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A brief history of the cosmological constant is given and
its role in present day theories is discussed along with an
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use of the cosmological constant for dimensionél reduction is
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THE COSMOLOGICAL CONSTANT

§1. THE ORIGINS OF THE COSMOLOGICAL CONSTANT

Today, as seventy years ago, the Einstein field equations

Rab ™ RI4p/27KT (1)
play an important role in Physics. Not only in the more
classical aspects, such as Cosmology, but also in some of the
more recent developments such as Supergravity. It is in these

equations that the Cosmological constant has its origins.

It is well known that these equations must be divergence
‘free, so without altering the physical significance of these
equations one can add a further divergence free term so the
equations then become
Rab_Rgab+)gab=kTab (2)
The constént,)\ , introduced here has been named the
cosmological constant. The reason for the name becomes apparent
+when one considers the reason why Einstein included this term in
the field equations, which was to modify the law of gravitation
at large distances_to be one of the form;

r"=M\r (3)




No such effect has been observed either in our solar system or
in the structure of our galaxy so this constant is very small
and is only important at the cluster level or larger, in other

words on the cosmological scale.

§2. Classical Cosmology and the Cosmological constant

If we assume that on a universal scale everything is
isotopic and homogenous then the most general metric one can

have is the Robertson-Walker metric;

ds‘:(fdé'-(fﬁﬂg'Arl J-r’A914-r1§\wL9¢A¢Lf (4)

| ~Ket

where R(t) , is a time dependent scale factor,
K(t)= R is the curvature.

If we substitute this into the field equations, (2), and further

assume that all the matter and radiation contained in Ta is

b
like a perfect fluid, we then obtain the Freidman equations}

L - «4'11'6()0&:’ 2R (51)

S . c 3 a ’

L= g Toly  _ Ke¥+ AR 6 (®) (54i1)
£yl 3

Where G is the Gravitational Constant

R, is the Curvature at t=0

0
Fb is the Density at t=0

c is the speed of light.

From these equations we see that near R=0, the cosmological

term has no effect, so the behavior of the big bang is unaltered.
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Obviously for different values of A , we may have
various models for the universe and so the cases \ >0 and X <0

will be considered separately.

A <0
If we look at the Freidmann equations we can see that
R must be finite for R' to remain real, also there is a value of
R, RC say, such that G(Rc)=0 i.e. R'=0 when R=Rc. Equation
(4) then shows that R"<0 when‘R=Rc so the universe starts to
contract at this point. We therefore have an oscillating model,

this is true whatever the value of k.

A>0

If K<O, R’2>O for all R, so we have a monotonically

expanding universe, the only difference from those with X\ =0

being at large R. R'ZAJ R2/3 so

N o exp ?(Aj’e} (6)
If K=O,p;=0,% >0 we have the De Sitter mbdel for which (7) holds
for all t.If we let K=1 then there is a critical value of X ,
%(, such that R=0 and R"=0 can be both satisfied simutaneously.

From (4) R"=0 implies

I\ :?\‘0(435(\‘1@6\"5 - R .. (7)

and then equation (6) gives

0= (AT( 6()0\1/3 >:/3p\: - k(_;” (8)
So

>\L: \k 61\3 ‘ (9)
: \1
Ro (4'[16(?0)
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This means that there is the possibility of a static model of

the universe, with R=Rc, N =X¢, for all time , t, provided

N AT Gp, = ket (10)
R,*

and since P;>O, K must be positive for this to happen. This is

of course the Einstein static model, which was the first
solution of the general relativity to be found that satisfied

the cosmological principle.

By studying the function G(R), (4), as a function of K, we
can see what other possible >\>O, K=-1 models there are.
Clearly G(R) tends to infinity both for R and R" tending to
infinity, and reaches a minimum at Rc with G(Rc) >or <O

according to >\> or <>t.
&) b IS

<

fig. 2 G(R) for >0, K=+1 Models.

}LZAC
G(R)>0 for all R, so we have a monotonically expanding universe

again.
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N =Ne

Apart from the Einstein static model, there are two models
that approach this asyptotically, corresponding to the two
branches of G(R) (fig 2). One expands out gradualy from the
Einstein state at t equals minus infinity and then turns into an
exponential expansion.The other expands out from the usual
big-bang and then tends asymptotically to the Einstein model as
t tends to infinity. These are the Eddington-Lemaitre models

shown below; -

L2

EL|

% %Xcmodels. E=Einstein static model:

Fig 3. K=+1,

EL1, EL2=Eddington-Lematre models.

If X\ =%C(1+e), e({1, we have the Lemaitre models. For a long

1

period of time R is close to Rc and the cosmological repulsion

and gravitational attraction are almost in balence. Finally the

repulsion wins and the expansion continues again.

0<N <A

There are no solutions for R1<R<R2 (fig 2). The solution

with RQR1 is an oscillating model. In the one with R)R2

the universe

repulsion as

bounces under the action of the cosmological

seen over; -
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Bounce Mopet

—».t
Fig. 4. K=+1, O<>\<>\L models.
§3. The size of the cosmological constént.
If we define
H(t)= JLLﬁl is the Hubble parameter
INEY)
a(t)= -k is the deceleration parameter
[
g((t)= AhnguQ is the mass density parameter.
IO
then it only takes a little work to show
. , 2)
)\ _ HL( (1
—_ = 0 00" c)
o 9
The currently accepted values for these constants are ,
Mo = Sxto (131)
-1<q <2 (1311)
0.0l <« 0 ¢ 0-| (13441)

If we accept that the universe is expanding slower than what is
was earlier in its history then g0 and so, if we put the

estimates in to (12) one obtains the upper limit for the

1 -2

22
()77,

cosmological constant of approximately 10

where tpl is Plank time.
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§4. The cosmological constant in present day theories.

The cosmological constant also'plays an important role in
present day theories, such as Supergravity or superstrings.

Both of these theories are built on a Quantum field theory
approach in that all the states are found from variation on a
lagrangian,which will include terms for the free particles, the
mass associated with the particle and a term for any
interactions of the particle i.e.

Ltot=Lfree+Lmass+Lint

If we compare this lagrangian with the usual one used in
general relativity then we see the cosmological constant comes
into this lagrangian through the mass term. To illustrate this
in a particular case let us look at the particular case of a

supersymmetric unified theory, SU(5), for which the lagrangian is

L“Z|D¢I+c2w3q 2| ‘J;T‘a‘ww v (14)

where in this case the mass term (cosmological term) is
Z |<)w ‘ (15)
and W is a super potent1a1 made up of SUSY multipets from the

SU(5) group, and is described by

\.A):A{ sz) +W\2 th\vl,t( ‘)%%m'51>£\3 (16)
+£CK w,wH m'“\k '-\3 H '\\ Nk
Under certain conditions, it is not hard to’ show that because of
this cosmological term there is spontaneous breaking of this GUT
into SU(4)*U(1) or SU(3)*SU(2) which corespond to the degenerate
ground states of the vacuum in this theory. So the cosmological
constant is connected to the expected energy density of the

vacuum.
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The cosmological constant comes into Superstrings in
essentially the same way, as the states of the string are

derived from a lagrangian in a similar fashion.

§5. The problem of the cosmological constant.

At first sight there may seem to be no problem with the
fact the cosmological constant is very small, or zero. However
if we look more clqgely'.we see that the cosmological constant
is made up of contributions from the quantum fluctuations of the
gravitational field and, also contributions from possible
breaking of GUTS,SUSY and Salam-Weinberg symmetries all of which
are large, in exponential order, but, all of which almost
exactly cancel. This obviously is no accident and so it is the
explination of this curious fact which is the problem. We should
also consider that the constant comes into just about all
Physics today as partly shown above, but also comes into
particle Physics through the Higgs vacuum expectation values,
fermion and gauge field condensates, and others, through the
vacuum energy density, which is of course the cosmological
constant.It is therefore a very serious problem indeed and one
which at the present time is nowhere near coming to a

satisfactory answer.
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Visser's model of dimensional reduction.

§1. Aims of the paper.

Kaluza-Klein type theories assume that the space-time is split
into M4*K where My is a four dimensional manifold representing
the observed universe and K is a compact manifold of internal
coordinates. To illustrate this type of theory let us iook at it in

five dimensions. The metric, in this theory, breaks down into

t

gMN=gab M,N=1,2,3,4. a,b=1,2,3,4. (1.1)
Im5=IsMm M=1,2,3,4. (1.2)
9557955 (1.3)

I1f we assume that the metric is periodic in x so in this

51
case K is a circle (this is sometimes called, assuming K to be
~compact), we can expand the metric

iny/B (2)

QMN(z,y)=gMNn(§)e
where the summation convention is used and 8 is the radius of
the circle in which g is periodic,and is considered to be small.
The momentum in this case is given by n/B and the energy by
nz/Bz. It is assumed that the y direction is not observed and so
B is very small, consequently the energy is of the order of the
Plank energy for all states with a nonzero n. It is not hard to

see, therefore that all physics has n=0. This is sometimes called

the cylinder condition and wrote
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Jap’ 50 (3)
If'we take the metric to be of the form
Gun=9ap K A A, M,N=1,2,3,4. a,b=1,2,3,4. (4.1)
gM5=K¢>Ab M=1,2,3,4. b=1,2,3,4. (4.2)
9559, (4.3)

and perturb this iq the fields ¢ and Aa ,then it is not

difficult to show that this automatically gives general relativity
coupled with electromagnetism in 4 dimensions, as was shown by
Kaluza and also independently by Klien in the earlier part of this
century.

In Visser's paper (ref.l), he uses a Kaluza-Klein type of model
in which he arranges for an absence of translational invariance in
the internal coordinates. Then by using gravity, trap the particle
near to the submanifold M4.He then goes onto show that in the five
dimensional case it is possible to obtain a zero cosmological

constant in four dimensions from a nonzero one in five.

§2. The metric.

Visser assumes that the Kaluza-Klein type metric has the form
ds?=-622(8) gt24 ax . dx+as? (5.1)
where x°=(t,x,y,z,8) a=0,1,2;3,4. (5.2)
This under certain conditions on ¢(B) will produce a flat
submanifold M4.
Without looking at the field equations one can say something
about any particle following geodesics:-integrating the geodesic
equation one finds that
g=ple2? (6.1)
and

pl-pt i=1,2,3,4. (6.2)
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i . i
where E and p~ are constants of motion, and pt are the momentum
components of the mass in the five dimensional universe. The five

momentum is defined in the same manner as the four momentum, namely

P2=M2—E2.

Armed with this one can say any particle having a definite rest

mass in the five dimensional universe will satisfy

(Mg)%=pg_ PP (7)

2 0,2 2
=-e?®(pY)%4p.p+(P°)
Consequently the momentum component in the 8 direction will

satisfy

5 2}1/2

(p°)2=(E%%?- (M, )2-p

From this it is obvious that if
1/2

(8)
E<{(Mg)*+p®}?sup(e?) (9)

any classical particle will be bounded in the B direction by‘the
potential ¢.We do not see the extra dimensions so e? must rise

very rapidly and as Visser says, it must be in a length scale of the
order of the Plank mass, which is of course what we want for the

extra dimensions not to be seen.

§3. Quantum Mechanical Trapping.

To see how this trapping works in quantum mechanical vein Visser
assumes that there is a field,with the background meteric described
above, which can be described by the Klein-Gordon equation;

| ’(_ Ab y - __m- (10)
g (159700 T - -t
Substituting (1) into (10) yields the explicit form

08+ 9807 &+ (60T + 38 4+ 0°8 LT\ - -
o J(SD_(‘B ( e + = 3;_1 3%‘> = g—& (11)

He now seeks a plane wave expansion of the form

6 = exp (-L (wt- \S."})) o ¥, ({&) (12)
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which when substituted into (8) gives the Schrodinger like equation;

| \ ' ) ! ‘¢ LN . v L
N A M

or in terms of an eigenvalue problem

&—{%}i, + V(W(g)j N (Wﬂ) = —)\h(w,m(nn (w(L) (14)
where V(w,B)= Sé”"f ¢/¢'__‘» 0
4

¢

The excitation spectrum is now found by solving
R S 1
Ihalw) = M+ K (15)
Visser notes that it is possible to put a bound on this
equation.By a suitable normalization in t it is possible to get

inf(p)=0, and so V(w,B8) will be bounded by

V(w=0,8)y V(w,B)7V(w=0,8)-w?/2 (16)
and so the nth exited state will be bounded by
N lw) £ Nyl w:0) + Wiy (17)
To get at the spectra in the lower dimensional world he defines
W= A () (18)

to be the inverse of
2z Ao (W) (20)
and so
w(h.k}:‘ﬁf{-“-“-%”} (21)

Of course we would iike a flat space to result and so we would
like the spectrum to have 0(1,3) invariance. This is not
necessarily so but we would 1like it to show up in some
approximation. Towards this end Visser examines the rest méss i.e.
he sets k=Q, and so

)\\,\(.O.n): m: (22)
He now uses first order perturbation techniques to evaluate
Aa (W) near 1. and so
M= WD)+ LG (w1
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(23)
with o725 L, (.0 &P, (0,7
Hence the spectrum may be obtained by solving
msl+(;%wkfﬁ)+.u-~~ = M2+k“ (24)
i.e. WL: ‘n_’\"_\_ (tk'\'

Thus‘if we are in the region where first order perturbation is
valid,which of course depends on the exact form of ¢ which will be
discussed in the next.section,the spectrum is Lorentz invariant and

,-has a rest mass ofll“with cn"2 being the expected speed of 1light

for the nth exited mode.

§4. 'The field equations.

To see the role of the cosmological constant in the trapping of
particles, Visser considers the field equations where T at this time
is unknown,

Gab=).gab+Tab (25)
By use of the reduce program (appendix 1) it was a simple matter
to verify the nonzero components of the Einstein tensor are
= - =_¢ Dyu
Gll—GZZ—G33 e "(e") (26)
Putting (5.1) into (25) one easily sees that the nonzero

components of the energy stress tensor are defined by

TOO=T44 (27.1)
(e¢)"=()\+T11)e¢ (27.2)
T11°T22°T33 (27.3)

Therefore it is the pressure{0 =T11=T22=T33, that produces
the B dependence of ¢ whereas the density must be independent of B.

To construct the stress-energy tensor

F F°9) /4 (28)

— c_
Tab— ach gab(ch
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Visser chooses the simple case of a constant electric field with
cdmponents only in the B8 direction. This of course is highly
arbitrary and in the next chapter a more natural model will be
considered.

With this type of field in mind Visser chooses

Ao=a(B) (29.1)
al=a2-a3-a%0 (29.2)
> Foa=-Fyp=a' (29.3)
.and
F_ FP=-2e"%%(a")? (29.4)
By defining
: E=e ®a’ (30)

The components of the stress tensor turn out to be

T00=a'(—e2¢a')+E2/2 (31.1)
=-E2/2
4
T, =-E2/2 (31.2)
1.2 _3
T, =T, =T, =E2/2 (31.3)
If we put (31.1-3) into (27.1-3) we obtain the equations
N =E2/2 (32.1)
(e®)"=g2(e%) (32.2)

Equations (30) and (31.2) are easily solved for ¢ and a to give
e¢=cosh(EB5 (33.1)
a =sinh(EB) (33.2)
Vissers interpretation of this is a nonzero cosmological
constant in five dimensions has in some way coupled with a constant

electric field E=(2 ))1/2

to produce a flat submanifold in which
the effective cosmological constant is zero.The potential

¢=1n(cosh(EB)) traps the particles in the B (x4) direction and

page 16



this trapping is governed by the Schrodinger like equation which on
substitution of (33.1) into (13), is;
R L 1l e X :
L2 515 (7€) e (e0) [ Na(w ) = - Mo (w.) (34)
The potential in (34) is the well known Rosen-Morse, for which

the exact eigenvalues are

Moz 3 {0 (w- (wn)E) - E/a | (35)
wé may now solve for the exact spectrum, to give
Wl )= (ay)E L ( (g) m;}(k*]"l (36)

To go any further with the exact treatement Visser defines now the
four dimensional mass by
m42=M52+(E/2)2 (37)

‘One will note that this needs tachyonic masses in the higher
dimension to give low ,and hence observed,masses in the lower
dimensional world.

Putting (37) into (36) gives the spectrum

1/2 (38)

w(n, k)=(n+1/2)E-(m,2+K?)
There are two problems with equations (37) and (38) , in (37) it
needs tachyonic masses to make the lower dimensional space low
energy, but perhaps more importantly in (38) the momentum
independent shift is not observed in nature.where
w2=m42+k2 “
and so Vissers model is unrealistic. Squires model (ref.2),

discussed in the next chapter, has been constructed, hopefully at

least, to overcome these problems.

§5. Conclusion.

If one takes Visser's paper at face value then indeed particles
of the higher dimensional universe are gravitationally trapped on a

four dimensional submanifold, whose energy spectrum can be made into
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1low energy and which also .possesses, generally at least, an
apbroximate 0(1,3) invarience.

Vissers model also gives a technique for cancelling a five
dimensional cosmological constant in conjunction with an electric
field.THe model is however unrealistic in three main ways;

a) the choice of the electro-magnetic field is contrived as
mathematical convenience and no real justification was given.

b) i1t need a tachyonic mass in the higher dimensional universe
to give low energy physics.

c)the momentum independent shift in (38) is not observed in

nature.
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Dimensional reduction and the Squires model.

§1. Basic aims.

As was stated in the previous chapter, Vissers model for
dimensional reduction had several flaws in it which made it
unrealistic.

In the paper by Squires, (ref.2), he aims for a similar process
of dimensional reduction by a large cosmological constant, but which
doesn't have the deficiencies of Vissers model. Namely there is no
need for the introduction of arbitrary electric fields and the mass

spectrum conforms to what we see in nature.

§2.The empty space field equations.
Towards this end Squires starts from the empty space field
equations
Rab™" N Jab (1)
Where the cosmological constant is positive so, classically at
least, we have a monotonically expanding universe (see chapter 1,
§2). This automatically avoids the introduction of arbitrary

fields, as was done by Visser.
At the outset it was decided to work in three dimensions so as
to gain an understanding of the gravitational trapping and then

extend to a higher dimensional case.

The most general metric in three dimensions can be written as

ds?2=f(t,x,B)dt2+g(t,x,B)dx?+h(t,x,8)dB2 (2)
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since all other three dimensional metrics can be transformed into

this metric (see Pefrov);

Now, to solve the field equations for f,g and h without any
simplifications would be very complex, so Squires makes the |
simplification that f,g,h all only depend on the variable B. Also
for a realistic solution he asserts that the space must be flat as
N>0. So the metric which Squires is seeking is of the form

dsz=u2(é)dt2-v2(ﬁ)dx2—dﬁ2 ) (3)

Substituting (3) into (1) yields the équations

VRPRVAITRSPY (4.1)
" m
i ’Y“,‘ v'\/‘ _ )\
Ve e (4.2)
vyt N (4.3)
w v

It is not hard to see that with a 1little manipulation one can

obtain the solution

ws Rexpl (AY'p]+ Bese[-(2N9] (5.1)
\ = CeKQQ(éYm]+'Dexp{~(§Yp] | (5.2)

along with the condition

AD=-BC (5.3)

Rescaling of t along with a shift of origin of B provides the

unique solution to the‘fibld equations

u=cosh((7/2)1/2g) (6.1)

v=sinh((N/2)/%8) (6.2)
If however, one of A,B,C or D is zero then the above solution does
not hold and so the following has to be used

us Rexpf (2"
V= Bexp 3 (3]

Squires decides throughout his work to use the more general case

as this is more unique.
[N IR
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§3. Classically bound particles.

Before continuing the discussion of Squires model it would be
interesting to see if classically, particles moving in this space
are bound. Of course here I will be assuming that there is
negligible back effect on the metric through the field equations, of
any masses moving in the space.

To examine this we must end up with some equation which is
similar to the energy equation

E=T+V (7)

If we adopt a similar approach to that of Visser we first note
that all particles follow time-like geodesics (except 1light
particles which for the moment we shall ignore) ,so the geodesic

equation reads

o L (8)
d*x PRI U2 CLIp
ds ds ds

From (2) it is not hard to see that the equation in t and x are
4t At
'a?,, ¥ g\_\T\AaZ %é) = Q (9.1)

—

s vV S

A% 4, 1y 4« A (9.2)
¥ Al -0
;é - C

These of course may be integrated to give

1
U éf = E , E s a congtont (10.1)
ds :
and
t
v (!—7-1 = L . L s «a constant (10.2)
s
(3) now yields
(11)

Y Y - ()
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We can now substitute equation (10.1) and (10.2) into (11) to give

| = _E° -t - (‘L@Y (12)
Cogwf { 28] siaW ] ()] A<
If we now let z=sinh((}/2)/? ) (13)

then it is a simple matter to show

A (A_(-})‘ 3o\ ?Ll 4 -h) + 4 il\} - € (14)
AN\ dr 4 (il ' /4,
which is obviously the energy equation (7) for a particle of mass

-
N moving under the action of the repulsive potential

V(zjj ’l‘}g Ll(_‘;}-“)-t ((-121\}

(15)

One should note that although the potential is repulsive it is
stréngly so at the origin and also at +& , so there is still the

possibility of trapping so this will be looked at further.

Consider
V(z)= 2_“ g Li(d{1 +13 4 (\\%1\? (16)
so
Vi(z)= | (*Qi} 41%> (17)
for turning values 4 z*
V'(z)=0
hence
z%-1.%-0
i.e. Iz=+L14/2 since z20
Also

le & LL :
ol = 2 t tuenin value 18
N 4 7 O A LLl/Z 8 ( )

Hence the potential has a minimum at z=L (see fig 1.) and

by Occums razor the particle will be trapped at this minimum
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fig 1. A sketch of the potential (16).

Therefore classically at least particles of mass XJare bound in
the @>direction and so the effective number of dimensions are
reduced from 3 to 2.

' For the case of light particles it turns out that they are not
-bounded, however we can neglect this case as we expect the

particles, in the lower dimension to have some mass.

§4. Quantum field theory and bound states.

To return to Squires paper, he, to set up quantum mechanical
states, assumes that there exists a field with the background
metric defined by (2) and (5i-ii), which can be described by the

Klien-Gordon equation

L (T g™0E - -ng 19
-

This of course suffers from the same problem as the classical
approach in that the field &' may have a back effect on the metric
through the field equations, but this will be discussed later in the
chapter.

If one puts the metric into (19) then it is easy to arrive at

__L()z@—-l(%l~£)t§ _Lé_ m

S R F

(20)
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Squires now seeks a plane wave expansion in the t and x

directions and so

Blem )= exp(—iw €+ E0) XIE)

where 7(Q§)satisfies the Schrodinger like equation

(s (g

or on substitution (5i-ii)

- t + k! _ L
( ‘05\‘1[(% )‘/5] g'mh‘[(é\‘/zp])x 0\—0((%1 (23)

—{ Emeh{(2p] (ow[(%\”(s]]% - X

' To show that particles, in the(@ direction are bounded, and to
get the mass spectrum in the lower dimensional, observed universe,
one not only has to find the mass spectrum but also one has to show
that I“:'is discrete.

To show the mass spectrum, of m:, is discrete Squires examines
two things, the asymptotic behavior of (23) for large\ﬁl and the
invariant measure.

For large\ﬁlthe solution to (23) behaves like

Apyms exp (-2 (50Y'] 1p] (24)
The invariant measure is

QA&AXA(} = \}\\,’O\“:()x'no\[1 (25)
so he states that for normalisable states only one of (24) is
allowable and so the spectrum of M2H is discrete, consequently we
are dealing with bound states.

To get the mass spectrum in the lower dimension he makes the

further assumption of u and v being essentially the same. This is

P -\
true, as he points out, except for the region \ﬂ\é%.
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He then substitutes

k‘y:u\% (26)

to find the Schrodinger like equation

_do\i\_p LK) = W) ¥ (27)
p u*

So the existence of a solution for a given M2 and \ will

H
provide a condition on the square of the observed particle mass,
2
where m obs’ where
2 =w2-_|k2
: " obs™" k (28)
Since we would wish the observed particle mass to be small, it

is obvious that
M2 VN /2 (29)

To now get a relation between M2H and m2ObS he assumes that

the kinetic and the potential energies in (27) are approximately
equal in magnitude, and so obtains,
mz_ M2+ N2 (30)
which according to (29) is indeed small.
He justifies the assertion of u and v being the same by saying,
tbe wave function Y will only spread a distance of the order

-1

m in B because of (30). He does point out however, around

obs
B=0 the solution needs more care, but the error is of the order

m2 /» and so he believes the assertion justified.

obs
To round off he says that the 8 direction is not observed
because all states have the same \)(B) factor and so the only way in
which an exited state, W'(B), can happen would be for w2-k2 to be
large, say O()\), so that —(M2+)/2) now becomes that eigenvalue of

the deeper potential in (27)
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§5. Conclusion.

Although this paper produces some good results there are a lot
of assumptions in it, and so may be prone to error. 1In the next
chapter I shall present an exact treatment of this problem in three

dimensions and will make some headway in'the general case.
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An exact treatment of the Squires model.

§1. Introduction.

As stated in the last chapter, Squires solution to the model
although good, from an approximation point of view does however
contain some dubious steps.In this chapter the problem is attacked
analytically by the use of special functions and indeed it comes to
light that there are bound states, in the three dimensional case at
least,but still more work will have to be done on this as the
particles in the lower dimensional,observed, space have a mass which

puts them squarely in the unobserved region.

§2. Topology of the three dimensional space.

Before we start to seek for the bound states of particles, it
would be of benifit to see what sort of space these particles move
through close to the origin, which is where we expect them %o be
bounded.

The line element in»three dimensions is

1/2 1/2

dsz=cosh2{(k/2) B}dtz—sinhz{(>¢2) B}dx?-dB?2 (1)

which if B is close to zero, reduces to the form

1/2 12_gp2 (2)

ds2=dt2-82d4{(\2)
If we now look at just the x and B part of this, namely
ds'2=B82dx"'2+dB* (3)
we can see that this indicates the natural topology of the space is,

x' and B8 form polar coordinates, where x' is equivalent to and B

to r, as shown on the top of the next page
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fig 1;-Topology of the space.

Of course the other possibility is that the topology forms a

corkscrew type space but this seems unnatural and so only the more

natural topology described on the previous page will be considered.

!

§3. Exact solutions in three dimensions

If we take equation (23) from the chapter 3 and make the

substitution
z=cosh {(MN/2)1/2@) (4)
with
R DR[O RN (o0
AL - S\ \ (osW M
B3 (3\(5 ) )
and

A s Y ¢ el o

ap
we end up with the differential equation

2(1- Dc)o\lx + (22- )%} (w\ ( 3\‘7¢ M, 7L (7)
t LA 2

At first sight it does'nt seem that we have made much progress,

but if we compare this with the equation

2097 4 (-2 _(a-+b+bag X’ (8)
v { Lt +) +B([-0-b-c) Thposf -a-b)-cb
-2 .

2
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which may be transformed, by the use of

A= 24(1-2)F Y

into the well known Gauss's differential equation with

hypergeometric solutions (ref.3)

2(-0) Y7+ § e (o&bH)?,Z)' _ab Y=o (10)

Comparing equations (7) and (8) we end up with the set of relations

C-Lat = (11i)
a tb+l - Lot~ 1 = 2 (11ii)
oﬁ(o( 'C,-H) - -w’l/).} (11111)
(A ({3 ~a~-h ) LA (11iv)
(& 4 (3‘)(0(4{3 —-0\"\0) Yo = WA (11v)

So setting aside the problem of bound states for the moment we
should be able to find a solution to the differential egation by

just solving these five equations.

(111) S C = At
V(11 = (k=Y S L o4 0) = ,wz/?J
> K= WY (12)
(11D)+(111) 5 oty 4 ¢ = 2k AgALA
S(11iv) => (L((B‘l’z*iﬂ—lp> - ‘_\(’I./)\A
hence 3 L 7 )% (13)
(5:.{{—()&4@ 1 {(er.;) t lk/)\g ]

Although it does'nt matter about the choice of sign for
transforming (7) into (10) there may be other criteria and for this

reason, the sign shall be left arbitary.

k+;d~+l{l~b (14)

i

(114i4) a

A (A -1 -1a-2p b b E (L ez ap Bbamtiyy
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for convenience set

L= a4p | (15)
so ~g(1g) + h(1g) - b* = - My
> b = \ g(nzc)ﬁ {( 0e) — 4efs )4 1:%}\“2

> b= %_{ (1H26) + [ 1+ 1“\.“4]\"; (16)
Putting (16) into (14) yields '
a = ,g_ g((fgi\ T [-l #ln\zn/)\]\“} (17)

The choice of sign for a and b does'nt matter since there are
relationships between the two possibilities (ref.3). So without any
loss of generality I shall assume that a has the possitive sign.

"Hence the solution too (11i-11v) is

Q= %_ g(\u.{) + EI t 2\:?%]}}\/1; (18i)
b - _11{( ‘flf)-—_il‘*&ﬂxﬂy’ﬁ g (18ii)
Cs |4 2 (18iii)
£ X Ap (18iv)
with
P W (18v)
and
U Bo= - (%) # [ (42)" -—LKXY‘ (18vi)

So the complete solution to (7) is
X(?) = 2“(1-2)(’(5AF(Q,\>,(,'z)-+P>F(a+\‘c:,b4l—c,z-c,‘ z\Z (19)

We should also note that. because of the topology, x close to the
origin is essentialy an angle and, since we do not want a many
valued wave function, the only values k can take are integer.We can
therefore, without loosing validity, take k=0, and so look for a

ground state to the masses.This simplifies equations (18i-18vi) too

a=1 { (1+2€) + & |+ U‘“h?/,\l\/l (20i)
b - “z { (142£) - {; L+ ’LM‘H/A]‘&} (20i1)
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¢=| (201ii)
€= a+f (20iv)
with
A =- W)f-l)\ ( (hosen +o be -ve for COV\S«S“&\(\)\( 20v)
and
B =01+ £ (13D (20v1)
So, let us now examine in detail the bound states, if any, of
the differential equation.We should note before continuing that the
solution (19) is given as an expansion about the origin and if we
examine in more detail the variable we have, we will note that for
the boundary conditions we have, namely}xrfinite at the origin and
at infinity, then in the variable z this would equate to'X;finite at
z=1 and z finite at infinity so the expansion we require is one
around z=1 and not around z=0. We should also note that c=1 and so
the second solution is a degenerate case, and for consistency when
both k and w are zero we must take the plug sign in f3.
If we look at Abramovitz and Stegun (ref.3) we see that the two

-

unique solutions are
Wo= Fla b, 15 1-2) (211)
and
wis=Fla,b, 1, -Dn(i-2)+ 3 (60 (b)a 3" (21i1)
. . w (dV\
*{\\&M«MMM} TR ) L () ~q,(.){
where
(@), :r\(owA (b). = V(b (Qa - )—'( (40D (211iii)
Uy ION NN

and

\\/( ) = %_ir((%) (21iv)
which is usually called the diagamma function (ref.3).

Hence the complete solution is
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K =P, + B (22)

If.we now impose the boundary condition at z=1, nahely?[ finite
there, we can see that since the second solution w, contains
'logarithms and so B=0. We also want?ﬁ-to be finite at infinity, so
if we use (15.3.7) of Abramovitz & Stegun, it is obvious that for

large z -

Flab,¢;2) v LTG0 () + Ty Mamy
Uipy TCc-a) Ty V'Cc -b)

If we now look at the powers of z more closely, and remembering (22)

it i1s not hard to see
—odx

X~ Y‘(qwbjﬁ («2) 4 TQQTMa-D)(nay ™™ (o
| LT o) | S

Since‘?ﬁmust be finite at infinity we require the second term of

this to vanish, and to do so requires a to be a negative integer
which is because of the properties of the Gamma function.

So we have our bound state solution, which is

KX = PEF (=n {14 A 0] - 2) (25)
If we wish to see what the mass'spectrum is 1ike, all we have to do
is rearrange equation (20i) to obtain

M, - %_ % (lu‘;nr}‘-\l (26)

If we examine the ground state of the mass spectrum then it is easy

to see the energy spectrum in the lower dimension is

twh = AN { .&_-H\ 4 ( (4 L_u;l;\"tr

The only problem with this is that, for any M, the particle

H
mass w >2) and so they are once again in the hidden sector of the
mass spectrum .

To sum up, it is possible in three dimensions to obtain bound

states in two of the dimensions and so get reduction from three to

one dimension, but in this case it does not seem possible to get
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observed particles in the lower dimension but perhaps this problem

wiil be resolved in N-dimensions.

§4. Extension to higher dimensions.

In order to extend thié discussion to higher dimensions we first
put the same two conditions on the metric, i.e. we use orthogonal
coordinates in which Jab is diagonal and we restrict the
elementary 9.p to be functions of one variable only.

So the metric that Squires uses is

ds2=u2(B)Adt2-.v, 2(B)(dx)2-ds? (27)

with the solution (ref.é) .
~ M i Nl (2
. W = ginh (o([i) cosh” P(ﬂ{%)

\ | (281)
V. = Sia\rxmw‘.(x{;‘) wsh\""*‘(xp) (28ii)
where C
o = (,\_A%/\"' (28iii)
and s

= (28iv)
P‘fj% %b.,C) iv

1. \
P‘-“'Z‘li - |- /N (28v)
Squires in his paper only states that these types of metric

defined by (28i-v) produce confinement so I will now give a partial
treatment of this problem.

We note that the metfic in (27) is not unique since there are
many solutions to (28i-28v), hence we impose now the additional

condition that the space is flat when )\; 0, i.e 0 when)«—>0.

'Rabcd9
By use of the reduce program (appendix 1) it was found that a
condition on the curvature tensor to be zero was
VaVy 0  as A0 ,a=l,1,3 .-V (29)

where this is not summed over.

If we let pP=q, then the functions of the metric may be written
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tq,. Y
L= cos\/\ (K(B)S.M\ S (x(‘ (30)

_ gt Yk - B K (R
v_x(%/w;\wsk (oAp) ¢iny (,u(a).m(g,ﬂ;)wsk up)gmt\”“f‘,((i (311i)

‘o V‘-O(cos\\'v (o\{&) suxk (.x(}) [(‘ 4 ; 3 (OS\r\(o\f\) + ( ) -)s mk(xp)]
4+ ‘v
“ COSk ?0“5) S\l\l’\ (‘k ) [‘ {'ﬂ $w\\ltﬂ{‘)f(_! LO;L\(Q((S)I (3)“")
¥ [‘ . <\ Su\k(a((') + (J C") (o;‘n(%/i\]
'ﬁence e (32)
~AR 42
Vov: = o Cotn” (e goa™ (oc(ﬂ {(1 *@ o« ) sia” (x{l)J;(J )(o;\n(o\(})s\v\\\( «p)
m(.i 0 USRI RIS §o-0) com ()
+COSN¢(NSMN&P}K|1(‘X 1 4) (I"t ) 1‘)]?
Before going any further one should remember the behav1or of sinh
and cosh for small \.
i.e. s v, cosh (xp)n | for small A .

Hence

Vov: Y24 f({l-ﬂt;)o(lf(“(\/.-ci‘-)xf’(‘}vﬂv;)(.}d-ilt“—l)dl--f(‘_\l/--(“_;)({ _%_4) (33)
MG (N 493

Although at first sight this appears to go to zero no matter
what values q; take,a closer inspection shows that one has to take
more care since there is a factor« which may go to infinity without
a judicious choice of qaj -

It takes very little working to see that the only choice of

a;. to prevent this and also to have R abe d)C’aAAex7are

SN :
Fo= A/ G VS

RN o G

(341)
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Of course we should now check to whether these values are solutions
of the field equations, however it takes very little work to see
that they do.

Hence.the only solution to the empty space field equations which
automatically produces an asymptotically()ao) flat space, in N
dimensions is

W= cOs\;\zm('o((;) (35i)
Voz cosw™ @), c=L1, - ped

’/

: -\ (3511)
V.1 = Siah (‘*Q CO“L‘I/N-‘(‘X{B)

(351ii)

It is this unique solution that I shall now concentrate.

§5. ' Exact solutions in N+1 dimensions.

The metric we are dealing with is now,

2 A, BWEY et v * : Y- . L b i
ds*=com” (x@) go\no ';d’“ ; = suh (&) (osh ™ (l‘o(ﬁ)dxw,, ~Ap (361)

where

L

K = AV .
— (36ii)
4_

On substitution into the Klien-Gordon equation we find
4
(OSL\ (“@)?ba_w 2 ) ‘}'g _(,Os\z\ (g((ﬂ Sl M
o I, (37)

~o<(cos\A(K(3) 1 g..,\\«\(xmy)w _ ot q/ - M:Y’
Skl comlxp Jp*
So if we now search for plane wave solutions in N dimensions such
that

= exp? Who ~ % . 376(/3) (38)
with the aim of bounding a partlcle of mass

[V -
M= W=D (39)
=t

in the B8 direction,we obtain

A % 4ot (05‘/\(0‘{7) +§.A\\(J§(l\ AZ |n
A(} (S\N\(o((} cog\/\(o(m\d(’) +((OS\'\/N&XO‘) E)Asé‘%‘_xﬁsu\w(x{\)\ .0\

If we now substitute

40)
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2 = osW( d(‘;} (41)

it is not hard to find the equation

2(1-D X & (121DKY *(‘f\\_k‘ I 2 R

da* SR T (R ?,\)

which is the generalization of the equation (7) in §3 of this
chapter. We should now take note of of the topology of this space
as was done in §2.If we do so, again it is not hard to see that

we have a polar pair:fxn_l,B) hence again without loosing
validity we can take k.10 and so seek a ground state to the mass
in the X, _, direction.We therefore end up with the equation

209 4+ (L2DXY — WX WX (43)

A P r 2z I

Notice that this equation determines the value of m2 (39), and there
are no other degeneracies on any of the k#_ so0 the model predicts
exact Lorentz invariance. This follows from the nature of the
solution given in 34i and of course is not true of the general
solution to (28).
This however is as far as we can get with the analysis of the
differential equatioﬁ as it cannot be transformed into the

hypergeometric equation or anything similar.

§6. Conclusion.

From this work is is therefore possible to get dimensional
reduction from not only three to two dimensions, as Squires
indicated, but from three to one, but the masses in the lower
dimension are not in the observed region of the spectrum, so there
will be considerable back effect on the metric hence this suggests

that we should be considering the field equations with the
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energy-momentum tensor but then we come back to the problem of how
to construct this so that it is the most natural choice.

In the more general case by imposing another restriction on the
space, namely Rabc§>0 as A>0, it is possible to have bound
states; although as yet it is not possible to find the mass
spectrum, that have exact Lorentz invariance.

It seems therefore that many of the aims of Squires and Visser

have been achieved, however there still remains the problem of

finding the mass spectrum in the more general case.
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Chapteéer

The nonlocallity problem.

§1l. Introduction.

Quantum Mechanics today, cén be based around one of two
interpretations, the Copenhagen School of Thought or the Einstein
Podolsky-Rosen (EPR), (ref.5).The Copenhagen interpretation asserts
that quantum mechanical description is complete. This is based
around the principle of non-separability of two physical systems A
and B ,and, more generally, of the physical system, the instrument,
and the observer.

On the other hand, E.P.R argued that quantum mechanics is not a
complete theory, and they based this on two assumptions:-

(1) The assumption of the existence of an objective reality
independent of any observation;

(2) Physical interaction are local in character, the velocity
of which implies the actual separability of two physical systeps,
separated by a space time interval.

After formulating their idea about locality, Einstein put
forward the argument that if the Copenhagen interpretation is true’
that there must be action at a distance, or non-locallity as it is
now called.

One possible way in which one can understand nonlocallity is
too consider 'wave function reduction', which certainly happens in
more orthodox theories, then the nonlocallity can be seen from the
fact that a position observation automatically removes the whole

wave function to one point. Previous to the measurement of the
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position, for example a particle that might have been reflected or
transmitted by a potential barrier, the wave function consists of
two pieces, as in fig. 1, whereas after a measurement it collapses

to fig. 2.

fig.1l

Iy fig.2

A more precise understanding comes however from the E.P.R. type
of experiment where Bell's theorem shows that locality and quantum
mechanics are not compatib}e and in fact recent experiments have
show that quantum mechanics and hence non-locality is correct
(ref.5).

Since we are very attached to the concept of locality it has
been suggested (ref.2 & 6) that some form of it might be maintained
if we live in a "ball of string" universe. The idea here is that
our 4-dimensional space-time is embedded in a flat N-dimensional
space in such a way that distance measured "along the string" (i.e.
in the physical 4-dimensions) might be large, although distances
measured by an observer, not constrained to this physical space,
might be small. 1In this analogy we can embed an infinitely long
string (of zero thickness, of course) in an arbitrary small region
of three space (or indeed two space, since it is bf Zero
thickness). Since we want our 4-dimensional physical space to be

flat (or at least approximately) we cannot achieve this in
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5-dimensions (as is used in Kaluza-Klien's original idea), on the
other hand we can clearly achieve it in 8 (or more), since we can
embed each dimension in 2-space.

Whilst it is not completely clear what all‘this means, 1t is
clearly of interest to see whether there are solutions to the
Einstein field equations in which the "bottom of the valley" (i.e.

=0 in chapter 4) follows a curve in some higher dimensional space,
in which the intrinsic curvature is small but the extrinsic

curvature (ref.7) is large.

§2. The metric.

As a preliminary to this work we develop a metric in
3-dimensions which, for realism, is a solution of the empty space
field equations

V\pv = x%pv (1)

The usual metric for flat three dimensional space is

Aot = 3#4 ”Q“)l +da” (2)
if we make the change of variables '

B S—— gS-\A@ ' (31)

‘v) = ém@(m%icocqﬁ) (3ii)

} - COQ@((‘M§(0@¢) (31i1)

then this is still flat space, but now g =0 is a circle in space

[ . D ~ L lino kes
{ e"/O\ \\ g -
\ e ! AN N T
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Note that this transformation is used so that in the
generalisation we can break the symmetry of the space to achieve the
ball of string model.

It this metric which I shall try and generalise so that it
solves the empty space field equations but also is,as this one is,
asyptotically flat ask»0, (so this correlates with observation).
The metric turns out to be, when (3i-iii) are substituted into (2)

A= (ar€eesf)de™+ (dg+ dS” (4)
It is obvious that a generalization of this would be
4s'- V(8.€) do* + f)dy + df”
so the question now is does this satisfy the field equations. Hence
if we substitute (5) into (1), and by use of the reduce program

(Appendix 1) we end up with the following set of equations to solve

\o=LgF LA\ L QFAG ¢ L A 4 o [2F\T (1)
ik 4F(21F'> 495—;’&’{ Y2 g 4%«(a¢3

Moo Ldede o QF L 1 (QE\ (9
a i lp il Ll e

Ne LG L R L Qe L e (6111)
T 4FL(7§' y3 %—gt ;ém(%)

(6iv)

It should also be noted that the choice of sign of A was made
so we have an attractive potential

So G*(61i)-(6ii)-(6iii) gives the equation for consistency

"6"6¢ - G'7 -ANGT- 0 (7)
= et LN
CA



Also one notes that

G=A s‘\u\\\x\l(g‘“ {\ (8)

is also a solution of (7). If we now use the boundary conditions
which we are employing, namely the space is flat as X5(L it doesn’'t

take that much work to see that the only solution is

¢ - L SN Y ﬂ (9)

Hence the equatlons (6i- 1v) boil down to the set of equations

?"% 4/%\* \I'\‘\ \\ fk 3 ( -2 (m\r\l{ Y’ ( f} LP(}) ‘ﬁ)\ lqa;(lOi)
= 81 S\V\\\Ll:(é
26 oL - ( .?LFY *(,_3{\"1 ngn\\&z(%\"ﬂ&i - 4@‘1g\.«»\1[(,51\v¢;} - (1044)

of- of
L€ o"‘ (10i11)
AN

Here though (10i) is just the sum of the equations (10ii) and

(10iii), so the problem of finding F boils down to the solution of

o AL a (11)
RANDIL (2£) - 1NF
M o
Equation (11) may be rearranged to
4-: _._L ~\,
i% - ji~ S BN (12)
F7» g |
and so if we make the substitution
w o= F7r (13)
it is easy too see
W= 2w : (14)

L=

which of course has the solution
. : _ \
- NG 84 , A l (15)
L\(;z’)wg\\l(i\ f\ 4+ %) s h{ (5 §
where A and B are functions of ¢.
Upon substitution of F and G into (10i-ii) it is not hard to
find that

Ao (161)
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H]
B --B (1611)
So the complete metric is

3H :[(Q¢)( b) (05‘\{(%\\”{1 + (C. COS¢-4 (km (D) §~M\\Ué\'/,§‘g'&1 (171)
9o - %T s\vx\'\"ﬂé\\/‘ﬂ (1741)

17414
%ss = ( )

%\1 :(jn_; :?u:%\,’, :315: (55, =0
C

Where & ,b;C and , are different constants than before.

(174iv)
If we now substitute the values of F and G into the off diagonal
term we easily see that this vanishes and so the metric defined by

equations (17i-iv) is indeed the most genéral one.

§3. Asyptotically flat spaces.

Although it is well known that all Einstienian spaces in three

dimensions have constant curvature, we have introduqed another
degree of freedom into the equations with the cosmological
constant,A , hence the necessity of looking for asymtotically flat
spaces.
There now comes the problem of, which values of @3, '[‘558, @ and é}, will
produce the asyptotically flat space that we require. To do this we
shall have to look at the curvature tensor and if once again we use
the REDUCE program of appendix 1 we see that the nonzero components
R2323 and Rl312,so if we use the values we

are Ryij127 Rizia-
have for F and G we obtain

\m = va\\\()‘\ Z& z (,Los¢+& <w\¢) ¥ CO(\\&(E\“()\_(QW“)SMV\HWL{} a“¢‘d““‘d A@Sﬁ%‘g)
Laph)odfVST* (cond rdang) m»\\gk\'tﬂ]

WL‘\IL =0

(18i1)

iy = (18111)
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Woayy = >yl : (181iv)

So if now recall the behavior of sinh and cosh for small values

of the argument we find the equations

Ry, =0 (191)
Qts\’al KL

(1911)
Layasy -‘>‘/),

(19iii)

R = (V€8 o Hhad) oDV + (worg +&s~w¢5l3 (191v)
L Cadt) + (ccosgvdomd) (3] d

Hence when we remember the boundary condition i.e. this metric

must tend to the one in equations (3i-iii) it is not hard to see

that the only values thata, \, € and d can take are

a =0 (201)
b= radins of ciede W Y- we (2041)
c - (%\'2 (20111)
o\: 0 (20iv)

Therefore the only metric of the type first defined in (5) that

tends to a flat space as A0 is

oe ;[acod\((ls"g) b (%"‘cos;ﬁs]&((’%& {“ * (214) .
G = %Q f\“\\LU%\\“ﬂ " (2111)

(211i4)
(,)34:,
: . . .o (214iv)
;=0 L=‘,1,5}J:\,l,5 L#) ,
Actually this question of uniqueness need to be looked into a L bHe
closer as it is possible that this metric and the one used in :

chapter 3 are isomorphic however if one examines the killing vectors

(appendix 2) of both these metrics then indeed the metric found here
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is unique. The structure of Squires metric is isomorphic to an
Abelian group of order 2 and the one found here is generated by only
one element hence these two metrics cannot be isomorphic.

§4. Conclusion.

Although we have found a unique metric which produces flat
space as XEO, and one which looks 1likely to be extended into the
"ball of string", it is not clear which curves we should be |
examining for intrinsic and extrinsic curvature. Since particles
follow geodesics it would seem reasonable to assume that we should
be examining these for the afore mentioned properties, however this

is something which shall have to be left for the future.
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CHAPTER 6

Possibilities for future research.

Throughout this work, the metric has only been in orthogonal
coordinates,or if we concider the group structure of the isometry
group then (ref.4) it is the simple G(n),where n is the number of
independent killing vectors of the metric. Hence one possibility
would be to have a more complex metric or“to put it more
mathematically ,to have a non-simple group structure, perhaps one
such as SU(3)*SU(2)*U(1) wﬁich of course would have the benifit of
more realistic as well.

The meric as a consequence of the coordinate system is diagonal and
so if we concider it a la Kaluza-Klien, there are no internal
"fields. We could therefore 'turn on' these fields and see what
consequence they have in the Klien-Gordon equation.

These fields are of course Bosonic in nature, and so possess spin -
properties, it therefore would not be unreasonable to concider the
Dirac instead of the Klien-Gordon equation.This would nessesitate
working in a Clifford algebra for the now non-constant spin
matricies, but it should be feasable to attack the problem of bound
states using this method.

Aside from Vissers paper all the work concidered here has been on
the empty space field equations , it therefore seems reasonable to
try to extend the work to include a non-zero energy-momentum tensor,
which should be chosen realistically and not arbitarily to satisfy
the equations.

There is of course no reason why we should have the cosmological
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‘constant as an overall constant, after all as long as the field
eqﬁations are satisfied the cosmological constant can be whatever we
like, and so in this vein we could take it to be now a matrix where
each of the componenfs are a function of the cosmological time(ref.?7
& 8).Alternatively we could take it to be a function of the variables
SO long as we remember that this must satisfy the boundary
cohditions of inflation i.e. a large cosmological constant, and a
small cosmological cogstant now.

There 1is also work to be done in the nonlocallity area since as
was stated in the chapter on it that work was only a preliminary to
working in N-dimensions. This should be of a geometrical nature and
in essence be about the embedding of one space inside another with
special attention being payed to the properties of curves in both

the larger space and also the embedded space.
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Appendix

Reduce program with some results.

§1. Introduction.

In this appendix I have used the algebraic manipulation language
REDUCE to construct a program that will work out, at least in the
case of orthogonal coordinates, such things as the Christoffel
symbols, curvature tensor and other reiated tensors also some of the
results which have been used throughout this work are presented here

As previously stated this program only works for the simplemcase
of the metric tensor in orthogonal coordinates so anyone else
wishing to use this program, not in orthogonal coordinates will have
to alter the program accordingly.

§2. How the program works.

The only full program shown will be for the metric which Squires
used, namely

o' ()07 - (- A .

for the metrics

i - (ot 5;/_;05«})"&91’ TINY Lgp.gf' JrOQf "

p)
and

L _. ('7 . " 2 v
Jo'= Hg/’,g) vty G(f)ow +d {
).

only the relevant changes to the code will be shown.

Line 1:-This tells the computer that all zeros to be printed
out, are suppressed.

Line 2:-It is this line which defines all functions that the
program will use and one will note that all the variables used in

this case are stored in the indexed function X, which is the one the
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computer automatically links with variables.The variables in
this case, have to be stored so as, there is no other way to the
create loops required to calculate such things as Christoffel
symbols, otherwise.

Lines 3-4;-1It is in these lines that the functions U and V are
defined to be functions of the variable X(3).

"Lines 5-13;-In these lines, the covarient andcontravarient
metric tensor are given the dimension 3 and the contravarient metric
tensor is computed.Therefore, it is in this place the modification
required for the more general inverse of the metric tensor should be
made.Also, it should be noted that no other modifications are needed
throughout the program as it has been set up for the most generai
case already.

lines 16-20;-Calculate and print the Christoffel symbols.

lines 21-33;-Calculation and print out of the curvature tensor.

lines 34-38;-Calculation and print out of the Ricci tensor.

lines 39-40;-These calculate and print out the curvature scalar.

lines 41-44;-These calculate and print out the Einstein tensor.
It should be noted, in this case the program works in 3 dimensions
(DIM=3) but could easily be made to work in 10 or some other fixed
value, however the program cannot be made too work in an arbitrary
number of dimensions, as is required sometimes in generalized l
theories.

When defining the metric for this case, general functions were
used but if one has, instead, specific functions then these would be
entered directly into the metric without having the need to use the
DEPEND statement. However in all cases one must still define X to
be an OPERATOR as it is the indexing of this, which is used

throughout the program, in calculations.
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§3. Conclusion.

This program, with some minor modifications, works for a metric
defined in specific number of dimensions, whose components are
either definite or general functions,or indeed a mixture. However
this program only works in orthogonal coordinates and so this may be
a topic for future research.

‘§3. Programs and results.

The program detailed below is for the metric used by Squires in
chapter 3, namely
st - (§) 4 —()dot - &S
1 ON NERO;
'  OPERATOR U,V,X;

DEPEND U,X(3);

= WN

DEPEND V,X(3);

DIM=3;

ARRAY GG(DIM,DIM),H(DIM,DIM);

WRITE "COVARIENT METRIC COMPONENTS ARE:-";

L
GG(1,1):=U;

O o N9 & O

GG(2,2):=—V%

10 GG(3,3):=-1;

11 WRITE ""“;

12 WRITE "CONTRAVARIE&T METRIC COMPONENTS ARE:-";

13 FOR I:=1:DIM DO WRITE H(I,I):=1/GG(I,1I);

14 ARRAY CS1(DIM,DIM,DIM),CS2(DIM,DIM,DIM);

15 WRITE "NON-ZERO CHRISTOFFEL SYMBOLS ARE:-";

16 FOR I:=1:DIM DO FOR J:=1:DIM DO BEGIN

17 FOR K:=1:DIM DO

18 CS1(J,I,K):=CS1(I,J,K):=(DF(GG(I,K),X(J))

+DF(GG(J,K),X(1))-DF(GG(I,J),X(K)))/2;
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19
20

21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

FOR K:=1:DIM DO
WRITE CS2(J,I,K):=CS2(I,J,K):=FOR P:=1:DIM SUM
H(K,P)*CS1(I,J,P) END;
ARRAY R(DIM,DIM,DIM,DIM),CUR(DIM,DIM,DIM,DIM);
WRITE "NON-ZERO CURVATURE COMPONENTS ARE:-";
. FOR I:=1:DIM DO FOR J:=I+1:DIM DO FOR K:=I:DIM DO
FOR L:=K+1:IF K=I THEN J ELSE DIM DO BEGIN‘
R(J,I,L,K):=R(I,J,K,L):=FOR Q:=1:DIM
SUM GG(I,Q)*(DF(CS2(K,J,Q),X(L))-DF(CS2(J,L,Q),X(K))
+ FOR P:=1:DIM SUM (CS2(P,L,Q)*CS2(K,J,P)-CS2(P,K,Q)
*CS2(L,J,P)));
WRITE CUR(I,J,L,K):=R(I,J,K,L);
R(I,J,L,K):=-R(I,J,K,L);R(J,I,K,L):=-R(I,J,K,L);

IF I=K AND J<=L THEN GO TO A;
R(k,L,I,J):=R(L,K,J,I):=R(I,J,K,L);
R(L,K,I,J):=-R(I,J,K,L);R(K,L,J,1):=-R(I,J,K,L);

A: END;
ARRAY RICCI(DIM,DIM);
WRITE "NON-ZERO RICCI COMPONENTS ARE:-";

FOR I:=1:DIM DO FOR J:=1:DIM DO

WRITE RICCI(J,I):=RICCI(I,J):=FOR P:=1:DIM SUM FOR Q:=1:DIM
| SUM H(P,Q)*R(Q,I,P,J);

WRITE "RICCI SCALAR IS:-";

RS:=FOR I:=1:DIM SUM FOR J:=1:DIM SUM H(I,J)*RICCI(I,J);
ARRAY EINSTEIN(DIM,DIM);
WRITE "NON-ZERO COMPONENTS OF THE EINSTEIN TENSOR ARE:-";
FOR I:=1:DIM DO FOR J:=1:DIM DO

WRITE EINSTEIN(I,J):=RICCI(I,J)-RS*GG(I,J)/2;

The results for this program are presented on the next page.
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COVARIENT METRIC COMPONENTS ARE:-
GG(1,1):=U2
GG(2,2):=-V2
GG(3,3):=-1
CONTRAVARIENT METRIC COMPONENTS ARE:-
H(1,1):=1/U2
H(2,2):=(-1)/v?2
H(3,3):=(-1)
NON-ZERO CHRISTOFFEL SYMBOLS ARE:-
CS2(1,1,3):=CS2(1,1,3):=DF(U,X(3))*U
CS2(3,1,1):=CS2(1,3,1):=DF(U,X(3))/U
CS2(2,2,3):=C52(2,2,3):=-DF(V,X(3))*V
CS2(3,2,2):=CS2(2,3,2):=DF(V,X(3))/V
NON-ZERO CURVATURE COMPONENTS ARE: -
CUR(1,2,1,2):=DF(U,X(3))*DF(V,X(3))*U*V
CUR(1,3,1,3):=DF(U,X(3),2)*U
CUR(2,3,2,3):=-DF(V,X(3),2)*V
NON-ZERO RICCI COMPONENTS ARE:-
RICCI(1,1):=RICCI(1,1):=(-U(DF(U,X(3),2)*V+DF(U,X(3))*DF(V,X(3))))/V
RICCI(2,2):=RICCI(2,2):=(V*(DF(U,X(3))*DF(V,X(3))+DF(V,X(3),2)*U))/U
RICCI(3,3):=RICCI(3,3):=(DF(U,X(3),2)*V+DF(V,X(3),2)*U)/(U*V)
RICCI SCALAR IS:- '
RS:=(-2%(DF(U, X(3),2)*V+DF(U,X(3))*DF(V,X(3))+DF(V,X(3),2)*U))/(U*V)
NON-ZERO COMPONENTS OF THE EINSTEIN TENSOR ARE:-
EINSTEIN(1,1):=(DF(V,X(3),2)*U2)/v
EINSTEIN(2,2):=(-DF(U,X(3),2)*V2)/U
EINSTEIN(3,3):=(-DF(U,X(3))*DF(V,X(3)))/(U*V)

Where DF(A,X(N),K) means différentiate the function A with

respect to the variable X(N),K times. Elsewhere one will see

Page 53



DF(A,X(N),X(M)), which of course means differentiate the function A
with respect to the variable X(N) then differentiate with respect to
X(M).
For the case of exact functions in the metric, such as
A= (ad€cong) 48”4 ¢ At 1 ds
which was used in chapter 5, the relevant changes in the code are
made between lines 2-11 and are;-

2 OPERATOR X;

3 DIM:=3;

4 ARRAY GG(DIM,DIM),H(DIM,DIM);

5 WRITE "COVARIENT METRIC COMPONENTS ARE:-";
6 GG(1,1):=(A+X(3)*COS(X(2)))**2;

7 GG(2,2):=X(3)**2;

8 GG(3,3):=1

So, as one can see the lines of code with DEPEND in, have been
missed out since we are now dealing with exact functions, as was
stated in the introduction.

The results for this are shown below and indeed show that the
space defined by the metric, is flat.
COVARIENT METRIC COMPONENTS ARE: -
GG(1,1):=X(3)2*COS(X(2))2+2*X(3)*COS(X(2))*A+AZ
GG(2,2):=X(3)2 “
GG(3,3):=1
CONTRAVARIENT METRIC COMPONENTS ARE:-
H(1,1):=1/(X(3)2*%COS(X(2))2+2*COS(X(2))*A+A2)
H(2,2):=1/(X(3)2)
H(3,3):=1
NON-ZERO CHRISTOFFEL SYMBOLS ARE:-

CSZ(l,l,Z):=CSZ(l,1,2):=(SIN(X(2))*(X(3)*COS(X(2))+A))/X(3)
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CS2(1,1,3):=CS2(1,1,3):=-COS(X(2))*)X(3)*COS(X(2))+A)

CS2(2,1,1):=CS2(1,2,1):=(~(X(3)*SIN(X(2)))*(X(3)*COS(X(2))+A))/
(X(3)2*COS(X(2))2+2*X(3)*COS(X(2))*A+A2)

CS2(3,1,1):=CS2(1,3,1):=(COS(X(2))*(X(3)*COS(X(2))+A))/
(X(3)2*COS(X(2))2+2%X(3)*COS(X(2) )*A+A2Z)

€S2(2,2,3):=CS2(2,2,3):=-X(3)

CS2(3,2,2):=C82(2,3,2):=1/X(3)

NON-ZERO CURVATURE COMPONENTS ARE: -

NON-ZERO RICCI COMPONENTS ARE:-

RICCI SCALAR IS:-

NON-ZERO COMPONENTS OF THE EINSTEIN TENSOR ARE:-

For the more general metric of this type, namely
& Ee)dett 6(Nd g +dg’

the relevant changes to the code would again be between lines 2-11
and are
2 OPERATOR F,G,X;
3 DEPEND F,X(2),X(3);
4  DEPEND G,X(3); .
5 DIM:=3;
6. ARRAY GG(DIM,DIM),H(DIM,DIM);

7 WRITE "COVARIENT METRIC COMPONENTS ARE:-";

8 GG(1,1):=F;
9 GG(2,2):=G;
10 GG(3,3):=1;

The results produced by the program for this metric are;-
COVARIENT METRIC COMPONENTS ARE:-
GG(1,1):=F

GG(2,2):=G
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GG(3,3):=1

CONTRAVARIENT METRIC COMPONENTS ARE:-

H(l,l)::l/F

H(2,2):=1/G

H(3,3):=1

NON-ZERO CHRISTOFFEL SYMBOLS ARE: -

CS2(1,1,2):=CS2(1,1,2):=(-DF(F,X(2)))/(2*G)

CS2(1,1,3):=CS2(1,1,3):=(-DF(F,X(3)))/2

CS2(2,1,1):=CS2(1,2,1):=DF(F,X(2))/(2%F)

CS2(3,1,1):=CS2(1,3,1):=DF(F,X(3))/(2*F)

CS2(2,2,3):=C82(2,2,3):=(~DF(G,X(3)))/2

CS2(3,2,2):=CS2(2,3,2):=DF(G,X(3))/(2*G)

NON-ZERO CURVATURE COMPONENTS ARE:-

CUR(1,2,1,2):=(DF(F,X(3))*DF(G,X(3))*F+2*DF(F,X(2),2)*F
-DF(F,X(2))2)/(4*F)

CUR(1,3,1,2):=(2*DF(F,X(3),X(2))*F*G-DF(F,X(3))*DF(F,X(2))*G
-DF(F,X(2))*DF(G,X(3))*F)/(4*F*G)

CUR(1,3,1,3):=(2*SD(F,X(3),2)*F-DF(F,X(3))2)/(4*F)

CUR(2,3,2,3):=(2*%SD(G, X(3),2)*G-DF(G,X(3))2)/(4*G)

NON-ZERO RICCI COMPONENTS ARE: -

RICCI(1,1):=RICCI(1,1):=(2*DF(F,X(3),2)*F*G-DF(F,X(3))2*G
+DF(F, X(3) )*DF(G, X(3) ) *F+"*DF(F,X(2),2)*F
“DF(F,X(2))2)/(4*XF*G)

RICCI(2,2):=RICCI(2,2):=(DF(F,X(3))*DF(G,X(3))*F*G+2*DF(F,X(2),2)*F*
“DF(F,X(2))2*G+2*DF(G, X(3), 2)*F2*G
“DF(G,X(3))2%F2)/(4*F2%G)

RICCI(3,2):=RICCI(2,3):=(2*DF(F,X(3),X(2))*F*G
-DF(F,X(3))*DF(F,X(2))*G

-DF(F,X(2))*DF(G,X(3))*F)/(4*F2%G)

Page 56



RICCI(3,3):=RICCI(3,3):=(2*DF(F,X(3),2)*F*G2-DF(F, X(3))2*G2
+2*DF(G;X(3),2)*F2*G—F(G,X(3))Z*Fz)/(4*F2*G)
RICCI SCALAR IS:~-
RS:=(2*DF(F,X(3),2)*F*G2-DF(F,X(3))2*G2+DF(F,X(3))*DF(G,X(3))*F*G
+2*DF(F,X(2),2)*F*G-DF(F,X(2))2*G+2*DF(G,X(3),2)*F2*G

-DF(G,X(3))2*F2)/(2*%F2%*G2)

NON-ZERO COMPONENTS OF THE EINSTEIN TENSOR ARE: -~

EINSTEIN(l,l)::((Ff(—2*DF(G,X(3),2)*G+DF(G,X(3))2))/(4*G5

EINSTEIN(2,2):=((G*(-2*DF(F,X(3),2)*F+DF(F,X(3))2))/(4*F2)

EINSTEIN(2,3):=(2*DF(F,X(3),X(2))*F*G~DF(F,X(3))*DF(F,X(Z))*G
-DF(F,X(2))*DF(G,X(3))*F)/(4*F2*G)

EINSTEIN(3,2):=((2*DF(F,X(3),X(2))*F*G-DF(F,X(3))*DF(F,X(2))*G
-DF(F,X(2))*DF(G,X(3))*F)/(4*F2%G)

EINSTEIN(3,3):=(-DF(F,X(3))*DF(G,X(3))*F—2*DF(F,X(2),2)*F
+DF(F,X(2))2)/(4*F2%*G)

Of course throughout the chapters I have simplified the results
into a more manageable form although this could also have been done
by the REDUCE language.

You might say that the results here are questionable, however
the results used throughout the chapters was only verified by this
program, which in turn has been checked against many metrics for

which the coresponding curvature,Ricci etc, are known.
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Appendix; 2y

Killing vectors and isometry groups.

§1. Introduction.

If one wants to get onto a more structured approach towards
unification or dimepsional reduction, some sort of classification of
the metric tensor is required. Towards this end, there are several
ways in which the metric tensor may be classified, and for a
detailed treatise see Petrov. One of the ways in which the metric
is' classified is by killing vectors which are used to form an
isometry group, and it is this isometry group that is used to
classify the metric. It is this approach that I have used, but
moreover it is used in Kaluza-Klien type theories to classify the
internal space (denoted by K in the case of Visser) whereas the
other approaches, for example, classify the metric tensor by
eigenvalues of the Ricci tensor in a null-'n'rad of coordinates, and
so not only are more difficult to use but also do not relate to

current theories so well.

§2. killing vectors.

Killing vectors are best described as being the direction in
which, when the metric is transformed into another coordinate system

it retains its form.

A

The metric in primed and unprimed coordinates are related by
iC A .
= (} { S (1)
%ab ai} Cjc«l“j)
4"y’

Now form invariance under such a transform requires
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1] 1 - 1]
9" (¥ )=g,,(v") (2)
If we now consider an infinitesimal transformation
T
< U—s N & (Lﬁ\ (3)
where K (y) are the components of a vector field (these are in fact
the killing vectors on the metric), and equate first orders in € we

obtain
¥ S\,
0 ((5(\)‘) = gxﬁggtg '(53_‘_&& 55(7: 1 ggw%_k’ %xé'(\)) 2 EA%@- 'k(; (4)

or g
oot W+ Cdag

oy 5 75

Which is called the Killing equation after the man who first defived

it, and it is from this that with a given metric the killing vectors

are derived, as will be shown later in §3 and §4.

If we now form elements

Yo = Kadn (e

where Kna is the ath component of the nth killing vector,

then they form a group which is of course a lie group, since they
are continuous. It is this, that is called an isometry group, which
is used to classify the metric tensor.

This method of classification is particularly good as the purely
geometric qualities are eliminated and so what we end up with is.the

description of the gravitational features.

§3. Killing vectors and Squires model.

The metric from chapter 3 on Squires model for dimensional

reduction is
K = cosh” (oty) o« = (b\‘/z, (74)
%u: "S"w\\'(,oln;) (744)
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06].5 oo ‘ (7iidi)
From this we can see that the variables x, and x, are missing

and so, by one of the many theories associated with killing vectors,

we automatically have two independent killing vectors;

k:f | and  [F o [ 0O (8)
0 \
{

0 )

If we now substitute the metric into the killing equation (5),

one ends up with six equations to solve for the remaining killing

vectors,
! : 3 . .
ICCosh () & sl ) k> =0 (91)
¢ wsb\léﬁnls alk\ _ S‘\\/\hl(‘)\’ﬂlyb‘[(i ~() (9ii)
cosw (o) dyk' — Ik =0 (91i1)
9 . . . iv
XK ws\/\(oucg) FoCoahign)) k> = 0 (9iv)
Swhiboa)d k™ ¢, k> .o (9v)
93'13 =0 (9vi)

We can now make use of the two killing vectors we have already found

to give four equations

A cosmlan;) = © (101i)
2, k* < 0 (10ii)
), K = 0 | (10iii)
db K <0 (10iv)
which obviously have only one solution
k! <O (11)

If we now form elements of the Lie group

Ko = Koo (12)

we can see that this is Abelian with

{ X, ,XZ\S - 0 (19)
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So the metric Squires finds in his paper has its structure

defined by an Abelian Lie group of order 2.

§4. Killing vectors and the nonlocallity problem.

The metric which was found in chapter 5 on the nonlocallity

problem was

(3{\ = F(}(L’)Q.) | (144)

I = GGny) (14i1i)
Yy = | (14iii)
where .
F: [ &(’og\,\(o(?(;b + !&- COS(M‘L) SmNo(n;)S ; K3 {')‘/L\ + (14iv)
G- ;(La. S]v\\,\t(ﬂ(x;} (14v)

If we now use a similar method to what was used in §3 then we
end up with six equations to solve (the reason why we end up with
six once again is that these equations are formed from the metric

which of course is symmetric with six independent terms, or

potentials);
kzF,"r t3F5 + ?\Fa,k‘ = O (15i)
Fo k' + 69,k = O (15ii)
Fo, k' - 2, K& =0 (15iii)
¢'k> + 26D, k* =0 (15iv)
GOk - I, K’ -0 (15v)

Jy K° = O (1ovi)

However 1if we take note of the metric then we can see that

it is
independent of X, and so immediately one killing vector is
K' - | (16)
0
0
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If we now make use of this then the above equations (15i-vi) boil

down too
) ~
Kt K fs = (17i)
v
‘ I, K = U (171i1)
G K& * LG’aLkl = O (17_ )
, ‘ iv
6'D$k1*' ()Lk3 = O
: (17v)
Y - I
93(? = 0 (17vi)

Equations (17iii) and (17vi) give
K* - fe) (18)
If we now look at equation (17ii) then we see
. kL - %(1L/%S\ (19)
With some work it is not hard to show that the only functions
that £ and g can be are the zero function
k>- © (201)
k*-. © (20i1)
This leads us to a simple translation group of order 1 for this

metric.

§5. Conclusion.

Since the group of isometries formed by the metric from Squires
model is an Abelian gréup of order 2 and the metric from the
non-locality problem has a simple translational group of order 1 5@@&
they are both independent solutions of the empty space field
equations. This I must say though is surprising as one might expect
from the geometry of the space at least one rotational isometry,

which may bare closer investigation at some later date.
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The above brief discussion, I hope, shows the power and
simplicity of isometry groups which in a view shared by many, is the

rigorous way to attack the problems confronting Physics today.




