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ABSTRACT

In this thesis, calculations of Auger recombination rates in semiconductor quan-
tum wells are presented.

Chapter One introduces Auger recombmamon and the reasons for study-
ing the Auger process are explained. Basically, Auger recombination is a non-
radiative recombination mechanism that becomes more important as the carrier
density increases and the bandgap decreases. In direct gap semiconductors, the
Auger process has an activation energy, and the resulting highly temperature
dependent Auger process is thought to be a possible cause of the high tem-
perature sensitivity of long wavelength semiconductor lasers that are being
~ considered for use as sources in optical fibre communications systems.

In Chapter Two, an expression is derived for the CHSH Auger recom-
bination rate in a quantum well (QW) heterostructure. The possible Auger
processes in a QW are discussed as are the differences between Auger recombi-
nation in a QW and in bulk semiconductors, and the magnitudes of QW and
bulk Auger rates are compared.

In Chapter Three, the theory of Auger recombmatlon is extended to the
case of a quantum well wire (QWW), a semiconductor structure in which car-
riers are free to move in one direction only. It is found that there are no
significant physical differences between Auger recombination in a QW and i in
a QWW. The ratio of QW and QWW Auger rates is evaluated.

Numerical results for Auger transition rates in 1.3pym and 1.55um In-
GaAsP/InP QWs and QWWs are presented in Chapter Four, and comparison
with experimental values is made. In particular, the result found in Chapter
Two, that, under certain conditions, the Auger rates in the QW and the bulk
are approx1ma.tely the same 1s found to agree with experimental results from
the literature.

The derivation of the CHSH Auger transition rates in QWs and QWWs
- that was presented in Chapters Two and Three required a number of approxi-
mations concerning the carrier statistics and the semiconductor bandstructure.
In Chapter Five, these approximations are examined, and, although it is found
that the use of non-degenerate carrier statistics is reasonably accurate, the as-
sumption of parabolic energy bands can lead to overestimates of the Auger
transition rates.

The first five chapters constitute the first part of the thesis, concerning
Auger recombination in low-dimensional semiconductor structures. In the sec-
ond part of the thesis, the realistic bandstructure of low-dimensional semi-
conductor structures, such as superlattices, is examined. The method used is
described in Chapter Six, and is based on an empirical pseudopotential method.
Results for the GaAs/AlAs superlattice are presented in Chapter Seven.
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CHAPTER ONE - INTRODUCTION

The primary aim of the work reported in this thesis was the study of the impor-
tant direct Auger récombination processes in low dimensional semiconductor
structures such asr quantum wells (QW) and quantum well wires (QWW). As
.will be discussed later in this chapter, Augef fecombination is thought to be a
major loss mechanism in long-wavelength semiconductor lasers, and so a study
of Auger recombination in low-dimensional semiconductor strﬁctures will give
insight into the importange of Auger processes as loss mechanisms in QW and
QWW lasers. Smith [1] has undertaken a study of Auger recombination in
InGaAsP/InP QWs, but the‘ only Auger process examined was that involving
conduction and heévy hole subbands. Auger processes involving other subbands
of the QW (such as the spin-split off and lightﬁ hole subbands) are exémined
in Chapter Two of this thesis; énd expressions are given‘ for Auger transition
rates thaf are consistent with the earlier work of Smith [1]. The calculations
of Auger transition rates are extended to in.clude quantuﬁl well wires (QWW)
in Chapter Three. Numerical results for Auger transition rates in QWSs-and
QWWs for 1.3um and 1.55um InGaAsP/InP systems are presented in Chapter
Four. |
Some of the appfoximations used in deriving the algebraic expressions for
Auger transition rates in Chapters Two and Three (such as the use of isotropic,
parabolic subbands and Boltzmann statistics with quasi-Fermi levels) are exam-
- ined in Chapter F iveA. The importance of the QW subband dispersion relations
for the calcﬁlation of Auger transition rates is emphasised throughout Chapters
Two to Five. To gain insight into the form of the realistic dispersion relations
| for QW and superlattice subbands, a method is described for the calculation of

superlattice bandstructure in Chapter Six. Results that demonstrate the ability




of the method to calculate accurately the electronic structure of GaAs/AlAs su-
perlattices are presented in Chapter Seven, and some of the important concepts
associated with superlattice bandstructure are illustrated in that Chap-ter.

In the remainder of Chapter One, we explain the motivation for study-
ing Auger transition rates in iong—wavelength low dimensional semiconductor

lasers.



1.1 CONVENTIONAL LONG WAVELENGTH SEMICONDUCTOR
LASERS

The use of silica baéed optical fibres in long-haul telecommunications systems
has led to the increasing importance of long-wavelength semiconductor lasers.
The reasons for this are that the wavelength at which minimum attenuation
through a standard silica based fibre occurs is 1.55pm, and the zero of disper-
sion occurs at 1.3um. The quaternary alloy Inl_.xGaxAsyPl_y has attracted
considerable interest as a material for the active region of semiconductor lasers
because, when lattice matched to InP, it may be used throughout the wave-
length range 1.0 — 1.7pm (see Figure (1.1)). Unfortunately, however, InGaAsP
lasers have a temperature sensitivity problem. In conventional double het-
erostructure (DH) lasers, the temperature sensitivity of the threshold current

is described by the parameter T,, through the empirical relationship

T .
Jra = Joexp(T) _ (1.1)

with Jry being the threshold current density and T is the lattice temperature.
T, is constant over a limited temperature range, and, clearly, the larger its value,
the less temperature sensitive will be the laser. For GaAs/Gag g4Alg.36As DH
lasers T, ~ 160 — 200K (2], (3], whereas for 1.3uym and 1.55um InGaAsP/InP
DH lasers, T, ~ 110K (for T < 250K), and T, = 60 — 70K (for T > 250K) (2],
[3]. The low room temperature value of T, imposes limitations on the operation
of InGaAsP/InP DH lasers. The temperature dependence of the optical gain
can explain the T, value of the GaAs/Gag.g4Alg 36As DH laser [2], but not the
value for the InGaAsP/InP DH lasers. For the latter system, some of the main

3

mechanisms proposed to explain the low T, values are Auger recombination (3]
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[4], [5], intervalence band absorption [6], and carrier leakage over the confining
barriers [2], although the last mechanism is thought to be the least important
[2]. Intervalence band absorption in Ing7,Gag 25Asg¢Po.« has recently been
calculated by Childs et al [7], with the use of realistic bandstructure and the
conclusion reached in that study was that intervalence band absorption was not
responsible for the temperature variation of the threshold current. However,
Adams [8], using results from the calculation of Childs et al [7] disagrees with
the conclusion of [7], ;;roposing that intervalence band absorption can explain
the T, values of long-wavelength semiconductor lasers. Thus, the importance of
intervalence band absorption in determining T, values of semiconductor lasers
-is still uncertain. Auger recombination, one of the other mechanisms proposed
to explain the low T, values in InGaAsP DH lasefs is introduced and discussed
in the next section. Some experimental évidence indicating the irnportance
of Auger recombination iﬁ InGaAsP/InP DH lasers is available. Haug and
Burkhard [9] have experimentally determined 7, values in InGaAsP/InP DH
lasers for different alloy compositions. As the wavelength of thé InGaAsP/InP
DH laser increased from 1.3um to 1.65um, the value of T, decreased from 75
K to 40 K. A theoretical calculation of the T, values of the InGaAsP/InP DH
lasers assuming Auger recombination alone was also presented in [8], and the
. theoretical values were in good agreement with experiment. Since Augér recom-
bination becomes more important as the bandgap decreases (see next section),
this experiment provides evidence for the importance of Auger recombination
in detérmiﬁing T, values.. However, intervalence band absorption also increases
with decreasing bandgap, and, given the uncertainty in some of the parameters
required in fheoretical estimates of Auger recombination rates (which will be
discussed later in this thesis), the good agreement between theory and exper-

iment presented in [9] may be fortuitious. Another study [10] has detected



the overflow of iﬁjected carriers from InGaAsP into the confining InP layers in
1.3um InGaAsP/InP DH lasers. The interpretation was that energetic carriers,
created by Auger recombination, flowed over the top of the confining barrier

into the InP.



1.2 AUGER RECOMBINATION IN BULK
SEMICONDUCTORS

Auger recombination is a non-radiative process 1n which a conduction band
electron and a valence band hole recombine. The energy produced by the re-
combina;tion is given to a third carrier, which is excited higher up its respective
band. Various Auger processes are illustrated in Figure (1.2), along with the
notation usually used to specify them. Quite simply, the first letters of the
bands of the four states involved in the Auger transition are used to label the
process. For example, an Auger process involving three carriers in the conduc-
tion band and one carrier in the heavy hole band is labelled CHCC.

Auger recombination in buik semiconductors was first investigated by Beat-
tie and Landsberg [11] '(see also [12]). In that study, transition rates for both
the CHCC and CHHH Auger process were evaluated and compared with exper-
imental lifetimes in InSb. Since that pioneering work, trénsition rates for the
CHLH and CHSH (3],(13],[14],[15],{16] Auger processes have also been evaluated
_ for bulk serhicdnductors although the majority of these calcuiations, whilst giv-
ing algebraic expressions for the Auger rates, use the simplifying assumptions
of isotropic, éarabolic energy bands and Boltzmann statistics.

In order to calculate Auger transition rates in bulk semiconductors, first
order time dependent perturbafion‘theory,is used. The difference, U, between
~the complete Hamiltonian of the semiconductor crystal and the Hamiltonian of
the Hartree-Fock approximation is treated as the perturbation, and its matrix
element between initial and final states is used in Fermi’s Golden Rule [14]. If

the electrons taking part in the Auger transition are labelled 1 and 2, then, as

Beattie has shown explicitly [12], the only term in the perturbation operator,
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Figure (1.2) - Some Auger processes in bulk semiconductors ; (a) the

CHCC process, (b) the CHLH process and (c¢) the CHSH process.



U, that has a non-zero matrix element is that involving e?/ €712 (where ri2 =
Ir; —r,] and r; is the position vector of state 1, etc.). ‘The total recombination
rate is thus obtained by carrying out the sum in Fermi’s Golden Rule over all
permissible initial and final states.

It is clear from an examination of references [10], [12] and [13] that the
calculation is algebraically demanding, even if the simplifyiﬁg assumptions of
nondegeneracy and carriers occupying parabolic bands are used. However, sim-
ple physical arguments may be used to predict the form of the Auger transition
rate. For the CHCC Auger process, two electrons are required in the conduc-
tion band and one hole is required in the heavy hole band. Thus, the CHCC
Auger rate should depend on carrier density as n2p (where n is the number of
electrons per unit volume and p is the number of holes per unit volume). For
the CHLH and CHSH Auger processes, similar arguments predict a dependence
on carrier density of pn.

The other important feature in direct Auger processes is the conservation
of both energy and momentum. The energy conservation comes from Fermi’s
Golden Rule, Whereas. the momentum conservation arises from evaluation of
‘the ﬁiatrix element, when the carrier wavefunctions are described in terms
of Bloch functions. The combination of energy and momentum conservation
results in direct Auger processes having an activation energy, since, for carriers
to participate in an Auger process, they must lie away from the band edge, and
' the energy required to excite them from the band edge and place them in the
conﬁgufation‘ of the dominant Auger process is simply equal to the activation
ener@ for thét process.

Thus, the simple arguments discussed above suggest that bulk Auger tran-

sition rates should take the form



ECHCC

Renee TZQPéXP(—aTBT—) | (1.20)

ECHSH

#B—f—) (1.25)

Rcush « p’nexp(—

ECHLH

2 a
——— 2
Renrm « p“nexp( koT ) _ (1.2¢)

where E, is the activation energy for the Auger process given by the superscript
(the activation energies for the dif’ferent‘ Auger processes will not be the same).
kp is the Boltzmann constant and T is the temperature.

Detailed calculations of the transition rate [11]; [13], [14] (with the as-
sumptions of isotropic, parabolic energy bands, and using Boltzmann statistics
with quasi- Ferrrﬁ levels) give results that agree with equations (1.2a,b,c), but
they also predict the form of the prefactor.

Equations (1.2a,b,c) indicate that Auger recombination should be more

important. as :

(1) The injected carrier density increases.
(ii) The temperature increases.

(iii) The activation energy decreases.

As will be shown in Chapter Two, the activation energy of the CHCC and
CHLH Auger processes are proportional to E,, the energy gap between the
conduction and valence bands. For the CHSH process, however, the activation
energy is proportional to (B, — A), where A is the spin-orbit splitting. Thus,
materials that have E, ~ A (e.g. GaSb) are expected to have high Auger

transition rates. The fact that Auger processes are more important as the



‘activation energy decreases means that although Auger recombination is con-
sidered important in InGaAsP, it is thought to be unimportant in GaAs, and in
the latter case, t_he T, value can be explained by the temperature dependence
of the carrier distribution functions.

Now that Auger recombination in bulk semiconduétors has been intro-
duced, the reasons for using quantum wells and quantum well wires as lasers
will be discussed in the next seCtioh, and finally, an introduction to Auger rates

in these low dimensional structures will be given.



1.3 QUANTUM WELL AND QUANTUM WELL WIRE LASERS

A quantum well (QW) laser is essentially similar to a. DH laser, except that
the thickness of the active layer is smaller than the de Broglie wavelength of
the carriers. Thus, quantum size effects are important, and the carriers are
confined in a quantum well. The carriers in the quantum well behave as a 2D
electron gas (2DEG), and it is this behaviour that leads to the advantageous
properties of the QW laser. A good introduction to QW heterostructure lasers
has been given by Holonya.k. et al [18]. |

If parabolic subbands are assumed for the QW, then the density of con-
-fined states is step-like, whereas the assumption of parabolic bands for a bulk
. senﬁcé_nduc;tor leads to a parabolic density of states in conventional DH lasers
(see Figure (1.3)). The step-like density of states has been predicted to lead
to a narrower gain spectrum‘(more favourable for single mode operétibﬁ) and
the maximum of the gain spectrum occurs at a wavelength correspoﬁding to
the QW bandgap [19]. The high density of states at the QW band edge (Com-
pared to the vanishing density of states at the band edge in a DH laser) also
leads to low threshold currents. In addition to the advantages that the form
of the density of states of the 2DEG has for the threshold current of a laser,
there is an added flexibility in the choice of emission wavelength of QW lasers,
since altering the width of the active layer alters the QW bandgap. In addition
to the above advantages, dynamic propertieé of QW lasers are thought to be
e};cellent [20]. For av single QW, th;e optical vcénﬁnefnent*factor-ié likely t6 be
small (the optical conﬁnemenf factor is defined to be the fraction of radiation
energy in the active'layer.) and in practical devices, multiple quéntum wells

would normally be used.

10
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Throughout this thesis the constituent semiconductors making up the QW
have been assumed to be lattice matched. However, a recent suggestion [21] -
is to use a strained quantum well, and it is thought that this can reduce both ‘
intervalence band absorption and Auger recombination.

A quantum well wire (a semiconductor structure in which carriers are con-
fined in two dimensions and free motion is possible in the third, axial direction)
would: also be expected to have advantageous properties as a laser, since the
density of confined states for such a system would be divergent at the band
edge. |

In both QWs and QWWs, both the ra.diaAtive and non-radiative recombi-
nation rates are expected to change from the bulk values, and it is important
to examine all recombination processes in these low-dimensional structures.

Dutta [22] has calculated the threshold current of GaAs/GaAlAs quantum
well lasers by evaluating the radiative recombination rate, and he concludes that
the T, value of a 260A GaAs/Ga0,48A10_52As QW laser would be higher than
the value in bulk GaAs, and the threshold current would be smaller. In another
- calculation [23], the T, values)\of GaAs/ GaAlAs lasers have been calculated for

bulk lasers, QW lasers, QWW lasers, and, also, quantum box lasers. In that
calculation, the conclusion was that T, incr_eased as the number of dimensions
of free motion for the carriers dec;eased, and some experimental verification
-was given. In [22] and [23], non-radiative recombination was not included in
the calculation (which is reasonable in GaAs), but for longer wavelength lasers;
non-radiative recombination is likely to be more important.
In the next section, Auger recombination in QWs and QW Ws is introduced
and the differences between Auger recombination in a QW and in the bulk are

emphasised.

11



1.4 AUGER RECOMBINATION IN QWs AND QWWs

Auger recombination in a QW differs from that in bulk semiconductors because
of the different electronic structure of the QW (see Figure (1.4)). Carriers
may be confined to the well, in which case they o-ccupy a continuum of states
derived from the set of subbands corresponding to the bound states of the QW,
or they may have suﬂicieht energy to propagate throughout the whole system,
the so-called unbound states. Possible CHCC Auger transitions in a'QW are
illustrated in Figure (1.5). Figure (1.5a) illustrates a CHCC Auger process in
a QW in which all the participating carriers are in ground state subbands of
the QW. However, othér QW-Auger processes are possible for example, the
excited partide could be in a higher subband (Figures (1.5b) and (1.5¢)), or
more than one of the carriers participating in the Auger process could be in
higher subbands (Figure (1.5d)). All important combinations of CHCC Auger
processes in 1.3um and 1.55pum InGaAsP/InP  QWs have been examined by
Smith [1] and by Smith et al [24]. The Auger processes that were examined
" in this previous work [1], [24], included those in which all the participating
cérriers were in bound étatés of the QW, the so-called ‘bound-bound’ Auger
processes. Also, Auger processes in which three of the states were bound,
but the final state of the excited particle was unbound were examined. The
importance of such ‘bound-unbound’ transitions is that processes can occur
where the activation energy is zero, and so the Auger transition may have an
enhanced probability. Naturally, a detailed treatment of the ‘bbund-unbound’
processes takes account of the matrix elements of such processes, which are

also important in determining the transition rates. In Chapter Two, the work
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(d)

Figure (1.5) - Some typical CHCC Auger processes in a QW. See text

for more explanation.



of Smith [1] and Smith et al [24] is extended to cover the possible ‘bound-
‘bound’ and ‘bound-unbound’ CHLH and CHSH Auger processes in the QW,
with numerical results for the InGaAsP/InP QW presented in Chapter Four.
Auger recombination in a quantum well wire is examined in Chapter Three.
In a QWW, subbands are formed in the same way as for the QW, and so no

new features are found in the QWW Auger results.
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CHAPTER TWO

CALCULATION OF THE QUANTUM WELL CHSH AUGER
RECOMBINATION RATE

INTRODUCTION

A calculation of the CHSH Auger recombination rate in a single quantum well
(QW) is described. The major assumptions of the model are discussed, and an
algebraic expression for the QW CHSH Auger rate is presented, for the case
where all the carriers reside in their ground state subbands. Once the expression
for the CHSH rate has been obtained, a change of variables immediately gives
the rates of other important Auger processes such.as CHCC, CHLH, CLSL,
CHHH, etc. ‘ |

In addition to the aigebraic calculations referred to above, the evaluation
of Auger transitions involving other bound or unbound states of the QW is

presented and discussed.
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2.1 MODELLING THE QUANTUM WELL

The QW is assumed to have abrupt interfaces between the well and bax_‘rier
materials, and thus a square well potential is presentéd to the carriers (ignoring
any charge transfer effects). For the particular well and barrier materials of
interest in this thesis, the QW is as shown in Figure (2.1). The conduction
and valence band discontinuities, AE. and AF,, depend on the constituent
materials of the QW structure. Throughout this thesis, unless otherwise stated,
the materials making up the QW are assumed to be lattice matched, and so the
heavy and light hole diécontinuities are identical (in QW structures which have
constituent materials of different lattice constants, the lattice constants parallel
and perpendicular to the QW interfaces are unequal which breaks the original
cubic symmetry of the bulk semiconductors, removing £he light-hole, heavy-hole
degeneracy leading to different discontinuities for the light and heavy holes).
‘Typical values for AE, for a GaAs/Ga;_x Al As QW are AE, = 0.55z eV
for 0 < z < 1[1]. In this thesis, the majority of the numerical results presented
will be for the quaternary alloy Inl_,;GaxAs);Pl_y (the well material) lattice
matched to InP (the barrier :maten"al). For this system, AE, is assumed to be
twice that of AEU [2], as was assumed by Smith [3], and Chiu and Yariv [4] in
their QW Auger calculations. |
| The 'energy levels of the confined states of the quantum well have been
calculated on the basis of a standard finite square well model [5]. The potential
seen by the carriers is assumed to be a finite square well, and so the carrier
* wavefunctions are the ?roduct of a slowly varying envelope function multiplied

by a rapidly varying Bloch periodic part. The envelope part of the wavefunction
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Figure (2.1) - Schematic diagram of a quantl;m well (QW) of width L
formed between semiconductors A and B (A being the well material
and B being thg barrier Lﬁateriai). Semiconductor A has a bandgap of.
- E(A), whereas B has a bandgap of E(B). The conduction and valence

‘band offsets are AE, and AF, respeétively.
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is assumed to be a simple sinusoidal function and so the calculation reduces to
a ‘particle in a box’ problem.

If the z direction is chosen to be that direction perpendicular to the QW
interfaces, then the carriers are confined in the z direction, but are free to move
| ‘in the plane of the QW (the (x,y) plane), and so a subband is formed for each
confined energy level (see Figure (22))

For simplicity, inital calculations of the QW Auger rates are performed
with the assumptions of isotropic, parabolic subbands. In addition, all sub-
bands are assumed to have the effective mass appropriate to the material of
the well region. ‘

One of the reasons why the quantum‘well has been considered as useful
>for the active region of a semiconductor laser is that the density of states is
step-like, within the parabolic subband approximation. This is due to the two-
dimensional character of the motion of the carriers.. The step-like density of
states has been predicted to lead to an improved gain spectrum for the QW
[6]. |

For the ground state confined level, the assumption of parabolic subbands

. leads to

E=F + T (2.1)

where k is the in-plane wavevector, and m* is the carrier effective mass of the

subband.

The density of states of the lowest subband, g(E) is given by

TZQE?

_g(E)Z#A/(sw_EI- )k @.

[EV]
SV
~—r
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Figure (2.2) - Schematic diagram showing the energy levels of the

QW ‘and the associated in-plane dispersion relations.
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m*A

—6(E-F) | (2.3)

= g(E)=
where A is the area in the plane of the QW, and 6(z) is the step function. A
factor of two has been included to take account of the spin degeneracy. There
-is an obvious extension to include higher lying confined states, and the final
expression for the density of confined states is

m*A

N
— ZQ(E - E)) O (24)

g(E) =

where N is the total number of confined states in that band, and FE; is the energy
level of the confined state with quaﬁtum number :. The density of states for a
QW with parabolic subbands is illustrated in Figure (2.3).

In addition to Auger transitions involving bound states, there is also the
possibility of transitions invoiving unbound states. An unbound state is one
that has a kinetic energy due to motion in the z direction that exceeds the en-
ergy of the confining barrier. Smith [3] first pbinted out that Auger transitions
in which the final state of the excited carrier was unbouna could be important,
particularly at small well widths. The density of states of the unbound levels
.corresponds to the usual three _diménsional density of states, since unbound

carriers are free to move both parallel and perpendicular to the QW interfaces.
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Figure (2.3) - Diagram illustrating the step like density of states of a

QW (parabolic subbands have been assumed). Conduction subbands
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2.2 THE QW CHSH AUGER RATE

In a quantum well, the calculation of Auger transitioxll rates is more difficult
than for the bulk case, since the QW has a more complicated electronic struc-
ture. For example, the simplest CHCC process in the bulk simply involves one
conduction band and one heavy-hole band. However, in a QW, there can be
many conduction subbands, and many heavy-hole subbands, and to calculate
the QW CHCC Aﬁger rate, all p_ossi_ble Auger transitions must be taken into
account. The total Auger rate in a QW can be split into two contributions, the
bound-bound contribution and the bound-unbound contribution. The bound-
bound contribution is the sum of the rates of all possible Auger transitions that
involve bound (i.e. confined) states only. The bound-unbound contribution is
the sum of the rates of all poésible A_uger transitions that involve bound states
except for the final excited (Auger) carrier, that carrier being in an unbound
state. Any unbound-unbound contribution to the total QW Auger rate is as-
sumed to be negligible on the grounds that there will be very few carriers in
unbound states initially because of the size of the band discontinuities.

Smith et al [7] have reported the most detailed Auger calculation in a
QW to date, and in their calculation ail possible bound-bound CHCC inter-
subband processes were taken into account, along with the most important
bound-unbound CHCC Auger processes. However, there are many other Auger
transitions in addition to the CHCC process, and simple esfimates suggest that
processes such as CHSH and CHLH may be as significant as the CHCC pro-
cess. Hence, this chapter describes the calculation of the QW CHSH Auger-
transition rate, from which expressions for the transition rates of all the other

important Auger processes may be obtained.
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In order to calculate the Auger transition rate, the electron- electron inter-
action is treated as the perturbation, Hj. The transition rate per unit volume,

R, of the Auger process is then given by Fermi’s Golden Rule

R = =25 57 P H | ) 6(E) (25)

where ¥; is the initial wavefunction for the system, ¥ ¢ is the final wavefunction.
P is a statistical factor which is needed to weight each transition according to
the probability of the states beirilg‘ appropriately occupied. This term will be
discussed in detail in the next Section. §(E) represents the physical fact that
energy is conserved. The summation is carried out over all possible combina-

tions of initial and final states.
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2.2.1 THE STATISTICAL FACTOR

In eqﬁatioﬁ (2.5), P, the so called statistical factor, gives the probability that
.any given set of initial and final statés is occupied by carriers in such a way
that an Auger transition can occur, minus the probability of occupancy for
the inverse process of impact ionisation. Referring to Figure (2.4), for the
~CHSH Auger procesé to occur, states 1 and 2 need to be occupied by electrons,
. wheféas si;ates 3 and4 n.eed‘to be.occu'pied by holgé. The statistical factor is
the proBability of thé abc;ve cthig;lfation occurring, minus the probability of

the configuration for the inverse process occurring. Thus, we may write

P = PAuger ~ PImpact ' : (26)

If it 1s assumed that there is a single conduction band quasi-Fermi level, F,
appropriate for all subbands, and similarly a single valence band quasi-Fermi

level, F,, the statistical factor may be written as :

P= fc,nl(&l)fv,nB(E-S)fv,n‘i(&;;)(l - fv,n2(&2))

— (1= fen1(E))(1 = fo,n3(E3))(1 = fo,na(Es)) fon2(Es)

(2.7)

where nl,n2,n3,n4 are subband indices for states 1,2,3,and 4 respectively.
fe,ni(k) is the distribution function for the conduction band (i.e. for electron
occupancy) and f, »i(k) is the distribution function for the valence band (i.e.

for hole occupancy). For the cases of interest in this thesis we may write

1
fc,ni(lg_) = A + exp[ﬂ(Ec,m'(&) _ Fc)] (28)

and

S
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Figure (2.4) - Diagram illustrating the CHSH Auger process for the
QW. Other subbands of the QW have been omitted for clarity.

Wavevector




1 _
A+ exp[B(Fy — Ey ni(k))]

where 8 = (1/kpT), kp is Boltzmann’s constant, and T is the témpera.ture. A

fv,ni(k) = (29)

is equal to one if Fermi-Dirac statistics are used and equals zero if Boltzmann
statistics are used. -

* Using the expressions for the distribution functions above (assuming that
A = 1), and anticipating the energy conservation, E; + E, = E; + E4, from

Fermi’s Golden Rule, it is found that

P = {1— exp[B(Fy — F)} fem1 (k) foms(ks) foms(E)(1 = Foma(ks)) (2.10)

‘Where the temperature, T', appearing in the distribution functions has been
~ assumed to be the same for both electrons and holes.

The assumption of using one quasi-Fermi level for the electrons implies that
the carriers in the conduction subbands form a gas in thermal equilibrium. Also,
the holes in the valence subbands are assumed to be in thermal equilibrium.
However, since we are interested in lasers, where excess electrons and holes are
produced by electrical injection, the system as a whole will not be in thermal
equilibrium.

>Haug (8] has shown that Boltzmann statistips give an accurate prediction
of Auger rates in bulk GaSb even under conditions of degeneracy until carrier

3 are reached (at 300 K). Since typical carrier

densities of n = p ~ 10°cm™
densities in semiconductor lasers are about 10*8cm™3, the use of Boltzmann
statistics is quite adequate. In this thesis we are not specifically interested in

GaSb, but the conclusion reached by Haug [8] for that material will be shown (in

Chapter Five) to be valid for similar materials. The use of Boltzmann statistics

- 23



in the QW can be shox'vn to be reliable also, but in that case a correction factor
must be applied at the end of the calculation. These points will be discussed
in considerable detail in Chapter Five.

The use of Boltzmann statistics can simplify equation (2.10), which reduces

to
P = {explB(F. — F,)| - 1} exp[B(Ez - F.) (211)

This is the expression that will be used throughout the rest of this chapter in
the initial QW CHSH Auger calculations. |
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2.2.2 THE MATRIX ELEMENT FOR THE AUGER PROCESS

The assumption is made that the electron-electron interaction can be written as
V(r), wherer = r,—r;, and r;, r, are the position vectors of the initial carriers.
V(r) is assumed to depend on the magnitude of r only, so that V(r) = V(r).
The actual form of V(r) will be written down explicitly lat;er this section.

The initial and final wavefunctions fof the states involved in the Auger
transition are also required. If carriers in states 1 and 2 have position vectors’
r; and T, and have spin wavefuncf:ions o1 and o5, then the wavefunction fo; ]

the initial state (assuming weak spin orbit interaction) can be written as

\/—{¢1(£1)0’1(1)¢2(7‘2)02(2) ¢1(_2)01(2)¢2(T1)02(1)} (2.12)

and the final state wavefunction is

Uy = T {bsm)rs(Duz)on® - biros@ale)n(V) (219

where the ¢;(r) represents the spatial part of the wavefunction for the carrier in
state 7. In Fermi’s Golden Rule, the matrix element, M, needs to be evaluated,

where

M = (U V()| T:) (2.14)

Using the expressions for ¥; and ¥y, it is found by straightforward algebra,

that

M = Mp— Mgx (2.13)
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with

Mp = /¢§(£1)¢Z('£2)V(7‘)¢1 (11)¢2(£2)5§1,53552,54dl‘_1d£2 (2.16)

and

Mgx = /¢;(I.2)¢Z(£1)V(T)¢i(tlr)¢2(£2)551,54552,33d£1d£2 (2.17)

The Kronecker deltas derive from the orthonormality of the spin functions.
In terms of Mp and MEgx the modulus squared of M, after summing over

the spin variables, can be expressed as

M2 = 2{|Mpf® +|Mgx|* + |Mp — Mgx|*} (2.18)

The term in |Mp|? arises from Auger processes in which the initial states have
opposite spins that are unchanged during the Auger transition. The term
in |M EX!2 arises from Auger processes in which the initial states have op-
posite spins that are changed during the Auger transition, and the term in
|Mp - Mg X|2 arises from Auger processes in which the initial states have iden-
tical sp.ins that are conserved during the transition. The factor of two arises
since there are two ways of chbosing ;che initial spin. ﬁseful discussions of the
possible spin configurations in Auger transitions are given in references [9] and
[10]. It is clear that

Mp — Mex|* < |Mp|* + [Mex|? (2.19)

Thus, for any particular combination of states
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|M)? = 29{|Mp|* + |Mex|*} (2.20)

Where 7 lies between 1 and 2. Note that the above relation is a purely numerical
relation, since the various termsin equation (2.20) will have different functional
forms. In equation (2.18), the term in |[Mp— M E’X|2 comes from electron
collisions involving electrons with like spins. For this case, the spatial part of the
initial wavefunction will be antisymmetrical, and so the Coulomb interaction
will be reduced compared to.the case of electrons with opposite spins, due to
the average separation of the electrons being larger. It is physically reasonable
to expect that |Mp — MEX|2 < ]JWD|2 +v|MEX|2, the appropriate value for n
is thus close to one. In fact, Beattie and Landsberg [11] note that the term in
|Mp — Mg x|2 vanishes for the most probable transitions. If a value of n of 1

is chosen, then the numerical relation of equation (2.20) may be rewritten as
|MJ? = 4|Mp|? - (2.21)

" In this approximation, Smith [3] writes the matrix element for the CHCC QW

Auger process as

|M|?* = {2+ 26,1 n2}IMp|” (2.22)

With nl and n2 being the quantum numbers of the initial states involved in the
QW Auger process. The above equation is derived from the fact that for initial
states in subbands with different quantum numbers, the exchange process can
be considered as a different intersubband transition (see Figure (2.5)), which
will be counted separately. In order not to overestimate the effects of Auger

processes involving initial states in different subbands, a factor 8,1, a2 is used.
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Direct CHCC Auger process Exchange CHCC Auger process

Figure (2.5) - Diagram showing how the CHCC exchange Auger pro-

cess may be considered as a different, direct, intersubband transition.



For the CHSH and CHLH QW Auger processes, a factor of (2 + 28n3,n4) is
required.

To proceed further with the calculation of the matrix element for the Auger
process, an expression for the electron-electron interaction, V(r), is required.

In this thesis the expression that will be used for V(r) is

e2

V(i) =V(c; —nml) = (2.23)

4melry —1y|
Where € is the product of the relative permittivity and the free .space permittiv-
ity. In recent years there has been a certain amount of controversy concerning
the screening of the Coulomb interaction by free carriers. Equation (2.23) fol-.
lows from a description in terms of dynamic screening [12] and the concept that
the Auger transition takes place so quickly that the other carriers are unable
to respond fa;<:t enough to significantly screen the interaction (in terms of en-
ergies, the transition energy is much greater than the characteristic energies in
the response éf the electron gas formed by the free carriers) The use of equa-
tion (2.23) is in contrast to the Thomas-Fermi screening (i.e. a static screening
approximation) originally proposed by Beattie and Landsberg [11}, which is
: .
V(r)gr = mexp’(—/\r) - (2.24)
Where A~! is the screening radius. Rather later, Haug and Ekardt [13] proposed
a screening scheme where the direct matrix element, Mp, of the Coulomb
interaction, was screened dynamically, but the exchange term, Mgx was not
screened. However, this has now been shown to be incorrect [14], [15].
By using equation (2.23) for V(r), our results will be basedA on what is now
widely accepted to be thé correct 'description and will be directly comparable

to those of Smith [3].



To evaluate the direct matrix element, Mp, the spatial part of the QW
wavefunctions of fhe states involved in the Auger transition needs to be speci-
fied.

The QW wavefunctions will differ from those in a bulk semiconductor since
the rapidly varying Bloch periodic pa;ts of the wa.vefunctlon are modulated by
a slowly varying envelope functxon the penod of which is of the same order of
magnitude as the QW width.

For states that have energies lying in the well, the envelope function has a
sinusoidal form, whereas outside the well, the envelope function will be evanes-
cent (see Figure (2.6-)); For a QW with a reasonably large potential step (e.g.
about 0.3 er, and which has a well width larger than any decay length in the
barrier material, it is a good approximation to ignore the evanescent parts of
the confined state wavefunctions.

Hence, the spatial parts of the QW conﬁned state wavefunctions may be

written in the following form

For |z| < L/2, (for even parity states)

¢m(£) =B

VX” Um(z) cos(k:mz) exp(itipm-p) (2.25q)

For |z| < L/2, (for odd parity states)

Vce
bm(r) = B\~

Um(z) sin(k.mz) exp(i&,,.p) (2.25b)

And, for |z| > L/2

bm() =0 | (2.26)

A is the area in the plane of the QW, B is the normalisation factor associated

with the z-dependent part of the wavefunction ; m is the quantum number of
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First excited state wavefunction

Ground state wavefunction
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Figure (2.6) - Diagram to illustrate the form of the wavefunctions for

L the lowest two states of the QW, and the coordinate system used in

Chapter Two is also shown.



‘the subband that the state occupies ; Unn(r) is a Bloch periodic function ; k., is
the z corﬁponeht of the confined state wavevector ; £ is the in-plane wavevector
and p is the in-plane position vector. 'fhe expressions (2.25) and (2.26) hold
for confined states, the extension to unbound states will be discussed at the
end of this chapter.

For low lying energy levels in é wide, deép well, it is a good approximation

to write

kom = — (2.27)

For algebré.ic conveniénce, the calculation of the Auger matrix element will
be performed.explicit'ly only for the case where initial and final states are in
the ground state subbands. The changes in the matrix element that occur if
the carriers reside i‘n different subbands will be discussed later in the chapter.
Choosing the confined state wavevedors to be integer multiples of (/L) is
convenient for algebraic work, but is not an essential assumption of the model.
Realistic values of the confined state wavevectors from a finite square well
calculation have been incorporated into the numerical célcula.tions that will be
discussed in Chapter Four. |

From equations (2.16) and (2.23), the matrix element corresponding to the

direct term in the electron-electron interaction, Mp, may be written as

Mo= [ [di)si) s

Following Smith et al [16], it is convenient to express r ! in terms of its Fourier

$1(z,)¢2(r2)dr dr, (2.28)

transform

; 2n)’ / —5 exp(ig.r)dg (2.29)
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From equation (2.29), the matrix element Mp, can be expressed as

e? I3 1(q) s 2(— .

With

Imn(g) = / $2(0)bn(r) explig.r)dr (231)

The calculation of I3 and Iy 5 is carried out using the wavefunctions in equa-
tions (2.25) and (2.26). It is coﬁvenien’c to expand the Bloch periodic functions
in terms of reciprocal lattice vectors in an analogous way to the method em-
ployed in [11]. For a QW of well width much larger than the laftice spacing of
the constituent materials making up the QW, the terms with large wavevector
denominators may be neglected as discussed in [11],"and I, can be approxi-

mated by Jm n, where Jp,n 1s

2m)? 2 7% sin(q.L/2
( ) O(n = i + gy B M - L2 qz(qz(-q4‘r/2/)132)

I} (232)

Jmn(9) =

In equation (2.32), ¢ has been written as (g”,q:), g, belng the in-plane com-
ponent of ¢. This expression is valid for the special case where all the carriers
involved in the Auger transition reside in their ground state subbands. In

equation (2.32)

Mmn = /V U;(z)Un(z)dz (2.33)

cell

It follows that Mp is given by

MD_( )317;6( + £y —’“1——2)/{3,1’_91}“{‘7 H_;_ Z} dg  (234)
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Where {m,n, ¢} is the bracketed part, {...}, of Jm n(g) in equation (2.32). To
simplify the notation, the integral in equation (2.34) will henceforth be denoted

by I(k5 — &) so that

Mp = (D)2 b, + 5 -~ (s k) (239
This is the exﬁression for the direct matrix element, Mp, that will be used
in the calculation of the QW CHSH Auger rate for the case where all the
carriers involved in the Auger transition reside in their respective grdund state
subbands. Now that an expression for the matrix element, Mp , has been
derived, it may be used, along with the statistical factbr, P, (equation (2.11))

in Fermi’s Golden Rule to calculate the Auger rate.



2.3 USE OF FERMI’'S GOLDEN RULE TO
- CALCULATE THE QW CHSH AUGER RATE

An expression for the CHSH statistical factor, P, was given (equation (2.11))

in Section 2.2.1

P = {exp[B(F. — F.)] - 1} exp[B(Ez — )] (2.36)

An expression for the direct matrix element for the QVV.CHSH‘ Auger process,
assuming all carriers involved in the Auger transition reside in their respective

ground state subbands, was derived in Section 2.2.2 (see equation (2.35)).

e? 27 _
Mp = ()5 8(8s + £4 = £1 = £2)I(85 — 1) (2.37)

Using Fermi’s Golden Rule (equation (2.5)) and converting the summation
over all possible combinations of initial and final states to an integration over

k-space, the Auger rate per unit volume, R, is given by

27 e? 2
=F0 oy L{exp[ﬂ(F F)Q (235)

The summation over all possible spin configurations will be included at the end
of the calculation. It is also assumed that exp(8(F, — Fy)) > 1, i.e. that the
recombination rate is very much greater than the impact ionisation rate. In

equation (2.38) Q is defined as

Q= / / / / I*(ky — k) exp[B(E, — F,,)]&(;)é(E)dﬁldizd&d_—4 (2.39)

where Kk = £, + K, — K3 — K4, and E = E3 + E4, — E) — E.
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In order to calculate the integral in equation (2.39), the energy-wavevector
dispersion relations in the QW must be known. Ideally, realistic dispersion
relations from a QW bandstructure calculation should be used. A method of
obtaining realistic ‘ba.ndstructure for a QW or superlatticevwill be described
in Chapter Six. . Unfortunately, the use of such realistic energy-wavevector
dispersion relations means that algebraic expressioﬂs that illustrate the physics
of the Auger processes cannot be obtained, and a fully numerical approach must
be used. Therefore, in this initial work, isotropic, parabolic QW subbands are
assumed. Although this is a drastic simplification, it has the advant.age that
‘the Auger rate, R, can be evaluated algebra.ically-and it 1s a useful starting
point for discussions of how non-parabolicity will affect the Auger results. Also
it is worth noting that the parabolic subband approach only fails drastically
for the excited Auger parti;le (state 2 in the CHSH: process, and state 4 in
the CHCC pfocess). In Chapter Five, an estimat.e will be made of the effects
of non—paraboliéity on bulk CHCC Auger rates and it is shown that realistic
bandstructures produce rates that deviate significantly from those calculated
using a parabolic band model. This is because the excited Auger particle lies
approximately a bandgap higher than the conduction band edge - and for th¢
materials of interest in this thesis the conduction band is certainly not parabolic

in the region of the excited state.

In addition to giving an insight into the physics of the Auger process, the
algebraic results obtained from a parabolic band model can be compared to
those obtained by other workers, and also compared to bulk rates calculated

using similar assumptions.

* Referring to Figure (2.7), the energy-wavevector relations for the ground

state subbands of the QW may be written as
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Figure (2.7) - E—k relations for carriers in the ground state subbands
of a QW. The zero of energy assumed in the calculations of Chapter.

‘Two is also shown.
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where us = me¢/ms and py = m¢c/my.

Thus, equation (2.39) for the x-space integral may be rewritten as

o [/ / / (= s D) (s — 5:)C)5 B i (2.44)

with

E=Eqw — Dqw + a(s] — psk} + pa(s] + &) (2.45)

In equation (2.44), Q' = exp(f(Aqw+Fy)) Q. The integral above is intractable
without the use of further approximations. The problem is that the functional
form of I*(k; — k,) is not known in the sense that the overlap integrals that
are contained within it (as defined in equation (2.33)) do not have a known
functional form.

In the calculations of Smith et al [16], for the CHCC bound-bound Auger
rate in a QW, it' was possible to show that the x space integral for the QW
CHCC process involved the relatively slowly varying I*(x; — &, ) and a highly

peaked function, and the method of steepest descents was used to evaluate
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the integral. In practice, this meant that the term I%(x) was taken out of
the integral and replaced by I*(k,) - where £, is the most probable value of
(k3 —K;), the so-called threshold wavevector transfer. The method of removing
I*(k) from the integral and evaluating it at the threshold wavevector transfer,
has been widely used (e.g. Haug [8], [17], Beattie and Landsberg [11], Sugimura
[18]).

The physical reason why the term I%(k) is slowly varying corhpared to
the other termsl in the £ space integral is that the statistical factor is highly
peaked. The peak occurs because the requirement to conserve both energy and
momentum ineaﬁs that the excited Auger particle cannot lie below a certain
energy, and above this energy, the statistical factor decreases rapidly due to the
exponentially decreasing nature of the distribution functions (in the Boltzmann
approximation). Hence, the statistical factor is highly peaked around wavevec-
tors corresponding to the lowest allowed energy of the excited Auger particle.
This may be seen mathematically if the statistical factor (in the Boltzmann ap-
prqximation) is maximised with respect to the wavevector of the excited Auger
particle, with the constraints of energy and wavevector conservation {11]. Us-
ing this method, it can be shown that the wavevectors of the states involved
in the most probable CHSH Auger transition (the threshold configuration) are

parallel, and given by {11]

K =——FKy = ——=K, (2.46)

Using these relations, and the fact that energy and crystal momentum are

conserved, the threshold value of &, is found to be

ms(2myg +mc)  Eqw — AQW) (247)
me(2my +me —ms) "

2
L’i2T| =
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And an explicit expression for the statistical factor, P, at the threshold condi-

tion can be written as

P = C exp(—Busalrar|?) (2.48)

Since ko7 is the minimum value of wavevector for state |2) that can simulta-
neously satisfy both conservation of energy and crystal momentum, any tran-
sitions, aﬁay from threshold are going to be weighted with a statistical factor
that is very greatly reduced. The approxima’gion of a highly pea.ked integrand
is most accurate if (Eqw — Agw) > kgT, which, fortunately, i.s the case of
interest for bound-bound Auger transitions in the III-V materials of interest in
this thesis. In passing, it is also worth noting that the relations (2.46) may also
be obtained by appealing to the equal velocities criterion of Keldysh [19], and
Anderson _aﬁd Crowell [20]. The states involved in the most probable Auger
(or impact ionisation) transition - corresponding to the threshold conﬁguration

- occur when the colliding particles have equal velocities. This leads to

(is - E1)threshold =K, _ (249)

where

(my +me)?

2m5)
R? "(2my +mc)(2my + me —ms)

|5, l* = (

(Eqw — Agw) (2.50)

The previous arguments justify taking I%?(k, — k,) outside the integral in equa-

tion (2.44) and evaluating it at £,. Hence

@~ 1) [ [ [ [exp(-busasds(@p(Brisdsdssds, (250
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Evaluation of this integral gives the Auger rate per unit voiume, R, of a QW for
the CHSH Auger transition inv‘olving carfiers in ground state subbands only.

Only the Auger process for the case of particles with opposite spins sepa-
rately conserved has been considered. However, as discussed in Section 2.2.2,
all spin procvesses can be taken into account by multiplication by a factor 4
where 1 <n < 2.

The evaluation of the g-space integral, @', is perfor'med in Appendix One.
Using the results of Appendix One, the final result for thé QW CHSH Auger
rate per unit volume, for carriers residing in their ground state subbands for

the case Eqw > Aqw is

M2(5,)(ksT)*F
(2.51)

R = L {explB(F. - )]} explB(=Aow — F)l(—1
- I P c v P QW v 167(462717

where 1 <'n < 2 and where F is a function of Eqw,Aqw,mc, my, ms. Its

explicit form is

memsm%4(2my +me — mg) 2my+me) (Eow — Aow)
F= exp [—7o—
(2my + me)? (2my + mec — ms) kgT
(2.52)
Equation (2.51) may be written in the following form
Row « p*nexp(—BE.,) (2.53)

- Where n, (p) are the number of electrons (holes) per unit volume in the ground
state conduction (heavy hole) subbands respectively. An activation energy, E,

has been defined as

ms

E,=( NEqw — Dow) (2.54)

2my +mg —ms
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Equation (2.53) corresponds to the result expeci:.ed from intuition. For the
CHSH Auger process to occur, one electron is required in the conduction band,
and two holes are required in the heavy hole band, hence the carrier dependence
of the rate should be p?n. Also, direct Auger processes~( i.e. those not involv-
ing phonons or traps ) are expected to be activated, since the réquirements
of conserving both energy and crystal momentum demand that participating
carriers are away from the band edge. The activation energy is simply equal
to the energy required to place the participating carriers in the appropriate
threshold states for an Auger transition to occur. '
There 1s one important difference between equation (2.53) for a QW sys-
tem, and the corresponding equation for a bulk semiconductor. In- the bulk, a

similar dependence of the CHSH Auger rate on carrier densities is found [17]

Rpuix « pin exp(—BE,) (2.55)

However, for a QW, the carrier densities n,(p), appearing in (2.53) are not the
injected carrier densities, but the carrier densities of the electrons (holes) in
the ground state conduction (heavy hole) subband.
| Our result for the Auger rate per unit volume for the QW may be compared
with previous work by Smith [3], [16] on the corresponding rate for the CHCC
Auger process. The expression for the CHSH rate can be used to derive the
CHCC Auger rate by a suitable change of material parameters as outlined
below. If the~spin-orbi£ splitting, Agw, is set to zero, and mg is set equal to
mpy, then the CHSH Auger process is forﬁlally identical to the CHHH Auger
process. If then m¢ and my are permutéd, and n,p (or F,, and F,) are a.lso
permuted, the CHCC Auger process is obtained. By doing this in equation
(2.51) (noting that the value of € in Smith’s calculation [16] corresponds to

4me in our calculation because of the use of SI units here), then the result
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agrees exactly with the expression for the CHCC QW Auger rate (in which
all the carriers reside in their ground state subbands) that was reported in
[16]. By changing the material parameters in a similar way to that described
above, expressions for the QW Auger rates for the CHLH, CHHH, CLSL, CLLL,
CLHL, etc, processes can be found. |

A comparison of the QW Auger rate with the corresponding bulk Auger
rate is useful. In fact, due to uncertainties in some of the parameters which enter
the expression for the Auger rate (such as the conduction-heavy hole, heavy
hole-spin split off overlap integrals, as defined in equation (2.33)), a comparison
of the QW and bulk Auger rates may be considered to be an improved guide
compared to simple absolute estimates of the two rates.

For the purposes of comparison it is convenient to re-express equation

(2.51) in the following form

3677 l-ZV«[CH| |MH5| S(K,OL) 2 2 = ‘

- 167r2(e"’h) k5T P ey (2.56)

where
= mgs(2my + me —ms) ] msB(Eqw — Aow) o &=
F= (2my +mc)? e;p( 2mpy +mec —ms ) (“'5-‘)

and
MCH = / UCK (E)UHK (T)d?‘ (258)
cell

Ms = [ Ug (s, ()i (259)

Veett

We have also used p and n, the number of holes per unit volumeé and the number

of electrons per unit volume of the respective ground state subbands.
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mHkBT

p= T exp(—BF,) (2.60)
EgT ) '
n = 9B exp(B(F. — Eqw)) (2.61)
wLh

In equation (2.56) S(k,L) is a dimensionless integral whose numerical value is
6w for asymptotically large values of £,L, and approaches zero as x,L — 0 [21].
This factor arises from an explicit form for I*(x,), and is derived in Appendix
Two.

An expression fqrvthe bulk CHSH Auger rate has been reported in [17],
a calculation that used isotropic, parabolic bandstructure and non-degenerate
statistics - the same approximations as used in the present. derivation of the
CHSH QW Auger rate. Thus the expression in [17] may be used to compare
the QW and bulk.CHSH Auger transition rates.

In order to compare the QW and bulk rates, it would be preferable to
consider systems that have identical material parameters, (e.g. the quantum
well bandgap equal to the bulk bandgap, the effective masses in QW the same
as those in the bulk, A = Agw, etc). However, it is not immediately clear
how this can be done, éince the QW bandgap is necessarily larger than the
corresponding bulk bandgap because of the confinement energies associated
with the QW. However, if the well material is an alloy (e.g. GaAs/Ga;_cAl As
or InP /Inj_xGaxAsyPl_y) a change of alloy compositibn can cause the QW
bandgap of the alloy (with the changed composition) to equal the bulk bandgap
of the alloy (with the original ‘composition) It is worth noting that changing the
composition of the alloy also changes the éffec’tives masses of carriers in the well.
Thus it is possible to consider QW and bulk systems with the same materie;l

parameters if we restrict ourselves to alloys. Fortunately, the work reported
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in this thesis is primarily concerned with QWs that can be used as lasers in
the 1.3-1.55pum wavelength région and so concéntrates on the InP/InGaAsP
system QWs, with the alloy material fo’rming the QW. Using equation (2.51)
and the expression for the bulk CHSH Auger rate from [17], and assuming equal
concentrations of electrons and holes in the QW and the bulk (which are much

higher than the intrinsic values), it is found that

Rqow 9T, 2mpg+me | S(k.L),® [ksT 9
(Rka)CHSH-— g ( ) e ]\/.Ea (2.62)

2myg + mg —ms

E, is given by

E, = mslEow = Sow) (2.63)
2Zmyg +mg—mg

A previous calculation has been reported [22} giving the ratio of the QW and
bulk Auger rates (the QW Auger rate being that for the case where all carriers
reside in their ground state subbands) for the CHCC Auger process. The result

was

(RQW 9\/7_r(2mc+mH) kT
Rypuix 8 ‘my+me’\ ESHCC

This result can be derived from (2.64) by assuming that the wide well limit is

JcHCC = (2.64)

applicable (i.e. k,L — oo so that S{k,L) — 6x) and by making a change of
material parameters as described earlier in the section. Simliar results may be
derived for the ratio of the QW and bulk Auger rates for other Auger processes
such as CHHH, CLSL, CLHL etc, for example the ratio result for the CLSL

Auger process 1s

Rqw 9y/7 2mp +mg S(xoL) 2| kgT o s
= 2.6
(Rbulk Joust 8 (2mL +meg — ms)[ 6 ], ECLSL (2.65)

Results for other Auger processes are quoted in [21].
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2.3.1 DISCUSSION OF RESULTS

In Section 2.3 algebraic results for QW Auger rates were presented for the case
where all the carriers occupied ground state subbands. The QW Auger rates
were compared to the corresponding bulk Auger rates, and relatively simply
expressions were presented for the ratio of the two rates (see equation (2.64)).
For typical ‘III—V materials a.ﬁd reasonably wide well widths the ratio of the
CHCC and CHSH Auger rates for the QW ground state case and the analogous
bulk rates is of the order of m . Also, for typical III-V materials at room
temperature, the activation energy, E“’ is of the same order of magnitude as
kpT (i.e. a few tens of meV). Hence the ratio results suggest that, if the
threshold carrier densities in the QW and the bulk lasers are the same, then
the Auger rates in the QW and the bulk will not be significantly different.
However, if the QW device can be optimised to allow a lower threshold carrier
densi’gy, then the QW Auger rate could be deéreased relative to that in the
bulk. For example, if a mﬁltiple QW structure was used, the increase in the
confinement. factor could result in a lower th.réshold carrier density. The ratio
results are valid for the limited range of well width where the well is narrow
enough for the large majority of carriers to reside in the ground state subbands
but wide enough for the wide well limit approximation to be accurate.

So far in this Chapter, only QW Auger processes in which the carriers
remain in their ground state subbands have been studied. Bound-bound Auger
processes can occur with some (or all) of the states involved being in higher
subbands, and the expressions for the Auger rates for these transitions will
differ from those for the ground state case. In the next Section; the changes

that must be made to the theory, when one or more of the states involved in

the Auger transition are in higher bound subbands, will be discussed.
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2.4 QW AUGER RATES INVOLVING ONE (OR MORE)
CARRIERS IN HIGHER CONFINED SUBBANDS

The confined states in.a QW, [1),]2), |3), |4) may be labelled by their quantum
numbers nj,ng,n3,ng. In the previous Sections of this Chapter, the carriers
have all been assumed to reside in their respectivé ground state subbands, so
that n; = ng = n3 = ny = 1. However, it is possible for carriers to reside in
higher lying confined subbands bf the QW (subbands with quantum numbers
greater than 1). The expressions for the Auger rates will be different from those
derived earlier in this Chapter if one (or more) of the initial or final states lies
ina higher subband since the matrix element and the activation energy of
the Auger process will cha.nge.. It should be realised that not all intersubband
transitions are allowed, because the matrix elemént for the Auger transition can
vanish'due to symmetry. There is a selection ruie that if An =ny4+ns—n3—ny
is odd, then the transition is forbidden. This selection rule disagrees with that
proposed by Dutta [23], but is in agreement with that found by Smith [3], [7].
Dutta quotes a selection rule An = 0, which would forbid Aﬁger transitions
such as that shown in Figure (2.8), but this is the result of the unsatisfactory
manner in which the matrix element ié treated.i Dutta assumes that the QW
is narréw and the z-component of the Coulomb interaction may be neglected,
which results in the misleading selection rule.

If the confined state wavevectors are assumed to be integer multiples of
7/L, then the matrix element for the Auger process with general values of

ni,n9,n3,ny may be shown to be proportional to J, where

s2Aninonsng

/= /_oo (VE = s?)(NZ = s2)( M = s2)(M2 — 52)(s% + (KoL/W)Q)dS

(2.66)
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Figure (2.8) - An illustration of the reduction in activation energy
that can occur for a QW CHCC Auger transition in which the excited
state lies in a higher subband. In the figure, n; = ny; = n3 =1 and

ng = 3, corresponding to an activation energy of approximately zero.



where

Ny=ni+n; (2.67)
N_=n;—ny (2.68)
My =ny+ny4 (2.69)
M_=ng—ny ' (2.70)

a.r'ld A= éin2(ws/2) if N+ is even, and A = cos?(ws/2) if N, is odd.

From expression (2.66), processes which have n; = T.I.3 a.nd4n2 = ny4 are
expected to be favourably weighted, since in these cases both N_ and M_ are
zero. This has also been found and commented upon by Takeshima [24].

| The other effect that is of importance when higher subbands are involved

in the transition is the change that can occur in the activation energy of the
Auger process. An example of this is shown in figure (2.8) for the CHCC Auger
process. In that figure, states |1),]2), [3) are in their respective ground state
subbands whereés state |4) is in a subband that has ny = 3. This transition
is allowed by our selection rule, and, in Figure (2.'8), the subband energies
are such that the Auger tra.néition is vertical, ‘corresponding to zero activation
energy. Clearly, if such a situation éould occur in practice, then the rate of that
particular Auger transition would be enhanced.

In general, if the excited Auger carrier (sfate |4) in the CHCC process,
and state |2) in the CHSH process) is in a subband with the highest possible

quantum number, then the activation energy may be considerably reduced.
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2.5 QW BOUND-UNBOUND AUGER PROCESSES

The previous Sections of this Chapter have assurfled that the excited Auger
particle makes a transitic;n to one of the confined states of the QW. However
transitions to unbound states of the well are also possible. To understand the
nature of these unbound states, it is useful to split up the energy, E of a state

in the folloWing way.

E = .E'L + E” : (2.71)

"Where E is the energy due to confinement in the QW, and Ej is the kine‘tic
energy associated with motion parallel to the QW interfaces. For the excited
Auger particle to reside in one of the confined states of the well, £, must
correspond to one of the confined state energy levels of the QW. However,
there aléo exists a continuum of states that have E; greater than the the
barrier height of the confining well. These are the so-called unbound states of
the QW.

Some possible bound-unbound Aug;:r transitioné are illustrated in Figure
(2.9). To cal_culate the bound-unbound Auger rate, it is only necessary to
note that the process is exactly the same as the bound-bound Auger process,
except that the final state liés in a subband that forms part of the unbound
stz;te continuum. Hence, integratiqn of an expression of the same form as
the bound-bound Auger rate, weighted with the appropriate density of states,
over all the continuum of unbound states will yield the bomd-mbo@d Auger
rate. In this Section, the only bound-unbound process that will be considered
is the one where all states apart from the state of the final excited Auger

carrier are in the respective ground state subbands, and the excited carrier is
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TFigure (2.9) - Possible bound-unbound Auger processes in a QW. The

shaded area indicates the continuum of unbound subbands.



unbound. Earlier work [3] has shown that this is the only significant bound-
unbound Auger process for CHCC in a QW. It is also worth remarking that
the matrix element for the bound-unbound Auger process is altered because
the QW unbound state wavefunctions are essentially different from the bound
state wavefunctions. For the bound-bound calculation, the wavefunction of the
bound states was wsuﬁed to be zero outside the well, and this is not the case
for the unbound wavefunctions. For the unbound wavefunctions, sinusoidal
expressior;s' are used both inside and outside'the well, and suitable mé.tching
conditions afe imposed at. the QW interfaces, as discussed by Smith [3].

If the bound-bound Auger rate as a function of E, is written as R(E}),

‘then the bound-unbound rate may be written as

' *® 2m* l
Run ound = R(E 5
bound /M: SASRlty, y'y

where 2] = total system width = width of well and barrier regions, AE is the

}E  (272)

barrier height, and m* is the effective mass of the unbound carrier. The terms
in the integral in equatioh (2.72) that weight R(E) arise because of the one-
dimensional density of states of unbound subbands. In addition a factor of -14;
has been included, to take account of the fact that at any particular energy
there will be two‘ types of unbound states, one with even parity and one with
odd parity. Only one of these states can be involved in an Auger transition if -
the other states are in specified confined subbands, and this introduces a factor

of L

5, and the other factor of % comes from noting that spin is included at the

end of the calculation. It is worth noting that ! will not appear in the final

expression for the bound-unbound rate because the unbound wavefunctions are

normalised with respect to [, and will contribute a factor of I~! to R(E).
Smith et al [7] have evaluated the Auger recombination rate for the QW

bound-unbound CHCC process, with the unbound carrier being state |4), with
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the remaining states occupying their respective gToﬁnd state subbands. The
conclusion reached in that work was that the bound-unbound CHCC Auger
process was only significant at small QW widths (< 100 &) in 1.3 pm In-
GaAsP/InP QW lasers, and was unimportant in the same alloy system with a

composition chosen to produce optical emission at 1.55um.

The physical reason for the potential importance of the bound-unbound
Auger process in QWs is the fact that, for one of the continuum of unbound
subbands, the activation energy of the Auger proéesé will be zero in the systems
that are of interest in this thesis. For Auger transitions involving subbands
close to the zero activation energy, the rate will be enhanced, although the
matrix element of the transitions will also affect the rate. Numerical results:
of the bound-unbound Auger processes in which all bound states are in the
ground state subbands, and the final excited Auger carrier is unbound, will be
presented for the CHCC, CHSH and CHLH Auger processes in Chapter Four.
In the remainder of this Chapter the bound-unbound Auger QW calculation

for the CHSH process is discussed in more detail.

For the CHSH process, the bound-unbound QW Auger recombination rate

may be written as

*° 2m S )
Run ound — R(E dF 2.73
b d AES ( ) ( 712 ){Z’R\/F——_A—Es} ( )

where m g is the effective mass for carriers in spin split off subbands, and AEg
is the spin split off discontinuity of the QW.
For the case where all the bound carriers are in their respective ground

state subbands, the QW wavefunctions may be written as
For |z| < L/2
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= [ Veeu \ /2 =z ; 2.7
Pbound = Yl LUE(E) cos( T ) exp(ik.p) (2.74a)

For |z| > L/2

¢bound = 0 (274b)

For [z| < L/2

[ Vee s .
dunbound = _Alualcos(I{uz)Uﬁ(r_)exp(z_/_»‘_.B) (2.75a)

For |z| > L/2

cell

7
Bunbound = TR cos(K'yz + 6)Ux(p) exp(i.p) (2.75b)

Where a; and a; are coefficients found by matching the two different forms of
Gunbound at the QW edge. "The wavevector of the unbound state in the well,

K,, is found from the relation -

hK?
s E, (2.76)
where energies are measured downwards into the spin-split off subbands. By
using these wavefunctions, the direct matrix element, Mp, may be evaluated
giving
, g€l 1 2,1 |Mceul’|Mps|® . .
25l = (S (2P et sl g v e, kP (277)

o

With V(k,, Ku) = I + I, where

. L/2 zy > ) :
I = / / exp(K,(z2 — zl))cos2(7—ri)cos(—7r—z-2—)a1 cos( I y29)dz;dzs
~Lj2J-L/2 L L
: (2.78)
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L/2 pLJ2 N
I, = / exp(K,(z1 — zg))cosz(%) cos(%)al cos(I{yz9)dz1dz,
A

-1/2

‘ (2.79)
The integral defining V(k,, K,) can be performed analytically, although the
calculation is tedious.

The expression for |Mp|® in equation (2.77) may now be inserted into
Fermi’s Golden Rule. The statistical factor, P, also required for the Golden
Rule, may be derived in the same‘way as in Section 2.2.1. In fact, the calculation
proceeds in exactly the same Way as for the bound-bound QW CHSH Auger

calculation except that the £ — g relation for the carrier in the spin split-off

band is now

Ey, = -Aqw — ,usa_li% -F (2.80)

The bound-bound Auger rate corresponding to this value of E| is thus

|Mcu||Mys|®

R(EL) = {exp[B(Fe = F)}V (50, Ko)[” exp(~BEL) =7 BS

(2.82)
with
4 2
ne as (ksT)

B = - y 2.
SEh a2t ) ed CPCABew RN (289)

HH - )
4§ = fs — T 2.84
ST T ) (284)

and S = exp(—fusAE/as) if AE > 0, and for the case where AE < 0, we
find that S = (1 — (BusAE/as)).
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Also, AE = Eqw — Agw — E . Hence, the expression for the bound-unbound
QW CHSH Auger rate is
2ms 1

Runbound = FEB{CXP[—ﬂ(Fc - Fu)] - 1}J (2-85)

J arises from the integration over the continuum of unbound subbands and is

< SIMCHI:'IMHstV(no,Ku)I?
AEs IC%\/E_L - AES

Unfortunately, in deriving equation (2.85), a number of approximations have

J =

exp(—BEL)dEL (2.86)

been necessary. It has been assumed that it is still valid, as in the derivation of
the bound-bound rate, to remove the slowly varying matrix elements from the
phase space integral and evaluate it at the appropriate threshold wavevector
transfer. However, as discussed in Section 2.3, this is only a good approximation
if (Eqw — Qgw) > kpT. Here it must be recognised that in deriving the
bound-unbound QW Auger rate, the parameter of interest is not (Eqw ~Agqw)
but (Eqw —Agw —E ) and this can certainly equal zero, and become negative,
when the final inﬁegration over the continuum of unbound states is performed.

This problem has been addressed in detail by Smith [3], and, although the
| statistical factor is no longer highly peaked if AE = (Eqw —Agqw — E1) L0,
the results Smith oBtained by removing the matrix element and evaluating it
~at an appropriate wavevector, were very close to the fesults of a full numerical
calculation that was also performed [3]. This suggests that the approximation
discussed above will not introduce significant errors into the calculation of the
QW bound-unbound Auger rate. Expfession (2.85) has been used to carry
out numerical calculations of the QW CHSH bound-unbound Auger rates in
the InGaAsP/InP QW system -(assuming that all the bound states are the

respective ground states). A similar analysis to that presented above has also
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been carried out for the CHLH and CHCC bound-unbound QW Auger rates,
with the bound states bein.g ground states of the QW. Although the CHCC
bouﬁd-unbound QW Auger rate has been examihed by Smith, the calculation
was worth repeating to'check for consistent results. The numerical results and
their physical interpfetation will be presented in Chapter Four. However, it is
perhaps' worth. stating at this point that the numerical Fesults for the CHCC

bound-unbound QW Auger rates are in good agreerhent with the work of Smith

(3]-

2.6 SUMMARY OF CHAPTER TWO

The work of Smith et al [3],[7] has been extended in ordér to calculate rates for
't_he bound-bound CHSH QW Auger proﬁess. The expression for the rate that
has been derived, may, by a suitable change of parameters, also be used to ob-
tain expressions for the rates of the bound-bound CHCC, CHLH, CLSL, CLLL,
CHHH QW _Augér, processes. Using this procedure, the result obtained for the
Bound—‘bound CHCC QW Auger .rate involving all carriers in their respective
ground state subbands was found.to agree exactly with a previous result re-
ported by Smith et al [16]. The description of the analytic work in this Chapter
has concentrated on the case where all the carriers reside in4 their ground state
subbands. However, the inclusion of intersubband transitions involving states
in higher confined subbands is straightforward. In fact the calculation of QW
Auger rates involving intersubband transitions is very similar to that for the
ground state QW Auger rate, and the modifications needed to evaluate the

intersubband transition rates were discussed in Section 2.4. The total QW

52



Auger bound-bound rate has been obtained by a summation over all possible
intersubband transitions. However, physically, it is to be expected that the
QW Auger process in which all the states are in the fespective ground state
subbands of the QW will dominate, since those subbands will be preferentially
occupied by carriers, and this is found in the numerical results of Chaper Four.

Concerning the relative sizes of Auger rates in QWs and the bulk, it was
found that, if the ground state QW Auger rate is the most important contri-
bution to the total QW rate,-and if the threshold carrier densities in the bulk
and the QW are the sam.e, then the Auger rates in a QW are about the same
as those in the bulk (assuming the same material parameters, such as effective
masses and bandgaps etc.). This indicates that significant improvements in
radiative efficiency are not expected for QWs unless threshold carrier densities
are significantly reduced compared to those in the bulk- [25].

Finally, we discussed how the results for bound-bound QW Auger recom-
bination could be used to calculate the bound-unbound QW Auger rates. Al-
gebraic expressions for the bound-unbound QW CHSH Auger rate were given,
and their use to calculate numerical estimates of this contribution to the total

Auger rate will be described in Chapter Four.

93



REFERENCES FOR CHAPTER TWO

(1] J. Batey and S.L. Wright, J.Appl.Phys, 59, (1986), 200.

(2] R. Chin, N. Holonyak,Jr., S.W. Kirchoefer, R.M. K'olbas and E.A. Rezek,
Appl. Phys. Lett., 34, (1979), 862. .

(3] C. Smith, PhD thesis, Durham University, 1985 (unpublished).

[4] L.C. Chiu and A. Yariv, IEEE J. Quant. Electron., QE-18, (1982), 1406.

| 5] L.I; Schiff, Quantum Mechanics, 3rd Edition (published by McGraw-Hill).

[6] M.G. Burt, Elect. Lett., 19, (1%83), 210. |

(7] C. Smith, R.A. Abram & M.G. Burt, Superlatt. Microstruct., 1,(1985),119.
[8] A. Haug, J.Phys.C:Solid State Phys., 16, (1983), 4159.

[9] P.T. Landsberg, ‘Electron Collision Effects in Semiconductors’, Boulder
Series of Lectures in Theoretical Physics, 84, (1965).

[10] B.K. Ridley, ‘Quantum Processes in Semiconductors’, Clarendon Press
(1982). a

[11] A.R. Beaftie and P.T. Landsberg, Proc.Roy.Soc., 4249, (1959), 16.

[12] M.G. Burt, J.Phys.C>:Solid State Phys., 14, (1981), 3269.

[13] A. Haug and W. Ekardt, Solid State Comm., 17, (1975), 267.

[14] M. Takeshima, Phys.Rev.B26, (1982), 3192.

[15] D. Yevick and W. Bardyszewski, IEEE J.Quant.Elect., QE-23, (198;1'), 168.
- [16] C. Smith, R.A. Abram and M.G. Burt, J.Phys.C:Solid State Phys., 17,
(1984), L5T1. |

[17] A. Haug, D. Kerk.hoff & W. Lochmann, Phys.Stat.Sol.(b), 89,(1978),357.

[18] A. Sugimura, IEEE J.Quant.Elect., QE-17, (1981), 627.

[19] L.V. Keldysh, Sov.Phys.JETP, 37, (1960), 509.

[20] C.L. Anderson and C.R. Crowell, Phys.Rev.B5, (1972), 2267.

54



[21] R.I. Taylor, R.A. Abram, M.G. Burt and C. Smith, IEE Proc. 132 Part J |
(Optoelect.), (1985), 364. ‘

[22] C. Smith, R.A. Abram and M.G. Burt, Elect. Lett., 20, (1984), 893.

(23] N.K. Dutta, J.Appl.Phys, 54, (1983), 1236.

[24] M. Takeshima, Phys.Rev.B31, (1985), 992.

[25] M.G. Burt and R.I. Taylor, Elect.Lett.,21, (1985), 733.

55



CHAPTER THREE

THE CHSH AUGER RECOMBINATION RATE
IN A QUANTUM WELL WIRE

INTRODUCTION

In this chapter, the ca,iculation of the CHSH bound-bound Auger recombina-
tion rate in a quantum well wire (QWW) is described. The derivation of an
expression for the CHSH Auger rate also enables us to evaluate the rates of
the CHCC, CHLH, CLSL, a;nd CHHH Auger processes in an analogous way to
that described in Chaptef Two. A comparison of bound-bound Auger rates in

QWs and QWWs is presented.
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3.1 THE QUANTUM WELL WIRE

Recent advances iﬁ MBE and MOCVD have enabled the fabrication of quantmﬁ
well wires (structures that confine carriers in two perpendicular directions) [1].
Theoretical investigations have suggestéd that quantum well wire lasers will
exhibit improved gain spectra [2] compared tb quantum well lasers, and also,
in the absence of non-radiative recombination, the temperature sensitivity of
-a QWW laser can be -irﬁproved over that for the QW (i.e. the temperature
sensitivity parameter T, has been predicted to be larger for a QWW than the
value for a QW) [3]. However, as non-radiative recombination is thought to be
significant in the conventional long wavelength lasers used as sources in optical
fibre communicationé systems (and, as shown in Chapter Two, signiﬁcant also
in QWs), it is important to estimate the non-radiative recombination rate in a
QWW.

The QWW is assumed to have a square cross section ('of width L), and
is assumed to be long, with length X. (see Figure (3.1)). For simplicity, the
potential discontinuities AFE,., and AFE, are taken to be infinite, so that the
energy levels of the QWW are straightforWard to calculate. If the potential
discontinuites were taken to be finite, Schrodinger’s equation would not be
sepféfa_ble for the wire geometry considered in this Chapter. One consequence
of assuming infinite potential discontinuities is the exclusion of any bound-
unbound Auger processes. To examine these, it.is necessary to model the Q\YW
as a cylindrical wire, with finite band offsets. The cylindrical symmetry enables
t.he matching of the wavefunctions inside and outside the wire to be carried out

without difficulty. Theoretical work on such a system has been performed [4].
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Figure (3.1) - Schematic diagram of a quantum well wire (QWW).



However, the esseﬁtial physics of the bound-bound QWW Auger rate is not
dependent on the cross-sectional shape of the wire.

The carriers in the QWW are free to move in the axial direction, and, as
f(_)r.the QW, subbands vlvill be formed for each confined energy level in the well.
The subband dispersion relations are assumed to be parabolic, with carriers
in higher subbands having the same effective masses as those associated with
their respective ground state subbands. Since the band offsets are assumed to
be infinite, the energy levels of the confined states of the QWW are

n2h?

— 2 2
Es,t = 2m"‘L2 (S +t ) . | (31)

where m* is the appropriate effective mass for carriers in the v;rell. Two quantum
numbers, s, and ¢, are required to specify a confined energy level of a QWW,
and so there are many more possible intersubband Auger transitions than for
the QW case.

A study of Auger recombination in a quasi-one-dimensional structure semi-
conductor has been carried out by Takeshima [5] but the approach he has used
to calculate transition rates tends to obscure the physics of the process. The
approach used in this work, which is summariseci in [6], uses first order time de-
pendent perturbation theory (Fermi’s Golden Rule) to derive a relatively simple

expression for the CHSH QWW Auger rate for bound-bound transitions.
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3.2 CALCULATION OF THE CHSH QUANTUM
WELL WIRE AUGER RATE

The starting point for the QWW Auger rate calculation is Fermi’s Golden Rule,

which gives the rate per unit volume, R, as

_ Lo
T XI?h

> PR H [T ))6(E) (3.2)

Whef_e X is the length of the QWW, L is the confinement length of the (square
cross section) wire, P is the statistical factor, ¥; is the wavefunction of the ini-
tial state, and ¥y is the wavefunction of the final state. Hy is the pérturbation
due to the electfon—electron interaction. The statistical factor, P is calculated
in exactly the same way as in Section 2.2.1. Thus, assuming Boltzmann statis-

tics, we have
P = {exp[B(F. — Fy)] — 1} exp[B(E2 — F))] (33)

However, it must be remembered that the calculation of the quasi-Fermi levels
~ for the QWW is not the same as for the QW because the QWW has a different
density of states. In an ideal QWW with parabolic bands, the density of states

. for the confined carriers, g(E) is given by
X [m . -1
9(B) = —\| =7 D (B E)T2(E - E) (34)
. =1 .

- See figure (3.2). In equation (3.4) there are N confined energy levels in the well

with energies Ey, ..., En. For a QWW with an infinite square well potential, N
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Figure (3.2) - The density of states for an ideal QWW, assuming
parabolic subbands. E, = 724%/2m* L? (with m* being the effective
mass of the subbands). The symbol ‘x 2’ indicates that the density of

states for those subbands degenerate in energy should be multiplied

/\ ’by two.

Density of States (Arbitrary Units) —>

Energy/Eo —_—



would be infinite. Hence if n electrons (n being the carrier density) are injected

into the conduction band of the QWW then

_ 1 [Img [ dE
TRV ; /E VE-ElmBE-F)+y Y

Where A = 1 if Fermi-Dirac statistics are used, and A = 0 if Boltzmann statistics

are used. Expression (3.5) may be simplified to

1 2mckgT N oo dz
e I e PR, (39)

where A = exp(B(E;—F.)). A similar, albeit more complicated, expression may

be written for the injected hole density. Equation (3.6), and the corresponding
equation for the holes, may be solved numerically for F, and F, if n and p
are speciﬁe>d. Once the quasi-Fermi levels have been calculated, the number of
carriers in any particular subband may be calculated.

The arguments of Section 2.2.2, that enabled ﬁs to write the matrix ele-

ment, M (= (¥;|H[|¥y)) as

IMJ? = (2 + 2601 n2)|Mp[? | (3.7)

may also be used for the QWW case, except that for the QWW we must write

[‘A/Ilz = (2 + 25n1y,112y§nlz,nZz)l-ZM'D[2 (38)

Hence, as for the QW, it is only necessary to calculate the matrix element for
. . . &

the case where the carriers have opposite spins that are sepgrately conserved

during the Auger transition. The matrix element, Mp, will be different from

that for the QW since the extra degree of confinement in the QWW means that
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the wavefunctions of the recombining carriers in the QWW are different from
those in the QW.
It is still useful to use the anélysis of Chapter Two, which enabled us to

write the matrix element as

qz dg ' (3'9) .

€ I3, I;'"z -

with

Imn(g) = /45;(1)%(1:) exp(ig.r)dr (3.10)

We now proceed to calculate the QVV-VV CHSH Auger transition rate for the
case where all the carriers reside in their ground state subbands. The case
where the carriers are in states with general values for the quantum numbers
will be discussed lafer in the chapter. |

For carriers in the ground state subbands of a QWW with infinitely high

barriers, the wavefunctions may be written as

2 (Veew . m . Tz } :
é(r) = I X” sin fy) sm(f)exp(m:z:)Uﬁ(g) (3.11)

fO0<y<Land0<z<L.Ifyandz are outside this range then ¢(r) = 0.

Using equation (3.11), the evaluation of I, »(g) can proceed.

8w ' i .
Im,n(g) = —X-—L—lem,n(S(K,n — Rm + qz)I((qy)I\ (qz) (312)
With
S L ry
K(q) = / Sinz(—f)eXP(iqy)dy (3.13)
0 !
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In equation (3.12), as stated previously, the carriers have been assumed to reside
in their respective ground state subbands. After some algebra, the direct matrix
element, Mp, may be written as

_(E)z(zi)s( ) sMcuMusé(x)J o (3.14)

With k = k1 + K2 — K3 — Ky, also, J is given by

[ [ sin®(ns/2)sin?(nt/2)dsdt ]
J= /;oo /;oo s2t2(s? — 4)2(t2 _ 4)2(32 + 12 + (oL /7))? (3.13)

If (fcoLA) is large, the double integral can be approximated by the product of

two identical integrals, and it 1s possible to write

T

=l

] Soww(roL) (3.16)

Where Soww(x,L) — 1 as kK,L — oo. The variation of S?(y) as a function of

y is shown in figure (3.3). The final expression for |Mp|” thus simplifies to

81w Meul*\M |
ol = By RISl Lty ne)Shuantoal) (017

Fermi’s Golden Rule is now used to evaluate the Auger transition rate

S S PHWIENLE)  (319)

R=<1%

By converting the summation over all possible initial and final states into an

integration over k-space, we obtain
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R= XLQ(27r X ////PiMpl §(E)S(x)dk dradrsdrs  (3.19)

By assuming that the statisticai factor is highly peaked f01; wavevectors in the
vicinity of those corresponding to the threshold configuration, (see discussion
in section (2.3)), the slowly varying matrix element can be removed from the
_integrand and may be evaluated at the threshold wavevector transfer (K,).
The expression for the CHSH QWW Auger rate for the case where all
the participating carriers reside in their respective ground state sui)bgpds is

: .(omitti‘ng the summation over all possible spin configurations)

Mcu*|Mus|® o
(S )exp(B(F. — Fy))exp(—~B(Aquw+F) et Musl g e 1y

(3.20)

81
~ 64r?

With
Q= / / / | / exp(——ﬂpsang')é(fc);S(E)dfcld/cgdﬁgdn‘; (3.21)

The subband dispersion relations in the x direction have been taken to be of
the same funcfion’al form as those in Chaptér Two. The x-space integral (for

AEoww = Eqww — AEqww > 0) is

ﬂs(kBj) 4 ,B/JSAEQVVDV |
\/ 3 ( 2) Se C( aS ) ‘ ( )

where the symbols have their usual meanings. If BusAEqgww/as > 3, which
is typically the case for III-V materials at room temperature, equation (3.22)

may be rewritten as
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m(ksT) as _,—BusAEoww
YN u"’urz@ﬂm)ekp( as’ )
a?AESyy VIS

(3.23)
where the relation erfc(z) = exp(—z2)/(7+/z) has been used for large values of
z. (See Appendix Three for a proof of this). Hence, the final expression for the
CHSH QWW Auger rate, for carriers residing in their groﬁnd state subbands

is (omitting the summation over the spins)

et B ' .
R= il-(z—)s exp(B(Fe—F)) exp(—B(Doww+Fy)) exp(—BpsAEqww/as)

T 64w €2h _
(3.24)
where S is
| Moyl | Mys|? kgT
o CHl4l : Hs| ] a.?S SL (ko) —L7—  (3.25)
I"COL ,U.‘S,UH(-‘ + #H) Q%AE(SWW

and all the other symbols have their usual meanings (see Chapter Two). Com-
parison of the QW and the QWW CHSH Auger rates, assuming all material
parameters are the same (i.e. same carrier effective masses, AEqw equal to

AEgww, same threshold carrier densities, etc), leads to

1
2

Roww N 9 2my + me kBT]

Y 3.26
Row 4/7 2my +mc —ms' E, (3.26)

It has been assumed that the well width, L, is largeAenough for the wide well
limit approximation to be valid (i.e. Sow(x,L), and Soww(x,L) both close

‘to the values they have for asymptotically large values of x,L), but narrow
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enough so that the large majority of the carriers reside in their ground state
subbands. E, is the activation energy of the QW CHSH ground state Auger
pfocess, as defined in Chapter Two. | |

Expressions for the CHCC, CHLH, CLSL, CHHH, etc, Auger transition
rates may be written down by following a similar procedure to that described
in Chapter Two. |

The magnitude of the activation energy fér typical I1I-V-materials of inter-
‘est in optoelectronic engineering (at room temperature), is of the order of a few
times kg7, and so the QWW Auger transition rates will be of the same order
of magnifude as the QW rates if the carrier densit\ies required for threshold are

the same in the two cases.



3.3 QWW AUGER RATES FOR GENERAL
INTERSUBBAND TRANSITIONS

The last section dealt with the problem of the QWW CHSH Auger recombi-
nation rate for the case where all the carriers were assumed to reside in their
respective ground state subBa.nds. If one (or more) of the carriers residés in
a higher lying QWW subband, then the activation energy of that particular
Auger process, and the rﬁatﬁx element for the transition will be modified.
Thé definition of the activation energy for the QWW CHSH Auger process

for carriers remaining in their ground state subbands is

ms

a

= AEoy 3.27
2my +me —mg eww . ( )

For a general intersubband transition, the activation energy is proportional to
AEqoww, where AEgww is the wavevector independent part of .(El + E, —
E; = E4). Asin the case of the QW (see Chapter Two), for the CHCC process,
state [4) should be in the highest possible subband to reduce the activation
energy éubstantially. For the CHSH process, it is carrier |2) that is required to
be in the highest possible subband for a substantial reductioﬁ in the activation
energy for the Auger transition. |

The matrix element for the Auger transition, Mp, a.lsq has an influence on
the Auger rate. Consider the quantum numbers of the initial and final states
to be (n1y, n1z), (n2y, n2z), (N3y, N3z), (nay,n4s), and deﬁne numbers N and M

by

Niy +nNoy —Nagy —nNgy =N (3.28a)
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ni; + Ny —N3; — n-iz.: M . | (328b)

Then if N and M are both ocid that particular intersubband transition is for-
bidden by symmetry. This selection rule is not restricted fo the case of a QWW
with identical confinement lengths in the y and z directions.

For the QWW CHSH Auger process involving carriers in their respective
ground state subbands, the matrix element was shown to be proportional to J

where

_ * [ | Sin2(7r3/2)sin2(7rt/2)d3dt
J= ‘/—oo /-o? 52t2(52 _ 4)2(t2 _ 4)2(82 e (HOL/’A')Z) (329)

However, for a general intersubband transition, the matrix element is more

complicated, and is proportional to K, with

© ro " PABdsdt
K= / / 5 s s (3.30)
-0 J—c0 V1

S5+ + (%ol 7))

where P = Hi=1,4ni.yniz7 and S; = Hi=1,4(s2 ;p?), Sy = H;=1,4(t2 —¢¥)in
which p; = niy — na3y, P2 = N1y + N3y, P3 = N2y — N4y, and py = Ngy + Nyy.
Similar expressions hold for the ¢;, except it is the z components of the quantum
numbers that are involved. A = sin®(ws/2) if (n;, — na,) is even, otherwise
A = cos?(7s/2). Similarly, B = sin®(7t/2) if (n1; — n3;) is even, otherwise
B = cos?(nt/2). |

Frorn.equation (3.30), it can be seen that Auger transitions involving car-
riers in states that have Ty = N3y, N2y = N4y, N1z = N3z, and ny; = N4z, will
have an enhanced matrix element. This has also been found in the work of

Takeshima [5].
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Numerical results for QWW bound-bound Auger transition rates for vari-

ous, important, intersubband transitions will be presented in Chapter Four.

3.4 THE DIRECTIONAL DEPENDENCE OF
THE QWW AUGER RATE

In equation (3.24) the QWW CHSH Auger rate (for the case where all the
carriers resided in-their respecétive ground state -subbands)'was found to be
dependent on IJ\ICH|2|MH5|2 (i.e. proportional to the product of the squares of
the conduction-heavy hole and heavy hole-spin éplit off overlap integrals). This
dependence of the Auger rate on the overlap integrals has led to suggestions
that the Auger rate should be strongly dependent on the direction of the QWW
axis [5], (i.e. dependent upon the direction in which the carriers are free).

This conclusion was reached because the overlap integrals in bulk semicon-
ductors have a strong dépendence on the directions of the wavevectors of the
states. For example, the CH overlap as a function of § (the angle that the heavy
hole wavevector makes with the z axis in the xz plane) changes dramatically as
6 varies from 0 to 7 /4, [7], [8], [9], (see Figure (3.4), which has been reproduced
from reference [7]).

However, the calculation shown in Figure (3.4) assumed that the wavevec-
tors of the heavy hole and the conduction band carriers were parallei (in fact,
the §vaveve_ctor of the conduction band carrier was taken to to be zero). If
the wavevectors are not parallel, the CH overlap depends strongly on ¢, where
¢ is the angle. between the heavy hole wavevector and the conduction band
wavevector (see Figure (3.5)). For the QWW, it has Been aésumed throughout

the calculation that the Ehresh_old condition of parallel wavevectors dominated
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Figure (3.4) - Graph of Mgy (= |ICH]2) versus 8, the angle that the
heavy hole wavevector makes with the z axis in the xz plane. The
conductiqn band wavevector has been taken as zero, and the heavy
‘hole wavevector is 0.2(27/a) (with a the lattice constant). The full
curve is from a 15 band k.p calculation, and the dotted curve is from

a non-local pseudopotential calculation. Figure taken from [7].
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Kane four-band results for different ‘spin indices’, equation (32b). (a) GaAs; (b) InP.

Figure (35) - Results for the conduction - heavy hole overlap integrals

for ndn—parallel wavevectors (taken from reference [7}).



the contribution to the x-space integral. However, because of confinement in the
y and z directions, there is an vuncerta.infy of 2w /L in the transverse wavevector.
For a wire with L=150 A we find that 2x/L = 0.0494~1, and s, = 0.091A !
(for typical material parameters). The uncertainty in the transverse wavevec-
tor means that the wavevectors of the heavy hole and conduction band carriers
cannot be assumed to be parallel. This is likely to blur out any marked di-
rectional dependence of Auger rates in a QWW, wh.ich may at first sight have
been expected. A preliminary investiga;cion into this blurring mechanism has

been carried out by Kelsall[10].
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3.5 SUMMARY OF CHAPTER THREE

The transition rate for the bound-bound CHSH Auger process in a quantum
well wire (QWW) has been calculated algebraically with the assumptions of
isotropic, parabolic subbands and Boltzmann statistics with quasi-Fermi lev-
els. Transition rates for the CHCC, CHLH, CLSL, CLLL and CHHH Auger
processes may be obtained from the CHSH result by using the procedure out-
lined in Chapter Two.

The QWW was assumea to have a square cross—section,‘ and the potential
wells were assumed to be inﬁﬁitely deep.

It was found that, if the Auger procéss involving ground state subbands
only gave the dominant contribution to the total QWW Auger rate, then the
Auger rate in the QWW was approximately the same as the corresponding rate

in the QW (assuming room temperature and equal threshold carrier densities).
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CHAPTER FOUR

NUMERICAL ESTIMATES OF AUGER TRANSITION
RATES IN InGaAsP/InP QUANTUM WELLS AND
QUANTUM WELL WIRES

INTRODUCTION

In Cilapters Two and Three, expressions for CHSH Auger transition rates in
QWs and QWWs were presented. - In this Chapter, those expressiorﬁs are used to
estimate Auger transition rates in 1.3um and 1.55pm InGaAsP/InP quantum
wells and quantum well wires. However to apply the theory it is first necessary
to find the enefgy levels of the confined states of the QW or QWW, and then
use these to calculate the conduction and'va.lence band quasi-Fermi levels. In
addition to explaining how the calculations are i)erformed,.the various methods
used in previous work for including Bloch function.q\ferla.p iﬁfegrdls in the
Auger calculations are discussed. Numerical results for Auger transition rates |
in QWs (both bound-bound and bound-unbound) for all the important Auger
processes {(CHCC, CHSH, CHLH) are presented, and bound-bound results are

presented for the QWW. A comparison with previous work is made.
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4.1 NUMERICAL ESTIMATES OF BOUND-BOUND
AUGER TRANSITION RATES IN InGaAsP /InP
QUANTUM WELLS

In optoelectronic telecommunications systems, the two most important wave-
lengths are 1.3um and 1.55um, since these correspond to the zero of dispersion
and the minimum of atteﬁuation respectivély-in silica-based optical fibres. In
practice, this means that if an InGaAsP/InP quantum well laser were used as
a source for such a syst'em, it would be designed to emit at one of these wave-
lengths. Thus, in the results that will be presented, the QW bandgap is kept -
constant at an energy corresponding to one or other of the two wavelengths.
This is achieved by altering the alloy composition of the InGaAsP (the well
maﬁerial) at each well width to ensur'e that the sum of the alloy bandgap and
the conduction and heavy hole ground state confinement energies equals one
or other of the energies corresponding to wavelengths of 1.3um or i.55pm.
The parameters used in the calculation are as follows: For lattice matching

of In;_xGaxAsyP;_y to InP

_ 0.4526y

= Y 4.1
T 10031y (4.1)

The energy gap, E,, and spin-orbit splitting, A, are given in electron volts by

E, =1.35-0.72y + 0.12y%> (4.2)

A =0.11 + 0.31y — 0.09y° (4.3)

and the following expressions for the carrier effective masses are used
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mc

=0.08 —0.03%y . (4.4)
Mo

mg

o

= (1—)(0.79z + 0.45(1 — 2)) + y(0.452 + 0.4(1 — 7))  (4.5)

%{‘- = (1 -y)(0.14z 4+ 0.12(1 — z)) + y(0.082z + 0.026&1 - 1)) (4.6)

mgs

=0.14 .
e (47)

where mgo, myg, myz,, and mg are the carrier effective masses for the conduction,
heavy hole, light hole and spin-split off bands respecf,ively and m,, is the free
electron mass. In addition to the above parameters, the relative permittivity,

¢, which is required in the expression for the Auger transition rate, is given by

e=(1-y) (8.4»2: +9.8(1 - z)) + y(13.1z + 12.2(1 - 1)) (4.8)

With the above parameters (taken from ([1]), and using a band offset ratio
AE,; : AE, of 2:1 [2], the energies of confined states in the quantum well may
be calculated using a finite square well model [3]. The QW bandgap is then
constrained to be either 0.80 eV (1.55um) or 0.95 eV (1.3pm) and the remaining
confined sta.té energy levels are evaluated.

Once the energy levels are known the conduction and valence band quasi-
Fermi levels cari be determined. If n is the total number of electrons per unit
volume injected into the QW, then, assuming isotropic, parabolic subbands, the

conduction band quasi-Fermi level is obtained by solving the integral equation
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mekpT

- Wc;i,zBL Z/ Aexp )+ A (4.9)
with A = exp(B(E: — F.)), and N is the number of confined states in the
_conduction band quantum well, with energies F1,..., Ey. Note that the con-
tinuum of states above fhe top of the quantum well should also be included
in the calculation of the quasi-Fermi levels. However, for the InGaAsP/InP
QW system, the size of the confining barrier is such that these states have a
negligibleleffect on the quasi-Fermi level positions. In equation (4.9), A =1 if
Fermi-Dirac statistics are assumed, whereas A = 0 for Boltzmann statistics. In
both cases, the integrafion can be achieved analytically to give

mckgT

n= —7\'_?7.2— Zlog[exp B(FFP — E)) + 1} | (4.10)

for Fermi-Dirac statistics, and

mckBT .
= Zexp - E;)) - (4.11)

for Boltzmann statistics. Similar expressions may be written down for the
holes -except they are slightly more complicated because of the presence of
light, heavy and spin-split off holes. Equations (4.10) and (4.11) and the corre-
sponding equ#tions for the injected hole density, p, can be solved numerically
for the conduction and valence band quasi-Fermi levels if n and p are specified.
Once the quasi-Fermi levels are known the number of carriers in any particu-
lar subband may bé evaluated. The variation of the conduction and valence
band quasi-Fermi levels with well width is illustrated in Figure (4.1) (for vari-
ous values for the injected carrier density) for the 1.3 um InGaAsP/InP QW.
The quasi-Fermi levels were calculated using both Boltzmann and Fermi-Dirac

statistics. Figure (4.2) gives similar results for the 1.55 pm InGaAsP/InP QW.
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Figure (4.1) - (a) Conduction band quasi-Fermi levels and (b) valence
band quasi-Fermi levels as a function of well width for varying injected
carrier densities for a 1.3um InGaAsP/InP QW. In (é,), the zero of
energy §vas taken as the bottom of the conduction band QW, with en-
ergies being negative in the bandgap. For (b), the zero of energy was
taken as the top of the valence band QW, with energies being nega-
tivé in the gap. Full lines are values using Boltzmann statistics, and
the dashed lines are v#lues'using Fermi-Dirac statistics (Temperature

is 300K).
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The figures show that, for the valence band quasi-Fermi level, Boltzmann and
Fermi-Dirac statistics are in good agreement at room temperature for carrier
densities of the order of 10'® cm™2 This is further illustrated in Figures (4.3)
and (4.4), where the number of carriers in the valence subbands have; been
calculated as a function of well width (the calculations Being performed with
both Boltzmann and Fermi-Dirac statistics) for the 1.3 ym and 1.55 pm In-
GaAsP/InP QWs respectively. ’

The agreement between Boltzmann and Fermi-Dirac statistics is not, th—
ever, as good for the conduction band quasi-Fermi levels, for carrier densities
of the order of 10'® cm=2 at 300 K (see Figures (4.5) and (4.6)). Although
the agreement between the two types of statistics is not very good for the con-
duction subbands (for typical carrier densities of interest for lasers at room
temperature), the effect of using Fermi-Dirac statistics in the calculation of
Auger transition rates is discussed in Chapter Five, and it is concluded that
Boltzmann-based calcﬁlati_ons of such rates will only be in error by 20 or 30
percent. This conclusion is in agreement with the results of Haug [4] and, in
‘Chapter Five, some ph)}sical justification is given for why Boltzmann statistics
can be used at carrier densities of the order of 10'® ¢cm~3. The conduction and
valence band quasi-Fermi levels from the Boltzmann calculations are used in
the evaluation of the Auger transition rates (refer to the relevant éxpressioné
presented in Chapter Two).

| The remaining material parameters required for the calculation of the
Auger transition rates are found from equations (4.1)7 to (4.8), and the threshold
wavevector transfer is determined from equation (2.50).

The only other quantities required for the calculation of the Auger tran-

sition rates are the overlap integrals of the Bloch periodic parts of the carrier

wavefunctions, as described in Chapter Two. In the initial calculations of
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Figﬁre (4.3) - Hole densities as a function of well width in a 1.3un
InGaAsP/InP QW. The injected carrier density is 10'8cm ™3, and the
‘temperature is 300K. (2) shows the lowest three heavy hole subbands
0g 4 and (b) shows the lowest three light hole subbands. Full lines are

Boltzmann results and dashed lines are Fermi-Dirac results.
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Figure (4.4) - Same as Figure (4.3) but for the 1.55um InGaAsP/InP
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Figure (4.5) - Electron densities as a function of well width in a 1.3um
InGaAsP/InP QW. The injected carrier density is 10!8¢cm™3 and
the temperature is 300K. The lowest three conduction.subbands are

shown, with full lines indicating Boltzmann results and dashed lines

indicating Fermi-Dirac results.
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Auger transition rates in bulk semiconductors [5], the overlap integral between
the conduction Aand heavy hole bands was estimated from a one-dimensional
Kronig-Penney model [6], [7]. Later calculations of overlap integrals [8], [9],
made use of effective mass sum rules derived from k.p perturbation theory.
Certain terms in the sum rule were assumed to dominate and approximate ex-
pressions for the overlap integrals were derived. The expressions for the overlap
integrals giw./en by Beattie and Smith [9] were calculated in this way, and will
henceforth be referred to as ‘conventional’ estimates of overlap integrals. Such
conventional estimates of the overlap integrals were used by Smith [10], and
by Smith et al [11] in their calculations of CHCC Auger {ransition rates in
InGaAsP/InP QWs. Calculations using conventional estimates for the overlap
integrals predict Auger coefficients of between 10727 and 10728 cmSs~!.

Recently, it has been shown that the use of the conduction band effective
mass sum rule [9] to calculate the overlap integral between the co.n‘duction band
and the heavy hole band yields estimates that are a.pproxiinately two orders of
magnitude too large [10], [12], [13]. The reason for such a large discrepancy
is that the terms which were assurﬁed to dominate in the effective mass sum
rules are, in fact, relatively unimportant [12]. Burt et al [13] have recently
recalculated overlap integrals between the conduction and heavy hole bands
using two different methods. The first method was a full-zone 15-band k.p
calculation, ﬁnd the second method used non-local pseudopotentials to calculate
the overlap integrals. The two sep%rate calculations yielded results for the
conduction band - vheavy hole band overlap integral that were in very good
agreement, but the results were at least an order of magnitude smaller than
cénventional estimates.

For the conduction band - heavy hole band overlap integral, it is a good

approximation [10], [12], [13], [14], to write
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Mcul® = Blks - El-)z (4.12)

where k5 is the heavy hole wavevector, and k, is the conduction band wavevec-
tor, and the two wavevectors are taken to be antiparallei (corresponding to the
threshold configuration in an Auger process). , If the wavevectors are in units
of (2w /a), where a is the lattice constant of the semiconductor, then § ~ 0.247
for GaAs [10] when the wavevectors are directed midway between the [001]. and
[101] directions (the direction 'i\n, which the CH overlap is maximum [13]). No
explicit calculations of overlap integrals for the quaternary system InGaAsP
have been reported, aﬂd throughout this Chapter results for GaAs overlap in-
tegrals are used (the only difference being that the lattice constant is taken to
be that of InP), ;ince there is little difference between the overlap integrals for
different III-V materials [15].

So far, only the overlap integral between the conduétion and heavy hole
bands has been discussed. For calculations of CHLH and CHSH Auger transi-
tion rates, overlap integrals between the light hole and heavy hole bands (the
LH overlap), and between the heavy hole and spin split off bands (the SH
overlap) are required. The full-zone 15-band k.p method and the non-local
pseudopotential method described above have been used to calculate LH and
SH overlaps. Very recently [16], results in close agreement with these two
methods have been reproduced using a Kane four band model {17], with higher
" bands included using perturbation theory. The LH and SH overlaps used in
the numerical results of this Chapter have been taken from this latter method.

Taking overlap integrals from calculations for bulk semiconductors and ap-
plying them to the QW is an approximation. The QW overlap integrals will be
larger, since the uncertainty of at least 27 /L in the wavevector associated with

the confinement direction means that the wavevectors of the carriers involved
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in the Auger transition cannot be assumed paJraLllel. As seen from the results of
[13], wheﬁ overlap integrals between the conduction and héa.vy hole band are
calculated for carriers with non-parallel wavevectors, the values are increased
over the results for carriers with parallel wavevectors. Another way of seeing
that use of the overlap integrals above will underestimate the Auger rate is to
consider the effect of the QW potential in mixing the bands. For example, the
ground state heavy hole subband in a QW will have some light hole charac-
ter. Thus a carrier that is confined to that subband, but is free to move in a
plane parallel to the interface, cannot simply be described by a Bloch periodic
function that is purely heavy hole like.

Unfortunately, no information is available on overlap integrals in QWs,
and so, as in other calcuiations (10], [11], [19], bulk values are ﬁsed, with
the impr;Jvement'that the bulk values are better estimates than ‘conventional’
values used in [10], [11], [19]. For the reasons given above results obtained using
the bulk values are likely to underestimate the Auger transition rates in QWs.

~ Figures (4.7) and (4.8) show the bound-bound CHCC QW Auger transition
rate as a function of well width for the 1.3 ym and 1.55 pm InGaAsP/InP
QWs respectively (the threshold wavevectors are assumed to lie in a direction
midway between the [001] and {101] directions so as to maximise the overlap
~ integral between conduction and heavy hole bands). The number of carriers
injected into the QW has been taken to be 10'8¢m~3. Note that all the results
presented in this Chapter have been calculated assuming a temperature of
300K. In a:idition tc; the calculétion that was described in Chapter Two, where
all the confined state wavevectors were assumed to be integer multiples of 7/ L,
a further calculation has also been performed in which the realistic confined
state wavevectors (from a finite square well model) and the evanescent parts

of the carrier wavefunctions have been included. However, as can be seen from
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kigure (4.7) - Graph showing the variation of the QW CHCC bound-
bound Auger rate as a function of well width fér a1.3um InGaAsP/InP
QW. The temperature is 300K and the injected carrier density is
10'8¢cm~3. Curves (a) and (c) assume confined state wavevectors that
are integer multiples of m/L, whereas curves (b) and (d) use realistic
confined state wavevectors, and also include the evanescent parts of
the QW wavefunctions. The total bound-bound rates are shown in
(a) and (b) and the ground state rates are shown in (c) and (d). The
wavevectors o'fv the states involved in the transition have been taken

in the direction 8 = 7/8 and ¢ = 0. The overlap integral, [MCH{2 is

thus 0.247(k5 ~ k)2, the wavevectors being in units of 27/a.
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the ﬁgures; the more sophisticated calculation does not significantly cHange the
results (i.e. the results are of the same order of magnitude). Also shown is the
bulk Auger rate for the corresponding material parameters.-(i.e. ‘bulk band gap
equal to QW bandgap etc) and the same injected carrier density. The total
QW CHCC bound—bound Auger transition rate is within a factor of two of the
bulk rate, as expected from the discussions of Ché.pter TWo.

The total bound-bound CHCC QW Auger rate has a ‘saw tooth’ appear-
ance, the jumps in the rate occurring at well widths corresponding to a new
conduction band level being confined. A similar type of behaviour was found
by Smith [10]. The ground state CHCC QW Auger rate decreases by about a
factor of ten over the range of well widths shown, due to Iess carriers occupying
the ground state subbands of the QW at wider well widths.

The approximate Auger coefficients are

CcO¥_ (1.3um) ~ 0.2 x 10™20cmSs™! (4.13)

ngcc(l.Sum) ~ 0.6 x 10™2cm® ™! (4.14)

Now we cornisider the CHSH bound-bound QW Auger rate. Some calcula-
tions of CHSH Aﬁger transifion rates in InGaAsP /InP quantum wells have been
reported [19], [20]. In reference [19] Dutta claims that the CHCC and CHSH
Auger processes are about the same o.rder of magnitude. However, with band
offsets of AE,: AE, =2: i, it can be seen from Figure (4.9) that the material
parameters of the InGaAsP/InP QW are such that there is no spin-split off well
in the InGaAsP/InP QW. This suggests that there are no bound-bound CHSH
Auger transitions and that only bound-unbound processes will contribute to the

CHSH rate (the bound states being in the conduction and heavy hole bands,
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Figure (4.9) - The energies of the band edges of 1.3um and 1.55pm

InGaAsP/InP QWs, assuming AE,: AE, =2:1.

4

—

0.367

| .

i 1.35

0.80 0.95

0.183 ] 032 . 0133 ] 0.26

—T__J_—_mj ’ —\__L__G:—J‘

155 micron QW ' 1.3 micron QW




the unbound state being iﬁ the spin split off band). However, the earlier calcu-
lations mentioned above [19], [20] do not consider bound-unbound transitions,
~assuming only bound-bound tré.nsitions occur, and, in addition, the calcula-
tions assume that the confined state wavevectors are. integer multiples of =/L.
In view of these approximations, the earlier calculations should be treated with
caution. If fhe band offsets were significantly different from the 2:1 ratio used
throughout this thesis, then it is possible for a spin-split off well to be formed,
. and then bound-bound Auger transitions would be allowed. However, with
the band offsets used here any CHSH Auger transition rate will arisé from
bound-unbound processes, which will be considered in the next Section.
Finally, the bound-bound CHLH QW Auger transition rate in InGaAsP/InP

QWs is examined. The form of the conduction band - heavy hole band overlap
integral given in equation (4.12) is used, and the light hole - heavy hole overlap
integral hés been calculated using the Kane four bﬁnd model with higher bands
included from perturbation theory {16]. The CH and LH overlaps are calcu-
lated assuming that the wavevectors of thé carriers taking part in the Auger
transition lie in a direction with § = 7/6 and ¢ = O (where spherical polar
coordinates have been used). This direction is midway between the angles that
maximise the CH overlap (6§ = 7/8) and the LH overlap (§ = n/4). Figure
(4.'10) illustrates the variation of the CHLH QW Auger rate with quantum well
width for the 1.3um InGaAéP QW, and ﬁgure_ (4.11) shows the results for the
1.55um QW. The number of cafriers injected into the QW has, again, been
taken to be 108¢cm~—3. A ‘saw-tooth’ appearance was found, similar to the
CHCC QW results, and the well widths at which the jumps oc;:ur correspond
to well widths when new subbands become bound by the light hole QW. The
actual magnitude of the CHLH QW Auger rate is approximately two orders of

nmagnitude lower than the corresponding results for the CHCC process. This is
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Figure (4.10) - Graph showing the variation of the QW CHLH bound-

bound Auger rate as a function of well width for a 1.3um InGaAsP /InP
QW. The injected carrier density is 10'%cm™2 and the temperature

is 300K. Curves (a) and (c) assume confined state wavevectors that

are integer multiples of 7/ L, whereas curves (b) and (d) use realistic

values for the confined state wavevectors and also include the evanes-
cent parts of the QW wavefunctions; The total bound-bound rate is
shown in curves (a) and (b) and the ground state rates are shown in
(c) and (d). The wavevectors of the states have been taken in the
direction § = 7/6 and ¢ = 0, and are given by ]MCH]2 = 0.176 Ak?
and |MLH|2 = 0.1658Ax — 7.335Ak2 + 99.96Ax3 — 230.6Ax* with
(Ak = (k3 — &,)). These values have been taken from the work of
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because the LH overlap is small (on the basis of the simplest- Kane four band
model, the ove'rla_ip wo‘uld be zero for the threshold configuration of parallel
carrier wavevectors).

The abso]ﬁfe_magnitude for the CHLH QW Auger rate is approximately

. three times less than the corresponding bulk Auger transition rates.
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4.2 NUMERICAL ESTIMATES OF BOUND-UNBOUND
- AUGER TRANSITION RATES IN QWs

In the previous sectién, numerical estimates of bound-bound QW Auger tran-
sition rates were presented for InGaAsP/InP QWs. It was pointed out that
some Auger processeslthat are c.onsidered important in bulk semiconductors
(such as the CHSH process) do not have a bound-bound contribution in the
QW because of the absence of a spin-split off well. Hence, any contribution
to the CHSH process in a QW must arise from bound-unbound processes.
The expressions derived in Chapter Two for bound-unbound QW Auger rates
(where all bound states are assumed to be in ground state subbands) are ap-
plied to the CHCC, CHLH, and CHSH Auger processes. Smith [10], [11], has
already studied the CHCC bound-unbound Auger process, and concluded that
the bound-unbound contrib.gtion is only important at small well widths. The
calculati_or-l that we present here can be checked by comparing the results that
are obtained for the‘ CHCC bound-unbound Auger process with those of Smith.
As will be seen later, the two calculations are in good agreement. The results
of Smith [10] were calculated using ‘conventional’ overlap integral estimates,
but the improved overlap integral estimates discussed in the last section have
been included here. | |

In Figure (4.12) the QW CHCC bound-unbound Auger ratg as a function of
QW width is shown for the 1.3um InGaAsP/InP QW (with all the bound states
being.in ground state subbands). On the same figure the ground state bound-
bound process (calculated with the assumption that confined state wavevectors

are integer multiples of 7/L) has been shown. Figure (4.13) presents the same
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results for the 1.55um InGaAsP/inP QW. For the 1.3um QW, the bound-
unbound process is dominant at small well widths (at those well widths virtually
all the electrons are in the ground state subband, and this justifies th¢ neglect
of bound-unbound Auger processes ihvolving bound states in higher subbands).
Oscillations in the rate similar to those found by Smith [10] are observed. The
bound-unbound Auger rate in the 1.55pum QW is nbt important compared to
‘the bound-bound rate,.as found by Smith [10]. The oscillations in the curves
for the CHCC bound-unbound QW Auger rates can be explained by assuming
" that the main contribution to the recombination rate arises from transitions of -
the excited electrons to the continuum states close in energy to the final state
corresponding to an activation energy, AFE, of zero. If the well width takes
a value such that the unbound wavevector of the final state is (2n + 1)7/L,
with n =1,2,... (i.e. a whole number of waveléngths just fit into the well) the
matrix eleﬁent for the transition corresponding to an activation energy of zero
will vanish. If the AE = O transition corresponds to an unbound ﬁﬂal state

wavevector k, then

h2k2
2meo

=E2+V, (4.15)
where V, is the conduction band offset, and E? is the final state energy (mea-
sured from the top of the QW) corresponding to AE = 0. This may be rewrit-
ten as

h2k2?

= AE° (4.16)
2mc

with AE? corresponding to AE for the ground state bound-bound Auger tran-
sition. Substituting k = (2n+1)7/L into equation (4.16), gives the QW widths

where minima in the CHCC Auger bound-unbound transition are expected
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h2
L = (2n + 1)71'” m . (4.17)

Substituting the appropriate values for the parameters of the 1.3um QW laser

gives

L= (2n +1) x 26.34 | (4.18)

which is in good agreement with the observed minima of Figure (4.11).
Unfortunately, the same analysis cannot be applied to the CHSH or CHLH
bound-unbound Auger transitions, because the AE = 0 transition that is as- -
sumed to dominate the CHCC bvcv)unc.l-unbbund rate gives zero contribution for
the CHSH and CHLH processes, due to the overlap integrals involving the va-
lence band states. The CHLH QW bound-unbound Auger rates are Ashown in
Figure (4.14) for the 1.3#&1 laser and in Figure (4.15) for the 1.55pum laser.
Figures (4.16) and (4.17) show the corresponding resulfs for the CHSH bound-
unbound processes. In both cases, the rates are significantly lower than the
CHCC Auger rates, and, are thus expected to be correspondingly less impor-

tant in deﬁermjning. the total QW Auger rate..
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injected carrier density is 1018c¢cm 3,
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4.3 COMPARISON OF THEORETICAL AND EXPERIMENTAL
RESULTS ON AUGER TRANSITION RATES IN
InGaAsP/InP QUANTUM WELLS

In Section 4.2, numerical estimates éf Augef transition rates in InGaAsP/ InP
quantum wells (based on the model described in Chapter Two) were presented.
- The’ résults indicate that the most importa;nt Auger process is the CHCC
transition. For the 1.3um InGaAsP/InP QW at small well widths (less than
" about 100 A) the bound-unbound Auger process was more important than the
bound-bound 'transitioﬁs but at wider well widths, the CHCC QW Auger rate
was dommated by the contnbutlon from bound—bound transitions. For the
'1.55um InGaAsP/InP QW the CHCC bound bound process was dominant for
all widths. It was also observed that the QW Auger rates were of the same
order of magnitude as the corresponding bulk rates.

Sermage et al [21] have reported Auger coefficients of 2.6 x 1072%m5s~!
for bulk 1.3um InGaAsP. An experimental study by Su et al [22] reported
both fadiative and Auger recombination rates for p-type 1.3um InGaAsP diode
lasers. That work was mainly concerned with doped sainples, but an upper
bound of 3 x 10~2%cm®s~! was given for the total Auger coefficient in undoped
1.3pum InGaAsP samples.

No values for Auger coefficients in InGaAsP/InP QWs have been reported,
although expermental information is available for InGaAs/InAlAs ‘multiple
quantum wells (MQWSs) [23]. The Auger coefficient in the InGaAs/InAlAs
MQW was found to be 6 x10~2%cm®s~!, whereas the value for bulk InGaAs

6

was reported in the same work to be 7 x10~?°cm®s~!. This appears to be the

only experimental work that examines both QW and bulk rates and compares
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the two and suggests that Auger coefficients for the bulk and QW system are
within 20 percent of each other.

The experimental results for the InGaAs/InAlAs MQW system are en-
couraging since they indicate that QW and bulk Auger coefficients are of the
same order of magnitude which is in agreement with the theoretical predic-
tions of Chapter Two. Thus, the values for the Auger coefficients given for
the InGaAsP/InP QWs (equations (4.13) and (4.14)) should be similar to bulk
Auger coefficients for InGaAsP with corresponding material parameters (e.g.
bulk bandgap equal to QW bandgap). The values for the Auger coefficients of
1.3um InGaAsP reported in the experiments referred to above [21], [22], are
approximately a factor of ten. higher than the theoretical results presented in
this Chapter. This contrasts with previous predictions based on conventional
overlap integrals which gave Auger coefficients ten times to;> high [10], [11], [19)].
The numerical results for recombination rates presented in this Chapter appear
to be factor of ten too small, but they are expected to be underestimates since
the overlap integrals are taken from bulk calculations as discussed in Section

4.1.
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4.4 NUMERICAL RESULTS FOR BOUND-BOUND AUGER
TRANSITIONS IN InGaAsP/InP QWWs

The expressions derived in Chapter Three for the bound-bound Auger tran-
sition rates in quantum well wires (QWW) are applied, in this Section, to
InGaAsP/InP QWWs, the QWW bandgap being kept constant at an energy
corresponding to a lasing wavelength of 1.3um. Two quantum numbers are
needed to describe a particular subband, and in Figure (4.18) the dominant con-
tributions to the bound-bound- CHCC QWW Auger transition rate are shown
(10'8cm™3 carriers having been assumed to be injected into the QWW). In Fig-
ure (4.19) the results from the QW bound-bound CHCC calculation are shown
for comparison, and it is seen that the Auger recombination rates are within
a facto.r of two at small well widths. The QWW ground state rate falls more
rapidly with well width than the coﬁesponding QW rate because the carrier
concentration in the ground state subbands of a QWW decreases faster. The
CHCC proéess is the dominant Auger process in the QWW, the rate of the
CHLH process is about two orders of magnitude lower.

The results presented here for QWW CHCC bound-bound Auger rates
differ from those in [24]. In [24], the quasi-Fermi levels were calculated using
Fermi-Dirac statistics, but used in the expressions derived in Chapter Three,
that assume quasi-Fermi levels from Boltzmann calculations. In Figures (4.18)
and (4.19) Boltzmann statistics have been used throughout which is a more
- consistent and accurate procedure, and so the 'results presented. here are an

improvement over those of [24]. Overlap integrals from bulk calculations have
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been used, and so the results are expected to be underestimates of the recom-
bination rates, for the same reasons as for the QW, as discussed in Section

4.1.
4.5 SUMMARY OF CHAPTER FOUR

Numerical éstimates of Auger transition rates in InGaAsP/InP QWs and QWWs
have been presented, using the algebraic expressions of Chapter Two and Three.
Realistic overlap integfa.ls were included in the calculations and it was found
that the CHCC Auger process was the most important one in in InGaAsP/ InP
QWs and QWWs. The use of realistic confined state wavevectors, and the
inclusion of the evanescent parts of the confined state wavefunctions gave re-
sults that were only about 50% smaller than calculations which neglected the
evanescent parts of the confined state wavefunction (and which also assumed
confined state wavevectors that were integer multiples of 7/L).

The bound-unbound CHCC Auger rates in 1.3 and 1.55pm InGaAsP /InP
QWs were found to be in good agreement with the results of Smith [10], [11].
Resﬁlts were also presented for the bound-unbound CHSH and CHLH Auger
rates.

Numerical estimates of the Auger coefficient were found to be a factor of
ten too small, in comparison with experimental data, and possible reasons for
‘such a discrepancy were discuséed. Experimental work on Auger recombina-
tion in long-wavelength bulk and QW InGaAsP systems was briefly reviewed.
Numerical estimates of CHCC Augér transition rates in 1.3um InGaAsP/InP

QWWs were also presented.
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Theb temperature dependence of the Auger coefficient in InGaAsP/InP
QWs was not investigated since insufficient information was available concern-
ing the temperature variation of InGaAsP material parameters. It is perhaps
worth noting, however, that Haug [25] has used the theoretical work of Chap-
. ter Two (and [26]) to investigate the temperature dependence of the Auger
coefficient in GaSb/AISb QWs.
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CHAPTER FIVE

- THE EFFECTS OF NON-PARABOLIC BANDSTRUCTURE
AND FERMI-DIRAC STATISTICS ON AUGER RATES

INTRODUCTION

In Chapter Two, expressions for Auger transition rates in quantum wells were
presented, the calculati.ons having been carried out with the assumptions of
isotropic, parabolic subbands, and the approximation of Boltzmann statistics
With quasi-Fermi levels. In Chapter Four, these expressions were used to cal-
culate numerical estimates of Auger rates in QWs with the above assumptions.
The purpose of this chapter is to discuss the assumptions in more detail, and
to examine their validity.

The use of Boltzmann statistics with quasi—Fernﬁ levels appears at first
sight to be a drastic simplification considering that we are examining semicon-
ductor lasers. In fact, it is not difficult to jusfify the approximation for.tile
valence. bahd, since the hple qugsi-Fermi level lies in the QW bandgap due to
the large heavy hole mass. However, the conduction band quasi-Fermi level
lies above the first conduction subband at relevant carrier concentrations and
so the use of Boitzmann statistics is less easy to justify. Haug [1], however,
has shown that, for bulk GaSb at room temperature, the use of Boltzmann
statistics is valid up to carrier densities of 10%cm™3. In this chapter, Haug’s

method, [1], has been extended to include QW systems, and it will be shown
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how a simple correction factor can be used to incorporate Fermi-Dirac statistics
into the Boltzmann-based Auger calculations of Chapter Two.
| The assumption of using parabolic subbands is likely to be unrealistic for
a CHCC Auger transition since the excited state is of the order of an energy
‘gap above the conduction subband edge. In an extreme case, the realistic
bandstructure cquld ‘bend ox%er’ in g-space before the simultaneous conservation
of energy and crystal momentum could be achieved. If this were the case, a
CHCC Auger process involving the ground state conduction subband would
not be allowed. This is a possibility that could not be predicted from a model
based on the assumption of parabolic subbands.

In this chapter, a brief review will be given of work incorporating realistic
" electronic structure in Auger transition 1:ate calculations. Then, a new method
for the incorporation of non-parabolicity effects will be presented, which can

be applied to bulk, QVV, or QWW systems. |

5.1 EFFECTS OF NON-PARABOLICITY ON
CHCC QW AUGER TRANSITION RATES |

The effect of subband non-parabolicity on QW Auger transition rates has not
been studied in any great detail by other workers. Dutta [2] attempted a
crude estimate of the effect of non-parabolicity - his result for the QW CHCC
Auger rate (derived assuming isotropic, parabolic subbands) was used, with
the assumption that the excited carrier had a largef effective mass than the
band edge carriers. However, the effects of the subband dispersion were not

included in the x-space integral, and so the estimate must be regarded as an
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‘order of magnitude’ estimate only. Dutta assumed that the excited state had
an effective mass twice that of the carriers at the subband edge,v and found
that the QW CHCC Auger rate was reduced by two orders of magnitude for
an InGaAsP/InP QW.

A great deal more research has been carried out into the effects of realistic
electronic structure on bulk Auger transition rates.. For the CHCC bulk Auger
process, Haug (1] has taken into account the effects of realistic bandstructure
in the region of the excited state, and also for the heavy hole, but made the
approximation that the initial states in the conduction band were at the zone
centre, which greatly simplified the evaluation of the Auger transition rate. The
method used by Haug [1] employs a graphical technique for determining the
wavevectors for the threshold configuration, and uses realistic bandstructure
from an empirical non-local pseudopotential calculation of Chelikowsky and
Cohen [3]. Using this technique, Haug has shown that, at room temperature,
the CHCC Auger coefficient of bulk InGaAsP is reduced by about four orders
of magnitude (4] compared to the result obtained from a calculation employing
parabolic bands (note that Haug’s model [1] retained the assumption of band
isotropy, but recen.tly‘ some progress has been made to relax this assumption [5],
[6]). Haug also evaluated the CHSH and phonon assisted CHCC and CHSH
Auger coeflicients, but found that the values of these coefficients were much
closer to the respective parabolic results. This confirms the (implicit) assump-
tion of the Intfoduction to this chapter that non-parabolicity effects are likely
to be most important for the direct CHCC Auger process.

- Another attempt to include realistic bandstructure into Auger calculations
was undertaken by Beattie and Smith [7] for the bulk CHLH Auger rate. In
their calculdtion all states apart from the excited state were assumed to be

in parabolic bands, whereas the carrier in the excited state was assumed to
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have an energy dependent effective mass. The important difference between
the work of [7] and that of Dutta [2] is the inclusion of the energy dependent
effective mass in the & -space integral, in contrast to Dutta’s work. The method
used by Beattie and Smith [7] has also been adopted by Sugimura [8].

In addition to the above methods, which attempt to incorporate realistic
dispersion relations into analytical calgulations for Auger transition rates, there
are also some completely numerical approaches. For example, Bardyszewski
and Yevick [9] have examined the compositional dependence of the Auger coef-
ficient for QWs of InGaAsP lattice matched to InP. Their treatment is entirely
numerical, utilizing a Monte Carlo method of integrai:ion, and includes Fermi
Di’rac statistics and non-parabolic conduction bands (through use of the Kane
model). Unfortunately, no comment is made on how their results would change
if parabolic bands and Boltzmann statistics (with quasi-Fermi levels) were used.

It is also worth mentioning the recent attempts of Beattie [10] to calculate
numerically bulk Auger recombinatioﬁ rates using Fermi-Dirac statistics, féur
'band k.p wavefunctions and bandstructure for all carriers, and also including
the accurate matrix element (with imp.roved overlap integral estimates) in the
k-space integral. .A judicious change of the variables by Beattie enabled him
to carry out an efficient numerical estimate of the bulk Auger transition rate.
However, the method has only been applied to InSb, and not, so far to any of
the materials of interest in- this thesis.

In the next section, a new method will be presented for the incorporation
of realistic electronic structure in Auger calculations. The method is suitable
for applying to bulk, QW and QWW systems, although the explicit calculations
will only be carried out for QWs. The method makes the assumption that all
carriers (apart from the oﬁe in the excited state) can be accurately described

by parabolic dispersion relations. The carrier in the excited state has a realistic
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dispersion relation taken from a non-local ﬁseﬁdopdtentia.l calculation [11]. Nu-
merical calculations are then presented, .based on the new method, that show
(in agreement with other work [1], [2], [4]) that the CHCC Auger coefficient is
significantly reduced in bulk semiconductors. In wide bandgap materials such
as GaAs, the direct CHCC bulk Auger process involving the lowest conduction

band only is found to be impossible.
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5.2 EFFECTS OF SUBBAND NON-PARABOLICITY
ON QW AUGER TRANSITION RATES

Realisticvin-plarle subband dispersion relations are required in order to calcu-
late the eﬁects of non-parabolicity on QW Auger transition rates. Recently
local pseudopotentlal calculatlons [12] have been ca,rrxed out to study in-plane
dlspersmn rela.tlons for AIAS/ GaAs superlattlces a.nd a typlcal result of thls
work i is shown in Flgure (5.1). Although the calculatlons in [I"] were performed
for short period superlattlces it is p0551b1e to use the same method to look at
wider superlattices, and by making the barrier w1dth large, QW properties may
be exemined. However, the general features of the in-plane dispersion relations
for the QW conduction subbands are expected to be the similar to those in
Figure (5.1). For a QW, at 5] = (0,0), the subband energies will coincide with
the confined energy levels of a one dimensional square well, and, as |g| in-
~ creases, the dispersion relations should exhibit a maximum, similar to the bulk
conduction band dispersion relations. Further details of the method used for
calculating the electronic properties of :‘superr‘latticestand QWs are presented in
Chapter Six, and results from the .calculations are reported in Chapter Seven.

We now study the effects of subband non-parabolicity on the CHCC QW

Aurrer transition rate for the case where all the carriers reside in the respective

ground state subbands of the QW. Since the carrier in the exc1ted state is

appro‘nma.tely a bandgap from the conductlon subband edge, it is’ necessary to

use realistic bandstructure to describe the dlspersmn relatlons for that carrier.
However, the other carriers are in states that are ‘con51derably closer to the '
point, and these carriers are assumed to have parabolic dispersion relations.

It is worth noting that the analysis that we are about to present is not just
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restricted to the CHCC process, but may be applied to other Auger processes,
such as CHSH using the same technique of describing the carrier in the excited
state by realistic bandstructure.

As in Chapter Two, the E — k dispersion relations may be written as

E; = ax} (5.1a)

2= . Ey=ar} (5.10)
E; = —-Egqw — u;}aig | (5.1¢)

B, = ar? + R(x,) : (5.1d)

With o = h?/(2m¢) and gy = mg/my. The function R(x) thus represents the
effect of non-parabolicity for the excited state. Although a realistic dispersion
relation is used for state |4), the assumbtién of isotropic energy bands is still
used.

By using the above dispersion relations, the ground state QW CHCC Auger
transition rate may be calculated in a similar way to that described in Chapter
Two (and reference {13]). It is found that the Auger rate is proportional to Q,

where

Q= / (a? + T2, o plac + RNz (52)

The range of integration is deterrmned by the condition

az? + R(z) - Eow >0 (5.3)

a
with a = (1 + pn)/(1 + 2pn). For the case of parabolic bands, R(z) is equal
to zero, and the result of Chapter Two can be recovered. To understand the

physical basis of equations (5.2) and (5.3), first imagine that the semiconductor
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has infinitely heavy holes, so that a = 1. Then expression (5.3) means that the

&-space integral has to be evaluated for wavevectors, z, satisfying

Caz?+ R(z) > Eow (5.4)

Thus, for the case of infinitely heavy ho‘les, we have to draw a horizontal line
across the bandstructure corresponding to an energy Eqw above the conduc-
tion subband edge, and integrate in k- space between the wavevectors where
the bandstructure lies above that line as illustrated in Figure (5.2). If the band-
strucfure always lies below .the line, then it means that the Auger process will
be forbidden, by the réquirernents of the simultaneous conservation of energy
and crystal momentum.

For real semiconductors, the holes are not infinitely heavy, and so the
curve that intersects with a horizontal line drawn Egw above the subband
. edge is not the actual bandstructure curve, since a factor of a multiplies the
quadratic term in the F'—k relation. This factor arises from the fact that energy
and momentum have to be conserved in an Auger transition. Obviously, the
condition given b); equation (5.3) predicts that the ground state QW CHCC
Auger process will be less probable if
(1) Eqw is large. N
(ii) a = (1 + pm)/(1 + 21 H) is smaller than one, i.e. ppy is greater than zero.
(iii) If the height of the maxim}’“n the conduction band (E,, in Figure (5.2))
is small.

It is instructive to follow through the Wo.rking for the case where R(z) = —Cz*,
" i.e. the next term in the expansion of the E — g relation is used. This is done

in Appendix Four.

100



ENERGY (eV) ———>

fr o e e - e e e v e o e e e
o e e w - o o e o = o e = -

Y

WAVEVECTOR ——=

Figure (5.2) - Schematic diagram to illustrate the conditions under

which a QW CHCC Auger process may occur (assuming a semicon-
ductor that has a = (1 + p)/(1 + ij =1).
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It is also instructive to examine the ratio of the ground state QW CHCC
Auger transition rates calculated both with and without the inclusion of non-

parabolicity. The ratio, Y is given by :

y - Rg{’{,cc(non — par) (5.5)
R&{°¢ (par) '

_ exp(2B8FP) Tgw(x57)

(5.6)

" exp(2BFY) T4y (s})
- F(ia,Eqw,R(z))
~ F(a,Eqw,0) (5.7)
F(a, Eqw, R(2)) = /:u(‘122+M)zem(—ﬂ(azufi(z})) (5.8)

With zu, zI being upper and lower roots of 2%+ R(z) — Eqw = 0. In equation
(5.6), the exponential factors take account of the possible different values of
the quasi-Fermi levels due to the modified E — & relation. However, this is not
expected fo’ be very important since the quasi-Fermi levels aré primarily de-
termined by the bandstructure close to the Brillouin zone centre unless carrier
densities are extremely high. There is also a term which is the ratio of the mod-
ulus squared of the matrix elément. This term is needed because the fhreshold
wavevector transfer calculated us.ing non-parabolic dispersion relations (£37) is
different from that calculated on thé basis of parabolic bands (£2). The last
| term, J, is simply the ratio of the x-space integrals with and without subband
non-parabolicity.
Note that, although this Chapter has carried through an explicit calcula-
tion of the effects of non-parabolicity on QW Auger transition rates, the same

method as used here can also be used to examine the effccis of non-parabolicity
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~ on bulk and QWW Auger transition rates. The ratio of the s-space integrals
will, of course, be different for the bulk and the QWW, and the values of the
quasi- Fermi levels and the matrix elements will also differ from the QW values.

For the bulk, the x-space integral ratio is

G(a, Eg, R(z))

JBUuLK = Gla, B, 0) (5.9)
where
zu R 2Y— E 2 : .
. G(a,Eg,R(2)) = / [az? +,(—)a——g] 22 exp(—B(az? + R(2)))dz (5.10)
zl )
And, for the QWW, we have
'~ H(a,Eqww, R(2)) .
Joww = H(a, Baww.0) - (5.11)
where
H(a,Eqww,R(z)) = / exp(—B(az?® + R(z)))dz (5.12)
=l

In fact, the theory presented is well» suited to the case of the QWW, since the
assumption of isotropic energy bands is automatically valid for the QWW.
The method for treating the effects of non-parabolicity on Auger transition
rates that has been presented above has some definite advantages over that pro-
posed by Haug {1]. However, as will be seen in the next section, the numerical
results obtained using the two methods are very similar. The advantages over
Haug’s method are : |
(1) The assumption of infinitely heavy holes is not made in our method.

(i1) Our method can be readily generalised to both bulk and QWW systems,

although the explicit calculations in this chapter hav¢ been for the QW.
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(iii) Haug’s graphical technique is likely to produce inaccuracies unless the
bandstructures are very accurately known, since his technique involves find-
ing the intersection of two curves, whereas our method involves finding the
intersection of a curve and a h,ofizontal line.

(iv) Our method pinpoints the physical factors that will decrease CHCC Auger
recombination rates. Namely, large bandgap, small band maxima, and large
values of ugy. The first two were also noted by Haug, but the neglect of py
for the conduction band edge electrons in his method meant that the latter
condition was not noted by Haug.

However, we must-also note that Haug’s method has some advantages over
that presented here.‘

(i) Haug [1] uses realistic bandstructure for both the excited state and for the
heavy hole state in the CHCC process.

(i1) In addition to_examining direct Auger processes, Haug also studies phonon-
assisted Auger processes with realistic bands.

Finally we should once again emphasise that although the calculations in
this chapter have been carried out expli;:itly for the CHCC Auger process, the
same method can be used for CHSH, CHLH etc, where the carrier in the excited
state is described with a realistic dispersion relation, and the other carriers are

assumed to be in parabolic bands.
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5.3 NUMERICAL ESTIMATES OF THE EFFECT OF
NON-PARABOLICITY ON AUGER TRANSITION RATES

| Haug [1] has estimated the effects of non-parabolicity of the bandstructure
-on Auger transition rates in bulk GaAs and GaSb, and also for InGaAsP [4].
However, the- calculation for the latter material is crude, due to the difficulty
of calculating the alloy bandstructure from that of the constituent binaries.

The method presented in the pre\;ious section may be used to make the
estimates for the same materials as Haug so that comparison of the two methods
can be carried out.

At 300K, the value of the bandgap of GaSb used by Haug is 0.7 eV. Haug
then conéiders direct CHCC Auger processes, using bulk GaSb bandstructure
in the A direction. The wavevector of the carrier in the excited state was found

to be 0.16(27/a) (a being the lattice constant of GaSb), and the CHCC Auger
coeflicient, C,, was found to be related to the CHCC Auger coefficient evaluated

using parabolic bands, C?, by

Cn=0.026C7 (5.13)

For GaAs, Haug found that the CHCC Auger process involving the lowest
conduction band only was impossible, a result that is consistent with the work
of Pearsall et al [14]. In that work, a study of impact ionisation using realistic
bandstructure was undertaken, and for GaAs it was found that the initiating
electron in the impact ionisation process has to be in é state in the second
conduction Band (see Figure (5.3)).

The cases considered by Haug [1] are now examined using the method

outlined in the previous section. An expression for the ratio of Auger transition
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Figure 2. Lowest-energy impact ionization transitions in GaAs in the (100) direction. The
band-structure diagram is drawn in an extended representation showing both +ky and & ¢
directions: (g) electron initiated; (3) hole initiated.

Figure (5.3) - Figure taken from the work of Pearsall et al [14], illus-
trating that the initiating electron in an impact ionisation process in

GaAs has to be in the second conduction band.



rates calculated using non-parabolic and parabolic bandstructure was presented

in the last section

exp(2ﬂFc"P)] TpuL(k3?)
exp(2BFF) " Iy r(rS)

Y =] JBULK - (5.19)

In the numerical work that follows, the assumptio;.l:vis made that the quasi-
Fermi levels evaluated using non-parabolic and parabolic bands are the same.
This assumption was also made in the work of Haug [1]. Thus the above
-equation .sirnpliﬁes to simply the ratio of the moduli of the matrix elements
and the ratio of the k-space integrals, Jpyri. An expression for Jgypx was
gilven in the previous Section. |

In order to calculate the matrix element, ‘we need to know the threshold
wavevector of the carrier in the excited state. For the case of non-parabolic

bands, this is found from the lower root of

acz? + R(z) — E, = 0 (5.15)

Where Eg is the bulk bandgap. Once the threshold wavevector of the carrier
" in the excited state has been found, the value of the thresholci wavevector
transfer,(x}?), may be readily evaluated. Thus, to evaluate k37, an expfession
for R(z) is required. Once the functional form of R(z) is specified, the value of
JBUL;;f can also be calculated.
The procedure for finding a functional form for R(z) was as follows :

(1). Realistic non-local pseudopotential bandstructure calculations (with spin-
orbit splitting) [11] were used to calculate the lowest conduction bands of GaAs
and GaSb in the [100] direction. It is worth noting that local pseudopotential

calculations [15] were found to overestimate the value of the height of the
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conduction band maxim,%’l?Em in Figure (5.2)), which could have led to dis-
crepencies between our method and that of Haug’s. Results of the non-local

pseudopotential calculations are shown in Figures (5.4) and (5.5) respectively.

(2). A p‘olynor'nial was then fitted to the bandstructure over a sufficiently
large range of wavevectors. The quadratic term in the polynomial fit for the
dispersion relation was then multiplied by a(= (1 + pg)/(1 + 2¢x)), which,
typically has a value of about 0.88, and then the curve ‘aaz? + R(z)’ was
studied. If the curve always lay below Eqw, then the CHCC Auger process
involving the lowest conduction band only was forbidden. If the curve lay above
Egw for a range of wavevectors, then the ratio of the Auger transition rates
using realistic dispersion relations and that calculated using parabolic bands
could be estimated.

Figures (5.6) and (5.7) show the polynomial fits to the bandstructures
of GaAs and GaSb in the [100] direction. Note that the fit onlyl has to be
accurate for wavevectors up to about 0.45(27/a). It is also worth noting that
on the basis of our model; the crystallographic direction which favours Auger
recombination is the [100] direction since the height of the conduction band
mau;dmuin 1s greatest in that direction, for typical III-V materials of interest,
a point that has also been observed by Haug [1]. Once a polynomial fit to
the realistic bandstructure has been obtained, it is possible to see whether
the condition for Auger recombination is satisfied. This involves looking at

equation (5.15)

aaz’ + R(z) 2 E, ' (5.16)

Polynomials have been fitted to the realistic bandstructures, and so a knowledge.

of the energy gap, E,, and the parameter a can be used to see whether the
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Figure (5.4) - Non-local pseudopotential calculation of the lowest con-

duction band of GaAs in the [100] direction. Spin-orbit splitting has

not been included.
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Figure (3.5) - Non-local pseudopotential calculation of the lowest con-

1.0 duction band of GaSb in the [100] direction. Spin-orbit splitting has
not been included.
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Figure (5.6) - Polynomial fit (dashed curve) to the lowest conduction

band of GaAs in the {100] direction. Terms up to and including the
26th power of the wavevector have been included in the polynomial

expansion. The full curve is from the non-local pseudopotential cal-

culation.
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1.4 Figure (5.7) - Polynomial fit (dashed curve) to the lowest conduction
band of GaSb in the [100] direction. Terms up to and including the
1.2 24th power of the wavevector have been included in the polynomial
" expansion. The full curve is from the non-local pseudopotential cal-
culation, and the fitted curve has been displaced upwards by 0.03 eV,
1.0
since otherwise the two curves would lie on top of each other.
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simplest CHCC Auger process .can occur in bulk GaAs and GaSb. The energy
gaps of the two materials at 300 K are used, and it is assumed that the realistic
bandstructures (which were evaluated at éero temperature) are valid at 300 K.
Thus, we take E,(GaAs) = 1.4 €V, and E,(GaSb) = 0.7 eV.

In Figures (5.8) and (5.9), a graplrl of ‘aaz? + R(z)’ versus wavevector
has been plotted for GaAs and GaSb respectively. The values of a have been
calculated using effective masses taken from data books [16], althoﬁgh, since
effective masses are not accurately known, it is worth treating a as a variable
and letting it take values close to that predicted from [16]. Also, in Figures
(5.8) and (5.9), a horizontal line corresponding to the appropriate value of E,
has been drawn. For CHCC Auger recombination to occur with only the lowest
conduction band involved, the curve ‘acz? + R(z)’ must lie above the horizontal
line for some values of the wavevector. In Figure (5.8), for GaAs, this is found
not to be the case.

Hence, for GaAs, we reach the same cc;nclusion as that of Haug [1], that
the direct CHCC Auger process involving the lowest conduction band only is
impossible. ‘

For GaSb, the direct CHCC Auger process can occur, as is clearly seen
in Figure (5.9), and from equation (5.16), the wavevector of the carrier in the
excited state is found to equal 0.157(27/a), which agrees very well with the work
of Haug, but is slightly larger than that predicted by Pearsall. The energy of the
excited Auger particle relative to the conduction band edge is approximately
0.89 eV, which lies midway between the values proposed by Haug and Pearsall.

The ratio of the CHCC Auger transition rates in GaSb evaluated using
realistic and parabolic dispersion relations may now be estimated. To do this,

an expression for Iy ;(«) is needed. This is found to be
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in the {100] direction. Also shown is the 300K bandgap of GaAs, and,
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the lowest conduction band only is impossible. (In the calculation,
a=0.885).
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Figure (5.9) - Graph of ‘aaz? + R(z)’ versus wavevector (z) for GaSb

in the [100] direction. Also shown is the 300K bandgap of GaSb, and

this does intersect the curve, the lowest intersection corresponding to
a wavevector of 0.157(2r/4) (with 4 =6.09 &, and a=0.874).
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9

|Mcr ()]} Mcc(k)|’
’{4

Tpyrk(k) (5.17)

From the work of Burt et al, [17], we may write .MCH(/i)IQ = Ck?, and also,

for wavevectors in the region of the excited Auger particle, |M CCI2 ~ 1. Hence,

1

Igurk(k) < = (5.18)
Therefore,
kP 2 '
Y = [K—nop] JBULK (5.19)

Aé discussed earlier, Jgy K is the ratio of the x- space integrals for the realistic
and parabolic bandstructures respectively, and may be evaluated numerically
~ once the functioﬁal form of R(z) has been found from the polynomial fit. The
ratio, Jpu L K, has been e_valuated for a range of values of q, to allow for any
inaccuracies in published effective mass data, and values of Jpyx for different
values of a are presented in Table (5.1). From Table (5.1), it may be concluded
that the use of realistié bandstructure significantly reduces the CHCC Auger
transition rate compared to the same rate evaluated with parabolic bands. We
find that the CHCC Auger transition rate evaluated with realistic bandstruc-
ture is approximately an order of magnitude smaller than would have been
expected from a calculation employing parabolic bands. This conclusion is in

agreement with the work of Haug [1].
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Table (5.1) - The threshold wavevectors, x? and P are in units of
2m /A (where A=lattice constant of GaSb=6.094). The other symbols

are as defined in the text.

TABLE (5.D

p np
@ ko Ko Jpu | Y

0.860 | 01019 | 01391 | 0.045 | 0.024

0.870 | 0.1025 | 0,1380 | 0.080 0.044

0.872 | 0.1026 | 0.1378 | 0.089 0.049

0.874 | 01027 | 01376 | 0.098 0.054

0.876 | 0.1029 | 0.1374 | 0.08 | 0.061

0.878 | 01030 | 01373 | 0119 | 0.067

0.880 | 01031 | 01371 | 0.131 0.074

0.890 | 01037 | 01363 | 0203 | 0.117




5.4 EFFECTS OF FERMI-DIRAC STATISTICS
ON QW AUGER RATES

A typical IT1I-V semiconductor laser will have a threshold carrier density in the -
region of 1018cm™23. Such a value for the carrier density will give a conduction
band quasi-Fermi level that lies above the ground state conduction subband
of a.QW. (The valence band quasi-Fermi level, in contrast, lies in the QW
bandgap). Thus, it is necessary to examine the accuracy of Auger transition
rate calculations efnploying Boltzmann statistics.

A number of studies have been undertaken to examine the effects of Fermi-
Dirac statistics on bulk Auger recombination transition rates. Burt [18] ex-
amined CHSH Auger recombination in GaAlAsSb alloys at zero temperature,
assuming a flat heavy hole band. The advantage of treating the system at
zero temperature is that the Fermi-Dirac distribution functions become simple
step functions. The conclusion from [18] was that the density dependence of
the CHSH Auger rate was weaker in the degenerate case. For example, Burt
claims that the CHSH Auger rate in GaAlAsSb varied as the injected carrier
density raised to ‘thAe power 7/3, whereas a non-degenerate calculation would
predict a cubic dependence on carrier density.

Haug has also examined Auger recombination in degenerate semiconduc-
tors, both at zero temperature [19], a£1d at finite temperatures [20]. Both
calculations involved a number of simplifications, but also concluded that the
carrier density dependence should be Vvéaker for degenerate sernicoﬁductors
" than non-degenerate semiconductors. (Haug found an Auger rate proportional
to np, with n the electron carrier density and p the hole density) Sugimura [21]

included Fermi-Dirac statistics in calculations of bulk Auger transition rates in
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GaSb and InSb at non-zero temperatures. The analytic expressions obtained
were .c;)mplicated, but reduced to the n?p dependence’in the non-degenerate
limit. Unfortunately, Sugimura made no numerical comparison with Boltz-
mann statistics in that study. Later studies by Sugimura [8], [22], used an
approximate expression for the statistical factor that is only valid when both
quasi-Fermi levels are located at the band edges, a condition that Sugimura
refers to as ‘weak degeneracy’, but a condition that is unlikely to be realised in
practice. Beattie included Fermi-Dirac statistics in his numerical calculations
of Auger transition rates [10] and concluded that ‘the simple mass-action con-
stant approach describes the lifetimes well at 80 K but somewhat less well at
300 K’. In that work, Beattie was .referring'to the CHCC and CHLH Auger
processes in bulk InSb. Bardyszewski and Yevick (9] included Fermi-Dirac
statistics (at non-zero temperatures) in their numérical calculations of Auger
rates in bulk InGaAsP, but make no comment on how thé results compare with
~ those obtained by using Boltzmann statistics.

A recent, promising approach to the problem of ‘Auger recombination with
Fermi-Dirac statistics at ﬁnjté temperatures is due to Haug [1]. The method
used is physically appealing, produces results in analytic form, and also pro-
vides some insight into the reasons why Boltzmann statistics seem to provide
reasonable estimates of Auger transition rates even at high carrier densities
(e.g. Haug claims that Boltzmann statistics are valid in GaSb at carrier densi-

“ties as high as 10!%cm™3). In the original work [1], bulk Auger recombination
was. considered, but in the rest of this chapter, Haug’s method will be applied

to the case of QW systems.
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5.5 THE USE OF FERMI-DIRAC STATISTICS FOR
CALCULATING QW AUGER TRANSITION RATES

In this Section, the method employed by Haug [1] to study the effect of using
Fermi-Dirac statistics on bulk Auger transition rates will be extended to QW
systems. From Chapter Two, we have seen that the Auger transition rate may

be written as

Rate / | / / / |M|?P8(£)8(E)dr, drqdr,ds, (5.20)
With M being the matrix element for the transition and P the statistical factor.
E=E,+FE,—FE;—FE,,and & = k) + &, — k3 — £,. The discussions in Chapter
Two provided some phyéical justification for removing the slowly varying matrix
element terms from the ﬁ—spéée integral and evaluating it for the wavevectors
corresponding to the threshold configuration. In other words, equation (5.20)

1s rewritten as

Rate [M(s,)f* [ [ [ [Po(0iB)dsdssdsds,  (5:2)
In this section, the CHCC QW Auger transition will be examined. For the

CHCC process, the statistical factor may be written as

P = [1 - exp(B(Fy = F) feim1(51) fen2(83) Fona(s)(1 = foma(ss))  (5.22)

Since we wish to examine the effects of Fermi-Dirac statistics on the QW CHCC
Auger transition rate, the full expression above for the statistical factor must
be used in the k-space integral. Since the quasi-Fermi levels are constant for

given carrier densities, then we are interested in ), where
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Q= [ [ [ [ o) ema52) s (551~ el ) 6B o s,
(5.23)

In order to proceed further, assumptions must'belmade about the relative
sizes of the wavevectors of the carriers involved in the Aﬁger transition.

If parabolic bands are aséumed for all the carriers, then, following the work
of Beattie and Landsberg {23], the wavevectors and energies of the carriers for
the threshold configuration for a CHCC QW Auger process can-be shown to
be

| Ky = Ky = — UK, (5.24)

Ky =—(2u+ 1)k, | - (525)
: 2

2 2pt+1, Eqw

= 2
s = I (5.26)
with corresponding energies
%

E,=E;,=FEgw+ E 5.27
TRV )+ )Y (5:20)
Es = —posl = 2 _Eow 5.28

O R C TS PP D (528)
Es=FE 2
4 ow + [ ] |Eqow (5.29)

where the zero of energy has been taken to be the ground state heavy hole
subband edge, and the ground state éonduction subband edge has been taken
as Egw. Note that the above equations hold for the ground state QW CHCC
Auger process only, and that is the only process that wili be considered in this
Section. For typical III-V semiconductors, p (which equals m¢/mpy) is about

0.1. Hence, the wavevectors of carriers in states |1) and |2) are approximately
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one-tenth of the wavevectors of carriers in states |3) and |4). Also, carriers in
states |[1) and |2) have energies that are very close to the conduction subband
edge (i.e. only about one-hundredth of Egw above the subband edge).
Although the values of the threshold wavevectors and energies will alter if
realistic bandstructure is used, the general conclusions that carriers in states
|1) and |2) are very close to the 4I‘ point will be unaltered. The energy delta

function requires that £ =0

E=E)+ Ey— E3 — Ey = Eqw + ec(£1) + ec(£,) + en(s;) — ec(xy) (5.30)

where the €(x) are the wavevector dependent parts of the carrier dispersion -
relations. Since carriers in states |1) and |2) are very close to the I point, Haug

rewrote equation (5.30) as

E~ Eqw + en(sy) — ec(sy) (5-31)

In other words, the energies of carriers in states |1) and |2) above the ground
state conduction subband edge have been neglected, and the wavevector of the
carrier in state |3) has been taken to equal that of the ceirriér in state [4). The
above ~a.pproximation, which Haug used in his calculation of the effects of re-
alistic bandstructure and Fermi-Dirac statistics on bulk Auger recombination
transition rates, greatly simplified the k-space integral. The same approxima-

tion also greatly simplifies the corresponding QW phase space integral.

Q= / fen1(&y)dEy / fe,na(tg)di, / Foma(53)(1 = fena(t4))8(E")2mkdrs
(5.32)

with B’ = Eow + 6}[(54) - 60(54)

113



The above QW k-space integral has been written assuming general values for
the quantum numbers of the states 1), |2), |3), and |4), but we shall only
consider the case of nl = n2 = n3 = n4 = 1. The integrations over g, and &,

are straightforward, since

/fc,m(i)dﬁ =.27"27IA (5.33)

Where n 4 is the number of carriers per unit area for the m** quantum well
subband. Thus, for the ground state QW CHCC Auger process, the - space

integral becomes

Q = 4n'n}, /fu,l(&)(l — fe1(84))8(Eqw + en(y) — ec(£4))2mksdrs (5.34)

This final integration can be performed readily since the integrand contains a

delta function. To evaluate the integral we note that

5(6(3)) = Z ﬂ(j( ’;'l (5.35)

where y; is one of the N roots of ¢(y) = 0. If k, is a root of

E = EQW + EH(K.O) - ec(h‘,o) =0 (536)

then, using equation (5.35), the final integration yields

Fo(ko)(1 = fe(Ko)) 5
[ (0) ~ €ha(o) (537

It is worth noting that [£,| will be large since the equation E' = 0 will only be

Q = 4n'n%(27k,)

solved if ec(k,) is approximately equal to Egw. Equation (5.37) predicts the

dependence of the Auger transition rate on the distribution functions. However,

114



the approach used to obtain that result help-s to provide physical insight into the
reasons why Boltzmann statistics seem to provide reasonable estimates of Auger
transition rates at carrier densities of 10'8cm™3. The key to understanding this
is the size of &, this is large since it is the wavevector associated with a state
in the conduction band about EQW from the conduction subband edge. Thus
in the distribution functions that appear in equation (5.37) it does not matter
whether Boltzmann or Fermi-Dirac statistics are used, because the quasi-Fermi
levels are close to the subband edges, and so the quantities (ec(s,) — F,) and
(F, — ex(k,)) are both large, and the two types of statistics are equivalent.
This simple physical result is borne out by the numerical results presented by
Haug [1] for Auger transitions in bulk GaSb, and has also been found for the
QW in numerical work of the author.

Thus, the result of comparing @ pp and @ g (where Q pp is the QW g-space
integral calculated with Fermi-Dirac statistics, and @ p is the corresponding

quantity evaluated using Boltzmann statistics) is

% = [."f—;’]? (5.38)
Where npp is the carrier density for the ground state conduction subband
calcﬁlate-d using Fermi-Dirac statistics, and np 1s the corresponding carrier
density evaluated with Bbltzmann statistics.

Thus we may conclude that if CHCC QW Auger transition rates are cal-
culated with the use of Boltzmann statistics, the effect of Fermi-Dirac statistics
may be included by multiplying the Boltzmann based result for the transition
rate by (npp/np)?, where npp and np are the carrier densities defined above.
For the ground staté subband, nrp < npg, and so the correction factor for the
ground‘state QW CHCC Auger process will be less than one. However, the size

of the correction factor is close to one since there is not-a large difference in
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the ground state carrier densities calculated using Fermi-Dirac and Boltzmann
statistics, as can be seen in Figures (4.5) and (4.6) for the 1.3um and 1.55um

InGaAsP QW systems.
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5.6 SUMMARY OF CHAPTER FIVE

Past studies of the effects of non-parabolic bandstructure on bulk Auger rates
(which were brjeﬂy reviewed) suggest that the results obtained would differ
considerably from the f:orresponding rates calculated with parabolic bands. A
new method was described that enabled us to study the effects of non-parabolic
bandstructure on Auger transition rates for the bulk, QW and QWW. To check |
that the method gave reliable results, numerical estimates of bulk Augef rates
“in GaAs and GaSb Wefe_ obtained, using the realistic non-local pseudopotential
bandstructure calculations of Chelikowsky and Cohen [3]. The nﬁmerical results
were then compared with those of Haug [1], who had studied non-parabolicity
effects in the same two systems. The two sets of results were found to be in
good agfeement. We found that, for bulk GaAs, the direct CHCC Auger process
(involving the lowest conduction band only) was not possible, and for GaSb,
the Aﬁg.er coefficient of the simplest direct CHCC Auger process was reduced
by at least an order of magnitude form the value obtained using parabolic
bands. No numerical results were presented for the QW or the QWW because
no realistic bandstructure was available for InGaAsP/InP QWs or QWWs at
the relevant well widths. However, the effects of non-parabolicity are expected
to be less important for the total QW Auger rate. The reason for this is that
large contributions to the total rate arise from intersubband processes in which
the excited carrier is in a higher subband, and these processes have a reduced
activation energy. Thﬁs, the excited carrier in the higher subband is closer to
the I point (i.e. the transition is ‘more vertical’).

fn adciition to an examination of non-parabolicity on Auger rates, a brief

review of the effects of using Fermi-Dirac statistics in Auger calculations was
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given. A calculation of the Auger rate was then performed fo; the QW, in
which Fermi-Dirac statistics were used. The method used was an extension of
that of Haug [1] for bulk Auger calculations. The method gave an insight into
the reasons why Boltzmann statistics seem to be vglid for carrier densities of
up to 108cm™3. Also, a simple correction factor could be used to convert the
QW Auger transition rate (obtained using Boltzmann statistics) into a rate
that was valid for Fermi-Dirac statistics, although the two results only differed

by 20-30%.

118



REFERENCES FOR CHAPTER FIVE

[1] A. Haug, J.Phys.C:Solid State Phys., 16, (1983), 4159.

[2] N.K. Dutta, J.Appl.Phys., 54, (1983), 1236.

[3] J.R. Chelikowsky and M.L. Cohen, Phys.Rev.B14, (1976), 556.

[4] A. Haug, Appl.Phys.Lett:, 42, (1983), 512.

[5] M. Takeshima, Phys.Rev.B29, (1984), 1993.

[6] M. Combescot and R. Combescot, Solid State Comm., 61, (1987), 821.

[7] A.R. Beattie and G. Smith, Phys.Stat.Sol., 19, (1967), 577.

[8] A. Sugimura, IEEE J.Quant.Elect., QE-17, (1981), 627.

[9] W. Bardyszewski aﬁd D. Yevick, J.Appl.Phys., 58, (1985), 2713.

[10] A.R. Beattie, J.Phys.C:Solid State Phys., 18, (1985), 6501.

[11] The computer program used for the calculation of bulk, non-local pseu-
dopotential bandstructure was provided by S. Brand, and ‘uses the method

described in reference [3].

(12] R.I. Taylor, M.G. Burt, and R.A. Abram, Superlattices and Microstruc-
tures, 3, (1987), 63. '

[13] R.I. Taylor, R.A. Abram, M.G. Bul;t, and C. Smith, IEE Proc., 132, Part
J (optoelect.), (1985), 364. |

[14] T.P. Pearsall, R.E. Nahory, and J.R. Chelikowsky, Inst. Phys. Conf.
Ser.No.33(b).; (1977), Chapter Six.

[15] M.L. Cohen and T.K. Bergstresser, Phys.Rev., 141, (1966), 789.

[16] Landolt-Bornstein Series, III-V Data Book, Voluxﬁe 17(a), published by
Springer-Verlag. | .

[17]) M.G. Burt, S. Brand, C. Smith, and R.A. Abram, J.Phys.C:Solid State
Phys., 17, (1084), 635.

(18] M.G. Burt, J.Phys.C:Solid State Phys., 14, (1981), 3269.

119



[19] A. Haug, Proceedings of the 13" International Conference on the Physics
of Semiconductors, Rome, 1976, page 1106.

[20] A. Haug, Solid State Comm., 21, (1978), 1981.

[21] A. Sugimura, J.Appl.Phys., 51, (1980), 4405.

[22] A. Sugimura, Appl.Phys.Lett., 39, (1981), 21.

[23] A.R. Beattie and P.T. Landsberg, Proc.Roy.Soc.A 249, (1959), 16.

120



CHAPTER SIX

ELECTRONIC BANDSTRUCTURE CALCULATIONS FOR
SEMICONDUCTOR.SUPERLATTICES : THEORY

INTRODUCTION

In Chapter Five, calcuiations of CHCC Auger transition rates for bulk semi-
conductors that included realistic bandstructure were shown to ;;roduce results
that were significantly smaller than the corresponding rates calculated using
parabolic bands. This is hardly surprising considering the excited carrier in
the CHCC Auger transition lies approximately a bandgap above the conduction
band edge. Presumably, inclusion of realistic subband structure for quantum
wells would produce results for the QW Auger transition rates that would also
differ from those ca.lcuiated on the basis of a parabolic subband model.
However, whereas electronic bandstructure calculations are well developed
for bulk semiconductors [1], [2], equivalent calculations for low-dimensional
semiconductor structures (such as superlattices énd quantum wells) are not so
well developed. To calculate the electronic structure of superlattices (or any
semiconductor system with'interfaces between two différent semiconductors),
accounf must be taken of the evanescent states associated with the interface
in addition to the more familiar propagating, Bloch states. Thus, the band-
structure for complex wavevector of the constituent semiconductors of the su-
perlattice must be known. A method for calculating the bandstructure for

complex wavevector of bulk semiconductors is described in this chapter. The
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method uses a transfer matrix technique {3], [4], [5], based on an empirical local
pseudopotential method [1].

The wavefunctions for complex wavevector of the bulk semiconductors
making up the superlattice are used to construct the superlatticé wavefunc-
“tion. The superlattice wavefﬁnction and its derivative are required to be con-
tinuous at the'interfa,cé, and, in addition, the superlattice wavefunction must
satisfy a superlattice Bloch condition. This latter condition enables a superlat-
tice wavevector to be.deﬁned, and this wavevector may be calculated from the
boundary conditions on the superlattice wavefunction. Information about the
energy levels of a QW may be obtained from the superlattice calculation by
simply letting the width of the barrier material tend to infinity. Details of the
calculation are given in the remainder of this chapter, and, in Chapter Seven,

results from the calculation are presented.



6.1 THE CALCULATION OF THE BANDSTRUCTURE
. FOR COMPLEX WAVEVECTOR FOR BULK SEMICONDUCTORS

In order to find the electronic structure of a semiconductor, Schrodinger’s equa-

- tion must be solved. In the one-electron approximation this is

"ﬁo V2 4 V() W(r) = Ed(r) (6.1)

{

2m
where m, is the free electron mass, and V(r) is the potential energy of the
semiconductor. The wavefunction ¥(r) varies relatively smoothly between the
atoms of the semiconductor (and so can be described by a small number of
Fourier coefficients) but is very rapidly varying inside the atomic cores (due
to the deep, negative potential). Numerical difficulties are thﬁ.s encountered if
equation (6.1) is solved directly using a plane wave expansion, so a modified
approach is preferable. Physically, the wavefunction of valence band stateé,
[¥), is 'expect‘ed to be smooth between the atoms, the smooth part of the
wavefunction being described by some wavefunction |¢), but [¢) musf also be
orthogonal to the deep lying core states, denoted byl |¥c). Both conditions may

be achieved by writing

%) = 1) = > _ ) (bele) (6.2)
C

By inserting the above expression for |¢) into equation (6.1), we obtain [6]

_ 32

CEv 4 V() + Y (B~ Bolwe)wcllle) = El9)  (63)
° c

and this may be rewritten as
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—p?
2m,

{5—V" + Vs }l9) = El9) (6:4)

Thus, equation (6.1) has been transformed into an equation with the same en-
ergy eigenvalue, but with a pseudowavefunction that is smooth (even inside the
atorﬁic: core). The realistic potential has been replaced by a pseudopptential, _
Vps, which is weak, in the sense that it has no bound core states. Physically,
valence band wavefunctions are required to be orthogonal to the core states,
and the resulting rapid oscillations of the wavefunction imply a large kinetic
energy inside the core aﬁd it is this that approximately cancels out the large,
ﬁégative potential enefgy of the core.

Equation (6.4) is much simpler to solve than equation (6.1) since only a
small number of Fourie; coeflicients are required to describe the pseudopotential
and thus the pseudowavefunction. In the empirical pseudopotential method,
the pseudopotential form factérs (which define the Fourier coefficients of Vps)
are chosen so that experimental information about semiconductor bandgaps is
reproduced by solving equation (6.4). .

In order to calculate the electronic bandstructure for complex wavevector

we need to solve equation (6.4), which is conveniently rewritten as

(V4V} = By (63)

where V is the pseudopotentiai, the subscript ps hax-/ing been dropped for nota-
tional convenience, 1 is the pseudowavefunction, and E is the energy éigenvalue
(the units have been chosen so that h?/2m., is eciual to unity). |
Since information about evanescent waves is required in addji;ion to infor-
mation about Bloch waves, a semi-infinite semiconductor crystal is considered.

The coordinate system used is (r, z), with z being the coordinate perpendicular
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to the crystal surface, and r being the 2D component of position vector parallel
to the crystal surface. The pseudopotential is periodic in r, and so may be

written as a two dimensional Fourier series

V(r,2z) = Z Vy(2) exp(ig.r) (6.6)

where g is a reciprocal lattice vector associated with the surface lattice. By
writing the pseudopotential as a Fourier series (equation (6.6)), i.e as a simple
function of position, the assumption has been made that the crystal potential is
a sum of local pseudopotentials. The extension of the pseudopotential method
to include nonlocal correction terms has been thoroughly discussed in [7]. The
solutions to Schrédinger’s equation may be chosen to be simultaneous eigen-
states of the tra.nslational symmetry operators in the r plane and so may be

written as

¥(r,2) = Y 6y(z)exp(i(k + g).r) (6.7)

with k£ a 2D reduced wavevector.

Equations (6.6) and (6.7) may be substituted into (6.5) to give

—d? ' ,

{7 +(k+ 9’ —E}oy(z) = = ) Vymg (2)¢() (6:8)
. : g

In this equation, E is the energy eigenvalue. The Fourier coefficients, Vi(z), of

the potential may be generated using the pseudopotential form factors. Equa-

tion (6.8) can be solved numerically for ¢4(2) and its derivative. The numerical

solution can be checked by setting all the Vy(z) equal to zero, since then equa-

tion (6.8) may be solved algebraically.
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For accurate wavefunctions, a large number of 2D reciprocal lattice vectors
should be used in the Fourier expansion. However, as the number of g's is
increas‘ed, the amount of computer time needed to solve (6.8) increases rapidly.
The smallest number of g’s  used here for calculating dispersion relations of
semiconductors in the [100] direction is 9, and the largest number used is 21.

The solutions, gb.g_(z) of (6.8) can be used to find the energy wavevector
dispersion relation of the semiconductor as fo]ldws. Bloch’s theorem states
that there are a compléte set of solutions to Schrédinger’s equation with the

property that

V(B + A) = exp(iK.A)U(R) (89)

where A is any lattice vector of the crystal. By writing 4 = (g,!) and by

expressing ¥(R) as a two-dimensional Fourier series, we find that

by(z +1) = 6,(2) exp(ik.l) exp(~ig.a) (6.10)

Thus, it is possible to write equation (6.10) for a particular value, z,, of 2.

$5(z0 + 1) = $,(20) exp(ik.1) exp(—ig.a) (6.11a)

and also taking the derivative with respect to z of both sides of equation (6.10)

dé, d¢
—gz—l(zo +1) = d—j(zo) exp(ik.l) exp(—ig.a) (6.11b)

where %(zo + 1) denotes the z derivative of ¢, evaluated at (zo +1). @y(z, +
[) and %(zo + 1) will depend linearly on ¢4(z,) and %(Zo) since they are

solutions of a second order linear homogeneous differential equation. Hence, in

addition to equations (6.11a) and (6.11b) we have
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dd g
g2+ D)= Mygdy(z)+ > Nyy —df—(za) (6.12a)
g g

d¢ 1 . : dqs !
(7ot D =) Pyydy(z0) + 3 Quy (o) (6.120)
g g _ .

&z
The matrices M, N, P, Q, are found by numerical integration of equation (6.8)
from z, to (2, + [) with appropriate initial conditions at z = z,. Comparing
equations (6.11a) and (6.11b) with the corresponding equations (6.12a) and
(6.12b), we conclude that the allowed values of exp(ik.l) are the eigenvalues of

. the matrix

ol

(¥ 2)

with Mg,gl = exp(z’g_.g)]\/fgygl, etc. Thus, if k, the component of wavevector
parallel to the surface, and the energy, E are fixed, then the z-component of
the wavevector may be calculated.

The method is similar to that used by Marsh and Inkson [8].

As an example of the above technique, the bandstructure for complex
wavevector for GaAs (for k, in the [100] direction) is presented in Figure (6.1).

One of the advantages of the method outlined above is that both real and
complez values of k, are calculated. The complex values of k, correspond to
the evanescent solutions of Schrédinger’s equation and conventional electronic
bandstructure calculations for bulk semiconductors ignore these states because
the boundary conditions.for the infinite bulk allow only propagating, Bloch,
solutions.” However, if the bulk solutions to Schrédinger’s equation are to be
used'tov construct a wavefunction near a semiconductor interface (such as for a
QW or superlattice), thé eva/nescent. states must be included in the basis set.

A comprehensive account of evanescent states has been given by Heine [9].
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“igure (6.1) - The bandstructure for complex wavevector of GaAs in -
he [100] direction, calculated with the transfer matrix method. 13 2D
eciprocal lattice vectors have been used in the calculation. The solid
ines correspond to either purely real or purely imaginary wavevectors,
ind the daéhed lines correspond to complex wavevectors. Also, | is

he thickness of a monolayer, = a/2 (a=lattice constant=>5.654).

ENERGY (eV)—»

'T]le
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By changing the pseudopotential form factors (for example,by using the
data from [1]) the bandstructure for complex wavevector of other semiconduc-
tiqrs may be readily calculated. Thus, for a superlattice bandstructure calcu-
l‘ation, all the realistic solutions to Schrodinger’s equation for both constituent
semiconductor materials can be generated; and so the superlattice wavefunc-
tion can be constructed from a superposition of these solutions. By applying
the relevaﬁt boundary conditions at th¢ interfaces, as described in the next
_ section, thg relationship bétween supérlatf_ice Wavev;:ctor and energy may be

found.



6.2 THE CALCULATION OF SUPERLATTICE BANDSTRUCTURE

Consider a superlattice composed of semiconductors A and B (Figure (6.2)).
The width of the A layer -is L 4 (= N4l), and that of the B layer is Lg (= Npl),
with N4, N being integers, and [ is the thickness of a monolayer of material A
(or B). Initially, the constituent semiconductors are assumed to have the same
lattice constant. The superlattice wavefunction rﬁay be written as follows :

For -L4<2<0

U =Y AW™(R,k E) (6.13)
For0<z:<Lp

Uy =) Bn.¢"(B,k,E) ° » (6.14)
For Lp <z <(La+Lpg)

U=y Cup™(RE E) (6.15)

where k is the wavevector parallel to the interfaces. @ is the same either side of .
the interface since the superlattice has the same translational symmetfy as its
constituent semiconductors. ¥™ and ¢ are solutions to Schrodinger’s equation
for materials A and B at a given energy E. As in the previous Section, we write

Y= (=) exp(i(k +g).r) . (6.16)

and
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-z=»—LA | z=0 : 2=LB

Figure (6.2) - Diagram showing part-of the ...ABAB... superlattice

close to z=0.



¢" = $y(=)exp(i(k +g)-1) | (6.17)

The boundary coﬁditidns on the superlattice wavefunction are that the wave-
function and its derivative normal to the interface are equal on either side of
an interface. Also, there is a superlattice Bloch condition associated with the

superlattice periodicity. Thus, the boundary conditions are

U,y(r,0) = Ty(r,0) (6.18)

d | d
Ez-q/l(ﬁ, 0)= E\PQ(L 0) | (619)
\Pz(ﬁ, LB) = \1’3(£, LB) ' (620)
%‘1’2(2,[/3) = d%‘l’s(z,f?s) (6.21)

and the superlattice Bloch condition is’
U3(r +a, z + L) = exp(ik.a) exp(: KsL)¥4(r, 2) (6.22)

d : : d

d—\II3(11 +a,z+ L) = exp(ik.a) exp(ngL)d—\Ill(z, z) (6.23)
z z

Here, (@, L) is a vector joining two identical atoms, where a is the 2D vector

in the plane parallel to the interfaces. L is the superlattice period, and Kg is

called the superlattice wavevector. Equations (6.18-6.23) must be satisfied for

any value of .

The boundary conditions, as written above, are not in a convenient form,

because they are identities in the continuous variable r. To circumvent this
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problem one needs to expand the r dependence of (6.18) to (6.23) in terms of
plane waves. If one then makes the approximation of truncating the number of
plane waves in the expansion, a finite number of equations will be obtained.

The boundary conditions are thus re-expressed as

> Aap;(0) =Y Bng(0) (6.24)

ZAnd%@/JZ(O) =3 Bm%éZ(O) | (6.25)
:ACDOEDS Cmtg'(Lp) (6.26)
ZBndiifﬁg(LB) = Zcmzd;zp'g(LB) (6.27)

S Ca}(L)explige) = exp(iKsL) 3 Ant](0) (6.28)

; .
> Co——t(L) explig.) = exp(iKsL) ) Am %1!};(0) (6.29)

where the equations above have to hold for each g in the basis set. In equations
(6.26-6.29), ¢7(z), ¥7(2) (and their derivatives) at non-zero values of z are
required. In Section 6.1, eAquations (6.11a) and (6.11b) related the valués of
¢7(2) (and its derivative) at values of z separated by a monolayer and, using
those equations, repeatedly if necessary, the values of qﬁg(z) (oi‘ 1/)5(2)) and the
derivative at any value of z may be related to the respective values at z = 0.
It is convenient to rewrite the boundéry conditions in terms of a- matrix

eigenvalue problem. If the number of basis states is taken to be n, then there are
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2n solutions to equation (6.8) (because it is a 2nd order differential equation).

wav define

¥y (0) - 1/121(0)

RO {0
My = 43 (0) ... £42(0) (6.30)

diﬂ/’é"(ﬂ) . f;¢if}(0)

A matrix M, is similarly defined for the ¢7(0), and its derivative. The co-
eﬁicients An, B, and C, are répfes_ented by column vectors A, B, and C, of

dimensions 2n. In matrix form; equations (6.24) and (6.25) can be written as

M,A= M,B (6.31)

In a similar way, equations (6.26) and (6.27) can be written as

M3B = M,C (6.32)

with
M; = PNs KN | (6.33)
and
M, = PNepr KR (6.34)
where
G 0 |
P = <0 G) | (6.35a)



exp(ig, a) 0 0 0
G = 0 0 0 (6.35b)
0 0 0
0 0 0 exp(eg, .a)
and
exp(ik{l) ... 0
Ka=| (6.36)
0 ... exp(ik{ ), '

The k2 appearing in equation (6.36) are the wavevectors from the solution of
Schrodinger’s equation for the bulk for material A. K is defined in a similar
way ’;o K 4. In equation (6.35) defining the matrix P, (a,!) is a lattice vector
between atoms in adjacent monolayers.

Equations (6.31) and (6.32) yield

A=MTM,M'M,C (6.37)

However, the coefficients in the column vectors A and C are also related by the

superlattice Bloch condition.

A =exp(—iKsL)K{+tNeC (6.38)

Comparing equations (6.37) and (6.38), we conclude that exp(—iKgL) (with

K s the superlattice wavevector) are eigenvalues of

KN o, MM, (6.39)

Since the eigenvalues of a matrix are unaltered by a similarity transforma-
tion (i.e. a transformation of the form SAS™!), then the allowed values of

exp(—tKsL) are eigenvalues of
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M MoK g™Ne My My K N . (6.40)

This result is true for any in-plane wavevector, k. Expression (6.40) was derived
from (6.39) by using the definitions for M3 and My, and then using a similarity
transformation (with S = K qu""'NB) ).

- The superlattice wavevectors, K, are calculated from the eigenvalues of
the matrix defined in (6.40). However, the eigenfunctions of the matrix in
(6.40) do not iﬁlmedjately give the superlattice wavefunction, since, although
eigenvalues are unaltered by a similarity tré,nsformation, the eigenvectors are -
altered. However, the superllatti;:e wavefunction may be calculated from the
eigenvectors of the matrix in (6.40) without difficulty.

Equation (6.40) shows the matrix which must be diagonalised to obtain
the superlattice wavevector. M; and M, are matrices containing information
about the bulk semiconductors A and B respectively. K4 and Kp are diag-
onal matrices, also containing information on the bulk materials, the matrix
Velements being of the form exp(zAl), with A a wavevector for the bulk (complex,
in general). N4 and Np are the numbers of monolayers of serﬁiconductors A
and B in the repeating unit of the superlattice.

The matrices are, in general, complex, and so diagonalisation of a complex,
asymmetric square matrix is required. This was achieved by the use of a NAG
library routine (routine FO2AJF').

In order to calculate superlattice bandstructure, information about the
band offsets at the interface between the two constituent semiconductors is
required. For the GaAs/AlAs su_perlatﬁce (or QW), experimental information
is available about the band offsets (for example, see reference [10]). In our

calculation, the zero of energy of the bulk semiconductor bandstructure {which

is arbitrary) is altered accordingly so that the conduction and valence band
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¢dges of the constituent materials of the superlattice are at appropriate energies
to give offsets as close as possible to the experimental values.

Two types of calculati;)n are possible for the superlattice :

(i) The in-plane wavevector may be fixed at a particular value (usually this
"is zero) and the_ energy-superlattice wavevector relationship can be studied.
The increased periodicity of a superlattice compared to its constituent semi-
conductors leads to a smaller Brillouin zone for wavevectors corresponding to
the direction normal to the layers and ‘band-folding’ effects can be examined.
(ii) The superlattice wavevector can ‘be fixed at a particular value and the
energy-in plane wavevector relationship may bé studied. The information about
the subband dispersﬁon is useful for calculations of Auger rates, since it is the
E — k relationship that is crucial in determining transition rates.

In summary, a method has béen described for the calculation of the band-
‘structure for complex wavevector of bulk semiconductors. The bandstructure
has then been used to generate the bandstructure for complex wavevector of a
superlattice composed of two separéte semiconductors. The method is flexible
in that it allows specification of both well and barrier widths, band offsets, and
even constituent materials (provided they are lattice matched). The method
may also be extended to study strained layer superlattices,.in which the con-
stituent semiconductors have different lattice constants [11]. A brief summary
of the work presented in this chapter can be found in reference [12].

In the next chapter, results for the (GaAs), (AlAs)_ superlattice band-
structure obtained using the method outlined above will be presented. That
particular system was chosen since the constituent materials are virtually lat-
tice matched, information about the ba’nd’.offsets is extensive, and the system
is also physically interesting since one of the constituent materials is an indirect

gap semiconductor.
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CHAPTER SEVEN

THE ELECTRONIC STRUCTURE OF GaAs/AlAs
SUPERLATTICES

INTRODUCTION

In this chapter, results for the electronic bandstructure of GaAs/AlAs super-
lattices (with interfaces normal to the [100] direction) will be presented, the
method used being that described in Chapter Six. The GaAs/AlAs superlat-

tice is a suitable system to study for the following reasons.

(i) The constituent materials have very similar lattice constants (the lattice
mismatch is only about 0.1 %) and can be assumed to be lattice matched (with

a lattice constant equal to 5.65 A).

(i1) Experimental information is available for the band offsets at GaAs/AlAs

interfaces (for a recent study, see [1]).

(ii1) The pseudopotential form factors of both GaAs and AlAs can be found
from the literature (2], [3]. Results presented in reference [4] for GaAs/AlAs
superlattices used pseudopotential form factors taken from [2], but it has since
been found that the values given by Gell et al {3] give better fits to experimental

data.

(iv) AlAs is an indirect material, and recent calculations [3] show.that, although

the GaAs acts as a well for electrons close to the I' point, it acts as a barrier
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for electrons close to the X point. This leads to some interesting effects that
will be discussed in more detail in this Chapter.

As far as this thesis is concérned, a more aq\ropriaﬁe system to study would
be the InGaAsP/InP QW, the energy-in plane wavevector relationship being
crucial for accurate determination of Auger transition rates. However, the use
of realistic bandstructure in Auger calculations is a major calculation in itself
and also the calculation of the quaternary alloy bandstructure from that of its
" constituent binaries would lead to errors that are difficult to estimate.

Hence, the aim of this Chapter is to demonstrate that the method described
in Chapter Six can be used to accurately determine the electronic structure of
superlattices. Using the electronic bandstructure to calculate Auger transition
rates, optical matrix elements, etc., are problems 4that must be left for future
study. |

One disadvantage of the method described in Chapter Six is that spin-orbit
splitting is not included in the calculation, and so, in this chapter, the majority
-of results presented will be for the conduction bands. Spin-orbit splitting has
been included in the superlattiée bandstructure calculations of Brand et al (5],

and also in calculations of quantum well energy levels by Brand and Hughes

[6].
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7.1 THE ENERGY-SUPERLATTICE WAVEVECTOR RELATION
IN A GaAs/AlAs SUPERLATTICE

In Chapter Six, a method was described that enabled the calculation of the
superlattice wavevector, given the energy and in-plane wavevector. In the cal-
culations reported here the pseudopotential form factors for GaAs and AlAs
have been taken from the work of Gell et al [3], and are given explicitly in Table
(7.1). Using the above form factors, the bandstructures for complex wavevector
(of GaAs and AlAs) have beén calculated. In the calculations, equation (6.8)
was solved, and this was done numerically, using a NAG routine (NAG routine
DO02BAF). An accuracy parameter, ACCU, had to be specified in the numerical
routine, and a value of 1E-4 was found to be adequate, a value that has been
used for all the results presented in this chapter. The number of 2D reciprocal
lattice vectors used to describe the pseudowavefunction was 21 (corresponding
to the projection of 51 reciprocal lattice vectors onto the (100) plane). With
these pafameters, the band gaps of GaAs and AlAs were found to have the
values shown in Figure (7.1). In Figure (7.1), the band offsets assumed for the
GaAs/AlAs interface are also shown. The offsets have been chosen so as to
give the same energy sep%ration between the lowest conduction states of GaAs
and AlAs as that assumed by Gell et al [3]. This corresponds to AE, being
approximately 60 % of the difference of the direct energy gaps of AlAs and
GaAs.
The effective mass of conduction electrons in GaAs (for motion in the
[100] direction) at the T' point was found to\ be 0.078m, (m, being the free

“electron mass), approximately 15 % higher than the experimental value {7].
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Table (7.1) - Values of the pseudopotential form factors used in the
calculations of bandstructure for complex wavevector of GaAs and

AlAs. The values have been taken from reference [3].

TABLE 7.1

AlAs GaAs
VS3 |-0.23074| -0.2396
VS8 | 0.02542 | 0.0126
vsit | 007 | 006
vaz | 00725 | 007
VA4 | 00625 | 005
VAl | -0.0075 | 001
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Figure (7.1) - The bandgaps and band offsets for the GaAs/AlAs

system used throughout this Chapter.



The bandgaps of the principal symmetry points of AlAs and GaAs were found
to be in good agreement with experiment [7] (see Table (7.2)).

Using the bancistructure for corﬁplex wavevector of GaAs and AlAs, and
assﬁming band offsets for the GaAs/AlAs interface corresponding to the values
of Figure (7.1), the energy-superlattice wavevector relationship was studied for
the (GaAs),(AlAs), superlattice, that is, alternate monolayers of GaAs and
AlAs. The interfaces in the superlattice were assumed to be normal to the
[100] djrection.v Thevresults are shown in Figure (7.2), along with the energies
corresponding to the high symmetry points of bulk GaAs and AlAs. The value
of the in-plane wavevector (i.e. the wavevector parallel to the superlattice
interfaces) was taken to be zero and the three lowest conduction subbands were
all found to be direct, in agreement with the work of Gell et al [3]. However,
the position of the lowest conduction band state was found to lie above the
| energy corresponding to the X point in AlAs, whereas Gell et al [3] found that
the lowest conduction band state lay below that energy.

In Figure (7.3a), the energy-superlattice wavevector relationship for the
condﬁction subbands of a (GaAs),(AlAs), superla,i.;tice is shown, the in-plane
wavevector ageyih being taken as zero. The results are in qualitative agreement
with those of Gell et al (e.g. see Figure (8)(b) of reference [3]), and also with
those of Nakayama and Kammimura [8] and Nara [9]. In Figure (7.3b), the
(GaAs)l.(Ah‘ks)1 superlattice (SL) bandstructure is shown ‘folded over’ into the
Brillouin zone of the (GaAs),(AlAs), SL. A good discussion of ‘zone-folding’
may be found in reference [10] and in this case, the basic idea is as foHo;vs.
The period of the (GaAs)z(AlA.s)»;, SL is twice that of the (GaAs),(AlAs), SL.
Hence, the wavevector associated with the Brillouin zone edge in the [100] di-

rection is 7/2a for the (GaAs),(AlAs), SL (where a is the lattice constant of

140



TABLE ¢7.2)

GaAs
experiment theory
o .E<rj‘> - E<T’w'> 1.‘520»»' - 1506 ;.
Efxf'> - ECI 0467 -0.4;62
AlAs
experiment fheor‘y
ECxD) - EULN 2.230 2.270
ECL®) -'E<r;;> 3.130 2.990

Table (7.2) - Comparison of the bandgaps of GaAs and AlAs from

14

the pseudopotential calculation with experimental values (the latter

having been taken from [7]).
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Figure (7.2) - The energy-superliattice wavevector relation tor the con-
duction subbands of a (GaAs),(AlAs), superlattice. The superlattice
wavevector is (7/a), and the zero of energy has been taken to be the

bulk GaAs conduction band edge.
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Figure (7.3) - (a) The energy-sul;erlattiée wavevector relation for the
conduction subbands of a (GaAs),(AlAs), superlattice. The super-
lattice wavevector is in units of (7/2a), and the zero of energy is the
bulk conduction band edge of GaAs.

(b) An illustration of the concept of ‘band folding’, where the energy-
superlattice wavevector dispersion relation of the (GaAs),(AlAs), su-
perlattice has been redrawn fitted into the smaller Brillouin zone as-

sociated with the (GaAs),(AlAs), superlattice.
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the constituent semiconductors). For the (Ga,-.l&s)l(AlAs)1 SL, the correspond-
ing wavevector is 7/a. Hence, an approximation to the bandstructure of the
(GaAs),(AlAs), SL may be obtained by ‘folding over’ the (GaAs), (AlAs), SL
bandstructure about the line K's = m/2a. This is done in Figure (7.3b), and, if
account is taken of possible interactions caused by the ‘folding over’ (which will
shift band edge energies, and cause anticrossihg behaviour) then the qualitative
form of the (GaAs),(AlAs), SL bandstructure may be predicted.

In addition to plotting energy-superlattice wavevector dispersion relations,
it is possible, by searching for superlattice states that have both ky = (0,0)
and Kg = 0.0, to find the positions of the band edges in a (GaAs)_(AlAs)_
SL. In Figure (7.4), the lowest conduction band edge of a (GaAs) (AlAs)_ is
shown as a function of the AlAs concentration (=m/(m+n)). To interpret the
results the concept of two separate quantum wells (QW) is useful, a QW for
[ states, with the well being in the GaAs, and a QW for the X states, with
the well being in the AlAs. For CaAs-rich superlattices, the lowest conduction
band state will be close to the bulk GaAs conduction band edge as the AlAs
concentration of the SL approaches zero. As the AlAs concentration in the SL
increases, the width of the GaAs layers decreases, and on a QW picture, the
éonduction band edge is expected to rise rapidly. For AlAs-rich superlattices,
the lowest conduction band state will be close to the bulk AlAs conduction
band edge as the molar AlAs concentration in the SL approaches one. As the
AlAs concentration decreases, the lowest éonduction band edge is expected to
increase slowly because the width of the AlAs layers decreases. The increase
in the conduction band edge for molar AlAs concentrations close to one is
expected to be slower than j;he increase 4for molar AlAs concentrations close
to zero because of the relative depths of the wells for the I' electrons and for

the X electrons. Figure (7.4) shows the results obtained for the position of
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circle correspond to lowest conduction edges that are indirect.




the lowest conduction band edge from the pseudopotential calculation. Also
shown in £he figure are two straight lines, one connecting the lowest conduction
T states in GaAs and AlAs, the other connecting the two lowest conduction
X states in GaAs and AlAs. A Kronig-Penney type dispersion relation (which
may be derived from envelope function approximations [11]) predicts that, for
oasym;;totically thin wells and barriers, the lowest conductioﬁ band state should
lie on the lower of the two lines (a result that is true independent of any
effective masses assumed for the well and barrier materials). As can be seen
from Figure (7.4), the agreement between the full SL cé.lculation and the simple
prediction above is found to be best for s_ho%t period superlattices, and becomes
ﬁrogressively worse as the period increases. For SLs that have the same AlAs
concentration but different periods, the results of Figure (7.4) show that the
SL with the larger period has the lowest conduction band edge, a result that
can easily be understood on the basis of a QW model.
Figure (7.5) shows the lowest conduction band edge of a (GaAs) (AlAs),
SL as a function of n. The lowest conduction band edge of the (GaAs),(AlAs),
SL lies below that of the lowest conduction band edge of the (GaAs),(AlAs),
SL. Also, the (GaAs),(AlAs); SL was found to be direct, whereas the other
(GaAs), (AlAs), SLs were found to be indirect (at least up to n=7, the max-
imum value of n used in this study). Both these last two results were also
obtained by Gell et al [3]. The lowest conduction band edgé of (GaAs) (AlAs),
SLs decreases rapidly as n varies from two to five, but then a plateau is reached
for n between five and seven. Such a variation for the lowest conduction band
edge with n would cause a plateau to be seen in the bandgap of (GaAs), (AlAs),
SLs for n bet%veen five and seven, as was found by Ishibashi et al (12} in their

experimental work. Gell et al [3] also found a variation in the bandgap of

(GaAs)_(AlAs), SLs with n that exhibited a plateau for u between about five
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and ten. Gell [3] explained this t;y assuming that, in this rénge of h,- the lowest
conduction band state changed its character, from being an X-like state for low
values of n, to being a I'like state for larger values of n. Certainly, for large
values of n, the lowest conduction band state would be expecfed to lie below
the X minimum of AlAs because the I' minimum in GaAs (the bottom of the

well) lies about 0.17 eV lower in energy.
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- 7.2 THE ENERGY-IN PLANE WAVEVECTOR RELATIONSHIP FOR
SHORT PERIOD GaAs/AlAs SUPERLATTICES

The method described in Chapter Six for the evaluation of the superlattice
wavevector required the specification of both the energy and the in-plane wavevec-
tor. Alternatively, subband dispersion relations may be examined by plotting
the £ — ky relatioﬁ whilst keeping the superlattice wavevector fixed at some
constant value (taken to be zero throughout this section). As is clear from the
Auger recombination calculations presented earlier in this thesis, the subband
dispersion relations in a QW are crucially important if an accurate determi-
nation of transition rgteé is required. However, previous superlattice band-
structure calculations have, in general, goncentrated on the energy-superlattice
wavevector relationship. This could well be a consequence of the heaV}; com-
putational demands of the determination of the E — ky rglationship. One cal-
culation of the subband dispersion relationship is that of Schuiman and ,g};a&f“gu
[13], although the results that they present are for wider period superlattices

than those considered here.

In Figure (7.6), the E — k; relationship for a (GaAs),(AlAs); SL is shown
for the lowest three conduction subbands (the superlattice wavevector is equal
to zero). The same parameters (i.e. band offsets, number of 2D reciprocal
lattice vectors in basis, etc.) as in Section 7.1 have been used, and kj has
been taken to be of the form (k),0). The same calculation has also been per-
formed for the (GaAs),(AlAs), SL (see Figure (7.7)). For planes parallel to

the semiconductor interfaces of the superlattice, the original periodicity is re-

tained, and so the wavevector corresponding to the Brillouin zone edge in the
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A direction is 27 /a (a being the lattice co;lstant of the constituent semiconduc-
tors). Thus, no zone-folding effects are expected in the results of Figures (7.6)
and (7.7). However, zoﬁe—folding does affect the E — k relationship because
extra states are found at the I' point and these can mix when k|| # 0. For the
(GaAs),(AlAs), SL, no structure is seen in the subbands until kj ~ 0.3(27/a).
Fo.rA the (GaAs)z(iAxlAs)2 SL, the 2nd conduction subband appears to cross the
third conduétion subband (within t.he accuracy of the numerical calculation no
anticrossing behaviour was seen) at kj ~ 0.1(2r/a), which has the imﬁlica—
tion that the second and third conduction subbands of the (GaAs),(AlAs), SL
have diffe_rent symmetry, the degeneracy at k| = 0.1(27/a) being an accidental

degeneracy.
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7.3 SUMMARY

The electronic structure of the conduction subbands of various GaAs/AlAs su-
perlattices has been presented. The-principle aim has been to demonstrate that
the method described in Chapter Six for the calculation of superlattice wavevec-
tors (given the energy and in-plane wavevector) vca.n be used to accurately deter-
mine the bandstructure of GaAs/AlAs superlattices. The energy-superlattice
wavevector relationship for the (GaAs),(AlAs), SL has been found to be in
good agreement with previous calculations (3], 8], [9]. The concept of ‘zone-
folding’ has been discussed and the relationship between the bandstructure of
the (GaAs),(AlAs), SL and the (GaAs),(AlAs), SL has been emphasised. |
In addition, the variation of the energy of the lowest conduction band edge
in (GaAs) (AlAs)_ SLs has been studied, for various values of n and m.
Results for the energy—in plane wavevector relation of conduction subbands
in short—period‘GaAé/ AlAs superléttices have also been presented, which, as

far as the author is aware have not been presented elsewhere in the literature.
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APPENDIX ONE

Evaluation of the phase space integral
appearing in the calculation of the ground

state CHSH QW Auger rate

The method used in reference [Al.1] can be employed to evaluate the

following phase space integral that is required in Section 2.3

J; / / / ]e.xp(—ﬂpsa_@g)ﬂi)é(E)d_&_ldﬁQd&d&

Where £ = &, + £, — k3 — £y and § = (1/kpT)

(A1.1)

E=F +Ey—E;—Ey = Eqw - Agw + ok} — psks+pu(ss +£3)) (A1.2)

It is useful to change the variables

ﬁ:_fi3+ﬁ4
J=r— Ky

Thus, we obtain

= 4—1— ////exp(—,@psaﬁgﬁ(]_g—ﬁl — Ky)6(E)dr,dr,dhd)
a

Integration over h and j leads to
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T

2apy

J = //exp(—,@usaﬁg)dﬁldﬂz, | (41.6)

This last integral has to be evaluated under the condition that j2 > 0 where

-2 2 2 2 -
0 Usk K Ei+ & Al.7
J ( Skg 1 - ) ( {1 2) ( . )

and AE = Eqw — Agw. A further chaﬁge of variables is convenient

MH
z1 =5+ K 418
1 1 2+;UH 2 . ( )
£2 = £y (41.9)

Which converts (A1.6) and (A1.7) into

T ' | :
AJ = S //exp(—,@,usagg)d_gldgz v (A1.10)
) 2 AE
j2 = —(aszd - (14 EE)z2 - =2 (4111)
KH -2
Where
' HH ‘
as = - Al.12
S=Hs =5 | ( )
Integration over z; and z, leads to the following result, if AE > 0
© 73(kpT)%as psAE
J = —— Al.13
oButpun(2+ pa) ( kBTaS) ( )

This is the result that is used in Chapter Two for bound-bound Auger transi-
tions. If carriers are in states that are in higher subbands, the same result holds,
except that the value of AE will be different from that for the ground state

case. If AE <0, a case that will arise when bound-unbound Auger transitions

are considered, then the result of performihg the integral (A1.10) is

149



g _m(ksT)as . psAE
- Pulun(2+pa) T askpT

(Al1.14)
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APPENDIX TWO
Calculation of I(x,)

From equation (2.34), I(x,) is given by

> {3,1 4.2, —
= [ B2OBAd, (421)
-0 |io|- + q2

Where

—47%  sin(qL/2) ]
7 f( — 452/ 17)

{m,n,q} = B*Mp ] (42.2)

With the M, , defined in equation (2.33). The expression above is valid for the
case where all carriers involved in the Auger transition reside in the respective
- ground state subbands of the QW. B is a normalisation factor associated with

the z-part of the carrier wavefunctions.

9
B=4/= 423
/3 (42.3)
Rewriting equation (A2.1), we have
M sinz  sine sinz
= —2 - - A2.4
{m,n,q} R e ] (A2.4)
Where z = ¢L/2. We also write M3 1 = Mcy and My, = Mpys
We thus have l
[o%s} ‘ 272 : : ot o 2
I(s,) = MCH]WHS/ k2L 9[251n:r _ sinz smzl dr (42.5)
- 2Lk2 oo KIL2 + 42?0 2 T—7% z+7
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The last equation may be rewritten in the following form

_ McuMpys ,
I(-’—‘;—o) - 2LK,% S(K’OL) . (‘4...4.6)
With.
e sin sin:z: sinz >
= - d 2.
Sw) / +412[ z T— z+7r] ’ (427)

This integral may be calculated using contour integration

6y 2ry(4x? —y) 4
y? 44’ (y2 4 4x2)° oy

2my?
y2 + 477.2

S(y) = 4n+ +(1—exp(~y)){ —} (428)

In the extreme cases of (a) y tending towards infinity and (b) y tending towards

zero, we can write

3
limy oo = 8 ) (429
y
limy—o = 27y + O(y?) _ (A2.10)

See figure (A2.1) for a graph of S(y) versus y.
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APPENDIX THREE
Erfc(x) at large values of x

We have

erfc(z) =1 — erf(xj = % /°° exp(_t’l)dt

This may be integrated by parts to give

e : 2 o 42
/ exp(—tz)dt — ﬂl)g—x) — / S}.{_I.)_(_L.zdt

T 212

Integrating by parts once more gives

b exp(—z? exp(—z? exp(—z?
/ exp(—t?)dt = pgw ) _ p4(1:3 )—i—O( p:(za ))

Hence the final result is :

erfe(z) = exp\(/—;x‘) ;:1-— 2i3 + O(-ml—a)]

(43.1)

(43.2)

(43.3)

(43.4)



APPENDIX FOUR
Non-paraBolicity effects on Auger rates : An example '

The E — & relation for the carrier in the excited state is taken to be of the form

E4 = Qb‘j hd Cﬁi (A4.1)

so that in the notation of Chapter Five, R(z) = —(Cz*. Hence, for a QW CHCC
A’uger transition involving the ground state subbands only to occur, we must

have (using the same notation as that of Chapter Five)

aaz? — Cz* — Egqy > 0 (44.2)

"or

Cz* — aaz? + EQW <0 A (A4.3)

The phase space integral is performed over the range of z which lies between

the roots of

Czt — qa22 +Eoqw =20 (A4.4)

The roots of the equation (A4.4), z4, and z_, are given by

aa C

zi:(zc)[li 1—-5;-} (A44.5)

with
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c, = (aa)” : | (44.6)
™ 4Eqw ‘ o

Thus, for a QW CHCC Auger proéess to occur involving ground state subbands
only we must have C < Cp, otherwise the two roots of equation (A4.4) would be
complex. In termé of the graphical technique used in Chapter Five, the curve of
aaz?—Cz* always lies below Eqw. Physically, the non-parabolicity (effectively
determined by C) must not be too big or the simultaneous conservation of
energy and momentum will not be possible. The condition that C ‘S Cpm for
the CHCC Auger process to be possible illustrates the points raised in Chapter
Five that the transition is more likely to be forbidden in materials that have
large values of Eqw, and values of a less than one. We note that if we .let

- C — 0, the values of 2’_3}: tend towards the parabolic values, as expected.

timo—o = (52)1 + /0 - o = (S £ (-5 (44)

. so we have

s Eow
_ —
oa

(A44.8)

and

25 — o0 - (A44.9)



