (1) The k-algebra kW is already split semi-simple since k is assumed to be algebraically closed

and the characteristic of k does not divide the order of |W |. Therefore the K-algebra KW = K⊗kkW
is also split semi-simple.

(2) Let µ ∈ IrrK(W ), considered as a K[V ] oW -module such that K[V ]+ acts as zero. Since Kλ and µ

are absolutely irreducible, adjunction implies that

HomK[V ]oW (∆̄K(λ), µ) = HomW (Kλ, µ) = Kδλ,µ.

Therefore, if φ : ∆̄K(λ)→ S is any simple quotient of ∆̄K(λ), we must have a K[V ] oW -surjection

S → Kλ. Hence S = HK(W ) ·Kλ is the unique graded quotient of ∆̄K(λ).

(3) The subspace K ⊗k λ of K ⊗k[c] ∆̄c(λ) is a K[V ] oW -submodule such that K[V ]+ acts as zero.

Moreover, this subspace generates K ⊗k[c] ∆̄c(λ) as a HK(W )-module. Therefore there exists a

surjective morphism of HK(W )-modules ∆̄K(λ) → K ⊗k[c] ∆̄c(λ). Since both modules have the

same dimension over K, this surjection must be an isomorphism.

�

6.7. The proof of Theorem 1.4. As noted at the beginning of this section, the key to proving Theorem

1.4 is Lemma 6.7. The proof of this lemma uses the results of all the previous subsections of section 6. Let

ev : K(W )[t, t−1]→ Z[t, t−1] be the map sending [λ] to dimλ. Let

I(t) := ev(cht,W (V0(1))) =

(
1− tp

1− t

)n
. (17)

Lemma. If c ∈ C such that dimk Lc(λ) = |W |pn, then the Poincaré polynomial of Lc(λ) is given by

P (Lc(λ), t) =
dim(λ) · tpbλ∗P (k[V ∗]coW , tp) · I(t)

fλ∗(tp)
. (18)

Proof. Let L(λ) be the Hc(W )-module described in 6.5. Since it is free as a k[c]-module, the graded W -

module structure of all specializations of L(λ) are the same. Therefore it suffices to prove that the Poincaré

polynomial of the specialization L(λ)c=0 has the desired form. We fix a filtration ∆̄i
c(λ) of ∆̄c(λ) as in

Lemma 6.4. Specializing to c = 0 gives a filtration ∆̄i
0(λ) of ∆̄0(λ) such that ∆̄r

0(λ)/∆̄r−1
0 (λ) ' L(λ)c=0.

All the D(V ) o W -modules ∆̄i
0(λ) have p-curvature zero. Therefore Proposition 6.1 says that ∆̄i

0(λ) =

Ind
D(V )oW
AoW ∆̄i

0(λ)(1) for some graded k[V (1)] oW -module ∆̄i
0(λ)(1) and we have

∆̄r
0(λ)(1)/∆̄r−1

0 (λ)(1) := L(λ)
(1)
c=0, with L(λ)c=0 = Ind

D(V )oW
AoW L(λ)

(1)
c=0.
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This implies that Lc(λ) ' V0(1) ⊗ L0(λ)(1) as graded W -modules. Let Hc(W )-latt denote the category of

Hc(W )-lattices i.e. the category of finitely generated, graded Hc(W )-modules that are free over k[c]. It is an

exact, extension closed subcategory of Hc(W )-grmod. Therefore it makes sense to consider the Grothendieck

group K0(Hc(W )-latt) of Hc(W )-latt. By our assumption on dimk Lc(λ), the support of Lc(λ) as a Zc(W )-

module is contained in the Azumaya locus of Hc(W ). Therefore Müller’s Theorem, [8, Proposition 2.7],

implies that each graded composition factor of the indecomposable module ∆̄c(λ) is of the form Lc(λ)[mi]

for some integer mi. Hence Lemma 6.4 says that each Lic(λ) specializes at c = 1 to some Lc(λ)[mi]. Thus, in

K0(Hc(W )-latt) we have an equality [∆̄c(λ)] = h(t)[Lc(λ)] for some Laurent polynomial h(t). This implies

that [∆̄0(λ)(1)] = h(t)[L(λ)
(1)
c=0] in the Grothendieck group of graded k[V (1)] o W -modules. By Lemma

6.3, the fact that L(λ)c=0 is isomorphic to pn copies of the regular representation implies that L(λ)
(1)
c=0 is

isomorphic to a graded copy of the regular representation. On the other hand, Lemma 2.4 and Proposition

6.1 imply that DR⊥(∆̄0(λ)) ' k[V (1)]coW ⊗ λ, hence

[k[V (1)]coW ⊗ λ] = h(t)[L(λ)
(1)
c=0].

The proof of [4, Lemma 3.3] implies that h(t) = t−pbλ∗ fλ∗(t
p). From this one can deduce formula (18). �

Now we are finally in a position to prove Theorem 1.4.

Proof of Theorem 1.4. Assume that W and c are chosen so that the centre of Hc(W ) is smooth. Then every

simple Hc(W )-module has dimension |W |pn. This implies that the graded character of Lc(λ) is given by

the formula of Lemma 6.7. Since Lc(λ) is finite dimensional, the rational function on the right hand side of

(18) must be a Laurent polynomial. This means that fλ∗(t
p) divides P (k[V ∗]coW , tp)I(t) in C[t, t−1]. The

formula (17) for I(t) shows that every root of I is a primitive pth root of unity. Therefore, if fλ∗(t
p) and

I(t) have a non-trivial common factor, we must have fλ∗(ζ
p) = 0 for some primitive pth root of unity ζ. But

fλ∗(1) = dimλ∗ 6= 0. Hence fλ∗(t
p) must divide P (k[V ∗]coW , tp) in C[tp, t−p]. It was shown in [4] that if

W is not isomorphic to G(m, 1, n) or G4 then one can always find some λ for which fλ∗(t
p) does not divide

P (k[V ∗]coW , tp). Since c has played no part in this argument, we conclude that the centre of Hc(W ) is never

smooth in these cases.

Conversely, it follows from Corollary 1.3 that the centre of Hc(G(m, 1, n)) is regular for generic c. Now we

consider the group G4; we have p 6= 2, 3 in this case. By Corollary 5.5, it suffices to show that the blocks of

Hc′(W
′) are singletons for generic parameters c and all parabolic subgroups W ′ of G4. We begin by showing

that this is true for W ′ = G4. Recall from 3.1 the central element hp − h of Hc(G4). For the remainder of

the proof we follow the notation of [4, §4]. The function c is defined by c(si) = c1 and c(ti) = c2 for some

c1, c2 ∈ k. To show that the block partition of IrrG4 is trivial, it suffices to show that the scalars by which the

element hp−h acts on the L(λ)’s are pairwise distinct. Let z1 = s1 + · · ·+s4 and z2 = t1 + · · ·+ t4 ∈ Z(G4).
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The scalar µi by which the central element zi acts on the simple G4-module µ is given by

µ z1 z2

T 4 4

V1 4ω2 4ω

V2 4ω 4ω2

W −2 −2

h −2ω2 −2ω

h∗ −2ω −2ω2

U 0 0

We have 1 − λsi = 1 − ω2 and 1 − λti = 1 − ω. Define di = −ci
1−λi ∈ k. Then hp − h acts on L(µ) by

dp1µ
p
1 − d1µ1 + dp2µ

p
2 − d2µ2, hence it will act by the same scalar on L(µ) and L(ρ) if and only if

d1(µ1 − ρ1) + d2(µ2 − ρ2) ∈ Fp. (19)

Since |k| = ∞ and the list of values µi − ρi is finite, we can always choose d1, d2 ∈ k such that (19) does

not hold, provided there is no pair µ 6= ρ such that µ1 = ρ1 and µ2 = ρ2. This can be checked directly: e.g.

−2 = 4 if and only if 6 = 0; −2 = 4ω if and only if p− 1 = 2ω which implies that (p− 1)3 = p− 1 = 8 and

hence p = 9 - both clearly contradictions.

Up to conjugacy, there is only one proper parabolic subgroup of G4, it is Z3. We may assume that

Z3 = 〈s1〉 = {1, s1, t1}. Repeating the above argument for Z3 and noting that IrrZ3 = {T |Z3
, V1|Z3

, V2|Z3
},

one sees that the block partition of IrrZ3 will not consist of singletons precisely if equation (19) is satisfied

for ρ, µ ∈ {T, V1, V2}. �

6.8. The Kac-Weisfeiler conjecture. As in the previous subsection, we assume that k is algebraically

closed of characteristic p > 0 and that p is prime to the order of W , a pseudo-reflection group. Recall that

the Kac-Weisfeiler conjecture, as stated in [37] and proved in [31], provides a lower bound on the power of p

dividing the dimension of a simple module over a restricted Lie algebra in terms of its support as a module

for the p-centre. The following result considers, analogously, the powers of p that divide the dimension of

simple modules for the rational Cherednik algebra.

Proposition. The subset Creg of C consisting of all parameters c such that the dimension of every simple

Hc(W )-module is divisible by pn is open and dense.

Note that, since the P.I. degree of Hc(W ) is pn|W |, pn is also the largest power of p dividing the dimension

of any simple Hc(W )-module. Also, one can show that Creg is always a proper subset of C.

Proof. First, we show that the subset Creg(W ) of C consisting of all c such that the dimension of every

simple Hc(W )-module is divisible by pn is open and dense in C. Consider the k[C]-algebra Hc(W ). It is free

as a k[C]-module. Therefore, it is a continuous family of L-algebras in the sense of [32, Definition 2.2] (for

L trivial). Then [32, Lemma 2.3] says that, for each integer d, the set of points c ∈ C such that Hc(W )

contains a two-sided ideal of dimension d is closed in C. The annihilator of a simple Hc(W )-module M has

codimension (dimkM)2 (recall that k is assumed to be algebraically closed). Therefore, the set of all points

in C for which there exists an ideal in Hc(W ) whose codimension belongs to {(pir)2 | 0 ≤ i < n, 1 ≤ r ≤ |W |}
is closed and its compliment is Creg(W ). We just need to show that this set is non-empty. Take any line ` in
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C. Then, Lemma 6.5 implies that ` ∩ Creg(W ) is dense in `. Note that this actually shows that there is no

linear subspace of C contained in C − Creg(W ).

Now we treat the general case. Let W ′ be a parabolic subgroup of W and CW ′ the space of parameters for

Hc(W ′). Restriction of parameters defines a linear map ρ : C → CW ′ , its image is a non-zero linear subspace

of CW ′ . We have shown that the set of points in CW ′ for which all simple Hc(W ′)-module have “maximum

p-dimension” is open and dense. If Creg(W ′) denotes the pre-image of this set under ρ then it is open and

dense in C. Then it follows from Propositions 5.3 and 5.5 together with Corollary 5.5 that

Creg =
⋂
W ′

Creg(W ′),

where the intersection is over all conjugacy classes of parabolic subgroups of W . �

Remark. We remark that our reduction method, combining Propositions 5.3 and 5.5 together with Corollary

5.5, also gives a different proof of the result [36, Corollary 4.2] (which is closer in spirit to the original Kac-

Weisfeiler conjecture): If M is a simple Hc(W ) and b ∈ V such that the support of M equals the image of b

in V/W then p|W/Wb| divides dimkM .

Example. When W = Sn+1, Creg = k − F×p . One can show this as follows: by remark 5.6, the algebra

Hc(Sn+1) is Azumaya for all c ∈ k − Fp and hence k − Fp ⊆ Creg. On the other hand, direct calculations

show that C − Creg(S2) = F×p . Therefore Propositions 5.3 implies that F×p ⊂ C − Creg. Finally, when c = 0,

Hc(Sn+1) = D(V )oSn+1 and, even though this is not an Azumaya algebra, it follows from Lemma 6.2 that

pn does divide dimk L for all simple D(V ) o Sn+1-modules L.
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