
Durham E-Theses

Inter-module code analysis techniques for software

maintenance

Calliss, Frank William

How to cite:

Calliss, Frank William (1989) Inter-module code analysis techniques for software maintenance, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6550/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6550/
 http://etheses.dur.ac.uk/6550/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

School of Engineering and Applied Science

(Con1puter Science)

Inter-Module Code Analysis Techniques for Software

Maintenance

Frank William Calliss

Ph.D.

1989

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior wrinen consent and information derived

from it should be acknowledged.

Abstract

The research described in this thesis addresses itself to the problem of maintaining

large, undocumented systems written in languages that contain a module con

struct. Emphasis is placed on developing techniques for analysing the code of

these systems, thereby helping a maintenance programmer to understand a sys

tem. Techniques for improving the structure of a system are presented. These

techniques help make the code of a system easier to understand.

All the code analysis techniques described in this thesis involve reasoning with,

and manipulating, graphical representations of a system. To help with these graph

manipulations, a set of graph operations are developed that allow a maintenance

programmer to combine graphs to create a bigger graph, and to extract subgraphs

from a given graph that satisfy specified constraints.

A relational database schema is developed to represent the information needed

for inter-module code analysis. Pointers are given as to how this database can be

used for inter-module code analysis.

Acknow liedlgements

This thesis is dedicated to my mother and sister. I would like to thank them

for the support and encouragement that they have given me.

I wish to thank Mr. B.J. Cornelius for agreeing to be my supervisor, and for

the invaluable advice and encouragement that he has given me.

I wish to thank Chuck Bilbe and Sun Microsystems for allowing me to refer in

this thesis to parts of the code for the rn2dep program.

This Ph.D. thesis has been produced using the lffiTEX and BIBTeX text format

ting system. The typesetting of the VDM specifications is done using the vdrn style

file written by Mario Wolczko of the University of Manchester.

This work was supported by a studentship from the Science and Engineering

Research Council.

CopyJright

The copyright of this thesis rests with the author. No quotation from it should

be published without his prior written consent and information derived from it

should be acknowledged.

11

1 Introduction

1.1 Purpose of the Research

1.2 Motivation

1.3

1.4

Objectives of the Research

1.3.1

1.3.2

1.3.3

Assumptions .

Goals

Anticipated Benefits

Thesis Structure

2 Code Analysis Techniques - An Overview

2.1 What is Code Analysis?

2.2

2.3

Data Flow Analysis . . .

2.2.1

2.2.2

2.2.3

Static Data Flow Analysis

Dynamic Data Flow Analysis

Other Data Flow Analysis Work .

Program Slicing

lll

1

1

2

3

3

4

5

6

8

8

9

12

13

14

16

2.4

2.5

2.6

Call Graphs

Program Transformation Systems

2.5.1

2.5.2

Restructurers

Formal Transformations

Summary

3 Modules and Modularisation

3.1

3.2

What is a Module?

3.1.1

3.1.2

3.1.3

Definition .

Abstraction Mechanism

Protection Mechanism .

The Various Forms of Module Constructs .

3.2.1 Abstract Data Types

21

22

23

24

25

28

28

28

30

34

35

36

3.2.2 Module Constructs Providing General Information Hiding 37

3.3

3.4

System Decomposition into Modules

3.3.1

3.3.2

3.3.3

3.3.4

Functional Decomposition

Information Hiding . . .

Object-Oriented Design

Module Interconnection Languages

Summary

4 Interconnection Graphs

IV

42

42

44

47

49

51

53

4.1

4.2

4.3

4.4

Introduction

Graph Terminology

Interconnection Graph

4.3.1

4.3.2

Existing Interconnection Graphs .

Interconnection Graph used in this Thesis

Three Forms of Interconnection Graphs

5 Graph Operations

5.1

5.2

5.3

Subgraph Operators

Graph Union

5.2.1

5.2.2

Simple Graph Union

Distributed Graph Union .

Graph Intersection

5.3.1

5.3.2

Simple Graph Intersection

Distributed Graph Intersection

5.4 Graph Slicing .

5.5

5.4.1

5.4.2

8-Slicing

a,B-Slicing

Examples of the Uses of Graph Operations

5.5.1

5.5.2

5.5.3

Disjoint Graphs ..

Proper Subgraphs .

Abstract Data Types

v

53

54

57

60

63

67

69

70

73

73

76

76

77

79

80

80

86

97

98

99

99

6 Module-to-Module Interconnection Graph HH

6.1 Introduction 101

6.2 Characteristics of the Module-to-Module Interconnection Graph 103

6.2.1 The local-to Dependency . 106

6.2.2 The uses Dependency . . . 109

6.2.3 The instantiates-to Dependency 113

6.2.4 The inherits-from Dependency . 116

6.3 Analysis of the Module-to-Module Interconnection Graph . 120

6.3.1 Module Classification via the uses Dependency .. 122

6.3.2 Other Forms of Analysis and Module Classification 125

6.4 An Example of the Analysis of the Module-to-Module Interconnec-
tion Graph . 132

'l Entity-to-Module Interconnection Graph 135

7.1 Introduction 135

7.2 Characteristics of the Entity- to-Module Interconnection Graph 137

7.2.1 The injected Dependency . 139

7.2.2 The imported Dependency. 141

7.2.3 The exported Dependency . 144

7.2.4 The inherited Dependency 146

7.3 Analysis of the Entity-to-Module Interconnection Graph 148

7.3.1 Anomaly Detection 148

VI

7.3.2 Module Classification 150

8 Entity-to-Entity Interconnection Graph

8.1 Introduction

154\

154

8.2 Characteristics of the Entity-To-Entity Interconnection Graph 155

8.3

8.2.1

8.2.2

8.2.3

8.2.4

The delimited-by Dependency

The of-type Dependency . . .

The parameter-of-type Dependency .

The used-within Dependencies

Analysis of the Entity-To-Entity Interconnection Graph .

9 Module Factoring

9.1 Introduction ..

9.2 The Five Graphs

9.3

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

The Type-Connection Graph.

The Call Graph

The Reference Graph .

The Variable/Type Association Graph

The Variable Usage Graph ..

Three Module Factoring Techniques .

9.3.1

9.3.2

Grouping by Type-Families

Grouping by Imports

Vll

156

157

159

160

164

171

171

173

174

177

178

179

181

182

182

189

9.3.3 Grouping by State Variables

9.4 Summary

].0 JDesign of a Relational Database

10.1 Introduction

10.2 Reasons for Choosing a Relational Database

10.3 Relational Database Terminology

10.3.1 The Relational Algebra ..

10.4 Rationale for the Relational Database Design

10.4.1 Four Normal Forms ..

10.4.2 Relations for Modules

10.4.3 The Relations for a Region .

10.4.4 The Relations for Type Entities

10.4.5 The Relation for Entities Declared in a Region .

10.4.6 An Example

10.5 The Full Relational Database Scheme

10.6 A Prototype Database

11 The Use of a Relational Database

11.1 Introduction

11.2 The Graph Structure

11.2.1 Dependency Derivation .

Vlll

195

201

203

203

204

205

207

212

213

215

220

222

224

226

227

228

234

234

235

237

11.3 The Graph Operations 249

11.3.1 Subgraphs .. 249

11.3.2 Graph Union 250

11.3.3 Graph Intersection 251

11.3.4 15-Slicing . 254

11.3.5 a,B-Slicing 256

12 Conclusions 262

12.1 Have the Goals been Achieved? 262

12.2 Future Directions 264

A Glossary of Terminology 266

B Glossary of Notation 275

C Abstract Syntax 277

D The Database Relations 279

Bibliography 296

Index 317

IX

2.1

2.2

2.3

The Program used for Data Flow Analysis

A Segment of a Pascal Program .

Three Example of Program Slices

10

17

17

2.4 Program Slice Formed from the Criterion ((1,10) ,{Z,TOTAL}) 19

3.1 An Example from a Language that Provides a Simple Client View 30

3.2 Axioms Depicting a Stack 31

3.3 An Example of an Advanced Client View 32

4.1 An Undirected Graph .

4.2 A Directed Graph .

4.3

4.4

4.5

4.6

4.7

A Labelled Graph .

A Modula-2 Fragment for Showing Entity Dependencies .

Interconnection Graph Representation of Figure 4.4

Description of an Interconnection Graph in VDM

Example of Block Numbers in a Module

55

56

57

58

59

64

6.5

5.1 Some Examples to Illustrate Subgraphs 71

X

5.2 Two Labelled Graphs

5.3

5.4

5.5

5.6

Union of the Graphs in Figure 5.2 .

Graph Union for Two Nodes with the same Names

The Results of Two Graph Intersection Operations

Program Segment to be Used for Graph Slicing

5.7 Entity-to-Entity Graph for Figure 5.6

5.8 Three 8 slices of Figure .5. 7

5.9 The Slice ~~~~(Ge(.N e, £e), ({ Tl, Vl, V2}, { Pl, T3}))

73

74

75

77

82

83

84

87

90

92

5.12 The Strict Intersection of the Graphs in Figures 5.7, 5.10 and 5.11 95

6.1 A Program Module Containing a Local Module Declaration . . 103

6.2 Nodes for a Module-to-Module Interconnection Graph ' . 104

6.3 Example of Two Modules Connected by Two Dependencies . 106

6.4 The Packages in Ada's TEXLIO 107

6.5 The Module-to-Module Interconnection Graph for TEXLID 108

6.6 The Packages for Heads- Up Display 110

6.7 The Module-to-Module Interconnection Graph for Heads-Up Display 111

6.8 Modula-2 Module Declaration with Two Forms of Imports . 112

6.9 The Module-to-Module Interconnection Graph for Figure 6.8 112

6.10 Partial Declaration of a Generic Cluster in Clu 114

Xl

6.11 Two Instantiations of a Parameterised Cluster . . . 116

6.12 Declaration of a Module using Multiple Inheritance 117

6.13 The Module-to-Module Interconnection Graph for Figure 6.12 118

6.14 Example of a Cyclic Inheritance Declaration 119

6.15 The Inheritance Graph for part of the Eiffel Library . 128

6.16 Module-to-Module Interconnection Graph for m2dep . 133

7.1 Example of Entities being Injected into a Package 139

7.2 The Entity-to-Module Interconnection Graph for Figure 7.1 140

7.3 Package Specification for Showing imported Dependencies . 142

7.4 The Entity- to-Module Interconnection Graph for Figure 7.3 143

7.5 An Eiffel class with Selective Export 144

7.6 The Entity-to-Module Interconnection Graph for Figure 7.5 145

7.7 The Entity-to-Module Interconnection Graph Showing Inheritance 146

7.8 The Entity-to-Module Interconnection Graph Showing Inheritance
with Overriding 147

8.1 The Declaration of Range Types in Ada 156

8.2 The Entity-To-Entity Interconnection Graph for Figure 8.1 157

8.3 Entity Declaration for Showing of-type Dependencies . . 158

8.4 The Entity-To-Entity Interconnection Graph for Figure 8.3 159

8.5 Entity Declarations for Showing parameter-of-type Dependencies 160

8.6 The Entity-To-Entity Interconnection Graph for Figure 8.5 160

Xll

8.7 Entity Declarations for Showing used-within Dependencies 162

8.8 The Entity-To-Entity Interconnection Graph for Figure 8.7 162

8.9 The Definition Module for IntStack . . . 166

8.10 The Implementation Module for IntStack 167

8.11 The Entity-To-Entity Interconnection Graph for IntStack 168

8.12 The Entity Group Associated with G 1 (N 1, £1) 168

8.13 The Entity Group Associated with G2 (N 2 , £ 2) 169

9.1 Two Examples of Type-Families 174

9.2 Graphical Interpretation of the Dependencies Given in Figure 9.1 175

9.3 Variable Declaration that is Dependent on Two Type-Families 180

9.4 The Definition Module for UnixSupport 186

9.5 The Entity-To-Entity Interconnection Graph for UnixSupport 188

9.6 The Type-Connection Graph for UnixSupport 188

9.7 The Call Graph for UnixSupport . 189

9.8 The Three New Definition Modules 190

9.9 The Module-to-Module Graph for the Second Version of m2dep . 191

9.10 The Definition Module for IO ... 197

9.11 The Implementation Module for IO 198

9.12 The Entity-to-Entity Graph for IO 199

9.13 The Call Graph for IO 200
('I

XIII

10.1 An Example of a Relation 206

10.2 The Result of O'part-description="nut"(stock) 208

10.3 The Result of a project Operation 209

10.4 The Relation location 209

10.5 The Relation Resulting from stock X location 210

10.6 A Modula-2 Program Module to Demonstrate Entity Declarations 226

10.7 The Relations for the Entity Declarations in Figure 10.6 227

10.8 A Coll_ection of Prolog Facts Constituting the imports and exports
Relations . 229

10.9 Prolog Database Interrogation Programs 230

10.10A Unix Script Recording a Database Query 231

11.1 Modula-2 Module Declarations for local-to Dependency Derivation 242

11.2 The Module-to-Module Interconnection Graph for Figure 11.1 242

11.3 The local-to Relation for the Module in Figure 11.1 243

XIV

7.1 Classes of Entities Associated with Hooch's Taxonomy 152

9.1 The Original Entity Groups for UnixSupport2 .. 193

9.2 The Sets of Importing Modules for UnixSupport2 194

9.3 The Final Entity Groups for UnixSupport2 195

9.4 The Final Entity Groups for IO 197

XV

Analysis techniques are described that can be applied to programs consisting of

interconnected modules"'. These analysis techniques are intended to help mainte-

nance programmers understand the code of large, undocumented systems. Some of

the techniques concentrate on analysing the architectural structure of a system,

while others concentrate on analysing the module interfaces. The proposed tech-

niques lead to methods for analysing the code of a system. These methods, together

with their supporting software tools, can be used by maintenance programmers in

order to understand a large system.

"'In this thesis, words in bold typeface are defined in the glossary given in Appendix A

1

In his Turing award address Dijkstra said,

"As long as there were no machines, programming was no problem at

all; when we had weak computers, programming became a mild problem

and now that we have gigantic computers, programming has become an

equally gigantic problem." [50]

This comment is referring to the problem of designing and implementing large

complex systems that are beyond the intellectual capacity of the programmers

working on them. Dijkstra's comment is equally valid when it comes to maintaining

large complex programs.

As the power of the available machines has grown, so ever more complex pro

grams have been developed that make use of the new power of the hardware. Many

of these programs were written without the aid of any design method and as a re

sult have a very complex structure. This complexity of structure seriously affects

the productivity of maintenance programmers who have to spend over 50% ([33])

of their time on code analysis activities.

Software maintenance is the most costly stage of the software lifecycle, account

ing for between 50% and 80% of software expenditure [90, 108]. An important part

of any software maintenance task is code analysis. Code analysis is performed sev

eral times for any given maintenance task. Before any maintenance operation can

be performed, a maintenance programmer has to have a general understanding of

how a program works, together with knowledge about which sections of the code

are important for the maintenance operation. This information can be obtained

2

by analysing the program code and determining the dependencies that exist be-

tween the different entities. The information gained from this analysis can be

supplemented by information obtained from the documentation. After a proposed

modification has been designed, another code analysis process is performed in order

to ensure that the change will not have any unforeseen side effects. It is therefore

important that techniques are developed that can help programmers in their code

analysis work. An important part of the process of understanding programs writ-

ten in modlule llanguages is determining the role that a module plays within a

system, and determining the nature of the connections between modules. It is the

production of ~echniques in this area that is the goal of the research described in

this thesis.

JLS5 Objectives off the Reseaurch

Jl .3. Jl Assumptions

The work of this thesis is concerned with the analysis of the dependencies
I

between the modules that comprise a software system. As such the work is aimed

at languages that support a module construct as part of the language. In some

languages modules have to be simulated (e.g., in C (86] a . h file can represent the

specification part of a module and a . c file can represent the implementation part).

The special requirements needed to consider such languages will not be addressed

in this thesis.

Lisp-based languages like Flavours [107] and Common Lisp [13] determine many

3

of their inter-module dependencies dynamically. These languages will not be served

by this thesis. Languages like Adat [1), Modula-2 [169], Simula [5] and Eiffelt [104,

105] determine their inter-module dependencies statically, and it is to this form of

module language that the thesis will confine itself.

The research described in this thesis is aimed at the maintenance phase of the

software lifecy~le. The primary objective of the research is to find techniques to help

a programmer understand an undocumented system. To this end, ways to analyse

the architectural structure of a system are developed which give a clue as to what

design strategy, if any, has been used on the system. This involves establishing the

different module hierarchies within a system that one expects from the different

design methods.

At a more detailed level, the role played by individual modules within a system

is established. This helps a maintenance programmer to detect modules that are

playing a particular role within a system. As a result of this, modules can be located

that require closer examination because they belong to a category of modules that

has been identified as being overly complex.

In order to be able to understand the role of a module within a system prop-

erly, it is necessary to derive and classify the nature of the connections between

modules. To do this, techniques are developed to analyse the connections between

modules, and thereby classify the connections according to some of the existing

t Ada is a registered trademark of the U.S. Government, Ada Joint Program Office
tEiffel is a trademark of Interactive Software Engineering Inc.

4

classifications.

Techniques are developed for taking a module that is found to be overly com-

plex, because the module is found to provide several disparate services, and for

breaking it into smaller and simpler modules. By breaking up complex modules

into smaller modules that contain logically related entities, the structure of a sys-

tern is then improved because each of the modules represents a single service.

When dealing with large systems, it is impractical to regenerate the information

on the module interconnections for every code analysis operation. Therefore a

relational database schema is designed that can record the necessary information,

and the thesis provides indicators as to the way in which this database is best

interrogated.

Time constraints make it impossible to study all the applications of inter-module

code analysis for this thesis. Some of the anticipated benefits of this work are briefly

described below. It is hoped to pursue some of these in future work.
'

Cohesion and Coupling

Cohesion is the functional strength of a routine and coupling is a measure of

the dependence between routines. Some cohesion and coupling measures have been

given in the literature for routines [116, 175]. With the module construct which

provides clustering facilities these measures need to be reassessed.

5

For example, Yourdon and Constantine [175] classify two or more routines that

use the same global variable as being commonly coupled. This is regarded as be

ing a bad form of dependence between routines. This form of connection is used

within a module to implement an abstract-state machine or an abstract data type.

Both of these type of modules are classed as being "good". This means that with

the existing measures, bad routine dependencies are needed to create some good

modules. This is an undesirable situation so the existing cohesion and coupling

definitions ought to be modified to take into account :he module construct.

§oftware Metrics

Software metrics are used to determine how good a piece of software is according

to a given criterion. The work of this thesis is concerned with trying to help

maintenance programmers understand modules and module interconnections. If

this work is combined with the proposed work on redefining the cohesion and

coupling definitions, a solid base on which to create a set of software metrics on

the inter-module connections will be established.

1 o4 Thesis Structure

Chapters 2-3 introduce the subject matter of this thesis. Chapter 2 discusses

some of the code analysis techniques from which ideas are borrowed in order to

perform inter-module code analysis. Chapter 3 discusses the module construct and

some of the system decomposition techniques that exist.

Chapters 4-8 discusses the graphs and graph operations that are used for inter-

6

module code analysis. In Chapter 4, the general properties of a graph showing

the dependencies between entities are discussed. In Chapter 5, the notation used

to manipulate graphs is explained. Chapters 6-8 describe three different forms of

interconnection graphs that show dependencies between the entities. Chapter 9

discusses the use of the interconnection graphs in analysing a system and breaking

up a module into smaller modules.

The relational database that is to be used for inter-module code analysis is

described in Chapters 10-11. Chapter 10 describes the design of the relational

database and Chapter 11 describes how this database can be used in inter-module

code analysis.

7

CCCDdie Arrnally§n§ Tcecclliumncqplllce§ ~ Arm

OvceJrvncew

Code analysis is a generic term used to denote those programmer activities

where the primary emphasis is on examining a piece of program code. Code anal

ysis activities take on many different forms, such as: the program derivation and

program proving work of Hoare [71], Dijkstra [52, 53], and Gries (64, 65]; the error

and anomaly detection work of Fosdick and Osterweil (58, 112], Hennell [70], How

den [75], and Hartmann and Robson [66, 67]; and the program understanding work

of Green (63], Shneiderman [140, 141], Johnson and Soloway [81, 82], Letovsky and

Soloway [91, 93, 94].

8

Two important aspects of code analysis are: determining the dependencies be-

tween different entities and analysing the usage of entities. Some of the work in

these areas that has influenced the research direction of this thesis will be described

in the following sections. Section 2.2 describes data flow analysis, where the usage

of variables is analysed in order to determine anomalous usage. Section 2.3 de-

scribes program slicing, where statements are extracted from a program segment

because they affect the value of a designated variable. Section 2.4 describes the

use of call graphs which gives a high level representation of a program's structure.

Finally, section 2.5 describes program transformation systems, a means by which

the structure of a system is improved.

Data flow analysis techniques examine a piece of program code in order to

determine if there are any anomalous uses of variables within that code. Osterweil

and Fosdick [112] give two rules on variable usage in terms of the actions that can

be performed on variables. It is possible for three actions to be performed on a

variable. These are:
I

defined - a value is stored in the variable,

referenced- the value stored in the variable is used,

undefined -it is impossible to state the value stored in the variable.

Consider for example the Pascal (80] program given in Figure 2.1. (The line

numbers in the leftmost column are to aid the discussion of the program and do

not form part of the actual program.)

9

1 PROGRAM ExampleProgram1 (Output);
2
3 VAR inti» int2: INTEGER;
4
5 BEGIN
6 inti:= 10;
7 int2:= inti + 20;
8 WriteLn(int2: 5)
9 END. (* ExampleProgram1 *)

Figure 2.1: The Program used for Data Flow Analysis

Prior to the execution of the statement on line 6, the variables inti and int2

are said to be undefined as no values have yet been given to them. When the

statement on line 6 has been executed, the variable int 1 is now said to be defined

as it has been assigned the value 10 by the assignment statement. The variable

int2 is still undefined. The statement on line 7 performs actions on two variables.

Firstly the variable int 1 is referenced, as its value is needed in order to evaluate

the expression,

inti + 20

The result of this expression is then assigned to the variable int2. Hence the

statement on line 7 causes inti to be referenced and int2 to be defined. During

the statement on line 8, int2 is referenced because its value is used by the

output routine WriteLn. Line 9 marks the end of the program so inti and int2

become undefined as with the termination of the program's execution they lose

their values.

10

The following rules on variable usage are given by Osterweil and Fosdick:

Rule Jl.: a reference must be preceded by a define without an intervening

undefine.

lRtde 2: a defins must be followed by a reference without an intervening

define or undefine.

Violation of either rule constitutes an anomalous variable usage.

Using the alphabet {D, R, U} torepresent the actions defined, referenced and

undefined respectively, the path expressions PURQ, PDDQ and PDUQ, where P and Q

are arbitrary path expressions, represent the three anomalous paths that Fosdick

and Osterweil {58] identified as being the violations of the above rules on variable

usage.

PURQ - Undefined Reference - The value of a variable is used before the vari

able is given a value. This violates rule 1.

PDDQ - Double Definition - The value of a variable is changed without the

old value being used. This violates rule 2.

PDUQ - Lost Definition -The value of a variable is undefined without

the old value being used. This violates rule 2.

Much work has appeared in the computing literature on how to perform data

flow analysis. Initially data flow analysis was performed statically, but it proved

necessary to develop dynamic data flow analysis techniques because there are

classes of data flow anomalies that can only be detected at run time. Some of

the different data flow analysis techniques are described below.

11

Fosdick and Osterweil developed algorithms for performing static data flow

analysis [57, 58]. These algorithms make use of some of the work on global flow

optimisation, in particular, live-variable analysis and available expression analysis.

(An explanation of live-variable analysis and available expression analysis is given

by Aho et. al. [7].) Fosdick and Osterweil's data flow analysis technique involves the

analysis of the control flow graph of a program where .a node represents a program

statement, and an edge represents a possible execution sequence. For example, the

edge (na, np) ~enotes that there is a path through the program code such that the

statement associated with the node np is executed after the statement associated

with the node na. DAVE [112], was developed by Fosdick and Osterweil to analyse

programs written in Fortran 66 [3]. Subsequent work by Jachner and Agarwal [79]

corrected some of Fosdick and Osterweil's algorithms as these algorithms sometimes

incorrectly detected data flow anomalies. Jachner and Agarwal also provide some

new data flow analysis algorithms which have half the storage requirement and

twice the execution speed of the Fosdick and Osterweil algorithms.

Initially the work on data flow analysis was aimed at Fortran. As Fortran does

not require that variables be explicitly declared before they are used, it is possible

for typographical errors in a program to go undetected. Data flow analysis can help

detect this form of error. Since then data flow analysis has been usefully applied

to other languages like C and PL/1 [4], and is used in test data generators.

Wilson and Osterweil [164] have developed Omega, a static data flow analysis

tool for C [86] programs. C, unlike Fortran, allows dynamic variables. A dynamic

variable is a variable whose associated storage is allocated and deallocated as the

program is being executed. This dynamic property hinders the ability to use static

12

data flow analysis. In order to perform static data flow analysis on C programs,

Wilson and Osterweil had to restrict the possible pointer operations to a small sub

set of those that C allows. Despite this restriction however, Wilson and Osterweil's

data flow analysis technique has been shown to be of value in regression testing

C programs. TRICS [131] (Testing by Regression and Integration of C Software)

is a program testing tool developed by Raither and Osterweil that helps prepare

test data for C programs. Sarraga developed PROBE [137], a static data flow

analysis tool for PL/1 programs. As with Omega, ~ROBE can only work with

programs written in a subset of the intended language. In order to overcome these

restrictions, it is necessary to perform dynamic data flow analysis.

The objectives of dynamic data flow analysis are the same as those of static data

flow analysis, namely the detection and reporting of any data flow anomalies within

a program. The difference is that with dynamic data flow analysi's the anomalies

are detected as the program is being executed.

Huang [76] introduced the fundamental aspects of dynamic data flow analysis.

Every variable in a program must have associated with it a status variable, that

records either the last action performed (referenced, defined or undefined) or

the fact that the last action was anomalous. The value of a status variable is

updated by the invocation of a status transfer function.

Huang used dynamic data flow analysis to tackle the problem of performing data

flow analysis on arrays. Static data flow analysis cannot handle arrays properly as

the appropriate array index is often only determinable at run time, e.g., with,

13

Read!nt(i);

Temp:= !ntArray[i];

Huang's dynamic data flow analysis technique have been extended by several

authors. Calliss and Cornelius [21) show how dynamic data flow analysis can be

used with C programs. Status variables have been developed that can record status

information on compound structures like struct and union, as well as on pointer

variables. In order to do this, new status transfer functions were developed that

cope with pointer and structure operations. Although Huang's techniques only

finds one anomaly per variable, Calliss and Cornelius' data flow analysis technique

allow more than one data flow anomaly to be found. Similar work by Chen and

Poole [28) has also produced dynamic data flow analysis techniques for C programs.

With the static data flow analysis techniques mentioned in subsection 2.2.1,

the result of performing data flow analysis on a routine must be known before the

result, of a call to that routine can be assessed. With recursive procedures this is

not possible. However, Fairfield and Hennell [56] have developed static data flow

analysis techniques that can cope with recursion.

Data flow analysis techniques have been developed for concurrent software by

Taylor and Osterweil [149) and Osterweil et. al. [113]. At the heart of static data

flow analysis are algorithms which operate on an annotated graphical representa

tion of a program. With sequential programs, this graphical representation is the

control flow graph (or flowgraph) whereas for concurrent software it is the process

14

augmented flo'U)graph [148]. A process augmented graph is formed by connecting

the flowgraphs representing the individual processes. Data flow anomalies in con-

current software are divided into those anomalies that must occur and those that

may occur depending on the state of one of the processes.

An alternative technique for performing data flow anomaly detection is given by

Bergeretti and Carre [12] and Carre [27]. This technique is based on information

flow analysis. More information is gathered on variable usage than with data flow

analysis and the number of anomalies than can be detected statically is increased.

Information-flow analysis allows tests for ineffectiveness of statements and variables

and for loop stability which usefully extend the class of anomalies that can be

detected statically. The information-flow analysis techniques of Bergeretti and

Carre have been incorporated in SPADE (the Southampton Program Analysis and

Development Environment).

Data flow analysis can be used for both intra-procedural and inter-procedural

code analysis. With static data flow analysis, the speed suffers greatly as the

number of routines that have to be analysed increases. With dynamic data flow

analysis tools the amount of output generated by a program run is potentially very

large. These points indicate that, with interactive code analysis tools, data flow
"

analysis is best suited to intra-procedural code analysis or to inter-procedural code

analysis of small sections of a program.

15

Program slicing is a form of program decomposition based on control flow and

data flow analysis. The concept of the program slice was introduced by Weiser

in [158, 159, 160]. A program slice, S, from a program, P, is a sequence of statements

where the order of the statements in S is the same as in P. A program slice S, from

a program P is obtained by projecting the statements from P, that conform to some

slicing criterion. This will be denoted by,

where C is the slicing criterion being employed. A slicing criterion is an ordered

tuple of the form,

statement-range, vars-of-interest

For a particular slicing criterion, the value for statement-range is the range of

statements over which a program is to be sliced; the value for vars-of-interest is

some subset of variable identifiers that are visible in the given statement range.

When: a program is sliced in this way, the statements in the given range that do

not affect the value of one of the chosen variables of interest are deleted to produce

the program slice which contains all the statements in the chosen range that affect

the chosen variables of interest.

Consider for example, the segment of a Pascal program given in Figure 2.2.

Figure 2.3 gives three different slices for this program segment. Let P be the

program segment in Figure 2.2. The program slice in Figure 2.3(a) represents the

16

1 READ(X, Y);
2 TOTAL:= 0 . 0 ;
3 SUM:= 0.0;
4 IF X <= 1
5 THEN SUM:= Y
6 ELSE BEGIN
7 READ(Z);
8 TOTAL:= X * Y
9 END;

10 WRITE(TOTAL, SUM);

Figure 2.2: A Segment of a Pascal Program

.READ(X, Y);
IF X <= 1

THEN
ELSE READ(Z);

(a)

((1,10),{Z})

READ(X, Y);

(b)

((1,10),{X})

READ(X, Y);
TOTAL:= 0.0;
IF X <= 1

THEN
ELSE TOTAL:= X * Y;

(c)

((1,10),{TOTAL})

Figure 2.3: Three Example of Program Slices

17

slicing operation,

P{(1,10),{Z}~Sl

The input statement READ (X~ Y) is included in the slice because the value of

X affects whether the second input statement is executed or not, and it is this

statement that affects the value of Z. The program slice in Figure 2.3(b) represents

the slicing operation,

P{(l, 10), {X} ~52

This time the variable of interest is X. The condition test on line 4 and the as

signment statement on line 8 of the program segment P are not included in the

program slice because although they use the value of X they do not affect its value.

The program slice in Figure 2.3(c) represents the slicing operation,

P{(1,10),{TOTAL}~S3

It is possible for a slicing criterion to contain more than one variable of interest.

Consider for example the slicing operation,

P((1,10),{Z,TOTAL}~S4

This slicing is regarded as an amalgam of the slicing with respect to each of the

variables. Thus,

where l±l denotes an amalgamation operator. This slice is shown in Figure 2.4. This

program slice is an amalgam of the program slices given in Figure 2.3(a) and (c).

18

READ(X. Y);
TOTAL:= 0 . 0;
IF X <= 1

THEN
ELSE BEGIN

READ(Z);
TOTAL:= X * Y

END

'

Figure 2.4: Program Slice Formed from the Criterion ((1.10) .{z. TOTAL}}

Weiser implemented a program slicer for programs written in Algol-W. The

implementation of this program slicer is described in [160). It was used in experi

ments to determine if programmers use slices when debugging programs [158). The

experiments showed that there is evidence that this in fact true. This conforms to

an analogous experiment conducted by Soloway and Erhlich [145) where they deter

mined that programmers used program plans when analysing programs. Letovsky

provides the following definition of program plans in [92]

" ... the cliches of prograJnming, the familiar idioms and algorithms

that make up a programmer's expertise".
I

Work on program slicers has been undertaken by other authors but this work

has mainly been confined to making the slicing algorithms faster {for example

Leung and Reghbati (95]). Ottenstein and Ottenstein (114] describe a graph struc-

ture called the program dependence graph, which allows programs to be sliced in

linear time and the redundant statements on multi-statement lines are stripped

out. (Weiser's program slicer makes use of statement line numbers so with multi-

statement lines it is possible for redundant statements to be included in the program

19

slice.)

Lyle and Gallagher [100] show how program slicing can be of value to the mod

ification and testing phases of software maintenance, by slicing out the portions

of code that needs to be modified. The effect of a proposed modification can be

determined by performing appropriate slices. Lyle and Gallagher also include out

put statements in a program slice, because although an output statement does not

affect the value of a variable, it was found that programmers found the inclusion of

output statements in a program slice helpful when trying to understand a program.

Ambras and O'Day [8] describe how in the MicroScope system, program slices

are used in conjunction with execution histories (a log of control flow and data

structure changes), in order to understand why certain events happened when a

program was executed. For example, why was a variable set to a particular value,

or why was a particular branch taken in the control flow.

Program slicing is strictly an intra-procedural code analysis technique. If a

program slice is to be performed over a routine call then only the call statement

is included in the program slice. In order to obtain the statement sequence from

the called routine that affects the selected variables of interest, a separate program

slicing operation must be performed on the routine. The intra-procedural nature of

program slicing means that its main value is when a programmer wants to obtain

a detailed picture of how a section of code works, and it is of limited value when

global variables are being considered.

20

The above code analysis techniques make use of control flow graphs in order to

perform the desired analysis. With modern high level languages, there is another

form of graph that can convey meaningful information about a program- the

calil graph. A call graph is a directed graph that represents the dynamic relations

between routines. A node of a call graph denotes a routine and an edge denotes

the calling of one routine by another. The direction' of the edge indicates which

routine is the caller and which routine is being called. Consider for example, an

edge (n..\, nil). This is an edge going from n" to nil and represents the calling of the

routine denoted by nil by the routine denoted by n". Techniques for constructing

the call graph of programs have been described by Ryder [134] for Fortran 66 and

Cooper [36] for Pascal.

The call graph forms the backbone of many code analysis techniques where

inter-procedural analysis is to be performed. When trying to understand a program,

it is important to be able to view a program from different levels of abstraction.

The call graph provides a means of examining a program's structure at a higher

level than the statement level, which is depicted by the control flow graph.

Shneiderman et. al. [142, 143] use call graph information in their program brow

ser. This program browser is a hierarchical browser that has the objective of making

the program's structure more visible to programmers. The programmer is presented

with a piece of program text together with a list of callable routines. As the pro

grammer moves through the program text the list of callable routines is automati

cally updated so that the list of callable routines is always in synchronisation with

the program text being examined. Other uses of call graphs that have appeared in

the computer literature include: Sengler's description of how call graph informa-

21

tion is used by programmers to divide a program into manageable segments [139],

Khun and Holliss' automatic documentation system for PL/1 programs [89] and

Ryder's incremental updates on software [135]. Ryder and Carroll [136] describe

some incremental algorithms for analysing a call graph.

Some specialised forms of call graphs have been devised. Debnath and Bie

man [45] use the generalised program graph as a model for the analysis of the

interprocedural structure of a program. The generalised program graph is a form

of call graph where information on parameter passing is also recorded.

Program transformation systems are systems that transform a program into a

structurally different but logically equivalent program. These systems fall into two

categories.

o Restructurers

These systems manipulate the control flow graph representation of the pro-
,.

gram.

o Formal Transformations

These systems manipulate a series of assertions that depict what the program

is doing.

These two categories will be considered below.

22

Bohm and Jacopini [14] showed that it is possible to transform the control flow of

a program so that the control flow is a composition of sequence, repeat ... until,

and if ... then ... slse structures. The idea of transforming the control flow

of a program gained further momentum after Dijkstra's paper, "GOTO Statement

Considered Harmful" (48], was published.

A clearer understanding of unstructuredness was obtained when Williams (161)

examined the nature of unstructuredness in programs and identified the five basic

structures that result in unstructured programs. These structures are:

o abnormal selection path

o loop with multiple exit points

o loop with multiple entry points

o overlapping loops

o parallel loops

Williams and Ossher (163) show how to detect these unstructured structures and

to transform them into a structured form.

Several authors have investigated the problem of restructuring unstructured

programs, e.g., Ashcroft and Manna (9), Baker [10), Cowell et. al. [40], Oulsnam [115],

Prather (130) and Williams (162].

Some problems with automatic restructurers have been identified [20). For

example, the amount of code produced by a restructurer is usually greater than

23

the original program; and many of the restructuring algorithms make use of state

variables which the restructurer adds to the program. These examples illustrate

the main problem with restructurers however: they deal with the symptom of bad

code and not the cause. Restructurers tidy up spaghetti code but do not tidy up

the dubious logic that resulted in the writing of the bad code.

Formal transformation techniques approach the subject of program transfor

mation differently. Instead of searching the control flow graph for a structure that

is deemed bad and transforming it, formal transformation techniques first estab

lish what the program is doing and then find an alternative and more acceptable

coding.

Formal transformation techniques to derive programs have been known for sev

eral years, for example, Burstall and Darlington [19), Manna and Waldinger [101),

Reddy [132) and Scherlis [138). More recently some authors like Sneed and Jandra

sic [144) and Ward [153) have used formal transformations to derive specifications

from 'code. Ward has developed transformation techniques that are based on Dijk

stra's weakest preconditions [52, 53) and Karp's infinitary logic language Lw1 w [84).

These transformations are described in [154). Ward's transformations are being

semi-automated in the "Maintainer's Assistant" [23, 24, 109, 155).

Whereas the transformations used in restructurers are based on preserving the

order of statement execution, duplicating code if needed, Ward's transformations

are based on deriving the specification for a piece of code, and then obtain an

alternative coding that satisfies this specification. As the driving criterion is not

24

to preserve the order of statement execution, programs derived as a result of us

ing Ward's transformations can often be smaller than the original program as is

demonstrated in (153].

Restructurers analyse the control flow graph of a section of code and ensure

that the control flow graph consists of a combination of structures that are deemed

desirable. As restructurers analyse and manipulate the control flow graph of a

program they are primarily intra-procedural code analysis tools. Formal transfor

mation systems work with assertions about the code, and they are therefore more

interested in the semantics of the code rather than the structure. This lack of inter

est in the structure of the system makes formal transformation systems amenable

to both intra-procedural and inter-procedural code analysis. Sundblad (147], Cor

nelius and Kirby [39] and Ward (156] demonstrate the use of transformation tech

niques on routines implementing the Ackermann function in order to achieve a

more efficient implementation. This form of transformation is not possible with

restructurers.

2 o 6 § ummaury

The work on data flow analysis and program slicing is concerned with deter

mining information on how a program is to perform in terms of the dependencies

between the variables. Data flow analysis is the analysis of variable usage within

a program. By using data flow analysis, anomalous variable usage within a pro

gram can be detected and as a result some previously undiscovered program errors

found. Data flow analysis is a code analysis technique that can be used for both

intra-procedural and inter-procedural code analysis. Some of the data flow anal-

25

ysis techniques allow the dependencies between variables to be established. This

is the cornerstone of the program slicing techniques. With program slicing, it is

important to be able to determine which variables are affected by which variables.

This then allows redundant statements to be excluded from program slices. Lyle

and Gallagher [100] show how this provides a means of abstracting out different

views of a system.

Program slicing is less generally useful than data flow analysis, but it introduces

the idea of stripping out statements that do not affect a given variable. In this

thesis, this idea will be generalised to allow program slicing to be performed at a

higher level than the statement level.

The call graph depicts the calling dependencies that exist between routines, i.e.,

which routines are called by which routines. This graph however does not show

the dependency that exists between routines because they use the same global

variable, i.e., which routines are commonly coupled. This is important form of

dependency that needs to be identified in many inter-procedural code analysis

situations.

The call graph also gives an architectural view of a system. This gives a high

level 'description of how a system has been decomposed into different processes.

However, with modern programming languages the routine is no longer the only

unit of modularity. Therefore new forms of graphs are needed to give a satisfactory

representation of a system's architectural structure.

Program transformation systems analyse and manipulate representations of a

program in order to improve the system. Most of the program transformation

systems are aimed at improving the statement level structure of a program. Formal

26

transformation systems do this, but they also improve the routine level structure

of a system. Most of the work in this area has concentrated on transforming

recursive routines into a more efficient form, by either removing the recursion, or

by introducing global variables.

The system structure is important in helping a programmer to understand a

system; the more complex the structure the harder it is to understand. Some high

level system transformation techniques will be described later in this thesis. These

transformation techniques will group related entities together in a way that helps

a programmer to understand a system.

27

The term module is used by different authors to denote different programming

constructs. Originally the term applied to a routine, but since Parnas published,

"On the Criteria to be used in Decomposing a System into Modules" [119], the

term module has been used to denote a clustering construct. Wirth [168] describes

a module as being,

" ... a set of procedures, data types and variables, where the pro

grammer has precise control over the names that are imported from

28

and exported to the environment".

This description is aimed at the module construct in Modula, but it can form the

basis of a more general description. Some languages like Ada and Modula-2 allow

local modules to be declared. This means that a module can be declared within

another module. This has implications on how the exporting of an entity is to be

interpreted.

When a global module exports an entity, it is exported to the "environment".

When a local module exports an entity, the entity is exported to the environment

defined by the module containing the declaration of the local module. Therefore,

a module is said to export an entity to the surrounding environment.

Other languages are not as restrictive as Modula in what classes of entities they

allow a module to export. For example Ada allows local modules (called packages

in Ada) to be exported. Therefore a module is said to export entities, rather than

particular classes of entities. For the purpose of this thesis, the term "module" is

defined as,

, a named collection of entities, where the programmer has precise control

over the entities that are imported from and exported to the surrounding

environment.

The module constructs of existing programming languages differ in the way that

they are used. Some module constructs provide a specialised service, for example an

abstract data type, while others are designed to be more generally useful. Despite

this difference all module constructs provide:

29

1. an abstraction mechanism, and

2. a pmtection mechanism.

These two facilities will now be discussed.

3. L2 AbstJractiion Mechanism

The term abstraction mechanism refers to a module construct providing at least

two perspectives of the same program segment:

1. the client view, and

2. the supplier view.

DEFINITION MODULE Stack;

TYPE StackType;

PROCEDURE IsFull(st: StackType): BOOLEAN;
PROCEDURE IsErnpty(st: StackType): BOOLEAN;
PROCEDURE NurnberOfElernents(st: StackType): CARDINAL;
PROCEDURE Create(VAR st: StackType);
PROCEDURE Top(st: StackType; VAR element: INTEGER);
PROCEDURE Pop(VAR st: StackType);
PROCEDURE Push(elernent: INTEGER; VAR st: StackType);

END Stack.

Figure 3.1: An Example from a Language that Provides a Simple Client View

30

The client view of a module is the information that a client modulle is given

about the public entities of a supplier mo(lllule. The amount of information that

is given to a user of a module varies from language to language. In languages like

Ada and Modula-2 a simple client view is provided. With these languages the client

view consists ofa set of entity names together with a set of entity attributes.

For example, if a module were to provide a stack abstract data type, then the

client view in Modula-2 might be programmed as shown in Figure 3.1. This client

view shows the information that is needed in order to use the routines. This form

of client view does not indicate what each of the routines does. A stack is typically

depicted as being a data structure that adheres to the axioms given in Figure 3.2.

Ideally the client view of a module construct should describe these axioms in some

form. Some of the more advanced client views attempt to do this.

pop(push(element, st)) ~ st
top(push(element, st)) ~ element
is~empty(create())

~is~empty(push(element, st))

Figure 3.2: AxiomS Depicting a Stack

Figure 3.3 gives the client view for a stack module written in Eiffel. The require

and ensu;re clauses are the pre and post conditions for the routines. Although they

do not express the stack axioms, more information is provided on the effect of each

of the routines. This extra information can be of value to programmers when they

are looking at the services that a module provides.

The number of client views is normally one, but some languages allow for mul

tiple client views. For example, Extended Pascal [2] has a module construct- to

31

cllass interface STACK

exported features num-of_elements, is_full, is_empty, top, pop, push

feaiull"e specification

num_of_elements: INTEGER

is-full: BOOLEAN

is-empty: BOOLEAN

top: INTEGER
ll"equire

not is_empty

push(element: INTEGER)
require

not is_full
ensure

not is_empty; top = element; num_of-elements = old num_of-elements + 1

pop
require

not is-empty
ensure

not is-full; num_of_e/ements = old num-of-elements - 1

Figure 3.3: An Example of an Advanced Client View

32

provide several interfaces, each interface being a different client view; and Eiffel

has a restrictive export clause which allows specific entities to be visible only to a

set of named modules.

The supplier view of a module is the view that the implementor of the module

has. This is the more detailed view of the module consisting of the particular al

gorithmic solutions employed together with knowledge about which other modules

are needed in order for this module to function. A module can acquire entities

from other modules in three ways:

1. Importing

A module can import an entity from another module only if that entity is in

the client view applicable to the importing module.

2. Inheriting

For a module to inherit entities from another module the inheriting module

is built up as an extension or specialisation of the bequeathing module.

When this occurs, the inheriting module normally obtains all of the entities

in the bequeathing module. Simula allows a module to bequeath entities

selectively to a descendent module by hiding entities it does not want to

bequeath with the hidden clause.

3. Injecting

An entity is injected into a module if the entity is exported by a local module

and implicitly imported by the module containing the local module.

33

A module can help to control the visibility of an entity and thereby help to

restrict the use of that entity to only those modules which need to know about

it. In order to do this, a module construct provides a block structure with the

following scope rules:

o an entity that is visible outside the block can only be used within the block

if the module associated with the block specifically requests permission to do

so via an import clause;

o an entity that is declared within the block can be made available to the

surrounding environment by exporting it.

When a program is being developed by a team of programmers, it is important

that each programmer can design and implement his section of the system in semi

isolation from the other programmers. All that the programmer needs to know is

what facilities other programmers are expecting him to provide, and what he can

assume will be provided to him by other prograii1IIlers. Both of these points will

have peen determined at an earlier design stage.

The scope rules of the module construct help enforce this. The facilities that

other programmers are expecting are given in the client view(s), all other facil

ities are private to the implementor of a module and are not available to other

programmers. This helps reduce the number of programming tricks employed by

programmers because they cannot make assumptions about how somebody else

has implemented a solution. This protection also helps in restricting the affect of

a change to a system.

34

Suppose, for example, a module implements a stack by using an array. As

the system evolves it is determined that the array representation is too restric

tive, so it is changed to a linked list representation. The affect of this form of

modification is isolated to the module implementing the stack, because users of

this module only ever access the data structure through the routines provided (cf.

Figures 3.1 and 3.3).

The only occasion in which modification to a module should necessitate changes

to other modules is either when a structural change is being made, for example,

the addition or removal of an entity from a module's set of public entities; or when

a public entity is changed so that the way the entity is used has been altered, e.g,

changing the number or order of parameters for a routine.

3o2 The Vaurious Fowms of Modlulle Constructs

Many new languages have been developed that contain a module construct,

while many of the established languages have introduced a module construct as

they have evolved. Module constructs in programming languages have tended to

place the emphasis on either providing data abstraction or on providing general

information hiding. This has led to the creation of two distinct forms of module

constructs which are described in the following subsections.

35

The importance of types in programming is explained by Hoare ['12]. In a com

panion paper, Dahl and Hoare [43] introduce the concept of the abstract data type.

With an abstract data type, a programmer views a type in terms of the operations

that are applicable to variables of that type. To implement an abstract data type

in most languages, existing types are used to construct a new type that will rep

resent the abstract data type. This type is then used ,to declare parameters of the

routine that will provide the services of the abstract data type. A programmer

is hampered by the fact that precise thinking is possible only in terms of a small

number of elements at a time. Hierarchical abstract data types allow a large data

structure to be partitioned into manageable portions. Since this initial work, the

use of abstract data types in programming has been explored by many authors.

Naphtali and Rich [110] describe the use of abstract data types in developing the

software of a real-time embedded system. The abstract data types were used to hide

hardware features from other programmers. Often the use of abstract data types is

found to be beneficial to the developme~:~.t process, even though the actual language

being used does not contain a construct that facilitates the implementation of

abstract data types. Linden [96] demonstrates that if a system is structured using

abstract data types as the basic unit of modularity, then the resulting system is

easier to extend and modify. Embley and Woodfield [54, 55] give some cohesion

and coupling measures to help assess the quality of the implementation of abstract

data types, and Osterbye [111) proposes a new method of implementing abstract

data types so that abstract data types can share certain operations.

As the virtues of programming in terms of abstract data types became more

accepted, the object-oriented programming paradigm emerged. According to this

36

paradigm, software systems consist of a set of communicating abstract data types.

A module construct was designed specifically to implement abstract data types.

In such languages the module construct is called a dass. This form of module

has been adopted by the class based languages like Clu [98] and object-oriented

programming languages like C++ [146], Eiffel Simula and Smalltalk-80* [62].

As a class is a type, some of the existing work on type theories is now being

applied to classes. The language Fun was developed by Cardelli and Wegner [26]. It

is based on the typed -\-calculus in order to be able to~ model and reason about the

type structures in several programming languages. Danforth and Thompson [44]

survey some of the existing type theories, examining the manner and extent to

which these theories are able to represent the objects and object interactions that

arise in object-oriented programming.

3.21.21 Modlll.llll<e Constrll.llcts Providing Genelt'all Information

Hidlimtg

The class is a module construct that allows a system to be partitioned in terms

of a data structure. This form of partitioning is not always .applicable however;

it may be desirable to partition a system into groups of related entities that do

not work on a common data structure. For example, a module could contain

a set of trigonometric functions. In a case study of using general information

hiding modules, van Kiet [152] states that the need for abstract data types is

rare, and that in the Modula compiler he developed using general information

hiding modules, there was only a need to export two abstract data types. General

*Smahtalk-80 is a trademark of ParcPiace Systems, Inc.

37

information hiding module constructs have been adopted by languages like Ada,

Fortran 8X [102, 103], Modula-2, Modula-3 [25] and Oberon [171, 172].

Several taxonomies for this form of module construct have been proposed. Two

of these taxonomies are of interest to this thesis. These are: the functional classi-

fication given by Hooch [16, pages 228-9], and the classification according to the

degree of information hiding given by Ross [133]. Both of these taxonomies are

aimed at Ada's package construct, but they are general enough to apply to other
'

languages, although Ross' taxonomy has to be expanded.

JRooch 's Taxonomy

With Hooch's taxonomy, modules are classified according to possible applica

tions. These applications are characterised by the kind of entities they export.

Hooch classifies modules as follows:

o Named Collection of Declarations

The exported entities are constants, variables and types only. The supplier

view is usually empty.

o Groups of Related Program Units

The exported entities are routines and modules only. The supplier view

contains no state variables.

o Abstract Data Types

The exported entities are constants, types, and routines. The supplier view

contains no state variables.

38

o Abstract-State Machines

The exported entities are constants, variables, types, routines and modules.

The supplier view contains at least one state variable.

Booch's view of an abstract data type is not so strict as the definition given

earlier (page 36). His view is that a collection of types, routines and constants

constitutes an abstract data type if the routines and constants use the types. With

the classical definition, the types would have to be used as parameters.

Booch's taxonomy represents an idealised view of the use of modules. In practice

however, a module is often a combination of these classifications. Such modules

are referred to as potpourri modules. A potpourri module provides a collection

a collection of disparate services to the system. As a result of this, many of the

client modules of a potpourri module will have conflicting interpretations on the

nature of the service being provided.

Ross' ']['axonomy

With the taxonomy proposed by Ross, modules are classified according to the
I

degree of visibility of a type defined by the module. Ross classifies modules as

follows:

o The Open Module

An open module is one in which the type is exported and its declaration is

fully visible in the client view. This means that a client module has access

to the internal structure of a variable declared to be of this type.

39

o The Private Module

A private module is one in which the type name only is in the client view.

Client modules cannot therefore make use of knowledge about the internal

structure of variables declared to be of this type, but a client module can

assume that assignments and tests for equality are meaningful operations.

o The Limited Module

A limited module is similar to the private module, but this time the client

module cannot perform assignment and tests for equality.

o The Opaque Module

An opaque module is a specialisation of the limited module. With the limited

module if a type declaration is modified then any client module has to be

recompiled even if it has not been modified. This problem can be avoided if

the type is implemented as a pointer.

o The Closed Module

In a closed module, the type defined is not exported and is therefore not

available to client modules. This form of module is sometimes referred to as

an encapsulated data type.

With Modula-2 an opaque type can be used by a client module in tests for equality

and assignment operations, but there are problems in interpreting this in Modula-2

as has been identified by Cornelius (38]. The problem of interpreting assignment

and test for equality operations with opaque types makes it more meaningful to

classify a module with an opaque type as an opaque module.

Ross' taxonomy does not take into account all possible type visibilities however.

It is possible for a type to be part open and part closed. For example, in Oberon

it is possible to have a type declaration of the form

40

T1 =RECORD

x, y: INTEGER

END (* T1 *)

in the definition part, and in the associated implementation part the same type

could have the declaration

T1 =RECORD

x, y: INTEGER; (* externally visible fields *)

a, b: INTEGER (* private fields *)

END (* T1 *)

In this way T1 is part open and part closed. With Oberon, if a type has a closed

part then hints to a compiler are needed in order to state a maximum size for the

record {see [170]). Modifications to Oberon have been suggested by van Delft [151]

that remove this problem.

Wirth uses this form of type with his concept of type extensions [170] where

a data structure is constructed as an extension of another type. For example,

consider the following Oberon type declaration

T2 = RECORD(T1)

z: REAL

END (* T2 *)

This declares the type T2 to be an extension of the type T1, and so variables of

type T2 would have fields a, b, x and y as well as field z.

41

In order to cater for languages like Oberon the following classification will be

added to Ross' taxonomy:

o The Ringent Module

A ringent module is one in which part of the type declaration is visible and

part is private. The client view contains the visible part of the type and

client modules have full access to this part of the type. The closed part of

the type however is concealed from client modules, and so they do not have

direct access to this part of the data structure.

Techniques for decomposing systems into modules at the design stage provide

the much needed method by which the complexity of a large system can be brought

under the control of a small number of people. Hoare (73] relates how the entire

Elliot 503 Mark II software project had to be abandoned because the complexity

had been allowed to get beyond the intellectual grasp of the programmers. Some

of the major design methods are described in the following subsections.

3.3 .1 lli'lrnndGii.onali Decomposition

This is known as a top-down or outside-in decomposition method. Two of

the best known forms of functional decomposition are Stepwise Refinement [51,

165, 166, 167] and Structured System Design [46, 116, 174, 175]. Both of these

42

techniques are characterised by the description given by Wirth,

" ... the program is gradually developed in a sequence of refinement

steps. In each step, one of several instructions of the given program is

decomposed into more detailed instructions. This successive decompo-

sition or refinement of specifications terminates when all instructions

are expressed in terms of an underlying computer or programming Ian-

guage." [165]

By this method, a system is decomposed into a collection of routines.

Page-Jones [116] shows that it is possible, in a limited way, to use functional

decomposition techniques with modules. The module construct that Page-Jones

uses is the information-duster (a term coined by Parnas [118]). An information-

cluster is a set of routines that have exclusive right of access to a particular item

or items of data. The decomposition technique that Page-Jones shows involves

determining which routines require the use of common data and then refining the

routines around this data.

Page-Jones' .technique is of limited value to systems that are to be written in
'

module languages as the underlying technique is still routine oriented and Page-

Jones says information-clusters should be implemented as a single routine with a

separate entry point corresponding to each routine the cluster is supposed to have.

Stepwise refinement methods describe a procedure that, if followed, will help

in the production of good software. However, a problem with stepwise refinement

methods is that they tend to fix at an early stage the implementation details of

each data structure. This has an effect on the maintainability and reusability

43

of the software produced. Parnas [122] demonstrates this by comparing the prime

program which Dijkstra develops using stepwise refinement ([51, pages 26-39]) with

the version that he developed using information hiding.

The idea of using information hiding as one of the criteria for decomposing a

system into modules was first proposed by Parnas [119]. Before implementation

can begin, sev~ral design decisions must be made so that the system designers can

successfully say how the system is to be decomposed into modules. It is necessary

to try to predict which features of the system are likely to change and which are

unlikely to change. In this way system designers can minimise the effect of a

software change that was anticipated. Korson and Vaishnavi [88] give empirical

evidence to show that information hiding does aid program modifiability.

In a system decomposed with respect to the information hiding criterion a

module is referred to as a "responsibility assignment" ([119]) and a "work

assignment" ([125]) by Parnas. This dual meaning for a module highlights two of

the characteristics of a module.

The term "responsibility assignment" shows that a module is regarded as pro

viding a service in the system. The responsibility of a module should be deter

minable without having to understand the module's internal design. Instead the

responsibility should be determinable through the client views that the module

provides to the rest of the system [123, 128]. Therefore, before any implementation

can proceed, three important design decisions have to be made:

44

1. identification of features that are likely and unlikely to change

2. identification of the services that are needed within a system

3. identification of the interfaces that services are to provide.

These last two points indicate why a module is said to represent a design decision.

In this context Parnas describes the connections between modules as,

" ... the assumptions which modules makes about each other." (118]

The term "work assignment" shows that the subsequent design and implemen-

tation of that module is the responsibility of a programmer. The work of this

programmer should be done in isolation from other programmers. In this way in

subsequent maintenance work it should be possible to modify the internal structure

' of a module without affecting the behaviour of other modules. This cannot be done

if a programmer has made use of knowledge about how another module functions

that is not in the module's client views (as was pointed out in subsection 3.1.3).

The module languages prevent this, but in languages like C and Fortran, where

module constructs have to be simulated, it is possible for a programmer to violate

a design decision in this way.

Case studies have appeared in the literature to show that system decomposition

into modules using the information hiding is a realistic choice in non-toy programs.

A compiler for the language Modula is described by van Kiet (152], and Parnas

was part of a programming team that implemented the software for the A-7E

aircraft [17, 29, 30, 31, 32, 69, 117, 127, 129].

Parnas et. al. (125, 126] used the A-7E aircraft software to demonstrate how

information hiding accompanied by hierarchically-structured documentation can be

45

of benefit to the reuse of software. The following problems of software reuse were

ameliorated by use of this combination of information hiding and hierarchically

structured documentation:

o the specification of the software is either non-existent or too ambiguous;

o the desired software already exists, but the location of the code within the

system is not known;

o the software that can perform the desired task is too general and inefficient;

and

o the cost of modifying existing software is more than the cost of writing new

software.

An important part of a system design to aid reuse is the idea of a hierar

chy (121] and in particular a hierarchy of virtual machines, where a virtual

machine is a software extension to the underlying hardware of the computer. This

form of programming was first illustrated by Dijkstra in the T .H.E. system (49].

Parnas [122, 124) demonstrates that this hierarchy of virtual machines aids in the

production of program families, which in turn aids in software reuse and software

modifications because the system has been designed for this.

With the growth in popularity of information hiding in software design and

implementation, several software specification techniques have emerged to facilitate

information hiding. Heninger [68) describes the specification technique that is used

with the A-7E aircraft system. Parnas [120) showed how a module could be specified

by means of advanced client views. Bartussek and Parnas [11) extend Parnas'

earlier specification technique by using traces to make it more useful. Hoffman [7 4)

46

proposes a different technique which he claims is easier to teach than traces are.

Middelburg (106] proposes a new specification language for information hiding,

VVSL, which is based on VDM.

The term object-oriented originated from the wo~k on the Smalltalk-80 pro

gramming system. Object-oriented design is defined by Gardner (59] as being

information hiding supplemented with the assumption that the difficult design de

cisions are those that concern the implementation of an object and the operations

upon it. Goldberg and Robson (62] describe the structure of Smalltalk-80. This is

probably the best described object-oriented system although other examples can

be found. See for example, Abbott [6], Cox [41], Gardner (59] and Meyer (104, 105].

Given a problem, how does a system designer produce an object-oriented design.

One method has been devised by Abbott [6] which has been expanded upon by

Booch [15, 16]. The Abbott and Booch methods derive an object-oriented design

from a natural language description of the desired system. Abbott describes the

proce.ss as consisting of three steps.

1. Develop an informal strategy for the problem.

The informal strategy should state the problem solution on the same concep

tual level as the problem itself. It should be expressed in problem domain

terms.

2. Formalise the informal strategy.

The second step is to formalise the solution by formalising its types, objects,

47

operators and control constructs.

3. Segregate the solution into parts.

Finally, the solution is broken up into a collection of modules and routines.

The first step consists of describing the desired solution in a natural language

form. The second step consists of analysing the informal description and then

identifying the:

o types

o objects (program variables) of those types

o operators to be applied to those objects

that are needed. When the types, objects and operators have been identified,

they are then organised into the control structure suggested by the informal strat

egy. The suggested technique for identifying types, objects and operators is by

associating common nouns with types, proper nouns with objects, and verb prop-

erties /characteristics with operators. Although this process appears mechanical,

knowledge of the problem domain is essential in o~der to be able to derive the
I

types, objects and operators correctly.

Booch extended the method in order to derive the module structure of a system

by adding the following steps:

o establish the visibility of each object in relation to .other objects

o establish the interface of each object

48

The object-oriented design methods of Abbott and Booch are primarily of value

to module languages like Ada and Modula-2 where the module is a construct aimed

at encapsulating a set of logically related entities and providing a programmer

with some control over the visibility of the entities. The Abbott and Booch design

methods are not well suited to the object-oriented programming languages, where

a module is a user defined type, and where inheritance is used to declare a module

as an extension or specialisation of one or more other modules [157]. vVith the

object-oriented programming languages, inheritance is an important characteristic

in program construction which is not addressed by Abbott or Booch.

3.3.4 Module Interconnection Languages

De Remer and Kron put forward the maxim that,

" ... structuring a large collection of modules to form a system is a

distinct and different intellectual activity from that of constructing the

individuals modules." [4 7]

Programming-in-the-large is regarded as being a different activity to programming

in-the-small and different languages are needed for both of these forms of program

ming. To assist with programming-in-the-large De Remer an Kron introduce the

concept of a module inteTconnection language.

A module interconnection language allows a programmer to express the overall

program structure. This information can then be used by a compiler to ensure that

programmers do not violate the structure of the system. By doing this a module

interconnection language helps to enforce the design decisions about the structure

49

of a system by preventing programmers from using entities which they should not

have access to.

De Remer and Kron give the following as the main objectives of a module

interconnection language:

o A project management tool encouraging and recording the stepwise refinement

of a system.

o A design tool for establishing the connections between modules.

o Provides ·a- means of communication between programmer working on differ

ent modules.

o Provides a means of documenting a system structure.

These objectives were met in MIL 75, the module interconnection language devel

oped by De Remer and Kron.

Other module interconnection languages have also emerged: Thomas [150] de

veloped a module interconnection language for language that support data ab

straction, and Cooprider [37] developed a module interconnection language that

incorporates some version control.

Each of these module interconnection languages are primarily aimed at sup

porting the design phase of software development. They ignore languages that

contain a module construct aimed at providing a protection mechanism as exist

in Ada and Modula-2. The existence of a module construct in a programming

language reduces the need for a module interconnection language, as the module

itself enforces many of the programming restrictions that the module interconnec-

50

tion languages do. With this form of prograiiUIJ.ing language, the main value of

a module interconnection language is at the design stage where programmers are

explicitly tol~ what facilities from another module they can use.

This thesis describes work on analysing the inter-module dependencies, and part

of this analysis process requires analysing the dependencies that exist between the

entities within a module. This information is not recorded in any of the module

interconnection languages as they all confine themselves to recording information

inter-module connections only. Therefore, the information on inter-module connec

tions derived in this thesis is not recorded in a format that conforms to any of the

module interconnection languages.

~ o 4l: § 1illmm!Bill'y

The module provides the programmer with an abstraction mechanism more

powerful than the routine. Entities can be grouped together because they are logi

cally related, and the visibility of these entities can be controlled by the programmer

that is implementing the module. Some of the entities are concealed entirely from

other modules, while others are made visible. With some languages it is possible

for a module to indicate to which other modules the selected entities are being

revealed, and some languages even allow the class of an entity to be concealed from

other modules.

This control over the visibility of entities helps act as a protection mechanism,

as the risk of unauthorised or accidental use of entities from other modules can be

minimised. By this means, a module can help ensure the software integrity of a

51

module, as programmers can be prevented from making use of knowledge to which

they are not entitled.

As languages that contain a module construct as part of the have emerged,

two forms of module constructs have appeared: the class module construct, used

to implement a new type; and the general purpose module construct, used to

encapsulate entities. Together with the emergence of these languages, software

design paradigms have also emerged that use these two module constructs as the

basic unit of modularity for a system.

52

In order to be able to discuss inter-module connections clearly, it is important

that a suitable structure be used to represent particular properties of a program.

The graph has been found to be a suitable structure for other code analysis tech

niques, so it will be used in this thesis to record and describe the inter-module

connections of a system.

53

Graph theory suffers from a lack of a standard terminology. It is therefore

necessary to give a brief explanation of the terminology used in this thesis. Most

of this terminology is taken from [87].

Formally a graph is represented by G(.N, £), where .N is the set of nodes

{n1, ... , ne} and£ is the set of ordered pairs called edges, {(n1, n2), ... , (ne-1, ne)}.

The number of nodes is represented by I .N I and the number of edges by I £ I·

For all graphs 1.£ I ~ IN 12 , but for most interconnection graphs, I £ I ~ ~~:IN I,
where,; is a small integer constant.

The graph G8 (.N81 £ 8) is a subgraph of G(N', £) if the nodes inN's are also in

N (i.e., Ns ~ N'), and the edges in £ 8 are also in £ (i.e., £ 8 ~ £). This subgraph

relationship will be represented by the symbol C (or by C when strict subgraphing

is being represented). Hence

For the graph Gss(N'88 , £ 88) to be a strict subgraph of G(N, £),all the nodes and
'

edges of Gss(Nss 1 t' 88) must occur in G(N, £). In addition, G(N, £)must contain

some nodes or edges that do not occur in Gsa(Nm £ 88). The strict subgraph

relationship will be represented by the symbol c. Hence

Both the subgraph and the strict subgraph operators are described more fully in

54

Chapter 5. The graph Gps(Np8 , Epa) is a proper subgraph of G(N, £) if

and if the graph Gps(Npa' Epa) is isolated from all the other nodes in G(N, £).

The subgraph G pa(N ps, £ ps) is said to be isolated in G (N, £) if there is no edge

in£ which has only the start-node or the stop-node in Npa, but not both.

An ordered pair (n,0 n,e) denotes an edge going from node na to node n,e. Two

nodes are classed as being adjacent if there exists an edge connecting the two nodes.

The neighbours of a node Il-y is the set of nodes adjacent to il-y· A path is a sequence

of nodes such that successive pairs of nodes are adjacent. The path n1 , n2 , ••• , n71

is a path of length TJ - 1 from n1 to n71 • If in a given path each node is visited

only once, then the path contains no cycles and the path is called a simple path.

A graph is termed connected if there is a path between every pair of its nodes;

otherwise the graph is termed disjoint.

A B

C D

Figure 4.1: An Undirected Graph

Figure 4.1 shows an undirected graph, Gu(Nu, Eu)· With this form of graph

no importance is placed on the order of the nodes of an edge. The only point of

interest is whether or not there is an edge connecting two nodes. This implies that

if there is an edge (na, n,e) then there is also an edge (n13 , na)· Thus, for the graph

55

Nu = {A, B, C, D, E}

&u = {(A, B), (A, C), (B, A), (B, D), (B, E), (C, A), (C, D),

(D, B), (D, C), (D, E), (E, B), (E, D), (E, E)}

A B

C D

Figure 4.2: A Directed Graph

Figure 4.2 shows a directed graph, Gd(Nd, £d)· With a directed graph the

order of the nodes of an edge is important: the existence of the edge (ncn n.a)

cannot be used to infer the existence of an edge (np, nc:r)· This has implications

when determining adjacent nodes. The edge (nc:r, n.a) means that n.a is adjacent to

nc:r but does not mean that na is adjacent to np. With Gd(Nd, £d),

Nd = {A, B, C, D, E}

£d = {(A, B), (B, D), (B, E), (C, A), (D, C), (E, D), (E, E)}

Since Nd = Nu and £d C £u

In general, it can be shown that a directed graph is a subgraph of its undirected

verswn.

In many situations it is desirable to associate information with the nodes and

56

A At B

A3

A6

Figure 4.3: A Labelled Graph

edges of a graph. Figure 4.3 shows the graph, Gr(Nh Er) which has information

associated with both the nodes and the edges. When information is associated

with the nodes ·of a graph it is called a labelled graph. The information associated

with an edge can be numeric, as occurs with Markov chains, or the information

can be about the nature of the dependency between the nodes, as occurs with

semantic nets. When information is associated with an edge, it is possible for £

to have multiple occurrences of an edge as the information associated with each of

the occurrences is different.

In the thesis, a graph called the interconnection graph is introduced. It is

used to record some of the connections between the entities of a program. Most

kinds of interconnection graphs are specialised to record particular dependencies.

For example, a call graph records which entities are connected by an invokes

dependency, whereas a control flow graph and a process augmented graph record

which statements are connected by a execution-can-follow dependency. The

specialised nature of these graphs is also reflected in the kind of entities the nodes

57

represent and the information that is associated with each node. A call graph

records the dependencies between routine entities only, and with many call graphs

the node merely records the name of the associated routine. With a control flow

graph and a process augmented graph, each node is associated with a program

statement rather than with a routine entity.

In order for a graph to be useful in inter-module code analysis the graph must be

capable of recording several forms of dependencies between different entity classes .

. TYPE ValueType = CARDINAL;

VAR value: ValueType;

PROCEDURE Setvalue(valuePara: ValueType);
BEGIN

value:= valuePara
END Setvalue;

PROCEDURE Getvalue(): ValueType;
BEGIN

RETURN value
END Getvalue;

PROCEDURE Printvalue;
BEGIN

WriteCard(value, 5)
END Printvalue;

Figure 4.4: A Modula-2 Fragment for Showing Entity Dependencies

Consider the Modula-2 code in Figure 4.4. Figure 4.5 gives an interconnec

tion graph that shows the dependencies that exist between the entities. This

graph records the interconnections between the five global entities that belong

to three entity classes. The parameter valuePara from the routine Setvalue is

not shown in the interconnection graph because it is not being considered as a

58

references

Setvalue Printvalue

Figure 4.5: Interconnection Graph Representation of Figure 4.4

global entity. This is because valuePara cannot be used by any other global

entities other than the routine that declares it. This makes it comparable to a

local variable. The dependency that does appear in the interconnection graph is

the dependency that shows the routine Setvalue to be dependent on the type

ValueType, where ValueType is the type of the parameter valuePara. The edge

(Setvalue, ValueType) shows that the routine Setvalue is dependent on the type

ValueType, and the dependency parameter-of-type that is associated with the

edge (Setvalue, ValueType) records that the type ValueType is used to declare

a parameter of the routine Setvalue. Likewise, the edge (Getvalue, ValueType)

shows that the routine Getvalue is dependent on the type ValueType, but this

time the edge is associated with the dependency of-type which shows that the

routine Getvalue is a function that returns a value of type ValueType. This form

59

of interconnection graph is called an entity-to-entity interconnection graph and is

one of the three forms of interconnection graphs that will be used in this thesis to

perform inter-module code analysis.

Several graph notations have been proposed for depicting the interconnections

between modules. Some of these graph structures will be discussed in this subsec

tion.

Cunningham and Beck [42) introduce a notation for diagraming the message

sending dialogue that takes place between objects participating in an object-oriented

computation. The notation can be used to show: a module being created as an

extension or specialisation of another module when subclassing is employed as

the inheritance mechanism, and the calling dependency between the methods (rou

tines) of the modules is also shown. Cunningham and Beck's notation can only

record a subset of the dependencies that can exist in a program, e.g., the dependen

cies that involve the use of a state variable are not recorded, and it is not possible

to record the existence of multiple inheritance or module instantiation.

Booch [16) and Buhr [18] introduce a notation that is aimed at languages like

Ada. The notation records the inter-module connections in terms of the entities

that are imported to and exported from modules. No distinction is made between

a module importing an entity and a module acquiring an entity because the entity

is explicitly exported to the module. This is a weakness when analysing programs

written in languages like Eiffel that allow an entity to be exported to a set of

named modules. Another problem with the notations of Booch and Buhr, is that

60

inheritance is not catered for. As a result, the object-oriented programming lan

guages cannot be properly represented using these notations. Booch's notation

suffers from an additional weakness in that the dependencies between the entities

in a module cannot be shown. This means that these graphs cannot be used for

intra-module code analysis.

Ince (77, 78] describes the use of a semantic net data structure to represent the

dependencies between entities in a program. Each dependency is represented by a

relation linking the two entities, i.e.,

entityl- relation --+ entity2

The direction of the. relation indicates the order of the dependency.

!nee's approach to recording the dependencies between entities has several weak

nesses when it come to inter-module coda analysis. A pattern match could only

be performed with respect to the second entity of a relation. As a result, for every

relation that can link two entities there must also be an inverse relation so that

pattern matching can be performed on the first entity of a relation.

Consider for example, a relation of the form,

Rl - invokes --+ R2

In order to ascertain that R2 is invoked by Rl a relation of the form,

R2- invoked-by --+ Rl

61

is needed. The number of relations that !nee's semantic net can record is 20.

In practice this would be 10 because of the need for the inverse relations to be

recorded.

Another problem with Ince's representation is that it becomes difficult to anal-

yse entities that are subject to several levels of nesting. Consider for example the

following module declarations,

MODULE LevelO;
MODDULE Leveli;

MODDULE Leve12;

END Leve12;
END Leveli;

END LevelO.

In order to establish that the module Leve12 is within the module LevelO, the

semantic net representation would have to be traversed several times. When dealing

with large systems the amount of graph traversing would almost certainly become

prohibitively large, especially when it is necessary to establish the interchange of

entities between modules.

To overcome these weaknesses, a new graph structure is developed that will

combine characteristics of all of the interconnection graph structures described in

this subsection.

62

Figure 4.6 describes the directed labelled graph structure which will be used in

this thesis to perform inter-module code analysis. The graph structure is described

in VDM [83]. This allows the graph operations developed in Chapter 5 to be

formally specified in VDM. The graph is a labelled graph with information also

associated with each of the edges. For the purpose of simplicity, the name of a node

is assumed to be the name of the associated entity, a!ld the node's label contains

additional information about the associated entity. In particular, it records the

entity class of the associated entity. This is necessary because it is not always

possible to derive the entity class from the dependency connecting two nodes. For

example, if a node Ent is connected to a node T1 by an of-type dependency, then

Ent could be either a type, a variable or a routine.

With module languages it is not possible to use the entity name alone to de

termine uniquely an entity in a system; extra information is needed. This extra

information is provided by the name of the declaring module and the block number

in which the entity is declared. Each block in a module is given a unique num

ber. Figure 4.7 shows how blocks could be numbered in Modula-2. Note that the

module BlockNumbersExample has two parts but only one block number. This is

because BlockNumbersExample creates a single block. The entities that appear in

the definition part of the module are automatically also visible in the associated

implementation part. The physical separation of the definition and implementa

tion parts is syntactic detail that does not affect the block numbering. Similar

numbering can be done with other languages. The name of the declaring module

and the block number in which an entity is declared are represented by the fields,

entity-source and entity-declaration-block.

63

Graph :: nodes
edges

where

set of Node
set of Edge

inv-Graph(mk-Graph(nodes, edges)) !::.

'V e E edges · (start-node (e) E nodes A. stop-node (e) E nodes)

Node:: no.de-name Name
node-label Label

Edge .. start-node Node
stop-node Node

dependency Dependency

Name = ... I* The set of entity names *I

Dependency = ... I* The set of dependencies that the graph records *I

Label :: entity-class
entity-source

entity-declaration-block

Class
Source
Block-Number

Class= CONSTANT I TYPE I VARIABLE I ROUTINE I MODULE

Squrce = ... I* The set of module names in the system *I

Block-Number = N

Figure 4.6: Description of an Interconnection Graph in VDM

64

DEFINITION MODULE BlockNumbersExample;
(* This is block 0 (part a) *)

END BlockNumbersExample.

IMPLEMENTATION MODULE BlockNumbersExample;
(* This is block 0 (part b) *)

PROCEDURE P1;
(* This is block 1 *)

PROCEDURE P2;
(* This is block 2 *)
BEGIN

END P2;
BEGIN

END P1;

PROCEDURE P3;
(* This is block 3 *)
BEGIN

END P3;

BEGIN

END BlockNumbersExample.

Figure 4. 7: Example of Block Numbers in a Module

65

The entity-class field is used to record the class of an entity. When the entity

is a procedure or function, the term ROUTINE is stored in the entity-class field.

The distinction between a procedure and a function is not important to the code

analysis work of this thesis.

An edge in the inter-module connection graph records the dependency between

two entities. Since it is possible that two entities may have more than one de

pendency, two nodes may have multiple edges connecting them because each edge

records a different dependency. Consider for example the following declarations

TYPE T1 = ...

PROCEDURE Proc1(para: T1): T1;

The corresponding section in an inter-module connection graph would be

T1

parameter-of-type of-type

Proc1

The parameter-of-type dependency is because Proc1 declares a formal parameter

of type T1. The of-type dependency is because the routine is a function that

returns a value of type T1.

66

An interconnection graph records all the dependencies between all of the compo

nents of a system, irrespective of whether they are high level entities like modules,

or low level entities like variables. For the purposes of inter-module code analysis,

it is useful to partition the interconnection graph for a system into the following

three specialised forms of interconnection graphs.

1. The module-to-module interconnection graph

Shows the dependencies between the modules that comprise a system. This

graph will be discussed in Chapter 6.

2. The entity-to-module interconnection graph

Shows the dependencies between modules, in terms of the entities that mod

ules provide each other. This graph will be discussed in Chapter 7.

3. The entity-to-entity interconnection graph

Shows the dependencies between the entities of a module. This graph will be

discussed in Chapter 8.

Each "of these interconnection graphs comply with the VDM description given in

Figure 4.6.

These three kinds of graphs can be extracted from a general interconnection

graph that shows how all of the entities within a system are dependent. The

module-to-module interconnection graph, entity-to-module interconnection graph

and the various entity-to-entity interconnection graphs do not contain all the infor

mation that is contained in a general interconnection graph. This is because none

of the graphs record how a module uses entities acquired from other modules. This

67

information is important for detailed code analysis work, but based upon observa

tions it was not found to be needed for the inter-module code analysis work of this

thesis.

68

The proposed inter-module code analysis techniques make extensive use of analysing

different graphical representations of a program. It is therefore necessary to intro

duce a notation that will help discuss the interplay between different graphs. This

chapter explains the graph operations that will be performed and introduces the

notation that will be used. Section 5.1 describes the subgrapli operation that was

briefly introduced in Chapter 4. Section 5.2 describes graph union operations that

provide a means of combining two or more graphs. Section 5.3 describes graph

intersection operations that provide a means of determining the features shared by

two or more graphs. Finally, section 5.4 describes some graph slicing operations

that allow a graph satisfying some specified constraints to be extracted from a given

graph. Appendix B serves as a reference guide to the notation being introduced.

The graph operations will be described using the specification language of VDM.

This allows the operations to be described in a formal way, and hence enables proofs

69

to be performed on particular operations. The predicate logic and set theory upon

which VD M is based ensures the soundness and completeness of these proofs.

Consider again the subgraph relation, ~' that was introduced on page 54. A

VDM specification for this operation is,

= C =: Graph x Graph -+ lB

mk-Graph(nodes1, edges1) C mk-Graph(nodes2, edges2) 6.

(nodes1 ~ nodes2) A (edges1 ~ edges2)

The signature for this relation indicates that ~ is a binary relation that works

with two graphs, i.e., the subgraph operator is used as follows,

The sub graph specification indicates that for G 1 (N 1 , £1) to be a sub graph of

G2(N2, £2) all the nodes and edges of G1 (N1, £1) must exist. in G2(N'2, £2).

G 2 (N 2, £2) need not have any extra nodes or edges, i.e., the graphs G 1 (N 1, £ J)

and G2 (N2 , £2) can be equal.

70

.Al

.A3
E

A .Al

A3
E

E

D

(a)

B

£2

£4
D

(b)

Al

A3

(c)

c
@

c
@

D

Figure 5.1: Some Examples to Illustrate Subgraphs

71

The strict subgraphing operator C can be defined by,

= C =: Graph x Graph ---~> JB

mk-Graph(nodes1, edgesl) C mk~Graph(nodes2, edges2) b.

((nodesl ~ nodes2) A (edgesl C edges2)) V

((nodesl C nodes2) A (edgesl ~ edges2))

The signature of the strict subgraph relation indicates that its usage is similar

to the first subgraph relation, e.g.,

The strict subgraph relation is more complex than the first subgraph relation.

All the nodes and edges of G1 (N1 , £1) must be contained in G2 (N2 , £ 2), and

G1 (N17 &1) can have either all the nodes or all the edges of G2 (N2 , £2) but not

both.

Consider for example the three graphs in Figure 5.1. Let the graph in Fig

ure 5.1(a) be the graph G2 (N2 , £2). Either of the graphs in Figure 5.1(b) or

Figure 5.1(c) can be G1 (N1 , £ 1) and satisfy the relation,

because with Figure 5.1(b) N 1 = N 2 and £ 1 C £2 , and with Figure 5.1(c)N1 C N 2

and £ 1 = £ 2 •

The supergraph operators :J and :::J can be defined in a similar way.

72

Graph union is the process of creating a graph as a combination of existing

graphs. There are two forms of graph union: simple graph union and distributed

graph union. These will be considered in turn.

Simple graph union is the creation of a graph that contains .all the nodes and

edges from two given graphs. This operation is denoted by,

and can be specified as follows:

~ U ~:Graph x Graph~ Graph

mk-Graph(nodesl, edgesl) U mk-Graph(nodes2, edges2) fl

mk-Graph((nodesl U :nodes2), (edgesl U edges2))

D D
(a) (b)

Figure 5.2: Two Labelled Graphs

A3

Problems appear to arise if the two graphs concerned have nodes and edges in

common. However, because of the property of set union upon which the graph

73

umon operator is based, these are not in fact problems. Consider the graph

Ga(N'0 , &a.) in Figure 5.2(a) and Gh(Nb, &b) in Figure 5.2(b). These two graphs

have the nodes B and D in common. The result of the operation,

is given in Figure 5.3.

Al A
.ClJ------1>{

B

A3

D

Figure 5.3: Union of the Graphs in Figure 5.2

Consider first the problem of node duplication. The property of set union has

ensured that only one occurrence of each of the nodes B and D appears in the new

graph. A node is only the same as a node in another graph, if they have the same

name and label values. If two nodes hav~ the same name hut different label values

then they are different nodes and therefore must both appear in the resulting graph.

Figure 5.4 gives the result of the operation,

where the label for node Bin Gb(Nb, £6) has the value £5 (rather than £2) and is

therefore different to the node B in G a (N a' £a).

This ability to have two or more nodes with the same name in the same graph

is important in inter-module code analysis. In a module language an entity is

74

A Al
.ClF=~-~

B

A3

D

Figure 5.4: Graph Union for Two Nodes with the same Names

uniquely identified by combining its name, the name of the module in which it is

declared, the block number in which it is declared, and if overloading of identifiers

is allowed the ·entity class as well. A graph showing the dependencies between

entities in a system implemented in one of the module languages will have to be

able to distinguish between different entities with the same name. It is for this

reason that each entity not only has a name, but a label which is used to record

this additional information (see Figure 4.6 on page 64). In this way, the nodes for

different entities with the same name can be distinguished in an interconnection

graph.

Consider now the problem of edge duplication. The graph in Figure 5.3 has

two edges (B, D). This is because the edge (B, D) in Ga(N a, &a) has the attribute

A5 associated with it, while the edge (B, D) in Gb(N6, £ 6) has the attribute A6

associated with it. These different attributes mean that the two edges (B, D) are

different edges and therefore the graph resulting from the operation,

contains the two edges. If the attributes had been the same, then the resulting

graph would have had only one occurrence of the edge (B, D).

75

The distributed graph union operation builds on the simple graph union oper

ation. Distributed graph union is denoted by the notation,

This is equivalent to n - 1 applications of the simple graph union operation, i.e.,

This operation has the following specification,

U : se~ of Graph --+ Graph

Ugraphset 6.

if graphset = { }

then mk-Graph({ }, {})

else let g E graphset m

U{graphset- {g}} U g

Graph intersection is the process of creating a graph in terms of characteristics

that are common to two or more graphs. Just as with graph union, graph intersec

tion has a simple form for two graphs, and a distributed form for n graphs (where

n ~ 0). Graph intersection can be further categorised as strict or full depending

76

upon which criterion is used to add edges to the resulting graph. With both cate

gories of graph intersection, a node is added to the resulting graph only if the node

is common to all the graphs involved in the intersection operation.

B

@

@
D

(a)

D

(b)

Figure 5.5: The Results of Two Graph Intersection Operations

Strict graph intersection employs the criterion that an edge is included in the

resulting graph only if that edge is common to all the graphs involved in the

intersection operation. The simple form of strict graph intersection will be denoted

by the symbol n and is used as follows,

The graph formed by this operation contains only the nodes and edges that are

common to both graphs. If this operation is applied to Ga(Na, &a) and Gb(.Nb, £b)

(the graphs in Figure 5.2), then the resulting graph is given in Figure 5.5(a). Only

the nodes Band D appear in this graph. Neither of the (B, D) edges appear because

they do not occur in both graphs. Strict simple graph intersection can be specified

as follows,

77

= n =: Graph X Graph ---+ Graph

mk-Graph(nodesl, edgesl) n mk-Graph(nodes2, edges2) b.

let nodeset = nodesl n nodes2 m

let edgeset = edgesl n edges2 m

mk-Graph(nodeset, edgeset)

Full graph intersection employs the criterion that an edge is included in the

resulting graph if that edge forms part of at least one of the graphs involved in the

intersection operation, and the stop-node and start-node of the edge are in the set

of common nodes. The simple· form of full graph intersection will be denoted by

the symbol n+ ·and is used as follows,

The graph formed by this operation contains the nodes that the two graphs have

in common together with all the edges from either of the two graphs that connect

the common nodes. The result of applying this operation to G a (No., eo.) and

Gb(Nb, eb) is given in Figure 5.5(b). The nodes B and D appear in this graph as

do both the {B, D) edges, because each edge appears in at least one of the graphs

involved in the operation. Full simple graph intersection can be specified as follows,

= n+ ==Graph X Graph---+ Graph

mk-Graph(nodesl, edgesl) fl+ mk-Graph(nodes2, edges2) b.

let nodeset = nodesl n nodes2 m

let edgeset = {edge I (edge E (edgesl U edges2) 1\

start-node(edge) E nodeset 1\

stop-node(edge) E nodeset)} m

mk-Graph(nodeset, edgeset)

78

The distributed graph intersection operations are built up in terms of the cor

responding simple graph intersections in a similar way to distributed graph union.

The distributed form of strict graph intersection,

is equivalent to,

and it can be specified as follows,

n: set of Graph-+ Graph

n9raphset 6.

if 9raphset = { }

then mk-Graph({ }, {})

else let 9 E 9raphset m

n {9raphset -:- {9}} n 9

Similarly the distributed form of full graph intersection will be denoted by the

notation,

and is equivalent to,

and it can be specified as follows,

79

n+ : set of Graph --t Graph

n+graphset /).

if graphset = { }
then mk-Graph({ }, {})

else let g E graphset in

n+ {graphset - {g}} n+ g

The graph union ~nd graph intersection operations provide a means of creating

a new graph from two or more graphs. The process of creating a new graph by

extracting a subgraph from a given graph according to some criterion is called

graph slicing. In this thesis two forms of graph slicing are proposed:

1. S-slicing, and

2. aj9-slicing

S-slicing slices a graph with respect to the dependency that an edge represents,
I

whereas aj9-slicing slices a graph with respect to the nodes. Each of these forms of

graph slicing will be discussed in the following subsections.

S-slicing is a form of graph slicing where the dependency represented by an edge

is used to determine which edges from the original graph appear in the resulting

80

graph. A 8-slice operation is denoted as follows,

8(G(JV, £),C)

where C is the slicing criterion being applied to G(N, £). The slicing criterion

for 8-slicing is a set of dependencies that can appear in the resulting graph. The

nodes that appear in the graph resulting from a 8-slicing operation, are those nodes

from the given graph, that are connected by one of the named dependencies. In

order for an isolated node to appear in the resulting graph, the special dependency

$ISOLATED$ is introduced.

The 8-slicing operation can be specified as follows,

Delta-Criterion :: dependency-set : set of Dependency

8: Graph x Delta-Criterion -4 Graph

8(graph, delta-criterion) ~

let edgeset = { e I e E edges(graph) 1\

dependency(e) E dependency-set (delta-criterion)} m

let nodeset = { n I n E nodes(graph) 1\

3e E edgeset · n = start-node(e) V

n = stop-node (e)} in

if $ISOLATED$ E dependency-set(delta-criterion)

then mk-Graph(nodeset U get-isolated-nodes(graph), edgeset)

else mk-Graph (nodeset, edgeset)

where the function get-isolated-nodes has the following specification,

81

get-isolated-nodes :Graph~ set of Node

get-isolated-nodes(mk-Graph(nodes, edges))

{nInE nodes 1\ VeE edges· n =f. start-node(e) 1\

n "I stop-node(e)}

TYPE Ti = INTEGER;
T2 = CHAR;
T3 = RECORD

F1: T1;
F2: T2

END; (* T3 *)

VAR Vi: T3;
.V2: INTEGER;

PROCEDURE P 1 ;
VAR LocalVar: T1;

BEGIN

V1.F1:= 10;

END Pi;

PROCEDURE P2;
BEGIN.

wrH-estring("Hello World")
END P2;

Figure 5.6: Program Segment to be Used for Graph Slicing

We now consider an example. Figure 5.6 gives a segment of program code

and Figure 5.7 gives an interconnection graph, Ge(Ne, &e) that records the de

pendencies present. This is an example of an entity-to-entity graph. This form

of interconnection graph will be discussed in Chapter 8. This graph has two iso

lated nodes V2 and P2 and shows three forms of dependencies between the entities,

82

V2

QTARIABL~
uses-type of-type

P2

(ROUTIN~

Figure 5.7: Entity-to-Entity Graph for Figure 5.6

namely: defines, of-type and uses-type. Figure 5.8 gives the result of applying

three t5-slicing operations on Ge(.Ne, £e)·

Figure 5.8(a) gives the result of slicing Ge(.Ne, £e) with respect to the depen

dency of-type. The node Pl is con-nected to the nodes Tl and vi in Ge(.Ne, Ee)

but Rl does not appear in the graph resulting from,

because neither of the dependencies between the node Pl and the nodes Tl and Vl

is the of-type dependency.

Figure 5.8(b) gives the result of slicing G e (N e, £e) with respect to the de

pendencies uses-type and defines. The nodes Tl and Pl are connected by the

83

of-type

(a)

uses-type

8(Ge (}/e. &e), {uses-type, defines})

(b)

V2

&ARIABL~

P2

(ROUTINE)

8(Ge(lVn &e), {$ISOLATED$})

(c)

Figure 5.8: Three 8 slices of Figure 5. 7

84

uses~type dependency and the nodes V1 and P1 are connected by the defines

dependency. The graph resulting from,

is the union of the a-slicing with respect to uses-type and the a-slicing with respect

to defines, i.e.,

a(Ge(Ne, t."e),{uses-type,defines}) =
a(Ge(N'e, &e), {uses-type}) u a(Ge(N'e, &e), {defines})

In general, a a-slicing operation,

a(G(N, £),{dept, ... ,depn})

that slices with respect to n dependencies, dep 1 , • • • • depn, can be shown to be

equivalent to,

U{a(G(N', £),{depi}), ... ,a(G(N', £),{depn})}

Finally, Figure 5.8(c) shows the result of slicing G e (N e, E e) with respect to

the special dependency '$ISOLATED$'. The resulting graph consists of the isolated

nodes P2 and V2.

85

o:,B-slicing is a form of graph slicing where information associated with the. node

of a graph is used to determine which nodes appear in the resulting graph. Since the

dependency represented by an edge is not considered in a,B-slicing, no restriction

is placed on the edges that can appear in the graph resulting from o:,B-slicing. An

o:,B-slicing operation is denoted as follows,

allp(G(N, £),C)

In this notation the slicing criterion for an o:,B-slicing operation is in two parts.

The first part of the slicing criterion appears as the argument C, and the second

part of the slicing criterion are the a and ,8 constraints on the slicing operator II·
Both parts of the slicing criterion will be described in more detail below.

'lrlb.e Argument C

The argument C represents the node based sliCing criterion where the nodes

that can appear in the resulting graph are named. The argument C is an ordered

binary tuple, where the first element is the set of nodes that can be the start-node

for an edge, and the second element is the set of nodes that can be. the stop-node

for an edge.

Consider, for example, the slicing operation,

elle(Ge(Ne, £e), {{T1, Vi, V2}, {Pi, T3})) (5.1)

86

where Ge(N'e, &e) is the graph in Figure 5.7. The nodes Ti, V1, and V2 are named

as valid start-nodes, and the nodes Pi and T3 are named as valid stop-nodes.

It is often useful to be able to specify that no restriction is being placed either

on the set of possible nodes· or on the a and {3 constraints. The symbol used to

denote this is e. When e is used as the a or {3 constraints, as in the operation(5.1),

then this means that no restrictions are being placed on the labels associated with

the nodes in the resulting graph. When e is used as part of the argument C, then

this means that no restriction is being placed on the set of start-nodes, the set of

stop-nodes or both.

The graph resulting from the operation (5.1) is given in Figure 5.9. The set

of nodes in this graph is a subset of the nodes named in the argument of the

operation (5.1), because not all the named nodes satisfy the start-node and stop-

node requirements.

V2

~ARIABL~

of-type

Figure 5.9: The Slice elle(Ge(Ne, &e), ({ Tl, Vl, V2}, {Pl, T9}))

For the purpose of graph slicing, an isolated node will pass through to the

resulting graph if it is named as a valid start-node or a valid stop-node. For a non

isolated node to appear in the graph resulting from an a{3-slicing then that node

must be named as being either a valid start-node or stop-node for the resulting

graph, and one of the other nodes to which it is connected in the original graph

87

mu:st also be named so that the connecting edge cari appear in the resulting graph.

Consider the graph Ge(Ne, £e)· In the set Ee there are the edges (Vi, T3) and

(Pi, Ti). The edge (Vi, T3) appears in the graph resulting from the operation (5.1)

because Vi is named as a valid start-node and T3 as a valid stop node. The edge

(P1, T1) does not appear however as Pi is not named as a valid start-node and

T1 is not named as a valid stop-node. The node T1 has been classed as a valid

start-node and P1 as a valid stop~node, but this does not allows the edge (P1, T1)

to appear in the graph resulting from the operation (5.1). The node V2 is isolated

in Ge(N'e, Ee), however it appears in the resulting graph because it is named as a

valid stop-node.

A VDM specification for the a,B-slicing operation with respect to the argument

C is,

Node-Criterion .. start-set

stop~set

set of Node

set of Node

aii.B: Graph X Node-Criterion --+ Graph

88

crll,e(mk-Graph(nodes, edges), mk-Node-Criterion(start-set, stop-set)) b:.

. let edgeset = { e I e E edges 1\

start~node(e) E start-set 1\

stop-node (e) E stop-set} in

iet isolated-nodeset = { n I n E (start-set U stop-set) A

Ve E edges · n =f. start-node(e) 1\

n =f. stop-node(e)} 1n

let non-isolated-nodeset = { n I n E (start-set U stop-sd)

3 e E edgeset · (n = start-node(e) V

n = stop-node (e))} in

let nodeset = isolated-nodeset U non-isolated-nodeset m

mk-Graph (nodeset, edgeset)

'JI."he a and f3 Constraints

The argument C allows the nodes that appear in the resulting graph to be

named. It is often useful to be able to extract a subgraph by specifying properties

that l!l~st be held by the labels of the nodes in the ·resulting ·graph. This is dorie

thro~gh the a .and f3 constraints on the slicing operator II· The a constraints

apply to the labels for the start-nodes, and the f3 constraints apply to the labels

for the stop-nodes. In the VDM description of an interconnection graph given in

Figure 4.6 (page 64) the label of a node is described as having three attributes,

namely: the entity-class, which records the class of the entity associated with node;

the entity-source which records the module in which the entity is declared; and the

entity-declaration-block, which records the block number for the block in which the

entity is declared.

89

The a and (3 constraints of the a,B-slicing operation will be considered in turn.

The a constraint is considered first. An example of such a constraint is,

(5.2)

This operation only places restrictions on the labels for the nodes that can~ be start

nodes in the resulting graph. The argument (e, e} says that any of the nodes in

N e can be nodes in the resulting graph. The result of the operation (5.2) is given

in Figure 5.10.

uses-type

P2
(ROUTINE)

Figure 5.10: The Slice class=ROUTINEIIe(Ge(Ne, &e), (e,e})

Ge(Ne, fe) has two nodes associated with routines: the node P2, which is

isolated; and the node Pi, which is connected to the node T1 by the edge (Pi, Ti)

and to the node Vi by the edge (Pi, Vi). As both these edges have Pi as the .

Since a label has three attributes (class, source and block number) three func

tions are needed to extract the appropriate suhgraph. These three functions can

be specified as:

90

alpha-class : Graph x Class ---+ Graph

alpha-class(mk-Graph(nodes, edges), class-name) 6.

l01: start~nodeset == { n I n E nodes A

entity-class(node-label(n)) = class-name} in

le1; edgeset = { e I e E edges A

start-node (e) E start-nodeset} m

let stop-nodeset = {stop-node (e) I e E edgeset} m

mk-Graph((start-nodeset U stop-nodeset), edgeset)

alpha-source : Graph x Source ---+ Graph

alpha-source(mk-Graph(nodes, edges), module-name) 6.

let start-nodeset = { n I n E nodes A

entity-source (node-label (n)) = module-name} m

let edgeset = { e I e E edges A

start-node(e) E start-nodeset} m

let stop-nodeset = {stop-node(e) I e E edgeset} m

mk-Graph((start-nodeset U stop-nodeset), edgeset)

alpha-block-number: Graph x Block-Number---+ Graph

alpha-block-number(mk-Graph(nodes, edges), block-number) 6.

let start-nodeset = { n I n E nodes A

entity-declaration-block(node-label (n)) = block-number} m

let edgeset = { e I e E edges A

start-node (e) E start-nodeset} m

let stop-nodeset = {stop-node(e) I e E edgeset} m

mk-Graph((start-nodeset U stop-nodeset), edgeset)

91

of-type

Figure 5.11: Result of the Slice ellclass=TYPE(Ge(Ne, &e), (e,e))

We now consider the f3 constraints. Consider the slicing operation,

{5.3)

This operation places a restriction on the labels of the nodes that can be stop

nodes in the resulting graph. In the graph resulting from operation (5.3) the label

of all the stop-nodes must have the value 'TYPE' asso~iated with the entity-class

attribute. Figure 5.11 gives the graph resulting from operation (5.3).

The f3 slicing functions can be specified in a similar way to the a slicing func-
I

tions.

92

beta-class : Graph x Class ~ Graph

beta-class(mk-Graph(nodes, edges), class-name) ~

let stop-nodeset = {n I n E nodes 1\

entity-class (node-label (n)) = class-name} m

let edgeset = { e I e E edges A

stop-node(e) E stop-:nodeset} m

let start-nodeset = {start-node(e) I e E edges} m

mk-Graph((start-nodeset U stop-nodeset), edgeset)

beta-source : Graph x Source --+ Graph

beta-source (mk-Graph (nodes, edges), module-name)

let stop-nodeset = { n I n E nodes 1\

entity-source (node-label (n)) = module-name}

let edgeset = { e I e E edges 1\

stop-node (e) E stop-nodeset} m

let start-nodeset = {start-node (e) I e E edges} in

mk-Graph((start-nodeset U stop-nodeset), edgeset)

be.ta-block-number : Graph x Block-Number --+ Graph

beta-block-number(mk-Graph(nodes, edges), block-number) ~

let stop-nodeset = { n I n E nodes 1\

entity-deClaration-block(node-label(n)) = block-number} in

let edgeset = { e I e E edges 1\

stop-node(e) E stop-nodeset} m

let start-nodeset = {start-node(e) ,I e E edges} m

mk-Graph((start-nodeset U stop-nodeset), edgeset)

93

Fimilly, operations that involve both an a and a (3 constraint will be considered.

The q(3-slicing operation,

can be considered in terms of the operations:

o elle(G(N, &),C)

o alle(G(.N, £), {e,e))

o ellp(G(N, £), {e,e))

which have already been discussed. The result of the operation elle(G(N, &),C)

is the subgraph of G(N, e) containing all the nodes satisfying the argument C

together with any of the edges that connect the nodes. Similarly, the results of

the operations alle(G(N, £), (e, e)) and eii 13(G(N, £), (e, e)) are the subgraphs of

G (N, £) satisfying the a and (3 constraints respectively. Intuitively, the result of

the operation allp(G(N, £),C) should be the subgraph of G(N, £)that is common

in all three graphs, i.e.,

The result of this operation, however, is not the same as that for allp(G(N, £),C).

Consider the slicing operation,

where G e (N' e, £e) is the graph given in Figure 5. 7. If the argument C is (e, e) then

94

the result of,

is Ge(Ne, Ze) itself. The result of the operations,

class=ROUTINEI!t(Ge(N'e, &e), {e,e)) and ellclass=TYPE(Ge(N'e, &e), {{,e))

are given in Figure 5.'10 and Figure 5.11 respectively.

V1

&ARIABL~

uses~type

Figure 5.12: The Strict Intersection of the Graphs in Figures 5.7, 5.10 and 5.11

The result of the operation

n{elle(G(N', £), {e, e)), class=ROUTINEI!e(G(N', £), {e, e))

ellclas8=TYPE(G(.Af, E), {e, e))} (5.4)

is given in Figure 5.12. The isolated node V1 satisfies neither the a or {3 constraints,

therefore it should not appear. The node V1 belongs to the result of operation (5.4),

because it is a property of distributed strict graph intersection that a node common

to all the given graphs appears in the resulting graph.

The node V1 has appeared in the result of operation (5.4) because V1 is not a

realisolated node. If the node V1 had been isolated in G e (.AI' e, £e) then the graphs

resulting from slicing Ge(.Ne, &e) with respect to the a and {3 constraints would

95

have omitted Vi as it does not satisfy the given constraint. "The node Vi appears

in the graph resulting from slicing Ge(N'e, &e) with respect to the a constraint

because it is the stop-node for the edge (Pi, Vi), where P1 satisfies the a constraint.

The node Vi also appears in the graph resulting from slicing with respect to the /3

constraint because it is the start-node for the edge (Vi, T3), where T:3 satisfies the

(3 constraint.

The result of the operation

is the result of the operation (5.4) with the false isolated node Vi removed. A

function removeofalse-isolated-nodes can be specified as follows,

remove-false-isolated-nodes : Graph x Graph ~ Graph

remove-false-isolated-nodes(graphl, graph2) f::.

let false-isolated-nodes = { n I n E nodes(graph2) 1\

isolated(n, graph2) 1\

•isolated(n, graphl)} in

let nodeset = nodes(graph2) :.__false-isolated-nodes in

mk-Graph(nodeset, edges (graph2))

where the. function isolated determines if a given node is isolated within a given

graph. This function can be specified as,

96

i!}ola{ed : 1\[ode x Graph -+ lB

isolated(node,,: graph) 6

.\fe eedges(graph).

(node :f:. start-node (e) A node # stop-node (e))

In general,

all.a(G(N, t'),C) = remove-false-isolated-node~(G(.N, £),0i(N'i/&i))

where Gi(JV'i, Ei) is the graph resulting from,

n{elle(G{JV', t'),C), alle(G(N, £), ({,{}), ell.a(G{N, £), ({,{))}

. The graph operations specified in this chapter are used in inter-module code

analysis as they provide a means of reasoning about a graph. Three examples of

how the graph oper(l,tions can be used are. given here to help clarify how the graph

operations can help in code analysis work.

97

Chapter 4 describes a disjoint graph as being a graph for which there is not

a path between every pair of nodes. Determining whether a graph is disjoint is

important in code analysis as it reveals independence properties between entities.

Consider for example a call graph. If the call graph shows the dependencies between

all the routines in .a system rather than just within a module, then it is expected

that the call graph will be connected, with the progr<!-m body being considered as

a routine. If the call graph is disjoint then the system contains routines wh~ch are

never called. A function to detect whether a graph is disjoint can be specified as

follows. This specification is written in a language that is an extension of VDM

which considers graphs as primitive structures. The symbol 4> denotes the empty

graph.

is-disjoint : Graph -t B

is-disjoint(graph) b.

3subgraph1, subgraph2 C graph ·

subgraph1 ::/= 4> A

subgraph2 =I 4> A

(subgraphl n subgraph2) = 4> A

(subgraphl U subgraph2) =graph

This specification states that a graph is disjoint if two non-empty subgraphs

can be found such that the two Sl).bgraphs h~ve no nodes or edges in common, but·

the two subgraphs combined give the original graph.

98

Chapter 4 describes a proper subgra_,ph as being a strict sub graph that is isolated

in the given graph. The specification of the function get~proper-subgraphs, given

belo~, describes the cll.aracteristics of a function that finds all the proper subgraphs

in a given graph. Xfthe given graph is conrieGted and therefore contains no proper

subgraphs, the function get-proper-subgraphs returns the graph itself. This is to

ensure the :property,

graph = Uget-proper-subgraphs(graph)

get-proper-subgrophs : Graph -+ set of Graph

get-proper-subgraphs(graph) ~

if is-disjoint(graph)

then {g I g C graph A

g-:f;¢>A.

~not~!l- C gr'_!!p_~ · (not-g -:f; ¢> A

gn not-g =¢A

g U not-g = graph)}

else graph

It is often desirable to extract subgraphs that satisfy particular constraints. An

example of this is finding the abstract data types in a graph. Booch gives a very.

99

... ;

loose interpretation of an abstract data type in [16, pages 228~9]. Booch classifies
• . • ' • - < ~- ' • - ••

an abstract data type as being a set of associated types_, constants and routines.

The slicing operation to extract this form of abstract d"ata -type is

(ciaos=ROUTINEvCONSTAivT_IIc_rass=TYPE(G(fi!, £), {e,e})) U

(class= TYPE ll"class=TYPE(G(J\f, e), {e, e))) U

(ciass=TYPEII·class=CONSTANT(G(J\f, £), (e, e))) (5.5)

The second sli,cing operation in (5.5) is to allow for when a constant is used to

delimit a value in a type declaration, e.g.,

CONST MaxSize = 100;

TYPE IntStack = ARRAY [1 .. MaxSize] OF INTEGER;

The more classical description of an abstract data type stipulates that the

routine would have to use the type to either declare a parameter, or to declare the

type of value returned by the routine. The appropriate slicing operation for this

form of abstract data type is

8(claos=ROUT/NEv CONSTANT II class= TYPE

(G (N' £), {e' e))' {parameter-of-type I of-type}) u

8(ciass= TYPE II clatis=CONSTANT

(G(vV, &), (e,e)), {delimited-by})

The dependencie~ parameter..;of-type, of-typ_e and delimi ted-byare dependen

cies that appear in the entity-'-to-entity interconnection graph that is discussed in

Chapter 8.

100

-
M CQ) <dlllltli e=fc ([))= M (Q) cdll!lLli e

A. II!o'dule-to-module interconnection graph is a specialised form of interconnec-

tion graph that shows the dependencies between the modules in a system. This

graph gives a high level representation of the st:rudure of a system, showing how

a system has been decornposed into subsystems (represented by modules) during

the .. in,itial system design stage and subsequent maintenance stages.

This form of graph is impqrtant for a mainte11ance programmer, as it provides a

useful form of documentation that is generated from the program code. This makes

the module-to~~odule interconnection graph espeCially useful for a m~intenance.

101

progniinmer who is working with unfamiliar code that is either undocurpente~;

or incorrectly dc;>cumented because the documentation has either not been main.,.

tained' a.long.with the software, or was hurri~dly written at the end of the system

developmen,t:

The module-to-module interconnection graph has several uses in software main-

tenance: it can serve as a map ofa system, showing in which modules are depen-

dent on each other; and it can be analysed to help classify modules. As a map of a
'

system, the module-to-module inter,connection graph can guide a maintenance pro-

grammer's scanning of the associated code and can help a maintenance programmer

to consider in which order to look at the modules. As a module cla.Ssification aid,

the module-to-module interconnection graph can help a maintenance prograriuner

classify a module according to. its apparent role within a system. In this way a

maintenance progran1rner can identify modules that require closer examination in

order to understand a system properly.

This chapter will concentrate on the analysis aspects of the module-to-module

interconnection graph, showing how modules can be classified according to their

role within a system. Section 6.2 descril?_es in more detail the module-to.,module

interconnection graph, describing the dependencies that are recorded. Section 6.3

describes how the module-to-module interconnection graph can be used to classify

modules, and finally section 6.4 demonstrates these ideas on module classification

by considering the module-to-module interconnection graph for a particular system.

102

The nio'dwe-to-module interconneCtion graph is a specialised form of intercon

nection graph, that orily records the dependencies between modules. This makes
. , .. '

the module-to-module interconnection graph a high level graph that shows the

dependencies between the main components of a system. In so doing the module

to-module interc<mnection graph provides an interpretation of the architectural

structure of a system.

The nodes ofan module-to-module interconnection graph represent the modules

that comprise a system, and an edge between two nodes denotes the existence of

a··dependency between the modules associated with the nodes. The modules that

comprise a system can be a combination of global modules, where each module

is an outermost entity, and iocal modules, where each module is declared within

some block.

--··

MODULE Globa.IModule;
(~ Block o *)

MODULE LocalModule;
(* Block 1 *)

END LocalModule;

END GlobalModule.

Figure 6.1: A Program Module Containing a Local Module Declaration

The ~odes for module entities record that the associated entity is a module by

103

storing .t:l.ie value MODULE in the lab~l itttrjbute entity-class. As with oth~r class~s

of entiiies, the name of the global modlile i.n which an entity is declared is stored

in the label _attribute entity-source and th(h1umber associate~ with the block in

which the module is declared is stored in the label ~ttribute entityadeclarationa

block. Conside:r for exainple the M:odula-2 program module given in Figure 6.1.

The nodes associated with these two modules,is given in Figure 6.2.

LocalModule

MODULE
GlobalModule

0

Figure6.2: Nodes for a Module-to-Module Interconnection Graph

The node for LocalModule has the value MODULE stqred as the entity class,

GlobalModule as the entity source and 0 (zero) as the number of the block in

which LocalModule is declared. If a module is global, it is not declared within

another module, this necessitates that the special value $GLOBAL$ be recorded in

the label attribute entity-source. The module GlobalModule is a global module,

therefore the value $GLOBAL$ is recorded. Similarly, as a global module is external

to alL blocks, there is no value-stored in·-t·he label attrioute· enlity:_decliiration-block.

Henc~, the node for GlobalModule has only two values assoCiated with it.

In the interconnection graphs in this thesis, only the information needed for the

exC~,mpl~ will appear in each graph. This is done solely to reduce the amount of

information being conveyed to a minimum, so that the reader is not overwhelmed

with unnecessary information and can concentrate on the important aspects that

. the graph is trying to convey.

An edge in a module-to-module interconnection graph represents the depen-

104

dency tl:lat ex~sts between two modules. The,dependencies that can be recorded in

a m:odule,.:to•m6dule interconp.ection graph are:

o local=to

Shows the depende1_1cy of a local module on a global or local module.

o u.ses

Shows the dependencies between two global modules. This form of depen

dency de~otes the existence of a client/ supplier relationship between the mod

ules~involved.

o instantiates=to

Shows the dependency of a concrete module on a generic module.

o inherits-from

Shows the dependency between two modules, where one module is an exten-

sion or specialisation of the other.

The number of dependencies connecting two modules is normally one, as the ex

istence of one dependency tends to exclude t4e others. For example, if two modules
•• -T-

are connect-ed by ati in-stantiates-to dependency, then the other dependencies

would be meaningless between the two modules concerned. Thts also applies for

the local-to dependency. Two modules can be connected twice by the uses de-

pendency, because the edges {A, B) and (B, A), where A and Bare modules, can both

represent a uses dependency.

It is ,possible to have two modules-connected by the uses and inherits-from

dependencies, because the dependencies are not mutually exclusive. Consider the

situation descri~ed in Figure 6~3. The module A is built as an extension or spe

cialis,ation of ~odule B, and therefore it has direct access to all the entities in B

105

together with th~se it declares itself. One of the entities declared in module A could

take. the form,

dass A

inherits B

feaiull"e P: B

end! -- class A

This declares a variable P to be of type B, therefore the uses dependency appears

in Fig'Ure 6.3.

A

uses · _inherits-from

B

. _Figure 6.3; -Example of-Two Modules Con:nectectoy Two Dependencies

. li

Each of the dependencies that can exist between .two modules will be discussed

in t~e fo!lowing subsections.

t5.,2Jl Tlhte loca~ ~to DepellJldency

Th_e l()cal:-to dependency states that the module associated with ;the start

node ofthe ~dge is localto the module associated with the stop-nod~ of·- the edge .

. 106'

~ . . .

Consider tlieTEXT~IO package_ (module):givep.in s~ctio·ri 14;3.10 of The Ref-

erence-l!tianualfor the Ada Programming·Langu~ge. (The parts of TEXT~IOthat
are relev~nt to this discussion are gi,venin Figure 6A.) TEXT~IO is declaredJo

have four local packages. The fact that these local packages are gene~ic does not
- '

affect the dependency between :them and TEXLIO. Figure 6.5 gi:Ves the rriodtile.;to

module interconnedion graph forTEXLIO. This graph has four'edges each of which
. .

is representing a local ~to dependency.

package TEXLIO is

generic

package INTEGER-IO lis

end INTEGER_IQ;

generic

package. FLOAT_IO is

end FLOALIO;

generic
...

-- - paclaige-'Frxrn:.ro is

erid FIXED_IO;

generic

pac}{age ENuMERATION_IO is

end ENUMERATION:..IO.;
. end TEXLIO; -

Figure 6.4: The Packages in Ada's TEXLIO

107

TExT:.IO

local-to local-to

Figure 6.5: The Module-to-Module Interconnection Graph for TEXT_IO

The reasons for using local modules in a system are not easily defined. If the

code of a local module is providing a logically distinct set of entities to those of

the encapsulating module, then it better to separate the two modules 'textually by

making the local module a global module. Wirth makes the observation,

"Experience with Modula over the last eight years has shown that local

'modules were rarely used." [171]

Wirth uses this observation to justify the omission of local modules from Oberon.

Many other module languages also do not provide local modules, so in the module

to-module interconnection, graphs for programs written ip. these languages there
~ . ,.

will be no local-to:dependencies. With langu~ges·li~e Ada and Modula-2 which

do provide local ·modules, a· closer ex:amination of what the local-to dependency

represents is needed.

108

The reason for using local modules can vary ft:o!ll language toJ~ng"((age. In
. .

Modula:.2, fbr example it is not possible to initialise a variable at its :point of

declaration. To do this in Modula-2 the I>rograminer has to use a locahnodule jn

the f<>liowirig. manner,

MODULE DetlarationOfi;

EXPORT i;

VAR i: INTEGER;

BEGIN

i:= 1

END DeclarationOfi;

Here a module is being used to overcome a perceived weakness in Modula-2.

More generally however, a local module provides a programmer with a mecha

nism by which he can secure the code of part of the subsystem he is implementing.

The code placed within the local module is therefore perceived to be logically re

lated to the rest of the encapsulating module by the programmer implementing the

modljl~, because he -lias chosen not to use a global mOdule~-

.,,

The uses dependency is employed when one global module imports, or is per

mitted, use of, an entity fr~m another global module. This is an importaitt form

of inter~IT1odule connection as it is availal;>_le in all the module languages. The

uses dependency is emplQyE!d _ when · builclin·g program farhilies, and denotes the

existence oLa,client/supplier relationship between the two modules involved. rJ:he

109

·-siart-node for an edge representing ~ uses d~peh9ency denotes th:e client pod,ule;

while tile stop-node denotes the supplier module. With the. classical design·meth,;,

ods, the structure of a system undet the uses dependency is a tree or directed
-. . -·-,

acycliC;· graph~Jn.practice this is not always true (see Figure 6.16 on page 133) .
.. .. ··-· ·-·

''

. ·-·Ill.
end WORLD-SYSTEM;

with WORLD;..SY:STEM;
package AcruAL..:TARGET is

end! ACTUAL-TARGET;

with.· WORLD_5YS1'EM;
package, AI\MAMENT .STATUS is

end ARMAMENT _STATUS ;

with WORLD ..SYSTEM;
package FLIGHLPA~Tgt is

end FLIGHT-PARAMETER;

with WORLD-SYSTEM;
package TARGET ..BOX is

end TARGET _BOX;

package body HEADS-UP-DISPLAY is

end HEADS_UP-DISPLAY;

Figure 6.6~ The Packag~s for Heads-Up D~splay

Consfder the "Heads-" Up Display" system developed by Booch [16, Chapter. 21].

A Heads;:Up Display system is a way ofprovidi~~ important flight information to
. .

tlie pilot of a fighter aircraft without the pilot having to look away from a target

110

:_f .. '.
.-

·'··.',

HEADS-UP .JHSPLAY

uses uses

TARGE!.J30X

uses uses
uses uses

Figure.6.7: The Module-to-Module Interconnection Graph for Heads-Up Display

aircrait. The Heads-Up Display system developed by Booch consists of six pack

ages. The appropriate package declarations are given in Figure 6.6'. Figure 6~ 7 gives

th<tmodule-to-module interconnection graph for this system. The edges ·'connect

ing ACTUAL~T~RgET, AJ:tMAMENT~STATUS, TARGET~BOX and FLIGHT-PARAMETER with

WORLD .. SYST~ record that the package WORLD-SYSTEM is providing some facilities

to: the other packages .. (In this instance WORLD-SYSTEM is providing a co-ordinate

system of the world· to .the other packages.)

. A uses dependency only reveals whi~h:module is the client module and which

is the supplier module. It· does not, reyeal whiCh entities are involved in the . . ' .

client/supplier relationship; nor does it give ·any iiiforinatic;m on th~ir visibility.

111

'""""'·- :..,.· ·-· ···-

lVIOD!JLE_I~po:~;tirigMo<:iule;
-jMPORT. ExpoFt.ingModu~eA;
FROM Exp6rtill.gM6duleB IMPORT

END ImportingModule.

r,---

. . . . ,

Figure 6.8: Modula-2 Modple Declaration with Two Forms of Imports

Considerthe Modula-2 module declaration in Figure 6.8. Both of the modules

ExportinglVIodul·eA and EXportingModuleB are proyiding entities to the module

ImportinglVIodule. The entities from Exporting~oduleA are imported in a man

ner that necessitates qualified referencing of the importedeJttities, while the entities

from ExportinglVIoduleB are directly imported thereby allowing simple or unqual

. ified referencing of the imported entities. The module-to-module interconnection

graph does not show this difference, instead the module Import ingModule is con-

nected .. to both of the modules Exporti:ngModuleA and ExportingModuleB by a

uses dependency, as is shown in Figure 6~9.

ExportingModuleA ExportingModuleB

Figure 6.9: The Module~to-Module Interconnection Graph for Figure 6.8

112

,_·· ~. '

The insta!).tia\tss~to dependency is the dependency that exists- between a

genedc "module and a concrete module. A generic module is a template module

that de5trib~s the main characteristics of the entities_ but the description is not

complete en'~tig_h for the entities to be used, e.g., the data type may have been

na~ed but Il'o(descriped, or the 'interface to a r6bti¢e may have been given but

not the algorithmic information. This information is given when a concr:ete ~odtile

is created by instantiating a generic module. A concrete module is a fully elab

orated version of the generic mo·jiule. It is possible for a generic module to have

several different concrete module instances in_ the same program. With ap. edge

representing an i-nst~tiates-to dependency, the start-node denotes the generic

module and the stop-node the concrete module,

Generic module instantiation can be performed statically (at compile time) as

in Ada and -Clu, or dyn~mically (at run time) as in Eiffel. The inter-module code

analysis techniques of t_his thesis are aimed at static code analysis, and so only

stat_ic -module instantiatiqn will be discus~ed.

There are three forms o!,generic module instantiations:

1. Type instantiations.

When type elaboration is performed.

2. Value instantiations.

When the entity associated with a variable or constant is given, ~ value.

3. Routine instantiations.

When algorithmic information is bound .to a routine name.

113

In practice, module instfo.ti9ation can be a cofu~ination of the aboveforms.

set - cll1Ulsieir [t: type] .is create 1 in,sert., deiete, Ills-niber,
' Jiz~, choos'e'
wlbtel!'e t lllas equal.: p'roctype (:t, t) returns (bool)

!l"ep = arz:ay [t]

cr~_ate -
in~ert -
delete -
member -
s'ize
choose -

· gstind - proc (s: rep., x: 't) rettirllis (int)
i: i,rit := !l"ep$lot::r(s}
while i <_:_ rep$high(s) do

if t$equal.(x, s [iH
then return·· (i)

end
i := i + 1

end
return (i)

end getind
exull set

Figure 6.10 gives a partial declaration of the cluster set based on the one given

by Ljskov and Guttag in [99, page 80]. It shows the declaration of a set abstract

data type with th~ operations create, insert, delete, member, size and choose.

With this particuli;tr cluster, the set abstract data type is implemented by means

of an array. This particular information is hidden from user of the cluster set.

The routine getind is p~ivate to the cluster set. T·his routine is used by some of

the public entities to find the location of a desired elelTient within the array beiJlg

used to i?IJ:>lem~nt'-~the set.data structure. '.(heimplementation.'()fget ind is in turn

114

depend¢nt on th~ generic pa~aineter t as e;etind performs a test f~r equality on'

elements of type t. This 'o'ccurs with the statemi:mt,

t$equal(x, s [i])

It is therefore necessary to constrain~the set of types that can be used to instantiate

the cluster set to the types that provide a routine called equal that takes two

arguments of the same type and returns a boolean value. This is denoted by the

clause,

where t has equal proctype (t, t) returns (bool)

The generic module decliration given in Figure 6.10, called a parameterised

cluster in Clu, describes a metadass. The metaclass set has to be instantiated

to create class modules that can be used to declare variables. In Clu, the cluster

set can be instantiated by statements of the .form,

intset - . set[int)

pset - set[poly]

(6.1)

(6.2)

The declaration of the cl~ss intset in (6.1) instantiates set with the prede

fined type_ int, while the declaration of the class pset in (6.2) instantiates set

with the user defined type poly. This type--will have been declared as providing

a routine c~lled equal thereby satisfying tlie constraints imposed by the where

clause in the deelarati~n· of set. T-he instantiation statements ~n (6 .1) arid {g.2) ·are

shown graphic~ly in Rigure'6.1L,.Any instantiations of the class Il'l9~ules intset

and pl:;et w(:)uld also be represented by an- ins.tantiates-to dependency. The

115

i~st,alit~atss-to dependency does noJ distinguish between instantiatitig a meta-
' - . -

class to a cl<i.ss·or to a.nother metaclass, .b~ca:use this can be derived from the'gr~ph

strutture-as;is explained i11 section 6:3.2~

set

intset

Figure 6~11: Two Instantiations of a ParaiTieterised Cluster

The instantiation of set can be described as being both type and routine in-

stantiation. Type•instantiation is needed because the generic parameter for set is

a type, and routine instantiation is needed because a particular routine has to be

bound to the call to t$equal in getind. In Clu, type elaboration will always be

performed on a parameterised cluster, because the only Jorm of generic parameter

is a type. Other languages like Ada do not impose this restriction, and so with

these languages it is possible to have routine or value instantiations without a type

instantiation.

tfDo~At Tllne inheri ts~from lDepemudlemucy

The in}!.er-i ts-from dependency applies- only to the object-oriented program

ming lan!?uag_<;~, where a module can be created as an extension or specialisation

()f'ot~ef'!Iloduie~/for example, C++, Eiffel, Simula and Smalltalk-80. Oberon pro-
,_,·

vldes, ai\,inheritallCe mecqanjsm, but the iiihefita!lCe is obtained }?y·means of type
. ;•.,-. ' ... ··-':.- .- ·.

extensions [170] rather than modul~ oextensi()IJ.S. As aTesult the inhe:d ts.,.from de'

pendency does not appear in module~to-mogule·iilterconnection graphs for Oberon

programs.

d~ss TREE
exp~rt ...
inherit

LINI<ABLE·
.. ''"'' I

LIN/{ED~LIST;

end da~s TREE

Figure 6.12: Declaration of a Module using Multiple Inheritance

There are two forms of inheritance within object..;oriented programming lan

guages: sU:bdassing which is u1:1ed in Simula and Smalltalk-80, and multiple

inheritance which is used in Eiffel and more recently C++. (Originally C++

used subclassing as its inheritance ~echanism.) With subclassing, a module is

created as an extension of one other·" module (which itself may be an extension of

a modtile). Multiple inheritanceAs a generalisati~n ofthe subclassing mechanism.

With-multiple-inheritance, a modUle-can be created as a extension of one or more

mod~les (which themselves can be extensions of other modules). Within thi~ sce

nario, programs written in languages that employ subclassing can be viewed in

the same way as programs written in languages that provide multiple inheritance,

but which choose to create modules from only one other module. This means

th~t a graph structure that can represent multiple inlieritance can also represent

subd~ssing~

Consider the partial Eiffel class given in Figure 6.12. This clci$s declaration

gives an example of multiple inheritance, where a module is created as an exte11sion

117.

of two modules. The module-to-module 1ntercorinedioj). graph for the Eiffel class

d~claratioi1 in F.igure 6.12 is given in; Figure, 6;13.

Figure 6.13: The Module::to-Module Interconnection Graph for Figure 6.12

The start-node of-the edge that is an inherits-from dependency represents

the heir module, while the stop-node represents the bequeathing module. When

subclassing-is used as the inheritance mechanism, the resulting module-to-module

intergonnection graph for nodes that have an inheri t~-from should have a tree

structure. The structure for a system using multiple inheritance should be either

a tree or a directed acyclic graph.

In theory it is possible for cyclic structures to exist in a module-to-module inter

connection,graph for the nodes that'have an inlieri:£s~fr6m dependency. Consider

for example the declaration of the two p~eudo classes in Figure 6.14. A call to the

routine P1 from the class Parent-Class would result in a call to the routine C1 from

the class Chila-qlass which in turn resJ.Ilts in a call to P2 from Parent-Class.

A cyclic structure with respect to the inherits-from dependency is anomalous

because the concept of a module being an extension or specialisation of another

iS<obscured. The module-to-module interconnection graph used in the thesis can

represent such a cycle, and can theref<)re 'help a maintenance programmer detect

such anomalous depende,ncies. More iriformation.()p. the analysis of the module-to-
; '," .

module interconnection graph is given ih the following section.

us

. ... :

CLASS Parent-Class

INHERIT FROM Child~Class;

PROCEDURE P1;
BEdrfu

",

WriteLn(11 P11
);

Child-Class.C1
END P1;

PROCEDURE. P2,;
;,,:'. '

BEGII'J
W:dteLn(11End11

-)

END P2;
END Parent-Class.

CLASS Child-Class

INHERIT FROM Parent-Class.;

PROCEDURE- Ct;
BEGIN

W~itei.n(11 C 11);
'"·

Parent-Class.P2
~D C1;

END Child-Class.

Figure 6.14: Example of a Cyclic lqheritance Declaration

119.

(Q)o3 .Ailli~lly~n§ of .the M'9>~u.de~~o~:Modlut~e·1rml"la<eiT'c<05Ir)l'"'

1m <e<Ct i «) illl (G i :a]p) Jht

The n1odule-to-modul~ interconn~ctiongraph shows which modules are depen-
,. ·~:-·

dent on each other, tog~tl1er with information ()n ·the nature of the dep~#dency.

The module..to~modul~ interconnection:graph'can be analysed in two ways:

o Single Dependency Analysis

The module-to:.module interconnection graph is analysed with respect to a
-

single dependency thereby helping to classify a module.

o Mixed Dependency Analysis

The module-to-module interconnection graph is analysed with respect-to two

or more dependencies, and this helps to locate modules that have more than

one role within a system.

With single dependency analysis, specialised subgraphs of a mo~ule-to-module

interconnection graph are: 9htai~~ by_ p_erformi_llg Cl:RPt<?pr:iate _6-:sli~i~g.operations

on the module-to-module inte~connection &raph. F()r example, the ·graph showing

the uses dependency is obtained hy the operation,

h'(G (N, £), {uses})

The 8-slicing operation ensures that only the nodes involved in a uses depen

dency appear in the resulting graph. Similar operati6ns can be used to obtain the

specialised subgraphs for the lpcal-to, lhstantic;tes-to and inherits-from

120

.' •.;.· ~ ,, - , ...

dependencies. In general, the expression,

G(N, £) =

fJ(G(N', £),{instantiates-to}) U fJ(G(N', £),{uses}) U

fJ(G(N, £),{local-to}) U fJ(G(N', £),{inherits-from}) (6.3)

is true, where G(N', e) is a module-to-module interconnection graph. The expres

sion (6.3) cannot always be guaranteed, as G(N', £) may contain nodes that are

associated with modules which are never used within the system. The node asso

ciated with a module that is never used within a system, appears as an isolated

node in the module-to-module interconnection graph. To overcome this, the graph

resulting from the fJ-slicing operation,

fJ(G(N', &), {$ISOLATED$})

has to be included in the expression (6.3).

If the graph showing the isolated nodes is non-empty, i.e.,

fJ(G(N, e), {$ISOLATED$}) f. ¢>

then this denotes the existence of redundant modules which can be removed from

the system without affecting its execution. A module becomes redundant within

a system when the services it is providing are no longer required and therefore all

the connections to that module have been removed.

With mixed dependency analysis, the graph is analysed with respect to more

than one form of dependency. Specialised subgraphs of the module-to-module

interconnection graph that show only the dependencies of interest can be obtained

121

by using the 8-slicing operation. For example,

8(G(N, £),{uses, inherits-from})

results in a graph showing the uses and the inheri ts~from dependencies only.

This thesis concentrates on the analysis with respect to the uses dependency.

Therefore, in subsection 6.3.1 modules are classified by analysing the module-to-

module interconnection graph with respect to the uses dependency, and subsec-

tion 6.3.2 will discuss how the other forms of dependencies can be analysed and

mixed dependency analysis performed.

With the virtual machine approach to software development, a system is built

up by creating software levels. The software at level i provides facilities to the

software at level i + 1 . The software at level 0 provides a software interface to

the underlying hardware. Software developed using -the virtual machine concept

is an example of software that employs the uses dependency. In general, the
I

uses dependency appears in the module-to-module interconnection graph for any

system where the concept of one module providing facilities for another is employed.

This makes the uses dependency very important, because it can be applied to all

the module languages, and software design techniques like information hiding and

object-oriented design employ the uses dependency to develop systems.

In this thesis it is suggested that five forms of modules can be identified by

analysing the module-to-module interconnection graph with respect to the uses

122

dependency. They are:

1. The Specialised Module

A module providing a specialised service.

2. The Terminal Module

A low level module within a system.

3. The Fundamental Module

A module that plays a critical role within a system.

4. The Root Module

A module that represent the system or the properties of part of the system.

5. The Solitary Module

A module that is not part of the module-to-module interconnection graph

with respect to the uses dependency.

These forms of module are described below.

The specialised module is a module that provides a specialised service within

a sy~tem of module~ Such a module can easily be identified because the node

associated with the module is the stop-node for an edge that represents a uses

dependency, and that node is the stop node for only one edge representing a uses

dependency, i.e., it provides facilities to only one other module. With classical

design methods that result in the module-to-module interconnection graph having

a tree structure, each module (bar the actual root module) is a specialised module,

because it is providing facilities needed by the module associated with the parent

node.

123

The terminal module is a module that is totally self contained, requiring

none of the services provided by the other modules in the system. With directed

· acyclic graphs and trees a terminal modufe is a module· that occurs at the lowest

level. A terminal module appears in the module-to-module interconnection graph

as a module that is the stop-node of at least one edge that represents the uses

dependency but is not the start-node for an edge representing a uses dependency.

The fundamental module is a module that plays a critical role within a sys

tem. This form of module appears in the module-to-module interconnection graph

as a module that is the stop-node for many edges denoting uses dependencies, and

is thus required to support many other modules. Fundamental modules can exist in

a system for many reasons. For example, the nature of the service provided by the

module may be the reason it is a critical module of a system (e.g., an I/0 module);

or the system may have been poorly designed or maintained with the result that

the module is a potpourri module, providing several logically unrelated services.

The root module is a module that appears to represent either the entire

system, or part of the system. A root module appears in the module-to-module

interconnection graph in two forms.

1. Uses facilities but provides none, e.g., the program module of Modula-2 pro

gram.

2. Uses facilities from a large number of modules and provides some services.

This form of dependency highlights a module that requires the services of

many modules in order to provide its services to the system. As such, this

module tends to represent the modules it uses in a more general form. For

example, an I/0 module is often constructed from more specialised 1/0 mod

ules.

124

The solilitary module is a module that is not used with any uses dependency.

The node for this form of module appears in the module-to-module interconnection

graph as an isolated node, i.e., a node that is neither the start-node or the stop

node of an edge representing a uses dependency. To understand the role of this

module within a system, the module-to-module interconnection graph would have

to be analysed with respect to the other dependencies recorded.

It is possible for a module to be classified as being of several forms. Consider for

example, the structure of the Heads-Up Display given in Figure 6.7 (page 111). The

package HORLD-SYSTEM can be classified as being both a terminal module, because

it requires no services from the other packages, and a fundamental module, because

it is providing a service to a large number of packages.

When the module-to-module interconnection graph is analysed with respect

to the uses dependency, the levels of the virtual machines upon which a sys

tem is constructed are revealed to the maintenance programmer. The module

to-module interconnection graph can also identify which modules correspond to

each virtual machine level. However, the virtual machine hierarchy is not the

only technique that is used to structure a system in the module languages. The

local-to, instantiates-to and inherits-from dependencies help reveal other

system structuring techniques.

The local-to dependency can reveal how a particular subsystem is further

subdivided into other modules, but these modules provide entities which are log

ically related, Le., each module does not properly represent a subsystem. The

125

insta.utiatss~to dependency shows how some modules within a system are par-

ticular instances of another more general module whose components cannot be

used in the system. The inhe:d ts~from dependency shows another way in which

modules are built up from other modules, but this time the components of each of

the modules can be used in the system.

Each of these dependencies is considered below.

The local-to]Dependency

The subgraph of the module-to-module interconnection graph G(N', £)showing

only the local-to dependencies can be extracted by applying the following h'-slicing

operation,

h'(G(N, £),{local-to}) (6.4)

The graph resulting from (6.4) shows which modules have been further de

compo§~d by the programmer implementing the main module. ·Unless the local

modules are being used to circumvent a perceived language weakness, as is demon-
•·

strated on page 109, the graph resulting from (6.4) shows portions of a subsystem

that the programmer implementing a module felt required extra protection from

accidental misuse. Identifying these portions of a module helps a maintenance pro-

grammer identify important parts of a module. This in turn helps a maintenance

programmer understand a module.

126

'JL'he instantiates-to Dependency

Analysing the module-to-module interconnection graph with respect to the

instantiates-to dependency can help the maintenance programmer classify mod

ules. The 8-slicing operation,

8(G(N, £),{instantiates-to}) (6.5)

extracts a subgraph from G(N, £) that shows which modules are connected via

an instantiates-to dependency.

Let Gi(Ni, £i) be the graph that results from (6.5). Each proper subgraph

within Gi(Ni, £i) denotes an instantiation tree. An instantiation tree is a tree

structure where each of the non-terminal nodes is associated with a generic mod

ule. A terminal module is normally associated with a concrete module, but it is

possible that the terminal module is a generic module. In this case, the module

to-module interconnection graph has helped locate a module (or set of modules)

that is not being used within a system, as a generic module cannot be used unless

it is instantiated.

If' the language in which the system is implemented allows for the dynamic

instantiation of a generic module, then the existence of a terminal node in the

instantiation tree which is associated with a generic module cannot be used to

infer that the module is redundant. The existence of such a node, however, does

inform the maintenance programmer that they need to examine the usage of the

generic module to see if the module is redundant.

127

ARRAY LIST

TWO-WAY -LIST TREE BI-LINKABLE

Figure 6.15: The Inheritance Graph for part of the Eiffel Library

'!'he inherits-from Dependency

When analysing the module-to-module interconnection graph with respect to

the inherits-from dependency, the maintenance programmer is in fact analysing

inheritance graphs which show the modules that are created as extensions or

specialisation of other modules. A module-to.:module interconnection graph can

contain several inheritance graphs. Each inheritance graph is the family tree for

the set of modules associated with the nodes in the inheritance graph.

Consider the inheritance graph given in Figure 6.15. This inheritance graph is

taken from "Object-Oriented Software Construction" [105, page 246] by Meyer and

it shows part of the inheritance graph for the Eiffel library. This graph shows the

lineage for the modules involved in the inherits-from dependency. For example,

the module TREE is built up from the modules LINKABLE and LINKED-LIST,

which in turn is built up from the module LIST.

128

The inheritance graph for a system employing subclassing as the inheritance

mechanism is a tree structure. This is because each module can only be built

up from one module, but a module can be the base for many modules. This is

analogous to the idea that a node in a tree can only have one parent node but can

have many children nodes.

In order to obtain the subgraph of a module-to-module interconnection graph

that only records the inherits-from dependency, the following 8-slicing operation

is used,

8(G(N, E), {inherited-from}) (6.6)

where G(N, £) is the module-to-module interconnection graph being sliced. In

order to derive the inheritance graphs contained within a module-to-module inter

connection graph, the graph resulting from (6.6) is given as the argument to the

get-proper-subgraphs function specified on page 99.

Mixed Dependency Analysis

Analysing the module-to-module interconnection graph with respect to partic

ular dependencies, can help a maintenance programmer classify or understand the

function that a module provides within a system. With module languages that

allow more that one form of dependency between modules, it is often fruitful to

analyse a module-to-module interconnection graph with respect to several depen

dencies in order to ascertain which modules are playing a dual role within a system.

The grouping of dependencies used in mixed dependency analysis with often be a

language dependent decision as some dependencies or combination of dependencies

129

will not be possible in some languages.

A useful form of mixed dependency analysis is to analyse a module~to-module

interconnection graph with respect to the uses and the inherits-from depen

dencies. This form of mixed dependency analysis will be discussed below, but

other forms of mixed dependency analysis are possible. For example, it may be

useful to analyse the module-to-module interconnection graph with respect to the

inherits-from and the instantiates-to dependencies for programs written in

Ei:ffel, or with respect to the uses and the instantiates-to dependencies for

programs written in Ada or Clu.

The number of dependencies involved in mixed dependency analysis need not

be confined to just two, but as the amount of information that the maintenance

programmer is going to have to process is likely to be quite large, performing several

mixed dependency analysis operation with respect to two dependencies and then

combining the results may well prove more fruitful.

When analysing a module-to-module interconnection graph with respect to the

uses dependency, a hierarchy of virtual machines is revealed. This hierarchy can be

analysed and the modules classified by the way they are used within the system .
.

When analysing a module-to-module interconnection graph with respect to the

inherits-from dependency, a data abstraction hierarchy is obtained. Each level

up this hierarchy describes a more specialised abstract data type, or an enlarge

ment of an abstract data type. Analysing a module-to-module interconnection

graph with respect to both of these dependencies can provide the maintenance

programmer with more information than might be obtained by analysing each de

pendency separately.

130

Let G~~.(Nu, £~~.)be the subgraph of a module-to-module interconnection graph

showing the uses dependencies, and let Gi(Ni, Ei) be the subgraph showing the

inheri ts~from dependencies. It is possible for the node llM associated with the

module M to be in both G~~.(Nu, Eu) and Gi(Ni, Ei) (i.e. nM E Nu and nM EM).

When this occurs, M is said to have a dual role within a system, as it appears in

two of the hierarchies that describe the system.

In order to determine which modules within a system have a dual role with

respect to the uses and the inherits-from hierarchies, a strict graph intersection

operation is used.

(6.7)

The strict graph intersection operation will not pass on an edge to the resulting

graph that does not exist in both the given graphs. As both graphs record differ

ent dependencies, they have no edges in common. Therefore, the resulting graph

contains no edges. However, it is possible for Gu(N u, Eu) and Gi(Ni, Ei) to have

nodes in common, and these common nodes will appear in the resulting graph.

If the result of (6. 7) is the empty graph, then this indicates that the modules

associated with Gi(Ni, Ei) may be redundant within the system. In order to con

firm this, Gi(Ni, Ei) would have to be analysed with the subgraphs of the module

to-module interconnection graph recording the local-to and instantiates-to

dependencies.

131

(Q)Al A.illl JExampli<e of 1tlhe Analiysli§ of 1tlhe Modbrnlie=

m2dsp is a program that Sun Microsystems Inc. provide with their Modula-2

system. The m2dsp program analyses the import lists of Modula-2 modules, and

generates the PostScript* commands for drawing a grid which shows the modules

that import entities from each other. m2dep is written in Modula-2 and its module-

to-module interconnection graph is given in Figure 6.16. Since it is composed of

global modules only, the module-to-module interconnection graph contains only

uses dependencies.

By examining the module-to-module interconnection graph for m2dep, the mod

ules Scanner and UnixSupport are identified as being terminal modules of the

m2dsp system. This means that these two modules are low level modules within

the m2dep system. The module Scanner performs lexical analysis, while the mod

ule UnixSupport provides a Modula-2 interface to the underlying Unixt operating

system.

Further analysis of the module-to-module interconnection graph shows that

Scanner is only used by ModuleHandling within the m2dep program. Therefore,

Scanner is classed as being a specialised terminal module within the m2dep pro

gram. Similarly the module UnixSupport is seen to be used by three modules.

This means that the services represented by the public entities of UnixSupport are

used by a relatively large number of the modules of the m2dep system. As a result

of this, UnixSupport is classified as being a fundamental module within the m2dep

'"PostScript is a registered trademark of Adobe Systems Incorporated
tunix is a trademark of AT&T

132

uses

Scanner

UnixSupport

Figure 6.16: Module-to-Module Interconnection Graph for m2dep

133

system. A closer examination of UnixSupport is needed in order to determine if

UnixSupport is providing several logically unrelated services, or one service that

is important to the m2dep program.

The module IO is not a terminal module, as it uses the module UnixSupport.

The module-to-module interconnection graph shows that the module IO is used by

two other modules. Within the m2dep system this is a relatively high number of

modules (two modules are a third ofthe modules in the system), and so the module

IO can also be classified as a fundamental module. In Chapter 9,, techniques for

analysing the contents of modules in order to derive the different services are given,

and the techniques are demonstrated by using the modules IO and UnixSupport.

The module m2dep is a root module. Using knowledge about the language

Modula-2, it can be derived that the root module is the program module that is

used to initiate program execution. The module m2dep is therefore a high level

module of this system.

The modules ModuleHandling and OptionHandling are mutually dependent,

i.e., the module ModuleHandling uses the module OptionHandling and the mod

ule Optiori.Haridliiig uses the module M~duleHandling. This mutual dependency

indicates that the m2dep system was not developed using any of the classical soft

ware design methods, because such methods cannot produce a mutual dependency

with respect to the uses dependency.

134

JE mrli; li 1t y = 1G ((J)= M (CJ) dhrnli e

JIJIJl t e Jr ccconmilll ec"lG ii o rm G rr a JP Jh

An entity-to-module interconnection graph is another form of interconnection

graph that shows the dependencies between modules. The entity-to-module inter

connection graph gives a more detailed description of the inter-module connections

than is given by the module-to-module interconnection graph. In particular, it

shows which entities are exported from, imported by or inherited by each of the

modules of a system.

Just as with module-to-module interconnection graph, the entity-to-module in

terconnection graph provides a useful form of documentation that is generated

135

from the program code. This information is especially useful to the maintenance

programmer, as it reveals details about the nature of a module.

For example, if a module exports a type and some routines to a module, then

the supplier module is likely to be exporting an abstract data type. This cannot

be confirmed without having analysed the entity-to-entity interconnection graph

associated with the exporting module, as is explained in section 7.3, but this in

formation helps give a maintenance programmer a feel for what sort of service the

module is providing within the system.

The module classifications given in Chapter 6 can help identify which modules

require closer examination. The entity-to-module interconnection graph can be

analysed with respect to the taxonomy given by Booch (see Chapter 3) in order

to help determine what form of modules the system is comprised of. The entity

to-module interconnection graph can also be used to help improve the structure

of a system by a technique known as module factoring which is described in

Chapter 9.

In section 7.2, the characteristics of the entity-to-module interconnection graph

are identified, and section 7.3 describes how the entity-to-module interconnection

graph can be analysed and used to help classify modules .and find inconsistent

interpretations of a design decision.

136

7 o2l CCJh.SJ.Ira.c1teirn§1d.cs of the JEIOl1tnty=to=ModuTie JIIDl=

1t <eJr <C(()l IDliDl ect no IDl G If Sl.JP Im

The entity-to-module interconnection graph is a specialised form of intercon

nection graph that shows the dependencies between modules. The dependencies

shown in the entity-to-module interconnection graph are more refined than those

in a module-to-module interconnection graph. Whereas the module-to-module in

terconnection graph shows the dependencies between modules in terms of which

modules require each other, the entity-to-module interconnection graph shows the

dependencies in terms of which public entities are exported by one module and

imported by another.

The nodes of an entity-to-module interconnection graph represent the modules

that comprise a system, together with the global entities that are involved in the

module connections. Normally not all the global entities appear in the entity-to

module interconnection graph as some of them are private entities that cannot be

involved in the inter-module connections.

Consider for example the case when two modules are connected by a uses

depe~dency. Then the only entities from the supplier module that need appear in

the entity-to-module interconnection graph are the entities that the supplier module

exports, i.e., its public entities. The connections between the supplier module and

the client module show the entities that a supplier module either explicitly exports

to a client module, or that a client module requests the use of.

Languages like Ada do not allow a client module to state explicitly which en

tities. are to be imported. Instead, all the entities are imported. With this form

137

of language, it is more meaningful from the code analysis perspective, for the

entity-to:.module interconnection graph to record which of the imported entities

are actually used. Thus, the same dependency will be used to record an entity be-

ing selectively imported, in languages like Modula-2, and an imported entity being

used, in languages like Ada. This will help simplify the discussion on performing

some inter-module code analysis work described in later chapters of this thesis.

Similarly, no distinction will be made between qualified import, where the iden

tifier of an imported entity has to be prefixed by the identifier of the exporting

module, and direct import, where an imported entity does not need to be qualified

in order to be used in the client module. This reduces the number of dependencies

being considered in this thesis. Each of the dependencies given below can be taken

to mean that either qualified or direct access to the imported entity is valid.

An edge in an entity-to-module interconnection graph represents the dependen-

cies that can exist between modules and global entities from other modules. The

dependencies that can be recorded in an entity-to-module interconnection graph

are:

0 injected
I

When a local module exports an entity into the surrounding module.

o imported

When an entity is imported into a module.

o exported

When an entity is provided to a group of named modules.

o inherited

When an entity is inherited from another module.

138

Each of these dependencies will be discussed in the following subsections.

The inj ectad dependency indicates that the entity associated with the start

node of an edge is injected into the module associated with the stop-node of

the edge. An entity is injected into a module if the .exporting module is a local

module. A local module has to export the entity into the surrounding environment,

and this envir~nment is the block containing the local module's declaration. This

means that the module associated with this block has acquired an entity it did not

explicitly ask for. This form of dependency can exist in languages like Ada and

Modula-2, which both contain a local module construct.

package body PLANE-TRACKER is

package ACTIVE-PLANES is
procedure ADD(P: PLANE; ID: out PLANE-ID);
procedure DELETE(ID: out PLAN~ID);
function INTERN_~L~A]'i~(ID: PLANE-ID) return PLANE;

end! ACTIVULANES;

end PLANE-TRACKER;

Figure 7.1: Example of Entities being Injected into a Package

Consider the declaration of the local package given in Figure 7.1 (taken from [60,

page 261-9]). The package PLANE-TRACKER is part of a real-time radar surveillance

system that keeps track of plane positions. Each plane being tracked has two names

within the system: the ~xternal name which is displayed to the user, and the name

139

used within the code of PLANE_TRACKER. The mapping between the two names is

performed by the local package ACTIVE_PLANES. This package injects three entities

into PLANE-TRACKER: ADD, which adds a plane to the set being tracked; DELETE,

which removes a plane from the set being tracked; and INTERNAL-NAME which raises

an exception when trying to use an invalid external name. This dependency is

shown in Figure 7 .2.

ADD

injected

ROUTINE
ACTIVE..;PLANES

DELETE INTERNAL..NAME

Figure 7.2: The Entity-to-Module Interconnection Graph for Figure 7.1

-

The nodes for the injected entities record that they are from the package

ACTIVE_pLANES. The entity-to-module interconnection graph does not show directly

that the package PLANE-TRACKER is dependent on the package ACTIVE_pLANES. This

would be shown in the module-to-module interconnection graph. The only time the

entity-to-module interconnection graph shows two modules to be directly depen-

dent, is when one of the modules is a public entity, and is involved in an injected,

imported or exported dependency.

140

With the inj acted dependency, the module acquiring an entity does so because

a local module exported it into the environment of the encapsulating module.

Another way for a module to acquire an entity is to import it. An import can

occur between global modules, and between a local module and its encapsulating

module, when the local module acquires entities from the encapsulating module.

The imported dependency indicates that a module imports an entity from

another module, or in the case of languages like Ada, where a module has to

import all the entities, it indicates which of the entities that are available from the

supplier module are actually used by the client module.

With the imported dependency, the entity associated with the start~node of an

edge is imported or used by the module associated with the stop-node of the edge.

This form of dependency is the most common in an entity-to-module interconnec-

tion graph and is supported by all the module languages.

Consider again the Heads-Up Display system that is given in Figure 6.7 on

page 11 f. Tlie pacKage WORLD~SYSTEM is -us~d by several packages, including the
'

packages: FLIGHT-PARAMETERS and TARGET.J30X. The specification parts of these

three packages are given in Figure 7.3. From this figure it can be seen that the

package TARGET-BOX uses the entities: STATE-VECTOR and DIMENSION; while the

package FLIGHT _pARAMETERS uses the entities: ALTITUDE and STATE_VECTOR. These

dependencies are shown graphically in Figure 7 .4.

The entities that are used by the packages FLIGHT-PARAMETERS and TARGET-BOX

are shown as being imported entities. The remaining public entities from the pack-

141

pa~Ckage t-JORLD_SYSTEM ns

type STATE-VECTOR ns private;
ty]ple LATITUDE ns private;
'type LONGITUDE lis private;
iy]ple ALTITUDE is private;
iy]ple DIMENSION is private;

end t-JORLD_SYSTEM;

wiith t-JORLD-SYSTEM;
package FLIGHT-PARAMETERS is

type ALTITUDE is new WORLD_SYSTEM. ALTITUDE;
type HEADING is new t-mRLD_SYSTEM.STATE_VECTOR;

taslk COUPLER ns
entry STATUS (THE-ALTITUDE

THEJIEADING

end FLIGHT _pARAMETERS;

with WORLI)-SYSTEM;
package TARGET-BOX ns

out WORLD-SYSTEM.ALTITUDE;
out WORLD_SYSTEM.ALTITUDE);

type CENTRE is new WORLD_SYSTEM.STATE-VECTOR;
• type ~IZE is new WORLD-SYSTEM. DIMENSION;

task COUPLER is
entry STATUS (THE-CENTRE

THE-SIZE

end TARGET-BOX;

out WORLD_SYSTEM.STATE_VECTOR;
out WORLD_SYSTEM.DIMENSION);

Figure 7.3: Package Specification for Showing imported Dependencies

142

FLIGHT-PARAMETERS
MODULE

$GLOBAL$

TARGET ..BOX
MODULE

$GLOBAL$

ALTITUDE STATE-VECTOR DIMENSION

TYPE
WORLD-SYSTEM

LATITUDE

TYPE
WORLD-SYSTEM

LONGITUDE

Figure 7.4: The Entity-to-Module Interconnection Graph for Figure 7.3

143

age 'WORLD..SYSTEM are shown as being isolated in entity-to-module interconnection

graph because they are not used.

The exported dependency is applicable only to languages like Eiffel that allow

a module to state to which other modules the public-entities are being exported.

The exported dependency is applied only to those entities that are exported to

a named mod~le. Entities that are exported and made generally available to any

global module that wishes to import them are not the subject of this dependency.

class LINKABLE
export change_ value{ LINKED_LIST} 1 value{ LINKED_LIST},

change_ right{ LIJVKED-LIST} 1 right

end ~~ LINKABLE

Figure 7.5: An Eiffel class with Selective Export

With the exported dependency, the entity associated with the start-node of

the edge is exported to the module associated with the stop-node. Consider for

example, the Eiffel class declaration given in Figure 7 .5.

The entities: value, change_value and change-right are selectively exported to

the module LINKED_LIST, while the entity right is exported normally. The entity-

to-module interconnection graph for this declaration is given in Figure 7.6. The

entity right appears as an isolated node because it is exported normally and is

therefore not the subject of an exported dependency.

144

LINKED-LIST

exported

value change_ value change~right

right

Figure 7.6: The Entity-to-Module Interconnection Graph for Figure 7.5

145

With inheritance, a class module is created as an extension or specialisation of

another class module. Consider for example the following Eiffel class declaration.

dass Q expo:rt ...

inhell"it P

end -- class Q

This declares the class Q to be an extension or specialisation of the class P. If

the class P declares the entities entl and ent2, and the class Q declares the entities

erit3 and ent../., then the class Q has the entities: entl, ent2, ent3 and ent4. This is

because the entities declared in the class Pare inherited by the class Q. Figure 7.7

gives the entity-to-module interconnection graph that shows the class Q inheriting

the entities entl and ent2.

Figure 7.7: The Entity-to-Module Interconnection Graph Showing Inheritance

The form of inheritance shown in Figure 7.7 corresponds to the idea of class

Q being an extension of class P. The class Q has all the entities in class P and

146

some extra entities. A class module can also be regarded as a specialisation of

another module, and this effects which entities appear in the entity-to-module

interconnection graph showing the inherited dependency.

When a class module is created as a specialisation of another module, this

commonly involves redeclaring entities that are inherited. This redeclaring of an

inherited entity is called oveniding.

Consider the scenario given above where the class· P declares the entities ent1

and ent2, but this time the class Q . overrides the declaration of ent2 to make

it more appropriate to the task being performed. Then in the entity-to-module

interconnection graph, given in Figure 7 .8, the entity ent2 is not shown as being

inherited, because the entity ent2 is declared in Q.

inherited

Figure 7.8: The Entity-to-Module Interconnection Graph Showing Inheritance with
Overriding

With Simula, it is possible for a module to refuse to bequeath an entity, by

declaring the entity hidden. When this occurs, the entity-to-module intercon

nection graph does not record the hidden entities as being part of an inherited

dependency.

147

7 o 3> A lTil.aliy sn § <O>if 1G Jh e JE lTil.1G n t y = 1t <O>= M <0> d uTI e JI lTil. t e1r c <O>lTil. =

lTil. ecc'lG no lTil. G 1r ap h

The information recorded in the entity-to-module interconnection graph can

be used for various types of software maintenance activities. In this section, two

techniques for analysing a entity-to-module interconnection graph are described

that reveal different kinds of information about a system.

In subsection 7.3.1 the entity-to-module interconnection graph is analysed with

respect to the ·imported and exported dependencies, in order to determine any

anomalous dependencies between modules. In subsection 7.3.2 the entity,. to-module

interconnection graph is analysed to classify modules according to the taxonomies

of modules given by Booch. In this way modules are further classified, giving a

maintenance programmer more details about the role of a module within a system

by determining the service that the module is providing. Note that this is being

done without the maintenance programmer having to examine the implementation

details of a particular module.

With the injected dependency, the entity exported by a local module is au

tomatically imported by the module containing the local module. This is not the

case with entities involved in an exported dependency. It is therefore possible for

a module to export an entity to another module, but for that module not to import

it. In Chapter 3 it is shown how, as part of the design phase, the interface for each

module is determined. H therefore, there exists within a system a module which

148

exports an entity to another module, but that module does not import the entity,

then there is an inconsistency between the way the programmers are implementing

a design decision. Detecting this form of inconsistency within a system is a form

of anomaly detection that can be performed by analysing the entity-to-module

interconnection graph for a system.

To detect this form of anomaly, the entity-to-module interconnection graph has

to be analysed with respect to both the exported and imported dependencies. The

appropriate graph for this analysis can be extracted from G(N, £), the entity-to

module interconnection graph for a system by the following 6-slicing operation,

6(G(N, £), {exported, imported}) (7.1)

Let Gei(Nei, Cei) denote the graph resulting from (7.1).

The function specified below can be used to determine if there exists an anoma-

lous dependency.

exist-anomaly : Graph ~ B

exist-anomaly(mk-Graph(nodes, edges)) 6 .
3e1 E edges·

dependency(e1) = exported

•(3e2 E edges ·

dependency(e2) = imported A

start-node(e1) = start-node(e2) 1\

stop-node(el) =stop-node(e2))

149

The following call of this function, would detect any anomalous dependencies within

Gei(N'ei' fei)

exist-anomaly(Gea(Nec, t'ei))

When analysing the module-to-module interconnection graph with respect to

the uses dependency, modules are classified according to their apparent usage

within a system. With the entity-to-module interconnection graph, the main

tenance programmer is given information on which entities are imported by or

exported to the modules of a system.

Some languages, like Extended Pascal, allow a module to explicitly provide

several client views, while other languages like Ada and Modula-2 allow only one

client view to be explicitly declared. By providing only one client view of a module,

the fact that the supplier module may be providing a different service to each of

the client modules is obscured. This makes the maintenance programmer's task of

understanding a module more-difficult, hecause the maintenance -programmer has

first to determine that a module has several client views. Analysing the entity

to-module interconnection graph with respect to the exporting and importing of

entities can help a maintenance programmer derive the actual client views of a

supplier module. This information can then be used by a maintenance programmer

to start to classify a module according to Booch's taxonomy.

150

Deriiving the Client Views

The a/3-slicing operation can be used to derive the subgraph of Gei(N'e;, &e;)

that shows the client view between a named supplier module and a named client

module. Consider for example, the a/3-slicing operation

oource=SupplierModulelle(Ge;(N ei 7 £ ei), (e, ClientModule}) (7.2)

This a/3-slicing operation returns the graph that shows the public entities from

SupplierModule that are either exported to or imported by ClientModule. This

is because the a constraint,

sou~e=SupplierModule

ensures that, in the graph resulting from (7.2), all the edges have as a start-node

a node with the value SupplierModule stored in the label attribute entity-sou~e.

This means that the start-node of each edge, is associated with an entity from

SupplierModule. Namingthe,module ClientModule as the second element of the

slicing criterion argument,-ensures that the riode associated with tliis modUle is the

stop-node for all the edges in the resulting graph.

In order to derive all the client views of a module, a function satisfying the

following specification can be used.

151

get-client-views : Graph X Source ---? se~ of Graph

get-client-views(graph, supplier-module) . t::..

let moduleset ={mImE nodes(graph) A

3e E edges(graph) · m =stop-node(e)} m

{source= supplier-module lle(graph, (e 1 m}) I m E moduleset}

In order to derive all the client views of the module SupplierModule, the func-

tion get-client-views is used in the following manner,

get-client-views(Gei(Nei 1 Cei), SupplierModule)

Analysin.g a CH.ent View

In order to analyse a client view of a module so that it is possible to start

classifying the module in terms of Booch's taxonomy, it is necessary to consider

the classes of the entities in the client view.

II Module Classification I Classes of Entities That can Occur II
Named Collect_ion of Variables, Types

-Declarations - - - ·--

Group of Related Constants, Routines, Modules
Program Units

Abstract Data Type Constants, Routines, Types (a Type and
_a Routine must occur)

Abstract-State Machine Any (but must contain a Routine)

Table 7.1: Classes of Entities Associated with Booch's Taxonomy

Table 7.1 gives a breakdown of the classes of entities associated with each ~f

the module classifications in Booch's taxonomy. By examining the classes of en-

tities in the client view, it is possible to see which ofBooch's classifications the

152

module can conform to. It is possible for a module to conform to several of the

classifications. For example, if a module has routine and type entities then the

module could be classified as providing an abstract data type, a group of related

program units and a named collection of declarations. The actual classification

can be obtained by analysing the entity-to-entity interconnection graph, but the

maintenance programmer could dismiss some of these classifications by scanning

the relevant modules. For example, if the module contains no state variables, then

it cannot be an abstract-state machine; or if the type, entities are not used to de

clare parameters for the routines then the module is unlikely to be providing an

abstract data type.

153

JE mrlt n tt yo'lc ([})= JE mrfu n -lG y IImr(G cerro c((J)muruce cc 1G n (Q) rm

GrroapJh

The entity-to-entity interconnection graph differs from the module-to-module

interconnection graph and the entity-to-module interconnection graph in that the

dependencies recorded are not those that exist between modules. Instead, the

entity-to-entity interconnection graph shows the dependencies that exist between

the global entities of a module. As a result, a system that comprises of TJ modules,

has TJ entity-to-entity interconnection graphs.

The entity-to-entity interconnection graph shows the dependencies between all

the global entities of a module. As a result it can be used by a maintenance pro-

154

grammer to determine the dependencies that exist between the public and private

entities of a module. This helps classify a module.

In section 8.2, the characteristics of the entity-to-entity interconnection graph

are identified, and section 8.3 describes how the entity-to-entity interconnection

graph can be analysed and used to help classify modules.

~~t2 Clh.<El.Jr'<acteJrn§t·nc§ of tlh.e Entnty= To=Entnty lin=

teJl"<Connectnon GJraplh.

The entity-to-entity interconnection graph for a module shows the dependen

cies between the global entities of the module. The entity-to-entity interconnec

tion graph for a module M can be extracted from a general interconnection graph

Gi9 (Ni9 , &i9) by an a,B-.slicing operation of the form,

With the entity-to-entity interconnection graph for a module, the nodes are

associated with the global entities of the module, and an edge between two nodes

records that the entities associated with the start-node and stop-node are depen

dent. Some of the dependencies recorded in. the entity-to-entity interconnection

graph will be discussed in the following subsections.

155

€L~L]. Tllne delimi ted=by Depeliildleliilcy

The dslimited~by dependency is associated with an edge of the form,

(
t constant)
ype, routine

Where the stop-node represents a constant or function entity that is used to

mark the upper and lower bounds of the subrange type associated with the start

node.

constant C: INTEGER: = 2 ;

function F: return INTEGER is
begin

return. 10;
end F;

type T1 is :range C .. 2*C;
type T2 is ra:nge 1. . F;
type T3 is ra:nge C •• F;

Figure 8.1: The Declaration of Range Types in Ada

Consider the fragment of Ada code in Figure 8.1. In this figure, three range

types are declared. The range T1 uses the constant entity C to delimit both the

upper and lower bounds, while the range T2 uses the constant function F to delimit

the upper bound. The range type T3 uses the constant C to delimit the lower bound

of the range, while the function.F delimits the upper bound of the range. The entity-

to-entity interconnection graph showing these dependencies is given in Figure 8.2.

The range type T1 is delimited twice by the constant C, but the entity-to-entity

156

interconnection graph only shows one occurrence of the dependency delimi ted..;by.

This is because it was decided that an interconnection graph should only record

the existence of a dependency and not the number of times a dependency occurs.

Figure 8.2: The Entity-To-Entity Interconnection Graph for Figure 8.1

8.2.2 Tll:ne of=type DepeJrD.dleJrD.cy

The edge representing an of-type dependency is of the form,

'(constant,)
- --type i t e- -

varia~le, yp - -
routzne,

With an edge representing the of'-type dependency, the start-node is associated

with an entity whose type is the type entity associated with the stop-node of the

edge.

Figure 8.3 gives a Modula-2 program module containing entity declarations.

The- entity-to-entity interconnection graph for this program module is given in

Figure 8.4. The edges associated with the variable V show that a node can be

157

MODULE EntityDeclaration;

TYPE_ T1 - [1. .10] ;
T2 - RECORD

Field: T1
END; (* T2 *)

VAR V: RECORD
Field!: T1;
Field2: T2

END;

PROCEDURE F(): T1;
BEGIN

RETURN 5
END F;

BEGIN

END EntityDeclaration;

Figure 8.3: Entity Declaration for Showing of-type Dependencies

158

the subject of more than one of~type dependency. The type associated with the

variable V is an anonymous record type with a field of type T1 and another of type

T2. Thus the variable V is dependent on both the types Ti and T2.

If a routine entity is the subject of an of~type dependency then the routine

must be a function. This is because a function stands for a computed result as well

as a computation. And so a function has to have an associated type.

of-type

Figure 8.4: The Entity-To-Entity Interconnection Graph for Figure 8.3

The parameter~of-type dependency is associated with an edge of the form,

(
routine, t e).

type, yp

A parameter-of-type dependency shows that the entity associated with the

start-node of an edge has at least one parameter of the type associated with the

stop-node ofthe edge.

159

With most languages, a parameter-of~type dependency is confined to edges

where the start-node is associated with a routine entity, but some languages like

Modula-2 and Oberon allow for routines types. With languages like these, it is

possible to hav~ a parameter~of~type dependency between type entities.

TYPE T1 = CARDINAL;
ProcType = PROCEDURE(T1);

PROCEDURE P (para1 : Ti; para2.: ProcType) ;

Figure 8.5: Entity Declarations for Showing parameter-of-type Dependencies

Figure 8.5 gives Modula-2 declarations of routine and type entities. These

declarations are represented by parameter-of-type dependencies in the entity-to-

entity interconnection graph given in Figure 8.6

parameter-of-type

Figure 8.6: The Entity-To-Entity Interconnection Graph for Figure 8.5

tlo2Ac The used-within Depend.encies

The used-within dependencies are the dependencies that record a global entity

being used within a global routine. Four examples of this form of dependency are:

160

o uses-constant

This dependency is associated with an edge of the form

(routine, constant)

o uses;,type

This dependency is associated with an edge of the form

(routine, type)

o uses-variable

This dependency is associated with an edge of the form

(routine, variable)

o invokes

This dependency is associated with an edge of the form

(routine, routine)

Each of these dependencies show that the entity associated with the stop-node of

an edge is used within the routine associated with the start-node of the edge. The

way in which these entities are used within the routine is not recorded with these

dependencies.

Consider for example the entity declarations in Figure 8. 7. This figure gives

the Modula~2 declaration of two global routines, a global constant, a global type

and assorted local entities within the two global routines. The entity-to-entity

interconnection graph for these declarations is given iri Figure 8.8.

Within the routine SillyReader, the constant MaxString is used in two differ-

ent ways. Firstly, it is used to delimit the upper bound of the local type String,

and secondly, it is used as a sentinel value. These different uses have not been

recorded by different dependencies because the code analysis techniques described

161

CONST MaxString = 20;

TYPE Value = INTEGER;

PROCEDURE SillyRaader;
TYPE String= ARRAY [1 .. MaxString] OF CHAR;
VAR i : CARDINAL;

ch: CHAR;
BEGIN

WHILE i<= MaxString DO
Read Char (ch)

END
END SillyReader;

PROCEDURE GlobalRoutine;
PROCEDURE LocalRoutine(para: Value): Value;
BEGIN

RETURN MaxString
END LocalRoutine;

BEGIN
SillyReader

END GlobalRoutine;

Figure 8.7: Entity Declarations for Showing used-within Dependencies

uses-constant uses-type

invokes

Figure 8.8: The Entity-To-Entity Interconnection Graph for Figure 8. 7

162

in this thesis do not need information on how an entity is being used within arou

tine. If this information were desired, theri other dependencies could· be recorded

in the entity-to-entity interconnectiongraph, e.g., the delimits~local~type and

santinel~value dependencies could be refinements of the uses..,.constant depen-

dency, and defines and references could be refinements of the uses~variable

dependency.

Similarly for the routine LocalRoutine declared in the routine GlobalRoutine.

The type entity Value is used to declare the parameter of LocalRoutine as well

as the resulting type, but these different uses are not shown in the entity-to-entity

interconnection graph.

The constant MaxString is not used by the routine GlobalRoutine directly, but

the routine LocalRoutine does. As a result, the entity-to-entity interconnection

graph shows GlobalRoutine to be dependent on MaxString. This is because a

global routine is credited with being dependent on a global entity if this entity is

used by a routine local to the global routine. This is because the entity-to-entity

interconnection graph of a module only shows the dependencies between global

entities. If_~ _globCl,l_ ~()ptin:e was g9t credit__eci_ with a dep~11d~ncy on _a glpbftl entity

held by one of its local routines then the existence of dependencies between some . .

entities could be missed and erroneous analysis performed.

163

Analysis of the entity-to-entity interconnection graphs is normally performed

in conjunct~on with the analysis of the entity-to-module interconnection graph. By

analysing the entity-to-module interconnection graph a maintenance programmer

gains information on the. client I supplier relationship between modules. In order to

fully establish the relationship between a client module and a supplier module, the

entity-to-entity interconnection graph has to be analysed. As the entity-to-entity

interconnection graph will determine the dependencies between the entities in the

client view and establish any dependencies that may exist between these public

entities and the.private entities of the supplier module.

The entity groups in a entity-to-entity interconnection graph G(N', E) can be

obtained by the following function call,

get-proper-subgraphs(G(N', E))

where get-proper-subgraphs is the function specified on page 99. The result of this .
function call is the set of proper subgraphs of G(N', E). Each proper subgraph

represents an entity group. These entity groups can be used to help understand a

particular client I supplier relationship.

Let N' cv be the set of nodes associated with the entities in a client view, and

let Gi(N'i, Ei) be one of the proper subgraphs obtained from the above call of

get-proper-subgraphs. There are four possible relations between the set of nodes

representing the client view and the set ofnodes in Gi(N'i, £i):

164

o Ncv =Na

The relation Ncv nNi ={}says the entity group associated with Gi(Ni, &i) is

unrelated to the entities in the client view. Therefore the entities in this group can

be disregarded when analysing a module with respect to the client view associated

with the set ofnodes Ncv·

The relations Ncv = .N;, and Ncv C Ni show that the entity group associated

with Gi(Ni, &i) contains all the entities that can affect those in the client view.

The relation Ncv = Ni shows that the entities in the client view do not require

any of- the module's private entities, whereas the relation Ncv C Ni shows that the

entities in the client view are dependent on some private entities. If one of these

two relationships is true then all the other entity groups can be disregarded, as

they cannot relate to the client view because all the entity groups are independent

of each other. If a module only has one client view, then the entity groups that are

independent of those in the client view consist of redundant entities.

Finally, the relation Ncv :::> Ni shows that a client view is dependent on more

that one entity group, as the entities in the client view are not contained within a

single entity group.

As an example, consider the module IntStack given in Figures 8.9 and 8.10.

Figure 8.9 gives the definition module and Figure 8.10 gives the associated im

plementation module. The module IntStack provides a stack abstract data type

165

DEFINITION MODULE IntStack;

TYPE StackType;

PROCEDURE Create(VAR stack: StackType);
·PROCEDURE Pop(VAR stack: StackType);
PROCEDURE Push(elem: INTEGER; VAR stack: StackType);
PROCEDURE NumOfStacks 0: CARDINAL;
PROCEDURE NumOfPops(): CARDINAL;
PROCEDURE NuinOfPushes() : CARDINAL;

END IntStack.

Figure 8.9: The Definition Module for IntStack

for integers. The number of times each of the stack operations Create, Pop and

Push is used is recorded. Figure 8.11 gives the entity-to-entity interconnection

graph for IntStack. The dependency p-of-tyPe that appears in Figure 8.11 is an

abbreviation for the parameter-of-type dependency.

A possible client view for this module is the entire definition module in Fig

ure-8.9. Let_Af'cv be. the_set of nodes that oare as~ociated_ with_ th~se p-ubli<; entities.

The entities groups obtained by the function call
I

get-:proper-subgraphs(G 8 (N6 , t' 8))

are Gt(N1 , £ 1) (given in Figure 8.12) and G2(N2, £ 2) (given in Figure 8.13).

In this example, Ncv C N2. As a result, the entities associated with G 1 (N 1 , £ 1)

are not relevant to the analysis of IntStack with respect to the chosen client view.

As this client view consists of all of IntStack's public entities, then the entities

166

IMPLEMENTATION MODULE IntStack;
FROM Storage IMPORT ALLOCATE, DEALLOCATE;
TYPE StackType = POINTER TO StackElem;

StackElem = RECORD
Da~a: INTEGER; Link: StackType

END; (* RECORD StackElem *)
VAR CreateCounter, PopCounter, PushCounter: CARDINAL;

Unused: BOOLEAN;
PROCEDURE Create(VAR stack: StackType);
BEGIN stack:= NIL; INC(CreateCounter) _END Create;
PROCEDURE NumOfStacks(): CARDINAL;
BEGIN RETURN CreateCotinter END NumOfStacks;
PROCEDURE Pop(VAR stack: StackType);

VAR P: StackType;
BEGIN

P:= stack; stack:= stackj .Link; DISPOSE(P);
INC(PopCounter)

END·Pop;
PROCEDURE NumOfPops(): CARDINAL;
BEGIN RETURN PopCounter END NumOfPops;
PROCEDURE Push(elem: INTEGER; VAR stack: StackType);

VAR newStackElem: StackType;
PROCEDURE CreateStackElem(elem: INTEGER; VAR newElem: StackType);

. VAR P: .StackType;
BEGIN

NEW(P); Pj .Data:= elem; Pj .Link:= NIL;
newElem:= P

END CreateStackElem;
BEGIN

CreateStackElem(elem, newStackElem);
netiStackElemj. Link:= stack; stack:= newStackElem;
INC(PushCounter)

END Push;
PROCEDURE ~umOfPushes(): CARDINAL;
B,E~IN RETURN PushCounter END NumOfPushes;

BEGIN
CreateCounter: = 0; PopCounter: . 0; PushCounter: = 0

END IntStack.

Figure 8.10: The Implementation Module for IntStack

167

Create Pop Push

uses-variable uses-variable uses-variable

. (VARIABL~
Unused

uses-variable uses-variable U:ses~variable

Figure 8.11: The Entity-To-Entity Interconnection Graph for IIitStack

~ARIABL}
Unused·

Figure 8.12: The Entity Group Associated with G1 (N' 1 , £ 1)

168

p-of-type

uses-variable uses-variable uses-variable

uses-variable uses-variable uses-variable

Figure 8.13: The Entity Group Associated with G2(N2, &2)

169

associated with the nodes in N'1 must be redundant, i.e., Unused is a redundant

entity.

The entity group associated with G2 (N 2 , £2) can be classified by examining the

classes ofentities associated with a particular subgraph. For example, a subgraph

associated with routine and constant entities only would represent a collection of

routines as a constant entity can be considered as a value function. Similarly a

subgraph associated with an entity group consisting of routine, constant and type

entities would represent an abstract data type. By examining the dependencies

in the subgraph, the abstract data type can be Classified according to the clas-
-

sification given by Ernbley and Woodfield [54, 55]. The entity group associated

with G2 (N'2 , £2) contains variable entities, therefore the entity group represents

an abstract-state machine.

170

Parnas [119] suggests that a module should be considered to be a "responsibil

ity -assignment", where relate<l~riHties -are grouped together-(see Chapter 3 J6i a
discussion of this definition). By viewing a module in this way, entities that are

logically related within a system would be grouped together in a single module.

Booch [16] gives a taxonomy of modules in terms of the service that the module

provides to the system. With Booch's taxonomy, .a module is classed as being one

of the following:

o Named Collection of Declarations

o Group of Related Program Units

171

o Abstract Data Type

o Abstract-State Machine

In Chapter 3 (page 39) we saw that Booch's taxonomy represents an idealised

view of the use of modules. In practice, a module is often a combination of these

classifications. Such modules are referred to as potpourri modules.

The existence of potpourri modules within a system add considerably to the

complexity of the system. With potpourri modules, a maintenance programmer

must first determine what services a module is providing, and then which of those

services, if any, is important to the maintenance activity being performed.

To aid this task, we propose a technique known as module factoring [22). The

objective of module factoring, is to determine the different services that a module

is providing according to Booch's taxonomy, and to establish all the entities that

comprise each of the services. A maintenance programmer can then use this infor

mation to either decompose a given module into smaller modules, each of which

performs a distinct task, or else the module can be left as it is but the different

services and the entities that comprise each of the services can be documented.

In this way knowledge gained by a maintenance programmer can be used help in

future maintenance work.

Three techniques for factoring a module are presented:

o Grouping by Type-Families

Entities are grouped together because they depend on the same type-family

(where a type-family is a collection of inter-related types).

172

o Grouping by Imports

Entities are grouped together because they have the same set of client mod

ules.

o Grouping by State Variables

Entities are grouped together because they use the same state variables.

Each of these techniques makes use of the five specialised forms of the entity-to

entity graph described in the following section.

In order to perform module factoring, the entity-to-entity graph for a module

needs to be partitioned into the following subgraphs:

1. A type-connection graph.

2. _A_call graph.

3. 'A reference graph.

4. A variable/type association graph.

5. A variable usage graph.

These five graphs fully partition an entity-to-entity graph as they contain all

the information that is found in the entity-to-entity graph, i.e., if the graph union

operation is applied to the above graphs the original entity-to-entity graph would

be obtained.

173

Each of these graphs will be described in the following subsections, and the

appropriate a,B-slicing operation needed to extract such a graph from an entity-to-

entity graph is given.

The type-connection graph, Gtc(Ntc, Ctc), is a graph where all t~enodesin N'tc

are associated with entities that are types. This graph only records three forms

of dependencies: of-type when a type entity is used to declare another type,

and $ISOLATED$ otherwise. With Oberon it is possible to have the extension-of

dependency between two type entities. Such a dependency denotes that one type

has been constructed as an extension of another.

T1 ::.: POINTER TO T2; TO = CHAR;
T2 :.1 ARRAY [0 .. 9] OF CHAR; T1 = POINTER TO T2;
T3 = CHAR; T2 = ARRAY [0 .. 9] OF TO;

T3 "' TO-;

(a) (b)

Figure 9.1: Two Examples of Type-Families

Consider for example the Modula-2 type declarations in Figure 9.1. In Fig

ure 9.1(a) T1 is dependent on T2, and T3 is independent of both T1 and T2, whereas

in Figure 9.1(b) Ti is dependent on T2 and both T2 and T3 are dependent on TO.

Figure 9.2 gives the type-connection graphs associated with the two sets of type

declarations in Figure 9.1.

The type-connection graph helps to determine the type-families contained

within a module. A type-family is a collection of types that are related to each

174

Ti T3

(TYPE)

(a) (b)

Figure 9.2: Graphical Interpretation of the Depend_encies Given in Figure 9.1

other. For example, the Modula-2 type declarations in Figure 9.l(a) introduce two
-

type-families. The types Ti and T2 constitute one type-family and the type T3

constitutes another type-family. T2 and T3 are both dependent on the type CHAR,

but as this is a predefined type, T2 and T3 are classed as being independent. For

the purpose of creating type-families for module factoring, the only dependencies

that are important are those between the types declared in the module that is being

factorised.

In comparison, the logically equivalent Modula-2 type declarations in Fig-

ure 9.1(b) i~tro~uce only qg~ ~ype-family. The ~type ~TO is declared to be syn

onymous with the predefined type CHAR, and the new declarations of T2 and T3
I

show these two types to be dependent on TO. Therefore all the types TO, Ti, T2

and T3 are now dependent thereby forming only one type-family.

The type-connection graph can be obtained by an a,B-slicing operation on the

entity-to-entity graph of a module. Consider for example the type declarations in

Figure 9.1(a). If these type declarations occur within the the same module then the

175

type-connection graph G1c(N'1c, &~c) is the subgraph obtained by the operation:

class=TYPEilc~ass=TYPE(G(N, £),(~,e))

where G(N, £) is the entity-to-entity graph associated with the module.

In order to determine the type':'families of a module, the function get-proper

subgraphs that is specified on page 99 is applied to the type-connection graph for

that module. Each proper subgraph that is returned denotes a type-family. For

example, the result of the function call,

get-proper-subgraphs(G1c(N'1c, &1c))

is the set of graphs,

where,

.fVt} = {T1, T2} t't} = { (T1, T2)}

Mj = {~3} Ztj = {}

The result of the function call,

get-proper-subgraphs(Gt(Ntc, etc))

where G~c(Nt t'~c) is the graph in Figure 9.2(b), is the graph G~c(Ntc, etc) itself

as this graph has no subgraphs and therefore has only one type-family, which is

denoted by the type-connection graph itself.

176

The call graph, Gc9 (N'c9 , &c9), is agraph that describes the calling or invoking

dependencies between routines. When constructing the call graph for a module

the normal dependencies that are recorded are the invokes and the $ISOLATED$

dependencies. With the call graph for an entire system, detecting the existence of

$ISOLATED$ dependencies in a call graph is the same as detecting routines that are

never called; however, with the call graph for a module _the $ISOLATED$ dependency

is common. In this context, the $ISOLATED$ dependency does not determine that

a routine is never invoked, but instead that the routine is not called by any of the

other routines within that module.

Just as with the type-connection graph, the call graph Gc9 (Nc9 , Ec9) can be

obtained by applying an a,B-slicing operation:

dass=ROUTINEvCONSTANTIIclass=ROUTINEvCONSTANT(G(N, £), {e, e))

where G(N', £) is the entity-to-entity interconnection graph for the module. For

the purpose of this work, it is useful to regard a constant as a valu~ funGtion that

always returns the same value. As a result, entities that are constants appear in

the call graph.

In the previous subsection, it was shown how the type-connection graph could

be used to determine the type-families of a module. In a similar way, the call graph

can be used to obtain routine groups. A routine group is a group of routines that

are dependent because they invoke each other. The routine groups of a module can

177

be determined by applying the get-proper-subgraphs function to a call graph, i.e.,

get-proper-subgraphs(G cu (N cu, £ {;u))

Each graph contained in the resulting set of graphs denotes a routine group.

The reference graph, Gr9 (Nr0 , &r9), is a graph where all the nodes in Nru are

associated with either type, constant or routine entities. Embley and Woodfield [55]

lise reference graphs to assess the quality of abstract data types according to the

cohesion and coupling measures that they advocate [54]. In module factoring this

graph is used to show the dependencies between the type-families and the routine

groups of a module. As with the type-connection graph and the call graph described

above, the reference graph is analysed in order to detect subgraphs. It can be shown

that each subgraph denotes an abstract data type.

A reference graph Gr9 (.Nr9 , _£r9) is extracted from an entity~ to-entity intercon

nection graph by applying the following a,B-slicing operations:
I'

(ciass=ROUTINEvCONSTANTIIclass=TYPE(G(N, £), (e, e))) U

(class=TYPEiicrass=TYPE(G(N, £), (e, e))) U

(clasa=TYPEI!class=CONSTANT(G(N, £), (e, e)))

where G(N, £)in the entity-to-entity interconnection graph for the module. This

is the same operation that is given on page 100 for extracting from a module an

abstract data type that satisfies Booch's classification.

178

Analysis of Gr9 (N'r9 , Er9) has to be done with respect to the entity groups that

are produced by analysing Gtc(N'tc, Etc) and Gc9(Nc9 , Ec9). H there exists one or

more routines that are not connected to any of the type-families, then these routines

are grouped together. They will be placed in another module, i.e., a module which

is separate from those produced for each of the type families.

Ideally, each routine group should be connected to only one of the type-families.

If there exists a connection between two type-families (because one or more routine

groups depends on both of them), this does not prohibit factoring with respect to

the type-families. However, it does indicate that one of the type-families must be

exported to the module that contains the other type-family. The choice of which

type-family to export cannot be resolved automatically but instead must depend

on the expertise of the programmer who is factoring the module.

Having analysed the type-connection graph, the call graph and the reference

graph, the modules which can replace the original module have been determined.

The next two graphs are analysed with respect to both the type-families and the

routine groups in order to determine how the variables are to be distributed.

9o2o4 The Variable/Type Association Graph

A variable/type association graph, Gvt(N'vt, Evt) shows the dependencies be

tween global variables and the type-families. Gvt(N'vt, Evt) is normally a disjoint

graph with each variable being dependent on only one of the type-families. The

dependencies recorded in a variable/type association graph are of-type, when a

variable is declared to be of a type declared in the same module, and $ISOLATED$

otherwise.

179

A variable/type association graph Gvt(N' vt! fvt) is extracted from an entity-to-

entity graph by applying the following a,B-slicing operation:

class=VARIABLEiiclass=TYPE(G(N', £), (e, e))

where G(N', £) is the entity-to-entity interconnection graph for the module.

Such a graph has certain characteristics. It will normally be found that the

variables can be split into disjoint groups. The variables that are dependent on

a particular type-family can be grouped together. They will eventually be placed

in the new module created for the type-family. However, a variable will be inde

pendent of the type-families if it is declared to be of a type that is not declared in

the same module as the variable. Those variables which are independent of all the

type-families can temporarily be grouped together.

VAR ExampleVar: RECORD
Field1: TypeFamily1;
Field2: TypeFamily2

END;

Figure 9.3: Variable Declaration that is Dependent on Two Type-Families

These characteristics of the variable/type association graph are typical for pro

grams written in languages like Ada and Modula-2, where a programmer is en

couraged to build new types in terms of previously declared types. It is possible

however for a variable to be dependent on more than one type-family. Consider

for example, the variable declaration given in Figure 9.3. The variable ExampleVar

is dependent on the types TypeFamily1 and TypeFamily2, which are representing

different type-families. As with the reference graph, this form of connection does

not prohibit module factoring, but indicates that some of the new modules will

180

have to be connected.

The variable usage graph, Gvu(Nvu, £vu) shows the dependence of the routine

groups on variables. Variables that are classed as being dependent on one of the

routine groups are assigned to that entity group. For variables that are classed

as being independent of all the routine groups, the variable groups derived from

Gvt(N'vt, £vt) ~re considered. If a variable is classed as being dependent on one

of the type-families, it is assigned to the entity group associated with that type

family. If, on the other hand, the variable is classed as being independent of the

type-families then it is assigned to the entity group that is independent of all the

type-families. Just as a variable can be dependent on more than one type-family,

it can also be dependent on more than one routine group. The resolution of which

entity group the variable should be assigned to cannot be resolved automatically;

instead the programmer must make this decision.

A variable usage graph Gvu(N'vu, £vu) is obtained by applying the aP-slicing

operation:

class=ROUTINEiiclass=VARIABLE(G(N, £), (e,e})

on G(N, £),the entity-to-entity graph for a module.

181

Three techniques for module factoring will be described in the following sub

sections. Each of the techniques make use of the five graphs described above. The

m2dep program that is provided by Sun Microsystems Inc. with their Modula-2

system will be analysed and factorised.

Figure 6.16 on page 133 gives the module-to-mod~le interconnection graph for

the m2dep system. In the analysis of this graph given in section 6.4, the modules

IO and UnixSupport are identified as being fundamental modules. This means

that these modules are either providing a single service that is in some way critical

to the system, or they are potpourri modules providing several diverse facilities.

Module factoring provides a means by which it is possible to determine whether

a fundamental module is also a potpourri module. In the following sections, the

module UnixSupport will be analysed and factorised by means of the "grouping by

type-families" and "grouping by imports" techniques, while the module IO will be

analysed and factorised by means of the "grouping by state variables" technique.

9.3.1 Grouping by Type-Families

The Technique

The "grouping by type-families" technique factors a module by grouping vari

able, constant and routine entities with the type-family on which they depend and

by forming a separate module for each of these groups. For example, if the routines

R1, R2 and R3 just use the types of one type-family, and the routines R4 and R5 use

182

the types of another type-family, then the technique would cause R1, R2 and R3 to

be placed in one module, and R4 and R5 to be placed in another. The technique

can specifically be used to factor out any abstract data types defined by a module.

In order to perform the "grouping by type-families" technique, it is necessary

to know which global entities are dependent on each other. This information can

be obtained in a form that facilitates analysis by producing the graphs described

above.

The type-connection graph can be used to determine the type-families, while

the call graph can be used to determine the routine groups. The reference graph

provides a means of determining the dependence between the routine groups and

the type-families. Ideally each routine group should be dependent on at most one

type-family thereby revealing concealed abstract data types. If there is a routine

group that is dependent on more than one type-family then module factoring using

the "grouping by type-families" technique is still possible, but greater programmer

involvement in the mod1.de factoring process is needed.

Consider for example the following segment of code

TYPE T1 - [0 .. 9];

T2 - CHAR;

PROCEDURE P(para1: T1; para2: T2);

The types T1 and T2 are independent and constitute different type-families.

However, the routine Pis dependent on both T1 and T2, and so the routine group

containing the routine P is dependent on two type-families. In order to overcome

183

this problem, the programmer can either choose to house T1 and T2 in the same

module or else house T1 and T2 in different modules. Housing Ti and T2 in the same

module means that the programmer has decided to have one module to represent

two type-families; in this way a module represents abstract data types with shared

operations as has been proposed by Osterbye [111).

Housing Ti and T2 in different modules means that the programmer does not

favour the interpretation of a module representing abstract data types with shared

operations. Instead, each module represents a single abstract data type. This then

forces the programmer to decide which of the two new modules will house the

routine P and therefore have to import the other type-family. This solution always

results in some of the modules being dependent on each other because one module

has to import some members of type-families housed in other modules.

The routines of any routine group that are independent of the type-families

(because the routines do not use any of the type-families) may be placed in a

separate module that contains none of the type-families. It is possible for a routine

group to be indirectly dependent on a type-family because the routine group is

dei>endent ~11 a_ si_ate variable which in turn is dependent on a type-family; -In

order, to determine if there are any indirect dependencies between routine groups

and type-families, the variable/type association graph and the variable usage graph

have to be analysed. Any routine groups that are neither directly or indirectly

dependent on any of the type-families are housed in a separate module.

At this stage any concealed abstract data types have been detected. It is now

necessary to check whether the new modules need to record any state informa

tion. State information is any data that is stored in a state variable. In order

to do this, the variable/type association graph and the variable usage graph are

184

analysed. If the module that is being factorised has no state variables then these

two graphs will be empty.

Ideally each state variable should be dependent on one type-family and one rou

tine group, but as with the dependency between routine groups and type-families,

violation of this ideal does not prohibit module factoring by the "grouping by

type-families" technique. The variable/type association graph when analysed in

conjunction with the type-connection graph, reveals on which type-families each

state variable is dependent. If a state variable is dependent on more than one

type-family, then the programmer must decide in which module to house the state

variable and establish the appropriate importing links between these new modules.

The variable usage graph when analysed in conjunction with the call graph

establishes on which routines each state variable depends. If a state variable is

dependent on only one routine grouping then the state variable is housed with the

routine group. If a state variable is dependent on more than one routine group

then the programmer must decide in which module to house the state variable.

This state variable must also be exported to the new module housing the other

routi~e ~roup. ~s a guideline on whi~h e~tity gro!J.ps SAQl!ld _become modules it

is preferable not to export variables. Therefore entity groups should be arranged
'

to minimise the number of state variables that are exported. This may mean an

occasional merging of different entity groups.

An Example

We now look at an example of module factoring using the "grouping by type

families" technique. Consider the definition module for UnixSupport given in Fig-

185

DEFINITION FOR C MODULE UnixSupport;

FROM SYSTEM IMPORT BYTE~ ADDRESS;

TYPE
Channsls = INTEGER;
StringPointer =POINTER TO ARRAY [0 .. 0] OF CHAR;

CONST
maxFileNameLength = 1024;
stdin = 0; stdout = 1; stderr - 2;
EOL = 12C;
ReadOnly - 0 ;
WriteOnly = 3001B;

PROCEDURE read(FileDesc
VAR Buffer

ByteCount

PROCEDURE write(FileDesc
VAR Buffer

ByteCount

PROCEDURE open(FileName
Mode

Channels;
ARRAY OF BYTE;
CARDINAL): CARDINAL;

Channels;
ARRAY OF BYTE;
CARDINAL);

ARRAY OF CHAR;
CARDINAL): Channels;

PROCEDURE close(FileDesc :Channels);

PROCEDURE strlen(S ARRAY OF CHAR): ~~RQINA~;

TYPE
Comparator= PROCEDURE(ADDRESS, ADDRESS): INTEGER;

PROCEDURE strcmp(S1, 52 : ARRAY OF CHAR): INTEGER;

PROCEDURE qsort(VAR data ARRAY OF BYTE;
elementCount CARDINAL;
elementSize CARDINAL;
compProc Comparator);

END UnixSupport.

Figure 9.4: The Definition Module for UnixSupport

186

ure 9.4. This is a non-standard Modula-2 definition module as there is no associ-

ated implementation module giving the elaboration of the routines. The module

U:nixSu.ppoz·t is providing a Modula-~ interface to predefined C routi:Q.es" This ncn

standard module does not adversely affect the module factoring technique: the only

effect of this non-standard module is that, as there is no implementation module,

all the entity dependencies are derived from the definition module alone.

Figure 9.5 gives the entity-to-entity graph for UnixSupport. This graph also

serves as the reference graph for UnixSupport as all the entities are either con-

stants, types or routines. The type-connection graph for UnixSupport is given in

Figure 9.6. This shows that there are three type-families each consisting of a single

type entity. Similarly, the call graph (Figure 9.7) for UnixSupport consists of 14

routine groups each consisting of a single ront.ine (or constant). As UnixSupport

contains no state variables, the variable/type association graph and the variable

usage graph are both empty. Therefore UnixSupport is factorised by analysing the

type-connection graph, the call graph and the reference graph only.

As the type-connection graph and the call graph show each of the entities

to be independent, the entity groups used to factor UnixSupport will be those

obtained from the reference graph. Figure 9.5 shows that the type Comparator and
'

the routine qsort are dependent, and the type Channels and the routines open,

close, read and write are dependent. Therefore, the reference graph has revealed

two abstract data types which can be removed from UnixSupport and housed in

their own modules. The remaining entities will be placed in a new module called

UnixSupport2. The three new definition modules are given in Figure 9.8.

The module-to-module interconnection graph for the new system is given in

Figure 9.9. U shows the new modules, ComparatorADT and ChannelsADT to be

187

Comparator

c 1~~~)
parameter-I

of~type

@ur!@
qsort

maxFileNameLength

(coNSTANT)

stdin

(cONSTANT)

EOL

(cONSTANT)

St:ringPointc:r

(r~PE)

write read

strlen strcmp

(ROUTINE) (ROUTIN©

stdout stderr

(CoNSTANT) @§~

ReadOnly WriteOnly

(coNSTANT) (coNSTANT)

Figure 9.5: The Entity-To-Entity Interconnection Graph for UnixSupport

Comparator Channels StringPointer

(TYPE) (TYPE) (TYPE)

Figure 9.6: The Type-Connection Graph for UnixSupport

188

c ----=-- -=-- -= ::-

read urite

Q,_our~§ ~TINE)

open close qsort

(R~lJ!•lc~F) (R~UTI~~ Qto_uTJ:_N~

maxFileNameLength strlen strcmp

@i\i~ (ROUTINFj (ROUTIN©

stdin stdout stderr

@NSTANT) (coNSTANT) (CoNSTANT)

EOL ReadOnly vlriteOnly

(coNSTANT) (coNSTANT) @oNSTANT)

Figure 9.7: The Call Graph for UnixSupport

specialised modules. This is consistent with the fact that each of these modules

provides an abstract data type to the system.

The Technique

Entities that are connected because they perform similar functions in a system

are typically imported into the same set of modules. The "grouping by imports"

technique suggests that entities that are imported into the same set of modules

should be declared by the same module. As a consequence, entities that are im-

ported into a different set of modules should be declared by different modules.

189

n?,Yn~rr:umr ~"'rm s i:mnu~:r: Co!tifl<-l.:ca:~ LJ:r. il.!rt;
l:'lWN SYS'J.'j';jc;, H'Al)ORT BY'fk:, ADDRESS;
'fYJ:>);>:

Comparator. = PRUC~DURE (ADDRESS,
PROCEDURE qsort(VAR datu

elementCount
elementSi:,::e
compProc

ADDRESS) : :(NTF.GF.R;
AHRAY UF BYTE;
CAHDINAr.;
CARDINAL;
Comparator) ;

END ComparatorADT.

DEFINITION FOR C MODULE Cha.nneJ.sADT;
FROM SYSTEM IMPORT BYTE;
TYPE

Channels = lNTEGER;
PROCEDURE read(FileDesc

VAR Buffer
ByteCount

PROCEDURE Brite(FileDesc
VAR Buffer

ByteCount
PROCEDURE open(FileName :

Channels;
ARRAY OF BYTE;
CARDINAL): CARDINAL;

Channels;
: ARRAY OF BYTE;
: CARDINAL);

Mode
PROCEDURE close(FileDesc

END ChannelsADT.

ARRAY OF CHAR;
CARDINAL): Channels;

: Channels);

DEFINITION FOR C MODULE UnixSupport2;
TYPE
' StringPointer =POINTER TO ARRAY [0 .. 0] OF CHAR;
CONST

maxFileNameLength = 1024;
stdin = 0; stdout = 1; stderr = 2;
EOL = 12C;
ReadOnly = 0; HriteOnly = 3001B;
PROCEDURE strlen(S : ARRAY OF CHAR): CARDINAL;
PROCEDURE strcmp(S1, S2 : ARRAY OF CHAR): INTEGER;

END UnixSupport2.

Figure 9.8: The Three New Definition Modules

190

uses

MODULE
ComparatorADT Scanner

uses
UnixSupport2

Opt i onHandling

MODULE

Figure 9.9: The Module-to-Module Graph for the Second Version of m2dep

191

The "grouping by imports" technique has two main phases. In phase 1, entity

groups are established; and in phase 2, any inter-group connections are resolved.

Phase 1 of this technique involves determining which modules make use of

another module's exported entities. Some languages, like Eiffel, provide selective

export capabilities. With these languages it is possible to determine the different

entity groups by only analysing the export clause of the module to be factorised.

However, in other languages this is not possible and, instead, all the modules that

constitute the program have to be examined to determine if they use any of the

exported entities of the module to be factorised.

When the different entity groups have been derived, these groups are then used

as the basis for creating new modules to replace the given module. Each entity

group could be used to form a new module, but there are situations when this

would not be desirable. Any two entity groups can either be independent of each

other (when neither of the groups shares entities) or be subgmuped (when one of

the groups is regarded as being a subgroup of the other).

Entity groups that are classed as being subgrouped can be merged without

violating the principle behind this factoring technique. Since the supergroup is

connected to all the modules that the subgroup is connected to, the merging of

the two groups can be achieved without adding extra module connections. When

the entity groups are classed as being independent, then the two groups should be

represented by separate modules.

When the different entity groups that are to form the new modules have been

established, any inter-group connections that exist should now be detected. This

constitutes phase 2 of the "grouping by imports" module factoring technique. Fur-

192

thermore, a distribution of the module's private entities must also take place.

Any private entities that are dependent on only one of the entity groups are

placed in the same module as that entity group, and those entities remain private.

U on the other hand a private entity is dependent on two or more of the entity

groups then it is placed in a separate module and imported by the modules that

contain the entity groups. This entails making some of the private entities public.

Thus, in order to perform the "grouping by imports" technique it is necessary

to determine the dependencies between the private entities. As with the "grouping

by type-families" technique, this analysis can easily be performed once the graphs

described in section 9.2 have been produced.

An JExample

Consider the module UnixSupport2 given m Figure 9.8. By examining the

entity-to-module interconnection graph for the m2dep program, Tables 9.1 and 9.2

are obtained. The tables reveal which entities from UnixSupport2 are imported

by which modules.

II Group Jl. Group 2 I Group 3 I Group 4 I Group 5 II
maxFileNameLength StringPointer EOL stdin stdout
stderr strlen ReadOnly WriteOnly
strcmp

Table 9.1: The Original Entity Groups for UnixSupport2

Using programmer expertise, some of the entity groups given in Table 9.1 can

be merged. From Table 9.2 the entity in Group 5 is seen to be imported by the

module ModuleHandling only, while the entities in Group 1 are imported by both

193

Module §ets

Group 1 ModuleHa:a.dJ.:i.ng, OptionHandling
Group 2 ModuleHandling, OptionHandling, IO
Group ;j XU
Group 4 $NONE$
qroup_~_ ModuleHandli!lg~~-~--~,--____ _

II

Table 9.2: The Sets of Importing Modules for UnixSupport2

of the modules ModuleHandling and OptionHandling, and the entities in Group 2

are imported by ModuleHandling, OptionHandling and IO. As the set of importing

module for Group 5 is a subset of those for Group 1 and Group 2, the entity in

Group 5 can be merged with either Group 1 or Group 2 without increasing the

number of dependencies between modules. Using knowledge of the Unix operating

system we can see that stdout is similar in function to stderr in Group 1, and so

Group 5 is merged with Group 1.

Table 9.2 shows that the entities in Group 4 are not imported by any of the

modules in the system. This allows the programmer the freedom to remove the

entities without affecting the execution of the program. Alternatively the program-

mer could place these entities into any of the other entity groups. Programmers

often implement a module with a view to future needs, so instead of removing

'
the redundant entities they can be reallocated to different entity groups. Group 1

now contains the entity stderr and stdout (as a result of merging Group 5 with

Group 1); as these entities are similar in function to stdin in Group 4, stdin is

moved to Group 1. Similarly the entity Wri teDnly in Group 4 is moved to Group 3

as it is similar in function to ReadDnly in Group 3.

The entities in Group 2 are related to the string data type, this means that the

entity strcmp in Group 1 should really be in Group 2 if each of the entity groups

194

were supposed to represent a different responsibility assignment. Table 9.2 shows

that the set of importing modules for Group 1 is a subset of that for Group ?., and

so entities from Group 1 can be moved to Group ?, without. inc.rP::l_sing the m~mbe:r

of dependencies. Therefore stx-cmp is moved from Group 1 to Group 2.

r q_roup Jl I . GJroup 2 I Group 3 -11
maxFileNameLength I StringPointer ~EoL "
stderr strlen ReadDnly
stdin strcmp Hri teDnly
stdout

Table 9.3: The Final Entity Groups for UnixSupport2

Table 9.3 gives the final entity groups for UnixSupport2.

The Technique

The "grouping by state variables" technique factors a module by grouping con-

stant and routine entities with the state variables that they use. This module fac-

toring technique in effect detects any abstract-state machines within a module and

extracts them. This module factoring technique is restricted to grouping variable,

constant and routine entities because the "grouping by type-families" technique

can be used to group type, variable, constant and routine entities.

The "grouping by state variables" technique uses only the call graph and the

variable usage graph. The other graphs contain type entities and therefore are

of no relevance to this factoring technique. The call graph is used to obtain the

routine groups and the variable usage graph is used to show which routine groups

195

are dependent on which state variables. Any routine groups that are dependent on

the same state variable are merged into a single group. Any routine groups that

are dependent on none of the sta,te v<:~riables a.re !l!erged intc e. single grollp. In

this way the programmer is eventually presented with a set of entity groups such

that one group may be a set of routines that are independent of the state variables,

and one or more groups consist of variable, constant and routine entities. Each of

these entity groups can be made into a separate module.

An lExampHe

Figure 9.10 gives the definition module for the module IO from the m2dep

system, and Figure 9.11 gives an outline of its implementation module. The bodies

of the routines have been omitted, but the entities they use are listed. This module

does not have any type entities, and so the "grouping by type-families" technique

is not possible.

Figure 9.12 gives the entity-to-entity graph for the module IO. The absence

of any type entities means that this is also the variable usage graph for IO. The

call graph for IO in Figure 9.13 shows that the routines Wri teChar, WriteLn and

Wri t~Card are dependent and so constitute a single routine group. The other rou

tines are independent and so each routine constitutes a routine group. The variable

usage graph shows that the routines ReadChar, CloseSource and OpenSource all

use the state variables sourceFile and sourceOpen, and so they are all grouped

together, along with the state variables srcBuff and srcBuffindex, which are

used only by ReadChar, and with the state variable sourceChars which is used by

the routines ReadChar and CloseSource.

196

DEFJ.NJ.TXON MODUT.E JO;

FROM Un:i.:KSu.ppoY:'t JMPORT
Channels, StringPointcr;

PROCEDURE UritaChar(ch: Channels; C: CHAR);

PROCEDURE HritaString(ch: Channels; Str: ARRAY OF CHAR);

PROCEDURE HriteStringindirect(ch: Channels; sp: StringPointer);

PROCEDURE HriteLn(ch: Channels);

PROCEDURE HriteCard(ch: Channels; C: CARDINAL; Width: CARDINAL);

PROCEDURE OpenSource(namePtr: StringPointer): BOOLEAN;

PROCEDURE ReadChar(VAR CH: CHAR);

PROCEDURE CloseSource;

END IO.

Figure 9.10: The Definition Module for IO

II Group 1 Group 2 II
OpenSource HriteChar
Close Source WriteString
ReadChar HriteStringindirect
sourceFile WriteLn
sourceOpen WriteCard
srcBuff
srcBuffindex
sourceChars

Table 9.4: The Final Entity Groups for IO

197

Xl'Tk1i..I:'J"ifo;l~·r.lt.Um:~ lV1UOULE lO;
xo·RoM U:o.:i.xSupport J:MPORT EOL, St:dugPo i:u:i; t!:r, Channels, open,

cJ.ose, :r~oad, ReadOnly, Hr:i.te, stx-len;
VAR

sourceFile
sr.cBuff.

Channels; sourceOpen BOOLEAN;
ARRAY [0 .. 2047] OF CHAR;

srcBuffindex CARDINAL; sourceChars CARDINAL;
PROCEDURE BriteChar(ch: Channels; C: CHAR);

PROCEDURE HriteString(ch: Channels; Str: ARRAY OF CHAR);

PROCEDURE BriteStringindirect(ch: Channels; sp: StringPointer);

PROCEDURE WriteLn(ch: Channels);
(* BriteChar is invoked *)

PROCEDURE BriteCard(ch: Channels; C: CARDINAL; Bidth: CARDINAL);
(* BriteChar is invoked *)

PROCEDURE OpenSource(namePtr: StringPointer): BOOLEAN;
(* sourceFile is defined and referenced *)
(* sourceOpen is defined *)

PROCEDURE ReadChar(VAR CH: CHAR);
(* sourceFile is referenced *)
(* sourceOpen is referenced *)
(* sourceChars is defined and referenced *)
(* srcBuff is defined and referenced *)

, (* srcBuffindex is defined and referenced *)

PROCEDURE CloseSource;
(* sourceOpen is defined and referenced *)
(* sourceChars is defined *)
(* sourceFile is referenced *)

BEGIN sourceOpen:= FALSE END IO.

Figure 9.11: The Implementation Module for IO

198

Wri teSt:d.ng

@urrN~

WriteStringindirect

~UTI@

HriteLn WriteCard

CloseSource
r

srcBuff

ReadChar

Figure 9.12: The Entity-to-Entity Graph for IO

199

BriteChar

~~~ii® 

liJriteLn WriteCard 

ReadChar Opexi.Source 
(Rourrifj (ROUTINrj 

H:riteString 

(Rourx~i9 

BritoStringindireet 

(ROUTINFj 

CloseSource 

( ROUTIN~ 

Figure 9.13: The Call Graph for IO 

As a result of grouping entities around the five state variables of IO, we obtain 

the groupings given in Table 9.4. The entities in Group 1 are the state variables 

and the routines that use them; the entities in Group 2 are the routines that are 

independent of the state variables. 

Thus, the result of the "grouping by state variables" suggests that the entities 

in these two groups should be put into separate modules. 

Here the module factoring process has clearly separated the entities associated 

with input from those associated with output operations. Such a clear separation 

between the different entity groups should normally occur within a module. This 

is because a state variable is a device used to help implement such algorithms. A 

state variable is used within a module to either: transport data from one routine 

to another; to transfer status information to other routines which they may use 

in conditional statements; or the state variable may be a means to record data so 

that a routine can reuse that data when it is re-executed. 

200 



l. Grouping by Type··Families 

This technique detects abst:cact data types and extracts them. 

2. Grouping by State Variables 

This technique groups entities according to the state variables that they use. 

3. Grouping by Imports 

This technique ~roups entities because they are used by the same set of 

importing modules. 

Each of these techniques has merit, and generally there is no one technique that 

should be used before the others in all situations. However, it is recommended that 

the factoring techniques be used in the order listed above unless the maintenance 

programmer, from his knowledge of a system, believes that a different ordering 

would be better suited to the module. This ordering of the module factoring 

techniques is recommended because it will find the different services of a module in 

an order that corresponds to the current thinking about the services that modules 

should provide. 

The "grouping by type-families" detects the existence of abstract data types 

within a module. The use of abstract data types in programming has gained 

widespread acceptance, e.g., Naphtali and Rich [110] describe experiences with 

designing a system around abstract data types and Linden [96] describes how the 

use of abstract data types can make a program easier to maintain. The "grouping 

by state variables" groups routines around the state variables that they use, thereby 

201 



creating abstract-state machines. Creating this form of module can help reduce the 

problem of a module having to export a variable. The "grouping by imports" can 

then be used to create the "named collection of declarations" and the '1group ~f 

related program units)' modules. 

202 



So far, inter-module code analysis has been discussed in terms of operations 

on the module-to-module, entity-to-module and entity-to-entity interconnection 

graphs. It is impractical to regenerate the information needed for the graphs for 

every inter-module code analysis operation. Therefore this information should be 

stored in a form that allows a maintenance programmer to access the information in 

an efficient way. Using the existing work on databases, a database schema has been 

designed that will record the necessary information on the dependencies between 

the entities of a system. 

In section 10.2 several different data storage mediums are discussed and the 

reasons for choosing a relational database are given. Section 10.3 introduces the 

203 



necessary relational database terminology, and finally section 10.4 describes how 

the relational database schema was derived. 

The amount of information needed to be recorded for inter-module code anal

ysis is large, especially when dealing with large systems. In order to store this 

information in a form that facilitates efficient data retrieval it is appropriate to 

utilise some of the existing work on databases. 

Three of the existing database models are: 

1. Hierarchical 

Where the database has a tree structure. 

2. Network 

Where the database has a graph structure. 

3. Relational 

Where the database is unstructured and consists of a collection of tables 

called relations. 

For inter-module code analysis it is important that the database be amenable 

to answering several forms of queries, many of which may not be envisaged at the 

time the database is designed. The relational model describes a database that 

is better suited to these needs. The hierarchical and network models are struc

tured databases where the links between the data is designed into the database. 

204 



This means that the database is going to be more cumbersome with unanticipated 

queries than the relational model. With the relational model, the links are estab

lished by the da,ta itself, Cl_L'.d therefore information froril o.ne relai;ion can be used 

to search another relation. Different queries will involve searching new relations. 

Yau and Grabow [173] demonstrate the use of a relational database to represent 

programs written in Pascal. This paper demonstrated the feasibility of using a rela

tional database to model a program written in a block structured language. Other 

authors have built on this work to create software tools that assist a programmer 

in scanning the code of a program, e.g., Glagowski [61] and Linton [97). 

Each of these relational databases is used to model a different languages. The 

work of this thesis involves analysis with respect to a particular program construct 

- the module. A relational database is therefore needed that will model this 

construct. the resulting database will not be language dependent, so it can be 

used to model the inter-module connections in several languages. The relational 

database designed in this thesis should also be able to model the inter-module 

connections in a program that is written in several languages. 

Reliafd.onali Databa§e 1I'errmll.noliogy 

This section introduces the relational database terminology and notation that 

is needed in order to discuss the relational database schema that is being proposed 

for inter-module code analysis. 

A relational database consists of a collection of tables, each of which is assigned 

205 



a umque name. With relational databases, these tables are known as relations. 

Each relation consists of a collection of tuples. A tuple is an ordered collection of 

values, that denote scme relationship between these values. Each of the value::: in 

a tuple is known as an attlribute value. An attribute value is a particular value 

from a domain of values which is referred to as the aUJfibute type. For the sake of 

brevity, the term attlr'llbute will be used to refer to both an attribute type and an 

attribute value where the context can identify the intended meaning. Figure 10.1 

gives an example of a relation with the different parts of the relation highlighted. 

Relation 
Name 

~ 
A 

Tuple 

stock 

The 
Attribute 

Types 

~ l ---------
part# part_description quantity_in_stock 

Pi nut ( 5000' 
P2 bolt 8500 

lr P3 washer 9750) 
P4 nut 2326 

Figure 10.1: An Example of a Relation 

An 
Attribute 

Value 

A IreUation scheme (or scheme) names the associated attribute types and 

corresponds to the programming language notion of a type definition. It has to 

be instantiated to a relation. (This is analogous to a type being instantiated to a 

variable.) The relation given in Figure 10.1 has the relation scheme: 

Stock-scheme = (part#, part-description, quantity-in-stock) 

and this is instantiated to a relation by 

stock(Stock-scheme) 

For simplicity, these two will be abbreviated to: 

stock(part#, part_description, quantity_in_stock) 

206 



In order to retrieve selected tuples from a relation, it is important to be able 

to distinguish between the different tuples. This is done via the key attributes. 

Carrtdnda.ie keys a.re t.he :rr>_inim.uiT'. set cf attributes needed to identify a tuple 

uniquely. For a given relation, there can be more than one set of candidate keys. 

The set of attributes chosen by the database designer as the principle means of 

identifying tuples within a relation is called the prnm&ry key. 

When information is stored in a relational database, it is important that a 

user can easily access this information. In order to facilitate this, several query 

languages have been developed. The procedural query language relational algebra 

is used in this thesis to interrogate a relational database. 

There are five fundamental operations in the relational algebra. These are: 

1. select, 

2. project, 

3. cartesian product, 

4. union, and 

5. difference. 

All of these operations produce a new relation as their result. Each of these oper

ations is described briefly below. 

207 



The select operation selects all the tuples from a given relation that satisfy a 

given predicate. The select operation is denoted by the character a and takes the 

form, 

O"predicate( relation) 

Therefore, to select those tuples from stock that correspond to a nut then the 

following selection operation can be used, 

apart_des=iption="nut" (stock) 

The relation resulting from this operation is given in Figure 10.2. 

stock2 
part# part-description quantity Jn..stock 

P1 nut 5000 
P4 nut 2326 

Figure 10.2: The Result of apart_des=iption="nut"(stock) 

The project operation is similar to the select operation in that it operates on 

only one relation. Whereas the select operation extracts tuples (rows) from a 

relation, the project operation extracts columns of attribute values from a relation 

by specifying the attribute types that are to appear in the resulting relation. A 

project operation is denoted by the character II, and takes the form, 

Ilattribute-names (relation) 

As an example, in order to extract the column of part# values that are contained 

208 



in the relation stock, then the following projection operation can be used, 

The result of this operation is given in Figure 10.3. 

stock3 ,.-----;-;-
part# 

P1 
P2 
P3 
P4 

Figure 10.3: The Result of a project Operation 

location 
part# shelf 

P1 A 
P2 B 

Figure 10.4: The Relation location 

The cartesian product operation, denoted by x, is used with two relations. A 

cartesian product operation has the form, 

relationl X relation2 

The relation scheme for the relation resulting from this operation is the concate-

nation of the relation scheme for relation2 to that for relationl. As an example, 

consider the cartesian product operation, 

stock X location 

209 



where the relation location is that given in Figure 10.4. The result of this oper-

ation is given in Figure 10.5. The original relation name is used as a prefix to the 

attribute name so as to be able to distinguish between the different attributes. 

=~--- c --- ---- ~---------- ===================~== 

~---~--

stock. stock. stock. location. location. 
part# part_description quantity _in_stock part# shelf 

Pl nut 5000 P1 A 
P2 bolt 8500 P1 A 
P3 washer 9750 P1 A 
P4 nut 2326 P1 A 
P1 nut 5000 P2 B 
P2 bolt 8500 P2 B 
P3 washer 9750 P2 B 
P4 nut 2326 P2 B 

Figure 10.5: The Relation Resulting from stock x location 

The union operation, denoted by U, combines two relations that have the same 

relation scheme. The relation union operation takes the same form as the set union 

operator, i.e., 

relationl U relation2 

The resulting relation contains the tuples from relationl together with any tuples 

from relation2 that are not in relationl. 

The difference operation, denoted by -, provides a means of finding tuples that 

are in one relation but not the other. The result of, 

relationl - relation2 

is the relation containing those tuples in relationl but not in relation2. 

210 



It is possible to combine operations. For example, the answer to the query, 

"find the part$ associated with a nut part", can be obtained by the operation, 

llpart# ( 0' part-description=" nut .. (stock)) 

The result of this compound operation is, 

nut-part.-------,,...., 
part# 

Pi 
P4 

The above five operations are sufficient to express any relational algebra query. 

Some forms of queries are common enough however, to deserve a special notation, 

thereby simplifying the query. 

Relation intersection is denoted by the operator n. The intersection operator 

can be built from the difference operator, i.e., 

rl n r2 = r1- (rl - r2) 

The theta join operation is a binary operation that combines the select and 

cartesian product operation. A theta join operation is denoted by the symbol t><le, 

where the subscript e represents the predicate that is to be used by the select 

operation. The theta join operation is built up from the cartesian product and 

select operations as follows, 

r1 l><le r2 = ae(rl x r2) 

211 



The natural~join operation, denoted by the symbol tx3, is a specialisation of the 

theta join which forces equality on those attributes that appear in both relations. 

Consider for example, the following natural join operation, 

stocktx3 location 

This is equivalent to 

stock [Xlstoclr.part#=location.part# location 

which in turn is equivalent to, 

O"stock.part#=location.part#( stock X location) 

The result of this operation is, 

stock-loc 

stock. stock. stock. location. location. 
part# part-description quantity-in-stock part# shelf 

Pi nut 5000 Pi A 
P2 bolt 8500 P2 B 

Rationale fo1r the Relational Database De= 

" Sign. 

Relational databases were devised by Codd [35] to overcome the problem of 

application programs being dependent on the representation of data. With the 

hierarchical and network models, application programs are dependent on the links 

designed into a database rather than on the data. Techniques for deriving the 

212 



relation schemes of a database have been given by Codd (35] and Kent (85]. The 

process of deriving relations from a description of the data that is to be stored is 

called normalisationo There 1:1xe five maiP- normaJ forms, each normdisatiou step 

being a refinement of the normalisation. In this thesis only the first four normal 

forms will be used. 

The first normal form involves fixing the length of the schemes. This is necessary 

because relational database theory does not allow varying length schemes. The 

second and third normal forms ensure that there is a consistent relationship between 

key and non-key attributes. Under fourth normal form a scheme cannot contain 

two or more independent multivalued facts relating to another attribute. Each of 

these normal forms will be briefly discussed below. 

Consider a scheme of the form, 

actress( actress-name, {film-title}) 

The attribute in curly brackets { ... } can occur zero or more times for each instance 

of the attribute actress-name. The length of the scheme is fixed by making film

title have only one value per tuple. In order to do this, the value of the attribute 

actress-name has to appear several times in the relation. This means that instead 

of having a relation of the form, 

213 



actress ~~----
actress-name film-title ----- - ----~--

Ma~ilyn Monroe Bus Stop, The Misfits 
-~liz~~::~h __ ~ayl~r. _ National Velvet 

the following relation is used, 

actress ,.---~----------.-----::--:-----:---:-------, 
actress-name film-title 

·-~~-- -------Y----------~ .. --
Marilyn Monroe Bus Stop 
Marilyn Monroe The Misfits 

Elizabeth Taylor National Velvet 

With second normal form, a non-key attribute must relate to all the key at-

tributes and not just a subset. When a non-key attribute relates to only a subset 

of the key attributes then that relation scheme is decomposed into other relation 

schemes where the non-key attribute is dependent on the whole key. Consider for 

example, the scheme, 

store(part#, warehouse, qty, Harehouse-addr) 

The attributes that form the primary key are in slanted type face. The non-key 

attribute warehouse-addr relates only to the key attribute warehouse. Therefore 

the scheme store does not conform to second normal form. To do this, store is 

decomposed into the following two schemes, 

store(part#, warehouse, qty) 

uarehouse( warehouse, uarehouse-addr) 

With third normal form, a non-key attribute cannot relate to another non-key 

attribute and not to the key attribute. Consider for example, the relation scheme, 

214 



uorkex-( employee, department, location) 

The o..ttribute Jucadu:n rela,Les to ~he attribute depc.u.truent and not to employee. 

As a result the relation scheme Ho:r.ker is decomposed into the following two 

schemes, 

staff( employee, department) 

Hork~area( department, location) 

Consider the scheme 

employee-rel( employee, skill, language) 

This scheme conforms to the first three normal forms, but there is no relation be

tween the attributes skill and language. As a result, this scheme violates fourth 

normal form. To comply with forth normal form, the scheme employee-rei is de

composed into the following schemes, 

employee-skill( employee, skill) 

employee-lang( employee, language) 

In order to create a relational database structure for inter-module code analysis, 

it is necessary to describe the data that the relational database will have to record. 

In order to do this, the idea of abstract syntax from the work on the formal definition 

215 



of programming languages will be used. The full abstract syntax being used in this 

thesis is given in Appendix C. Portions of this description will be introduced in 

this chapter as they are needed. 

With the module languages, a program is composed of a collection of global 

modules. This is denoted by the description: 

Program :: s-program : set of Global~Module 

Global-Module :: s-global-module : Module-Entity 

where 

inv-Global-Module( mk-Global-Module(gm)) b. region#(gm) = 0 

Module-Entity .. s-exports Exported-Entities 

s-imports Imported-Entities 

s-region# N 

s-regwn Region 

From this description we get the following scheme, 

system1(sys-id, {mod-id}, { (Ents}}}) 

The attributes delimited by angled brackets ( ... ) are attributes whose full elabo

ration is not yet relevant. 

The record structure given above, is a variable length structure. Therefore this 

record structure must be made to conform to first normal form by making it a fixed 

length record. In order to do this, the multiple occurrences are replaced by single 

occurrences. This creates the following relational scheme, 

216 



system2(sys-id, mod-id, (Ents)) 

The attributes enclosed by (., .) apply only tc the by attribute mod-id. To 

make the scheme system2 conform to second normal form it can be decomposed 

into the following schemes, 

program-components(sys-id, mod-id) 

modulesl(mod-id, (Ents)) 

(*1) 

An implicit assumption behind this decomposition of system2 is that a global 

module can be uniquely identified by its identifier alone. This is a valid assumption 

if the database is to record information on only one system. If a database is to 

record information on more than one system, then the attribute sys-id is also needed 

to guarantee that a global module is uniquely selected. In this thesis we will assume 

that the relational database is to record information on only one system. 

The attribute (Ents} can be expanded to 

{(Exp-Ents) }, { (Imp-Ents) }, (Region#}, (Region) 

This means that the scheme modules 1 now becomes 

modulesi(mod-id, { (Exp-Ents)}, { (Imp-Ents} }, (Region#), (Region}) 

This scheme has two variable length attributes, namely: (Exp-Ents}, {Imp-Ents). 

This scheme is normalised with respect to first normal form giving, 

modules2(mod-id, (Exp-Ents}, (Imp-Ents), (Region#), (Region)) 

217 



This scheme satisfies first and second normal forms, but the non-key attributes are 

independent of each other (except for (Region#), and (Region)), and so modnlcs2 

can be normalised with rc::;pcct to third noi.Tilal form. By nonnalisiug the scheme 

modnles::2 in this way, the following schemes are derived: 

mod-exports(mod-id, (Exp··Ents)) 

mod-imports(mod-id, (Imp-Ents)) 

mod-region(mod-id, (Region#), (Region)) 

Each of these schemes is further refined below. 

Consider the first scheme mod-exports. The abstract syntax describes the field 

s-exporls as being of type Exported-Entities, and Exported-Entities is described as, 

Exported-Entities :: s-exported-entity 

Entity :: s-entity-id : Entity-ld 

Module-Set = set of Module-ld 

map Entity to Module-Set 

This can be represented by a scheme of the form, 

mod-exports2(mod-id, { ent-id, {imp-mod-id}}) 

This record structure describes a variable length record, so it has to be normalised 

with respect to f!_rst normal form. This creates the scheme, 

exports(mod-id, ent-id, imp-mod-id) (*2) 

If the database is to be used for languages that allows overloading of identifiers, 

then the abstract syntax for Entity would have to be more detailed, e.g., 

218 



Entity ·· s-entity-id Entity-I d 

s-entity-class Entity-Class 

Entity··Class ~ Constant I Type I Variable I Routine I Module 

and the exports scheme resulting from this new description would have to have 

an attribute for Entity-Class. For simplicity the database schema being described 

will assume that overloading of entities is not being allowed. 

Consider now the scheme mod-imports. The record Module-Entity describes the 

field for imported entities as being of type ImportedaEntities. The VDM description 

for Imported-Entities is 

Imported-Entities :: s-imported-entities map Module-Id to Entity-Set 

Entity-Set = set of Entity 

The Module-ld referred to in the abstract syntax for Imported-Entities refers to the 

supplier module that is providing the entities in Entity-Set. Therefore we obtain 

the following scheme 

mod-imports2(mod-id, { exp-mod-id, { ent-id}}) 

By normalising mod-imports2 with respect to first normal form the following 

scheme is derived 

imports(mod-id, exp-mod-id, ent-id) (*3) 

219 



1'he last scheme to be considered as a result of having decomposed the scheme 

modules2 is mod.,region. The attribute, (Region#), is a positive integer that cor .. 

responds to the block number. The attribute (Region) corresponds to the following 

abstract syntax, 

Region :: s-constants map Constant-Id to Constant-Set 

s-types map Type-ld to Type-Set 

s-variables map Variable-Id to Variable-Set 

s-routines map Routine-ld to Routine-Set 

s-modules map Module-ld to Module-Set 

s-body Body 

Constant-Set = set of Constant-Entity 

Type-Set = set of Type-Entity 

Variable-Set = set of Variable-Entity 

Routine-Set = set of Routine-Entity 

Module-Set = set of Module-Entity 

This means that the scheme mod-region expands to 

mod-region(mod-id, region#, (Constant), (Type), (Variable), (Routine), 

(Module), (Body)) 

This scheme does not satisfies third normal form, because the attributes enclosed 

by the angled brackets are independent of each other. Normalising mod-region 

with respect to third normal form gives the schemes: 

220 



mod~const(mod-id, region#, (Constant}) 

moctutypo(mod--id, region#, (Type)) 

" ( J'l .' '' ll'r .• vl'}) l.l!ou~v;-u: £110 -1c, H~[j'10ll=th \ vanuo e 

illOcl:~:rout(mod~id, region#, {Routine)) 

mod: ·oood(mod-id, region#, (Module)) 

xnod~body(mod-id, region#, {Body)) 

With the scheme mod-mod, the same form of decomposition that is described in 

subsection 10.4.2 can be performed to obtain the schemes: 

local~module(mod-id, region#, loca.l-mod-id, c~:region~) (*4) 

local~module-expo:rts(mod-id, region#, local-mod-id, ent-id) (*5) 

local~module~ixnpo:rts(mod-id, region#, local-mod-id, ent-id) (*6) 

The relation scheme local ~module-exports does not have to name the modules 

that the entities are exported to because it has to be the module containing the 

local module declaration. This is because of the definition of a module given on 

page 29 . 

. 
Finally consider the scheme mod-body. The body of a module or routine is a 

sequence of statements. For the purposes of inter-module code analysis the body 

is considered in terms of the entities used. The attribute (Body) in mod-body 

corresponds to the abstract syntax 

Body :: s-constants-used set of Constant-Id 

s-type-used set of Type-I d 

s-variable-used set of Variable-Id 

s-routines-used set of Routine-Id 

221 



This means that the scheme moct .. body expands to, 

w.oo: ·r)ody(mod-id, region#, { const-id}, { type-id}, { variable-id}, {r.outine-.id}) 

Normalising this with respect to first normal form gives, 

mod~body2(mod-id, region#, const-id, type-id, variable-id, routine-id) 

The attributes for each of the different classes of entities are independent of each 

other. Therefore this scheme can be normalised with respect to fourth normal form 

to give the following schemes, 

constants-used(mod-id, region#, const-id) 

types-used(mod-id, region#, type-id) 

variables-used(mod-id, region#, variable-id) 

::routines-used(mod-id, region#, routine-id) 

A type entity is described in the abstract syntax as follows, 

Type-Entity :: s-type : Type-Constructor 

(*7) 

(*8) 

(*9) 

(*10) 

In many programming languages, it is possible for a type to be constructed from 

other types. For example, the following Modula-2 fragment introduces a record 

type with a field that is an array of set elements, and the indices of the array are 

specified as a subrange. 

222 



RECORD 

xtield: ARRAY [1. .. 1.0] OF HITSET 

lin order to deal with this, each type is given a type number that is unique within 

a given module. In this way, combining a mod-id attribute with a type# attribute 

will uniquely determine a type. In the above example, the record could have the 

type number 1, the array 2, the subrange 3 and the set 4. Each form oftype requires 

different information to be recorded, e.g., a record needs to store information on 

each of the fields, an array needs to store information on each of the index types 

and information on the element type, etc. This requires that different relations be · 

created for each of the types. (These relations are given in Appendix D.) To aid 

the searching of these relations, a special relation called type has been created. 

The type relation has the scheme, 

type(mod-id, type#, type-form) (*ll) 

The value for type-form indicates which relation to interrogate for more informa-

tion on the type. For the Modula-2 record type given above, the following instance 

of the type relation is created. 

type 
mod-id type# type-form 

M 1 RECORD 
M 2 ARRAY 
M 3 SUBRANGE 
M 4 SET 

223 



Consider now the scheme lliod-type that was obtained after decomposing the 

scheme mod~:region. The field in Region that corresponds to types has the form 

mZlp Type-Id ~o Type-Set 

where 

Type-Set = se~ of Type-Entity 

Type-Entity :: s-type : Type-Constructor 

The Type-Constructor information is recorded in the database by giving a type 

declaration number and using the type relation in association with the relations 

needed for the different forms of types. Therefore the scheme for a type declaration 

becomes, 

type-dec(mod-id, region#, en t-id, type#) (*12) 

I 

The schemes mod-canst and mod-variable can be expanded in a similar way 

to create the schemes, 

constant-dec(mod-id, region#, en t-id, type#) 

variable-dec(mod-id, region#, ent-id, type#) 

(*13) 

(*14) 

Finally, the scheme mod-rout will be refined. The unexpanded attribute (Routine) 

is associated with the abstract syntax for Routine-Entity. 

224 



Routine-Entity ·· s-formal-parame.ters 

s-result-type 

s-region# 

Parameters 

1'ype. .. Constructor 

N 

s .. regwn Region 

Parameters= map Para-Id ~o Type-Constructor 

This creates a variable length record structure of the form, 

mod-rout2(mod-id, region#, ent-id, {para-id, p-type~}, r-typen, c-region~, 

(Region)) 

Normalising this structure with respect to first normal form gives, 

mod-rout3(mod-id, region#, ent-id, para-id, p-type$, r~type~, c-regionn, 

(Region)) 

This record structure does not conform to second normal form because the at

tributes r-type~, c-region~, (Region} to not relate to the key attribute para-id. 

Normalising mod-rout3 with respect to second normal form gives the schemes, 

para-id-rel(mod-id, region#, ent-id, para-id, p-type#) (*15) 

mod-rout4(mod-id, region#, ent-id, r-type~, c-region~, (Region}) 

Normalising the scheme mod-rout4 with respect to third normal form we get the 

schemes, 

type-of-routine(mod-id, region#, ent-id, r-type#) 

mod-rout5(mod-id, region#, ent-id, c-region#, (Region}) 

225 

(*16) 



The scheme mod~:rou.t5 can be expanded and decomposed in the same way that 

IDod~region is on page 220 but this would result in unnecessary relations being 

c:ceated. The primary key fo:c the schem.es dealing with entity declaiatio:as consists 

of a declaration of: mod-id, the identifier of the global module in which the entity is 

declared, region#, the number of the actual region in which the entity is declared, 

and ent-id, the identifier of the entity being declared. Any entities that are declared 

within a routine can therefore be represented by the relations already derived. As 

a result the scheme mod-rout5 become, 

:region~of-routine(mod-id, region#, ent-id, c-region~) 

JUOl.4.tCD AID. JExampRe 

MODULE EntityDeclarations; 

VAR vi: INTEGER; 

PROCEDURE Pi ; 
VAR vi: CHAR; 

BEGIN 

END Pi; 
BEGIN 

END EntityDeclarations. 

(*17) 

Figure 10.6: A Modula-2 Program Module to Demonstrate Entity Declarations 

To demonstrate the validity of this database schema, consider the Modula-2 

program module given in Figure 10.6. The relations for this module declaration 

226 



are given in Figure 10.7. The variable vi declared in routine Pi is distinguished 

from the state variable vi by the region number used as the primary key. 

program-components c-_ -;y·s· ~i;r---~- . mod-i~ 
~2-~~--~-p-~e~c-l_a_r_a_t-io_n_s-+-En~t-i-tyDscia~~~ 

(*1) 

type-of-routine ------

'# 
--- - ,.---- -----

mod-id regwn ent-id r-type$ 
(*16) 

EntityDeclarations 0 Pi 2 -- -~~~~ 

variable-dec 
mod-id region# ent-id type$ 

(*14) 

EntityDoclarations 0 vi 1 
EntityDeclarations 1 vi 3 

type 
mod-id type# type-form 

(*11) 
-~ ~ 

EntityDeclarations 1 QUALIDENT 
EntityDeclarations 2 QUALIDENT 
EntityDeclarations 3 QUAL !DENT 

qualident 
mod-id type# ent-id 

EntityDeclarations 1 INTEGER 
EntityDeclarations 2 $VOID$ 
EntityDeclarations 3 CHAR 

Figure 10.7: The Relations for the Entity Declarations in Figure 10.6 

The JF\nU ReRattnonaR JDattaba§e §cheme 

Appendix D gives the full relational database schema that is proposed for inter-

module code analysis. It does not cater for inheritance or instantiation. This is 

because this thesis has concentrated on analysing systems with respect to the uses 

and local-to dependencies. 

227 



The relations that are used to record the information about the different forms of 

types are given in this appendix. One of these relations is subx-anr;e··dE'lli.m.:i.t~:rf! 

which records the names of the constants and routines (function calls) that are 

used in the expressions that are the bounds of a subrange. This relation is needed 

because no relations have been created to cater for an expression, and it is possible 

to have declarations of the form, 

C: constant INTEGER:= 10; 

type S is range C .. 2*C; 

All of the information that is to be stored in the database can be generated by 

a suitably tailored compiler front end. 

A JPrrototype Datalb<BJ.se 

A prototype database was implemented in C-Prolog on a Sun 3-50 so that the 

relational database schema described in this chapter could be validated. With the 

prototype database Prolog facts are used to represent the tuples of a relation, and 

a collection of same named Prolog facts constitute a relation. To demonstrate how 

this database can be interrogated the entity groups given in Table 9.1 (on page 193) 

Table 9.2 (on page 194) will be derived. 

In order to find the client views of UnixSupport2 the following select operations 

need to be performed, 

(J' mod- id= 'UnixSupport 2' (exports) 

228 



=--=-== 

exports('UnixSupport2', 'EOL', '$All$'). 
exports('UnixSupport2', 'ReadOnly', '$All$'). 
exports('UnixSupport2', 'StringPointer', '$All$'). 
exports('UnixSupport2', 'WriteOnly', '$All$'). 
cxports('UnixSupport2', 'maxFileNameLength', '$All$'). 
exports('UnixSupport2', stderr, '$All$'). 
exports('UnixSupport2', stdin, '$All$'). 
exports('UnixSupport2', stdout, '$All$'). 
exports('UnixSupport2', strcmp, '$All$'). 
exports('UnixSupport2', strlen, '$All$'). 

imports('IO', 'UnixSupport2', 'EDL'). 
imports('IO', 'UnixSupport2', 'ReadOnly'). 
imports('IO', 'UnixSupport2', 'StringPointer'). 
imports('ID', 'UnixSupport2', strlen). 
imports('ModuleHandling', 'UnixSupport2', 'StringPointer'). 
imports('ModuleHandling', 'UnixSupport2', 'maxFileNameLength'). 
imports('ModuleHandling', 'UnixSupport2', qsort). 
imports('ModuleHandling', 'UnixSupport2', stderr). 
imports('ModuleHandling', 'UnixSupport2', stdout). 
imports('ModuleHandling', 'UnixSupport2', strcmp). 
imports('ModuleHandling', 'UnixSupport2', strlen). 
imports('OptionHandling', 'UnixSupport2', 'StringPointer'). 
imports('OptionHandling', 'UnixSupport2', 'maxFileNameLength'). 
imports('DptionHandling', 'UnixSupport2', stderr). 
imports('DptionHandling', 'UnixSupport2', strcmp). 
imports('DptionHandling', 'UnixSupport2', strlen). 

Figure 10.8: A Collection of Prolog Facts Constituting the imports and exports 
Relations 

229 



crea.te_:i.mport_set (MocLXd. F.:o.t .. J:cl.. Jmport_Sot) : ~ 
findall (Importing . .Mod_Xd, 

imports (Impo:rting-Mod .. Id, Mod.,Id. En Lid). 
XmporLSet). 

create_rau_import_list(Module_Id, [Entity_Id I ImportJList]):
exports(Module_Id, Entity_Id, ~), 

findall(Import_set, 
create_import_set (Module_Id, Enti ty_Id, Import-Set), 
Import..List). 

create~raH_entity_groups (Module_Id, [Entity-List I Import-List]):
create_rat-r_import_list (Module_Id, [_ I Import-List]), 
findall(Entity~Id, 

create-raH_import_list (Module_Id, [Enti ty-Id I Import.list]), 
Entity....List). 

get_ent i ty .. groups (Module~Id, Entity _Groups) : ~ 
findall(EntityJList, 

create_raH_entity_groups(Module~Id, Entity-List), 
TmpJlist), 

strip_list (TmpJlist. Enti ty_.Groups). 

get_and_display_entity_groups(Module-Id):~ 

get_entity_groups(Module_Id, Entity-Groups), 
display_list-of_lists(Entity_Groups). 

Figure 10.9: Prolog Database Interrogation Programs 

230 



Script started on Tue Nov 28 20:57:04 1989 
Hs_eddy 1>prolog 
C-Prolog version 1.5 
I ?~ [startup]. 
startup consulted 7644 bytes 0.833333 soc. 

yes 
I ?- load. 
IO consulted 204 bytes 0.0500009 sec. 
ModuleHandling consulted 280 bytes 0.0666667 sec. 
Optioxiliandling consulted 200 bytes 0.0333334 sec. 
UnixSupport2 consulted 444 bytes 0.0833341 sec. 
prog_components consulted 256 bytes 0.0500004 sec. 
grouping1 consulted 688 bytes 0.1 sec. 

yes 
I ?- get_and_display_entity_groups( 1 UnixSupport2•). 
[[EOL,ReadOnly] ,[IO]] 
[[stdout],[ModuleHandling]] 
[[stdin,HriteOnly] ,[]] 
[[maxFileNameLength,stderr,strcmp] ,[ModuleHandling,OptionHandling]] 
[[StringPointer,strlen] ,[IO,ModuleHandling,OptionHandling]] 

yes 
I ?- halt. 

[ Prolog execution halted ] 
HS-eddy 2>l-D 
script done on Tue Nov 28 20:57:58 1989 

Figure 10.10: A Unix Script Recording a Database Query 

231 



a exp-mod-id='UnixSupport2' (importS) 

The result of these select operations is giVen m Figure 10.8. The relations m 

Figure 10.8 are then used in a normal join operation of the form, 

a!iiod-id='UnixSupport2' (exports) txl a exp-mod-id='UnizSupport2' (importS) 

This normal join operation forces equality on the ent-id attributes in the exports 

and imports relations. Projecting the resulting relation with respect to the ent-id 

and imp-mod-id attributes creates a relation that records the client views of the 

module UnixSupport2. This information can then be used to derive the entity 

groups and module sets in Tables 9.1 and 9.2. 

Figure 10.9 gives the Prolog goals that interrogate the given relations. A call 

to the goal get_and_display_entity_groups, with the name of a module as an 

argument will produce the entity groups and the associated importing module set 

for the named module. This is demonstrated in Figure 10.10 which contains a Unix 

script file that records the execution of, 

get_and_display_entity_groups('UnixSupport2'). 

The script file shows that the first Prolog command is to consult the file 

startup. This file contains the declaration of several Prolog goals that are used 

to interrogate Prolog facts. These goals are based on those given by Clocksin and 

Mellish [34]. A list data structure is used to simulate a set. Therefore the result of 

the goal get_and_display_entity_groups is shown as a list. 

The f indall goal finds all the facts (tuples) that satisfy some constraint. As 

a result this goal is used extensively in the goals given in Figure 10.9. The goal 

232 



create_import_set finds the sets of modules that import a named entity, while the 

goal create_rau .. ixnport_list ensures that the set of importing modules for each 

of the exported entities is derived. ThP e;o?J c:cc:;ctc .. n:~tLC:r.-ci·i.;y_.g:r:uup;.; u~Crives 

the set of entities that a set of modules import, e.g., the module J:O imports the 

set of entities EOL and ReadO:oJ.y. Finally the goal get_entity .. g:coups ensures 

that there is only one occurrence of each (entity-group, module-group) tuple by 

stripping out any tuples that contain the same elements but where the ordering is 

different. 

The database structure has been shown to be capable of generating the in

formation needed for inter-module code analysis. All the relation manipulations 

described in Chapter 11 have been implemented in the prototype database. 

233 



][ntrodluction. 

Chapter 10 describes the process by which the relational database given in 

Appendix D was derived. This chapter will show how this database schema can 

be used to implement the graph manipulation operations that are described in 

Chapters 5-9. 

Section 11.2 shows how the relational database can be used to derive the infor

mation that is recorded in the module-to-module, entity-to-module and entity-to

entity interconnection graphs. Section 11.3 shows how the graph operations that 

are described in Chapter 5. can be implemented as operations on the relational 

database. 

234 



Figure 4.6 on page 64 gives the description of a graph structure using VDM. 

This description, can be used to develop a relation scheme for an interconnection 

graph in the same way that the abstract syntax in Appendix C is used to derive 

the relational database schema. 

A graph is described as being a collection of related nodes and edges, i.e., 

Graph :: nodes 

edges 

where 

set of Node 

set of Edge 

inv-Graph(mk-Graph(nodes, edges)) !::. 

Ve E edges · (start-node( e) E nodes !\ stop-node( e) E nodes) 

This description of a graph gives rise to the scheme, 

graph-scherne1( {(Node)}, {(Edge)}) 

Normalising this scheme with respect to first normal form gives the scheme, 

graph-scherne2( (Node), (Edge)) 

This scheme does not conform to fourth normal form as there is no relation between 

the attributes (Node), and (Edge). Normalising this scheme with respect to fourth 

normal form gives, 

node-scherne1( (Node)) 

edge-scherne1( (Edge)) 

235 



Consider first the scheme edge~schemei. The attribute (Edge) is associated 

with the edges in a graph. In Figure 4.6 an edge is described as, 

Edge :: start-1wde Node 

stop-node Node 

dependency Dependency 

as a result, the scheme edge-scheme! expands to, 

edge~scheme1( (Start-Node), (Stop-Node), dependency) 

Each of the attributes (Start-Node) and (Stop-Node) correspond to a node in 

the graph. Therefore these attributes conform to the VDM description, 

Node :: node-name Name 

node-label Label 

Label .. entity-class Class 

entity-source Source 

entity-declaration-block Block-Number 

and so edge-scheme! expands to the scheme, 

edge( ent-idl, ent-classl, mod-idl, regionl#, 

ent-id2, ent-class2, mod-id2, region2#, 

dependency) 

The attributes ent-idl, ent-classl, mod-idl and regionl# are needed to uniquely 

identify the entity associated with the start-node of an edge, while the attributes 

ent-id2, ent-class2, mod-id2 and region2# uniquely identify the stop-node. This 

information is obtainable directly from the relations that record information on the 

236 



declaration of entities, i.e., constantL·dec, type··of~routine, region-of~routine 

typo,dec, v~.riable··dec and local-modulo. The global modules can be identi .. 

fied by the modules listed in the relation proe;r·;=1l7\· ·compcn2nts. The value o:t ~he 

attribute dependency can be derived by examining the entities named as being 

start-nodes and stop-nodes. 

Similarly, the scheme node-scheme expands to the scheme, 

node( en t-id, ent-class, mod-id, region#) 

Therefore a graph is represented by two relations, one an instance of the scheme 

node, and the other an instance of the scheme edge. 

Some examples are given below to show how to derive the dependencies between 

the named modules. 

Jl JL2LJ1. 

Deriving the dependencies that can appear in the module-to-module, entity

to-module or the entity-to-entity interconnection graphs initially appears to be a 

costly operation, because a large system can contain thousands of entities and the 

dependencies that each of these entities is involved with has to be determined. 

Each of these dependencies has properties which can help eliminate whole classes 

of entities as is demonstrated below. Some of the different dependencies that can 

appear in the module-to-module, entity-to-module or the entity--to-entity intercon

nection graphs will be derived by analysing the relational database schema given 

in Appendix D. 

237 



Firstly consider the module-to-module interconnection graph. In Chapter 6 

this graph is shown to record the instantiates~to, inheri ts~from, uses and 

J.ocaJ.c·to, The relational datr~hase sche!Ila in Appendix D docs not cater for in

stantiation or inheritance, therefore only the local-to and uses dependencies will 

be considered here. 

The uses dependency exists between global modules only. Therefore the only 

relations that need to be used are those that show the dependence between global 

modules. This is done by the relations exports and imports and shows the global 

modules that aquire entities provided by other global modules. To determine which 

global modules are connected by a uses dependency, projection operations are per

formed on the exports and imports relations. Consider first the imports relation. 

This relation shows which modules explicitly import an entity from another global 

module. The imports relation has the scheme, 

imports( desLmod.id, src_mod_id, ent.id) 

In order to determine the modules involved in a uses dependency, the following 

projection operation can be used, 

IIdest_mod_id,src_mocLid( imports) 

Each tuple in the resulting relation denotes an edge that represents a uses depen

dency, with the module named in the attribute desLmod_id being the start-node 

and the the module named in the attribute src_mod_id being the stop-node. 

When selective export has been employed, the exports relation can be used to 

determine the existence of a uses dependency. The exports relation shows which 

238 



entities are exported to a module. If selective export is not being represented then 

the special value $All$ is recorded as the importing module. The exports relation 

ccm_ only be med to deter!Iline the existence of a usee: d8pendency if selective export 

is used. The scheme for the exports relation is, 

exports( exp.mod_id, ent_id, imp..mod_id) 

When the entity named in the attribute ent_id is not selectively exported, the value 

$All$ is stored in the attribute imp..mod_id. Therefore, only those tuples that have 

a module named in imp..mod_id denote a uses dependency. To extract the tuples 

from exports that show a uses dependency, the following combination of a project 

and select operation can be used, 

a imp_moc:Lid;i:$All$ (IIexp_mo<Lid,imp_mo<Lid (exports)) 

In order to find the global modules that are isolated within a system, the re

lations exports, imports and progra.m_components are used. The following four 

operations find all global modules that are subject to a uses dependency, 

lldest_mo<Lid( imports) 

llsrc_mo<Lid( imports) 

llexp_mo<Lid( exports) 

0' imp_mo<Lid:;i:$All$ ( ll imp_mod_id (exports)) 

By performing a union of these four relations, a single relation is created containing 

the names of all the global modules subject to a uses dependency. Call this relation 

used_mods. The result of the following project operation is the name of all the 

239 



global modules in a system, 

IIF,od .:i.cl.(protsx-am .. components) 

If this relation is called mods then the names of the isolated modules is obtained 

by the operation, 

mods - used..mods 

The local-to dependency exists between a local module and another local 

module, or a local module and a global module. In order to find the local and global 

modules that are involved in a local-to dependency, the following operation can 

be used, 

IIloc-mod-id,mod-id( O'region#=O (local-module)) 

Each tuple in the relation resulting from this operation represents an edge denoting 

a local-to dependency. The select operation extracts thoses tuples that relate to a 

local module declared in the outermost block of a global module, while the project 

operation extracts the module names. 

In order to find the local-modules connected by a local-to dependency the 

local-module relation is again used, but this time it is interrogated differently. 

Identifying the local modules that are connected by a local-to dependency takes 

two steps. 

1. Find the region associated with each local module. 

2. Find any local modules declared in this region. 

240 



The result of a project operation of the form, 

rrlilOcl-id,loc-!Ilod-id,c-region# ( J.OCo.J.··ffiOd.UJ.e) 

will result in a relation J.:m~:region which shows the region associated with each 

local module. A theta join operation of the form, 

1m-region l><le local .. modulo 

where 8 is the predicate, 

lm-region.mod-id = local-modulc.mod~id !\ 

lm-region.c-region# = local-module.region# 

will result in a relation showing which local modules are declared within the region 

of another local module. A project operation of the form, 

II local-module.loc-mod-id, local-module.mod-id, local-module.region#, (. · .) 
lm-:region.loc .. mod-id, lm-region.mod-id, lm-region.region# 

results in a relation where each tuple shows modules that are connected by a 

local-to dependency. 

As an example, consider the Modula-2 module declaration in Figure 11.1. The 

module-to-module interconnection graph for these module declarations is given in 

Figure 11.2. The local-module relation for these declarations is given in Fig-

ure 11.3. 

241 



J:IVJPJ.F.MENTATJ:ON r,mDULE GM1; 
)Vi:fJDUL:E uva ; 

MODULE U12; 

END LM2; 
MODULE LM3; 

END LM3; 
END LN1; 
MODULE LM4; 

END LM4; 
END GM1. 

IMPLEMENTATION MODULE GM2; 
NODULE LM1; 

MODULE LM2; 

END LM2; 
END LM1; 

END GM2. 

Figure 11.1: Modula-2 Module Declarations for local-to Dependency Derivation 

GM1 GM2 

local-to 

LMi 

local-to 

LM2 

Figure 11.2: The Module-to-Module Interconnection Graph for Figure 11.1 

242 



local .. module 
mod-id region# rloc~m~d~Id 

-- ~ ~ 

c~region$ 

Gl-11 0 LM:l. 1 
GM1 1 LM2 2 
GM1 1 LM3 3 
GM1 0 LM4 4 
GM2 0 LM1 1 
GM2 1 LM2 2 

Figure 11.3: The local-to Relation for the Module in Figure 11.1 

The result of the operation, 

11mod-id,loc-mod-id,c-region# ( 1 ocal-module) 

is the relation, 

1m-region 
mod-id loc-mod-id c-region# 

GM1 LM1 1 
GM1 LM2 2 
GM1 LM3 3 
GM1 LM4 4 
GM2 LM1 1 
GM2 LM2 2 

Performing the theta join operation gives, 

1m-reg 1m-reg lrn-reg loc-mod loc-mod loc-mod loc-mod 
mod-id region# c-region# mod-id region# 1oc-mod-id c-region# 

GM1 LM1 1 GM1 1 LM2 2 
GM1 LM1 1 GM1 1 LM3 3 
GM2 LM1 1 GM2 1 LM2 2 

Therefore the edge relation will have three tuples of the form, 

243 



e:o.t 
idi 
LM2 
I.JVi3 

~~e:sts 1 j_ ;~~ r~gi-~n_-1_-~-1--:-~-~ 
l'-10DUT.F. GM:t 1 LM1. 
MODUL:€ GMJ. 1 X.M1. 

i .i'.ij. 

e~lmod 
5~~.~2- i.d2 

MODULE I GMi 
~l.!omn ... g GM:t. 

l~lHY~) .E I GM2 

region2~ 

0 
0 
0 

:;p@dency I 
loca:J.~to I 
loc:<:lJ.· ·to 

J.oc:uJ: ·to . J 

Consider now the entity-to-module interconnection graph. In Chapter 7 this 

graph is shown to record the imported, exported, inherited and injected de-

pendencies. These dependencies all show a dependency between an entity declared 

within a module and some other module. These dependencies are characterised by 

an edge of the form, 

(entity, module) 

As the relational database schema being used here does not record information on 

inheritance, the inherited dependency will not be discussed here. 

The dependencies exported and imported are dependencies that exist between 

global modules. All the information needed to record if an entity is exported to, 

or imported by, a module can be obtained from the exports and imports rela-

tions. For example, to determine the entities and modules involved in an imported 

dependency, the following projection operation can be used. 

IImod-id,ent-id( imports) 

In order to determine the class of the imported entities, the following steps can 

be taken. Step 1, obtain the source of the entity. This can be done by the following 

projection operation 

l1exp-mod- id,ent -id (importS) 

244 



Call the relation resulting from this operation source~ent i ty. Step 2, determine 

the class of the entity by a theta join operation of the form, 

sour.ce-entj.ty !><le dGC··rol 

where dec-:r:el is one of the relations, constant-dec, type-dec, variable~dec, 

type-of-rout or region-of-:r:out, and e is the predicate, 

source-enti ty.exp-mod-id 

dec-rel.region# 

dec-rel.mod-id 1\ 

0 

To find the entities and modules involved in an exported dependency, the 

exports relation is interrogated in a similar way to the imports relation. When 

analysing the exports relation, it is necessary to extract the tuples that do not 

have the attribute value '$All$' in the attribute imp-mod-id. This can be done 

by a select operation of the form, 

Ilent-id,imp-mod-id( <7iJnp-mod-id;i:$All$( exports)) 

The injected dependency exists between an entity from a local module and the 

module containing the local module. The procedure used to derive the local-to 

dependency shows how to identify the encapsulating module. The relation that 

resulted from the theta join of 1m-region and local-module on page 241 can 

be used to derive which entities are injected into modules. If linked-lms is the 

relation resulting from this theta join operation, the entities and modules involved 

245 



in an injected dependency can be obtained by the following operation 

J.inked-lms t><le local--module··exports 

where e is the predicate, 

linked-lms.local-module.mod-id local-module-exports.mod-id A 

linked-lms.local-module.region# - local-module-exports.region# 1\ 

linked-lms.local-module.loc-mod-id local-module-exports.loc-mod-id 

Finally consider the entity-to-entity interconnection graph. The dependencies 

recorded in this graph are those that exist between the global entities of a module. 

It is a characteristic of these dependencies that they are associated with an edge 

of the form, 

(entity, entity) 

Some of the dependencies that can be recorded are those between routines 

and entities that are constants, types, variables and routines. These are the 

uses-constant, uses-type, uses-variable and invoked dependencies. The enti

ties involved in these dependencies are the relations constants-used, types-used, 

variables-used and routines-used. The analysis of the entity-to-entity inter

connection graph described in this thesis has confined itself to determining which 

global entities are used by other global entities, and so these relations are all that 

is needed. The existing relations can be used to determine how a global type or 

constant is being used within a routine, if this form of analysis is required. 

246 



Three other forms of dependencies that can appear in the entity-to-entity in

terconnection graph are delimited-by, para-of~type and of-type. 

The delimited-by dependency exists between a type and a constant, where 

the constant marks a bound of a subrange type. This form of dependency is 

characterised by an edge of the form, 

(type, constant) 

The relation subrange-delimi ters lists the constants that are used to delimit a 

type, and so the entities involved in a delimited-by dependency can be derived 

by interrogating this relation. 

The para-of-type dependency exists between a routine and a type, where 

the type is used to declare one or more parameters of the routine. The infor

mation needed to determine which routines and which types are connected by a 

para-of-type dependency can be obtained by interrogating the para-id-rel and 

the type-dec relations. The para-id-rel relation records the type# value for each 

of the parameters of a routine, and the type-dec relation records the type# value 

for every type entity. Therefore, the following operation can be used to associate 

routines and types involved in a para-of-type dependency, 

Ilpara-id-rel.mod-id,para-id-rel.ent-id,type-dec.ent-id (para- id -rel l><le type-dec) 

where e is the predicate, 

para-id-rel.mod-id 

para-id-rel.type# 

247 

type-dec.mod-id 1\ 

type-dec.type# 1\ 



para .. id--rcLregion# 0 1\ 

type -doc.region# 0 

The o:f .. type dependency exists between entities and type entities. This depen

dency is characterised by an edge of the form, 

(entity, type) 

Consider the case when it is required to find the constants and types involved in 

an of~type dependency. This pairing of entities can be obtained by the following 

operation, 

Ilconstant-dec.ent-id,type-dec.ent-id( constant-dec l><le type-dec) 

where e is the predicate, 

constant -dec.mod- id 

constant -dec. type# 

constant-dec.region# 

type-dec. region# 

type-dec.mod-id 1\ 

type-dec.type# 1\ 

01\ 

0 

Similar combinations of a theta join and a project operations can be used with 

the type~dec, variable-dec and type-of-routine to find the type, variable and 

routine entities involved in an of-type dependency. 

248 



Having derived the relations needed to represent a graph, and shown how the de

pendencies represented by an edge can be determined by interrogating the database, 

now consider how to implement the graph operations in terms of operations on these 

relations. 

Chapter 5 describes some graph operations that are used to manipulate and 

reason about graphs in Chapters 6-8. Each of these operations will be considered 

below. 

1 L3.1 §ubgrraph§ 

There are two subgraph operations, each of which is a boolean operation. Con

sider the subgraph operation, 

(11.1) 

This operation is true if all the nodes and edges in the graph G 1 (N 1 , E 1 ) are also 

in the graph G~(N~, £~). If the relations graphi-nodes and graphi-edges rep

resent G1 (N1 , £ 1 ), and the relations graph2-nodes and graph2-edges represent 

G~(N~, £~),then the graph operation (11.1) can be determined by the following 

relation operations, 

graph1-nodes- graph2-nodes 

graphi-edges- graph2-edges 

249 

empty-relation A 

empty-·relation 



If all the nodes and edges in G 1 (N 1 , £1 ) are in G 2 (JV 2 , [ 2 ), then all the tuples in 

the relations representing G 1 (JV 1 , [ 1 ) should also exist in the relations representing 

G2 (N2 , [ 2 ). Therefore the result of the two relation cliffe:rerrce oper~ticns should 

be empty relations. 

For the strict subgraph operation, 

to be true, it is necessary for all the nodes and edges in G 1 (N 1 , [ 1 ) to be in 

G2(N 2, £2), and G2(N 2, £2) has some nodes or edges that are not in G1 (N1 , [ 1 ). 

This form of subgraph relationship can be determined by the following relation 

operations, 

(graph1-nodes- graph2-nodes empty-relation 1\ 

graph1-edges - graph2-edges empty-relation) 1\ 

(graph2-nodes - graph1-nodes =/:- empty-relation V 

graph2-edges - graph1-edges =/:- empty-relation) 

Jl JL2L2 Graplh. U niion 

A simple graph union operation of the form, 

results in a new graph containing all the nodes and edges of G 1 (N 1 , [ 1 ) and 

G2(N2, £2). In terms of the relations representing G1 (N1 , £1) and G2 (N2, £2) 

250 



a simple graph union is implemented as the following relation operations, 

g:;:-c.pbJ. -nodes U g:caph2 ··!!.odes 

g:caph1-edges U g:caph2-edges 

The distributed graph union operation, 

is n - 1 applications of the simple graph union operation. So this operation can 

be implemented as, 

graph1-nodes U ... U graphn-nodes 

graph1-edges U ... U graphn-edges 

Jl L3L3 Grraplill Krmterrsectiiorm 

§trict Graph Jintersection 

With a strict graph intersection operation, 

a graph is created that contains all the nodes and edges that are common to both 

graphs. In terms of the relations representing G1 (N'1 , £1) and G2 (N'2 , £ 2 ), a 

251 



strict graph intersection operation is implemented as, 

graph1-nodes n gx-aph?.-:o.odes 

graph1~edges n graph2-edges 

Just as with the graph union operation, the distributed strict graph intersection 

operation, 

is implemented as n - 1 applications of the simple form of strict graph intersec

tion, i.e., 

graph1-nodes n ... n graphn-nodes 

graph1-edges n ... n graphn-edges 

lFull Graph lintersection 

A full graph intersection operation of the form, 

creates a graph containing the nodes that are common to both graphs together 

with the edges from both graphs whose start-node and stop-node in this set of 

common nodes. In terms of the relations representing the graphs, the full graph 

intersection operation can be implemented as follows. 

Create the relation common -nodes that records the nodes common to both 

252 



graphs by the operations, 

and create the relation all --edges that records all the edges from both graphs 

graph-edges 1 U graph-edges2 

Then derive the relations ok-start-node and ok-stop~node which records the 

edges with a valid start-node and stop-node respectively. These relations are cre

ated by the following operations, 

liw(common-nodes 1>4g1 all-edges) 

llw( common-nodes 1>4g2 all-edges) 

where 1ft is the list of attributes, 

ent-id1, ent-classi,mod-id, region#i, 

ent-id2, ent-class2, mod.,id, region#2, 

dependency 

81 is the predicate, 

common-nodes.ent-id 

common-nodes.ent-class 

common-nodes.mod-id 

common-nodes.region# 

253 

all-edges.ent-id1 

all-edges.ent-class1 

all-edges.mod-id1 

all-edges .region# 1 



and 82 is the predicate, 

common-nodes.ent-:i.d 

co:mmon~:o.oo.cs.o:o.t-·class 

CO!illllOXH.lOdEls.rnod-id 

common-nodes.region# 

aJ.J.--odgBs. e:o.t-id2 

a.ll--edgcs.c:o.t .. cla~s:J. 

all-edges.mod-id2 

all-edges.:region#2 

The distributed form of strict graph intersection is n - 1 applications of the 

simple form. 

A a-slicing operation, 

a(G(N, £),C) 

extracts the subgraph from G(.N, £)in which all the edges denote the dependencies 

listed in the argument C. Consider the a-slicing operation, 

a(G(N, £), {dep1}) 

If depi is not associated with the dependency $ISOLATED$, then the following 

relation operations can be performed to derive the relations that represent the 

desired subgraph. 

The select operation, 

O'dependency=dep1 (graph-edges) 

254 



will create the relation that records the edges that exist in the subgraph. This 

relation will be called subgraph··edges. All the nodes that exist in this subgraph 

are start-nodes and stop-nodes of the edges. Therefore the rela.tion rP.m,.rlir.e; the 

nodes of the sube;raph can be obtained by the operation, 

.nmt-id1,ent-class1rnod-id1region#1 ( subgr.aph-edges) u 

1Ient-id2,ent-class2mod-id2region#2( subgraph-edges) 

If depi represents the dependency $ISOLATED$, then we have to find the nodes 

that are neither a start-node or stop-node for any of the edges in a given graph. 

This can be done by the following operations, 

IIw(graph-nodes ~e graph-edges) 

where l}i is the list of attributes, 

graph-nodes.ent-id, graph-nodes.ent-class, 

graph-nodes.mod-id, graph-nodes.region# 

and e is the predicate, 

graph-nodes.ent-id i= graph-edges.ent-id1/\ 

graph-nodes.ent-class i= graph-edges.ent-classi/\ 

graph-nodes.mod-id i= graph-edges.mod-idi/\ 

graph-nodes.region# i= graph-edges.region# 1 1\ 

graph-nodes.ent-id i= graph-edges.ent-id2/\ 

graph-nodes.ent-class i= graph-edges.ent-class2 1\ 

255 



g:raph-nodes.mod-id =/=- graph-edges.mod-id2 1\ 

graph-nodes.region# =/:. graph-edges.region#2 

A 8-slicing operation, 

8(G(N, £), {dep1, ... , depn}) 

is equivalent to, 

U{8(G(N, £),{dep1}), ... ,8(G(N, £),{ctepn})} 

Therefore a 8-slicing operation consisting of more than one dependency can be 

performed in terms of relational operations by combining the 8-slicing operations 

for a single dependency given above with the implementation of distributed graph 

union in subsection 11.3.2. 

An a,B-slicing operation, 

employs node-based slicing criteria for extracting a subgraph from the given graph. 

The argument C and the a and ,B constraints will be considered separately. 

256 



'Jrlhe Argu.nment C 

The argument C, lists the node~ that can be a start-node or stop-node in t.hR 

resulting graph. Kf one of the named nodes is isolated in the given graph, then it 

also appears in the resulting graph. The 8-slicing operation, 

b'(G(N', £),{$ISOLATED$}) 

can be used to find the isolated nodes in a graph, and the technique for implement

ing this operation is given in the previous subsection on page 255. The relation 

representing the subgraph of isolated nodes will be called isolated-nodes. 

Let start-nodes be the relation recording the set of nodes that can be a start

node in the resulting graph, and stop-nodes the relation recording the set of nodes 

that can be a stop-node in the resulting graph. The relation ok-start-nodes, 

which records the edges with a valid start-node can be obtained by, 

start-nodes t><l 8 graph-edges 

where e is the predicate, 

start-nodes.ent-id 

start-nodes.ent-class 

start-nodes.mod-id 

start-nodes.region 

graph-edges.ent-id1/\ 

graph-edges.ent-class1/\ 

graph-edges.mod-id1/\ 

graph-edges.region1 

Similarly the relation ok-stop-nodes, which records the edges with a valid stop-

257 



node can be obtained by, 

stop-nodes IXJG graph-edges 

where 8 is the predicate, 

stop-nodes.ent-id 

stop-nodes.ent-class 

stop-nodes .mod-id 

stop-nodes.region 

graph-edges.ent-id2 1\ 

graph-edges.ent-class2 1\ 

graph-edges.mod-id2 1\ 

graph-edges.region2 

The relation subgraph-edges, which records the edges that are to appear in 

the subgraph can be obtained by the operation, 

lh ( ok-start-nodes U ok-stop-nodes) 

where rJt is the list of attributes, 

ent-idi, ent-classi, mod-id, region#1, 

ent-id2, ent~class2, mod-id, region#2, 

dependency 

The set of nodes that can appear in the resulting graph can be obtained by find

ing nodes that are a start-node or a stop-node for the edges in subgraph-edges 

and then combining this set of nodes with the set of valid isolated nodes. The com

bined set of start-nodes and stop-nodes from subgraph-edges (called end-nodes 

258 



say) can be obtained by, 

llent-:i.d1,ent-class1,mod-:i.d1,xee;:i.on#1 ( subgraph. .. edges) U 

1I~mt-j.d2,ent-cJ.asR?.,I·loct-:i.d2,reg:i.on#2 ( f'mhgx-aph.-edges) (J.J..?.) 

and the set of valid isolated nodes (called valid., isolated) can be obtained by 

(start-nodes~ isolated--nodes) U 

(stop-nodes~ isolated-nodes) 

The relation subgraph-nodes is then the result of 

end-nodes U valid-isolated 

The a and f3 Constraints 

The a and f3 constraints slice a graph with respect to the label of a node. 

Consider the following af3-slicing operation of the form, 

clasa=class-nameii~(G(N, £), {~,~)) 

In order to find the edges that satisfy this constraint and hence appear in the 

resulting graph, the following select operation can be used, 

a graph-edges.ent-classl=c/ass-name (graph-edges) (11.3) 

If the relation resulting from this select operation is called subgraph-edges, then 

259 



the operation (11.2) can be used to obtain the relation end"liOde:.J which contain 

the nodes that are either a start-node or stop-node for an edge in the subgraph. 

'To find the isolated nodes that satisfy a given a constraint 1 the following select 

operation can be used 1 

aisolated-nodes.ent-class=class-name( isolated-nodes) 

The relation that results from this operation will be called valid~isolated. The 

set of nodes in the resulting graph is therefore the result of, 

end-nodes U valid-isolated 

For the other a constraints, the same procedure can be followed, but different 

predicates given to the select operations. 

Consider now the a;9-slicing operation, 

ellclass=class-name(G(N, £), (e,e)) 

The procedure to obtain the subgraph of G (N, £) that satisfies this slicing opera

tion is the same as for the a constraint, but with different attributes named in the 

predicate of the select operation (11.3). In operation (11.3), the predicate refers to 

the start-node of an edge. The new predicate should be, 

graph-nodes.ent-class2 =class-name 

which refers to the stop-node of an edge. The other ;9 constraints can be handled 

in a similar way. 

260 



On page 97 the a,B-slicing operation is defined as, 

aii~(G(N, £),C)= remove-Jalse-isolated--nodes(G(JV, £), G;(N;, t'i)) 

where G;(N8, £;)is the graph resulting from, 

n{elle(G(N, £),C), aile(G(N, £),(~,e)), eii~(G(.N, £),(e,e))} 

The graph G;(N;, £;) can be obtained by following the procedures given above. 

The function remove-false-isolated-nodes removes the nodes that are isolated in 

G;(JV;, £;) but which are not isolated in G(JV, £). To perform this operation, 

derive the set of isolated nodes within G(.N, £). The procedure for doing this 

is given on page 255. If this relation is called isolated-nodes and the relation 

graphi-nodes represents the nodes that are isolated in G;(.N;, £;), then the set 

of false isolated nodes can be removed by the operation, 

isolated-nodes n graphi-nodes 

261 



Have 1tne Goalis been Acnnevedl? 

The work described in this thesis has addressed itself to the maintenance phase 

_of the software lifecycle, with particular emphasis placed on finding techniques for 

reading and understanding large programs. In order to reason about the code of a 

program, it is necessary to abstract away from the code so that only the relevant 

information is considered. To accomplish this the module-to-module, entity-to

module and entity-to-entity interconnection graphs are used. A set of graph oper

ations are developed which help a maintenance programmer to manipulate these 

graphs. 

The module-to-module interconnection graph can be used to analyse the struc

ture of a system. Two common hierarchies that are used by different software 

262 



design strategies are the virtual machine and abstract-data type hierarchies. 

For the module languages, the module-to-module interconnection e;raph can 

be analysed in terms of both of these hierarchies. By analysine; the module-to

module interconnection graph 1 modules can be classified in terms of the role they 

are playing within a system. This allows a maintenance programmer to identify 

modules that may require a closer examination. Analysing the module-to-module 

interconnection graph can also help detect modules that are redundant within a 

system, because they are never used. 

The entity-to-module interconnection graph provides a less abstract view of a 

program, revealing the client and supplier relationships between the modules. This 

graph can help detect inconsistent importing and exporting of entities. This in 

turn reveals an inconsistency in interpreting a design decision. 

The entity-to-entity interconnection graph records information on the depen

dencies between the level 0 entities of a module. Combining the analysis of this 

graph with the analysis of the entity-to-module interconnection graph allows a 

module to be classified with respect to the taxonomies of modules given by Booch 

and Ross. Having classified modules according to Booch 's taxonomy, potpourri 

modules can be identified. 

Three techniques are given for breaking up a potpourri module into smaller 

modules which provide only a single service to the system. The first technique is 

"grouping by type-families", which is the process of detecting abstract data types 

that exist within a module. The second technique is "grouping by state variables", 

which is the process of detecting the abstract-state machines within a module. The 

last technique is "grouping by imports", which uses the different client views of a 

263 



module as the basis for breaking up a module. 

The graph operations allow a maintenance programmer to combine two or more 

graphs so as to create a single graph, or to create a graph that is the subgraph 

common to two or more given graphs. Graph slicing operations are developed 

that extract a subgraph from a given graph that satisfies particular node and 

edge constraints. These graphs operations can be used to extract special forms of 

subgraphs. In particular, the three module factoring techniques given involve the 

use of these graph operations. 

When working with a large system, it is impractical to regenerate the informa

tion needed for inter-module code analysis for every code analysis related activity. 

A relational database schema has therefore been designed which can record infor

mation on the inter-module connections within a system. Techniques for using this 

database schema to perform the graph operations are given. 

JFurbunre JD 1ur ec t nons 

The relational database schema has to be extended to cater for inheritance 

and instantiation. This will then allow the database to record all the different 

inter-module connections within a system written in one of the module languages. 

Furthermore, the existing database schema handles the use of a variables in a very 

simple way. The database schema should be modified so that the actions that are 

performed on a variable within a region are recorded, i.e., record if the variable is 

defined or referenced. Extending the database schema in this way will then allow 

inter-module code analysis to be performed with respect to how a state variable is 

264 



being used. This will then help in the detection of ripple effects across a module's 

boundary. 

The work on inter-module code analysis can be extended to consider code based 

software metrics. With the current work it is possible to detect the different client 

views of a module, and it is possible to determine the module categories for each 

client view. The simplest form of module is one that provides only one client view, 

and that client view corresponds to only one module category. The most complex 

module would be one that has many client views, each of which corresponds to 

a potpourri module, i.e., it corresponds to several module categories. In order to 

determine the complexity of the module interconnections, it would be necessary to 

combine these relative complexity measures for modules, with complexity measures 

for the architectural structure of a system. This work should also help in assessing 

the reusability of a module. 

Guidelines for determining how well an abstract-state machine is coded need 

to be developed. This will involve redefining the existing cohesion and coupling 

measures, so that they accommodate the module construct. This will then also 

help in developing software metrics on module interconnections. 

The relational database schema was designed so that its use was not restricted 

to the inter-module code analysis work of this thesis. With some extensions, the 

database could be used by software tools such as interactive cross referencers and 

documentation generator. Developing the appropriate database front ends, and 

integrating them, could form the basis for a software maintenance support envi

ronment. 

265 



Archntectu:ral §tructu:re The structure of a system with respect to the unit 

of modularity. With the module languages this is 

the structure of the system with respect to the 

module construct. 

Attribute 

Attribute Type 

Attribute Value 

See Attribute Type and Attribute Value. 

This is the name that identifies a particular do

main of values. 

An attribute value is an instance of a value from 

the domain denoted by the associated attribute 

type. 

266 



Bequeathing lV![odulle A module that provides entities to another module 

via an inheritance mechanism. 

Can.didaie JKey 

Cllass 

Client Module 

CHent View 

Code Anallysis 

Cohesion 

A call graph is a directed graph that represents the 

dynamic relations between routines. 

A combination of attributes that can uniquely iden

tify a tuple from a given relation. 

This is a data type module used to implement ab

stract data types. 

A module that imports an entity from another 

module. 

The view of a module that is given to users of a 

module. This view normally consists of a lists of 

the modules public entities, together with enough 

information to know how to use them. 

The process of examining a program in order to 

gain some knowledge of its structure or execution 

behaviour. 

A measure of the strength of functional association 

of processing activities. 

267 



Common Coupling 

Conclr'ete Modlule 

Coupling 

Edge 

Entity 

Entity Attributes 

Functional Role 

A type of coupling characterised by two or more rou

tines referring to the same shared variable. 

A concrete module is a fully elaborated version of 

a generic module, where the entities of the concrete 

module can be used within the program. 

The degree of dependenc~ of one routine upon an

other; specifically, a measure of the chance that a 

defect in one routine will appear as a defect in an

other, or the chance that a change to one routine will 

necessitate a change to the other. 

An ordered pair of nodes denoting a dependency be

tween the start node and the stop node. 

An entity is anything that can be named or denoted 

in a program. Objects, types, values, modules are all 

entities. 

Details about the characteristics of an entity, e.g., 

its type, the number of parameters, the type of the 

parameters, etc. 

The functional role of a module is it's classification 

according to Hooch's taxonomy [16, pages 228-9]. 

Fundamental Module A module that plays a critical role in a system. 

268 



Generic Modulle 

Gllobai JEntHy 

GRoba! Module 

Henir Modlune 

A generic module is a template module that describes 

the characteristics of its entities in a general way. The 

descriptwn of these entities is not complete enough to 

allow them to be used in the program. 

Entities declared in the outermost block of a module. 

A module that is not contained within a block. 

A module that aquires entities by means of an inher

itance mechanism. 

Jimported JEntity An entity that is explicitly imported by a module. 

Jinfoirrnation Hiding Implementation information is not revealed to client 

modules. 

linlheritance The process of creating a module as an extension or 

specialisation of another. 

linheritance Graph A graph showing the modules that are created as ex

tension or specialisations of each other. The depen

dency recorded in this graph is the inherit s-frorn. 

linjeded JEntity An entity that is exported by a local module and im

plicitly imported by the module that encapsulates the 

local module. 

269 



:ITnstantiatii.on Thee An instantiation tree is a tree structure that 

shows which modules are instantiations of other 

modules. 

1Interconnednm11 Grraph An interconnection graph is a directed labelled 

graph that is used to represent the dependencies 

between entities in a program. 

JLocall Modlule 

Metadass 

Modlule 

Modlulle JFactorrnng 

Module Languages 

A module declared within a block. 

A class module whose instances are themselves 

class modules. 

A module is a named collection of entities, where 

the programmer has precise control over the en

tities that are imported from and exported to the 

surrounding environment. 

Module factoring is the process of taking a mod

ule that provides several disparate servi<;es, and 

creating smaller modules where each module pro

vides only one service. 

Languages that provide a module construct as 

part of the language. 

270 



Objed 

Overr:riding 

Potpourri ModuRe 

Prrimarry Key 

Prrlivate Variable 

A form of inheritance where a module can be 

created as aD. extensiou or t.:pecialisatior. of sev

eral modules. 

The objects that comprise a tree or graph. 

An object has a set of operations and a state 

that remembers the effect of the operations. 

Overriding is the redeclaration of an inherited 

entity. 

A module conforming to several of the classifi

cations given by Booch [16, pages 228-9]. 

The set of attributes chosen by the database 

designer as the principle means of identifying 

tuples. within a relation. 

A variable that is local to module, but which 

is considered non-local by the routines of that 

module. 

Program Comprehension This is the process of understanding what a 

program does with respect to the real world, or 

with respect to a particular problem domain. 

Public Entities Entities exported by a module. 

271 



Root ModuJe 

Routine 

Rouiine Group 

§cope 

A named set of tuples. 

A description of tie st'-'t:ct:J.re o£ a relatioa. 

""h • l. • l... l 1 • I d • t1 l. e serv1ce w mcE a moa u e IS C11are;e . w1 n 

providing to a system. 

The manifestation of a defect in one part of a 

system as a defect in other parts of the system; 

the effect of a change in one part of a system 

causing defects in other parts of the system 

and/or necessitating further changes to other 

parts of the system. 

A module that appears to represent a system, 

or part of the system. 

A subprogram unit that could be either a pro-

cedure or function. 

A group of routines that are dependent be-

cause they invoke each other. 

The scope of a declaration is the region of text 

over which the declaration has an effect. 

272 



A variable that is dec;_a,rcd as a global Vi::,i'io:,ble :.:o. a, 

' 1 l 1 f . '1 '1'' . 1 l"CJ.OQLJ._e EmQ vV!lOSe scope o:.. VlSlOU.GJ' ex~e:O.Q:J OV:Ci.' 8:0V· 

. 
cJ:c.. .. ~no:=.r .. ~es~ 

A module that i.s i.ndepe:J.dac.::rl; of the other mod.u",en i.n 

a system. with respect to the n;:;ot.J dependency. 

The spanning tree is a graph with all. backward edges 

removed. 

§pedalisedl Mod!UJ!lle A module that provides a specialised services within a 

system. 

The node that marks the starting point for an edge. 

§tate Jinformatlio:n Data that is stored in a state variable. 

A variable that is declared at level 0 in a module. 

The node that marks the terminating point for an edge. 

A form of inheritance where a module can be con-

structed as an extension or specialisation of only one 

module. 

A module that provides an entity to other modules. 

273 



§lJ.pplliiew VJ.ew The view of a module tha,t the implementor has. H con

tains all the infonr..ation p;}ven to the client modules, to .. 

the service it is providing. 

'Ferrmin21.ll Moch.11lie A low level module within a system that requires non of 

the facilities offered by the other modules in the system. 

Thple A set of related attribute values. 

A group of type entities that are dependent on each 

other. 

Virtual Machine A virtual machine ia a software extension to the un

derlying hardware, and also possibly to other virtual 

machines. 

Visiblle At a given point in a program text, the declaration of 

an entity with a certain identifier is said to be visible if, 

the entity is an acceptable meaning for an occurrence at 

that point of the identifier. 

274 



G1 (J\!1 ~ £1) ~ G2(N2~ £2) Graph containment. G1 (N1, £1) IS a 

subgraph of G2 (N2, £2). 

G1(N1, £1) ~ G2 (N2 ~ £ 2 ) Graphcontainment. G1(N 1 , £ 1)isasu

pergraph of G2(N2, £2). 

U{G1(N1, £1) ... Gn(Nn, En)} Distributed graph union. 

275 



h(G(JV ~ £), C) 

aii!3(G(JV, £), C) 

Strict simple graph intersection. 

Full simple fP".Ph intersection. 

Distributed strict graph intersection. 

h-slicing. 

a/3-slicing. 

A symbol used to denote that no restric

tion is being employed. 

276 



Program :: s-program : set of Global-Module 

Global-Module :: s-global-module : Module-Entity 

where 

inv-Global-Module( mk-Global-Module(gm)) b. region#(gm) = 0 

Module-Entity :: s-exports 
s-imports 
s-region# 

Exported-Entities 
Imported-Entities 
N 

s-regzon : Region 

Exported-Entities :: s-exported-entity 

Imported-Entities :: s-imported-entity 

Module-Set = set of Module-Id 

Entity-Set = set of Entity 

Entity :: s-entity-id : Entity-Id 

map Entity to Module-Set 

map Module-Id to Entity-Set 

Entity-Id = Constant-Id I Type-Id I Variable-Id I Routine-Id I Module-ld 

277 



map Constant-Id to Constant-Set 
map Type-Id to Type--Set 
map Variable-.Jd ~o Variable-Set 
m<llp Routine-.Jd ~o Routine .. Set 
m21p 1V1odule-.Jd to Module .. Set 

Region ·· s-constant 
s-type 

s-variable 
s-routine 
s .. module 

s .. body Body 

Constant .. Set = se~ of Constant-Entity 

Type .. Set = se~ of Type-Entity 

Variab[e .. Set = set of Variable-Entity 

Routine-Set = set of Routine-Entity 

Module-Set = set of Module-Entity 

Constant-Entity :: s-type : Type-Constructor 

Type-Entity :: s-type : Type-Constructor 

Variable-Entity :: s-type : Type-Constructor 

Routine-Entity :: s-formal-parameters 
s- result-type 

s-region# 

Parameters 
Type- Constructor 
N 

s-regzon Region 

Parameters= map Parameter-Id into set of Type-Constructor 

Type-Constructor = Qualident I Enumerated I Subrange I Array I Record I 
Set I Pointer I Routine 

Qualident = Type-Id 

Enumerated= set of Enum-Id 

Body :: s-constants-used 
s-types-used 

s-variables-used 
s-routine-used 

System-Id = .. . 
Module-Id = .. . 
Constant-Id = .. . 

set of Constant-Id 
set of Type-Id 
set of Variable-Id 
set of Routine-Id 

Type-Id = ... Some appropriate set of entity identifiers 
Variable-Id = .. . 
Routine-Id = .. . 
Enum-Id = .. . 

278 



1. The relation program-components is used to record which external modules 

a named system consists of. The relation program-components has two at

tributes, and they both form the primary key. 

sys-id This is the key attribute. It is used to denote the 

name of the system to which the modules belong. 

mod-id - This attribute is the name of a module that belongs 

to the named system. 

program-components.----...-------. 

sys-id mod-id 

2. The relation exports is used to record which entities are exported by a named 

module. The relation exports has three attributes all of which combine to 

form the primary key. 

279 



mod-id This is the first key attribute. It denotes the name 

of the module that exports the entity. 

ent-id This is the second key attribute. This attribute de-

notes the name of an entity exported by the named 

module. 

imp-mod-id - This is the third key attribute. This attribute de

notes the name of the module that can import the 

named entity, if any external module can import 

the entity then the special value '$All$' is used. 

exports.---· -----.-----.------, 

mod-id ent-id imp-mod-id 

3. The reiation imports records information on a named entity exported by 

a named module and imported into another named module. The imports 

relation has five attributes, four of which are key attributes. 

mod-id This is the first key attribute. It denotes the name 

of the importing module. 

exp-mod-id - This is the second key attribute. It denotes the 

ent-id 

name of the exporting module. 

This is the third key attribute. It denotes the 

name of an entity exported by the module named in 

the exp-mod-id attribute field and imported by the 

module named in the dest-mod-id attribute field. 

imports r----.-------.----. 

mod-id exp-mod-id ent-id 

In languages like CLU and Eiffel, whose module does not have separate defi-

nition and implementation parts, the imported entities are always classed as 

280 



being visible in both the definition and implementation parts. 

4. The relation constant-dec records information on the type of a named con

stant, declared in a named module. The relation constant--dec has five at

tribute three of which form the primary key. 

mod-id This is the first key attribute. Us value is the name 

of a module 

region# - This is the second key attribute. This is the region 

number in which the constant is declared. Region 

number zero is the outermost level and is associated 

en t-id 

type# 

with the scope of the declaring module. 

This is the third key attribute. Its value is the 

name of a constant declared in the module named 

in the mod-id attribute. 

A "type" is either a qualified identifier or a type

constructor. A unique identifier called the "type#" 

is allocated for each qualified identifier that is used 

- the same one is re-used for each occurrence. A 

unique identifier is allocated for each occurrence of 

a type-constructor. 

constant-dec ,.------.----r-----.-----, 

mod-id region# ent-id type~ 

5. The relation type-dec records information on the type of a named type de

clared in a named module. The relation type-dec has four attribute three of 

which form the primary key attributes. 

281 



mod-id This is the first key attribute. rts value is the name 

of a module 

This is ~he second. key attribute. ~his is the region 

in which the type is declared. 

ent· id This is the third key attribute. Hs value is the 

name of a type declared in the module named in 

the mod-id attribute. 

type# - A "type" is either a qualified identifier or a type-

constructor. A unique identifier called the "type#" 

is allocated for each qualified identifier that is used 

-the same one is re-used for each occurrence. A 

unique identifier is allocated for each occurrence of 

a type-constructor. 

type-dec 

mod-id region# en t-id type it 

~-·~--.. 

6. The relation variable-dec records information on the type of a named variable 

declared in a named module. The relation variable-dec has four attributes, 

three of which form the primary key attributes. 

282 



mod-id This is the first key attribute. Hs value is the name 

of a module 

region# - This is the second key attribute. This is the region 

ent-id 

type# 

in which the variable is declared. 

This is the third key attribute. Us value is the 

name of a variable declared in the module named 

in the mod-id attribute. 

A "type" is either a qualified identifier or a type

constructor. A unique identifier called the "type#" 

is allocated for each qualified identifier that is used 

- the same one is re-used for each occurrence. A 

unique identifier is allocated for each occurrence of 

a type-constructor. 

variable-dec .-----r-----r---.----, 
mod-id region# ent-id typeit 

7. The relation type-of-routine records information on the type of a routine. The 

relation type-of-routine has four attributes, three of which form the primary 

key relations. 

mod-id This is the first key attribute. Its value is the name 

of a module 

region# - This is the second key attribute. This is the region 

in which the routine is declared. 

283 



ent-id This is the third key attribute. Its value is the 

name of a routiue declared in the module named 

x .. type# - This is the attribute that records the result type of 

the routine. H the routine is a procedure the result 

type is the special value '$Void$. 

type-of-routine -- -----
mod-id region# en t--id :r_type~ 

'--- -----

8. The rela~ion region-of-routine records information on the region number as

sociated with a routine. The relation region-of-routine has four attributes, 

three of which form the primary key relations. 

mod-id This is the first key attribute. Its value is the name 

of a module 

region# This is the second key attribute. This is the region 

in which the routine is declared. 

ent-id This is the third key attribute. Its value is the 

name of a routine declared in the module named 

in the mod-id attribute. 

c-region# - This is the region that belongs to the routine iden-

tified by the primary key. 

region-of-routine r------r----r----.------, 

mod-id region# ent-id c-regionl't 

9. The relation para-id-rel records information about the type and class of a 

named formal parameter from a named particular list. The relation para-id-

rel has five attributes, four of them being key attribute. 

284 



mod-id This the first key attribute. It denotes the name 

of the module in which the symbol recorded in the 

para-list~syin attribute exist. 

region# - This is the second key attribute. This is the region 

ent-id 

par a-id 

p_type# 

in which the routine is declared. 

This is the third key attribute. Its value is the 

name of an routine declared in the module named 

in the mod-id attribute. 

This is the fourth key attribute, it identifies a par

ticular formal parameter. 

A "type" is either a qualified identifier or a type

constructor. A unique identifier called the "type#" 

is allocated for each qualified identifier that is used 

-the same one is re-used for each occurrence. A 

unique identifier is allocated for each occurrence of 

a type-constructor. 

para-id-rel.---------...-----..---.,.-------.-------. 
mod-id region# ent-id para-id p_type# 

10. The relation local-module is used to record the region number associated with 

a particular local module. The relation local-module has four attributes, three 

of which are key attributes. 

285 



mod-id This is the first key attribute. Its value is the name 

of a,n external module 

~~'hi:::: }:::; ~he sc;::m•.d by <::Ltribute. 'T.his is t.he region 

i.n which the local modul.e is decl.ared. 

loc-mod-id. - This is the third key a..ttribute. Hs value is the 

name of a local module declared 1n the external 

module named in the mod-id attribute. 

c-region# This is the region that belongs to the local module 

identified by the primary key. 

local-module --· 

mod-id region# loc-mod-id c~region$$ 
-- -

--. ~-~-:-

11. The relation local-module- exports is used to record the name of the entities 

exported by a named local module. The relation has four attributes, all of 

which combine to form the primary key. 

mod-id This is the first key attribute. Us value is the name 

of an external module 

region# This is the second key attribute. This is the region 

in which the local module is declared. 

loc-mod-id - This is the third key attribute. Its value is the 

en t-id 

name of a local module declared in the external 

module named in the mod-id attribute. 

This is the fourth key attribute. Its value, is the 

identifier of an entity exported by the named local 

module. 

local-module-exports ....------.-----.----------,..-----. 

mod-id region# loc-mod-id ent-id 

286 



12. The relation local--module-imports is used to record information on a named 

entity imported by the named local module. 

mod--id This is the first key attribute. Hs value is the name 

of an external module 

region# This is the second key attribute. This is the region 

in which the local module is declared. 

loc-mod-id - This is the third key attribute. Its value is the 

ent-id 

name of a local module declared in the external 

module named in the rnod-id attribute. 

This is the fourth key attribute. Its value, is the 

identifier of an entity imported by the named local 

module. 

local-module-exports 

mod-id region# loc-mod-id en t-id 
--~ 

13. The relation type records information on the class of each of the types in a 

module. The term "type" is used to apply to all types anonymous types in 

variable and routine declarations, as well as type declarations. This relation 

is used to determine which of the different type relations contains the descrip-

tion of the named type declaration. The relation type has three attributes, 

two of which are key attributes. 

287 



mod-id This is the first key field. It denotes the name of 

the module in which the type elaboration exists. 

type# This is the second key field. It denotes the type 

declaration whose class is being sought. 

type-class - This attribute records the class of a named 

type elaboration. Its values can be one of the 

following: "QUALIDENT", "ENUMERATED", 

"SUBRANGE", "ARRAY", "RECORD", "SET", 

"POINTER" or "ROUTINE". 

type 

mod-id type# type-class 
·--

14. The relation qualident records the identifier of a type entity. The value can 

be either a predefined type like INTEGER or CARDINAL, the name of a type 

entity declared in the named module, or a type module imported into the 

named module. The relation qualident has three attributes, two of which are 

key attributes. 

rnod-id - This is the first key field. It denotes the name of 

the module in which the type elaboration exists. 

type# - This is the second key field. It denotes the type 

ent-id 

declaration whose identifier is being sought. 

This attribute records the identifier of the type 

named in the type# attribute. 

qualident ,-------.----,----, 

mod-id type# ent-id 

15. The relation enumerated-type record the names of each of the elements of a 

named enumerated type. The relation enumerated-type has three attributes, 

288 



two of which are key attributes. 

mod-id - This is the first key field. It denotes the name of 

the module in which the type ela,boration exists. 

type# - This is the second key field. It denotes the enu

merated type whose element identifiers are being 

sought. 

ent-id This attribute records the identifier of each of the 

elements of a named enumerated type. 

enumerated-type ..------.----.-----, 

mod-id type# ent~id 

16. The relation subrange-type records information on the range type of a sub

range type. The relation subrange-type has five attributes, two of them are 

key attributes. 

mod-id 

type# 

This is the first key field. It denotes the name of 

the module in which the type elaboration exists. 

This is the second key field. It denotes the type 

declaration whose subrange elaboration is being 

sought. 

range-type# - This attribute records the type declaration num-

ber of the base type, i.e. the type of the subrange 

elements. 

subrange-type ..------.----.---------, 

mod-id type# range-type# 

17. The relation subrange-delimiters records information on the range type of a 

subrange type. The relation subrange-type has five attributes, two of them 

are key attributes. 

289 



mod-id - This is the first key field. It denotes the name of 

the module in which the subrange type elaboration 

type# - This is the second key field. It denotes the type 

declaration number of the subrange for which the 

delimiters are being sought. 

ent-id This attribute records identifier of the routine or 

constant used to delimit one of the bounds of the 

sub range. 

subrange-delimiters .------~---....------, 

mod-id type# ent-id 

18. The relation array-type records information on a named array type. The 

relation array-type has four attributes, three of them being key attributes. 

mod-id This is the first key field. It denotes the name of 

the module in which the type elaboration exists. 

type# This is the second key field. It denotes the 

type declaration whose array elaboration is being 

sought. 

indices-list-sym - This attribute records a value that is used as a key 

attribute with the array-indices relation. It is used 

to find the type of each of the indices of a given 

array. 

elem-type# This attribute records the type declaration number 

for the array elements. 

290 



army-typer~- ~~ 
(od~Te# elem-t~pj 

19. The relation array··indices record the type declaration number for each array 

index in a named array indices list. 

mod-id This is the first key attribute. Its value is the name 

of a module 

indices-list-sym - This is the second key attribute. Its value is the 

symbol that denotes an array index list. 

index-type# This attribute records the type declaration number 

for an array index. 

array-indices .-----r-

mod-id indices-list-sym elem-type~ 

20. The relation record-field-type records information about the type of a named 

field in a named record. The relation record-field-type has four attributes, 

three of which are key attributes. 

mod-id 

type# 

field-id 

This is the first key field. It denotes the name of 

the module in which the type elaboration exists. 

This is the second key field. It denotes the record 

type whose field identifiers are being sought. 

This is the third key field. It denotes the name of 

a field in a named record. 

field-type# - This attribute records the type declaration number 

of the named record field. 

recm·d-field-type .------.-----.----,-------, 

mod-id type# field-id field-type# 

291 



?.1. The relation set-type records information on the type of the elements of a 

named set. The relation set .. type has three attributes, two of them being key 

a.ttributes. 

mo6-i.d 

type# 

This is the first key field. ]t denotes the ?J.ame cf 

the module in which the type elaboration exists. 

This is the second key field. It denotes the enu-

merated type whose element identifiers are being 

sought. 

base-type# - This attribute records the type declaration number 

of the base type, i.e. the type of the set elements. 

set-type [m~ 
~d type# base··typeU 

22. The relation pointer-type records information on the type that is bound by 

the pointer. The relation pointer-type has three attributes, two of them being 

key attributes. 

mod-id 

type# 

This is the first key field. U denotes the name of 

the module in which the type elaboration exists. 

This is the second key field. It denotes the 

type declaration whose pointer elaboration is be-

ing sought. 

bound-type# - This attribute records the type declaration number 

of the base type, i.e. the type of the referenced 

elements. 

pointer-type 

mod-id type# bound-type# 

-
23. The relation proc-type records information on a named routine type. The 

292 



relation proc-type has four attributes, two of them being key attributes. 

mod-id This is the first key field. It denotes the name of 

type# 

para-sym 

the module in which the type elaboration exists. 

This is the second key field. It denotes the routine 

type to which the information pertains. 

This attribute denotes the value that is used as 

the key attribute for the relations proc-type-para

list and proc-type-pos-type 

proc-type# - This attribute records the type declaration number 

of the routine type. The special value, '$Void$', is 

used when the routine has no type, i.e. it is a 

PROCEDURE. 

proc-type r-----,------.-----r------, 

mod-id type# pa.ra-sym proc-type# 

24. The relation proc-type-para-type records information on the type and class of 

a named parameter, denoted by its position within the parameter list. 

mod-id This is the first key attribute. Its value is the name 

para-sym 

of a module 

This is the first key attribute. It identifies a pa

rameter list. 

para-type# - This attribute denotes the type declaration number 

that describes the formal parameter's type 

proc-type-para-type .---~-----.------.--------, 

mod-id para-sym para-type# 

25. The relation constants-used is used to record the global constants used by a 

global routine. The relation constants-used has three attributes, and they are 

293 



all used to form a primary key. 

mod-id This is the first key attribute. Hs value is the name 

of the external module. 

routine-id This is the second key attribute. Its value is the 

name of the name of the routine that uses the 

named constant. 

constant-id - This is the third key attribute. Its value is the 

name of the name of the constant that is used. 

constants-used 

mod-id routine-id constant-id 
1--

'---

26. The relation types-used is used to record the global types used by a global 

routine. The relation types-used has three attributes, and they are all used 

to form a primary key. 

mod-id This is the first key attribute. Its value is the name 

of the external module. 

routine-id - This is the second key attribute. Its value is the 

name of the name of the routine that uses the 

named type. 

type-id This is the third key attribute. Its value is the 

name of the name of the type that is used. 

types-used r--~---r-----.---~ 

mod-id routine-id type-id 

27. The relation variables-used is used to record the global variables used by a 

global routine. The relation variables-used has three attributes, and they are 

all used to form a primary key. 

294 



mod-id This is the first key attribute. Its value is the name 

of the external module. 

routinc-id - This is the second key attribute. Its value is the 

name of the name of the routine that uses the 

named variable. 

variable-id - This is the third key attribute. Its value is the 

name of the name of the variable that is used. 

variables--used.-------.------..--------. 

mod-id routine-id variables-id 

28. The relation routines-used is used to record the global routines called by 

another global routine. The relation routines-called has three attributes, and 

they are all used to form a primary key. 

mod-id This is the first key attribute. Its value is the name 

of the external module. 

calling-routine-id - This is the second key attribute. Its value is the 

name of the name of the routine that calls the 

named routine. 

called-routine-id - This is the third key attribute. Its value is the 

name of the name of the routine that is called. 

routines-used .------,r--------.-------, 
mod-id routine-id variables-id 

295 



[1] Reference Manual for the Ada Programming Language. 1983. ANSI/MIL

STD 1815A. 

[2] Working Draft: Programming Language Extended Pascal. October 1986. 

ISO/TC97 /SC22/WG2 N100. 

[3] Standard FORTRAN Programming Manual. Manchester, second edition ed., 

1972. 

[4] American National Standard Programming Language PL/1. New York, 1976. 

ANSI X3.53-1976. 

[5] Data Processing -Programming Languages - SIMULA. May 1987. Svensk 

Standard SS 63 61 14. 

[6] Abbott, R.J., "Program Design by Informal English Description," Commu

nications of the ACM, vol. 26, pp. 882-894, November 1983. 

[7] Aho, A.V., Sethi, R., and Ullman, J.D., Compilers Principles1 Techniques 

and Tools. Reading, Massachusetts: Addison-Wesley Publishing Company, 

1986. 

[8] Ambras, J. and O'Day, V., "MicroScope: A Program Analysis System," in 

Proceedings of the Twentieth Hawaii International Conference on System Sci-

296 



ences 1987, (Shriver, B.D., ed.), (California), pp. 71-81, Western Periodicals 

Company, January 198'1. 

[9] Ashcroft, E. and Manna, Z., "The Translation of 'GOTO' Programs to 

'WHILE' Programs," in Proceedings of IFIP Congress 71, pp. 250-255, 

North-Holland Publishing Co., 1972. 

[10] Baker, B.B., "An Algorithm for Structuring Flowgraphs," Joumal of the 

ACM, vol. 24, pp. 98-120, January 1977. 

[11] Bartussek, W. and Parnas, D.L., "Using Assertions about Traces to Write 

Abstract Specifications for Software Modules," in Proceedings of Second Con

ference of Eumpean Cooperation in Informatics, pp. 211-236, Sprnger-Verlag, 

1978. Lecture Notes in Computer Science, 65. Also in "Software Specification 

Techniques". 

(12] Bergeretti, J.F. and Carre, B.A., "Information-Flow and Data-Flow Analysis 

of WHILE-Programs," ACM Transactions on Programming Languages and 

Systems, vol. 7, pp. 37-61, January 1985. 

[13] Bobrow, D.G., DeMichiel, L.G., Gabriel, R.P., Keene, S.E., Kiczales, G., and 

Moon, D.A., Common Lisp Object System Specification X3Jl3 Document 88-

002R. 1988. Appeared as a special issue of Sigplan Notices, vol 23, September 

1988. 

(14] Bohm, C. and Jacopini, G., "Flow Diagrams, Turing Machines and Lan

guages with only Two Formation Rules," Communications of the ACA1, vol. 9, 

pp. 366-371, May 1966. 

[15] Booch, G., "Object-Oriented Development," IEEE Transactions on Software 

Engineering, vol. SE-12, no. 2, pp. 211-221, 1986. 

297 



(16] Booch, G., Software Engineering with Ada. Reading, Massachusetts: Ben

jan:lin/Curnmings Publishing Company Inc., second ed., 1987. 

(l'tj Britton, K.H. and Parnas, D.L., "A-7E Software Module Guide," Tech. Rep., 

Naval Research Laboratory, Washington, D.C., December 1981. NRL Mem

orandum Report 4 702. 

[18] Buhr, R.J.A., System Design with Ada. Englewood Cliffs, NJ.: Prentice-Hall 

International, 1984. 

[19] Burstall, R.M. and Darlington, J.A., "A Transformational System for De

veloping Recursive Procedures," Journal of the AC'M, vol. 24, pp. 44-67, 

January 1977. 

[20] Calliss, F.W., "Problems with Automatic Restructurers," SIGPLAN Notices, 

vol. 23, pp. 13-21, March 1988. 

[21] Calliss, F.W. and Cornelius, B.J., "Dynamic Data Flow Analysis of C Pro

grams," in Proceedings of the Twenty-First Annual Hawaii International 

Conference on System Sciences, (Washington, D.C.), pp. 518-523, IEEE 

Computer Society Press, January 1988. 

[22] Calliss, F.W. and Cornelius, B.J., "Two Module Factoring Techniques," The 

Journal of Software Maintenance - Research and Pmctice, 1989. 

(23] Calliss, F.vV., Khalil, M.M., Munro, M., and Ward, M., "Reengineering vs 

Restructuring," Software Maintenance News, vol. 5, p. 8, October 1987. 

[24] Calliss, F.W., Khalil, M.M., Munro, M., and Ward, M., "A Knowledge-Based 

System for Software Maintenance," in Proceedings of the Conference on Soft

ware Maintenance - 1988, pp. 319-324, 1988. 

298 



[25] Cardelli, L., Donahue, J., Glassman, L., Jordan, lVI., Kalsow, B., and Nel

son, G., "Modula-3 Report," Tech. Rep., Olivetti Research Center, Menlo 

Park, California, 1988. 

[26] Cardelli, L. and Wegner, P., "On Understanding Types, Data Abstraction, 

and Polymorphism," Computing Sur"'Jeys, vol. 17, pp. 4 71-522, December 

1985. 

[27] Carre, B.A., "Validation Techniques," in Software Engineering for Micropro

cessor Systems, (Depledge, P., eel.), pp. 173-197, London: Peter Peregrinus 

Ltd., 1984. 

[28] Chen, T.Y. and Poole, P.C., "Dynamic Dataflow Analysis," Information and 

Software Technology, vol. 30, pp. 497-505, October 1988. 

[29] Clements, P.C., "Function Specifications for the A-7E Function Driver Mod

ule," Tech. Rep., Naval Research Laboratory, Washington, D.C., November 

1981. NRL Memorandum Report 4658. 

[30] Clements, P.C., "Interface Specifications for the A-7E Shared Services Mod

ule," Tech. Rep., Naval Research Laboratory, Washington, D.C., September 

1982. NRL Memorandum Report 4863. 

[31] Clements, P.C., Faulk, S.R., and Parnas, D.L., "Interface Specification for the 

SCR (A-7E) Application Data Types Module," Tech. Rep., Naval Research 

Laboratory, Washington, D.C., August 1983. Technical Report NRL Report 

8734. 

[32] Clements, P.C., Parker, R.A., Parnas, D.L., Shore, J., and Britton, K.H., 

"A Standard Organization for Specifying Abstract Interfaces," Tech. Rep., 

Naval Research Laboratory, Washington, D.C., June 1984. Technical Report 

NRL Report 8815. 

299 



[33] Cleveland, L., "An Environment for Understanding Programs," in Proceed

ings of the Twenty-Fi1·st Annual Hawaii International Conferenc~ on System 

Sciences, (Shriver, B.D., ed.), pp. 500-509, J3,nuary 1988. 

[34] Clocksin, W.F. and Mellish, C.S., Programming in Prolog. Berlin: Springer

Verlag, second edition ed., 1984. 

[35] Codd, E.F., "A Relational Model of Data for Large Shared Data Banks," 

Communications of the AC.i\1, vol. 13, pp. 377-387, June 1970. 

[36] Cooper, S.D., "Pascal Program Call Graph Generator," Tech. Rep., School of 

Engineering and Applied Science(Computer Science), University of Durham, 

1987. Final Year Project. 

[37] Cooprider, L.W., The Representation of Families of Software Systems. PhD 

thesis, Carnegie-Mellon University, Computer Science Department, April 

1979. 

[38] Cornelius, B.J., "Problems with the Language Modula-2," Software - Prac

tice and Experience, vol. 18, pp. 529-543, June 1988. 

[39) Cornelius, B.J. and Kirby, G.H., "Depth of Recursion and the Ackermann 

Function," Bit, vol. 15, pp. 144-150, 1975. 

[40] Cowell, D.F., Gillies, D.F., and Kaposi, A.A., "Synthesis and Structural Anal

ysis of Abstract Programs," The Computer Journal, vol. 23, pp. 243-247, 

August 1980. 

[41] Cox, B .J., Object Oriented Programming - An Evolutionary Approach. 

Reading, Massachusetts: Addison-Wesley, 1986. 

300 



[42) Cunningham, 'vV. and Beck, K., "A Diagram for Object Oriented Programs," 

in OOPSLA '86 Conference Proceedings, pp. 361-367, ACM, 1986. Appeared 

as Sigplan Nolices, vol. :::n, no.ll. 

(43] Dahl, 0.-J. and Hoare, C.A.R., "Hierarchical Program Structures," in Struc

tu-red Progmmming, London: Academic Press Inc., 1972. 

[44] Danforth, S. and Tomlinson, C., "Type Theories and Object-Oriented Pro

granuning," ACM Computing Surveys, vol. 20, pp. 29-72, March 1988. 

[45) Debnath, N.C. and Bieman, J.M., "A Representation and Analysis of In

terprocedural Structure," in Proceedings of the Twentieth Hawaii Interna

tional Conference on System Sciences 1987, (Shriver, B.D., ed.), (California), 

pp. 92-100, Western Periodicals Company, January 1987. 

[46) DeMarco, T., Structured Analysis and System Specificat?:on. New York: Your

don Inc., 1978. 

[4 7] DeRemer, F. and Kron, H.H., "Programming-in-the-Large versus Progra

mming-in-the-Small," IEEE Transactions on Software Engineering, vol. SE-

2, pp. 80-86, June 1976. 

[48) Dijkstra., E., "GOTO Statements Considered Harmful," Communications of 

the ACM, vol. 11, pp. 147-148, 1968. 

[49] Dijkstra., E.W., "The Structure of the "THE"-Multiprogramming System," 

C01mnunications of the A CM, vol. 11, pp. 341-346, May 1968. Reprinted in 

Communications of the ACM, vol. 26, no. 1, July 1975, pp. 49-52. 

[50) Dijkstra, E. W., "The Humble Programmer," Communications of the ACM, 

vol. 15, pp. 859-866, October 1972. ACM Turing Award. 

301 



[51] Dijkstra, E.W., "Notes on Structured Programming," in Structured Program

ming, London: Academic Press Inc., 197?.. 

[5?.) Dijkstra, E.W., "Guarded Commands, Nondeterminancy and Formal Deriva

tion of Programs," Communications of the ACJ11, vol. 18, pp. 453-457, August 

1975. 

[53] Dijkstra, E.W., A Discipline of Programming. Englewood Cliffs, NJ.: 

Prentice-Hall, 1976. 

(54] Embley, D.W. and Woodfield, S.N., "Cohesion and Coupling for Abstract 

Data Types," in Sixth Annual International Phoenix Conference on Computer 

Communications, ("Washington, D.C.), pp. 229-234, IEEE Computer Society 

Press, February 1987. 

(55] Embley, D.W. and Woodfield, S.N., "Assessing the Quality of Abstract Data 

Types Written in Ada," in Proceedings: 1 01h International Conference on 

Software Engineering, (vVashington, D.C.), pp. 144-153, IEEE Computer 

Society Press, March 1988. 

(56] Fairfield, P. and Hennell, M.A., "Data Flow Analysis of Recursive Proce

dures," SIGPLAN Notices, vol. 23, pp. 48-57, January 1988. 

(57] Fosdick, L.D. and Osterweil, L.J., "The Detection of Anomalous Interpro

cedural Data Flow," in Proceedings - Second International Conference on 

Software Engineering, (Washington, D.C.), pp. 624-628, IEEE Computer So

ciety Press, October 1976. 

(58] Fosdick, L.D. and Osterweil, L.J ., "Data Flow Analysis in Software Reliabil

ity," Computing Surveys, vol. 8, pp. 305-330, September 1976. 

302 



[59] Gardner, M.R., "Successes and Limitations of Object-Oriented Design," 

Journal of Pascal} Ada 8 Modu.la-2, vol. 7, pp. 30-41, November-December 

1988. 

[60] Gehani, N., Ada An Advanced Intmduction Including Reference Manual for 

the Ada Programming Language. New Jersey: Prentice-Hall Inc., 1984. 

[61] Glagowski, T.G., "Using a Relational Query Language as a Software Main

tenance Tool," in Confer'ence on Software Jl;faintenance-1985, (Washington, 

D.C.), pp. 211-220, IEEE Computer Society Press, November 1985. 

[62] Goldberg, A. and Robson, D., Smalltalk-80: The Language and its Imple

mentation. Reading, Massachusetts: Addison- Wesley Publishing Company, 

1983. 

[63] Green, T.R.G., "Conditional Program Statements and their Comprehensi

bility to Professional Programmers," Journal of Occupational Psychology, 

vol. 50, pp. 93-109, June 1977. 

[64] Gries, D., "An Illustration of Current Ideas on the Derivation of Correctness 

Proofs and Correct Programs," IEEE Tmnsactions on Software Engineering, 

vol. SE-2, pp. 238-244, December 1976. 

[65] Gries, D., The Science of Progmmming. New York: Springer-Verlag, 1981. 

[66] Hartmann, .J. and Robson, D.J., "Approaches to Regression Testing," in Pro

ceedings Conference on Softwm'e Maintenance - 1988, (Washington, D.C.), 

pp. 368-372, IEEE Computer Society Press, 1988. 

[67] Hartmann, J. and Robson, D.J., "Revalidation During the Software Mainte

nance Phase," Tech. Rep., School of Engineering and Applied Science, Uni

versity of Durham, 1989. Computer Science Technical Report TR 1/89. 

303 



[68] Heninger, K.L., "Specifying Software Requirements for Complex Systems: 

New Techniques and their Application," IEEE Transaction on Software En

gineering, vol. SB-6, pp. 2-13, January 1980. 

(69] Heninger, K.L., Kallander, J.W., Shore, J.E., and Parnas, D.L., "Software 

Requirements for the A-7E Aircraft," Tech. Rep., Naval Research Laboratory, 

Washington, D.C., November 1978. NRL Memorandum Report 3876. 

[70] Hennell, M.A., Woodward, M.R., and Hedley, J?., "On Program Analysis," 

Information Pmcessing Letters, vol. 5, pp. 136-140, November 1976. 

[71] Hoare, C.A.R., "An Axiomatic Basis for Computer Programming," Commu

nications of the ACM, vol. 12, pp. 576-583, October 1969. 

[72] Hoare, C.A.R., "Notes on Data Structuring," in Structured Progmmming, 

London: Academic Press Inc., 1972. 

[73] Hoare, C.A.R., "The Emperor's Old Clothes," Communications of the ACM, 

vol. 24, pp. 75-83, February 1981. The 1980 Turing Award Lecture. 

[74] Hoffman, D., "Practical Interface Specification," Software - Pmctice and 

Experience, vol. 19, pp. 127-148, February 1989. 

[75] Howden, W. E., "A Functional Approach to Program Testing and Analy

sis," IEEE Transactions on Software Engineering, vol. SE-12, pp. 997-1005, 

October 1986. 

[76] Huang, J.C., "Detection of Data Flow Anomaly Through Program Instru

mentation," IEEE Transactions on Software Engineering, vol. SE-5, pp. 226-

236, May 1979. 

[77] Ince, D.C., "A Program Design Language Based Software Maintenance Tool," 

Software - Pmctice and Expe1·ience, val. 15, pp. 583-594, June 1985. 

304 



[78] Ince, D.C. and \Noodman, M., "The Rapid Generation of a Class of Software 

Tools," The Comp·uter Journal, vol. 29, pp. 151-160, April 1986. 

[79] Jachner, J. and Agarwal, V.K., "Data Flow Anomaly Detection," IEEE 

Transactions on Software Engineering, vol. SE-10, pp. 432-437, July 1984. 

[80] Jensen, K. and Wirth, N., PASCAL: User Manual and Report. New York: 

Springer-Verlag, third ed., 1985. Revised by Mickel, A.B. and Miner, J.F. 

[81] Johnson, W.L. and Soloway, E., "PROUST," Byte, vol. 10, pp. 179-190, April 

1985. 

[82] Johnson, W.L. and Soloway, E., "PROUST: Knowledge-Based Program Un

derstanding," in Conference on Software Maintenance-1985, (Washington, 

D.C.); pp. 369-380, IEEE Computer Society Press, November 1985. Also in 

'Readings in Artificial Intelligence and Software Engineering', eels. Rich, C. 

and Waters, R.C. 

[83] Jones, C.B., Systematic Software Development Using VDi\1!. Englewoods 

Cliffs, New Jersey: Prentice-Hall International, 1986. 

[84] Karp, C.R., Languages with Expressions of Infinite Length. North-Holland, 

1964. 

[85] Kent, W., "A Simple Guide to Five Normal Forms in Relational Database 

Theory," Communications of the ACM, val. 26, pp. 120-125, February 1983. 

[86] Kernighan, B.vV. and Ritchie, D.M., The C Programming Language. New 

Jersey: Prentice Hall, 1978. 

[87] Knuth, D.E., The A1'l of CO'Inputer Pmgramming - Fundamental Algo

rithrns. Addison- vVesley, seconded., 1973. 

305 



[88] Korson, T.D. and Vaishnavi, V.K., "An Empirical Study of the Effects of 

Modularity on Program Modifiability," in Empirical Study of Programmers, 

(Soloway, E. and Iyengar, S., cds.), pp. 168-186, Norwood, N.J.: Ablex, 1986. 

[89] Kuhn, D.R. and Hollis, C.G., "Simple Tools to Automate Documentation," 

in Conference on Software Maintenance-1985, (Washington, D.C.), pp. 203-

210, IEEE Computer Society Press, November 1985. 

[90] Leintz, B.P. and Swanson, E.B., "Software Maintenance: A User/Man

agement Tug-of-War," Data Management, pp. 26-30, April 1979. 

[91] Letovsky, S., "Cognitive Processes in Program Comprehension," in Proceed

ings of the Conference on Empirical Studies of Progmmmers, 1986. 

[92] Letovsky, S., "The Lambda. Calculus a.s a. Representation La,nguage for Pro

gram Plans," in Pmceedings of the IJCAI-87, 1987. 

[93) Letovsky, S. and Soloway, E., "Strategies for Documenting Delocalized 

Plans," in Pmceedings of the Conference on Software !Vfahdenance - 1985, 

(Washington, D.C.), pp. 144-151, IEEE Computer Society Press, November 

1985. 

[94] Letovsky, S. and Soloway, E., "Delocalized Plans and Program Comprehen

sion," IEEE Software, vol. 3, pp. 41-49, May 1986. 

[95] Leung, H.K.N. and Reghbati, H.K., "Comments on Program Slicing," IEEE 

Transactions on Software Engineering, vol. SE-13, pp. 1370-1371, December 

1987. 

[96) Linden, T.A., "The Use of Abstract Data Types to Simplify Program Modi

fications," SIGPLAN Notices, vol. 11, pp. 12-23, 1976. 

306 



[97] Linton, lVl.A., "Implementing Relational Views of Programs," m Proceed

ings of the ACJII SIGSOFT/SIGPLAN Softwm·e Engineering Symposium 

on Practical Software Development Environments, pp. 1:32-140, ACIVI SIC

SOFT /SIGPLAN, May 1984. Appears as Software Enginee1·ing Notes, vol. 9, 

SIGPLAN Notices vol. 19, no .. 5. 

[98] Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J.C., Scheifier, R., 

and Snyder, A., CLU Reference ]Y[anual. New York: Springer-Verlag, 1980. 

[99] Liskov, B. and Guttag, .J., Abstraction and Specification in Program Devel

opment. The lVIIT Press, 1986. 

[100] Lyle, .J.R. and Gallagher, K.B., "Using Program Decomposition to Guide 

Modifications," in Proceedings Conference on Software lvf aintenance - 1988, 

(Washington, D.C.), pp. 26.5-269, IEEE Computer Society Press, October 

1988. 

[101] Manna, Z. and Waldinger, R., "Synthesis: Dreams =? Programs," IEEE 

Transactions on Software Engineering, vol. SE-5, no. 4, pp. 294-328, 1979. 

[102] Metcalf, M., "FORTRAN 8X - The Emerging Standard," ACM~ Fortran 

Fo7"Um, vol. 6, pp. 28-47, April 1987. 

[103] Metcalf, M. and Reid, J., FORTRAN 8X Explained. Oxford University Press, 

1987. 

[104] Meyer, B., "Eiffel: A Language and Environment for Software Engineering," 

The Journal of Systems and Software, vol. 8, pp. 199-246, June 1988. 

[105] Meyer, B., Object-Oriented Software Constr·uction. Prentice Hall Interna

tional, 1988. 

307 



[106] Middelburg, C.A .. "VVSL: A Language for Structured YOM Specifications," 

Formal Aspects of Computing - The International .lorna! of Formal Mdh

ods, vol. 1, pp. 1_15--135, Jam::uy-T\'Ia;:-ch l!J~D. 

[10'7] Moon, D., "Object-Oriented Programming with Flavours," in OOPSLA '86 

Conference Proceedings, ACM, 1986. Appeared as Sigplan Notices, vol. ?.1, 

no.1l. 

[108] Morissey, .J.H. and vVu, L.S.Y., "Software Engineering: An Economic Per

spective," in Proceedings of the 4th Inte-rnational Conference on Software 

Engineering, pp. 17-19, September 1979. 

[109] Munro, M. and Ward, i'd., "Intelligent Program Analysis Tools for Maintain

ing Software," in UJ{ IT 88 Conference Publication, pp. 7-10, 1988. 

[110] Naphtali, E. and Rich, M., "Some Practical Considerations Regarding an 

ADT-Obsessed Design," Software Engineering Journal, vol. 3, pp. 57-63, 

March 1988. 

[111] Osterbye, K., "Abstract Data Types with Shared Operations," SIGPLAN 

Notices, vol. 23, pp. 91-96, June 1988. 

[112] Osterweil, L.J. and Fosdick, L.D., "DAVE- A Validation Error Detection 

and Documentation System for FORTRAN Programs," Software - Practice 

and Experience, vol. 6, pp. 4 73-486, October-December 1976. Also in Tuto

rial: Software Testing and Validation Techniques (2nd edition) eels. lVIiller, 

E. and Howden, W.E. 

[113] Osterweil, L.J., Fosdick, L.D., and Taylor, R.N., "Error and Anomaly Diag

nosis Through Data Flow Analysis," in Cmnputer PTogram Testing - Pro

ceedings of the Summer School on Computer Program Testing held at SO-

308 



GESTA, Urbina, Italy, ( Chandrasekaran, B. and Radicchi, S., eds. ), pp. 35-

63, June 29- July 3 1981. 

[114] Ottenstein, K.J. and Ottenstein, L.M., "The Program Dependence Graph 

in a Software Development Environment," in Pmceedings of the ACM SIG

SOFT/SIOPLAN Software Enginee1-ing Symposium on Practical Software 

Development Environments, pp. 193-196, ACM SIGSOFT/SIGPLAN, 1984. 

ACM SIGSOFT Software Engineering Notes vol. 9 ACM SIGPLAN Notices 

vol. 19, no .. 5. 

[115] Oulsnam, G., "Unravelling Unstructured Programs," The Computer Jou-rnal, 

vol. 25, pp. 379-387, August 1982. 

[116] Page-Jones, M., The ?metical Ouide to Structured Systems Design. New 

York: Yourdon Press, 1980. 

[117] Parker, R.A., Heninger, K.L., Parnas, D.L., and Shore, J.E., "Abstract Inter

face Specifications for the A-7E Device Interface IVIodule," Tech. Rep., Naval 

Research Laboratory, vVashington, D.C., November 1980. NRL Memoran

dum Report 4385 (Revised). 

[118] Parnas, D.L., "Information Distribution Aspects of Design Methodology," in 

Pmceedings of the IFIP Congress- 1971, pp. 339-344, North-Holland, 1972. 

[119] Parnas, D.L., "On the Criteria to be used in Decomposing Systems into 

Modules," Communications of the AC1If, vol. 15, pp. 1053-1058, December 

1972. 

[120] Parnas, D.L., "A Technique for Software Module Specification with Exam

ples," Comnmnications of the AC'ivl, vol. 15, pp. 330-336, lviay 1972. 

[121] Parnas, D.L., "On a "Buzzword": Hierarchical Structure," in Proceedings 

IFIP Congress, (Amsterdam, The Netherlands), North-Holland, 1974. Also 

309 



in 'Programming lVIethodology: A Collection of Articles by Members of the 

IFIP WG2.3', Gries, D., editor. 

[122) Parnas, D.L., "On the Design and Development of Program Families," IEEE 

Transactions on Software Engineering, vol. SE-2, pp. 1-9, March 1976. 

[123] Parnas, D.L., "Use of Abstract Interfaces in the Development of Software 

for Embedded Computer Systems," Tech. Rep., Naval Research Laboratory, 

Washington, D.C., June 1977. NRL Report 8047. 

[124] Parnas, D.L., "Designing Software for Ease of Extension and Contraction," 

IEEE Transactions on Software Engineering, vol. SE-5, pp. 128-137, March 

1979. 

[125] Parnas, D.L. and Clements, P.C., "A Rationa.l Design Process: How and 

Why to Fake It," IEEE Transactions on Software Engineering, vol. SE-12, 

pp. 251-257, February 1986. 

[126] Parnas, D.L., Clements, P.C., and Weiss, D.M., "Enhancing Reusability with 

Information Hiding," in Proceedings Workshop on Reusability in Program

ming, pp. 240-247, 1983. 

[127) Parnas, D.L., Clements, P.C., and Weiss, D.M., "The Modular Structure of 

Complex Systems," IEEE Transactions on Software Engineering, val. SE-11, 

pp. 259-266, March 1985. 

[128) Parnas, D.L. and Siewiorek, D.P., "Use of the Concept of Transparency in the 

Design of Hierarchically Structured Systems," Communications of the ACM, 

vol. 18, pp. 401-L!08, July 1975. 

[129] Parnas, D.L., Weiss, D.M., Clements, P.C., and Britton, K.H., "Interface 

Specifications for the SCR (A-7E) Extended Computer Module," Tech. Rep., 

310 



Naval Research Laboratory, Washington, D.C., December 1984. NRL Report 

5502. 

[130] Prather, R.E. and Guilieri, S.G., "Decomposition of Flowchart Schemata," 

The Computer Journal, vol. ?,4, pp. 2.58-262, August 1981. 

[131] Raither, B. and Osterweil, 1., "TRICS: A Testing tool for C," in Proceedings 

of the Eumpean Conference on Software EngineeTing - 1987, 1987. 

[132] Reddy, U.S., "Transformational Derivation of Programs Using the Focus Sys

tem," in Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering 

Symposium on ?metical SoftwaTe Development Environments, (Baltimore, 

Maryland), pp. 163-172, ACM Press, November 1988. Appeared as Software 

Engineering Notes, vol. 13, no. 5, November 1988 a.nd a.s Sigplan Notices, 

vol. 24, no. 2, February 1989. 

[133] Ross, D.L., "Classifying Ada. Packages," ACM SIGAda Ada LetteTs, vol. VI, 

no. 4, pp. 53-65, 1986. 

[134] Ryder, B.G., "Constructing the Call Graph of a Program," IEEE Transac

tions on Software Engineering, vol. SE-5, pp. 216-226, May 1979. 

[135] Ryder, B.G., "An Application of Static Program Analysis to Software Main

tenance," in Proceedings of the Twentieth Hawaii International Conference 

on System Sciences 1987, (Shriver, B.D., eel.), (California.), pp. 82-91, West

ern Periodicals Company, January 1987. 

[136] Ryder, B.G. and Carroll, M.D., "An Incremental Algorithm for Software 

Analysis," SIGPLAN Notices, vol. 22, pp. 171-179, January 1987. Pro

ceedings of ACM SIGSOFT /SIGPLAN Software Engineering Symposium on 

Practical Software Development Environments, December 1986. 

311 



[137] Sarraga, R.F., "Static Data Flow Analysis of PL/1 Programs with the 

PROBE System," IEEE Transactions on Software Engineering, vol. SE-10, 

pp. 451-L159, July 1984. 

[138] Scherlis, W.L., "Program Improvement by Internal Specialization," in ACM 

Symposium on Principles of Programming Languages, pp. 41-49, 1981. 

[139] Sengler, H.E., "A lVIodel of the Understanding of a Program and its Impact 

on the Design of the Program Language GRADE," in The Psychology of 

Computer Use, (Green, T.R.G., Payne, S.J., and van der Veer, G., eds.), 

pp. 91-106, London: Academic Press, 1983. 

[140] Shneiderman, B., Software Psychology: Human Factors in Computer and 

Information Systems. Cambridge, Massachusetts: Winthrop Publishers Inc., 

1980. 

[141] Shneiderman, B., "Control Flow and Data Structure Documentation: Two 

Experiments," Communications of the ACM, vol. 25, pp. 55-63, January 

1982. 

[142] Shneiderman, B., Shafer, P., Simon, R., and vVeldon, L., "Display Strategies 

for Program Browsing," in Proceedings of the Confe·rence on Software Main

tenance - 1985, (Washington, D.C.), pp. 136-143, IEEE Computer Society 

Press, November 1985. 

[143] Shneiderman, B., Shafer, P., Simon, R., and Weldon, L., "Display Strategies 

for Program Browsing: Concepts and Experment," IEEE Software, vol. 3, 

pp. 7-15, May 1986. 

[144] Sneed, I-I.M. and Jandrasics, G., "Inverse Transformation of Software from 

Code to Specification," in Proceedings of the Conference on Software Main-

312 



tenance - 1988, (Washine;ton, D.C.), pp. 10?:-109, IEEE Computer Society 

Press, 1988. 

[iL!,~j Gdoway, K and 3hrlid:, K., '~Ernpi;_·icd S~edics of Programming Knowl

edge," IEEE Transactions on Software Engineering, vol. SE-10; pp. t)95-5Cg, 

September 1984. Also in ~Readings i::J. Artificial Intelligence and Software 

Engineering', eds. Rich, C. and Waters, R.C. 

[146] Stroustrup, B., The C-t---1- Programming Language. Reading, Massachusetts: 

Addison-Wesley, 1986. 

[14 7] Sunclblacl, Y., "The Ackermann Function. A Theoretical, Computational, 

and Formula Manipulative Study," Bit, vol. 11, pp. 107-119, 1971. 

[1_48] Taylor, R.N. and Osterweil, L.J., "A Facility for Verification, Testing, and 

Documentation of Concurrent Process Software," in Proceedings COI\IIPSAC, 

pp. 36-41, November 1978. 

[149] Taylor, R.N. and Osterweil, L.J., "Anomaly Detection in Concurrent Software 

by Static Data Flow Analysis," IEEE Transactions on Software Engineering, 

vol. SE-6, pp. 265-278, May 1980. Also in 'Tutorial: Software Testing and 

Validation Techniques' (2nd edition) eels. Miller, E. and Howden, W.E. 

[150] Thomas, J.\N., Module Interconnection in Programming Systems Supporting 

Abstraction. PhD thesis, Brown University, 1976. 

[151] van Delft, A.J.E., "Comments on Oberon," Sigplan Notices, vol. 24, pp. 23-

30, March 1989. 

[152] van Kiet, 1., The Module: A Tool for Structured Pmgramming. PhD thesis, 

Swiss Federal Institute of Technology, Zurich, 1978. ETH Diss. Nr. 6153. 

31:3 



[153] Ward, M., "Transforming a Program into a Specification," Tech. Rep., Uni

versity of Durham, Durham, England, 1988. Computer Science Technical 

Report 88/ 1. 

[154] Ward, M., Proving Program Refinements and Transformations. PhD thesis, 

Oxford University, Computer Science, 1989. 

[155] Ward, M., Calliss, F.W., and Munro, M., "The Use of Transformation in 

The Maintainer's Assistant," Tech. Rep., University of Durham, Durham, 

England, 1988. Computer Science Technical Report 88/9. 

[156] Ward, M., Calliss, F.vV., and Munro, M., "The Maintainer's Assistant," m 

Proceedings of the Conference on Software Maintenance - 1989, (Washing

ton, D.C.), pp. 307-315, IEEE Computer Society Press, 1989. 

[157] Wegner, P., "Dimensions of Object-Based Language Design," in OOPSLA '87 

Conference Proceedings, pp. 168-182, ACM, 1987. Appeared as Sigplan No

tices, vol. 22, no.11. 

[158] Weiser, M., "Programmers use Slices when Debugging," Communications of 

the ACM, vol. 25, pp. 446-452, July 1982. 

[159] Weiser, M., "Program Slicing," IEEE Transactions on Software Engineering, 

vol. SE-10, no. 4, pp. 352-357, 1984. 

[160] Weiser, M.D., Program Slices: Formal, Psychological, and Practical Investi

gation of an Automatic Program Abstraction Method. PhD thesis, University 

of Michigan, 1979. 

[161] Williams, M.H., "Generating Structured Flow Diagrams: the Nature of Un

structuredness," The Computer Journal, vol. 20, pp. 45-50, February 1977. 

314 



[162] Williams, M.H., ''A Comment on the Decomposition of Flowchart Schemata," 

The Comp1der Journal, vol. 2.5, pp. 39:3--396, August 1982. 

[16J] Vllilliams, l'v1.il. and Ossher, 1-:I.L., "Conversion of Unstructured Flow Dia

grams to Structured Form," The Computer Journal, vol. 21, pp. 161-16'1, 

May 1978. 

[16L1) Wilson, C. and Osterweil, L.J., "OMEGA-A Data Flow Analysis Tool for the 

C Programming Language," IEEE Transact-ions on Software Engineering, 

vol. SE-11, pp. 832-838, September 198.5. 

[165] "Wirth, N., "Program Development by Stepwise Refinement," Communica

tions of the ACM, vol. 14, pp. 221-227, April 1971. Also in 'PROGRAM

MING METHODOLOGY A Collection of articles by members of the IFIP 

G2.3,' (eel. Gries, D.). 

[166] "Wirth, N., Systematic Programming: An Introduction. Englewood Cliffs, 

New Jebsey: Prentice-Hall Inc., 1973. 

[167] Wirth, N., "On the Composition of Well-Structured Programs," Computing 

Surveys, vol. 6, pp. 247-259, December 1974. 

[168] Wirth, N., "Modula: A Language for Modular Multiprogramming," Software 

- Practice and Experience, vol. 7, pp. 3-35, January-February 1977. 

[169] Wirth, N., Programmi·ng in Modula-2. New York: Springer-Verlag, third 

corrected eel., 1985. 

[170] vVirth, N., "Type Extensions," ACAf Transactions on Programming Lan

guages and Systems, vol. 10, pp. 204-215, April 1988. 

315 



[171] Wirth, N., "From Modula to Oberon," Software -Practice and Expe1·ience, 

vol. 18, pp. 661-670, July 1988. Also appears as a technical report from ETH 

in September 198'/. 

[172] Wirth, N., "The Programming Language Oberon," Software- Practice and 

Experience, vol. 18, pp. 671-690, July 1988. Also appears as a technical 

report from ETH in September 1987. 

[173] Yau, S.S. and Grabow, P.C., "A Model for Representing Programs usmg 

Hierarchical Graphs," IEEE Transactions on Software Engineering, vol. SE-

7, pp. 556-574, November 1981. 

[174] Yourdon, E., Techniques of Program Structure and Design. New Jersey: 

Prentice- Hall Inc., 1975. 

[175] Yourdon, E. and Constantine, L.L., Structured Design Fundamentals of a 

Discipline of Computer Program and Systems Design (2nd Edition). New 

York: Yom·don Press, 1978. 

316 



abstract data type, 6, 29, 31, 36-39, 
136, 165, 170 

abstract data types, 153 
in a graph, 99 

abstract-state machine, 6, 38, 170 

call graph, 21-22,26 
client 

module, 31, 39, 40, 42, 137, 138, 
150, 151 

view, 30, 31, 33, 34, 39, 40, 42, 
44-46, 150-152, 165 

entities 
logically related, 5 

entity 
dependencies, 7 
global, 154, 155, 160, 163 
group, 164, 165, 170 
local, 161 
public, 137, 140, 141, 144, 151 
redundant, 165, 170 
routine, 160 

global entity, see entity, global 
graph 

exported, 144 
imported, 141-144 
inherited, 146-147 
injected, 139-140 
dependency 

delimited-by, 156-157 
inherits-from, 116-118 
instantiates-to, 113-116 
invokes, 161 
local-to, 106-109 
of-type, 157-159 
parameter-of-type, 159-160, 166 
uses-constant, 161 
uses-type, 161 

317 

uses-variable, 161 
uses, 109-112 

directed, 56 
disjoint, 98 
edge, 54-57, 59, 63, 66 

start-node, 155-157, 159-161 
stop-node, 155-157, 159, 161 

full intersection 
distributed, 79-80 
simple, 78 

isolated, .55 
labelled, 57, 63 
node, 54-58, 63, 66 

adjacent, 55, 56 
neighbours, 55 

path, 55 
simple, 55 

strict intersection 
distributed, 79 
simple, 77-78 

subgraph, 54, 56, 70 
proper, 55, 99 
strict, 54, 72 

undirected, 55-56 
UniOll 

distributed, 76 
simple, 73-75 

graph slicing 
a,B-slicing, 155 

graph 

argument, 257 
constraints, 259 
implementation, 256-261 

a,B-slicing, see graph slicing, a,B
slicing 

graph slicing 
a,B-slicing, 86-97 

graph 
<5-slicing, see graph slicing, <5-slicing 



graph slicing 
8-slicing, 80-85 

information hiding, 44-4 7 
interconnection graph, 7, 51:, 57~-67 

entity-to-entity, 67,154-170 
call-graph, 177-178 
reference graph, 178-179 
type-connection, 17 4-176 
variable usage, 181 
variable/type association, 179-

181 
entity-to-module, 67, 135-154, 164 

analysis, 148-153 
characteristics, 137-147 

general, 155 
module-to-module, 67, 101-134, 154 

analysis, 120-134 
characteristics, 103-118 

VDM description, 64 

local entity, see entity, local 

module, 1 
abstract data type, 38 
abstract-state machine, 38 
abstraction mechanism, 29-33, 51 
client, see client, module 
client view, see client, view 
client/supplier relationship, 164 
closed, 40 
clustering facilities, 5 
Col. of Decs., 38 
concrete, 113 
construct, 6 
definition, 29 
entity 

bequeathing, 33 
importing, 33 
inheriting, 33 
injecting, 33 

fundamental, 123, 124 
generic, 113 
global, 29 
hierarchies, 4 
interconnections, 6 
limited, 40 

318 

local, 29, 3:3 
opaque, 40 
open, 39 
potpourri, 172 
private, 39 
private entity, see private entity 
program units, 38 
protection mechanism, 34-35 
public entity, see public entity, 164 
ringent, 42 
root, 123, 124 
solitary, 123, 125 
specialised, 123 
supplier, 164 

module, see supplier, module 
supplier view, see supplier, view 
taxonomy 

Booch's, 38-39, 171 
Ross', 39-42 

terminal, 123, 124 
module factoring, 171 ~202 

grouping by imports, 189-195 
grouping by state variables, 195-

200 
grouping by type-families, 182-189 

module interconnection languages, 49-
51 

module languages, 3, 4, 63 
Ada, 4, 29, 31, 38 
C++, 37 
Clu, 37 
Common Lisp, 3 
Eiffel, 4, 31, 33, 37 
Flavours, 3 
Fortran 8X, 38 
Modula-2, 4, 29, 31, 38, 40, 157, 

160, 161 
Modula-3, 38 
Oberon, 38, 40-42, 160 
Simula, 4, 33, 37 
Smalltalk-80, 37, 47 

object-oriented design, 4 7-49 

private 
entity, 165 

program slicing, 16-20, 26 



program transformations, 22-2.5 

relational database, 5, 7 

:;tart· iJ.cde, sec grapl1, 2dge, :;tart ·~.ode 

state variable, 38, 39 
stop-node, see graph, edge, stop-node 
supplier 

module, 31, 136, 137, 150, l.Sl 
view, 30, 33, 38, 39 


