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Abstract

In this paper, we study the excursion time of a Brownian motion with
drift outside a corridor by using a four states semi-Markov model. In
mathematical finance, these results have an important application in the
valuation of double barrier Parisian options. In this paper, we obtain an
explicit expression for the Laplace transform of its price.

Keywords: excursion time, four states Semi-Markov model, double
barrier Parisian options, Laplace transform.

1 Introduction

The concept of Parisian options was first introduced by Chesney, Jeanblanc-
Picque and Yor [6]. It is a special case of path dependent options. The owner of
a Parisian option will either gain the right or lose the right to exercise the option
upon the price reaching a predetermined barrier level L and staying above or
below the level for a predetermined time d before the maturity date T .

More precisely, the owner of a Parisian down-and-out option loses the option
if the underlying asset price S reaches the level L and remains constantly below
this level for a time interval longer than d. For a Parisian down-and-in option
the same event gives the owner the right to exercise the option. For details on
the pricing of Parisian options see [6], [13], [15] and [12].

The double barrier Parisian options are a version with two barriers of the
standard Parisian options introduced by Chesney, Jeanblanc-Picque and Yor [6].
In contrast to the Parisian options mentioned above, we consider the excursions
both below the lower barrier and above the upper barrier, i.e. outside a corri-
dor formed by these two barriers. Let us look at two examples, depending on
whether the condition is that the required excursions above the upper barrier
and below the lower barrier have to both happen before the maturity date or
that either one of them happens before the maturity. In one example, the owner
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of a double barrier Parisian max-out option loses the option if the underlying
asset process S has both an excursion above the upper barrier for longer than
a continuous period d1 and below lower the barrier for longer than d2 before
the maturity of the option. In the other example, the owner of a double bar-
rier Parisian min-out option loses the right to exercise the option if either one
of these two events happens before the maturity. Later on, we will derive the
Laplace transforms which can be used to price this type of options.

In this paper, we are going to use the same definition for the excursion as
in [6] and [7]. Let S be a stochastic process and l1, l2, l1 > l2 be the levels of
these two barriers. As in [6], we define

gS
li,t = sup{s ≤ t | Ss = li}, dS

li,t = inf{s ≥ t | Ss = li}, i = 1, 2, (1)

with the usual conventions, sup{∅} = 0 and inf{∅} = ∞. Assuming d1 > 0,
d2 > 0,we now define

τS
1 = inf

{
t > 0 | 1{St>l1}(t− gS

l1,t) ≥ d1

}
, (2)

τS
2 = inf

{
t > 0 | 1{l2<St<l1}1ngS

l1,t>gS
l2,t

o(t− gS
l1,t) ≥ d2

}
, (3)

τS
3 = inf

{
t > 0 | 1{l2<St<l1}1ngS

l1,t<gS
l2,t

o(t− gS
l2,t) ≥ d3

}
, (4)

τS
4 = inf{t > 0 | 1{St<l2}(t− gS

l2,t) ≥ d4}, (5)

τS = τS
1 ∧ τS

4 . (6)

We can see that τS
1 is the first time that the length of the excursion of

process S above the barrier l1 reaches a given level d1; τS
4 corresponds to the

one below l2 with required length d4; and τS is the smaller of τS
1 and τS

4 . We
also see that τS

2 is the first time that the length of the excursion in the corridor
reaches given level d2, given that the excursion starts from the upper barrier l1;
τS
3 corresponds to the one in the corridor starting from the lower barrier l2. Our

aim is to study the excursion outside the corridor, therefore τS
2 and τS

3 are not
of interest here. However we need to use these two stopping times to define our
four states semi-Markov model that will be the main tool used for calculation.

Now assume r is the risk-free rate, T is the term of the option, St is the price
of its underlying asset, K is the strike price and Q is the risk neutral measure.
If we have a double barrier Parisian min-out call option with the barrier l1 and
l2, its price can be expressed as:

DPmin−out−call = e−rT EQ

(
1{τS>T} (ST −K)+

)
;

and the price of a double barrier Parisian min-in put option is:

DPmin−in−put = e−rT EQ

(
1{τS<T} (K − ST )+

)
.
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In this paper, we are going to study the excursion time outside the corridor
using a semi-Markov model consisting of four states. By applying the model to
a Brownian motion, we can get the explicit form of the Laplace transform for
the price of double barrier options. One can then invert using techniques as in
[13].

In Section 2 we introduce the four states semi-Markov model as well as a new
process, the doubly perturbed Brownian motion, which has the same behavior
as a Brownian motion except that each time it hits one of the two barriers, it
moves towards the other side of the barrier by a jump of size ε. In Section 3
we obtain the martingale to which we can apply the optional sampling theorem
and get the Laplace transform that we can use for pricing later. We give our
main results applied to Brownian motion in Section 4, including the Laplace
transforms for the stopping times we defined by(2)-(6) for both a Brownian
motion with drift, i.e. S = Wµ, and a standard Brownian motion, i.e. S = W .
In Section 5, we focus on pricing the double barrier Parisian options.

2 Definitions

From the description above, it is clear that we are actually considering four
states, the state when the stochastic process is above the barrier l1 the state
when it is below l2 and two states when it is between l1 and l2 depending on
whether it comes into the corridor through l1 or l2. For each state, we are
interested in the time the process spends in it. We introduce a new process

ZS
t =





1, if St > l1
2, if l1 > St > l2 and gS

l1,t > gS
l2,t

3, if l1 > St > l2 and gS
l1,t < gS

l2,t

4, if St < l2

.

We can now express the variables defined above (see definitions (1)-(5)) in terms
of Zt:

gS
li,t = sup

{
s ≤ t | ZS

s 6= Zt

}
, (7)

dS
li,t = inf

{
s ≥ t | ZS

s 6= Zt

}
, (8)

τS
1 = inf

{
t > 0 | 1{ZS

t =1}
(
t− gS

l1,t

) ≥ d1

}
, (9)

τS
2 = inf

{
t > 0 | 1{ZS

t =2}
(
t− gS

l1,t

) ≥ d2

}
, (10)

τS
3 = inf

{
t > 0 | 1{ZS

t =3}
(
t− gS

l2,t

) ≥ d3

}
, (11)

τS
4 = inf

{
t > 0 | 1{ZS

t =4}
(
t− gS

l2,t

) ≥ d4

}
. (12)

We then define
V S

t = t−max
(
gS

l1,t, g
S
l2,t

)
, (13)

3



the time ZS
t has spent in the current state. It is easy to see that (ZS

t , V S
t ) is

a Markov process. ZS
t is therefore a semi-Markov process with the state space

{1, 2, 3, 4}, where 1 stands for the state when the stochastic process S is above
the barrier l1; 4 corresponds to the state below the barrier l2; 2 and 3 represent
the state when S is in the corridor given that it comes into it through l1 and l2
respectively.

For ZS
t , define the transition intensities λij(u) by

P
(
ZS

t+∆t = j, i 6= j | ZS
t = i, V S

t = u
)

= λij(u)∆t + o (∆t) , (14)

P
(
ZS

t+∆t = i | ZS
t = i, V S

t = u
)

= 1−
∑

i 6=j

λij(u)∆t + o (∆t) . (15)

Define

P̄i(µ) = exp



−

∫ µ

0

∑

i 6=j

λij(v)dv



 , pij(µ) = λij(µ)P̄i(µ).

Notice that
Pi(µ) = 1− P̄i(µ)

is the distribution function of the excursion time in state i, which is a random
variable Ui defined as

Ui = inf
s>0

{
ZS

s 6= i | ZS
0 = i, V S

0 = 0
}

.

Note that because the process is time homogeneous this has the same distribu-
tion as

inf
s>0

{
ZS

t+s 6= i | ZS
t = i, V S

t = 0
}

.

for any time t. We have therefore

pij(µ) = lim
4µ→0

P
(
Ui ∈ (µ, µ +4µ), ZS

Ui
= j

)

4µ
.

Moreover, in the definition of ZS , we deliberately ignored the situation when
St = li, i = 1, 2. The reason is that we only consider the processes, which

∫ t

0

1{Su=li}du = 0, i = 1, 2, a.s.

Also, when l1 and l2 are the regular points of the process (see [5] for defi-
nition), we have to deal with the degeneration of pij . Let us take a Brownian
Motion as an example. Assume Wµ

t = µt + Wt with µ ≥ 0, where Wt is a
standard Brownian Motion. Setting x0 to be its starting point, we know its
density for the first hitting time of level li, i = 1, 2 is

px0 =
|li − x0|√

2πt3
exp

{
− (li − x0 − µt)2

2t

}
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Figure 1: A Sample Path of Wt

(see [4]). According to the definition of the transition density, p12(t) = p21(t) =
pl1(t) = 0 and p34(t) = p43(t) = pl2(t) = 0, for t > 0.

In [9] in order to solve the similar problem, we introduced the perturbed
Brownian motion X

(ε)
t with the respect to the barrier we are interested in. We

apply the same idea here, and construct a new process the doubly perturbed
Brownian motion, Y

(ε)
t , l1 − l2 > ε > 0, with the respect to barriers l1 and l2.

Assume Wµ
0 = l1 + ε. Define a sequence of stopping times

δ0 = 0,
σn = inf{t > δn | Wµ

t = l1},
δn+1 = inf{t > σn | Wµ

t = l1 + ε},

where n = 0, 1, · · · (see Figure 1). Now define
{

X
(ε)
t = Wµ

t if δn ≤ t < σn

X
(ε)
t = Wµ

t − ε if σn ≤ t < δn+1

.

Similarly, we then define another sequence of stopping times with the respect
to process X

(ε)
t and barrier l2

ζ0 = 0,

ηn = inf{t > ζn |X(ε)
t = l2},

ζn+1 = inf{t > ηn |X(ε)
t = l2 + ε},
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Figure 2: A Sample Path of X
(ε)
t

where n = 0, 1, · · · (see Figure 2). Then define
{

Y
(ε)
t = X

(ε)
t if ζn ≤ t < ηn

Y
(ε)
t = X

(ε)
t − ε if ηn ≤ t < ζn+1

.

It is actually a process which starts from l1 + ε and has the same behavior as
the related Brownian Motion expect that each time it hits the barrier l1 or l2,
it will jump towards the opposite side of the barrier with size ε (see Figure 3).

From the definition, it is clear that l1 and l2 become irregular points for Y
(ε)
t .

Also Y
(ε)
t converges to Wµ

t with Wµ
0 = l1 almost surely for all t. Therefore as

we saw in [9], the Laplace transforms of the variables defined based on Y
(ε)
t

converge to those based on Wµ
t . As a result, we can obtain the results for the

Brownian Motion by carrying out the calculation for Y
(ε)
t and take the limit as

ε → 0.
For Y

(ε)
t , we can define ZY , τY

1 , τY
2 and τY as above (we suppress (ε) on the
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superscript). For ZY , we have the transition densities (see [4])

p12(t) =
ε√

2πt3
exp

{
− (ε + µt)2

2t

}
, (16)

p21(t) = exp
{

µε− µ2t

2

}
sst (l1 − l2 − ε, l1 − l2) , (17)

p24(t) = exp
{
−µ (l1 − l2 − ε)− µ2t

2

}
sst (ε, l1 − l2) , (18)

p31(t) = exp
{

µ (l1 − l2 − ε)− µ2t

2

}
sst (ε, l1 − l2) , (19)

p34(t) = exp
{
−µε− µ2t

2

}
sst (l1 − l2 − ε, l1 − l2) , (20)

p43(t) =
ε√

2πt3
exp

{
− (ε− µt)2

2t

}
, (21)

where

sst(x, y) =
∞∑

k=−∞

(2k + 1)y − x√
2πt3

exp

{
− ((2k + 1)y − x)2

2t

}
.

Also we know that

p23(t) = p32(t) = p14(t) = p41(t) = 0. (22)
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Clearly, all the arguments above apply to the standard Brownian motion, which
is a special case of Wµ

t when µ = 0.

3 Results for the semi-Markov model

In §2 we have introduced the Markov process (ZS
t , V S

t ). Now we apply the
same definition to the doubly perturbed Brownian motion Yt; therefore we have
(ZY

t , V Y
t ), where ZY

t is the current state of Yt, taking value from state space
{1, 2, 3, 4} and V Y

t is the time Yt has spent in current state. V Y
t is also a

stochastic process. Now we consider a function of the form

f
(
V Y

t , ZY
t , t

)
= fZY

t

(
V Y

t , t
)
,

where fi, i = 1, 2, 3, 4 are functions from R2 to R. The generator A is defined
as an operator such that

f
(
V Y

t , ZY
t , t

)−
∫ s

0

A f
(
V Y

s , ZY
s , s

)
ds

is a martingale (see [10], chapter 2). Therefore solving

A f = 0

subject to certain conditions will provide us with martingales of the form f
(
V Y

t , ZY
t , t

)
to which we can apply the optional stopping theorem to obtain the Laplace
transform we are interested in. More precisely, we will have




A f1(u, t) =
∂f1(u, t)

∂t
+

∂f1(u, t)
∂u

+ λ12(u)(f2(0, t)− f1(u, t))

A f2(u, t) =
∂f2(u, t)

∂t
+

∂f2(u, t)
∂u

+ λ21(u)(f1(0, t)− f2(u, t)) + λ24(u)(f4(0, t)− f2(u, t))

A f3(u, t) =
∂f3(u, t)

∂t
+

∂f3(u, t)
∂u

+ λ31(u)(f1(0, t)− f3(u, t)) + λ34(u)(f4(0, t)− f3(u, t))

A f4(u, t) =
∂f4(u, t)

∂t
+

∂f4(u, t)
∂u

+ λ43(u)(f4(0, t)− f3(u, t))

,

Assume fi has the form
fi(u, t) = e−βtgi(u).
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By solving the equation A f = 0, i.e.





A f1 = 0
A f2 = 0
A f3 = 0
A f4 = 0

subject to





g1(d1) = α1

g2(d2) = α2

g3(d2) = α3

g4(d2) = α4

we can get

gi(u) = αi exp



−

∫ di

u


β +

∑

j 6=i

λij(v)


dv



 (23)

+
∑

j 6=i

gj(0)
∫ di

u

λij(s) exp



−

∫ s

u


β +

∑

j 6=i

λij(v)


dv



ds.

In our case, we are only interested in the excursion outside the corridor. Hence,
we set d2 and d3 to be ∞. Also limd2→∞ g2 (d2) = limd3→∞ g3 (d3) = 0 gives
α2 = α3 = 0. Therefore, we have

g1(0) = α1e
−βd1 P̄1(d1) +

{
g1(0)P̂21(β) + g4(0)P̂24(β)

}
P̃12(β), (24)

g4(0) = α4e
−βd4 P̄4(d4) +

{
g1(0)P̂31(β) + g4(0)P̂34(β)

}
P̃43(β). (25)

Solving (24) and (25) gives

g1(0) (26)

=
α1e

−βd1 P̄1(d1)
(
1− P̂34(β)P̃43(β)

)
+ α4e

−βd4 P̄4(d4)P̂24(β)P̃12(β)

1− P̂21(β)P̃12(β)− P̂34(β)P̃43(β) + P̂21(β)P̃12(β)P̂34(β)P̃43(β)− P̂31(β)P̃43(β)P̂24(β)P̃12(β)
,

g4(0) (27)

=
α4e

−βd4 P̄4(d4)
(
1− P̂21(β)P̃12(β)

)
+ α1e

−βd1 P̄1(d1)P̂31(β)P̃43(β)

1− P̂21(β)P̃12(β)− P̂34(β)P̃43(β) + P̂21(β)P̃12(β)P̂34(β)P̃43(β)− P̂31(β)P̃43(β)P̂24(β)P̃12(β)
.

where
P̂ij(β) =

∫ ∞

0

e−βspij(s)ds, (28)

P̃ij(β) =
∫ di

0

e−βspij(s)ds. (29)

As a result, we have obtained the martingale

Mt = f
(
V Y

t , t
)

= e−βtgZY
t

(
V Y

t

)
, i = 1, 2, 3, 4. (30)

We now can apply the optional stopping theorem to Mt with the stopping time
τY ∧ t, where τY is the stopping time defined by (6):

E (MτY ∧t) = E (M0) . (31)
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The right hand side of (31) is

E (MτY ∧t) = E
(
MτY 1{τY <t}

)
+ E

(
Mt1{τY >t}

)
.

Furthermore,

E
(
MτY 1{τY <t}

)

= E
(
MτY 1{τY

1 <τY
4 }1{τY

1 <t}
)

+ E
(
MτY 1{τY

1 >τY
4 }1{τY

4 <t}
)

= E
(
e−βτY

g1 (d1)1{τY
1 <τY

4 }1{τY
1 <t}

)
+ E

(
e−βτY

g4 (d4)1{τY
1 >τY

4 }1{τY
4 <t}

)

= α1E
(
e−βτY

1{τY
1 <τY

4 }1{τY
1 <t}

)
+ α4E

(
e−βτY

1{τY
1 >τY

4 }1{τY
4 <t}

)
.

We also have

E
(
Mt1{τY >t}

)
= e−βtE

(
gZY

t

(
V Y

t

)
1{τY >t}

)
,

where ZY
t can take values 1, 2, 3 or 4.

When ZY
t = 1 or 4, since τY > t, we have 0 ≤ V Y

t < d1 ∧ d4. According to
the definition of gi(µ) in (23), we have g1

(
V Y

t

)
and g4

(
V Y

t

)
are bounded.

When ZY
t = 2 or 3, since limd2→∞ g2 (d2) = limd3→∞ g3 (d3) = 0 and looking

at (23) with d2 and d3 replaced by ∞ we have that g2

(
V Y

t

)
and g3

(
V Y

t

)
are

bounded.
Therefore

lim
t→∞

E
(
Mt1{τY >t}

)
= 0.

Hence we have

lim
t→∞

E (MτY ∧t) = α1E
(
e−βτY

1{τY
1 <τY

4 }
)

+ α4E
(
e−βτY

1{τY
1 >τY

4 }
)

. (32)

The left hand side of (31) gives

lim
t→∞

E (M0) = E (M0) =

{
g1(0), Y

(ε)
0 = l1 + ε

g4(0), Y
(ε)
0 = l2 − ε

.

By taking the proper α1 and α4, we will have when Y
(ε)
0 = l1 + ε

E
(
e−βτY

1{τY
1 <τY

4 }
)

(33)

=
e−βd1 P̄12(d1)

(
1− P̂34(β)P̃43(β)

)

1− P̂21(β)P̃12(β)− P̂34(β)P̃43(β) + P̂21(β)P̃12(β)P̂34(β)P̃43(β)− P̂31(β)P̃43(β)P̂24(β)P̃12(β)
,

E
(
e−βτY

1{τY
1 >τY

4 }
)

(34)

=
e−βd4 P̄43(d4)P̂24(β)P̃12(β)

1− P̂21(β)P̃12(β)− P̂34(β)P̃43(β) + P̂21(β)P̃12(β)P̂34(β)P̃43(β)− P̂31(β)P̃43(β)P̂24(β)P̃12(β)
;
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when Y
(ε)
0 = l2 − ε

E
(
e−βτY

1{τY
1 <τY

4 }
)

(35)

=
e−βd1 P̄12(d1)P̂31(β)P̃43(β)

1− P̂21(β)P̃12(β)− P̂34(β)P̃43(β) + P̂21(β)P̃12(β)P̂34(β)P̃43(β)− P̂31(β)P̃43(β)P̂24(β)P̃12(β)
,

E
(
e−βτY

1{τY
1 >τY

4 }
)

(36)

=
e−βd4 P̄43(d4)

(
1− P̂21(β)P̃12(β)

)

1− P̂21(β)P̃12(β)− P̂34(β)P̃43(β) + P̂21(β)P̃12(β)P̂34(β)P̃43(β)− P̂31(β)P̃43(β)P̂24(β)P̃12(β)
.

4 Main Results

In §2 we have stated that the main difficulty with the Brownian Motion is that
its origin point is regular, i.e. the probability that Wµ

t will return to the origin
at arbitrarily small time is 1. We have therefore introduced the new processes
Y

(ε)
t and (ZY

t , V Y
t ) with transition densities for ZY

t defined in (16) to (22).
In order to simplify the expressions, we define

Ψ(x) = 2
√

πxN
(√

2x
)
−√πx + e−x2

,

where N (.) is the cumulative distribution function for the standard Normal
Distribution.

Theorem 1 For a Brownian Motion Wµ
t , τW µ

1 , τW µ

4 , τW µ

defined as in (2),
(5) and (6) with St = Wµ

t , we have the following Laplace transforms:
when Wµ

0 = l1,

E
(
e−βτW µ

1{τW µ
1 <τW µ

4 }
)

=
G1(d1, d4, µ)
G(d1, d4, µ)

; (37)

E
(
e−βτW µ

1{τW µ
1 >τW µ

4 }
)

=
G2(d4, d1,−µ)
G(d1, d4, µ)

; (38)

E
(
e−βτW µ )

=
G1(d1, d4, µ) + G2(d4, d1,−µ)

G(d1, d4, µ)
; (39)

when Wµ
0 = l2,

E
(
e−βτW µ

1{τW µ
1 <τW µ

4 }
)

=
G2(d1, d4, µ)
G(d1, d4, µ)

; (40)

E
(
e−βτW µ

1{τW µ
1 >τW µ

4 }
)

=
G1(d4, d1,−µ)
G(d1, d4, µ)

; (41)

E
(
e−βτW µ )

=
G1(d4, d1,−µ) + G2(d1, d4, µ)

G(d1, d4, µ)
; (42)

11



where

G1(x, y, z) = e−2(l1−l2)
√

2β+z2−βx

{√
yΨ

(
|z|

√
x

2

)
+ z

√
πxy

2

}
(43)

+

(
1− e−2(l1−l2)

√
2β+z2

)
e−βx

2
√

2β + z2

{
Ψ

(
|z|

√
x

2

)
+ z

√
πx

2

}

{√
2
π

Ψ

(√
(2β + z2) y

2

)
+

√
(2β + z2) y

}
,

G2(x, y, z) = e
−(l1−l2)

“√
2β+z2−z

”
−βx

{√
yΨ

(
|z|

√
x

2

)
+ z

√
πxy

2

}
, (44)

G(x, y, z) = e−2(l1−l2)
√

2β+z2

{
√

yΨ

(√
(2β + z2) x

2

)
+
√

xΨ

(√
(2β + z2) y

2

)}

+

(
1− e−2(l1−l2)

√
2β+z2

)

2
√

2β + z2

{
Ψ

(√
(2β + z2)x

2

)
+

√
(2β + z2)πx

2

}

{√
2
π

Ψ

(√
(2β + z2) y

2

)
+

√
(2β + z2) y

}
. (45)

Proof: We apply the transition densities in (16) to (22) to the results in (33) to
(36) and take the limit as ε → 0. According to the definition of Y (ε), we know
that

Y
(ε)
t

a.s−→ Wµ
t , for all t.

As we saw in [9], since Y
(ε)
t

a.s−→ Wµ
t , for all t, by taking the limit ε → 0, the

quantities defined based on Y
(ε)
t converge to those based on Brownian motion

with drift. Therefore we will get the results shown by (37), (38), (40) and (41).
We can therefore get (39) and (42) by

E
(
e−βτW µ )

= E
(
e−βτW µ

1{τW µ
1 <τW µ

4 }
)

+ E
(
e−βτW µ

1{τW µ
1 >τW µ

4 }
)

.

2

Corollary 1.1 For a standard Brownian Motion (µ = 0), we have
when W0 = l1,

E
(
e−βτW

1{τW
1 <τW

4 }
)

=
G1(d1, d4, 0)
G(d1, d4, 0)

; (46)

E
(
e−βτW

1{τW
1 >τW

4 }
)

=
G2(d4, d1, 0)
G(d1, d4, 0)

; (47)

E
(
e−βτW

)
=

G1(d1, d4, 0) + G2(d4, d1, 0)
G(d1, d4, 0)

; (48)

12



when W0 = l2,

E
(
e−βτW

1{τW
1 <τW

4 }
)

=
G2(d1, d4, 0)
G(d1, d4, 0)

; (49)

E
(
e−βτW

1{τW
1 >τW

4 }
)

=
G1(d4, d1, 0)
G(d1, d4, 0)

; (50)

E
(
e−βτW

)
=

G1(d4, d1, 0) + G2(d1, d4, 0)
G(d1, d4, 0)

; (51)

where

G1(x, y, 0) = e−2(l1−l2)
√

2β−βx√y (52)

+

(
1− e−2(l1−l2)

√
2β

)
e−βx

2
√

2β

{√
2
π

Ψ
(√

βy
)

+
√

2βy

}
,

G2(x, y, 0) = e−(l1−l2)
√

2β−βx√y, (53)

G(x, y, 0) = e−2(l1−l2)
√

2β
{√

yΨ
(√

βx
)

+
√

xΨ
(√

βy
)}

(54)

+

(
1− e−2(l1−l2)

√
2β

)

2
√

2β

{
Ψ

(√
βx

)
+

√
βπx

} {√
2
π

Ψ
(√

βy
)

+
√

2βy

}
.

Remark 1: By taking the limit l1 − l2 → 0, we can get the result for the
single barrier two-sided excursion case as in [9].

Remark 2: If we only want to consider the excursion above a barrier, we
can let l2 → −∞. Similarly, for the one below a barrier, we can let l1 → +∞.
These results have been shown in [9].

Corollary 1.2 For a Brownian Motion Wµ
t , τW µ

defined as in (6) with St =
Wµ

t , we have the following Laplace transforms:
when Wµ

0 = x0, x0 > l1,

E
(
e−βτW µ )

(55)

=
{

e
−
“

µ+
√

2β+µ2
”
(x0−l1)N

(√
(2β + µ2) d1 − x0 − l1√

d1

)

+e
−
“

µ−
√

2β+µ2
”
(x0−l1)N

(
−

√
(2β + µ2) d1 − x0 − l1√

d1

)}
G1 (d1, d4, µ) + G2 (d4, d1,−µ)

G (d1, d4, µ)

+e−βd1

{
1− e−(µ+|µ|)(x0−l1)N

(
|µ|

√
d1 − x0 − l1√

d1

)

−e−(µ−|µ|)(x0−l1)N

(
−|µ|

√
d1 − x0 − l1√

d1

)}
;
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when Wµ
0 = x0, l2 ≤ x0 ≤ l1,

E
(
e−βτW µ )

(56)

=
e(l1−x0)µ

{
e
√

2β+µ2(x0−l2) − e−
√

2β+µ2(x0−l2)
}
{G1(d1, d4, µ) + G2(d4, d1,−µ)}

{
e
√

2β+µ2(l1−l2) − e−
√

2β+µ2(l1−l2)
}

G (d1, d2, µ)

+
e(l2−x0)µ

{
e
√

2β+µ2(l1−x0) − e−
√

2β+µ2(l1−x0)
}
{G2 (d1, d4, µ) + G1(d4, d1,−µ)}

{
e
√

2β+µ2(l1−l2) − e−
√

2β+µ2(l1−l2)
}

G (d1, d2, µ)
;

when Wµ
0 = x0, x0 < l2,

E
(
e−βτW µ )

(57)

=
{

e

“
µ−
√

2β+µ2
”
(l2−x)

N

(√
(2β + µ2) d4 − l2 − x√

d4

)

+e

“
µ+
√

2β+µ2
”
(l2−x)

N

(
−

√
(2β + µ2) d4 − l2 − x√

d4

)}
G1 (d4, d1,−µ) + G2 (d1, d4, µ)

G (d1, d4, µ)

+e−βd4

{
1− e(µ−|µ|)(l2−x)N

(
|µ|

√
d4 − l2 − x√

d4

)

−e(µ+|µ|)(l2−x)N

(
−|µ|

√
d4 − l2 − x√

d4

)}
. (58)

Proof: We will first prove the case when x0 > l1. Define T = inf {t | Wµ
t = l1} ,

i.e the first time Wµ
t hits l1. By definition, we have τW µ

= d1, if T ≥ d1;
τW µ

= T + τ W̃ µ

, if T < d1, where W̃µ here stands for a Brownian motion with
drift started from l1. As a result

E
(
e−βτW µ )

= E
(
e−βτW µ

1{T≥d1}
)

+ E
(
e−βτW µ

1{T<d1}
)

= e−βd1P (T ≥ d1) + E
(
e−βT 1{T<d1}

)
E

(
e−βτ

fW µ )

E
(
e−βτ

fW µ )
has been calculated in Theorem 1 (see (39)). The density for T is

given in [4] as

px0 =
|l1 − x0|√

2πt3
exp

{
− (li − x0 − µt)2

2t

}
.

We can therefore calculate

P (T ≥ d1) = 1− e−(µ+|µ|)(x0−l1)N

(
|µ|

√
d1 − x0 − l1√

d1

)

−e−(µ−|µ|)(x0−l1)N

(
−|µ|

√
d1 − x0 − l1√

d1

)
,
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E
(
e−βT 1{T<d1}

)
= e

−
“

µ+
√

2β+µ2
”
(x0−l1)N

(√
(2β + µ2) d1 − x0 − l1√

d1

)

+e
−
“

µ−
√

2β+µ2
”
(x0−l1)N

(
−

√
(2β + µ2) d1 − x0 − l1√

d1

)
.

We therefore get the result in (55). For the case when x0 < l2, we can apply
the same argument.

When l2 ≤ x0 ≤ l1, we define T̃ = inf (t | Wµ
t 6∈ (l2, l1)). By definition, we

have τW µ

= T + τ
fW µ

, if Wµ
T = l1; τW µ

= T + τW µ

, if Wµ
T = l2, where Wµ

stands for a Brownian motion with drift started from l2. Consequently,

E
(
e−βτW µ )

= E
(
e−βT e−βτ

fW µ

1{T=l1}
)

+ E
(
e−βT e−βτW µ

1{T=l2}
)

= E
(
e−βT 1{T=l1}

)
E

(
e−βτ

fW µ )
+ E

(
e−βT 1{T=l2}

)
E

(
e−βτW µ )

E
(
e−βτ

fW µ )
and E

(
e−βτW µ )

have been obtained by Theorem 1, (39) and (42).
According to [4], we have

E
(
e−βT 1{T=l1}

)
=

e(l1−x0)µ
{

e
√

2β+µ2(x0−l2) − e−
√

2β+µ2(x0−l2)
}

e
√

2β+µ2(l1−l2) − e−
√

2β+µ2(l1−l2)
,

E
(
e−βT 1{T=l2}

)
=

e(l2−x0)µ
{

e
√

2β+µ2(l1−x0) − e−
√

2β+µ2(l1−x0)
}

e
√

2β+µ2(l1−l2) − e−
√

2β+µ2(l1−l2)
.

We have therefore obtained (56). 2

Theorem 2 The probability that Wµ
t with Wµ

0 = x0, l2 ≤ x0 ≤ l1, achieves an
excursion above l1 with length as least d1 before it achieves an excursion below
l2 with length at least d4 is

P
(
τW µ

1 < τW µ

4

)
=

e(l1−x0)µ
{
e|µ|(x0−l2) − e−|µ|(x0−l2)

}
F1(d1, d4, µ){

e|µ|(l1−l2) − e−|µ|(l1−l2)
}

F (d1, d4, µ)
(59)

+
e(l2−x0)µ

{
e|µ|(l1−x0) − e−|µ|(l1−x0)

}
F2(d1, d4, µ){

e|µ|(l1−l2) − e−|µ|(l1−l2)
}

F (d1, d4, µ)
,

P
(
τW µ

1 > τW µ

4

)
=

e(l1−x0)µ
{
e|µ|(x0−l2) − e−|µ|(x0−l2)

}
F2(d4, d1,−µ){

e|µ|(l1−l2) − e−|µ|(l1−l2)
}

F (d1, d4, µ)
(60)

+
e(l2−x0)µ

{
e|µ|(l1−x0) − e−|µ|(l1−x0)

}
F1(d4, d1,−µ){

e|µ|(l1−l2) − e−|µ|(l1−l2)
}

F (d1, d4, µ)
;
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where

F1(x, y, z) = e−2(l1−l2)|z|
{√

yΨ
(
|z|

√
x

2

)
+ z

√
πxy

2

}
(61)

+

(
1− e−2(l1−l2)|z|)

2|z|
{

Ψ
(
|z|

√
x

2

)
+ z

√
πx

2

} {√
2
π

Ψ
(
|z|

√
y

2

)
+ |z|√y

}
,

F2(x, y, z) = e−(l1−l2)(|z|−z)

{√
yΨ

(
|z|

√
x

2

)
+ z

√
πxy

2

}
, (62)

F (x, y, z) = e−2(l1−l2)|z|
{√

yΨ
(
|z|

√
x

2

)
+
√

xΨ
(
|z|

√
y

2

)}
(63)

+

(
1− e−2(l1−l2)|z|)

2|z|
{

Ψ
(
|z|

√
x

2

)
+ |z|

√
πx

2

} {√
2
π

Ψ
(
|z|

√
y

2

)
+ |z|√y

}
.

Proof: From Theorem 1 and (56) in Corollary 1.2, we actually know that, when
Wµ

0 = x0, l2 ≤ x0 ≤ l1,

E
(
e−βτW µ

1{τW µ
1 <τW µ

4 }
)

=
e(l1−x0)µ

{
e|µ|(x0−l2) − e−|µ|(x0−l2)

}
G1(d1, d4, µ){

e|µ|(l1−l2) − e−|µ|(l1−l2)
}

G(d1, d4, µ)
(64)

+
e(l2−x0)µ

{
e|µ|(l1−x0) − e−|µ|(l1−x0)

}
G2(d1, d4, µ){

e|µ|(l1−l2) − e−|µ|(l1−l2)
}

G(d1, d4, µ)
,

E
(
e−βτW µ

1{τW µ
1 >τW µ

4 }
)

=
e(l1−x0)µ

{
e|µ|(x0−l2) − e−|µ|(x0−l2)

}
G2(d4, d1,−µ){

e|µ|(l1−l2) − e−|µ|(l1−l2)
}

G(d1, d4, µ)
(65)

+
e(l2−x0)µ

{
e|µ|(l1−x0) − e−|µ|(l1−x0)

}
G1(d4, d1,−µ){

e|µ|(l1−l2) − e−|µ|(l1−l2)
}

G(d1, d4, µ)
.

Setting β = 0 in (64) and (65) yields the results. 2

Theorem 2 leads to the following remarkable result.

Corollary 2.1 The probability that a standard Brownian motion Wt with W0 =
x0, l2 ≤ x0 ≤ l1, we have

P
(
τW
1 < τW

4

)
=

√
d4 + (x0 − l2)

√
2
π

√
d1 +

√
d4 + (l1 − l2)

√
2
π

, (66)

P
(
τW
1 > τW

4

)
=

√
d1 + (l1 − x0)

√
2
π

√
d1 +

√
d4 + (l1 − l2)

√
2
π

. (67)
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Remark: When we take l1 → 0, l2 → 0, x0 → 0, we can get the results for
the one barrier case as in [9].

We will now extent Corollary 1.2 to obtain the joint distribution of Wt

and τW at an exponential time. This is an application of (56) and Girsanov’s
theorem.

Theorem 3 For a standard Brownian Motion Wt with W0 = x0, l2 ≤ x0 ≤ l1
and τW defined as in (4) with St = Wt, we have the following result:

For the case x ≥ l1,

P
(
WT̃ ∈ dx, τW < T̃

)
= a1 (x0) f (x− l1, d1) + a2 (x0) f (x− l2, d4) + a1 (x0)h(x− l1, d1); (68)

For the case l2 ≤ x < l1,

P
(
WT̃ ∈ dx, τW < T̃

)
= a1 (x0) f (x− l1, d1) + a2 (x0) f (x− l2, d4) ; (69)

For the case x < l2,

P
(
WT̃ ∈ dx, τW < T̃

)
= a1 (x0) f (x− l1, d1) + a2 (x0) f (x− l2, d4) + a2 (x0)h(x− l2, d4); (70)

where T̃ is a random variable with an exponential distribution of parameter γ
that is independent of Wt and

f(x, y) =
e−
√

2γ|x|
√

2γ
− eγy−√2γ|x|√2πyN

(
−

√
2γy

)
, (71)

h(x, y) =
√

2πyeγy

{
e−
√

2γ|x|N
( |x|√

y
−

√
2γy

)
− e

√
2γ|x|N

(
− |x|√

y
−

√
2γy

)}
, (72)

a1 (x0) =
γ

{
e
√

2γ(x0−l2) − e−
√

2γ(x0−l2)
}

b1 (d1, d4) + γ
{

e
√

2γ(l1−x0) − e−
√

2γ(l1−x0)
}

b2 (d1, d4)

G
{
e
√

2γ(l1−l2) − e−
√

2γ(l1−l2)
} , (73)

a2 (x0) =
γ

{
e
√

2γ(x0−l2) − e−
√

2γ(x0−l2)
}

b2 (d4, d1) + γ
{

e
√

2γ(l1−x0) − e−
√

2γ(l1−x0)
}

b1 (d4, d1)

G
{
e
√

2γ(l1−l2) − e−
√

2γ(l1−l2)
} , (74)

b1(x, y) = e−2(l1−l2)
√

2γ−γx√y +
1− e−2γ

√
2γ

2
√

2γ
e−γx

{√
2
π

Ψ(
√

γy) +
√

2γy

}
, (75)

b2(x, y) = e−(l1−l2)
√

2γ−γx√y, (76)

G = e−2(l1−l2)
√

2γ
{√

d4Ψ
(√

γd1

)
+

√
d1Ψ

(√
γd4

)}
(77)

+

(
1− e−2(l1−l2)

√
2γ

)

2
√

2γ

{
Ψ

(√
γd1

)
+

√
γπd1

} {√
2
π

Ψ
(√

γd4

)
+

√
2γd4

}
.

Proof: see appendix. 2
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5 Pricing double barrier Parisian Options

We want to price a double barrier Parisian call option with the current price of
its underlying asset to be x, L1 < x < L2, the owner of which will obtain the
right to exercise it when either the length of the excursion above the barrier L1

reaches d1, or the length of the excursion below the barrier L2 reaches d2 before
T . Its price formula is given by

Pmin−in−call = e−rT EQ

(
(ST −K)+ 1{τS<T}

)
,

where S is the underlying stock price, Q denotes the risk neutral measure. The
subscript min-in-call means it is a call option which will be triggered when the
minimum of two stopping times, τS

1 and τS
4 , is less than T , i.e. τS < T . We

assume S is a geometric Brownian motion:

dSt = rStdt + σStdWt, S0 = x,

where L1 < x < L2, r is the risk free rate, Wt with W0 = 0 is a standard
Brownian motion under Q. Set

m =
1
σ

(
r − 1

2
σ2

)
, b =

1
σ

ln
(

K

x

)
, Bt = mt + Wt,

l1 =
1
σ

ln
(

L1

x

)
, l2 =

1
σ

ln
(

L2

x

)
.

We have

St = x exp
{(

r − 1
2
σ2

)
t + σWt

}
= x exp {σ(mt + Wt)} = xeσBt .

By applying Girsanov’s Theorem, we have

Pmin−in−call = e−(r+ 1
2 m2)T EP

[(
xeσBT −K

)+
emBT 1{τB<T}

]
,

where P is a new measure, under which Bt is a standard Brownian motion with
B0 = 0, and τB is the stopping time defined with the respect to barrier l1, l2.
And we define

P ∗min−in−call = e(r+ 1
2 m2)T Pmin−in−call.

We are going to show that we can obtain the Laplace transform of P ∗min−in−call

w.r.t T , denoted by LT .
Firstly, assuming T̃ is a random variable with an exponential distribution
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with parameter γ that is independent of Wt, we have

EP

[(
xeσBT̃ −K

)+
emBT̃ 1{τB<T̃}

]

=
∫ ∞

b

(xeσy −K) emyP
(
BT̃ ∈ dy, τB < T̃

)

=
∫ ∞

0

γe−γT

∫ ∞

b

(xeσy −K) emyP
(
BT ∈ dy, τB < T

)
dT

= γ

∫ ∞

0

e−γT EP

[(
xeσBT −K

)+
emBT 1{τB<T}

]
dT

= γLT

Hence we have

LT =
1
γ

∫ ∞

b

(xeσy −K) emyP
(
BT̃ ∈ dy, τB < T̃

)
.

By using the results in Theorem 3, this Laplace transform can be calculated
explicitly.

When b ≥ l1, i.e. K ≥ L1, we have

LT =
x

γ
F1(σ + m)− K

γ
F1(m),

where

F1(x) = a1(0)
{

1√
2γ

− eγd1
√

2πd1N
(
−

√
2γd1

)}
e
√

2γl1+(x−√2γ)b

√
2γ − x

+a2(0)
{

1√
2γ

− eγd4
√

2πd4N
(
−

√
2γd4

)}
e
√

2γl2+(x−√2γ)b

√
2γ − x

+a1(0)
√

2πd1e
γd1





2xexl1−rd1+
d1x2

2 N
(
x
√

d1 − b−l1√
d1

)

2γ − x2

+
e
√

2γl1+(x−√2γ)bN
(

b−l1√
d1
−√2γd1

)
√

2γ − x
+

e−
√

2γl1+(x+
√

2γ)bN
(
− b−l1√

d1
−√2γd1

)
√

2γ + x



 ;

when l2 < b < l1, i.e. L2 < K < L1, we have

LT =
x

γ
F2(σ + m)− K

γ
F2(m),

19



where

F2(x) =
2a1(0)el1x

2γ − x2

{
1 + x

√
2πd1e

d1x2

2 N
(
x
√

d1

)}

−a1(0)
{

1√
2γ

− eγd1
√

2πd1N
(
−

√
2γd1

)}
e−
√

2γl1+(x+
√

2γ)b

√
2γ − x

+a2(0)
{

1√
2γ

− eγd4
√

2πd4N
(
−

√
2γd4

)}
e
√

2γl2+(x−√2γ)b

√
2γ − x

;

when b ≤ l2, i.e. K ≤ L2, we have

LT =
x

γ
F3(σ + m)− K

γ
F3(m),

where

F2(x) =
2a1(0)el1x

2γ − x2

{
1 + x

√
2πd1e

d1x2

2 N
(
x
√

d1

)}

−a1(0)
{

1√
2γ

− eγd1
√

2πd1N
(
−

√
2γd1

)}
e−
√

2γl1+(x+
√

2γ)b

√
2γ − x

+
2a2(0)el2x

2γ − x2

{
1− 2

√
πd4γe

d4x2

2 N
(
x
√

d4

)}

−a2(0)
{

1√
2γ

− eγd4
√

2πd4N
(
−

√
2γd4

)}
e−
√

2γl2+(x+
√

2γ)b

√
2γ − x

+a2(0)
√

2πd4e
γd4





2
√

2γexl2−rd4+
d4x2

2 N
(
x
√

d4 − b−l2√
d4

)

2γ − x2

−
e
√

2γl2+(x−√2γ)bN
(

b−l2√
d4
−√2γd4

)
√

2γ − x
−

e−
√

2γl2+(x+
√

2γ)bN
(
− b−l2√

d4
−√2γd4

)
√

2γ + x



 .

Remark: The price can be calculated by numerical inversion of the Laplace
transform.

So far, we have shown how to obtain the Laplace transform of

P ∗min−call−in = e(r+ 1
2 m2)T Pmin−call−in.

For
Pmin−call−out = e−rT EQ

(
(ST −K)+1{τS>T}

)
,

we can get the result from the relationship that

Pmin−call−out = e−rT EQ

{
(ST −K)+

}− Pmin−call−in.
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Furthermore, if we set
τ̃Y
L = τY

1,L ∨ τY
2,L,

we can define another type of Parisian options by τ̃Y
L :

Pmax−call−in = e−rT EQ

(
(ST −K)+1{τ̃S

L <T}
)

.

In order to get its pricing formula, we should use the following relationship:

1{τ̃S
L <T} = 1{τS

1,L<T} + 1{τS
2,L<T} − 1{τS

L <T}.

We have therefore

Pmax−call−in = Pup−in−call + Pdown−in−call − Pmin−call−in.

Similarly, from

Pmax−call−out = e−rT EQ

{
(ST −K)+

}− Pmax−call−in,

we can work out Pmax−call−out.

6 Appendix: Proof of Theorem 3

Let T be the final time. According to the definition of Ψ(x), we have

Ψ(x) = 2
√

πxN
(√

2x
)
−√πx + e−x2

=
√

πx−√πxErfc (x) + e−x2
.

It is not difficult to show that

E
(
e−βτW µ )

= E

(∫ ∞

0

βe−βT 1{τW µ
<T}dT

)
.

By Girsanov’s theorem, this is equal to
∫ ∞

0

βe−(β+ 1
2 µ2)T−µx0E

(
eµWT 1{τW <T}

)
dT.

Setting γ = β + 1
2µ2 gives

E
(
e−βτW µ )

=
∫ ∞

0

(γ − 1
2
µ2)e−γT−µx0E

(
eµWT 1{τW <T}

)
dT

=
γ − 1

2µ2

γ
e−µx0E

(
eµWT̃ 1{τW <T̃}

)
,

where T̃ is a random variable with an exponential distribution of parameter γ
that is independent of Wt. Therefore we have

E
(
eµWT̃ 1{τW <T̃}

)
=

γeµx0

γ − 1
2µ2

E
(
e−βτW µ )
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In order to inverse the above moment generating function, we just need to
inverse the following expressions:

µ

γ − µ2

2

=
∫ ∞

0

eµxe−
√

2γxdx−
∫ 0

−∞
eµxe

√
2γxdx,

1

γ − µ2

2

=
∫ ∞

0

eµx 1√
2γ

e−
√

2γxdx +
∫ 0

−∞
eµx 1√

2γ
e
√

2γxdx,

e
d1
2 µ2

=
∫ ∞

−∞
eµx 1√

2πd1

exp
{
− x2

2d1

}
dx,

1−
√

di

2
πµe

di
2 µ2

Erfc

(√
di

2
µ

)
=

∫ 0

−∞
eµx−x

di
e
− x2

2di dx.

The inversion of µe
d1
2 µ2

γ−µ2
2

is

∫ ∞

0

e−
√

2γy 1√
2πd1

e−
(x−y)2

2d1 dy −
∫ 0

−∞
e
√

2γy 1√
2πd1

e−
(x−y)2

2d1 dy

= eγd1

{
e−
√

2γxN

(
x√
d1

−
√

2γd1

)
− e

√
2γxN

(
− x√

d1

−
√

2γd1

)}
.

The inversion of
1−
q

di
2 πµe

di
2 µ2Erfc

„q
di
2 µ

«

γ−µ2
2

is given below.

For x > 0,

∫ 0

−∞

−y

di
e
− y2

2di
1√
2γ

e−
√

2γ(x−y)dy =
e−
√

2γx

√
2γ

− eγdi−
√

2γx
√

2πdiN
(
−

√
2γdi

)
;

For x < 0,
∫ x

−∞

−y

di
e
− y2

2di
1√
2γ

e−
√

2γ(x−y)dy +
∫ 0

x

−y

di
e
− y2

2di
1√
2γ

e
√

2γ(x−y)dy

=
e
√

2γx

√
2γ

− eγdi−
√

2γx
√

2πdiN

(
x√
di

−
√

2γdi

)

+eγdi+
√

2γx
√

2πdi

{
N

(√
2γdi

)
−N

(
x√
di

+
√

2γdi

)}
.

Consequently, we can get Theorem 3.
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