
Durham E-Theses

Design and implementation of a generalised computer

aided learning system

Nga, Me Hin

How to cite:

Nga, Me Hin (1986) Design and implementation of a generalised computer aided learning system, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6825/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6825/
 http://etheses.dur.ac.uk/6825/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Design and Implementation of a Generalised Computer

Aided Learning System.

Me Hin Nga

A Thesis submitted for the Degree of

Master of Science

at the University of Durham

Department of Computer Science
University of Durham

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

31 October 1986

~ w
i

Design and Implementation of a Generalised Computer
Aided Learning System.

Me Hin Nga

Department of Computer Science
University of Durham

ABSTRACT

This thesis surveys the development of computer aided
learning and outlines the tools that are used for creating
computer aided learning systems. A project to create and port
over a computer aided learning system from a VAX 11/750 to
a PDP model 11/44 based on the UNIX operating system is
described. The computer aided learning system makes extensive
use of existing software tools available on UNIX and is hence
named CALUNIX for Computer Aided Learning on UNIX.

DIGITAL, PDP, VAX are trademarks of DIGITAL Equipment
Corporation, Maynard, Massachusetts.
UNIX is a trademark of Bell Laboratories

ii

Acknowledgements

I would like to thank the staff and colleagues at Durham

who have given their help in this work, especially A.J.

Slade, P.L. Davies and M. Storey.

My parents and family who have given me this opportunity

and their continued support.

Finally, I am grateful and indebted to my supervisor,

Mr. J.S. Roper, for his guidance and support in my work.

iii

"The copyright of this thesis rests with the author. No

quotation from it should be published without his prior

written consent and information derived from it should be

acknowledged."

iv

CONTENTS

CHAPTER 1 COMPUTER AIDED LEARNING

CHAPTER2

CHAPTER 3

1.1 Introduction

1.2 History of Computer Aided Learning
1.2.1 Programmed Learning (1950's)
1.2.2 CAL systems
1.2.3 Intelligent Tutoring Systems or AI in CAL

1.3 Conclusion

References

TOOLS FOR A CAL SYSTEM

2.1 Introduction

2.2 Computer as a Tool
2.2.1 Memory
2.2.2 Control and Arithmetic
2.2.3 Input and Output

2.3 Software Tools
2.3.1 Operating Systems
2.3.2 Editors
2.3.3 Files, Databases and DBMS
2.3.4 Programming Tools

2.4 CAL Tools
2.4.1 Author Languages and Authoring Systems
2.4.2 Types of Author Languages
2.4.3 User Interfaces

References

Project - A Generalised Computer Aided Learning System

3.1 Requirements of a CAL system
3 .1.1 Desired Behaviour
3 .1. 2 Software
3 .1. 3 The user Interface
3 .1. 4 Summary.

3.2 System Design
3. 2.1 Overview
3. 2. 2 The CAL UNIX LEARN Component
3. 2. 3 The WRITER/AUTHOR Component
3. 2. 4 The HELP Environment

v

1

40

84

CHAPTER 4

APPENDIX -

3.3 Development
3.3.1 Constraints and Problems Encountered
3.3.2 Testing and Debugging

3.4 Conclusion

References

TRENDS AND CONCLUSION

4.1 Trends in Computer Technology
4.1.1 Computers
4.1.2 Mass Storage

4.2 Trends in Software Tools

4.3 Trends in CAL

4.4 Conclusion.

References

CALUNIX PROGRAMME DOCUMENTATION

145

vi

CHAPTER 1

COMPUTER AIDED LEARNING

1.1 Introduction

1.2 History of Computer Aided Learning

1.2.1 Programmed Learning (1950's)

1.2.2 CAL systems

1.2.3 Intelligent Tutoring Systems or A.I. in CAL

1.3 Conclusion

References

page 1

CHAPTER l COMPUTER AIDED LEARNING

1.1 Introduction

The Computer has greatly influenced the way society

functions. What started as a research tool for scientists has

extended its application to become tools in the information,

commercial, entertainment, production, defence, education and

many other areas. In this chapter the use of the computer as

a learning tool and some of the educational theories and

assumptions are examined.

1.2 History of Computer Aided Learning/Instruction

What is learning? Learning can be described as a

continual process in which one is engaged in order to

acquire the necessary knowledge and skills to survive and

live within an environment. In the context of this thesis

learning is taken as an activity in which the student is

engaged in order for him or her to assimilate the relevant

information and

objectives. The

problems posed

language.

apply his understanding to achieve

objectives might be to solve

or to be able to programme in a new

certain

certain

computer

page 2

The computer ~~ an electronic machine that is able to

perform high speed operations and handle huge amounts of

information. ThP operations the computer performs depend on

the instructions given to it. The instructions which can

be expressed in the form of code which the computer can

interpret are known collectively as software.

Computer Aided Learning or Computer Aided Instruction are

two common acronyms used, the latter in the United States of

America and the former in Great Britain. Computer Aided

Learning (CAL for short) is the process by which textual and

graphic information is presented in some logical sequence to a

student by a computer. Here the computer serve as an

audio/visual/tactile device. The student learns by reading

from the text material presented or graphical information

displayed and interacting with the computer via the keyboard

or other input devices. In this manner the computer can be

developed into an effective instructional medium.

Instructional devices like the blackboard, overhead

projector, etc. could

The change in the use of

be classified as instructor-centered.

teaching devices to be learner-

centered instead of instructor-centered could be seen as the

beginnings of the

following sections

Aided learning has

present.

Computer

we will

traversed

Aided Learning era. In the

trace the milestones Computer

up to the state it is at

page 3

l . 2 . 1 Programmed Learning 1950's and Learning Theories.

One of the most important factors which contributed to

the development of Computer Aided Learning was the growth of

the programmed instruction or programmed learning movement.

Programmed learning or programmed instruction is a

process whereby a learner is presented with a small sections

of material to be learnt and to which some form of response is

required. The required response is put in such a way that it

should almost always produce a correct one by the learner.

This stimulus and response method is geared to direct the

learner towards a desired behaviour.

The programmed learning technique originated mainly from

the work done by Sidney Pressey and B.F. Skinner between 1920

and 1955. In 1924 Pressey used a machine for grading multiple

choice examinations. The idea was furthered by Skinner in the

experiments carried out on learning behaviour.

Skinnerian (Behaviourist) Learning model.

Skinner's model of behaviour known more commonly as

'Operant Conditioning' can be described in terms of stimulus

and response. Learning is deemed to have occurred when a

specific response is elicited by a specific situation or

stimulus with a high degree of probability. The more

predictable the response, the more efficient the learning

is deemed to have been. The learning of more complex

page 4

behaviour can be described as building up a chain of

stimulus and response bonds.

The programmmed learning technique was described in an

experiment on pigeons being trained to

task. The pigeon is rewarded each time

response. The desired behaviour

perform

it does

is thus

a specific

a correct

shaped and

reinforced by rewarding the correct actions. This principle

is extended to shaping the behaviour of the learner by

presenting a gradual progression of small units of

information and related tasks. Each task being created to

ensure maximum likelihood of success.

Papert's Communication Model of Learning.

Another approach that influenced the scope of programmed

learning at about the same time as B.F. Skinner was when

Seymour Papert advocated a 'skill analysis approach'. The

approach is applied as a step by step procedure such as the

solution of a geometry problem or the assembly of a mechanism

that can be readily described as a series of steps in a chain

and then adding the next one. The skill analysis approach

towards learning is characterised by

(1) A thorough analysis of the task to be taught.

(2) List knowledge and skills requirements separately.

(3) Use observation and interview methods to extract

the requirements.

page 5

Seymour Papert gave no indication of being influenced by

Skinner's work and he has based the approach on the

commtJnir~tion theory of learning as opposed to Skinner's

reliance on the behaviourist theory of learning. (See Figure

1.0 - Behaviourist learning model, Figure 1.1 - Communication

model). Though the approaches taken by Skinner and Papert

are different the resulting course structures developed when

Skinner's approach was applied to skills training is almost

identical.

Problems with the programmed instruction technique arose

when the disciples of the proponents, Skinner and Papert,

tried to extend the domain of application to all forms of

learning.

Gange's Hierarchy of Learning

Robert Gange has classified the basic learning concepts

in a way which represents a hierachical view of how the

concepts of learning are acquired. (See figure 1.2 Gange's

Hierarchy of Learning Categories.) The hierarchy was meant to

show that learning proceeds from a simple conditioning type

to more complex problem solving type. Implicit in the

hierarchy is also the precondition that lower levels of

learning should be attained before higher levels could be

tried. A brief description of each level of learning

follows:-

page 6

This is equivalent to the Pavlovian conditioned response

type of learning. The subject here learns that a given event

is the signal for another. The illustration by Pavlov is

conditioning the dog (subject) to salivate (response) upon a

dinner bell being rung (signal for another event) instead of

the actual dog's dinner (event). The critical factor is the

timing of the events, the bell being rung after the dog has

been given his dinner or if the time between the bell signal

and the dinner is too far apart would not elicit the required

response at the bell signal event.

(b) S-R Learning (Stimulus-Response Learning).

This is different from signal learning in that the

response is not a generalised emotional one, but a very

precise act. Gange gives the illustration of a dog learning

to respond to its master's command of 'shake hands' by

offering its paw. The characteristics of S-R learning are:-

(1) The learning is typically gradual with some repetition of

the association between the stimulus and response being

necessary.

(2) The response becomes more sure and precise as the

repetition progresses.

(3) The controlling stimulus becomes more precise- initially

the dog may respond to a variation of the commands but as

page 7

the trai~i~g progresses these variations cease to produce

response.

(4) Some form of reward (or reinforcement) is given, when a

correct response is produced.

(c) Chaining

A chain is a series of simple stages that go to make up

a procedure. It may be represented by a chain of S-R bonds

and may be implemented either by Skinner's operant

conditioning method or by Papert's progressive parts method.

Characteristics of chaining are:-

(1) Each link(connector) in the chain must be established

first.

(2) Time is a factor, events need occur close in time.

(3) If the preceding two conditions are satisfied, learning a

chain occurs on a single occasion. However the occasion

might need to be repeated if the links are not well

established.

Verbal chaining is a sub-variety of chaining. Gange gives

the example of learning French for match (allumette) in the

following way. The word 'match' can be associated with the

mental picture of a match illuminating.

established.

So a chain is

page 8

(d) Discrimi~ant Learuing

Discriminant learning requires that the necessary S-R

effects are already established and the interference from

conflicting stimuli must be reduced to a minimum.

(e) Concept Learning

Concept learning classifies a stimulus in terms

of its abstract properties. An example is given of a child

learning that a blue block X is called a cube and another

block Y twice the size of X is red in colour, is also a

cube. Concept learning would enable the child to identify a

cube on the basis of an internalised representation (shape)

which is independent of the dissimilarities (colour) of the

two objects. The characteristics are:-

(1) The initial S-R portions of the chains must be learnt.

(2) A variety of stimulus situations must be presented, so

that the conceptual property common to all of them can be

discriminated.

(3) The learning of a new concept may be gradual, because of

a need to introduce a variety of stimulus situations.

(f) Rule learning

In the formal sense, a rule is a chain of two or more

concepts. The simplest type of rule may be 'If A then B'.

Once a rule is correctly learnt the learner will be able to

page 9

relevant situcttio!ls, but he may not be able

to state the rule in words. The characteristics are:-

(1) The concepts to be linked must be clearly established

the learner must know what a 'feminine' noun is and what

a 'feminine article' is.

(2) A simple process of chaining can take place.

(3) The learning of a rule may take place in a single

occasion.

(g) Problem solving

Once some rules are acquired a person can combine these

rules into a great variety of higher order rules. In doing

this he can apply what he already knows to solve problems

which are new to him. The characteristics are:-

(1) The learner must be able to recognise the features of the

response that constitute the solution to the problem.

(2) Relevant rules are recalled and used.

(3) The recalled rules are combined so that a new rule

emerges.

(4) Though the process of arriving at a solution may take a

very long time Gange thinks that the actual solution is

actually arrived at a 'flash of insight'.

The learning concepts presented here form the basis of

some of the early and later CAL systems that are described in

the next section.

page 10

WRONG
RESPONSE

NO REINFORCE
MENT

Figure 1.0

l
STIMULUS

some external
event or
situation
·~

THE LEARNER
internal learning
processes are
often ignored

t

A Behaviourist Learning Model

I
I

.J..

CORRECT
RESPONSE

REINFORCEMENT
a reward

page 11

MESSAGE
DESTINATION

t

RECEIVER

CHANNEL

t

I

TRANSMITTER

t

MESSAGE
SOURCE

NOISE

Figure 1.1 An engineer's model of the communication process
(From C.E. Shannon and W. Weaver, The Mathematical Theory of
Communication, University of Illinois Press, 1949)

Any conflicting messages received at the destination are
regarded as 'NOISE'. Efficient communication aims at reducing
this 'NOISE'.

page 12

Relations between different
learning categories, higher
categories require mastery of
lower ones

t

t

~

Problem
Solving

Rule
learning

8~
Concept

t

I S-R

learning

~

Learning
multiple
discrim
inations

I Learning
I
I
I

8
Signal
Learning

Learning
Verbal
chains
(chaining)

Relation to other
teaching and learning
models

Learning by
"discovery"

J

"Rule"
Techniques

operant
conditioning
(Skinnerian)

classical
conditioning
(Pavlolvian)

Figure 1.2 Gange's Hierarchy of Learning categories

page 13

Computer Aided Learning Systems

Early successes in the use of computers in aiding

scientific research and administration have led to the

appraisal of its application in other areas. During the

1960's the computer was beginning to be used as a tool in the

educative process. The use of computers for direct

instruction has proved to be a challenging, long and

difficult task. This section surveys some of the past work in

Computer Aided Learning. The presentation is not in a st, ict

chronological order, but aims to show the development ~f

differing types of ideas and approches.[Atkins69,Bitzer70]

Table 1.0 shows some of the approaches to Computer Aided

Learning.

In the following section we will survey some CAL approaches

in some detail.[Self83]

page 14

APPROACH

Linear programmes

Branching programmes

PLATO

TICCIT

Generative CAI

Expert Systems

CHARACTERISTICS/ILLUSTRATION

Derivation from behaviourism;
Systematic preparation;
Reinforcement and self-pacing.
Drill and Practice.

Corrective feedback; adaptive
to Student response; tutorial
dialogues; use of author
languages.

Multi-terminal interactive
system; visual displays; 'open
shop' approach; expensive.

Team production of courseware;
'mainline' lessons; use of
television and minicomputers;
learner controlled.

Ease burden of preparation of
teaching material; precursor
intelligent tutoring systems;
Drill and Practice.

SCHOLAR; SOPHIE; GUIDON
SPIRIT.

Games Intrinsically motivating;
audiovisual effects; often
lacking educational aims;
WEST.

Table 1.0 Approaches to CAL

page 15

Drill and Practice

Drill and Practice systems present practice problems and

exercises to reinforce learning gained from another source. In

addition to keeping track of right and wrong answers, the

computer can provide useful student feedback and remedial

information. One of the early CAL systems developed in this

mould was at Stanford University around 1967. The Drill and

Practice system was based on a Digital Equipment Corporation

PDPl central processing unit with a high speed drum and a

model 33 teletype unit as the student interface. The Drill

and Practice system updates off-line the material to be

presented to the student the next day. This material is

dependent upon the performance recorded on that day.

Tutorial System

The Tutorial approach is essentially programmed

instruction implemented on a computer. The computer presents

the material to be learned in sequential frames. Either

linear or branching modes of programmed instruction can be

used. The Tutorial system was also developed in Stanford

University in parallel with the Drill and Practice System.

Initially the system used a Digital Corporation Equipment

PDPl central processing unit with an attached IBM 7090 disc

drive. The system was later developed on another systern(IBM

1500) and an author language called COURSEWRITER II was used.

page 16

The 1500 system consists of an -- ·- L ·-- ., L:t:IIC.Ld.l

processing unit, tape unit and exchangeable discs. Student

terminal consisted of a cathode ray tube, typewriter keyboard

and a light pen. This system has been classified as a

tutorial system due to a branching structure which allows for

real time instructional decisions to be made on what material

is to be presented next based on the student's last response

or upon an evaluation of some subset of his total response

history.

The Tutorial and the Drill and Practice procedures

described in the context of the Stanford University'

projects are by far the most prevalent modes of computer

aided learning strategies. Their value lies in the

individualised nature of interaction between computer and

student which is described as an optimising process.

This optimising process starts with a lengthy

preparation of the learning material for a short interaction,

in the course of this, involving preliminary testing on

students and removal of fuzzy or dull or otherwise inadequate

portions of the material. In the end an incisive educational

piece of material is used.

The computer can keep a record of the interaction with

the student. For the educator this record of performance

allows a means of studying students' conception and

misunderstandings or the inadequacies of the learning

material. For the student, a record of his particular

page 17

learning idiosyncrasies can govern the heuristics or rules of

the thumb used by the his "tutor" (the CAL system) . The CAL

system can respond more actively or draw out the student

whether it tells or asks, whether ideas are best presented

first by example or introduced at once as general principles,

whether small steps and repetitions or great mental strides

are needed, whether visual or auditory presentation is most

helpful and so on. The third gain of the performance record

is that, at the end of a block, the student as in fact

demonstrated mastery and has passed his examination, the

computer thus can 'teach' and certify achievement.

The opportunity is offered to the student to learn at

his own convenience of time, place, pace.

PLATO

The largest Computer Aided Instruction exercise

undoubtedly belong to the PLATO project in the United States

of America. The PLATO system originated at the University of

Illinois by Bitzer and Braunfeld during the early 1960's.

The PLATO project was funded by the National Science

Foundation of America and later Control Data Corporation took

over the project on a commercial basis.

The original system had a terminal that supported both

alphanumeric/graphical display as well as the facility to

superimpose computer selected slides onto the terminal

page 18

display. The subjects taught cover mathematics, language

drills and computer related topics.[Bitzer76]

The first PLATO system consists of one terminal

link to an ILLIAC I computer system and fifteen years

later(1975) the configuration supports over 900 terminals

linked to a huge main-frame, a CDC CYBER 73-2. The scale

of PLATO use grew to more than 1 million student contact

hours in the year 1975 with over 4000 lessons representing

approximately 3500 hours of instructional material in over 100

subject areas. If success is measured in terms of how much

a system is being used then PLATO would certainly be on top

of the list of the most used CAL systems then and even now.

Critics of PLATO and other CAL systems often used cost

effectiveness as a main measure of success and PLATO have not

been deemed to be successful in this respect.[Yeates81]

The main features of the PLATO system are:-

(1) A main-frame based system capable of supporting over

900 terminals.

(2) Specialised terminals using a gas matrix display

panel capable of addressing 512 by 512 positions

on the screen. This display panel being constructed

of flat transparent glass permits slide images to be

projected from the rear on the graphic display. The

images are stored on a microfiche image sheet and any

one of the 256 images can be selected within 0.2

page 19

second. l\udio facility on the teLminal allows as

many as 4096 messages or 22 minutes of audio. The

messages are stored on a disc device that can fetch

a message within 0.3 second. The terminal also permit

authors to generate their own set of 126 characters

in addition to the set of 126 always available in the

terminal. Besides the keyboard, users can enter

information via a touch panel. The touch panel

consists of a transparent plastic film containing

light-emitting diodes and diode detectors on a 16

by 16 matrix mounted on the front display panel,

Finally each terminal has an additional input-output

connector for attaching any other devices.

(3) Author language TUTOR allowed classroom teachers to

write the PLATO lesson materials.

(4) A mix of teaching strategies is often used in

teaching most of the PLATO subjects. Strategies

include drill and practice, simulation, tutorial, and

dialogue.

(5) Two types of hardcopy devices are supported:- a

video hardcopy unit reproduces the video image from

the screen onto paper and an alphanumeric printer.

Because of the specialised equipment and software needed

to support the PLATO system, cost has always been a worry. In

the United Kingdom only large institutions like the Royal

page 20

Navy, International Computers Limited and International

Telephone and Telegraph, initially have been able to use the

PLATO system. Evaluation reports on the empirical data

collected during the five year PLATO project gave no

compelling evidence that PLATO had a positive or negative

impact on student achievement or dropout rate. The

subjective feedback in the form of questionnaires gave

evidence of PLATO students' favourable attitudes towards

computers and computer assisted instruction compared with

non-PLATO students'. Teachers' reaction towards PLATO was also

favourable, the authors of the evaluation speculated that the

high acceptance by the teacher to the fact that teachers

perceived that they retained control over how PLATO was used,

and that the system therefore was not a threat to their

current procedures. Cost of PLATO was three times more than

the targeted figure that otherwise would have made PLATO an

equal cost alternative to more traditional teaching methods.

In all PLATO made the very significant impact in the world of

CAL and its ideas and methods are still retained in many

other CAL systems.

TICCIT

TICCIT stands for Time-Shared Interactive Computer

Controlled Information Television. At about the same time as

the PLATO system another project known as TICCIT was started.

Both PLATO and TICCIT were funded under a 10 million U.S.

page 21

dollar project spreading over ~; ··~ L.J..Vt:' years the National

Science Foundation of America. TICCIT project was directed by

the Mitre Corporation whom also were responsible for the

hardware and software for a computer assisted learning

delivery system. Another group led by Victor Bunderson at

the Brigham Young University developed the courseware for the

system.

The aim of TICCIT project was to create a marketable

system that could be used as a main media for delivery of

instruction. This approach of selling a mainline computer

assisted instruction package has resulted in the use of

"off-the-shelf" products partly to minimise the costs,

increased the reliability of the tested components and wider

user acceptance.

The hardware used in TICCIT is made up of two General

Nova 800 series minicomputers with up to 128 terminals

connected to the system. Each of the terminals had a Sony

colour television set to display alphanumeric and graphic

characters in seven colours. Input consists of an

alphanumeric keyboard with a special set of "learner control"

keys and an optional light pen that permits a user to point

and receive input from a specific location on the television

screen.

TICCIT's method of instruction put emphasis on the

learner being in control of the course material. This is

facilitated by means of a high level command language

page 22

incorporated in the special set of "learner control" keys

shown in figure 1.3. The lower nine set of keys are used by

the learner to control his own learning tactics. For example

the OBJ'TIVE key will access an illustration of the segment

objective, the MAP key accesses the next higher level

for status or survey, and the ADVICE key elicits the

adviser programme comments and strategy. The HELP, HARD and

EASY keys are used in conjunction with the RULE, EXAMPLE and

PRACTICE keys. The RULE, EXAMPLE and PRACTICE keys may be

accessed in any order and may also be repeated. When a

student feels he has mastered the material requested, he may

ask for a "TEST". The computer grades the test and informs

the student of the results. If the student fails the mastery

test, advice is given as to which material he must review

before he tries another test.

The National Science Foundation gave a draft evaluation

report on TICCIT in 1977. Some of the report's main

conclusions were:-

(1) TICCIT exerted a significant impact on student

achievement in both mathematics and english

composition. Students who completed courses under

a TICCIT programme generally attained higher scores

than similar students in a lecture discussion

environment.

(2) Low completion rates for TICCIT courses compared

page 23

with non-TICCIT courses a were worrying result.

Some explanation for this phenomenon were attributed

to TICCIT's bias towards high ability students to

the detriment of the less able ones and also

insufficient degree of instructor involvement in

managing the students' progress.

(3) The evaluation concluded that TICCIT had confirmed

on the potential of computer aided instruction as

an effective resource in student learning.

page 24

Att'n Exit Hepeat

Go Skip Back

Obj'tive Map Advice

Help Hard Easy

Rule Example Practice

Figure 1.3 TICCIT "learner control" keys

page 25

l. 2. 3 Tutoring Systems or Artificial

Intelligence in Learning.

Intelligent Tutoring Systems (ITS) are applications

in the field of Artificial Intelligence (AI). AI

studies intelligence using ideas and methods of computation.

However a definition of intelligence seems quite impossible

because intelligence appears to be an amalgam of so

many information-processing and information representation

abilities. AI research started in the mid 1950's with

attempts to build intelligent machinery using the human

brain as a model. In 1960's AI work focused on the problem

solving aspect of intelligence. The General Problem Solver

was one of the early systems developed as a result.

Psychologists, philosophers, linguists and others

from related disciplines offered various perspectives and

methods for studying intelligence. Their contributions in

terms of ideas, relationships and constraints gives the some

basis and credence that artificial intelligence is in fact

possible.

Artificial intelligence offers a new path and methodology to

understanding intelligence whose ultimate goal is to make

computers 'intelligent'. Using ideas and methods of

computation, a new and different basis for theory formation

have developed in the artificial intelligence community. Many

page 26

in this community believe that these theories will apply to

any intelligent information processor, be it solid state or

biological.[Winsto79]

Most of the theories proposed however are still too

incomplete or too vaguely stated (perhaps understood) to be

realised in computational terms. In

artificial intelligence he described

which generally followed some pattern.

with an early success on simple

Dreyfus' critique of

early efforts on AI

The pattern starts

mechanical forms of

information processing, great expectations and then failure

forms of when confronted with more complicated

behaviour.(Dreyfu72j In fairness research in AI did produce

some results in understanding some aspects of the problem

solving process. General problem solving strategies were

developed and applied. GPS (General Problem Solver) was one

such system. GPS was general in that it made no specific

reference to the subject matter of the problem. The user has

to define a task environment in terms of objects and

use operators to apply to those objects. However the

generality was restricted to a domain of puzzles like the

"Towers of Hanoi''. Later AI work recognised that specialised

knowledge is required to solve a specific problem. This has

led to a more restricted area of domain specific intelligent

systems known as Expert systems. Expert systems like MYCIN

for diagnosing infectious blood disorders, SOPHIE in

debugging electronic devices and DENDRAL for inferencing

page 27

chemical structure of molecules from mass spectrometry data

are the products of decades of research put into AI

Intelligent Tutoring systems have benefited from these

successes and have either tapped into the existing pool of

expert system's knowledge or have used the same ideas in

developing its own knowledge.

GENERATIVE CAI

Intelligent tutoring systems or artificial intelligence

in computer aided learning has been a recent development.

Intelligent tutoring systems aims to apply the idea of

heuristics to the field of computer aided learning systems.

Generative CAI was mentioned in the previous section on CAL

systems, it is the precursor to the Intelligent Tutoring

systems.

Generative CAI stemmed both from a practical desire

to ease the authors task in preparing teaching material and

more importantly, from a different educational philosophy.

This philosophy held that students learn better from

attempting problems of an appropriate difficulty than from

attempting some systematic exposition of material. The

Generative CAI method involves writing a computer programme

that will generate the material, that is, the problems,

solutions and associated diagnostics.

The foreseen advantages of such a system were that:

page 28

(a) provision of an unlimited resource of teaching material;

(b) the store taken by teaching material is reduced;

(c) provision of as many problems as the student needs to

achieve some level of competence;

(d) ability to control the level of difficulty of problems

so that the student is presented with problems

relevant to his needs at the time.

SUMMARY

Generative CAL can be summarised as follows:-

Strategy determines problems <
I
v

Problem is yenerated and presented

v
Student solves problem

I v
Programme solves problem

I v
Problem solutions are compared------------~

Success of the generative model depends on the

availability of the task difficulty model, with parameters

which can be systematically altered, how could the model then

be used to teach say politics or poetry. If the topic in mind

can say 'yes' to each of the following questions then it is

likely that a generative model can be used:-

(1) Do you have standard format questions?

(2) Is there only one method of solution for each problem?

page 29

(3) Can the intermediate (assuming you

want to comment on these)?

(4) Is it easy to estimate the difficulty of a problem?

(5) Is it easy to find out about what you need to know about

the student in order to be able to give him appropriate

problems?

(6) Can the different sorts of problems be put in an order

of difficulty? (if you have more than one sort.)

The introduction of intelligent tutoring systems

raises cautious optimism about boosting the role of the

computer aided learning systems. The following section

introduces the role of artificial intelligence in computer

aided learning.[Sleema82] Intelligent tutoring systems

reviewed here are taken from the following subject areas:-

(a) place value arithmetic;

(b) solving simple algebraic equations;

(c) non-deterministic (or backtracking) problem

solving;

(d) debugging (of electronic circuits and

program/plans);

(e) medical diagnosis.

page 30

SCHOLAR

SCHOLAR teaches South American geography and it is

regarded as the first CAL programme to be in the category of

an expert system. SCHOLAR employed a graph (semantic net)

representation for declared facts about geography. The graph

contains specific relationships on a domain and do not embody

more refined levels of geographic knowledge linked by various

changing relationships.

SOPHIE

SOPHIE is a tutor for troubleshooting a piece of

malfunctioning electronic equipment, such as a power supply.

A simulation package called SPICE which is a non-AI tool and

rules which are embedded enabled it to make intelligent use

of the simulator. It also provides a natural language type

interface to the student, demonstrating the feasibility of

good communications between student and the automated tutor.

WEST - How the West was won

"How the West was won'' is a computer board game,

originally designed at project PLATO. The game gives students

drill and practice in arithmetic. The computer board is 70

spaces long and the objective is for the student to be the

first player to land exactly on 70. In a turn each player

receives 3 numbers, from spinners, which must be used in an

page 31

3rithmetic expression, using operations addition,

subtraction, multiplication and division as well as

parenthesis; with the constraint that no operator or number

can be used more than once. Special moves are incorporated by

adding towns at every ten paces and short-cuts. If a player

lands on a town he can advance to the next one. If he lands

on a short-cut he can advance to the other end of the

short-cut. If he lands on the same space as his opponent the

opponent is bumped back two towns unless the opponent piece

is on a town.

The coaching environment in WEST is the main

element which puts it in the category of an ITS. The coaching

system adopts a means of giving appropriate comments based

on an idea of "Issues and Examples". A "Focus" or

"Breadth" strategy is also used to guide the coach's decision

on which issue is to be used on the student. The "Focus"

strategy selects the most recent issue discussed between the

coach and the student while the "Breadth" strategy selects

the issue which has not recently been discussed. There are 3

levels of issue that can be discussed. At the lowest

level are the basic mathematical skills that the student is

practising. The second level concerns the skills needed to

play WEST. Issues at this level are special moves of BUMP,

TOWN and SHORTCUT, the direction of a move (eg. Both

FORWARD and BACKWARD moves are legal); and the development of

a strategy for choosing a move, such as maximising the

distance you are ahead of your opponent. The third level deals

page 32

with the general skills of game playing. One such general

skill is the strategy of watching your opponent in order to

learn from his moves.

A model of the student's knowledge is kept in relation

to an expert player.

moments.

Giving helpful hints at appropriate

Experiences of WEST from an experiment with 18 student

teachers who use the system for at least an hour are noted as

follows:-[Burton82] Only 1 did not receive any advice from

the coach. 9 teachers commented favourably about the

coach's advice. 2 disagreed; one on the basis that the

coach's strategy would leave him ''vulnerable to attack"

which was an element of strategy not known to the expert. 8

out of 10 subjects found the comments helpful in learning

a better way to play the game. 9 out of 10 felt that the

coach manifested a good understanding of their weaknesses.

In another experiment conducted in elementary school

classrooms. Some interesting patterns and results were

obtained. The coached students showed a considerably greater

variety of patterns, showing that they acquired the skill in

using more subtle patterns and not falling into using a set

pattern which may prevent them from seeing the relatively

rare occasions when some of these moves were important.

Surprisingly the coached students enjoyed the game more than

the uncoached group. This helps to substantiate that the

page 33

coaching principles 'trw"'e re developed and did not destroy

the enjoyment of the game.

GUIDON

GUIDON grew out of one of the best known expert system,

MYCIN. MYCIN is a rule based expert system on the treatment of

infectious blood diseases. GUIDON has a teaching expert and a

model of the student's performance.[Clance82,Clance84]

GUIDON utilises MYCIN's set of knowledge rules called

'production rules' which constitute the MYCIN knowledge base,

The MYCIN knowledge base described by Clancey contains about

450 such rules as well as several hundred facts and relations

stored.in tables, which are referenced by the rules. Each of

the rules consist of a premise which, if true, justifies the

conclusion made in the "action" part of the rule. An example

of a MYCIN rule is shown below:-

If (1) the gram stain of the organism is gram negative, and

(2) the morphology of the organism is rod, and (3) the

aerobicity of the organism is anaerobic, THEN there is

suggestive evidence (0.6) that the genus of the organism is

Bacteroides.

Figure 1.4 Sample MYCIN rule.

GUIDON added two other levels to strengthen the performance of

the MYCIN's 'production rules'. One level is used to justify

page 34

individual rules, and another to organize the rules into

patterns. The teaching expertise of GUIDON is independent of

the domain knowledge base and is used to carry on a tutorial

type dialogue to present the domain knowledge to a student in

an organised way.

The separate interacting components of GUIDON provides the

basis of an intelligent tutoring system.

A Self-improving Quadratic Tutor.

The "Self Improving Quadratic Tutor" teaches quadratics

based on the discovery or problem solving method of

teaching style. The system starts by carefully choosing

a set of equations for presentation to the student who will

then try to determine the solution. The set is chosen

specifically to enable the student to discover the general

rule for solving this class of problem. Once the student

appears to have found a particular rule, the "Tutor" will

present more examples, some and others to challenge that rule

so that it is refined and generalised.

O'Shea has expressed the decisions about the teaching

strategies in the form of production rules that guide the

generation of examples.[O'Shea82)

page 35

SPIRIT

SPIRIT is an intelligent tutoring system for teaching

probability theory. It is a later development and tries to

provide a complete intelligent tutoring environment. The

system manages a unique flexible tutoring style. On one hand

the system may behave as a tutor who mostly observes the

student without interference, intervening only when things

are really going wrong, and on the other hand it may behave

as a tutor who manages a ''questioning and answering" type of

dialogue. Based on a belief constructed about the student's

aptitude, the system frequently changes its tutoring style.

SPIRIT integrates several artificial intelligence methods

that include a theorem prover, a production system, an object

oriented system and procedural knowledge embedded in LISP

code.[Pople84]

page 36

1, 3 Conclusion

This chapter aims only to rover some aspects of

the emergence of CAL systems. There are still numerous

approaches in CAL that are not mentioned but are more

comprehensively covered in the following books:-

"An Introduction to Computer Assisted Learning" by

P. G. Barker and H. Yeates, Prentice Hall, 1985.

"Learning and Teaching with Computers" by

J. Self and Tim O'Shea, Harvester Press, 1983.

"Intelligent Tutoring Systems" by

D. Sleeman and J. S. Brown, Academic Press, 1982.

As a result of the early attempts at providing the educational

assumptions and CAL systems

learnt. Well known systems

many useful lessons

have been adapted

have been

for the

commercial market, for example, PLATO concepts have been

adopted and released on microcomputers like the ATARis' and

IBM PCs'.

page 37

References

Atkins69.
Atkinson, R.C. and Wilson, N.A., Computer Aided
Instruction, pp. 5-6, Academic Press, 1969.

Bitzer76.
Bitzer, Donald,
Education," in
Morris Rubinoff
Academic Press,

Bitzer70.

"The Wide
Advances

& Marshall
1976.

World of Computer-Based
in Computers Vol 15, ed.
~ Yovits, pp-.--239-283,

Bitzer, Donald and Skaperdas, D., "The Economics of
a Large Scale Computer Based Education System :
Plato IV," in Computer Assisted Instruction, Testing
and Guidance,, ed. wayne Holtzman, pp. 17-29, Harper
and Row,New York 1970, 1970.

Burton82.
Burton, R. R. and Brown, J. S., "An investigation of
computer coaching for informal learning activities,"
Press, 1982.

Clance82.
Clancey, w. J., "Tutoring rules for guiding a case
method dialogue," in Intelli~ent Tutoring Systems,
pp. 201-222, Academic Press, 1 82.

Clance84.
Clancey, W. J., "GUIDON," Proceeding of the Joint
Services., pp. 181-187, (U) Denver Research Inst.
Co., June 1984.

Dreyfu72.
Dreyfus, Hubert L., What Computers Can't Do : A
critique of Artificiar-Reason, Harper & Row, 1971.

Nilsso80.
Nilsson, Nils J., Princilles of Artificial
gence, Springer Verlag, 980.

Intelli-

page 38

O'Shea82
O'Shea, T., "A self improving quadratic tutor,"
in Intelligent Tutoring Systems, pp. 309-334,
Academic Press, 1982.

Pople84.
Pople, Harry E. Jr and Barzilay, Amos, "SPIRIT: an
evolutionally design intelligent tutoring system,"
University 9f Pittsburgh, University of Pittsburgh &
XEROX Palto Alto Research Center, July 1984.

Self83.
Self, John and 0' Shea, T., "Learning and Teaching
with Computers," The Harvester Press, 1983.

Sleema82.
Sleeman, D. and Brown, J.S., "Introduction: Intelli
gent Tutoring Systems," in Intelligent Tutoring Sys
tems, pp. 1-8, Academic Press, 1982.

Winsto79.
Winston, Patrick H., Brown, Richard H., and Mike
Brady, Artificial Intelligence: An MIT Perspective,
M.I.T., 1979.

Yeates81.
Yeates, H., Some Experiments in Com~uter Aided
Learning, M.Sc~sis, University-of Our am, 1981.

page 39

CHAPTER 2

TOOLS FOR A CAL SYSTEM

2.1 Introduction

2.2 Computer as a tool

2.2.1 Memory

2.2.2 Control and Arithmetic

2.2.3 Input and Output

2.3 Software Tools

2.3.1 Operating Systems

2.3.2 Editors

2.3.3 Files, Databases and DBMS

2.3.4 Programming Tools

2.4 C.A.L. Tools

2.4.1 Author languages and authoring systems

2.4.2 Types of author languages

2.4.3 User Interfaces

References

page 40

2.1 Introduction

The first thing a carpenter would do when he is building a

new house or furniture is to collect his tools. The tools

that he selects would depend on the type of task that

to be carried out. The same should be true

needs

if a

designer/programmer is developing a new computer application.

Though the tools used by a designer/programmer may not be as

tangible as a hammer or a screwdriver they nevertheless

satisfy the functional principle of tools. Tools not only

make the task easier but also increase the productivity of

the user.

Each type or class of application has its own particular

tool which suits it best. This chapter takes a look at the

computer and its tools used in the development of computer

aided learning systems.

page 41

2.2 The C8mputer

Computers have come a long w~y since ENIAC (Electronic

Numerical Integrator and Computer), the

computer in 1946. The extent of use

first electronic

has spread from

scientific, military, commerce to education and recreation.

The range and variety of computers are wide and bewildering.

Two main types of computers are in use today, the analogue

type and the digital computer. The digital computer operates

with numbers and letters of the alphabet represented as

numbers whereas the analogue computer calculates on a

different basis. Analogue computers are far less generally

used, much less versatile than the digital computer. In this

thesis, the computers talked about will mean to describe the

digital type.

All present day computers operate on stored programme of

instructions and in general computers have four basic

features

1) MEMORY -or store which holds the information whether

data or programme instructions.

2) INPUT - is the channel for receiving information.

3) OUTPUT - is the channel to release information.

4) PROCESSOR - for manipulating the information and

controlling the overall operation.

page 42

Basic componeP.t.s cf the

diagram:

CENTRAL

I INPUT I
I

PROCESSING

INTERNAL
MEMORY

CONTROL
UNIT

ARITHMETIC
UNIT

I
EXTERNAL
MEMORY

UNIT

.f-l-.-
Lllt'

H

following

OUTPUT J

Figure 2.0 Basic components of a computer.

2.2.1 Memory

Memory on the computer can be placed in two distinct

categories - internal and external.

Internal memory or core memory can be directly

accessible by the processor. The external memory on the

other hand can only be accessed indirectly via some auxiliary

control unit.

page 43

Internal memnry usually consists of either

1) RANDOM ACCESS MEMORY (RAM for short). or

2) READ ONLY MEMORY (ROM).

RAM is different from ROM in two main areas, RAM requires

power to maintain the information contents and its contents

can be erased and changed by the processor. The ROM on the

other hand does not need power to return its information and

its contents are normally static or permanent. There are

variations of ROM like EPROM which though does not need power

to maintain its memory contents, allows its contents to be

changed. The processor will require the relevant data andjor

programme to be loaded in the internal memory before it can

perform any operations.

External memory is used as a backing store and can hold

vast quantities of information. The principal types of

device used for external storage are:

1) magnetic tape units and

2) magnetic disc unit.

Magnetic disc units are much faster than the tape units.

It also has the advantage of direct access to a particular

piece of information. In contrast tape units must

sequentially skip through preliminary information until it

page 44

has reached the locatio~ where the

residing.

2.2.2 Control and Arithmetic

~-+-_:-...-.
.J..JIJ..V1.1ll0l_..LV1! lS

The control unit must co-ordinate the actions of all the

various parts of the computer. For example instructions

transferred from the internal memory to the control unit are

decoded and control signals are sent to other units.

The arithmetic unit not only performs calculations but

also executes logical functions such as testing the signs (+

or -) of numbers, shifting parts of numbers and moving the

numbers between storage locations. It can also be employed

in modifying the programme itself by altering the

instructions held in main store. The ability to modify

programmes is the key to the computer's flexibility and hence

its wide applicability.

2.2.3 Input and Output

The input and output of information to and from the

computer is achieved by I/0 (Input/Output) devices or

peripherals. The keyboard is one of the most common means of

input. Other popular devices are light pens, 'mouse', touch

screen, track ball etc.

Output devices like CRT (Cathode Ray Tube), LCD (Liquid

page 45

Quartz Display), Gas plasma are some of those grouped under

visual display units. Such devices display information only.

Printers are another category of nutput devices used a

permanent record of information is required.

The great variety of equipment for putting data into,

and taking data out of, computers allow users to do things in

many different ways. This wealth of choice creates more

opportunities for new applications. The computer has become

thus a most versatile and productive tool.

2.3 Software Tools

Software is used to describe the programmes a computer

needs to do its job. The dictionary describes a tool as

anything employed in performing an operation. Software tools

can be very generally put as - programmes used to perform the

operation of solving a data-processing problem. There are

two categories of programmes - systems and user programmes.

A user programme is aimed at making the computer do a

specific job, such as keeping an inventory list or

controlling a machine tool. Every user programme is written

in a language which could eventually be understood by the

computer. The process of translating the user programmes

into computer readable form is done by compilers. Compilers

are themselves programmes which form part of a suite of

page 46

programmes categorised under system programmes. System

programmes function to provide a better environment for

writing, testing, running and storing programmes. They form

thus the basic set of tools for the computer user. In

practice, operating systems, editors programming languages,

programme libraries are considered as system programmes.

2.3.1 Operating Systems

An Operating System is a 'layer' of software designed to

'insulate' the user programmes from the hardware of the

machine. The functions performed by the operating system are

often different but interlocking, which often makes it large

and complex. The UNIX operating system, for example,

originally consisted of about 100,000 lines of code mostly

written in a language called C and some in a lower level

assembly language. [Thompso75J Some of the important

functions performed by the operating system are:

1) Control of peripherals: The operating systems takes

care of the peripherals on behalf of the user programmes.

This eases the programmer's work and worries, for example

the spooling function which spools the output to, say a

magnetic disc for subsequent printing.

2) Job Control: All user work on the computer is carried

out by jobs or processes. A job or process is a single

page 47

sequence of events and consists of some ~omputer memory and

files (internal and external) being accessed. The single

sequence of events e.g. might be a high-level language

programme written, must first be translated into machine code

by a compiler then followed by the execution of the machine

code programme.

The job control portion of the operating system will

guide and schedule jobs through the right sequence of steps

according to the user's job description submitted.

3) File control: The operating system controls the

external store, to ensure that every user can store his own

information and retrieve it, and that different users cannot

interfere with one another's data.

4) Software control: System software like assemblers,

compilers, editors, utility software libraries are managed by

the operating system to allow immediate availability when

required.

the file

The editor e.g. might be used in conjunction with

control to change the contents of the filed

information.

5) Provision of multi-access: A multi-access computer is

one which serves many people at the same time, each one using

a console with a keyboard and visual display unit. The

operating system is responsible then for sharing the system

page 48

resources like CPU ~nd store 3mang the users and ensures

users' processors do not clash.

6) Accounting: The system keeps track of the resources

used by the users. This information could be used to issue

bills for the resources used or might be used to study the

system usage trends for tuning the system performance.

The Operating System is the computer's most basic

software tool that other higher level software depends upon.

The performance of the operating system will be crucial for

the successful implementation of other tools.

2.3.2 Editors

Editors are programmes which allow computer files such

as programmes or text to be modified. Two main classes of

editors have merged, one is the line or context editor and

the other is the screen editor.

Context editors emerged during the days of slow

mechanical terminals such as the Teletype model 33 and 37

teleprinters. Generally context editors are different in the

text manipulation facilities they provide and their command

syntax. The type of text facilities normally required by the

user will more often than not be present in most context

editors implemented on different machines. These basic

page 49

facilities would include:

SEARCH

INSERT

DELETE

MODIFY

END

to find an occurrence of a string;

to insert a string at a given point;

to delete a string or line at a given point;

to search for a string and modify it to a

prescribed new form;

to end the editing process and restore the newly

corrected document in the file store.

Screen editors become more readily available when video

terminals are used as the display units. Video terminals

could display more than a line at a time, a common feature is

a 24 line by 80 character per line screen. A full-screen

editor allows most or all of the display screen to show a

continuous group of lines from the file being edited. Unlike

the command line entry required to enter and specify the

editing requirement, most of the entry will usually be in the

form of a single or a combination of key presses.

A screen editor has the advantage of the user being able

to see actually what is being done to the text at almost the

same instant. However screen editors might not replace

context editors in situations whereby large

changes are required.

systematic

page 50

2.3.3 Files, Databases and DBMS

Here we will discuss on the concepts and tools that are

used to manage the information reposited in a computer

system.

How is information stored in a computer?

Storage at the basic level represents binary digits, or

bits. Physically the storage location containing a bit is

capable of only two states: "on" and "off". The "on" state

represents the binary digit 1 and "off" the binary digit 0.

All information in the main storage as well as external

storage mechanisms, like discs and tapes, is composed of l's

and O's. A grouping of bits that form a location capable of

holding some information e.g.

byte. The number of 'bits'

a character 'A' is known as a

that grouped into a byte varies

from computer to computer. In most systems a byte consists

of eight bits, some machines like ICL 2930 and ME29 have a 6

bit byte. On some computers the byte is the fundamental unit

of the computer's main storage, most computers also use a

larger storage unit consisting of a fixed number of bytes

called words. Just as the size of a byte can vary from

computer to computer so can a word.

page 51

Table 2.4 below shows the different byte. word sizes of some

machines.

Machine byte size (bits) word size (bits/bytes)

INTEL 8 8

INTEL 80286 8 16/2

ICL ME29 6 24/4

VAX 11 8 32/4

IBM 370 8 32/4

ICL 2980 8 64/8

Table 2.4 Machine Byte/word sizes

Data held in many storages usually consists of

characters or numbers. A character generally requires one

byte of storage. To represent a character in a byte, such as

the letter A, a pattern of 1's and O's is used.

Most computers receive information in the form of a

stream of characters flowing from a keyboard for example. A

common keyboard can normally produce about 90 different

characters,

character.

including some special ones like end-of-line

A fixed-length binary code e.g. a byte is

sufficient to represent a combination of characters since

26 = 64 and 27 = 128.

Two well-known character codes types are the ASCII

(American Standard Code for Information Interchange) and

page 52

EBCDIC (Extended Binary Coded Decimal Interchange Code). In

ASCII code, an A is represented by a pattern of 7 bits, as

follows,

1000001

In EBCDIC the A is encoded as

11000001

Numbers usually need a word or more of storage. Numbers

are represented in binary in the computer. A 16 bit word

computer would have a limit on its largest whole integer. A

longer word size will result in a higher limit on the

integers it can handle.

DATABASES

Managing data as a resource has lead to the emergence of

database technology. The main arguments against the use of

conventional data files approach are:

1) Data Redundancy. This happens when the same data item

is recorded in multiple files. The effects are that storage

space is wasted, more updates are required to input or change

the same data item in different files and as a result

inconsistencies usually result.

2) Inconsistent Data. With the same data item to be kept

on multiple files it is difficult to maintain the data

page 53

consistently. The result might be errors in the application

programme e.g. when an address of a person is updated in one

file but not on another file might cause problems if some

mail is directed to the person from the processing of the two

files.

3) Limited sharing of data. Most files are grouped by

their applications and used within the application. As an

example, a payroll file containing employee particulars may

be used by a Finance department and the data may be

duplicated in another file used by the Personnel department.

4) Lack of Controls. It is easy to imagine how duplicated

files and data items could get out of control with

inconsistency and redundancy not checked and no inherent

checks on the data.

5) Low Productivity. In conventional file processing

systems, programmers must design each record and file used by

a new application programme. This hindering process not only

plagues the programmer during the development phase but also

during the maintenance phase. When modification to a file is

performed it often requires that the programme or programmes

affected be modified.

The disadvantages have been offset slightly by the

emergence of a number of support packages e.g. packages which

page 54

support data dictionaries. The trend has been from a data

file storage approach that is dependent on physical data

structures, to data base management systems with physical and

logical data independence.

The Data Base approach aims to minimise the shortcomings

of the traditional file processing approach. A database can

be defined [MARTIN81] as "A shared collection of interrelated

data, designed to meet the needs of multiple types of end

users. The data are stored so that they are independent of

the programmes that use them. A common and controlled

approach is used in adding new data and modifying and

retrieving existing data. A database is not only shared by

multiple users, but it is perceived differently by different

users".

Three types of approach to database structures have

emerged that reflect on how computer information is managed

in relation to the real world information.

in

They are

1) Hierarchical

2) Network

3) Relational

Hierarchy or trees are familiar structures for example

of an representing the positions of authority

page 55

organisation. A hierarchy consists of elements, called

nodes, the uppermost level of the hierarchy has only one node

called the root. Except for the root every other node has

one node related to it at a higher level, and this is called

its parent. Each element can have only one parent but many

lower level elements known as children:

Level 1 1 root

I
Level 2 2 3 4

I ~

Level 3 5 6 7 8 9 10 11

Level 4 12 13

Figure 2.1 A Hierarchy

Network or plex approach is different from the

hierarchical one on the basis that one child can have more

than one parent, e.g.

MAN

Resources

WORK
CENTRE

~I JOB I~ -
Tasks

Figure 2.2 A Network

Place

page 56

The relational approach to databases is based on the

mathematical theory of relations. The approach thus uses

relational calculus terms to describe the databases and

operations on the data.

Data in a relational database is stored in a tabular

form known as a relation. Each distinct data item is known

as an attribute value. A tuple is a collection of values

that compose one row of a relation.

relation.

Figure 2.3 shows a

A domain is a set of possible values for an attribute.

Attributes

PRODUCT DESCRIPTION PRICE

Tuples{
0200 BED 10000

0500 TABLE 5000

1230 CHAIR 2000

Figure 2.3 PRODUCT RELATION

E.F. Codd contributed the significant papers on the

relational model and also proposed the concept of

normalisation. Normalisation is defined by Codd as a step by

step reversible process of replacing a given collection of

relations by successive collections in which the relations

have a progressively simpler and more regular structure. The

page 57

aim is to find relationships between data that are free from

undesirable interactions, and so simplify the process of

maintenance and data retrieval.

The prime objective of normalisation is the production

of an ideal data format known as Third Normal Form or 3 NR

for short. The stages to 3 NR are:

UN-NORMALISED

1st Normal Form

2nd Normal Form

3rd Normal Form

Boyce Codd Normal

4th Normal Form

CHAOTIC

Remove repeating groups

Ensure all data fields are
dependent on all key fields

Remove transitive dependence

All field depend on Prime Key
Remove binary - join dependency
that
does not imply functional
dependency.

Boyce-Codd Normal forms and the 4th Normal forms are later

additions to the third Normal forms.

page 58

DBMS

After the normalisation process is completed the data can

then be organised for loading into a database. The tools that are

used in:-

1) creating and updating the database;

2) querying the database;

3) generating reports from the database;

4) maintenance of the database;

5) administrating the database;

and the database itself, are collectively known as a database

management system or DBMS for short. DBMS adopts one of the

approaches to the management of database system, that is,

hierarchical, network or relational.

IMS is a DBMS running on IBM main-frames that supports

the hierarchical view of data. IMS has an INSERT (INSRT)

command for inserting a record into its database. DL/1

retrieval sublanguage is a navigational method of extracting

data in an IMS database [Bradle82].

The Network or CODASYL (Conference on Data System

Languages) DBMS were based on the reports in 1969 and 1971

by the Data Base Task Group (DBTG). The Programming Language

page 59

Committee under the CODASYL executive committee went on to

incorporate a DBTG Data manipulation language (DML) and a

subschema into the COBOL's data division. The DML would

become part of COBOL's procedural division language.

Commercial implementations of the Network DBMS are TOTAL and

IDMS.

The relational approach developed largely in the IBM

research laboratories at San Jose, California. E.F. Codd

contributed the early significant papers on the subject.

All files in the relational database are viewed

logically as simple tables(like the table shown on Figure

2.3). To manipulate the data in a relational database, E.F.

Codd developed a non-procedural language, consisting of

mathematical expressions, called DSL(Data Sub-Language)

APLHA. A more English like alternative Data Sublanguage to

DSL ALPHA is SQL(Structured Query Language) which was

developed by IBM for their relational database system

as System R [Codd70].

known

INGRES is a relational DBMS developed at the University

of California at Berkeley running on UNIX operating system.

INGRES has a relational query language modelled after the

ALPHA data-sublanguage called QUEL. Another tool for

information retrieval in INGRES is EQUEL which allows QUEL

statements to be embedded in a programme (BASIC, C, COBOL,

page 60

FORTRAN and PASCAL).[Relati54] [Held75]

Another query language called CUPID lr::.c:n::.l ,_ '-"' User

Pictorial Interface Design) has been implemented to access

information in an INGRES database. CUPID is different from

other query languages in that queries are written by aid of

pictorial symbols. Once the query picture has been drawn

using a graphics modelling system (PICASSO), an output string

is produced by PICASSO which is compiled into QUEL using

UNIX's YACC [McDona74].

Another form of query language that accesses a

relational database is one called Query by Example. Query by

Example allows queries by entering an example of a possible

answer in the appropriate place in an empty table. Each

operation is specified by using one or more tables built up

on the screen, with column names being supplied by the system

and other parts by the user.

This form of query is novel in that the user need not

resort to extensive use of data dictionaries, because it is

the system who supplies some information to the user.

[Zloof75].

The numerous facilities provided by the DBMS, and the

data administration needed, mean that initial overheads like

storage space (programmes), training and data administration

have to be taken care of before the longer term benefits of

page 61

quicker turnaround time in report generation, better controls

and security can be realised.

2.3.4 Programming Tools

Programming languages, libraries, debuggers, programme

verifiers, editors, etc., are some of the software tools used

by programmers to aid the development of software. Some of

these tools are essential (programming language) while others

are helpful (programme verifiers). During the batch

processing days, a programmer would normally code his

programme onto a coding sheet, send it to be key punched on

cards, send a job sheet for the operators to load/compile the

programme (on cards), quite often examine the compilation

error listings, correct the errors on the coding sheets and

the process recycles. (Testing and debugging the actual runs

still had to follow). Currently editors allow the programmer

to key the programme straight into a computer file, perhaps

using a programme verifier to perform a preliminary check on

the programme before compilation. The initial set of tools

have cut down the time consuming and tedious process required

in the batch processing days. The UNIX system has been

singled out as one example system that provides a rich set of

programming tools. The UNIX tools have been emulated in non

UNIX environments, an indication perhaps of the success of

the UNIX environment.[Kernig78] [Kernig76] [Snow78]

page 62

Major UNIX object Code Programming Tools

I Archive
[Maintainer

(ar)

Source
code

l
Compiler

and
Assembler

l

Link
Editor

(ld)

Executable
Program

Object
Code
Tools

Debug
Tools

Timing
Tools

Commonly used tools to works with object code on UNIX

adb - general debugger; od - octal dump;
dbx - source level debugger; nm- print name list;
prof - display profile data; strip - strip relocation data;
size - display size of object file;
ar - build and maintain libraries;
time - time a command;

Figure 2.4 UNIX Programming Tools

page 63

2.4 CAL Tools

This section describes the authoring languages and the

user interface tools that affect the

presentation of CAL material.

preparation

2.4.1 Author Languages and Authoring Systems

and

Writers of CAL lessons have to use either a programming

language or an author language to write the CAL lessons. CAL

writers or courseware authors have the following major tasks

to perform:

1) deciding upon the subject matter to be presented;

2) structure the lessons to be presented by the computer;

3) decide on the instructional strategy to be used

e.g. drill practice, tutorial;

4) select the media on which the lessons are to be based

e.g. graphics, text;

5) if necessary or possible, specify the evaluation criteria

for the performance of the lessons and the students.

[Barker85]

General purpose programming languages can be used to

implement a wide range of computer applications and as an

added attraction give relative portability. Author languages

in a sense are high level but more specifically aimed at

those preparing computer based learning material. The

page 64

necessity of learning how to programme in order

courseware discourages to some extent teachers

attempt to use a computer as part of their

to develop

who will

teaching

activities. Development time and resources can be reduced

when author languages or authoring systems are used. A

commonly accepted rule of thumb is that between 50-200 hours

of development time are required for each hour of instruction

developed. This time includes analysis, design as well as

the programming, debugging activities. Thus it can be argued

that if creating a suitable tool or environment which

eliminate or sharply reduce the time taken for the activities

will significantly decrease the development time and hence

the cost of the courseware.[Kearle82]

Author languages generally provide facilities to:-

1) present the material via frames;

2) test student's responses;

3) provide branching strategies for

remedial/reinforcement material.

Author Languages are an alternative way of preparing CAL

material to the general purpose programming languages. Their

function is to ease the work of the author by providing

specialised functions and facilities for the authors to cater

for operation required in the CAL situation. Thus author

languages are a class of special purpose, higher order

page 65

application languages which facilitates the writing of CAL

material.

Another aspect to be discussed here will be authoring

systems which, though historically derived from author

languages, represent a high level interface intended to allow

authors to create CAL material without having to learn or use

a programming language. In short, author languages make it

easier for programmers to develop the CAL material, and

authoring systems makes it easier for non-programmers.

Productivity has been measured to increase by three times

when using an author language and about fifteen times when

using an authoring system with on-line editing facilities.

2.4.2 Types of Author Languages

The range and variety of languages used in CAL is very

wide, Hoye and Wang (1973) list 62 different languages used,

16 were assembly level, 46 general purpose.

look at some of these languages.[Hoye73]

Here we will

page 66

1. TUTOR

TUTOR is the language used to construct PLATO lessons.

The initiator of the TUTOR language is Paul Tenczar. The

language evolved as it was developed in a user environment

adapting to the user's needs.

The TUTOR language statement appears on a command plus a

tag field, over 160 commands are available in the language.

The commands fall into four categories:-

1) Display;

2) Control;

3) Calculation;

4) Judging.

Some examples of the commands are

Display Command

WRITE

AT

DRAW

CIRCLE

Control Command

JOIN

JUMP

GOTO

Description

to write on display

where to write

to draw line figures

draw a circle

to join another part of lesson

to go to another part of lesson

loop

page 67

Calculation Command

CALC

Judging Command

ANSWER

STORE

allow author to write almost any

computation statement in the tag

field

permit student to answer

student answer to be stored

and processed.

The attraction of TUTOR language is its ability to handle

interactive graphical images. These images are produced on

high resolution touch-sensitive screens attached to special

terminal devices.

2. COURSEWRITER

COURSEWRITER is an author language initially developed

by IBM (International Business Machines) for their main-frame

IBM 360. The language is able to support multi-media devices

like slides, audio equipment and text images.

The language uses mnemonics and is claimed by the

designers to be easy to learn both by novices and experts.

An illustration of a COURSEWRITER lesson is shown in figure

2.5. Contrary to the designer's claims,

found it both complex and inflexible.

some teachers have

page 68

3. TICCIT

Question 1

qu What is the sum of 10 and 5?

ca 15

br question 4

wa 50

ty No, the answer you gave is the product
of 10 and 5. Try again.

Make sure that you have typed a numeric
answer.
Try again.

Command Reaction

qu question to student - await a
reply

ca anticipated correct answer
ty type out
br branch
wa anticipated wrong answer
un unanticipated answer

Figure 2.5 Example of COURSEWRITER lesson

About the same time PLATO was developed, TICCIT

Time-shared Interactive Computer Controlled Information

Television was also being developed.

The system combines minicomputer and television

technology, and produces a highly individualised learner

controlled instruction for as many as 128 students. This is

achieved through the use of computer generated colour

page 69

displays, videotape, audio facilities and a specially

designed interactive keyboard.

Authoring on TICCIT is via a series of special authoring

forms. The authoring forms may be computer generated using

on-line courseware production at a VDU terminal, or they may

be of the conventional paper variety for off-line use. The

various forms act as templates that permit the author to

enter the learning rules, instances, examples, colour of the

learning frame, as well as the display characteristics.

These features allow the author to produce courseware without

the need for computer programming.

page 70

4. UNIX LEARN

In some respects UNIX LEARN's author language is similar

to TUTOR in that it uses English like commands (See fig 2.6).

The range of commands is limited to about 17 in the original

system [Kernig79). The commands can be categorised into

these areas:

Display

User response

Testing user

response

Logging

Branching

#print

#user

#copy in

#uncopyin

#cmp

#match

#bad

#succeed

#fail

#log

#next

UNIX commands and programmes can also be called from the

author language.

page 71

These features could allow the author to use only

existing tools

into the text.

available on the system to be incorporated

Though the author language is sufficient to

allow easy composition of lesson it assumes that the author

is familiar with some basic UNIX concepts and use of UNIX

editors to compare and edit the scripts.

Familiarity with the UNIX system and the local

programmes available for some specialised use, is vital if

the author wishes to write courseware for difficult subjects

like graphics or a programming language. The on-line

documentation ('man' facility) for LEARN did not really

elaborate on the uses of the LEARN commands which is

setback for those wishing to write LEARN lessons

another

for the

first time. There is scope for improving the user's ability

to writing LEARN lessons.

page 72

#print
The "ls" command will list the names of the files
in your directory. Is there a file named "junk"
present? r'ind out and then type "yes" or "no".
#copy in
#user
#uncopyin
#match no
#log
#next
2.la 10
2.2a 5

Figure 2.6 Example of Learn author language

5. PILOT

PILOT was developed in the early 1970s by John

Starkweather in the USA. It was based on an Intel 8080

system hence its many new implementations have become

available on a variety of micro computer

systems[Barker85][Starkw69].

PILOT has the potential of being used more widely since

it has already a large base of CAL materials on a large

number of microcomputers. Though several ad-hoc standards

exist they could form the basis of a standard. The number of

commands to be learnt is small, about ten or so, but

extensions have been added to this basic set of commands to

allow for sound and graphics.

page 73

2.4.3 User Interfaces

E.B. James proposed a dialogue type interface which guides

the user along a path of questions and answers given an

initial response by the user. The dialogue interface

mentioned in E.B. James' Science Museum terminal project aims

primarily at novice users. Interesting observations from the

Science museum terminal project were:

1) users learn to use the system often through seeing how

others use it;

2) users tend not to use written material until difficulties

are encountered;

3) restrictions imposed on the users by the system in that

users had to adapt and answer the systems' queries

[James81].

Command line Interface

Using

physical

the video alphanumeric keyboard terminal as the

interface, the most common form of interaction

between a user and the computer is usually facilitated via

programmes which allow tasks to be sent to the computer by

typing and sending a line of commands. Command-line type

interfaces have commands in a word or mnemonic form that

describe their function. For a novice user, adapting to

this form of interface can be difficult, since there is both

a need to be able to recall the right command needed, and the

page 74

accompanying syntax of the command.

One proponent (E.B. James) of a more friendly interface

has used the phrase 'protective ware' to signify software

that shield the user from the harsher aspects of the

operating system.

MENU Interface

Another common user interface that is used is the menu

type interface. The user will be presented with a series of

options that are numbered like a menu. Selecting the options

is either done by typing in the number or name of the menu

option corresponding to the option given in the menu. This

form of interface guides the user by limiting the choice and

giving a more detailed explanation of what the options do.

Figure 2.7 presents an example of a menu type interface

taken from the logging on menu of a database package called

Revelation.

page 75

REVELATION LOGON MENU
14:00:00 02 AUG 1986

1. ATTACH Revelation Data Disk
2. HELP Menu
3. R/DESIGN Menu
4. List of Customers [ATTACH first]
5. A/R Menu (ATTACH first]
6. EXIT Revelation

DEMO

[Use Cursor Movement Keys to Highlight Selection]
[Press Ctrl-F5 to go to TCL or type "TCL"]

Do this process before choosing option #4 or #5
F5=Toggle MAIN/LAST menu Ctl-F5=TCL F9=END Menu Retrn=Run

Figure 2.7 Example of Menu Interface from Revelation System

The criticism of being unduly restrictive is levied at

menu-type interfaces, a user may need to select options from

two or more menus before getting to what is required. Most

menu-driven systems thus have incorporated the option of

command line entry to give users more flexibility. [COSMOS85]

Dialogue (Natural Language) Interface

Dialogue or Natural Language Interface is another form

of communicating with the computer system. It aims to be

more flexible and user friendly by:-

(1) allowing the use of English like words and

sentences to be used in phrasing of a request,

query or answer;

page 76

(2) initiating a dialogue either in the form of a

question or by providing a meaningful answer

if the dialogue programme could not cope with the

situation[NCC80).

USERTAB is an example of a natural language based user

interface. It is used mainly for report generation

information retrieval purposes, and run on a variety of minis

and main-frames:- IBM 360, ICL 2900's, SPERRY UNIVAC 1100 and

ICL ME29. Retrieving information, or generating reports from

existing data, traditionally requires a programme to be

written, for example in COBOL. This requires resources of

time and effort by the user and programmer, as well as

computer time for editing, testing, debugging and running the

programme. Using a natural language type interface like

USERTAB can decrease programming time by training users to

phrase their report or query requirements directly to the

computer via the use of an English like language. The

following example shows how USERTAB language is used to

generate a report from a conventional file named "FILEA".

USERTAB also allows access to IDMS database in addition to

conventional files.

page 77

READ FILEA

REPORT 'PARTS STORED IN BIN AREAS 5, 6 AND 7'

REJECT UNLESS BINAREA IS IN THE RANGE '5-7' AND SORT

BY PARTNO WITHIN BINAREA.

PRINT BINAREA, PARTNO AND QUANTITY.

FOR EACH BINAREA AND FINALLY, TOTAL THE QUANTITY AND

CALCULATE AVERAGE = QUANTITY DIVIDED BY COUNT.

PRINT QUANTITY, AVERAGE AND COUNT.

Figure 2.8 USERTAB Example

page 78

Command-line, dialogue and menu-type interfaces can be

grouped under textual or keyboard interfaces. A different

approach to user interfacing is known as icon or

window-based, which depends heavily on graphical displays,

windows and usually joysticks or mouse-type input devices .

Visual or Graphical based systems.

Hardware and software are integral in providing the

user-machine interface for a CAL environment. Certain known

structures in CAL need some form of specialised presentation

which need certain equipment not normally catered for. For

example graphical displays need visual display units or

graphics capability printers.

Use of graphical displays for CAL has been and will

continue to be an area of interest. Graphical requirements

and standards have grown over the years. Around 1977,

typical requirements of graphical display terminals were

1) terminal line speed should be at least 1200 baud,

2) resolution around 320 x 256;

3) Input and output facilities, like light pens,

tracker ball; software to transmit screen position

back to computer(Shirle78].

page 79

Currently,

l) terminal line speed can be at 1200 (over telephone)

but higher speeds of 9600 and even to 19,200 (Blit)

are not uncommon.;

2) resolution could range from 720 by 348 (Hercules) to

800 by 1024 (Blit terminal). [Pike84](Hercul85]

"A picture is worth a thousand words" is very often quoted to

emphasise the advantage of pictorial rather than textual

displays to present some piece of information. In some

situations, like showing the locomotion of an object or

graphs, no words can adequately describe the contents. The

ability to present pictures can be thus be a powerful tool

for CAL.

The earliest work on this form of user interface can be

traced back to Douglas Englebert's work on using computers to

augment human intelligence. The use of a mouse-device for

input, and the incorporation of multiple windows into the

design of text editors were introduced by Douglas Englebert.

Early significant contributions also came from Xerox PARC

(Palo Alto Research Centre) and its Learning Research Group.

[Ingall81] [Warfie83]

Steve Jobs later implemented the research done at Xerox

PARC's SMALLTALK project on a commercial basis, with the

introduction of the Apple Lisa microcomputer, which supports

page 80

l
l

1
l
"I
~

I
I

I
' \

a SMALLTALK-like environment. The features of this

environment are a heavy dependence on graphics to manage the

windows, objects (icons), and a complementary input device,

usually a mouse, to select the objects (icons) for further

processing. Though the Apple Lisa was not as successful

commercially the ideas caught on. Chapter 4 will further

discuss trends in the area of graphical environments.

PICT is another example of a graphical environment that

uses picture objects, called icons, to represent the files,

programmes, facilities and actions that would traditionally

be represented as words or mnemonics. [Gliner84]

These developments have given the user a wide choice in

the type of interface that would suit his needs.

page 81

References

Barker85
Barker, P. and Yeates, H., "Introducing Computer Assisted
Learning", Prentice Hall, 1985.

Bradle82
Bradley, J. "File and Data Base Techniques",
University of Calgary, 1982.

Codd70

HRW,

Codd, E. F.,
Data Banks",
June 1970.

"A Relational Model of Data for Large Shared
Comm of the ACM, Vol 13, No 6, pp 377-387,

COSMOS85
COSMOS, "Revelation User Manual Release G", COSMOS
Incorporated, 1985.

Gliner84
Glinert,
Graphical
7-25, Nov

E.P. and Tanimoto, S.L., "Pict:
Programming Environment", IEEE

1984.

An Interactive
Computer, pp

Held75
Held, G.D., Stonebraker, M.R., Wong, E.
relational database system", Proc. AFIPS,
Vol 44, pp 409-616, 1975.

"INGRES - A
AFIPS Press,

Hercul84
Hercules Computer Technology, "Hercules Graphics Card -
Owner's Manual", Hercules Computer Technology,
2550 Ninth Street, Berkerly California 94710, 1984.

Hoye73
Hoye, R.E. and Wang, A.C., "Index to Computer Based
Learning " , Educational Technology Publications,
Englewood Cliffs, N.J. 07632, 1973.

Ingall81
Ingalls, D.H.H., "The Smalltalk Graphics Kernel", BYTE,
pp 168-194, Vol 6, No 8, Aug 1981.

James81
James, E.R. "The User Interface: How we may compute" In
Com~uting Skills and the User Interface, pp 337-371,
Aca ernie Press, 1981.

Kearsle82
Kearsley,
Education",
1982.

G. "Authoring Systems in Computer
Comm. of the ACM, pp 429-437, Vol 7,

Based
July

page 82

Kernig76
Kernighan, B.W., "Software Tools", Addison Wesley, 1976.

Kernig79
Kernighan, B.W. and Lesk, M. "LEARN- Computer Aided
Instruction on UNIX (Second Edition)" in UNIX
Programmer's Manual Vol. 2, 7th Edition, Jan 1979.

Martin81
Martin, J. "Computer Data-Base Organization"
Hall, 2nd Edition, 1977.

Prentice

McDona74
McDonald, N. and Stonebraker, M. "CUPID the Friendly
Query Language", University of Berkerley, California, Oct
1974.

Pike84
Pike, R. "The Blit, a multiplexed graphics terminal", in
AT&T Technical Journal, pp 1607-1631, Vol 63, Oct 1984.

Relati84
Relational Technology Inc., "Introduction to INGRES",
Relational Technology Inc., California, 1984.

Shirle78
Shirley, R., "Graphical Displays for CAL" in Interactive
Comluter Graphics in Science Teaching, John Wiley,
pp3 -54, 1978.

Snow78
Snow C.R., "The Software Tools Project", Technical Report
Series , Univ. Of Newcastle Upon Tyne, No. 118, Jan 1978.

Starkw69
Starkweather, J.A. "A Common Language for a Variety of
Conversational Programming Needs in Com~uter Assisted
Instruction, pp 209-304, Academic Press, 1 69.

Thomso75
Thomson, K. "UNIX IMPLEMENTATION", in UNIX Pro,rammers'
Manual, Bell Laboratories, Sixth edition, May 19 5.

Martin81
Martin, J., "Computer Data-Base Organization"
Hall, 2nd edition, 1977.

Prentice

Zloof75
Zloof, M.M. "Query-By-Example: The Invocation
Definition of Tables and Forms", Proc. of
International Conf. on VLDB, pp 431-438, vol. 44,
1975.

page

and
the

Sept

83

CHAPTER 3

Project - A Generalised Computer Aided Learning System

3.1 Requirements of a CAL system

3.2

3 .1.1

3 .1. 2

3 .1. 3

3 .1. 4

System

3.2.1

3. 2. 2

3. 2. 3

3.2.4

Desired Behaviour

Software

The User Interface

Summary

Design and Implementation

Overview

The CAL LEARN component

The Writer/Author component

The Help Environment

3.3 Development

3. 3.1

3.3.2

Constraints and Problems Encountered

Testing and Debugging

3.4 Conclusion

References

page 84

3~1 Requirements of a CAL system~

The earlier chapters have described the various

approaches of

the earlier

PLATO system,

CAL Systems and the tools concept. Some of

CAL systems are powerful and impressive like the

but have the problem of cost effectiveness.

Latter

bases.

CAL systems,

GUIDON uses

like GUIDON,

MYCIN. MYCIN

often utilise knowledge

was geared towards a

specific area - medical diagnosis of infectious diseases. The

advantage of GUIDON is in its expertise, on the other hand

the system being specially designed for a specific purpose

could not be easily adapted to teach a different

subject.

Principal concerns in any CAL system design must be:

1) Cost-effectiveness - keeping costs down;

2) Effectiveness ability to present subject material

effectively;

3) Flexibility

4) Portability

ability to adapt to different

subject matter without too much

difficulty;

attractive for the system to run on

a variety of machines.

Keeping in view these objectives, a project

System.

was

This undertaken to design a Computer Aided Learning

chapter describes the target users, their environment and the

page 85

CAL project.

3.1.1 Desired Behaviour

Any system is aimed at some particular class or classes

of user. In a computer aided learning system the category of

users can be identified as students, authors/writers of

lessons and the administrator. It is assumed here that the

functions of the administrator is taken on by the

authorjwriters of the lessons. [Boulay81]

Users of a computer system will evaluate the system as a

tool by virtue of the system's (tool's) ability to service

his needs. How well the fit between tool and task will be

the main criteria for assessment.

A second area is the expertise level required of the

user. The user, whether student or writer, would wish to

devote more of his time to his chosen field of study or

interest. His knowledge of computer technology will likely

be limited to the area of immediate concern. He will

seek to minimize the time and effort he must devote to

studying the intricacies of the system before he can be

productive.

Ease of use is a third factor the user would require

page 86

to minimize his time and effort in operating the system.

The fourth and final factor is the 'user support' .:~~nPrt
---I:'-~ -

of the system. First time users need more help by virtue of

their limited knowledge. They might face problems in

understanding and interpreting how the system can handle these

tasks, how to ask it to do so, why it is behaving as it is,

and how to recover from errors and breakdown.

We could identify in our proposed CAL system two

broad categories of users. The first type we call the

Student User.

The student user, depending on his;her experience, may

be further divided into one of these three groups:

'naive' - with no programming/computing experience,

'novice' - with some programming/computing experience,

'expert' - with extensive knowledge of the system.

The second type of the proposed CAL system's user we

called the Staff User. The Staff User would use the system

in two ways, either as

'writer' - author of the lessons for the CAL system, or

'maintainer'- to update/enhance/correct the CAL system

page 87

programmes/files.

Having identified the different categories of users, we

can proceed to determine the characteristics and needs of

these users.

The Student User

The 'naive' student user will require the most

assistance from the CAL environment and his progress would

be much slower than other categories of users. The

'novice' will occasionally require some form of assistance and

generally proceed at a quicker pace through the lessons of

the CAL system. The 'expert' will perform the lessons

quickly or merely browse through what is available in the

CAL system. These different characteristics give us some

indication of the needs:-

1) provision of help facility to aid the user on

unfamiliar facilities;

2) user-friendly interface to provide hints on what to

do next;

3) flexibility to avoid boring the 'faster' students.

page 88

The Staff User

The Staff User may perform the function of an author

the CAL lesson, or he might be maintaining the general

aspects of the CAL system. In the first type of work, the

CAL author will be involved in preparing, editing,

testing and implementing the courseware lessons. The

maintenance aspect will require monitoring of errors,

updating/amending/enhancing the CAL programmes, documentation

and files. The needs of the staff user are:-

1) an author language to facilitate the writing of

lessons;

2) an editing/file handling environment to support the

author in creation and editing of the lesson files;

3) some form of validation of the lessons written to

minimise errors in the lessons before they can be

implemented for use;

4) facilities to evaluate the performance of the

courseware and student;

5) Facilities to allow the preparation/updating of

the CAL system's programmes and documentation.

page 89

3.1.2 Software

An integral component of a computer system 1s the

software, or the instructions, that the computer executes to

support the various functions of its system. The basic level

of software support in a computer system is the operating

system. The operating system takes care of very low

level housekeeping tasks like where a computer file is to

be placed physically on a disc, checking if a device is busy,

and so on. The operating system thus shields the computer

user from many of the tedious and harsher aspects of the

system. One level above the operating system, is the

software which provides the facilities for the computer user

to interact with the system.

several groups:-

These facilities can fall into

(1) FILE

(2) DEVICES

(3) PROGRAMMING LANGUAGES

(4) TEXT PROCESSING PROGRAMS

(5) EDITORS

The next level of software can be grouped as:- those

written by the computer users. The software written by the

users can well form part of the system's facilities thus

blurring the different levels defined.

page 90

UNIX Operating System

UNIX operating system was developed ot

Laboratories by Ken Thompson and Dennis Ritchie, the

edition was out in November 1971 implemented

DIGITAL PDP 11/20 machine.[Thomso74]

Bell

first

on a

UNIX was later developed to be a portable operating

system when the original system on the PDPll was moved to an

Interdata 7/32 computer. Following the success of the initial

experience in porting the system, a portable version VII (7)

was developed which has been the starting point of moving

UNIX to other machines. Portability of UNIX undoubtedly

contributes

[Wallis82]

to its popularity as an operating system.

The success of UNIX, as a standard operating system,

can be seen in the implementation of UNIX on different

computers, ranging from microcomputers to main-frames,

and its use in various establishments ranging from

educational, government laboratories to the commercial and

industrial. Many other systems have taken the philosophy of

UNIX or MULTICS(the predecessor of UNIX), to provide a

similar operating system environment. CROMIX, XENIX, TME

are some of the operating systems developed from the same

philosophy. The strength of UNIX lies in the flexibility of

its programming development environment which has allowed

page 91

many time consuming tasks eliminated.

The Seventh Edition of UNIX was made available on PDPll

16 bit computers and the UNIX 32V Edition on the VAX 11/700

series

(DEC).

of computers from Digital Equipment Corporation

Some differences do exist between the different

versions, both

The UNIX 32V

California at

in the operating system and

was later developed by the

Berkerly and later versions

Berkerly were known as BSD.

the commands.

University of

for UNIX by

UNIX provides an attractive environment for programmers to

work in, mainly because:-

(1) UNIX is a proven multi-user, multi-tasking environment;

(2) powerful and sophisticated range of programmers's tools

are available;

(3) portability of software written on UNIX systems.

The factors mentioned above have influenced the author's

decision in adopting UNIX as the software development

environment for the CAL system. In the following sections,

UNIX's software development tools to be used in the CAL system

are discussed.

Editors

The editors commonly used on the UNIX system are 'ed' and

page 92

'vi'. 'ed' 1s more widely available because it uses only the

basic facilities available on any terminal. 'vi' takes

full advantage of video terminals. A screen editor called

'sc' is available on local UNIX machines and is widely used

among the university community because of the support given

by the local and regional (NUMAC - Northumbriam Universities

Multi Access Computer) computing centres and its

implementations on a wide number of machines under different

operating environments. 'sc ' is an attractive editor to

learn as it has been implemented on a variety of machines in

the University. Users need not learn how to use the features

of a new editor when using different machines since 'sc' is

available on most if not all machines in the

university.[Joy80] [Hunter82]

Editors

or editing a

just plain

assume that

are general purpose tools meant for creating

document in the computer. The document can be

text or source programmes. Older file editors

the typical user is from the scientific

community, spending most of their time editing programmes and

preparing the selected data files. users now are mushrooming

from other areas, like text preparation and formatting.

Hence the demands on editors are greater in terms of

facilities provided. Many features of word processing are

incorporated

indentation,

like.

in screen editors

automatic line insertion,

to provide

tabulation and

e.g.

the

page 93

In our requirements - editors will be used in operating

the lesson text. A special purpose editor would be ideal.

Editors are generally and inherently very large programmes

that need to be robust and reliable. Thus rather than writing

a customised editor a good compromise would be to adapt an

existing editor to suit the needs of the CAL system.

Programming Languages

Choosing

be difficult

installation's

the programming language for the system can

when there are a number to choose from the

UNIX environment. Two programming languages

that were considered are PASCAL and C. [Elfrin85]

PASCAL is a high level programming language that has

of portability (if written in standard the advantage

PASCAL) and strong type checking. Though C, like PASCAL,

is a high level language, and has type structures similar

to PASCAL, it has less strict type checking. C has the

advantage of flexibility and efficiency.[Wirth75] [Kernig78]

Portability was mentioned as a desirable aspect

any software. Portable software are used in the sense

the software could be transported to different computers

page

of

that

with

94

less effort than would be needed to redevelop the software

for the second computer. Programmes that can be used on

other machines means lower costs in

implementation.

UNIX being a portable system itself,

in the C programming language.

portability are the main factors that made

to develop the CAL software in C.

Storage

development and

was written mainly

Compatibility and

the author decide

UNIX organises its directories and files in a

hierarchical or treelike structure. A file on UNIX is

basically a one-dimensional array of bytes, the files are

attached to a hierarchy of directories. Directories

themselves are files that users cannot write into.

An alternative to storing information on conventional

UNIX files is to have it on a database system. There is a set

of database library functions on UNIX under the name of 'dbm'

that could manage and maintain a simple database system. The

library functions can be called from a c programme to create a

database and perform retrieval, updating and other database

functions on a database. The resulting database created using

'dbm' consists of 2 UNIX files with names suffixed by the

following '.dir' and' .pag'. The '.dir' file is a bit mapped

page 95

file and is used by 'dbm' to indicate if a record is present

in the '.pag' file.

in the database.

records and fetch

The '.pag' file contains all the records

A hashing routine is used to place the

it from the database. Records in the

database have to be within a logical block size, in the case

of the PDP 11/44 it is 512 bytes per block. On the VAX 11/750

the block size varies depending on how the disc partitions are

logically blocked. Figure 3.0 shows that block sizes are at

8192 bytes for files under the partitions ba, bd which are

directories mounted on /(root directory) and ;user/staff!.

This means that 'dbm' functions on the VAX could be set to

work on records with 8192 bytes if the database were to reside

on the partitions logically blocked at 8192 bytes e.g. I and

;user/staff!. Each record in the 'dbm' database consists of a

key part and a content part.

The advantages of organising data using 'dbm' are:-

(1) very large database of over a billion blocks can be

handled;

(2) access time is fast, a fetch takes between 1 to 2 system

accesses;

(3) it is simple and easily incorporated into an application

programme.

page 96

Figure 3.0 Disk partitions on the UNIX BSD4.1 (VAX 11/750)
(at dept. of Computer Science, Durham University)

%df

Filesystem
/dev/upOa
/dev/upOf
/devjupOe
/dev/upld
/dev/up1e
/dev/up1f

kbytes
7413

66415
26235

7413
26235
66415

% cat jetcjdisktab

disktab 4.5 83/07/30

used
4900

58492
24962

5283
22382
50554

avail capacity
1771 73%
1281 98%

0 106%
1388 79%
1229 95%
9219 85%

Disk geometry and partition layout tables.
Key:
ty type of disk
ns #sectors/track
nt #tracks/cylinder
nc #cylinders/disk
p[a-h] partition sizes in sectors
b[a-h] partition block sizes in bytes
f[a-h] partition fragment sizes in bytes

Mounted on
I
;usr
;usr;src
;user/staff!
;user/staff
;user/student

All partition sizes contain space for bad sector tables unless
the device drivers fail to support this.

Disks normally on up

160jfujijfuji1601Fujitsu 160:\

:ty=winchester:ns#32:nt#10:nc#823:\
:pa#15884:ba#8192:fa#1024:\
:pb#33440:pc#263360:\
:pd#l5884:bd#8192:fd#1024:\
:pe#55936:be#4096:fe#512:\
:pf#141600:bf#4096:ff#1024:\
:pg#213600:bg#4096:fg#512:

pa is the swap disk partition
pc is the whole disk(not used)

page 97

UNIX LEARN

UNIX's LEARN was conceived by its authors (Brian Kernighan

and Mike Lesk) to be the main computer aided instruction

medium for the novice user of the UNIX Operating System.

The novice user needs to know some basic operations on the

UNIX system before he could use LEARN, a short

presentation and orientation by a demonstrator could achieved

this preliminary task. Once the user has logged into the

UNIX system, LEARN could then be the means of acquiring basic

skills in using UNIX. By typing "learn" at the system

prompt (then the RETURN key) the LEARN system would then be

in control till the user decides to end the session by

executing the LEARN command "bye". During a LEARN session

the user would be presented with the relevant materials (or

scripts) on the chosen topic. Each presentation of a frame

(usually a screenful) of material will require some response

by the user to test the user's comprehension of the

materials presented so far. The user's response is checked

against one or more of the expected responses. If the

response

presented,

is

if

correct the next lesson

the response is incorrect

material will be

then the standard

response would ask the user if he wished to retry the

previous question. Flexibility in catering for partially

correct responses could be provided for by the author of the

lessons to give hints to the user in that eventuality. Users

page 98

could at t-he start the as - - ~ , ,
W'=J.J.

as the lesson number to go to thus avoiding repetition of

going through completed lessons. LEARN provides a log of the

user's performance and could if provided by the lesson author

skip certain lessons depending on the speed and performance

of the user session, to avoid boring the faster

students.[Kernig79]

LEARN (Second Edition) originally covered 6 topics on the

UNIX system, they are :-

(1) files- teaching basic file handling techniques on

the UNIX system;

(2) editor - teaches about the UNIX text editor 'ed';

(3) mo r e f i 1 e s more advanced file manipulation and

commands;

(4) macros - teaches about use of 'ms' macros for the

'nroff/troff' document preparation

commands;

(5) egn- shows how mathematical typing can be done;

(6) C - introduce writing of programmes in C.

Students at Durham University on their first few computing

practicals on the UNIX systems will have to go through the

first two or three topics of LEARN before they proceed onto

the actual programming exercises. Students using LEARN

during their first few sessions would find it more helpful if

LEARN could provide some features that could guide the novice

user on certain LEARN commands that are not explicit.

page 99

Students encountering a long Jesson script, especially if the

lesson text is greater than can be displayed on a screen, may

wish to reread the text. This is not possible in the version

of LEARN (2nd edition) unless the student exits from the LEARN

session and reenters LEARN, specifying the subject and lesson

number he wished to go to. There is no facilty in LEARN to

allow the student to view how he has performed so far, though

a performance log file can be maintained by LEARN for this

purpose.

The original LEARN programme consists of 15 seperate modules,

with about 1500 lines of C code in all. This LEARN programme

could form the basis of the teaching system since it has been

a tried and tested system. Modifications can be incorporated

to provide a 'friendly' interface and test the use of

retrieving lesson scripts from a database(dbm).

page 100

3.1.3 The User Interface

The key notion behind a user interface is that the user

and the computer are engaged in a communicative dialogue

whose object is to accomplish some task. Dialogue is

used because both computer and user have access to the

stream of symbols that flows back and forth to accomplish

the communication.

The typical physical user interface a few years ago

was the teletypewriter, currently it is the alphanumeric

(keyboard) video terminal.

In the local installation, Televideo TVI 910 and 912

alphanumeric video terminals are used as the main input

and display devices. The UNIX system supports a command-line

interface. This form of interaction can be difficult for a

novice user because UNIX commands are terse and sometimes

cryptic e.g.

to list the files in a directory the command is "ls"

page 101

There is available on UNIX BSD4.1 a software library

package written by Ken Arnold called "curses". The package

has a set of functions which could be called to perform

cursor addressing, creation of windows and a host of other

screen updating functions. These screen updating functions

rely on a terminal capability database known as 'termcap'

which describes the capabilities of the terminal.[Arnold80]

The availability of the "curses" package alleviates

the difficulties involved in creating a different interface

from the command-line type. A menu type interface could be

created and the maintenance of the screen interface with

respect to the terminal types can be left to the 'termcap'

database and its related utilities.

HELP

A help facility to aid the user will be added. Most

systems in general offer some form of on-line help facility

which assist the user by explaining command words and

giving examples. The aims are:-

1) provide an on-line documentation;

2) a friendlier user interface;

3) better understanding of the system.

page 102

HELP nn UNIX consists of documentation on the usage of

commands invoked by the "man" (for manual) facility. This

is quite unsatisfactory for a novice user as he will not be

in a position to know what commands exist in the first place.

A help facility should be easily activated.

Conventionally most are activated through typing the word

"help". This would normally lead to a display of a summary of

what to do next.

UNIX's "man" command prints out the manual section for

a command. Typing "help" in UNIX (4.1 BSD) will list some

common commands with a short description of what the command

does and recommends the use of the 'man' command to find out

more about UNIX commands. This is not adequate for a novice

user who is finding his way around the system because the help

text does not display most of the commands, and the user would

need to know what the command name is before he could find out

more using 'man'.

In a CAL system, the users would benefit from

a friendlier environment to proceed through the system and

to achieve this a more comprehensive help facility and a

windowing based interface are required.

page 103

3.1.4 Summary

The facilities and software available 1n

UNIX environment form the basic tools for creating a

computer aided learning system. From the requirements and

issues discussed earlier the following major components of a

CAL system are identified:-

1) TEACHING system existing LEARN system with

modifications in C.

2) WRITER system existing screen editor 'sc' with

modifications in c. A prototype

environment to create, test and

install the lessons.

3) USER INTERFACE menu and command line interface

written in c. The 'curses' library

package used to facilitate the

creation and updating of the screen

interface.

4) DATA BASE lesson scripts will be stored on a

database using the 'dbm' database

library package and the retrieval/

update programmes written in C.

page 104

5) HELP use of the U~JIX "man" cornrrtar1d - - . .,
dllU

software written in C.

The idea is to rely on the available software

wherever possible and adapt the software to form an

integrated CAL system. The five major component parts of the

CAL system will be described in more detail in the design and

testing cycle.

page 105

3.2 system Design and Implementation

This section describes the final design of a computer

aided learning system implemented in a UNIX environment.

Hence the system is given the name CALUNIX for Computer Aided

Learning on UNIX.[Jackso83)

3.2.1 Overview

A top-down view of the various CALUNIX components is

shown in the following diagram:-

CALUNIX

I
LEARN WRITER HELP

II ~~~~ I I
lessons plan edit check setup writer unix calunix

Figure 3.1 CALUNIX Overall System Structure.

The main CALUNIX programme would control the lower level

modules from user's input using a menu (shown in Figure 3.1)

driven format.

page 106

Proqram Documentation for r'liTTT"lTV ._.,.,,.J-.JVJ,.,..&..n.

NAME

CALUNIX - Computer Aided Learning on UNIX

SYNOPSIS

CALUNIX [option [subject 1 Help Option) *lesson] *speed))

DESCRIPTION

CALUNIX provide an environment to learn and write lessons

on the UNIX system. To get started type 'CALUNIX'. A menu

with the options will be presented and the programme will

prompt for an option. The options presently handled are:

learn
writer
help

To skip the menu and proceed straight to the option type

in the option in the command line (% is the prompt) example:-

%CALUNIX learn pascal

or

%CALUNIX writer pascal plan

To exit enter the BREAK key or the break key sequence

("CTRL & C" keys on Televideo terminals).

The options *lesson and *speed only work when the LEARN option

is specified as the second parameter in the command line.

page 107

3. 2. 2 The CALUNIX

LEARN
Scripts

!.:EP...RN

r- >I visual display
.-C-A_L_U_N_I_X--.1 _j

LEARN L Programme
~-------~ keyboard

< input

Figure 3.2 CALUNIX LEARN interaction.

The LEARN component retrieves the lessons from either a

UNIX file or records in a database(dbm) :-

files
(directory)

I
I I
LO L10.2

jusrjlocaljcok8/l/
learn

(directory)

editor
(directory)

I
I I
LlO L12.1

Pascal
(directory)

I
pascal.dir

I
I

pascal.pag

(files) (lesson files on editor) (dbm database on pascal)

Figure 3.3 Directory/File structure of LEARN lessons

CALUNIX LEARN, in addition to retrieving the lesson

scripts, be it in a database or as a UNIX file, has also to:-

1) interpret the lesson scripts;

2) control the learning session;

3) provide certain user controls to obtain help or

control the displays.

page 108

The LEARN component is basically the same as the UNIX learn.

Program Documentation for:-

NAME

(CALUNIX)LEARN - modified LEARN - Computer Aided Instruction

about UNIX.

SYNOPSIS:

CALUNIX LEARN

DESCRIPTION

(CALUNIX) LEARN is similar to the LEARN on UNIX. It is

called from CALUNIX. The LEARN programme will ask questions

to find out what you want to do. Some questions may be

bypassed by naming a subject and also including the lesson

name. The current (CALUNIX) LEARN only handles lessons on the

subject 'pascal' stored in a database.

A sample session on the CALUNIX LEARN option is shown in the

following pages(see Figure 3.4). The session was recorded

in a file using the UNIX command 'script' then going through

the CALUNIX menus and questions.

page 109

Figure 3.4 SAMPLE SESSION ON CALUNIX LEARN

Script started on Wed Sep 3 14:56:11 1986
$ CALUNIX

CALUNIX MENU

CALUNIX is a Computer Aided Learning environment on UNIX

*** The following options are available on CALUNIX:-

(1) LEARN option - to learn about a subject;
(2) WRITER option - to write lessons on a subject;
(3) HELP option -to give help on CALUNIX options;

Hit the BREAK key for option to exit from CALUNIX.

Which Choice(Option)?learn

These are the
files
editor
morefiles
macros
eqn
c

available
)

courses -

)
)
)
)
)

NOT AVAILABLE
ON THIS
TRIAL YET!

pascal available
If you want more information about the courses,
or if you have never used 'learn' before,
type 'return'; otherwise type the name of
the course you want, followed by 'return'.

files - basic file handling commands
editor - text editor; must know about files first.
morefiles - more on file manipulations and other useful stuff
macros - "-ms" macros for BTL memos & papers; must know editor

page 110

Figure 3. 4 cont.

eqn - typing mathematics; must know editor
c - writing programs in the C language; must know editor
pascal writing programs in the Pascal language; must know
editor

This is probably the proper order, but after you
have the "files" course and know the basics of "editor",
try anything you like.

You can always leave learn by typing "bye" (and a RETURN).
You can stop it from typing by pushing interrupt
(or break or rubout or delete, depending on your terminal).

If it won't accept your answer, and you know you're
right, answer "no" when it asks whether you
want to try again, and it will go on to the next lesson.

Hit spacebar then RETURN key to continue
Hit the B key & then RETURN to display last 20 lines
You can 'mail' any problems concerning with use of learnpascal
to scnk.

Which subject?
Which subject? pascal
If you were in the middle of this subject
and want to start where you left off, type
the last lesson number the computer printed.
To start at the beginning, just hit return.

You have signed on to the Learnpascal program.
But before starting you should first be able to
correct typing mistakes at the terminal using
the special characters (left arrow) and CONTROL-U.

(left arrow) cancels the previous character typed;
(It is made by pressing the key marked with an arrow

pointing left)
CONTROL-U cancels the line being typed;
(It is made by holding down the key marked CTRL
or CONTROL and pressing the U key.)

If you make a typing mistake, you can use these
characters to correct it before you finish the line
and the computer will never know about it. For example
what will the computer receive if you type

st(left arrow) he(CONTROL-U) thf(left arrow)e

The symbol (left arrow) shows where the left
arrow key was pressed.
Similarly for the CONTROL-U function.

page 111

Figure 3.4 cont.

Hit spacebar then RETURN key to continue
Hit the B key & then RETURN to display last 20 lines

Reply 'answer Word' where Word is the word as it will
be received. For example if you think it will get 'dog'
then type

answer dog
Dont forget to leave a space between answer and the word
and to hit return at the end of the line. Also dont use
quotation marks in your answer.

$ $ answer the
very good !! ! !!

Good. Lesson O.la (1)

Some of the lessons will be longer than one terminal
screen height. The computer will always go on until
just leaving the last part visible. So it is useful
to freeze the screen when it is full this can be done
using the CONTROL-S for stopping and then the CONTROL-Q
for restarting.

Firstly there is a section on the history of Pascal
Type in answer start to begin.

$ answer start

Good. Lesson O.lb (2)

The computer language PASCAL was the first language to
embody in a coherent way the concepts of structured
programming defined by Edsgar Dijkstra and C.A.R.Hoare.
PASCAL was developed by Niklaus Wirth in Zurich, it is
derived from the language ALGOL 60 but it is more powerful
and easier to use. PASCAL is now widely accepted as a
useful language particularly as a teaching tool.

Useful books are
1 Pascal user manual and report by Jensen and Wirth
2 Programming in Pascal by Grogono
3 Problem solving using Pascal by Skvarcius

Type in answer ok if you are ready
$ answer ok

Good. Lesson O.lc (3)

This is a very simple Pascal program which
is used to show what the structure of a
program is like. All the programs shown are
complete working programs that may be run

page 112

Figure 3.4 cont.

on a computer.

PROGRAM squarerootoftwo (output);
BEGIN

write (sq r t (2))
END

This would print 1.4142135624 which is approx
the square-root of two. Even a simple program
must obey certain rules shown in the program
heading syntax diagram. A syntax diagram shows
the rules of a particular construction.

page 113

Figure 3,4 cont.

program---->[heading)----->[block)----(.)----->

heading---->(PROGRAM)--->[identifier)------
Hit spacebar then RETURN key to continue
Hit the B key & then RETURN to display last 20 lines

I
--- I
I
1-->(()--->[identifier)-----())----->(;)------->

I I
1---(')---------<-1

What is the first word of any Pascal program?
Type in answer X where X is the word.

$ $ answer wrong (Deliberate wrong answer given)

CALUNIX LEARN

Sorry the answer was not right

CHOOSE ONE OF THE FOLLOWING OPTIONS HERE :
(1) Try again- display lesson again------1
(2) Try again- don't display text--------2
(3) Skip lesson---------------------------3
(4) help/view- help or view lessons------4
(5) bye - exit from learn-----------------5

OPTION?4

CALUNIX HELP

CALUNIX HELP provides the following options

(1) LEARN
(2) PLAN
(3) LOG

option - Help about learn;
option - View lesson plan;
option - View performance log;

Hit the BREAK key for option to exit from CALUNIX

Which Choice(Option)?

page 114

(The BREAK key was activated at this point)

Interrupt.
Type h if help required, y if you want to go on?n
Bye.

CALUNIX MENU

CALUNIX is a Computer Aided Learning environment on UNIX

*** The following options are available on CALUNIX:-

(1) LEARN option - to learn about a subject;
(2) WRITER option - to write lessons on a subject;
(3) HELP option - to give help on CALUNIX options;

Hit the BREAK key for option to exit from CALUNIX.

Which Choice(Option)?

(The BREAK key was activated again at this point)

MAIN CALUNIX ROUTINE--Interrupt.
Want to go on? n
$
$
script done on Wed Sep 3 15:02:02 1986

END OF Figure 3.4

page 115

3.2.3 The WRITER/AUTHOR Component

The writer/author component aims to provide an authoring

system environment for the lesson writer. The facilities

include a screen editor, lesson checker and lesson setup

programmes. A synopsis showing the structure of the writer

component modules in relation to the CALUNIX system is as in

Figure 3.5 below:-

CAL UNIX

I
.--, ----~~IT~-------,

plan edit check setup

Figure 3.5 CALUNIX WRITER calling structure

1) The Plan module calls the screen editor for the writer

to build up the contents description on a subject.

2) The Edit module uses the same screen editor but this

time for the writer to build/edit the lessons.

3) The Check module validates the lesson created.

4) The Setup module will attempt to set up the lesson files

in a database.

In the following pages a description of the displays for

the writer component is presented.

The lesson writer has first to select the subject he will

be working on, then he will be prompted to select one of the

page 116

four writer options available. The sequence of options

follows a top-down approach. The writer is encouraged to plan

the lesson structure first, via the plan option, before

proceeding to the edit option to create and edit the lesson

proper. After a lesson is created the check option can be

called to validate the system of the author language commands

used.

On completion of all the lessons, the writer can call

upon the setup option to set up the lessons in a database.

The database set up has the advantage here of a fast system

access to the lesson files and a more secure environment for

student users.

Programme documentation for:-

NAME

WRITER - An authoring system for CALUNIX LEARN lessons.

SYNOPSIS

WRITER [subject [option [lesson 1 1]

DESCRIPTION

WRITER provides an environment to plan, write, check
and setup lessons on a subject. The lessons could then
be used by students through learn(see CALUNIX LEARN)

To get started simply type 'WRITER'. (Remember it
be in capital letters). The programme will
questions to find out what you want to do.
questions may be bypassed by naming first a subject,
then an option, chosen from the following:-

plan
edit

to write the lesson plan,
to edit lessons,

must
ask
The
and

page 117

check -
setup -

validate lessons,
setup lessons in a database,

plan option is an aid to writer in organising the lesson
structure and description for later reference, the
screen editor (see sc) is used and the header is placed
as follows to encourage a prescribed format of entry:-

====.====[LESSON
1
2
3

NO[====.====[LESSON DESCRIPTION====.
Introduction to pascal
History of pascal
A simple pascal programme(ex)

edit will prompt for the lesson name to be given, the name
rs-checked; an existing name will result in editing of the
contents of the lesson file named, while a new name will
result in the creation of a new empty lesson file for
editing. The screen editor is used. When in screen
editor mode, help on the learn author language can be
obtained by hitting ESC key twice and selecting the
appropriate help required.

check will prompt for a lesson name, the lesson file named
will be checked to minimise any errorneous lessons for the
student user when he is using learn on the lessons.

setup is to be used only if the lesson is to be set up on
a database (see dbm). The only advantage of setting up a
lesson on a database is a faster retrieval of lesson
files, provided all or most of the lesson files are within
1 block in size (PDP11- 512 characters). It should be
performed if at all when all lessons files have been
completed and checked.

The key BREAK is used to terminate a WRITER session.

page 118

The WRITER menus and screen displays are described here:-

CALUNlX WRITER

CALUNIX WRITER supports the lesson writer with the following
set of tools.

(1) First you must specify the subject you are writing on.

(2) Then choose one of the following options:-

a) PLAN option - to plan lessons on subject;
b) EDIT option - to create and edit a lesson;
c) CHECK option - to check/validate lesson;
d) SETUP option - to setup the lesson;

(3) For option 2b), c) and d) you must give the lesson name;
number

-------HIT-BREAK-KEY-FOR-OPTION-TO-EXIT-----------------------

which subject? pascal (RETURN)

which choice (option)/ Plan (RETURN)

Figure 3.6 CALUNIX WRITER menu

page 119

Choosing the subject pascal and the option plan will cause

WRITER to call upon the screen editor to create and edit a

file called planpctscal (concatenating option plan with subject

pascal) shown in Figure 3.7.

planpascal line:l column:l
DESCRIPTIONI====.====I ====.====!LESSON NOI====.====ILESSON

0

0.1a

0.1b
O.lc
1.0
1.1
1.1a
2.0
2.0a
2.1
3.0
3.0a
3.1
3.1a
4. 0
4.0a
5. 0
5.1
5.1a
5.1b

Start

Characteristics of Televideo
TV1912
Terminal TV1912 (continued)
Introduction to Pascal/Books
A simple Pascal Program
Pascal Program Name Exercise 1
Pascal Program Name Exercise II
Pascal Operators: Assignment I
Statement Operator Exercise I
Research Words-word delimiters I
Identifiers I
Identifier Exercise II
Identifier Exercise III
Full Identifier list
Literals and Constants Ex!
Literals and Constants Ex II
Pascal Notation and Vocabulary
Pascal INTEGER Type Ex I
INTEGER Operators Ex II
Hierarchy of Operators Ex III

====.====1====.====1====.====1====.====1====.====1====.====1

Figure 3.7 Sample of lesson plan for PASCAL using 'sc'.

The screen editor used is a version of the NUMAC 'sc',

the difference being only in the screen template displayed and

the additional help text (on the author language) provided

under the 'Writer Commands' options.

page 120

The EDIT option screen editor template is as shown in

Figure 3.8. In this Figure 3.8 a lesson 1.0 (LI.O) is

created and edited.

Ll.O line:l column:l

====.====I====.====I====.====IWriter HELP - Types ESC twice=.====

====.====1====.====1====.====1====.====1====.====1====.====1====.=-

[press ESCAPE twice for STOP or HELP functions

Figure 3.8 Screen editor 'sc' template for WRITER EDIT

page 121

In the screen editor typing the ESC key twice will display the

following prompt in the lower ruler line window:-

====.====1====.====1====.====1====.====1====.====1====.====1== ==.=
Stop, Help, Position, Option, Writer Commands ...

Figure 3.9 Options in WRITER EDIT screen editor

Any one of the five options can be selected by typing the

first letter of the option word and pressing the RETURN key.

e.g. if 'H' (Help) was chosen, the help options will overide

the previous options displayed in the lower window:-

====.====1====.====1====.====1====.====1====.====1====.====1== ==.=
Cursor, Action, Function, Block, Position, Option, Setup or Writer

Figure 3.10 Help options in WRITER EDIT screen editor

In the same way as the previous step choosing say Help on

WRITER by typing W and the 'RETURN' key will display on the

screen the following Figure 3.11:-

page 122

Writer: Short description of learn Author language commands

#print: display text that follows, up to a line that starts with #.
#create filename: creates a file of the specified filename.
#user: gives control to the user at this point, pass to shell for

execution.
#copyin: #uncopyin: anything typed by the user between these

commands are- copied to a file called .copy.
#copyout: #uncopyout: between these commands any material typed

at the user by any program is copied to a file called .copy.
#pipe; #unpipe: to allow material typed between these commands to

be fed - through a pipe so that sequences fed on editor
such as ed will work.

#cmp filel file2: compares the two files for identity.
#match stuff: the last line of the user input is compared to stuff,

the success or fail status will be set according to it.
#bad stuff: same as #match except that it corresponds to specific

wrong answers.
#succeed, #fail: will print a message upon success or failure.
#log: performance is logged - date, lesson, user id, speed rating,

status.
#next: is followed by the next few lines each with a successor

lesson name and an optional speed rating - as shown here:-

----------------------25.la 10

Enter another HELP keyword or press RETURN to restore file image.
Cursor, Action, Function, Block, Position, Option, Setup or Writer.

Figure 3.11 Help text on WRITER commands in 'sc'

page 123

If more detail is required of the writer commands, selecting the

'Writer Commands' (Type W and 'RETURN' key) will display in the

lower ruler line window:-

====.====1====.====1====.====1====.====1====.====1====.====1====.====1=
Summary,Copyin Copyout,Match Bad Fail Succeed,Next Log Print,Pipe User

Cmp ..

Figure 3.12 Additional help options for WRITER commands.

The 'Summary' option if selected by typing ' s ,

displays:-(Figure 3.13)

page 124

Figure 3.13 Summary of Writer Commands for 'learn' lesson text

The Lesson Writer will need to know the 'learn' commands,
which forms part of the lesson text instructing the 'learn'
interpreter on what to do next during the CALUNIX 'learn'
session.

All learn commands begins with a # sign, the following
blocks of options following this summary describes these
commands in more detail:-

Copyin&Copyout

Match&Bad&Succeed -

Next&Log&Print
Pipe&User&Cmp

describes #copyin, #uncopyin,
#copyout, #uncopyout;
describes #match#bad, #fail,
#succeed;
describes #next, #log, #print;
describes #pipe, #unpipe, #user;

TYPE IN THE FIRST LETTER OF THE BLOCK FOR ANY COMMAND
-----SHOWN IN THE BLOCK AND HIT THE RETURN KEY------

Enter author Writer HELP keyword or press RETURN to restore
file image
Summary, Copyin Copyout, Match Bad Fail Succeed, Next Log
Print, Pipe User Cmp.

A more detailed explanation of the commands say, about

"#copyin", can be initiated by typing the first letter among

the grouping of words. Say "C" is typed, the resulting help

text is shown in Figure 3.14.

page 125

Writer's #copy #copyout commands

#copyin & #uncopyin

Anything typed between these two commands are copied to a file
called .copy. This lets the other writer (learn) commands
interrogate the student's (user) response upon regaining
control from #user

#copyout 7 #uncopyout

Any material typed at the student by any program is copied to
a file called .copy. This lets lesson writer check the effect
of what the student typed, which true believers in the
performance theory of learning usually prefer to the student's
actual input.

Enter another Writer HELP keyword or press RETURN to restore
file image.
Summary, Copyin Copyout, Match Bad Fail Succeed, Next Log
Print, Pipe User Cmp ..

Figure 3.14 More detailed help text for WRITER commands

Figure 3.14 shows the most detail help text available on the

WRITER commands for the LEARN lesson scripts. Once the writer

exits from the screen editor the CALUNIX WRITER menu will

reappear and prompt for input.

page 126

The EDIT option

Choosing the EDIT option requires the sequence of entries from
the user as follows:-

subject?
option?

Lesson Number/name/

Once the entries have been accepted, the EDIT module

creates/edits a file with the name given in lesson Number/Name

entry using the screen editor (sc). The screen editor top

ruler template is different from the top ruler template of the

PLAN option's screen editor. If the Lesson Number is 0 say

the top ruler template would display:-

LO line 1 column 1
====.====I====.====I====.====IWriter HELP - Type ESC twice=!====.

The 'Writer HELP - Type ESC twice' banner is to indicate to

the writer how help on the author language commands can be

initiated.

page 127

The CHECK option

CHECK option will ask tor a lesson Number/Name to validate on.

If the lesson is found CHECK will perform some simple checks

on the valid author language commands.

The SETUP option selected will display the following message:-

THIS OPTION setup SHOULD ONLY BE USED WHEN YOU HAVE:-

1) created the necessary lessons;
2) you wish to set it up on a database (dbase):

THE LESSONS WOULD WORK JUST AS WELL IF IT WERE LEFT AS IT IS
Want to go on?

These options together form the authoring system provided

under CALUNIX WRITER component.

page 128

3,2,4 THE HELP ENVIRONMENT

Overview of general help on CALUNIX:-

HELP

CALUNIX UNIX WRITER

Short detail

Figure 3.15 Overview of CALUNIX HELP

Help provides a description on CALUNIX and WRITER programmes

through a system call of the UNIX 'man' command. Help on

UNIX itself is a listing of the UNIX commands available, and

a facility to provide a short or detailed description on each

of the UNIX commands. (See Figure 3.17)

Help programme is written in C,

'UNIX' commands uses library

keyjcontent pairs in a database.

the module handling the

functions that maintain

This library of database

subroutines are described under 'dbm' in the manual pages

('man').

The screen interface for the UNIX option is divided into two

windows shown in Figure 3.16.

page 129

main window

bottom window

Figure 3.16 HELP Window Screen Interface

The main window displays the text while the bottom window

displays the dialogue and short messages.

Figure 3.17 shows the actual help text in the main window and

the dialogue text in the bottom window. The intensity of the

text in the main window is lower to provide a highlighting

effect between main and sub windows.

page 130

signal chdir cu who ecvt creat tsort test
profil rm time 13tol tp yacc putc mkfs
quot mktemp sort fread su mail plot ld
grep xsend lock chown de uti me atof cp
end pause date prof write sleep mv cc
nm mount cat join scanf crypt malloc struct
pkopen lseel< abs ps find sync chmod touch
mkdir echo as mp exp stat kill tabs
gets rev ac ed dup read od mesg
acct sh getpid assert unlink make string sed
out ls times fopen true sin close pwd
dchecl< setbuf pipe rand brk system wall £77
stdio printf exit look we perror link pr
tty mkconf diff tee at newgrp file icheck
man pstat bas ptx spline deroff tc tetuid
col size in cmp fclose stty be umask
setjmp clri larder access lint exec setuid indir
ratfor tbl qsort units dd du ncheck dif£3
iostat sum nlist hypot refer restor strip uucp
getenv cal tail ctype ctime factor split uniqroff
Type Y to continue/type in COMMAND for description ? who

who \.- who is on the system who (1)

Figure 3.17 Help on UNIX commands

HELP in LEARN mode.

Two methods of initiating help when in LEARN can either be by

an explicit call or by some condition being encountered. The

same screen-interface of a main text window showing the help

options available, and a bottom sub-window for the dialogue,

is used when the help in LEARN is initiated.

HELP in WRITER mode

Help in WRITER mode is incorporated into the screen editor.

Help here describes the CALUNIX WRITER author language

commands, as described in the previous section 3.2.4.

page 131

3.3 DEVELOPMENT

This section outlines the different stages in the development

of the project and describes the problems encountered during

the project.

3.3.1 CONSTRAINTS AND PROBLEMS ENCOUNTERED

The help facility was the first set of programmes to be

developed on a VAX, with the help of the 'curses' library

functions to create the window interface, and the 'dbm'

library functions to manage the help text in a key/content

database.

Porting the

that 'curses'

the 'curses'

but not on

help programme over to a PDP 11/44 also meant

library functions had to be ported over since

is available only on UNIX BSD 4.1 UNIX (VAX)

the UNIX VII (PDP 11/44). 'Curses' library

functions depend on the 'termcap' database. The 'termcap'

database describes the terminal capability of a number of

terminal types. To set up the 'termcap' database the 'man'

documentation stated the need for the new 'tty' drivers to be

available. 'tty' is the general terminal interface. The

problem arose when it was discovered that the UNIX VII (PDP

11/44) did not support the new 'tty'. Thus an alternative

method has to be found to perform the windowing and cursor

addressing.

page 132

The installation uses Televideo 912 and 910 terminals. A

subroutine in help was added to support some basic cursor

addressing and visual attributes for the Televideo terminals

to make up for the scrapping of the 'curses' library

functions[Televi82).

Problems encountered with 'dbm'

The 'dbm' library functions allow key/content pairs in a

database to be accessed very quickly. However one limitation

is that the sum of a key/content pair must not exceed the

internal (logical) block size of the disk. In the case of

UNIX VII on a PDP 11/44 the internal block size is 512

characters per block. In UNIX BSD 4.1 the block size can be

1024, 4096, 8192 characters per block depending on which disk

partition the database resides in, and also the block size

defined when compiling the 'dbm' library routines. The

internal block sizes for the different disk partitions are

described in the 'disktab' file on UNIX BSD 4.1 jetcjdisktab.

Figure 3.0 in Chapter 3 gives the disc partitions description

on the VAX's disc storage unit.

Though the original authors of LEARN have recommended

breaking down long lesson scripts into smaller ones, many of

the lesson scripts would still exceed the 512 characters.

This meant that a lesson script greater or near 512

page 133

characters in size could not be stored as a single

keyjcontent record in a 'dbm' database. Thus the advantage

of optimal system access using 'dbm' would be difficult to

be realised for UNIX VII. An added complication if 'dbm' is

to be used is for example:- lesson scripts greater than 512

characters, would need to be split up before they can be

stored as seperate records in the 'dbm' database, and

reconstructed when the lesson script is to be retrieved. In

the event that the majority of the lesson scripts are greater

than 512 characters, the mode of storage would seem better if

the lesson files were left as conventional UNIX files rather

than as a record in a 'dbm' database.

Problems with porting from a VAX 11/750 to a PDP 11/44

All the programmes were first developed and tested on a UNIX

BSD4.1 (VAX 11/750). The c Program Checker, 'lint' was used

on the programmes written to detect for features that might

cause 'bugs' or other problems that might make the programme

difficult to port from one computer to another.

[Johnson, S.C. 1978b, Lint, A C Program Checker]

One feature that 'lint' did not detect was long names that

are in danger of being duplicated if truncated to a smaller

page 134

size word. This occurred in one programme with two long

routine names:-

helpmenu1 (............)

helpmenu2 (............)

The programme works on a VAX and passes through the 'lint'

checks but failed during compilation on a 11/44 with

"helpmenu multiply defined" message. Apparently routine

names on UNIX VII should be unique in its first 8 characters

used otherwise the compiler gives the message that it is

confused over which routines (helpmenu1 or helpmenu2) you are

calling upon.

The screen editor (sc) modifications

There are 12 programmes that go to make up 'sc'

programme that sets up the help file for the 'sc'

and 1

help

facility. In all about 7,000 lines of C code. The 'sc' on

work the VAX and PDP are similar so amendments for one will

on the other.

Two basic modifications are made to the 'sc' programmes

to satisfy to some extent the requirements of an editor for

the CALUNIX WRITER environment. The first change is the

execution and inclusion into 'sc' of the help text pertaining

to Writer Commands(CALUNIX LEARN author language). Two

programmes named 'makehelp.c' and 'help.c' were modified to

page 135

cater for this change,

Another modification was the top and bottom ruler

margins and messages that the screen editor 'sc' adopts upon

execution. Depending on whether the user is editing a lesson

or a plan, the relevant messages and ruler margins are

displayed, (see Figures 3.7 and 3.8).

page 136

3.3.2 Testing and Debugging

"Testing is the process of executing a programme with the

intent of finding errors". [Myers79) This definition by

Myers, that testing should be to uncover errors, is a change

from a commonly held viewpoint that a successful test is one

that no errors are found. An interesting comparison is given

by Myers of how a project manager in a software project, and

a doctor diagnosing a patient, treat the definition of

success in their respective tests, illustrates the

contrasting view. If no errors are found by the project

manager during a test, the test is deemed successful, but if

an error is discovered it is deemed to be unsuccessful.

However if a doctor were to find a case of peptic ulcer

during the laboratory test, the test would have been deemed

successful, if nothing were discovered the patient with the

symptoms will have spent the cost on the laboratory tests

without finding the cause and perhaps the cure for his

condition.

A top-down approach to testing has been adopted. Each module

is tested and the test expands as additional modules are

added till the whole programme is covered. Progressively the

system would be tested for errors. This form of testing is

exhaustive and very time consuming. Eventually most of the

obvious errors are debugged. For large programmes it gets

more difficult to find residual errors.

page 137

Each module testing done during the development stages verify

i) the input and output;

ii) the instructions executed;

iii) error and signal handling.

An example of this is the testing of the main calling module

CALUNIX. Exhaustive testing for expected results from a

given input would be possible for this programme as the

number of possible outcomes:-

i) command line parameter input sequence;

ii) menu prompt input sequence;

iii) interrupts;

iv) invalid parameters;

are not very large.

For large programmes, like the LEARN component,

difficult to perform any exhaustive sequence of

it would be

tests. In

the case of LEARN and the screen editor 'sc' programmes, most

of the codes remain the same with slight modifications made

in certain modules of the programme. Testing would only be

performed on the modified codes and how it may effect the

expected function of the system.

page 138

In LEARN for example tests were made on the the

original UNIX LEARN:-

1) scroll back option of the number of lines displayed

is more than a screenful;

2) database retrieval of learn scripts stored in the

'dbm' database

3) help option.

Similarly in the screen editor tests on:-

1) the top and bottom ruler and options messages;

2) help text;

were carried out.

After each error has been identified, the debugging process

follows and the cycle of testing, debugging and retesting

continues, till the desired result is satisfied.

page 139

3.5 CONCLUSION

Some useful lessons were learnt from the development and

implementation of the CALUNIX system. Using existing

facilities can reduce the amount of coding required, thus

saving on time and resources, but certain facilities may

prove to be inadequate for the application. Modifications to

the facilities could remedy the inadequacies to a certain

extent but the danger of creating a nonstandard version of

the facility might cause maintenance and portability

problems. This could, and did happen, for the 'sc' and LEARN

programmes on the local UNIX systems, when new versions were

implemented, one as a result of the UNIX upgrade from BSD4.1

to BSD4.2 for the VAX 11/750, and the other when a new

version for 'sc' was implemented. Modifying existing

programmes is a mixed blessing, on one hand there are useful

features and codes which can be reusable in other parts of

the system, e.g. signal handling routines, but overheads like

understanding fully the workings and debugging the modified

programmes to be overcome.

Each main component of CALUNIX, that is, WRITER or LEARN

or HELP can be independently executed as a command like any

other UNIX commands. In the same manner, future programmes

components can be integrated into CALUNIX by making provision

for the new component as a new menu option in the main

CALUNIX programme.

page 140

Costs in terms of resources and time are kept down by

using readily available programmes. Incorporating the

existing computer aided learning programme (LEARN) has

maintained the effectiveness of presenting the subject

material and the drill and practice approach of LEARN is

flexible enough to teach most subjects. Certain subjects

like languages, art and music could not be included unless

special equipment can be interfaced and software written to

operate this special equipment. The portability of CALUNIX

has been shown to be successful when the system is ported

over from VAX to PDP. Porting CALUNIX to non-UNIX systems

with a resident full C language and C library routines might

be challenging work to carry out in the future.

The CALUNIX system in its current state can serve as a

prototype for future work. There are features which have

been planned but not implemented and certain restrictions

that need to be rectified. One main component left out was a

facility to maintain the system's files, directories,

programmes and documentation. UNIX system's 'MAKE' for

maintaining programme groups, and the 'nroff' documentation

formatting command can serve as the basic tools to build up a

maintain facility[Feldma78].

The check option in CALUNIX WRITER could be improved if

more comprehensive pattern and syntax checking are

page 141

implemented perhaps using the 'awk' pattern scanning and

processing language instead of a straightforward C programme.

[Aho78]

The screen menu interface could be speeded up if a

simple line by line output were implemented instead of

cursor control codes to update, protect and refresh

using

the

screen image. The implementation protects certain portions

of the screen (top window) from being overwritten by say a

user who may type faster than the system can cope with

however this protection also meant that refresh rate of the

screen image is slowed down and also menus could not be

displayed on terminals other than on Televideo's 912 and 910

family of visual display units. This could be rectified if

the 'termcap' - terminal capability database is set up or

some method similar to 'termcap'.

page 142

References

Aho78
Aha, A.v., Kernighan, B.W. and Weinberger, P.J., "Awk-A
Pattern Scanning and Processing Language". UNIX Programmer's
Manual, Bell Labs., Sept 1978.

Arnold80
Arnold, C.R.C.K., "Screen Updating and Cursor Movement
Optimization", "A Library Package", University of California,
Berkerley, 1980.

Boulay81
Boulay, B.D. and O'Shea, T., "Teaching Novices Programming"
In Computing Skills and the User Interface, pp 143-200,
Academic Press, 1981.

Bourne82
Bourne, S.R., "The UNIX System", Addison Wesley, 1982.

Elfrin85
Elfring, G., "Choosing a Programming Language", IN BYTE, Vol
10, No 5, pp 235-240; June 1985.

Feldma78
Feldman, S.I., "Make- A program for maintaining Computer
Programs", UNIX Programmer's Manual, Bell Labs., Aug 1978.

Hunter82
Hunter, J.A. and Hall, N.A., "A Network Screen Editor
Implementation", SOFTWARE- PRACTICE AND EXPERIENCE, Vol 12,
pp 843-856, Jan 1982.

Jackso83
Jackson, M.A., "System Development'', Prentice-Hall, 1983.

Joy80
Joy, W., and Horton, M., "An Introduction to display editing
with vi", University of California, Berkeley, 1980.

Kernig78
Kernighan,
Language",

Kernig79

B.W. and Ritchie,
Prentice Hall, 1978.

D. M. ,

Kernighan, B.W. and Lesk, M. "LEARN

"The

Instruction on UNIX (Second Edition), Bell
Hill, New Jersey 07974, Jan 1979.

Myers79

c Programming

Computer Aided
Labs., Murray

Mye r s , G . J . ,
Sons, 1979.

"The Art of Software Testing", John Wiley &

page 143

Televi82
Televideo Systems, Inc., "TELEVIDEO: Model 910plus terminal
Operator's Manual", Televideo systems, Inc., 1170 Morse
Avenue, Sunnyvale, California 94086, 1982.

Thomso74
Thomson, K. and Ritchie, D. "The UNIX time-sharing system",
IN UNIX Programmers Manual, 1974.

wallis82
Wallis, P.J., "Portable Programming, Macmillan Press, 1982.

Wirth75
Wirth, N., "An assessment of the programming language
Pascal", IEEE Transactions on Software Engineering, Vol SE1,
No 2, pp 192-198, June 1975.

page 144

CHAPTER 4

TRENDS AND CONCLUSION

4.1 Trends in Computer Technology

4 .1.1

4 .1. 2

Computers

Mass Storage

4.2 Trends in Software Tools

4.3 Trends in Computer Aided Learning

4.4 Conclusion

References

page 145

4.1 Trends in Computer Technology

The Fifth Generation Project launched in the fall of 1981

by Japan has sparked off similar projects involving key

technologies of Intelligent Knowledge-Based System (IKBS),

Man-Machine Interface (MMI), Software Engineering, Very Large

Scale Integration (VLSI), New Computing Architectures and

Communications. [Uehara83) [Moto083) The Alvey Programme in

the United Kingdom, ESPRIT (European Strategic Programme of

Research and Development in Information Technology) and DARPA

(Defence Advanced Research Projects Agency) in the United

States are some of the programmes initiated with similar aims

to the Fifth Generation Project.

These new developments in computer technology as

well as current trends in software development have given

education and training a wider scope and potential.

This chapter outlines the current trends and further work

that could be done in CAL.

4.1.1 Computers

Chip technology has grown dramatically over the past

decades. Since 1965 the number of transistors that could be

put on a single chip has doubled every fourteen months or so.

The prices of microprocessors have also fallen steadily. The

falling prices and increased computer power are met by an

page 146

in~reasing market for computers.[O'Shea83]

This is reflected in the way microcomputers have evolved

from the 8 bit based microprocessors like Apple lie, Pet 8032,

which predominated in the 1970s to the 16 bit

based microprocessors on machines like the IBM PC(Intel 8088),

Apple Mackintosh (Motorola 68000) that have been prevalent in

the market since the early 1980's. By the 1990's,

considering the trend of the 8 and 16 bit microcomputers, the

32 bit microcomputer will likely to take to take over the

dominant position the

[Crecin86]

16 bit microcomputer holds today.

Lateral developments to the serial type computers, in

coping with the growing computation needs are:-

(1) parallel type computers, like the ICL Distributed Array

Processors (DAP) and the Inmos Tranputers. Parallel type

computers take advantage of application programmes which

have a high degree of concurrent processing, like in

CAD(Computer Aided Engineering), image processing, finite

element analysis, matrix manipulation, telephone switching

systems and many others.

(2) optical type computers, like the Heriot-Watt computers,

use optical switches based on bistable materials. The

bistable materials can be switched between two states,

page 147

similar to an

intensity of

computers have

electronic switch, depending

light shone through them. The

the potential in performing up

on the

optical

to 100

million processes in parallel, mainly because unlike flow

of electrons, beams of light do not interfere with each

other, thus multiple streams of light can be passed

through the same switch. Another advantage is that the

speed of optical computers could reach over 1000 times

more than computers based on conventional chips.

In the past, computer system performance has regularly

increased by a factor of ten each decade due mainly to

advances in VLSI technology. To support the Fifth Generation

Computer target for computers, that require a 1000 times

improvement in present day systems, cannot be fulfilled using

projected improvements in VLSI techonology alone. The

development of parallel systems like transputers, and optical

type computers, have been heralded as the means to achieve the

quantum leap in processing preformance necessary for the Fifth

Generation systems.[Inmos85][Gostic79]

4.1.2 Mass Storage

One of the main needs of computing is the provision of a

reliable, fast and compact means of storing huge amounts of

information. In the past, magnetic tape was the practical

page 148

mass storage medium, now the magnetic disc dominates and the

prediction is that optical discs will eventually become a more

popular means of mass storage.

Magnetic tape did not fully satisfy the computing

requirements, mainly because of its slow speed which made it

incapable of meeting the random access requirements of

computers, even during the mid fifties. The advent of

magnetic disc has allowed access times, well below a second.

However the main concern of users is in the reliability.

Magnetic disc drives have disc heads that move very close to

the disc media when reading or writing data to/from the disc.

Though in general head crashes seldom occur, one bad

experience would be enough to shatter the confidence of the

user. Hence users have tended to rely on backups in

anticipation of just such an occasion.

and reliability has led to a great

optical storage devices.

The quest for speed

deal of interest in

Optical storage was

video system based

introduced in 1978 as

consumer on a standard called

LaserVision. The video images are stored as FM signals

on the disc. Later this technology was used to produce the

optical audio disc on which audio information is encoded

digitally. They were known as compact discs (COs) perhaps

because they were miniaturised versions of the LaserVision

page 149

discs.

The success of CD supported the

introduction of an adaptation of the CD, known as CD-ROM

for Compact Disc - Read Only Memory in early 1985. Later

Write Once Read Many (WORM) type optical discs appeared,

allowing the data to be written only once on the optical

disc and the written data could then not be erased or

rewritten. The data on the WORM disc could be read over again

and again.

The advantages of optical disc technology over the

magnetic disc technology in handling digital information are:-

(1)

(2)

Much higher capacity of information can reside on similar

size disc. A factor of 10 can be reached in storing on

an optical disc compared with a similar size magnetic

disc;

Mass replication of optical discs can be done

inexpensively, whereas data on a magnetic disc cannot be

mass reproduced;

(3) The optical discs are removable unlike the hard disc,

this can be used for archival purposes;

(4) Immune to accidental erasure and external magnetic field.

Disadvantages of the optical disc technology are:-

page 150

(1) Currently the media can be written once only.

(2) Access times of optical disc drives are slower than

on

high-performance magnetic disc drives. Access times for

optical drives range from 100 to 500 milliseconds by

contrast high-performance magnetic discs range from 16 to

30 milliseconds. [Fujita84]

Research on eraseable optical discs is still in progress,

different materials. Magneto-optical material like

amorphous magnetic gadolinium-iron-cobalt, has been cited as a

promising medium for a future eraseable magneto-optical disc.

The magneto-optical medium is heated by a laser which reverses

the magnetic polarity of a small area and freezes it in that

state. Polarised laser light can then be used to read the

pattern of magnetised areas which rotates the direction of

polarisation of the reflected light, a phenomenon known as the

Kerr effect. Erasing the data involves reapplying the laser

on the area while an external magnetic field is applied in the

original direction of polarisation. Prototypes of eraseable

optical discs like the 'jukebox' type from NEC holds two

stacks of 100 discs each and two separate drives with a

capacity of 120 gigabytes while occupying a 5 cubic feet

space. [Herman86]

The large capacity of WORM type and perhaps future

erasable optical discs have made possible the storing of

full text or graphical data and large files on a relatively

page 151

cheap and convenient medium.

Multi-media communication 1s facilitated with the

interfacing of computer with the video disc system. Current

video disc systems have allowed facilities to be controlled by

the computer like:

(1) random access to individual frames of pictures;

(2) freeze frame;

(3) indexing;

(4) teletext overlaying;

(5) slow;fast reverse/forward motion.

LaserVision or videodisc does provide a finesse to the

problems of creating graphical and animated sequences for use

in computer assisted learning. This is because present

graphical environments like SMALLTALK still do not allow easy

means of creating good graphics let alone animated sequences.

One likely solution to this might be the integrating video and

digital information. One such commercial product launched

recently is the Multimedia Interactive Control (MIC) 2000

system using an IBM PC, MIG card and software which allows the

mixing of signals from video and the PC. Though the MIC

system does not let you change the appearance of the video, it

allows sound and vision to fade or increase, select sequences

of video and superimposition of graphic images onto a moving

video or still. Accompanying software have extended MIC to

let the user control the video from within an application's

page 152

package. (Massey86]

4.2 Trends in Software Tools

Software plays a major role in the usability of computer

systems. While the cost of computer hardware becomes less

over time due to better production methods, the cost of

software has risen steadily, and the trend indicates that

software

trend in

cost will remain relatively high.

software is its non-portability

Another general

over different

computing machines This can be seen in the tendency for

large firms to develop propriety systems, in order to

differentiate rather than integrate with other software. As

technology advances, software generally needs to be modified

to compensate for this change. Computer users will no doubt

benefit if software could migrate gracefully over to

successful generations of more powerful computers. The

savings in cost and time, and resources of leaving existing

practices by the users and software developers alike, can be

realised if portability and stability issues can be resolved

by software developers.[Ramamo84]

Operating Systems

Operating systems play a key role in the transition of

higher level software it supports. A machine independent

operating system like UNIX has been the starting point towards

page 153

a more unified means of matching stable software with

machinery. The M.I.T's Project Athena (described in 4.3) in

the United States of America have opted for UNIX as the campus

wide operating system for its network of computers. Higher

level software on the campus are developed on this basis,

leading toward better compatibility and coherence between all

software tools.

User Interface

A common user interface, would in the same manner provide

the same benefits to the computer user that a common operating

system provides for the programmers. The use of windows on

the screen, to show the different processes running and

interacting with the process via the appropriate windows, have

been in increasing use since its introduction by Xerox PARC's

Learning Research group. Windows are dependent on use of

graphics and graphics based tools.

Increasing interest in the use of windows or iconic

based

tools

interfaces

like

object-orientated

[Sun86]

have spawned a new range of

Software-ICS (Software-Icons)

languages and bit-map editors.

software

library,

[Cox86]

The need for iconic tools is necessary as iconic

page 154

iconic programmes are difficult and more complex to \.-... :, ~
UU.I.J.U,

Iconic programmes need not only do all that conventional

programmes do, but they must also present their workings;

as picture images rather than just text. They must also

determine the different input devices like mouse and/or

keyboard requirements of the user. One interesting feature

of object orientated (iconic) programming is the reliance

on reusable codes.

Database Systems

Object based environments and multimedia applications

have spurred the development of DBMS which support these

environments. One example is MINOS, a multimedia information

system which handles unformatted data such as text, voice and

images. [Christ86)

It used to be that only large main-frame database

systems provided all the useful software tools that assist in

administration and maintenance of a database system. Current

trends show that these tools are also being adopted by

microcomputer based database systems.

Cullinane's IDMS, on ICL machines is a network type

DBMS. The software tools that could be used with the system

include:-

page 155

(1) A data dictionary System (DDS)

(2) An IDMS Query Language (QueryMaster)

(3) Application development tool (Application Master)

The Data Dictionary System or DDS is a powerful tool in

that:-

(a) all data contained in the databases are defined here;

(b) the data definitions are documented in this system;

(c) the data defined (schemas and subschemas) can be

utilised by external programmes (e.g. COBOL);

(d) it can be used as a design tool for the database.

A query language provides an alternative and an easier

means of interrogating the database without relying on

a programming language. There are restrictions in a

query language in that it could satisfy most of the reporting

needs but not much or any of the processing needs.

Application development tools like

Application Master augment the

to interact with conventional

construction of

files as well

sys terns. The

another example

Cincom Systems,

MANTIS application development

of an application development

that interfaces with a TOTAL

the ICL's

programmes

as database

system, is

system from

database as

page 156

well as c-onventional files. mh""'- ~._ .. __ _
.LJ..I.C:: L'IYV examples of

application development aids mentioned, are mainframe-based

systems. Revelation's RDESIGN tools is one examplP of a

micro-computer based application development aid. [Cosmos85]

[Cincom81)

page 157

4.3 Trends in CAL

Europe

A number of EEC programmes on education have directly or

indirectly promoted the use of Computers and Computer Assisted

Learning. One of the earlier programmes was the NIT's (New

Information Technology and the School System in the European

Community 1985-1987). COMETT (Community in Education and

Training for Technology 1986-1992) is a more recent programme,

which focusses on Industry-University partnerships mainly in

the areas of training, exchange of ideas, information and

expertise, and promoting open learning systems.

The most recent programme is DELTA (Developing European

Learning through Technological Advance). DELTA aims to

explore the development and techniques for advanced open

learning systems. The areas to be covered by DELTA include

development of a learning system reference for Europe;

identification of development requirements and their

translation into a work programme for concerted

action;

testing and development of measures - to facilitate

the introduction of open learning.

So far the last items mentioned have been tentatively

page 158

identified and the DELTA project outline proposals are for

either shared-cost studies or fully financed studies.

[Lewis86]

U.K.

The Computers in Teaching Initiative in the U.K.

The Computer in Teaching Initiative (CTI) started as

a result from an 18 month investigation on

undergraduate training in the Universities. The Computer

Board and the University Grants Committee (UGC) became

the main parties involved in the initiative and the

subsequent funding.

The report highlighted the potential effectiveness

of wider workstation availability. However, reaction to

the report by users in the universities indicated that

software and liveware for teaching developments should also be

provided.

University departments of various disciplines

submitted their project proposals, finally 106 projects

have been funded and over 7 million pounds(U.K.) were

committed as at July 1986.

An interesting phenomenon arising from a survey of the

page 159

equipment used by the projects, is that over 98% makes use of

microcomputers rather than minis or main-frames. Perhaps

the size of the grant has the effect of easing out the more

costly minis and main-frames from the proposals on the

equipment submitted. The dominant make is the IBM PC/PC

compatible range of microcomputers, which reflect IBM's

dominance in the microcomputer market and perhaps also

the great amount and variety of software and other support

equipment readily available for the IBM PC range of

computers.

Most of the projects are in their early stages

thus there is little to report as yet on the progress of

the initiative. Progress reports on some of the earlier

projects suggest the following:-

(1) microcomputers are frequently used as workstations;

(2) networks especially local area networks (LAN) are

used for data transfer and communication;

(3) readily available software are used to provide

an environment for students to use the workstations;

(4) research on the application of AI techniques in

computer aided teaching are planned;

(5) workshop and Conferences have been initiated and

page 160

planned, to facilitate the sharing of the work and

problems encountered so far by the individual project

groups.

Computer manufacturers like IBM and DEC have

also funded individual projects in the educational

establishment independent from the CTI projects. [CTISS86]

Though dramatic decrease in the cost per

in hardware function presently seem noticeable only

small scale computing, main-frames do get more powerful for

the same cost, supercomputers get a little more affordable for

the esoteric few. Main-frames and supercomputers

and capacity that is necessary to

in the type of application

provide

academic

grows.

on large

the raw power

users as expansion

Higher education establishments still rely

main-frames and minis as part of their computing service

and trends toward distributed computing grows as local,

regional and public network systems get more popular.

[James86] [Hartley86] [Dallai84]

Educational Computing in U.S.A.

teaching

adopted.

Microcomputers and networks are the keys to the

approach the U.S. educational establishments have

A survey of 15 universities and colleges in the

page 161

u.s. in 1984 has indicated the trend towards the use of

microcomputers either as standalone systems for the students

or as part of a distributed network, linked to main-frames.

Project Athena at MIT (Massachussets Institute of

Technology) is one of the more ambitious projects costing

US$70 million to link the whole university based on a single

operating system, the Berkerley UNIX BSD 4.2. IBM and DEC were

the main suppliers. In the first phase DEC supplied 63

networked VAX minicomputers with 4 to 6 terminals each and

IBM supplied a distributed system of 500 PC XT's with 32 bit

co-processors, high resolution bit mapped displays and

local-area network interface cards. The PC XT's are organised

into several local area networks, each network is supported by

an IBM 4341 as a file server and a laser printer.

based on UNIX BSD 4.2 which includes C, FORTRAN,

Pascal programming languages, editor and printer

A main theme on the project is coherence

Software is

LISP and

formatter.

in that

certain standards are required of the users when developing

programmes on the Athena network. Coherence is aimed at

preserving

limiting the

promoted in

interfaces.

the investment in educational software and

training cost. A high level abstraction is

applications development and consistency in the

[Osgood84] [Balkov85]

Similar activities in providing an integrated campus wide

computing environments, have been noted in other U.S.

page 162

campuses, like Carnegie-Mellon University and Clarkson

University. OtheL universities 1 :1._ ro.&---..C:,.l
l.l.l\t 0LQIILULU and Michigan

have opted for a heterogeneous environment of different makes

of equipment and standards. The argument for a heterogeneous

environment is that no single make of equipment could meet the

needs of the campus community.

page 163

4.4 CONCLUSION

The success of computer aided learning systems in the

long term can be measured in the contribution it makes to

changing the methods of instruction. A number of barriers

have to be overcome:-

(1) resistance to change is a major factor against

establishing CAL;

(2) costs of implementing new methods and equipment;

(3) lack of major breakthroughs in new teaching systems;

(4) incompatibility of different CAL courseware.

Resistance to change can be attributed to fear of losing

jobs, lack of understanding the new technology and dislike in

changing existing practices. Introducing computer literacy

courses and computers to all levels of the population have

been concerted to bring about a better understanding of

computers, their uses and hopefully wider acceptance. Laws

have been passed to protect the privacy of individuals and

restrict the misuse of the new technology. Creating better

understanding and alleviating known fears hopefully will bring

about changes in attitudes towards computers.

Economic, social and political pressures

influences which are much more intractable than

problems. Countries that need to tackle basic

are dominant

technological

problems of

poverty, unreliable electrical supply and communications,

page 164

need not have to worry or seriously consider the implications

of new technology.

Artificial intelligence has a history of over 20 years,

it's influence in CAL have gained some ground in the area of

expert systems approach to teaching. In areas like medicine,

geography and mathematics, expert knowledge is more easily

identified than other areas like law, psychology and other

subject areas that encompass a number of diverse opinions and

contradictions. However, optimism still prevails as a number

of research projects are still carried out in artificial

intelligence methods.

Expert Systems in teaching or Intelligent

Systems (ITS) has abandoned the early CAl's (Computer

Tutoring

Assited

Instruction) objectives, that is of providing total courses,

and has concentrated on building systems which provide

supportive environments for more limited topics. The transfer

of knowledge and problem solving skills communicated by human

tutors, are done so implicitly. Thus much of the expertise

It resides in a particular field has never been articulated.

in the hands of the tutors, getting there through experience,

abstracted but not necessarily accessible in an articulatable

form. Designers of ITS would need to make knowledge explicit

as current computer based coaches is limited in learning

through experience. The hope now is for educational theories

to discover explicit formulation of tutoring, explanation and

page 165

diagnostics processes inherent in ITS, providing a test bed

for developing more precise theories of teaching and

Since ITS is an activity based learning, it is unlikely that

the computer based tutor will be able to handle all

situations. Creating a learning environment to encourage

individual members to help one another provide a congenial and

effective backup for these systems. A helpful environment

helps to break down the competitive or "test taking"

mentality. More attention would be focused on student

modelling and diagnostics, but progress will be slow because

the motivations and plans underlying a person's behaviour when

attempting to solve a non trivial problem can be complex. The

rewards are therefore high for any progress made in this area

with ramifications extending beyond ITS into the area of

diagnostic testing. The feeling of achievement in ITS provide

some cause for optimism.

Artificial Intelligence (AI) languages like Lisp, Prolog,

Planner help the designers of ITS in exploring and developing

the knowledge based software. There is still some debate on

which AI language is the most suitable. Some argue that AI

languages are in general too precise for implementing what is

essentially an imprecise or fuzzy method of gathering

knowledge. Nevertheless the Prolog language seems to be

gaining in popularity. It has been adopted as the AI language

for the Fifth Generation Project (Japan) and a number of ITS

workers in th~ U.K. and Europe have also adopted Prolog. The

page 166

introduction of cheaper and better Artificial Intelligence

languages like ~urbo Prolog that runs 011 mic,ocomputers .. ~ , ,
w~~~

promote and sustain the interest and work in expert systems.

[Borlan86]

Course material for CAL has been implemented from a

diverse range of author and programming languages. This has

made the large resource of CAL material incompatible with each

other and no doubt effort is wasted due to duplication of

effort. If an author language could be adopted as a standard

and is portable over a variety of machines, the impact on the

development of courseware would be greater than the current

diverse CAL software.

Computer Aided Learning activity is increasing but the

general methods, software and courseware used and developed

seem to and would continue to be as divergent and varied as

the way application systems are going.

page 167

References

Balkovich, E., Lerman, s., Parmelee, R.P., "Computing in
Higher Education: The Athena Experience", Comm. of the ACM,
Vol 28, No 11, pp 1214-1224, Nov 1985.

Borlan86
Borland Inc., "Turbo Prolog", Borland Inc., 1986

Christ86
S. Christodulakis, F. Ho, M. Theodoridou, " The Multimedia
Object Presentation Manager of MINOS: A Symmetric Approach",
Proceedings of ACM SIGMOD 86, Vol 15, No 2, June 1986.

Cincom81
Cincom Systems Inc., "MANTIS Application Development
System", Cincom Systems Inc., 1981.

Cosmos85
Cosmos Inc., "REVELATION Users' Guide Release G", Cosmos Inc.,
1985.

Cox86
Cox, B. and Hunt, B. "OBJECTS, ICONS AND SOFTWARE-ICS", BYTE,
Vol 11, No 8, pp 161-176, Aug 1986.

Crecin86
Crecine, J.P., "The Next Generation of Personal Computers",
EDUCOM Bulletin, Vol 21, No 1, pp 2-10, Sprint 1986.

CTISS86
CTISS, "The CTISS FILE", SWURCC, No 1, July 1986.

Dallai84
Dallaire G., "American Universities need greater access to
supercomputers", Comm of theACM, Vol 27 No4, pp292-298,
Apr 1984.

Fujita84
Fujitani, L., "Laser Optical Disk: The Coming Revolution in
on-line storage", Comm of the ACM, Vol 27, No 6, pp 546-554,
June 1984.

Gostic79
Gostick, R.W., " Software and algorithms for
-Array Processors", ICL Technical Journal,
pp116-135, May 1979.

Hartley86

the Distributed
Vol 1, No 2,

Hartley, D.F., "The University Computing Service in the late
1980s", University Computing, Editor Dr R F Smith, Vol 8, no
1, pp 20-25.

page 168

Herman86
Herman, G. , ;; CD-ROMS The Future Mass Storage?",
Electronics Today, pp 22-25, October 1986.

Inmos85
Inmos , "Technical Overview: Transputer Architecture",
Ltd., Sept. 1985.

Inmos

Lewis86
Lewis, R., "Editors: New Information Technologies in Britain
and Europe", Journal of Computer Assisted Learning, Vol 2, No
2, Blackwell Scientific, July 1986.

Massey83
!11assey, R. "Commentary: Personal Computers and Videotex",
BYTE, Vol 18, No 7, pp 114-129, July 1983.

Massey86
Massey, J. "Multi-Media Interactive Video Show", PC UK edition
Vol 3, No 9, pp 56-60, Sept 1986.

Moto-083
Moto-Oka, T., "Overview
Generation" Japan-Singapore
Seminar, Nov 1983.

and Introduction to the Fifth
Institute of Software Technology

Osgood84
Osgood, D., "A Computer on every desk", BYTE, Vol 9, No 9, pp
162-184, June 1984.

O'Shea83
O'Shea, T. and Self, J. Chapter 2 "The Next Decade", "LEARNING
AND TEACHING WITH COMPUTERS", Harvester Press, pp 245-268,
1983.

Ramamo84
Ramamoorthy, C.V., Prakash, A.,
"Software Engineering: Problems
Computer, pp191-209, Oct 1984.

Uehara83

Tsai, w. and Usuda, Y.
and Perspectives"., IEEE

Uehara, T. 'FUTURE PROSPECTS FOR ON-LINE SYSTEMS BASED ON THE
INS', Japan Singapore Institute of Software Technology
Seminar, Nov 1983.

Sun86
Sun Microsystems Inc, "Windows and Window Based Tools: Beginners
Guide", Feb 1986

page 169

A P P E N D I X P R 0 G R A M M E D 0 C U M E N T A T I 0 N

1) MAIN INCLUDE FILE- CALDEF

2) INCLUDE FILE - TVITEST.H

3) CALUNIX MAIN PROGRAMME

4) CALUNIX WRITER PROGRAMME

5) CALUNIX MAIN HELP PROGRAMME

6) CALUNIX HELP-LIST PROGRAMME

HELP DATABASE SETUP PROGRAMS

7) CALUNIX HELP SETUP MAKEFILE

8) CALUNIX HELP dbase PROGRAMME

9) CALUNIX HELP setupl PROGRAMME

10) CALUNIX HELP tidy PROGRAMME

!5+Q\ (;(;;>~I
:.

-~

CALUNIX MAIN INCLUDE FILE - CAL44DEF

/* MAIN INCLUDE FILE FOR CALUNIX PROGRAMMES *I

#define PDP1144 0 I* a - VAX ; non-zero value for PDP1144
#define DEBUG 7
#define WRITERPLAN 1
#define WRITEREDIT 2
#define WRITERCHECK 3
#define WRITERSETUP 4

static char subject[l2];

I* CHANGE THE FOLLOWING DESTINATION DIRECTORY PATHS IN YOUR SYSTEM *I
char *dir = "ltmplwriter";
char *getlearn = "lusrllocallcok8jlearnllearn2";
char *getwriter = "ltmpjwriterlwriter";
char *helpbase = "luserlstafflnmhjhelpjhelpunixlfile";
char lesson[10];
char choice[lO];

extern char *dir, *getlearn, *getwriter, *helpbase;
extern char lesson[lO];
extern char choice[lO];
extern intrpt(), hangup();

I* LOCAL INCLUDE FILE DEFINING THE TELEVIDEO TERMINAL CHARCTERISTICS 'I
#include "tvitest.h"

I* STANDARD INCLUDE FILE *I
#include <stdio.h>
#include <signal.h>

-1-

*I

CALUNIX INCLUDE FILE - TVITEST.H

I* TELEVIDEO TVI 910 & 912 CURSOR CONTROL CODES *I

#define ESC

1*---------------HERE
#define SRBLINK
#define ERBLINK
#define SBLINK
#define EBLINK
#define SHIGH
#define EHIGH
#define SUNDERLINE
#define EUNDERLINE
#define SUNDERLINEB
#define EUNDERLINEB

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

I*
#define
#define

I*

SPROTECT
EPROTECT
PROTECTS
PROTECTE
SETTAB
CLEARl
CLEAR2
CLEAR3
CLEAR4
DISABLE
ENABLE
CLRLINE

TERM 912
SHIGH2
EHIGH2

*I

ARE
"G6"
"G7"
"G2"
"G3"
~G4"

"GO"
"G8"
"G9''
"G:"
"G:"

')'
' ('

' & '

'\',
'1'

'#'

'R'

, j ,

'k'

CURSOR CONTROL
*I

I* ESCAPE character preceding each code *I

ALL STRINGS---------------------*1
I* START Reverse Blink characters *I
I* END Reverse Blink characters *I
I* Blink characters *I
I* END Blink characters *I
I* Reverse Video - Highlight *I
I* Reverse Video - End Hightlight *I
I* START Underline Characters *I
I* END Underline Characters *I
I* START Underline & Blink Characters *I
I* END Underline & Blink Characters *I

I* Start Protect Field *I
I* End Protect Field *I
I* Start Screen Protect Mode *I
I* End Screen Protect Mode-single quote *I
I* Set TAB to position *I
I* Clear Unprotect Fields to Nulls *I
I* Clear Unprotect Fields to Spaces *I
I* Clear Screen to Half-Intensity Spaces *I
I* Clear All Data to Nulls *I
I* Disable Keyboard *I
I* Enable Keyboard *I
I* Clears line and all lines move up 1 line *I

I* Reverse Video - Highlight *I
I* Reverse Video - End Hightlight

CODES

*I

I*
#define
#define
#'define
#define
tdefine
#define
#define
#define
#define
tdefine
#define
tdefine
tdefine
#define

POSITION CODES *I
Pl
P2 , l,

P3 I II I

P4 '#'
PS '$'
P6 '%'
P7 ' & '

P8 '\', I* single quote need backlash *I
pg ' ('
PlO ')'

Pll ' *'
Pl2 '+'
Pl3
Pl4

-1-

CAL UNIX INCLUDE FILE - TVITEST.H

jjdefine P15
11define Pl6 'I'
#define Pl7 '0'
#define Pl8 'l'
jjdefine Pl9 '2'
11define P20 '3'
11define P2l '4'
1!define P22 '5'
i)define P23 '6'
l!define P24 '7'
11define P25 '8'
#define P26 '9'
11define P27 '.'
#define P28 '.'
#define P29 ' < '
#define P30 '-'
#define P3l ' > '
#define P32 , ? ,

#define P33 '@'

ltdefine P34 'A'
#define P35 'B'
#define P36 'c'
l!define P37 'D'
#define P38 'E,
#define P39 , F,

#define P40 'G'
#define P4l 'H'
!ide fine P42 , I,

jfdefine P43 'J'
lldefine P44 'K'
l!define P45 'L'
#define P46 'M'
iidefine P47 'N'
#define P48 '0'
#define P49 'p'
j!define PSO 'Q'
jidefine PSl 'R'
#define P52 's'
11define P53 'T'
#define P54 'U'
#define P55 'V'
#define P56 'W'
ide fine P57 'X'
#define P58 'Y'
#define P59 'z'
#define P60 ' ['
#define P6l '\\' I* backlash requires another *I
#define P62 'l'
#define P63 ' . '
#define P64 ' I* underline *I
#define P65 '''

-2-

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
I*

*I
#define
idefine
idefine

I*

#define
#define

I*

#define
#define
#define
#define
#define

CAL UNIX INCLUDE

P66 'a'
P67 'b'
P68 'c'
P69 'd'
P70 'e'
P71 'f'
P72 'g'
P73 'h'
P74 , i,

P75 , j ,

P76 'k'
P77 '1'
P78 ' rn '
P79 'n'
P80 '0'
P81 'p'
P82 'q'
P83 'r'
P84 's'
P85 't'
P86 'u'
P87 'v'
P88 'w'
P89 'X'
P90 'y'
P91 'z'
P92 ' ('
P93 , I,
P94 '}'
P95 '-'

CURSOR ADDRESSING CODES

CURP
CURS
CURR

CURSOR

HOME
CUR UP

'\'
, ? ,

MOVEMENT

'\013'

EDIT MODE

EDITS 'k'
EDITE '1'
STX '\002'
ETX '\003'
SENDTX 's'

FILE - TVITEST.H

/* = part of the ADDRESS CURSOR */
/* ESCAPE part of ADDRESS CURSOR */

/* ? part of READ CURSOR POSN */

*I

I*

*I

I* Home Postion (ctrl & up arrow)*/
/* Move cursor up 1 line */

Start Local Edit Mode *I
I* END Edit Mode/Duplex Edit Mode on
I* Start of Text *I
I* End of text *I

*I

/* Send all text within STX&ETX inc ESC

-3-

*I

CALUNIX MAIN PROGRAMME

1 /**/
2

4
5
6
7
8

I* THIS
I*
I* It
I*
I*
I*
/*

IS THE MAIN CAL UNIX PROGRAM *I
*I

calls *I
(1) Learn Component; *I
(2) Writer Component; *I
(3) Help Component; *I

*I
9 /**/

10 I* Contents of cal44def needs to be changed in your system *I
11 linclude "cal44def"
12 main(argc,argv)
13 char *argv[];
14 short argc;
15 (
16 char speed[10], lesson[10], subject[12], choice[10], learn[80];
17 char writer[80], c;
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

short more, n, times;

/* Initialise all local variables *I
clearbuf(speed,lQ);
clearbuf(lesson,lO);
clearbuf(subject,12);
clearbuf(choice,lOJ;
clearbuf(learn,80);
clearbuf(writer,80);

signal(SIGHUP,hangup);
signal(SIGINT,intrpt);

n = times = 0;

do(
if (argc==l)[

if(n<5) calmenu();
n = calprompt();
fprintf(stderr," n = %d",n);
system("sleep 2");
if (n>=5) [

printf(" %c%sCHOICE UNKNOWN- TRY AGAIN%c%s",ESC,SHIGH,ESC,EHIGH);
fflush(stdout);
system("sleep 2");
clrlower();

I* Check for command line parameters *I
if(argc > 5) fprintf(stderr,"Ooo many parameters- calling selection menu");

if (argc >= 1 && argc <= 4)
if (argc >= 2 && times==O) c=argv[1][0];

-1-

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

CALUNIX MAIN PROGRAMME

switch(c)

case 'L':
case '1':

if(argc > 4) strcpy(speed, argv[4]);
if(argc > 3) strcpy(lesson, argv[3]);
if(argc > 21 strcpy(subject, argv[2]);
sprintf(learn,"%s %s %s %s",getlearn, subject, lesson, speed);
n =more= system(learn);
break;

case 'W':
case 'w':

if(argc > 4) strcpy(lesson, argv[4]);
if(argc > 3) strcpy(choice, argv[3]);
if(argc > 21 strcpy(subject, argv[2]);
sprintf(writer," %s %s %s %s",getwriter, subject, choice, lesson);
n =more= system(writer);
break;

if ln==l)
printf("%c%c%c%c",ESC,PROTECTE,ESC,CLEAR4);
fflush (stdout);
sprintf(learn,"%s %s %s %s",getlearn, subject, lesson, speed);
system(learn);
more = 1;
continue;

e 1 s e if (n== 2)
sprintf(writer," %s %s %s %s",getwriter, subject, choice, lesson)
system(writer);

else if (n==3 I
printf("%c%c%c%c",ESC,PROTECTE,ESC,CLEAR4);
fflush(stdout);
system(".jhelp");
system("sleep 1");

else n = 5;

more argc =1;
c ::;:: , , ;
times++;
n = 0;
clearbuf(writer,80);
clearbuf(learn,80);

while(more)

-2-

CALUNIX MAIN PROGRAMME

103
104
10 5
106

clearbuf(s,n)
chars[];
short n;

107
108
109
110
111 hangup()
112 (

short i;
for(i=O ;

113 exit(1);
114
115
116 intrpt()
117 (

i <=n i++)

118 char response[20], *p;
119
120 signa1(SIGINT, hangup);

s [i 1

121 printf(" MAIN CALUNIX ROUTINE");
122 fflush(stdout);

write(2, "--Interrupt.Oant to go on?
p = response;
*p = 'n,;
while (read(O, p, 1) == 1 && *p != '0)

p++;

2 8); 123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
154

if (response[O] != 'y')
printf("%c%c%c%c",ESC,PROTECTE,ESC,CLEAR4);
fflush(stdout);
exit(1);

printf("%c%c",ESC,CLEAR2);
ff1ush(stdout);
ungetc ('0, stdin);
signal(SIGINT, intrpt);
return(1);

I* MAIN CAL UNIX MENU *I
calmenu()
(

printf("%c%c%c%c%c%c%c%c",ESC,CLEAR4,ESC,CURP,P1,P1,ESC,SPROTECT);
printf("

llifndef PDP1144
printf(" %c%s CALUNIX

,ESC,SHIGH,ESC,EHIGH);
tendif
#ifdef PDP1144

print£("
llendif

CAL UNIX

MENU %c%s

MENU

printf("
printf("
printf("

CALUNIX is a Computer Aided Learning environment on the

-3-

153

II);

") ;

");
UNIX System.

");
");

155
157
159
161
163
165
167
169
171
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

CALUNIX MAIN PROGRAMME

••• The following options are available on CALUNIX 156

(1) LEARN option - to learn about a subject;
(2) WRITER option- to write lessons on a subject;
(3) HELP option -to give help on CALUNIX options;

158
160
162
164
166
168

printf ("
printf("
printf("
printf("
printfl"
printf("
printf("
printfl" Hit the BREAK key for option to exit from 170

printf("~~~~~~~~~~~~~~~~~~~~~-------------------------------printf("%c%c%c%c",ESC,EPROTECT,ESC,PROTECTS);

calprompt ()
[

/* prompt for options required to be filled in */
extern char lesson[10];
extern char choice[10];
short wchoice;

wchoice = 0;
printf(" Which Choice(Option)?");
fflush(stdout);
clearbuf(choice,10);
getit(choice);
i f 1 c h o ice ! o l == • 1 • I 1
else if(choice[O] == •w•
else if(choice[O]
else if(choice[O]
else wchoice = 0;

'h.
, e,

choice[O] == 'L'
II choice[O]
II choice[O]
II choice[O]

II choice[O] == '1')
'W' I I choice[O]
'H' I I choice[O]
'E' I I choice[O]

fprintf(stderr,"choice=%c wchoice=%d",choice[O] ,wchoice);
system("sleep 1");

if(wchoice>=l && wchoice<4)
clrlower();
return(wchoice);

}
if(wchoice==O)
if(wchoice==41
return(wchoice);

wchoice= 5 ; I* wchoice not in range retry •;
intrpt(); I* wchoice not in range retry *I

getit(f)
char f [];
(

short stat, i;
char c;

i=O;

-4-

wchoice = 1 ;
'2') wchoice
'3') wchoice
'4') wchoice

172

2
3
4

II);

");
,,) ;

');
');

");
");

CALUNIX. ");
");

215
216
217
218
219
220
221
222
223
224
225
226
227
228

CALUNIX MAIN PROGRAMME

whi1e((c= getchar()) !='0)
f [i 1 = c ;
i++

l
f [i 1
stat = 1;
return(stat);

clrlov.·er()
{

printf("%c%c",ESC,CLEAR2);
fflush (stdout);

-5-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

CAL UNIX WRITER PROGRAMME

/***/
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

calls (!)writer
(2)writer
(3)writer
(4)writer

CAL UNIX WRITER MODULE

plan (calls screen editor to edit lesson plan
edit (call screen editor to edit lessons)
check(validation of lessons)
setup(install the lessons in directory,ldbm for

Arguments in the form- writer subject choice lesson(optional)
max argc=4

use)

*I
*I
*I
*I
*/
*I
*I
*I
*I
*I

/***/

#include "cal44def"

main(argc,argv)
char *argv[];

extern char choice[lO], lesson[lO];
short wchoice, moretodo, times, status;
extern char *dir;
extern hangup(), intrpt();
char subpath[20];

moretodo = 1;
times = 0;

I* CHECK IF PERMITTED TO ENTER THE WRITER DIRECTORY *I
if (checkfile(dir) != 0) (

fprintf(stderr,"\n ACCESS TO DIRECTORY %s DENIED ",dir);
exit(l);

chdir(dirJ;
signal(SIGHUP,hangup);
signal(SIGINT,intrpt);

if (argc>l) strcpy(subject,argv[l]);
if (argc>2) times= 1;

I* 1ST STAGE :- check for command line parameters & writer options *I
I* if no option specified display menu and prompt for option *I
while(moretodo) (

I* if no option specified display menu and prompt for option *I

if(argc == 1 && times==O)
writermenu();
wchoice = writerprompt(O);
if (wchoice>4) (

printf("\nCHOICE UNKNOWN-TRY AGAIN");

-1-

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

CAL UNIX WRITER PROGRAMME

times=1;

fflush(stdout);
system("sleep 2");
times = 0;
continue;

else if(argc == 2 && times==O)
writermenu();

I*
if

wchoice = writerprompt(1);
if (wchoice>4) (

printf("\nCHOICE UNKNOWN-TRY AGAIN");
fflush(stdout);
system("sleep 2");
times = 0;
continue;

times=l;

Check if subject chosen exists as a directory now 'I
(argc >= 1 && times>=O && times<2)

strcpy(subpath,dir);
strcat(subpath,"l");
strcat(subpath,subject);
if (access(subpath,O) < 0)

printf("\n Subject %s chosen could not be accessed or was",subject);
printf(" not created, return to menu.- PLEASE WAIT A MOMENT.\n");
fflush(stdout);
system("sleep 3");
writermenu();
wchoice = writerprompt(O);
times = 2;
moretodo = 1;

}
if (wchoice==WRITERPLAN)

moretodo=O;
break;

}
if (wchoice==WRITEREDIT)

moretodo=O;
break;

}
if (wchoice==WRITERCHECK)

moretodo=O;
break;

}
if (wchoice==WRITERSETUP)

moretodo=O;
break;

I* if writer plan *I

I* if writer edit *I

I* if writer check *I

I* if writer setup *I

-2-

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

CAL UNIX WRITER PROGRAMME

/* 2ND STAGE
moretodo = 1;
while(moretodol

if (argc == 31 {
if ((strncmp(argv[2],"plan",l01==01 II (strncmp(argv[2]."a",l01==011

wchoice = 1;
moretodo = 0;
break; /* PLAN OPTION DO NOT NEED LESSONS */

else if
else if
else if
else {

((strncmp(argv[2] ,"edit" ,101==01
((strncmp(argv[2] ,"check",lO)==O)
((strncmp(argv[2],"setup",101==0)

II (strncmp(argv[2]."b",l01==0);
II (strncmp(argv[2]."c",101==0)
II (strncmp(argv(2],"d",l01==01

fprintf(stdout,"\n Option %s Not recognised\
PLEASE WAIT A MOMENT. \n", a rgv [2]) ;

fflush(stdoutl;
system("sleep 2"1;
writermenu();
wchoice = writerprompt(2);
continue;

moretodo = 0;
times = 3 ; /* added on 15/8/85 so that it will not do this again */

:PERFORM WRITER OPTIONS */

if(subject!=NULL
switch(wchoice)

case WRITERPLAN
moretodo
break;

wplan(subpath);

case

case

case

WRITEREDIT
more to do
break;

WRITERCHECK

wed(lesson I;

status= wcheck(lesson);
if(status!=O) (

printf ("\nWARNING
fflush(stdout);
system("sleep 2");

moretodo = 1;
break;

WRITERSETUP
status= wsetup();

-3-

;•prompt for which lesson */

lesson L%s has errors",lesson);

wchoice
wchoice
wchoic-9

2;
3;
4;

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

CAL UNIX WRITER PROGRAMME

J

if (status!=OJ printf("\n error");
ff1ush(stdout);
system("sleep 3");
moretodo = 1;
break;

if (moretodo!=OJ
writermenu();
wchoice = writerprompt(O);

I* ROUTINE writerprompt *I
writerprompt(seq)
short seq;

I* prompt for options required to be filled in *I
extern char lesson[lO];
extern char choice[10];
short wchoice;

178 retry
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

if (seq==OJ
printf("\n Which subject ?");
fflush (stdout);
getit(l2,subject);
seq = 1;

if(subject[O] == '\0' 1 I subject[O]
seq = 0;
printf("%c%c",ESC,CLEAR4);
fflush(stdout);
goto retry;

if (seq==l) {
wchoice = 0;

'\n' I I subject[O]

printf(" Which Choice(Option) ?"I;
fflush(stdoutl;
getit(lO,choicel;

'\

if((strcmp(choice,"plan"l 1==0 I I (strcmp(choice,"a") 1==01
wchoice=l;
printf("%c%c%c%c",ESC,PROTECTE,ESC,CLEAR41;
fflush(stdout);
return(wchoicel;

-4-

I {

{ I* strcmp *I

CAL UNIX WRITER PROGRAMME

205
206
207
208
209
210

if((strcmp(choice,"edit"))==O II (strcmp(choice,"b"))==O) wchoice = WRITEREDIT;
if((strcmp(choice,"check"))==O II (strcmp(choice,"c"))==O) wchoice = WRITERCHECK;
if((strcmp(choice,"setup"))==O II (strcmp(choice,"d"))==O) wchoice = WRITERSETUP;
if(wchoice>1&&wchoice<4) (

211
212

seq=2;
printf("%c%c",ESC,CLEAR2);
fflush(stdout);

213
214

if(wchoice==O) wchoice= 5 I* wchoice not in range retry */

215
216
217
218
219
220
221
222
223
224
225
226
227
228

if (seq==2)
printf(" Lesson Number;name ?");
ff1ush(stdout);
getit(10,1esson);

system("sleep 1");
printf("%c%c%c%c",ESC,PROTECTE,ESC,CLEAR4);
fflush(stdout);
return(wchoice);

229 getit(n,f)
230 short n;
231 char f[];
232 (
233 short stat, i;
234 char c;
235
236 i=O;
237
238
239
240
241
242
243
244
245
246
247
248
249

if(n==10 II n==12) (

else

250

while((c= getchar()) !='\n')
f [i l = c ;

}
f [i l
stat

i++ ;

'\0';
1·

stat = 0 ;
fprintf(stdout,"\nERR-getit- value of n
fflush(stdout);

251 return(stat);
252
253

%d(not10or12)",n);

254 /**/
255 /* WRITER plan module */

-5-

/*ENCOUNTERED EVEN THOUGH n =10*/

256 I*
257 I*
258 I*
259 I*
260 I*
261 I*
262 I*

CAL UNIX WRITER PROGRAMME

The CALUNIX plan option calls the screen editor to
(1) display existing lesson plan on a subject;

or (2) to edit existing lesson plan;
or (3) to create & edit a new lesson plan;

exit from plan option will return to the WRITER menu

*I
*I
*I
*I
*I
*I
*I

263 /***********************************•********************************/
264 wplan(localdir)
265 char localdir[];
266 [

/* subject is STATIC */

267
268
269

char subjectplan[12], usersub[80], user[80], call[lOO];
short status;

chdir(localdir);
status= chdir(localdir);

clearbuf(subjectplan,12);
clearbuf(usersub,80);
clearbuf(user,80);
clearbuf(call,lOO);

I* YOU SHOULD BE IN writer's s4bject DIRECTORY NOW*/
strcpy(subjectplan,subject);
if((subjectplan[0]!='\0') && (subjectplan[O]!=' ')) ;•non emtpy*l

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

/* plan file prefixed by plan then followed by subject name•;
sprintf(usersub,".lplan%s",subjectplan);
status=checkfile(usersub); /* 0 if accessible, 1 if not *I

I* CREATE lessonplan file for plan on subject */
if (status!=O) creat(usersub,0666);

290
291
292
293

I* CALLING MODIFIED VERSION OF SC (SCREEN EDITOR) */
sprintf(call,"wsc %s psc" ,usersub);

294 system(call);
295 chdir(dir);
296 return(!);
297
298
299 checkfile(checkname)
300 char *checkname;
301 [
302 if ((access(checkname,06))<0) return(!);
303 else return(O);
304
305
306 writermenu(

-6-

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

CAL UNIX WRITER PROGRAMME

printf("%c%c%c%c%c%c%c%c",ESC,CLEAR4,ESC,CURP,Pl,Pl,ESC,SPROTECT);
printf("

#ifndef PDP1144

#endif

printf("
,ESC,SHIGH,ESC,EHIGH);

#ifdef PDP1144
printf("

) ;

#endif

printf("

%c%s CALUNIX WRITER %c%s

CALUNIX WRITER

printf(" CALUNIX WRITER supports the lesson writer with the foll\
owing set of tools.");

printf("
printf("

writing on.
printf("

");

printf("
");

printf("
");

printf("
II) ;

printf("
");

printf("
");

printf("
name1number

(1) First you must specify the subject which you are\
!!) ;

(2) Then choose one of the following options

(a I PLAN option - to plan lessons on subject;

(b) EDIT option - to create and edit a lesson;

(c) CHECK option - to checklvalidate lesson

(d) SETUP option - to setup the lesson;

(3) For option 2(b), (c) & (d) you must give the lesson\
II);

\

\

\

\

\

\

printf(" HIT BREAK KEY FOR OPTION TO EXIT \
----------"); - - - - - -

printf("%c%c%c%c%c%c%c%c",ESC,CURP,Pl4,P76, ESC,EPROTECT,ESC,PROTECTS);
fflush(stdout);

/***/
I* WRITER edit module *I
I* *I
I* edit option calls the screen editor to:- *I
I* (1) display existing lesson file on a subject; *I
I* or (2) choose to edit existing lesson; *I
I* or (3) choose to create & edit a new lesson file. *I
I* Exiting from edit returns to WRITER menu; *I
I* *I
/***/

-7-

")

,,) ;

");

CAL UNIX WRITER PROGRAMME

358 wed(lessonfile) I* subject is STATIC *I
359 char lessonfile[];
360 [
361 char userless[80], call[80];
362 short status;

extern char *dir;

chdi r (di r) ;
chdir(subject);
I* YOU SHOULD BE IN writer's subject DIRECTORY NOW *I

clearbuf(userless,80);
clearbuf(ca11,80);

sprintf(userless,"L%s",lessonfile);
status=checkfile(userless);

I* CREATE lesson file on subject *I
if (status!=O) (

printf("\nCREATING lessonfile status return=%d",status);
fflush(stdout);
creat(userless,0666);
system("sleep 2");

sprintf(call,"wsc %s wsc",userless);

I* calling modified screen editor function *I

system(call);
return(1);

363
364
365
366
367
368
369
370
371
372
373
374
375
3 76
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

/**:~*********/

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

WRITER check module

Check 1 Validates the lesson writer commands
are correct in syntax;
Allow for future additions of checks into programs;

Valid Writer (
Commands Used(

(
(

#print, #user, #create filename, #copyin - #uncopyin,
#copyout - uncopyout, #pipe - #unpipe, #cmp filel file2,
#match word, #bad word, #succeed, #fail,
#log file or #log, #next.

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

/**/
wcheck(checkfile)
char checkfile[];

-8-

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

CAL UNIX WRITER

FILE *fp, *fopen();
extern char *dir;
char lessonfile[l2];

chdir(dir);
chdir(subject);

PROGRAMME

clearbuf(lessonfile,l2);

sprintf(lessonfile,"L%s",checkfile);

if((fp=fopen(lessonfile, "r")) == NULL)
fprintf(stderr, "%s file can't open ",lessonfile);
system("sleep 2");

else

return(l); /*prompt for next action*/

/* start sequence of Check routines *I

chkcommand(fp);
fclose(fp);

I* check for #positions & commands */

return(O);

437 chkcommand(f)
438 FILE *f;
439 (
440 char s[100], c;
441 short i, linecnt, errorind;
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

linecnt = errorind = 0;
while((fgets(s,lOO,f)) !=NULL)(

linecnt++;
printf("\nlinecount:-%d",linecnt);
fflush(stdout);
if(s[O]=='#') errorind = hashchk(s,linecnt);
else (

/* check if any # put in position other than in column 0 *I
for(i=l; i<=lOO; i++) {

if(s[i]=='\n') break;
if (s [i 1 == • # ') {

fprintf(stderr,"Warning -# sign found in line %d column %d",linecnt,i);
errorind++ ;

-9-

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

CAL UNIX WRITER PROGRAMME

if (errorind > 0)
fprintf(stderr," Lesson may contain errors, PLEASE CHECK\n");
system("sleep 3");

return;

I* Check if commands are valid
hashchk(hashstr,lineno)
char hashstr[];
short lineno;

short match, i;
char localstr[], cmpstr[];

printf("\nPERFORMING hashchk");
fflush(stdout);

*I

for(i=O; (i<=10 I I hashstr[i]==' II hashstr[i]=='\0'); i++J(

localstr[i] = hashstr[i];

localstr[i] = '\0';

strcpy(cmpstr,localstr); ;•used inconsistently ? *I
/* (void) strcpy(cmpstr,1ocalstr); old statement (remove void) *I
match= 1; /* set match to notmatch */

while(match)

match= strcmp(cmpstr,"lprint");
if (match= 0) break;
match= strcmp(cmpstr,"luser");
if (match= 0) break;
match= strcmp(cmpstr,"lcreate");
if (match= 0) break;
match= strcmp(cmpstr,"lcopyin");
if (match = 0) break;
match= strcmp(cmpstr,"luncopyin");
if (match= 0) break;
match= strcmp(cmpstr,"#copyout");
if (match= 0) break;
match= strcmp(cmpstr,"#uncopyout");
if (match= 0) break;
match= strcmp(cmpstr,"#pipe");
if (match= 0) break;
match= strcmp(cmpstr,"#unpipe");
if (match = 0) break;
match= strcmp(cmpstr,"#cmp");

-10-

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

CAL UNIX WRITER PROGRAMME

if (match= 0) break;
match= strcmp(cmpstr,"lmatch");
if (match = 0) break;
match= strcmp(cmpstr,"#bad");
if (match= 0) break;
match= strcmp(cmpstr,"#succeed");
if (match= 0) break;
match= strcmp(cmpstr,"#fail");
if (match = 0) break;
match= strcmp(cmpstr,"#log");
if (match = 0) break;
match= strcmp(cmpstr,"#next");
if (match= 0) break;
I* if still no match after pass

if (match!=O){

then give error message *I

fprintf(stderr,"error- %s at line %d- command unknown",cmpstr,lineno);
system("sleep 2");
break;

532 return(match);
533
534 /*******~**/

535 I* WRITER setup module *I
536 I* *I
537 I* prompts (1) if lessons required to be setup on a database(dbm); *I
538 I* (2) checks if files > 1blk size (approx 500chars) *I
539 I* performs split if it is greater; *I
540 I* (3) setup files into a database named after subject; *I
541 I* *I
542 /**/
543 #define OK 0
544 wsetup()
545 {
546 extern char *dir;
547 extern hangup(), intrpt();
548

FILE *fp, *fopen(); 549
550
551
552
553
554
555
556
557
558
559

char parafi1e[6], tmpstr1[80], tmpstr2[80], call[100];
char basedir[20], basepag[20];

560
561

short more, status, errorbit;
int f1 , f2;

more = 1;
chdir(dir);
chdir(subject);

clearbuf(parafi1e,6);
clearbuf(tmpstr1,80);

-11-

562
563
564
56 5
566
567
568
56 9
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

CAL UNIX WRITER PROGRAMME

clearbuf(tmpstr2,80);
clearbuf(call,100);
clearbuf(basedir,20);
clearbuf(basepag,20);

signal(SIGHUP, hangup);
signal(SIGINT, intrpt);
while (more) {

status = setupprompt();
if (status==OK) [

I* SETUP STAGE 1--splitting *I
system{"ls L* > xaa");
strcpy(parafile,"xaa");
if{ (fp = fopen(parafile, "a+")) == NULL)

else

printf("\nERROR parameter file %s cannot open",parafile);
fflush(stdout);
more = 0;
errorbit=1;
continue;

putc('\n' ,fp);
close(fp);

strcpy(tmpstrl,dir);
strcat(tmpstr1,"/split2");
sprintf(call,"%s xaa",tmpstr1);
system(call); I* perform spilt it *I
fflush(stdout);

I* SETUP STAGE 2 -- load data in database *I

strcat(basedir,subject);
strcat(basedir,".dir");
strcat(basepag,subject);
strcat(basepag,".pag");

if((fl = creat(basedir, 0666)) == -1)
printf("\nERROR DBASE file %s cannot open",basedir);
fflush(stdout);
more = 0;
errorbit=1;
continue;

if((f2 = creat(basepag, 0666)) == -1)
printf("\nERROR DBASE file %s cannot open",basepag);
fflush(stdout);
more = 0;
errorbit=1;
continue;

-12-

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
6 3 7 hangup (I
638 [

CAL UNIX WRITER PROGRAMME

system("ls L* > sfile");
strcpy(parafile,"sfile");
if((fp = fopen(parafi1e,"a+")) ==NULL) [

else

printf("\nERROR parameter file %s cannot open",parafile);
fflush(stdout);
more = 0;
errorbit=l;
continue;

putc('\n' ,fp);
close(fp);

strcat(tmpstr2,"pwd ; .. /dbase");
sprintf(call,"%s %s sfile ",tmpstr2,subject);
errorbit = system(call); /*perform load it */

return(errorbit);

639 return(O);
640
641
642 intrpt (1
643 {
644 char response[20], *p;
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

signal(SIGINT, hangup);
write(2, "\ninterrupt.\nWant to go on?
p = response;
*p = 'n,:
while (read(O, p, 1) == 1 && *p != '\n')

p++;

2 8) ;

if (response[O] != 'y')
printf("%c%c%c%c",ESC,PROTECTE,ESC,CLEAR4);
fflush(stdout);
printf("\n EXITING FROM CALWRITER");
ff1ush(stdout);
system("sleep 2");
exit(1);

ungetc('\n', stdin);
signal(SIGINT, intrpt);
printf("%c%c",ESC,CLEAR2);
fflush(stdout);

-13-

664
665

CAL UNIX

666 setupprompt()
667 [

WRITER

668 char response[20], *p;
669

PROGRAMME

670 printf("%c%c",ESC,CLEAR2);
671 fflush(stdout);
672
673
674
675
676
677
678

printf("\n THIS
printf ("\n\n
printf("\n\n
printf("\n\nTHE
fflush(stdout);

OPTION setup SHOULD ONLY BE USED WHEN YOU HAVE :-");
(1) created the necessary lessons;");

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

(2) you wish to set it up on a database(dbm);");
LESSONS WOULD WORK JUST AS WELL IF IT WERE LEFT AS IT IS");

write(2, "\nWant to go on? • 18);
p = response;
*p = , n,;
while (read(O, p, 1) == 1 && *p != '\n')

p++;
if (response[O] != 'y') [

printf("%c%c%c%c",ESC,PROTECTE,ESC,CLEAR4);
fflush(stdout);
return(!);

ungetc('\n', stdin);
printf("%c%c",ESC,CLEAR2);
fflush(stdout);

return(OK);

696 clearbuf(fname,t)
697 char fname [J;
698 short t;

699 [
700 short i;
701
702
703
704

for(i=O; i<=t; i++) fname[i] '\0';

-14-

52
53
54
55

CALUNIX HELP PROGRAMME

case 'w':
case '2':

more = writertxt();
break;

56 /* UNIX COMMAND LISTINGS */
case 'U':
case 'u' :
case '3':

57
58
59
60
61

more= helpunix();
break;

62
63
64
65
66
67
68

/* NO PARAMETERS PASSED */
if (n==1) [

more = learntxt ();
continue;

69
else if (n==2) 70

71
72

more = writertxt ();

73
74
75

else if (n==3)
more

76 else n = 5;
77 clrlower ();
78 more = 1;
79 }
80 while(more) ;
81
82
83
84 clearbuf(s,n)
85 char s[];
86 short n;
87 [
88 short i;
89 for(i=O ; i <=n
90
91
92 hangup ()
93 [
94 exit(1);
95
96
97 intrpt ()
98 [

i++

99 char response[20], *p;
100

helpunix();

s [i l '\0 I;

101
102

signal(SIGINT, hangup);
printf("\n\n MAIN HELP ROUTINE");

-2-

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

CALUNIX HELP PROGRAMME

fflush(stdout);
write(2, "--Interrupt.\nWant to go on?
p = response;
*p = 'n';
while (read(O, p, 1) == 1 && *p != '\n')

p++;
if (response[O] != •y•)

wrapup ();

ungetc('\n', stdin);
signal(SIGINT, intrptl;
printf("\n Which Choice(Option)?");
fflush(stdout);
return(1);

28);

clearscreen()
(

printf("%c%c%c%c",ESC,PROTECTE,ESC,CLEAR4);
fflush(stdout);

clrlower(I
(

printf("%c%c",ESC,CLEAR21;
fflush(stdoutl;

I* ROUTINE helpprompt *I
helpprompt ()
(

I* prompt for options required to be filled in *I
extern char choice[10];
short wchoice;

wchoice = 0;
printf("\n Which Choice(Option)?");
fflush(stdout);
getit(10,choice);
if((choice[O)=='l') I I (choice[O)=='L') I I (choice[0)=='1')) wchoice = 1 ;
else if((choice[O)=='w') II (choice[O)=='W') II (choice[01=='2' I) wchoice = 2
else if((choice{O)=='u') I I (choice{OI=='U') I I (choice[0)=='3')) wchoice = 3
else if((choice{O)=='e') II (choice[OJ=='E' I II (choice[0)=='4')) wrapup(I;
system("s1eep 1");

if(wchoice>=1 && wchoice<4)
clrlower (I;
return(wchoice);

if(wcboice==O) wchoice= 5 I* wchoice not in range retry *I

-3-

CALUNIX HELP PROGRAMME

154 if(wchoice==4) intrpt(); /* wchoice not in range retry*/
155 system("sleep 1");
156 return(wchoice);
157
158
159 getit(n,f)
160 short n;
161 char f[];
162 [

short stat, i;
char c;

i=O;

if (n== 1 0 I I n== 1 2) [

else

whi1e((c= getchar()) !='\n') [
f [i 1 "' c ;

l
f [i I
stat

i++ ;

'\0';
1;

stat = 0 ;

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

fprintf(stdout,"\nERR-getit- value of n
fflush(stdout);

%d(not10or12)",n); /*ENCOUNTERED EVEN THOUGH n =10*/

hmenu (I
[

return (stat I;

printf("%c%c%c%c%c%c%c%c",ESC,CLEAR4,ESC,CURP,P1,P1,ESC,SPROTECT);
printf("

i!ifndef PDP1144
printf(" %c%s CALUNIX HELP %c%s

,ESC,SBLINK,ESC,EBLINK);
jiendif
#ifdef PDP1144

printf("
#endif

printf("
printf(" CALUNIX HELP

printf("
printf("

printf("
");

") ;

") ;

CAL UNIX HELP

provides the following options

printf(" (1) LEARN option - Help about learn;
");

-4-

.) ;

.) ;

.) ;

\

");

\

\

\

CAL UNIX HELP PROGRAMME

printf(" (2) WRITER option - Help on Writer; \
fl);

printf(" (3) UNIX option - Help on UNIX commands. \
II);

printf(" \
");

printf(" \ .,) ;

printf(" Hit the BREAK key for option to exit from \
CALUNIX. ");

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

printf(" \

220

------------~~~~") ; printf("%c%c%c%c",ESC,EPROTECT,ESC,PROTECTS);

221 learntxt(
222 [
223 int stat=O;
224 clearscreen();
225 fprintf(stdout,"\n Please wait- while learn text is baing fetched.\n"J;
226 fflush(stdout);
2 2 7 if (fork () == 0) [
228 execl(''/bin;sh","sh",''-c","man learn'',O);
229 }
230 wait(&stat);
231 if(stat<O I I stat >0) fprintf(stderr,"\n ERROR in exec! (man learn).");
232 system("sleep 2");
233 return(stat);
234
235
236 writertxt(
237 [

int i;
clearscreen();

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

fprintf(stdout,"\n Please wait- while writer text is being fetched.\n");
fflush(stdout);
i = system("man writer");
system("sleep 3");
return (i);

helpunix()
[

int i;
clearscreen();
fprintf(stdout,"\n Please wait for
fflush(stdout);
i = system("./1");
system("sleep 3");
return(i);

help on UNIX program to run.\n");

-5-

CALUNIX HELP PROGRAMME

256
257
258 wrapup ()
259 (
260 clearscreen();
261 printf("\n
262 fflush(stdout);
263 exit(O);
264
265

EXITING FROM CALUNIX HELP-- bye \n\n");

-6-

CAL UNIX HELP-LIST PROGRAMME

1 /***/
2 I* *I
3 I* CALUNIX HELP list on UNIX *I
4 I* *I
5 /***/
6 I*
7 * List either all of the whatis unix commands or only those selected
8 * from the database file.
9 *I

10 #include "cal44def"
11 #define pdp1144 1
12 I* #define vaxberk 1 *I
13 main(argc, argv)
14 char *argv[];
15 [
16 char helpstr[80];
17 int times, ltype;
18 extern char *he1pbase;
19 short i,j,j10,j20,j30,j40,j50,j60,j70,j80,respond;
20 char *p,*q;
21 typedef struct {
22 char *dptr;
23 int dsize;
24

datum;
datum key, content;
datum fetch ();
datum firstkey();
datum nextkey();

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

j =j10 = j20 = j30 = j40 = j50 = j60 = j70 = j80 = 0;

46
47
48
49
50
51

I* printf("\n argc=%d & argv[1]=%s",argc,argv[1]); *I
if (strcmp(argv[1],"1")==0) ltype = 1;
if (strcmp(argv[1],"2")==0) ltype = 2;
if (strcmp(argv[1],"3")==0) ltype = 3;
else if (argc<=1) 1type = 0;

clearbuf(helpstr,80);

if(times == 0) (
dbminit(helpbase);

hfdef pdp1144

times++;

clearscreen();

if (argc > 2 && ltype== 1) {
key.dsize = strlen(argv[2]);
key.dptr = argv[2];

I* SELECTIVE LISTS OF KEYED COMMAND *I

-1-

52
53
54
55
56
57
58
59
60
61
62 l!endif

CAL UNIX

63 l!ifdef vaxberk
64
65
66
67
68
69
70
71 #endif
72
73
74
75
76
77
78
79
so
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

HELP-LIST PROGRAMME

content = fetch(key);
p = content.dptr;
i = 0;
for (i=O; i < content.dsize

putc(*p++,stdout);
fflush(stdout);

system("sleep 2");
return(i);

if(ltype == 1) [

i++) [

sprintf(helpstr, "whatis %s" ,argv[2]);
I* printf("helpstr=%s" ,helpstr); *I
system(helpstr);

I* FOR BSD UNIX whatis COMMAND USED *I

fflush(stdout);
system("sleep 3");

if(argc ==1 && ltype== 0)
for (key = firstkey(); key.dptr != NUL.L; key

j++;
if (j <= 20)

move(j,1);
fflush(stdout);

else if (j >= 20 && j < 40) [
j10++;

else if

else if

else if

else if

else if

move(jl0,10);
fflush(stdout);

(j >= 40 && j <
j20++;
move(j20,20);

(j >= 60 && j <
j30++;
move(j30,30);

(j >= 80 && j <
j40++;
move(j40,40);

(j >= 100 && j
j50++;
move(j50,50);

(j >= 120 && j
j60++;

60) [

80) [

100)

< 120)

< 140)

-2-

[

[

[

nextkey(key))[

CAL UNIX

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152 select
153

HELP-LIST PROGRAMME

move(j60,60);

else if (j >= 140 && j < 160) {
j70++;
move(j70,70);

else if (j > 160) {
move(21,1);
printf("Type y to continue;type command if description required");
fflush(stdout);
respond= gets(helpstr);
if (helpstr!='n' && helpstr[O] != 'y') goto select; /*good place to try fork*/
if(helpstr[O] == 'Y' I {

j = jlO = j20 = j30 = j40 = j50 = j60 = j70 = 0;
clearscreen(I;

q = key.dptr; /* THIS LISTS ONLY THE COMMAND KEYWORDS IN /BIN*/
for(i=O; i < key.dsize; i++)

putc(*q++,stdout);
fflush(stdout);

if (ltype == 3) [
for (key= firstkey(); key.dptr !=NULL; key= nextkey(key))[

)

content= fetch(key); /*THIS LISTS ALL THE COMMAND CONTENTS */
p = content.dptr;
for(i = 0; i < content.dsize; i++l

putc(*p++,stdout);
fflush(stdout);

if(j>14)[
move(21,1);

j++;

printf(" Will continue in 2 sees if not interrupted");
fflush(stdout);
system("sleep 2");
clearscreen();
j = 0;

system("sleep 2");

system("sleep 2");
return(i);

key.dsize strlen(helpstr); /*SELECTIVE LISTS OF KEYED COMMAND*/

-3-

154
155
156
157
158
159
160
161
162
163

CAL UNIX HELP-LIST PROGRAMME

key.dptr = he1pstr;
content = fetch(key);
p = content.dptr;
i = 0;
move(22,2);
ff1ush(stdout);
for (i=O; i < content.dsize

putc(*p++,stdout);
ff1ush(stdout);

164 system("s1eep 2");
165 return(i);
166
167
168
169 move(row,co1)
170 short row, col;
171 {

i++) {

172 fprintf(stdout,"%c%c%c%c",CURS,CURP,31+row,31+co1);
173 ff1ush(stdout);
174
175
176 c1earscreen()
177 [
178 printf("%c%c",ESC, CLEAR4);
179 ff1ush(stdout);
180
181
182 clearbuf(s,n)
183 chars[];
184 short n;
18 5 [
186
187
188
189

short i;
for(i=O ; i <=n

190 errorrow()
191 [

i++ s [i! '\0,;

192 fprintf(stdout,"\n Row specified out of the screen's range.");
193 exit(1);
194
195
196 errorcol ()
197 [
198 fprintf(stdout,"\n Column specified out of the screen's range.");
199 exit(1);
200

-4-

CALUNIX HELP PROGRAMME

1 /***/
2 I* THIS IS THE CALUNIX HELP PROGRAM vl. 2 6186 ''I
3 I* *I
4 I* options available are *I
5 I* (1 I LEARN ; *I
6 I* (2 I WRITER ; • I
7 I* (3) UNIX. *I
s I* *I
9 /***/

10 #include "cal44def"
11 main(argc,argv)
12 char *argv[];
13 short argc;
14 {
15 char choice[10];
16 char writer[80].learn[80]. c;
17 short more, n;
18
19 I* Initialised variables *I
20 clearbuf(choice,10);
21 c1earbuf(writer,80);
22 n = 0;
23

signal(SIGHUP,hangup);
signal(SIGINT,intrpt);

do[

24
25
26
27
28
29
30
3l
32
33
34
35
36
37

if(argc > 5) fprintf(stderr,"\nToo many parameters- calling selection menu");
if (argc==l I I argc>5)[

38
39
40
41
42
43
44
45
46
47
48
49
50
51

if(n<5) hmenu();
n = helpprompt();
if (n>=5) [

print£ ("\n CHOICE UNKNOWN- TRY AGAIN");
fflush(stdout);
system("sleep 2");

I* ARGUMENTS PASSED TO HELP *I
else if (argc > 1 && argc <= 4)

c=argv[l][O];
fprintf(stderr," value of c(lst letter of argvl is- %c\n",c);
system("sleep 3");
switch(c) [

I* LEARN HELP TEXT *I
case
case
case

'L':
, 1, :
, 1, :

more
I*

case 'W':

= learntxt(I;
WRITER HELP TEXT *I

-1-

I'

all:

CALUNIX HELP SETUP makefile

makefile for CALUNIX help database setup

compilel compile2 compile3 setup load clean

compilel: dbase
cc -o dbase dbase.c -ldbm

compile2: setupl
cc -o setupl setupl.c

compile3:
cc -o tidy tidy.c

setup:
setupl < cmdfile

load:
dbase file < cmdfile

clean:
-tidy < cmdfile

-1-

CAL UNIX HELP dbase PROGRAMME

1 l***k********l
2 I* CALUNIX dbase.c - Loads contents of a file as a record in the dbm *I
3 I* database. *I
4 I* "dbase database < filename(containing record entry filenames " *I
5 I* *I
6 I* *I
7 /********************~**~********/

8 #include <stdio.h>
9 char line[4096];

10 main(argc, argv
11 int argc;
12 char •argv[];
13
14
15 char keyline[20];
16 int len;
17 FILE *fp, *fopen();
18 typedef struct [
19 char *dptr;
20 int dsize;
21 }
22 datum;
23 datum key, content;
24
25 dbminit(*++argv);
26
27
28
29
30
31

while ((key.dsize
key.dptr

getline(keyline))!= 0) [I* read the key *I
keyline;

32
33
34
35
36
37
38
39
40
41

if((fp = fopen(keyline, "r")) ==NULL)[
printf("can't open %sO, keyline);

else

42 -
43 readin(buf, fptr)
44 char buf[1;
45 FILE *fptr;
46 [
47 int c, i
48 char *p;
49 p = line;
50 i = 0;

content.dsize = readin(line, fp); I* read file into 'line' *I
content.dptr = line;
store(key, content);
fclose(fp);

51 while((c = getc(fptr)) != EOF)[

-1-

CAL UNIX HELP dbase PROGRAMME

52
53
54

*p++ = c;
i++;

55
56
57
58
59

*p = ';
return{i);

60 getline(s)
61 chars[];
62
63
64
65
66
67
68

int c, i;
for {i=O;
5 [i l =
return{i)

{c=getchar{))!='O; ++i) s[i] c;

-2-

CALUNIX HELP setup1 PROGRAMME

1 /***/
2 I* CALUNIX setup1.c - One time setup programme for help dbm *I
3 I* database. (uses BSD4.1 "man -k" or *I
4 I* "whatis" commands to generate files *I
5 I* containing the help text). *I
6 I* *I
7 I* " setupl < filename(containing unix commands) " *I
8 I* *I
9 /***'~******~****/

10
11 *include cstdio.h>
12 char line[10241;
13 char keyline[201;
14 main()
15 (
16 char command[801;
17 extern char keyline[201;
18 int len;
19 FILE *fp, *fopen();
20
21
22
23
24
25
26
27

while

28 getline(s)
29 char s[1;
30

((len= getline(keyline)) != 0)
sprintf(command,"whatis %s >
system(command);

extern char keyline[201;

[I* read the key *I
%s",keyline,keyline);

31
32
33
34
35
36
37

int c, i;
for (i=O;
5 [i 1 = '

(c=getchar()) !='0; ++i) s [i 1 c;

38

'.
'

strcpy(keyline,s);
return(i)

-1-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 !'@'\ 19

(,[~~1} 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

CALUNIX HELP tidy PROGRAMME

/**~······~·······;

I* CALUNIX tidy.c - removes unwanted files left from setupl *I
I* *I
I* • tidy < filename(file containing the unix help commands) */
I* *I
/***~'*******/

#include <stdio.h>
char line[l024];
char keyline[20];
main ()
{

char command[SO];
extern char keyline[20];
int len;
FILE *fp, *fopen();

while I (len= getline(keyline)) != 0) [I* read the key *I
sprintf(command,"rm %s ",keyline);
system(command);

getline(s)
chars[];

extern char keyline[20];
int c, i;
for (i=O;
s [i 1 = '

(c=getchar())!='O; ++i) s[i]

strcpy(keyline,s);
return(i)

c·

-1-

