Durham E-Theses

An investigation of shortest paths algorithms

Tabatabai, Bijan Oni

How to cite:

Tabatabai, Bijan Oni (1987) An investigation of shortest paths algorithms, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6685/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

The copyright of this thesis rests with the author． No quotation from it should be published without his prior written consent and information derived from it should be acknowledged．

AN INVESTIGATIGN OF SHORTEST PATHS ALGORITHMS

$$
\begin{aligned}
& \text { A } \quad \text { Ihesis } p r e s e n t e d \\
& \text { to the } \\
& \text { Depaxtment ロf } \\
& \text { Computer Soienoe } \\
& \text { Umiversity of Dumiam } \\
& \text { FのI } \quad t h \propto \\
& \text { Degree oI } \\
& \text { Doctor of philosomhy }
\end{aligned}
$$

$$
b y
$$

BIJAN ONI TABATABAI

（i）

ABSTRACT

In this work, we classify the shortest path problems, review all source algorithms and analyse the different implementations of single source algorithms using various list structures and labelling techniques.

Furthermore, we study the Sensitivity Analysis of one-to-all problems and present an algorithm, Senet, for their Fost Optimality Analysis. Senet determines all the critical values for the weight of an are (which could be optimal, non-optimal or non-existant) at which the optimal solution changes. Senet also provides the updated optimal solution for every range formed by two successive critical values.

ACKNOWLEDGENENTS

I am grateful to Mr A J Slade, my supervisor, for his guidance and encouragement throughout the research leading to this thesis. I would also like to thank J Nellist for typing and preparing the thesis.

This work was done with the financial support of SERC.

CONTENTS

Page
PART I: FOUNDATIONS

1. Introduction 3
2. Graphs and Networks 5
3. Computational Complexity 15
4. Data Structure 19
5. Network and Tree Representations 46
6. Problem Classification 52
PART II: SINGLE SOURCE ALGORITHALS
7. Single Source Algorithms 58
8. Label Correcting Algorithms 69
9. Label Setting Algorithms 91
10. An Empirical Study 120
PART III: ALL SOURCE ALGORITHNS
11. Matrix Multiplication Methods 130
12. Triple Algorithms 133
13. Modified Label Setting Algorithms 137
PART IV: SENSITIVITY ANALYSIS AND POST OPTIMALITY ANALYSIS
14. Sensitivity Analysis 142
15. Post Optimality Analysis 164
PART V: SUMILARY, CONCLUSIONS AND REFERENCES
16. Summary and Conclusions 194
17. References 199
APPEHDICES
Appendix A 205
Appendix B 215 215
Appendix C 226
Appendix D 236
Appendix E 250 250
Appendix F 263 263

PART I

FOUNDATIDNS

Shortest path problems are the most fundamental and the most commonly encountered problems in the study of transportation and communication networks. Many other important network problems involve shortest path computations in their solution methods.
Various shortest path algorithms have been
developed since the latter half of the la50's.
The purpose of this work is to evolve a
classification of the "efficient" sequential
algorithms for a particular class of unconstrained
deterministic shortest path problems, and to study
their computational efficiency and sensitivity.
The work is dividedinto 5 parts.

In Part I, the introduction is followed by necessary definitions and theorems of graphs and netwarks in section 2 , and computational complexity and data structure in sections 3 and 4. In section 5 the network and tree representations used in this work are presented and analysed.

A classification of sequential algorithms for "THE SHORTEST PATH' is introduced in section 6.
In Part II, single source algorithms are
classified and studied in section 7 . In section 8
and 9 various label setting and label correcting
methods are analysed. In section 10 an emplrical
study of the most efficient labelling algorithms
on small networks, ie. networks with upto 200 nodes is carried out.

In Part III, all source algorithms, matrix multiplication methods, triple algorithms and modified label setting algorithms are reviewed in sections 11,12 and 13.

In Part $I V$, vartous algorithms for sensitivity analysis on "THE SHORTEST PATH PROBLEMS" are studied in section 14 , and in section 15 we introduce an algorithm, Senet, for post optimality analysis of "ONE-TO-ALL SHORTEST PATH PROBLEMS". Senet determines every non-negative critical value of an arc weights at which the optimal solution changes and also provides the updated solution. Senet is applicable to basic, non-basic and nonexistant arcs in a non-negative network.

Fart V, consists of a summary of the work together with conclusions in section 16, and the references in section 17.

The complete Fascal codes of the more complicated and also the most efficient algorithms are presented in the appendices.

2 GRAPHS AHD HETWORKS

A Graph $G=(N, A)$ is a structure which consists of a non-empty and finite set of Nodes N of cardinality n, and a set of unordered pairs of Nodes A, called arcs, of cardinality m, the arcs are not necessarily distinct.
ie. $A=\langle\langle u, v\rangle: u, v \in N\rangle$

A digraph is a graph in which all the arcs are directed, ie. the set of arcs is a set of ordered pairs of nodes. A graph can be converted to á digraph by simply replacing every undirected arc by two directed arcs in opposite directions, ie. replacing every unordered pair of nodes by its eqivalent two ordered pairs of nodes. If (u, v) is a directed arc then u is its initial node and v is its terminal node.

A loop is an arc (u,v) with $u=v$. Two arcs $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{x}\right)$ are parallel aros if $u_{1}=u_{i}$ and $v_{1}=v_{i n}$ A graph is called simple if it contains neither loops, nor parallel arcs.

A network is a simple digraph together with a real valued function w defined for every $(u, v) \in A$.

The real number wu is the welght of the arc (u, v).

Node u is said to be isolated if neither an arc (u,v) nor an arc (v, u) exists with $v \in N-\{u\}$. A path que from node u to node v, in G, is an alternating sequence of nodes and arcs, with

 $1 \leqslant r \leqslant k$. quv can also be represented by the node sequence, $\left.\left(u=u_{i}, u_{i x}, \ldots, u_{i c k}+1\right\rangle=v\right)$.

A path in which all nodes lexcept possibly the first and the last, called source and sink of the path) are distinct is an elementary path. We will denote an elementary path from node u to node v by Puv, and the set of all elementary paths from u to v by $R_{\text {Luv, }}$ ie. $\quad R_{\text {uv }}=$ (P'uv, Pauv,). The length or total weight of a path is given by, $d_{\text {ur }}=w_{i j}$. A cycle is a path for which the source and the sink are the same node, ie qua. Node u is said to be directly connected to node v if arc $(u, v) \in A$. If there exists a path from node u to node v, then v is reachable from u, disconnected otherwise.

Define uRv if there exists path qur and qua, R is an equivalence relationship. A network in which all uRv is defined for all $u, v \in N$ is strongly connected. Furthermore, the subnetworks $G_{i}=\left(N_{i},\left\{(u, v) \quad \mid(u, v) \in A\right.\right.$ and $\left.u, v \in N_{i}\right\}$, where N_{i} is an equivalence class under R, are the strongly connected components of G.
A network is complete if every node $u \in N$ is directly connected to every other node $v \in N-\{u\}$.

A network, G, is acyclic if no path in G is a directed cycle, ie. G has no strongly connected component. A graph with n nodes and m arcs is dense if m is "large" compared to n and sparse otherwise. The value of "large" depends on the context, we shall assume that m and n are positive and $(m+n)=O(m)$ for dense graphs and
$(m+n)=O(n)$ for sparse graphs. If $m<(n-1)$ then clearly G is disconnected.

A connected network without cycles is called a tree, equivalently a network is a tree if there exists a unique path from any node $u \in N$ to any node $v \in N$ - $\{u\}$. We denote a tree by T. A tree
T is a spanning tree of network G if T is a subnetwork of G containing all nodes of G.

A shortest path from node u to node v is a path qui such that $d_{\text {uv }}$ is a minimum over all paths from u to v. Note that the number of arcs is immaterial. Let lquil denote the number of arcs in path quw. A path with the minimum number of arcs is arc shortest.

Theorem 1: If G is a complete network with n nodes and m arcs then $m=n(n-1)$.

Proof: By definition, there are n nodes each of which is directly connected to all the other ($n-1$) nodes, thus there are $n(n-1)$ arcs. t

Corollary 1.1: If G is a simple graph with n nodes and m arcs and is undirected then $m \leqslant n(n-1) / 2$, and if G is a digraph then $m \leqslant n(n-1)$.

Theorem 2: There exists an elementary path Puv from node u to node $v i f$ and only if there exists a path quv.

Eroof: By definition, if pur exists then qua exists. Now suppose qui is given, if quv is not elementary, then for every repeated node in quv delete all nodes between the two instances of the repeated node and one of the instances of the repeated node, leaving a new path quv. Continue the process until some quv is elementary. The path pur obtained from $q_{\text {ur }}$ by the above process is a reduction of qua. A reduction is not necessarily unique. t

Thearem 3: The set of elementary paths Rwv from any node u to any other node v in a complete network G, is of cardinality |Ruvl, where

$$
\left|R_{L \sim}\right|=(n-2)!\quad \sum_{i=0}^{n-2} \quad 1 /(n-2-i)!
$$

Proaf: By definition, an elementary path in a complete network utilises at most (n-1) arcs or has a maximum number of ($n-2$) intermediate nodes. Furthermore the total number of paths in R_{u} is the grand total of total numbers of paths with i intermediate nodes, where
$i=0,1, \ldots(n-2)$.
Now, the total number of paths with exactly 1 intermediate nodes is given by,

```
(n-2)}\mp@subsup{P}{i}{}=(n-2)!/(n-2-i)
```

Thus we have,

$$
\left|R_{\mathrm{uv}}\right|=\sum_{i=0}^{n-2}(n-2) P_{i}=(n-2)!\sum_{i=0}^{n-2} \quad 1 /(n-2-i)!
$$

Theorem 4: There exists a shortest path from node u to node v in network G if and only if there exists at least a path quv, and furthermore all such paths must not contain a directed cycle of total wefght of less than zero.

Proaf: Let Pur be the shortest path from u to v in G, thus there is a path que $=$ Pum. Now suppose there exists a path q'uv which contains a cycle of negative tatal weight, then a new path $q^{\prime \prime}$ ur can be constructed in which this cycle is repeated a number of times sufficient for $d\left(q^{\prime \prime}\right.$ w $) \leqslant d\left(P_{\text {uv }}\right)$ contrary to assumption. Let qua be a path from u to v and suppose no path from u to v contains a cycle of total negative weight. Now if Puv is a reduction of $q_{\text {uv }}$ then $d\left(P_{\text {uv }}\right) \leqslant d\left(q_{\text {wv }}\right)$. Thus the total welghts of a number of elementary paths bound from below all total path welghts, and since there are a finite number of elementary paths, then among them is a path Puv such that $d\left(P_{\text {LU }}\right) \leqslant d\left(q_{\text {uv }}\right)$ for all paths quv. By definition,

Pur is a shortest path from node u to node v. t

Corollary 4.1: There exists an elementary shortest path Puv, if there exists a shortest path quar.

Corollary 4.2: There exists a shortest path from node u to node v in an acyclic network for every node v reachable from node u.

Thearem 5: For any shortest path
$P_{\text {uv }}=\left(u=u_{1,} u_{\text {a }}, \ldots \ldots . u_{k}=v\right)$ each subpath p'un $=\left(u_{i}, u_{j+1}, \ldots . . . u_{j+1}\right)$ where, $1 \leqslant j \leqslant(j+r\rangle \leqslant k$ is a shortest path from node u.j to $u_{3+\ldots}$. Furthermore if Puv is aro shortest then so are all its subpaths.

Proof: Suppose that there exists such a subpath which is not the shortest path (arc shortest) from node u_{j} to node $u_{j}+\ldots$. But this contradicts the assumption that Puv is the shortest path (arc shortest) from node u to node $v . \quad t$

Let $\Pi(G, \#)$ denote a shortest path problem, where G is a network and i is a set of ordered pairs of nodes between which shortest paths are to be

```
found. The definitions and the notations for a
variety of shortest path problems will be
discussed in section 6.
```

A solution to $\pi(G, Y)$ is an assignment
$\sigma:$: u (u, v) \Leftrightarrow (Puv, dur)

Of an elementary path together with its total weight to each element of $¥$. If for some $¥(u, v)$, Pur is not defined, then

```
\sigma: ¥ (u, v) \Leftrightarrow (0, \infty).
```

σ will be detailed in sections 5 and 6 .

An arc is optimal if it is utilised by a path in a solution, non optimal otherwise. An arc (u, v) is non-existant if $u, v \in N$ and $(u, v) \notin A$.

The set of all arcs emanating from a given node u is the set of forward star arcs of node u, denoted by $F S(u)$, ie. $F S(u)=(u, i) \mid(u, i) \in A)$. The set of all arcs proceeding from a given node u is the set of backward star arcs of node u, denoted by $B S(u)$, ie. $B S(u)=((1, u) \mid(i, u) \in A)$.

The set of successor nodes of u is defined as $N^{\mathrm{w}}=\{v \mid(u, v) \in A$ and $u \neq v\}$.

The set of predecessor nodes of u is defined as $\leftrightarrow N=\{v \mid(v, u) \in A$ and $u \neq v\}$.

The set of adjacent nodes of a given node u is defined as $F N U N=$

The indegree of a given node u is defined as
$E^{--}(u)=|F N(u)|$, and its outdegree is defined as $E^{+}(u)=\mid N^{\omega(u)}(u)$.

By definition, a network is a simple digraph, ie. it contains neither loops nor parallel arcs. A network containing such features can be converted to a standard network, as defined above, by simple preprocessing. Consider the network in figure 1 in which there are parallel arcs between nodes 2 and 3, and also arc (4, 4) is a loop.

Figure 1: The numbers corresponding to the arcs represent the weights of the arcs.

To convert this network to a standard network, firstly all parallel aros except one with the smallest weight have to be eliminated, secondly the loop on node 4 has to be eliminated, by converting it to an arc connecting a dummy node 5 to the modified version of node 4 which contains no $100 p$.

All the arcs going into the original node 4 will now go into node 5. The newly created, arc (5, 4) has a weight equal to the weight of the eliminated loop and all the arcs going out of the original node 4 will go out of the modified mode 4. Figure 2 shows the drived standard version of the example network in figure 1.

Figure 2: The standard version of the network in figure 1.

In general, there are two methods of measuring the running time of a shortest path algorithm.
(1) Analysis of average running time:

To evaluate an algorithm in this method, first the algorithm is applied to a diverse set of randomly generated networks, where a random network is one in which two nodes of a network are selected randomly to form a new arc which is to be added to the network. Then the average of the running times is reported.
(2) Worst-case analysis:

In worst case analysis the running time of an algorithm as an upper bound which depends on the problem size is reported.

In this work we shall use the worst case analysis for the evaluation of every single source algorithm, mainly due to the following two reasons:
(a) Worst case analysis guarantees that no
problem of a given size will take longer
to run than the bound given.

Analysis of average running time is difficult and the concept itself is elusive, because it is not clear what a random distribution of networks with negative arc weights is.

However, in section 10 an analysis of average running time for some of the best single source algorithms is used.

Now consider a shortest path problem $\mathbb{\pi}(G, ¥)$. The size of this problem can be defined in terms of $n=|N|, m=|A|$ and $|¥|$. But $|¥|$ is a function of n, thus we can seek time bounds $T(n, m)$ depending on n and m such that $T(n, m)$ is the time taken by a certain algorithm to solve a problem of size (n, m) and no problem of this size takes longer. These bounds can be expressed in terms of n only, ie. $T(n)$, since $m=n(n-1)$, [maximum number of arcs in a network with n nodes]. But according to a random-access machine definition each operation, of the types mentioned above, takes one step then we can translate $T(n)$ as the number of repetition of an operation with the highest frequency in the algorithm when

```
solving a problem of size n, or }T(n,m)\mathrm{ if the
problem size is expressed in terms of ( }n,m\mathrm{ ).
```


(a) Create $A[1$ produces the empty array A;
(b) Retrieve (A, Index) takes as input the array A and an index;
(c)

Store (A, index value) is used to enter new index-value pair in array A.

An ordered, or a sequence, or a linear, list is one of the most commonly found data objects. It is either empty or can be written as ($a_{1}, a_{i=}, \ldots . ., a_{1}$).

The permitted operations on ordered lists that we are concerned with are as follows:
(i) Find the length of the list, n;
(ii) Fead the list from left to right (or right to left);
(iii) Fetrieve the $i^{t h}$ element, $1 \leqslant i \leqslant n$;
(iv) Store new value in $i^{\text {t.t. }}$ position, $1 \leqslant i \leqslant n ;$
(v) Insert a new element at position i, $1 \leqslant i \leqslant n+1$ causing elements numbered i, $i+1, \ldots, n$ to become numbered $i+1, i+2, \ldots \ldots+1 ;$
(vi) Delete the element at position i, $1 \leqslant i \leqslant n$ causing the elements numbered $i+1, i+2, \ldots, n$ to become numbered $i, i+1, \ldots, \ldots-1$.
In the study of data structure we are interested
in ways of representing ordered lists so that
these operations can be carried out efficiently.
The most common way of representing an ordered
list is by an array where we associate the list
element ai. with the array index i. This can be
viewed as a sequential mapping, since using the
array representation we are storing ai and
ari , into consecutive locations i and (i + l)
of the array. We can also have access to the list
values in either directions by changing the index
values in a controlled way. Thus the above
operations can be carried out in a list, in a
constant amount of time.

A stack is an ordered list in which all insertions and deletions are made at one end, called the top. Given a stack $S=$ (a, $a_{a x}, \ldots . ., a_{1,}$) then a_{1} is said to be the bottom element and a_{i} is said to be on top of element $a_{c i} \ldots, 1 \leqslant i \leqslant n$. The restrictions on a stack imply that the first element to be removed or deleted from a stack must be the last element inserted in the stack. For this reason stacks are also called Last-In-FirstOut, LIFO-lists. In figure $3(a)$ the value ar was the last element inserted into the stack and thus

```
will be the first to be removed. The value an was
the first element inserted into the stack and will
be the last to be removed. The permitted
aperations on stacks that we are concerned with
are as follows:
(i) Greate (S) produces the empty stack S;
(ii) Add (i, S) inserts the element i into
    the stack S, at the top position, and
                    returns the new stack S;
(iii) Delete (S) removes the top element of
stack s and returns the new stack S;
(iv) Iop SS) returns the top element of
the stach S;
(v) Emptys (S) returns the value true if
stack S is empty, else false.
The simplest way to represent a stack is by using a one-dimensional array of size \(n\), denoted by stack ( \(n\) ) where \(n\) is the maximum number of allowable entries. The first or the bottom element \(\hat{i}\) in the stack will be stored at stack (1), the second at stack ( 2 ) and the \(i\) at at stack (i). Associated with the array will be a variable, top, which points to the top element in the stack.
```

```
A queue is an ordered list in which all insertions
take place at one end, the back, and all deletions
take place at the other end, the front. Given a
queue Q = {a,, a.#, ....., am) then a., is the back
element and a, is the front element. The element
a(i , , ) is said to be behind ai, 1\leqslanti\leqslantn.
```

A queue is also called First-In-First-Out, FIFOlist. The permitted operations on queues that we are concerned with are as follows:
(i) Create (Q) produces the empty queue Q :
(ii) AddQ (i,Q) adds the element i to the back of the queue Q and returns the resulting queue Q;
(iii) Deleteq (Q) removes the front element from the queue Q and returns the resulting queue Q;
(iv) Front (Q) returns the front element of the queue Q;
(v). EmptyQ(Q) returns the value true if the queue Q is empty, else false.

A double ended queue (dequeue) is a queue in which insertions and deletions can take place at both end points, front and back. In a dequeue
operations (ii) and (iii) above can be extended to the following:

```
(ii)' AddQ (i, Lu DQ) which adds the element i
    to the back of the DQ if L = back, and to
    the front of DQ if }L=|=front
(iii)' DeleteDQ (L, DQ) which deletes the front
    element of DQ if L = front and its back
    element if L = bach;
```

Operation (iv) may also be extended to the following:

If on a given queue all operations except (iil), deleteQ (Q), can be extended to those on a dequeue, then the queue is called an output restricted dequeue, $R D Q$. The permitted operations on a $R D Q$ are (i), (ii)', (iii), (iv)', (v), For simplicity we will sometimes refer to $R D Q$ as dequeue or double ended queue, since this is the only form of double ended queue used in this work. Figure 3 illustrates different types of lists.
(a)

(b)

FRONT BACK
\leftarrow

(c)

FRONT BACK

(d)

FRONT BACK

Figure 3: \quad Types of lists, (a) stack, (b) queue,
(c) dequeue, (d) output restricted dequeue

A node is a collection of data, $a_{1}, a_{a}, \ldots, a_{n}$, and pointers or links, $L, L_{\text {an }}, \ldots . . ., L_{1}$,

A linked structure is a collection of nodes interconnected by links. In a linked structure node i contains data a_{i} and an address j in link L_{i} where j is the address of the next node in the structure. A list can be represented by a linked structure as well as sequential mapping. Figure 4 shows some types of linked lists, pointers are used to show the links. Unlike a sequential representation where successive items of a list are located a fixed distance apart, in a linked representation these 1 tems may be placed anywhere in memory, ie. in a sequential representation the order of the elements is the same as in the ordered list, while in a linked representation these two sequences need not be the same.
(a)

(b)

(c)

(d)

Figure 4: linked representation of lists, missing pointers are null (a) single linear, (b) single circular, (c) double linear, (d) double circular.

```
In a single linear linked list, each node has a
pointer to its successor node in the list. In a
double linear linked list each node has two links,
one pointing to its successor node and one to its
predecessor node in the list. In a linear linked
list the successor of the last node and the
predecessor of the first node are null. In a
circular linked list the successor of the last
node is the first node and the predecessor of the
first node is the last node. A linear linked list
is accessed by means of a pointer to its front and a circular linked list is accessed by means of a pointer to its back.
```

A stack can be represented by a single linear linked list. An output restricted dequeue can be represented by a single circular linked list. A dequeue can be represented by a double oiroular linked list. In this manner the operations on stacks and queues can be carried out more efficiently. Clearly this efficiency is at the cost of additional memory space for the links, which can be the dominating factor in some situations.

A binary tree, $B T$, is a type of tree in which every node has at most z branches or subtrees, ie. E (i) E^{\cdots} for all $1 \in B T$ and also there is a distinction between the subtrees on the left and on the right of a node. The successor of a node is either null or is a LSUB-NODE iff it is on the left and FSUB-NODE if it is on the right. We define the level of a nade by initially letting the root be at level 1 , then if a node is at level i, then the roots of its subtrees are at level $i+1$. The depth of a tree is defined to be the maximum level of any node in the tree.

Theorem 6: The maximum number of nodes on level i口f a binary tree is $2 x \cdots \cdots, \quad$ for $i \geqslant 1$.

Froof: The proof is by induction. The root is the only node on level 1 , hence maximum number of nodes on level $i=1$ is $2=1$. Now suppose for a general value j where $1 \leqslant j \leqslant i$, the maximum number of nodes on level j is 2.… Then by assumption, the maximum number of nodes on level i-1 is $\quad z^{\cdots \cdots}$. Since each binary tree has a maximum outdegree of \mathcal{E}, then the maximum number of nodes on level i is z times the maximum number of level $i-1$ or 2^{x-1}.

```
The maximum number of nodes in a binary tree of
    k
depth k is given by, \sum 2%*\cdots: % = 2* - 1
    i=1
(geometric progression).
```

Theorem 7: let $n o$ and n : be the number of the nodes with $E^{+}=0$ and $E^{+r}=2$ in a binary tree $B T$, then $n_{0}=n_{0}+1$.

Proof: let n, n, and b be the number of nodes with $E^{w}=1$, all the nodes and the number of branches in WT. We have, $n=n_{0}+n_{1}+n \cdots$ (I)
since all inodes in $B T$ have $E * \leqslant 2$.
Clearly $n=b+1$
since all the nodes, except the root, in $B T$ have $E^{\cdots}=1$. All branches in $B T$ emanate from a node with either
$E^{*}=1$ or $E^{\omega}=2$, thus $b=n+2 n$ an
from (II) and (III) we get
$n=1+n_{i}+2 n_{n}$
and from (I) and (IV) we get
$n_{0}=1+n_{0}$.

A sequential representation of a binary tree is numbering the nodes in the following manner, number the root by 1 then number those nodes on
level 2 and so on. Nodes on any level are numbered from left to right. Now the nodes can be stored in a one dimensional array, BTREE, with the node numbered i being stored in $B T R E E$ (i). The following theorem enables us to easily determine the locations of the predecessor, LSUB and RSUB nodes of a given node.

Theorem 8: If a complete binary tree with n nodes (ie. depth $=\lfloor\log \pi n \mid+1$) is represented sequentially then for any node with index i, $1 \leqslant i \leqslant n$ we have:
(i) predecessor of node i is at $[i / 2]$ if
$i \neq 1$. If $i=1$, then i is the root and has no predecessor.

LSUB-NODE of node i is at $2 i$ if $2 i \leqslant n$. If $2 i>n$, then i has no LSUB-NODE.

RSUB-NODE of node i is at $2 i+1$ if $(2 i+1) \leqslant n . \operatorname{If}(2 i+1)\rangle n$, then i has no RSUB-NODE.

Eroof: First we prove (ii) by induction, for $i=1$ clearly LSUB-NODE is at level z unless $n<\varepsilon$ in which case 1 has no LSUB-NODE. Now assume that for all $j, 1 \leqslant j \leqslant i, L S U B-N O D E$ of j is at $2 j$.

A
B
C
D
E
F
G

sequential representation

Figure 5: A binary tree with its sequential representations.

```
A heap is an abstract data structure consisting of
a collection of items, {a,, as, ....., a,.}, each
of which is associated with a real valued data.
First we will consider a heap in terms of a binary
tree and then expand the definition for other
types of heaps. The items are stored at the nodes
of a special kind of binary tree. For every node,
the value of the item is less than or equal to the
values of the items stored at the immediate
successor nodes (if such exist) in the tree.
Thus, numbering the nodes in the usual way for a
binary tree and assuming, for simplicity, that n
(number of the items or nodes), is odd, ie.
a.i\leqslant azi, azim for 1\leqslant i\leqslantn/2, then this
defines a heap. No ordering is implied between
the items associated with two nodes if one is not
the predecessor of the other, indirectly or
directly. Each subtree of heap is also a heap.
Node 1 is the root of the heap which is at the top
of the tree and its corresponding item is of
minimum value. We can represent a heap
sequentially as a one dimensional array, see
figure 6 below. The operations on heaps that we
are concerned with are as follows:
```

(i)	Makeh (h) which constructs the empty heap
	h;
(ii)	Geth (S,h) which takes the elements of
	set S as input to heap h;
(iii)	Addh (i, h) which inserts the new data
	i to heap h;
(iv)	Delete (i, b) which deletes the data i
	from heap h;
(v)	Getmin (h) finds and returns the data of
	minimum value from heap h, and returns
	null if h is empty;
(vi)	Mergeh (hi, ha) which returns the heap
	formed by combining disjoint heaps h, and
	$h:$ and destroying h, and ha. The new
	heap will have root with
	a value equal to that of $h_{\text {, }}$ if the
	value of the root of $h, i s$ smaller
	than that of he, otherwise to that

(a)

(b)

Figure 6: (a) Tree representation of a heap, (b) The computer representation of a heap.

Combining operations (i) and (ii) and calling it heap-former, then the following procedure, coded in standard pascal, will construct a heap out of a given binary tree. In the procedure below n is a global integer representing the number of the elements in the tree, and BINTRE is a one dimensional array type.

```
Procedure heapformer (VAR BT : BINTRE);
VAR
        s, j, nn : integer;
        dum : integer;
Begin
    s := 0;
    nn := ((n + 1)/2) - 1;
    j := nn;
    while (n <> 0) do
    Begin
            if (BT(2*j) > BT((2*j) + 1))
            then
                    s := 2*j + 1
            else
                    s := 2*j;
                    if ( BT(j) > BT(s))
            then Begin
                                    dum := BT(j);
                                    BT(j) := BT(s);
                                    BT(s) := dum
            end;
            if ((2*s) > n)
            then Begin
                                    nn := nn - 1;
                                    j := n
            end
        end {while}
end; {heapformer}
```

In steps 11 to 21 the data of two successors of a node i, ie. LSUB-node(i) and RSUB-node(i) are compared and if the smaller data is less than that of the node i then the nodes are swapped.

Abstract

In this procedure the initial root of the binary tree is sifted down until it finds its proper place. If a node of a heap were removed, we could make the former last element the new initial root of the corresponding subtree, reducing n by 1 , and sift the fust move element up or down as appropriate. Sorting the elements of a heap can be done by successively removing the root, replacing it by ∞, and then sifting it down to restore the heap. This sorting scheme is called heapsort. In a heapsort, the depth of the heap is O(logn) and n elements must be removed, then the total time to reform the heap is $O(n l o g n)$. The procedure can be streamlined by eliminating superfluous comparisons.

Theorem 9: The procedure heapformer forms a heap in linear time.

Eroqf: Let $f(k)$ be the maximum number of swappings necessary to form a heap out of ($2^{r \cdots 1}$) elements. Clearly $f(1)=0$. Before dealing with node 1 , subheaps are formed from the subtrees having nodes 2 and 3 as their roots. By definition forming each of these subheaps takes at

```
most f(k-1) swappings. When the two subheaps are
merged, all swappings take place along a single
path from node 1 to some terminal node with
E* = O. Since the number of nodes on this path is
k, at most k-1 swappings are required for the
final merge (normally only a few swappings are
required). Thus removing a node from a beap and
then restoring the heap structure is an O(logn)
process, at worst. Therefore to form a heap,
f(k)=2f(k-1)+(k-1),k\geqslant2 where f(1) = 0 and
f(k) = 2*-1-k, we require fewer than one swapping
per element. If the number of elements is between
2m-1 and 2ck+n-1, then the number of swappings to
form the heap is at most,
f(k+1)=2 f(k)+k=O(f(k)).
And this proves the linear time claim in general.
+
Suppose in a given heap \(r\) values change. For the data whose new values are less then the heap's last element, put the new values in their respective former position and for the others put their values at the bottom of the heap and implicitly insert \(\infty\) in their respective former position. Finally after all the above operations are done, reform the heap. Reforming a heap after
```

r elements change takes o[min (n, r logn)] time at worst.

Defining a d-tree to be a tree in which each node has at most d successors, then a d-heap is a d tree containing one item per node arranged in heap order, see figure 7 below:

Figure 7: a 3-heap with nodes numbered as in binary tree, ie, top to bottom, left to right

Clearly the operation (v) has a running time of O(1). Operations (iii) and (iv) have a running time of $O(d l o g n)$, where n is the number of nodes in the tree, since the depth of a d-heap is logan. In d-heaps parameter d allows us to choose the data structure to fit the relative frequency of the operations, as the proportion of deletions decrease, we can increase the value of d, saving time on insertion. Due to regular structure of a d-heap we do not require explicit links to represent it. If the nodes are numbered in the manner explained above then the predecessor of node x is $\lceil(x-1) / d\rceil$ and the successors of x are the integers in the interval,
$[d(x-1)+2 \ldots \min \{d x+1, n\}]$. To implement a d-heap we use an array of positions from 1 to the maximum size of a heap. We also store an integer giving the size of the heap. We also associate an index $h(i)$ to each item in the heap to give its position in the heap. Operation (vi) is rather difficult and time consuming on d-heaps. The operation d-heapformer, for forming a d-heap, analogous to heapformer, for forming a 2-heap, runs in linear time for $2 \leqslant d \leqslant n-1$.

```
A fibonacci heap or f-heap is a collection of
item-disjoint heap-ordered trees. Fredman and
Tarjan, [FRTA 85], used the following
representation of f-heaps,
```

Each node has a pointer to its predecessor node or a special node null if it has no predecessor and a pointer to one of its successor nodes. The successors of each node are doubly linked in a circular list. Furthermore an integer is associated with each node indicating its number of successors, E^{+}, and a bit indicating whether the node is marked or not. The roots of all the trees in the heap are doubly linked in a circular list. A heap is accessed by a pointer to a root containing an item of minimum value, called minimum node of the heap. A minimum node of null denotes an empty heap. Each node has space for its data, four pointers, an integer indicating number of its successor and a bit. Figure 8 shows a f-heap represented in this manner.

$P 1$	$P 2$	E^{+}	d	8	$P 3$	$P 4$

P1: Pointer to predecessor in the tree;
P2: Pointer to one successor in the tree;
P3: Pointer to predecessor in the doubly circular linked list;
P4: Pointer to successor in the doubly circular linked list;
E : : Number of the successors;
d. : The value associated with a node;

B : Bit = Tif the node is labelled
$B: B i t=F$ othervise.

Figure 8: f-heap representation.
The double linking of the lists of roots and the
successors of a node makes deletion from such a
list possible in o(1) time and the circular
linking makes the merging possible in o(1) time.

A bucket is a list of nodes whose data fall within a given range, ie. a bucket ρ is a list of nodes i whose data a(i) fall within the half open interval $(\rho z,(\rho+1) z)$, ie. $\rho z \leqslant a(1)<(p+1) z$.

In this work we will represent a bucket by double linear linked lists. Associated with each node k in bucket ρ there is a data a(k), two pointers and other information which we will explore later in section 9. Each data k, except the last, in bucket ρ has a pointer $p l(k)$ to its successor in the bucket. Each data k, except the first, has also a pointer $p=(k)$ to its predecessor in the bucket. To access the buckets we store the heads, address of their respective first elements, of the buckets in a master list, then the master list contains a pointer to the memory location of the first element of each bucket. The computer representation of heaps and buckets will be

```
explained in more detail in section 9, when
required.
```

There are several ways of representing a network $G=(N, A)$ in a computer, and the manner of representation directly effects the performance of algorithms applied to the network. Here we will give two such methods:
(a) Adjacency Matrix:

The adjacency matrix representing a network G is a z-dimensional n * n array W such that, the element (i, j) of the array, ie. $W(i, j)$, has the value wis, the weight of the arc (i, j), if (i, $j) \in A$, and ∞ otherwise.

Any algorithm applied to an adjacency matrix would require at least $O(n$ as there are $n(n-1)$ elements to be examined. Storing such a matrix will also require $O(n *)$ space. Therefore such a representation is excessive for sparse networks in which a large fraction of the elements of W are ω, but may be considered as a good representation,

```
because of its simple structure, for dense networks.
```

(b) Adjacency Lists:

The most popular way of representing a network G in a computer is to use linhed list structure. In this method, all the forward star arcs of a node are stored together and each arc is represented by recording only its terminal node and weight. A pointer is then kept for each node which indicates the block of computer memory locations for the forward star arc of that node.

In this manner of representation, we need $(n+2 m)$ space or units of memory and $O(n+m)$ time for examining all aros. The advantages of this method over adjacency matrix specially for sparse networks are obvious. This method of representation is also known as forward star representation, and if the forward star arcs of each node are ordered by ascending length, then the method is

$$
\begin{aligned}
& \text { called sorted forward star representation } \\
& \text { form. }
\end{aligned}
$$

In this work we will adopt both these methods for network representations. Figure 10 illustrates the storage of the network shown in figure 9 , in an adjacency matrix and also in a sorted forward star form.

Figure 9: numbers associated with the arcs represent the weights of the arcs
(a)

TERMINAL NODE

INITIAL NODE	1	1	2	3	4	5
		∞	4	6	7	∞
	2	∞	∞	∞	∞	2
	3	∞	3	∞	5	9
	4	∞	∞	∞	∞	∞
	5	∞	∞	∞	6	∞

(b) null pointer means no forward arcs

null pointer means no forward arc

Figure 10. network representation, (a) Adjacency Matrix, (b) sorted forward star

```
One of the most common ways of representing a tree in a computer is to think of the root, \(s\), as the highest node in the tree and all the other nodes hanging below the root. The tree is then represented by keeping an upward pointer list containing the predecessor node of every node in the tree, except the root. We will assume that \(w N(s)=s\). Associated with a tree we will also define a list, indexed by the node numbers, containing a label, \(d(v)\), for each node \(v\) in the tree, whose value is the length or total weight of the unique path from \(s\) to \(v\) in the tree. In some implementations \(d(v)\) is not necessarily the correct length but an over estimate that will eventually converge to the correct length.
```

If a node, i, does not belong to the tree, then its label is set to ∞, ie. $d(i)=\infty$, and this indicates that node i is not yet reached. We will also assume that $d(s)=0$.

Figure 11, below, illustrated the computer representation of a tree using two linear lists, both indexed by the nodes.

NODE
${ }^{F} N$
d

1	1	0
2	1	6
3	1	2
4	2	11
5	3	21
6	3	10
7	6	22

Figure 11: Computer representation of a tree

6. PROBLEM CLASSIFICATION

In 1957 MINTY, [MINT 57], made the following suggestion for finding a shortest path between a pair of nodes, source and sink, in a given network:

Construct a copy of the network using pieces of strings with lengths proportional to the weights of the arcs. Then place the source node in one hand and the sink node in the other, to stretch and determine the shortest path as the path with tense strings.

Since then there has been considerable development in solution methods for a variety of shortest paths problems. In general the shortest path problems can be divided into four groups, see figure 11.1below:

Figure 11.1: Problem Classification

Each of these problems for a given network is defined as follows:
one-to-one problem is to find a shortest path from a given source to a given sink;
(ii) one-to-all problem is to find the shortest path from a given source to every other node;
(iii) all-to-one problem is to find a shortest path from every other node to a given sink;
(iv) all-to-all problem is to find a shortest path between every pair of nodes.

Up to date, there is no efficient algorithm for solving one-to-one problem in a given network without having to find the shortest paths from the source to at least some of the other nodes, if not all. All-to-one problems and one-to-all problems are direotional duals of each other, reversing the directions of the arcs in G converts one to the other. Therefore we will consider the solution methods for (ii) which will include (i) and (iii). We will refer to these solution methods as the single source algorithms. Furthermore, for

```
solving an all-to-all problem we can adapt an
efficient single source algorithm and apply it to
every node in the network, ie. apply the algorithm
n times to the given network, each time having a
different source node. We will refer to the
specific algorithms designed for solving all-to-
all problems as all source algorithms. As we will
see some of the single source algorithms used to
solve all-to-all problems, as explained above, are
more efficient than most of and as efficient as
the best of all source algorithms. Therefore in
this work more emphasis is put on single source
algorithms
```

Extending our shortest paths notations for one-toall and all-to-all problems,

In one-to-all problem the source node, S, is distinguished, then

```
# mas = ((S,v) |VE (N-(S)))
```

and this can be abbreviated to $¥_{m}=N-\{S\}$
since s is distinguished. In all-to-all problems
all node pairs, except nodes paired with
themselves, are considered, then
$¥_{\text {Ia }}=\{(u, v) \mid u, v \in N, u \neq v\}$.

Thus a shortest path problem can be stated as $\pi(G, s)$ if it is an one-to-all problem and π (G) if it is an all-to-all problem, since the source is understood.

Furthermore we will denote the weight of a shortest path from a source node to a given node v by d in a one-to-all problem, since the source is distinguished and duc in a all-to-all problem when the source node is u.

> PART II

SINGIE SOURCE ALGQRITHMS

```
The best algorithme known for the one-to-all
problems concatenate aros to subpaths in order to
find new pathe. After obtainning a new path its
total weight is compared to that of the current
shortest path and if it is smaller, then the new
path becomes the current shortest path. When the
current shortest path cannot be improved any more
then it becomes the shortest path.
```

Consider a netwark $G=$ (N, A) with no negative oycles, in a one-to-all problem with a source node s. clearly $d_{\pi m}=0$. For each node $v, v \neq s$, there must be some final aro (u, v) in the shortest path from s to v. Whatever the identity of u, it is certain that $d V=d_{\omega}+W_{\omega M} \quad A=a$ result of theorem 5 , section $3, d_{\text {w }}$ is the weight of the shortest path from s to u. This is called the prinoiple of optimality. But there are only (n-1) number of choices for u. Clearly u must be a mode for which 〈d.. + Wu, is the minimum. Therefore the weights of the shortest paths must satisfy the following system of equations:

$$
\begin{aligned}
& d_{u i a}=0 \\
& d_{V}=\min _{\substack{i \neq v}}^{\left.u \neq d_{u}+W_{W W}\right) \quad(v \in N, u \neq \Omega)}
\end{aligned}
$$

```
this system of equations was first formulated by
Bellman, [BELL 58], and we will refer to them as
Bel1man's equations.
```

As a result of theorem 4 and theorem 5 , section 2 ,
we can conclude the following:

Suppose $d_{1}, d_{i n}, \ldots . ., d_{l}$, satisfy Bellman's equations in a network $G=(N, A)$ with no negative cycle, then there exists a tree in G, rooted at the source with exactly (n-1) arcs, such that the path in the tree from the root to each node is the shortest path. We will refer to such a tree as the minimum tree or the shortest path tree.

Now let us consider the uniqueness of a finite solution to Bellman's equations.

Iheqrem 10: If a network $G=(N, A)$ contains no nonpositive cyole and there is a path from the source to every other node, then there is a unique finite solution to Bellman's equations.

Proof: let $d_{1}, d_{i=}, \ldots . ., d_{n}$ be the shortest path from the source to all the other nodes in G, and let $d^{\prime}, \quad d^{\prime} x, \quad, d^{\prime}$, be any other finite

```
solution to Bellman's equations, such that
d'i}\not=|,\mp@subsup{d}{i}{\prime}\mathrm{ for some i.
```

$d^{\prime}, d^{\prime} \cdots, \ldots . . d^{\prime}$, represent the weights of some
paths, not necessarily the shortest paths in G.
Accordingly, if di $\neq d^{\prime} i$ it must be the case that
$d^{\prime}{ }_{i}>d_{i .}$ Now choosing a node j such that
$d^{\prime}{ }_{j}>d_{i,}$, but $d^{\prime}=d_{k i}$, where (k, j) is an are in
the minimum tree of G (there must be at least one

contrary to the assumption that
d'ı, d'a,, d'm satisfy Bellman's equations.
Therefore there is a unique finite solution to
Bellman's equations.
Therefore solving a one-to-all problem in a given
network $G=(N, A)$ is equivalent to finding a
minimum tree of G rooted at the source. We will
denote such a tree by:

$$
T_{\mathrm{ci}}=\left(N T, A_{T}\right) .
$$

To formulate a one-to-all problem as a linear programming model consider each of the Bellman's equations,

$$
\begin{equation*}
d_{\cdots}=\min \left\{d_{L, i}+W_{L, L}\right\} \tag{I}
\end{equation*}
$$

This gives a system of (n-1) inequalities, that is for a fixed v,

$$
\begin{equation*}
d_{\checkmark} \leqslant d_{G, 1}+W_{1, N} \tag{II}
\end{equation*}
$$

for $u=1,2, \ldots,(v-1) .(v+1), \ldots, n$

Conversely, if $d_{1}, d_{i z} \ldots . ., d_{\sim \ldots}, d_{V+1}, \ldots, d_{n}$ are given fixed values and $d v$ is maximised subject to (II), then (I) is satisfied. This suggests the following linear programming problem,

```
maximise }\mp@subsup{d}{w}{}+\mp@subsup{d}{w}{}+\ldots.
subject to
    dr = 0
and d}\mp@subsup{d}{~}{}-\mp@subsup{d}{\ldots,.}{*}\leqslant\mp@subsup{W}{lN}{
    for u = 1, 2, ..., n
    v=2,3, .... n
    and u\not=v
```

However, Bellman's equations imply implicit functional relationships, that is each shortest path weight is expressed as a non linear function

```
of the other shortest path weights. Due to this
reason Bellman's equations are not solvable as
they stand, but there are methods for overcoming
such difficulties which will be considered in the
remainder of this part. Furthermore in theorem 10
we required that the network must not have
nonpositive cyoles, in order to have a unique
finite solution to Bellman's equations, but the
computational procedures that we consider here are
actually effective for networks which contain no
negative cycles. That is, although the solution
to Bellman's equations is not unique, the
computation will terminate with the correct
solution.
```

We now develop a bastc algorithm for solving one-to-all problems to which all known algorithms can be related.

Let d and N be two n-element arrays defining in some algorithm. The $i^{\text {t.m }}$ element of $d, d(i)$, contains the weight of some path from the source to the node, $i=N$, and the corresponding element of $w N, N(i)$. contains the predecessor node of i on that path. If at the termination of algorithm $d(i)$, for all $i \in N$, are the shortest paths then the solution is correct. Then the pointer chain

```
in FN will trace back a shortest path from every
node i to the source node.
```

Now let [IMPROVE (A)] be a property such that,
[IMPROVE (A)]
$\equiv \exists(i, j) \in A$, such that $d(j)>d(i)+W_{i j}$.
[IMFROVE (A)] is true if there is an arc in A
which can be used to reduce some element of d.
Theorem 11: Suppose $d(i)$ is defined for all
$i E N$, such that $d(i)=d\left(F_{i}\right)$, where $F_{i t}$ is some
finite elementary path from source to node i, then
[IMFROVE (A)] is false if and only if d(i) is a
shortest path to i for all $i \in N$.

Proof: Suppose [IMPROVE (A)] is false and assume that there exists some node u with a shortest path of $d^{\prime}(u)$ such that $d(u) \neq d^{\prime}(u)$.

Clearly $d(u)<d^{\prime}(u)$ cannot be true, since it implies that there exists a path to u with a weight less than the weight of the shortest path to u. Then $d(u)>d^{\prime}(u)$, and this implies that $d^{\prime}(u)$ is defined, ie. $d^{\prime}(u)>\infty$, and hence there must be a path,
$P_{\text {L. }}\left(s, i_{1}, i_{\text {II }}, \ldots .\right.$. ... $i_{\text {hi }}, u$ such that $d^{\prime}(u)=d\left(F_{u}\right)$. Now let i, be the first node in $P_{\text {L. }}$, such that $d(i, j)>d^{\prime}(i, j)$, where $d^{\prime}(i, j)$ is the weight of a shortest path to node i.i. Clearly $i_{j} \neq 5 . \quad$ Thus, $d\left(i_{j}\right)>d\left(i_{j \ldots 1}\right)+W\left(i_{j \ldots, i, i j)}\right.$. $\left[W(A, B)=W_{A s}\right]$ but this contradicts the assumption that [IMPROVE (N)] is false.

Now suppose $d(i)$ is a shortest path to node i, for all $i \in N$. Then if [IMPROVE (A)] is true, then there is an arc (i, j) such that
$d(j)>d(i)+W_{i j}, i m p l y i n g$ a path F_{j} from s with $d\left(P_{. i}\right)$ less than the weight of the shortest path from s to node j, which cannot be true.

Therefore [IMPROVE (A)] is false if and only if $d(i)$ is a shortest path to node i for all $i \in N$. t

As a result of theorem 11 we can write a basic algorithm which may be considered as the underlying structure in all labelling algorithms. We will refer to this algorithm as labelling algorithm.

```
Algorithm labelling;
Step 1 {initialised}
        for i := 1 to n do
        begin
            d(i) := = ;
            FN(i) := 0
        end;
            d(s) := 0;
            FN(s) := s;
Step 2 {search and update}
while [IMPROVE (A)] do
begin
    for some arc (i, j) satisfying [IMPROVE (N)] do
    begin
        d(j) := d(1) + W Wi;
        FN(j) := i;
        end;
    end;
end.
d(i) is the weight of some path from s to node i,
for all i}\inN\mathrm{ when d(i) is the weight of a
shortest path then this path is elementary. The
algorithm enumerates elementary paths in some
sequence of sufficient length to guarantee that
shortest paths have been found for every node. A
search for an arc (i, j) for reducing d(j) will
always succeed until d(j) defines the weight of
the shortest path to j for all j N N. In Step }
of the labelling algorithm d(i) is the weight of
some finite path from s whose last arc is
(NN(i), i).
```

```
Ibeorem 12: Labelling algorithms terminates if
and only if array d contains the weights of the
shortest paths from s to every other node.
```

Proof: The algorithm terminates if [IMFROVE (A)] is false, which in turn lmplies that d contains the weights of the shortest paths from to every other node. Now if the shortest paths to every node is defined in d, then it is olear that $d(1)$ is the weight of some elementary path. But there is finite number of such paths in any finite network, and each iteration reduced some $d(i)$, then termination must occur. t

Clearly if a network contains a negative cyole, then the property [IMPROVE (A)] will always be true and hence the loop in Step 2 will never halt. Therefare the algorithm will never terminate.

Although this algorithm is fundamental, but it is not very useful. Firstly the algorithm will not terminate if the networl contains a negative cycle and secondly and more importantly it does not outline how [IMPROVE (A)] is evaluated.

Operations required for evaluating [IMPROVE (A)] can be divided into two categories, scanning arcs

```
and searching nodes. Scanning an arc (i, j) E A
is checking whether or not the inequality
d(j) >d(i) + Wi,j holds and if it holds modifying
the labels of node j by setting:
```

```
d(j) := d(i) + Wi,j;
NN(j) := i;.
```

Searohing node $i \in N$ is scanning every forward star arc of node i.

The algorithms which are based on the labelling algorithm developed above are called labelling algorithms.

According to the manner of searching the labelling algorithms can be classified into two:

1. label correcting algorithms
2. label setting algorithms.

Both these methods start with a tree $T_{G}=(N T, A T)$, such that $N T=\{s\}$ and $A T=0 . \quad A$ label correcting method always updates arcs in Ar in a manner that replaces or shortens the weight of the paths from s to every other node in T, but

```
does not guarantee that the new path is a shortest
path, until the algorithm terminates. A label
setting method augments NT and Ar respectively by
one node i }\inN\mathrm{ and one arc (i, j) E A at each
iteration in such a manner that i}\Leftrightarrow\mp@subsup{N}{}{r}\mathrm{ and
j}EN-NT, and the unique path from s to i is a
shortest path in G. A label setting method
terminates when all arcs in A have their initial
nodes and terminal nodes in Nr. We will consider
these two general classes of labelling algorithms
separately in the next two sections.
```


8. LABEL CORRECTING ALGORITHMS

An obvious way of evaluating [IMFROVE (A)] of
labelling algorithms, section 7 , is to use
exhaustive searching. Algorithms that use such
searohing are called label correcting algorithms.
This method was first suggested by Ford,
[FORD 56], and subsequently details were worked
out by others inoluding Bellman, [BELL 58], and
similar results were published by Moore,
[MOOR 59].

Ford's algorithm is probably the earliest shortest path algorithm to be published.

In Ford's algorithm, each aro $(1, j)$ is scanned in turn or examined for the property $d(j)\rangle d(i)+W_{i n}$. If no such arc is found then this implies that [IMPROVE (A)] is not true and hence the algorithm halts. Otherwise any arc for which the property holds may be remembered for use in updating the paths.

```
Algorithm Ford;
begin
Step 1 {initialise}
    for i := 1 to n do
    begin
        d(i) := m;
        FN(i) := 0
    and;
    d(s) := 0;
    EN(s) := s;
Step 2 {search and update}
    repeat
        search.for an arc (i, j) satisfying [IMPROVE (A)].
        if (the search succeeds) then
        begin
            d(j) := d(i) + Wij;
            FN(j) := i
        end;
    until the search fails;
end.
```

The proof of correction and termination of Ford's
algorithm is the direct result of theorems 11 and
12, section 7 .

```
With a sensible search strategy for examining arcs
(i, j) E.A to evaluate [IMPROVE (A)], Ford's
algorithm has a time bound of O(n)
and [YENJ 70]. However the algorithms can be
exponential under very simple search strategies as
shown by D B Johnson in, [JOHN 77].
```

```
But using a search strategy which retains some
information from previous searchs, like
remembering the point at which the last search
left of is sufficient to yield an O(n*) algorithm.
```

To develop algorithms with good bounds we first.
consider search strategies which are potentially
exhaustive.

```
Let found }\Leftrightarrow[[MMFROVE (A)], then it will hold on
termination of the following search:
```

```
found := false;
repeat
    select (i, j) E A;
    if (d(j) < d(i) + Wi, )
    then
    found := true;
    until ((found) or all arcs in A have been selected);
```

Now we can use this searching soheme direotly in
Ford's algorithm, since testing on found can
determine if the search succeeded. The updating
is carried out only if and immedlately after found
becomes true. Now by letting A, denote the set of
arcs which have been examined for [IMPROVE (A)]
and moving the updating operations into the search
loop we get:

```
Step_2 {search and update}
        A' := { };
repeat
    found := false;
    while not (found) and (A - A' f { )) do
    begin
        select (i, j) \in A;
        if (d(j) >d(i) + Wij) then
        begin
            found := true;
                d(j) := d(i) + W Wij
                pN(j) := i
        end
    end;
until not (found);
```

The correctness and termination of this algorithm is the direct result of theorems 11 and 12 , section 7 , if choosing (i, $j) \in A$ is a finite process which, when repeated, eventually chooses every arc in A.

Now consider a sufficient bound B for some rule of chaice so that every arc will be chosen within B choices. Again with B defined as above, theorems 11 and 12 will hold for Ford's algorithm with the following refinement:

```
    Step 2 {search and update}
    repeat
        found := false;
        count := 1;
        while (count ( B) do
        begin
            choose (i, j) \in A;
            if (d(j) > d(i) + Wi,j) then
            begin
                found := true;
                d(j) := d(i) + W Wij,
                FN(j) := i
            end;
            count := count + 1
    end;
until not (found);
```

To find a sufficient value for B, let the rule for choosing (i, j) $\in A$ be, choose acoint, where $a=\langle i, j\rangle \in A$ and, in some order $A=\left\langle a_{1}, a_{a}, \ldots . ., a_{m}\right.$). The first m choices will be exhaustive, so $B=m$ is sufficient under this rule of choice. Let us rewrite the inner loop once more using these ideas. In addition we introduce a variable pweight which counts the number of entries to the inner loop, initially setting pweight $:=0$ then the inner loop becomes:

```
        pweight := pweight + 1;
        found := false;
        count := 1;
        while (count < m) do
        begin
(inn)
        (i, j) := acrumt;
        if(d (j) < d(i) + Wij) then
        begin
            found := true;
            d(j) := d(i) + Wij;
            FN(j) := i
        end;
        count := count + 1
        end;
it is clear that theorems 11 and 12 hold for
Ford's algorithm in which step.2, is replaced by
the fallowing:
```

Step 2 (search and update)
repeat
inn;
until not (found);
and the variable pweight is ignored. To bound the
outer loop define the property,
$R \equiv(d(i)$ is the shortest path length from two
to i, for all i for which there exists a shortest
path P_{i} such that $\left|P_{i}\right| \leqslant$ pweight).

Iheorems 13: If $d(i)$ defines the shortest paths for all $i \in N$, then $\left|P_{i}\right| \leqslant$ pweight.

```
Eroof: We only need to consider nodes i suob that
the arc shortest path P: has exactly (pweight + 1)
aros. By assumption, for some such path
F:i = {s = i, in, ....., isw, i), it is true that
d(ine) is the welght of the shortest path to in, so
the inner loop, inn, will set (d:i) to the weight
of the shortest path to i and wN(i) to is, since
it tests every arc.
```

Theorem 13 and the preceeding discussion suggest
a good exhaustive searoh in Ford's algorithm as
follows:

```
Algorithm Ford with refinements;
begin
Stepl {initialise);
for i:= 1 to n do
begin
    d(i) := m;
    FN(i) := 0
end;
    d(s) := 0;
    FN(s):= S;
    Pweight := 0;
```

Step 2 \{search and update\}
repeat
inn;
until not (found) or Pweight 》 ($n-1$)
end.
In this algorithm two tree functions predecessar
and length are only used and, it runs in time
proportional to the depth t of a shortest path
tree of least depth.

```
Iheorem 14: The algorithm terminates in O(tm) if
yms is defined for nodes in G and in O(nm) if }\mp@subsup{\psi}{\textrm{ms}}{}\mathrm{ is
not defined for some node in G.
```

Eroof: The proof of this theorem is a direct
result of theorems 11 and 12 and also the fact
that the maximum number of arcs in a path is
($n-1$). t
This is one of the best results known under an
exhaustive search strategy. Deleting the variable
(found) so that the outer loop terminates when
pweight $\Rightarrow(n-1)$, then the resulting algorithm
leads to Bellman's algorithm, [BELL 58], which is
a derivation of Ford's algorithm, [FORD 56], with
explicit iteration indices.

```
Bellman's algorithm;
Begin
    for i := 1 to n do
    begin
        d(i) := m;
        FN(i):= 0
    end;
    d(s) := 0;
    F/N(s) := s;
    for K := 1 to (n-1) do
    begin
        for i := 1 to n do
        for j := 1 to n do
        if (d(j) > d(i) + Wij) then
        begin
            d(j) := d(i) + Wij; {search and
            FN(j) := 1 replace)
        end
    end
end.
```

```
In search and replace step of Bellman's algorithm
every possible correction, ie. i, j}\inN\mathrm{ and
(i, j) E A or (i, j) E A, is examined and this
step is repeated (n-1) times. Thus the algorithm
always runs in O(n*) since there are n(n-1) such
possible corrections. }\psi\textrm{m}\mathrm{ (i), for some node i,
undefined can only be detected if a negative cycle
on a path to node i includes s and this can be
detected by testing d(s) against zero after
termination.
```

An obvious improvement in this algorithm is that
the forward star arcs of a node i with $d(i)=\infty$
are not required to be scanned in the search and
replace step. This improvement can be made by
replacing the search and replace step by the
following:

```
for i := 1 to n do
    if (d (i) }\ddagger\infty)\mathrm{ then
    for j := 1 to n do
        if (d(j) > d(i) + Wij) then
        begin
            d(j) := d(i) + W Wi;
            FN(j) := i
        end;
```

This improvement also indicates that the order in which forward star arcs of nodes are examined is a major factor in the efficiency of the algorithm.


```
Eellmãn's algorithm with boolean list;
begin
        for i := 1 to n do
        begin
            d(i) := m;
            FN(i) := 0;
            f(i) := false
    end;
    count := 1;
    d(s) := 0;
    FN(s) := s;
    f(s) := true;
    while (count > 1) do
    begin
        for i:= 1 to n do
        begin
            count := 0;
            if (f (i) = true) then
            begin
                    for j:= 1 to n do
                    if (d}\mp@subsup{|}{j}{}>\mp@subsup{d}{i}{}+\mp@subsup{W}{ij}{})\mathrm{ then
                    begin
                                    d(j) := dia}+\mp@subsup{W}{i,j}{}
                                    #N(j) := i;
                                    f(j) := true;
                                    count := count + 1
                    end;
                    f(i) := false
            end
        end
    end.
```

In this algorithm count is used to cheols whether a
solution if found. Clearly theorems 11 and 12
hold for this algorithm and it runs in o(nm) or
o(n) in case of complete networks.

Based on the preceding observation it can be seen
that the forward star arcs of nodes need not be
scanned in numerical order as above, they may
instead be scanned in the order in which the nodes
were labelled. That is if node i was labelled before node j, then the forward star aros of i are scanned before that of node j, regardless of the node numbers i and j. This observation can be implemented efficiently by using a queue structure or a one way linked list as defined in Section 4. This $1 s$ because all the permissible operations, as stated in Section 4, are in $O(1)$, except the operation CREATE(Q) which is of $O(n)$. In this implementation nodes are placed on the queue as their labels are altered, and removed from the queue as their forward star aros are scanned. In this form the forward star arcs of nodes are examined in the order in which they are placed on the queue, the queue is said to be managed in FIFO manner.

There is one problem in using a queve and that is if a node is placed on the queue whenever its label is changed, the same node may appear in more than one position on the queue. This means that the size of the queue may be longer than n. One way to avoid this is to use a boolean list of sice n corresponding to N. Then initially the elements of this list, flag, are set to false and when a node appears on the queve, its flag is set to true until it leaves the queue when it is set to false
again. The following is Bellman's algorithms with this refinement.

```
Bellman's algorithm with queue;
begin
    for i := 1 to n do
    begin
        d(i) := m;
        FN(i) := 0;
        flag(i) := false
    end;
    CREATE (Q);
    ADDQ (s, Q);
    d(s) := 0;
    FN(s):= s;
    flag(s) := true;
    repeat
        u := FRONT (Q);
        flag(u) := false;
        DELETEQ(Q);
        for j := point (u) to (point (u+1) - 1) do
        if (d (term(j)) > d(u) + Wu term (s)) then
        begin
            d(term (j) := d(u) + Wu torm (j);
            pN (term (j)) := u;
            if not (flag (term (j)) then
            begin
                flag (term (j)) := true;
                ADDQ (term (j) , Q)
            end
        end;
        until (EMPTYQ(Q))
end.
```

In this algorithm the function $F R O N T$ and the procedures CREATE, ADDQ, DELETEQ and EMPTYQ are as explained in section 4, the forward star representation of a network is considered in which variable point (i) is the pointer associated with node i and contains the address of the terminal node of the first forward star arc of node in in

The preceding observation can also be implemented as outlined by Pape, [PAPE 74], by using an output restricted dequeue, $R D Q$ or simply a dequeue, as explained in section 4. In this implementation the nodes not in the queve are split into two classes.
(i) the "unlabelled nodes", ie. those that
have never entered the queue (ie. whose
distance from sare still ∞);
(ii) the "labelled and unscanned nodes", ie.
those that have passed through the queue
at least once, and whose current distance
from s has already been used.

Then the unlabelled nodes are inserted at the end of the queue, while the nodes have been labelled and scanned are inserted at the beginning of the queue. An easy approach to this implementation consists of using a code to distinguish between the two classes of nodes and a node size array with two pointers to indicate the two ends of the queue, see section 4. In addition a node size array, sit, is used to indicate the situation that a node is in. The situation of a node i is one of the following three.
sit(i) $=1$, if node i is currently in the queue:
(ii) sit(i) $=0$, if node is not in the queue and has not ever been on the queue, ie. i is unlabelled;

```
sit(i) = -1, if node i is not currently
    on the queue, but it had been before, ie.
    i is labelled and unscanned.
```

Bellman's algorithm with this refinement is as
follows:
Bellman's algorithm with RDQ;
begin
for $i=1$ to n do
begin
$\mathrm{d}(\mathrm{i}):=\infty$;
$\mathrm{FN}(\mathrm{i}):=0$;
sit(i) := 0
end;
CREATE (RDQ);
ADDDQ (s, F, RDQ);
$d(s):=0$;
$\mathrm{FN}(\mathrm{s}):=\mathrm{s}$;
sit(i) := 1;
repeat
$\mathrm{u}:=\mathrm{FRONT}$ (RDQ);
sit(u) : = - 1 ;
DELETEDQ (F, RDQ);
for $j:=$ point (u) to (point $(u+1)-1)$ do
if (d(term(j) >d(u) + Wu torn (j) $)$ then
begin
$d(\operatorname{term}(j)):=d(u)+W_{u} \operatorname{tanm}\langle s) ;$
$\mathrm{FN}(\operatorname{term}(\mathrm{j})):=u$;
if (sit (term(j)) = -1) then
ADDQ (term(j), F, RDQ)
else
if $($ sit $(\operatorname{term}(j))=0)$ then
ADDDQ (term (j), B, RDQ)
end;
until (EMPTYQ (RDQ))
end.

In this algorithm all queve functions and
procedures are as defined in section 4 , and all,
except CREATE which is of $O(n)$, are of $O(1)$. The
variables B and F used in some of the queue
operations indicate the front and the back ends of the queve.
 updated before other nodes are searohed. Thus

```
updating sequence helps to eliminate unnecessary
node label corrections that are dominated by the }
correction that should be transmitted through the
subtree. That is, an arc (i, j) may satisfy the
condition d(i) + Win < d(j) only because d(j) has
not been reduced by h.
```

```
A s a result of this discussion clearly theorem 11
and le hold for this algorithm which has an upper
time bound of O(nm). Algorithms based on this
implementation have also appeared in [MAGO 78],
[VLIE 78], [DGKK 7@], [DEFO 7@] and [PALL 81].
```

Theoretically, as a result of the above
discussions this latest implementation of label
correoting algorithms is the most efficient one,
however practically this is not always true, see
section 10.

A11 different implementations of the general label correcting algorithms stated in this section can be considered as specialised variants of the primal simplex algorithm where the optimal arcs, ie. arcs in A, are the basic variables augmented by nonexistent arcs which could join s to each node $i \in N-N T, i e, ~ a l l$ arcs (Ω, i) with $W_{r a i}=\omega$. The interpretation is specially direct for the
algorithm with the latest refinement which ensures that the node labels always satisfy complementary slackness, ie. $d(j)-d(i)=W_{i j}$ for $(i, j) \in A_{r}$ and $d(r)-d(s)=W_{a s}$ for $r \in N-N T$. Then the process of selecting an improving arc (i, j) corresponds to searching for an arc which violates dual feasibility, ie. a non basic with a negative reduced cost. The process of adding such an arc (i, j) to $A T$ and deleting an arc (FN(j), j) from Ar is equivalent to simplex basis change. The update of node labels after this basic exchange clearly maintains complementary slackness. The pivoting strategy however is different for the algorithm with a FIFO management or the other refinements. In these variants of the algorithm the updating version of the primal simplex algorithm is different from the version of the algorithm with $R D Q$ in the sense that a basis exchange is performed each time an arc is added to Ar, but the full set of updated node labels in a subtree arc not immediately determined. In particular these variants differ from the latest refinement, ie. with $R D Q$, by requiring the complementary slackness be maintained only locally rather than globally. The result of Dial, Glover, Kannig and Klingman, [DGKK 70], emprical study of Bellman's algorithm with FIFO management and also

```
with RDQ may support the theory that it is not
necessarily beneficial to maintain complementary
slachness after each iteration. The version with
FIFO management postphones the updating of the
dual variables (node labels) and this appears to
balance the distortion caused by using locally
updating dual variables with the worh required to
maintain globally updated dual variables.
Although most of the improved versions of the
general label correcting algorithm stated in this
section, are bounded from above by O(nm), these
efficiency changes from algorithm to algorithm.
The results of worst case analysis and computer
memory requirement of these implementations are
tables below:
```

		\sim	m	\sim	\sim	m	＊
					－	－	
	$\underset{\text { cos }}{\substack{\text { c }}}$	ω	\pm	n	m	－	\sim
	$\stackrel{\text { 岂 }}{\stackrel{\sim}{\sim}}$	\mathfrak{m}_{0}^{\sim}	${ }_{\frac{m_{E}^{5}}{}}$		${ }^{\mathrm{m}} \underset{0}{5}$	${ }_{\text {m}}^{0}$	$\stackrel{\sim}{5}_{5}^{\square}$
	$\underset{\alpha}{\underset{\alpha}{x}}$	σ	m	σ	m	\sim	\checkmark
	$\begin{aligned} & 山 \\ & \stackrel{\sim}{\widetilde{c}} \\ & \stackrel{y}{心} \end{aligned}$	${\underset{\sim}{c}}_{\underline{E}}$	$\frac{\widehat{E}}{\stackrel{E}{5}}$		$\stackrel{\text { E }}{\stackrel{\text { E}}{0}}$	产	¢
		몽		$\frac{\stackrel{\Gamma}{E}}{\stackrel{\Gamma}{E}}$			

In the above table the codes for the algorithm which are used in this work are considered for worst case analysis and also memory requirement. The structure of the input data is not considered in memory requirement. The "rank" columns indicate the order of performance of the algorithms. This latter conclusion is based on the discussions through out this section about the algorithms; our empirical study (stated in section 10.). and also the comparison of many publications on practical and emprical studies of these algorithms such as [DEFO TGa], [DGKK 79], [VLIE 78], [IMAI 84] and [PAFE 74].

Classifying the nodes either as permanently or temporarily labelled, where a permanently labelled node is one with a label which is the shortest path length. Then if step (3) of general labelling algorithm, in section 7 , is modified such that it finds a node r with the minimum temporarily label defined by,
$d(r) \equiv \min \left\{d(i)+W_{i j} \quad\right.$ for all permanently labelled nodes 1 and unlabelled nodes j)
and makes the label of node r permanent, then the resulting algorithm is the general label setting algorithm. This algorithm was first proposed by Dijkstra, [DIJK 59], also a similar result was obtained inclependently by Dantzig, [DANT GOJ.

Now, let set $N \cdot r$ represent the set of permanently labelled nodes, complemented by set ($N-N \cdot w$) which contains the temporarily labelled nodes. Define,

A* $(0 A)=\left\{(i, j) \mid i \in N_{T}\right.$ and $\left.j \in\left(N-N_{r}\right)\right\}$
then the general label setting algorithm, named after Dijkstra, is as follows:

```
Dijkstra's algorithm (in general form);
begin
step 1 {initialise}
    for i:= 1 to n do
        begin
            d(i) := = ;
            FN(i) := 0
        end;
        d(s) := 0;
        FN(s) := s;
        N-T := {s};
step 2 {search and replace}
        while (A: = 0) do
            begin
            choose v \in (N-NT) such that d(u)+
            Wuv = minimum
                    {d(i) + W Wij l (i, j) E A*};
                    NT
                    A*}:=\mp@subsup{A}{}{**}-{(i,v)|i\in\mathbb{N}
        end
    end.
If this algorithm, in the process of finding an arc in \(A^{*}\) which yields the shortest path tree extension, in step 2 , many possible labels are calculated and discarded. The following implementation of this algorithm retains this information and thus avoids recalculations. This implementation of Dijkstra's algorithm will be referred to as Dijkstra's algorithm.
```

```
Dijkstra's algorithm;
begin
step 1 {initialise)
for i := 1 to n do
    begin
        d(i) := W/wi;
        if (d(i) }\not=\infty)\mathrm{ then
        FN(i) := s
    end;
    d(s) := 0;
    FN(s) := S;
    min := \infty;
    dum := 0;
    NT := {S};
step 2 {search and replace}
while (N - N- }\not=0\mathrm{ ) do
begin
step 2'. {update NT
    for i := 1 to n do
        if (i not in N}\mp@subsup{\mathbb{N}}{\textrm{T}}{}\mathrm{ ) and (min > d(i)) then
            begin
                min := d(i);
                dum := i
            end;
    NT
step 2" {update (N - N-r)}
    for i := 1 to n do
        if (i not in NT) and (d(i) ) (d(dum) + Wrammi)) then
        begin
            FN(i) := dum;
            d(i) := d(dum) + W.gum i
        end
    end
end.
In the above procedure variables dum and min are
used to find the node which will become
permanently labelled next.
Theorem 15: Dijhstra's algorithm terminates in \(O\left(n^{2}\right)\) time and \(d(i)\) defines the shortest path
```

length from the source to each node i if the network contains no arc with negative weight.

Eroof: The proof of termination is by inspection. At each stage of the algorithm the nodes are divided into ε sets, N_{T} and ($N-N_{T}$). At each repetition of step 2, one more node becomes permanently labelled in step $\frac{3}{}$ and joins the set NT. Thus after ($n-1$) repetition of step?, (N $\left.-N_{T}\right)=0$ and algorithm terminates. In step

2', each operation is repeated at most in times and so is each operation in step e". Thus the algorithm runs in $o(n \geqslant)$ time. The proof of validity is inductive. Consider step 2, fsearch and replacel after $k^{\text {t.r. }}$ repetition and suppose that each node in N_{T} is labelled correctly, that is for each node $i \in N$, $d(i)$ defines the length of the shortest path. This is clearly true when $k=1$, since $N_{T}=\{5\}$ and s is labelled correctly. Now suppose that node $v \in(N-N T)$ is chosen to be labelled next and let $F N(v)=U$, then

$$
d(v)=d(U)+W_{L, I}
$$

clearly if $U \in N T$ then $m i n=d(v)$. Now suppose $U \in(N-N r)$ in fact let node x be the first

```
node on the path from s to v which is not in NT
and let }NN(x)=2
```



```
Then, if all aro weights are non-negative,
d(v)\geqslantd(x)+W
but d(x) + Www % min, otherwise }x\mathrm{ would have been
labelled, then, d(v)\geqslantmin.
But if v is chosen to be labelled next, then
clearly there is a path from s through z to v with
d(v)\leqslantmin.
Therefore, d(v)=min, and hence v is going to be
labelled with FN(v)=u where }u\in\mp@subsup{N}{T}{}\mathrm{ . Thus v is
labelled correctly and d(v) is the length of the
shortest path from the source to node v.
Note that the proof of validity of the algorithm
breaks down if the network contains an are with a
negative weight, since we could not show that
d(v) \geqslantmin.
```

Sequencing techniques and lists are also used to improve Dijkstra's algorithm. Yen, [YENJ 7こ], implemented the general form of Dijhstra's algorithm with a refinement similar to the one above, except that he stored (N - Nr) as a linked list and then in step \sum^{\prime}, \{update $\left.N_{T}\right\}$, instead of obtaining dum, the node at the top of the 1 ist was used and then the upward pointer moves to point to the old pointer's successor. This implementation will still run in $O(n *)$ time.

The manner in which set ($N-N_{r}$) is searched and updated effects the computational timing directly. However having ($N-N$ r) partially sorted rather than fully sorted as in, [YENJ 72], is more efficient since, firstly some nodes $1 \in(N-N r)$ have $d(i)=$ ∞ and secondly set ($N-N T$) will usually change slightly from one iteration to the next (these statements will be justified in the remaining of this section).

Before considering further improved implementation of label setting algorithm, let us consider its relationship with simplex method. Let the set of aros in $A T$ be the set of basic variables, complemented by artificial arcs which start at the

```
source, s, and at node i for each i }\inN-Nr suc
that Wmi = w. Then the label setting algorithm
may be viewed as a special purpose primal simplex
method. Clearly, d(i) satisfy complementary
slachness at each iteration,
ie. -d(i) + d(j) = Wi,i for (i, j) \in AT and -d(s)
+d(i) = Wmi, for i\leqslantN-Nr.
```

Furthermore, the process of selecting an improving arc (i, j) to enter the basis corresponds to searching, in some manner, for an arc which violates dual feasibility (ie. $\left.-d(i)+d(j) \geqslant W_{c i}, y\right)$ by the largest amount. Then the process of adding such an arc to At and deleting the artificial and corresponding to the terminal node of this arc, t, from this basis is equivalent to simplex basis exchange. The setting of $d(t)$ after performing this basis exchange simply maintains complementary slackness. Therefore, like label correcting algorithms, label setting algorithms are special purpose primal simplex methods which use different pivot strategies.

To have set ($N-N_{r}$) partially sorted, $\left(N-N_{r}\right)$ can be maintained as a heap, as explained in section 4. The use of a heap was evidently first reported for this application by Murchland [MURC 60J, however he failed to note that his treatment yields a worst case bound on complete networks of $O(n=10 g n)$ time, not as good as the original algorithm which runs in O (n*) time. This was first noted by E Johnson, [JOHN 72].

To consider 1 mplementation of the general label setting algorithm with a heap, first let us define two more operations on heaps, these two operations sift up and sift down are parts of the procedure heapformer given in section 4. Furthermore in our implementation as was first suggested by D Johnson, [JOHN 77], each non-empty key of the heap will possess some node i in a non-negative network, and the value of the key will be the value $d(i)$. The two operations sift up and sift down are concerned with a heap in which a single key had its value changed. If the value decreases (this case includes the case where a new node is added at the leftmost empty key on the lowest level), the heap is restored if the path from the root to the key of decreased value is reordered.

```
This may be done by comparing the value of the
changed key with the key above (its predecessor in
the tree). If the changed lrey has a lesser value
then the values of the keys are interchanged, and
the process is repeated on the key with the
original change until no more interchange is
required or the root is reached. The cost of this
process is proportional to distance the changed
value moves in the heap. This cost is bounded by
the order of the depth of the heap, O(log*"') where
n is the number of keys in the heap and value of k
depends on the tree type, ie. k = 2 in a binary
heap, k = d in a d-heap. The procedure for
restoring a heap, h, following a reduction in some
d(v) is as follows:
Procedure siftup (v);
begin
    q := key (v)
    repeat
        if (q not the root) then
                if (d (v) <d(h(F\mathbb{N}(q))) then
                begin
                    h (q) := h (FN(q));
                    q:= PN (q)
            end;
        until (no key is moved);
        h (q) := v
end;
If the value of a key increases, the ordering of
the entire subtree rooted at the key with changed
value is affected. Clearly in this case it is
```

```
sufficient to reorder the path from the changed
Key toward the levels which is of the least value
at each level. Hence the cost is proportional to
klogm", since one of the }k\mathrm{ choices must be made at
k each key of the path except the last. The
algorithm for restoring a heap, h, following an
increase in some d(v) is as follows:
Procedure siftdown (v);
begin
    q := key (v)
    repeat
        if (q not in last level) then
            begin
                F := key of node u of min d(u) on the
                subheap rooted at key (q);
                if (d(v) > d(h (p))) then
                begin
                    h (q) := u;
                        q := P
                end
            end;
        until (no key is moved);
        node (q) := v
end;
```

The proof of termination of these two operations
within the time bounds stated are direct results
of theorem 9, and more detailed versions of the
procedures can be seen in procedure heapformer,
given in section 4.
In the implementation of Dijkstra's algorithm, we
will change values associated with nodes creating
new heys when necessary on the bottom of the heap)
and also identifying and removing the least element of the heap. This identification is in o(1), since the least element of key value is always at the root of the heap. These operations are explained in section $4, \operatorname{DELETE}(1, h)$ and GETMIN (h). Then the least value which is removed is replaced with the value from the rightmost key on the lowest level of the tree. This preserves the heap. Restoring order is then of 0 ($k \log r$, since the removed in a heap of size $n+1$ is equivalent to an increase of the root value in a heap of size n, the following implementation of Dijkstra's algorithm with a heap differs from that of D Johnson, [JOHN 77], mainly in the definition of keys, here are suggested by Tarjan, [TARJ 84], the hey of a node v, has a value $d(v)$ which is the length of the shortest path from s to v.

```
Dijkstra's algorithm with a heap;
begin
    for i := 1 to n do
        begin
            d(i) := m;
            F(i) := 0
        end;
            d(s) := 0;
            FN(s) := s;
            heapformer (h);
            v := s;
                while (v }\ddagger=0\mathrm{ ) do
                    begin
                        for i := point (v) to (point (v + 1) - 1) do
                    if (d (i) > d(v) + WVi})\mathrm{ then
                        begin
                                    d(i) := d(v) + WVi;
                                    FN(i) := v;
                                    if (i not in h) then
                                    begin
                                    ADDH (i, h);
                                    siftup (i)
                                    end
                            end;
                        v := GETMIN (h);
                        DELETE (v, h)
        end
end.
```

By inspection, in this implementation there are one heapformer, n, DELETE operations, in ADDH operations and at most m decrease or label updating operations. Therefore if we use a binary heap, the algorithm runs in $O(m \log n)$, and if a dheap with $d+2+m / m$, then the running time is in 0 (m log $a \mathfrak{m}+\cdots n$). The proof of validity and termination of these algorithms in the stated time bounds is the direot result of the above discussions and theorems 9, 11, 12 and 15. The

```
result of this implementation is clearly superior
to that of Difkstra's for spouse networks.
```

Fredman and Tarjan, [FRET 85], suggest the use of a heap called, FIBONACCI heap, which is an extension of binomial queues, see section 4 , instead of a d-heap to implement Dijkstra's algorithm. The resulting algorithm is then bounded from above by $0(n l o g(n+m))$ which gives the best result in implementing the algorithm with a heap. This implementation is the same as the one described above however, we have not analysed it in this work.

Another method which provides a more direct access to a temporary labelled node with the minimum total weight is called "address calculation sort". This method was orginally developed by Dial, [DIAL 65], and is based on the following observations.

If a node v not yet in the minimum tree, ie. $v \in$ $N-N_{T}$, has a finite total weight, then it has been labelled, ie. a path to node v has been determined, Since any node can anly be labelled from a permanently labelled node, then v must have been labelled by a node $u \in N T$.

```
    Upon being relabelled by node u, v's total weight
    will have become equal to d(u), total weight of a
permanent node u, plus the weight of the arc (u,
v). Therefore, for any labelled node v}\inN-Nr we
have d(v)=d(u) + (the weight of some arc) where
uENT. Now suppose that node v is a temporary
labelled node with the minimum total weight, d(v),
then d(v) bounds from above all the permanently
labelled nodes, ie. if u\leqslant NT then d(u)\leqslant d(v),
since a node }u\inN|\mathrm{ has entered the tree before v
E N-NT. It also bounds from below the weights of
all the temporary labelled nodes, ie. if t EN-Nr
then d(t)\geqslantd(v). Furthermore, the weight of any
temporary labelled node t }\inN-NT - {v} is bounded
from above by d(v) plus the maximum aro weight in
the network; since the total weight of t equals
the total weight of some permanently labelled node
plus the weight of some arc, and d(v) bounds from
above all the permanently labelled nodes.
Therefore, denoting the maximum arc weight of a
network by WMAX, then
```

$d(v) \leqslant d(t) \leqslant d(v)+W M A X$
ie. at any stage in the execution of the algorithm, if node v is a temporary labelled node

```
with the minimum total weight, then the total
weights of all the temporary labelled nodes are
bracketed on the lower side by d(v) and on the
upper side by d(v) + WMAX.
```

Using this property, at any stage in the execution
of the algorithm, the total weights of all the temporary labelled nodes can be represented modulo WMAX +1 . The best way to illustrate this is by loosely defining an array, NODEARRAY, with (WMAX + 1) locations where:

NODEARRAY(i) stores any labelled node, $u \in N-N T$, for which $d(u) \bmod (W M A X+1)=i$.

Theorem 16: At any stage in the algorithm, NODEARRAY, can store temporary labelled nodes with every possible total weight, and no location of NODEARRAY will contain nodes with different total weights.

Eroof: Suppose that, at some stage in the algorithm a temporary labelled node v has the minimum total weight among such nodes, and let $d(v) \bmod (W M A X+1)=1 . \quad$ Furthermore let node v be any other temporary labelled node. Node r will

```
be stored in location i of NODEARRAY. The minimum
value of d(r) is d(v) and at this value node }
will also be stored in the same location, ie.
NODEARRAY(i), since
d(r) mod (WMAX + 1) = i.
As d(r) increases by one unit at a time, then d(r)
mod (WMAX + 1)= i+1, i+2, ..., consequently node
r will be stored in locations i+1, i+2, .....
When d(r) reaches (WMAX + 1), then d(r) mod (WMAX
+ 1) = 0, and node r will be stored in location 0,
ie. NODEARRAY(O). As d(r) increases from (WMAX +
1), then d(r) mod (WMAX + 1) = 1, 2, ..., and node
r will be. stored in locations 1, 2, ..., in
NODEARRAY. Eventually d(r) reaches the maximum
possible value that it can have, ie. d(v) + WMAX,
but (d(v) + WMAX) mod (WMAX + 1) = (d(v)-1) mod
(WMAX + 1) and since, d(v) mod (WMAX + 1) = i,
then (d(v) - 1) mod (WMAX + 1) = (i-1). Therefore
temporary labelled nodes with any possible total
weight can be stored in NODEARRAY, and no location
of NODEARRAY will contain nodes with different
total weights. t
```

As a result of the theorem above, NODEARRAY achieves an "automatic sort" of the labelled nodes not yet in the tree relative to their total

```
weights. That is, starting from any location i in NODEARRAY,
locations i+1, it2, ..., will contain nodes of increasing total
weight values. Upon reaching the end of the array, nodes in
location O will have a higher total weight than those in
location (WMAX + 1).
```

To complement NODEARRAY for computational purposes, it is
arranged as follows:

```
NIL if i\not=d(v) mod (WMAX + 1)
    for any v\inN-Nr:
```

NODEARRAY(i) =
Where F is a pointer to
the first node in a
linhed list of nodes
$q \in N-N r, ~ s u c h$ that
$d(q) \bmod (W M A X+1)=i$.

The ourrent minimum total weight is then found by sequencially examining the elements of NODEARRAY in a "wrap-around" fashion fie. when the end of the array is reached, go back to the beginning?. Each time a pointer is encountered, the current minimum total weight is that of the nodes in the

```
linked list associated with that pointer. Each
node u in this linked list can then be searched
and removed from the linked list. A relabelled
node v will have its location in NODEARRAY
calculated, ie. d(v) mod (WMAX + 1) and added to
the appropriate linked list. This may involve
removing node v from its ariginal linked list.
The examination of NODEARRAY always assumes where
the last examination ended so nodes with
increasing total weights are encountered each
time. The algorithm terminates when NODEARRAY is
empty, implying that all the labelled nodes, or
reachable nodes from the source, are in the tree.
Here, we explain, rather than give an
implementation of this algorithm because of the
complexity and the length of it. However, the
complete Fascal code of this implementation is in
appendix D.
```

```
Algorithm Address Calculation;
begin
    step 1
        {initialise};
    step.2
        while (NODEARRAY is not empty) do
        begin
            search through NODEARRAY to find the next
            pointer to a linked list;
            if (a pointer to a linked list is found) then
            begin
                repeat
                    find the next node u, in the linked list;
                        add node u to the tree nodes;
                        for each forward star arc of node u,
                        (u, v) where v }\inN-NT, d
                                if (d(u) + Wuv < d(v)) then
                                begin
                                    if (node v is already in a linked
                                    list in NODEARRAY) then
                                    begin
                                    compute node v's current address
                                    (location) in NODEARRAY;
                                    remove node v from its current
                                    linked list pointed to from this
                                    address;
                                    end;
                                    d(v) := d(u) + Wuv;
                                    FN(v) := u;
                                    calculate node v's new address;
                                    add node v to the linked list
                                    pointed to, from this address;
                                    end;
                                    remove node u from the linked list;
                                    until (every node, }u\mathrm{ , in the linked
                                    list has been examined);
                    end;
        end; {while}
end.
The proof that this algorithm is correct is the
direct result of theorems 15 and 16. By
inspection, we can also observe that this
algorithm runs in O(n(WMAX + 1)) time and requires
O(WMAX + 1) memory space. Clearly, it is not
```

```
possible to theoretically compare this algorithm
with the other labelling algorithms, but almost
all empirical studies of such algorithms have
identified this implementation as the fastest
single source algorithm for both sparse and dense
networks in which WMAX is small compared with n
and m, ie. (WMAX)=O(n) or at mOst (WMAX) = O(m).
```

However, in case of small networks with WMAX rather large, this implementation will be much slower than the other labelling algorithrns.

This implementation can be improved by reducing the effort of inserting and removing nodes on the linked lists by postponing adding nodes to the list. This can be done by observing that it is unnecessary to scan the entire forward star of a permanently labelled node v. In particular, only the erndpoint of a minimum weight aro in such a forward star needs to be considered for addition to NODEARFAY. This follows from the fact that the total weights of the temporary labelled nodes determined from node v will be bounded from below by the total weight of such an arc with the minimum weight. This refinement was first. suggested by Dial, Glover, Karney and Klingman,
[DGKK 79], however it requires that the network to
be stored in a sorted forward star form which
requires some preprocessing in o(na) time and
this, clearly, makes the use of such
implementation inefficient.

Another method of storing the temporary labelled nodes relative to their total weights is by means of buckets, see section 4. A precursor to this method is given by Loubal, [HITC 68], Dial, [DIAL 65], and also Gilson and Witzgall, [GIWI 73]. In this method, temporary labelled nodes whose total weights fall within a specified range are stored together. The collection of nodes is called a bucket. To sort several temporary labelled nodes of differing total weights, several buchets may be used. Each bucket will contain nodes of a different total weight range. For instance suppose that nodes A, B and C have total weights of 1,3 and 7 , repsectively. Then, if bucket 1 stores nodes v, such that

$$
0 \leqslant d(v)<4
$$

and bucket 2 stores nodes v, such that

```
4\leqslantd(v)<8
```

then bucket 1 will contain nodes A and B, and bucket 3 will contain node C.

For any bucket holding nodes v, with total weights within (a, b, ie. $a \leqslant d(v)\langle b,(b-a)$ is its width. For example buckets 1 and 2 above have a width of 4 . When several buckets are used to store temporary labelled nodes with different total weights, the set of buckets are arranged in a bucket list. The bucket list is a collection of buckets $0,1,2, \ldots$ where bucket i contains nodes v, such that

$$
a \leqslant d(v)<b
$$

and bucket (i +1) contains nodes, v such that

$$
b \leqslant d(v)<c \text { etc. }
$$

All the buckets in the bucket list have the same width. In general if X is the bucket width, then bucket i stores nodes v, such that

$$
i * Z \leqslant d(v)<(i+1) \sum
$$

The bucket list achieves an automatio sort of the
temporary labelled nodes, relative to their total
weights. To access the nodes whose total weights
are ourrently the minimum, the lowest non-empty
bucket is found. Nodes in this buchet are then
searohed, ie. their forward star arcs are soanned.
Any relabelled node is put into the appropriate
buchet. This may require removing the node from
its original buchet. Note that only nodes with
forward star aros are placed into the bucket list.
This prevents unnecessary searching of a node that
can not relabel any other node. The nodes in the
lowest numbered non-empty bucket i, an be
searohed in any order, and this ls achieved by
setting z equal to the weight of the lowest
weighted aro in the network.

Theorem 17: if $\mathcal{Z}=$ minimum $\left(W_{i, i} /(i, j) \in A\right)$, then no node can relabel another node in the same bucket.

Proof: Let WMIN $=$ minimum $\left\{W_{i j} /(i, j) \in A\right\}$ and suppose that bucket i contains two nodes u and v, both with temporary labels, and that node u is being searched. If node u relabels node v, then the new total weight of node v will be given by

```
d(v)=d(u) + (the length of some arc).
The lowest possible value that d(v) could have is
(d(u) + WMIN) and for node v to be relabelled, its
original total weight must have been greater than
this. Now bucket i holds node u, such that
```

i * WMIN $\leqslant d(u)<(i+1) * W M I N$,
therefore the lowest possible value of $d(u)$ is (i

* WMIN). Thus the lowest possible value the new
total weight of v could have is given by

```
d(v) = (i *WMIN) + WMIN
    = (i+1) * WMIN
```

and the original value of $d(v)$ must have been greater than (i+1) * WMIN. But this is contrary to the assumption that bucket i holds node v, since $d(v)<(i+1)$ WMIN. t

Corollary 1个.1: Any relabelled node will always be put into a higher numbered bucket in the bucket list.

Using this property, the search for the next lowest numbered bucket can always resume when the last one stopped.

The algorithm terminates when there are no more non-empty buckets left in the bucket list, implying that every node has been permanently labelled.

To implement the general label setting algorithm with this refinement, let us define the bucket list, BUCKLIST, a linear list, as fallows:

Bucket i in BUCKLIST will contain node v such that,

```
where }\mathcal{Z}\mathrm{ is the bucket width and is set to WMIN.
The minimum weight of the weighted arcs. The
following is an outline of this implementation,
and the complete Fascal code of it is in appendix
E.
Algorithm bucketsort;
begin
    step_1
            {initialise}
        step 2
            while (there is still a non-empty bucket do
            begin
                search through BUCKLIST to find the next pointer
                    indicating the next non-empty bucket;
                if (a pointer is found) then
                repeat
                    find the next node, R, in the bucket;
                    add node R to NT;
                    for every node C such that ( }R,C)\inA-Ar d
                    begin
                            if ((d(R) + Wrc)<d(C) then
                                begin
                                if (node C is already in bucket) then
                    begin
                    calculate which bucket node C is in;
                    remove node C from its current bucket;
                    end;
                        d(C) := d(R) + WRc;
                        FN(C) := R;
                        if (node C has a forward star arc) then
                begin
                    calculate which bucket node C is to be
                    put in;
                                    put node C into the appropriate bucket;
                                    end;
                        end;
            end;
            remove node R from its bucket;
        until (every node in bucket has been searched);
    end; {while}
end.
```

```
The proof of correctness of this algorithm is a
direct result of the theorems 15 and 17, and the
proof of its termination in O(m + (n * E) is by
inspection and clear, note that the number of
buckets necessary for the computation is at most C \((n-1)\).
```

The efficiency of the above method, hnown as 1level bucket depends highly on the parameter z. Based on this observation, Denardo and Fox, [DEFO TGal, introduced the 2 -level and h-level bucket techniques which have better computation times than the 1-level bucket technique. In 2 -level bucket technique the temporary labelled nodes are maintained by a e-level bucket system. That is on the first level the nodes are distributed into Z buckets of width $z \quad *$ WMIN and on the second level, the nodes which are contained in the smallest numbered bucket that is non-empty on the first level are distributed into 2 buchets of width WMIN of the second level. By doing so, the computation of the method will be reduced to $0(m+$ n (3 , time. The k-level bucket technique is similar to s-level bucket and reduced the computation time to $0\left(m+K n Z^{\eta}, k\right)$. However, we have not considered this refinement in this work.

All label setting algorithms run approximately in $O(n *)$ time in worst case. However, as a result of the above discussions and theorems concerning the label setting algorithms, the study of many practical and empirical surveys such as those used for comparing label correcting algorithms and also our own empirical study of the best of these algorithms which is introduced in section 10 , we can draw the following conclusions about the label setting algorithms. In this conclusion, it is assumed that the maximum weight of the weighted arcs in a network is small compared with n^{*}.

ALGORITHM	UPPER TIME BOUND				MEMORY		OTHERS
	SPARSE	RANK	DENSE	RANK	NODE SIZE ARRAY		
					BOOLEAK	NuMERICAL	
Dijkstra	$0\left(n^{2}\right)$	5	$0\left(n^{2}\right)$	1	.. 1	2	
with Binary heap	$0(m \log n)$	4	$0\left(n^{2} \log n\right)$	5	1	3	
with d-heap	$0\left(m \log _{(2+m / n}{ }^{n}\right)$	3	$0\left(n^{2}\right)$	2	1	3	
with address calculation	$0(n(W M A X+1))$	1	$0(n(W M A X+1))$	3		4	1 (WMAX +1)
with l-level bucket	$0(m+n z)$	2	$0(m+n z)$	4		4	$1(m+z)$

```
In this section, five different implementations of
labelling algorithms are evaluated by solving the
one-to-all problem on a diverse set of randomly
generated networks using the same computer (FRIME
750., the same compiler (FASCAL RUN COMPILER) and
executing the codes during a time period with a
constant demand on CFU time. The implementations
studied here are:
1. Difkstra's label setting, sl;
2. general label setting with address
        calculation, SE;
3. general label setting with 1-level buckets, S3;
4. general label correcting with a queue, using FIFO management, C1;
5. general label correcting with a output restricted double ended queue, \(C=\)
Each algorithm is used to solve the same set of "small" randomly generated networks, and its performance behaviour is observed as:
```

(a) the number of nodes in the networks
Srows:
(b) the number of arcs in the networks grows.

The number of nodes, n, in the networks are 10, 20, 40, 60, ..., 200 and for each node size there are 9 networks which vary with respect to random variation in their number of arcs, m, which is bounded from above by k, where k takes the values,

In other words we consider a complete network, ie. $m=n(n-1)$, and generate random networks with n nodes which are (100-k)\% arc free, for k90, $80,70, \ldots, 20$ and we repeat the process for different values of n which are stated above. In all the networks the arc weights are three digit random numbers, regardless of the node size or the arc size. In the following algorithm, used for generating a random network with n nodes and $k n(n-1)$ arcs for a given n and a given k 100
where $100 \leqslant k \leqslant 100$, the procedures RAND2 and n
RAND 3 produce 2 and 3 digit random numbers.

```
Algorithm Random Network;
begin
    for i := 1 to n do
    for j := 1 to n do
    if (i \not= j) then
    begin
            RAND2 (num);
            if (num < (100-k-1))
            then
                RAND3 (Wij)
            else
                Wi,
    end
end;
Note that we require m\geqslant (n-1) in order to have a
connected network, thus k\geqslant100.
                                    n
The following table illustrates the computational
times of the implementations tested.
```

n NODES	k DENSITY (\%)	CPU TIME IN MILLISECONDS				
		C1	C 2	S1	S2	S3
10	10	0	0	3	24	79
20	10	6	3	9	61	91
40	10	21	21	63	79	116
60	10	58	58	137	109	145
80	10	97	103	239	130	179
100	10	151	124	366	172	230
120	10	209	206	515	233	287
140	10	352	339	700	273	336
160	10	412	388	903	342	394
180	10	648	842	1152	397	458
200	10	651	730	1400	458	503
10	20	3	3	6	40	82
20	20	12	12	18	48	100
40	20	58	61	73	78	131
60	20	91	94	158	118	170
80	20	164	187	272	173	239
100	20	309	306	421	239	300
120	20	476	500	603	324	376
140	20	530	663	803	397	440
160	20	778	985	1027	485	521
180	20	864	903	1300	615	648
200	20	1409	1576	1591	725	755
10	30	3	6	9	40	88
20	30	19	15	24	49	103
40	30	49	46	82	85	140
60	30	139	154	176	143	203
80	30	228	233	300	218	279
100	30	481	660	467	306	357
120	30	694	745	661	412	454
140	30	921	788	888	527	557
160	30	1045	1222	1167	672	700
180	30	1521	1639	1464	788	809
200	30	1700	2397	1785	943	955
10	40	6	7	9	34	91
20	40	21	15	25	58	106
40	40	97	82	90	97	155
60	40	233	200	200	176	243
80	40	360	418	331	252	306
100	40	676	788	512	367	415
120	40	866	1048	734	521	548
140	40	1321	1618	976	633	667
160	40	1376	1712	1276	788	812
180	40	1967	2328	1594	970	978
200	40	2445	3081	1957	1154	1146

$\begin{aligned} & n \\ & \text { NODES } \end{aligned}$	$\begin{gathered} k \\ \text { DENSITY } \\ (\%) \end{gathered}$	C1	C2	S1	S2	S3
10	50	6	10	10	33	91
20	50	33	34	27	51	112
40	50	97	110	97	112	173
60	50	260	303	212	185	257
80	50	575	591	372	309	363
100	50	585	673	563	425	464
120	50	963	1149	813	594	618
140	50	1609	1600	1079	725	749
160	50	1924	2379	1394	939	954
180	50	2206	3203	1749	1136	1131
200	50	3227	3933	2158	1370	1360
10	60	7	9	9	46	91
20	60	36	36	30	54	109
40	60	109	122	110	115	179
60	60	297	324	234	218	276
80	60	676	952	403	336	385
100	60	852	1012	616	491	524
120	60	1215	1533	869	679	697
140	60	1821	2537	1167	870	885
160	60	2118	2654	1509	1085	1070
180	60	2961	3534	1888	1297	1294
200	60	3836	5815	2330	1554	1545
10	70	9	9	6	36	94
20	70	31	27	33	55	112
40	70	163	185	115	131	200
60	70	333	448	251	225	288
80	70	706	912	430	370	412
100	70	894	1224	661	527	558
120	70	1475	1758	934	739	755
140	70	1882	1970	1251	958	972
160	70	2537	3048	1627	1203	1194
180	70	3188	4309	2037	1476	1451
200	70	4734	7691	2500	1764	1764
10	80	9	9	13	36	94
20	80	30	33	33	60	112
40	80	142	160	122	140	209
60	80	379	524	263	254	316
80	80	621	667	463	403	445
100	80	1100	1354	730	600	639
120	80	1493	1718	1012	797	818
140	80	2657	4566	1343	1057	1054
160	80	3127	3597	1739	1324	1312
180	80	3715	5097	2194	1615	1600
200	80	4591	5897	2691	1933	1927

n NODES	k DENSITY $(\%)$	$C 1$	$C 2$	S1	S2	S3
10	90	12	12	13	40	94
20	90	39	40	36	63	118
40	90	228	249	127	149	212
60	90	445	673	281	276	333
80	90	894	1073	500	448	500
100	90	1139	1737	761	637	667
120	90	2013	2748	1070	876	897
140	90	2591	4263	1436	1136	1139
160	90	3470	4636	1869	1440	1419
180	90	4430	6582	2321	1754	1739
200	90	6143	8967	2867	2161	2131

The following conclusions based on the above table can be drawn about the tested algorithms.

1. The general label setting implemented with address calculation sort is the most efficient. However, in this study only small networks (ie. $n \leqslant 200$) are considered and the arc weights are small compared with $n=$.
2. The general label setting with buchet sort is almost as efficient as the one with address calculation, especially in case of dense networks.
3. The general label correcting with a output restricted double ended queue is more efficient than that with a single queue for sparse networks (K K 20\%) and also for small networks ($n \leqslant 100$).
4. Dijhstra's algorithm becomes more efficient as the number of nodes grows and also as the network becomes more dense, especially for k ; 30\%, Dijkstra's algorithm becomes the third best.
5. The general label correcting with a single queue managed with FIFO, becomes the fourth best with $n \geqslant 120$, and the general label correcting with output restricted double ended queue is the third best with $k \leqslant 20 \%$, the fourth best with $n \leqslant 100$ and the fifth best otherwise.

Figure 12, illustrated the graph of the average GPU times of the algorithms against different densities in the same set of diverse randomly generated networks with upto 200 nodes.

Figure 12, the graph of average CPU times for networks with up to 200 nodes.

PARI III

ALI SGURER ALGORITHMS

11 MATRIX MULTIPLICATION ALGORITHMS

```
    To study all source algorithms, as defined in
    problem classification,
let din}\mathrm{ (m; = the length of a shortest path from i
    to j subject to the condition that
    the path contains no more than m
    aros.
```

then if $W_{x}=0$, for all i,
(11.1)
$d_{i i} \times \omega=0$
$d_{i j} \times \infty=\infty$
$d_{i j}(m, m)=\min \left\{d_{i k}\left(m ;+W_{k, j}\right\}\right.$
Clearly the computation of (11.1) will converge at
the $(n-1)$ mit operation, ie. $d_{i y}(n \cdots)=d_{x j}$. The
overall computation is in $O\left(n^{4}\right)$. time, since it is
the n repetition of Bellman's algorithm which runs
in $O(n ;)$ time. However, these equations have a
property that their computation is equivalent to
the "plus-min" inner product,

```
    ie. let c=[C [ij]=AB
    where C.i.i}=\mp@subsup{\sum}{k=1}{n}\mp@subsup{a}{i&}{
and suppose that the matrix multiplication is
redefined as *, where
C=[C Ci.i}]=A*
    and
```



```
ie. let addition take the place of multiplication
and minimisation take the place of addition.
Now let D = [di.j] and consider W = [w.w], ie.
represent di.i's in a n*n array and consider the
adjacency matrix representation of the arc
weights, then:
D<os=[d<o,
D`*, = D`@い * W
```



```
Theorem 18: Plus-min inner product method solves
equations of (11.1) in O(nslogmm).
```

```
Eroof: For this type of matrix multiplication,
clearly, Dco; is the identity matrix.
ie. D<%> *W = W, furthermore the multiplication
```



```
is the (n-1)ms. power of W.
```

Now since $W^{2}=W^{x \cdots \cdots}$ for any $a^{\prime \prime}(n-1)$, then it
$i s$ appropriate to square W until a sufficiently
high power of W is obtained, ie. $W=W * W$,
then, $W^{4}=W^{*} W^{*}, \ldots . W^{*}$, for $e^{*}>(n-1)$.
Now clearly this method requires loge'
multiplications, each of which is an O ($n=$. Thus
the method salves the equations in $0(n=10 g m) . \quad t$

This approach to "all-to-all" shortest path problems was first made by Farley, Land and Murchland, [FALM 67], and the algorithm was called, by them, "cascade algorithm". Hu, [HUTC 67], also gives an extensive discussion on this type of approach to all-to-all problems.

The earliest work on this type of algorithm was by FLOYD, [FLOY 6こ], on a paper by Warshall, [WARS 62], on transitive closure which is equivalent to a shortest path problem in which all arc weights are zero. This method runs in $O(n=10 g \times \cdots)$ time. Before considering triple algorithms, let $d_{i, j}$ ar: be redefined as:
$d_{i, y}$ 'm $=$ the length of a shortest path from i to j subject to the condition that the path does not pass through nodes $m, m+1, \ldots, n$ (except i and j.

Now, a shortest path from i to j which does not pass through nodes $m+1, m+2, \ldots, n$ either
(1) does not pass through node m in which case $d_{i, j}(m+1)=d_{i j}(m ;$;
or
(2) does pass through node m in which case $d_{i j}\left(m ;=d_{i m}<m ;+d_{m, j}(m \cdot)\right.$.

Thus we have,

```
(12.1) di.j"1] = Wi,j.
                                diji}(m+1)=min (dinj(m), dim (m; + dm,j (m;)
and clearly, di.j(n+i) = dinj, the length of a
shortest path from i to j. This algorithm is
named after Warshall-Floyd and has the following
general form:
Algorithm Warshall-Floyd;
begin
    {initialise)
    for i:= 1 to n do
    begin
        for j:= 1 to n do
            di,j
        diti}=
    end
        {search and replace)
    k:= 0;
    while (k < n) do
    begin
        k:= k+1;
        for i:= 1 to n do
        for j:= 1 to n do
            (dij, (dik}+\mp@subsup{d}{kjj}{}))
    end;
        {check)
    for i:= 1 to n do
    if (dii < 0)
    then
            report failure
    else
            report success
end.
```

Theorem 19: Algorithm Warshall-Floyd terminates in $O(n$) reports,
(i) success and defines a shortest path between every pair of nodes if there is no negative cycle;
(ii) failure otherwise.

Eroof: The time bound is obvious from inspection of the program, for correction let
$T \equiv d_{i, j}=\min \left\{d_{i, j},\left(d_{i k}+d_{t, j}\right)\right\}, k<n$

Clearly T is satisfied before the start of the minimisation process, ie. after the initialisation steps in the algorithm. Now let $k=k+1$ for some k under which T is satisfied initially. Clearly (12.a) examines every triple < i, K, j 》, replacing $d_{i, i}$ if and only if there is a shorter path via (1, 2,, k'\} than via \{1, 2, (k'-1)\}. But this satisfies T for $K=0$ to $k \leqslant n$, due to the fact that there can only be a maximum of ($n-1$) arcs in a path and also the results of theorems 11 and 13 , if there is no negative cyole, ie. the algorithm will halt with a solution if there is no negative oycle. Otherwise

```
for some i E N, dx: \leqslanto which indicates that
there is a negative cycle in the network.
```

Dantzig, [DANT 67], proposed a variant of Warshall-Floyd's algorithm which requires the same computation time and memory space. Both algorithms are the same except in Dantzig's algorithms the iteration step, ie. rsearch and replace) is divided into parts. If the following, (12.3), replaces (12.2) of Warshall-Floyd's algorithm, then the resulting algorithm will be that of Dantzig.
(12.3)

```
for i := 1 to k do
    for j := 1 to k do
        d}\mp@subsup{\textrm{kj}}{j}{}:=min{\mp@subsup{W}{ki}{}+\mp@subsup{d}{i,j}{}}
    for i:= 1 to k do
                            for j:= 1 to k do
                        dik:= min {dinj + Wjk: );
    for i:= 1 to k do
            for j:= 1 to k do
                            dij}:=\operatorname{min}{\mp@subsup{d}{it:}{}+\mp@subsup{d}{kj}{},\mp@subsup{d}{i,j}{}
```

The proof of correctness and termination of Dantzig's algorithm is the same as that of Warshall-Floyd's algorithm.

Iri and Nakamoni, [IRNA T2], exhibited a set of triple algorithms which run in $O(n ;$ time. Most of these algorithms are similar to and are based on Warshall-Floyd algorithm.

First we add to network G a new node ($n+1$) and a EERO WEIGHT ARC ($n+1), i)$ for every node i in G. Then dan in is calculated for every node i.

Using a label correcting algorithm will take $O(n m)$ time. Finally a new weight for each arc (i, j) can be defined by $W_{i y}=W_{i j}+$ dimpis $-d c m, j$, Clearly, $W_{i, i}>0$ for every $(i, j) E A$. This 15 due to domin being the length of a shortest path from $(n+1)$ to j which gives
$d\langle n+1)+W_{i j}>d(n+1) j$ and thus $W_{i j}>0$. This transformation makes all arc weights non-negative and preserves shortest paths, since it transforms the lengths of all paths from a given node i to a given node j by the same amount, $d_{i}-d_{j}$.

Thus this solution method is correct for negative networks as well as non-negative networks and runs in O ($n=$ time. Then it may be concluded that the modified label setting algorithms are faster than triple algorithms which are in turn faster than matrix multiplication algorithms. Although this statement is true in case of worst case anaiysis, the empirical studies of these algorithms do not quite support it. However implementation of a label setting algorithm with a F-heap or address

```
caculation sort has not yet been considered for
all-to-all problems in any empirical study, to the
best of the author's knowledge, and that unlibe
the empirical studies af single source algorithms
which mostly report consistant results, in the
case of all source algorithms most results are not
consistant. For example Dreyfus, [DFEY 6@],
reported that Dijkstra's algorithm requires 50%
more time than that of Floyd and that of Dantaig.
Yen, [YENJ 7O], reported that his implementation
of Dijhstra's algorithm is 25% faster than Floyd's
algorithm, Kelton and Law, [KELA 7BJ, claimed that
the matrix multiplication methods are most
efficient on Dense networlss, Floyd reported that
his algorithm is the fastest, Glover and Klingman,
[GLKL 8э], have results that shows Dijkstra's
algorithm is faster than that of Floyd. However,
most of these studles agree that for small
networks with up to 400 nodes, modified label
setting algorithms are faster, especially in case
of sparse networks.
```

Another reason which makes the use of label setting algorithms in solving all-to-all problems more popular is that in most practical situations
the shortest paths from every node of a subset of N to every other node in N are required, rather than from every node to every other node in N. Supposing $K(<n)$ nodes are to act as source nodes in a given network, then k repetitions of a label setting algorithm will solve the problem rather than n repetitions.

PARTIV
 SENSITIVITY ANALYSIS
 AND
 POST OPTIMALITY ANALYSIS OF ONE-TO-ALL PROBLEMS

```
In this section the sensitivity of an optimal
solution to a one-to-all problem is studied. More
precisely, the methods of characterising the
maximum increase and decrease in the weight of an
existing sro, optimal or non-optimal, that can be
tolerated without changing the optimality of the
current solution are analysed. However, before
discussing these algorithms, consider the
fallowing expansions of definitions and notations
of section z.
```

Consider a connected and undirected network $G=(N, A)$ and its minimum spanning tree, $T_{<}=\left\langle N, A_{T}\right\rangle$ rooted at node s souroe, where
$N \cdot T=N$
and $A=i\langle i, j\rangle \mid i, j \in N$, and i and j are connected) [\rangle denote an unordered pairl.

Furthermore, let F^{\prime} denote the shortest path from s to $v, a l s o ~ F^{\prime}$, denote the subpath from u to v on the shortest path $F^{\prime} v$, then $F^{\prime} \ldots \mathcal{L}^{\prime} \sim \mathcal{V}^{\prime} \propto$. Te.

```
    Ta defines a partial ordering of nodes i }\inN\mathrm{ ,
    with respect to their paths from s, ie. if
    iE F', (ie. node i is on the tree path from s to
    j) then d(i)\leqslantd(j) and we write i\leqslantf.
    Each arc \langlei, j\rangle\in Ar divides set N into two
    subsets Ni,i and N'i.j, where
Ni,i = {k / kE N and <i, j> <. P',
and N',i,j = {k | kEN and \langlei, j\rangle\in (in},
Ni,
which Te transforms after \langlei, j\rangle \in AT has been
deleted. Note that i}\in\mp@subsup{N}{i,j}{}\mathrm{ and }j\in\mp@subsup{N}{ijj.}{
Each arc <i, j\rangleE AT together with its partition
of node set N into Ni,i and N'is defines the two
following cutsets of G,
C+(i,j) = {<u, v> | u\in Ni,j and v\in N',j}
and CO(i,j) = {<u, v> | u G N'i.j and v G Ni.j)
note that \langlei, j\rangle\in C*}(i,j)
Each arc <i, j\rangle E A-AT defines the particular
cycle.
```

```
Lri, j) = {i, <i, j>, F'*i,i, i.}
```

where $F^{\prime \prime}$ i: is the unique tree path connecting node j to node i in $T_{\text {iil }}$.

```
Theorem 20: Let TG = (NT, Ar) be a spanning tree
of G=(N, A) and suppose that \langleu, v\rangle E Ar and
\langleu', v'\rangle}= \u-Ar. Then \langleu, v\rangle E k(u', v')
precisely when, <u', v'\rangle}\in = C+(u, v) or
\langleu', v'\rangle}\in\mp@subsup{C}{}{\prime}(u,v)
```

Enoof: consider $k\left(u^{\prime}, v^{\prime}\right)=\left\{u^{\prime},\left\langle u^{\prime}, v^{\prime}\right\rangle\right.$,
Pr.i..., u^{\prime}) and,
(i)
Iet $\left\langle u^{\prime}, v^{\prime}\right\rangle \in C^{+}(u, v\rangle$,
then $\langle v, u\rangle \in P^{\prime \prime}{ }^{\prime \prime} \ldots$.
since $u^{\prime} \in N_{\text {wiv }}$ and $v^{\prime} \in N^{\prime}$ w
thus 〈u*, v'〉E $C^{+}(u, v) \Leftrightarrow\langle v, u\rangle \in$
$k\left(u^{\prime}, v^{\prime}\right)$
more precisely, $\langle u, v\rangle$ is counterdirected
in $k\left(u^{\prime}, v^{\prime}\right)$.
(ii) let $\left\langle u^{\prime}, v^{\prime}\right\rangle \in C^{-\cdots}(u, v)$
than $\langle u, \quad v\rangle \in F^{\prime \prime} \cdot \ldots$.
since $u^{\prime} \in N^{\prime}$ wiv and $v^{\prime} \in N_{\text {uI }}$

```
thus \(\left\langle u^{\prime}, v^{\prime}\right\rangle \in C^{-}(u, v\rangle \Leftrightarrow\langle u, v\rangle \in\)
\(k\left(u^{\prime}, v^{\prime}\right)\)
more precisely, \(\langle u, v\rangle\) in codirected in
\(h\left(u^{\prime}, v^{\prime}\right)\).
```

(iii) let $\left\langle u^{\prime}, v^{\prime}\right\rangle \in C^{+}(u, v)$ and $\left\langle u^{\prime}, v^{\prime}\right\rangle \in$ $C \cdots\langle u, v\rangle$ then clearly $\langle u, v\rangle \in P^{\prime \prime} \cdots u \cdot$. t

```
[u, v] retraction of G is a reduced network, G',
obtained by identifying the two distinct nodes u
and v of }G\mathrm{ and deleting any possible loops that
result from this process.
```

ie. $\quad G^{\prime}=\left(N^{\prime}, A^{\prime}\right) \in G$
where
$N^{\prime}=N-\{u\}$
and
$A^{\prime}=A-A=$ where
$A^{-}=(F S(u) \Omega B S(v)) U(F S(v) \Omega B S(u))$
(Ω means intersection)

Note that A is the set of those arcs in A which would become loop arcs upon identification of u with v. Node u is called a "deal-end" node of $T_{\text {sir }}$
if it is incident with exactly one arc. $\langle u, r\rangle$, furthermore arc $\langle u, \quad r\rangle \in T_{s} i s$ called a "deadend" arc. Glearly, if in $[u, v]$ retraction of G, u is a dead-end node and $\langle u, v\rangle$ is the corresponding dead-end arc then $[u, v]$ retraction $T_{i=1}{ }^{\prime}$ of T_{s} is again a tree. More precisely, it is the tree which results from T_{G} by deleting aro <u, v> and node u.

The retractions can be used for successively determining the cutsets $C^{+}(i, j)$ and $C \cdots(i, j)$ of the tree arc $\langle i, j\rangle \in A r$, and $i n$ the case that $\langle i, j\rangle$ is a dead-end arc, then clearly these cutsets are the forward and backward star arc sets of node 1 ,
ie. $\quad \cdots(i, j)=F S(i), \quad \backsim(i, j)=B S(i)$.

For a directed network $G=(N, A)$, olearly, if parallel aros are not allowed, then
$F S(i) \Omega B S(j)= \begin{cases}(i, j) & \text { if }(i, j) \in A \\ 0 & \text { otherwise }\end{cases}$
and also,
$F S(j) \Omega B S(i)=\left\{\begin{array}{cl}(j, i) & \text { if }(j, i) \in A \\ 0 & \text { otherwise }\end{array}\right.$
thus, $A^{a}= \begin{cases}\{(i, j),(j, i)) & \text { if }\langle i, j\rangle \in A \\ \{(i, j)\} & \text { if }(i, j) \in A,(j, i) \in A \\ \{(j, i)\} & \text { if }(j, i) \in A,(i, j\rangle \in A \\ 0 & \text { otherwise }\end{cases}$

The following example clarifies the above definitions and theorem. Consider the network given in the following diagram together with its minimum spanning tree rooted at node 1.

Figure 13: Example network, numbers associated with the arcs are the arc weights.

Figure 14: The shortest path tree of the example network in figure 13.

```
    In particular consider the arcs (2, 5) € Ar and (3, 3),
    (6, 1), (1, 5) E A-Ar, then for
    (3, 5) E Ar: the two node sets are,
    Nas = (1, 2) and Nes' = (5, 6);
    the two cutsets are,
    \varrho(2,5)={(2,5)} and ©\cdots(2, 5)={(6, 1)};
    (2, 3) E A-AT: N(2, 3)= (2, (2,3), 3, (1,3), 1,
    (1,2), a), then
    (2,5) G k(2, 3), since 3 ! Nm.;
(6, 1) E A-Aw:k(\sigma, 1) = (6, (\sigma, 1), 1, (1, 2),
2, (2, 5), 5, (5, 6), 6)
(2, 5) E k(6, 1) and is codirected, since
G\inNs: and 1 E Ns.
(1, 5) E A-Ar: k(1, 5) = (1, (1, 5), 5, (2, 5),
2, (1, 2), 1)
(3. 5) E k(1, 5) and is counterdirected, since
| E Nms and 5E Nws'.
Now consicler [2, 5] retraction of G.
FS(2)=(2,3),(2,4),(2, 5))
BS(2) = {(1, 2)}
FS(5)={(5, 3), (5, 6), (5, 7)}
```

```
BS(5)={(1, 5), (2, 5), (4, 5)}
N'= = (1, 3, 4, 5, 6, 7)
A\cdots}={{FS(3)\OmegaBS(5)}U{GS(5)\OmegaBS(3)
    ={(2,5)}U0={(2,5)}
```

[Note that A° is the set of loops caused by the retraction].
$A^{\prime}=A-A=A-\{(2,5)\}$
$G^{\prime}=\left(N^{\prime}, A^{\prime}\right)$, the $[2,5]$ retraction of $G=(N, A)$
is shown in figure 15.

Figure 15: [2.5] retraction of the example network in figure 13.

The retraction has oreated parallel arcs, which are not allowed. Without loss of generality all parallel arcs except the one with the least weight from a node i to a node f in the resulting network are eliminated. In figure 16 , the simplified [2, 5] retraction of the example network is shown.

Figure 16: Simplified [2, 5] retraction of the example network in figure 13.

Note that there are always two parallel aros and the one with the larger weight is eliminated. Consider the [i, j] retraction of a network $G=(N, A)$, then for a node $u \neq 1 \neq j$ with (i, u) and $(j, u) \in A, G^{\prime}$ will contain (i, u) if Wic. < Whu, or ($j, \quad u$) otherwise. Similarly for a node $u \neq i \neq j$ with (v, i) and $(v, j) \in A, G^{\prime}$ will contain ($v, i)$ if $W_{v i}\left(W_{\sim u}\right.$, or ($\left.v, j\right)$ otherwise.

Now consider a network $G=(N, A)$ and its minimum spanning tree $T_{\Theta}=\left(N_{T}, A r\right)$ where $N r=N$ and let $\Delta(i, j)=W_{i j}+d(i)-d(j)$ clearly T_{g} is the minimum spanning tree of G if and only if $\Delta(i, j) \geqslant 0$, for all (i, $j) \in A$ in particular for every $(1, j) \in A-A T$, since node j would have been labelled from node i, this is the well known optimality oriterion.

Let the weight of an arc $(i, j) \in A$ changes by \mathcal{S}, from $W_{i n}$ to $W_{i, i}+\delta$, then the problem in this section is to determine $\left.\delta^{+(i, ~} j\right) \geqslant 0$ and $\mathcal{S} \cdots(i, j) \leqslant 0$, such that T_{G} remains optimal as $W_{i .}$ varies by $\mathcal{\delta}$, where
$\delta^{\cdots}(i, j) \leqslant \delta \leqslant \delta^{+}(i, j)$.

Furthermore $W_{i, i}+\mathcal{S}^{\cdots(i, j)} i s$ called the lower limit of $W_{i y}$ and $W_{i j}+\delta^{+}(i, j)$ is called the upper limit of $W_{i j}$.

Clearly, if (i, j) is a non optimal arc, ie. (i, j) $\in A-A$, then
$\delta \pi(i, j)=\infty$
$\hat{\delta} \cdots(i, j)=-\Delta(i, j)$.

However, in case of an optimal arc (i, j), ie.
 $\mathcal{S}^{+(}(i, j)$ and $\mathcal{S}^{-(i}(i, j)$ are rather more complicated, and are based on the following theorem.

Theorem 21: let $(u, v) \in A r$, then
$\delta^{+(}(u, v)=\min \left(\Delta(i, j) \quad l(i, j) \in C^{+1}(u, v)\right.$, (i, j) $\neq(u, \quad v))$
and,
$\delta^{\cdots}(u, v)=\max \left\{-\Delta(i, j) \mid(i, j) \in C^{\cdots}(u, v)\right\}$.

Proof: If $(u, v) \in A_{1}$ and $W_{u \sim} \rightarrow W_{L u}+\delta$, then for a node $k \in N$ either $d(k) \rightarrow d(k)$ if $k \in N_{\mathrm{L}} \in$, or $d(k) \rightarrow d(k)+\mathcal{S}$ if $k \in N^{\prime}$, . The changes in $d(k)$, for $k=1$ to n, affect the quantities optimality oriterion,
 Clearly, $\delta^{*}(u, v)$ and $d=(u, v)$ describe the range for δ such that $\Delta(i, j) \geqslant 0$ for all (i, $j) \in A-A T . \quad t$

The algorithm outset, stated below is a direct result of the above theorem and determines the lower and upper limits of an arc $(u, v) \in A r$.

```
Algorithm cutset;
begin (for the arc (u, v) E Ar do)
    obtain Nuw and N_ル';
    obtain ©-(u, v) and }\mp@subsup{\odot}{}{+}(u,v)\mathrm{ ;
    for all (i, j) E © - (u, v) do
        \delta*}(u,v) := minimum {\Delta(i, j)}
        for all (i, j) \in - (u,v) do
            \delta- (u,v) := maximum {\Delta (i,j));
            upper := Wuv + \delta
            lower := W,uv + \delta-
end;
```

In this algorithm $N_{\text {uw }}$ and $N_{\text {uw }}$ are obtained by simply cheoking N and clearly this is done in $O(n) ;$

```
~+(u,v) and }=\cdots(u,v) are obtained by checkin
FS(i) and BS(i) for every iE Nuv UN'w... This
procedure in worst case requires examining every \(\operatorname{arc}(i, j) \in A\) and hence runs in \(O(m)\) time or \(O(n=)\) in case of a complete networt.
```

Therefare the algorithm runs in $O(m)$ or $O(n \cdots)$ time and requires $O(m)$ or $O\left(n^{\cdots}\right)$ additional space. If the lower and upper limits of every aro
(i, $j) \in A r$ is to be obtained then olearly the algorithm has to be repeated ($n-1$) time, thus resulting in $O(n m)$ or $O\left(n^{*}\right)$ time and $O(m)$ or O(n) additional space lnotice that the limits of every arc is determined independently of that of the other arcs]. Sheir and Witsgall, [SHWI 80], have proposed three algorithms for obtaining the outsets. These algorithms are not more efficient than the cutset algorithm, if the aim is to obtain the cutsets of a particular are $(u, v) \in A r$, but if the cutsets of all the optimal or tree aros are to be obtained, then these algorithms prevent the cluplication of some of the calculations and bence are more efficient than repeating the algorithm cutset ($n-1$) times. All these algorithms run in $O\left(n^{*}\right)$ time, require $O\left(n^{*}\right)$ additional space and are based on the following theorem.

Furthermore, $\mathcal{S}^{+}(i, j)^{\prime}=\mathcal{S}^{+}(i, j)$ and $\delta^{*}(i, j)^{\prime}=$ $\delta(i, j)$, for $(i, j) \in A^{\prime}$.

Eroof: Clearly $W_{\text {uw }}$ = Wuv for $(u, v) \in T^{\prime}$, thus $d^{\prime}(u)=d(u)$ for $u \in T^{\prime}$

Now, if $(i, j) \in A^{\prime}-A^{\prime}$, then
$\Delta(i, j)=\Delta(i, j)$,
and hence, $\Delta^{\prime}(i, j) \geqslant 0$ which establishes the optimality of the tree T^{\prime}, as well as the equality of lower and upper limits for non optimal aros. Also for $(u, v) \in A^{\prime}$,

In this work, we will consider the implementation and analysis of one of these algorithms, called dead-end retraction, within a more complete algorithm, called sensitivity analysis, which calculates the lower and upper limits of every arc (u, v) E A. The algorithm dead-end retraction, in our opinion, is the most efficient and the simplest to program, among the three algorithms proposed by Shier and Witzgall.

In dead-end retraction algorithm the cutsets of a dead-end arc $(u, v) E$ Ar are first obtained and then the network is retracted using arc (u, v), and then the process is repeated to the resulting network and tree until all the optimal aros are considered. This manner of consideration of the optimal aros, clearly, makes the determination procedure of cutsets more efficient, since the determination of cutsets of a dead-end arc (u, v) $\in A r$ only involves the examination of $F S(u)$ and $B S(u)$, and after determination of the cutsets of an aro the network is reduced by eliminating the trivial arcs. In algorithm sensitivity analysis, given below, it is assumed that the shortest path tree was obtained by using a label setting algorithm and the order in which

Abstract

the nodes were labelled is recorded. Then a deadend aro is obtained by considering the unique backward star optimal aro of the node which was labelled later than the other nodes in a networt, the initial network or any retracted network, ie. If the nodes of a network are labelled in the order $V_{i}, v_{i}, \ldots, V_{r}$, then consider $\left(u, v_{n}\right) \in A_{T}$ first, and then after $\left\langle u, v_{1}\right\rangle$ retraction of the network consider $\left(u, v_{1, \ldots}\right) \in A_{T}$, and so on. In our implementation, given below, a shortest path tree is represented by three node size lists, one called order, initially contains all the nodes of N in the order in which they were labelled in a label setting method, and N and d, as defined before, are ordered accordingly. Furthermore, it is assumed that the network is represented by an adjacency matrix, mat, in order to eliminate the parallel aros resulted after a retraction more efficiently. The following algorithm calculates the lower and upper limits of every arc $(u, v) \in A$, and uses the dead-end retraction method of shier and witzgall to determine these limits for the optimal aros.


```
Algorithm Sensitivity analysis;
begin
    for i := 1 to n do
        for j := 1 to n do
        \Delta(i, j) := \infty;
    for i := 1 to n do
        for j := 1 to n do
        if (Wervanci;j< < ) then
        begin
            if (FN (order(i)) # j) then
            begin
                \Delta(order(i), j) := Wewsur<i;j +
                d(order(i) - d(j);
                upper := \infty;
                lower := Wordmerij;j - \Delta(order(i), j)
            end
        end;
        nn := n;
        min := + m;
        max := - \infty
        while (nn > 1) do
        begin
            for i := 1 to (nn-1) do
                if ((Win andwr(mm) < \infty) and
                    (FN(order (nn) \not=1))) then
                begin
                    if (min > \Delta (i, order (nn)) then
                    min := \Delta(i, order(nn))
            end;
        for i := 1 to (nn-1) do
            if (Worsmin(m): < \infty) then
            begin
                    if (max < (\Delta(order(nn), i) * (-1))) then
                    max := \Delta(order (nn), i) * (-1)
            end;
```



```
        lower := WCFNcorden<mis)a ordan<mm; t max;
        for i := 1 to (nn-2) do
            if <\Delta(i, order (nn)) > \Delta(1, order(nn-1)))
            then
            begin
                \Delta(i, order (nn)) := \Delta(i, order(nn-1));
                    Wi aremercm) := Wi owtercmmor)
            end;
        for i := 1 to (nn-2) do
            if (\Delta(order(nn), i) ) \Delta(FN(order (nn)),
            i))) then
            begin
                \Delta(order (nn), i) := \Delta(FN}(\operatorname{arder}(nn)), i)
                    Wordar(mm)i := W FNcongme(mm),
            end;
        for i := 1 to n do
        begin
```

 \Delta(FN(arder (nn)), i) := \infty;
 \Delta(i, pN(order (nn))) := m;
    ```

```

 Wirfincongencmin)] := \infty
 end;
    ```

```

 order (FN(order(nn))) := order (nn);
 nn := nn-1
 end {while}
 end;
    ```

In the above algorithm initially all a's are set to \(\infty\), steps 3 to 5, and then for every aro (u, v) \(E A-A T, \Delta(u, v)\) is calculated in steps 6 to 16. The lower and upper limits of every such aro is then obtained in steps 13 and 14. The variable \(n n\) indicates the number of nodes in a retracted network, and initially is set to n. In steps 20 to 58 the lower and upper limits of deadend arcs in the reverse order of being labelled in a label setting algorithm, are calculated. In steps 22 to 27 the backward star arcs of a node \(u\), the initial node of a dead-end arc, are considered and min or \(\delta^{+( }(u, v)\) is calculated. In steps 28 to 33 the forward star aros of such a node are considered and max or \(\delta^{\prime \cdots}(u, \quad v)\) is calculated. Then in steps 34 to 35 the lower and upper 1 imits of the dead-end aro \((u, \quad v) \in A r\) are obtained. In steps 36 to 57 , the \([u, v]\) retraction of the current shortest path tree is updated acoordingly. Clearly this algorithm runs in \(O\left(n^{2}\right)\) time, since
```

the while loop is executed (n-1) times and every
other loop in the while loop is executed at most n
times, it also requires O(n-) additional space.
The proof of correction of this algorithm is a
direct result of the theorems 21 and 20.

```

Applying the sensitivity analysis:algorithm to the example network of figure 13 and \(1 t s\) shortest path tree in figure 14, gives the fallowing results:

ARC

Identity Weight Activity
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 ---> & 5 & 9 & NOP & 7 & INF \\
\hline 2 ---> & 3 & 11 & NOP & 5 & INF \\
\hline a ---> & 4 & 6 & OPT & 3 & 9 \\
\hline ( \(-\cdots\) - & 5 & 4 & OPT & 3 & 6 \\
\hline 3 -- & 6 & 9 & NOP & 6 & INF \\
\hline 4 -- & 5 & 1 & NOP & 0 & INF \\
\hline 4 -- & 7 & 4 & OFT & 0 & 7 \\
\hline \(5-\cdots\) & 3 & 2 & NOF & 1 & INF \\
\hline 5 ---> & 6 & 7 & OPT & 0 & 10 \\
\hline 5 ---> & 7 & 9 & NOP & 6 & INF \\
\hline 6 -.-> & 7 & 6 & NOF & 0 & INF \\
\hline
\end{tabular}

\begin{abstract}
In the above results, the activity of an aro is OPT, if the arc is a tree arc, and is NOF, if the are is a non-tree arc. The lower and upper limits of an arc, regardless of its activity or type, gives the range within which the weight of that arc can vary without affecting the optimal solution or changing the paths in the shortest path tree.
\end{abstract}

Another method for obtaining the cutsets which was also, proposed by Shier and Witzgall is called oycle tracing algorithm and is based on an algorithm for transportation problems which was first proposed by Muller-Menback, [MULL, 68]. This algorithm is based on theorem 20. In this algorithm for each non-optimal arc \((u, v) \in A-A\), which contain (u, v) are obtained. Then the quantity, \(\Delta(u, v)=W_{w}+d(u)-d(v)\) is entered into the optimisation process for calculating \(\delta^{\cdots(i, j)}\) and \(\delta^{\cdots(i, j)}\), as shown in theorem 21 , for updating tentative minima and maxima which are initially set to \(+\infty\) and \(-\infty\) respectively. To obtain all the outsets which contain \((u, v) E A-A T, k(u, v)\) is first obtained, as described before, and then theorem 20 is used.

Finally, the third algorithm proposed by shier and Witzgall is called the tree building. In this algorithm the quantities \(\Delta(u, v)\) are calculated in the process of building the shortest spanning tree. This algorithm seems to be the most complicated and is definitely the most inefficient one among the them.

All the labelling algorithms, in fact all known solution methods for one-to-all problems, are applicable to networks with known constant aro weights. The algorithms described in section 14, for sensitivity analysis of shortest path problems give a range within which the weight of a specific arc can vary without affecting the shortest path tree. However, what these algorithms fail to show is the effect on the shortest path tree if an arc weight falls outside of its given range.

Spira and Pan, [SPPA, 78], have shown that to update a shortest path tree after a constant increase or decrease in the weight of an existant arc takes \(O(n \geqslant)\) time. It may be as efficient, in case of a non-negative dense network at least, to modify the network, ie. setting the weight of the varied arc to its new value, and resolve the problem by a label setting algorithm which will take \(O(n=\) time. In this section we present an \(O\) (nw) algorithm, Senet, which post optimises the one-to-all problems on non-negative networks whose aro weights are subject to variation. More precisely, algorithm Senet determines all the non-

\begin{abstract}
negative oritical values (at each of which the shortest path tree changes further) for the weight of a varying arc. Furthermore, Senet also reports the updated shortest path tree for every range formed by two successive critical values of the varying arc weight. Senet is applicable to the optimal, non-optimal and non-existant arcs and analysis the variations in the arc weights independently.
\end{abstract}

Let us extend the network terminology, before introducing Senet.

By an optimal solution or simply a solution to a network, we mean a shortest path tree of the network rooted at a distinguished node (source).

Let \(R_{i}\) be the set of all the paths from source to node \(i\), where no aro is traversed more than once in each path. Let \(P_{k i}\) be the path number \(k\) to node \(i\) with a total weight of du:i
 the optimum of \(R_{i}\) if and only if \(d_{m i}=\min \left\{d_{j i} / P_{i j} \in R_{i i}\right\}\). Node \(i\) is said to be labelled if the shortest path from the source to \(i\)
```

is determined. Then the label of node i consists
of two parts:

```
(i) a node which is immediately before \(i\) on
    the path from source to i, \(w N(i) ;\)
(ii) an integer representing the total weight
    of the path \(d(i)\).

Node \(i\) is said to be totally relabelled if the ordered set of nodes in its path from the source is changed.

Node i is disconnected if there exists no path from the source to \(i\). A network is disconnected if it contains at least one disconnected node.
```

Assume that there exists an optimal solution,
solution one, to a given network G. Then the set
of arcs A can be divided into two parts,
A = A1 + A%, where A, is the set of optimal arcs
(ie. those utilived by the original solution) and
A.. is the complement of A, the set of non-
existant arcs, A%, is also considered, where
A% = ((i, j): i, j \& N, (i, j) \& A)
Now suppose that the effect on the optimal
solution caused by variation in the arc (p; q) is
to be analysed, (p, q\inN), then the solution can
be analysed by considering A, and (A% + A%,
separately. In the following cases w'm
represents the original weight of (p, q).

```

\section*{(i) Optimal Case}

Set wru to infinity and solve the resulting network \(G\) (ie. find the shortest path from source to each of the other nodes).

If there exists no optimal solution to \(G!\), then ( \(p, q\) ) is optimal for all values of wou. otherwise the solution found becomes solution
```

two. Solution two would contain a set of
nodes which are either totally relabelled or
disconnected. These are the nodes whose
shortest paths in solution one contained
(p, q). Arc (p, q) is always optimal for
disconnected nodes. Let }\mp@subsup{N}{}{\prime}\mathrm{ be the set of
totally relabelled nodes and suppose that
K = |N'|, (1 \leqslant k \leqslant n). For each totally
relabelled node, N'i, obtain the quantity
\Delta(N'(i)), where
\Delta(N'(i)) = W'matald
for i = 1 ... k.
where, dl(N'(i)) is the total weight of the
shortest path to node N'(i) in solution one
and da(N'(i)) is that of node N'(i) in
solution two.

```

Now set \(w_{m a}\) to zero and solve the resulting network, \(G^{\prime \prime}\), obtaining solution three. Suppose that \(\Gamma\) nodes are totally relabelled, excluding the nodes whose total weights are changed only, then for each of these nodes, \(N^{\prime}(k+i)\), calculate \(\Delta\left(N^{\prime}(k+i)\right)\), for \(i=2 \ldots \Gamma\), where \(\Delta\left(N^{\prime}(k+i)\right)=d 1\left(N^{\prime}(k+i)\right)-d 3\left(N^{\prime}(k+i)\right)\), for \(i=1 \ldots \Gamma\).
```

where, d3(N'(k+1)) is the total weight of the
shortest path to node N'(k+1) in solution
three.
Now rearrange }\triangle\mathrm{ and }\mp@subsup{N}{}{\prime},\mathrm{ for i = 1 ... k+I, in
descending order of \Delta. In this order, the
first }k\mathrm{ elements of }\Delta\mathrm{ and ' N' are the ones
obtained by solving G' and the rest are those
obtained by solving G''. . We also have,
\Delta(N'(k+1))\leqslant W'm, \ \ N'(k)), optimality
range. Now the following conclusions about
the values of wow can be drawn.

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{OPTIMAL ARCS} \\
\hline Range & Change in original solution (path \(=\) shortest path) \\
\hline \[
\begin{aligned}
& \text { Non-Optimality } \\
& \Delta(1) \leqslant W_{b a y}
\end{aligned}
\] & Solution two becomes optimal to \(G\) \\
\hline \[
\begin{aligned}
& \text { Increase } \\
& \Delta(m) \leqslant W_{E q G} \leqslant \Delta(1) \\
& \text { for } m \leqslant k
\end{aligned}
\] & \begin{tabular}{l}
(i) The paths to \(N^{\prime}(i)\), for \(i=m \ldots k\), are as in solution two \\
(ii) Total weights of all the paths to \(\mathbb{N}^{\prime}\) (i) for \(i=1 \ldots m\), increase by the same amount as wor increases \\
(iii) The paths to the rest of the nodes are as in solution one.
\end{tabular} \\
\hline Optimality
\[
\Delta(k+1) \leqslant W_{D G G} \leqslant \Delta(k)
\] & No change \\
\hline \[
\begin{aligned}
& \text { Decrease } \\
& \Delta(k+1+m) \leqslant w_{p u} \leqslant \Delta(k+1) \\
& m \leqslant \Gamma
\end{aligned}
\] & \begin{tabular}{l}
(i) Total weight of every path containing ( \(p, q\) ), decreases by (w'pa - \(W_{p a}\) ) \\
(ii) The paths to \(N^{\prime}\) (i); for \(i=1 \ldots m\), are as in solution three \\
(iii) The paths to the rest of the nodes are as in solution one
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Alternative optimal solutions exist for those values of \(w_{p a}\), which fall on the boundary of a range} \\
\hline
\end{tabular}
(ii) Non-Optimal and Non-Existant Case Set \(W_{p}=\) to zero and solve the resulting network, \(G^{\prime}\). Let solution two be the optimal one obtained for \(G^{\prime}\).

Let \(N^{\prime}\) be the set of totally relabelled nodes and suppose that \(k=\mid N^{\prime} /,(0 \leqslant k \leqslant n)\). For each totally relabelled node \(N^{\prime}(i)\), (i \(=1 \ldots \mathrm{k})\) calculate \(\Delta\left(N^{\prime}(i)\right)\) where
\(\Delta\left(N^{\prime}(i)\right)=d I\left(N^{\prime}(i)\right)-d B\left(N^{\prime}(i)\right)\).
Now rearranging \(\Delta\) and \(N^{\prime}\) in descending order of \(\Delta\), the following conclusions about the values of wra can be drawn
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{NON-OFTIMAL AND NON-EXISTANT. ARCS} \\
\hline Range & Change in original solution (path \(=\) shortest path) \\
\hline Non-optimality
\[
\Delta(1) \leqslant w_{10}
\] & No change \\
\hline General
\[
\begin{aligned}
& \Delta(m) \leqslant w_{\infty} \leqslant \Delta(1) \\
& \text { for } m \leqslant k
\end{aligned}
\] & \begin{tabular}{l}
(i) The paths to \(\mathbb{N}^{\prime}(i)\), for \(\mathrm{i}=1 \ldots \mathrm{~m}\), are as in solution two \\
(ii) The paths to the rest of the nodes are as in solution one
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Final } \\
& 0 \leqslant W_{\mathrm{Fa}} \leqslant \Delta(k)
\end{aligned}
\] & Solution two becomes optimal for \(G\) \\
\hline \multicolumn{2}{|l|}{Alternative optimal solutions exist for those values of wor which fall on the boundary of a range} \\
\hline
\end{tabular}

Supposing that aro ( \(p, q\) ) in a network \(G\) with an optimal solution ("N1, d1), ie. "N1 contains the predecessor nodes and dl the shortest path weights, is to be analysed, then senet can be structured in the following manner.
```

algorithm Senet;
begin
K := 0;
kk := 1;
get (p, q);
act := activity (P, q);
W'pa := W Wag;
if (act = OPT) then
begin
data (P, q) := m;
shortest-path (data, d2, FN2);
compare (FN2, N',k);
for i := 1 to k do
\Delta(i) := W'mat d2(N'(i)) - di(N'(i));
kk := k
end; {if)
data (P, q) := 0;
shortest-path (data, d3, FN3)
compare (FN3, N', k);
if (k > 0) then
begin
for i := kk to k do
\Delta(i) := d1(N'(i)) - d3(N'(i));
descend (N', \Delta, k)
end
end.

```

In the above implementation, analysis of an optimal arc requires the execution of all 26 steps and analysis of a non-optimal or a non-existant arc require the execution of the steps from 1 to \(?\) and from 17 to 26 , inclusive. The function activity determines the type of the arc \((p, q)\) which may be:
```

OFT = optimal,
NOF = non-optimal,
NEX = non-existant.

```
```

This function can be implemented as follows:

```
```

function activity (P, q);
begin
if (W Wag =)
then
activity := NEX
else
if (pN1(q) = P)
then
activity := OPT
else
activity := NOP
end;

```

Procedure shortest-path is a label setting algorithm which solves a one-to-all problem in a network represented in data. Procedure descend rearranges \(N^{\prime}\) and \(\Delta\) in descending order of \(\Delta\).

Procedure compare, obtains the totally relabelled nodes after a change in data and stores them in N', a node-size linear list. This procedure is used twice if arc ( \(p, q\) ) is optimal and once otherwise. Here we give two different implementations of this procedure. In each implementation a node-size linear list of boolean type, \(L\), is used to prevent a node entering \(N^{\prime}\) more than once. In the first implementation we have used a queue with FIFO management, \(Q\), to identify the totally relabelled nodes.
```

 (1) procedure compare (FN, N', k);
 begin
 for i := 1 to n do
 L(i) := false;
 for i := 1 to n do
 if (FN(i) \not= FN1(i)) then
 begin
 L(i) := true;
 ADDQ(i, Q)
 end;
 while not (EMPTYQ (Q)) do
 begin
 U := FRONT(Q);
 DELETEQ(Q);
 K := k+1;
 N'(k) := i;
 for i := 1 to n do
 if ((U = FN1(i)) and (L(i) = false)) then
 begin
 ADDQ(i, Q);
 L(i) := true
 end
 end;

```

In the second implementation we have used \(N\), a node-size linear list, to directly identify and store the totally relabelled nodes. Associated with \(N^{\prime}\) there are two pointers, one ( \(K\) ') indicates the location of the next totally relabelled node in \(N^{\prime}\) which is to be searched and the other, \(K\), indicates the location in \(N\) for inserting a new totally relabelled node. \(\quad N^{\prime}\) is in a way treated like a queue with FIFO management, except that no deletion takes place.
```

(2) Procedure compare (FN, N', k);
begin
for i := 1 to n do
L(i) := false;
k}:=0
k := 0;
for i := 1 to n do
if (F}N(i)\not=\mp@subsup{F}{}{F/N
begin
L(i) := true;
k := k+1;
N'(k) := i
end;
repeat
if (k>0) then
begin
k
for i := 1 to n do
if ((N'(k') = FN1(i)) and (L(i) = false)) then
begin
L(i) := true;
K := k+1;
N'(k) := i
end
end;
until (k'=k)
end;

```

Clearly, both implementations run in \(O(n \geqslant)\) time, however, the second one is more space efficient. In both implementations rN1 represents the predecessor node set of salution one, and FN represents that of a new solution, either solution two or solution three.
```

Theorem 23: Senet determines all the oritical
values for the weight of an are and reports the
correct effects on the optimal solution at each
critical value. Furthermore, |N'| = k\leqslant n.

```

Froof: Consider \(R_{i i}\), as shown in theorem 3, this set is finite and has a size of li, where
 \(R_{i}\) can be divided into two parts. \(R_{i}=R_{i}^{\prime}+R_{i}^{\prime \prime}\), where \(R^{\prime}:\) is the set of paths containing a particular possible connection (ie. ( \(p, q\) ), where \(p, q \in N\) and \(R^{\prime \prime}:\) is its complement. Now let W'w. be the original weight of ( \(p, q\) ) in \(G\), and also \(P_{1}\) i and \(P_{\text {ain }}\) be the optimums of \(R_{i}\) and \(R^{\prime \prime}\), respectively then,
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(i)} & if & \(W_{\text {corc }}\) & is & set & \(t o\) & infinity, & then \\
\hline & \multicolumn{7}{|l|}{\(\mathrm{Fax}_{\mathrm{i}}=\) optimum \(\left(R_{i}\right)\)} \\
\hline \multirow[t]{5}{*}{(ii)} & \multicolumn{7}{|l|}{if \(w_{k} w\) is set to zero and} \\
\hline & \multicolumn{7}{|l|}{(a) \(\mathrm{F}_{1 i}=\) optimum \(\left(R_{i i}\right)\), then} \\
\hline & \multicolumn{7}{|c|}{\(d_{1} \leqslant d^{*}-W^{\prime}{ }^{\prime}\)} \\
\hline & (b) & ) \(F^{\prime}\) isis & & op & mum & \(\left(R_{i}\right)\), & then \\
\hline & & \(d=i\) & \(d\) & - \(w^{\prime}\) & & & \\
\hline
\end{tabular}

The optimal case and the non-optimal case, which includes the non-existant case, are considered separately:

\section*{(i) Optimal Case}

Let \(P_{1 i}\) and \(F_{i x}\) be the shortest paths to a node \(i\) in \(G\) and \(G\) respectively, where \(G\), is determined from \(G\) by letting \(w_{m} \rightarrow \infty\). The following are now true.
(1.1) if \(P\) does not exist for some \(i\), then Pix is optimal for all values of \(W_{1}\).a.
(1.2) if \(F_{i}\) i does not include \((p, q)\), then \(F_{1 i}=F_{i j}\).
 \(d^{\prime}{ }_{i}=d_{i}-d_{1 i}\), then for a general value of \(w\) in in \(G\) we have
(1.3.1) Pin is optimal if

(1.3.2) \(F\) is optimal if \(w_{100}>w^{\prime}+d^{\prime}\) (1.3.3) \(P_{1, i}\) and Pax are, alternative optimal paths (ie. \(d_{i x}=d_{i a i}\) ) if \(W_{i}=W^{\prime}{ }_{0}+d^{\prime}{ }_{i}\).
```

Therefore, (}p,q\mathrm{) is in the optimal path to i if
w,w sw'm+ d'n and clearly, this is true for
every i}\inN
Now let Fa:i be the optimal path to node i in G",
where }\mp@subsup{G}{}{\prime\prime}=G,\mathrm{ but }\mp@subsup{w}{rmi}{\prime}=0\mathrm{ , then the following
are true,
(3.1) if Pix exist, then Fivi exists.
(2.2) if Pai does not include. (p, q), then

```

```

 (2.3) if Pan includes (}p,q)\mathrm{ and,
 (2.3.1) Pri includes (p, q), then
 dmi= dyi - W'{
 (2.3.2) Fix does not include (p, q)
then dsi \leqslant d;i.
Now let d'i}=\mp@subsup{d}{i}{\prime}-\mp@subsup{d}{i}{}-\mp@subsup{d}{i}{\prime},\mp@subsup{d}{i}{\prime}\geqslant0
then
(a) Fsi is optimal if
O\leqslant wrm,g \leqslant d'x
(b) Pri is optimal if
d'i

```

Therefore ( \(p, q\) ) is in the optimal path to if \(0 \leqslant w_{m} \leqslant d^{\prime}\) i and this is true for every \(i \in N\). However (1.3.1) and (2.3.2.b) above, together imply that for the range \(d^{\prime} \leqslant w_{w} \leqslant w^{\prime} w=d^{\prime}\),
```

the original path, Fi,i, is optimal. Now assume
that the shortest paths to k nodes in solution one
include (p,q), where (k\leqslantn). Then clearly as a
result of (1.z) above, only h nodes are totally
relabelled in solution two. In solution three the
set of nodes }N\mathrm{ san be divided into three parts:

```
(a) the set of nodes whose labels are
unchanged
(b) the set of nodes whose labels are totally
ohanged
(c) the set of nodes whose total weights are
decreased only.

Now let \(\Gamma^{\prime}, \Gamma\), and \(\Gamma^{\prime \prime}\) be the sizes of the above three subsets of \(N\) respectively, then
(1) \(\quad \Gamma+\Gamma^{\prime}+\Gamma^{\prime \prime}=n\)
\[
\begin{equation*}
\Gamma^{\prime \prime}=k \text {, as a result of (2.2) and (2.3) above. } \tag{2}
\end{equation*}
\]

Therefore \(k+\Gamma \leqslant n\) as \(\Gamma^{\prime} \geqslant 0\), (ie. maximum number of relabelled nodes, when analysing an optimal arc is n), ie. \(\left|N^{\prime}\right|=k \leqslant n\).
(ii) Non-Optimal and Non-Existant Case In this case let \(F_{1 i}\) and \(F i\) be the optimal paths to \(i\) in \(G\) and \(G\) respectively; where \(G^{\prime}=G\), but \(W_{\text {mol }}=0\). Then the following are true,
```

(a) if Fi, exists, then Pai exists
(b) dsi\leqslant \& di, for alli}\in
(c) if d, i, = d%i then P1:i = Foi
(d) if dei < din, then F\&i includes (}p,q\mathrm{)
and if d'i = dia - diai, then for a
general value of W\&og > 0,
we have:
(d.1) Fei is optimal for 0\leqslant wras \leqslantw'pa - d'i
(d.a) F}\mp@subsup{F}{1i}{}\mathrm{ is optimal for woin \# w'mat - d'i
Therefore, (p, q) is in the optimal path to i if
O\leqslantw,w { w'ma - d'i, and clearly this is true for
every i i N. Furthermore, it is clear that
|N' = k\leqslantn. t

```

Theorem 24: Senet terminates in \(O(n=)\) time and requires \(O(n)\) additional memory space.

Eroof: The termination of the algorithm depends on the number of critical values for the weight of an aro. The set of critical values of the weight of an arc in a network of size.n is fitnite and has a maximum size of \(n\), since:

At each successive oritical value at least one more node becomes totally relabelled, and a node is totally relabelled at most once in the process of analysing an aro. Furthermore, if no node is totally relabelled, then the algorithm terminates.

The proof that Senet terminates in \(O(n)\) time in worst case is by inspection. A label setting algorithm runs in \(O(n *)\) time, procedure compare runs in \(o(n=\) ) time and rearranging the totally relabelled nodes in procedure descend takes \(O(n *)\) time. Therefore, Senet runs in \(O\) ( \(n *\) ).

In case of analysing an optimal arc, there are seven additional node-size linear lists, four to represent solutions two and three, two for. \(N^{\prime}\) and \(\triangle\) and one, \(L\), for identification of totally relabelled nodes. In case of analysing a nonoptimal or a non-existant aro, there are five additional node size linear lists, all similar to
the case of analysing an optimal arc with the exception that only two such lists are required to represent one new solution only. Therefore the maximum number of additional memory units required for analysing an are is \(7 n . \quad t\)

To compare Senet with the algorithms of chapter 14, consider the example network of figure 13 and its solution in figure 14. Furtbermore, suppose that aros (2, 5), (1, 5), (2, 6) and (3, 2) are to be analysed, where arcs \((3,6)\) and \((3,2)\) are nonexistant. Analysing the arcs separately:
```

(i) arc (2, 5) is optimal,
act = OPT;
W'm=4;
W%:= + m;
solution 2:

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline d2 & 0 & 3 & 8 & 9 & 9 & 16 & 13 \\
\hline FN2 & 1 & 1 & 1 & 2 & 1 & 5 & 4 \\
\hline
\end{tabular}
totally relabelled nodes:
\begin{tabular}{|l||l|l|}
\hline \(\mathrm{N}^{\prime}\) & 5 & 6 \\
\hline
\end{tabular}

\(W 2 s+0 ;\)
solution 3 :
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline d3 & 0 & 3 & 5 & 9 & 3 & 10 & 12 \\
\hline FN3 & 1 & 1 & 5 & 2 & 2 & 5 & 5 \\
\hline
\end{tabular}

rearranging:
\begin{tabular}{|c|c|c|c|c|}
\hline N, & 5 & 6 & 3 & 7 \\
\hline\(\Delta\) & 6 & 6 & 3 & 1 \\
\hline
\end{tabular}
```

(ii) arc (1, 5) is non-optimal,
act := NOP;
W15' := 9;
Wzs + O;
solution 2:

```
\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline d3 & 0 & 3 & 2 & 9 & 0 & 7 & 13 \\
\hline FN3 & 1 & 1 & 5 & 2 & 1 & 5 & 4 \\
\hline
\end{tabular}

rearranging:
\begin{tabular}{|l|l|l|}
\hline \(\mathbb{N}\), & 5 & 3 \\
\hline\(\Delta\) & 7 & 6 \\
\hline
\end{tabular}
```

(iii) arc (2, 6) is non-existant;
act := NEX;
Wa, := m;
Wae + O;
solution 2:

```
\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline d3 & 0 & 3 & 8 & 9 & 7 & 3 & 9 \\
\hline FN3 & 1 & 1 & 1 & 2 & 2 & 2 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|l||l|l|}
\hline N, & 6 & 7 \\
\hline
\end{tabular}

rearranging:
\begin{tabular}{|c||c|c|}
\hline\(N^{\prime}\) & 6 & 7 \\
\hline\(\Delta\) & 11 & 4 \\
\hline
\end{tabular}
```

(iv) are (3, 2) is non-existant,
act := NEX;
Wac' := m;
W:a' + 0;
solution 2:

```
\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline d3. & 0 & 3 & 8 & 9 & 7 & 14 & 13 \\
\hline FN3 & 1 & 1 & 1 & 2 & 2 & 5 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|l||l|}
\hline \(\mathbf{N}^{\prime}\) & 0 \\
\hline
\end{tabular}

Now the following conclusions about the arc welghts can be made.
＊＊＊＊＊POST－OPTIMALITY ANALYSIS
＋＋THE＂EFFECT＂OF EACH RANGE，EXCEPT THE OPTIMAL AND NON－OPTIMAL，IS AN ACCUMULATION OF THE＂EFFECTS＂
OF THE OTHER RANGES FROM THE SIGN＂\(\uparrow\)＂OR＂\(\downarrow\)＂TO＂－＂OF THE＂ACCUMULATION＂COLUMN，FOR EACH ARC ++
RANGE
node \(\quad\)－weight



NON－OPTIMAL RANGE
\(\begin{array}{ll}0 & n \\ 0 & 0 \\ \sim & n \\ \overline{3} & \overline{3} \\ m & \vdots\end{array}\)

ARC
\(\begin{array}{cc}\text { identity } & \begin{array}{c}\text { ARCight } \\ \text { weig }\end{array} \\ 2--> & 4\end{array}\)
identity weight activity
능
운

岂

\(\stackrel{*}{*}+\)
＊\(n 6 \mathrm{~m}\)
\(\stackrel{*}{*}\)
\(+\)
。
\(\sum_{n}^{i}\)
岩
\(n\)
6
～

In the above output:

The weight of the optimal arc \((2,5)\) can vary from 6 to infinity and this will change the routes to nodes 5 and 6 in solution one to \((1 \rightarrow 5)\) and \((1 \rightarrow 5 \rightarrow 6)\) with total weights of 9 and 16 , respectively, only. The weight of this arc can vary from 3 to 6 without affecting the structure of the shortest path tree of solution one. If this weight varies between 1 and 3 , then the route to node 3 will ohange to \((1 \rightarrow 2 \rightarrow 5 \rightarrow 3)\) with a total weight of \((5+W \mathrm{~s})\). If it varies between 0 and 1, then beside the change in the route to node 3, the route to node 7 will change to \((1 \rightarrow 2 \rightarrow 5 \rightarrow 7)\) with a total weight of (1e Wis);

The weight of the non-optimal arc (1, 5) can vary from 7 to infinity without effecting the optimal solution (ie. solution one). If it varies from 6 to 7 the routes to nodes 5 and 6 will change to \((1 \rightarrow 5)\) and \((1 \rightarrow 5 \rightarrow 6)\) with total weights of \((0+\) \(W_{1}=\) ) and ( \(7+W_{y} s\) respectively. If it varies between 0 and 6 however, beside the changes in the routes to the nodes 5 and 6 the route to node 3 will also change to \((1 \rightarrow 5 \rightarrow 3)\) with a total weight of (2 \(+W_{1 s}\) );

If the non-existant arc ( 2,6 ) is to be oreated and its weight is between 11 and infinity, then the optimal solution will not be effected. However if it has a weight between 4 and 11, then it will become an optimal arc and will change the route to node 6 to \((1 \rightarrow 2 \rightarrow 6)\) with a total weight of \((3+W\), , and if it has a weight between 0 and 4, then the route to node 7 will also be changed to \((1 \rightarrow 2 \rightarrow 6 \rightarrow 7)\) with a total weight of \((9+W e) ;\)

The creation of the arc (3, 2) with a total weight between 0 to infinity will not effect the optimal salution.

The complete pascal code of the algorithm Senet together with a sample run is given in appendix \(F\).

The algorithms of section 14 , for sensitivity analysis, determine only two of the critical values, maximum increase and decrease, within which the weight of a given arc can vary, independently, without changing the structure of the shortest path tree. Furthermore, they do not report the updated weights of the shortest path tree within the given range and do not indicate the structural changes of the shortest path tree when an arc weight falls outside of its determined range. Senet provides all the critical values for the weight of an aro together with the updated weights of the shortest paths and the structural changes between every two successive oritical values. This is because, in analysing a nonoptimal aro, sensitivity analysis algorithms only consider the affect on the terminal node of the arc, when the weight of the arc is reduced. This node is obviously the very first one which may be affected as a result of the reduction. Senet, however considers every other node which could be affected after the terminal node of the arc is affected. In case of analysing an optimal arc, sensitivity analysis algorithms consider all the nodes that Senet considers, but they do no use all the information that they obtain. Sensitivity


Senet can be modified to analyse negative networks as well as non-negative networks. In case of negative networks which do not contain negative oycles, the lowest critical value for an arc ( \(u, v\) ) will be \(t\) rather than zero, where \(t\) is the minimum weight of a cycle containing arc (u, v). thus the modified version must be capable of determining such cyoles.

\title{
PARTV \\ SUMMARY, CONCLUSION \\ AND
}

REFERENCES
section 1, in a way, could be considered as a summary, futhermore at the end of each section the corresponding conclusions are drawn. However, in this section we present a brief summary coupled with an outline of the conclusions made througbout the work.

In section 6 , we classified the deterministic unconstrained shortest path problems in order to outline the importance of one-to-all problems.

In section 7 , we developed an algorithm, labelling, which is the underlying structure of all the labelling algorithms. We then used this algorithm and its properties, directly or indirectly, to study, classify, analyse and compare the different labelling algorithms.

In sections 8 and 9 we considered all different implementations of labelling algorithms using various data structures and sorting techniques, and analysed and compared most of such implementations. All the analysed algorithms in these two sections were evaluated by using worst
oase analysis and their memory space requirements.
In section 10, the most efficient labelling
algorithms were compared using their average
computation times on a set of diverse randomly
generated networks. nesults of the
classifications of the labelling algorithms can be
generalised as follows:


In section 11 to 13 , the all source algorithms were reviewed, classified and compared. The classification of these algorithms can be generalised.as follows:


In section 24 , the sensitivity analysis of one-toall problems was considered and the best of such methods was implemented and analysed.

In section. 15, we introduced an algorithm, SENET, for the post optimality analysis of one-to-all problems. In this section we also considered the advantages of this new approach to such problems over the existing sensitivity analysis, probably the closest class of algorithms to SENET.

All the theory behind the shortest path problems, one-to-all in particular, were developed throughout the work in terms of definitions, algorithms and theorems. However, the emphasis in this work is on sections 6 to 10 and in particular on section 15.

\section*{17 REFERENCES}
[AHHU 74] Aho, Hoporoft and Ullman, "The Design and Analysis of Computer Algorithms", AddisonWesley, Reading, MA, 1974.
[BELL 58] Bellman, "On a Routing Froblem", Quart. Appl. Math., Vol 16. 1958.
[DANT 60], Dantzig, "On The Shortest Route Through a Network", Management Sci, Val 6, 1960.
[DANT 67] Dantzig, "All Shortest Routes in a Graph", in Theory of Graphs, \(P\) Rosenstiehl, Ed. Gordon and Breach, New York, 1967.
[DEFO 79a] Denardo and Fox, "Shortest-Route Methods: 1 Reaching, Fruning and Buckets", Operational Research, Vol 27, 1979.
[DEFO 79b] Denardo and Fox, "Shortest-Route Methods: 2 Group Knapsacks, Expanded Networks and Branch-and-Bound", Operational Research, Vol 27 , 1979.
[DERY 69] Deryfus, "An Appraisal of some ShortestFath Algorithms", Operations Research, Vol 17, 1969.
[DGKK 79] Dial, Glover, Karney and Klingman, "A Computational Analysis of Alternative Algorithms and Labelling Techniques for Finding Shortest Fath Tree", Networks 9, 1979.
[DIAL 65] Dial, "Algorithm 360 Shortest Path Forest with Topological Ordering", Communications of the \(A C M\), Vol 12. 1965.
[DIAL 69] Dial, "Algorithm 360 Shortest Path Forest with Toplogical Ordering", Comm. ACM, Val 12. 1969.
[DIJK 59] Dijkstra, "A Note on Two Froblems in Connexion with Graphs", Numer Math, Val 1, 1959.
[EDKA 72\(]\) Edmonds and Karp, "Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems', J of ACM, Vol 19, 1972.
[FALM 67] Farbey, Land and Murchland, "The Cascade Algorithm for Finding All Shortest Distances in a Directed Graph", Management Sci, Vol 14, 1967.
[FLOY 62] Floyd, "Algorithm 97: Shortest Path", Comm. ACM, Vol 5, 1962.
[FORD 56] Ford, Jr, "Network Flow Theory", Report p-933, Fand Corp, Santa Monica, CA, 1956.
[FOXB 78] FOx, "Data Structures and Computer Soience Techniques in Operations Research", Operations Research, Vol 26, No 5, 1978 .
[FRET 85] Fredman and Tarjan, "Fibonacci Heaps and Their Uses in Improved Network Optimisation Algorithms', to be published in IEEE, 1985 onwards.
[GIWI 73] Gilsinn and Witzgall, "A Performance Comparison of Labelling Algorithms for Calculating Shortest Path Trees', NBS Technical Note 772 , US Department of Commerce, 1973.
[GLKL 82] Glover \(F\), Klingman \(D\), "A Computer Study of Efficient Algorithms for Shortest Fath Trees and Assignment Problems', University of Texas, Austin, 1982.
[HITC 68] Hitchner L E, "A Comparative Investigation of the Computational Efficiency of Shortest Path Algorithms", Report ORC 68-25, Operations Research Centre, University of California, Berkeley, 1968.
[HUTC 67] Hu, Tc, "Revised Matrix Algorithms for Shortest Paths", Siam J. Appl. Math., Vol 15, 1967.
[IMAI 84] Imai and Iri, "Practical Efficiencies of Existing Shortest-Path Algorithms and a New Bucket Algorithm". Journal of the Operations Research Society of Japan, Vol 27, No 1, 1984.
[JOHN 7E] Johnson \(E\), "On Shortest Fath and Sorting", in Proceedings, \(25 t h\) Conference of the Association for Computing Machinary", Boston, 1972 .
[JOHN ;T] Johnson \(D B\), "Efficient Algorithms for Shortest Path in Sparse Networks", \(J\) Assoic. Comput. Mach, Vol 24, 1977.
[KELA 78] Kelton \(W\) D, Law. A.M, "A Mean Time Comparison of Algorithms for the All Fairs Shortest Path Problem with Arbitary Arc Length", Networks, Vol 8, 1978.
[KNUT 73a] Knuth D, "The Art of Computer Frogramming, Vol 1: Fundamental Algorithms", Addison-Wesley, Reading, Mass, 1973.
[KNUTH 7Зb] Knuth D, "The Art of Computer Programming, Vol 3: Sorting and Searching", Addison-Wesley, Reading, Mass, 1973.
[MAGO 78] Magnanti \(T\), and Golden \(B\), "Transportation Planning; Network Models and Their Implementation', Technical Report 143, Operations Research Centre, Mass. Institute of Techiology, Cambridge, MA, 1978.
[MINT 57] Minty, "A Comment on Shortest Route Problems", Operations Research, Vol 5, 1957.
[MOOR 59] Moore E, "The Shortest Fath Through a Maze", Proceeding of the International Symposium on the Theory of Switching, 1959.
[MULL 68] Muller-Merbach, "Sensibilitatsanalyse Von Transportproblemen Der Linearen Planunescrechnung (Mit Algol-Programm)', Elektron. Datenverarbeitung, 10, 1968.
[MURC 69] Murchland \(J\), "The 'Once Through' Method of Finding All Shortest Distance in a Graph from a Single Origin", Tranport Network Theory Unit, London Graduate School of Business Studies, Report LBS_TNT_56.1, 1969.
[PALL 81\(]\) Fallottino, "Shortest Fath Methods: Complexity, Interrelations and New Propositions", Center De Research Sur Les Transports Publication \# 233, 1981.
[PAFE 74a] Pape \(U\), "Changes. in Networks and Adjustment of the Lengths of Shortest Paths", Computing, Vol 12, 1974.
[PAPE 74b] Pape U, "Implementation and Efficiency of Moore_Algorithms for the Shortest Route Problems", Math. Programming, Vol. 7, 1974.
[SHWI 80] Shier and Witzgall, "Arc Tolerances in Shortest Path and Network Flow Froblems", Networks, Vol 10, 1980.
[SPPA 78] Spira and Fan, "On Finding and Updating Spanning Trees and Shortest Faths", Siam J Comput, Vol 4, No 3, 1978.
[STEE 74] Steenbrink, "Optimisation of Transport Networks", Frinted by \(J\) W Arrowsmith Ltd, Bristol, England, 1974.
[TARJ 83] Tarjan, "Sensitivity Analysis of Minimum Spanning Trees and Shortest Fath Trees", Information Processing Letters (North-Holland), 1982.
[TARJ 85] Tarjan, "Data Structure and Network Algorithms [44]', CBMS-NSF Regional Conference Series in Applied Mathematics, 1984,
[VLIE 78] Vliet, "Improved Shortest Fath Algorithms for Transport Networks", Transpn. Res, Vol 12, 1978 .
[WARS 62] Warshall, "A Theorem on Boolean Matrices", J. ACM 9, 1962.
[WILL 64] Willaims, "Algorithm 232: Heapsort", Comm. ACM T, 1964.
[YENJ 70] Yen, "A Shortest Fath Algorith", FhD Thesis, University of California, Berheley, 1970.
[YENJ 72]. Yen, "Finding the Lengths of All Shortest. Faths in N-Node Non-Negative-Distance Complete Networks Using \(k\left(N^{*}\right)\) Additions and ( \(N^{3}\) ) Compares", ACM 19, 3. 1972.
\(A P \mathbb{N W D I C E S}\)

The following appendices contain the complete Pascal codes of:
(a) reading and writing a network in both adjacency matrix and forward star forms;
(b) label correcting algorithm with a single queue managed in FIFO manner;
(c) label correcting algorithm with double ended queue lor actually output restricted double ended queue);
(d) label setting algorithm with address calculation sort;
(e) label setting algorithm with one level buchet sort.

In all the codes the variable names are chosen in a manner that mahes their functions self explanatory.

\section*{APPENDIX A}

```

INFILE is a text file that the user must create
prior to running any of the programs in this
study. INFILE contains an adjacency matrix
representation of the network the user wishes the
program to operate on. The adjacency matrix must
be formatted in the following manner:

```
(i) Each row of the adjacency matrix must be on one line, starting in the first column of the file.
(ii) Each number in the adjacency matrix must be in a field width of 4 characters. For example, if \(X\) represents a space, then the number 3 would be written:
\(3 X X X X\)
(iii) One clear line must be between the rows of the adjacency matrix.
(iv) To mark the end of each row of numbers in INFILE, an asterisk, *, must follow the last oharacter in the row.
(v) The end of all the rows to be input is identified by an asterisk in the first column of a row.
```

To illustrate these requirements, consider the
adacency matrix:
1
2
3
4
1
2 2 -5
\varnothing}\quad
\varnothing}\varnothing
4 4 - -33 224 0
The correct INFILE format for this adjacency
matrix is
1st Column in INFILE
\downarrow
øxxx1xxx3xxxøxxx*
x
2xxx-5xxøxxxøxxx*
x
0xxx0xxxøxxx6xxx*
x
4xxx-33x22xøxxx*
x
(where x represents a space)

```
```

PROCEDURE CHARTOINT(CHARARRAY: WORD5;VAR VALUE: INTEGER);
{This procedure converts a number held in character form,)
(in CHARARRAY, to its integer value, VALUE)
VAR
I,MULTFAC: INTEGER; {MULTFAC stores the multiplication}
{factor}
BEGIN
VALUE:= 0;
I:= 5;
WHILE (CHARARRAY[I] = ' ') DO
BEGIN
I:= I-1;
END; {Find the last digit of the number}
MULTFAC:= 1;
REPEAT
IF (CHARARRAY[I] <> '-') THEN
BEGIN {Convert the digit to its integer value}
VALUE:= VALUE+ (MULTFAC*((ORD(CHARARRAY[I]))-
ORD('O'))));
MULTFAC:= MULTFAC*10;
END;
I:= I-1;
UNTIL (I=0);
[F (CHARARRAY[I] = '-') THEN
VALUE:= (VALUE * (-1)); {Convert a -ve number to its}
{correct value)
END; {CHARTOINT}

```
```

Procedure CHARTOINT(CHARARRAY : WORD5;VAR VALUE : INTERGER);
{This procedure converts a number held in character form,)
{in CHARARRAY to its integer value, VALUE. This version)
{of CHARTOINT terminates processing on encountering a)
{negative number}
VAR
I,MULTFAC:INTEGER; {MULTFAC stores the multiplication}
{factor}
BEGIN
IF (CHARARRAY[I] = '-') THEN
BEGIN
WRITELN('NEGATIVE WEIGHT ARC ENCOUNTERED - ILLEGAL');
GOTO 99;
END;
VALUE:= 0;
I:= 5;
WHILE CHARARRAY[I] = , DO
BEGIN
I:= I-1;
END; {Locate the last digit of the number)
MULTFAC:= 1;
REPEAT {Convert the digit to its integer value}
VALUE:= VALUE+ (MULTFAC*(CORD(CHARARRAY[I]))-
(ORD('O'))));
MULTFAC:= MULTFAC*10;
I:= I-1;
UNTIL (I=0);
END; {CHARTOINT}

```

PROCEDURE READADJMATRIX;
\{This procedure reads the adjacency matrix representation)
(of the network from INFILE into ADJMATRIX)

VAR
ROW, COL, I, J, VALUE: INTEGER;
NUMBER: WORD5;
\{NUMBER holds the number read from INFILE, in\}
\{character form\}
ENDROW, ENDCOLS: BOOLEAN;
\{ENDROW \(=\) TRUE if end of row is reached i.e. a *is\}
\{detected)
\{ENDCOLS = TRUE when all rows in adjacency matrix have\}
\{been read\}
\(\mathrm{CH}: \mathrm{CHAR}\);
```

BEGIN
RESET (INFILE);
ENDCOLS:= FALSE;
FOR I:= 1 TO 100 DO
BEGIN
FOR J:= 1 TO 100 DO
BEGIN
ADJMATRIX[I,J]:= 0;
END;
END; {Initialize ADJMATRIX}
ROW:= 0;
WHILE NOT(ENDCOLS) DO
BEGIN
ENDROW:= FALSE;
COL:= 1;
ROW:= ROW+1;
WHILE NOT (ENDROW) DO
BEGIN
FOR I:= 1 TO 5 DO
NUMBER[I]:= ' ';
I:= 1;
REPEAT {Read the next number from INFILE}
READ(INFILE,CH);
NUMBER[I]:= CH;
I:= I+1;
UNTIL ((I = 5) OR (NUMBER[1] = '*'));
IF (NOMBER[1] = '*') THEN
BEGIN (End of row detected)
ENDROW :=TRUE;
IF (COL=1) THEN
ENDCOLS: = TRUE; {End of Adjacency matrix}
END
ELSE
BEGIN
IF (NUMBER[1] <> '0') THEN

```
```

 BEGIN {Insert the number into ADJNATRIX)
 CHARTOINT (NUMBER, VALUE);
 ADJMATRIX[ROW,COL]:= VALUE;
 END;
 COL:= COL+1; {Increment column reference}
 END;
 END;
 IF NOT (ENDCOLS) THEN
 BEGIN
 READLN(INFILE);
 READLN(INFILE);
 END; (Move to next row of the adjacency matrix)
 END;
 NUMNODES:= ROW-1; {Record the number of nodes in the)
{network}
END; {READADJMATRIX)

```
```

F'ROCEDURE READFORSTAR;
{This procedure reads the adjacency matrix representation)
{of the network from INFILE to the 3 forward star arrays, }
{POINTERARRAY, STARARRAY and WEIGHTARRAY
VAR
ROW,COL, I, EDGEPOINTER, EDGEPOINTSTORE, VALUE: INTEGER;
{EDGEPOINTER stores the next free location number in }
{STARARRAY)
{EDGEPOINTSTORE stores the first location number in }
{STARARRAY used to store the current nodes forward.star)
NUMBER: WORD5;
{NUMBER holds the number read from INFILE, in character}
{form}
ENDROW, ENDCOLS: BOOLEAN;
{ENDROW = TRUE if end of row is reached i.e. a * is}
{detected ENDCOLS = TRUE when all rows in adjacency}
{matrix have been read}
CH:CHAR;
BEGIN
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[I]:= 0;
STARARRAY[I]:= 0;
WEIGHTARRAY[I]:= 0;
END; {Initialise forward star arrays}
ENDCOLS:= FLASE;
ROW:= 0;
EDGEPOINTER:= 1;
WHILE NOT(ENDCOLS) DO
BEGIN
ENDROW:= FALSE;
COL:= 1;
{EDGEPOINTER currently contains the first location}
{number in STARARRAY that will be used to store the}
{forward star of the next node}
EDGEPOINTSTORE:= EDGEPOINTER;
ROW:= ROW+1;
WHILE NOT(ENDROW) DO
BEGIN
FOR I:= 1 TO 5 DO
NUMBER[I]:= ' ';
I:= 1;
REPEAT {Read the next number from INFILE}
READ(INFILE, CH);
NUMBER[I]:= CH;
I:= I+1;
UNTIL ((I = 5) OR (NUMBER[1] = '*'));
IF (NUMBER[1] = '*') THEN

```
```

 BEGIN {End of row detected)
 ENDROW:= TRUE;
 IF (COL=1) THEN
 ENDCOLS:= TRUE; {End of adjacency matrix}
 END
 ELSE
 BEGIN
 IF (NUMBER[I] <> '0') THEN
 BEGIN {Insert information into the 3 arrays)
 POINTERARRAY[ROW]:= EDGEPOINTSTORE;
 CHARTOINT (NUMBER, VALUE):
 STARARRAY[EDGEPOINTER]:= COL;
 WEIGHTARRAY[EDGEPOINTER]:= VALUE;
 EDGEPOINTER:= EDGEPOINTER+1;
 {set pointer to next free location in)
 {STARARRAY}
 END;
 COL:= COL+1; {Increment column reference}
 END;
 END;
 IF NOT (ENDCOLS) THEN
BEGIN
READLN(INFILE);
READLN(INFILE);
END; {Move to the next row of the adjacency }
{matrix}
END;
NUMNODES:= ROW-1; {Record the number of nodes in}
{the network)
POINTERARRAY[NUMNODES+1]:= EDGEPOINTER;
{Insert dummy pointer in POINTERARRAY)
END; {READFORSTAR}

```
```

FROCEDURE PRINTADJMATRIX;
{This procedure displays the adjacency matrix}
{representation of the network to the screen}
VAR
I: INTEGER;
CH: CHAR;
BEGIN
WRITELN(' ADJACENCY MATRIX ');
WRITELN(' ------------------ ');
WRITELN;
RESET(INFILE);
WRITE(' ');
FOR I:= 1 TO NUMNODES DO
BEG.IN
WRITE(CHR(ORD((ORD('O'))+I)));
IF (I>9) THEN
WRITE(' ')
ELSE
WRITE(' ');
END;
WRITELN;
WRITE(' ');
FOR I:= 1 TO NUMNODES DO
BEGIN
WRITE('--~-');
END;
WRITELN;
FOR I:= 1 TO NUMNODES DO
BEGIN
WRITE(CHR(ORD((ORD('O'))+I)));
IF (I>9) THEN
WRITE(' |')
ELSE
WRITE(' |');
REPEAT
READ(INFILE, CH);
IF (CH<>'*') THEN
WRITE(CH);
UNTIL (CH = '*');
READLN(INFILE);
READLIN(INFILE);
CH:= ' ';
WRITELN;
WRITELN(' l');
END;
WRITELN;
WRITELN;
END; {PRINTADJMATRIX}

```

\section*{APPEMDIX B}

This appendix contains the PASCAL code for the program - FIFOSEQULST and the procedures PUTINLIST and PRINTFIFO. FIFOSEQLIST is the label correcting algorithm with a single queue using FIFO management and procedure PUTINLIST adds a node to the end of the queue, ie. \(A D D Q\). both are discussed in section 8. PRINTFIFO displays the contents of the sequence list upon being called. Prior to running FIFOSEQULST, a correctly formatted version of INFILE must be available.

Some sample runs of this program are also shown in this appendix.
```

PROGRAM FIFOSEQULST (INPUT,OUTPUT,INFILE);
{This program finds the shortest paths from a node, START }
(to every other node in a network using the label)
correcting algorithm. This program implements a FIFO ;
sequence list and uses forward star representation of the ;
{network)

```

LABEL 99,88;
CONST
INFINITY \(=99999\);
```

TYPE
WORD5 = ARRAY[1..5] OF CHAR;
ARRAY2 = ARRAY[1..21 OF INTEGER;
ARRAY100 = ARRAY[1..100] OF INTEGER;
LISTINFOTYPE = ARRAY[1..100] OF ARRAYZ;

```
```

VAR
POINTERARRAY,STARARRAY, WEIGHTARRAY, P;SEQULIST, d:ARRAY100;
LISTINFO: LISTINFOTYPE;
NUMNODES, R, FIRST, LAST, N, C, I, J : INTEGER;
START,NEXT, ENTRYPOINTER;LEAVEPOINTER: INTEGER;
INFILE: TEXT;

```
BEGIN (MAIN)
    RESET(INFILE);
    FOR I:= 1 TO 100 DO
        BEGIN
            POINTERARRAY[I]:= 0 ;
            STARARRAY[I]:= 0;
            WEIGHTARRAY[I]:= 0 ;
            P[I]:= 0;
            \(\mathrm{d}[\mathrm{I}]:=\mathrm{INFINITY} ;\)
            SEQULIST[I]:= 0;
            LISTINFO[I, \(11:=0\);
            LISTINFO[I, 2]:= 0;
    END; \{Initialise the arrays)
    READFORSTAR; \{Read in the network)
    PRINTADJMATRIX; \{Display the network)
    WRITELN(' THIS IS THE GRAPH REPRESENTED IN FORWARD STAR
                    FORM');

    WRITELN;
    WRITELN(' POINTERARRAY STARARRAY WEIGHTARRAY');

    WRITELN;
    FOR I: = 1 TO POINTERARRAY[ NUMNODES + 11 DO
        BEGIN
            WRITE(' ' POINTERARRAY[I],' ',STARARRAY[I]);
```

 WRITELN(' ,,WEIGHTARRAY[I]);
 END;
 WRITELN;
 WRITELN('WHICH IS THE START NODE ?');
 READLN(START);
 WRITELN;
 d[START]:= 0;
 P[START]:= START;
 IF (POINTERARRAY[START] = 0) THEN
 GOTO 80; {There are no paths from the starting node)
 LEAVEPOINTER := 1;
 SEQULIST[LEAVEPOINTER] := START;
 ENTRYPOINTER := 2; {Insert starting node in the sequence}
 {list)
 WHILE (SEQULIST[LEAVPOINTER] <> 0) do
 BEGIN
R := SEQULIST[LEAVEPOINTER];
SEQULIST[LEAVEPOINTER] := 0;
{Remove the next node from the sequence list}
LEAVEPOINTER := LEAVEPOINTER + 1;
IF (LEAVEPOINTER > 100) THEN
LEAVEPOINTER := 1; {Implement circular property of }
{queue}
LISTINFO[R,1] := 0; {Node R is no longer in the}
{sequence list}
IF (SEQULIST[LEAVEPOINTER] 〈> 0) THEN
PRINTFIFO; {Display the sequence list}
FIRST := POINTERARRAY[R];
N:= R;
REPEAT
N:= N+1;
LAST:= POINTERARRAY[N];
UNTIL (LAST <> 0);
LAST:= LAST - 1;
FOR J := FIRST TO LAST DO
BEGIN
C := STARARRAY[J];
IF (d[C] > (d[R] + WEIGHTARRAY[J]) THEN
BEGIN {Relabel node C)
d[C] := (d[R] + WEIGHTARRAY[J]);
P[C]:= R;
IF (POINTERARRAY[Cl <> 0) THEN.
PUTINLIST(C); {Add node C.to the back of the}
{queue}
END;
END; {FOR loop}
END; {WHILE loop}
{Trace the shortest paths through the tree)
88: FOR I:= 1 TO NUMNODES DO
BEGIN
IF (I 〈> START) THEN
BEGIN
IF (d[I] = INFINITY) THEN

```
```

 BEGIN
 WRITELN;
 WRITELN ('THERE IS NO ROUTE FROM ', START,'
 TO', I)
 END
 ELSE
 BEGIN
 WRITELN:
 WRITELN('DISTANCE FROM',START,'TO',I,'IS',
 d[I]);
 WRITELN;
 WRITELN('ROUTE IS:');
 WRITELN;
 WRITE(I);
 NEXT := P[I];
 WHILE (NEXT <> START) DO
 BEGIN
 WRITE(NEXT);
 NEXT := P[NEXT];
 END;
 WRITELN(START);
 END;
 END;
 END;
    ```
99: END.
```

PROCEDURE PUTINLIST (NODE: INTEGER);
{This procedure adds a node, NODE, to the end of the}
{queue formed by the sequence list)
BEGIN
IF (POINTERARRAY[NODE] <> 0) AND (LISTINFO[NODE, 2) <> 1)
THEN
{Check that NODE has a forward star and is not already)
{in the queue)
BEGIN
SEQULIST[ENTRYPOINTER]:= NODE; {Insert NODE in queue}
ENTRYPOINTER:= ENTRYPOINTER+1;
{Set ENTRYPOINTER to refer to the new 'end' of the)
{queue)
IF ENTRYPOINTER > }100\mathrm{ THEN
ENTRYPOINTER:= 1; {Implement circular property of}
{queue)
PRINTFIFO; {Display the contents of the queue)
LISTINFO[NODE, 2] := LISTINFO[NODE, 2] + 1;
{Increment no. of timed NODE has been in the queue}
LISTINFO[NODE, 1]:= 1; {Indicate that NODE in the}
{queue}
IF (LISTINFO[NODE, 2] = (NUMNODES + 1)) THEN
BEGIN
WRITELN('THIS GRAPH CONTAINS A NEGATIVE CIRCUIT -
ILLEGAL');
END;
END;
END; {PUTINLIST}

```

PROCEDURE PRINTFIFO;
(This procedure displays the contents of the queue formed) \{by the sequence list\}
```

VAR I: INTEGER;
BEGIN
WRITELN('STATE OF THE SEQUENCE LIST');
WRITELN('---------------------------------');
WRITELN;
WRITELN('NEXT NODE OUT');
WRITELN(' |');
WRITE(' ');
FOR I:= LEAVEPOINTER TO (ENTRYPOINTER - 1) DO
BEGIN
WRITE(SEQULIST[I]: 4);
END;
WRITELN;
WRITE(' ');
FOR I:= LEAVEPOINTER TO (ENTRYPOINTER - 2) DO
BEGIN
WRITE(' ');
END;
WRITELD(' |');
WRITE(' ');
FOR I:= LEAVEPOINTER TO (ENTRYPOINTER - 2) DO
BEGIN
WRITE(' ');
END;
WRITELN('LAST NODE IN');
WRITELN;
WRITELN;
END; {PRINTFIFO)

```
```

 OK, PASCALG P408U\FIFOSEQULST. PAS
 [Sheffield Pascal version 3.3.1b]
 No errors reported.
 Executing FIFOSEQULST
 ADJACENCY MATRIX
 | | | 1 | 2 | 3 | 4 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 0 | 5 | 0 | 0 |
| | 1 | 0 | | | | |
| 2 | 1 | 0 | 0 | 0 | 2 | |
| | 1 | | | | | |
| 3 | 1 | 0 | 1 | 0 | 0 | |
| | 1 | | | | | |
| 4 | 1 | 0 | 0 | -3 | 0 | |

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM
POINTERARRAY STARARRAY WEIGHTARRAY
1 2 5
2 4
2
3 2
4 3
3 -3
5 0
O
WHICH IS THE START NODE ?
1
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
|
2
|
LAST NODE IN
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
I
4
LAST NODE IN

```

\section*{STATE OF THE SEQUENCE LIST}

NEXT NODE OUT
1 3
1
LAST NODE IN
DISTANCE FROM 1 TO 2 IS. 5

ROUTE IS:
21

DISTANCE FROM 1 TO 3 IS 4
ROUTE IS:
\(3 \quad 4\)
DISTANCE FROM
1 TO
4 IS
7
ROUTE IS:
\begin{tabular}{lll}
4 & 2 & 1
\end{tabular}
```

 OK, PASCALG P408U>FIFOSEQULST.PAS
 [Sheffield Pascal version 3.3.1b]
 No errors reported.
 Executing FIFOSEQULST
 ADJACENCY MATRIX
 1 2 3
 110 2 0
 I
 210 0 8
 I
 3 1-12 0 0
|
THIS IS THE GRAPH REPRESEITED IN FORWARD STAR FORM
POINTERARRAY STARARRAY WEIGHTARRAY
1 2 2
2 3 8
3 1 -12
4 0 0
WHICH IS THE START NODE ?
1
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
I
2
|
LAST NODE IN
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
1
3
I
LAST NODE IN

```
```

STATE OF THE SEQUENCE LIST
NEXT NODE OUT
|
1
I
LAST NODE IN
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
I
2
|
LAST NODE IN
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
I
3
|
LAST NODE IN
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
I
1
|
LAST NODE IN
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
|
2
I
LAST NODE IN

```
```

STATE OF THE SEQUENCE LIST
NEXT NODE OUT
|
3
I
LAST NODE IN
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
I
1
LAST NODE IN
STATE OF THE SEQUENCE LIST
NEXT NODE OUT
I
2
|
LAST NODE IN
THIS GRAPH CONTAINS A NEGATIVE CIRCUIT - ILLEGAL

```

\section*{APPENDIX C}
This appendix contains the PASCAL code for the
program - DBENDQUEUE and the procedure
fUTINDEQUEUE and PRINTDEQUEUE, DBENQUEUE is the
label correcting algorithm with output restricted
double ended queue and procedure. PUTINDEQUEUE
adds a node to the top or bottom of a queue,
ADDDQ, both are discussed in sections 4 and. 8 .
FRINTDEQUEUE, upon call, displays the contents of
the output restricted, double ended queue. frior
to running DBENDQUEUE, a correctly formatted
version of INFILE must be available.
Some sample runs of this programare also shown in
this appendix.
```

PROGRAM DBENDQUEUE(INPUT,QUTPUT, INFILE);
{This program finds the shortest paths from a node, START }
{to every other node in a network using the label }
{correcting algorithm. This program implements an output)
(restricted double ended queue and uses forward star }
{representation of the network }
LABEL 99,88;
CONST
INFINITY = 99999;
TYPE
WORD5 = ARRAY[1..5] OF CHAR;
ARRAY2 = ARRAY[1..2] OF INTEGER;
ARRAY100 = ARRAY[1..100] OF INTEGER;
VAR
POINTERARRAY,STARARRAY, WEIGHTARRAY, P, d, DEQUEUE : ARRAY100;
ENTRYCOUNT: ARRAY100;
NUMNODES, R, N, C, I, J,START, NEXT, FRONTQUEUE, BACKQUEUE, FIRST,
LAST: INTEGER;
ENTRY,TOP: BOOLEAN;
INFILE:TEXT;
BEGIN {MAIN}
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[I]:= 0;
STARARRAY[I]:= 0;
WEIGHTARRAY[I]:= 0;
P[I]:= 0;
d[I]:= INFINITY;
DEQUEUE[I]:= 0;
ENTRYCOUNT[I]:= 0;
END; {Initialise the arrays)
READFORSTAR; {Read in the network)
PRINTADJMATRIX; {Display the network}
WRITELN('THIS IS THE GRAPH REPRESENTED IN FORWARD STAR
FORM');

```

```

 WRITELN;
 WRITELN(' POINTERARRAY STARARRAY WEIGHTARRAY');
 WRITELN(, ------------ -------------------------
 WRITELN;
 FOR I:= 1 TO POINTERARRAY[NUMNODES + 1] DO
 WRITELN(' ',POINTERARRAY[I], ' ',STARARRAY[I],
 , ',WEIGHTARRAY[I]);
 WRITELN;
    ```
```

 WRITELN('WHICH IS THE START NODE ?');
 READLN(START);
 WRITELN;
 d[START]:= 0;
 DEQUEUE[START]:= INFINITY;
 P[START]:= START;
 IF (POINTERARRAY[START] = 0) THEN
 GOTO 88;
 FRONTQUEUE:= START; {Insert the starting node in the)
{dequeue}
BACKQUEUE:= START;
WHILE (FRONTQUEUE<> INFINITY) DO
BEGIN
R := FRONTQUEUE:
{Remove the next node from the dequeue)
ENTRY :=FALSE;
PRINTDEQUEUE; {Display the contents of the dequeue}
FRONTQUEUE:= DEQUEUE[FRONTQUEUE]; {Reset queue)
{pointer}
IF (FRONTQUEUE = INFINITY) THEN
BACKQUEUE:= INFINITY; {Empty queue condition}
DEQUEUE[R]:= -1;
FIRST := POINTERARRAY[R];
N:= R;
REPEAT
N:= N+1;
LAST:= POINTERARRAY[N];
UNTIL (LAST <> 0);
LAST := LAST - 1;
FOR J:= FIRST TO LAST DO
BEGIN
C:= STARARRAY[J];
IF (d[C] > (d[R] + WEIGHTARRAY[J])) THEN
BEGIN {Relabel node C}
d[C] := (d[R] + WIEIGHTARRAY[J]);
P[C]:= R;
IF (POINTERARRAY[C] <> 0) THEN
PUTINDEQUEUE(C); (Add node C to the)
{dequeue}
END;
END;
END; (WHILE loop)
{Trace the shortest paths through the tree}
88: FOR I:= 1 TO NUMVERT DO
BEGIN
IF (I <> START) THEN
BEGIN
IF (d[I] = INFINITY) THEN
BEGIN
WRITELN;
WRITELN('THERE IS NO ROUTE FROM', START,
'TO',d[I]);
WRITELN;

```
```

 WRITELN('ROUTE IS:');
 WRITELN;
 WRITE(I);
 NEXT:= P[I];
 WHILE (NEXT <> START) DO
 BEGIN
 WRITE(NEXT);
 NEXT:= P[NEXT];
 END;
 WRITELN(START);
 END;
 END;
 END;
 99: END.

```
```

PROCEDURE PUTINDEQUEUE(NODE: INTEGER);
{This procedure adds a node, NODE, to the front or the)
{back of the double ended queue, as required)
BEGIN
ENTRYCOUNT[NODE]:= ENTRYCOUNT[NODE] + 1;
{Increment no. of times NODE has been in the dequeue)
IF (ENTRYCOUNT[NODE] = (NUMNODES + 1)) THEN
BEGIN
WRITELN('NEGATIVE LENGTH CIRCUIT ENCOUNTERED -
ILLEGAL');
GOTO 99;
END;
IF (DEQUEUE[NODE] = -1) THEN
BEGIN {Insert NODE at the front of the dequeue)
TOF:= TRUE;
DEQUEUE[NODE]:= FRONTQUEUE;
FRONTQUEUE:= NODE;
IF (BACKQUEUE = INFINITY) THEN
BACKQUEUE:= NODE;
ENTRY:= TRUE;
PRINTDEQUEUE; {Display the contents of the dequeue}
END
ELSE
BEGIN {Insert NODE at the back of the dequeue}
IF (DEQUEUE[NODE] = 0) THEN
BEGIN
TOP: = FALSE;
DEQUEUE[NODE]:= INFINITY;
IF (BACKQUEUE <> INFINITY) THEN
DEQUEUE[BACKQUEUE]:= NODE;
BACKQUEUE:= NODE;
IF (FRONTQUEUE = INFINITY) THEN
FRONTQUEUE:= NODE;
ENTRY:= TRUE;
PRINTDEQUEUE; {Display the contents of the dequeue}
END;
END;
END; {PUTINDEQUEUE}

```
```

PROCEDURE PRINTDEQUEUE;
{This procedure displays the contents of the double}
{ended queue formed by the sequence list}
VAR
I,NUMPRINTED: INTEGER;
BEGIN
WRITELN('STATE OF THE DOUBLE ENDED QUEUE');
WRITELN('----------------------------------');
WRITELN;
IF NOT (ENTRY) THEN
BEGIN
WRITELN('NODE ABOUT TO LEAVE');
WRITELN(' ।');
END
ELSE
BEGIN
IF (TOP) THEN
BEGIN
WRITELN(' NODE JUST ENTERED');
WRITELN(' (');
END;
END;
I:= FRONTQUEUE;
NUMPRINTED:= 0;
WRITE(' ');
REPEAT
WRITE(I:4);
NUMPRINTED: = NUMPRINTED+1;
I:= DEQUEUE[I];
UNTIL (I = INFINITY);
WRITELN;
IF (ENTRY = TRUE) AND (NOT TOP) THEN
BEGIN
WRITE(' 1');
FOR I:= 1 TO (NUMPRINTED - 1) DO
BEGIN
WRITE(' ');
END;
WRITELN(' ');
FOR I:= 1 TO (NUMPRINTED - 1) DO
BEGIN
WRITE(' ');
END;
WRITELN(' NODE JUST ENTERED');
END;
WRITELN:
WRITELN;
END; {PRINTDEQUEUE}

```
```

OK, PASCALG P408U>DEQUEUE.PAS
[Sheffield Pascal version 3.3.1b]
No errors reported.
Executing DBENDQUEUE
ADJACENCY MATRIX
1 2 3
10 2 0
I
210 0 8
|
310 0 5
I
THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM

| FOINTERARRAY | STARARRAY | WEIGHTARRAY |
| :---: | :---: | :---: |
| | | |
| 1 | 2 | 2 |
| 2 | 3 | 8 |
| 3 | 3 | 5 |
| 4 | 0 | 0 |

WHICH IS THE START NODE ?
1
STATE OF THE DOUBLE ENDED QUEUE
NODE ABOUT TO LEAVE
I
1
I
STATE OF THE DOUBLE ENDED QUEUE
2
|
NODE JUST ENTERED

```
```

STATE OF THE DOUBLE ENDED QUEUE
NODE ABOUT TO LEAVE
|
2
STATE OF THE DOUBLE ENDED QUEUE
3
|
NODE JUST ENTERED
STATE OF THE DOUBLE ENDED QUEUE
NODE ABOUT TO LEAVE
I
3
DISTANCE FROM
1 TO
2 IS
2
ROUTE IS:
2 1
DISTANCE FROM 1 TO
ROUTE IS:
3 2 1

```
```

OK, PASCALG P4O8U>DEQUEUE. PAS
[Sheffield Pascal version 3.3.1b]
No errors reported.
Executing DBENDQUEUE
ADJACENCY MATRIX

| | 1 | 2 | 3 | |
| :---: | :---: | :---: | :---: | :---: |
| | | 1 | 2 | 0 |
| 1 | 1 | 2 | 0 | |
| 2 | 1 | | 0 | 8 |
| 2 | 0 | 0 | | |
| 3 | 1 | 0 | 0 | -12 |

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM
POINTERARRAY STARARRAY WEIGHTARRAY
1.2
2 3 8
3 3 -12
4 0
0
WHICH IS THE START NODE ?
2
STATE OF THE DOUBLE ENDED QUEUE
NODE ABOUT TO LEAVE
2
STATE OF THE DOUBLE ENDED QUEUE
3
I
NODE JUST ENTERED

```
```

STATE OF THE DOUBLE EIDED QUEUE
NODE ABOUT TO LEAVE
l
3
STATE OF THE DOUBLE ENDED QUEUE
NODE JUST ENTERED
I
3
STATE OF THE DOUBLE ENDED QUEUE
NODE ABOUT TO LEAVE
|
3
STATE OF THE DOUBLE ENDED QUEUE
NODE JUST ENTERED
I
3
STATE OF THE DOUBLE ENDED QUEUE
NODE ABOUT TO LEAVE
I
3
NEGATIVE LENGTH CIRCUIT ENCOUNTERED - ILLEGAL

```

\section*{APPENDIX D}

This appendix contains the PASCAL code for the program, ADCALC, the label setting algorithm with address calculation, the procedure \(A D D N O D E\) and REMOVENODE, and the modified PASCAL code for the procedure READFORSTAR. The FASCAL code for the procedure frintnodearray is also included. This procedure, upon call, displays the contents of the non-empty locations of NODEARRAY. Prior to running \(A D C A L C\), a correctly formatted version of INFILE must be available.

Some sample runs of this program are also shown in this appendix.
```

FROGRAM ADCALC(INPUT,OUTPUT,INFILE);
{This program finds the shortest paths from a node, START)
{to every other node in a network using the label setting }
{algorithm. This program implements an address }
{calculation sort and uses forward star representation of }
{the network
LABEL 99;
CONST
INFINITY = 99999;
TYPE
WORD5 = ARRAY[1..5] OF CHAR;
ARRAY100 = ARRAY[1..100] OF INTEGER;
POINTER = "NODE;
PTRARRAY = ARRAY[0..1000] OF POINTER;
NODE = RECORD
NAME: INTEGER;
NEXT: POINTER;
END;
BOARRAY: ARRAY[1..100] OF BOOLEAN;
VAR
NODEARRAY: PTRARRAY;
PTR: POINTER;
POINTERARRAY,STARARRAY, VEIGHTARRAY,P,d : ARRAY100;
NUMNODES, N, C, I, J, MODULUS, START, NEXT, R : INTEGER;
ARRAYREF,STARTREF, CURRENTLOC, NEWLOC, FIRST, LAST: INTEGER;
TERMINATE: BOOLEAN;
INFILE: TEXT;
INTREE: BOARRAY;
BEGIN {MAIN}
RESET (INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[I]:= 0;
STARARRAY[I]:= 0;
WE[GHTARRAY[I]:= 0;
P[I]:= 0;
d[I]:= INFINITY;
INTREE[I]:= FALSE;
END; {Initialise the arrays}
READFORSTAR; {Read in the network}
PRINTADJMATRIX; {Display the network}
WRITELN('THIS IS THE GRAPH REPRESENTED IN FORWARD STAR

```
```

FORM');
WRITELN('---
WRITELN;
WRITELN(' POINTERARRAY STARARRAY WEIGHTARRAY');
WRITELN(' ---------------------------------------
WRITELN;
FOR I:= 1 TO POINTERARRAYC NUMNODES + 11 DO
WRITELN(' ',POINTERARRAY[[],' ',STARARRAY[I],
' ',WEIGHTARRAY[I]);
WRITELN;
WRITELN('WHICH IS THE START NODE ?');
READLN(START);
WRITELN;
d[START]:= 0;
P[START]:= START;
FOR I =0 TO MODULUS DO
NODEARRAY[I]:= NIL;
ARRAYREF:= -1;
NEW(PTR);
PTR*.NAME:= START;
PTR^.NEXT:= NIL;
NODEARRAY[0]:= PTR; {Insert starting node in NODEARRAY}
IF (POINTERARRAY[START] <> 0) THEN
TERMINATE:= FALSE {No paths from start node}
ELSE
TERMINATE:= TRUE;
WHILE (TERMINATE = FALSE) DO
BEGIN
STARTREF:= ARRAYREF;
REPEAT
ARRAYREF:= ARRAYREF + 1;
IF (ARRAYREF > MODULUS) THEN
ARRAYREF:= 0;
UNTIL (NODEARRAY[ARRAYREF] <> NIL) OR
(ARRAYREF = STARTREF);
{Search for next non NII entry in NODEARRAY)
IF ARRAYREF = STARTREF THEN
TERMINATE:= TRUE {NODEARRAY is empty}
ELSE
BEGIN
PTR:= NODEARRAY[ARRAYREF1;
REPEAT {For each node in the linked list located};
R:= PTR^.NAME;
INTREE[I] := TRUE;
WRITELN('EXAMINING NODE ',R:3);
WRITELN;
FIRST:= POINTERARRAY[R];
N; =R;
REPEAT
N:= N+1;
LAST:= POINTERARRAY[N];
UNTIL (LAST <> O);
LAST:= LAST - 1;

```
```

 FOR J:= FIRST TO LAST DO
 BEGIN
 C:= STARARRAY[J];
 IF ({d[R] + WEIGHTARRAY[J]) < (d[C]))
 AND (INTREE[C) = FALSE) THEN
 BEGIN {Relabel node C)
 IF (d[C] <> INFINITY) AND
 (POINTERARRAY[C] <> 0) THEN
 BEGIN {Remove C.from its current pos.}
 (in NODEARRAY)
 CURRENTLOC:= (d[C] MOD MODULUS);
 (* Calculate C's current address in)
 {NODEARRAY *)
 REMOVENODE (CURRENTLOC,C);
 PRINTMODEARRAY (FALSE,C);
 {Display contents of NODEARRAY}
 END;
 d[C]:= d[R] + WEIGHTARRAY[J];
 P[C]:= R;
 IF (POINTERARRAY[C] <> 0) THEN
 BEGII
 NEVLOC:= (d[C] MOD MODULUS);
 {* Calculate C's new address in}
 {NODEARRAY *}
 ADDNODE (NEWLOC,C);
 PRINTNODEARRAY(TRUE,C);
 (Display contents of NODEARRAY)
 END;
 END;
 END;
 PTR:= PTR^.NEXT;
 (Set pointer to refer to the next node in the)
 {linked list}
 REMOVENODE(ARRAYREF,R); {Remove R from the)
 {linked list}
 PRINTNODEARRAY (FALSE,R);
 {Display contents of NODEARRAY}
 UNTIL (PTR = NIL);)
 {End of linked list has been reached)
 END; {IF ARRAYREF = STARTREF}
 END; {WHILE TERMINATE <> FALSE)
 {Trace the shortest paths through the tree}
FOR I:= 1 TO NUMNODES DO
BEGIN
IF (I <> START) THEN
BEGIN
IF (d[I] = INFINITY) THEN
BEGIN
WRITELN;
WRITELN('THERE IS NO ROUTE FROM',START,'TO',I)
END
ELSE
BEGIN

```
```

 WRITELN;
 WRITELN('DISTANCE FROM',START,'TO',I,'IS',d[I]);
 WRITELN;
 WKITELN('ROUTE IS:');
 WRITELN;
 WRITE(I);
 NEXT:= P[I];
 WHILE (NEXT <> START) DO
 BEGIN
 WRITE(NEXT);
 NEXT:= P[NEXT];
 END;
 WRITELN(START);
 END;
 END;
 END;

```
99: END.
```

PROCEDURE ADDNODE (LOC,NODE: INTEGER);
{This procedure adds a node, NODE, to the end of the)
{linked list pointed to from location LOC in NODEARRAY)
VAR PTR,NEWPTR:POINTER;
BEGIN
PTR:=NODEARRAY[LOC];
IF (PTR <> NIL) THEN
BEGIN {There is already a linked list pointed to from}
{location LOC}
WHILE (PTR^.NEXT <> NIL) DO
BEGIN
PTR:=PTR^.NEXT;
END; {Find the end of the linked list}
NEW(NEWPTR);
NEWPTR^. NAME:=NODE;
PTR*.NEXT:=NEWPTR;
NEWPTR^.NEXT:=NIL; {Add NODE to the end of the linked)
{list}
END
ELSE {There is currently no linked list pointed to from}
{location LOC}
BEGIN
NEW(NEWPTR);
NEWPTR^.NAME:=NEWPTR;
NEWPTR^. NEXT:=NIL;
END; {Add NODE as first (and only) node in the linked)
{list)
END; {ADDNODE}

```
```

FROCEDURE REMOVENODE (LOC, NODE: INTEGER);
{This procedure removes a node, NODE, from the linked}
{pointed to from location LOC in NODEARRAY)
VAR PTR,OLDPTR: POINTER;
BEGIN
PTR;=NODEARRAY[LOC];
IF (PTR*.NAME <> NODE) THEN
{Check if NODE is the first node in the linked list}
BEGIN
REPEAT
OLDPTR:=PTR;
{OLDPTR points to the node before NODE in the}
{linked list)
PTR:=PTR".NEXT;
UNTIL (PTR*.NAME = NODE); {Locate NODE in the linked}
{list}
OLDPTR^.NEXT:=PTR^.NEXT; {Bypass NODE in the linked}
(list)
DISPOSE(PTR);
END
ELSE
BEGIN {The node after NODE becomes the first in the)
{linked list)
NODEARRAY[LOC]:= PTR^.NEXT;
DISPOSE(PTR);
END;
END: {REMOVENODE}

```
```

PROCEDURE READFORSTAR;
{This procedure reads the adjacency matrix representation }
{of the network from INFILE to the 3 forward star arrays -}
{POINTERARRAY, STARARRAY and WEIGHTARRAY. This version of}
{the procedure also obtains the value of MODULUS required }
{by the program}
VAR
ROW, COL, I, EDGEPOINTER, EDGEPOINTSTORE, VALUE: INTEGER;
{EDGEPOINTER stores the next free location number in}
{STARARRAY}
{EDGEPOINTSTORE stores the first location number in }
{STARARRAY used to store the current nodes forward)
{star}
NUMBER:WORD5;
{NUMBER holds the number read from INFILE, in character)
{form)
ENDROW, ENDCOLS: BOOLEAN;
{ENDROW = TRUE if end of row is reached i.e. a * is }
{detected ENDCOLS = TRUE when all rows in adjacency }
{matrix have been read}
CH:CHAR;
BEGIN
MODULUS:= 0;
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[I]:= 0;
STARARRAY[1]:= 0;
WEIGHTARRAY[I]:= 0;
END: {Initialise forward star arrays}
ENDCOLS:= FALSE;
ROW:= 0;
EDGEPOINTER:= 1;
WHILE NOT(ENDCOLS) DO
BEGIN
ENDROW:= FALSE;
COL:= 1;
{EDGEPOINTER currently contains the first location)
{number in STARARRAY that will be used to store the)
{forward star of the next node)
EDGEPOINTSTORE: = EDGEPOINTER;
ROW:= ROW+1;
WHILE NOT(ENDROW) DO
BEGIN
FOR I:=1 TO 5 DO
NUMBER[I]:= ' ';
I:= 1;
REPEAT {Read the next number from INFILE)
READ(INFILE,CH);
NUMBER[I]:= CH;

```
```

 I:= I+1;
 UNTIL ((I = 5) OR (NUMBER[1] = '*'));
 IF (NUMBER[1] = '*') THEN
 BEGIN {End of row detected}
 ENDROW:= TRUE;
 IF (COL=1) THEN
 ENDCOLS:= TRUE; (End of adjacency matrix)
 END
 ELSE
 BEGIN
 IF (NUMBER[1] <> '0') THEN
 BEGIN {Insert information into the 3 arrays)
 POINTERARRAY[ROW]:= EDGEPOINTSTORE;
 CHARTOINT (NUMBER,VALUE);
 IF (VALUE > MODULUS) THEN
 MODULUS:= VALUE;
 STARARRAY[EDGEPOINTER]:= COL;
 WEIGHTARRAY[EDGEPOINTER]:= VALUE;
 EDGEPOINTER:= EDGEPOINTER+1;
 {Set pointer to next free location in)
 {STARARRAY)
 END;
 COL:= COL+1; {Increment column reference}
 END;
 END;
 IF NOT (ENDCOLS) THEN
 BEGIN
 READLN(INFILE);
 READLN(INFILE);
 END; {Move to the next row of the adjacency)
 {matrix)
 END;
 NUMNODES:= ROW-1; {Record the number of nodes in the}
 {network}
 POINTERARRAY[NUMNODES+11:= EDGEPOINTER;
 {Insert dummy pointer in POINTERARRAY)
 MODULUS:= MODULUS+1; {MODULUS := Lmax + 1}
 END; {READFORSTAR}

```
```

PROCEDURE PRINTNODEARRAY (ADDED: BOOLEAN; NODENUM: INTEGER);
{This procedure displays the contents of the non-empty)
{locations of NODEARRAY. It also outputs which node has}
(just been added or removed from NODEARRAY)
VAR
K:INTEGER;
PTR:POINTER;
BEGIN
WRITELN('STATE OF NODEARRAY');
WRITELN('--------------------');
WRITELN;
IF (ADDED) THEN
WRITELN('NODE', NODENUM: 4, 'ADDED')
ELSE
WRITELN(' NODE', NODENUM: 4, 'REMOVED');
WRITELN;
WRITELN('LOCATION ID NODARRAY LIST FROM LOCATION');
WRITELN('--
WRITELN;
FOR K:= O TO MODULUS DO
BEGIN
PTR:= NODEARRAY[K];
IF (PTR <> NIL) THEN
BEGIN
WRITE (K:11);
WRITE(' ');
REPEAT
WRITE(' ------ ');
WRITE (PTR^.NAME:3);
PTR:= PTR`.NEXT;
UNTIL (PTR = NIL);
WRITEIN;
WRITELN;
END;
END;
END; {PRINTNODEARRAY}

```
```

OK, PASCALG P408U>ADCALC.PAS
[Sheffield Pascal version 3.3.1b]
No errors reported.
Executing ADCALC
ADJACENCY MATRIX
12 3

1 10 1 4
1
210 0 3
10
|
THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM
POINTERARRAY STARARRAY WEIGHTARRAY
1 2 1
3 3
0 3 3
4 0 0
WHICH IS THE START NODE ?
2
STATE OF NODEARRAY
NODE 2 ADDED
LOCATION IN NODEARRAY LIST FROM LOCATION
0
2
EXAMINING NODE 2
STATE OF NODEARRAY
NODE 2 REMOVED
LOCATION IN NODEARRAY LIST FROM LOCATION

```

THERE IS NO ROUTE FROM
2 TO 1

DISTANCE FROM
2 T0
IS
- 3

ROUTE IS:
3
2
```

OK, PASCALG P408U>ADCALC,PAS
[Sheffield Pascal version 3.3.1b]
No errors reported.
Executing ADCALC
ADJACENCY MATRIX
12 3
10}
1
210 0 3
I
310 0 0
1
THIS IS THE GRAPH REPRESEMTED IN FORWARD STAR FORIA
POINTERARRAY STARARRAY WEIGHTARRAY
1 2 1
3 3 4
0 3 3
4 0 0
WHICH IS THE START NODE ?
1
STATE OF NODEARRAY
NODE 1 ADDED
LOCATION IN NODEARRAY LIST FROM LOCATION
0
1
EXAMINING NODE 1
STATE OF NODEARRAY
NODE 2 ADDED

```

LOCATION IN NODEARRAY

0

1
STATE OF NODEARRAY

NODE 1 REMOVED
LOCATION IN NODEARRAY

1

EXAMINIMG NODE 2
STATE OF NODEARRAY

NODE 2 REMOVED
LOCATION IN NODEARRAY

DISTANCE FROM
ROUTE IS:
21
DISTANCE FROM
ROUTE IS:
31
\(\qquad\)

ROUTE
1

LIST FROM LOCATION
----- \(\quad 1\)
1

2
```

LIST FROM LOCATION

2
LIST FROM LOCATION
1 TO
2 IS
1
1 TO
3 IS
4

```

\section*{APPENDIX E}

This appendix contains the PASCAL code for the program, BUCKETSORT, the label setting algorithm with 1-level bucketsort, the procedures ADDNODEBUCK and REMOVENODEBUCK and the modified PASCAL code for READFORSTAR. The program and its associated procedures are discussed in section 9. The PASCAL code for the procedure RINTBUCKETS is also included. This procedure, upon call, displays the contents of the non-empty buckets in the bucket list. Frior to running BUCKETSORT, a correctly formatted version of INFILE must be available.

Some samples runs of this program are also shown in this appendix.
```

PROGRAM BUCKETSORT(INPUT,OUTPUT,INFILE);
{This program finds the shortest paths from a node , START)
{to every other node in a network using the label setting)
{algorithm. This algorithm implements a bucket sort and ,
{uses forward star representation of the network }
LABEL 99;
CONST
INFINITY = 99999;
TYPE
WORD5 = ARRAY[1. .5] OF CHAR;
ARRAY100 = ARRAY[1..100] OF INTEGER;
POINTER = "NODE;
PTRARRAY = ARRAY[0..1000] OF POINTER;
NODE = RECORD
NAME: INTEGER;
NEXT: POIETER;
END;
BOARRAY = ARRAY[1..100] OF INTEGER;
VAR
BUCKLIST: PTRARRAY;
PTR: POINTER;
POINTERARRAY, STARARRAY, WEIGHTARRAY,P,d : ARRAY100;
NUMNODES, N, C, I, J, LMIN, START, NEXT: INTEGER;
BUCKREF, CURRENTBUCKET, NEWBUCKET, FIRST, LAST: INTEGER;
TERMINATE: BOOLEAN;
INFILE: TEXT;
INTREE: BOARRAY;
BEGIN {MAIN)
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[I]:= 0;
STARARRAY[I]:= 0;
WEIGHTARRAY[I]:= 0;
P[I]:= 0;
d[I]:= INFINITY;
INTREE[I]:= FALSE;
END:
READFORSTAR; {Read in the network}
PRINTADJMATRIX; {Display the network)
WRITELN('THIS IS THE GRAPH REPRESENTED IN FORWARD STAR
FORM');

```
```

WRITELN ('--
WRITELN;
WRITELN(' POINTERARRAY STARARRAY WEIGHTARRAY');
WRITELN(' ------------- -------------------------
WRITELN;
FOR I:= 1 TO POINTERARRAYC NUMNODES + 1] DO
WRITELN(' ',POINTERARRAY[I],' ',STARARRAY[I],
, WEIGHTARRAY[I]);
WRITELN;
WRITELN('WHICH IS THE START NODE ?');
READLN (START)
WRITELN;
d[START]:= 0;
P[START]:= START;
FOR I := 1 TO 1000 DO
BUCKLIST[I]:= NIL;
BUCKREF:= -1;
NEW (PTR);
PTR^.NAME:= START;
PTR^.NEXT:= NIL;
BUCKLIST[0]:= PTR;
{Insert starting node in BUCKET 0 }
IF (POINTERARRAY[START] <> 0) THEN
TERMINATE:= FALSE {No paths from start node)
ELSE
TERMINATE:= TRUE;
WHILE (TERMINATE = FALSE) DO
BEGIN
REPEAT
BUCKREF:= BUCKREF + 1;
UNTIL (BUCKREF = 1001) OR (BUCKLIST[BUCKREF] <> NIL);
{Search for the next non-empty bucket)
IF BUCKREF = 1001 THEN
TERMINATE:= TRUE
ELSE
BEGIN
PTR:= BUCKLIST[BUCKREF];
REPEAT {For each node - R, in the bucket linked)
{list}
R:= PTR^.NAME;
INTREE[R]:= TRUE; {Add R to the tree)
WRITELN('EXAMINING NODE',R:3);
WRITELN;
FIRST:= POINTERARRAY[R];
N:= R;
REPEAT
N:= N+1;
LAST:= FOINTERARRAY[N];
UNTIL (LAST <> 0);
LAST:= LAST - 1;
FOR J:= FIRST TO LAST DO
BEGIN
C:= STARARRAY[J];

```
```

 IF ((d[R] + WEIGHTARRAY[J]) < d[C]) AND
 (INTREE[C] = FALSE) THEN
 BEGIN {Relabel node C)
 IF (d[C] <> INFINITY) AND (POINTERARRAY
 [Cl <> 0) THEN
 BEGIN (If C is already in a bucket)
 CURRENTBUCKET:= 〈d[C] DIV LMIN`;
 {Find C's current bucket}
 REMOVENODEBUCK (CURRENTBUCKET,C);
 END;
 d[C] := (d[.R] + WEIGHTARRAY[J]);
 P[C]:= R;
 IF (POINTERARRAY[C] <> 0) THEN
 (Check if C has a forward star)
 BEGIN
 #EWBUCKET:= (d[C] DIV LMIN);
 {Calculate C's new bucket)
 ADDNODEBUCK (NEVBUCKET,C);
 {Insert C in its new bucket}
 END;
 END;
 END; {FOR Loop}
 PTR:= PTR^.NEXT;
 REMOVENODEBUCK (BUCKREF,R);
 UNTIL (PTR = NIL);
 END;
 END; {WHILE loop)
 FOR I:= 1 TO NUMNODES DO
BEGIN
IF (I <> START) THEN
BEGIN
IF (d[I] = INFINITY) THEN
BEGIN
WRITELN;
WRITELN('THERE IS NO ROUTE FROM',START,'TO',I)
END
ELSE
BEGIN
WRITELN;
WRITELN('DISTANCE FROM',START,'TO',I,
'IS',d[I]);
WRITELN;
WRITELN('ROUTE IS:');
WRITELN;
WRITE(I);
NEXT:= P[I];
WHILE (NEXT <> START) DO
BEGIN
WRITE(NEXT);
NEXT:= P[NEXT];
END;
WRITELN(START);
END;

```

END;
END;
99: END.
```

PROCEDURE ADDNODEBUCK (BUCKNUM, NODE: INTEGER);
{This procedure adds a node, NODE, to bucket K in the }
{bucket list}
VAR
PTR,NEWPRT: POINTER;
BEGIN
PTR:= BUCKETARRAY[BUCKNUM];
IF (PTR <> NIL) THEN {Bucket BUCKNUM is not empty)
BEGIN {Find the last node in bucket BUCKNUM }
WHILE (PTR^.NEXT <> NIL) DO
BEGIN
PTR:= PTR^.NEXT;
END;
NEW(NEWPTR);
NEWPTR^.NAME: = NODE;
PTR^.NEXT:= NEWPTR;
NEWPTR^.NEXT:= NIL;
END
ELSE
BEGIN {NODE is added as the first node in bucket K)
NEW (NEWPTR);
NEWPTR^.NAME: = NODE;
BUCKETARRAY[BUCKNUM]:= NEWPTR;
NEWPTR^.NEXT:= NIL;
END.
PRINTBUCKETS(TRUE,NODE); (Display the non-empty buckets)
END; {ADDNODEBUCK}

```
```

PROCEDURE REMOVENODEBUCK (BUCKNUM, NODE: INTEGER);
{This procedure removes a node, NODE, from bucket BUCKNUM)
{in the bucket list}
VAR
PTR,OLDPTR: POINTER;
BEGIN
PTR:= BUCKETARRAY[BUCKNUM];
IF (PTR*.NAME <> NODE) THEN
BEGIN {NODE is not the first node in bucket K)
REPEAT {LOcate NODE in bucket K)
OLDPTR:= PTR;
PTR:= PTR^.NEXT;
UNTIL (PTR^.NAME = NODE);
OLDFTR^.NEXT:= PTR^.NEXT;
{Bypass NODE in the linked list representing bucket K)
DISPOSE(PTR);
END
ELSE
BEGIN {NODE is the first node in bucket K}
BUCKETARRAY[BUCKNUM]:= PTR^.NEXT;
DISPOSE(PTR);
END;
PRINTBUCKETS(FALSE,NODE);
END; {REMOVENODEBUCK}

```
```

PROCEDURE READFORSTAR;
{This procedure reads the adjacency matrix representation}
{of the network from INFILE to the 3 forward star arrays)
{- POINTERARRAY, STARARRAY and WEIGHTARRAY. This version}
{of the procedure also obtains the value of LMID required}
{by the program)
VAR
ROW, COL, I, EDGEPOINTER, EDGEPOINTSTORE,VALUE : INTEGER;
{EDGEPOINTER stores the next free location number in)
{STARARRAY EDGEPOINTSTORE stores the first location)
{number in STARARRAY used to store the current nodes)
{forward star}
NUMBER : WORD5;
{NUMBER holds the number read from INFILE , in character)
{form)
ENDROW, ENDCOLS : BOOLEAN;
{ENROW = TRUE if end of row is reached i.e. a* is }
{detected ENDCOLS = TRUE when all rows in adjacency }
{matrix have been read)
CH : CHAR;
BEGIN
LMIN:= INFINITY;
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[I]:= 0;
STARARRAY[I]:= 0;
WEIGHTARRAY[I]:= 0;
END; {Initialise forward star arrays}
ENDCOLS:= FALSE;
ROW:= 0;
EDGEPOINTER;= 1;
WHILE NOT(ENDCOLS) DO
BEGIN
ENDROW:= FALSE;
COL:= 1;
{EDGEPOINTER currently contains the first location }
{number in STARARRAY that will be used to store the)
{forward star of the next node}
EDGEPOINTSTORE: = EDGEPOINTER;
ROW:= ROW+1;
WHILE NOT (ENDROW) DO
BEGIN
FOR I:= 1 TO 5 DO
NUMBER[I]:= ' ';
I:= 1;
REPEAT {Read the next number from INFILE}
READ(INFILE,CH);
NUMBER[I]:= CH;

```
```

 I:= I+1;
 UNTIL ((I = 5) OR (NUMBER[1] = '*'));
 IF (NUMBER[1] = '*') THEN
 BEGIN {End of row detected}
 ENDROW:= TRUE;
 IF (COL=1) THEN
 ENDCOLS:= TRUE; {End of adjacency matrix}
 END
 ELSE
 BEGIN
 IF (NUMBER[1] <> '0') THEN
 BEGIN {Insert information.into the 3 arrays)
 POINTERARRAY[ROW]:= EDGEPOINTSTORE;
 CHARTOINT (NUMBER, VALUE);
 IF (VALUE < LMIN) THEN
 LMIT:= VALUE;
 STARARRAY[EDGEPOINTER]:= COL;
 WEIGHTARRAY[EDGEPOINTER]:= VALUE;
 EDGEPOINTER:= EDGEPOINTER+1;
 {set pointer to next free location in)
 {STARARRAY}
 END;
 COL:= COL+1; {Increment column reference}
 END;
 END;
 IF NOT(ENDCOLS) THEN
 BEGIN
 READLN(INFILE);
 READLN(INFILE);
 END; {Move to the next row of the adjacency matrix)
 END;
 NUMNODES:= ROW-1; {Record the number of nodes in the}
 {network}
 POINTERARRAY[NUMNODES+1]:= EDGEPOINTER;
 {Insert dummy pointer in POINTERARRAY}
 END; {READFORSTAR)

```
```

PROCEDURE PRINTBUCKETS (ADDED, BOOLEAN, NODENUM, INTEGER);
{This procedure displays the contents of the non-empty)
{buckets in the bucket list. It also outputs which node)
(has just been added or removed from the bucket list)
VAR
K,LOW,HIGH : INTEGER
PTR : POINTER;
BEGIN
IF (ADDED) THEN
WRITELN('NODE', NODENUM: 4,' ADDED')
ELSE
WRITELN('NODE', NODENUM: 4,' REMOVED');
WRITELN;
WRITELN(' NON - EMPTY BUCKETS ');
WRITELN(' --------------------- ');
WRITELN;
FOR K:= 0 TO 1000 DO
BEGIN
PTR:= BUCKLIST[K];
IF (PTR <> NIL) THEN
BEGIN
WRITE(K:4);
LOW:= K*WIDTH;
HIGH:= (K+1)*WIDTH;
WRITE(LOW: 13);
WRITE(' <= DISTANCE < ');
WRITE(HIGH:4);
WRITE(' ');
REPEAT
WRITE(PTR^.NAME:3);
PTR:= PTR`.NEXT;
WRITE(' ');
UNTIL (PTR = NIL);
WRITELN;
WRITELN;
END;
END;
End; {PRINTEBUCKETS}

```
```

OK, PASCALG P4O8U\BUCKETSORT. PAS
[Sheffield Pascal version 3.3.1b]
No errors reported.
Executing BUCKETSORT
ADJACENCY MATRIX
1 2 3

110 1 0
|
210 0 3
3140}
|
THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM
POINTERARRAY STARARRAY WEIGHTARRAY
1 2 1
2 3
3 1 4
4 0 0
WHICH IS THE START NODE ?
1
EXAMINING NODE 1
NODE 2 ADDED
NON - EMPTY BUCKETS
BUCKET DISTANCE VALUE RANGE NODES IN BUCKET
0 . 0 <= DISTANCE< 1 1
1 1 <= DISTANCE < 2 2
NODE 1 REMOVED
NON - EMPTY BUCKETS
BUCKET DISTANCE VALUE RANGE NODES IN BUCKET

```

```

OK, PASCALG P408U>BUCKETSORT.PAS
[Sheffield Pascal version 3.3.1b]
No errors reported.
Executing BUCKETSORT
ADJACENCY MATRIX
1 2 3
--.-----------
1 10 1 4
1
10}
|
3 10 0}
l
THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM
POINTERARRAY STARARRAY WEIGHTARRAY
1 2 1
3. 3 4
0 3 3
4 0 0
WHICH IS THE START NODE ?
2
EXAMINING NODE 2
NODE 2 REMOVED
NON - ENPTY BUCKETS
BUCKET DISTANCE VALUE RANGE . NODES IN BUCKET
THERE IS NO ROUTE FROM 2 TO 1
DISTANCE FROM 2 TO 3 IS 3
ROUTE IS:
3 2

```

\section*{APPENDIX F}

This appendix contains the PASCAL codes for the program SENET, and all the procedures used in the program. A correctly formatted version of INFILE must be available before the execution of the program.

A sample run of this program is also shown in this appendix.
```

PFOGRAM SENET (INPUT,OUTPUT,INFILE);
{This program first finds the shortest path tree rooted at}
{a node START in a network stored in INFILE using}
{DIJKSTRA's algorithm. It then applies the algorithm)
{SENET, to all the possible arcs, for the purpose of post)
{optimality analysis}
LABEL 99;
CONST
INFINITY = 99999;
TYPE
BOAFRAY = ARRAY[1..100] OF BOOLEAN;
WORD5 = ARRAY[1..5] OF CHAR;
ARRAY100 = ARRAY[1..100] OF INTEGER;
ADJARRAY = ARRAY[1..100] OF ARRAY100;
VAR
ACT : WORD5;
ADJMATRIX : ADJARRAY;
P1,P2,P3,d1,d2,d3, CHANGEDNODES : ARRAY100;
NUMNODES, I, J, MINIMUM,START : INTEGER;
MIDPOS,K,KK : INTEGER;
DELTA : ARRAY100;
INFILE : TEXT;
BEGIN {MAIN}
RESET(INFILE);
BEGIN
P1[I]:= 0;
P2[I]:= 0;
P3[I]:= 0;
d1[I]:= INFINITY;
d2[I]:= INFINITY;
d3[I]:= INFINITY;
END;
READADJMATRIX; {Read in the network}
PRINTADJMATRIX {Display the network}
WRITELN('WHICH IS THE START NODE ?');
READLN(START);
WRITELN;
P1[START]:= START;
P2[START]:= START;
P3[START]:= START;
d1(START]:= 0;
d2[START]:= 0;
d3[START]:= 0;
SHORTESTPATH(P1,d1);

```
```

 TRACEPATH;
 K:= 0;
 KK:= 1;
 WRITESHEAD;
 FOR I:= 1 TO NUMNODES DO
 FOR J:= 1 TO NUMNODES DO
 IF (I <> J). THEN
 BEGIN
 WEIGHT:= ADJMATRIX[I,J];
 IF(WEIGHT = INFINITY)
 THEN
 ACT:= 'NEX ,
 ELSE
 IF (P1[J] = I)
 THEN
 ACT:= ,NOP ,
 IF (ACT = 'OPT ') THEN
 BEGIN
 ADJMATRIX [I,J]:= INFINITY;
 SHORTESTPATH(P2,d2);
 COMPARE (P2,K);
 MIDPOS:= k;
 IF (k > 0) THEN
 BEGIN
 FOR IJ:= kk TO k do
 DELTA[IJ]:= WEIGHT + d2[CHNGEDNODE[IJ]]
 -d1[CHANGEDNODE[IJ]];
 kk:= k+1
 END;
 ADJMATRIX[I,J]:= 0
 END;
 SHORTESTPATH(P3,d3);
 COMPARE (P3,k);
 IF (k > 0) THEN
 BEGIN
 FOR IJ:= kk TO k DO
 DELTA[I]:= d1[CHANGEDNODE[IJ]] -
 d3[CHANGEDNODE[IJ]]
 END;
 IF (k>0)
 THEN
 DESCEND;
 WRITELN;
 WRITELN;
 WRITESENET
 END
END. {MAIN}

```
```

PROCEDURE COMPARE(VAR P : ARRAY100; H : INTEGER);
{This procedure determines the nodes whose labels totally)
(change after a reoptimisation)
VAR
I, HH: INTEGER;
L: BOARRAY;
BEGIN
FOR I:= 1 TO NUMNODES DO
L[I]:= FALSE;
HH:= 0;
FOR I:= 1 TO NUMNODES DO
IF(P[I] <> P1[I]) THEN
BEGIN
L[I]:= TRUE;
H:= H+1;
CHANGEDNODE[H]:= I
END
REPEAT
IF (H > 0) THEN
BEGIN
HH:= HH+1;
FOR I:= 1 TO NUMNODES DO
IF ((CHANGEDNODE[HH] = P1[I]) AND
(L[I] = FALSE)) THEN
BEGID
L[I]:= TRUE;
H:= H+1;
CHANGEDNODE[H]:= I
END
END
UNTIL(HH = H)
END; {COMPARE}

```
```

PROCEDURE SHORTESTPATH(VAR P,d:ARRAY100);
{This procedure finds the shortest path tree rooted at)
{node START in a network stored in ADJMATRIX. The,)
{procedure is based on Dijkstra's algorithm }

```

\section*{VAR}
    R, NEXT, I, J: INTEGER;
    INTREE : ARRAY100;
BEGIN
    FOR I := 1 TO NUMNODES DO
        BEGIN
            INTREE[I] := 0 ;
            \(\mathrm{P}[\mathrm{I}]:=0\);
            d[I]: INFINITY;
        END;
    REPEAT
        MINIMUM : = INFINITY;
        FOR I := 1 TO NUMNODES DO
            BEGIN
                IF ((d[I] < MINIMUM) AND (INTREE[I] = 0)) THEN
                    BEGIN
                            R : = I;
                            MINIMUM := d[R]
                END
            END; \{Find the node with minimum total weight\}
        IF (MINIMUM 〈〉 INFINITY) THEN
            BEGIN
                INTREE[I] := 1;
                FOR J := 1 TO NUMNODES DO
                    BEGIN
                                    IF (ADJMATRIX[R, J] 《> 0) THEN
                                    IF (( (d[R] + ADJMATRIX[R, J]) <d[J]) AND
                                    (INTREE[J] = 0)) THEN
                                    BEGIN \{Relabel node J\}
                                    \(\mathrm{d}[\mathrm{J}]:=\mathrm{d}[\mathrm{R}]+\operatorname{ADJMATRIX[R,J];}\)
                                    \(\mathrm{P}[\mathrm{J}]:=\mathrm{R}\)
                                    END
                END
            END;
        UNTIL (MINIMUM \(=\) INFINITY)
99 : END; \{SHORTESTPATH\}
```

PROCEDURE TRACEPATH;
{This procedure traces the shortest paths through the tree}
VAR
NEXT, I : INTEGER;
BEGIN
FOR I := 1 TO NUMNODES DO
IF (I 〈〉 START) THEN
IF (d[I] = INFINITY) THEN
BEGIN
WRITELN;
WRITELN('THERE IS NO ROUTE FROM',START,'TO', I)
END
ELSE
BEGIN
WRITELN;
WRITELN('DISTANCE FROM',START,'TO',I,'IS',d[I]);
WRITELN('ROUTE IS:');
WRITELN;
TRACKPATH (P1,I)
END
END; {TRACEPATH}

```
```

PROCEDURE TRACKPATH (P:ARRAY100;SINK:INTEGER);
{This procedure traces the unique tree path to a node sink)
VAR
NEXT : INTEGER;
BEGIN
WRITE(SINK);
NEXT:= P[SINK];
WHILE (NEXT << START) DO
BEGIN
WRITE(NEXT);
NEXT:=P[NEXT]
END;
WRITELN(START)
END; (TRACKPATH)

```
```

PROCEDURE DESCEND;
{This procedure arranges the arrays CHANGEDNODE and DELTA)
{in DESCENDKING ORDER OF DELTA)
VAR
KI, II, Dumd, DUMP, KJ :INTEGER;
BEGIN
FOR KI := 1 TO kk DO
BEGIN
DUMd := DELTA[KI];
DUMP := CHANGEDNODE[KI];
II := KI+1;
FOR KJ := II TO kk DO
IF (DELTA[KI] < DELTA[KJJ) THEN
BEGIN
DELTA[KI] := DELTA[KJ];
CHANGEDNODE[KI] := CHANGEDNODE[KJ];
DELTA[KJ] := DUMd;
CHANGEDNODE[KJ] := DUMP
END
END
END; {DESCEND}

```
```

PROCEDURE WRITESHEAD;
{This procedure writes the headings for SENET}
BEGIN
WRITELN;
WRITELN;
WRITELN(' ***** POST-OPTIMALITY ANALYSIS');
WRITELN;
WRITELN;
WRITE(' ':20,'++ THE "EFFECT" OF EACH RANGE, EXCEPT THE
OPTIMAL AND NON-OPTIMAL, IS AN ');
WRITELN('ACCUMULATION OF THE "EFFECTS" OF THE OTHER ');
WRITE('RANGES FROM THE SIGN "\uparrow" OR "\downarrow" TO "-" OF THE ');
WRITELN('"ACCUMULATION" COLUMN FOR EACH ARC ++');
WRITELN;
WRITELN;
WRITELN;
WRITELN(' ':10,'ARC',' ':29,'RANGE',' ',:48,'EFFECT');
WRITE(' identity weight activity',',:10);
WRITE('upper lower accumulation node');
WRITE(', t-weight',' ':6,'route <------');
WRITELN;
WRITELN
END;

```
```

PROCEDURE WRITESENET (DUMI,DUMJ : INTEGER);
{This procedure writes the results of SENET)
VAR
POSFLAF : BOOLEAN;
OLDINDEX, NEWINDEX, OLDLIMIT,NEWLIMIT,I,DUM: INTEGER;
DUMd,DUMP, DUMMY : INTEGER;
FUNCTION NEW VALUE (IJ : INTEGER) : INTEGER;
VAR
DUMMY : INTEGER;
BEGIN
DUMMY := IJ;
WHILE ((DELTA[DUMMY] = OLDLIMIT) AND (DUNMY <= k)) DO
DUMMY := DUMMY + 1;
NEWVALUE := DUMMY
END; {NEWVALUE}
BEGIN {WRITESENET}
OLDINDEX := 1;
NEWLIMIT := INFINITY;
POSFLAG := FALSE;
WRITE(DUMI:3, '--->', DUMJ:3, ' ');
IF(ACT = ,NEX ,)
THEN
WRITE('INF')
ELSE
WRITE(WEIGHT:5);
WRITE(' ':6);
WRITE(ACT,' ':9);
IF (k = 0) THEN
BEGIN
WRITELN(' ':20,'NON-EFFECTIVE');
WRITELN
END
ELSE
BEGIN
NEWLIMIT := INFINITY;
WRITE(' INF');
OLDLIMIT := NEWLIMIT;
WRITE(' ':36);
NEWINDEX := NEWVALUE(OLDINDEX);
NEWLIMIT := DELTA[NEWINDEX];
WRITE(' ':3,NEWLIMIT:5,' ':3);
IF(OLDLIMIT = INFINITY)
THEN
WRITE(' ':4,'NON-OPTIMAL RANGE')
ELSE
BEGIN

```
```

WRITELN;
WRITELN(' ':46,'"-"');
IF((ACT = 'OPT ') AND (DLDLIMIT < = VEIGHT)
AND (NEWLIMIT > = WEIGHT))
THEN
WRITELN(' ':14,'**** OPTIMAL RANGE')
ELSE
BEGIN
IF (ACT = 'OPT ') THEN
BEGIN
IF (OLDINDEX = 1)
THEX
WRITE(' ':6,'"'")
ELSE
IF (OLDINDEX < MIDPOS)
THEN
WRITE(' ':6,'"4"')
END
ELSE
WRITE(' ':6,'"\&"');
DUM = NEWINDEX;
OLDINDEX := OLDINDEX + 1;
FOR I := OLDINDEX TO DUM DO
BEGIN
WRITELN;
WRITE(' ':52);
POSFLAG := (I < = MIDPOS) OR
NOT (ACT = 'OPT ');
DUMP := CHANGEDNODE[I];
WRITE(' ', DUMP:5,' ':4);
IF(CHANGEDNODE[I] = 0)
THEN
DUMd := 0
ELSE
BEGIN
IF (POSFLAG)
THEN
DUMd := d2[CHANGEDNODE[I]]
ELSE
DUMd := d3[CHANGEDNODE[I]
END;
IF (DUMd = INFINITY)
THEN
IF (ACT = 'OPT ,) THEN
BEGIN
DUMd := d1[CHANGEDNODE[I]] -
WEIGHT;
WRITE (DUMd: 4,'+W(', DUMI: 3,',');
WRITE(DUMJ:3;')')
EDD
ELSE
WRITE(' INF NO ROUTE')

```
```

 ELSE
 BEGIN
 IF (POSFLAG)
 THEN
 WRITE (DUMd: 4,'+W(',DUMI:3,','
 ,DUMJ: 3,')')
 ELSE
 VRITE(DUMd:5,' ':11);
 WRITE(DUMP:4,',:2);
 REPEAT
 IF(DUMP 〈> 0) THEN
 BEGIN
 DUMMY := DUMP;
 IF (POSFLAG)
 THEN
 DUMP := P2 [DUMP]
 ELSE
 DUMP := P3 [DUMP]
 IF (DUMP <> DUMMY.)
 THEN
 WRITE (DUMP:4,' ,:2)
 END;
 UNTIL (DUMP = START) OR (DUMP = 0)
 END
 END
 END;
 WRITELN;
 WRITELN;
 WRITELN
 END; {WRITESENET}

```
```

OK, PASCALG P408U>SENET. PAS
[Sheffield Pascal version 3.3.1.b]
No errors reported.
Executing SENET

```
ADJACENCY MATRIX
```

WHICH IS THE STARTING NODE ?
1

```
DISTANCE FROM 1 TO 2 IS 11
ROUTE IS:
    21
DISTANCE FROM
1 TO 3 IS
17
ROUTE IS:
    \(\begin{array}{lll}3 & 2\end{array}\)
DISTANCE FROM 1 TO 4 IS 21
ROUTE IS:
    \(\begin{array}{llll}4 & 3 & 2 & 1\end{array}\)
＊＊＊＊＊POST－OPTIMALITY ANALYSIS
++ THE＂EFFECT＂OF EACH RANGE，EXCEPT THE OPTIMAL AND NON－OPTIMAL，IS AN ACCUMULATION OF THE＂EFFECTS＂
OF THE OTHER RANGES FROM THE SIGN＂\(\uparrow\)＂OR＂\(\downarrow\)＂TO＂－＂OF THE＂ACCUMULATION＂COLUMN，FOR EACH ARC ++

t－weight
21
25
\(0+w(1,2)\)
OPTIMALITY－RANGE
NON－OPTIMAL RANGE

non－OPTimality range
NON－EFFECTIVE

\(\stackrel{*}{*} \quad m \sigma\)
\(\underset{*}{*}+\)

accumulation
\(\stackrel{=}{=} \quad \stackrel{=}{=}\)
\(\stackrel{\beth}{\rightrightarrows}=\)
\(=\)
\(=\)
\begin{tabular}{cc}
\multicolumn{2}{c}{ RANGE } \\
upper & lower \\
INF & 15
\end{tabular}
\(\circ\)
\(\therefore 0\)
\(\approx 0\)
\(\stackrel{*}{*}\)
15
艺
岂－
：
activity
OPT
OPT
운
\(\stackrel{\times}{\underset{\sim}{x}}\)
\(\underset{\sim}{\underset{z}{x}}\)
\begin{tabular}{cc} 
& \multicolumn{2}{l}{ ARC } \\
identity & weight \\
\(1--->\) & 11
\end{tabular}
\(\bar{\sim}\)
栄
\(\underset{\sim}{2}\)
＊＊＊＊＊
\(+\)
1－－－＞ 3
1－－＞ 4
2－－－＞
POST-OPTIMALITY ANALYSIS
+ THE "EFFECT" OF EACH RANGE, EXCEPT THE OPTIMAL AND NON-OPTIMAL, IS AN ACCUMULATION OF THE "EFFECTS"
OF THE OTHER RANGES FROM THE SIGN " \(\uparrow\) " OR " \(\downarrow\) " TO "-" OF THE "ACCUMULATION" COLUMN, FOR EACH ARC ++
```

