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ABSTRACT 

To investigate the effect in perturbative QCD of multigluon emissions 

on the transverse momentum distributions of multijet final states in electron­

positron annihilation, we use a simplified model based on the approximation 

that gluons are emitted independently. 

As a guide to these multigluon emissions, we study the two-glu0n con­

tribution in some detail and calculate the Qr-distribution for four-jet events in 

e+ e- annihilation, using suitable jet-defining cuts, needed both theoretically, to 

regularize the soft- and collinear-gluon singularities, as well as experimentally, 

to group the final-state particles into distinct jets. To ascertain the accuracy of 

our approximate model, we compare our results with the exact ones, obtained 

by a Monte Carlo generation of events using the full matrix elements. vVe find 
-

that, for realistic values of the cuts, there is a significant kinematic region of 

agreement. 

This agreement and the validity of our model are further elaborated by 

taking its Abelian QCD limit, calculating distributions in other event shape 

variables and studying the jet broadening phenomenon. The applicability of 

our model is also delineated by finding it to be in remarkable structural and 

numerical agreement with the more exact algorithm of Altarelli et al. 

Finally, to investigate the effect of higher order and virtual graphs cor­

rections to low order tree-level results, we use our model to calculate the 0( a;) 

Qr-distribution for three-jet events in e+ e- annihilation with virtual contribu­

tions included. We study the dependence of these corrections on the resolution 

parameters used to perform the ( analytic ) cancellation of infrared and collinear 

singularities between real and virtual graphs and discuss their physical conse-

quences. 
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The use of Quantum Chromodynamics ( Q C D ) in treating 

the hadronic world has become an overwhelming trend in Particle 

Physics .... Perhaps it is for the first time in the history of physics 

that a theory which is neither precisely defined nor proved to have 

the right to exist as a consistent theory has become so popular. 

DOKSHITZER, DYAKONOV and TROYAN ( 1979 J 
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Chapter I Introduction 

CHAPTER I : INTRODUCTION 

I.l THE ROAD TO Q C D 

The formulation of QCD as the theory of strong interactions is the result 

of both theoretical as well as experimental developments in the last two or three 

decades. The theoretical strand of these developments incorporates the quark 

model of hadron structure, with a class of quantum field theories known as gauge 

theories [ref.I.l].-

I.l.A THE QUARK MODEL 

I.l.A.l The SU(3)p Classification of Hadrons 

In the early 60's, experiments in High Energy Physics (H E P) were 

performed using very sophisticated machines designed to accelerate particles to 

sufficient energies such that, when they collided with other matter, they were 

able to create new particles. These machines, combined with improved means 

of detecting particles, enabled hundreds of new particles to be discovered. 

As the number of the newly discovered particles was increasing dramat­

ically with time, it became less and less reasonable to suppose that all these 

particles were elementary. Instead, particles were grouped into families with 

similar properties. In fact, in 1962, Gell-Mann, and independently, Ne'eman 

made use of conservation laws, symmetry principles and group theory to pro-

pose a classification scheme known as the 'Eightfold Way' [ ref.l.2 ]. 

1 



Chapter I Introduction 

Their starting point was the property of charge independence of the 

strong nuclear force. The fact that particles ( such as the proton and the 

neutron ) with almost equal masses but quite different electric charges are in­

distinguishable in a world where strong force is the only interaction, can be de­

scribed in an elegant mathematical way, by introducing the concept of isospin. 

By regarding the proton and the neutron as the isospin-up and isospin-down 

components respectively, of a single nucleon, the strong interaction's indiffer­

ence to neutron-ness and proton-ness, can be expressed as the invariance of 

strong interactions to rotations in the isospin space. The group of rotations 

which achieves these rotations is the Special Unitary group of transformations 

of dimension 2, called SU(2) which acts on the 2-dimensional space defined by 

the proton and the neutron, redefining them as a mixture- of the original two. 

Schematically: 

GSU(2) (~) ~ (~:) 

leaving the free-nucleon Lagrangian invariant: 

Lo I.l.A.l 

But isospin is not the only quantum number respected by strong interac­

tions. Strangeness, a quantum number assigned to each of the then discovered 

'strange' particles ( such as the A's and the K's ), is also conserved in strong 

interactions, as strange particles can only be produced in pairs ( associated 

production ). 

When conservation of strangeness is added to that of isospin as a prop­

erty of strong interactions, it is clear that the strongly interacting particles 

( hadrons ) are governed by a bigger symmetry group. It turns out that SU(3) 

is the appropriate group whose representations exactly fit the quantum num­

ber structure of the observed light hadrons. Light mesons occur only in SU(3) 

singlets and octets, whereas light baryons are restricted to singlets, octets and 

decuplets ( fig.l.l.l ). 

2 



Chapter I Inroduction 

V Hypercharge 
L1+ L1++ 

{a)-

S Strangeness 
---~_.K+ 

+1 

Figure I.l.l SU(3)F classification of Hadrons 

a] The decuplet of the spin-3/2 baryons 

b] The octet of spin-0 mesons 
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Chapter I Introduction 

Having found the correct symmetry group, a major problem remained: 

Why the mesons filled some multiplets, the baryons fitted others, but other 

multiplets had no particles? In other words, a more dynamical explanation of the 

observed hadron structure was needed to understand how the representations of 

SU(3) which were occupied by particles could be chosen from amongst all those 

mathematically possible. 

l.l.A.2 The Genesis of Quarks 

In 1964, Gell-Mann and Zweig (independently ) proposed an understand­

ing of the SU(3) classification of hadrons by introducing the concept of 'quarks' 

[ref. 1.2,3]. As they pointed out, the observed patterns can be understood in 

terms of the hypothesis that hadrons are composite structures, built from an .el­

ementary triplet of spin-1/2 quarks, corresponding to the fundamental represen­

tation of SU(3). The combinations of quarks which give the occupied hadronic 

represetitations of SU(3) are a quark-antiquark pair for the· meson multiplets 

and three quarks for the baryon multiplets. This is expressed mathematically 

by combining the representations of the group: 

q ® q = 3 ® 3* --+ 1 EB 8 

The quark constituents of the baryon decuplet and of the meson octet are illus­

trated in figure 1.1.2. 

l.l.A.3 Properties of Quarks 

There are several interesting consequences of the above scheme. We first 

note that, if three quarks are to make up each baryon with baryon number 1, 

then the quarks themselves must have baryon number 1/3. Then, using formulae 

relating charge to isospin and baryon number, we can see that quarks must have 

fractional charges. Moreover, to ensure that the baryons generated are fermions 

and the mesons bosons, it is necessary to assign the quarks spin 1/2. 

4 



Chapter I Introduction 

S Strangeness 

+1 

ud ua 

(a) 

Y Hypercharge 
(ddd) (udd)' (uud)' (uuu) 

+1 

(b) 

Figure 1.1.2 Quark content of Hadrons 

a] The meson octet 

b) The baryon decuplet 
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Chapter I Introduction 

A summary of the quark properties is shown in the following Table: 

Quark 

Up 

Down 

Strange 

q 

u 

d 

s 

Spin 

1/2 

1/2 

1/2 

Charge 

+2/3 

-1/3 

-1/3 

I 

1/2 

1/2 

0 

+1/2 

-1/2 

0 

s 

0 

0 

-1 

B 

1/3 

1/3 

1/3 

It should be emphasized that in this Quark Model quarks are regarded as 

'entities' rather than particles. In other words, we do not have to assume their 

existence as observed particles to enjoy the successes of SU(3) of so-called flavour. 

However, there was more to the idea of quarks than just mathematical rules for 

constructing hadrons, and that was revealed by a series of classic experiments 

on Deep Inelastic lepton Scattering ( DIS ), as described in the next section. 

I.l.A.4 Bjorken Scaling and the Parton Model in D I S 

In this class of experiments, a high momentum probe, usually a photon, 

strikes a nucleon ( fig.l.1.3) and, provided its momentum is high enough so that 

its wavelength will be smaller than the size of the nucleon, probes its structure, 

thus providing dynamical evidence for the existence of quarks [ref.l.4]. 

The main measurement of the experiment is the variation of the cross­

section with energy lost by the lepton during the collision and with the angle 

through which the incident lepton is scattered. The energy lost by the lepton v 

is simply the difference between its incident and final energy: 

The angle through which the lepton is scattered is related to the square 

of the momentum tra~sferred by the photon q2 from the lepton to the nucleon, 

by the formula: 

6 



Chapter I Introduction 

p ! Hadr00s X 

{a) 

(b) 

Figure !.1.3 Deep Inelastic Scattering 

a] Inelastic electron-proton scattering via single photon exchange : 

e-p--+ e-X 

b] Quark-Parton model description of Deep Inelastic Scattering 
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Chapter I Introduction 

Two ideas in particular played an important role in the development 

of the experiments and our understanding of them. The two ideas, both put 

forward in 1969, are those of scaling and of the parton model [ref.I.4]. 

(i) Scaling is the name given to a phenomenon of the cross-section, first 

predicted by J .Bjorken. The prediction is that, when the momentum 

carried by the probe becomes very large, then the dedendence of the 

cross-section on parameters such as the energy v and the momentum 

squared q2 becomes very simple. 

(ii) The Parton Model was first put forward by R.Feynman as a simple expla­

nation of Bjorken scaling. He assumed that the struck nucleon is made of 

smaller constituents, the partons, and visualized DIS as a process where 

the incoming lepton emits a photon which interacts with one of these 

'free' partons ( inside the hadron ). 

In other words, the scaling behaviour of ·the cross-section was interpret­

ted as an indication of scattering off point-like partons, which turned out to 

be identified with the quarks of the quark model, as they were found to have 

identical properties ( spin 1/2, fractional charges etc ). 

The Quark-Parton Model was further elaborated when it was realized 

that the cloud of quarks-partons inside hadrons had two components. One con­

tained the minimum number of quarks required to construct the SU(3) quan­

tum numbers of the hadron, whereas the second comprised a qq sea, an SU(3) 

singlet cloud contained an indefinite number of quark-antiquark pairs. Further­

more, momentum conservation rules when applied to DIS results suggested that 

quarks carry only about half of the total proton momemtum. The other half 

was thought to be carried by neutral 'gluons', particles that were responsible for 

glueing quarks together to form hadrons. ( If hadrons were a simple composite 

of non-interacting quarks, then they would fall appart! ) Therefore, we can 

schematically say: 

Partons Quarks + Gluons 

8 



Chapter I Introduction 

I.l.A.S Evaluation of the Quark-Parton Model 

During the 60's the Quark Model enjoyed a number of successes. It not 

only provided a classification scheme for hadrons and generated the spectrum of 

masses for particles with the same quantum numbers, but also predicted rela­

tions between cross-sections for the interactions of particles from different multi­

plets. Later, the Quark-Parton Model provided a straightforward and intutively 

appealing explanation of scaling in Deep Inelastic Scattering experiments. 

However, the naive quark model was unable to provide answers to very 

fundamental questions, such as: 

a) Why are quarks not seen as physical particles? 

b) Why do they seem to form only certain combinations? 

c) What is the nature of the forces they experience? 

Questions like these could not be answered until a consistent dynamical 

theory of strong interactions between quarks and gluons was constructed. 

9 



Chapter I Introduction 

I.l.B GAUGE FIELD THEORIES 

I.l.B.l The Idea of Gauge Invariance 

In the last section, we reviewed the establishment of the quark model 

as a picture of the· hadronic world. Through a process of modelling or analogy, 

hadrons are now seen as quark composites, just as nuclei were seen as composites 

of neutrons and protons, and atoms as composites of nuclei and electrons. 

A similar conceptual process governed the development of the gauge the­

ories of quark interactions, as these were explicitly modelled upon the already 

established theory of electromagnetic interactions, known as QED, the founda­

tions of which ·were laid down by Maxwell in 1864 in his equations that_ unified 

electric and magnetic interactions [re£.1.5]. The electromagnetic potential that 

one is led to introduce in order to generate fields that comply with Maxwell's 

equations, is not uniquely defined. The freedom to choose many potentials that 

describe the same electromagnetic fields has come to be called 'gauge invariance'. 

It has also been seen that this invariance can be phrased in terms of a continuous 

symmetry of the Lagrangian, which leads, through Noether's theorem, to the 

conservation of electric charge. 

Although it is clearly possible to regard gauge invariance as simply an 

outcome of Maxwell's unification, a greater importance could be attached to the 

symmetry itself, when we investigate the degree to which Maxwell's equations 

might be seen to follow from the symmetry. 

I.l.B.2 Phase lnvariance in Quantum Mechanics 

Suppose that we knew the Schroedinger equation, but not the laws of 

electrodynamics. Would it be possible to derive Maxwell's equations from a 

gauge principle? The answer is yes and let us see why: [ref.l.6] 

10 



Chapter I introduction 

A quantum-mechanical state is decribed by a complex Schroedinger wave 

function tj;(x). Quantum mechanical observables involve inner products of the 

form: 

(A) I¢* A¢ 

which are unchanged under a global phase rotation: 

tj;(x) 
I 

~ tP (x) 

The requirement that under a local change of phase: 

tf;(x) ~ 
I 

tP (x) 

physical quantities should be invariant can be satsfied, but at the price of intro-

clueing an interaction that must be electrodynamics. 

I.l.B.3 Non Abelian Gauge Theories 

In other words, electromagnetism posesses a local gauge invariance such 

that, when we impose that local symmetry on a free-particle Lagrangian, it 

is possible to construct the theory of electrodynamics. Recall that the free­

nucleon Lagrangian (eq.l.l.l) has an invariance under global isospin rotations 

( see §I.l.A.l). In analogy with electromagnetism, we may ask whether we can 

turn the global SU(2) invariance of the free field theory into a mathematically 

consistent local SU(2) invariance. If so, what are the physical consequences? 

Yang and Mills were the first to construct such a non-Abelian theory, 

in complete analogy with the Abelian case. The interaction term in this case 

couples the gauge fields to the conserved isospin current of the nucleons [ref.1.7). 

Despite the similarities between Abelian and non-Abelian Gauge Theo­

ries, there are important differences too. Yang-Mills theory has a richer struc­

ture. In additon to the gauge field propagator, it contains three- and four-gauge 

boson vertices shown in fig.l.1.4. As a consequence of gauge invariance, there is 

only one coupling strength. One single constant g couples all matter fields to 

the gauge bosons and self-couples the last. 

11 



Chapter I Introduction 

QED: 

~ Photon Propagator 

(a) 

SU(2): 

'OOOOOOOOOOOOOOO\ Gauge Field Propagator 

_ 3-Gauge- Boson Vertex 

4-Gauge- Boson Vertex 

(b) 

Figure 1.1.4 Feynman Rules for Gauge Theories 

a) The photon propagator in Quantum Electrodynamics 

b) Gauge boson propagator and self-interactions in Yang-Mills theory. 
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Chapter I Introduction 

In the next section we shall see that, as a result of these extra gauge boson 

self-couplings, non-Abelian Gauge Theories have a very interesting property 

known as Asymptotic Freeedom. 

I.l.B.4 From Scaling to Asymptotic Freedom 

In section I.l.A.4 we emphasized the importance of the scaling phe­

nomenon observed in Deep Inelastic Scattering experiments and its straight­

forward explanation in terms of the naive quark-parton model. In this section 

we review the field theoretical approach to scaling and we sketch the argument 

that gauge field theories are the only interacting field theories capable of under­

writing the phenomenological successes of the quark-parton model and hence 

giving an explanation of scaling. [ The only other t-heories which reproduced 

the required 'scaling b_ehaviour' were the free-field theories. That free-field the­

ories displayed such behaviour was no surprise; the parton model could itself 

be regarded as a free-field theory since the partons did not interact with one 

another]. 

Renormalization Group Equation 

It is a general feature of field theories that their predictions change in 

going from one momentum scale to another in a way which is governed by 

the so-called Renormalization Group Equation (RGE) [ref.I.8]. This equation 

enables such scale transformations to be understood in terms of changes in an 

effective coupling constant, g, of the underlying field theory, the behaviour of 

g being determined by a mathematical function f3(g ). In general, the precise 

form of this function is unknown, but for small values of g it can be calculated 

using conventional perturbative techniques. When RGE was applied to Gauge 

Theories a remarkable and unique property emerged which became known as 

Asymptotic Freedom [ref.I.9]. 

13 
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It was found that when f3(g) is computed perturbatively in non-Abelian 

Gauge Theories its form is such that at higher and higher momenta the effective 

coupling constant g becomes smaller and smaller, tending asymptotically to 

zero. In other words, at high momenta, a non-Abelian Gauge Theory behaves 

more a:nd more like a free, non-interacting field theory: a non-Abelian Gauge 

Theory is Asymptotically Free. The above discovery increased the hopes for a 

realistic and calculable field theory of strong interactions. Non-Abelian. Gauge 

Field Theories (NAGFT) were a serious candidate for the job. 

I.l.B.5 SU(3) of Colour 

Once Asymptotic Freedom had been discovered, two questions remained 

to be decided in the construct_ion of a realistic candidate gauge theory of strong 

interactions: 

(i) What were the fundamental fields which appeared in the Lagrangian of 

the theory and 

(ii) Under what symmetry group was the L invariant. 

An obvious conjecture, given that gauge theory reproduced the predic­

tions of the quark-parton model, was that the fundamental fields were quark 

fields. In a gauge theory, the quark fields would interact with one another via 

the exchange of gauge vector fields; and an equally obvious conjecture was that 

the gauge vector bosons were the enigmatic gluons, already put to use in parton­

model phenomenology. 

On the other hand, the choice of group was not so obvious. As there was 

increasing evidence that SU(3)F could not be the basis of a successful theory of 

the hadronic interactions, we had to look for a property that really distinguishes 

quarks from leptons. The clue came from the fact that , unlike leptons, quarks 

cannot be seen as free particles. 

14 
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The confinement of the quarks was thought to be the effect of a new 

quantum number called 'colour'. Each quark flavour was assumed to come in 

three colours, but the colour of quarks is permanently hidden from us because 

all the allowed quark structures ( observed hadrons ) are colourless, colour sin­

glets. Since then, several pieces of evidence have been arrayed in favour of the 

hypothesis that quarks are colour triplets [ref.I.lOJ. These include the resolution 

of the spin-statistics problem for baryons, the magnitude of the cross-section for 

electron-positron annihilation into hadrons, the branching ratios for T-dec~y, the 

1r
0 lifetime, and the requirement of anomaly cancellation in the standard model 

of weak and electromagnetic interaction. The known leptons, in contrast, are 

all colourless- states. The distinction suggested the possibility that colour was 

the appropriate change of strong interactions and supported the_ attempts to 

formulate a dynamical theory based on local colour-symmetry, a coloured gauge 

theory. 

I.B.1.6 Formulation of Q C D 

The construction of an SU(3) colour gauge theory for the interactions of 

colour triplet quarks followed the general procedure introduced for non-Abelian 

gauge theories by Yang and Mills and is schematically described below: [ref.I.ll] 

1. A wavefunction 1/J describes the propagation of a quark 

2. The Lagrangian L( tPh tP2) describes the wavefunction of two quarks in 

interaction 

3. Gauge invariance demands that the Lagrangian must be invariant under 

the redefinition of the quarks' colour code: 

4. This gauge invariance may be required to hold locally: 
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5. The Lagrangian can remain invariant under this local group only if a new, 

self-interacting gauge field is introduced: 

6. The quanta of the colour gauge field, the gluons, mediate the strong force 

between the quarks and also between themselves 

The QCD Lagangian has the standard form: 

where the colour triplet quark spinor is given by: 

and the covariant derivative is: 

Ell represents the coloured gauge fields ( gluons ) which mediate the 

strong force between coloured quarks and Gllv is the gluon field strength tensor: 

Knowing the QCD Lagrangian, interactions between quarks can be stud­

ied in a very simplified fashion and used to verify that coloured singlets enjoy 

a preferred status ( so that the QCD spectrum displays the systematics that 

inspired the invention of the theory ). 

The above statement, shown to be true by calculations of the 'interaction-

energies' for two body- systems (composed of quark-quark and quark-antiquark), 

demonstrated that the colour singlet qq is the most attractive of all the two-body 

channels ( for instance, the one gluon contribution for qq is attractive for the 

colour singlets but repulsive for the colour octet ), whereas similar calculations 

for three quark systems confirmed that the colour singlet qqq is the most ener-

getically favoured state. 
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I.l.B. 7 QCD in Practice 

If QCD is indeed the correct theory of the strong interactions it must 

describe an enormous range of phenomena, from the spectrum of light-hadrons 

to DIS: 

Recall thet field theoretic predictions change when going from one mo-

mentum scale to another and these transformations can be understood in terms 

of changes in the effective coupling g of the theory. The RGE ensures that 

a change in the momentum scale from Jl to Q is compensated by correspond­

ing changes in the coupling and the fields, in such a way that all bare Green 

functions are independent of the change; so that: 

The running of the coupling is governed by the equation: 

(1) 

where the ,8-function is calculated perturbatively in QCD: 

Solving (1) and (2) and defining a 8 = g2 /47r as the strong interaction 

coupling constant, we obtain: 

47r 

where: Q2 : momentum scale 

,Bo 11 - 2n tf3 

n 1 : number of quark flavours 

AQc D : integration constant ( the scale of strong interactions) 
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Therefore, at sufficiently high momenta ( that is, short distances ) 

a 8 ( Q2) ~ 1 so that perturbation theory is applicable and QCD is a calculable 

theory of strong interactions. Although the property of Asymptotic Freedom by 

no means justifies all the hypotheses of the quark-parton model, it does make 

it plausible that at very short distances ( i.e. when examined by very high-Q2 

probes ) quarks may behave nearly as free particles within hadrons. Applica­

tions of QCD perturbation theory include calculations in e+ e- -+ hadrons, ( see 

next section ), lepton-hadron ( DIS ) and hadron-hadron ( collider ) physics. 

At the other end of the spectrum, as we consider smaller and smaller 

momentum scales ( that is larger and larger distances ) the effective coupling 

becomes larger and larger, so that the perturbative expansion breaks down and 

non-perturbative techniques are needed to understand the low energy hadronic 

world. It is generally believed ( but_ not yet proved ) that, as a consequence 

of the continuous growing of the coupling, colour is 'confined' and all coloured 

particles - quarks and gluons - interact so strongly with one another that only 

colourless combinations- hadrons- can exist in isolation [ref.l.12]. 

The proof of confinement has been seen as one of the most important 

problems in theoretical physics despite the fact that several new theoretical tra­

ditions- the 1/N expansion [ref.l.13], monopoles [ref.l.14], instantons [ref.l.15], 

and lattice gauge theories [ref.l.16] - have been put forward by QCD theorists. 

Experimentally, the confinement hypothesis has been tested by (so far unsuc­

cessful ) searches for free quarks or for signatures of unconfined colour. Sensitive 

negative searches for quarks continue to be interesting and the definitive obser­

vation of free quarks would certainly be revolutionary ! 
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1.2 JETS IN e+ e- ANNIHILATION 

1.2.1 Introduction 

Although technologically extremely complex and sophisticated, experi­

ments in HEP are in principle rather simple. As indicated in figure 1.2.1, one 

takes a beam of particles and fires it at a target. Interactions take place within 

the target ( some of the beam particles are deflected or 'scattered'; often addi­

tional particles are produced ) and the particles that emerge are registered in 

detectors of various kinds. 

An interesting development of recent years has been the transitition 

from fixed-target accelerators ( of the type described above ) to collider ma­

chines where particle-antiparticle beams collide head-on. Of the latter type 

are electron-positron colliders which display a number of attractive features 

( summarized below ) that have made e+ e- collisions the most fruitful class 

of experiments in recent years [ref.I.17]. 

(i) Because the electron and the positron are antiparticles, they often anni­

hilate into a 'vacuum' state of pure energy. All the quantum numbers of 

the initial particles cancel and the energy resulting from the annihilation 

is free to create new particle-antiparticle pairs ( an e+ e- pair or a qq pair 

for instance ). In this way e+ e- are ideal reactions in which to look for 

new particles. 

(ii) e+e- annihilation is also potentially rich in energy with which to create 

new particles. This is because, being antiparticles, the electron and the 

positron have exactly the same mass. So that, if they collide head-on with 

equal and opposite momentum, all the energy is free to create particles. 

This is in contrast to accelerating electrons into a fixed target where 

momentum conservation requires that much of the energy be used in 

accelerating the electron up to the energy for particle creation. 
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Detectors 

Figure 1.2.1 Layout of a HEP experimemt 

Collider Location Start c.m.s Energy ( GeV) 

SPEAR Stanford, USA 1973 2.4-8.4 

DORIS DESY,Hamburg, 1974 3.0-10.5 (12) 

W.Germany 

PETRA D ESY ,Hamburg 1978 10-37(45) 

CESR Cornell, USA 1979 8-16 

PEP Stanford, USA 1980 10-30 

LEP CERN ,Geneva, 1988 44-260 

Switzerland 

Table 1.2.1 Important e+e- collider machines of the recent past 

and the near future 
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(a) 

(b) 

(c) 

Figure 1.2.2 Basic processes in e+ e- annihilation 

a] Muon pair production ( Electromagetic Interaction ) 

b] Hadron production ( Strong Interaction ) 

c) Annihilation into Z0 ( Weak Interaction ) 
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(iii) Another benefit of head-on collisions with stationary centre-of-mass is 

that the angular distribution of the created particles can be measured 

directly and any significant asymmetries detected that much more easily. 

(iv) Because of the pointlike nature of the colliding particles, e+ e- reactions 

are very clean with no debris from the initial state. This is in contrast 

to proton-antiproton collisions in which quark-antiquark annihilation or 

quark-gluon scattering take place in the presence of spectator quarks and 

leptons. 

(v) Finally, e+e- experiments provide an ideal framework in which to study 

particle interactions as they allow all three fundamental interactions rel­

evant at fermi distance scales to occur. These manifest themselves in the 

possibilities illustrated in figure 1.2.2. 

1.2.2 Hadron Formation in e+e- annihilation 

An important class of e+e- collisions is those in which hadrons emerge in 

the final state and which indicate that the strong interaction is involved some­

where. Hadron production in e+ e- annihilation has been seen as a two-stage 

process. Since the electron and the positron are antiparticles, they can cancel 

one another out to form a single virtual photon ( multiphoton processes being 

strongly suppressed by powers of aQED ). This virtual photon then converts 

into a quark-antiquark ( qq) pair. The process e+ e- -+ qq is very similar to the 

( pure electromagnetic ) process e+ e- -+ J.L+ J.L- ( the only difference being that 

the charges of the quarks are only some fraction of that of the muons ), and 

can be described in familiar QED terms. Shortly after its formation the qq pair 

rearranges itself into a shower of hadrons in a process that involves the creation 

of more qq ( fig.l.2.3 ), but which is not fully understood as it is related to the 

confinement mechanism of quarks inside hadrons ( fig.l.2.3 ). 
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/ 

Figure 1.2.3 The transformation of the qq pair into observed 

hadrons involves the creation of more qq pairs 

--

Colours 
Flavours L Qj2 

Quarks 

Figure I.2.4 The value of the ratio R is equal to the sum of the 

squares of the quark charges 
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The ratio R of the cross-section for e+ e- -+ hadrons to that for e+ e- -+ 

J-l + J-l- (measured as the energy of the collision varies ) has been seen as one of the 

most significant quantities in particle physics in the last decade. Its significance 

is that it compares a reaction we understand very well ( muon-pair production ) 

with a. class of reactions we wish to understand ( hadron production ) thus 

providing a very useful guide to our thinking about the unknown. 

In fact, the ratio R was involved in one of the most revolutionary dis-

coveries in REP: the discovery of the J /psi particle in November 1974, which 

proved the existence of a fourth flavour of quark , charm c. To see how R is 

a directly observable quark-counting opportunity which provides a measure of 

the number of quarks and their properties, let us recall its value in the simple 

three-flavour quark model: u (charge +2/3e) d(-1/3e) and s(-1/3e) [fig.l.2.4]: 

R was then predicted to be: 

22 12 . 12 
(-) +(--) +(--) 
3 3 3 

2. 

3 

If we now take into account that each flavour of quarks comes in three 

different colours ( see §I.l.B.5 ) then the predicted value of Rat low energy ( few 

GeV ) is R=2. This prediction agreed reasonably well with the value measured 

experimentally in the resonance region during the early 70's, and it gave support 

to the idea of coloured quarks. 

In November 1974, two experimental groups (at SLAC and Brookhaven) 

reported independently and ( almost ) simultaneously the discovery of a new 

resonance (particle) at 3GeV, the Jjpsi particle. In the SLAC e+e- experiment 

R was seen to have an almost 8-function spike at the tf; mass with a background 

of roughly 2 below 3Ge V and rising to about 3 ( above 5Ge V ) ; in contradiction 

with the above predicted value. After a brief period of speculation the correct 

interpretation of the J /psi emerged. What had happened was that the increasing 

energy of thee+ e- collision had become sufficiently large to create a new flavour 

qq pair. 
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This new flavour, called charm, had been already predicted by Gla.Show, 

lliopoulos and Maiani in order to explain the behaviour of hadrons in the 

Glashow-Weinberg-Salam theory of the weak force and understand the absence 

of Strangeness-changing neutral currents. The discovery of the c-quark empha­

sized the ability of e+ e- -annihilation experiments to produce new particles and 

marked the beginning of further developments, theoretical as well as experimen­

tal, in the late 70's, during which: 

The existing set of f~ur leptons ( e, ve, Jl, Vp. ) was augmented by the 

discoveries of the heavy lepton tau ( T ) and of the b-quark and the presumption 

of the associated tau-neutrino ( Vr ) and the t-quark. 

The resulting six-lepton and six-quark ontology has the aesthetically 

pleasing property of grouping the leptons and the quarks in three generations 

( see Table 1.2.2 ) and, if blended with the developing gauge theoretical ortho­

doxy ( described in the last section ), provides a complete and consistent frame­

work for the study of the microworld, known as the Standard Model [ref.l.18]. 
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Elementary Particles 

Generation ( Family ) 1 2 3 Charge 

Quarks u c t 2/3 

d s b -1/3 

Leptons e J1 T -1 

l/e l/1-' Vr 0 

Fundamental Forces 

Interaction Theory Gauge group Mediator Strength 

Strong QCD SU(3)c Gluons "'1 

Electromagnetic QED U(1) Photon 1/137 

Weak GWS SU(2) w± zo 
' 

10-5 

Gravity General Superstrings Graviton 10-38 

Relativity ? 

Table 1.2.2 The 'Standard Model' in Theoretical High Energy 

Physics: Elementary Particles and Fundamental Interactions 
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1.2.3 Jets and Fragmentation Models 

If 'psichology' was the most fashionable experimental field in the 70's, 

this decade has seen the study of jets to emerge as the most significant testing 

ground' for QCD as a theory of strong interactions. 

As already mentioned, the quark-antiquark pair produced in e+ e- an­

nihilation somehow 'dresses' itself to form normal hadrons. The hadrons pro­

duced this way seemed to favour an interesting configuration: sprays of particles 

( jets ) all travelling in the general direction of the parent quark ( or antiquark ) 

and having only a small component of momentum transverse to that direction. 

In other words, quarks converted to 'jets' and the hadrons produced showed a 

two-jet structure ( fig. 1.2.5 ). 

The claim that jet studies can be very informative about the quarks and 

their properties can· be seen from the following example: As these jets preserved 

the directions of motion of the outgoing quarks, which in turn depended upon 

their spins, measurements of the jet angular distributions indicated the spin of 

the quarks. The 1 + cos2 ()behaviour, where() is the angle between the incoming 

beam axis and the outgoing jet, confirmed that quarks are indeed spin 1/2 

objects. 

More detailed QCD tests became possible when it was realized that three­

jet as well as two-jet events were visible in e+e- annihilation [ ref.l.19]. It was 

argued that in QCD three-jet events would arise when either of the outgoing 

quark and antiquark emitted a 'hard' gluon, a gluon carrying a large momentum 

transverse to that of the emitting quark, which would form its own separate jet 

[ fig.I.2.5b] In QCD, the rate of emission of gluons from quarks and antiquarks 

is controlled by the effective quark-gluon coupling, a 8 , so that measurements of 

the ratio of three- to two-jet events provided quantitative estimates of the size 

of a 8 [ref.l.17,19], comparable with those determined from scaling violations in 

DIS. 
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(a) 

(b) 

Figure 1.2.5 Jet production in electron-positron annihilation 

a] Parton model description of a two-jet event in e+ e- annihilation 

b) Three-jet production in perturbative QCD 
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Ever since, studies of multijet configurations in hard processes ( such as 

the e+e- annihilation) have continued to be one of the most fruitful tests of the 

structure of perturbative QCD [ ref.I.17,19]. They have supported our belief that 

QCD is the theory of strong interactions, despite the many theoretical questions 

that remain unanswered. For instance, the 'dressing' mechanism that converts 

the 'coloured' quarks and gluons into 'colourless' hadrons, apparently related 

to the confinement problem, is still not very well understood, requiring the 

use of certain 'fragmentation models', which have been implemented in' Monte 

Carlo simulation programs. These models have enjoyed many phenomenological 

successes in describing the properties of the observed hadronic jets and can be 

generally divided into three major classes [ref.I.20]: 

1. Independent Fragmentation Models, originally proposed by Feynman and 

Field and recently improved and generalized, in which the outgoing par­

tons fragment independently of what else emerges from the reaction. 

2. String Models, due to the Lund group of Andersson et.al., in which quarks 

and gluons are pictured to be confined via a string-like structure and the 

jet formation is due to the progressive breaking of the string. 

3. QCD-Shower Models, of Webber et. al., in which a perturbative QCD 

radiation of gluons in the initial stage of the reaction is followed by a pro­

duction of pair of resonances in a (non-perturbative) quark-gluon fusion. 
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1.3 OUTLINE OF THIS THESIS 

Having given the background, we outline here the topics of this thesis. 

These are organized as follows: 

Chapter II serves as an introduction to tranverse momentum distribu­

tions in 'semi-hard' processes, their description in terms of perturbative QCD 

and the theoretical uncertainties that are involved in such calculations. As a 

working example, we look at the production of multijets in electron-positron 

- annihilation in some more detail and we set up a simple model for quick and 

reliable calculations of multigluon cross-sections in e+e- ---+ qq + (ng). The 

model is based-on the approximation that the gluons are emitted independently 

(apart from transverse momentum conservation ) and is particularly useful for 

calculating transverse momentum distributions in the multijet case. 

In chapter III, we calculate the four-jet cross-section in e+e- annihilation 

as the first application of this model and compare its predictions with the exact 

fixed order result obtained using a Monte Carlo generation of events, according 

to the full matrix elements. The comparison of the two results helps to iden­

tify the kinematic region in which the model is most likely to be reliable, and 

determine the choice of the various parameters involved for maximal agreement. 

In chapter IV, we explore the possibility of using our model in other 

calculations which are not very different from the one described in the previous 

chapter. Comparisons of our results with the full ones will serve as a measure of 

the potential of our model to be used as a tool to study the structure of multijet 

final states in some more detail, thus providing us with some answers to the 

main theoretical questions formulated in chapter II. 
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These studies are detailed in chapter V, where we investigate the impor­

tance of higher order corrections to low order tree calculations. In particular, the 

dependence of these corrections on the values of the 'jet-defining cuts', which 

are necessary to regularize infrared and collinear singularities between higher 

order real and virtual graphs as well as to group the final-state particles into 

hadronic jets, is studied in the case of a three-jet event in e+ e- annihilation. 

Finally, a summary of this thesis, the overall conclusions of our studies, 

a critical overview of the present status of the Standard Model and some hints 

of the sort of new Physics we expect to see in the near and remote future, are 

all the subject of the concluding chapter VI. 

It should be noted that, a brief introduction and a summarizing para­

graph are included at the beginning and the end, respectively, of each chapter. 

Also note that, for reasons of simplicity, equations, figures and references are 

separately numbered in idividual chapters. A list of all the references can be 

found at the end of the thesis. 
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CHAPTER II TRANSVERSE MOMENTUM DISTRIBUTIONS 

11.1 INTRODUCTION. 

One of the characteristic features of a field theory with a dimensionless 

coupling constant is a large value of transverse momenta of final state particles 

in hard processes. The experimental observation of these high Qr phenomena 

has served as a decisive test of the applicability of perturbative QCD to short 

distance physics . 

A list of such hard processes that have been studied in detail include : 

a) The annihilation of an electron-positron pair into jets which are at a 

relative transve~se momentum Qr to each other (fig.II.l.l) [ref. 11.1]. 

b) The production of a lepton pair with mass Q2 and relative transverse 

momentum Qr in hadron collisions (the Drell- Yan process A + B -t 

l1 + l2 +X, where X is often specified by the number of hadronic jets 

produced ) ( fig.II.1.2 and 3) [ ref.ll.2 ]. 

c) The production of multijets at the collider p p -t jets ( fig.II.1.4 ) 

[ ref.ll.3 ]. 

In perturbative QCD , all these high Qr-processes are understood to 

be the result of gluons being emitted off quarks and antiquarks to balance the 

relative Qr of the fermions ( fig.II.lc,2c ). 

Let us consider the first case as a typical example : 

To lowest order in perturbative QCD , this process is described by the 

decay of the virtual photon of mass Q produced by the annihilation of the 

electron-positron pair into a quark-antiquark pair . The hadronisation of this 

parton pair gives rise to two back-to-backjets. However, to next order, the quark 

and the antiquark can emit a gluon which, upon fragmentation, produces an 

additional jet. The two original jets are now at a relative transverse momentum. 
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(a) 

jet1 

jet 2 

(c) 

Figure II.l.l Jets in e+ e- annihilation. 

la] Two back-to-hack jets 

lb] Jets at a relative transverse momentum Qr 

lc] Parton model description of e+ e- -+jets 

jet 3 

(b) 

(d) 

ld] Gluon emission to balance the relative Qr of the final state jets 
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(a} 

q q 

(c) 
q --

q g 

(d) 

Figure II.1.2 The Drell-Yan process. 

2a] Lepton pair production in hadron collisions A+ B ---+ l1 + l2 +X 

2b] Parton model description ( Boson at rest ) 

2c) Boson (lepton pair) with Qr. Gluon emitted to balance it 

2d] Typical Feynman diagram for qq---+ Bg,where B = /, W, Z 
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Figure II.1.3 pp ~ w±,zo+ jets 

jet 1 

p 

Figure Il.1.4 pp ~jets 
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II.l.l The aim of this work 

The study of all the above processes enables us to investigate the structure 

of perturbative QCD as a theory with massless vector gluons. In fact, order by 

order in a perturbative analysis, gluon emissions give rise to terms of the form 

[ ref.ll.4 ] : 

m ~ 2n -1 

Now, the high energy scales reached by present and future accelerators 

leads us to distinguish between two large, but distinct, kinematic regimes: 

(i) Qr"' Q 

At large transverse momentum, the coupling constant as( Qr) is small 

and the logarithms are- under control, so that the perturbative expansion is 

rapidly convergent. The property of Asymptotic Freedom ensures the domi­

nance of the emission of a single, hard gluon, making the O(a 8 ) result a teliable 

approximation. 

(ii) AQcD << Qr << Q 

As Qr becomes smaller, such that A < < Qr < < Q , the coupling con­

stant a 8 ( Qr) increases and the logarithms become dangerously large so that 

the simple perturbative expansion breaks down. Multigluon emission becomes 

increasingly more important, forcing a consideration of all orders in as. 

One of the major theoretical advances of recent years has been the de­

velopment of techniques to sum these large logarithms to all orders, thus ex­

tending the range of applicability of perturbative QCD. Such resummation was 

first attempted by Dokshitzer, Dyakinov and Troyan ( DDT ) [ ref.ll.5 ], who 

showed how the leading double logarithms ( DLLA ) to each order exponen­

tiate, allowing a simple resummation that produces the Sudakov form-factor 

suppression of small Qr processes. Their approach was further improved when 

subleading contributions were also taken into account by an exact treatment of 

transverse momentum conservation. Resummation and exponentiation of non­

leading terms was theoretically proposed by Parisi and Petronzio [ ref. 11.6 ] 

and phenomenologically elaborated by Halzen, Martin and Scott [ref. 11.7]. 
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Subsequently Collins and Soper ( ref .11.8 ] systematised the summation 

of non-dominant logarithms to all orders in a 8 and analysed the origin and form 

of exponentiating and non-exponentiating terms, thus providing a consistent 

framework for studing transverse momentum distributions in perturbative QCD . 

. More recently, Altarelli et.al. (ref.II.9) re-examined the Qr- distribution 

of the vector boson produced at the collider, taking into account both kinematic 

regions mentioned above. Their final formulation not only sums the multigluon 

emissions to DLLA at small Qy, but at large Qy reproduces the O(a8 ) pertur­

bative result coming from one-gluon emission (fig.II.1.5). 

In contrast with these developments, Ellis et.al. [ ref.II.lO ) have used 

a simple tree-level approach to compare the one- and two-jet cross-sections for 

hadrons accompanying the W-boson in pp collisions as a function of the trans­

verse momentum Qr of the W. Surprisingly enough, they found that the mag­

nitude of the O(a;) two-jet rate is comp-arable to the O(a~) one-jet rate for 

sizeable Qy of the W ( fig.II.1.6). At first sight their result seems to disagree 

with that of Altarelli et.al .. This leads us to ask the following question: 

Wherein lie.s the difference between the tree-level approximation to a fixed 

order in a 8 and the all order.s .summation of .some .specific logarithm.s? 

Before answering this question, an important remark should be made. 

Recall that to order O(a;) the two gluon result is exact, but to this same order 

there will be virtual and collinear corrections to the tree-level result. Therefore, 

another question (apparently related to the previous one) can be asked: 

Can the.se correction.s be .so appreciable that they en.sure the 0( a 8 ) re.sult 

dominate.s at large Qr, a.s Altarelli et. al. believe? 

The aim of this work is to shed some light on these differences using a 

simply calculable model, which has virtual corrections included. It is based on 

the approximation in which the gluons are emitted independently. For simplicity, 

we only consider the production of jets at relative Qr in e+ e- annihilation, as 

a less convoluted problem, than that of W, Z production at hadron colliders. 

37 



Chapter II Transverse Momentum Distributions 

~----~------~------~----~" ~ 

LO 
M 

~~ 
~C) 

0 C) OM 
O<.D M 
N II 

~~ 
LO 
N 

-
t:o ~ 
[~ (!) -

0 cL 
II 
>. 

LO 

~i 
-

\ C) ...... 

C) 
N .--

Figure 11.1.5 Altarelli et. al. 

Qr-distributions to first and second order in a 8 • Qr is the lepton 

pair transverse momentum in hadron-~adron collisions. The O(a;) Qr­

distribution reproduces the perturbative 0( a 8 ) result at large Qr and 

sums the multigluon emissions to DLLA at small Qy. 
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Figure 11.1.6 Stirling et.al. 

Distibution for the quantity dd§ 
PT 

Rz = u(Z + njets) 
n uo(Z) 

n = 1,2 
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II.2.1 Kinematics. 

We work in the rest frame of the photon of mass Q and we introduce the 

dimensionless energy fraction variables: 

2Ei 
Xj=-

Q 
(i=1,2,3 0 ~Xi~ 1) 

for the quark, antiquark and gluon ( fig.II.2.1 ). 

The four momenta of q, q, andg are 

Q 
PI 2 (xi; 0, 0, xi) 

Q 
P2 2 (x2; xr, 0, -xL) 

P3 ~ (x3; -xr,O,xL- xi) 11.2.1 

respectively, where 

2Qr 
xr=--

Q 
and 

Longitudinal and transverse momentum conservation are already embod­

ied in eq.ll.2.1 but energy conservation demands: 

11.2.2 

For massless q and g we also have the relations: 

2 2 ( )2 x 3 - XT - XL - x 1 = 0 11.2.3 

From eqs.ll.2.2 and 11.2.3 it then follows that: 

11.2.4 
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The physical region for the above process is defined by: 

0:::; Xi:::; 1 and XI+ X2 + X3 = 2 

and is drawn as the Dalitz plot of fig.ll.2.2. 

11.2.2 Cross-Sections~ 

In terms of these variables, the differential cross-sections for e+ e- ----t qqg, 

given by the graphs of fig.ll.2.3b for single gluon emission and normalised by 

uo, the point-like cross-section of fig.ll.2.3a is given by: [ ref.ll.ll J 

asc 
- F 
2?r 

where C F = t the colour Casimir for SU(3)c· 

11.2.5 

To get the xr-distribution, we first go from (xi, x2) to (xi, xr ). Specifying 

the values of the variables XI, xr fixes two kinematic points in the Dalitz plot 

of fig.ll.2.2, related by x2 ~ xa. So, adding the contributions of the graphs of 

fig.ll.2.3b with x2, xa interchanged, we have from eq.ll.2.5: 

We can now integrate over XI ( for xr :/= 0 ) to obtain: 

uo dx} 

1 du(l) 2a8 CF [( 1 2 1 4 ) (1+/1-x}) l..,j · 2 2 ] ---=-- 1- -xr + -xr ln -- 1- xr(3- xr) 
uo dx} ?r x} 4 4 xr 4 

11.2.6 

In the limit xr < < 1 we get from eq.ll.2.6 the leading log formula (LLA): 

uo dx} 
11.2.7 
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Figure 11.2.1 The process e+e- ~ qqg in the centre-of-mass 

frame. 

Figure 11.2.2 Fixed xT-1ine in the Dalitz plot 

(xr measured with respect to XI) 

In the shaded region XI is the largest energy fraction ( thrust) XI ~ x2, XJ 
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(a) 

g 

(b) 

(c) 

Figure II.2.3 Feynman diagrams for e+e- --+jets 

3a] Zeroth order contribution 

3b] Graphs of O(as) for real gluon emission 

3c] Graphs giving virtual contributions to 0( a 8 ) 
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Note that in eq.II.2.7 the argument of the logarithm was chosen to be 

1/ x} and not 4/ x}, that we really get in the limit xr <:{.:: 1. Of course, both 

choices are equivalent in the LLA, but the chosen one has bigger range of validity 

in phenomenological applications [ref. 11.12]. 

In all the above formulae, xr has been defined to be transverse to either 

the quark or the antiquark carrying momentum fraction XI· However, in jet 

production in e+ e- annihilation it is experimentally more feasible to define the 

transverse momentum relative to the parton with the maximum energy i.e. with 

largest Xi ( called thrust ). The kinematically allowed range of xr is then 0 ~ 

x} ~ ! ( fig. II.2.2 ) and the differential cross-section for one gluon emission is 

given by: [ ref.ll.13 ] 

[ 
1 2 1 4 . ( )1 - T m + J1 - T m - x}) 

(1- -xr + ~xr) ln 
4 · 4 XT 

11.2.8 

where Tm is the minimum value of the thrust variable at a given xr, i.e. the 

root of the cubic: 

with ( see fig.II.2.2 ): 
2 

3 

4 (1 - T~) (2T m - 1) 

< Tm < 1 

T m can be usefully approximated by: 

x} x} x} 19x} 3x~ 253x} 
1 - -2 - -16 - -16 - -2-56- - -3-2 - -2-04_8'"-.. 

which is accurate to a fraction of one percent for most of the xr-range, i.e. for 

x} < 0.3. 

Note, parenthetically that eq.II.2.8, of course, reduces to eq.II.2.6 if Tm -+ 

0, as appropriate for xr defined relative to the 1 axis. 
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Il.1.3 The role of the virtual graphs. 

As displayed in eq.II.2.5 the cross-section for real gluon emission diverges 

in the limit x1 -t 1 and/or x2 -t 1 . Because of the relation: 

II.2.9 

which, with Bij the angle between the partons i and j, is valid for massless 

quarks and gluons, it is easy to identify the configurations which give rise to 

these singularities, namely those where: ( fig.II.2.4 ) 

a] The gluon is soft -t infrared divergence 

b] The gluon is collinear with one of the fermions -t collinear divergence 

To keep away from these singularities and define a finite cross-section, we 

require a non-zero minimum value of xr : xr 2: x~ ( fig.II.2.4 ) 

It is important to emphasize here, that the above singular configurations 

are exa\tly those in which we cannot distinguish experimentally between three 

jets ( e+ e- -t qqg ) and two hack-to-hack jets ( e+ e- -t qq ).· Therefore, there-

quirement of a minimum transverse momentum plays an important experimental 

role, as well as a theoretical one. Theoretically, it keeps us away from both the 

soft and collinear singularities and experimentally, it defines three distinct jets 

from the final state paricles ( see also §III.3 ). 

In the two-jet region now, our analysis to first order in a 8 can only be 

complete, if we consider the 0( a 8 ) virtual corrections to the process e+ e- -t 

qqg. The corresponding cross-section is given by the graphs of fig.II.2.3c and 

involves the same infrared and collinear singularities appearing in the real 0( as) 

contribution, in such a way, that the total 0( a 8 ) answer ( sum of real and virtual 

graphs ) is finite. Kinoshita, Lee and Nauenberg [ref.II.14] have proved that 

such cancellations do occur to all orders in perturbation theory, provided all 

indistinguishable configurations are included. 

The regularised O(a8 ) cross-section is then given by: 
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(a) 

(b) 

(c) 

Figure II.2.4 When is a qqg final state distinguishable ( on 

hadronisation ) from a qq one ? 

4a] Soft gluon ( two jets ) 

4b] Collinear gluon ( two jets ) 

4c] q, g have to be outside the cone defined by x~ in order to give a clear 

three-jet event 
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11.3 ALL ORDERS CONSIDERATION. 

Eq.II.2.8 gives the cross-section to 0( a 8 ) for the emission of a single gluon 

with transverse momentum Qy. Because of the property of Asymptotic Freedom 

at large xy, i.e. Qr ,....., Q, we expect it to dominate over two, three, ... , gluon 

emissions. On the other hand, as xy decreases, i.e. A<< Qr << Q, the simple 

perturbative expansion breaks down ( see §ILl ). Multigluon emissions become 

increasingly important and cannot be neglected any more. However, because of 

the limited value of Qy, the compensation between real and virtual graphs is 

no longer complete and large logarithms appear as a result of collinear and soft 

gluon emissions. In order to give a practically useful answer the perturbative 

series must be resummed. Before going into the details of the resummation 

techniques for multigluon emissions, we can make the following approximation: 

II.3.1 The Independent Emission Approximation (I E A). 

Recall that the probability of a gluon emission is inversely proportional to 

the square of the transverse momentum of the emitted gluon. So, the emission 

of 'soft' gluons is most likely. However, if the gluons are 'soft' compared to the 

fast moving quark or antiquark that emits them, ( XT; < < 1 ), we can regard 

their emissions as approximately independent. 

To appreciate this approximation, we look at the emission of two gluons 

from a quark leg ( fig.II.3.1 ). If the gluon is soft ( k1 < < p) then the quark 

momentum after the emission is ( approximately) the same as it was before the 

emission (p' ~ p). Then the emission of a second soft gluon (k2 << p') can be 

seen as an ( approximately ) independent event, in the sense that the second 

gluon knows nothing about the emission of the first one ! 
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p'= p -k, p 

Figure II.3.1 Two contributions to the amplitude for two gluon 

emission, defining the relevant- momenta. 

Figure II.3.2 Next-to-leading contribution 

Two gluons with large but almost equal and opposite kr (which balance 

the total Qr ) plus any number of soft gluons. 
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If we now look at just the propagators of the graphs of fig.ll.3.1, we can 

see that for massless quarks and gluons, with k1, k2 < < p : [ ref.II.15 ] 

p - 11 p - 11 - ~2 p - ~1 p - 11 - 12 

(p- ki)2 (p- k1 - k2)2 + (p- k2)2 (p- k1 - k2)2 

p p 
11.3.1 

And this factorisation generalizes to any number of soft gluon emissions 

[ref.ll.16]. The only constraint these soft and 'independent'gluons have to obey 

is the overall transverse momentum conservation: 

Qr = L kr; 
I 

11.3.2 Resummation of multigluon emissions in DLLA. 

We recall the LLA result for the emission of one gluon ( eq.ll.2.7 ) and 

calculate the cross-section for two gluon emission from that for one: 

1 du(2) [CFast 1 j d2krl d2kr2 

O'Q dQ} k2 ~ 
X 

7r 27r T1 T2 

k2 k2 
8(

2) (kr1 + kr2 + Qr) x ln ( cP) ln(;n 11.3.2 

It has been shown [ref.ll.17] that in the DLLA approximation, the domi-

nant regions of integration correspond to the case where the emitted gluons are 

strongly ordered : k}1 < < kj-,2 "' Q} and k}2 < < k}1 rv Q} when monentum 

conservation is trivially fulfilled. Then: 

C 2 1 QT2 
[ :as) 

" Q} ln Q2 
!!.3.3 
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The apparent divergence at the lower limit of the kf intergration is can­

celled by the the contributions from the 0( a~) virtual graphs. ( This can be 

done by introducing a ..\2 infrared cut-off, which will be removed eventually by 

the virtual graphs ). 

The regularized 0( a;) cross-section is then finite: 

1 d:E(2) 
_ [C:a 8

] 

2 1 3 Q2 

uo dQ} Q2 In Q2 
2 T T 

1 d:E(2) _ [ 2_ du(I)] CFas ln2 Q2 ---- II.3.4 
uo dQ} uo dQ} LLA 27r Q} 

Note that this 0( a;) contribution, being negative, tends to cancel the 

0( as) cross-section ( in other words, leading logs tend to cancel in the region 

Q} < < Q2). We can now write: · 

1 du -

uodQ} 

1 du 

uo dQ} 

1 
[ 
du(l) du(2)] 

dQ} + dQ} 

11.3.5 

and we can understand the two terms in eq.II.3.5 as the beginning of a 

series which sums all such multigluon emissions. 

In fact, multigluon emissions can be calculated in the same way as for 

the two gluon case. These have been summed to give the well known Sudakov 

form factor: [ ref.II.18 ] 

1 du 
-dQ2iLLA 
uo T 

1 du(l) 
- dQ2 ILLA 
uo T 

[ 
CFas 2 Q2

] exp ---In -
27r Q} 

11.3.6 

The appearance of the Sudakov form. factor has been seen as an Ill­

complete cancellation between virtual and real gluon emision in the region 

Q} << Q2. This form factor, if exact, would imply a total suppression of the 

cross-section at small Qr, while giving the O(as) LLA result at large Qr"' Q. 
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II.3.3 Beyond DLLA. 

We have just seen that in DLLA multigluon emissions can be factorised 

and allow summation. However, Collins, Soper and Sterman [ref.II.8,17] were 

among the first to question the validity of the leading double logarithmic approx­

imation. They noticed that it is possible to find kinematic regions where both 

a 8 < < 1 and a 8 In§;: < 1 (so that DLLA is appropriate) and yet a 8 ln2 §;: > 1, 

so that terms beyond the leading logs have to be included in a complete analysis 

to all orders. 

We can appreciate the importance of non-leading terms, ignored in the 

derivation of eq.II.3.6, if we recall the approximation of ordered gluons ( valid 

in DLLA ). The above cross-section vanishes as Qr ~ 0, but in this limit the 

approximation of ordered gluons _ br~aks down (as there is no phase space left!) 

A typical example of important next-to-DLLA terms which have been left 

over so far, is shown in fig-.11.3.2 . It involves two gluons witli large but almost 

equal and opposite transverse momenta kr; which balance the overall transverse 

momentum Qr, together with any number of soft gluons. These contributions 

are suppressed by at least three large logarithms, but they might give a non-zero 

cross-section in the limit Qr ~ 0. 

Then, in order to deal with these contributions, a more careful treatment 

of the transverse momentum conservation is needed. 

II.3.4 Impact Parameter Summation. 

Parisi and Petronzio [ ref.II.6 J noted that by going to 'impact param-

eter space', both the factorization of the kr; integrals and exact transverse 

momentum conservation can be achieved. The idea is to write the transverse 

momentum 8-function in the form: 
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Each multigluon contribution (for example eq.II.3.2) is then a completely 

factorized product of kr; integrals, every one of which is given by: 

~(b) 
1 

and performing the angular integration: 

~(b) J dkf [ 1 du] 
uo dk} 

[Jo(krb)- 1] ' 11.3.8 

where the -1 arises from the virtual gluon diagrams which regulate the 

infrared (kr ---> 0) divergences. The Qr distribution arising from these multi-

gluon emissions is then a power senes m ~ , which is found to sum to an 

exponential: 

1 du 

uo dQ}-
~ J dbb. exp(~(b)] Jo(Qr.b) Il.3.9 

It should be noted that eq.II.3.9 has the following properties: [ref.II.7] 

a) du / uodQ} is now non-zero as Qr ---> 0 

b) It reproduces the 0( a 8 ) perturbative result as Qr ---> Q 

1 du [ 1 du(l)] 
---~ ---
uo dQ} uo dQ} O(o:,) 

c) The resummation does not change the total integrated cross- section uo 

1 du 

uo dQ} 

1 - uoe~(O) 
uo 

1 

d) Although multigluon emission ( n ~ 2 ) regularizes and alters the shape 

of the 0( a 8 ) distribution, it does not change the average value of Q} 

(Q}) J dQ} Q} 

52 

[ 
1 du ] 

uo dQ} 
(Q2 )(1) 

T O(o:,) 



Chapter II Transverse Momentum Di8tributions 

II.4 SUMMARY OF CHAPTER II. 

Studies of transverse momentum distributions are of great theoretical 

importance, particularly as they enable us to investigate the structure of per­

turbtive QCD in some detail, and can be divided in two distinct kinematical 

regimes: At large transverse momenta ( Qr "' Q ) the perturbative expan­

sion is rapidly convergent and the property of Asymptotic Freedom ensures the 

dominance of the emission of a single, hard gluon to balance the relative Qr of 

the process. On the other hand, as Qr becomes smaller, the coupling constant 

a 8 (Qr) increases and the emission of many, relatively 'soft' gluons gives rise to 

large logarithms so that the applicability of perturbative QCD in this regime is 

under question. 

In this chapter we have seen how multigluon emissions. can be resummed 

to all orders in a 8 in a model where the gluons are emitted independently and 

transverse momentum conservation is treated in a exact way. The nice properties 

of the final expression, eq.ll.3.9, indicate that this simple model has some useful 

features which may help to shed light on how the Qr distribution is generated 

by multigluon emissions, as well as allow the individual multijet cross-sections 

to be studied. 

The use of this model to attack the theoretical problems formulated in 

the introduction to this chapter is described in the following chapters. 
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4 JETS 

III.l INTRODUCTION. 

As outlined in the last chapter, in the Independent Emission Approxima­

tion ( IE A ), n-gluon cross-sections are constructed in terms of that for a single 

gluon emission in a simple way ( eq.ll.3.2 ). In this chapter, we use the formal­

ism of I E A to study two gluon emission in some detail. As it will be explained 

in §111.3, the four final-state particles can define four-jets, provided they are well 

defined and well separated in phase space. Details of the numerical integration 

for calculating the four-jet cross-section are in §111.4 and the comparison with 

an 'exact' calculation is described and discussed in §111.5. 

Our calculations will be performed at Q = 100 GeV, the energy of phe­

nomenological relevance at LEP. 
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111.2 TWO GLUON EMISSION IN I E A. 

In I E A, the two gluon contribution can be easily constructed in terms 

of that for a single gluon emission: 

1 du(n) 1 1 du(I) 1 du(I) 

uo cFQr cFkr1 ••• cFkrn n! uo cFkr
2 

• • • x 

III.2.1 

Expressing the two-dimensional momentum conserving 8-function in terms of its 

b-space integral representation ( eq.II.3. 7 ) makes it easy to integrate out the 

angular dependences, since the cross-sections depend only on the moduli of the 

transverse momenta and not on their direction. This gives a regularized factor 

~(b) ( eq. II.3.8 ) for each gluon. 

where 

We can then re-write the regularized two-gluon cross-section as: 

The integration of the product of Bessel functions [ref.III.1] gives: 

J 2 
1 du(I) 

dkr- dk2 uo T [! 2 1 du(l)] 
dkr- dk2 uo T 

2 1 
1 

III.2.2 

III.2.3 

1 

7r [(kr1 + kr2)2- Q}) 2 [Q}- (kr1 - kr2 )
2

] 
2 

III.2.4 
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Since W3 just results from performing the angular intergrations of the 

two dimensional 8-function, 8(2)( ky1 + kr2 + Qr ), we can easily understand 

why W3 is only defined if these vectors of length kr1 , kr2 , Qr can form a closed 

triangle: 

It should be also noted that the singularity in the first term of eq.lll.1.4 

arising from the 1/k}; m du(l) jdk}; ( eq. 11.2.8) when either kr; = 0, 

is cancelled by the second term, giving a finite answer. 
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III.3 JET IDENTIFICATION CRITERIA. 

The four final state partons ( q q g g ) will only define four distinct jets, 

provided they are well defined (i.e. every one is energetic enough to be identified 

as a different jet ) and they are well separated from each other ( by a minimum 

relative angle ) [ref.III.2). 

The situation here is very similar to the one described in §11.2.3. There 

we saw how the introduction of a certain cut ( the requirement for a non-zero 

minimum transverse momentum x} ) not only ensured distinct jets in the final 

state, but also guaranteed a finite tree level result in the allowed region of the 

phase space. 

In general, such cuts are needed both theoretically, to define infrared- and 

collinear-safe cross-sections for partons, and experimentally, to group the final 

state hadrons into jets. Theoretically, these cuts can have any non-zero value, 

while experimentally, they must be specified with regard to the experimental 

acceptances. [ref.III.3] 

It has also been emphasised, that the soft and collinear divergences of 

the tree graphs, which occur in those regions of phase space where the final 

state partons are not well defined ( which, from an experimental point of view, 

means not distinct jets ) are compensated by similar divergences in the virtual 

graphs ( which have to be taken into account to the same order in a 8 ). Then, 

the K L N theorem ensures that a finite answer is obtained everywhere in phase 

space. 

We can therefore write our 0( a;) cross-section schematically as: 

du III.3.1 

where du(s) contains the singularities in the region where four jets are indistin-

guishable from three jets: 

d (4)_sing~lar-+d (s) 
0' regton 0' III.3.2 
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Each term in eq.III.3.2 is then finite. The first is finite by construction 

and contributes to the four-jet result and the second is finite by virtue of the 

K L N theorem and contributes to the three-jet answer. 

III.3.1 Sterman-Weinberg Cuts. 

The most commonly used set of cuts defines three- and four-jets as those 

three- and four-parton configurations which satisfy the following criteria pro­

posed by Sterman and Weinberg: [ref.lll.4] 

(i) Every parton energy is greater than some minimum, so that Xi > € 

(ii) The angle between every possible parton pair is larger than 28 

These criteria lead us to the following formal definition: 

'By n-jet cross-section we shall understand the cross-section for events 

which have all but a fraction t:/2 of the total- energy distributed within n sep­

arated cones of ( full ) opening angle 8'. As an illustration a three-jet event 

is sho~n in fig.III.3.1. At the partonlevel, an event is called a three-jet event 

(with the jet axis and € , 8 specified before hand ) if all the parton momenta 

fall inside the phase volume shown in fig.III.3.1. By construction, this includes 

the singular region associated with one of the partons of the four-parton state, 

being soft and/or collinear with another. The three-jet cross-section is known 

to be finite by virtue of the K L N theorem. 

III.3.2 Invariant Mass Cut. 

Another procedure for defining irresolvable jets is based on an invariant 

mass cut-off on the parent partons [ref.lll.5 ]. In this case, we say that two 

partons are irresolvable if: 

where Q2 is the total energy. By three-jet cross-section then, we understand the 

cross-section for events which consist of three clusters, each having an invariant 

mass squared smaller than yQ2• 
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Figure III.3.1 Three-jets phase space 

Defined using Sterman-Weinberg cuts ( e, b ). 

e : minimum energy fraction 

b : minimum angular separation 
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Figure 11!.3.2 Collinear configurations 

a] Collinear gluons 

b] Gluon collinear with fermion 
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111.3.3 Cuts in I E A. 

Because the independent emission model is only transverse momentum 

dependent, the cuts needed to ensure four distinct jets can only be defined in 

terms of transverse momentum variables. As we shall see later in some detail, 

transverse momentum cuts are rather severe, as they remove more configurations 

than necessary. 

a] Soft Partons 

Recall that Qr has been defined with respect to the fermion with largest 

thrust (§11.2.2). That fermion then is guaranteed to be energetic enough to 

produce a well defined jet. To prevent the other fermion and the two gluons 

from being soft, we impose the constraints: 

Qr, kr; > ko i=.l,2 

where ko some minimum transverse momentum cut 

b J Collinear Par tons 

111.3.3 

As Qr has been restricted to be greater than a minimum ko, the two 

fermions can never be collinear with each other. Moreover, the requirement of 

non-zero transverse momenta kr; for the gluons prevent each one of them from 

becoming collinear with the most energetic fermion (from which transverse mo­

menta are measured). To deal with the remaining gluon-gluon and gluon-second 

fermion collinear configurations, we recall that the vectors of length kr
1 

, kr2 and 

Qr have to form a triangle. We now require this triangle to be non-degenerate. 

This constraint removes away the remaining collinear configurations (fig. 111.2.3) 

and can be expressed by the following closed formula: 

111.2.4 

It is interesting to note that in I E A, collinear gluon configurations 

(excluded by the requirement of distinct jets in the final state ) do not give rise 

to any singularities, as there are no triple gluon interactions included in lEA. 

These do, of course, occur in the full answer for QCD. 
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We can now understand why these cuts have removed more phase space 

configurations than was actually needed. Consider, for instance, the configura­

tion shown in fig.III.3.3. All four partons are apparently energetic enough to 

define ( upon hadronisation ) four distinct jets. Hence, this event should be 

classified as a four-jet event. However, gluon 91 has so small transverse momen­

tum, that the event fails one of our cuts, namely the requirement for a minimum 

transverse momentum, and therefore will be excluded in a four-jet anal~sis! 

Eq.III.3.4 can be expressed in terms of transverse momentum variables, 

using the following relations ( fig. III.3.2a ). 

cos Bo > cos (} > cos( 1r - Bo) 

cos f) - cos</> 

cos</> 
Q}- k}l- k}2 

2 kr1 kr2 

to obtain the constraint: 

-zo < 
Q}- k}l- k}2 

2 kr1 kr2 

< zo 

where 

zo cos eo 

The four-jet phase space, defined by the kinematical relations of §111.1 

and restricted by the above cuts, is then shown in fig.III.3.4. 
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N .-

Figure. III.3.3 An 'almost' four-jet event. 

Due to large longitudinal momenta, each parton is hard enough to be 

identified as a distinct jet. However, gluon 91 fails the requirement of a 

minimum transverse momentum! ( Solid lines on the plane II, dashed 

lines outside it ) 

63 



Chapter III e+ e- --+ 4jets 

- - - - - - - - - - - - _I 
I 

QTmax K 

Figure III.3.4 Four-jet phase space. 

It is defined by the kinematical constraint ( the vectors of length 

krP kr
2

, Qr must form a triangle ) and the soft and collinear cuts ( the 

above triangle is not degenerate ) 
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111.3.4 Relations between the Cuts. 

Second order corrections to three-jet cross-sections have been calculated 

using either of the above set of cuts ( € h cuts, invariant mass, minim~m trans-

verse J?Omentum) [ ref.III.6] and it has been noted [ ref.III.7] that the results 

show great similarities in form. In fact, with a little algebraic manipulation, the 

leading logarithmic terms 

can become identical, with particular choices of the values of the cuts: 

0 
E = xr h = 4x} and y = €

2 

-The above relations can also be justified on the ground that, all these 

different cuts , if chosen carefully, remove ( more or less ) t~e same regions of 

phase space, namely those where the final-state particles become soft and/or 

collinear. An illustration of such a situation is shown in figure III.3.5, for a 

three-jet event. 

These relations then enable us to compare calculations and translate re­

sults obtained using different sets of cuts ( see also §III.5 ). In particular,it is 

worth noting the following choice: 

€ = 0.1 h = 4€ = 25° (cosh= 0.92) 

y = E
2 = 0.01 

x} = f = 0.1 (ko = 5GeVat Q = 100GeV) 
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:~~,-+-...... :::~:::~:::::~~:::~~::::::::~~::~,~ 
~~.-+-~-+-11--++-+-+-~+-11--++-1-+-+++-l~l:~·~ 

~~~~~~~~~~~~t1~~~t1~=~t~~~~t1~~®t 
..;;:::"~~-+-1-++-1-+-+-++-1--1-~~~;i;~ 

..;;:::: ~~~~+-+~~+-1-+-+-+-fl·::~~ 
'-.....;;~ ·_: ... :. 

~~:3cut 

Figure III.3.5 The Dalitz plot for e+e- --+ qqg 

When the shaded region with soft and collinear singularities 1s ex­

cluded by Sterman-Weinberg cuts, the remaining phase space is not very 

different from that allowed by a minimum transverse momentum cut 

(hatched area) 
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111.4 NUMERICAL INTEGRATION. 

We can now calculate the contribution of the two gluon emission to the 

four-jet cross-section in the I E A by integrating the first part of eq.III.2.3 over 

the phase space determined by the kinematics and the cuts introduced in the 

last section. 

Note that our integral is perfectly finite, even though W3 is singular, 

because these infinities occur at the edges of phase space where they are inte­

grable. However, to ensure maximum numerical stability, we prefer to work in 

terms of more appropriate variables. The study of these changes of variables is 

the subject of this section. 

We first go from the dimensionful variables ( kr1 , kr2 ) to the dimensionless 

ones ( x, y) defined as follows: 

111.4.1 

with the corresponding change in the measure given by: 

The transformed phase space and the new limits are shown in fig.III.4.1 

Before expressing our integral ( eq.III.2.3 and 4 ) in terms of these new 

variables, we introduce the notation: 

1 da(l) 1 
k2 f(kr;) 

T; 
111.4.2 
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X1 =J 2/1 +Zo 

~-----+-+--- Xo= Ko(~-Zo) +~JQf+K~!Z&-1) 
a:..._ _ ____.:.____-+--.J---.._- X = 1 

-1 0 1 y 

Figure 111.4.1 Four-jet phase space 

With its boundaries defined for numerical integration 
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so that we can write: 

1 

271" 

and with a little algebra: 

Chapter III e+ e- -+ 4jets 

1 

[Q}- (kT1 - kT2 )
2

] 
2 

J dx dy f [Q2T (X + y )] X 
x2 _ y2 

1 
1!1.4.3 

The limits of the y-integral ( shown in fig.III.4.1 ) are such that we can 

make use of the following identities: 

1 1 [ 1 1 ] - ------
2x X+ y y- X 

and 

f
a dy 

-a y+ X j -/3 dy 

-a y+x 

and re-write eq.III.3.3 as: 

J dxdy 

x (x + y) 

f[~(x + y)] f[~(x- y)] 
1 1 

(x2- 1)2 (1- y2)2 

(ii) ( X 'y) --+ (X 'B) 

Though we know our cross-section is finite, it is not yet ready for numer­

ical integration, as we see from the last expression, because of the singularities 

as x -+ 1 and y -+ 1. To show these are artifacts of the integration, we introduce 

the following change of variables, for x , y close to 1: 
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so that 

X X 

-1 + x sin8 
y= 

x --sin 8 

X X 

. n xy + 1 
Sill 17 = ---'---

x+y 

and the y -+ 1 pole has been absorbed in the change of measure. 

Note that: 

so we cari write 

where 

x 2 -1 
x+y= . 

x- sm8 
x2 - 2xsin8 + 1 

x-y= 
x- sin8 

rXmax __ d_x_-;-1 
lxmin X (x2 - 1)! 

dB 
---""7"Ix 

(x 2 - 1)! 

f [Qr ( x 2 
- 1 )] 

x 2 x- sin8 

emin(max) 

f [Qr (x
2 

- 2x s~n 8 + 1 )] 
x- sm8 

. (XYmin(max) + 1) arcsin 
X + Ymin( max) 

(iii) (x, 8)-+ (C '1/;) 

111.4.4 

111.4.5 

We finally deal with the pole at x = 1, which we have arranged to appear 

twice, in both the x- and 8-integrals, so that each appearance can be treated 

independently. In fact, we can re-write our integral schematically as: 

I 1Xmax dx 4>( X) 
x=l x (x2- 1)! 

(It) 

where 

4>(x) 
1 

1 
(x2-1)2 
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The I1 integral is well behaved. All we need to see that explicitly, is a 

suitable change of variables to cancel the x = 1 pole. In fact, if we choose: 

with 

then 

and 

X coshe 

emin(max) =In [xmin(max) + Jx~in(max) - 1) 

dx 

dx 
1 

x(x 2 - 1)2 

de 
coshe 

so that the pole at x = 1 is indeed absorbed. 

On the other hand, I2 needs more careful treatment. In this case the can­

cellation ofthe pole at x = 1 is more subtle, as it is due to an extra (x 2 - 1)t fac­

tor in the numerator coming from the behaviour of the limits of the 0-integration 

as x -+ 1. To see how this happens, let us consider ( without loss of generality ) 

the case when f = 1. 

If we change variables according to: 

e 

then ( using eq.III.4.4 ) 

cos tf; 

7r 
----+ t/J=--0 

2 

sinO 1 _ -'-( x_-_1--'-)-'-( 1_----'y'-'-) 
x+y 

We thep. expand in a power series: 

cos tf; 

and note that tf; and y( 0) have opposite limits. 
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From eqs.III.4.5 and 6 we can write: 

1 2 
1- -·'· . 

2 'f"mm 

(x- 1)(1- Ymin) 1 - ...;....___....:.....,: _ __;;__....:... 
X+ Ymin 

1 
_ (x- 1)(1- Ymax) 

X+ Ymax 

We recall that if Ymax = Y then Ymin = - Y thus: 

1 

[
2(x- 1)(1 + Y)l 2 

x-Y 

. 1 

[
2(x- 1)(1- Y)l2 

x+Y 
tPmin 

Therefore: 

tPmax - tPmin 

and the pole at x = 1 is cancelled: 

</>(x) 
tPmax - tPmin 

1 
(x2- 1)1 

The above analysis leads us to introduce our last change of variables: 

w sinO Ill.4.8 

with thew-limits determined from the 8-limits, for all values of x, unless x = 1, 

in which case: 

Wmin 

and the cross-section finally reads: 

which is explicitly finite. 

Wmax [
1 + y] t 
1- y 

III.4.9 

The limits of the integration are given by eqs.III.4.5 and III.4.9, while 

kr
1

, kr
2 

are expressed in terms of the variables e,w via eqs. III.4.1, 4, 5 and 8. 
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III.5 RESULTS AND DISCUSSION. 

Now that our integrals are perfectly finite, with all singularities under 

control, we can numerically calculate the two gluon contribution to the four-jet 

cross-section. We present here our results for d0'(2) I O'odQ} , where Qr is 

defined with respect to the quark or antiqurk with the largest thrust, so that we 

use eq.II.2.8 as our input for dO'(l) I O'odQ}. 

Our results will depend on the following parameters: 

a] The centre-of-mass energy ( mass of the virtual photon) 

We choose to work at Q = 100GeV 

b J The choice of the cuts which define a hadron jet from a mass of hadrons. 

Theoretically, these cuts can have any non-zero value, while experimen­

tally, they must be specified with regard to the experimental accep­

tances.Typically, UA1 for instance, impose: (see also §II1.3.4) [ref.III.S] 

Prin = 20 GeV at JS = 640Gev 

and 

cos 80 0.9 

We repeat our calculation for the following values of the cut-parameters: 

ko 1, 4, 6, 10 GeV Fig.III.5.1, 2, 3, 4 

cos Bo 0. 75, 0.90, 0.99 Fig.III.5.2, 5, 6 

c] The way the coupling constant runs 

The choice of the scale in the running formula for the coupling constant 

has been the subject of great theoretical dispute in the past, and the following 

choices have been proposed: 
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(i) The scale is set by the total energy of the process, i.e. a~= a~(Q2 ) which 

effectively fixes a 8 ( Fig. III.5.2 ). 

(ii) In calculations of transverse momentum distibutions, the scale is set by 

. the overall Qr : a~ = a~( Q}) ( Fig. III.5. 7 ). 

(iii) The fact that we allow two gluons to balance the total transverse mo­

mentum, suggests that the scale is set by each individual gluon, that is : 

a~ = as(kr1 ) as(kr2 ) ( Fig. III.5.8 ). 

The suggestion for using gluon transverse momenta k} in the argument of 

a 8 has its origin in the resummation of large logarithmic corrections which mod­

ify the Altarelli-Parisi evolution equation of naive perturbative QCD [ ref.III.9 ]. 

However, it has been emphasized by Pennington, Roberts and Ross [ref. 

III.lO ], that in time-like p~ocesses like e+ e- annihilation, when next-to-leading 

corrections are included, large 1r
2-terms do occur at 0( a~) a~d above which can 

be resummed, if the Ink}/ Q2 term in the formula for the running coupling is 

replaced by [In2 k}/Q2 +7r2jll2 • These resummed 1r2-terms represent correc-

tions of order O(a!(Q2 )) and give eq.III.5.a the following properties: [ref.III.ll] 

a] It 'freezes' the running coupling at a constant value as k} -tO, 

,8] it allows perturbative QCD to be used without requiring: 

1] it has been used successfully to extract the value of AQcD from various 

sets of data ( a procedure which is very sensitive to second and higher 

order terms ) [ ref. III.12 ] ( see also chapter IV ). 
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In the light of the above remarks, we let the following formula to govern 

the running of as 

where 

and 

2Np 
11--

3 

N 1 being the number of flavours 

0.2 and 0.5GeV 

111.5.1 Comparison with the full answer. 

Fig.III.5.8, 9 

The two gluon emission contribution we consider here,is a key pointer to 

the accuracy of the summation of many gluons that we have seen is needed to 

describe experiment in the small Qr region. Since it is only the one and two 

gluon emissions that have been calculated exactly, these low order calculations 

must serve as a guide to the multigluon contributions. In order to check the 

accuracy of our approximate model, we now compare our results with the full 

two gluon emission cross-section. By doing so, we determine the kinematic 

region and the range of values of the parameters introduced in the last section 

for which our model is most likely to be a good approximation to the fixed order. 

result. 

The full two gluon cross-section has been evaluated [ref.III.13] usmg a 

Monte-Carlo generation of events using the matrix elements of ref.[III.14] and 

imposing identical cuts with the ones we considered in the I E A model. In 

this case, these cuts play a more important role. They not only guarantee 

four distinct jets in the final state, but also serve to regularize the infrared and 

collinear singularities of the full perturbative calculation. 

75 



Chapter III e+ e- ~ 4jets 

To write down the expressions for the matrix elements, we first introduce 

the following notation for the four-momenta and helicities of the particles in the 

process: 

Let M( AI, A2, A3, A4, As, A6) denote the helicity amplitude with AI the 

helicity for the e+ , A2 the one fore- , A3 for q , A4 for q , As the one for g(ki) 

and A6 for g(k2). 

The helicities of the leptons must necessarily be opposite, because of the 

(1~-rs) projection operators, and the same holds for the quarks. A non-zero 

helicity amplitude is then M( -, +, -, +,-,-)for which we have: 

IM( -, +, -, +, -,- )12 

111.5.1 

where Q 1 is the fractional quark charge and g is the SU(N) gauge coupling 

constant. ( kikj ) is the dot product of four-vectros ki and kj, while A is given 

by: 

A 

Working in the e+e- centre-of-mass frame, with the z-direction along P+, 

the following notation has been introduced: 

and 

for any vector k. 

All other non-zero helicity amplitudes, for which the gluon helicities are 

equal, have the same structure as in eq.III.5.1. They only differ in the appearance 

of k3+, k3- or k4+ instead of k4-· 
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On the other hand, the helicity amplitudes with opposite helicities for 

the gluons are generated by the expression: 

IM( -, +, -, +, -, + )12 

[ k3k4 ] 
X E2(klk2)k~+kLk3+k4- III.5.2 

where: 

E the beam energy 

i,j = 1,2,3,4 

Of course, the remaining non-zero helicity amplitudes, with opposite 

gluon helicities, can all be obtained from eq.III.5.2, by interchanging k1 and 

k2, and/or k3 and k4. 

To obtain the four-jet cross-section, one must sum all the absolute squared 

values of the helicity amplitudes, perform the colour sum, average over the initial 

lepton helicities, symmetrize appropriately for identical gluons and sum over 

quark flavours. 

So that: 
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0.=100 GeV 
Ko=1 GeV 
COS 80 = 0·9 
O.s = O.s(O.) = 0·17 

: I.E.A. 
I.JUU1. : FULL 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 

O.r(GeV) 

Figure 111.5.1 

Qy-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD result. 
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Q = 100 GeV 

Ko = 4 GeV 
COS 8o = 0· 9 
O.s= O.s (Q) = 0·17 

: I.E.A. 
m : F U L L 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 
O.r (GeV-2) 

Figure 111.5.2 

Qr-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD result. 
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0. = 100 GeV 
Ko = 6 GeV 
COS 80 = 0·9 
O.s = O.s (Q) = 0·17 

I.E. A. 

kJlJl.Jl. F U L L 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 
Or(GeV) 

Figure 111.5.3 

Qr-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD resUlt. 
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Q = 100 GeV 
Ko = 10 GeV 
COS 80 = 0·9 
0.5 = 0.5 (Q) = 0·17 

I.E. A. 
UUUl. FULL 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 

Or (GeV) 

Figure 111.5.4 

Qr-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD result. 
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Q = 100 GeV 

Ko= 4 GeV 
COS 8o = 0·75 
O.s=O.s(Q)= 0·17 

I.E.A. 
lJUUl. : FULL 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 

Or( GeV) 

Figure 111.5.5 

Qy-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD resUlt. 
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Q = 100 GeV 
Ko=4GeV 
COS 80 = 0· 99 
O.s=O.s (0)=0·17 

I.E. A. 
m F U L L 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 

Or (GeV) 

Figure III.5.6 

Qr-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD result. 
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0. = 100 GeV 

Ko= 4 GeV 

COS 80 = 0·9 
O.s= O.s (O.r) 

Auco= 0·15 GeV 

: I.E.A. 
UUl.Il : FULL 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 
O.r(GeV) 

Figure 111.5. 7 

Qr-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD result. 
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Q = 100 GeV 
Ko =4 GeV 
COS 8o = 0·9 
O.s = O.s (Kr1) O.s (Kr2) 

Aaco = 0·15 GeV 

I.E.A. 
Wl..f1.f1. F U L L 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

Or(GeV) 

Figure III.5.8 

Qr-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD result. 
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Chapter III e+ e- -+ 4jets 

Q = 100 GeV 
Ko = 4 GeV 
COS 80 = 0·9 

O.s=O.s(Kr1) O.s (Kr2) 

Aaco= 0·5 GeV 

I.E.A. 
IJUl..Jl. : F U L L 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 

Or(GeV) 

Figure III.5.9 

Qy-distribution of a four-jet enent in electron-positron annihilation. 

Comparison of lEA with the full QCD result. 
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111.5.2 Dependence on the choice of parameters. 

a) Dependence on Qr 

We found that for fixed ko , Oo , the I E A model agrees remarkably well 

with the full answer in the region ( for Q=lOO GeV) : 

2ko < Qr < 20GeV 111.5.3 

remembering Qpax = Q/2J3"' 28.9 GeV in this case. This agreement is almost 

independent of the way the coupling constant runs! The above statement can 

be understood in the light of the following observations: 

(i) I E A breaks down at large values of transverse momenta ( because the 

gluons cannot be seen as independently emitted anymore ) so that no 

agreement is expected as we approach large values of Qr towards the 

edge of the phase space. Also note that at large Qr, the Monte Carlo 

generation has the -correct kinematic limit, whereas the the lEA ansatz 

allows the transverse momentum of each gluon to reach this limit sepa­

rately and so their vector sum can exceed the kinematic bound on Qr. 

(ii) As we move towards the other end of the phase space ( small transverse 

momenta ) the full result is approaching its collinear gluon singularities, 

as the triple gluon interactions included in it become increasingly im­

portant. On the other hand, I E A is rather suppressed by non-leading 

contributions, as large transverse momenta for the individual gluons are 

needed to balance the small total Qr. 

(iii) Finally, we note that as we move from the Qr :::; 2ko region to the 

Qr 2: 2ko region, new configurations with leading contributions take 

over, to give rise to the peak at Qr = 2ko. 

b) Dependence on ko 

As mentioned above, the region of best agreement between the I E A 

model and the full answer is given by eq.III.5.3. That is the smaller the value 

of ko, the bigger the region of agreement. 
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Recall that ko, being a transverse momentum cut, removes more phase 

space than necessary, so that we need to go to rather small values of k0 in order 

to make the removed area of phase space comparable with the one removed by 

the c.Q/2 cut. However, we do not want to go to very small values of ko, if we 

want to avoid soft singularities and stay close to the experimental values of cuts. 

c] Dependence on Bo 

The agreement seems to be best for a moderate value of ()0 ( namely 

cos Bo "' 0.9 ), which is not very different from the experimentally favoured 

values for the 8-angle, introduced by Sterman and Weinberg. 

It should be pointed out here, that the I E A cross-section remains finite 

in the limit cos Bo ~ 1 ( as it is free of collinear gluon singularities ) whereas the 

full result diverges in the same limit, as a result of these singularities from graphs 

containing triple gluon interactions. Though these singularities are removed by 

the c~t in cos 0, eq.II.3.4, the smaller Bo is,_ the more closely these are felt, as 

apparent from the curves in fig.III.5.1,5 and 6. 

d] Dependence on as 

Recall that we considered the following possibilities for the momentum 

dependence of the running coupling constant as ( §III.5 ): 

(i) a; 
(ii) a; 

(iii) a; 

a;( Q2) ( essentially a fixed as ) 

a;( Q}) ( scale set by the total QT ) 

as(k}
1

) as(k}
2

) ( each gluon emitted sets its own scale) 

It is perhaps surprising, but we found the agreement of the I E A model 

with the full result to be rather insensitive to this freedom in the choice of the 

scale, and this statement seems independent of the values of the parameters 

AQcD f3o, etc. However, it should be noted that for the purpose of com­

paring the two results, choices (i) and (ii) are effectively the same, as (ii) only 

multiplies (i) by the same factor in both cases. 
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111.6 SUMMARY OF CHAPTER III. 

In this chapter, we have set up a model for quick and reliable calcula­

tions 0f multigluon cross-sections in e+e- --+ qq + (ng). The model is based on 

the approximation that the gluons are emitted independently ( apart from mo­

mentum conservation ) and it is particularly useful for calculating momentum 

distributions in the multijet case. 

To ascertain when and where such a model is a good approximation to 

the fixed order result, we looked at two-gluon emission in some detail. To ensure 

that our final state particles are well defined and well separated in phase space, 

we imposed suitable cuts, namely that each parton has a minimum transverse 

momentum and that there is a minimum angular separation between each pair. 

Identical cuts were implemented for the full two-gluon distri'qution, obtained by 

a Monte-Carlo generation of events using the exact matrix elements. 

The comparison of the two results helped to identify the kinematic region 

in which our model is most likely to be reliable and to determine the choice of 

the various parameters ( ko, Bo ... ) for maximal agreement. 
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CHAPTER IV I E A IN PRACTICE 

IV.l INTRODUCTION 

In the last chapter, we justified the use of a simple model ( based on the 

approximation of independently emitted gluons ) for quick and reliable calcula­

tions of multijet cross-sections. The calculation of the four-jet cross-section in 

electron-positron annihilation was the first application of this model. Its predic­

tions were successfully compared with the exact results obtained using a Monte 

Carlo generation of events, according to the full matrix elements. 

In this chapter, we explore the possibility of using our model in other 

processes which are not very different from the one described in the last chapter. 

The comparison of our results with the full ones will serve as.further tests of its 

potential to be used as a tool to study the structure of multijet final states, thus 

providing us with some answers to the main theoretical questions formulated in 

§II.1.2. 

First of all, we recall that independent emission means that the gluons 

necessarily do not interact with each other so that the approximation is of an 

essentially Abelian theory. This suggests we to compare the lEA results with the 

exact ones obtained in an 'Abelian QCD' theory. Then we use the lEA formalism 

to calculate distributions in other variables that have been proposed to describe 

the multijet structure of the final hadronic state in e+ e- annihilation. Finally, 

we compare lEA predictions for multijet cross-sections with the more exact ones 

obtained using an algorithm that has been recently proposed by Altarelli et. al. 

for calculating transverse momentum distributions. 
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IV .2 ABELIAN Q C D TESTS 

As has already been emphasized ( §11.3.1 ), our assumption of indepen­

dent multigluon emissions requires that gluons do not interact with each other, 

so that no triple gluon graphs are included in our analysis of multijet cross­

sections. Remembering that the gluon self-interaction is one of the most charac­

teristic manifestations of the non-Abelian nature of QCD, this means that our 

approximation is that of an essentially Abelian theory! Therefore, we would 

expect our model to agree better with the exact results obtained in an Abelian 

QCD ( QCD with massless and colourless quarks, which is gauge invariant in 

itself). 

In this section, we compare the four-jet cross-section we obtained in our 

model ( which is already Abelian! )_ with the full one, derived using the Abelian 

limit of the matrix element. This limit is realized by the following substitutions 

in the expression for the non-Abelian matrix element ( eq.III.4.1,2 ) [ ref.III.15] 

Cp --+ 1 

To make the comparison of the results straightforward, we redefine the coupling 

constant: 

a 8 (Abelian) 
4 

3 
a 8 (non- Abelian) 

and also take into account the fact that for colourless quarks the pointlike cross­

section u 0 is normalized according to: 

uo(Abelian) 
1 

3 
uo(non- Abelian) 

We then repeat the calculations of the last chapter for the following values 

of the jet-defining parameters: 

ko 4, 10GeV Fig. IV.2.1, 2, 4 

cos Bo 0.9 0.99 Fig. IV .2.2, 3 
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Q = 100 GeV 
Ko = 4 GeV 
COS 80 = 0·9 
0.5 =0. 5 {0) =0·17 

: I.E. A. 
: FULL {NON ABELIAN) 

: ''ABELIAN" O.CD 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 
Or{GeV) 

Figure IV.2.1 

Qr-distribution of a four-jet event in electron-positron annihilation. 

lEA compared with an Abelian QCD theory. 
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Chapter IV lEA in Practice 

Q = 100 GeV 
Ko =10 GeV 
COS 80 = 0· 9 
O.s=O.s(O)= 0·17 

-: I.E.A. 
l..Il..n.J1_ FULL (NON ABELIAN) 

.... , 
"1.IU1.Jt ABELIAN QCO 

1 0- 5 L..._.....l___.J..__.J._---L...---I...-._____-'---_.____.___...___,___._._......._.&....-__, 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 
Or(GeV) 

Figure IV.2.2 

Qr-distribution of a four-jet event in electron-positron annihilation. 

lEA compared with an Abelian QCD theory. 
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Chapter IV lEA in Practice 

Q = 100 GeV 

Ko = 4 GeV 
cos g = 0·99 
as= a.s (Q) = 0 ·17 

: I.E.A. 
LJUU1. : FULL( NON ABELIAN l 
LJUUl. : "ABELIAN"QC 0 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 
Qr( GeV) 

Figure IV .2.3 

Qr-distribution of a four-jet event in electron-positron annihilation. 

lEA compared with an Abelian QCD theory. 
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Chapter IV lEA in Practice 

Q = 100GeV 
Ko = 4 GeV 
COS So = 0·9 
0.~ = O.s ( K T 1 } 0. s ( K T 2 } 
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Figure IV.2.4 

Qr-distribution of a four-jet event in electron-positron annihilation. 

lEA compared with an Abelian QCD theory. 

95 



Chapter IV lEA in Practice 

It is then quite surprising to note that there does not seem to be any 

agreement between lEA and Abelian QCD. Recall that, for the same values of 

the jet-defining cuts, there was a kinematic region ( eq.III.5.3) in which lEA 

results agreed remarkably well with the exact, non-Abelian answer and that this 

agreement was expected to improve in the Abelian limit. Instead, it has become 

worse. So we have to address the question: Why does lEA tend to agree with 

non-Abelian results rather than Abelian ones? Looking for an explanation, we 

examine the following possibilities: 

a] The agreement between lEA and non-Abelian QCD is just a coincidence 

and our 'soft' approximation to the full gluon emission matrix element 

is not valid. A more careful analysis of the effect of non-leading terms 

which are not already included in lEA is needed before the validity of the 

approximation is justified. 

b] Qr is not the appropriate variable to study the jet structure of the 

final-state hadrons! It has been pointed out [ ref. 11.17] that, while non­

leading contributions associated with an exact treatment of transverse 

momentum conservation are included in lEA ( see §II.3.3 ), there are 

further non-leading contributions associated with energy conservation, 

which may have significant influence but are more difficult yet to treat 

precisely! ( The use of other variables to describe multijet final states in 

lEA is studied in some detail later on in this chapter ). 

c] A more careful investigation of the diagram structure of our model is 

needed. Recall that when we add and square the Feynman diagrams for 

the process e+e- --+ qqgg, we get contributions of the following types 

( see fig .IV .2.5 ) 

1. 'Planar' graphs, which come with colour factor C}N 

2. 'Non-Planar' graphs, with colour factor CFN(CF- CA/2) 

3. Triple-gluon graphs, with colour factor -CACFN 

( see Appendix A for calculation of the colour factors ) 
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J 

k 

Figure IV .2.5 Feynman diagrams for e+ e- -+ qqgg 
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Triple-gluon graphs are obviously excluded in lEA but non-planar graphs 

are not included either! This is because the model is constructed in terms of 

products of cross-sections ( rather than Feynman diagrams ) so that no inter­

ference terms are included. 

If we now note that non-planar diagrams are somewhat suppressed in non­

Abelian QCD ( Cp- CA/2 = -1/6 as opposed to C} = 16/9 and CACF = 4) 

but not in Abelian QCD ( C F - C A/2 = 1, C} = 1 ), it is quite easy to 

understand why lEA does not agree with Abelian QCD: Simply because they 

do not contain the same subset of diagrams! 

IV.2.1 Planar Abelian Q C D 

The above analysis suggests a better test for our model, that is to compare 

our results with those obtained using the 'planar Abelian' limit of the exact 

matrix element, which is realized by the following substitutions: 

Cp ~ 1 

Results for the 'standard' choice of the jet-defining cuts ( ko 

4 and 6 Gev, cos Bo = 0.9 ) are presented in figure IV.2.6,7,8. 

Clearly, the agreement between lEA and the full answer has been re­

stored, but it is not any better than the original agreement between lEA and 

non-Abelian QCD. This is because the full answer is not as Abelian as it might 

thought to be. In fact, triple gluon graphs do survive in the limit CA ~ 2Cp 

which are needed to eliminate the non-planar contributions. To see how this 

happens, let us parametrize the contributions from each subset of diagrams in 

the following way: 

2XC}N + + 

for the planar, non-planar and triple-gluon graphs respectively. Now, as CA ~ 

2C F the colour weight of the last term becomes C} just as for the first one; thus 

the two terms are not colour-distinguished any more! 
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Q = 100 GeV 
Ko = 4 GeV 
COS 80 = 0·9 
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Figure IV.2.6 

Qr-distribution of a four-jet event in electron-positron annihilation. 

lEA compared with a Planar-Abelian QCD theory. 
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Q = 100GeV 
Ko = 6 GeV 
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O.s=O.s(Q) = 0·17 
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Figure IV.2. 7 

Qr-distribution of a four-jet event in electron-positron annihilation. 

lEA compared with a Planar-Abelian QCD theory. 
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Q = 100 GeV 
Ko = 4 GeV 
COS 8o =0·99 
as =as(Q) = 0·17 

: I.E.A. 
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Figure IV.2.8 

Qr-distribution of a four-jet event in electron-positron annihilation. 

lEA compared with a Planar-Abelian QCD theory. 
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Unfortunately, we only have the full matrix elements (after the substitu­

tions Cp = (N2 -1)/2N and CA = N ).in the form: Cp(aN2 - {3) a,/3 given 

in eqs.lll.4.1 and 2. 

Clearly, with only two known variables ( a, f3 ) we cannot determine all 

three unknown ( X , Y and Z ) without recalculating the individual Feynman 

amplitudes. However, t4e fact that the full planar non-Abelian result compares 

very well with the planar Abelian lEA results suggests that the kinematical 

coefficient of the remaining triple gluon term is rather small. 

To summarize, we conclude that the agreement of our lEA model (which 

is effectively planar and Abelian ) with the full, non-Abelian answer is due to 

the following facts: 

(i) Non-planar graphs are colour-suppressed, as ( C F - C A/2 ) is small 

(ii) Triple-gluon graphs are suggested to be kinematically· small ( Z small). 
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IV .3 MULTIJET SHAPE VARIABLES 

IV.3.1 The D-distribution 

The D-variable is one of the many variables that have been introduced 

to describe the jet structure of the final state hadrons in electron-positron an-

nihilation, along with Thrust (T), Sphericity (S), Accoplanarity (A), Tripodity 

(D3) to name but a few [ ref. IV.2 ]. All these variables satisfy the following 

properties: 

a] They are insensitive to the emission of soft and/or collinear gluons ( and 

this makes them theoretically acceptable ). 

b] They are also quite insensitive to the process of hadronization ( so that -

an interpretation of experimental data in terms of perturbative QCD is 

possible ). 

To see how the D-variable comes about, we have to start from the 3x3 

tensor [ref. IV.3 ]. 

where the a-sum runs over all final state particles and p~ is the centre-of-mass 

three-momentum of the ath particle. 

By a principal axes transformation, we can reduce () to a diagonal tensor, 

the eigenvalues of which are given by the roots of the characteristic equation: 

where the factors of 1/3 and 1/27 are included so that the variables span the 

range from 0 to 1. 

In terms of the eigenvalues of 0, C and D are given by: 
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For a two-jet event, both C and D vanish, while for a planar event C = 

3,\1 (1 - ,\I) and D vanishes. D is only non-zero for non-planar events. It is 

then clear that distributions in C and D can provide measures of the multijet 

structure of an event. The D-distribution in particular, seems very appropriate 

for a discussion of four-jet events, as D is a clear measure of the accoplanarity 

of an event. ( Recall that three-jet events are bound to be planar events ). 

To make things more transparent, we can explicitly relate the D-variable 

defined above, to our familiar Dalitz plot variables Xi, ( i=1,2,3,4 ) defined to 

be the fractions of the maximum available energy carried by the quark, the 

antiquark and the two gluons respectively. 

If we also define: 

xr: to be the corresponding fraction of the maximum transverse momentum 

relative to the most energetic fermion ( labelled as parton 1 ) so that 

xr = 2Qr/Q and 

Xk: to be the fraction of the maximum momentum out of the plane defined 

by the two fermions , 

we can then show ( Appendix B ) 

D 
27 xix}x~ 
4 X1X2X3X4 

an expression with some interesting properties: 

First of all, it shows explicitly that D vanishes for a planar event (xk = 0). 

It also exhibits some symmetry in the definition of the thrust axis to the extent 

that, if we choose to define xr from the second fermion, then we just replace XI 

by x2 in the above expression for D. 

Although there is no problem in reproducing the calculation for the D­

distribution in both Abelian and non-Abelian QCD for the full case [ref.IV.4], 

its calculation in the lEA is not possible, as the latter is ( by construction) only 

tranverse momentum dependent. 
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However, we can still get an idea of what is happening out of the plane 

by considering the distribution of a new variable xi = x}x~, which shares some 

features of the proper D-variable. The calculation of the distribution in this 

D-like variable ( which still vanishes for planar events ) in the lEA model is the 

subject of the next section. 

IV.3.2. The Calculation. 

In lEA, two-gluon cross-sections are easily constructed in terms of that 

for one-gluon: 

1 da 1 j 2 2 · [1 da(l)] [1 da(l)] (2) --- =- d kld k2 --- --- 8 (kl +k2- Qy) 
ao dQ} 21r ao dk~ ao dk~ 

where we have introduced the notation: 

1 da 

ao dk[ 
h(k[) 

Performing the k2x , k2y integrals using the 8-functions we set : 

so that: 

1 da 

ao dQ}dk 

where k = k1y 

We now introduce the variable : ~ = Qy · k and change variables accord-

ing to : 

(Qt k) (Qr ~) 

with 
da da ~§f at:.. 

1 da aQ} -
dQ}dk dQyd~ ~ at:.. 2dQyd~ 

ak 8k 
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so that 
1 du 

2uo dQrdD.. 

Integrating over Qr: 

1 du 
uo dDt. 

which can be expressed in terms of D..2: 

1 du 

Integration Limits 

a.] For fixed D.., Qr k is given by k = D../Qr 

b.] Now, recall the kinematical limit: 

that is: 

where 

Similarly, we require : 

Qmaz - T 

-w < k2x < w 

Chapter IV lEA in Practice 

Finally, noting that k1z , k2x must satisfy the constraint: 

we conclude: 
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when Qr > o -w+Qr < k1z < w 

when Qr < 0 -w < k1z < w+Qr 

c. On the other hand, the Qr-limits are given by: 

;\ max[ko, Ll] < 

Therefore we have : 

and combining the two integrals together: 

+ 

Qmax 

= h T dQr + 

Qmax 

2 h T dQr 

we obtain: 

1 du 1 1 QTax 
2-- r dQr 

271" Ll h. 

Finally, we introduce momentum-fractions: 

2Qr 
xr=--

Q 

in terms of which we express our final result: 

1 du 

uo dx~ 

1 1 zrax 2---1 dxr 271" X6 zTin 
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with 

min 2,\ xr =-
Q 

,\=max(~, ko) 

max 2w 
XJc =-

Q 

2[Qr -w] 
w 

IV.3.3 Results and Discussion. 

lEA results for the 1 I uodu I dx~ distribution are presented in figures 

IV.3.1 and 2. If we compare them with the full answers obtained using the 

exact matrix elements in both Abelian and non-Abelian QCD, we can easily see 

that there is a kinematic region in which lEA agrees rather well with non-Abelian 

results, and this agreement gets worse in the Abelian limit. 

However, because of the way x~ is defined ( it is only non-vanishing for 

non-planar events but not all four-jet events are non-planar ) we need to go 

to rather small values of x~ to see our approximation working. Typically, we 

expect a good agreement in the region around the critical value: 

and this is confirmed when comparing figures IV.3.1 and 2. Finally, we note 

that there is no agreement between lEA and full results for large values of x~, 

as lEA breaks down for large values of momenta ( see also §111.5.2 ). 

Noting that these results are in agreement with those of the last chapter, 

we conclude that the study of distributions in this D-like variable confirms the 

conclusions obtained from studing transverse momentum distributions and so 

provides another successful test of the applicability of our model to the investi­

gation of the multijet structure of hadronic final states. 
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Figure IV.3.1 

Distributions in x~. lEA compared with the full QCD results. 

109 



Chapter IV lEA in Practice 

10 4 ------------------------------------~ 
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Figure IV .3.2 

Distributions in x~. lEA compared with the full QCD results. 
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IV.3.4 The Total Tranverse Momentum Wr. 

The total transverse momentum Wr of the final state particles is yet 

another observable that has been used in QCD studies of hadron production in 

e+ e- annihilation, and has recently attracted theoretical as well as experimental 

interest [ref IV.5 ). As it probes the transverse spread of the final state particles, 

it is particularly useful to test QCD predictions when studying the multijet 

structure of the final hadronic state. 

One of the most characteristic QCD predictions is the expectation of 

growing transverse momentta at higher and higher energies, a phenomenon 

known as 'jet broadening' that has been observed in both e+ e- amiihilation 

and hadron-hadron scattering [ ref.IV.6 ). Jet broadening is best parametrized 

in terms of mean values of transverse momenta and (Wr) is easily calculated to 

lowest order in a 8 ( see also §V.4 ). 

However, it has been recently anticipated [ref. ellis) that there must be 

large higher order corrections to the lowest order result if unitarity is to be 

respected. To compute the 0( a~) corrections for instance, we would have to 

consider not only four parton final states, but also loop-corrections to the three 

parton process ; a non-trivial calculation. 

On the other hand, we might expect that these higher order corrections 

can be easily calculated in our I E A model ( which is naturally tranverse mo­

mentum defined ) in a way which is very similar to the calculations described 

so far. To justify our claim, let us recall the definition of Wr 

First of all, we define the transverse thrust axis with respect to which 

all transverse momenta are measured. This is determined by the unit vector ii 

which maximizes the quantity : 

'""'IP ·iii maxL...--
k 2Q 

T 

where the k sum runs over all final state particles. Tis normally associated with 

the direction of the most energetic parton. 
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In the three-jet case for instance, with ii = (cos 8, sin 8, 0) and x1 large 

enough ( see eqs.II.2.1 ) it is quite_ easy to see that the maximizing solution 

occurs when 8 = 0. 

Wr is then defined as the total transverse momentum perpendicular to 

the transverse thrust axis T : 

Wr LIPAiil 
k 

that is 

Wr 2Qr for a 3 -jet event 

where k;1 , k;2 are the transverse momentum of the emitted gluons. 

We can now understand why Wr-distributions are calculable in lEA. If 

we recall that multigluon cross-sections are constructed in terms of that for one: 

1 du 

;; dQ}d2kr1 d
2kr2 

1 

27r 

then we can suitably change variables ( as outlined in the last section in the 

calculation of the D-distribution) to obtain the lEA-expression for 1/ uodu / dW 

from which we can easily compute the mean transverse momentum: 

(W) 

However, it should be emphasized that the above expression for (W) is 

not yet free of singularities, which occur when the emitted gluons are soft and/or 

collinear with the parent fermions. These singularities are of course regularized 

by similar divergences in the virtual graphs. Analytical cancellations of such 

singularities are performed in some detail in the next chapter (§V.2.1 ) 
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IV .4 Comparison with a recent calculatien.- -----· · ·· -- . 

As it has been emphasized already in the introduction of this thesis, 

studies of transverse momentum distributions in semi-hard processes ( that is 

when Qr is not only large but very much less than Q : AQcD ~ Qr ~ Q ) are 

of great interest, particularly as the applicability of perturbative QCD .in such 

kinematic regimes is under question. In fact, the growing coupling a 8 ( Qr) and 

the presence of the new scale which gives rise to large terms of order: 

m::; 2n- 1 

force the simple perturbative expansion to break down. Multigluon emissions 

become increasingly important, requiring all orders in perturbation theory to be 

considered. 

One of the major theoretical advances of recent years has been the devel­

opment of techniques to sum these large logarithms to all orders. As outlined 

in §11.1, such resummation was first attempted by Dokshitzer, Dyakonov and 

Troyan ( DDT ) in the leading double logarithmic approximation ( DLLA : 

m=2n-1 ) and subsequently modified and improved by Parisi and Petronzio. A 

consistent framework for going beyond DLLA has been indicated by Collins, 

Soper and Sterman ( CSS ) ( see §II for references ). 

Recently, Altarelli, Ellis, Greco and Martinelli ( AEGM ) have studied 

transverse momentum distributions of lepton pair production in hadron-hadron 

collisions, in connection with the W and Z 0 production experiments [ref.ll.4,9]. 

They re-examined the QCD predictions for the Qr-distribution of the lepton 

pair, incorporating in a systematic way the theoretical information accumulated 

in recent years, in particular the analyses of CSS. Their final expression not only 

sums the multigluon emissions to DLLA at small Qr, but at large Qr reproduces 

the O(a8 ) perturbative result coming from the one gluon emission. 
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As we shall see in some detail in the next section, however systematic 

and sophisticated their approach is, their calculation is not free of theoretical 

ambiguities and a number of important questions remain unanswered. The 

purpose of this part of chapter IV is to investigate these problems and to assess 

the accuracy of their calculation, in the less convoluted problem of multijet 

production in e+ e- annihilation ( that we have been studing so far ). 

If we recall that all resummation methods imply an ansatz for 1, 2, 3 ... 

gluon emission, and note that the single gluon result is usually included more­

or-less exactly ( being the basis of these ) then we turn to the two gluon cross­

section. We shall consequently detail the ansatz of AEGM for this and compare 

it with exact 0( a;) result as well as with the lEA result, both obtained in the 

last chapter [ ref .IV. 7 ]. 

IV.4.1 Review of AEGM's algorithm for transverse momentum 

distributions. 

Their starting point is to separate the O(a8 ) cross-section for e+e- ~ qqg 

into two pieces ( following the treatment of CSS ). 

X(Q}) + Y(Q}) 

where the X term contains contributions which are singular as Qr ~ 0 and Y 

contains the remaining terms which are perfectly finite at Qr = 0. Up to and 

including 0( a 8 ), they write the following schematic expression for X: 

X(Q}) IV.4.1 

where each term comes from the diagrams shown in fig. 11.2.3a, b and c respec­

tively. The real-gluon term A( Q}) is singular as Qr ~ 0, that is in the limit 

that the emitted gluon becomes soft and/or collinear with one of the fermions. 

These singularities are regularized by the virtual contributions contained in the 

B term. 
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To distinguish between hard and soft/collinear gluons and to get afinite 

answer, the A term is decomposed into two pieces, using the '+ prescription' : 

X(Q}) 18(Q}) +as [A+(Q}) + Ao8(Q})] + asB8(Q}) 

8( Qf) [1 + as(Ao +B)] + asA+( Q}) IV.4.2 

or, in their notation: 

X(Q}) 8(Q})[1 + asF] + S(Q}) 

with 

S(Q}) asc [2(ln(Q2/Q})) - (2__) l 
2rr F Q} + Q} + 

IV.4.3 

The resummation of the large, soft/collinear terms : 1/Q} ln Q2 /Q} , 

1/Q} is performed in the impact parameter space [ref.ll.6,18]. The b-transform 

of X(Q}) is given by: 

[Af dQ} as(Q}) CF [Jo(bQT) -1] [2lnQ2- 3] 
lo Q} 2rr Q} 

where A} is the kinematic limit for the transverse momentum squared. 

The summation in b-space of all orders in as is performed by replacing the 0( a 8 ) 

result of 1 + S(b2) by exp S(b2) • Thus X is written as: 

(1 +F) exp S(b2
) 

Finally, the differential QT-distribution is recovered by Fourier transform-

ing back to QT space: 

1 du 
uodQ} 

IV.4.4 

Recall that the Y term represents the hard, single gluon contribution: 

from which the terms singular in the QT-+ 0 limit have been subtracted. These 

singular terms are in fact included in the first term, in the exponential. The 

latter represents the so-called Sudakov form factor and its appearance reflects 

the resummation of the soft, multigluon emissions. 
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IV .4.2 Theoretical Uncertainties in the AEG M formalism. 

a.] As the soft gluon resummation was performed at DLLA, it is natural to 

ask what is the effect of the neglected subleading terms [ref.IV.8]. 

b.] As a complete two-loop calculation has not yet been performed, it was 

not possible for AEGM to include the O(a;) in an entirely consistent way; 

thus, the effect of the neglected higher order terms needs to be examined 

[ref.IV.9]. 

c.] As AEGM followed the analyses of CSS and exponentiated only part 

of the first order contribution, it would be interesting to compare their 

results with the ones obtained in the naive lEA, where the whole 0( a 8 ) 

is exponentiated. 

d.] Finally, as AEGM point out, there remains an ambiguity in the choice 

of the scale of the running coupling, which cannot be removed without 

a complete knowledge of-the O(a;) terms. However, in the light of the 

remarks made in §III.4.c, this problem can be further investigated in 

the lEA framework, where the several proposed choices can be critically 

compared. 

IV.4.3 e+e- -+ 4jets using AEGM's algorithm. 

To throw some light on these questions, we now calculate the tran­

verse momentum distribution for a four-jet event in e+ e- annihilation using 

the AEGM algorithm outlined in §IV.4.1 and compare the result with the 'ex­

act' O(a;) answer as well as with the simple lEA result, both obtained in the 

last chapter. To get the AEGM four-jet contribution, we first expand eq. IV.4.4 

to second order and identify the AEGM two-gluon term. If we recall their de­

composition of real and virtual graphs ( cf. eqs.IV.4.1 and 2 ) and the origin of 

every term in their final expression ( eq.IV.4.4 ), it is then easy to see that such 

a term is only contained in the expansion of the exponential: exp S(b2), and we 

only need to consider the term: 
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1 duAEGM 

uo dQ} 

As S(b2) depends only on the moduli of the momenta and not their 

dir~ction ( eq.IV.4.3 ), we can trivially perform the angular integration in the 

above expression to get: 

1 duAEGM 

uo dQ} 

x j dq2 [lo(bq)- 1] as(q2) Cp [2ln Q2 jq2 - ~] 
27r q2 q2 

Clearly, the -1 arises from the virtual gluon graphs which regularize the 

infrared singularities as p, q --+ 0. As four-jet events can only originate from 

two real real gluons, these virtual contributions need not be taken into account, 

so that we are left with: 

1 duAEGM 

uo dQ} 

In( Q2 I q2) . 3] j 
x (2 q2 - q2 bdb Jo(Qrb)Jo(pb)Jo(qb) 

where we have interchanged the order of b, p and q integrations. 

IV.4.5 

Moreover, in order to ensure a finite answer and four distinct jets in 

the final state, we have to integrate eq.IV.4.5 only over those regions of phase 

space where the four outgoing partons are well defined and well separated from 

each other. Given the form of the AEGM-equation and noting its structural 

similarities with the lEA-equation 111.2.2, we can identify p and q with the 

transverse momenta ky
1 

and ky
2 

of the two gluons and impose lEA-type jet­

resolving cuts on them, namely: 

P' q 2: ko and Bo ~ B(p , q) ~ 1r - Bo 

(see §111.3.3 for details ). 
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Finally, note that the integration of the three Bessel functions gives rise 

to the W3(p, q, Qr )-function of eq.III.2.4, which, recall, is only defined if the 

vectors of length p, q and Qr can form a closed triangle: 

IV.4.4 Comparison of AEGM with lEA. Discussion. 

As has been already noted in the last section, the AEGM expression for 

the transverse momentum distribution of a four-jet event is not very different in 

form from the corresponding lEA result. Moreover, numerical predictions based 

on eqs.III.2.2 and IV.4.5 and using the same values for the various parameters 

( choice of cuts, running of as ) differ by just a fraction of one percent. This 

implies that, despite their systematic and sophisticated approach, AEGM do not 

treat multigluon emissions much better than the naive lEA does, so that their 

analysis can be seen only as a plausible theoretical approximation to the ( much 

awaited ) 'complete and explicit treatment of the soft gluon effects' [ ref.II.4]. 

In the last chapter, we introduced the lEA formalism as another ap­

proximate framework, particularly useful for calculating transverse momentum 

distributions in the multijet case, and we showed that there W¥ a non-trivial 

kinematic region in which lEA agreed very well with the exact fixed-order results. 

In this chapter, we indicated that these approximations are not very different 

from each other, as they were seen to be in remarkable structural and numerical 

agreement. However, despite these similarities, the two approximations display 

a number of theoretical differences, which are highlighted below: 

a.] As the whole of the 0( as) one gluon cross-section is naively exponenti­

ated in lEA, some of the subleading terms are included, whereas AEGM 

neglect these terms on the grounds that their effect can roughly be re­

produced by a corresponding change in the value of AQCD· 
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b.] This uncertainty in the value of AqcD cannot be removed until second 

and higher order terms are calculated. However, as it will be detailed 

in the next chapter, lEA can be used to study the effect of these terms, 

particularly as it allows multigluon contributions to be easily calculated 

( see eq.III.2.1 ) and has virtual corrections already built in. 

c.] Finally, as far as the above mentioned ambiguity in choosing the argument 

of the running coupling is concerned, note that, while AEGM prefer the 

simple choice of Q2 or Q} and emphasize the need for a complete O(a~) 

calculation to resolve the issue, lEA allows several choices to be con­

sidered and compared. In fact, because of tlie way the Qr-distribution 

is generated by multigluon emissions, gluon transverse momenta can be 

used in the argument of a 8 , and that has already been -seen in chapter 

III as equivalent to including often dominant corrections to all orders. 
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IV.5 SUMMARY OF CHAPTER IV. 

In this chapter, we put the lEA model to more tests. First of all, we 

investigated its agreement with the exact QCD results by making comparisons 

both with an Abelian QCD and a Planar Abelian QCD theory. We concluded 

that the agreement of lEA ( which is effectively planar and Abelian ) with 
' 

the full, non-Abelian answer was due to a colour-suppression of the non-planar 

graphs and a ( suggested ) kinematic-suppression of the non-Abelian ones. 

Then, we outlined how the lEA formalism can be used to calculate dis­

tributions in other variables that have been proposed to describe the multijet 

structure of the final hadronic state ( such as the D-variable and the total trans­

verse momentum Wr ). In particular, we described the ]EA calculation of the 

D-distribution in some detail and compared its predictions with the exact ones 

obtained using a Monte Carlo generation of events according to the full QCD 

matrix elements. The comparison echoed the conclusion of chapter III: There is 

a non-trivial kinematic region in which lEA is a realistic approximation to the 

exact theory. 

Finally, we contrasted the simple lEA approach for calculating transverse 

momentum distributions with the more systematic and complete algorithm of 

Altarelli et. al. and found that they were in a remarkable structural as well 

as numerical agreement. This agreement was then seen as another attractive 

feature of the lEA model, on top of those emphasized in §11.3.4 (recall, lEA not 

only sums the- almost independent- multigluon emissions at small Qr, but also 

reproduces the 0( a 8 ) result at large Qr ). The use of this model to study higher 

order corrections to multijet cross-sections is the subject of the next chapter. 
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CHAPTER V e+e---+ 3 JETS 

V.l INTRODUCTION. 

We now turn to three-jet events in e+ e- annihilation to 0( a~) in the 

Independent Emission Approximation ( I E A ) by considering the two-gluon . 
cross-section in those regions of phase space, where the four final-state particles 

define only three distinct jets. The corresponding soft and collinear singularities 

are regularised by taking into account the contributions of the virtual graphs to 

the same order in 0:8 • 

The above cancellation of singularities between real and virtual graphs 

is shown explicitly and the analytic behaviour of the cross-section in the soft 

limit is investigated in detail ( §V.2 ). In the light of thes~ analytic studies, 

we arrange that the two contributions are combined under the same integral ( cf 

eq.III.2.3) and the relevant numerical integration is performed to a high level 

of accuracy ( §V.3 ). Finally successful comparisons with existing calculations 

are also made and the theoretical questions formulated in the beginning of this 

work ( §11.1.1 ) are given reliable answers. 
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V.2 THREE JETS IN IE A. 

In IE A, the 0( a~) cross-section for two gluon emission is given in terms 

of 0( a 8 ) cross-section for single gluon emission: 

1 du(2) 

uo d2Qr d2kr1 d2kr2 

Since the cross-sections depend only on the magnitude k} and not on the 

direction of kr, we can deduce: (eq.III.1.3 and 4) 

1 
X 1 

[(Qr + krJ 2
- k}2 ]

2 

1 
V.2.2 .1 

[ k}2 - ( Qr - k}1 )2] 2 

We now want to integrate eq.V.2.2 over those regions of phase space, 

where the four final state particles define just three distinct jets. This will 

enable us to consider the 3-jet cross-section beyond the tree approximation (of 

Stirling et. al. [ref.II.10] for instance ). Following our discussion of §III.2, this 

means that we have to consider configurations with: 

(i) One hard- one soft gluon 

( i.e. one of the gluons is 'energetic' enough ( kr; 2: ko, i = 1, 2) to 

manifest itself as a jet, whereas the other one fails the cut ( kri < ko, j =/= i ). 

(ii) Two collinear gluons 

( i.e. two gluons that fail the angular cut introduced in §II.3 ) 

These requirements for a three-jet final state, set the limits for the nu­

merical integration in a way that is schematically described in figs.III.4.1 and 

V.2.1. 
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X1d2/{1+Zo) 

Xo= Ko(1-Zo) +_!_ Q2r+Kt!Zt -1) 
O.r Or 

X = 1 

-1 0 y 

Figure V .2.1 Three-jet phase space. 

The shaded area corresponds to the case where one of the gluons is hard 

( kr; < ko i =/= j ) and the hatched area corresponds to two hard gluons 

but not sufficiently widely separated. 
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However, as has already been emphasized, perturbative QCD cross­

sections diverge in those regions of phase space, where the final state particles 

are not well defined ( i.e. either not energetic enough or not well separated 

from each other ). To regularize these soft and collinear singularities, we have 

to include the contributions from the virtual graphs to the same order in a 8 • 

The total answer is known to be finite by means of the K L N theorem [11.14]. 

In our case, this regularization has been performed in §111.2. The second 

term of eq.lll.2.3 serves to compensate the soft singularity of the first term 

corning from the 1/ k}; m du(l) / dk}.. 
I 

when either kr; = 0. ( Recall 

that there are no collinear singularities in I E A ). 

The study of how this cancellation comes about, is the subject of the next 

section. 

V.2.1 Cancellation of soft singularities. 

We first recall the contribution of two real gluons expressed in terms of 

the dimensionless variables x and y introduced in §111.4: 

4 

7rQ} J dxdy 

x(x +y) 

which is, of course, singular at x = 1 andy= ±1. 

V.2.3 

We shall now show, that these singularities are explicitly cancelled by the 

virtual gluon contribution: 

Iv 
2 

-Q} f(Qr) 

( using the notation introduced in eq.lll.4.2 ). 

J dkr f(kr) 
kr 

V.2.4 

Without loss of generality, we consider the following simplified case: 

a] We use the leading log formula for one-gluon cross-section: 

f(kr) V.2.5 
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b] From fig.V.2.1 we can see that the region of they-integration is given by 

the intervals [ -1,-Y] and [ Y,1]. However, the cancellation of the poles 

is not affected, if we extend the region to [ -1,1 ]. Following the analysis 

of §II1.3, we now choose to work in terms of the B-variable introduced in 

eq. III.3.4, so that we have: 

where 

4 

7rQ} 

7r 

7r 

rxmaz dx 

lxmin x(x 2 - 1) 

,.. 

/_'I~ dB !Ih 
2 

V.2.6 

[ 
Q x2 -1 l 

ln ( Qr) - ln ( x - sin B) V.2.7 

[
ln( _9_) -ln(x

2
- 2x s~nB + 1 )] 

Qr x- smB 
V.2.8 

c] To regularise the pole at x = 1 in the real part of eq.V.2.3, we introduce 

an €-cut, such that Xmin = 1 + €. Similarly, the soft. singularity in the 

virtual part is parametrised by a ~-cut, which, on dimensional grounds 

can be written ~ = J1Qr. 

We now claim the following: 

Given the €-cut, we can choose an appropriate J1 = JL(t:), such that the 

singularities cancel, on adding real and virtual contributions together! 

Before we proceed, we note that, for the purpose of this cancellation, we 

can set x = 1 everywhere in eqs. V.2.6,7 and 8 except in the singular parts, so 

that we can write: 

{ dx 
JI+( 1(x-1)(1+1)x 

X j~ dB [tn(!l_) -In((
1 

+ 
1 )(~- 1

)) l X 
-~ Qr 1- smB 

x [In ( !l_) - In ( 1 - 2 si~ B + 1 ) l 
Qr 1- smB 

V.2.9 
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The original B-integral can be written: 

· evaluating the last integral in the above expression: 

,.. 

j_'I!!. dB ln(l - sin B) 
2 

-1r ln2 

we finally obtain the B-integral: 

Ie In ( _2__) 
2Qr 

V.2.10 

- Then, we look at the x-integral: 

[In ( _2__) f ~ - j ~ In( x - 1 )] 
4Qr ll+c x - 1 x - 1 

and we consider the contribution from the lower limit of the integration: 

so that we obtain for the real gluon contribution: 

-- -ln€ In --[
In

2 
€ ( Q )] 

2 4Qr 
V.2.11 

We now turn to the virtual part, combining eqs.V.2.4 and 5: 

Iv 
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and consider again the lower limit contribution: 

Iv _ __!__ [2o:sCF]
2

ln(_9_) [ln
2
(J.LQr) (Q) l 2 
2 

-In -
2 

ln(J.LQr) V.2.12 
QT 1r 2Qr 

From eqs.V.2.11 and 12, it is then clear that the cancellation ofthe double 

logarithmic terms forces us to choose : J.L = A€ , with ..\ to be determine<!. by the 

cancellation of the single logarithmic terms. 

In fact, with some algebra, we obtain the following expression for the 

single logarithmic part of the final answer: 

which gives the equation that determines..\: 

-ln(4~T) -ln(..\Qr) + ln(~) 0 

which can be easily solved, to give us: 

2 V.2.13 

Therefore we conclude that soft singularities are completely cancelled 

between real and virtual graphs, provided we choose the infrared regulator in 

the virtual part to be ~ = 2€QT € being the soft regulator in the real 

part, which ensures the individual gluon kr's are greater than €Qr/2. 
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V.2.2 Numerical Integration. 

We can now take advantage of this cancellation of soft singularities be­

tween real and virtual graphs to ensure maximum stability for our numerical 

integrations. In fact, we can arrange that both integrals have the same lower 

limit, so that they can be combined into one double integral. To do so, we first 

change variables in the virtual part: 

where 

Let 

kr -----+ ZT 

kr (zr- 1) 2Qr 

So that we have for the lower limit 

2€QT -----+ ZTmin 

and the virtual integral now reads: 

Iv 1ZTma:r dzr ( ) f 2Qr(zr- 1) 
ZTmin (zy- 1) 

which can be rewritten in the form of a double integral: 

Iv 

xdB (f(2Qr(zr- 1)))] 
7r- (}3 - (}2 

and can be combined with the real gluon integrals: 

128 

V.2.14 



Chapter V e+e- --+ 3jets 

I 

xd8 [ !112 _ ~ f(Qr)f(2Qr(x -1))] 
x( x + 1) 2 1r - 83 - 82 

V.2.15 

where, recall, the integrals are finite as € --+ 0 . 

Of course, due to the difference in the upper limits, there is a piece of the 

virtual integral left over, which has to be added to give us the final answer for 

the 0( a~) three-jet cross-section : 

2 · QTa:r: dk 
- QT2 f( Qr) f ___I_ f(kr) 

so that 

1 du 

uodQ} 

V.2.3 €-extrapolation. 

l(xma:r:-1)2Qr kr 
V.2.16 

The cancellation of the soft singularities between real and virtual parts 

(§V.2.1) guarantees a finite answer for the combined integral I = IR + Iv 

( §V.2.2). We now discuss how this finite value can be extracted reliably. To do 

this we study the behaviour of our integral as €, the soft regulator, goes to zero, 

in some detail. Having seen (§V.2.1) how ln2 
€ and In € terms cancelled 

out between the two contributions, we now show that the finite terms which 

survive the cancellation are of the form 

8ln8 , 8 ' ' ... 

where 

€ 
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I( h) 

_!!_ f(Qr)f(2Qr(x -1))] 
2 7r - (}3 - (}2 

and recall it is 1(0) we want to determine. 

First we make use of the property that if 

then 

to obtain 

dl(h) 
dh 

dl(h) 
dh 

4 -2h 

7rQ} 82 

I( h) r dx h(x) 
lu(8) 

Chapter V e+ e- --+ 3jets 

V.2.17 

where we have set x = 1, everywhere except in the singular parts. 

We now recall (§111.4) that 83 - 82 is proportional to h, so that we can 

write: 

and eq. V.2.17 now reads: 

but for small h 

1 

h 

[ 
c8] -1 1--
7r 
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dl(b) 
db 

4 

11"Q} 
1 

(--) 
b 
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We now consider each of the terms on the right hand side in turn 

(i) Second term To first order in b, we can write: 

s' 

If we now use the leading log formula (eq.V.2.5), we obtain: 

which, upon integration over b, gives a contribution of 

s j S'(b)db 
4 

1rQ} cf(Qr) 

x [-2b ln b + b ( 2 + ln( _9_)) + constants] 
4Qr 

which has the claimed form of 

constant+ Ab + Bblnb + O(b2)terms 
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(ii) First term Here the 8-integration is not trivial, so a more complicated 

analysis is needed. However, we can still say something about this term. 

From eq.II.3.1 and eq.II.3.4 we have: 

and 

that is 

k Qr [ -1 + x sinO) 
T =-x+-----

1 2 x- sinO 
ky: = Qr [x _ -1 + x sin B) 

2 2 x- sinO 

and to first order approximation, in the limit 8 -+ 0 (x = 1 + '82) 

B-+ ±~ (sinO= ±1) we have 

and 

Therefore the first term reads: 

F'-_4_ 
- 7rQ} 

1 
( --) 

8 

Qr· 

and it is easy to see that the ln 8-terms cancel out! The 1/8 factor is cancelled 

by second order terms ( so far ignored ) and a better treatment of the 8-integral 

is needed for a complete analysis of this term. 

So, although we have evidence for a 8ln 8 + 8 + 0( 82) behaviour of 

our integral as 8 approaches zero, we cannot determine the coefficients of 

every term. Instead, we follow an alternative route. We use the generic formula: 

1(8) 1(0) + B8ln8 + A8 

and fit numerical results obtained for different ( but small ) values of 8 

to estimate A, B and allow the physical 1(0) to be extracted. This can be done 

in the following way: 
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Given the results of the numerical integration for three different values of 

i = 1, 2, 3 , we can set up the following system of linear equations: 

i = 1,2,3. 

and solve for A,B and I(O). 

As a consistency check, we can now repeat the numerical calculation for 

different values of b, say hj j =/= i and compare the result with the answer 

the analytic formula gives. 

A few examples of these checks are shown in figs.V.2.2 and 3. Noting the 

spectacular agreement of the fit, even for really small values of b we can trust 

the extrapolation procedure described above to follow our integral(eq.V.2.15) in 

the limit b -+ 0 , i.e. x -+ 1. 
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Figure V.2.2 : ~:-extrapolation 
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Figure V.2.3 : €-extrapolation 
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V.3 RESULTS AND DISCUSSION. 

As with the four jet case, we present our results for the quantity 

du 3iet I uodQ}, where Qr is defined with respect to the quantity with the largest 

thrust, so that we use eq.ll.2.8 as input for the 0( a 8 ) cross-section du(l) I uodQ}. 

We recall the discussion of the four-jet results and make the following 

choices for the values of our parameters ( see §111.5 for details ). 

a) Centre-of-mass energy: Q = 100 GeV 

b) Running coupling constant a;= a 8 (kr1 )as(kr2 ) 

where 

with 

c) Jet defining cuts: 

2Nf 
11--

3 

6 

0.2Gev 

cos 80 0.9 

ko 3, 4and 7GeV 

Echoing the conclusions of §111.5, we know there is a non-trivial kinematic 

region, namely 2ko ::; Qr ::; 20Ge V , in which our model is most likely to give 

reliable results. In this region then, we compare the following cross-sections:( see 

figs. V.3.1, 2, 3, 4 and 5 ) 

(i) 0( a 8 ), tree-level, three-jet cross-section 

(ii) O(a;), three-jet cross-section (with virtual corrections included) 

(iii) 0( a;), tree-level, four-jet cross-section. 
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Ko = 4 GeV 
COS 9o= 0· 9 
Cls=CI 5 (Q} = 0·17 

3jets O!aJ+O(CI~) 
\ . 
\\ 

\ 
\ 

4 jets O(CI ~ )\ 

\ 

2 4 6 8 10 12 14 16 18 20 22 24 26.28 

Ur(GeV} 

Figure V .3.1 

Comparison of Qr-distributions in e+ e- annihilation. 

(i) O(a8 ), 3-jets ( tree-level ) 

(ii) O(a;), 3-jets with virtual corrections 

(iii) 0( a;), 4-jets ( tree-level ) 
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Q:100GeV 
Ko= 7 GeV 

COS So= 0· 9 
as=as(Q) = 0·17 

~ 

~3 jets 
\ O(a.sJ+O(a.~ 

3 jets O(asl 

'\ 
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\ 
\ 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 

Or(GeVl 

Figure V.3.2 : e+e- -+ 3 jets 

Comparison of Qy-distributions in e+ e- annihilation. 

(i) O(as), 3-jets (tree-level) 

(ii) 0( a;), 3-jets with virtual corrections 

(iii) 0( a;), 4-jets ( tree-level ) 
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a= 100 GeV 

Ko = 7 GeV 
cos 9 = 0·9 
as=as!Kr11 as( Kr 21 
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\ 
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 
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Figure V.3.3 : e+e- --+ 3 jets 

Comparison of Qr-distributions in e+ e- annihilation. 

(i) 0( a 8 ), 3-jets ( tree-level ) 

(ii) 0( a;), 3-jets with virtual corrections 

(iii) O(a;),4-jets (tree-level) 
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Q = 100 GeV 

Ko = 3 GeV 

COS8o=0·9 
a.~= O.s(Kr1) O.s !Kr2l 

t\aco= 0·2 GeV 

~\4 jets 0 (a.~) 
\ . 
(\ 
3 jets O(a.s)+O(a.~) 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 
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Figure V.3.4 : e+e- -+ 3 jets 

Comparison of Qr-distributions in e+ e- annihilation. 

(i) O(a8 ), 3-jets (tree-level) 

(ii) 0( a~), 3-jets with virtual corrections 

(iii) 0( a~), 4-jets ( tree-level ) 
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Q = 100 GeV 

Ko = 4 GeV 

COS 9o = 0·9 
a~=as(Kr1 l as!Kr2l 

A aco = 0·2 GeV 

' 3jets O(as)+ O(a~) 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 
Or (GeV) 

Figure V.3.5 : e+e- --+ 3 jets 

Comparison of Qy-distributions in e+ e- annihilation. 

(i) O(as), 3-jets ( tree-level) 

(ii) O(a;), 3-jets with virtual corrections 

(iii) O(a;), 4-jets (tree-level) 
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As a result of such a comparison, a number of interesting remarks are in 

order: 

1. Higher order corrections to tree-level results are indeed important. In par­

ticular, second order corrections to the three-jet cross-section are found 

to be large, especially for small values of the resolution parameters which 

are used to perform the cancellation of infrared and collinear singularities 

between second order real and virtual graphs. 

2. As the size of the corrections depends on the values of these parameters 

which, recall, also serve as jet-defining cuts ( as they govern the par­

tial fractioning of the four-parton contributions into three- and four-jet 

hadronic states ), the relative magnitude of the 0( a;) three- and four-jet 

cross-sections is not uniquely determined. 

3. If we choose a relatively large value for the minimum transverse momen­

tum cut ( say: k~ = 7 GeV ), thus forcing the gluons to acquire rather 

large values for their transverse momenta, then we confirm the predictions 

of perturbative QCD. In this case, the coupling constant a 8 (kr) 1s 

small and the logarithms ln(k}/Q2) are under control so that per­

turbation theory is applicable. 0( a;)-corrections to the tree-level 0( a 8 ) 

three-jet cross-sections are indeed small and the 0( a;) four-jet cross­

section is suppressed by another power of the ( small) coupling constant. 

4. On the other hand, for very small values of k~ ( k~ ~ 3GeV ), the O(a;) 

corrections to the three-jet cross-section become large and negative, which 

signals the breakdown of perturbation theory for a cross-section with 

fixed number of jets. ( Note that these large corrections, due to low mass 

partons, that is soft and collinear partons, push the four-jet cross-section 

above the three-jet one! ) 
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5. Theoretically, cross-sections for fixed number of jets are applicable only 

for such values of the jet-defining cuts, which leave the effective expansion 

parameter small: 

whereas experimentally, these cuts should not be smaller than the non­

perturbative jet mass and jet opening angle given by the finite transverse 

momenta of the fragmentation process. a measure for the nonperturba-

tive jet mass is the slim jet mass which at LEP energies ( 100 GeV ) is 

expected to be 6 to 7 GeV [ref. 111.7 ]. 

6. The above remarks are in agreement with similar conclusions deduced 

from recent calculations ( using different sets of cuts such as the Sterman­

Weinberg cuts and the invariant mass cut ) [ ref. V.l ] which con­

firmed the dependence of the higher order corrections to the multijet 

cross-sections on the above cuts, needed to regularize the infrared and 

collinear divergences as well as to group the final-state partons into dis­

tinct jets. Moreover, these calculations have also emphasized the depen­

dence of the cross-sections on the choice of the kinematical variables used 

to parametrize the shape of the oberved hadronic events (see §IV.3 ) as 

well as on the fragmentation mechanisms used to model the hadronization 

of the outgoing partons into hadronic jets. 

7. Inevitably, these ambiguities concerning the size of higher-order correc­

tions to multijet cross-sections heavily affect the determination of as or, 

equivalently, of the scale of the strong interactions AQcD from analysing 

e+e- data, see §1.2.2 and [refs.I.17,V.l], as it is well known that the value 

of as cannot be readily extracted and compared with measurements from 

other processes ( e.g. Deep Inelastic Scattering, Quarkonium Resonances) 

without the inclusion of the higher-order corrections [ ref.III.12 ]. 
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V.4 JET BROADENING. 

In this chapter, we have been studying transverse momentum distribu­

tions for three-jet events in electron-positron annihilation using our approxima­

tion model lEA. Similar studies for four-jet events were described in chapter 

III. As has already been emphasized in §IV.3.4, one of the most characteristic 

predictions of QCD is that Qr-distributions should broaden as the total energy 

Q2 increases. ( Broader Qr-distributions are expected to be the result of the 

increasing gluon bremmstrahlung as the annihilation of the incoming particles 

is becoming more violent ). 

It is natural then to ask ourselves the question: 'Do we see such a be­

haviour of our Qr-distributions in lEA?' A positive answer to this question will _ 

serve as another successfull test of the applicability of lEA to study multijet 

structures of hadronic final-states in e+ e- annihilation. 

As has been outlined in §IV.3.4, the jet-broadenig phenomenon is best 

parametrized in terms of mean values of transverse momenta which, in turn, are 

calculable in perturbative QCD: 

(Qr) constant+ 7Ja8 Q + O(a;) 

with 'fJ a dimensionless factor of order 1. 

prove: 

Using the simple LLA formula (eq.II.2.7) for instance, it is very easy to 

(Qr) 
fdQrQr~ 

fdQra~T 

The calculation of the full O(a~) corrections, however, is more subtle as 

we have to consider not only four-parton final-states, but also loop-corrections 

to the three-parton process. On the other hand, second order corrections to 

the individual three- and four-jet transverse momentum distributions have been 

already calculated in the simple lEA model ( §111.4 and IV.3 ). 
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Inevitably, the final expressions for the individual three- and four-jet 

distributions depend on the choice of the cuts needed both theoretically to define 

infrared- and collinear-safe cross-sections, and experimentally, to group the final 

state-particles into jets. 

To eliminate this dependence on the jet-defining cuts and to get an es­

timate of the size of the total second-order corrections, we add the individual 

three- and four-jet distributions together ( for the same values of the cuts ) and 

consider the quantity: 

1 du 

uodQ} 

__!_ du l O(a,)+O(a~) + __!_ du l O(a~) 
Uo dQ} 3jet uo dQ} 4jet 

for two different values of the total energy, namely for: 

Q 50, lOOGeV 

Figure V.4.1 then verifies our claim that the du / dQf distribution does 

get flatter as we increase the total energy Q. The above simple calculation serves 

as another check of the validity of the lEA model ( rather than a rigorous proof 

of the jet-broadenig phenomenon). 

This phenomenon ( observed m both e+ e- annihilation and hadron­

hadron scattering) has been seen as a clear manifestation of the gauge nature of 

QCD. In a gauge theory, both soft and collinear gluon emissions are associated 

with large logarithms (up to two for each power of as ) which make the effective 

expansion parameter to be as ln2
• This copiously-produced radiation gives rise 

to an increase of the relative transverse momentum [ ref. IV .Sb ]. 

If we now recall that the terms a 8 ln(Q}/Q2) become problematic only 

m the region of small Qr ( A «: Qr «: Q ) where gluons are soft and/or 

collinear and the relevance of perturbative QCD is under question, then we can 

understand the importance of the jet-broadening phenomena and their studies 

as being directly related to the singularity structure of the underlying gauge 

theory. 
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Figure V.3.1 : Jet broadening in e+e- annihilation 
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IV.5 SUMMARY OF CHAPTER V. 

In this chapter, we used the lEA formalism to investigate the effect of 

higher. corrections to tree-level results. In particular, we calculated the O(a~) 

cross-section for three-jet events in e+ e- annihilation by integrating the two­

gluon contribution ( eq.V.2.2 ) over those regions of phase space, where the 

four-final state particles define only three jets. Of course, to the same order 

in a 8 , there were virtual contributions as well, which had to be taken into ac­

count. The individual real and virtual graphs exhibited the familiar soft and/or 

collinear singularities, but the total ( physical ) 0( a~) cross-section was seen 

to be finite, as the result of an exact cancellation of these singularities between 

real and virtual contributions. This cancellation was shown analytically and the 

two contributions were suitably combined under the same integral for maximal 

numerical stability. 

This 0( a;) three-jet cross-section was then compared ( in the kinematic 

region in which lEA was proved to be applicable and for various values of the 

'jet-defining cuts' used to perform the above cancellation ) with the tree-level 

cross-sections: 0( a8 ) for three-jet and 0( a;) for four-jets, to study the size of 

the higher order corrections as well as their dependence on the values of the jet­

defining cuts. Our corresponding conclusions and their physical consequences 

were then discussed in some detail in §V.3, where they were also compared 

with similar results obtained from recent higher-order calculations of multijet 

cross-sections using differenet sets of cuts. 

Finally, and as a consistency check, second order three- and four-jet cross­

sections obtained for the same values of the cuts but at two different energies, 

were added together to confirm the well known phenomenon of broader tranverse 

momentum distributions at higher energies which has been seen as one of the 

most characteristic predictions of perturbative QCD. 
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VI.l Summary. of this Thesis 

Studies of transverse momentum distributions in 'semi-hard' processes 

have recently attracted theoretical as well as experimental interest as it is real­

ized that they are directly related to the singularity structure of the underlying 

theory. In chapter II we reviewed the progress that has been made in describing 

these processes in terms of perturbative QCD and we concentrated on some of 

the theoretical questions that remain unanswered ( such as the importance of 

the - difficult to calculate - higher order corrections, the role of the - often ne­

glected - nonleading terms and the uncertainties in determining the basic QCD 

prameters: a 8 , AQCD· 

To shed some light on these questions, we set up a simply calculable 

model, based on the approximation that the gluons (responsible for these trans­

verse momentum effects ) are emitted independently ( apart from transverse 

momentum conservation ). This model, in which cross-sections for multigluon 

emissions were easily constructed in terms of that for a single gluon, was found 

to exhibit some useful features so that it could be used to study how Qy­

distributions are generated from multigluon emissions, as well as allow the indi­

vidual multigluon cross-sections to be calculated. 

To ascertain when and where such a model is a good approximation to 

the fixed order result, we looked in chapter III at two gluon emission in more 

detail. From this, we calculated the cross-section for four-jet production in 

electron-positron annihilation. To ensure that the four final-state particles were 

well defined and well separated in phase space, certain cuts had to be imposed 

on them. In particular, we required that each part on had a minimum transverse 

momentum ko and that there was a minimum angular separation Bo between 

each pair of them. 
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As it was then emphasized, these cuts were needed both theoretically, to 

regularize the singularities which arise...w:hen the en;lltted_gluons are either 'soft' 

or 'collinear' with the emitting fermions, as well as experimentally, to group the 

final-states particles into distinct jets . Other sets of cuts that have been already 

proposed in the literature were reviewed and compared with the one we used. 

Then, identical cuts were implemented for the full two-gluon result ob­

tained by a Monte Carlo generation of events using the 'exact' matrix el~ments. 

The comparison of the two results helped to identify the kinematic region in 

which our model is most likely to be reliable, and determined the choice of the 

various parameters for maximal agreement. It was in fact found that, for realis­

tic values of the above jet-defining parameters, there was a non trivial kinematic 

region in which our model agreed rema!kably well with the 'full' result. 

Then, in chapter IV, we set about testing this agreement more fully. First 

came a comparison with an 'exact' Abelian QCD theory: Be'cause the assump­

tion of independently emitted gluons required that the gluons did not interact 

with each other, no triple-gluon graphs were included in our analysis of multi­

jet cross-sections. Remembering that the gluon self-coupling is one of the most 

characteristic manifestations of the non-Abelian nature of QCD, that meant that 

our approximation was that of an essentially Abelian theory. That encouraged 

us to compare our results with the exact ones obtained in an Abelian QCD 

theory, hoping for an improved agreement between the two answers. However, 

that was not the case, and that led us to investigate the colour structure of 

our model in some detail. This investigation ( which also involved comparisons 

with different subsets of Feynman diagrams, such as a 'planar Abelian QCD' 

theory ) helped us to conclude that the agreement of our lEA model ( which 

was effectively planar and Abelian) with the full non-Abelian results was due to 

the colour-suppression of the non-planar graphs and a kinematical-suppression 

of the non-Abelian ones. 
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The use of lEA to study other processes ( not very different from· Bthe 

Qr-distribution of a multijet event ) was elaborated in the rest of chapter IV. 

Its ability to calculate distributions in other variables that have been proposed 

to describe the multijet structure of hadronic final-states in electron-positron 

annihilation (such as the D-variable and the total transverse momentum Wr of 

the event ) served as further successful tests of its potential to be used as a tool 

to attack some of the (still unanswered) theoretical questions formulate~ in the 

introduction. 

Moreover, a critical review of recent theoretical developments in under­

standing the low-Qr regime ( where the applicability of QCD is under question 

due to the growing coupling constant a 8 and the presence of large logarithms of 

the type: ln(Qr/Q)) by taking into account effects of multigluon emissions to 

all orders a 8 , and in particular a comparison of the naive lEA with a system­

atic calculation which summarized the large amount of information accumulated 

in these studies, confirmed all the above claims. lEA predictions for multijet 

cross-sections were found not to be very different from those obtained using 

these sophisticated algorithms. 

All these tests encouraged us to use the lEA formalism to investigate 

the effect of higher order corrections to the tree-level results. In chapter V 

in particular, we calculated the O(a;) cross-section for three-jet production in 

e+ e- annihilation by considering the two-gluon cross-section in those regions of 

phase space, where the four-final state particles defined only three distinct jets. 

The corresponding soft and collinear singularities were regularized analytically 

by taking into account the contributions of the virtual graphs to the same order 

in a8 • This O(a;) three-jet cross-section was then compared (in the kinematic 

region in which lEA is applicable ) with the tree-level cross-sections: 0( a 8 ) for 

three-jets and 0( a;) for four-jets. 

150 



Chapter VI Summary and Future Developments 

The comparison of these results confirmed the importance of the higher 

order corrections, as these were found to be large, especially for small values of 

the jet-defining cuts used to perform the cancellation of the infrared and collinear 

divergences between second order real and virtual graphs. Theoretical as well as 

experi:nentallimits to the values of the cuts were also discussed. As a consistency 

check, we added the second-order cross-sections for three- and four-jets to get 

the total 0( a;) Qr-distribution, which then was seen to flatten with increasing 

energy Q, thus reproducing the well-known phenomenon of 'jet-broadening' at 

higher energies. 

Our results of chapter V were seen to be in agreement with similar con­

clusions obtained from recent calculations of higher-order multijet cross-sections 

( using different sets of cuts ) which emphasized the dependence of the cross­

sections not only on the values of the jet-defining cuts, but also on the choice 

of the kinematical variables used to describe the shape of the.observed hadronic 

events. This highlights the ambiguities in extracting a 8 , or euiavalently AQcD, 

from the ratio of ( n + 1) to n jet cross-section and underlines the need for more 

theoretical work on these matters. 

I V.l.l Jets, QCD and lEA at LEP 

With the approaching starting up of LEP, perturbative QCD studies of 

multijet structures in electron-positron annihilation are of great phenomenolog­

ical relevance. The high energy scales of LEP would allow kinematical recon­

struction of multijet (n 2: 4 ) final-states with much improved statistics that 

would provide new quantitative tests of QCD ( measurements of a 8 , tests of 

its non-Abelian nature etc ). The simplified lEA framework could then prove 

practical useful for simple, yet accurate calculations of the individual multijet 

cross-sections ( or at least their transverse momentum disrtibutions ), with their 

higher order virtual corrections included ( needed for a quantitative understad­

ing of multijets, but yet well-nigh impossible to compute exactly). 

151 



Chapter VI Summary and Future Development3 

VI.2 Status of the Standard Model 

In this thesis, we have studied transverse momentum distributions of 

multijet structures in e+ e- annihilation using perturbative QCD terms. QCD 

is a non-Abelian Gauge Field theory based on a local SU(3)c symmetry, which 

we believe successfully describes the strong interactions between the coloured 

quarks and gluons, at least when large energy /momentum scales are involved. 

In these cases, the QCD's strong interaction gauge coupling constant i~ rather 

small ( as a consequence of the property of Asymptotic Freedom) and that allows 

us to calculate high-energy QCD effects perturbatively in this small coupling. 

_QCD predictions in such high energy kinematic regimes have been successfully 

tested in a number of experimental situations ( Deep Inelastic Scattering, Jets 

in e+e- annihilation etc). On the other hand, the non-perturbative aspects of 

QCD, apparently related to the quark confinement problem, are still not very 

well understood. The lack of a complete understanding of the hadronization 

mechanism that converts quarks into hadrons, the difficulties in quantitative 

descriptions of hadron spectroscopy and the remaining problems at the pertur­

bative level ( missing of higher orders in QCD matrix elements, uncertainties in 

fixing AQcnetc) are all due to insufficient theoretical understanding [ ref.VI.1]. 

By and large, we can regard QCD as the theory of strong interactions in 

the same way that the Glashow, Salam and Weinberg mobel is thought to be 

the S U ( 2 )xU ( 1) ( unified ) theory of electroweak interactions [ ref. 1.1 ] . To­

gether they constitute the so-called Standard Model of Particle Physics which 

has been enormously successful in explaining all data at presently available en­

ergies. Recent searches for deviations from the standard model cross-sections 

greater than the experimental errors have all been negative [ ref. I. 17 ]. De­

spite all this experimental confirmation, the Standard Model is not free from 

theoretical uncertainties, as several oustanding problems are left unresolved: 
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1. The Generation Problem 

This is the problem of understanding the apparent proliferation of flavours 

of elementary particles·( at least six quarks and six leptons ), their ar­

bitrary masses, the relative strengths of their charged weak interactions 

(normally parametrized by the Cabbibo-Kobayashi-Maskawa mixing ma­

trix [ ref. VI.2 ]), and their grouping into 'families'. (see Table I.2.2) 

Why should this pattern hold? How many generations are the:~;e? Are 

these particles really elementary? 

2. The Mass Problem 

Particles ( quarks, leptons and gauge bosons ) in the Standard Model can 

only acquire masses when the SU(2)xU(l) electroweak gauge symmetry 

is spontaneously broken. This is achieved through the vacuum expecta­

tion value of a Higgs field which represents a spin-zero particle with mass 

MH = O(lo0±1)Mw. However theoretically necessary, there is as yet no 

experimental evidence for any such particle. But the problem does not 

end here, as it has been emphasized that, due to large radiative correc­

tions, it is extremely difficult to formulate a consistent theory containing 

a light elementary boson. ( The hierarchy problem). 

3. The Unification Problem 

Although strong, electromagnetic and weak interactions have all similar 

structures based on Gauge Theories, they are in fact described by distinct 

SU(3), SU(2) and U(l) gauge groups with different coupling constants. 

Is there any way to embed them into a (appropriately large) single gauge 

group with a universal coupling? Why are these the only forces we see 

and how does gravity fit into the picture? 
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VI.3 Physics at LEP { and beyond it ) 

Given the history of successes in Elementary Particle Physics, it has been 

suggested that the Standerd Model is just a very good low energy approxima­

tion to a deeper underlying theory which can account for most of the above 

ambiguities and resolve some of the theoretical problems outlined in the last 

section. In fact, as we discuss see below, several ideas have already been put 

forward, many of which have a relatively low mass scale ( ~ 1 TeV ). As the 

new generation of accelerators ( LEP, SLC and SSC ) is expected to push the 

limits of our experimental knowledge to that sort of energy levels, it is worth a 

quick review of these ideas [ref. V.3 ]. 

One approach to the generation problem is- to postulate that the appar­

ently elementary quar-ks and leptons are actually composite objects containing 

more fundamental particles called preons, bound together by new superstrong 

interactions [ref. Vl.4 ]. Recent negative experimental searches for si.tbstructure 

have set the limit on the compositeness scale parameter to be of the order of a 

TeV. 

A very attractive proposal to attack the mass problem and to stabilize 

the Higgs mass is to postulate a complete set of 'supersymmetric' partners for 

the known particles, which cancel out the excessive corrections to the Higgs mass 

[ref.VI.5 ]. To do this job, the ( yet to be observed experimentally ) supersym­

metric particles must have masses of ~ 1 Te V. It should also be noted that, if 

supersymmetry is made local ( that is, if we allow supersymmetry transforma­

tions to be different at different points in space ) in the same way that gauge 

symmetries were made local in §I.l.B.2, then gravity must be included and a 

supergravity theory is constructed. 
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The most favoured approach to the unification problem has been- that 

of grand unification: the, so far dinstinct, strong, weak and electromagnetic 

interactions are combined into a simple guage group with a single gauge coupling. 

However, in order to accommodate the great differences between the strong and 

elecroweak coupling, this unification can take place only at very high energies 

of I'V 1015 Gev. Grand Unified Theories ( GUT's ) have had some successes 

( predictions of Ow, mb ) [ ref. VI.6 ], but none of their dramatic pre~ctions 

( proton decay, magnetic monopoles, neutrino masses ) have been observed as 

yet. 

The last two ideas can be combined into one scheme when we go be­

yond the four dimensions of space-time in which the Standard Model is usually 

formulated [_ref. VI.7 ]. In fact, ten-dimensional supergravity has been seen 

as a natural starting point for unifying all matter and forces. Most recently, 

such a possibility of a single unifying Theory of Everything'( TOE ) has been 

seriously boosted with the advent of Superstring Theories. These theories, in 

which the elementary particles are pictured as one-dimensional objects (strings) 

rather than points as in conventional Quantum Field Theories, display a number 

of attractive features ( GUT's and gravity are included, finiteness ) that have 

made them candidate TOE's, despite the many theoretical problems and the 

difficulties in testing them experimentally [ ref.VI.lO ]. However, certain possi­

ble low-energy signatures of the superstring have been suggested ( extra gauge 

boson Z 0 and new scalar quarks ) and will be tested at the new accelerators. 

In summary, while there is a lot of 'Standard Physics' to be confirmed 

at LEP and· the new machines ( precision tests, detection of the t-quark, 

Higgs searches, neutrino counting) and several theoretical propositions of 'New 

Physics' are 'expected' to be tested there ( composite quark and leptons, new 

heavy leptons and bosons, supersymmetric particles etc), one can never exclude 

the possibility of seeing completely new and unexpected phenomena! 
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Appendix A 

APPENDIX A : Colour Factors 

We calculate the colour factors of the diagrams shown in Figure IV.2.4. 

f3I C}N 

Tflo. CF h ·1 T1~ IJ J I C}N 

where 

so that 

and 

-CATflo. T~· IJ Jl 
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APPENDIX B: 

Let XI represent the energy fraction ( thrust ) of the most energetic 

fermion, with respect to which we measure the transverse momentum fraction 

xr. We also define Xk to be the gluon momentum fraction out of the plane 

defined by XI and xr. Then, the four-momentum fractions for the quark, the 

antiquark and the two gluons can be written as: 

Xq (xi -XI, 0, 0) 

Xq (x2 X£, XT, 0) 

Xgl (x3 XA' XA' Xk) 

Xg2 (x4 XI -XL- XA, -XT- XA, -Xk) 

where XL, XA and xp = XI - XL - XA are the longitutidal momenta of the 

antiquark and the two gluons, respectively. 

Longitudinal and transverse montum conservation are already embodied 

in eq.l, but energy conservation and the masslessness of our particles impose 

the constraints: 

0 

0 

0 

so that only XI,x2,x3,XT and Xk can be seen as independent variables. We 

shall show now how the D variable ( introduced in Chapter IV ) can be nicely 

expressed in terms of these. 

Given the energy-momentum fractions, the components of the 3x3 tensor 

Bii are easily computed acording to: 

B'J 

i i 
" ZpcrZpcr 
i...Ja Zcr 

La Xa 
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where the a-sum runs over all final state particles and Za and z~a are 

the energy fraction and the three-momentum fractions ( respectively ) of the 

ath -particle. 

Then, D, defined in terms of the product of the eigenvalues of the (Jii 

tensor- ( see eq. what ), can be expressed in terms of the above energy-momentum 

fractions: 

that is 

SD/27 

-[XLXT + XAXA _ (xr+xA)XF]2[x~(_!_+_!_)] 
X2 X3 X4· X3 X4 

From the last expression, we can already see that D is proportional to 

x~, the square of the momentum fraction out of the plane. To proceed, we 

decompose it into two parts: part one is made of the first and the last terms, 

whereas the rest constitute part two. It is then rather straightforward to show 

that in each part, there is a complete cancellation of terms proportional to z~ 

and xA, which simplifies consuderably the expression forD: 

SD 

27x~ 
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In the last equation we identify the following terms: 

x} with coefficient 

remaining terms: 

Factorizing and collecting them together again, we make use of the fact 

that x A + x F = XI - x L to cancel xi and x L terms to obtain: 

That is: 

SD 
27x2 

k 

D = 27 xrx}x~ 
4 X1X2X3X4 
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