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Abstract 

Abstract 

This thesis describes the examination and 

characterisation of semiconductor silicon by the various 

methods of X-Ray Diffraction Topography. 

A brief introduction is given to the dynamical theory 

of X~ray diffraction and its relevance to the formation of 

contrast in X-ray topographs. The experimental methods used 

and contras~ formation mechanisms are introduced. 

The design and construction of an inexpensive Automated 

Bragg Angle Controller (ABAC) is described, based around a 

microcomputer and using many of the existing features of the 

Lang camera. This enables .Lang topographs of the whole of 

distorted crystals to be taken. 

Using the ABAC, the contrast of defects in Lang 

topographs of cylindrically bent silicon wafers is explored. 

A comparison is made between this data and images in Hirst 

topographs and contrast differences between the techniques 

are attributed to the presence of an inhomogeneous bending 

moment. The change in contrast in section and Lang 

topographs upon homogeneous bending for asymmetric 

reflections is also investigated and mechanisms for the 

contrast ch~nges are suggested. 

A bipolar device wafer is examined with double crystal 

topography using synchrotron radiation and a highly 

asymmetric reflection with a glancing angle of incidence. 

By exploiting the wavelength tuneability of the synchrotron 

radiation, the depth penetration of the X-rays is varied and 

the optimum experimental conditions for observing both 

defects and devices determined. Using this technique it is 
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Abstract 

possible to image both devices and process related defects 

to a high resolution and contrast. 

The Lang, section ahd glancing angle dotible crystal 

' 
topography techniques are compared for th~ examination of a 

CMOS device wafer. The relative strengths and weaknesses of 

each technique are highlighted and many defects are imaged 

and characterised. 

Finally, results showing the appearance of fringes in 

the double crystal topographs for low angles of incidence 

are presented. These are attributed to the' presence of a 

long range strain, and the dependence of the fringes upon 

curvature is explored for moderate bending conditions (R ~ 

35m). 
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Chapter 1 

Chapter One 

The Theory of X-ray Diffraction 

1.1 The geometrical theory of X-ray diffraction. 

In its simplest form, X-ray diffraction can be 

considered as the specular reflection of X-rays from lattice 

planes. This condition for diffraction, shown in figure 1.1 

leads to the familiar Bragg condition: 

( 1. 1 ) 

where a
8 

is the Bragg angle, X is the wavelength of the 

incident radiation and dhkl is the distance between the 

reflecting planes. An alternative definition is given by the 

Laue equation (also shown in figure 1.1 ): 

k = k + g 
g 0 

( 1 . 2) 

where k and k are vectors parallel to the incident and 
0 g 

diffracted beams respectively, both with a.magnjtude of 1/X, 

* * * and g is the diffraction vector (g = ha + kb + lc , where 

* * * a b and c are unit reciprocal lattice vectors). h,k and 

1 represent the Miller indices of the set of diffracting 

planes, multiplied by the order of the diffraction. 

The geometrical theory is limited to giving the 

conditions at which the maxima of diffraction occur, and. 

gives no information on the intensity of the diffracted 

beam. To calculate the diffracted intensity, either the 

dynamical theory or the more limited kinematical theory must 

be used and these are explained in the following sections. 
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Chapter 1 

1.2 The scattering of X-rays from a unit cell. 

We first assume the dominant scattering mechanism to be 

elastic Thomson scattering, that is, the scattered wave is 

coherent with the exciting radiation and has the same 

wavelength. When a beam of X-rays is incident on an atom, 

the electric field component of the electromagnetic 

radiation sets the electrons in the atom into forced 

vibration with the same frequency as the exciting radiation. 

These electrons form an oscillating dipole and in turn, as 

expected from classical electromagnetic theory, emit 

radiation in all directions that is coherent i~ phase, 

polarization, frequency and amplitude with the incident 

beam. 

Summing the contributions from the atoms within the 

unit cell leads to an expression for the structure factor 

F , which is defined as the ratio of the amplitude of the g 

wave scattered by one unit cell to that scattered by a 

single free electron somewhere within the unit cell. 

Generally, for an arbitrary angle of inc~dence and 

wavelength this sum is zero due to ·destructive interference 

between the scattered wavelets from individual atoms. 

However, in cases where the Bragg condition is satisfied, 

constructive interference occurs and a diffracted beam is 

observed. If the atomic scattering factor f. is now defined 
J 

as the ratio of the amplitude of the coherent scattered 

radiation from the jth atom in the unit cell to that from a 

single free electron centred at the atomic centre, the 

expression for the structure factor can be written as: 

Fg = [f .exp(2nig.r.) 
. J J 

.) 

( 1 . 3 ) 
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Chapter 1 

where N is the number of atoms in the unit cell and r. is 
J 

the position of the jth atom in the unit cell. The physics 

of the scattering process (including absorption) can be 
' . 

included phenomenologically in (1.3) by the use of a complex 

atomic scattering factor such that: 

f = f +Llf'+il'lf" 
0 

( 1. 4) 

where l'lf' and l'lf" are dispersion corrections (for non-

absorbing crystals l'lf" :: 0). Tables of the atomic scattering 

factors and the dispersion corrections may be found in [1]. 

For centrosymmetric crystals the structure factor will be 

real when the origin is taken as the centre of symmetry. 

Since the structure factor gives the amplitude of the 

diffracted wave, the intensity of the diffracted wave will 

be proportional to 

1.3 The kinematical theory of X-ray diffraction. 

The kiriematical theory has limited applications in X-

ray topography and is therefore not discussed here in 

detail. Reviews of the theory may be found in [2-5]. 

The theory is based around the central assumptions that 

the diffracting units are small (less than 1~m) and that a 

negligible amount of energy is lost from the incident beam 

in creating a diffracted beam. These imply that the 

diffracted beam does not interact with the crystal or with 

the non-diffracted wave (the "direct" beam), and that all 

unit cells are subject to the same exciting field, of a 
I 

magnitude equal to that of the incident wave. 

The diffracted intensity is now found by adding the 
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contributions from all the unit cells within the crystal, 

giving a diffracted intensity which is proportional to both 

the square of the structure factor and the volume of the 

diffracting crystal. 

To calculate the diffracted intensity for large perfect 

crystals, a theory is needed which takes account of all the 

waves propagating through the crystal. Such a theory is 

described below. 

1.4 The dynamical theory of diffraction. 

The ;derivation of the dynamical theory may be found in 

many excellent reviews of the subject [2-4], [6-10], and the 

reader is referred to these for a more thorough explanation. 

Simply, the problem is to solve Maxwell's equations: 

di v D = p f 

div B = 0 

curl E = -aB/at 
( 1. 5) 

for a complex, triply periodic electric susceptibility x, 

where: 

and is related to the structure factor by: 

2 
xh = -r A. F e h 

1tV c 

where r is the classical electron radius 
e 

and V is the volume of the unit cell. 
c 

( 1 . 6) 

( 1. 7) 

The problem is further simplified by only allowing two 

waves with appreciable amplitude to exist within the 
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crystal, with wavevectors k
0 

and kg connected by the Laue 

equation (1 .. 2). 

For a non-trivial solution we arrive at 

· k
2 cx g 
2 

k (1+x )-k .k 
0 g g 

( 1 . 8) 

where C is a polarisation factor, equal .to unity for a o 

polarised incident beam (electric vector II plane of 

incidence) and equal to cos2~B for a n polarised beam 

(electric vector plane of incidence) and k is the 

magnitude of. the wavevector in vacuo of the incident beam. 

Writing: 

Ct = ( 1 I 2 k) {k . k -k2 ( 1 +x ) } 
0 0 0 0 

( 1 . 9a ) 

and 

Ct = (1/
2

k){k .k -k 2 (1+x )·} 
g g g 0 

( 1 . 9b) 

we obtain the fundamental equation of the dynamical theory: 

Ct Ct (1.10) 
0 g 

It is also useful to define an amplitude ratio: 

R = D /D = 2a /(Cx k) = Cx k/(2a ) g 0 0 g g g 
(1.11) 

where Dg and D
0 

are the amplitudes of the direct and 

diffracted waves, related to the total wavefield DTOT by: 

DOT.= D exp2ni(vt-k .r) + D exp2ni(vt-kg.r) (1.12) 
T o o g 
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Chapter 1 

1.4.1 The dispersion surface. 

A useful visualisation of the dynamical theory is the 

dispersion surface, a section through which is shown in 

figure 1 .2. The surface is formed in the following way. 

In reciprocal space, two spheres of radius k (the 

magnitu~e of the vacuum wavevector) and k(1+x /2) (the 
0 

magnitude of the wavevectors corrected by the mean 

refractive index of the crystal) are drawn about both the 

origin 0 and the reciprocal lattice point G (where OG =g). 

In the kinematical theory the allowed wavevectors, defined 

by the Laue equation (1.2), would be k and k , drawn from 
0 g 

the Laue point· L, to 0 and G respectively. In the dynamical 

theory however, allowed wavevectors are given by (1.9) and 

(1 .io), and their magnitudes hence differ from k(1+x /2)by a 
0 0 

and a . This implies, if the spheres about 0 and G are 
g 

approximated to straight lines in the ~egion of L (valid 

since a ~a ~1o- 5 k), that the tails of allowed wavevectors 
0 g . 

must lie on hyperbolae asymptotic to AB and CD. Including 

the two possible polarisation states gives four branches of 

the dispersion surface, marked 1 o, 1n, 2o and 2n. 

Each point (tie-point) on the disp~rsion surface now 

uniquely defines both a direct and a diffracted beam 

waveyector in amplitude, phase and direction, the tie-point 

that i.s excited by the incident wave being selected by the 

experimental conditions. 

1.4.2 Boundary conditions. 

Let us consider a plane, linearly polarised, incident 

wave incident upon the crystal (this can be extended to an 
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unpolarised wave by superposition of the two principle 

orthogonal polarisation states). Since the refractive index 

for X-rays is very close to unity, reflection of the 

incident wave at the surface is negligible and the electric 

field vectors can be considered, to a good approximation, to 

be continuous across the crystal surface. 

For the wavevectors, we require there t6 be no change 

in amplitude or frequency on crossing the surface, which 

implies that the wavevectors can only differ by a vector 

along the surface normal, or: 

k .-k = k .-k = 6n 
01. gl (1.13) 

where k is the external wavevector and i is equal to 1 or 2 

dependi~g on the branch of the dispersion surface. 

The tie-points selected by this condition now become 

clear when it· is. drawn on the dispersion surface 

construction. Figures 1.3 (a) and (b) show sections through 

the dispersion surface in the region of L for the symmetric 

Laue geometry (beam enters and exits through different 

surfaces) and the symmetric Bragg geometry (same entrance 

and exit surface) respectively. The tie-points are given by 

the intersection of a line parallel with n drawn from the 

tail of k, with the dispersion surface. The point(s) at 

which the surface normal cuts the dispersion surface will 

now be dependent upon the position of the tail of k, and 

hence upon ~e, the deviation of the angle the incident beam 

makes with the diffracting planes from the exact Bragg 

angle. 
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The ~eviation from the Bragg angle can also be written 

in terms of a deviation parameter which is proportional to 

68 such that: 

(1.14) 

where A
0 

is the diameter of the dispersion surface. For both 

the Laue and Bragg geometries, the surface normal passes 

through Lo, the Lorentz point when n = 0 (and hence when 68 

= 0). The tie-points selected for a given n are different 

for the two cases and therefore they are treated separately 

below. 

1.4.3 The Laue Case. 

For n = 0, tie-points 1 and .2 in figure 1 .3(a) are 

excited at 'the diameter paints of branches 1 and 2 

respectively. At this point IRI=1 and therefore the direct 

and diffracted beams have comparable intensities. As 68 

becomes negative, tie-points towards point A are excited. 

For tie-point 4, R tends to infinity and hence no incident 

wave c~n excite it (since an infinitely large D would be g 

excited by the presence of any D ). For tie-point 3, R tends 
0 

to zero and therefore only a transmitted beam propagates. At 

the other extreme, where 68 is large and positive, (tie-

points 5 and 6) only the tie-point on branch 2 is active and 

again, since R tends to zero, only a transmitted beam can 

exist. 
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1.4.4 The Bragg case. 

In the. Bragg case, it is only possible to excite one 

branch (two branches if both polarisation states are 

included) of the dispersion surface for a given 68, and 

although two tie-points on one branch are selected by an 

incident beam (see figure 1.3(b)), it can be shown [11] that 

in an infinitely thick crystal only those tie-points which 

give wavevectors associated with a flow of energy into the 

crystal have a physical meaning. 
I 

The relative strengths of the direct and diffracted 

beams for a given tie-point will be the same as for the Laue 

case, however it should be noted that there is a range of 

68's (-1<n<+1) for which no tie-points are excited and hence 

no wavefields exist inside the crystal. This is the range of 

total Bragg reflection. 

1.4.5 Energy flow. 

The flow of energy within the crystal can be described 

in term~ of the Poynting vector: 

S = ExH (1.15) 

which is the energy flow through a unit area perpendicular 

to Sin a unit time. For our purposes however, it is 

adequate to use <<S>>, a time averaged Poynting vector, 

which is also averaged spatially over one unit cell. This 

leads (after some manipulation) to the important result that 

the total energy flow corresponding to a tie-point is always 

normal. tp the dispersion surface at that point. 
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The total energy flow consists of three components such 

that: 

(1.16) 

where s 1 is the effective energy flow associated with branch 

1 of the dispersion surface, s2 the flow associated with 

branch 2 and s 12 a coupling term between the two, which has 

a sinusoidal dependance on depth into the crystal with a 

period: 

(1.17) 

Now, if tie-points on both branches 1 and 2 of the 

dispersion surface are excited and the energy flows 

associated with these tie-points spatially overlap, the 

total ene1rgy flow exhibits the phenomenon of "Pendellosung". 

Here, the energy alternates between the· directions s and s 
0 g 

(unit vectors I I k and k respectively), going to zero in 
0 g 

the s direction and very nearly to zero in the s direction g 0 

with a period P. 

For the symmetric Laue case and n = 0, 11P is equal to 

A · the period for this condition is called the extinction o' 

distance ~ where: g . 

~g = (1.18) 
r xcOJ( IFF j) e g g 

For symmetric reflections with n = 0, all the energy 

flows along the diffracting planes, however for a non-zero 

n, energy associated with different branches will propagate 

in different directions and, if the crystal is thick enough, 
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will become spatially separated within the crystal. At the 

exit surface of the crystal each wavefield decouples into 

two beams, one in the direct beam direction and one in the 

diffracted beam direction. This means that we have the 

possibility of having eight exit beams produce~ by one 

incident unpolarised plane wave, four in the s
0 

direction 

and four in the s direction. g 

1.4.6 Absorption. 

The use of a complex electric susceptibility ensures 

that absorption processes are included in the dynamical 

theory. in the form of the imaginary parts of ·the wavevectors 

(k " and k "). The intensity of a wave propagating through 
0 g 

the crystal· being attenuated by a factor exp(-4nk
0

''.R), 

where R represents the position in the crystal. 

It is easy to show that k
0

" is parallel to the surface 

normal and hence th~ fronts of constant absorption are 

parallel to the crystal surface. It is laborious however, to 

put this in terms of the direction of energy flow (j), and 

the reader is referred to [6], [8] or [12] for a derivation. 

For a centrosymmetric crystal with the origin taken as the 

centre of the unit cell, the absorption is finally given by: 

(1±Cx "lx ") g 0 (1.19) 

close to the diameter point of the dispersion surface 

(R~±1 ). For R large, or close to 0, only· one (direct) beam 

propagates which suffers essentially normal photoelectric 

absor,ption, lJ
0

• 
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Batterman and Cole [6] calculated ~ for the 220 

reflection off a 1mm slab of Ge with CuK~ 1 radiation (~ 0 = 

38) and found: 

Branch R = -1 a polarisation: ~(j)t = 1 . 9 

II R = -1 1t polarisation: ~(j)t 12.5 = 

Branch. 2 R = +1 a polarisation: ~(j)t = 63.5 

II R = +1 1t polarisation: ~(j)t 74.0 = 

where t is the thickness of the sample. 

Hence, energy associated with branch 1 of the 

dispersion surface (and especially a polarisation) suffers 

much less than normal photoelectric absorption; or is 

"anomalously transmitted". The concept of anomalous 

transmission (also called the Borrmann effect) can be 

explained by considering the standing waves in the crystal 

which are set up by an incident beam at the exact Bragg 

condition (n = 0). Describing the wavefields in the form 

given in (1.12) and utilising (1.2) and (1.11) we arrive at 

an expression for the total wavefield for a branch 1 tie-

point: 

( 1 • 20 ) 

For branch 1, R is always negative and thus the 

electric field is a minimum for g.r equal to an integer or 

zero and has a periodicity of g- 1 = d normal to the Bragg 

planes. This means that the electric field is a minimum at 

the atomic sites and therefore suffers less than normal 

absorption (since the maxima are well away from the 

absorbing electrons, localised at the atomic sites). For a 

branch 2 tie-point, R is positive, giving maxima at the 
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atomic sites and enhanced absorption. 

1.4.7 Primary extinction. 

Primary extinction is impli~itly incorporated in the 

dynamical theory, and should be considered as a correction 

to the kinematical theory. It is however, a useful concept 

when considering the passage of X-rays through a crystal, 

affecting the depth to which X-rays will penetrate into a 

crystal in the Bragg geometry and playing a large part in 

the far~ation of images in both Bragg and Laue geometry 

topography. 

Neglecting ordinary photoelectric absorption, in the 

range of total Bragg reflection (-1<n<+1 ), all of the energy 

of the incident beam is transferred to form the diffracted 

beam. Thi~ means that the direct beam diminishes rapidly in 

intensity as it penetrates into the crystal, as though it 

were suffering severe absorption (even though in this case 

~ = 0). The effect of this, is that for an incident beam 

close to the Bragg condition, only a small depth of crystal 

contributes to the diffraction process. A measure of this 

"skin depth" is given by the extinction distance as defined 

in (1.18). 

Extinction, being a dynamical effect, is critically 

dependent upon the perfection of the crystal lattice and the 

lack of extinction is one cause of contrast on X-ray 

topographs. Extinction contrast is discussed in 2.2.2. 

1.4.8 The dynamical theory for "real" X-rays. 

The definition of the incident beam of X-rays as an 
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unbounded, linearly polarised, monochromatic plane wave is 

clearly ~nadequate to describe available X-ray sources. 

These will generally produce randomly polarised X-rays of 

finite spectral and angular divergence, which means that the 

theory so far described is not capable of describing the 

effects seen in the "real" experimental conditions described 

in chapter 2. 

The effect of a randomly polarised wave is easily given 

by the superposition of the o and n polarised waves and this 

approach is also useful when considering the finite 

divergence. The incident beam can now be thought of as a 

superposition of plane waves with wavevectors of slightly 

different'magnitudes (spectral divergence) and directions 

(angular divergence). Such a wavepacket incident on a 

crystal at, or very near to the exact Bragg condition, will 

simultaneously excite the whole of the dispersion surface 

(because of the range of ~'s present) and will hence cause 

energy to flow in all directions within a triangle bounded 

by the direct and diffracted beam directions (the so-called 

Borrmann fan). 

Close to the exact Bragg condition, the dispersion 

surface has a very large angular amplification.effect, which 

decreases towards unity far from the centre of the 

dispersion surface. This leads to a high density of 

wavefields at the edges of the Borrmann fan, giving a 

greater intensity. at the margins under conditions of low 
' . 

absorption. For ~t > 3 however, the wavefields far from the 

exact Bragg condition are preferentially absorbed leading to 

lower intensity at the margins than at the centre of the 
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Borrmann fan. 

Asymmetric reflections can be included in'the dynamical 

theory by making ·use of the direc,tion cosines 'Y and 'Y , the 
. 0 g 

cosines of 'the angles between s and s respectively and . . . 0 g , 

the inward facing surface normal. In terms of the dispersion 

surface, the asymmetry simply changes the direction of the 

surface .normal with respect to the dispersion surface, and 

hence the tie-points selected by a given set of experimental 

conditions. 

1.5 The €ikonal theory. 

For small crystal distortions, the Eikonal theory of 

Penning and'Polder [13], analogous to the optical case of a 

beam propagating through a medium with a continuously 

varying refractive index, may be used to describe the 

propagation of X-rays through the crystal lattice. The 

theory is explained well, though in a phenomenological way 

in Penning's thesis [10] and rigorously but in a less 

accessible form by Kato [14-16]. 

Esse~tially, we treat the X-ray wave packet as a well 

behaved ray, propagating in a crystal lattice which appears 

undeformed in the space of roughly one Pendellosung length, 

P. The deformed crystal can now be subdivided into regions 

which are misorientated with respect to each other or have 

different lattice parameters. Within each region the 

dispersion surface and hence the wavefields remain unchanged 

·and upon crossing from one region to another, the beam 

remains well defined but the wavevector of a wave within the 
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ray will necessarily undergo a small change dk. This implies 

that the' dispersion surface in each region is shifted with 

respect to its neighbours. 

It is easier however, to consider the dispersion 

surface as fixed and the reciprocal lattice as the variable. 

The changing wavevector is now represented by the tie-point 

for a particular wavefield migrating along the dispersion 

surface as the beam progresses through the crystal. Since 

the direction of energy flow for a wavefield is at all times 

perpendicular to the dispersion surface at its tie-point, 

this leads to curved wavepaths. For a given deformation it 

can be shown that the tie-points move in the same direction 

for both 1branches of the dispersion surface. This means that 

rays from opposite branches of the dispersion surface will 

curve in opposite directions, branch 1 rays in the same 

sense as the curvature of the lattice planes and branch 2 

rays in the opposite sense. Furthermore, the position of the 

tie-point uniquely de~ines R (eqn. 1.11) and therefore as it 

migrates,. the relative intensities of the direct and 

diffrabted components of the wavefield will also change. 

Penning [10] considers several possible lattice 

distortions and the effects one may expect but.only in terms 

of the direction of the rays. He does however cite the 

important result that for a crystal that is bent 

cylindrically, there is no change in the paths of wavefields 

for symmetric reflections. This i~ because the diffracting 

planes "fan out" with respect to each other under the 

influence of the curvature, but at the same time remain 

essentially flat. 
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Kato [16] using a similar Eikonal theory, shows that 

the integrated intensity of the diffracted beam increases at 

the expense of the direct beam intensity with increasing 

curvature of the diffracting planes. He also shows that 

Pendellosung fringes (see section 2.3.1) are drastically 

changed; contracting and finally disappearing as the 

curvature of the lattice planes is increased. These effects 

are all 'borne out by experiments, some of which are 

presented in.chapter 5. 

To maintain the concept of a ray, the Eikonal theory 

can only be used for small continuous distortions, leading 

to the condition that the diffracting planes must have a 

radius of curvature greater than a critical value R , such c 

that: 

(1.21) 

For curvatures greater than this, the ray cannot adjust to 

the rapid change in lattice parameter or orientation and the 

wavefields decouple into the direct and diffracted beam 

components. 

1.6 Generalised Diffraction Theory. 

The generalised diffraction theory, developed 

independently by Takagi [17, 18] and Taupin [19] can be used 

to d~scribe the passage of X-rays through a crystal with any 

type of distortion. The wavefield inside the crystal is 

described in the same form as (1 .12), with the exception 

that D
0 

and Dg are now replaced by slowly varying functions 

of position D '(r) and D '(r) such that: 
0 g 
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DTOT(r) = ID '(r)exp(-2nik .r)exp(2nig.u(r)) (1.22) 
~ g g 

where u(r) is the local deformation vector of the crystal 

lattice and the sum has only components of o and g for the 

two beam case. 

Introducing this expression for DTOT(r) into Maxwell's 

equations gives two coupled second order partial 

differential equations expressed along the directions s and 
0 

s : g 

aD '(r)/as = -inkCx D '(r) 
0 0 g g 

and (1.23) 

aD ' ( r )I as = - i n k C x D ' ( r ) + 2 i n k rs ' D ' ( r ) g g g 0 g g 

where ~g 1 , which represents the deviation of the incident 

wave from the exact Bragg condition, is given by: 

8 1 = (k 
2

-k 
2 )!2k2 - (1/k)a/as (g.u(r)) ' g g 0 g ( 1. 24) 

For ~ 1 = 0, equations ( 1. 23), the so-called "Takagi-Taupin" g 

equations can be solved exactly, however, generally it is 

necessary to integrate them numerically. The most successful 

method for doing this being the half step derivative method 

[20]. 

Whilst the Takagi-Taupin equations are mathematically 

rigorous, the concept of the dispersion surface and.hence 

details of the physics of the scattering process within the 

crystal are lost. They do however give the intensities of 

the direct and diffracted beams leaving the crystal, making 

them very suitable for the simulation of topographs. With 

the advent of powerful high speed computers, simulation is 
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now becoming a routine tool for X-ray topographers and its 

use is covered in detail in the review by Epelboin [21]. 
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Chapter Two 

Techniques and contrast rormation in X-ray topography. 

2.1 Introduction. 

From chapter one we have seen how X-ray diffraction is 

dependent upon the perfection of the crystal lattice. Thus, 

we would expect to be able to use X-rays as a probe of local 

dist6rtiohs in the lattice and it was with this aim that the 

various techniques of X-ray diffraction topography were 

developed. 

Perhaps the simplest way for there to be a difference 

in the diffracted intensity between one region of a crystal 

and another is by there being a misorientation between the 

regions, greater than the divergence of the incident beam. 

In this case it is impossible for there to be simultaneous 

diffraction from both regions, which leads to a loss of 

intensity from one of them. This type of contrast is termed 

"Orientation Contrast" and may also arise if the 

misorientation is relatively large (e.g. low angle 

boundaries, grain boundaries, mosaic crystals) and the 

incident beam has a large spectral and/or angular 

divergence, ~s with a polychromatic or an uncollimated 

incident beam. Here, the diffracted beams from the two 

regioris will have comparable intensities but different 

directions which, if the recording medium is placed 

sufficiently far from the crystal to allow spatial 

separation of the two beams, leads to a local loss of 

intensity at the boundary. This contrast is at the heart of 

the now little used Schulz technique [22] which uses a 
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microfocus X-ray tube with the crystal in the Bragg 

geometry, a similar technique in the Laue geometry having 

been developed by Guinier and Tennevin [23]. 

Contrast may also be caused by local distortions of the 

lattice, .for example around the core of a dislocation, 

interfering with the propagation of wavefields through the 

crystal. This contrast can only be explained by using the 

dynamical theory and is described in more detail in 2.3.1. 

Before going on to discuss the various techniques in 

detail, it is valuable to consider what information X-ray 

topography can and cannot give. It is possible non-

destructively to ·image large areas of crystal (4 inch 

silicon wafers are now regularly examined), showing the 

direction and distribution of defects. As such, it is a very 

useful complementary technique to TEM, allowing the electron 

microscopist to isolate areas of specific interest, whilst 

giving information about the macroscopic nature and 

distribu~ion of defects. Crystals up to several millimetres 

thick can be.imaged (in standard techniques, providing ~tis 

of the order of ~ 0.5 to 3), some techniques are capable of 

giving a very high strain sensitivity (up to one part in 

10 8 ), some can give information on the depth distribution of 

defects and some are very surface sensitive. By using a 

variety of techniques it is usually possible to fully 

characterise the sample. 

On the negative side however, several factors conspire 

to limit the ultimate resolution of the technique to about 

1~m. This arises in part because X-rays cannot be easily 

focussed and the refractive index for them for most crystals 
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is close to unity, meaning that topography is a non-

magnifying technique and is thus dependent upon the 

resolution of the recording medium, usually film. It also 

depends however, upon geometrical factors and the 

sensitivity to small lattice distortions, which means that 

the strain field a long way from a defect will cause 

contrast on the film. These limitations are discussed in 

greater depth in 2.5. Another reason often cited for the 

relative unpopularity of X-ray topography, is the length of 

time it takes to image samples which can be up to tens of 

hours for large wafers on high resolution film. Whilst this 

can indeed be a drawback, there are now techniques available 

which can allow rapid imaging of even very large samples. 

2.2 Techniques of X-ray topography. 

Reviews of the various techniques may be found in many 

books and journals; however the articles the author has 

found the most useful are found in [24-27]. 

The vast majority of topographic techniques use an 

incident X-ray beam of limited spectral divergence (such as 

the characteristic emission line from a metal target), whose 

angular divergence has also been carefully controlled. 

Although some attempts have been made to use the K~ 

characteristic line [28], [29], the Ka line is most commonly 

employed, which is where the first problem arises. The Ka 

emission is in fact a closely spaced doublet, consisting of 

the Ka
1 

and.Ka
2 

wavelengths, which for a molybdenum target 

are separated by a dl of about 0.004l. Simultaneous 

diffraction of the two lines will lead to two diffracted 
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beams with different directions and intensities, giving the 

possibility of a greatly reduced spatial resolution. Most of 

the techniques described below have been developed in part 

to remove or minimise this problem. 

2.2.1 The Berg-Barrett technique. 

The Berg technique [30], as refined by Barrett [31] is 

shown schematically in figure 2.1. The crystal is set to 

diffract the Ka doublet from an X-ray line focus source with 

a width of less than about 1mm. An asymmetric Bragg geometry 

is used, with a small angle of incidence and 28B as close to 

90° as possible. In this geometry, a narrow incident beam is 

converted into a wide diffracted beam, allowing a large 

surface area of the crystal to be imaged. However, 

simultaneous diffraction of the Ka doublet is unavoidable 

and the film must be placed very close to the specimen to 

eliminate spatial separation of the two diffracted beams. 

The Berg-Barrett technique was further developed by Newkirk 

[32,33] who was the first person to report the imaging of 

individual dislocations by extinction contrast. 

To obtain a suitable Bragg angle, it is usually 

necessary to use fairly soft (i.e. long wavelength) 

radiation, which also gives a small extinction distance. 

Th~s this technique only images the first few microns of a 

crystal surface and is therefore particularly suitable for 

6 -2 
crystals with high dislocation densities (<10 em ) and for 

studying surface related defects such as those formed by the 

fabrication of electronic devices [34], [35]. 
. ' 
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2.2.2 SeGtion Topography. [36] 

The experimental set-up for section topography, shown 

in figure 2.2 is extremely simple. X-rays from a focus some 

distance· away, typically 1m, from the sample are collimated 

into a ribbon beam with a height of up to several 

centimetres. The horizontal angular divergence is limited to 

-4 
~ 5x10 radians by slits of width 10-15~m. Since the 

divergence of the beam is less than the angular separation 

of the Ka 1 and Ka2 reflections in the crystal, it is 

possible to obtain diffraction from only the Ka
1 

line. Slits 

are placed between the crystal and the film (usually called 

the direct beam slits) to stop the diffracted beam, and also 

to remove stray reflections. 

The small slit size serves two purposes in section 

topography, firstly it gives a spherical wavefront which 

excites the whole of the Borrmann fan as described in 1.5 

and secondly, because the beam is narrow compared with the 

width of the Borrmann fan, the resulting topograph contains 

information on the direction of energy flow within the 

crystal.' This effectively gives an image of a slice through 

the crystal, showing the depth of the defects within it. The 

phenomenology of image formation is discussed more fully in 

2.3. However the reason why the section topograph should 

give information on the depth distribution of defects is 

briefly explained below. 

Referring to figure 2.2, we see that the direct beam 

contains mostly X-rays which do not exactly satisfy the 

Bragg condition. When this beam passes through a heavily 

distorted region (D) such as close to the core of a 
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dislocation, some of these normally undiffracted X-rays will 

be diffracted very nearly in the direction k . The intensity 
g 

of the diffracted beam will be described by the kinematical 

theory, and will therefore be proportional to the volume of 

heavily distorted crystal. Since this diffracted beam does 

not satisfy the same Bragg condition as the crystal bulk, it 

will suffer less than normal primary extinction and will 

thus appear as an area of enhanced intensity on the 

topograph. This type of contrast is often called "extinction 

contrast''. The depth at which the direct beam crosses the 

defect is thus clearly related to the position of the image 

(I) relative to the edges (E) of the section topograph. 

,Although section topography can be used to characterise 

defects in detail and gives infQrmation on the propagation 

of wavefields through the crystal, its usefulness is limited 

by the small volume of crystal bounded by the Borrmann fan 

imaged per topograph. To map out both the depth and 

distribution of defects across the whole sample it is 

possible to take a series of section topographs on the same 

plate, the sample' and film being traversed by a small 

distance comparable to the width of the base of the Borrmann 

fan between exposures. An example of such an experiment is 

given in chapter 6. However, whilst this provides very 

detailed information about the perfection of a sample and 

can be done automatically using a step scanning technique 

[37,38],' it can still take an excessive time to image a 

whole sample .and is therefore most suitable for examining 

small areas in detail. For most purposes, it is usually 

better to image a large area of the crystal using the Lang 
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technique described in section 2.2.3 and then to use this to 

chobse areas of interest to be examined by section 

topography. 

2.2.3 Lang:topography. 

The Lang·technique [39] is perhaps the most widely used 

topographic technique, and is capable of imaging large areas 

of even rel~tively thick crystals, providing that 0.5 < pt < 

3. The experimental geometry for this method is the same as 

in the section technique shown in figure 2.2, but with a 

collimating slit of width 100-200pm, sufficient to resolve 

the K~ doublet whilst retaining a reasonably high intensity 

of incident radiation. The crystal and film are now 

traversed synchronously back and forth across the X-ray beam 

to expos~ a larger area of the sample. Figure 2.3 shows the 

Marconi-Elliot Lang camera used at Durham University, with 

the direct beam slits pulled back to show the features, 

which are marked with the same notation as in figure 2.2. 

The camera has been interfaced to a microcomputer by the 

author and this is described in chapter 3. 

;The ~ang topograph can be considered as a spatial 

integration of many section topographs, giving an image of 

the projerition of the crystal volume and can be used to 

image crystals of a size limited solely by the size of the 

Lang camera. However, because the exposure time required to 

expose the film will vary linearly with the width of the 

sample, large crystals may take a prohibitively long time to 

image. 

The Lang method gives a vertical magnification close to 
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unity. If the film is placed parallel to the exit surface of 

the specimen slab, the horizontal magnification is also 

unity. This arrangement, however, is usually undesirable 

since the diffracted beam now passes through the film at an 

angle to its surfa~e normal, leading to a significant 

broadening of the image for all but the thinnest emulsions . 

.To avoid this problem the film is usually placed 

perpendi~ularly to the diffracted beam and the image suffers 

from a horizontal magnification of cos(S+x). 

2.2.4 Double crystal topography. 

Although the single crystal methods so far discussed 

potentially have a high strain sensitivity (up to ~ 10- 5 ), 

they will in practice be unable to distinguish small changes 

in lattice parameter occurring over a long range, the best 

·sensitivity to this being ~ 10- 3 . These limitations are 

brought about because of the finite angular and spectral 

divergence of conventional X-ray sources. The double crystal 

technique as developed independently by Bond and Andrus [40] 

and Bonse and Kappler [41], can be used to reduce both the 
i 

spectral and the angular divergence of the X-ray beam, hence 

improving the strain sensitivity. 

Let us consider the parallel +- (or +m,-m) setting 

shown in figure 2.4, where the reference crystal and the 

specimen both have the same interplanar spacing, that is, d 

is identical for both crystals. In this way, all wavelengths 

diffracted by the first crystal are diffracted at the same 

relative angle by the second crystal, that is, the geometry 

is non-dispersive in wavelength. This leads to a very narrow 
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angular range of reflection as the second crystal is rotated 

relative to the first about the Bragg condition (the rocking 

curve); the reflecting range being the convolution of the 

two perfect crystal reflecting ranges. 

; If we consider the Du Mond diagram, a plot of the 

conditions which satisfy the Bragg condition against 

wavelength and angle, for this setting (shown in figure 

2.5a), we can begin to understand its high sensitivity to 

lattice distortion. The region of overlap of the two curves 

gives the condition for simultaneous diffrac~ion. When the 

two crystals are set exactly parallel, diffraction occurs 

for all wavelengths. However as the second crystal is 

rotated, the curve is translated relative to the first 

(figure 2.5b) and the amount of overlap is reduced, leading 

to a reduction of diffracted intensity. Thus, if the second 

crystal is locally misorientated it leads to a local loss of 

intensity; a local change of lattice spacing leading to the 
, 

situation shown in figure 2.5d, with a corresponding loss of 

intensity .. When the second crystal is set upon the steep 

flank of the rocking curve, the diffracted intensity will 

vary approximately linearly with the amount of distortion 

present. Using closely matched values of d for both crystals 

in the +- setting, a very high sensitivity to changes in 

lattice parameter is achievable and it has been used to 

detect changes of a few parts in 10
8 

[42]. 

Whilst the +m,-m setting is non-dispersive in 

wavelength, it is angularly dispersive, leading to images in 

topographs being broadened because of the different 
I 

directions of the diffracted beams for different 
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wavelengths. Also, the strain field relatively far from the 

core of a dislocation is sufficient to give contrast, 

leading to broad images. For these reasons, this setting is 

not particularly suitable for crystals with very high 

dislocation densities. 

The angular dispersion can be reduced by using slightly 

different values of d for the two crystals, thus limiting 

the wavelength range diffracted by both crystals for one 

setting of the first crystal. Whilst this reduces the line 

width of the images of the dislocations, it also lowers the 

sens1tivity of the technique due to the finite spectral 

dispersion. 

Asymmetric reflections are often used for either or 

both of the crystals in double crystal experiments. When 

used for the first crystal with a glancing angle of 

incidence, they have the effect of converting a narrow 

incident beam into a wide one which can be used to 

illuminate a large area of the second crystal, and of 

reducing the angular divergence of the diffracted beam. An 

asymmetric second crystal, however, can be used to limit the 

depth of penetration of the X-rays and to illuminate a large 

area of the sample from a small incident beam. The latter 

arrangement is discussed in depth in chapter 5. A good 

introduction to the merits of double crystal topography 

using asymmetric reflections is given in the paper by 

Renninger [43]. 

When using the double crystal technique, care should be 

taken over-the choice of the first crystal, since the final 

diffracted intensity, being a convolution of the diffraction 
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from botp crystals, is equally dependent upon the first 

crystal as on the second. Thus, first crystals should be 

dislocation free, with a known, constant lattice parameter. 

If the first crystal is not defect free, images of 

these defects will appear on the final topograph albeit 

diffused, because of the distance between crystal and plate. 

Luckily, this is not much of a problem when using silicon, 

since high purity, zero dislocation density silicon crystals 

are no~ regtilarly grown for the semiconductor industry. 

2.2.5 The Hirst topography technique. 

For yilicon wafers, the Lang technique suffers from the 

serious drawback that exposure times may be prohibitively 

long. For instance, with a generator running at 40kV and 

40mA, a source size of 200~m and a source to sample distance 

of about 1m this may be upwards of 40 hours for a 4 inch 

wafer on nuclear emulsion. This makes X-ray topography 

unsuitable for the routine inspection of production line 

wafers. The Hirst topography technique [44] shown in figure 

2.6 circumvents this problem by cylindrically bending the 

sample to a radius of curvature of twice the Rowland circle. 

For a symmetric reflection and a beam of X-rays divergent 

from a point source located on the Rowland circle, all X

rays in the plane of incidence make equal angles with the 

Bragg planes. By limiting the source size, it is possible to 

obtain simultaneous diffraction of only the K~ 1 emission 

line from the whole wafer. Oscillating Soller slits remove 

the transmitted beam, allowing the film to be placed 

relatively close to the sample. 
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In this way, topographs with a resolution comparable to 

that of the Lang technique are possible with greatly reduced 

exposure tim~s (of the order of 1 hour). The contrast 

I 
obtained from the Hirst technique is similar to that from 

the Lang technique, although important differences are 

apparent. The cause of the difference in contrast between 

the techniques is discussed in chapter 4. 

2.3 Contrast on X-ray topographs. 

2.3.1: Image formation in projection topographs. 

Fir5tly, consider a section topograph of a perfect, 

parallel sided, lightly absorbing (i.e. ~t ~ 1) crystal 

slab. As we know, the finite angular divergence of the 

incident beam excites all of the dispersion surface 

simultaneously, producing energy flow in all directions 

within the Borrmann triangle. Also, because of the slight 

difference in wavevector between them, wavefields from 

different branches of the dispersion surface travelling in 

the same direction will interfere. This interference, or 

Pendellosung, produces intensity maxima within the crystal, 

the loci of the .maxima of all the wavefields lying on 

hyperbolae asymptotic to s and s in the plane of incidence 
. 0 g 

' and forming hyperbolic cylinders in the crystal slab. The 

exit surface of the crystal will intersect these cylinders 

as shown in figure 2.7a and straight parallel fringes are 

observed in the diffracted beam, shown in figure 2.7b. 

If the crystal and film are traversed to form a Lang 

topograph, these fringes will not be present on the plate 

because we are now looking at the integrated intensity of 
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the crys~al volume. If, however, the crystal is wedge 

shaped, hook shaped fringes are produced in the section 

topograph giving fringes in the Lang topograph which can be 

thought of as fringes of equal thickness. 

Pendellosung, or Kate fringes were first observed by 

Kate and Lang [45] and can only be explained by the 

dynamical theory with an incident spherical wave [46]. Being 

a dynamical effect, they are easily distorted or destroyed 

by small deviations from crystal perfection ~nd are 

therefore a good indicator of the presence of defects which 

may otherwise not be imaged on a topograph. The distortion 

of these fringes under the influence of lattice curvature is 

discussed in chapter 4. 

Now consider. the situation shown in figure 2.8, when 

there is a defect, in this case a dislocation, present at a 

certain depth within the crystal. As mentioned in section 

2.2.2, when the direct beam cuts the dislocation line at D, 

a direct. image of enhanced intensity is formed (1 ); the 

intensity of the image being roughly proportional to the 

volume. of the heavily distorted region. 

When the wavefield travelling in the direction AE 

crosses the strain field close to the dislocation core, it 

decouples into its direct and diffracted beam components, 

which excite new wavefields such as AF upon re-entering the 

perfect material below. This phenomenon is often described 

as interbranch scattering. Energy is thus removed from the 

original wavefield AF, leading to an area of diminished 

intensity on the plate, the dynamical image (3). 
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The newly created wavefields will now propagate in 

different directions from the original wavefields and may 

interfere with them, forming complex interference fringes, 

the so-called "intermediary image" (2). 

In a Lang topograph, we can get an idea of the sort of 

contrast we expect by imagining a series of overlapping 

section topographs. Thus, the direct image becomes a 

projection of the dislocation through the crystal volume, 
I 

and the dynamical image is now in effect a "shadow" of the 

direct image. One may still see intermediary fringes, 

providing that the dislocation line does not lie parallel to 

the crystal faces. 

Under certain conditions, when the width of the perfect 

crystal rocking curve is narrow enough (e.g. for high order 

refl~ctiohs), the direct image may appear as a double line 

[47]. This is because the misorientation around, for 

example, an edge dislocation is equal and opposite in lobes 

on either side of the dislocation line. Since the intensity 

of the direct image only depends upon the volume of heavily 

distorted material and not upon the sense of deformation, 

both lobes will give rise to direct images of roughly equal 

intensity. In low order reflections these images will 

normally overlap and the direct image appears as a single 

line, since the perfect crystal reflecting range is too wide 

to resolve them individually. 

G~nerally, the image of a dislocation will only be 

visible when the defect produces a sufficiently large 

distortion of the diffracting planes. For a pure screw 

dislocation· this implies that the image will be invisible 
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when g is perpendicular to the Burgers vector, that is, g.b 

= 0. For an edge dislocation, we have the added condition 

that g.~xl = 0 for complete invisibility, where 1 is a 

vector parallel to the dislocation line. A mixed dislocation 

therefore ~ill never be completely invisible, although 

partial invisibility is often found for all dislocations for 

g.b = 0. By· looking for invisibility in topographs of the 

same crystal taken with different reflections, it is often 

possible to determine uniquely the Burgers vector of a 

dislocation. 

Inclusions, such as precipitates, have a radial strain 

field and therefore give different contrast to line defects 

such as dislocations. In order to give contrast, the strain 

field of 1such a defect must be great enough to cause a 

misorientation greater than the perfect crystal reflecting 

range. Perpendicular to g, the atomic displacements are 

parallel to the diffracting planes which consequently suffer 

no distortion in this direction. This leads to contrast 

consisting of two lobes separated by a line of no contrast 

perpendicular to g. 
' 

2.3.2 Contrast formed by surface films. 

From section 1.6 we have seen how the propagation of X-

rays through a medium with a small continuous distortion can 

be explained using an Eikonal or ray optics theory. This 

theory can be used to explain the contrast in topographs of 

crystals whose surfaces are local~y strained by the presence 

of discontinuous films. Pioneering work by Meieran and Blech 

[48] showed local contrast at the edges of oxide films grown 
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on silicon wafers, whilst the intensity a short distance 

away from the edges was the same in both the oxidised and 

unoxidised regions. Further work [49-54], has identified the 

cause of this contrast and given it a theoretical basis. 

More detailed explanations will be given as the need arises, 

but the basic contrast effects are summarised below. 

A thin film grown on an otherwise perfect substrate 

induces either a tensile or compressive strain due to the 

different thermal expansion coefficients. The strain in the 

substrate will be essentially normal to the surface 

everywhere but close to the edges of the film. Here, there 

is a~so a component of strain parallel to the surface and 

perpenditiular to the film edge. When using a symmetric 

reflection, the diffracting planes beneath the film are 

undistorted and this area diffracts with equal intensity to 

the rest of the substrate. At the edges however, the 

diffracting planes are slightly curved, leading to a change 

in intensity which can be described by the Eikonal theory. 

The use of an asymmetric ref.lection where the normal 

strain gradient under the film causes a distortion of the 

lattice planes close to the interface with the substrate has 

been used to obtain contrast from the whole of the covered 

area [55,56], and can be used as a measure of film adhesion. 

In section topography the strain leads to the 

appea~arice of elliptical fringes which contract as they 

approach the. interface. The appearance and contraction of 

these fringes has been extensively studied by Kato [14-16], 

and also by Hart [57]. 
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2.3.3 Contrast in rerlection topographs. 

Th~ situation in Bragg geometry topography is different 

in two important respects from that in the Laue geometry. 

Firstly, otily wavefields from one branch propagate in the 

crystal and secondly, only a small surface skin of about ~A 

contributes, to the diffracted intensity. Extinction contrast 

is formed in much the same way as for projection topographs 

and the energy taken from the wavefield in forming the 

direct image creates a shadow, the white dynamical image. 

Since ~nly one branch of the dispersion surface can be 

excited for a thick crystal (two for unpolarized radiation) 

we do not expect interference effects as the wavefields 

within the Borrmann fan do not overlap within the crystal. 
I 

Interference fringes have however been reported in 

reflection topographs by several people including the 

author and th~se are discussed in chapter 6. 

Single crystal reflection techniques are quite 

insensitive to orientation contrast because of the 

dive~gence of the incident beam and therefore only gross 

misorientations such as grain boundaries will be imaged by 

this technique. Double crystal reflection topography is, 

however, sensitive to misorientations of the order of 

seconds of arc as a result of the narrow half-width of the 

rocking curve. This sensitivity may be used to map out 

contours of misorientation on distorted crystals such as 

silicon wafers, but can also be a nuisance because only a 

small area·of a bent crystal can be imaged in one exposure. 

Contrast in double crystal reflection topography is explored 

more fully in chapter 5. 
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2.4 X-ray topography using synchrotron radiation. 

Synchrotron radiation is produced when relativistic 

charged particles undergo centripetal acceleration, as at 

the bending magnets of an electron storage ring. The 

acceleration causes the electrons to emit dipole 

electromagnetic radiation in its frame of reference. Due to 

the relativistic transformation, this is confined in the 

labor~t6ry frame to a forward directed cone tangential to 

the path of the electrons with an opening angle of 1/r 

(r = ~(1-v 2 /c2 )). The radiation is highly polarized in the 

horizontal plane, has a white spectrum extending from hard 

X-rays (A~ 0.7~ from the conventional 1.2T bending magnet) 

to visible light, and is very intense. The spectrum of the 

emitted radiation is shown in figure 2.9. Furthermore, the 

source size is small and the topography station is situated 

about BOrn from the source, giving a divergence at the sample 

-6 . 
in the plane of incidence of only 4x10 rad. 

The simplest experiment one can undertake with 
! 

synchrotron radiation is white beam topography [58]. Here, 

the crystal is placed in an unmonochromated beam which 

covers the area of interest, often the whole sample. This 

gives Laue spots on the plate, each of which contain a 

topograph of the crystal. Since each spot represents the 

Bragg condition for a certain wavelength and reflection, a 

great deal of information is contained in one topograph 

which may only take seconds to expose. This method is 

equivalent in form to the Schulz method in the reflection 

geometry and the Guinier-Tennevin method in the transmission 

geometry, but because of the low divergence of the beam, the 
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plate can be placed up to about 10cm away from the sample 

and still give a resolution comparable to the Lang technique 

[59,60] .. This technique is insensitive to orientation 

contrast since misorientated regions diffract X-rays of 

slightly different wavelengths from the white radiation. 

Boundaries do however show either enhanced or diminished 

intensity because of the overlapping or separation of the 

diffracted beams respectively. Whilst useful for in situ 

experiments and Burgers vector analysis, the white beam 

technique can be difficult to interpret because of harmonic 

contamination (see section 5.3.2). 

Synchrotron radiation is also very amenable to double 

crystal .topography, giving several advantages over 

laboratory based experiments. The first crystal here is used 

to mono~hromate and condition the incident beam by use of a 

suitable reflection, with a continuous range of wavelengths 

available ~y simply rotating the crystal, i.e. the source is 

tunable in wavelength. Due to the highly polarised nature of 

the radiation, the experiment can be arranged to either use 

solely n dr a polarised radiation. The high photon flux 

reduces exposure times from tens of hours to minutes and the 

low divergence perpendicular to the plane of incidence means 

that the second crystal does not have to be finely adjusted 

for tilt as it does for divergent laboratory sources. 

Furthermore, the low divergence in the plane of incidence 

limits tne range of wavelengths diffracted by the first 

crystal, giving a strain sensitivity in the non-parallel +

setting comparable to that in the parallel setting. 
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2.5 Factors affecting resolution on topographs. 

AltHough this section is confined to the resolution in 

the Lang technique, the basic principles may be easily 

extended to most of the topographic methods. 

In the Lang technique, the diffracting planes are 

perpendicular to the plane of incidence and therefore 

essentially no diffraction takes place in the vertical 

plan~. The vertical resolution is thus only limited by 

geometrical factors and a point on the sample will produce a 

line of height 

6 = hb/a ( 2. 1 ) 

on the emulsion. Here, h is the apparent height of the X-ray 

source viewed from the sample, b is the sample·to film 

distance and a the source to samp,le distance. If we take 

fairly typical values of h = 200~m, b = 2cm and a = 1m we 

see that 6 = 4~m. This can sometimes be improved by the use 

of a fine focus X-ray tube or by placing the film as close 

to the sample as possible, but in most cases it is 

practically impossible to obtain a vertical resolution of 

better than 1~m. 

The horizontal angular divergence of the X-ray beam is 

' 4 
of the order of 5x10- rad and therefore geometrical factors 

are not a problem. Horizontal resolution is however affected 

by the spectral line width dX of the characteristic line 

from an X-ray target. This leads to a spread in the Bragg 

angle da 8 of: 

( 2. 2) 
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which consequently gives a spreading dx of the image of a 

point in the sample of: 

dx = bds8 (2.3) 

For CuKa 1 , b = 1 em and e8 = 24° this leads to a 

horizontal resolution of 1 .7~m, of the same order as 6. In 

fact, the spread due to the spectral line width is only 

really a problem for large values of s
8

, when care should be 

taken to minimise b. 

2.6 Photography. 

Since topographs are recorded at a magnification of 

unity, it is vital to have a recording medium capable of 

reproducing the contrast to a resolution of at least that 

dictated by the factors in the previous section. 

Furtherm~re, it must have a high absorption factor for X

rays and a wide usable density range. Ilford L4 nuclear 

emulsion plates are generally accepted to be the best medium 

for X-ray topography, having small (0.14~m swelling to 

0.25~m upon processing), tightly packed grains with a high 

proportion of silver halide, giving a good stopping power 

for fairly thin emulsions. The use of L4 plates and their 

characteristics are described in ·detail in [61] and 

therefore only a brief description is given here. 

L4 plates are supplied in a variety of emulsion 

thicknesses, since harder radiation will be less strongly 

absorbed for the same thickness as soft radiation. The 

thicknesses of emulsion required to absorb roughly half of 

the incident radiation are 25~m for CuKa 1 , 50~m for MoKa 1 
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and 100~m for AgKa 1 , although 50~m should preferably be used 

for AgKa 1 whenever possible because of the long processing 

ti~es and possibility of distortion with the 100~m emulsion. 

25~m emulsions are always used at the synchrotron radiation 

source since there is a very high photon flux available and 

the thin emulsion gives a significant reduction in 

processing time. The thin emulsion is also more tolerant to 

beams passing through the emulsion at an angle without 

giving a significant loss of resolution. 

The emulsion is stuck to one side of a glass plate and 

may be viewed under red light. Care must be taken at all 

times to avoid contact with the delicate emulsion and the 

plate should always be mounted with the emulsion side 

towards the diffracted beam, since glass is a good absorber 

of X-rays!. The plates may be identified by gently 

scratching a number in one corner of the emulsion, which 

removes the protective light filter and leads to the number 

appearing black on the developed plate. 

Unforttinately, the high packing of grains also leads to 

lengthy processing times because the diffusion rate of 

developer through the emulsion is slow. To achieve uniform 

development, the development rate must be reduced to be 

comparable to the diffusion rate and this is done by 

developing the plates close to ice temperature in the body 

of a domestic fridge. A typical processing schedule for 50~m 

plates is given in table 2.1. Developer deteriorates quickly 

upon dilution and should therefore be changed regularly, 

whilst fixer can be used repeatedly. All solutions should be 

made with deionised water and kept as clean as possible. 
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Thickness 

501Jm 251Jm 

Time (minutes) 

Soak in filtered de ionised water 10 5 

Develop in 1:3 D19b to de ionised 
30 10 

water close to ice temperature 

Stop in 1 : 100 acetic acid to 
5 5 

deionised water 

Fix in 1 : 9 Kodak Unifix to 
120 30 

deionised water 
' 

Wash in filtered tap water >120 >60 

Dry under cover 

Table 2. 1 

Processing schedule for Ilford L4 Nuclear Emulsion Plates 

For high resolution work, it is essential to use L4 

plates. They are however very expensive and require lengthy 

and careful processing making them unsuitable for routine 

I work. For alignment and test exposures, Kodak dental film is 

extremely useful, coming in individually wrapped packets and 

requiring short exposure times, with the added advantage 

that it can be developed and fixed to an acceptable standard 

within one or two minutes. Dental film is used at Durham for 

checking the height and position of the incident beam 
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relative to the sample, the tilt of the sample and the 

position of the direct beam slits. It can also be used to 

give a low resolution topograph, giving sufficient 

resolution to show large defects and can show enough detail 

to align crystals for section topographs. 

·Medium to high resolution topographs of large crystals 

can be exposed on polyester backed sheet film, the most 

common being the Agfa "D" range. D7 is a reasonably fast, 

medium resolution film capable of showing many types of 

defects and is regularly used for examining large crystals 

such as silidon wafers. The resolution is usually sufficient 

to pinpoint areas which deserve closer inspection with 

higher resolution films. D2 is a high resolution film, 

requiring the same exposure time as L4 plates but giving a 

smaller range of usable density. It does however have the 

advantages over L4 plates of being much cheaper and having 

shorter processing times. 

Topographs in this thesis were enlarged using a Wild 

photomacroscope with a continuously variable magnification 

between 3.9x·and BOx, and a maximum field of view of 27mm. 

Negatives of the plates were taken using Ilford FP4 9cm x 

12cm sheet rilm with the plates being viewed by transmitted 

light. All the topographs presented here are printed as 

positives, that is, dark images represent enhanced 

intensity. 
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Chapter Three 

The design and construction of an automated Bragg angle 

controller. 

3.1 Introduction 

As a result of the high angular collimation inherent in 

the Lang technique, crystals which are in some way distorted 

quickly'deviate from the exact Bragg condition as they 

traverse, causing the diffracted intensity to drop and leave 

underexposed (or in some cases, unexposed) areas on the 

photographic plate. This makes the unmodified Lang camera 

unsuitable for the examination of crystals with large 

deviations from flatness, such as processed silicon wafers 

(which normally have large amounts of twist induced by the 

fabrication process) and the deliberately bent silicon 

wafers described in chapter 4. 

The first efforts to overcome this problem were 

reported by Schwuttke [62], who oscillated the sample and 

film around the normal to the plane of incidence, as they 

traversed. Providing that the oscillation is large enough to 
I 

include the entire reflecting range of the crystal, the 

whole of the sample will now diffract with high intensity 

for at least some of the time. 

This scanning oscillator technique (SOT) works well for 

crystals with a small amount of distortion. However, for 

large distortions, the crystal will be diffracting at less 

than'maximum intensity for a significant amount of time, 

since the amplitude of oscillation needs to be large enough 
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to include all possible misorientations. Also, this 

technique does lead to an increased background due to 

contributions from the flanks of the rocking curve. 

, An improvement to the SOT is a feedback system which 

continuously measures the diffracted intensity and rotates 

the sample so as to maintain it on the Bragg peak. Such a 

system was reported by van Mellaert and Schwuttke [63], 

using the algorithm described in [64], and was named 

automated Bragg angle control (ABAC). Using this technique, 

it was possible to record topographs of even severely 

distorted crystals, often with a ·significant reduction in 

exposure time (since the crystal was always diffracting at 

maximum intensity). However, the system still had 

limitations because of the need for a specially engineered 

sam~le holder (which limited the size of crystal which could 

be imaged) and dedicated electronics to provide the 

feedb~c~. These f~ctors lead to an increase in cost and a 

reduction in. versatility of such systems. 

In order to provide an inexpensive yet adaptable ABAC 

for the Lang camera at Durham, a system was designed to take 

advantage of the motor driven turntable and counting 

equipment already on the camera. The resulting Bragg angle 

controller, shown schematically in figure 3.1 is based 

around a microcomputer, interfaced to the camera via 

suitable electronics, and is described below. 

3.2 The Marconi-Elliot Lang camera. 
I 

Both the traverse table and rotary table on the 

Marconi-Elliot Lang camera are driven by three-phase stepper 
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motors geared. to give a calibrated movement for each step of 

the motor. In the case of the rotary table, the motor drives 

a micrometer head· acting against a spring loaded lever on 

the turntable. Suitable gearing allows samples to be rotated 

in 1/1000th of a degree steps. A worm screw on the traverse 

table similarly converts the movement of the stepper motor 

into a minimum stepsize of 0.01mm. 

The counting equipment consists of a scintillator and 

photomultiplier tube, mounted on an arm co-axial with the 

turntable. ·The pulses from the photomultiplier are amplified 

and the count ·rate is normally read with an analogue rate

meter. 

3.3 The Acorn "BBC" Microcomputer 

It was decided to base the ABAC around an Acorn "BBC" 

microcomputer, chosen for its low cost and wide variety of 

interface ports. 

The turntable stepper motor is controlled by the "User 

Port", which .consists of eight bi-directional lines, PBO 

(lowest s~gnificant bit) to PB7 (highest significant bit) 

and two handshake lines. The data lines are latched at 

either OV or 5V when used as outputs. 

The count-rate· is read via the "1MHz Bus", a parallel 

interface with eight bi-directional data lines (DO to D7) 

and eight address lines (AO to A7). Up to 64 individually 

addr~ssed. devices can be accessed by the bus from the ''User 

Applications" allocation of memory in the computer. 

Details of the User Port and 1MHz Bus can be found in 

the BBC Adv~nced User Guide [65]. 
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The, conn·ection between the computer and Lang camera is 

provided by an interface box, containing a stepper motor 

driver and 32~bit counter, the design and construction of 

which is described below. 

3.4 The ABAC Interf'ace Box 

3.4.1 Power supply 

Each coil of the stepper motor requires around 0.6A to 

provide sufficient holding torque for the motor. Since the 

resistance of each coil is 320, this implies that a voltage 

of at least 24V is required to drive the motor. Also, to 

provide~ rotation of 1/1000th of a degree, the motor has to 

be driven in half-step mode (see section 3.5.1) which 

requires two phases to be active simultaneously. Thus, the 

power su~ply must provide at least 1.2A continuously at a 

voltage of greater than 24V. To power the electronics of the 

counter, a stabilised 5V supply is also required. 

-The power supply therefore consists of a mains primary, 

20V secondary, transformer, the output of which is full wave 

rectified and then smoothed by a 15 OOO~F capacitor to 

provide a nominal 28V de supply. 

The 5V supply for the counter is now provided by a 

voltage regulator fed by the 28V supply. Since this has to 

bring 28V down to 5V, a great deal of power is "dissipated 

and it is therefore mounted on a heatsink on the outside of 

the ABAC box. 
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3.4.2 A Three-Phase Stepper Motor Driver 

Figure 3.2 shows the circuit diagram for the three 

phase stepper motor driver. From the User Port, one line is 

used per phase with ~ further two lines being used as inputs 
i 

to read the status of the clockwise and anti-clockwise limit 

switches on the camera turntable. 

To amplify the current from the maximum of 1.5mA 

provided by the User port to the 0.6A needed by each phase 

of the stepper motor, a Darlington pair and transistor 

combination is used. Lines PB3, PB4 and PB5 of the port are 

each 'connected to the base of a Darlington driver (BD 679) 

through a current limiting resistor. As an added precaution 

against passing too much current through the Darlington 

pair, ~urrent is supplied to the collector through the 

stepper motor coil. 

The emitter of the Darlington is then connected to the 

base of a high power transistor (2N 3055). The collector of 

this is connected via the stepper motor coil to the 28V rail 

of the power supply, and the emitter to the ground rail. 

Thus, when one of the lines from the User Port is sent high, 

current flows from the 28V rail through the coil and 

transistor to earth and will continue to flow until the line 

is sent low. The maximum current that can flow is limited 

to 0.6A by the resistance of the coil itself and an 

additional 8.2 series resistor. 

At any time, the status of the phases (i.e. high or 

low) can be .ascertained by three LED's on the front panel of 

the box, one being connected (with a current limiting 

resistor) in parallel with each coil. 
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The status of the two limit switches on the Lang camera 

is monitored by reading lines PB1 and PB2. These will 

norma~ly return a high value and are pulled down to zero 

through a 1K resistor whenever the corresponding switch is 

closed. 

3.4.3 A 32-bit c~unter. 

The requirements for the counter are two fold. Firstly 

it must convert the rate of pulses from the photomultiplier 

into a single number, then this number must be read into the 

computer's memory for analysis. 

The counter can be broadly split into two sections, the 

decoding section and the counting section. The decoding 

chips decode the information sent on the address lines of 

the bus and enable chips to be started, stopped, cleared, 

latched and read. The counting section consists of eight 8-

bit counters arranged in two rows of four. The two sections 

are described individually below. Details of all the chips 

used in the counter circuit may be found in the TTL Data 

Book [66]. 

3.4.3.1 The counting section. 

To obtain an accurate count rate, it is first necessary 

to know the exact time for which the pulses have been 

counted. Even though the counting time can be controlled by 

the computer fairly accurately, there will be some 

uncertainty as to when the counters are started and stopped. 

Therefore !the counter employed here uses two parallel 

counters, one fed by the signal, the other by a 10MHz quartz 

oscillator. By starting and stopping both counters 
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simultaneously, the 10MHz counter will give the exact 

counting time. 

The ~ircuit is based around eight 74LS590 8-Bit binary 

counters with output registers, and is shown in figure 3.3. 

The counters will count whenever CCKEN (Clock enable) is low 

and stop counting whenever it is high. Data can be latched 

into the output registers by sending RCK 'high, without the 

need to first stop counting. Data is output from the chips 

on QA, to QH by sending Glow, QA (lowest significant bit) of 

each chip being connected to DO of the 1MHz bus, with the 

QB's, QC's·up to QH (highest significant bit) similarly 

connected to D1, D2 up to D7. 

The signal to be counted is put into CCK of the first 

chip in the row (10MHz into chip 1, and the signal into chip 

5), with the ripple-carry-over (RCO) connected to both the 

CCKEN and CCK of the next chip in .the row. This gives two 

32-bit counters with the first counter in each row 

containing the least significant byte, and the fourth 

counter the most significant byte. 

The·two rows are started and stopped simultaneously by 

connecting CCKEN of chips 1 & 5 together, and all the chips 

are latched and cleared simultaneously by commoning RCK and 

CCLR respectively. 

3.4.3.2 The decoding circuit. 

The circuit diagram of the decoding circuit is shown in 

figure 3.4. 

Page &FC of memory (also known as 'FRED') in the BBC is 

reserved for add on hardware to the 1MHz bus with small 
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memory requirements. Of this page, the memory between &FCCO 

and &FCFE .is allocated for 11 User Applications 11 • When a 

particular device is chosen, the address is carried on lines 

AO to A7, with NPGFC (Not PaGe &FC) remaining low for all 

addresses within FRED. 

To decode the lines, two 74LS138 decoders are used. The 

first of these chips is used to select a board ~ddress, each 

board capable of having eight addressable chips (for the 

counter only one board is needed with an address of &FCCO). 

This first 138 enables the second 138 (via the eight way 

dual in line switch), whenever an address between &FCCO and 

&FCC7 is . sent. The switch provides room for further 

expansion to the system by allowing the board address to be 

changed .. 

The counters are enabled (i.e. started and stopped) 

with the D-type flip-flop, the output of which is connected 

to CCKEN of counters 1 and 5. When a number whose least 

significant bit is high (i.e. D0=1) is written to an address 

on the board which has AO low (e.g. &FCCO,&FCC2,&FCC4 .. ), Q 

will be sent low and counting will begin. The counters are 

then stopped by writing a number with DO=O to a similar 

address. The counters will also be stopped by the computer 

being switched on or off or by a "BREAK". 

By writing to the board with an address in which AO is 

high, a lo1w is sent to CCLR of all eight chips 

simultaneously via the two inverters, clearing all the 

counters. 

The second 138 is used to select the chip to be read. 

YO is connected toG of counter 1, Y1 toG of counter 2, and 
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so on. The counter to be read is now chosen by the data on 

lines A2 to AO inclusive, the lowest three bits of the 

address, the board address having been decoded by the first 

138. The address of each counter is marked on figure 3.3. 

YO from the second 138 is inverted and connected to RCK 

of all eight counters (via two inverters), ensuring that 

data is latched into the output registers ready for reading, 

whenever counter 1 is read. Although this is not necessary 

if the counters are stopped before being read, it is very 

important to ensure that data from all the counters is 

latched simultaneously into the output registers if the 

counters are read while the aquisition of data is 

continuing. 

So, assuming a valid board address the operations can 

be summarised as: 

Operation Read/Write DO AO 
' 

Start counting Write High Low 

Stop counting Write Low Low 

Clear counters Write Unimportant High 

Latch data Read from address &FCCO 

Read data Read from counter address 

3.4.4 An opto-isolator for the 32-bit counter. 

Normally, pulses from a photomultiplier are amplified 

to several volts and are then discriminated to give square 

5V pulses. However, a discriminator was not available for 

the equipment at Durham, and the amplifier gave pulses with 

heights of between 2V and 16V. It was therefdre necessary to 
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convert these pulses into square 5V pulses to be compatible 

with the TTL of the counter. 

Since a height analysis of the pulses is not needed to 

give a measure of the diffracted intensity, it was 

considered unnecessary to build a discriminator, and 

instead, the pulses are converted to TTL by the use of the 

opto-isolator circuit in figure 3.5. 

The 6N137 opto-isolator consists of a GaAsP input diode 

optically coupled to to an integrated detector comprising a 

photodiodle, high. gain 1 inear amplifier and output 

transistor [67]. Providing that the input current 

(determined by the height of the pulse and the input 

resistor) is sufficient to activate the diode, an incoming 

pulse will give a 5V TTL output pulse. The chip also 

isolates the input signal from the output signal, 

elim~nating ground loops. 

3.4.5 A t~averse table interrupt. 

For most applications of the Lang camera, the traverse 

table is simply required to move backwards and forwards at a 

constant rate between two limits. However, for some 

experiments, such as step scanning section topography, 

described in chapter 2, it is necessary to be able to start 

and stop the traverse repeatedly during an exposure. 

The traverse table stepper motor is driven by an Elliot 

controller. This has momentary action switches that start 

and stop' the traverse, together with swiches enabling the 

limits to be set. The speed of traverse can be changed, but 

is normally left to be the slowest possible during exposure, 
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to reduce vibration when the direction of traverse reverses 

at the l~mits. 

Since it is unnecessary to duplicate most of the 

functions of the controller, it was decided to start and 

stop the traverse remotely by adding reed switches in 

parallel with the start and stop switches. Two of the 

remaining lines from the User Port (PB6 and PB7) are used to 

activate the switches, each connected to the base of a 

transistor, which allows current to flow from the 5V supply 

through the coil of the reed switch whenever the line goes 

high, closing the switch. 

Hence, by sending PB6 high momentarily, the traverse is 

started and it is stopped by sending PB7 momentarily high. 

Since the motor is driven at a constant speed, .the distance 

traversed is controlled by the time interval between 

starting and stopping the traverse. 

3.5 ABAC Software 

A fully anotated listing of the ABAC control program is 

given in appendix A. Descriptions of the Basic commands used 

may be ~ound in the BBC User Guide [68] and the assembly 

language commands in the BBC Advanced User Guide [65]. 

The operation of the ABAC can be split into basic 

building blocks. In the first place, routines are needed to 

drive the stepper motor and to read the status of the 

turntable limit switches. Secondly, the counter must be able 

to be started, stopped, latched, read and cleared (though 

not necessarily in that order). Finally an algorithm is 

needed to interpret the change in the count rate and to use 
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this information to adjust the rotation of the sample. 

The control of all of the BBC's interface ports is best 

effected by.assembly language routines, as these access the 

memory locations much quicker than routines written in 

BASIC. Also, to provide compatibility with the BBC seriond 

processor, it is important that devices on input/ouput ports 

are not accessed directly from memory, but by a resident 

machine code routine. This OSBYTE call can be used to 

control a variety of the computer's functions. 

Each operation of the stepper motor and counter is 

controlled by one of these ro~tines, which are called from 

assembly language by BASIC commands. OSBYTE calls &92 and 

&93 are used to read from and write to the 1 MHz bus, and 

calls &96 and &97 to read from and write to the User Port. 

3.5.1 Control of the stepper motor 

~or a turntable rotation of 1/1000th of a degree, the 

motor controlling the turntable must be moved in half step 

mode. That is,. instead of energising the coils in the order 

1 ' 2' 3' 1 ' 2 etc., they must be energised in the order 1 ' 

1 and 2' 2 ' 
' 2 and 3 ' 3 ' 3 and 1 ' 1 ' 1 and 2 etc. This gives 

twice as many steps per 360° as driving in normal mode. 

From the User port, line PB3 is used to energise coil 

number 1 ' PB4 coil 2 and PB5 coil 3 . So, to drive the motor 
I 

clockwise, the following sequence of values of Y must be 

written to the port : 8 (coil 1 ) ' 24 ( 1 and 2)' 16 ( 2)' 48 

( 2 and 3), 32 ( 3), 40 ( 3 and 1 ) . 

To drive it anti-clockwise, the values are sent in the 

reverse order. 
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These values are contained in an array and are 

transferred sequentially to the OSBYTE call using FOR-NEXT 

loops in two BASIC procedures, one for clockwise movement, 

the other for anti-clockwise movement. After each step, the 

status of the limit switch in the direction being driven is 

read by 'the computer. If that switch is closed, then the 

table is driven 20/1000 of a degree away from the limit, a 

message appears on the screen, and the program waits for a 

response from the operator. In this way, it is impossible to 

drive the table past either the clockwise or anti-clockwise 

limit. 

The position of the turntable in 1000ths of a degree is 

recorded by the variable PSN% which is continuously 

displayed in the corner of the computer monitor. This is 

updated whenever the turntable is rotated, with clockwise 

steps increasing its value and anti-clockwise steps 

' decreasing it. 

3.5.2 Control of the counter. 

The counter is controlled by four assembly language 

routines , 11 c 1 ear 11 , 
11 start 11 , 11 s top 11 

, and 11 read 11 
, which are 

called from the procedure PROCcount. To measure the count 

rate; the· counting time is first set, either by the 

operator, or from another routine. The counters are cleared 

and then started, with a timing loop in the program st~rted 

simultaneously. After the set counting time, the counters 

are stopped, and the data is read into the computer. 

Referring to figure 3.3, the counters are read in the 

order: least significant byte of the 10MHz row (counter 1 ), 
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up to most significant byte of the signal row (counter 8). 

The number 9f counts in each counter is stored in the array 

NUM% (counter in NUM%(0), 2 in NUM%(1 ), etc.) and the 

total number of counts in the 10MHz row is then given by: 

X1 = NUM%.(0) + 28 x NUM%( 1) + 2 16 x NUM%(2) + 23 2 x NUM%(3) 

Similarly, the number of counts in the signal row is given 

by: 

X2 = NUM%•(4) + 28 x NUM%(5) + 2 16 x NUM%(6) + 23 2 x NUM%(7). 

Since there will be 10 7 counts in the 10MHz counter for 

every second the counters have been enabled, the exact 

counting time in seconds is now given by X1/10 7 , and hence 

the count rate in counts per second by X2 x 107/X1. 

3.6 Software routines. 

By using a microcomputer to control the ABAC, a variety 

of procedures can be built up to perform different tasks, 

using the routines described above. An outline of the 

various tasks that can be performed at present is given 

below. 

3.6.1 Disengaging the stepper motor. 

This is a routine to remove the holding torque of the 

motor, thus allowing the turntable to be rotated manually. 

It is accomplished by writing zero's to all three inputs of 

the stepper motor driver simultaneously, effectively 

"switching off" the power to the motor. 
. I 

Page 57 



Chapter 3 

3.6.2 Count 9nly. 
I The count only routine allows the count rate to be 

measured continuously by the computer, with the counts per 

second being displayed on the computer monitor. To do this, 

the counting time is first set by the operator. The program 

will then count for this time, display the counts per second 

on the screen, clear the counters and start counting again, 

continuing until the routine is interrupted by the space bar 

being pressed. The successive count-rates are displayed in 

rows of four, with new rows underneath. When the screen is 

full, .the previous values are moved up the screen with the 

new values being added to the bottom of the screen. In this 

way, up to th~rty-nine previous count-rates are displayed. 

During counting, the turntable can be rotated manually 

by disengaging the stepper motor,· using the routine 

described in 3.6.1. 

3.6.3 Rotating the turntable via the keyboard. 

Th{s routine allows the turntable to be rotated by 

pressing one of two keys on the keyboard. For simplicity, 

the "arrow left" key from the cursor control keys is used 

for anti-clockwise movement and the "arrow right" key for 

clockwise movement. 

The procedure works by redefining these two keys and 

then continually looking within a loop to see whether either 

has been pressed. If so, the motor is moved by one step for 

each pass of the loop during which the key is pressed. At 

the end of each loop, the input buffers from the keyboard 

are flushed to ensure that movement stops as quickly as 
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possible 'after the key is released. In practice this means 

that a quick key press will move the motor by just one step. 

Three speeds of rotation are possible by setting a time 

delay {using a machine code loop) between each step. 

3.6.4 Rotate the turntable and count. 

By combining the above two routines, the turntable can 

be rotated from the keyboard whilst the X-ray intensity is 

displayed on the computer monitor. 

This routine therefore consists of the loop described 

in 3.6.3 with a counting procedure contained within it. For 

each pass of the loop, the procedure will count for a set 

time, display the count rate in the format described in 

3.6.2, look to see if either of the arrow keys (or the space 

bar) have be~n pressed and if so, will rotate the turntable 

(or leave the routine). The counting time and step length 

are set by ~he operator, and since these will now limit the 

speed of rotation, the machine code delay loop is no longer 

necessary. 

3.6.5 The ABAC procedure. 

The feedback routine used to give automated Bragg angle 

control is shown in figure 3.6, and is described below. With 

this routine; the peak of the rocking curve is quickly found 
I 

and the sample is held to within one or two steps of it at 

all times. 

Before the computer takes over control, the operator is 

asked to orient the sample so that it is. on part of the 

rocking curve. This can be done either with the cursor 
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control keys (section 3.6.3) or manually by removing the 

holding torque of the motor (section 3.6.1 ). Now, to enable 

the routine to react quickly enough to changes in 

ori~ntation caused by the traverse, both the step size and 

the counting time are requested. The step size will need to 

be greater than the maximum misorientaion that can occur 

during a time roughly equal to the counting time. In most 

instances, a step size of two (2/1000th of a degree) works 

well, with a counting time of around 1 second for lightly 

bent crystais (R~50m) and around 0.4 seconds for more 

heavily distorted ones (R~2m). 

The routine starts by measuring the diffracted 

intensity and then rotating the sample anti-clockwise by one 

step. The count rate is measured again and if the diffracted 

intensity is greater than the previous measurement, the 

sample is once more rotated in an anti-clockwise direction. 

However, 1f the diffracted intensity has dropped, then the 

sample is rotated in a clockwise direction and the count 

rate re-me~sured. The routine continues in this way, 

reversing the direction of rotation whenever there is a drop 

in diffracted intensity, until interrupted by the operator. 

This is similar in form to the algorithm used by van 

Mell~ert and Schwuttke [64]. At all times the count rates 

are displayed on the screen in the format described in 

section 3.6.2, together with the position of the table, the 

maximum count rate so far recorded, and the average of the 

previous five count rates. 

Should the turntable reach either of its. limits then 

the routine is stopped in the way described in section 
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3.5.1. To allow the X-Ray shutter to be closed (and to guard 

against generator failure) without the turntable being 

rotated continuously in one direction, the turntable is not 

rotated whenever the count rate drops to below 20 counts per 

second, although the count rates are continued to be 

displayed. When the count rate returns to a high value, the 

routine cpntinues as before. 

3.6.6 Step Scanning Section Topography Routine. 

By combining the ABAC routine with the traverse table 

interrupt (section 3.4.5) it is possible·to use the Lang 

camera for step scanning section topography [37,38]. The 

routine to do this is shown in the flow diagram, figure 3.7 

and works in the following way. 

Firstly, the number of sections required, the exposure 

per section ·and the distance between them is entered by the 

operator. The routine also asks for the step size and 

counting time for the ABAC part of the routine. In a similar 

way to the ABAC routine, the crystal is oriented on part of 

the rocking curve· and the computer takes over control. 

To begin with, the Bragg peak is found using the ABAC 

routine for 20 seconds. After this time, the sample is held 

stationary and there is a delay for the desired exposure 

time. After the exposure is completed, the traverse table is 

started and the ABAC routine is entered. After the table has 

traversed the required distance, the traverse table is 

stopped, with the ABAC routine continuing, using a large 

counting time and small step size for 20 seconds to ensure 

that the crystal is close to the Bragg peak. The routine 
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again waits for the exposure time before moving the table 

to the next exposure, the routine being repeated for the 

total number of exposures. 

3.7 Summary. 

'The Automated Bragg Angle Controller described above 

has been in operation for nearly three years and has worked 

effectively without fault since it was first installed. It 

has also proved to be extremely tolerent to both the large 

fluctuations in the diffracted intensity encountered in 

heavily dislocated crystals and the unstable nature of the 

incident beam intensity from a fifteen year old rotating 

anode X-ray generator. This is in many ways because of the 

simplicity of the design of the add on hardware and of the 

software routines. By utilising many of the existing 

features of the Lang camera, the cost and complexity of the 

system are kept to a minimum. 

The effectiveness of the controller is demonstrated by 

the Lang topographs of mechanically bent wafers presented in 

chapter 4. It is clear from these that the whole width of 

the sample is evenly exposed with no loss in resolution for 

even the most severe distortions. Such topographs would not 

have been possible without a Bragg angle controller. 
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Chapter Four 

Lang and section topography of bent crystals. 

4.1 Introduction. 

This chapter describes a series of experiments to 

investigate the influence of an impressed curvature upon the 

contnast of defects in Lang and section topographs. The 

experimental procedures required for the work are described 

and an explanation of the contrast differences between Lang 

and Hirst topographs is proposed. Finally, the systematic 

change in contrast with increasing bending is investigated 

for both Lang and section topography. 

4.2 Experimental Procedure. 

The samples used for this work were both cut from a 

four inch silicon wafer provided by British Telecom Research 

Laboratories. The wafer had a (111) surface, was 580~m thick 

and had been placed in part of a furnace which resulted in a 

high temperature gradient across it, causing a high density 

of slip dislocations as shown by the Hirst topograph of the 

sample, fig~re 4.1a. The sample had been etched on the side 

used as the entrance surface and lapped and polished to a 

smooth, strain free finish on the side used as the exit 

surface. No curvature could be measured by single crystal 

methods. Two strips were cut from the sample, each measuring 

approximately 15mm by 45mm and their relationship to each 

other and the original wafer is shown in figure 4.1b. 

The samples were bent by placing them in the four line 

bending jig shown in figure 4.2. This consists of two 4mm 
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diameter silver steel pins separated by 20mm, mounted on a 

sliding block (B) acting against two 6mm diameter fixed 

outer ~ins (0) separated by 40mm. The block fits exactly in 

the groove (G) ensuring that there-is no sideways rocking 

movemen~ and the pins are maintained perpendicular to the 

top surface by the closely fitting cover plate (C). The 

bending moment is then applied by a micrometer head (M) 

acting against the sliding block, the re·turn tension being 

provided by the elasticity of the sample. 

The jig is mounted on a goniometer which allows 

translationai movement in two orthogonal directions so that 

the sample can be aligned to be directly over the rotation 

axis of the turntable. The goniometer also allows the jig to 

be tilted in a direction parallel to the sample's surface. 

Since the jig was carefully made with the pins exactly 

perpendi9ular to the top and bottom surfaces, the pins could 

be aligned parallel to the collimating slit, which is 

exactly perpendicular to the turntable of the Lang camera, 

by levelling the top surface of the jig with the aid of a 

spirit level. The reading of the tilt stage for this 

condition was then noted and the sample adjusted for tilt by 

maximising the diffracted intensity of the Bragg reflection, 
' 

measured .for various rotations of the tilt stage. Once the 

optimum value of tilt had been found the tilt stage was 

returned to its original position, once more placing the 

pins parallel to the collimating slits, and the sample was 

tilted by placing packing under one edge. The diffracted 

intensity was then checked once more and final· adjustments 

were made to the ·tilt. For the t~o samples studied here, the 
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bottom edges were cut exactly parallel to the 110 direction 

and no tilt adjustment was needed. To avoid any friction 

between the sample and the top of the sliding block on which 

it rests, the crystal was placed on two human hairs, 

sufficiently thick to raise it off the top surface of the 

jig. 

The curvature of the sample was found by measuring the 

misorientation of the Bragg planes with position along the 

sample, using the following procedure. The Bragg peak at one 

position of the traverse, preferably close to one end of the 

possible traverse range defined by the inner pins of the 

jig, was found and its angular position noted. 

The crys~al was then moved by a distance 6x measured on 

the traverse controller (section 3.2) and the average 

position of. the Bragg peak at this point found in the same 

way as before. The radius of curvature was then given, 

providing that. the direction of traverse was parallel to the 

unbent crystal surface by: 

R = 6X ( 4 . 1 ) 

where 68 9 is the difference between the angular position at 

the two points. 

However, since the peak for a single crystal rocking 

curve is fairly broad and the vertical extent of the beam 

gives diffraction from a large area of the crystal, the peak 

position was often difficult to determine. The ABAC routine 

descr.ibed in section 3.6.5 was therefore used. Once it has 

found the peak this routine oscillates around it, displaying 

Page 65 



Chapter 4 

the average position of the turntable after every ten steps. 
i 

Averaging ten of these therefore gave an average of 100 

positions. Furthermore, the deviation from the mean gave an 

estimate of .the inhomogeneity of the bending, since for 

perfect cylindrical bending the whole of the illuminated 

crystal will diffract at the same angular setting giving a 

small range. However, for an imperfectly bent crystal, 

diffracti.on will occur at different angular positions at 

different heights giving a large deviation in the position 

of the peak. 

It is not enough however to know the overall curvature 

of the sample, one must also discover if the crystal is bent 

homogeneously, that is, cylindrically with the axis of the 

cylinder parallel to the pins. As stated above, non-uniform 

bending is usually acco~panied bi a large rocking curve for 

a ribbon incident beam, since diffraction only occurs for a 

small height of crystal for a particular angular postion. To 

check the homogeneity of the bendiDg the vertical extent of 

the beam must therefore be limited and the angular position 

of the diffraction maximum plotted as a function of height. 

' 
In practice this was done by placing a horizontal slot 

cut in a lead sheet after the collim~ting slit so that the 

incident beam .was limited to a height of about 1mm. The 

vertical position of the beam could then be simply changed 

by raising or lowering the slot. The position of the maximum 

was measured close to the top and bottom edges of the sample 

for several positions of the traverse. An example of the 

curvature uniformity map is given in table 4.1. 
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Traverse position (mm) 

8.700 9.300 9.850 

Height of beam (mm) 

0 12 1 6 20 

0.5 12 15 1 9 

1 . 0 1 1 15 19 

Table 4.1 

Curvature uniformity map, showing the angular position of 

the Bragg peak in 1 /1000th degree. 

The criterion adopted for homogeneous bending was that 

there should be less than 2/1000th of a degree difference in 

the pdsition of the peak between the top and bottom of the 

sample for any position of the traverse. Furthermore the 

crystal must have been adjusted to be within 15 minutes of 

arc of the optimum tilt position. 

Even though the jig was carefully constructed and 

several modifications were made to make the bending as even 

as possible, it was still found to be impossible to reach 

the above criterion, the best uniformity being of the order 

of 15/1000th's of a degree difference between the top and 

bottom edge of the crystal. To compensate for this it was 

necessary to use small pieces of 10~m thick nickel foil as 

packing between the pins and the sample in three places. 

Using this rather fiddly method, it was always possible to 

meet the homogeneity criterion and often no difference in 

peak position with height could be found, Whilst the jig 
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could possibly have been redesigned to include a more 

convenient form of adjustment such as screws in the top and 

bottom of the pins, the above method worked well and the 

length of time required to construct a new jig made this 

course ~faction undesirable. 

To take the topographs, the crystal was held on the 

peak of th~ rocking curve as it traversed by the ABAC 

described in chapter 3. The film holder was mounted securely 

onto the bending jig and therefore rotated with the sample. 

All of the topographs presented in this chapter were taken 

on 50~m Ilford L4 nuclear emulsion plates with MoKa
1 

radiation. The highly polished side of the sample was the 

exit surface and the entrance surface was taken as having an 

orientation of 111. The width of the collimating slits was 

150~m for Lang topography and 10~m for section topography. 

The experimental set-up is shown in figure 4.3. 
! 

4.3 Contrast in Hirst topographs. 

Although the Hirst technique described in section 2.2~5 

gives comparable images to those in Lang topographs [44,69], 

several differences between them are obvious, most 

noti~eably the enhanced white dynamical image and the 
' 

decreased visibility of the direct image. In Hirst 

topographs a symmetric reflection is normally used and in 

this geome~ry no change in the propagation of x-rays within 

the crystal is expected because the diffracting planes 

remain flat, the change in tilt being exactly compensated by 

the dilation, giving an effective misorientation of zero 

[10,13,16] (section 1 .5). The ch~nge in contrast is 
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therefore unexpected and the aim of the experiments 

described here is to discover whether the discrepencies are 

a real phenomenon or an artefact of the Hirst experimental 

procedure. 

Figure 4.4a shows a 220 Lang topograph (~t = 1.0) 1 of 

sample 1 with no bending. Two sets of inclined slip 

dislocations visible as lines of enhanced intensity are 

noteworthy and are marked by A and B. Set A is an extended 

pile up of dislocations parallel to <101> lying on the 111 

slip plane. The set B dislocations lie almost parallel to 

<110> and extend from the top (exit) surface through to the 

bottom (entrance) surface, having a large screw component. 

The end of the dislocation outcropping on the exit surface 

(e) is easily identified by the dynamical image being 

localised close to the direct ima~e. Dislocations in set A 

exhibit mostly direct images whilst those in set B show the 

classic dark direct (d) and light dynamical (y) images 

separated by the grey intermediary image in which 

interference fringes are clearly visible. 

Figure 4.4b shows the same area of crystal, 

homogeneously bent to a curvature of 0.008m- 1 (R = 12.5m) 

and no difference in contrast between this and the unbent 
I 

sample can be seen. Furthermore, in agreement with the 

Eikonal theory there is no change in the diffracted 

intensity upon bending. The significant contrast differences 

observed in the Hirst technique are therefore not explained 

by the effects of uniform bending. 

1 pt ls calculated using: 

Page 69 



a) 

b) 

Fj~ue 4.4 

220 Uq:lg topographs of sample 1. 
a) Unbent 
b) Sample homogeneously bent to R = 12.5m 

200J!ID 



Chapter 4 

Now compare figure 4.4 with figure 4.5a, the topograph 

of the sample bent to a curvature of 0.029m- 1 (R = 35m). The 

sample was in this case bent inhomogeneously, that is there 

is a torsional moment applied about the diffracting plane 

normal caused by an incorrectly aligned bending pin. 

Unfortunately the amount of torsion was not measured, but 

the amount of distortion required to produce the image 
I 

change is estimated in the next section. 

As we can see, the torsion dramatically changes the 

character of the contrast. Firstly, the diffracted intensity 

rises by a factor of~ 1.5. Secondly, th~ direct images, 

most notably of the set A dislocations, become less visible 

and thirdly, a strong white dynamical image is seen 

extending to a greater distance than in the unbent sample 

and to both sides of the direct image. As the bending is 

increased, figure 4.5b, the extent of these white images 

decreases and the direct images of the set A dislocations 

become almost invisible. The direct images of the set B 

dislocations are also diffracting with similar intensity to 

the perfect crys~al and are only visible because of the 

large area .of depleted intensity around them. 

Figure 4.6 is a topograph where the crystal has been 

bent to a radius of curvature of approximately 2m. The 

sample ~ad been more carefully adjusted for inhomogeneous 

bending and as a consequence the whole of the sample is 

imaged. ,There is still approximately 1/100th of a degree 

difference in the peak position between top and bottom and 

this manifests itself in the more pronounced dynamical 

i~ages and the higher diffracted intensity. These images are 

Page 70 



a) 

b) 

Fj~re 4.5 

- --- ~~ - --

220 Lang topograph.s of sample 1. 
2001Jlll 

a) Sample inhomogeneously bent to R =35m 
b) Sample inhomogeneously bent to R = 18m 



Fi~re 4.6 

220 Lang topograph of sample 1. 
The sample is inhomogeneously bent to R=2m, but 
with a lesser degree of inhomogeneity than figure 4.5 
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very similar to those at R = 35m with a greater torsional 

moment and this suggests that the uneven bending is creating 

the image changes, independent of the overall curvature of 

the sample. The contrast seen in this topograph is very 

similar to that seen in the Hirst technique, although in 

Hirst topographs the contrast varies significantly with 

position on the plate. 

The bending in the Hirst camera is checked by viewing 

the diffracted beam through an image intensifier and is 

adjusted until simultaneous diffraction can be seen from the 

whole wafer. From this work it is obvious that even when 

this criterion is met, there may still be some uneveness 

which will lead to significant contrast changes in the 

topograph .. Furthermore, this inhomogeneity varies from point 

to point on the topograph giving rise to a variety of 

contrast effects. Since however, uneveness in bending is 

always accompanied by a rise in diffracted intensity it is 

suggested that a measurement of this should be used in 

conjunct~on with the visual technique to achieve homogeneous 

bending. 

It is obvious that the contrast changes seen in the 

symmetric geometry Hirst topograph are not caused by the 

overall curvature of the sample but by a small inhomogeneity 

in the bending which has the effect of distorting the 

diffracting planes. Due to the unpredictable nature of the 

distortion it is difficult to explain the contrast changes 

from the topographs in this section. In order to investigate 

this more carefully it was decided to use an asymmetric 

reflection and to bend the sample homogeneously to produce a 
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uniform lattice curvature. This work is described in the 

next sectiqn. 

4.4 Contrast in Lang topographs of curved crystals. 

Contrast asymmetries of dislocations in distorted 

crystals 1were first observed by Saccacio [55,56] although no 

mechanism for the change in contrast except for a curvature 

of the diffracting planes was proposed. Meieran and Blech 

[70] showed that upon bending to a radius of curvature of 6m 

there is a substantial rise in the diffracted integrated 

intensity and the images of dislocations change contrast 

from:black on white to white on black. There was not however 

any attempt to explain this contrast reversal and it was not 

explored for weak to intermediary bending. The aim of this 

section therefore is to explore the change in pontrast with 

increasing curvature of the diffracting planes in the 

cylindrical benqing geometry. 

The theoretical basis for diffraction from a crystal 

with a uniform strain gradient is given in [71] and the same 

parameter describing the effective deformation in the case 

of homogeneous bending is used here, namely: 

D = Btn 
E;;g 

( 4 . 1 ) 

where t is the thickness of the crystal slab and B is given 

for cylind~ical bending by: 
~ 

B = -E;; 2 sin '¥ [1 + r r (1 + v)] g 0 g 

dR 2nr r 
0 g 

(4.2) 
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where R is the radius of curvature of the sample, ~ is the 

angle between the surface normal and the diffracting plane 

and v is Poisson's ratio, equal to 0.215 for silicon [72]. 

For values Of jBj << 1 then Chukhovskii and Petrashens' 

results are identical to those given by Kato's Eikonal 

theory [16]. Another useful parameter for diffraction in 

curved crystals is given by Kalman and Weissman [73,74] the 

effective curvature p of a diffracting plane, taking into 

account both lattice dilation and tilt and related to the 

impressed curvature p by: 
n 

( 4. 3) 

Here the convention adopted is that a diffracting plane 

has a positive curvature when reflection occurs from the 

concave side of the plane. B is positive in the geometry 

used in these experiments as shown in figure 4.3. The sample 

was always bent so that the concave side was the entrance 

surface and the diffracting planes assumed a positive 

curvature. 

Sample 2 was bent perfectly homogeneously and 

diffraction obtained from the T31 reflection (x = 58.5°) 

with MoKa 1 radiation (~t = 1 .20) with a 111 entrance 

surface. The crystal was bent to radii of curvature of 82m, 

69.5m, 55.5m, 34.0m and 19.5m and the values of D, B and p 

for these curvatures are given in table 4.2. Note that we 

are working well within the range of applicability of the 

Eikonal th~ory given by equation 1.21 since for this 

reflection and wavelength R ~ Bm. 
c 
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R(m) P (m-1) p(m-1) B B Do D n <1 Jt Jt 

()0 0 0 0 0 0 0 

82.0 0.012 0. 0 11 0.022 0.027 1. 06 1. 30 

69.5 0.014 0.013 0.026 0.032 1. 25 1. 54 

55.5 0.018 0.016 0.034 0.041 1. 63 1. 97 

34.0 0.029 0.026 0.055 0.066 2.64 2.64 

19.5 .0.051 0.045 0.096 0.117 4.60 4. 61 
I 

Table 4.2 

Values of p, B and D for n and a polarisation states at the 

curvatures p used in the experiment. n 

As expected from both the Chukhovskii and Petrashen and 

Eikonal theories there is a sharp rise in the diffracted 

intensity upon bending. The peak intensity is plotted 

against pin figure 4.7. As we can see, an effective 

curvature of only 0.01m- 1 is sufficient to produce a two 

fold incr~ase in the peak height. 

Figure 4.8 shows the 131 topograph of the unbent 

crystal on which are marked the positions of the section 

topographs presented in section 4.5.2. Figures 4.9 and 4.10 

show enlargements of the same area of crystal printed to 

give a uniform background intensity, at radii of curvature 

of co,, 82m, 55. 5m and 20m respectively and dramatic changes 

are once more visible in the images of dislocations upon 

bending. Two areas are interesting here, the large area of 

pinned slip ~islocations A, which are the same in character 

as the individual set B dislocations in sample 1 (figure 
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a) 

b) 

Figure 4.9 

-
131 Lang topographs of sample 2 homogeneously bent to: 
a) R= oo 

b) R=82m 
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See text for explanation of 
symbols 
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Figure 4.10 

-
131 Lang topographs of sample 2 homogeneously bent to: 
a)R=55.5m 
b) R=20m 

-+ 
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See text for explanation of 
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4.4a) and the extended pile up of dislocations marked by B. 

As the curvature is increased, the direct images of the 

dislocations become less visible as observed in the 

topographs of the inhomogeneously bent wafer and at a radius 

of curvature of R = 20m the majority of the direct images 

are I\Ot visible. 

Since the direct images can be thought of as arising 

mostly from parts of the crystal so heavily distorted as to 

be mosaic, we do not expect the long range impressed strain 

to have an effect on the diffracted intensity from this 

region since once the kinematic limit is reached there is no 

change in reflecting power with deformation. The decreased 

visibility of the direct images can therefore be attributed 

to the rise in the perfect crystal reflecting power which 

swamps the diffraction from the dislocation core. That is, 

if we define the contrast C as: 

C = I max I . mln ( 4. 4) 

we see that if the mimimum intensity Imin goes up then the 

contrast necessarily goes down. 

This mechanism was also suggested by Meieran and Blech 

[70] and more recently by Zsoldos [75]. Since the intensity 

of kinematically diffracted X-rays is dependent upon the 

volume of heavily distorted material, we would expe~t direct 

images of individual dislocations to disappear at lower 

values of B and those from bundles of dislocations to be 

visible at higher B values. This is clearly seen from points 

C and Din figures 4.9 and 4.10. This condition can also be 
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stated as the darker the direct imager in the unbent sample 

the more visible it will be as B is increased. 

Upon bending the white dynamical images become much 

more visible and extend to greater distances from the direct 

image. H~wever, upon further bending they contract and 

eventually dominate the contrast of the dislocation for high 

values of B. Since dynamical effects are very sensitive to 

lattice strains it is unlikely that these effects can be 

explained by just a rise in the background intensity. 

If we look at figure 4.7 we see how the change in 

integrated diffracted intensity is practically linear with 

the change in bending for small curvatures. The strain field 

far from the dislocation core, that is in a region of 

crystal not sufficiently distorted to give interbranch 

scattering, can either act in the same or opposite sense as 

the impressed strain, givin~ a local enhancement or 

depletion of intensity respectively. This would explain the 

large area of depleted intensity seen in the asymmetric 

reflection ·topographs and the inhomogeneously bent symmetric 

topographs (figures 4.5 and 4.6). However, if this is the 

mechanism responsible we would also expect the contrast to 

be reversed if the same diffraction geometry is used but the 

sense of the applied deformation is reversed. 

That this is the case is obvious in figure 4.11, a 

symmetric topograph of sample 1, inhomogeneously bent to a 

radius of curvature of 2.6m. Here however, the twist is in 

the opposite sense to that in figure 4.5 and the area of 

depleted intensity seen in that topograph is replaced by an 

area of enhanced intensity extending to roughly the same 
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Figure 4.11 

-
220 Lang topograph of inhomogeneously bent sample 1. 
Sense of twist is opposite to that in figure 4.5. Note that the previous area of depleted intensity around the direct 
image is replaced by an area of enhanced intensity, extending to roughly the same distance. 
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distance. Simila~ observations have also been reported by 

Zsoldos [75]. Upon further bending the large white contrast 

contracts and dominates the contrast of the dislocations due 

to the invisibilty of the direct image. 

Also noteworthy are the images of scratches on the exit 

surface of the sample (S). The visibility of the direct 

image once more decreases with increased bending but a 

strong white image also appears adjacent to it whose spatial 

extent does not change with increasing deformation. Since 

the strain field is localised at the surface, it cannot 

significantly change the propagation of the wavefields 

within the Borrmann fan and the white image can therefore 

best be thought of as a shadow caused by the creation of new 

wavefields. close to the surface which cannot propagate 

further [76]. It is therefore likely that the contrast 

changes in this case arise because of the rise in the 

perfect crystal diffracted intensity and not by a 

fundament~! change in the wavefields caused by the applied 

strain. 

From this work it would appear that effective lattice 

curvatur~s of as little as 0.01m- 1 are sufficient to create 

the contrast changes seen in topographs of inhomogeneously 

bent wafers. This implies that to be able to directly 

compare L~ng and Hirst topographs, the bending homogeneity 

must be controlled to a tolerance close to that used in 

section 4.2. 

Since we do not see large dynamical images associated 

with the scratches, the increased extent of the white image 

of the dislocations must be associated with changes in the 
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ener~y flow within the Borrmann fan. Such information is 

however lost in traverse topogr~phs, because of their 

integrated nature. 

To investigate in more detail the contrast effects 

produced by homogeneous bending, section topographs were 

also taken at several positions of the crystal for each 

radius of curvature. Section topographs have the added 

advantage that they can be simul~ted successfully in a 

realistic time using th~ Takagi-Taupin equations. The 

experimental results and some simulations are presented 

below. 

4.5 Section topography of curved crystals. 

The section topographs in this section are all of 

sample 2 and were taken at exactly the same curvatures as 

the Lang topographs. The positions of the sections for each 

curvature were checked using dental film, which gave 

sufficient resolution to enable the crystal to be aligned to 

within 20~m of the same position for each curvature. This is 

5% of the width of the base of the Borrmann fan for the 131 

reflection and 4.5% for the 440 reflection. 

4.5.1 Symmetric reflection. 

Figures 4.12 and 4.13 show section topographs using the 

440 symmetric reflection (~t = 1.09) with e8 = 21.6°. 

Figures 4.12a and 4.13a are enlargements of parts of the 

unbent section and figures 4.12b and 4.13b are the same 

regions in the crystal bent to a radius of curvature of 

17.5m. Ostensibly there is no difference in contrast between 
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Figure 4.12 

-
440 Section topographs of homogeneously bent sample 2. 
a) R= oo 

b) R= 17.5m 
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Figure 4.13 

-
440 Section topographs of homogeneously bent sample 2. 
a) R= oo 

b) R= 17.5m 
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the images in the bent and unbent crystal and no rise in 

diffracted intensity occurred upon bending, in agreement 

with the· homogeneously bent ~20 reflection of sample 1 

(figure 4.4). There are however changes in the fringe 

patterns in the fine structure of images of dislocations and 

also in the parallel Kato fringes. These show a phase change 

in the centre of the section, that is close to the exact 

Bragg condition, whilst towards the edges the period and 

phase are identical in both cases. 

This change in phase is surprising since in the 

symmetric geometry no curvature of the wavefields in the 

Borrmann fan is predicted by the Eikonal theory. Using the 

Eikonal theory, a lattice distortion has the effect of 

migrating the tie-point along the dispersion surface. For a 

very small distortion this migration will produce the 

greatest change in the direction of energy flow for each 

wavefield close to the exact Bragg conditon, ~ = 0 since 

here there is a large angular amplification effect (section 

1.4.8). Since wavefields from different branches curve in 

opposite directions for a given curvature, the spatial 

overlap between them will change and we can expect a change 

in the interference pattern, that is in the Kato fringes. 

Thus, for very small curvatures significant changes in 

phase will only be present close to the exact Bragg 

condition, that is at the centre of the section pattern, in 

agreement with the experimental results. Similar changes in 

the fringe pattern have been observed by White and Chen [77] 

and these have been simulated using a numerical integration 

of the Takagi-Taupin equations by Green and Tanner [78]. 
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They showed that a phase change occurs in the symmetric 

geometry even for perfectly homogeneous bending, although 

not of the same magnitude as seen here. A change in phase is 

also predicted for the case of fanning planes with B = 0 by 

Chukhovsk~i and Petrashen [71, 79]. 

The cause of the change in contrast seen in these 

experiments is therefore unclear, although perfect bending 

will be difficult to obtain in practice and an undetectable 

inhomogeneity is possibly the reason. 

4.5.2 Asy~metric reflection. 

Figures 4.14 to 4.17 show T31 section topographs of 

sample 2 at the same radii of curvature as the Lang 

topographs, the numbers referring to the position of the 

section in relation to the sample, shown in the Lang 

topograph, figure 4.8. Sections 1 to 5 were taken on the 

same plate using a step scanning technique, as were sections 

6 to 9. 

Upon bending a large change in the Pendellosung fringes 

is seen. These become more localised at the centre of the 

section, showing less contrast with increased bending and 

becoming invisible for R < 34m. Such changes in the fringes 

have been previously observed [57,77] and are adequately 

' explained by the Eikonal theory. Also interesting is the 

sensitivity of the Pendellosung fringes to local lattice 

strains in the vicinity of a dislocation. Referring to 

figure 4.14 and the dislocation marked D, we see that for p 

= 0 the dislocation has very little effect on the shape of 

the Pendellosung fringes whilst for R = 82m these fringes 
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-
131 Section topographs of homogeneously bent sample 2. 
a) R= oo 

b) R=82m 
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Figure 4.15 

-
131 Section topographs of homogeneously bent sample 2. 
a) R=55.5 
b) R=20m 
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Figure 4.16 

-
131 Section topograpbs of homogeneously bent sample 2. 
a) R= oo 

b)R=82m 
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See text for explanation 
of symbol 
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131 Section topographs of homogeneously bent sample 2. 
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are considerably distorted in the region of the dislocation. 

This effect has also been observed by Chukhovskii and 

Petrashen [80] and is explained by the phase difference 

between branch 1 and 2 wavefields having a linear dependence 

on the local strain field only for a non-zero value of B. 

The sensitivity of these fringes to quite moderate 

bending conditions means that care should be taken when 

using asymmetric reflections to examine processed wafers, as 

there will be some ambiguity as to whether poor fringe 

visibiliSY is due to the presence of a long range strain or 

to lattice disorders such as microdefects. 

The region marked E in figure 4.14 shows interesting 

contrast· changes upon bending. The area in question is also 

marked on figure 4.8 and as we can see the section topograph 

is very close to, but does not cross, the bundle of 

dislocations marked by Q. This is shown by the lack of a 

direct image in the section topograph. The strain field 

around these dislocations is sufficient however to distort 

the local fringe pattern. As the bending increases, a dark 

image is formed in the shape of the bundle which upon 

further bending, (figure 4.15) becomes more localised and 

gives rise to white dynamical images at R = 34m. This 

enhanced intensity agrees well with the L~ng topograph and 

can be explained by the long range strain field acting in 

the same sense as that around the dislocation, thus giving a 

local enhancement of intensity greater than that in the 

perfect .crystal. At higher bending it is likely that the 

added strain is sufficient to give rise to interbranch 

scattering giving a localised dark image and white dynamical 
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image, the previous enhancement being swamped by the rise in 

diffracted intensity from the perfect crystal. 

The sections show, as was reported in 4.3, the lack of 

change of the images of scratches upon bending. Figures 4.16 

and 4.17 show section number 8 which cuts the scratch marked 

S on the Lang topograph (figure 4.8). This changes very 

little in shape or contrast up to a curvature of 0.029m- 1 

when further bending causes a contraction of the extent of 

the dynamical image. Again this is because of a rise in 

background intensity rather than a change in the propagation 

of the X-rays around the scratch. 

Figures 4.16 and 4.17 also show drastic changes in the 

images of back (entrance) surface damage with curvature. 

Since the back surface has not been polished, there are a 

considerable number of localised strain centres. In the 

unbent crystal these are evident as dark spots if the direct 
I 

beam cuts the strain centre, with streaks of either enhanced 

or depleted intensity running horizontally from entrance to 

exit surface .. For a small curvature, these streaks become 

wider and show greater contrast, dominating the perfect 

crystal image. The great sensitivity to additional bending 

is because the small extent of the strain field can to some 

degree alter the propagation of all wavefields within the 

Borrmann fan. Thus small changes in this strain are 

magnified to give large changes in the image contrast. At a 

curvature of 0.051~1 the enhanced images are again masked by 

the rise in background intensity, the white images 

contracting and becoming localised at the entrance surface. 

This change in contrast is the most likely explanation for 
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the increased mottling seen in the Hirst and inhomogeneously 

bent Lang topographs. 

Gen~rally, images of dislocations show enhanced white 

dynamical images at low curvatures which· become more 

localised as the bending increases and finally dominate the 

contrast of the dislocation. Those showing only dynamical 
I 

images however, become invisible at much lower bending. The 

direct image decreases in contrast and eventually becomes 

completely invisible. This is seen in figures 4.14 and 4.15 

for the series of pinned dislocations marked by P. From the 

unbent section and with reference to the Lang topograph we 

can see that these extend from the top surface·into the 

crystal roughly parallel to 011 a.nd are pinned by bundles of 

dislocations running parallel to and close to the back 

surface. 

For small curvatures, direct, intermediary and 

dynamical images are visible although the complicated 

interference patterns marked by I disappear. Note that at 

large curvatu~es the invisibility of the direct images makes 

depth profiling of the dislocations impossible. The change 

of contrast to localised white images explains the previous 

observations of white dislocation images in Lang topographs 

of bent cry~tals [70]. 

It should be noted though that at the curvatures 

studied here the direct image does not change from black to 

white but merely becomes invisible, and this suggests that 

the appearance of the dislocations as white on black is 

associated with interbranch scattering from the region 
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adjacent to the core of the dislocation and not diffraction 

from the heavily distorted core itself. 

Figures 4.18 shows the contrast of individual 

dislocation~ at R ==and R = 82m lying parallel to the 110' 

direction. Also shown are simulations kindly supplied by Dr 

Green, which show excellent agreement with the experimental 

results. 

The use of the long range strain to identify the sense 

of deformation associated with a dislocation and hence the 

sense of its Burgers vector was proposed by Meieran and 

Blech [70]. Figure 4.19 shows how the image of the 

dislocation in the bent wafer is critically dependent upon 

the Burgers vector, even though changing the Burgers vector 
I 

does not necessarily change the image in the unbent section. 

The use of a small curvature coupled with simulations is 

therefore a way of uniquely identifying the Burgers vectors 

of dislocations and was used here to classify the 

dislocation as having b = 1/ 2 [011]. 
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Figure 4.18 

-
Experimental and simulated 131 Section topograpbs of homogeneously bent sample 2. 
a) Experimental and b) Simulation for R = oo 

c) Experimental and d) Simulation for R = 82m 
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c) d) 

Figure 4.19 

-
Simulated 131 Section topographs of homogeneously bent sample 2, showing the 
sensitivity of defect contrast to the Burgers vector in curved crystals 

-
a)R=oo; b=l/2[011.] 
c)R=55.5m; b=1/2[011] 

b) R = oo ; b = 1/2[ 110] 
d) R = 55.5m; b = 1/2[110] 
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Chapter Five 

Glancing angle double crystal topography with synchrotron 

radiation. 

5.1 Introduction. 

This chapter describes the examination and 

characterisation of a fully processed bipolar device wafer 

by X-ray topography using synchrotron radiation. The merits 

of single crystal (white radiation) reflections are briefly 

discussed, however the bulk of the chapter is concerned with 

the technique of glancing angle Bragg geometry double 

crystal topography. By the use of several reflections and 

exploiting the wavelength tunability of the synchrotron 

radiation, the depth ·penetration of the X-rays into the 

sample was varied and the best conditions for examining both 

devices and defects explored. 

The sample to be examined was half of a 4 inch diameter 

silicon wafer, with a nominal (111) surface plane, which had 

been fully processed to form bipolar type integrated 

circuits. Bipolar integrated circuits are made up of n-p-n 

and p-n-p transistors, and a cross section through a typical 

device is shown in figure 5. 1. Unfortunately, precise 

details of the wafer ·examined here were not available for 

commercial reasons, but the transistors consisted of 

emitters which were phosphorus doped to 8 or 9 x 10
19 

atoms.cm-3 (n+ type) to a depth of 1.4~m and bases which 

18 -3 ) were boron doped to 3 x 10 atoms.cm (p type to a depth 

of 3-3~m. The devices are fabricated upon a 20~m thick n-

Page 85 



f.jgure 5.1 

Base Emitter 

Meta ll isat ion 

-Oxide 

4-.1-- Epilayer 

n+ _} ~Isolation 
Diffusion 

-............._ / 

Su bst rate 
p ~Buried 

Layer 

Section through typical Bipolar device 



Chapter 5 

type epilayer grown on a Czochralski p-type silicon 

substrate. 

The ,wafer was first examined using Lang and section 

topography, which showed a high concentration of 

microdefects in the crystal bulk (figure 5.2). These are 

associated with interstitial impurities such as oxygen and 

carbon, which upon thermal annealing form two types of 

defect, type A and type B. Type B defects are small and have 

too small a strain field to be individually resolved by 

single crystal topography. The type A defects however are 

typically 1 to 3 ~m in size and have been observed to be 

dislocation loops [81]. The formation of these defects has 

been associated with the formation of oxide precipitates 

[82] but their precise nature and cause is the matter of 

some debate, a good summary of which may be fo~nd in [83]. 

The microdefects obscure details of the device 

structure in the Lang topograph making it unsuitable for the 

examination of process related defects. The section 

topograph however indicated the presence of a microdefect

free region below the wafer surface, and it was therefore 

decided to examine the wafer using reflection topography. 

5.2 White radiation topography. 

Before setting up the double crystal experiment, it was 

decided to make use of a low intensity beam of around 20mA 

to make some preliminary investigations of the crystal with 

white radiation topography. 

The first choice of reflection was a surface symmetric 

<111> reflection, with X chosen to be~ 1~, by setting the 
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Figure 5.2 

-
a) 220 Section topograph, MoKal radiation. Device side of wafer (exit surface) is on the left. 

-
b) 220 Lang topograph, MoKa1 radiation. 
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angle of incidence and hence e 8 at "' 10°. No further setting 

up was required, except to limit the vertical and horizontal 
' 

extent of the incident beam by the means of slits, and to 

position the sample in the beam with a plate positioned at 

2e 8 , perpendicular to the diffracted beam. Even with the 

very lo~ intensity (by SRS standards), an exposure time of 

only 10 seconds was required. 

In'the direction parallel to the plane of incidence and 

for a plate placed perpendicular to the diffracted beam, 

images will be foreshortened by a factor given by the aspect 

ratio. In the Bragg geometry, the aspect ratio is given by: 

b/a = sin(e 8 + x) ( 5 . 1 ) 

where b is the length of the image of a line of length a on 

the crystal surface, and x is the angle between the 

diffracting planes and the surface as shown in figure 5.4. 

The aspect ratio is an important consideration when deciding 

upon a reflection geometry. 
I 

The <111> reflection has an aspect ratio of 

approximately 0.2, making it unsuitable for examining the 

device structure and process related defects. The aspect 

ratio could be improved by using a larger Bragg angle, but 

this would increase the penetration depth of the X-rays and 

would limit the area of the wafer that could be examined in 

one ~xposure. For these reasons the surface symmetric 

reflection is unsuitable for examining device wafers, 

although this reflection did show contrast from defects in 

the substrate. 
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On the same plate there was an asymmetric reflection 

present which, from its position and aspect ratio, could be 

identified as having e8 ~ 26° and x = 20° . To properly 

expose this an exposure time of approximately four times 

that for the 111 reflection was required. Due to the 

insensitivity to orientation of the white radiation method, 

diffraction occurs simultaneously from the whole of the 

illuminated area, even though the sample has a small process 

induced curvature (see section 5.3.3). One would expect this 

to lead to uniform contrast from the epilayer and device 

areas since the doped areas will diffract at the same angle 

as the epilayer, although at a slightly different wavelength 

because of the effective mismatch between them. The 

appearance of the devices as white contrast on a dark 

background ·(figure 5.3a) can therefore only be explained by 

absorption of the diffracted X-rays in this area by 

metallisatipn on the wafer surface. 

Within the device area, very little contrast is 

visible, although there is a dark stripe of enhanced 

intensity running along the lower edge of some devices. This 

can be considered as extinction contrast, where the heavily 

distorted region at the interface between the device and the 

epilayer "pumps out" of the incident beam X-rays of 

wavelengths not normally satisfying the Bragg condition. 

This contrast is similar in form to that observed by Blech 

and Meieran [49], with the exception that in their 

experiment enhanced intensity was given because the angular 

divergence of the incident beam was greater than the 

reflecting range of the crystal (see section 2.3.1 ). In the 
I 
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epilayer between chips, contrast is visible from some 

defects Such as the dislocations indicated by the arrows, 

but no defects are visible in the device areas. 

The final white radiation experiment was to place the 

sample surface at a glancing angle of ~ 2° with the incident 

beam, the plate being placed above and parallel to the wafer 

surface. The resulting topograph consisted of many 

over~apping reflections making it difficult to distinguish 

detai~s. In some areas however, the images from different 

reflections were sufficiently separated to give good 

resolution and contrast and an example is shown in figure 

5.3b. This shows very similar contrast to 5.3a, including 

the enhanced intensity at the device edges. However, a large 

area of depleted intensity above the devices is visible due 

to the absorption of the incident beam by the device areas, 

which effectively casts a shadow of the devices. 

The area of heavily dislocated crystal indicated by A 

is also noteworthy on this topograph. This consists of a 

crossed grid network of dislocations running parallel to the 

<110> directions, and is formed to partially relieve the 

stress daused by the contraction of the silicon lattice 

which occurs when a dopant of smaller ionic radius is 

diffused into the silicon lattice. These misfit dislocations 

have been widely reported, observed by a variety of 

techniques [84-87], and are generally accepted to be either 

pure edge or 60° dislocations lying in the plane parallel to 

the surface and with Burgers vectors of type a/2(110). 

The white radiation methods described here have several 

obvious advantages for the examination.of processed wafers. 

Page 89 



Chapter 5 

They are experimentally very simple, require very short 

exposure times, are capable of giving a range of reflections 

for a single exposure and their insensitivity to orientation 

enables large areas of curved wafers to be imaged. Surface 

symmetric reflections have a limited use whereas asymmetric 

reflections with a glancing angle of incidence can be used 

to limit the depth penetration of the X-rays, to give an 

aspect ratio close to unity and are capable of imaging 

dislocations and other large distortions. The single crystal 

technique is not however capable of imaging the small 

strains created by the diffusion and masking processes and 

is thus unsuitable for examining details of the device 

structure or of process induced defects. 

5.3 Glancing angle double crystal topography. 

To obtain a higher sensitivity to strain and 

misorientation, it was decided to use the double crystal 

technique in the +- setting with a highly asymmetric second 

reflection. Some parallel settings were used, however 

because of the low angular divergence of the beam in the 

plane of incidence, the non-parallel +- setting is also 

highly strain sensitive. 

5.3.1 Experimental procedure. 

The results described here were obtained during the 

course of several visits to the SRS. The majority of the 

experiments were carried out on station 7.5, using radiation 

from a standard 1.2T bending magnet. Some results however 

were obtained on station 9.4 using radiation from the 5T 

Page 90 



Chapter 5 

wiggler magnet, which is more intense and extends to shorter 

wavelengths. For the work described here however, the 

wiggler station had no advantages over the normal line 

except for shorter exposure times. It also presented 

practical problems due to increased short wavelength scatter 

which necessitated more careful shielding of the experiment 

from noise. 

The dquble crystal cameras on both stations are very 

similar in design, with the 28 (goniometer) arm aligned in 

the vertical plane to take advantage of the highly polarised 

nature of the radiation, since in this geometry the incident 

X-rays are almost entirely a-polarised. The size of the 

incident beam is limited firstly by entrance slits at the 

point where the beam enters the experimental hutch and then 

by one or more sets of remotely controlled slits nearer the 
I 

first crystal. 

Rapid initial alignment of the sample and beam 

conditioner is achieved by using the following procedure. 

The goniometer arm is oriented horizontally, that is, 

parallel to the incident beam, with the aid of a permanently 

attached spirit level. The sample is now mounted on the 

second axis, making sure that the wafer surface is directly 

on axis with the use of an alignment laser fixed to the back 

wall of the hutch. The sample is rotated so that the 

processed side is facing the incident beam and is roughly 

perpendicular to it and its orientation is ascertained with 

a back reflection Laue using a pinhole on the incident beam. 

With subsequent Laue's the tilt of the sample is adjusted so 

that the n0minal surface plane (which is often several 

0 
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degrees off the actual wafer surface) is perpendicular to 

the incident beam and the zone containing the desired 

reflection is parallel to the plane of incidence. The beam 

conditioner is now mounted on the first axis and the process 

repeated. In this way, both crystals are exactly aligned 

with known orientations and can be accurately rotated by 

means of calibrated rotation stages to within a fraction of 

a degree of the Bragg angle. 

The goniometer arm is now rotated by 2e
1

, and the beam 

condit~oper is rotated to give an angle of e
1 

between the 

incident beam and diffracting planes, where e 1 is the Bragg 

angle for the beam conditioner selected to diffract a 

particular wavelength from the polychromatic incident beam. 

It is essential now to check that the once diffracted beam 

passes directly over the second axis and this is done by 

removing the sample goniometer, carefully noting its 

position and replacing it with a pointer. The position of 

the diffracted beam relative to this pointer is then quickly 

found with the aid of a polaroid film placed behind it, 

the pointer being visible by virtue of its shadow cast in 

the seat t1ered radiation. If the diffracted beam does not 

pass through the axis then it can be adjusted by a simple 

rotation of the first axis. Note that this moves the 

position of the beam by selecting a different wavelength and 

is therefore not a valid procedure when using characteristic 

radiation laboratory sources when both e 1 and 28 1 must be 

adju~ted .. 

At this point the second crystal is shielded as much as 

possible from scattered radiation to reduce fogging of the 

Page 92 



Chapter 5 

film emulsion. This is achieved by enclosing the incident 

beam in lead piping between the entrance slits and the slits 

nearest the beam conditioner, and then completely encasing 

the beam conditioner in lead, allowing only two apertures, 

one for the incident and one for the diffracted beam. These 

apertures must not cut either the incident or diffracted 

beam or they too will act as sources of scattering. It is 

also usually desirable to enclose as much of the diffracted 

beam as is practicable by means of more lead piping. It is 

worth spending extra time at this stage to ensure a good 

signal to noise ratio on the topograph, especially if a 

large area of the sample is to b~ imaged. 

The second crystal is now remounted and rotated to give 

an approximate angle of incidence of e8 - X· A detector 

consisting of a scintillator and photomultiplier tube is 

attached radially to the second axis at an angle of 2e 8 to 

the goniometer arm. The experimental set-up at this stage is 

shown schematically in figure 5.4. 

The reflection can now be quickly found (on a good 

day!) by scanning the second axis, using a small incident 

beam to avoid saturation of the detector. For processed 

wafers, which have a significant rocking curve width, the 

second reflection can usually be found by rotating the axis 

continually at a medium speed and using a ratemeter to 

observe the peak. Furthermore, by using the audio output the 

peak is found with a minimum of concentration. For highly 

perfect crystals however it is necessary to scan the axis in 

steps of the order of seconds of arc, measuring the 

intensity after each step. Luckily this can be done 
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automatically, the computer stopping the scan when the 

diffracted intensity rises above the level set by the 

operator. 

5.3.2 Chqice of reflections. 

When choosing which reflections to use in a double 

crystal experiment several factors have to be taken into 

consideration. As already mentioned, a parallel setting is 

not needed for a high strain sensitivty, although the Bragg 

angles for the two crystals should still be kept as close as 

possible. To this end, the first crystal can be considered 

as a beam conditioner, selecting a wavelength and shaping 

the beam incident on the second crystal. 

For the second crystal, we want a reflection which 

limits the penetration of the X-rays into the sample and 

gives an aspect ratio close to unity, that is BB + x close 

to goo. The range of possible Bragg angles is also limited 

to x < BB < goo which obviously limits the possible 

wavelengths that can be used to 2dsinx < A < 2d. Two 

important parameters describe the penetration of X-rays into 

a crystal in the Bragg geometry, the extinction distance Eg 

(equation 1.18) and the penetration depth P. In, or very 

close to the range of total Bragg reflection (-1 < n < 1) 

the incident beam diminishes very rapidly in intensity 

(section 1.4.7) and at a depth of Eg/ 2 n below the surface is 

reduced in intensity by a factor of 1/e [88]. 

In asymmetric reflections Eg is given by: [8g] 

Eg = . {lsin(BB- x)lsin(BB + x)}
0

·
5 ( 5. 2) 
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where the symbols are the same as defined in equation 1.18. 

In case~ of low photoelectric absorption and close to the 

exact Bragg condition, the depth to which the crystal will 

be imaged will be primarili dependent upon this quantity. 

Away from the exact Bragg condition and in heavily 

distorted crystals, extinction is less important and the 

penetration of the X-rays is controlled by ordinary 

photoelectric absorption. The intensity of the incident beam 

will be reduced by a factor of 1/e at a depth of P
1 

perpendicularly below the surface given by: 

( 5 . 3 ) 

and a once diffracted beam will be reduced by a factor of 
I 

1/e at the surface if diffraction occurred at a 

perpendicular depth of P2 given by: [90] 

1 I J- 1 P
2 

= ~- [cosec jaB + x + cosec(8B- x) ( 5. 4 ) 

It is this parameter that is used here when considering 

the depth penetration far from the exact Bragg condition. 

Both ~g and P2 are dependent upon wavelength and 

reflection and therefore the continuous range of wavelengths 

available at the SRS allows the depth sensitivity to be 

varied over a wide range. It is convenient when working at 

the SRS to have a table of Bragg angles, ~g's and P2 's for 

a particular reflection at different wavelengths and two 

very simple prog~ams using equations 5.2 and 5.4 were 

written to ·give these, using the values off and~ given in . a 

[1]. Printouts for several of the most widely used 

reflections are given in Appendix B. 
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Using these tables it was decided to use the following 

reflections, the 115 ( x = 38.9° ) '· 224 ( x = 19.5° ) and 220 ( x 

= 35.3° ) . The values of 88 , 8i, ~g and P
2 

for these 

reflections at the wavelengths used are given below in table 

5. 1. 

The first crystal was a high purity, disloc~tion free, 

4 inch diameter, 15mm thick silicon crystal with a (111) 

surface plane. The first reflection is chosen to give a 2e
1 

of approximately 90° since this places the second crystal as 

far as possible from the direct beam, making shielding of 

the sample and film from scattered radiation easier. The 

other consideration for the choice of the first reflection 

is the suppression of harmonic contamination. This arises 

(~) 
Aspect 

h k 1 >.. 8B ( Deg) 8. ( Deg) ratio ~g ( ~m) P 2 ( ~m) l 

11 5 1 . 80 59.5 20.5 0.99 16.0 11.7 

224 1. 80 54.3 34.8 0.96 1 3 . 7 1 6. 2 

11 5 1 . 80 50.0 11 . 0 1 . 00 13. 4 1 0. 2 

224 
I 

44.4 24.9 0.90 13.2 20.0 1.55 

224 1. 35 37.5 1 8. 1 0.84 12. 6 23.5 

1 1 5 1.55 47.9 8.9 1. 00 12.4 9.4 

11 5 1 . 50 45.9 6.9 1. 00 11.3 8.3 

115 1. 35 40.2 1.3 0.98 5.4 2.3 

224 0.78 20.6 1 . 1 0 .. 64 4.8 1 0. 0 

220' 2.70 44.7 9.4 0.98 3.8 2.0 

Table 5. 1 

Values of the Bragg angle, angle of incidence, aspect ratio, 

extinction distance and penetration depth for the 

reflections and wavelengths used in the experiment. 
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because of the 1st order diffraction at A having the same 

Bragg condition as the 2nd order diffraction at A/2, 3rd 

order at A/3 and so on, and can make interpretation of the 

results very difficult because of the superposition of many 

different reflections. For the first experiments carried out 

on the wiggler line, a 224 first reflection was used to 

spread the incident beam, which results in contamination at 

all higher orders. Even though the 115 reflection used for 

the second ~eflection does not have a harmonic at A/2, the 

radiation from the wiggler line still has appreciable 

intensity at A/3 and therefore some harmonic contamination 

will be present. 
I 

It was found however that since the horizontal and 

vertical extent of the beam could be made large (up to 40mm 

by 20mm). without causing excessive scatter and the angle of 

incidence for the second crystal was small, the incident 

beam did not require spreading. This enabled a surface 

symmetric 333 first crystal reflection to be used which has 

the advantage of not having a harmonic at A/2, and although 

it does have a harmonic at A/3, this is not a problem on the 

standard beam line for the wavelengths used since the 

intensity of the X-rays drops very sharply for wavelengths 

shorter than ~ 0.1~- For the 220 reflections though, the 333 

reflection could not select suitable wavelengths at 

convenient angles and therefore unfortunately, a 220 first 

crystal reflection had to be used with resulting 

contamination at all higher orders. 
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5.3.3 General observations. 

Figure 5.5 shows a single exposure for the 115 

reflection at A = 1 .6~ (exposure time 2 minutes at 197mA, 

using wiggler radiation). The contrast from the device areas 

is now striking when compared with figures 5.2 and 5.3, and 

a large area of the crystal is imaged but with markedly 

different contrast depending on the position on the plate. 

The difference in contrast arises because the whole of the 

angular diffracting range of the sample is present on one 

topograph due to a small process induced curvature. Areas 

with different lattice parameters or with slightly different 

orientations diffract at different Bragg conditions and this 

is reflected in the position on the plate at which they give 

strong intensity. 

Note that the topograph shows two bands of strong 

diffracted intensity marked by the arrows A and B. The 

diffraction at A is mainly due to the devices and at B is 

due to t0e epilayer. At first sight therefore it is 

surprising that in this topograph the two diffractions are 

not complementary, that is, there is a strong intensity in 

the channels (here, the term channel is used to describe the 

areas between individual chips) at both A and B. Also, on 

closer inspection the channels diffract to some extent at 

every position on the plate between these two points. This 

rather complicated diffraction profile arises because of the 

variation of lattice parameter with depth of the epilayer. 

Since, as is shown later in this section, the device side of 

the wafer is concave, the epilayer must have a smaller 

lattice parameter than the substrate and in order for this 
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to be accommodated without the generation of misfit 

dislocations at the interface, the lattice parameter must 

vary continuously with depth between that of the substrate 

and that of the epilayer. 

At point B enhanced intensity is seen in the channels 

for all refl~ctions and wavelengths and hence diffraction 

must be occurring within one or two microns of the surface. 

The top of the epilayer must therefore satisfy the Bragg 

condition at this point and the penetration depth is 

described by sg· As we move away from the exact Bragg 

condition, the penetration is described by P2 and the X-rays 

penetrate to this depth or to a depth at which they are 

strongly diffracted by crystal with a suitable lattice 

paramet~r. Generally therefore, the further we move from the 

Bragg condition for the surface layers, the larger the value 

of lattice parameter required to satisfy the Bragg condition 

and hence the greater the depth penetration. At point A, for 
' ' 

reflections with a large P2 such as the 224 reflection at A 

= 1.35ftthe X-rays penetrate to the substrate and this leads 

to a dark band running across both devices and channels, 

whilst for the 115 reflection at A = 1 .35~the peaks from the 

devices and the epilayer do indeed become complementary. 

Topographs with large values of p2 as in figure 5.6, the 224 

reflection at A - 1 .55R, also show up striations running 

across the channels which correspond well with the pattern 

of microdefects seen in figure 5.1. 

Note also how at point B there is a thin band in the 

middle of the channels, indicated by the letter E which 

diffracts at a position slightly displaced compared to the 
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epilayer. This is because of a local relaxation of the 

lattice, most probably caused by a variation in the oxide 

thickness. 

Clearly, in the single exposure topograph we have a 

visual sense of the effective mismatch of diffused regions 

with respect to the epilayer or substrate. The diffracted 

intensity of a particular device can be followed as it moves 

through the range of reflection as for the area marked by C. 

The position at which it diffracts most strongly can then be 

compared 'with the position at which strong diffraction 

occurs for the epilayer or substrate and the effective 

mismatch between the two calculated using the simple 

expression: 

Lld I d = (5.5) 

where Ll9 is related to the spatial separation of the two 

areas on the plate by: 

Ll9 = Llx ( 5. 6) 
sin(e8 + x) R 

and R is the radius of curvature of the sample. 

The curvature of the sample can be found using the 

above expression, by rotating the sample by a known angle 

and measur~ng the displacement of the diffraction maximum. 

This can be done by either taking several topographs or by 

making a multiple exposure on one plate, with a small 

rotation of typically 10 seconds of arc of the sampl~ 

between exposures. The multiple exposure method shown in 

figure 5.7, the 115 reflection at A = 1.51 with a rotation 
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of 20 s~conds of arc between exposures, is perhaps the most 

useful, giving bands of equal misorientation from which it 

is easy to calculate the radius of curvature. It does not 

however give the sense of the curvature since the direction 

of movement· of the peak for a given direction of rotation is 

not recorded and therefore single exposures must be used to 

ascertain this. The resulting images are also difficult to 

interpret because of the superposition of diffracted 

intensity from several points on the rocking curve. However, 

the multiple exposure technique is preferable to a series of 

single exposures when looking for defects because of the 

large ar~a of sample imaged on one plate. Furthermore, it 

was found that the defects (section 5.3.4) were equally 

visible in both techniques and therefore, from a materials 

viewpoint the multiple exposure method is to be preferred, 

giving the most information in the most convenient form, in 

the shortest time and at the least cost. 

The curvature of the sample using figure 5.7 can be 

seen to be similar over the whole of the area imaged in 

figure 5.5 since the diffraction bands are equally spaced, 

and the radius of curvature is easily calculated to be 105m. 

From single exposures furthermore, the device side of the 

wafer is shown to be concave since a clockwise rotation of 

the sample moves the diffracting stripe up. This value for R 

gives an effective mismatch between the devices and epilayer 

of 120ppm, ·which agrees qualitatively with the expected 

strain for the dopant concentrations given by Fukuhara and 

Takano [91 ,92]. It is surprising though, that the epilayer 

should have a smaller lattice parameter than the device 
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areas since the qiffusion of boron and phosphorous causes a 

contraction of the silicon lattice [93]. However, since the 

strong diffraction from the channels is also seen between 

individual devices at the same position, this is perhaps 

because the area we can see has been heavily boron doped to 

form isolation barriers (figure 5.1 ), and this has caused a 

' 
lattice contraction greater than that caused by the emitter 

and base diffusions. 

So far we have seen how the single exposure when 

combined with the multiple exposure, can give a value of the 

effective mismat~h for the devices within the chip. This 

mismatch is not however the only mechanism which gives 

contrast of the devices. Referring to figure 5.11, the 115 

reflection at A = 1 .6!, we see how the device marked by C is 

diffracting with the same intensity as the background and is 

only delineated by contrast at its edges. This contrast is a 

result of the local misorientation of the lattice at the 

interfac~ between the device and epilayer which occurs to 

accomodate the difference in lattice parameter between the 

two areas. 

It is interesting to see how this contrast is 

critically dependent upon the position on the plate and 

hence the position on the rocking curve. Figure 5.8 shows 

the 115 reflection at A= 1.55ft and the change in contrast 

of the device is clearly visible. At the low angle side of 

the rocking curve, that is the bottom of the topograph, the 

top of the device shows depleted intensity (white contrast) 

whereas the bottom shows enhanced intensity (black 

coritrast). However at the point where the device is 
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Point A 
Device on low angle 
side of rocking curve 

Figure 5.8 

Point B 
Device exactly on the 

Bragg peak 

Point C 
Device on high angle 
side of rocking curve 

115 double crystal topograph, A.= 1.55A (SRS) showing the variation of contra t of a device 
with position on the rocking curve. The sketches refer to the points marked on the topograph. 
B =bottom edge of device; M =middle of device; T =top edge of device. 
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diffracting strongly, the two edges show white contrast and 

at the high angle side, the top shows black contrast and the 

bottom white contrast. This contrast reversal can be 

explairied either by considering the Du Mond diagram (section 

2.2.4) or more clearly by considering the position of the 

device on the double crystal rocking curve shown 

schematically at the side of figure 5.8. Since the device 

has a larger lattice parameter than the surrounding lattice 

it exerts a compressive force at its edges. This leads to 

the lattice planes being curved by an equal amount on all 

sides of the device but in a different sense to the 

diffraction vector on opposite edges. 

If we represent the misorientation of the lattice 

parallel to g by a shift along the e axis of the rocking 

curve, the device can be simplified to three equally spaced 

diffracting points on it. Note that this is a crude 

approximation since the misorientation varies continuously 

with distance from the edge, but is nonetheless a useful 

concept to explain the contrast mechanism. At point A, the 

device is at the low angle side of the rocking curve which 

means that the bottom edge is at a greater e and therefore 

diffracts with greater intensity whilst the ·top edge is 

further from the Bragg condition and thus appears white. At 

the position where the device satisfies the exact Bragg 

condition (point B) the top and bottom edges necessarily 

diffract with less intensity and show white contrast, and at 

point C the bottom edge does not diffract whilst the top 

edge diffracts strongly. Since the area surrounding the 

device diffracts at an angle which puts it outside the 
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reflecting range at this point, this contrast is confined to 

the diffused. area. 

' 
This contrast is a good indicator of the degree of 

strain present at the interface, as can be seen from the 

device marked by D in figure 5.5. The greater the strain 

then the greater the angle (and therefore distance on the 

plate) between the point where the device is diffracting 

strongly and where enhanced intensity can still be seen from 

the edge.· There is, using this criterion, obviously a high 

strain gradient present at the edge of device D. The spatial 

extent of the enhanced intensity also contracts as e is 

increased until it is confined to a small band at the 

interface. This shows that the most intense strain is 

present very close to the edge, and decays with distance 

away from it. The presence of large strain gradients in 

processed wafers is one cause of crystallographic defects 

and disiocation loops are observed originating from a large 

number of these edges (section 5.3.4). 

The contrast rule described above holds well for all of 

the devices, but the contrast in the area immediately 

surrounding them is less simple to explain. The difficulty 

arises because of the presence of oxide and metallisation 

films which are not imaged but which nonetheless exert 

localised strains at their edges. Without more detailed 

information on the configuration of the devices it is 

therefore not possible to explain all of the fine structure 

seen in this area. Several general observations can however 

be made. At the point where the devices are diffracting 

white contrast can be seen adjacent to the devices, 
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complementary to enhanced intensity within them. This effect 

arises bec~us~ energy is taken out of the direct beam to 

form the diffracted beam within the diffused area, leading 

to a reduction in intensity incident on the adjacent area. 

From the separation of this shadow and the edge of the 

device, a simple calculation shows that for the 115 

reflection at A = 1 .55~, diffraction is occurring at a depth 

of approxim~tely 8~m. Furthermore, this separation varies 

with position on the rocking curve, consistent with the 

model of a depth dependent lattice parameter described 

earlier. 
1
0bviously since P

2 
for this experiment is greater 

than a~m, this gives a good indicator of the lattice 

mismatch at a given depth. 

At the point where the epilayer is diffracting strongly, the 

area immediately surrounding the devices· shows a similar 

contrast reversal with position on the rocking curve as the 

device shown in figure 5.8. This effect is expected since 

the diffused area necessarily exerts a compressive force on 

the surrounding lattice. 

For very low angles of incidence such as the 115 

reflection at A = 1 .35~ shown in figure 5.9, the white 

shadow described above is very noticeable and actually 

obscures details of device structure and defects. Low angles 

of incidence should therefore be avoided if possible when 

looking fo~ process induced defects. They do however show 

some very interesting dynamical effects, most noticably 

fringes adjacent to the edges of devices at the point where 

the·channels are strongly diffracting. Presumably dynamical 

effects are present in this region for all reflections but 
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are not visible due to geometrical effects. The appearance 

and nature of these fringes is discussed in greater depth in 

chapter 6. 

The sensitivity to lattice strain and tilt is greatest 

on the flank of the rocking curve (2.2.4) and this is 

clearly shown in these topographs. Figure 5.10 shows the 

same area of the wafer observed at two points on the rocking 

curve. At the point where the devices are diffracting, very 

little detail can be seen, whilst in the flank the fine 

structure is clearly visible. The contrast is again a 

mixture of lattice mismatch and lattice strain. Double 

crystal topography obviously gives sufficient resolution to 

distinguish between different device structures and as shown 

in section 5.3.4 is capable of imaging many process related 

defects. 

5.3.4 De~ects. 

Several types of defect show up clearly in the double 

crystal topographs, the most common of which are shown in 

figure 5.11, the 115 reflection at A= 1.6K. Two types of 

defect are worthy of note in this picture, the heavily 

dislocated area marked A and the dislocation loops marked by 

B. 

Area A is so heavily dislocated that it is not possible 

to individually resolve the dislocations. It is likely 

however that these are misfit dislocations similar to those 

shown in figure 5.3b, created by a high dopant 

concentration~ since they are confined to the diffused area 

[84-86]. Figures 5.12 and 5.13 show that these defects are 
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aligned parallel to the 110 direction and also that they 

appear in many other devices (marked by an arrow). At first 

it was considered that these were images of scratches on the 

surface of the wafer but their high density makes this 

improbable and none could be seen when the wafer was 

examined, under an optical microscope. It is possible that 

they once again take the form of a crossed grid network if 

the dislocations parallel to 011 and 101 are 60° 

dislocations with Burgers vectors in the 111 plane, since 

for those dislocations g.b = 0 and they will not be highly 

visible. These straight dislocations show up with most 

clarity in the 224 and 220 reflections. 

Whilst the type A dislocations can be attributed 

directly to the contraction of the lattice caused by dopant 

diffusion, the origin of the type B dislocations is not so 

straightforward. The formation of dislocations outside the 

diffused ~rea was first reported by Sato and Arata [94] and 

were postulated as a mechanism for emitter push. Loops 

similar to those shown here have also been observed by 

limited projection topography [95]. Work by Fairfield and 

Schwuttke [96,97] who coined the term emitter-edge 

dislocations for the loops, showed them to be generated by a 

high strain gradient at the diffused-undiffused interface, 

created by the combined action of the lattice contraction of 

the diffused area and the stress at the edges of the oxide 

window formed to define the diffused area. 

These results agree well with the loops observed here, 

since they are in all cases associated with those devices 

which show a high strain gradient at their edges. The 
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dislocations consist of concentric loops going into the 

crystal, extending to a distance of typically 100-200~m with 

the tips of the loops pointing in the 011 direction, in 

agreement w~th TEM studies by Lawrence [86]. The emitter

edge dislocations were very common in this sample and could 

be clearly seen at all positions of the rocking curve, 

although the tips of the loops were most visible at the 

point whe~e the devices were diffracting, implying that the 

loops penetrate quite deeply into the crystal. Note that the 

dislocations have widths of typically 10-20~m because of the 

high strain sensitivity of the double crystal technique. 

Emitter-edge dislocations are extremely deleterious to the 

performance of integrated circuits since they penetrate 

deeply into devices and can cause emitter to collector 

shorts [98]. Identification of these loops enabled the 

manufacturers to eliminate them by raising the deposition 

temperature of the dopants. 

5.4 Conclusions. 

Several general conclusions can be drawn from this work 

about the best experimental conditions for examining 

processed silicon wafers. To begin with, the limitation of 

the depth of penetration of the X-rays is critical. Although 

one wo~ld expect the extinction distance tg to be the 

crucial fa~tor in this respect, for all the wavelengths and 

reflections used here, the X-ray beam is severely attenuated 

within 3~m of the surface, comparable to the diffusion 

depths. Also, the range of angles over which the crystal 

satisfies the exact Bragg condition is small compared to the 
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area imaged in one topograph and hence for most of the 

crystal the depth penetration is primarily limited by 

photoelectric absorption described by P
2

. If P
2 

is large, as 

for the 224 reflection and the 115 reflection for A> 1 .51, 

the background, that is diffraction from crystal further 

below the surface, acts to obscure images of the devices. 

At first sight, the 115 reflection with a A of 

approximately 1 .5~ appears to give the best contrast, and 

does give very clear, sharp images with high resolution. It 

is clear however when comparing it with topographs that have 

a small ~g and P2 such as the 115 at 1 .35~ (figure 5. 9) or 

the 220 reflection at A = 2.7~ shown in figure 5.14 that 

much deiail is not present in this reflection. 

Interpretation of the topograph is made easier by 

arranging to have an aspect ratio close to unity since 

measurements can be made directly from the plate without 

need for correction. An aspect ratio of unity is not however 

essential and a distortion of up to 70% is tolerable, the 

only experiment in which the aspect ratio made visibility 

difficult being the 224 at A = 0.78~ which has b/a = 0.64. 

Care should however be taken to avoid angles of incidence 

below approximately 5° since this leads to a considerable 

white shadow·which often obscures images of devices and 
i 

defects. The low angle of incidence does give rise to some 

very interesting dynamical effects, most notably the 

appearance of fringes at the edges of devices. 

From the above discussion the 220 reflection at A = 

2.7~ does appear to satisfy the above criteria very well but 

the 220 topographs presented here should not be relied upon 
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when considering contrast effects because of the high 

proportion of harmonics with different penetration depths 

which go to make up the resulting image. Whilst the 224 

reflection would from these arguments appear to be 

unsuitable, it does still give good device contrast and is 

useful for imaging a greater depth of crystal, giving images 

of microdefects in the crystal bulk. 

If one is examining the wafer for defects then one 

multiple exposure will probably be sufficient to image a 

large area of the wafer and show defects clearly. In 

addition, one ~r two single exposure topographs will enable 

the sense of curvature and hence the sign of the mismatch of 

devices to be determined as well as allowing contrast 

mechanisms to be studied. 

Finally, it should be remembered that the preceding 

discussi6n is concerned with a {111} surface oriented wafer 

and whilst the general conclusions can be used with any 

wafer orientation, the specific reflections and wavelengths 

must be 'tailored to suit the experiment. 
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Figure 5.5 
Double Crystal Topograph (SRS) 
115 Reflection A = 1. 6 A 

2 mm 



Figure 5.6 ..... 
Double crystal topograph (SRS) lmm g 
224 reflection, ~ = 1. 55 A. See text for details 



Figure 5. 7 
Double Crystal Topograph (SRS) 

__j 

5 mm 

115 Reflection A = 1. 5 A (Multiple Exposure) 



Figure 5.9 -... 
Double crystal topograph (SRS) lmm g 
115 reflection, A=1.35 A. See text for details 



Doubne crystal topographs (SRS) 115 reflection, A= 1.6A. 
a) El1:a.tct Bragg condhnon. 
b) Same area but diffraction is from flank of rocking curve. Note the 
better resolution and contrast for this condition. 



Figure 5.11 I ....,. 

Double crystal topograph (SRS) 200pm g 
115 reflection, ~=1. 60 A. . See text for details 



Figure 5.12 I ~ 

Double crystal topograph (SRS) 200pm 9 
224 reflection, A = 1. 55 A. See text for details 



Figure 5.13 ~ 

Double crystal topograph (SRS) 400]J.m 9 
220 reflection, ~ =2. 70 A. See text for details 



Figure 5.14 ..... 
Double crystal topograph (SRS) 400pm g 

220 reflection, ~ = 2. 70 A. See text for details 
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Chapter Six 

Comparison of topographic techniques for the examination of 

processed silicon wafers. 

6.1 Introduction 

Thi~ chapter describes the characterisation of a fully 

processed wafer from the GEC CMOS production line by Lang, 

section and synchrotron radiation double crystal topography. 

The three techniques are compared and their relative merits 

and disadvantages discussed. Finally, the formation of 

interference fringes in Bragg case topography of bent 

crystals is explored for both this and the bipolar device 

wafer examined in the previous chapter. 

The sample is a small strip measuring 35mm by 10mm, cut 

from a wafer from the Hirst Research Centre CMOS line. The 

substrate is 001 orientation Sb doped (n-type) with a 5~m P 

doped epilayer (n+-type) and had been subjected to the 

following processing schedule: 

Ion Implantation: 

n-field, p-well, p-channel 

Furnacing: 

In~tial oxidation, nitride deposition, p-well drive-in, 

field oxidation, gate oxidation. 

No oxi·da-dielectric layers have been removed. 

A section through a typical CMOS device is shown in 

figure 6.1. In these experiments the 220 reflection with 

MoKa
1 

radiation (~t = 0.86) was used for the Lang topography 
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p-channel 

N-Type Substrate 

figure 6.1 
Section through a Com plimen tar y MO S (CMOS) Device 
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-and the 440 reflection with MoK~ 1 radiation (~t = 0.94) for 

the section topography. The double crystal topographs were 

taken using the geometry shown in figure 5.4 with the 224 

reflection at a wavelength of 1.36~ (x = 35.26°, e
8 

= 0 
37.9 ' 

0 Bi = 2~5 ) selected from the polychromatic incident beam by 

a 333 surface symmetric reflection from a highly perfect 

beam conditioner. From the previous chapter it is obvious 

that this is not an ideal geometry for studying the device 

structure because of the low angle of incidence, however it 

was chosen primarily to investigate the appearance of 

fringes previously seen at device edges in the bipolar 

wafer. These results are discussed in section 6.3. 

6.2 Comparison of techniques 

Figures 6.2 to 6.7 show a comparison between the three 

techniques. The positions of the section topographs shown in 

figures 6.6 and 6.7 relative to the Lang topograph is marked 

on figure 6.2a. Figure 6.2b shows a multiple exposure double 

crystal topograph with an angular step of 10 arcseconds 

between exposures. The rather poor resolution on this figure 

is because the topograph was exposed on medium speed film to 

ascertain the sample curvature. The remaining double crystal 

topographs shown in figures 6.3 to 6.5 are all single 

exposures. The topographs in figures 6.3 to 6.5 are 

reproduced at the same magnification from the plate but the 

Lang topograph suffers an extra horizontal magnification of 

0.98 and the double crystal topograph a vertical 

magnification of 0.95. The section topographs shown in 

figures 6.6 and 6.7 have been reproduced at a slightly 
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higher magnification to show the fine structure more 

clearly. 

It is evident from the transmission topographs that 

there is a high density of dislocations towards the top of 

the sample. Since the sample is cut from close to the edge 

of the wafer, these are probably associated with stresses 

formed in the wafer during furnacing. As can be seen from 

the section topographs they are evenly distributed through 

the crystal volume. Furthermore, the Lang topograph shows 

that the vast majority of them outcrop on the device side of 

the wafer. In the heavilj dislocated region however, it is 

impossible to resolve individually all of the intersections 

with the surface. However, comparing the Lang with the 

double crystal topograph in figure 6.3 we see that there is 

a one to one correlation between these outcrops and the 

contrast marked by A in the double crystal topograph. This 

enables the position of the dislocation outcrop to be 

identified and several of these are shown on the diagram. It 

I 
is now clear fr6m the double crystal topograph that many of 

the dislocations penetrate through devices and as such will 

be extremely deleterious to device performance (see, for 

example [98] ). Further enlargement of this area, shown in 

figures 6.8 and 6.9 shows that many of these dislocation 

outcrops are connected by straight dislocation lines, many 

longer than 200~m in length, parallel to the l10 direction. 

Since ~he maximum depth penetration of the X-rays for this 

reflection is only of the order of 5~m (P 2 = 4~m) these must 

lie very close to the surface and are therefore most 

probably confined to the 5~m epilayer, suggesting that they 
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are misfit dislocations formed at the substrate/epilayer 

interface. Again, many of these appear to pass through 

devices and are therefore undesirable. Note also how they 

are superficially similar to the edges of processed areas 

indicated by B and should not be confused with them. 

Very clear on the Lang topograph is the contrast formed 

by the identification number which has been scratched on the 

back of the wafer. Such numbers have been shown to generate 

dislocations [99], [100] because of the high stress 

concentration associated with them, although in this case 

none appear to have been formed. From the section topographs 

it is clear that the strain field from the numbers is large 

enough to create direct images which extend to the centre of 

the section and in some cases through to the left hand 

margin, that is the exit surface. This implies that there is 

a considerable strain due to the scratches present on the 

device side of the wafer. That thi~ is the case is borne out 

by the outline of the numbers being clearly visible in the 

reflection topographs as shown in figures 6.3b and 6.4b 

Especially note the area marked C in figure 6.4b, where the 

strain field close to the exit surface is sufficient to 

create strong localised images. The influence of the 

scratches can also be seen in the bending of the Bragg 

reflection fringes discussed in section 6.3.3, as can be 

seen in figure 6.16 where the number 7 has caused a 

considerable distortion of the fringes. 

It is obvious therefore that the scribed marks are not 

only deleterious because of the possibility of dislocation 

generation but also because they can create a considerable 
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localised distortion of the lattice at the device surface 

which maYt affect the circuit's performance. For these 

reasons it is suggested that the practice of identifying 

wafers by mechanical scribing be replaced by non-mechanical 

methods such as laser scribing. This initiative has already 

been taken by GEC Hirst Research Laboratories as a result of 

the Alvey collaboration of which this thesis forms a part. 

Devices show different contrast in different 

techniques. Contrast in the double crystal technique has 

been discussed in depth in chapter 5 and therefore will not 

be explored here, however it is interesting to note the 

differences between this and contrast in the Lang technique. 

Generally, devices in the Lang technique show up because of 

large distortions which give dark direct images on the 

plate. Oxide and metallisation films give no contrast in the 

symmetric g·eometry except at the edges for which g.l = 0, 

where 1 is a vector parallel to the edge of the film; this 

is clearly shown by the areas marked by D in figure 6.5. For 

these reasons, the contrast on Lang topographs often bear 

little relation to the device geometry making the technique 

unsuitab~e for examining device related faults. When 

compared with the double crystal technique we see how the 

latter gives contrast from diffused and film covered areas 

and thus has a good correlation with the device 

architecture. Furthermore, using the two together, it is 

often possible to distinguish between diffused areas and 

oxide or metallisation which often mask other contrast in 

the double crystal topograph. 
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Devices in the section technique show a variety of 

contrasts. Here the case when the device side is on the exit 

surface is considered. When one cuts the direct beam, a very 

dark direct image is formed, with the width of the image 

indicating the depth to which the crystal is heavily 

distorted, if not the depth of the diffusion [101]. Only the 

direct image can be used as a measure of the depth and the 

contrast of this varies dramatically with the position of 

the device with respect to the base of the Borrmann fan. 

Figures 6.10a to 6.10d show the contrast from the same type 

of device cutting the Borrmann fan at different positions, 

shown approximately in the accompanying sketches. In figure 

6.10a the device just touches the direct beam and the direct 
. ' 

image is limited to a thin dark image on the exit surface, 

with the long range strain field still being sufficient to 

bend the Pendellosung fringes. As the device fully crosses 

the direct beam, figure 6.10b, the direct image increases in 

width, reaching a maximum size which it does not exceed. 

This position should therefore be used as a test of the 

depth of diffusion, since two identically fabricated devices 

will show direct images extending to the same depth. 

If the device is very close to the direct beam and 

within the Borrmann fan, it may give rise to the contrast 

shown in figure 6.10c. Here, the direct image extends to the 

same distance from the edge of the section as for the case 

in which the device fully cuts the direct beam, but does not 

give contrast at the edge of the section pattern. This in 

some cases produces contrast similar to that from a 

spherical strain centre [102] as shown in the region marked 

Page 116 



a) b) 

... 
g 2mm 3mm 

Figure 6.2 

-
a) 220 Lang topograph of the CMOS sample. 
b) 224 Double crystal topograph (SRS) of the same sample, x. = 1.36A 



... 
g a) lmm b) g~ lmm 

Figure 6.3 

Lang and double crystal topographs of the same area of the CMOS sample. 

-
a) 220 Lang topograpb. 
b) 224 Double crystal topograph (SRS), >.. = 1.36A See text for explanation of symbols 



_. 
g a) lmm b) g~ lmm 

Figure 6.4 

Lang and double crystal topogr~pbs of the same area of the CMOS sample. 

-
a) 220 Lang topograpb. 
b) 224 Double crystal topograpb (SRS), >.. = 1.36A See text for explanation of symbols 



.. , .. • . -
... 
g a) lmm 

Figure 6.5 

Lang and double crystal topographs of the same area of the CMOS sample. b) g~ lmm 
-

a) 220 Lang 'topograph. 
b) 224 Double crystal topograph (SRS), >.. = 1.36A See text for explanation of symbols 



1 2 

Figure 6.6 

Upper portion of the 440 section topographs of the 
CMOS sample. The numbers refer to the positions of 
the sections marked on figure 6.2a. 

3 

..... 
g 

lmm 

See text for explanation of 
symbols 
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1 2 

Figure 6.7 

Lower portion of the 440 section topographs of the 
CMOS sample. The numbers refer to the positions of 
the sections marked on figure 6.2a. 

E 

3 

... 
g 

lmm 

See text for explanation of 
symbols 



Figure 6. 8 1 ~ 

Double crystal topograph (SRS) 200pm 9 
224 reflection, ~ =1.36 A. See text for details 



Figure 6.9 ..._. 
Double crystal topograph (SRS) 200)1m g 
224 reflection, ~ = 1. 36 A. See text for details 
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by A and the two should not be confused. This highlights the 

need to take section topographs at several positions on the 

crystal ·to determine uniquely the cause of the observed 

contrast. Finally, when the heavily distorted region no 

longer' crosses the direct beam but is very close to it, the 

device contrast is dominated by weak dynamical images as 

shown in figure 6.10d. 

When the device is covered by the Borrmann fan but no 

longer cuts the direct beam, the direct image decreases in 

intensity and finally disappears, the device giving rise 

solely to dynamical effects in the form of additional 

fringes, localised to the area of the strain [53]. Whilst 

these fringes do not give information about the depth 

profile of the defect, they may be of some use for quality 

control, since identically manufactured devices will have 

very sim~ilar strain fields and hence give very similar 

dynamical effects. 

Towards the bottom of the sample and evident in the 

serition topograph, are small black dots close to the exit 

surface, indicated by the marker A in figure 6.12b. 

Corresponding contrast is not visible in the Lang topograph 

but can clearly be seen in the surface-sensitive double 

crystal.method. From the double crystal topograph these look 

at first sight like outcrops of dislocations similar to 

those .seen in the upper region of the sample. However, the 

section topograph shows the limited depth penetration of the 

defects and also that they appear as small dark dots with no 

visible dynamical image, at different depths below the 

surface. 
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Figure 6.10 

-440 section topographs showing the dependence of contrast upon the 
position of a device relative to the Borrmann fan. 
See overleaf for explanatory sketches and refer to text for details. 

.... 
g 500~ 
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Upon closer examination, figure 6.11, the double 

crystal topograph reveals that the defects take the form of 

elongated ovals lying with the long axes parallel to two 

orthogonal 110 directions. This, together with the evidence 

from the 1section topographs that the defects are limited to 

within a few microns of the surface implies that the defects 

are stacking faults confined to the epitaxial layer, formed 

at the interface with the substrate [103,104]. Indeed, etch 

studies and anomalous transmission topography [105] on a 

sample from the same batch have confirmed the presence of a 

high,density of stacking faults. They also showed the 

presence bf some partial dislocations although in the 

studies reported here the defect contrast was always of the 

same character, showing no evidence of partials. This once 

again shows the importance of using a variety of techniques 

to uniquely determine the nature of crystal defects. 

Whilst it is only the direct image which can give depth 

information in se~tion topograph&, the dynamical effects are 

also extremely good indicators of the crystal perfection and 

should not be ignored. The presence of straight, parallel 

Pendellosuni· fringes in section topographs indicates the 

absence 'of unimaged microdefects. Note how in region E of 

figure 6.7 the strain field from back surface damage is 

sufficient to destroy the fringes close to the exit surface 

although they are still present towards the cen~re of the 

section. This gives a good indication of the degree of 

strain associated with the back surface. 

The exposure time for section topographs of processed 

wafers should therefore be a compromise between the 
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Figure 6.11 --+ 
Double crystal topograph (SRS) 150pm g 

224 reflection, ~ = 1. 36 A. See text for details 
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reasonably short exposures required to expose the direct 

images, sufficient to show the depth of devices and heavily 

distorted regions, and the longer exposures neeeded to 

properly display the dynamical effects. The much greater 

detail given by a longer exposure is clearly shown in figure 

6.12, where figure 6.12a has been exposed for two hours and 

figure 6.12b for four hours with the same experimental 

conditions. It is clear that for examining the depth 

distribution of defects and the gross strain associated with 

processed areas, the slightly underexposed topograph gives 

sufficient ditail. This has great implications for the 

routine assessment of device wafers by section topography, 

where clearly time is of the essence. 

6.3. Bragg case interference fringes 

6.3.1. Previous work 

During the examination of the bipolar wafer described 

in chapter 5, it was noticed that for angles of incidence 

below about 5°, fringes could clearly be seen at the edges 

of many devices. These are shown in figure 6.13, the 115 

reflection at A= 1.35~. That fringes are visible at all is 

surpri~ing, .considering that we are dealing with a singly 

polarised beam with little divergence in the plane of 

incidence. We would therefore expect plane wave conditions 

to predominate, leading to the formation of only one beam 

inside the crystal and no interference effects. Fringes in 

the Bragg case have been observed for a divergent incident 

beam [106,107] for undeformed crystals, and remarkably 

similar fringes to the ones seen here were observed in a 
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a) b) 

g 

Figure 6.12 

440 section topographs showing the effect of exposure time upon resolution 

a) Two hour exposure 
b) Four hour exposure 

See text for 
explanation of symbols 



g ~ 1001l-m 

Figure 6.13 

115 double crystal topograph, A= 1.35A (SRS), of the bipolar wafer described in chapter 5. 

Note the appearance of fringes at the edges of devices. 
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deformed crystal [108]. In Chen's experiment a section slit 

was used·, leading to a narrow divergent beam, and the sample 

was cylindrically bent. The period of the fringes varied 

significantly with increasing curvature and a reasonable 

match was obtained to Chukhovskii's theory for the 

propagation of X-rays in a medium with a uniform strain 

gradient (USG) [79]. Similar fringes have also been observed 

by Bak-Misuik et al [109], using the same experimental 

geometry as Chen. In their experiment however, the results 

are complicated by the fact that the bending moment was 

applied by growing an oxide layer on one side of the wafer, 

and the fringes were only ·observed close to the edges of 

windows qut in the oxide. Thus , it is not clear whether the 

fringes arise because of the long range curvature as claimed 

by Misuik et al, or because of the short range, rapidly 

varying curvature close to the oxide. Since fringes were 

only seen at the edges of devices in the double crystal 

topographs this work has some relevance to the results 

presented here. More recently, Chukhovskii and Petrashen 

[80] have observed similar fringes, again using a spherical 

wavefront and attribute them to the interference of Bloch 

waves at the surface which have undergone successive 

internal reflections. This concept of a waveguide leads to 

enhanced values of ~ as reported previously by Chen. A 
. g 

simple parameter for the fringe spacing is given in the 

paper and 'the author's results are compared with this theory 

in section ·6.3.3-
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6.3.2 Experimental Procedure 

Since fringes were only observed at low angles of 

incidence for the bipolar wafer, the experimental geometry 

for this work was chosen to give an angle of incidence of 

approximately 2°. Conveniently, the sample was supplied as a 

long rectangular strip, which meant that its curvature could 

be easily changed in the direction parallel to the long edge 

without imposing a significant curvature in the orthogonal 

direction. This meant that the dependence of the fringes 

upon the long range strain could be easily investigated. The 

as-mqunted sample had a significant curvature which was 

constant over most of its length, as can be seen in fig 

6.2b. The curvatur~ in this case is 28m and the entrance 

surface, which is the device side of the wafer, is convex. 

The sample was firmly secured at four points at the 

lower edge of the sample as shown in figure 6.14a and was 

bent by placing thin strips of foil under the upper edge, 

also visible in the same photogr~ph, giving a cantilever 

type arrangement. The sample was bent twice, leading 

eventually to the lower part of the sample being bent 

concavely, the middle being essentially flat and the upper 

-1 part remaining convex with a curvature of 50m . Topographs 

were taken at different rotations of the sample to image a 

large area of the crystal, but on individual plates for each 

position to avoid the overlapping of successive images. This 

also allowed the sense of the curvature at any point on the 

sample to be determined. 

The complete ~xperimental set-up is shown in figure 

6.14b. 
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Figure 6.14a) 

Close up of the CMOS sample mounted on the double crystal camera in the SRS topography 
hutch, showi~g the sample (S), bending foil (F), fixing wax (W), rotation stage (R) and 
shielding (L). 



Figure 6.14b) 

H 
~ 

G 
\ 

Complete experimental set up for glancing angle double crystal topography using the double 
crystal camera in the SRS topography butch. 
The photograph shows the 2e arm (G), first axis (1) with beam conditioner (B) in place, 
second axis (2) with sample bolder (H) in plac~, beam defining slits (S), detector (D), plate 
bolder (P), inter-axis slits (I) and shielding (L). 
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6.3.3 Results 

Fringes were only seen in the bipolar wafer for angles 

of incidence below 7° and only in the part of the wafer 

where the crystal close to the surface satisfied the Bragg 

conditio~, that is in the band of diffraction marked B in 

figure 5.5. The latter is not surprising since we would 

expect there to be dynamical effects only where the 

wavefields can propagate in perfect crystal close to the 

exact Bragg condition. The former is probably because of the 

geometrical problem of resolving the fringes, since even 

though interference between wavefields may be occurring in 

the crystal for angles of incidence greater than 7° , the 

diffracted and direct beam directions s and s are such g 0 

that the beams emerging from the exit surface are bunched 

much closer together making it impossible to resolve 

individual fringes. 

That the fringes were only observed at device edges 

implies that either the boundary is acting as a slit and 

hence a source of spherical wavefronts similar to the 

section slit used in previous experiments, or that the 

shorter range strain field close to the interface is 

significant to the formation of the fringes. This question 

is considered later on. 

In the CMOS wafer, fringes were also seen in many 

places, but again only associated with device edges. 

Interestingly, fringes that were observed in the bent 

crystal disappeared in the region that became essentially 

flat, suggesting that the phenomenon is indeed related to 

the long range strain field. A simple calculation using 
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equation 5.6 and the divergence of the incident beam shows 

that the radius qf curvature of this region is of the order 

of 3000m. This effect is shown in figure 6.15. The character 

of the fringes is insensitive to the sense of the 

deformation, showing the same general nature whether the 

entrance surface is concave or convex. That is, the first 

maximum is always separated from the device by a broad 

minimum,, with the fringes showing roughly the same 

periodicity and decrease in visibility with increasing 

order. 

One area of the crystal was chosen for closer 

examination~ close to the channel between individual chips, 

where the~e is a silicon oxide interface. This was in the 

upper part of the crystal which remained convex for each 

degree of applied bending. The curvature did however change 

significantly. Figures 6.16a to 6.16c show enlargements of 

this area at radii of curvature of 28m, 38m and 47m 

respectively. Note that this is the overall curvature, 

measured ~ver several millimetres and that the curvature 

closer to the interface will be slightly different because 

of the strain field associated with it [109]. As can be 

seen, the fringes are very similar for each value of bending 

but show a significant variation in the periodicity of the 

fringes. As the curvature increases, the fringe spacings 

decr~ase and the visibility of the higher order fringes 

improves. This finding is similar to that previously 

reported [80,108] and can be explained by using 

Chukhovskii's USG theory. 
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b) 

g. 500~ 

Figure 6.15 

224 double crystal topographs, A= 1.36A (SRS), of the same area of the CMOS sample. 
a) Sample is bent to R:::::50m in this area. 
b) Sample is essentially flat; note the disappearance of fringes for this condition 



a) 

b) 

c) 

Figure 6.16 

224 double crystal topographs, >.. = 1.36A (SRS), of the same area of the CMOS sample for 
different overall curvatures, R. 

a)R=28m 
b)R=38m 
c) R=47m 
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Chukhovskii predicts the relationship for the position 

of the first fringe maximum, x in relation to the slit of: 

( 6 . 1 ) 

where B is the USG parameter defined in equation 4.2. Figure 

6.17 shows a plot of the present results and as can be seen 

they do show the same trend, although there are too few data 

points to give a definitive comparison between theory and 

experiment. 

When the result from the bipolar wafer is plotted on 

the same graph however, it does not provide a good fit with 

the other data points. This is due to the curvature close to 

the devices which cannot be accurately determined. The short 

range curvature will be essentially the same for the three 

CMOS data sets but will be significantly different for the 

bipolar wafer because of the different fabrication processes 

used in the two types of device. The influence of an 

additional strain field on the fringes is clearly shown in 

the region marked A on figure 6.16. Here, the additional 
I 

curvature from the scribed identification number on the back 

surface causes a considerable distortion of the fringes. 

This not only shows the extent of the strain field induced 

by the numbers but also the sensitivity of the fringes to 

impressed curvature. 

Another relationship predicted by Chukhovskii is that 

the position of the fringes x go as: n 

x = [16n(2n-1)/(5B
2

)] 113 
n 

where n is the order of the fringe maximum. 

( 6. 2) 
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Chapter 6 

Figure 6.18 shows a plot of xn3 against n for the 

three curvatures studied. As can be seen this does not give 

a good straight line as predicted by the theory although an 
! 

increased curvature does lead to a smaller gradient 

consistent with the B- 213 relationship. A possible reason 

why the ~xperimental results do not match the theory is 

again because of the short range strain field. This leads to 

a higher curvature close to the device which rapidly 

decreases to the long range curvature as we move away from 

' ' 

the interface. This gives a larger value of B close to the 

device and hence a smaller gradient associated with the 

first one or two fringes, consistent with the results 

plotted in figure 6.18. These results throw doubt upon the 

validity of Bak Misuiks technique of measuring fringe 

spacings close to an oxide edge, since even though a rough 

estimate of the additional curvature is used, no account is 

taken of its variation with distance from the interface. 

The above results are consistent with Chukhovskii's 

theory of X-ray propagation in crystals with an USG and 

ther~fore suggest that the fringes are being caused by the 

enhanced extinction distance in bent crystals. The problem 

still remains however, of why an experiment using an 
. ' 

essentially plane polarised beam of X-rays gives similar 

results to tho$e obtained using unpolarised radiation with a 

spherical wavefront. In particular, one does not expect 

interference· effects when wavefields from only one branch of 

the dispersion surface are excited. The mechanism which 

links the two situations is the short range, rapidly varying 

strain field associated with the device-substrate interface, 
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since fringes are not seen isolated in perfect crystal and 

disappear when the sample is flat. It is likely that this 

area enatles both branches of the dispersion surface to be 

excited since the orientation of the dispersion surface with 

respect to the incident beam changes very rapidly over a 

short distance, leading to the effect of a spherical 

wavefront. The edge of the device could possibly be acting 

as a slit, which then acts as a source of divergent 

wavefields but this is unlikely since fringes would then be 

seen associated with many more shallow devices rather than 

just those with a large strain gradient as is observed in 

the experiments. 

What is needed now is a simulation of these results to 

see whether the short range strain field has a significant 

effect on the fringes. Also a more complete data set is 

required, using a sample with ca~efully controlled 

interfaces'instead of the unpredictable ones caused by the 

necessary superposition of oxide, diffusion and 

metallisation effects in the integrated circuits studied 

here. 
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Chapter Seven 

Summary 

This thesis has shown the suitability of X-ray 

topography for the non-destructive examination· of processed 

silicon wafers at all stages in the proces~ing schedule. 

Contrast· differences between the Hirst and Lang 

topography techniques have been shown to be due to 

inhomogeneous bending which impos~s a curvature upon the 

diffracting planes. A curvature·of aslittle as 100m is 

sufficient to prod~ce the enhanced dynamical images in the 

Lang technique that are seen in the Hirst technique. 

Inhomogeneous bending also decreases the visibility of the 

direct images, implying that for maximum defect visibility 

the bending should be adjusted to be as homogeneous as 

possible. Since inhomogeneous bending is always accompanied 

by a significant increase in diffracted intensity from the 

perfect cry~tal, it is suggested that this be used as a test 

of the ben~ing conditions in the Hirst technique. 

In asymmetric reflections, there is a sharp rise in 

diffracted intensity upon homogeneous cylindrical bending. 

For large curvatures (R=20m), the images of dislocations 

change contrast from black on grey to white on grey. This is 

not due however to the direct image changing contrast but 

to a combination of two effects. The rise in diffracted 

intensity from the perfect crystal tends to swamp the direct 

images, causing them to disappear and at the same time the 

spatial ~xteht of the dynamical images decrease and become 

localised around the dislocation core. 
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The contrast effects seen in the Lang topographs are 

seen more clearly in the section topographs taken under the 

same bend~ng conditions. In the symmetric geometry with 

homogeneous bending, a phase change is seen in the 

Pendellosung fringes and some differences can be seen in the 

fine structure of dislocation images. These are unexpected, 

since the diffracting planes should remain flat in this 

geometry, but are probably explained by the high strain 

sensitivity of both the fringes and the intermediary images 
I 

which means that they are affected by an otherwise 

undetectable inhomogeneity. 

In the asymmetric geometry, bending reduces the 

visibility of the fringes, and care should therefore be 

taken in interpreting the absence of fringes in curved 

crys~als since there will be some ambiguity as to whether it 

is due to curvature or unimaged micrddefects. 

The long range strain has been used with the aid of 

simulations based on the Takagi-Taupin equations to identify 

the Burgers vector of an individual dislocation. In the 

unbent crystal several Burgers vectors give similar 

contrast, but the addition of the long range strain gives a 

unique co~trast for each Burgers vector. This is obviously a 

powerful technique and more work needs to be done with 

different experimental geometries and defect types to test 

its range of validity. 

Examination of a processed bipolar device wafer using 

glancing angle double crystal topography with synchrotron 

radiation and a variety of reflections and w~velengths has 

determined the best conditions for the examination of 
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processeg wafers. The wavelength tuneability of the SRS 

allows the depth penetration of the X-rays to be 

continuously varied. This surface sensitivity enables both 

devices and process related defects to be imaged over a 

large area to a high resolution and contrast, allowing a 

range of defects to be identified. The best experimental 

geometries have been determined, including the choice of a 

first reflection. 

Processed wafers normally have a significant curvature 

and this limits the area that can be imaged on one plate. By 

rotating the sample by a few seconds of arc and taking an 

exposure on the same plate for each position a large area of 

the wafer can be imaged. In general this multiple exposure 

technique is the most convenient when looking for defects 

since a lar.ge area of crystal is imaged on one plate in a 

relatively short time. Furthermore it has been shown that 

the defects are equally visible when using either a multiple 

or a si~gle exposure technique. When combined with two 

single exposures the multiple exposure method also allows 

the sens,e and magnitude of the wafer curvature to be 

determined.as well as its uniformity over the sample. 

The single exposure gives a visual sense of lattice 

mismatch and if the overall curvature of the sample is found 

using the multiple exposure method, it is possible to 

determine the effective mismatch between individual devices 

and the substrate by the spatial separation of their 

diffraction maxima. 

Asymmetric reflections are essential to give a low 

depth penetration of the X-rays and a good aspect ratio on 

Page 129 



Chapter 7 

the plate. Two parameters are important when considering the 

depth of crystal which will be imaged, the penetration depth 

P2 and the extinction distance ~g· Of these the most useful 

is usually P2 (based on photoelectric absorption), since the 

wafer curvature means that only a narrow strip of material 

satisfies the exact Bragg condition for a particular angular 

setting an~ the depth penetration is only dependent upon 

extinction within this limited range. 

Although low angles of incidence give low penetration 

depths, they should be avoided when looking for defects 

since they give rise to large areas of depleted intensity 

which obscure details of devices and defects. Generally 

therefore, the experimental geometry should be chosen to 

give a low depth penetration for angles of incidence greater 

than about 5° . 

It would be useful now to see if these general 

conclusions can be extended to a wider range of process 

types, wafer orientations and substrate materials than the 

limited range studied in this thesis. 

Lang, section and double crystal topography have been 

compared for the examination of a CMOS device wafer. It has 

been shown how the use of three such complementary 

techniques can characterise most of the defects within the 
I 

sample. Contrast can generally be easily correlated between 

the techniques, allowing the spatial and depth distribution 

of the defects to be non-destructively determined. 

Double crystal topographs indicate that the practice of 

scratching identification numbers on the back surface of 

wafers before processing, already known to be a source of 
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dislocations, also produces a significant localised strain on 

the device side of the wafer, which may adversely affect the 

electrical performance of the chip. 

The contrast of devices in section topography has also 

been studied and it has been shown that the apparent depth 

of the device varies depending on its position relative to 

the Borrmann fan. This shows the 'need to take section 

topographs at several positions to uniquely determine the 

depth profile of processed areas. Underexposed section 

topographs give sufficient information to determine the 

depth of defects and diffused areas, although information on 

dynamical effects and small distortions is lost. This makes 

the section topography technique more attractive for the 

routine assessment of processed wafers. 

Fringes have been observed in double crystal topographs 

obtained at the SRS for angles of incidence below about 5° . 

These were shown to be dependent on the overall curvature of 

the sample, but only appeared at the edges of devices. The 

behaviour of the fringes agreed with the theory of 

Chukhovskii and Petrashen [80], although the experiment was 

complicated by the presence of the short range rapidly 

varying strain field close to the edge of the device. It is 

postulated however that it is this short range strain field 
I 

which gives rise to the fringes, allowing both wavefields in 

the crystal to be excited, even though the incident beam is 

essenti~lly ·a linearly polarised plane wave. 

A more complete data set is now req~ired to test this 

theory, using a more predictable short range strain field, 

such as that close to an oxide edge, than that given by the 
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combination of oxide, diffusion and metallisation in the 

wafers studied here. Simulations using the superposition of 

the short range and long range strain fields would help to 

clarify the role of the short range strain in the formation 

of the fringes. 
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Appendix A 

Appendix A 

Listing of the ABAC control program 

A.1 Introduction 

This appendix gives an annotated listing of the 

automated bragg angle controller (ABAC) software described 

in chapter three. The reader is referred to that chapter for 

a functional description of the program. Annotations are 

given to the right of each column, these are not REM 

statements and as such are not present in the executable 

version of the software. 
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10 
20 
JO 
40 
50 
60 
70 
80 
90 

100 
110 
120 
1)0 
140 
150 
160 
170 
l80 
190 
200 
210 
220 
2JO 
240 
250 
260 
270 
280 
290 
JOO 
llO 
)20 
JJO 
HO 
)50 
J60 
)70 
)80 
390 
400 
410 
420 
430 
440 
450 
460 
470 
4SO 
490 
500 
!HO 
520 
530 
540 

'"0 550 

Ill 5b0 
()Q 570 
CD 580 

590 
;.t> 600 

610 
620 
630 

1\..) 640 

MOOE7 
*FX2l,O 
*KEY 10 "OLD IM RUN IM" 
PSN\aA\: DTIIETA\aC\: MIN\ •0\ 
FLAG\•0 
inttime\•0 
DIM SP\(5) :DIM ROCK\(300):REM SPEED' ROCKING CURVE 
DIM PNTR\(6) :REM STEP NUMBER-POINTER 
DIM NUM\(8) :REM INPUT FROM COUNTERS 
DIM GAP\ JOO 
FOR I\•0 TO 2 STEP 2 
P\-GAP\ 
[OPT I\ , ....•................. 
.delay \DELAY PROGRAM , ......•.....•......... 
\ 
\ TWO'S COMPLEMENT OF LOOP COUNTER 
CLC 
LOA •eo 
EOR HFI" 
ADC tOl 
STA •so 
LOA •s1 
EOR HFF 
ADC tO 
STA '81 
\ SET TIMER TWO TO ONE SHOT MODE 
LOA H96 
LOX H6B 
JSR 'FFF4 
TYA 
AND HDF 
TAY 
LOA H97 
LOX H6B 
JSR 'FFF4 
\ SET LOW ORDER TIMER COUNTER 
LOX H68 
LOY f'5B 
JSR '1"1"1"4 

Delay loop tor routine to 
rotate atapper aotor troa 
the keyboard. 

.timer \LOAD HIGH ORDER COUNTER AND START TIMER(S~ TO .lms/STEP) 
LOA 1'97 
LOY t3 
LOX llo69 
JSR 'I"FF4 
.loop \TEST TIME OUT FLAG IN IFR 
LOA H96 
LOX H60 
JSR •FFF4 
TYA 
AND H20 
BEQ loop 
\ TIMED OUT INCREMENT LOOP COUNTER 
INC •so 
BilE timer 
INC '81 
BilE timer 
\ LOOP COUNTER •0 -END 
RTS 
\ , ..•...•.....•.•.... 
\STEP MOTOR PROGRAM , .....•..•.......... 

650 \ 
660 . set LOA 1&97 \SET DDRB -PB1, PB2 INPUTS 
670 LOX 1&62 
680 LOY l&f'9 
690 JSR 'FFF4 
700 RTS 
710 .stnp 

720 LIJA H97 \WRITE VAWE TO PORT 
730 LIJX I& 60 
740 JSR 6.t"n'4 
750 LOA 1&96 \READ VAWE FROM PORT 
760 LOX 1&60 
770 JSR 'n'F4 
780 STY •sA \ PUT IN 'SA 
790 RTS 
800 \ 
810 , •••••••••••••••••• 

S20 \COUNTER PROGRAM 
830 , •••••••••••••••••• 

S40 \ 
850 . start 
860 LOY fl \ DO HIGH START COUNTING 
870 LOA f&9J 
880 LOX t&CO \ AO LOW COUNTER ENABLED 
890 JSR 'FFF4 
900 RTS 
910 .stop 
920 LOY tO 
930 LOA H93 
940 LOX hCO 
950 JSR .I.FFF4 
960 RTS 
970 . read 
980 LOA 1&92 
990 JSR '~'FF4 

1000 STY .1.82 \ 
1010 RTS 
1020 .clear 
1030 LOA fi;9J 
1040 LOX t&C1 \ 
1050 JSR &FFF4 
1060 RTS 
1070 
1080 NEXT 

VALUE READ IN '82 

AO HIGH 

1090 REM SET PNTR\(l)TO PNTR\(6) 

Set I ines PB1 and 
PB2 of the User Port 
as inputs for limit 
switch sens inq. 

Write a nullber to the 
User Port (transterred 
troa PROCcl6ck or 
PROCanticl). 

Read statue or limit 
switches, store the 
nuaber returned in 
... ory location •sA 

Routine to control 
the J2-bit counter 

Write to 1HHz Bus. 

DO low, 11top counting. 

Read counter, chip to 
read is derined in 
PROCcount. 
Store number in meaory 
location '82. 

AO hiqh, clear counter11. 

End or asseably lanquaqe 
section. 

1100 PNTR\(l)•S:PNTR\(2)•24:PNTR\(3)•16:PNTR\(4)•48:PNTR\(5)•l2:PNTR\(6)•40 
1110 CALL set:LOC\•8\+l:PROCstop 
1120 CLS 
1130 VOU 23,1,0:0;0;0; 
1140 PROCupdate 
1150 I'ROCmenu 
1160 END 
1170 REM***************************************** 
1180 REM 
1190 REM CLOCKWISE STEP PROCEDURE 
1200 HEM ...................•.... 

DEF PROCclock 
IF STPNUM\•0 THEN 1270 

The Array PNTR\ contains 
the values or Y required 
to drive motor in 1/2 
atep mode. 

Routine to drive aotor 
c1ockwlau. 

1210 
1220 
1210 
1240 
1250 
1260 
1270 
1280 

FOR Z\•1 TO STPNUM\:I..OC\•LOC\+l:rt' LOC\•7 TitEN LOC\•1 
Y\•I'N'l'R\ ( l.OC\) :CALL atep: PSN\•PSN\+ 1: 0UM\•H8A-PNTR\ ( LOC\) 
IF OUM\•2 Tllt:N PROCcl imit I Read status or clockwise 
NEXT li•lt switch. 
ENDPIWC 
REM 

;.t> 
'0 
'0 
CD 
:J 
0. ...... 
>< 
::r> 



'U 
Pl 

()Q 
CD 

:x> 

w 

1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1UO 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1820 
1830 
1840 
1850 
1860 
1870 
1880 
1890 
1900 
1910 
1920 

REM ANTICLOCKWISE STEP PROCEDURE 
REM **************************** 
DEl' PROCanticl 
IF STPHUH\•0 THEN 1370 

Routine to drive motor 
anticlockwise. 

FOR Z\•1 TO STPNUM\:LOCl•LOC\-1:IJ' LOC\•0 THEN LOC\•6 
Y\•PNTR\(LOC\) :CALL step:PSN\•PSN\-l:DUM\•?'8A-PNTR\(LOC\) 
II' DUM\•4 THEN PROCali•it Read status ot anti-
NEXT clockwise limit switch. 
ENDPROC 
REM 
REM COUNTING PROCEDURE 
REM ****************** 
DEl' PROCcount 
CALL clear 
CALL •tart 
BBC\-TIK!:REPEAT:UNTIL TIME•BBC\+CNTTM\ 
CALL •top 
FOR 1\•0 TO 7 
X\•,CO+U 
CALL read:NUM\(I\)•?,82 

Clear the counters. 
Start the counters. 
Delay loop. 
Stop the counter•. 

Read troa each chip 
in turn. 

NEXT 
Xl•NUM\(0)+256*NUM\(1)+65536*NUMl(2)+16777216*NUMl(3) 
X2•NUM\(4)+256*NUM\(5)+65536*NUM\(6)+16777216*NUM\(7) 
CNTSEC\•INT(X2*1E7/Xl+0.5) Work out counts/sec. 
ENDPROC 
REM 
REM CLOCKWISE LIMIT PROCEDURE 
REM ************************* 
DEl' PROCclimit 
STPNUM\•20:PROCanticl 
CLS:PRINT TAB(8,11);•CLOCKWISE LIMIT REACHED" 
PRINT TA8(8,12) ;•***********************" 

Routine to drive 
motor ott clockwise 
liait switch. 

VDU 28,0,24,39,23:CLS:PRINTTAB(7);"Press any key to continue" 
VVV\-GET:CLS:VDU 28,0,22,39,3 
PROC!Denu 
ENDPROC 
REM 
REM ANTICLOCKWISE LIMIT PROCEDURE 
REM ***************************** 
DEl' PROCalimit 
STPNUM\•20:PROCclock 

Routine to drive motor 
ott anticlockwise 
limit switch. 

CLS: PRINT TAB(6,ll) ;"AN'riCI.OCKWISE LIMIT REACHED" 
PRINT TA8(6,12) ;"***************************" 
VDU 28,0,24,39,23:CLS:PRINTTAB(7)t"Presa any key to 
WWW\•GET:CLS:VDU 28,0,22,39,3 

continue" 

PROCmenu 
ENDPROC 
REM 
REM IMMEDIATE MOVEMENT OJ' ST. MOTOR 
REM ****************************** 
DEl' PROCiiiiiDed 
*I'X 4,1 
CLS 
PRINT TAB(0,2) ;"SPEED 1-3(SLOW TO FAST) 1 (4 
I•GET:I•I-48:IJ' 1<1 OM 1>4 THEN 1820 
II' I•4 TliEN 1990 

Drive aotor trom 
cursor control keys. 

Redefine cursor control 
keys. 
TO END) " 

CLS:VDU 28,20,1,39,0:PRINT TAB(l2);"SPEED-";I:VDU 28,0,24,39,23 
PRINT "Press S.Bar to change speed,E/e to End":VDU 28,0,22,39,3 
SP\(1)•300:SV\(2)•50:SP\(3)•1 
VAR\•SP\(I);VARO\•VAR\ MOD 256:VAR1\•VAR\ DIV 256 
*I'X 12,1 
REPEAT 
*J'X 15, 1 
MV\•GET 

Set auto-repeat period 
ot keys to 1/lOOth sec. 
Flush key~oard butters. 

19JO 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 
2180 
2190 
2200 
2210 
2220 
22JO 
2240 
2250 
22b0 
2270 
2280 
2290 
2300 
2)10 
2320 
2330 
2340 
2350 
2360 
2370 
2380 
2390 
2400 
2410 
2420 
2430 
2440 
2450 
2460 
2470 
2480 
2490 
2500 
2510 
2520 
2530 
2540 
2550 
2560 

IF MV\•137 THEN PROCdeclock 
IF MV\•136 THEN PROCdeanticl 
UNTIL MV\~32 OM HV\-&65 OR MV\•,45 
IF HV\•&65 OR HV\•&45 THEN 1990 
VDU 28,0,24,39,23:CLS:VOU 28,0,22,39,3 
GOTO 1820 
*FX 12,0 
*J'X 4,0 
VDU 28,20,1,39,0:CLS:VDU 28,0,24,39,l:CLS 
PROCUpdate 
ENDPROC 
REM 
REM CLOCKWISE MOVEMENT WITH DELAY 
REM **********•****************** 
DEl' PROCdeclock 
LOC\•LOC\+1:IJ' LOC\•7 THEN LOC\•1 

Look to see which key 
has been pressed. 
Stop when space bar or 
E or a pressed. 

Reset auto repeat 
Reset CUrsor keys. 

Movement ot atepper 
aotor with delay loop 
for PROCi....S. 

Y\•PNTR\(LOC\):CALL atep:PSN\•PSN\+1:DUMl•?&8A-PNTR\(LOC\) 
PROCUpdate 
II' DUH\•2 THEN PROCclimit 
II' VAR\•1 TliEN 2140 
7'80•VAR0\:7,8l•VAR1\:CALL delay 
ENDPROC 
REM 
REM ANTICLOCKW»SE MOVEMENT WITH DELAY 
REM ********************************* 
DEt' PROCdeanticl 
LOC\•LOC\-1:11' LOC\•0 THEN LOC\•6 

Call assembly lanqua9a 
delay loop. 

Y\•PNTR\(LOC\):CALL step:PSN\•PSN\-l:DUM\•?,8A-PNTR\(LOC\) 
PROCupdate 
II' DUM\•4 THEN PROCalimit 
II' VAR\•1 THEN 2250 
?&80•VAR0\:?&81•VAR1\:CALL delay 
ENDPROC 
REM 
REM ROCKING CURVE PROCEDURE 
REM *********************** 
DEl' PROCrock 
CLS: H\•0: Vl•O 

Routine for single crystal 
rocking curves. 

INPUT TAB(0,2) ;"Anticlkws. Adjstmnt. (lO.OOth deg.)";STPNUM\ 
PROCanticl 
PROCUpdate 
INPUT TAB(0,3) ;"Count Time (100th sec.)";CNTTK\ 
INPUT "Step Length (1000th deg.)";STPNUM\ 
INPUT "Total No. ot Points";N\ 
CLS:VDU 28,0,24,39,23:PRINT TAB(8) t"Prosa S.bar to atop.• 
VDU 28,0,22,)9,3 
IROCK\•0 
REPEAT 
IROCK\•IROCK\+1 
PROCcount 
ROCK\(IROCKl)•CNTSEC\ 
PRINT TA8(Hl•10,Vl) ;ROCK\(IROCK\) 
PROCtab 
SR\•INKEY (0) 
11' IROCK\•N\ OR SR\•32 THEN 2500 
PROCclock 
I'ROCupdate 
UNTIL IROCKl•N\ OR SR\~32 
N\•IROCKl 
VDU 28,0,24,39,23:CLS:VDU 28,0,22,39,3 
REM FIND MAXIHUH IN ARRAY 
lROCKMAXl•l:MAX\=ROCK\(1) 
t'OR K\•2 TO N\ 
IF KAX\>ROCK\(K\) TIIEN 2580 
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2570 
2580 
2590 
2600 
2610 
2620 
2630 
2640 
2650 
2660 
2670 
2680 
2690 
2700 
2710 
27l0 
2730 
2740 
2750 
2760 
2770 
2780 
2790 
2800 
2810 
2820 
2830 
2840 
2850 
2860 
2870 
2880 
2890 
2900 
2910 
2920 
2930 
2940 
2950 
2960 
2970 
2980 
2990 
3000 
3010 
3020 
3030 
3040 
3050 
3060 
3070 
3080 
3090 
3100 
3110 
3120 
3130 
3140 
3150 
)160 
3170 
3180 
3190 
3200 

KAX\•ROCK\(K\) :IROCKMAX\•Kt 
NEXT 
PSNKAX\•PSN\+STPNUM\*(lROCKMAX\-N\) 
REM FIND MINIMUM IN ARRAY 
IROCKMIN\•1:KIN\•ROCK\(l) 
FOR K\•2 TO N\ 
IF KIN\<ROCK\(~\) THEN 2650 
KIN\•ROCK\(K\) :IROCKMIN\•Kt 
NEXT 
PSNKIN\•PSN\+STPNUM\*(IROCKMIN\-N\) 
KAXC\•KAX\-MIN\ 
REM FIND 1ST POINT > HALF MAXIMUM 
KALF\•KAXC\/l 
K\•0 
REPEAT 
K\•K\+1 
UNTIL (ROCK\(K\)-KIN\)>HALF\ 
HALFNO\•K\:HALFPNT\•ROCK\(K\) 
PSNHALF\•PSN\+STPNUM\*(HALFNO\-N\) 
REM FIND SLOPE BETWEEN HALFKAX AND MAX 
DTHETU•PSNMAX\- PSNHALF\ 
CLS:PRINT TAB(0,2);"Min' cnt• ";MIN\;" at Pan.• ";PSNMIN\ 
PRINT TAB(0,4) I"Max• cnt• ";MAX\;" at Pen.• ";PSNKAX\ 
PRINT TAB(0,6)1"\ width at\ max'(1000th Deg.) • ";DTKETA\ 
PRINT TAB(0,8) I"Save rocking curve on diek?(Y/N)":DD\-GET 
IF DD\•89 OR 00\•121 THEN PROCeave 
PRINT TAB(0,8) ;• 
VOU 28,0,24,39,23:CLS 
PRINT "Prase any key to continue.• 
ABC\-GET 
CLS:VOU 28,0,22,39,3 
ENDPROC 
REM 
REM PROCEDURE TO MAINTAIN PEAJ: INTENSITY 
REM ********•*************************** 
DEF PROCpealt 
XYU•-1 
IF ANS\•56 THEN 2950 ELSE 2960 
IF XYZ\•89 OR XYZ\•121 THEN 2960 ELSE 2980 
CLS:IHPUT"COUNT TIME (100th Sec) ";CNTTK\ 
INPUT"STEP LENGTH (1000th Deg) ";STPHUM\ 
VDU 28,0,24,39,23 
PRINT TAB(5);•Preae apace bar to atop.• 
vou 28,0,22,39,3 
IF ANS\•56 THEN 3030 
CLS 
H\•O:V\•8 
PROCcount 
SB\•INKEY(O) 
IF SB\•32 THEN 3440 
COUNTll•CNTSEC\ 
PRINT TAB(H\*lO,V\) ;COUNTl\:PROCtab 
PROCmax (COUNTl \) 
IF COUNT1\<20 THEN 3040 
IF TIME>•intti•et AND ANS\•56 THEN 3490 
COUNTT\•COUNTl\:tot\•1 
COUNTL\•COUNTl\ 
IF ANS\•56 THEN 3170 
PRINT TAB(10,4) :"ST~r TRAVERSE NOW" 
PRINT TA8(10,5) ;•******************M 
PROCaclkcount 
IF SB\•32 THEN 3440 
COUNT2 \•CNTSEC\ 
PRINT TAB(H\*lO,V\) ;COUNT2\:PROCtab 

ABAC Routine. 

3210 PR0Cavg(COUNT2\) 
3220 IF TIME>•inttime\ AND ANS\•56 THEN 3490 
3230 IF COUNT2\<20 TllEN PROCnocounts 
3240 IF SB\•32 THEN 3440 
3250 IF COUNT2\<•COUNTL\ THEN 3290 
3260 COUNTL\•COUNT2\ 
3270 IF COUNT2\>COUNTKAX\ THEN PR0Cmax(COUN~2\) 
3280 GOTO ll70 
3290 COUNTL\•COUNTl\ 
3300 PROCclkcount 
3310 IF SB\•32 TllEN 3440 
3320 COUNT3\•CNTSEC\ 
3330 PRINT TAB(H\*lO,V\) :COUNT3\:PROCtab 
3340 PROCavg(COUNT3\) 
Jl~O IF TIME>•inttime\ AND ANS\•56 THEN 3490 
ll60 IF COUNTJ\<20 TIIEN PROCnocounta 
3370 IF SB\•32 THEN 3440 
3380 IF COUNT3\>COUNTL\ THEN 3410 
3390 COUNTL\•COUNT3\ 
3400 GOTO 3170 
3410 IF COUNTJ\>COUNTKAX\ THEN PROcmax(COUNT3\) 
3420 COUNTL\•COUNT3\ 
3430 GOTO JJOO 
3440 VDU 28,0,24,39,23:CLS 
3450 IF ANS\•56 TIIEN 3490 
3460 PRINT TA8(10);"Cont1nue Y/N 7 • 
3470 XYZ\•GET 
3480 IF XYZ\•89 OR XYZ\•121 THEN 2940 
3490 VDU 28,16,2,39,0:CLS:VDU 28,0,24,39,23:CLS 
3500 VDU 28,0,2,15,1:CLS:VDU 28,0,22,39,3 
3510 ENDPROC 
H20 REM 
3530 REM PROCEDURE TO UPDATE POSITION 
1540 REM **************************** 
3550 DEF PROCUpdate 
3560 VDU 28,0,1,15,0 
3570 PRINT "Position•" 
3580 PRINT TAB(9,0);" 
3590 PRINT TAB(9,0)1PSN\ 
3600 VDU 28,0,22,39,3 
3610 ENDPROC 
3620 REM 
3630 REM PROC' TO PRINT TABS 
1640 REM ******************* 
3650 DEF PROCtab 
3660 H\•H\+l:IF H\•4 THEN 3670 ELSE 3680 
3670 H\•O:V\•V\+2 
3680 IF V\<19 THEN 3710 
3690 V\•18 . 
3700 vou 10. 10 
3710 ENDPROC 
3720 REM 
3730 REM MENU PROCEDURE 
3740 REM ************** 
3750 DEF PROCmenu 
3760 REPEAT 
3"170 CLS 
3780 PRINT TAB(O,O) ;"1. RESET POSITION COUNTER." 

Display current position 
or stepper ..,tor on screen 

Print tabs to display 
counts in rov• ot tour. 

11\•llorizontal pointer 
V\•Vertical poi nter 
Once screen is full, 
new values are added 
to bottom line. 

3790 PRINT TAB(0,2) ;"2. ADJUST THETA VIA CURSOR CNTL. KEYS." 
3800 PRINT 1'AB(0,4) ;"3. ROCKING CURVE OF SAMPJ...E.• 
3810 PRINT TAB(0,6) ;"4. A.B.A.C. " 
3820 PRINT TAB(0,8) ;"5. DISENGAGE S.HOTOR." 
3830 PRINT TAB(O,lO) ;"6. DISPLAY/PLOT ROCKING CURVE." 
3840 PRINT TAB(O,l2) ;"7. COUNT ONLY." 
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38!>0 
3860 
3870 
3880 
3890 
3900 
3910 
3920 
3930 
3940 
39!>0 
3960 
3970 
3980 
3990 
4000 
4010 
4020 
4030 
4040 
4050 
4060 
4070 
4080 
4090 
4100 
4110 
4120 
4130 
4140 
41!>0 
4160 
4170 
4180 
4190 
4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 
4280 
4290 
4300 
4Jl0 
4320 
4330 
4340 
4350 
4360 

""0 
4370 

Ill 4380 

()Q 4390 

ro 4400 
4410 

;:t:> 4420 
4430 
4440 
4450 

U1 4460 
4470 
4480 

PRINT TAB(0,14) "8. STEP SCANNING SECTION TOPOGRAPH." 
PRINT TAB(0,16) "9. ADJUST THETA AND COUNT." 
PRINT TAB(O,l8) "Enter desired No. (Space Bar to End)." 
•FX15, 0 
ANS\•GET 
IF ANS\•49 
IF ANS\•50 
IF AHS\•51 
IF ANS\•52 
IF AHS\•53 
IF ANS\•54 
IF AHS\•!>5 
IF ANS\•56 
IP' ANS\•57 
PROCupdate 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 

PSN\•0 
PROCi1111ed 
PROCrock 
PROCabac 
PROCdisenq 
PROCplot 
PROCconcount 
PROCatapacan 
PROCcountaove 

UNTIL AHS\•32 
A\•PSN\:8\•LOC\-l:C\•DTHBTA\:D\•MIN\ 
VDU 23,1,1;0;0;0; 
ENDPROC 
REM 
REM ABAC PROCEDURE 
REM *******••••••• 
DEF PROCabac 
c~ 

VDU 28,0,3,39,1 
PRINT TA8(6) ;"Set on peak or rockinq curve• 
PRINT TAB(6) ;••••*************************• 
VDU 28,0,22,39,) 
*FX15,0 
PRINT TAB(0,6) ;"Adjustment or theta by:• 
PRINT TAB(lO,B);"M: Manual control,• 
PRINT TA8(10,10);"C: cursor control keys.• 
PRINT TAB(10,12);"N: No adjuataent.• 
ANS!>t-GET 

Exit proqram when space
bar ia pressed. 
TUrn cursor on 

Set up procedure tor 
ABAC routine. 

IF ANS5\•77 OR ANS5\•109 THEN 4200 ELSE 4210 
FLAG\•l:QW\•89:CNTTM\•50:PROCconcount:GOTO 4240 
IF ANS5\•67 OR ANSS\•99 THEN PROCcountmove:COTO 4240 
IF ANS5\•78 OR ANS5\•110 THEN 4240ELSE 4080 
IF ANS\•56 THEN 4240 
VDU 28,0,3,39,1:CLS:VDU 28,0,22,39,3 
IF ANS\•56 THEN ENDPROC ELSE PROCpeak 
ENDPROC 
REM 
REM PROC' TO DISENGAGE S. MOTOR 
REM *************************** 
DEF PROCdiseng 
c~:PRINT TA8(0,6);•stepper •otor disengaged." 
PRINT TAB(0,7) 1•*************************• 
Y\•O:CALL step Write 0 to stepper motor 

re-enga9e." VDU 28,0,24,39,23:PRINT "Press any key to 
GG\-GET:Y\•PNTR\(LOC\):CALL step 
CLS:VDU 28,0,22,39,3 
ENDPROC 
REM 
REM PROCEDURE TO SAVE ROCKING CURVE ON DISK 
REM *************************************** 
DEF PROCaave 
CLS:INPUT "ENTER DRIVE NUMBER";DR$ 
OSCLI ("DRIVE "+DR$) 
INPUT '"FILENAME • ";FIN$ 
INPUT '"COMMENT ";COM$ 
INPUT '"DATE •; DATE$ 
PRINT"ARE THESE CORRECT 7" 
GFG\•GET 

Re-anerqiee previously 
active phases. 

4490 
4500 
4510 
4520 
4530 
4540 
4550 
4560 
4~'10 

4580 
4590 
4600 
4610 
4620 
4630 
4640 
46!>0 
4660 
4670 
4680 
4690 
4700 
4710 
4720 
4730 
4740 
4750 
4760 
4770 
4780 
4790 
4800 
4810 
4820 
4830 
4840 
4850 
41160 
4870 
4880 
4890 
4900 
4910 
4920 
4930 
4940 
4950 
4960 
4970 
4980 
4990 
5000 
5010 
5020 
50)0 
5040 
5050 
5060 
50'/0 
~080 

5090 
5100 
5110 
5120 

IF GFG\•78 OR GFG\•110 THEN 4440 
R\•OPENOUT FIN$ 
PRINTIR\,COM$,DATE$,MAXC\,DTHETA\,N\,STPHUHt 
FOR FF\•1 TO N\ 
PRIHTIR\,RDCK\(FP'\)-MIN\ 
NEXT 
CLOSEIR\ 
'DRIVE 0 
ENOPROC 
REM 
REM PROCEDURE TO CHAIN "PLOT" 
REM ************************* 
DEF PROCplot 
C\•DTHETA\:0\•MIN\ 
A\•PSN\:8\•LOC\-1 
CHAIN"P.PLC>r" 
ENDPROC 
REM 
REM PROCEDURE FOR CONTINUOUS COUNTING 
REM ********************************* 
DEF PROCconcount 
IF FLAG\•1 THEN 4750 
IF ANS\•56 THEN PROCdispexpno ELSE 4730 
GOTO 4810 

Load and run plotting 
program, kept ae a seperat 
program becauae or lack or 
•emory in qnphlc• •ode. 

Count and diaplay valuaa 
continuously on scresn. 

For step scanning routine. 

CLS:PRINT TAB(5,5) ;"Dlsanqage stepper •otor(Y/H)7" 
QW\-GET 
exptlme\•0 
IF QW\•78 OR QW\•110 THEN 4800 
VDU 28,0,3,39,2:PRINT TAB(6) :•••Stepper •otor disenqaged•••:vou 28,0,22 
Y\•O:CALL step· 
IF FLAG\•1 THEN 4810 
CLS:INPUT TAB(5,10);"COUNT TIME 
FLAC\•O:H\•O:V\•0 

(lOOth's sec.) • ";CNTTH\ 
I 

VDU 28,16,1,39,0:PRINT "COUNT 
VDU 28,0,24,39,23:CLS 
PRINT TA8(5);"Press space bar 
vou 28,0,22,39,3 

TIME • i;CNTTHt:VDU 28,0,22,)9,3 

to stop.• 

CLS 
COUNTT\•O:tot\•0 
REPEAT 
ST\•INKEY(O) 
PROCcount 
PRINT TAB(H\*10,V\);CNTSEC\:PROCtab 
IF ANS\•56 THEN PROCdispexptm 
IF ANS\•56 AND TIME>•exptime\ THEN ST\•43210 
UNTIL ST\•32 OR ST\•43210:REM 43210 HAS NO NUMERICAL SIGNIFICANCE 
VOU 28,16,1,39,0:CLS:VDU 28,0,22,39,3 
VDU 28,0,24,39,23:CLS 
IF ANS\•56 THEN 5000 
PRINT TAB(10);"REPEAT (Y/N)?":TT\•GET 
IF TT\•89 OR TT\•121 THEN 4800 
CLS:VDU 28,0,22,39,3 
Y\•PNTR\(LOC\):CALL step 
VDU 28,0,3,39,2:CLS:VDU 28,0,2,15, l:CLS:VDU 28,0,22,39,3 
ENDPROC 
REM 
REM DISPLAY AVG. COUNT 
REM ******************* 
DEF PROCavq(count\) 
COUNTT\•COUNTT\+count\ 
tot\•tot\+1 
IF tot\<5 THEN 5150 
tot\•0 

Display everaqa or 
last rive counts. 

VDU 28,16,2,39,1:PIUNT "Avq.Cnt. • ":INT(COUNTT\/5);" 
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5130 VDU 28,0,22,39,3 
5140 COUN'M'\•0 
5150 ENDPROC 
5160 REH 
5170 REH DISPLAY HAX' COUNT 
5180 REM ~***************** 
5190 DEY PROCmax(Q\) 
5200 COUNTKAX\-Q\ 
5210 VDU 28,16,1,39,0:PRINT "Max.Cnt. • ";Q\;" 
5220 ENDPROC 
5230REM 
5240REM DISPLAY AVG. POSITION 
5250REM ********************* 
5260DEF PROCavgp(pan\) 
5270 PSNT\•PSNT\+psn\ 
5280 totl\•tot1\+1 
5290 IF tot1\<l0 THEN 5360 
5300 totl\•0 
5310 @\•,20105 

Display maximum count 
so tar. 

":VDU 28,0,22,39,3 

Display average of 
last ten angular 
poaitions. 

5320 VDU 28,0,2,15,l:CLS:PRINT- "Avg.Pan •";INT(PSNT\•10+.5)/100 
5330 U•10 
5340 VDU 28,0,22,39,3 
5350 PSNT\•0 
5360 ENDPROC 
5370 REM 
5380 REM STEP SCANNING PROCEDURE 
5390 REH *********************** 
5400 DEF PROCstepscan 
5410 expnol\•1 
5420 PROCsetupscan 
5430 CLS:PRINTTAB(B,O) ;"Step acanning routine• 
5440 PRINTTA8(8, 1) ;"*******************••" 
5450 vou 23,1,1;0;0;0; 

Sat up parameters 
tor routine. 

5460 INPUTTAB(0,3) ;"Stepaize(mm) between axposures";STPSIZE:inttime1\•INT(26 
5470 PRINTTAB(0,5) ;"Exposure per point :" 
5480 INPUTTAB(0,6) ;"Hours :";houru 
5490 INPU'M'AB(0,7) ;"Minutes :";mins 
5500 exptime\•INT(360000•hours+6000•sins+.5) 
5510 INPUTTAB(0,9) ;"No ot exposures •;expno\ 
5520 INPUTTAB(O,ll) ;"Count time tor ABAC (100th Sec) ";CNTTM1\ 
5530 INPU'M'AB(O,l3) ;"Step sizejtor ABAC (1000th Deg) ";STPNUH1\ 
5540 VDU 23,1,0;0;0;0; 
5550 PRIN'M'AB(0,18) ;"Are theae correct (Y/N) ?• 
5560 DDT\•GET 
5570 IF DDT\•89 OR DDT\•121 TH N 5580 ELSE 5430 
5580 CLS:PRINTTAB(0,10);"Mount plate on holder,then" 
5590 PRIN'M'AB(0,12) ;"press any key to continue." 
5600 IGG\aGET ' 
5610 PROCsettle 
5620 If SB\•32 THEN 5860 
5630 PROCexpose 
5640 IF ST\•32 THEN 5860 
5650 IF expno\•1 THEN 5790 

Usa ABAC routine to 
find peak. 

5660 FOR expnol\•2 TO expno\ Repeat for number 
5670 TIHE•O of exposures. 
5680 PROCstart Start traverse. 
5690 STPNUH\•STPNUM1\:CNTTM\•CNTTH1\:inttime\•inttimel\ 
5700 PRIN'M'A8(5,6) ;"Traversing by ";STPSIZE;" mm." 
5710 PROCpeak 
5720 PROCstop 
5730 IF SB\•32 THEN 5860 
5740 PROCsettle 
5750 IF SB\•32 THEN 5860 
5760 PROCexpose 

ABAC during traverse. 
Stop traverse. 

Hold on peak during 

5770 IF ST\•32 THEN 5860 exposure. 
5780 NEXT 
5790 PRINTTAB(O, 10) ;"EXPOSURE YINISHED-C!..OSE THE SHU'M'ER" 
5800 PRINTTAB(O,ll) ;"***********************************" 
5810 VDU 28,0,24,39,23 
5820 PRINTTAB(3);"PRESS THE SPACE BAR TO CONTINUE" 
5830 REPEAT:UNTIL INkEY(-99):CLS 
5840 *I'Xl5,0 
58 50 VDU 2 !I, 0, 2 2, 3 9, 3 
5860REM 
5870 ENDPROC 
5880 REM 
5890 REM INTRO FOR STEP SCAN ROUTINE 
5900 REM *************************** 

DEFPROCsetupscan 
CLS:PRINTTAB(B,O) ;•step Scanning Routine• 
PRINTTA8(8,1) I"*********************" 

5910 
5920 
5930 
~940 

5950 
5960 
5970 
5980 
5990 
6000 
6010 
6020 
6030 
6040 
6050 
6060 
60"10 
6080 
6090 
6100 
6110 
6120 
6130 
6140 
6150 
6160 
6170 
6180 
6190 
6200 
6210 
6220 
6230 
6240 
6250 
6260 
6270 
6280 
6290 
6300 

PRINTTAB(0,3) ;•eerore proceeding,drive traverse table • 
PRINTTAB(0,5) ;•to one extreme of the desired traverse.• 
PRINTTAB(0,7);"Then press space bar to continue.• 
REPEAT:UNTIL INKEY(-99) 
Cl.S: PROCabac 
ENDPROC 
REM 
REH START TRAVERSE 
REM ************** 
DEPPROCstart 
Y\•PNTR\(I..oC\)+64:CALL step 
Y\•PNTR\(I..oC\):CALL step 
ENDPROC 
REM 
REH STOP TRAVERSE 
REM ************* 
DEFPROCstop 
Y\•PNTR\(I..oC\)+128:CALL step 
Y\•PNTR\(I..oC\):CALL step 
ENDPROC 
REH 
REH LET ABAC SETTLE IN STEP SCAN 
REM **************************** 
DEFPROCsettle 
CLS:PRINTTAB(5,4) ;"LETTING ABAC SETTLE" 
PRINTTA8(5, 5) ;"**•*********••*****" 
STPNUH\•2:CNTTH\•200:inttime\•6000 
TIHE•O:PROCpeak 
IF SB\•32 THEN ENDPROC 
CLS:PRINTTA8(5,4) ;"LETTING ABAC SETTLE" 
PRINTTA8(5, 5) :"***************•***" 
STPNUM\•1:CNTTM\•200:inttime\•6000 
TIHE•O:PROCpeak 
VOU 28,16,2,39,0:CLS:VDU 28,0,24,39,2J:CLS 
VDU 28,0,2,15,1:CLS:VDU 28,0,22,39,3 
ENDPROC 
REH 

6)10 REM GIVE A DELAY (FOR EXPOSURE) 
bl20 REM *************************** 
6330 DEFPROCexpose 
6340 CNTTH\•lOO:TlHE•O:PROCconcount 
6350 CI~:VDU 28,0,22,39,3 
6360 ENDPROC 
6370 REM 
6380 REM DISPLAY EXPOSURE T1ME 
6)90 REM ********************* 
6400 DEY PROCdispexptm 

Sand PB6 Hiqh. 
Send PB6 low. 

Send PB7 h iqh. 
Send PB7 low. 

Use A8AC routine to 
aake sure tbat you are 
on the peak of the 
rocking curve. 

Stepsize 2flOOOth dog., 
counttime 2 sec tor 1 min 

Stepsize lf1000th dog., 
count lme 2aec tor 1 min. 

Display reaaininq time 
ot exposure. 
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6410 secslCt\•exptime\-TIH£+6000 
6420 hrsl!t\asecslft\ DIV 160000 
6430 minslCt\•(secslCt\ HOD 160000) DIV 6000 
6440 VDU28,0,3,39,2:PRINT;"t:xposing Cor ";hrslft\ ;• Hours and ";minsiCt\;" 
6450 VDU 28,0,22,39,3 
6460 ENDPROC 
6470 REM 
6480 REM DISPLAY EXPOSURE NUMBER 
6490 
6500 
6510 
6520 
6530 
6540 
6550 
6560 
6570 
6580 
6590 
6600 
6610 
6620 
6630 
6640 
6650 
6660 
6670 
6680 
6690 
6700 
6710 
6720 
6730 
6740 
6750 
6760 
6770 
6780 
6790 
6800 
6810 
6820 
6830 
6840 
6850 
6860 
6870 
6880 
6890 
6900 
6910 
6920 
6930 
6940 
6950 
6960 
6970 
6980 
6990 
7000 
7010 
7020 
7030 
7040 

REM *********************** 
DEF'PROCdispexpno 
VDU 28,0,2,15,1 
PRINT;"Exposure no:•;expnol\ 
VDU 28,0,22,39,3 
ENDPROC 
REM 
REM COUNT AND MOVE A-CLOCKWISE PROCEDURE 
REM ************************************ 
OEF'PROCaclkcount 
CALL clear 
CALL start 
BBC\-TIHE 
PROCanticl 
PROCupdate 
PROCavgp(PSN\) 
SB\•INKEY(O) 
REPEAT:UNTIL TIME >• BBC\+CNTTM\ 
CALL stop 
F'OR I\•0 TO 7 
X\•,CO+I\ 
CALL read:HUM\(I\)•?,82 

Count and aove motor 
fro• curaor control keya. 

NEXT 
Xl•NUH\(0)+256*HUM\(1)+655l6*NUM\(2)+16777216*HUM\(3) 
X2•NUM\(4)+256*NUM\(5)+655l6*HUM\(6)+16777216*HUM\(7) 
CNTSEC\•INT(X2*1E7/X1+0.5) 
ENDPROC 
REM 
REM COUNT AHO MOVE CLOCKWISE PROCEDURE 
REM ************************************ 
OEF'PROCclkcount 
CALL clear 
CALL start 
BBC\•TIHE 
PROCclock 
PROCUpdate 
PROCavgp(PSN\) 
SB\-INKEY(O) 
REPEAT:UNTIL TIME >- 88C\+CNTTM\ 
CALL stop 
FOR U-0 TO 7 
x•-•co+n 
CALL read:NUM\(I\)-?'82 
NEXT 
Xl-NUM\(0)+256*HUM\(1)+655l6*HUM\(2)+16777216*NUM\(3) 
X2-NUM\(4)+256*NUM\(5)+655l6*NUH\(6)+16777216*NUM\(7) 
CNTSEC\-INT(X2*1E7/Xl+0.5) 
ENDPROC 
REM 
REM NO COUNTS PROCEDURE 
REM ******************* 
DEPPROCnocounta 
PROCcount 
SB\-INKEY (O) 
PRINTTAB(H\*lO,V\);CNTSEC\:PROCtab 
PROCavg(CNTSEC\) 

Routine to stop 
mova•ent of motors 
when count• drop to 
lese than 20Hz-displaying 
counts on screen. 

7050 IF CNTSEC\>20 OR S8\mJ2 THEN ENDPROC ELSE 7010 
7060 ENDPROC 
7070 REM 
7080 
7090 
7100 
7110 
7120 
'11 )0 

7140 
7150 
7160 
7170 
7180 
7190 
7200 
7210 
7220 
7230 
7240 
7250 
7260 
7270 
7280 
7290 
7300 
7Jl0 
7320 
7))0 

REH MOVE WITH C.CNTRL KEYS AND COUNT 
REM ******************************** 
DEF PROCcountmove 
C!..';: IN PUT 1"AB ( fo, 3) ; "Count time"; CNTTM\ 
INPUT TAB(l0,5) ;"Step size":STPNUM\ 
*PX 4,1 
CLS:VDU 28,0,24,39,23 . 
PRINTTAB(S) ;"Press space bar to stop•;:vou 28,0,22,39,3 
•PX 12,1 
COUNTMAX\-0 
H\-O:V\-8 
REPEAT 
KV\-INKEY(O) 
*PX15,1 
IF' KV\-137 THEN PROCclock ELSE 7240 
PROCUpdate 
IF KV\-136 THEN PROCanticl ELSE 7260 
PROCupdate 
PROCcount 
PRINTTAB(H\*10,V\) ;CNTSEC\:PROCtab 
IF CNTSEC\>COUNTMAX\ THEN PROC.ax(CNTSEC\) 
UNTIL KV\-32 

CLS:VDU 28,0,24,39,23:CLS:VDU 28,16,1,39,0:CLS:VDU 28,0,22,39,3 
*PX 12,0 
*PX 4, 0 
ENDPROC 
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Appendix B 

B.1 Introduction 

Appendix B 

Tables of ~g and P2 

This appendix contains tables of extinction 

distances,t~ and penetration depths, P2 for a 

variety of reflections and a continuous range of 

wavelengths. The tables are calculated using equations 5.2 

and 5.4 using the values of fa and ~contained in [1]. 
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Appendix B 

Cr11wtal T\,jpe 

Reflection h,k,l 

: WaveliPnQth 
<Anc;stroms> 

: Angle of 
: Incidence,<DeQ's> 

Bragg Angle 
<Oeg's) 

I Si 

I I I I 

I I I ~ 

Extinction 
Distance, <Microns) 

:----------------------------· 
: Peneotration Depth, <Hic:rons>: 

·--------------·--·-------------------+------------------·--------------------+----------------------------· 
1. 3~ 1. 30 40.24 5.40 2.30 

1.40 3.12 42.06 8.10 4.82 

1. 4~ 4.99 43.93 9.91 6.76 

1.~0 6.92 ... ~.86 11.30 B.~ 

I.~~ 8.93 47.87 12.43 9.37 

1. 60 11.02 49.96 13.37 10.21 

1. 6~ 13.20 ~2.14 14.17 10.82 

1. 70 1~.49 54.43 14.86 11.26 

I. 7~ 17.92 56.86 1~.47 11.~5 

!.Be 20.52 59.46 16.01 II. 74 

1.95 23.33 62.27 16.48 11.89 

1. 90 26.44 65.38 16.91 11.81 

1. 95 29.97 68.91 17.30 11.83 

2.00 34.18 73.12 17.65 II. 74 

2.05 39.83 78.77 17.97 11.65 
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Appendix B 

c,.wstal Twpe I 81 

Surtac:e h,k,l I I I 1 

Reflec-tion h,k,l I 2 2 0 

+-----------------+-------------------+------------------+--------------------~ 

Waval•nQth 
CAnQstrom.s> 

AnQI• of 
lncid•nce, COeg' s> •' 

:----------------------------· 
Extinction 
Distanc•, O'ticronsl : Pen•tro~tion D•pth, Cl1icrons>: 

+-----------------·-------------------+------------------+--------------------~---------------------------· 

2.2~ 0.61 3~.87 1..14 0.2~ 

2.30 1. ~4 36.80 1. 78 0.~9 

2.35 2.48 37.74 2.21 0.88 

2.40 3.43 38.69 2.56 I. 12 

2.45 4.39 39.65 2.84 1. 34 

2.50 ~.37 40.63 3.08 1. 52 

2.55 6.36 41.62 3.29 1.67 

2.60 7.36 42.62 3.48 1.88 

2.65 8.38 43.64 3.65 1.92 

2.70 9.42 44.68 3.80 2.01 

2.7~ 10.48 4~.74 3.94 2.09 

2.8111 11.56 46.82 4.07 

2.85 12.66 47.92 4.19 

2.9111 13.79 49.1115 4.38 .. 
2.95 14.9/t 511!.20 4.411! 

3.11111! 16.12 ~1.38 4.49 

3.05 17.33 52.59 4.58 

3.10 18.58 53.84 4.66 

3.15 19.86 5~.12 4.73 

3.2111 21.19 ~6.4~ 4.81 

3.25 22.57 57.83 4.87 

3.3111 24.0111 59.26 4.94 

3:35 25.49 60.75 5.00 

3.40 27.05 62.31 5.0~ 

3.1t~ 28.71 63.97 5. II 

3.50 30.46 6~. 72 ~.16 

3.55 32.34 67.6111 ~.2111 

3.6111 3'>.39 69.65 ~.25 

3.65 36.66 71.92 ~.29 

3.7111 39.24 7'>.50 5.3'> 

3.~ 42.34 77.6111 ~.37 

3.8111 46.51 81.77 5.41 
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Appendix B 

I 5J 

Surt.ace h, k, J 1 I I I 

Reflection h, k, 1 I 2 2 4 

~-----------------+-------------------+------------------+--------------------· 

W•velength 
(Angstroms) 

Angle of 
Inc:idenc:e,(Deg's) 

Bragg Angle 
<Deg's) 

:·---------------------------· 
E><tinc:tion 

~-----------------+---~---------------+------------------+--------------------~---------------------------· 
I 

0.75 0.30 19.77 2.57 3.02 

0.80 1.68 21. 15 5.75 13.35 

0,85 3.08 :n.:s:s 7. 41 19.76 

0.90 4.48 23.95 8.56 23.74 

0.95 5.91 2;;.38 9.42 25.88 

1. 00 7.34 26.81 10. 10 26.97 

1.05 8.80 28.27 10.65 27.37 

1. 1111 10.28 29.75 11. 11 27.21 

1. 15 11.78 31.25 11.49 26.79 

1. 20 13.30 32.77 11.81 26.13 

1.25 14.85 34.32 12.09 25.32 

1. 30 16.43 35.90 11.34 24.44 

1. 35 18.05 37.52 12.55 23.53 

1.40 19.69 39.16 12.74 22.61 

1. 45 21.38 "0.85 12.90 21.72 

1.50 23 •. 11 "2.58 13.05 29.~ 

1.55 2".89 "4.36 13. 18 19.9S 

1.60 26.73 "6.20 13.30 19. 16 

1.65 28.63 48.10 13.41 18.37 

I. 70 30.60 50.07 13.50 17.62 

1. 75 32.66 52.13 13.59 16.91 

1.80 34.82 5,.,29 13.67 16.24 

1.85 37.10 56.57 13.75 15.67 

1. 9111 39.52 58,99 13.81 14.93 

1.95 42.13 61.60 13.88 14,42 

2.00 44.98 64.45 13.93 13.87 

2.05 48.16 67.63 13.99 13.38 

2.10 51.85 71.32 14,04 12.86 

2.15 56.43 75.90 14.08 12.41 

2.20 63.47 82.94 14. 12 11.94 
I. 
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Appendix B 

Surtac• h,k,l 

Reflection h,k,l 

W•velen;th 
<An;strooasl 

An;le ot 
In~idencw, <D•;'sl 

I Si 

I 111 111 I 

I 2 2 4 

Br•;; An;l• 
<D•;'sl 

1-----------------------------
E><tinction 
Dist•nce, C"icrons> : Pen•tr•tion D•pth,CMicrons) 

I 

·-----------------+-------------------·------------------+--~-----------------+----------------------------~ 

1.3111 111.64 35.90 2.64 1.29 

1.35 2.26 37.52 4.77 3.93 

1. 40 3.90 39.16 6.1118 5.95 

1.45 5.59 40.85 7.05 7.49 

1.50. 7.32 42.58 7.82 8.6~ 

1.55 9.10 44.36 8.46 9.50 

1.6111 1111.94 46.20 9.00 10. IJ 

1.65 12.84 48.10 9.47 1111.57 

I. 70 14.81 50.07 9.87 11!1.87 

1. 75 16.87 52.13 1111.23 11.05 

1. Bill 19.03 54.29 11!1.54 II. 15 

1. 85 21.31 56.57 II!I.BJ 11.22 

I. 9111 23.73 58.99 II. 08 11.10 

1.95 26.34 61.60 11.31 11.07 

2.00 29.19 64.45 II. 52 1111.95 

2.1115 32.37 67.63 II. 71 11!1.84 

2.1111 36.06 71.32 11.89 11!1.66 

2.15 41!1.64 75.90 12.1!15 11!1.49 

2.20 47.68 82.94 12.20 10.28 
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