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A B S T R A C T 

"Unitary Models in Two Dimensions" 

Reda A. Zait 

Unitary models in two dimensions are classes of low dimensional theories which 

provide us with a convenient theoretical laboratory for studying various aspects 

of the theory of elementary particles. In this thesis, purely bosonic U{N) sigma 

models with the Wess-Zumino-Witten (WZW) term in two-dimensional Euclidean 

space and the supersymmetric (Susy) U(N) a models with and without this term 

are discussed. Particular attention is paid to the classical solutions of the equa­

tions of motion of these models. Due to the integrability of these models, we 

can associate with them a Lax-pair formahsm. We observe that solutions of the 

Lax-pair equations of the f/(iV) a model provide us with solutions of the U{N) 

a model with the WZW-term. This is also the case for solutions of the Susy 

U{N) a model with the WZW-term which can be constructed from solutions of 

the Lax-pair equations of the Susy U(N) a model. We present also some explicit 

solutions of the Susy U[N) a model without the WZW-term. 

Many properties of the constructed solutions for both the purely bosonic and 

Susy models are explored. In particular, we calculate the values of the action 

for some solutions and study the stability properties of these solutions and find 

that all the constructed solutions of these models correspond to the saddle points 

of the action. Finally we consider the hnearized fermion equations in the fixed 

background of a bosonic field. Special attention is paid to the case when the 

background field is given by a solution of the U{N) a model with and/or without 

the WZW-term. Some classes of solutions of this problem are presented and their 

properties are discussed. We observe that a class of these solutions is related to 

the components of the energy-momentum tensor of the purely bosonic a model 

and prove that some of these solutions are traceless. 
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1. INTRODUCTION. 

It is generally believed that non-abelian gauge theories are hkely to play an 

important role in any field theoretical description of the theory of elementary par­

ticles. For example, weak and electromagnetic interactions are described by such 

a theory, and it is generally felt that this is also the case for strong interactions. 

These theories, in the case of an SU(2) symmetry group, are defined in terms of 

a Lagrangian density L given by 

L = TvF^^F^^, (1.1) 

with V = (1, 2, 3, 4), where 

F^^ = d^,A, - d,A^ + [A^,A^], (1.2) 

and where A^i is a vector function of Euclidean four-dimensional space-time with 

values in SU{2). 

Most quantities in non-abelian gauge theories are given in terms of functional 

iiitegrations 

J D[A^] e-/'^'"^*^"'0(^,0. (1.3) 

Hence one of the major difficulties in making progress with these theories is the 

lack of understanding of how to perform many of these integrations. One ap­

proach is to attempt to calculate these integrals numerically. However, the results 

of such numerical attempts are encouraging, but unavoidably involve various ap­

proximations, making the results inconclusive. The expression in equation (1.3) 

involves the fields defined in Euclidean space. In fact the original theory is de­

fined in Minkowski space, but then the expressions hke (1.3) involve terms which 

oscillate very wildly. Thus to improve the calculability of the expressions like 



(1.3) we continue the original theory to EucUdean space and so consider (1.3) in 

Euclidean space where the contribution of large fields Afj, is exponentially sup­

pressed. Hence all discussion in this thesis will be of the fields, their equations of 

motion etc. all in Euchdean space. 

When one tries to calculate functional integrations like (1.3) analytically, one 

finds that the only viable approach available in many cases is based on an ex­

pansion around the stationary points of the action of the theory and then pertur­

bation theory of the resultant effective theory. Thus one has to determine first 

the stationary points of the action. They are provided by seeking solutions of the 

Euclidean equations of motion (the Euler-Lagrange equations) of the theory. For 

this reason we shall perform all our studies in this thesis in Euclidean space. The 

Euler-Lagrange equations corresponding to (1.1) are given by 

D^F^^ = + K'^/*^] = 0- (1-4) 

These equations, when written in terms of the gauge potential A^, are second 

order highly nonhnear partial differential equations. However, due to the Bianchi 

identity 

Df, *F^, = 0, (1.5) 

where 

*F^u = -j^^iiuap Fap, (1-6) 

and e^^^yctp is the totally anti-symmetric 4-tensor (with £1234 = +!)• I t is well 

known that a subclass of solutions of the Euler-Lagrange equations (1.4) is pro­

vided by the solutions of the first order equations 

F^, = ±*F^,, (1.7) 

known as the "self-duality" equations. These equations can be thought of as 

resulting from requiring the Lagrangian density to be equal to the modulus of the 



topological charge density of the theory, that is, imposing the additional constraint 

L = ±Q, (1.8) 

where 

Q = T r F ^ , * i ^ ^ , (1.9) 

is the topological charge density. 

The most interesting solutions of these equations are those for which the 

action is finite, as i t is only for them that the perturbation theory of fluctuations 

around them can be set up. Al l finite action solutions of equations (1.7) have 

been implicitly determined by Atiyah et al. [4]. In the case of the plus (minus) 

sign in (1.7), the corresponding finite action solutions are called instantons (anti-

instantons). They correspond to local minima of the action. Hence, these solutions 

are stable under small fluctuations. 

The question which arises now is whether there are any further solutions of 

(1.4) which are of finite action and which are not solutions of (1.7)? This is 

a difficult problem and so far nobody has found such non-instanton solutions. 

Nevertheless i f they exist they presumably would also have to be included in any 

stationary point calculation of (1.3). Moreover, also the task of calculating the 

fluctuations about the instanton solutions of the equations of motion has turned 

out to be a hard mathematical problem. 

Due to this complexity of non-abelian gauge theories in four dimensions, some 

people have turned their attention to models in lower dimensions which exhibit 

some features of the four-dimensional theory, but where the relevant calculations 

are simpler to perform. In two (Euclidean) dimensions, several classes of such 

models have been proposed, namely the 0{N) nonlinear sigma models [5], the 

principal chiral models [6], the (CP^~^ nonhnear a models [7-10] and its non-

abelian generaUzations — the complex Grassmannian models [11]. All of these 



models are good examples of field theories with a non-trivial dynamical content 

which has a geometric origin and, as is well known, they are in many aspects 

closely related to non-abelian gauge theories. Some of the properties of these 

models which they share with non-abelian gauge theories are: at the classical 

level, their geometrical nature, the non-trivial topological structure of the space 

of field configurations and their conformal invariance, and at the quantum level, 

the phenomena of dynamical mass generation and of asymptotic freedom. 

The interest in two-dimensional sigma models has considerably increased over 

the last few years as the models have become a laboratory for testing many ideas 

in particle physics. (For more details on this we refer the reader to the recent book 

by Zakrzewski [12]). Also it has been realised that the origin of many properties 

of the strings and superstrings is intrinsingly tied to the two-dimensional nature 

of their manifold and that in the low energy limit the physics of the strings can be 

described by an effective sigma model. In addition, being governed by a nonlinear 

Lagrangian, the fields of a models are being used to test many ideas associated 

with monopole or skyrmion scattering. On the other hand, from the purely math­

ematical point of view a models provide interesting examples of harmonic maps, 

and as such are clearly interesting in themselves. For such low dimensional the­

ories, it is important to understand their classical properties as completely as 

possible and in particular to find all possible stationary points of the action, i.e. 

the classical solutions of the equations of motion. 

One of the most attractive features of these models is that classically they pro­

vide examples of integrable systems in two dimensions. Namely, it is known that 

the nonlinear equations of motion are precisely the compatibihty conditions for 

a certain linear system of first-order partial differential equations (Lax-pair) con­

taining one free parameter. Thus they possess an infinite number of local [5,11,13 

and/or nonlocal [14] conservation laws. These conserved quantities generate an 

infinite dimensional algebra of dynamical symmetries (the Kac-Moody algebra) 



15]. Among the models which possess such properties are the principal chiral 

models [6] taking their values in Lie groups and the symmetric space cr models 

defined on the Riemannian symmetric space [11,13] GjH, where G is a Lie group 

and H a certain subgroup. The latter includes the 0{N) a model [5], the €P^~^ 

model [7], and the complex Grassmannian models [11 . 

The analogies between nonlinear sigma models and non-abelian gauge theo­

ries suggest that they can and should be extended to incorporate fermionic matter 

fields. One natural way of doing this is by coupling the bosons and the fermions 

supersymmetrically [16,17]. It has been proved that the above mentioned clas­

sical integrabihty of the model continues to hold in that case too [18]. On the 

other hand, for the €P^~^ model [19], and the Grassmannian model [20], the 

integrability is preserved when bosons and fermions are coupled minimally rather 

than supersymmetrically. Moreover, the general criteria for classical integrability 

of the principal chiral models with fermions was given by Abdalla and Forger [21]. 

Most of the studies of various sigma models have been concerned with the 

cases when the target manifolds were either group spaces or some coset spaces. 

Various properties of such models have been studied and many finite action clas­

sical solutions derived and their properties examined in detail. In chapter 2 we 

present a detailed formulation of various types of purely bosonic a models in two 

Euclidean dimensions and also of their Susy extensions. The defining equations 

and the general instanton and non-instanton solutions are presented for each type 

of both purely bosonic and Susy models. Many properties of these solutions are 

discussed and it is shown that any solution of the purely bosonic €P^~^ model, 

and Grassmannian model which is neither instanton nor anti-instanton in nature 

is necessarily unstable under small perturbations. However, all non-trivial so­

lutions of the principal chiral model are shown to be unstable. Also, a useful 

reformulation of these models using projectors is presented. Moreover, in this 

chapter we discuss also the equations of a fermion in the fixed background of a 



bosonic (DP^ ^ and Grassmannian solution. 

Recently, motivated by some observations from the geometric properties of the 

strings, the interest has shifted towards sigma models with the so-called WZW-

term [22]. This term was first introduced by Wess and Zumino [23] who, in 

the context of the chiral theory of pions, showed that it represents the effects of 

flavour anomahes. More recently it was reintroduced by Polyakov and Wiegmann 

24], and Witten [25], who studied various effects associated with its presence in 

different models. In addition, Witten [22] has pointed out that as this term breaks 

some reflection symmetries of the manifold, it should be included in any low energy 

approximation to QCD based on Skyrme ideas [25] in which the original Skyrme 

model possesses too many symmetries. Recently, the effects associated with the 

WZW-term have also been studied from a more geometrical point of view. In fact, 

Braaten et al. [26] have shown that the additional contribution to the equations 

of motion from the WZW-term can be interpreted as the contribution from the 

"torsion" of the target manifold space. In this thesis, we will not need to use 

this interpretation as we will be concerned with trying to solve the equations of 

motion of both the purely bosonic and Susy U{N) sigma models with the WZW-

term and kickily we do not need to have to solve the unitarity constraints. As the 

purely bosonic and Susy two-dimensional a models are known to be integrable, 

recently it has been shown that the purely bosonic U(N) a models with the WZW-

term [27] and their Susy extension models [28] are also integrable. Thus one can 

associate with them a Lax-pair formalism and so they possess an infinite number 

of conservation laws. 

In chapter 3 we discuss the two-dimensional, purely bosonic, U{N) a models 

with the WZW-term. From now on we will refer to these models as the "WZW-a 

models". We construct explicit finite action classical solutions of these models. 

We also show how to relate solutions of the WZW-d model to the solutions of the 



Lax-pair equations for the corresponding a model without the WZW-term. Also, 

we demonstrate that the solutions of the U{N) a model discussed in chapter 2 

and the solutions of the WZW-a model are related and can be derived from each 

other. Then we describe the construction of these solutions and study some of 

their properties. In particular, we compute the value of the action of the WZW-cr 

model corresponding to some of these solutions, as we show that the action of a 

solution of the WZW-a model is finite if the action of the corresponding solution of 

the U{N) a model is also finite. In addition, we also study the stability properties 

of these solutions under small fluctuations around them and show that all these 

solutions have the same number of negative modes as the corresponding solutions 

of the model without the WZW-term. Thus they are the saddle points of the 

action and so the solutions are unstable. 

The real, more physical models, should include fermions and so it would be 

interesting to check how many of the properties found for the purely bosonic 

U{N) a model do survive the addition of fermions. A convenient way of includ­

ing fermions into a models consists of extending these models to become Susy. 

Chapter 4 therefore deals with studying the Susy extension of the U{N) a models 

with and without the WZW-term in two dimensions. As we use these terms very 

frequently in this thesis we will refer to the Susy a models without the WZW-term 

as the "Susy a models" and those with this term as the "Susy WZW-cr models". 

In chapter 4 we define these models and derive their equations of motion. 

Then we construct general Susy solutions of the Susy a models. The procedure 

of this construction is similar to the one used in the purely bosonic a model 

29]. We also derive solutions of the Susy WZW-cr model from the solutions of 

the Lax-pair problem for the Susy a model. The rest of the chapter studies some 

properties of these solutions. We calculate the value of the action for some of these 

solutions and show that they are related to those of the purely bosonic model. 

Precisely, they are given by the laplacian of a logarithm of a function depending 



only on the bosonic part of the theory, and therefore, we see that there is no 

fermionic contribution to the action. Finally we study the stability properties 

of these solutions and find that all solutions of both the Susy a models and the 

Susy WZW-(7 models have the same number of negative modes and that these 

negative modes are exactily the same as those of the purely bosonic model. Thus 

we find that the addition of fermions to the purely bosonic U(N) a models does 

not introduce any further instabilities but that it leads only to the appearance of 

further zero modes. 

The Susy generalisation of a models in two-dimensional Euclidean space pro­

vides interesting examples of boson-fermion interactions. In chapter 5 we inves­

tigate classical solutions of a boson-fermion model based on the Susy WZW-cr 

models. In particular we look at the linearized fermion equations with a fixed 

background bosonic field. We construct some classes of solutions of this system 

for which the background field is a solution of the U{N) a model with and/or 

without the WZW-term. Then, as usual, we study some properties of these so­

lutions. In particular, we compute the energy-momentum tensor of the purely 

bosonic U{N) a model and show that its components are related to a class of the 

obtained solutions. In addition, we prove that some classes of these solutions are 

traceless. 

We finish this thesis with chapter 6 which is devoted to comments and conclu­

sions. We summarise the obtained results of this thesis, and discuss briefly their 

possible appHcations. 



2. Formulation of Sigma Models in Two Dimensions. 

2.1 P U R E BOSONIC S I G M A M O D E L S 

In this section, we introduce the pure bosonic sigma models in two-dimensional 

Euchdean space, where the dynamical variables are bosonic fields, i.e. commuting 

objects. We start with the U{N) a models, also called "principal chiral models". 

These models, first discussed by Zakharov and Mikhailov [6], can be defined in 

terms of the Lagrangian density 

L = ^Tvd^Q^df^Q, (2.1) 

where the matrix field Q{x-i,X2) belongs to the group oi N x N unitary matrices 

U{N), and /i = xi, X2 and ' f denotes the hermitian conjugation. As Q E U{N), 

we see that = and so that Q satisfies the constraint 

QtQ = QQt = l, (2 .2) 

The above-given Lagrangian is invariant under 

Q _^ Q' = h~^Qk, (2 .3) 

where h and k are constant unitary matrices. Hence, the real invariance of the 

model is U{N) x U{N). 

The Euler-Lagrange equations for this model (classical equations of motion) 

follow, as usual, from the condition that the action 

S = j L d^x (2.4) 

is extremal and so are given by 

^^.{Q^^,,Q) = 0, (2 .5) 

together with the constraint (2 .2 ) . We seek solutions of these equations for which 



the action is finite. This condition comes from the requirement of quantisation in 

terms of path integrals. The condition of the finiteness of the action effectively 

compactifies the two-dimensional Euclidean space thus allowing us to take over 

the results derived in the case when the basic space is given by S^. This compact-

ification introduces topology and is directly responsible for the discrete values of 

the action. 

As demonstrated by Din and Zakrzewski [30], it is convenient to change the 

Euclidean variables ( x i , X 2 ) to holomorphic and antiholomorphic variables: 

x± = xi ± ix2. (2.6) 

In terms of these variables the Lagrangian density can then be rewritten as 

L = \TV (d+Q^ d-Q + Q+Q), (2.7) 

where d± denotes partial derivatives with respect to x±, and the equations of 

motion become 

d+{Q^d-Q) + d-{Q^d+Q) = 0. (2.8) 

If the field Q is restricted further hy Q = Q\ then it corresponds to a 

grassmannian field. Before we introduce the grassmannian models, we present 

the so-called 0{N) a models [5,31]. The basic fields of these models are the 

iV-component real unit vectors 9" ; a 1, • • • , iV which are functions of the two-

dimensional space locally parametrised by x\ and X2. The Lagrangian density 

for this theory is given by 

L - ^^^q • 5^9, where /x = x\, x^ (2.9) 

together with the constraint 

g • g = 1. (2.10) 

10 



The Euler-Lagrange equations corresponding to (2.9) are 

d,,d,,q + {df,q-d,,q)q = 0. (2.11) 

Again the two-dimensional space is compactified by requiring the solutions to be 

of finite action. 

Belavin and Polyakov [32], and Woo [33] have shown that the 0(N) a models 

have stable instanton solutions only for the case when N — 3. The stability of 

the 0(3) instantons can be shown to be based on topology as the solutions are 

characterized by different values of a conserved topological number. However, for 

N > 3, there is no corresponding non-trivial topological quantity for the 0{N) 

solutions, and Din and Zakrzewski [31] have shown that its absence makes all 

non-trivial solutions unstable. 

As we mentioned above, a subclass of the U{N) models consists of those for 

which Q = . They correspond to embeddings of grassmannian models [11]. To 

introduce these models, Zakrzewski [34] considered their field taking values in the 

complex Grassmann manifold G{M, N), the manifold of M-dimensional complex 

sub-spaces € ^ in ( D ^ , passing through the origin. This manifold can be written 

as a quotient space 

Let Q{xi,X2) be an element of U(N) which can be decomposed as 

Q = { Z , Y ) , (2.13) 

where 

Z = { Z I - - - Z M ) , Y =^{ZM+I---ZN) (2.14) 

in which each Zi{i - I, • • • , N) is an A^-component column vector. Then the 

11 



unitarity of Q implies that the vectors Zi are orthonormal to each other 

Z\Zk^6ik. (2.15) 

The grassmannian models are defined by considering the N x M matrix Z (the 

analogue of vector of the 0(N) a models), as a dynamical variable with 

1 < M < A'', together with the constraint 

Z^Z = 1M, (2.16) 

where 1M denotes the MxM unit matrix. The Lagrangian density of the model 

is defined as 

L ^ Tv {D^Zy D^Z, (2.17) 

where the covariant derivative is defined by 

D^^ = d^^ - <i> (2.18) 

in which Af,, is a composite gauge potential defined by 

A„ = Z^d,,Z, Al = -A^. (2.19) 

The Lagrangian density (2.17) is invariant under global U[N) transformations 

Z —> Z' ^ hZ, (2.20) 

where h is constant unitary matrix, and also under local U{M) transformations 

Z Z' = ZK, (2.21) 

where K = K{xi,X2) 6 U{M). 

12 



The equations of motion of the grassmannian models are given by 

D^D^Z + Z{D^Z)^ D^,Z = 0, (2.22) 

together with the constraint (2.16). 

In the special case when M = 1, the grassmannian model defined above 

is called the GP^'^ model, as the complex Grassmann manifold in this case is 

equivalent to the complex projective space. The <CP^~^ model, as first discussed 

by Eichenherr [7], Cremmer and Scherk [8], Golo and Perelomov [9] and D'Adda 

et al. [10], is therefore described by an iV-component complex vector, together 

with the normalization condition Z^ Z = \Z\'^ = 1. 

The (CP^~^ model possesses abelian U{1) symmetry, and its composite gauge 

field Afj, is a purely imaginary function of the two Euclidean dimensions. The 

simplest CP"'^"^ model corresponds to iV = 2. Moreover, as D'Adda et al. [10 

observed, the GP^ model is equivalent to the 0(3) cr model. To exhibit this 

equivalence, it suffices to take 

q' = Z^ a, Z, (2.23) 

where Z is now a two-component CP^ field and cjj are the Pauh matrices 

f 0 l \ - z \ f 1 0 \ 

[ l o) [i 0 J [o - i j 

Then simple algebraic manipulations show that 

{D^Z)'^D^Z df,qdf,q, 

and |Zp = 1 —> q • q = 1. 

Hence the two theories are classically equivalent. 

13 



In terms of the complex variables x±, the Lagrangian density (2.17) can be 

rewritten as 

L = 2TT [iD+Z)^D+Z + {D-Zf D_Z\, (2.24) 

where 

D± = d± - Z^d±Z (2.25) 

and the corresponding equations of motion (2.22) become 

D^D+Z + Z{D+Z)\D+Z) - 0, (2.26) 

or equivalently 

D+D_Z + Z{D^Z)'^{D-Z) - 0. (2.27) 

At this stage, by analogy with 

of non-abelian gauge theories, a subclass of solutions of (2.26) is provided by the 

solutions of the self-duality (and antiself-duality) equations 

D±Z = 0. (2.28) 

It is easy to show that all solutions of (2.28) are also solutions of (2.26) or (2.27) 

but, being first order in derivatives, are easier to solve. In fact, as in non-abelian 

gauge theories, equations (2.28) are associated with the existence of a topological 

charge density 

Q = 2 T r [{D+Z)^ D+Z - [D^Z)^ D-Z]. (2.29) 

Moreover, they can be considered as having come from the requirement that 

L = ± Q. (2.30) 

The finite action solutions of the self-duality (antiself-duality) equations 

14 



D-Z = 0 {D^Z = 0) are known as the instanton (anti-instanton) solutions. 

These solutions, in the CP''^"^ case have been given by D'Adda et al. [10]; and for 

the general grassmannian models they have been given by Macfarlane [35]. In the 

CP^"^ case, as discussed by D'Adda et al. [10], the general instanton solution is 

given by 

where / is an A'̂ -component vector whose components are holomorphic functions, 

i.e. depending on x+ only. For the general anti-instanton solution, the compo­

nents of / are antiholomorphic functions, i.e. depending on x-. The finiteness of 

the action imposes conditions on the components of / ; namely, they have to be 

rational functions of their argument. However, gauge invariance shows that it is 

sufficient to consider only polynomial components of / (with no overall factors). 

Moreover, i t can be shown that 

5 = 27rA:, (2.32) 

where k is the degree of the polynomial components of / , and is called the 

instanton number. Notice that all instanton (anti-instanton) solutions mentioned 

above are stable. This stability is guaranteed by the existence of the topological 

charge. 

In analogy with (2.31), an instanton solution of the general grassmannian 

model is obtained from a set of M linearly independent holomorphic vectors 

/ l • • • / M ) properly orthonormalised in order to satisfy the constraint (2.16). Fol­

lowing Din and Zakrzewski [30], this orthonormalisation can be performed by 

considering a. N x M matrix Z consisting of / i • • • / M and defining a M x M 

hermitian matrix M = Z^ Z. This matrix M is positive definite and invertible 

because of the linear independence of the vectors. Hence and M ~ 2 exist 

15 



and are unique. Then, as Din and Zakrzewski [30] have shown, 

Z = Z ( M ) - 2 (2.33) 

is a simple generalization of (2.31) and satisfies both the instanton equations of 

motion and the constraint. For the anti-instantons, the vectors j\ • • • /M have 

to be antiholomorphic. 

Clearly, in contradistinction to the four-dimensional Yang-Mills theories, the 

form of all solutions to the self-duahty equations (2.28) is very simple and explicit. 

The question now arises whether there exist solutions of finite action other than 

those corresponding to instantons and anti-instantons. 

Before we answer this question, let us reformulate the model, as discussed for 

example by Sasaki [36] and by Zakrzewski [34]. This formulation is based on the 

introduction of a.n N x N projection matrix P , defined by 

M 

W ^ Z Z^ ^ ^ Z i Z l (2.34) 
•j=l 

where P is a hermitian projector, and so satisfies 

P = p t = p 2 . (2.35) 

The Lagrangian density (2.17) can be rewritten as 

L = ]^Tv {d^V d^W) (2.36) 

and the Euler-Lagrange equations (2.22) become 

[ap5,,P,P] = 0. (2.37) 

In terms of the complex variables x±, equations (2.36) and (2.37) take the form 

i = 2 Tr (5+P5_P), (2.38) 
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and 

a+a_P,P] = 0. (2.39) 

Moreover, in this formulation, the first-order self-duality equations become 

a_PP = 0 and Wd-JP = 0, (2.40) 

or equivalently 

Pa+P = 0 and a+PP = 0. (2.41) 

The (CP^~^ model is specified within this formulation by the requirement that 

rank P = 1. 

Next we return to the question of non-instanton solutions of (2.26). All finite 

action solutions of the equations of motion (2.26), for the CP^~^ models, have 

been found by Din and Zakrzewski [30,37], who showed that all these solutions 

are derivable from the instanton solutions. Their construction arose out of a work 

by Borchers and Garber [38], who considered a similar problem in the case of 

the 0{N) a models. The construction of Din and Zakrzewski starts with the 

consideration of a vector field g € €^, which is nonzero. Then they define an 

operator by 

P^g = d+g-g ^ , (2.42) 

and its repeated action by 

P^g = P+{Pt'9\ (2.43) 

where 

Pig ^ g. (2-44) 
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Then Din and Zakrzewski [30,37] show that 

Z = 5_/ = 0 (2.45) 

solves the GP^~^ equations of motion (2.26), where k - 0,1, • • • ,N - 1. More­

over, any solution of the equations of motion is of this form for an arbitrary 

rational analytic vector / . Taking A; = 0 in equation (2.45) we recover the in­

stanton solutions of D'Adda et al. [10], given by (2.31), and for k = N — 1 we 

get anti-instantons. For any other choice of k within the above specified range, 

new classes of solutions are obtained. 

Next we investigate some classes of finite action solutions for the more general 

grassmannian model as constructed by Sasaki [36]. His construction depends on 

the consideration of M linearly independent holomorphic iV-component column 

vectors 

/ i , / 2 , ••• , / M , d-n = 0, (2.46) 

and it leads to the introduction of another set of A'̂ -component column vectors 

(/M-I-1, / M + 2 , • • • , / iv) by 

/M+1 = 9+fi, fM+2 = 5+/2, ••• , / 2 M - d+fM, 

f2M+i = d l f i , f2M+2^dlf2, ••• ,hM = d l f M , (2.47) 

••• J N . 

The vectors / i , ••• , /Ar are assumed to be Hnearly independent. Then he or-

thonormahses these vectors by the Gramm-Schmidt procedure keeping their order 

and obtains 

e i , 62, • • • ,ejv. (2.48) 
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To be more precise, the Gramm-Schmidt procedure gives 

h 

•i-l 
e , ; = - ^ , with 91 = h - Y , e k { e \ - f i ) , i = 2,---,N. 

k=l 

Next he considers sequences of M consecutive orthonormal vectors defined by 

Zi = ( e i , e 2 , ••• , e M ) , 

Z2 =(e2,e3 , • • • ,eM+i), 

(2.49) 

ZN-M+1 ={eN-M+l, ••• ,eAf)-

Then he [36] shows that Zj ( j = 1,2, • • • , N — M + 1) satisfies the equations of 

motion (2.26) in the case of G{M, N) model. In particular, Zi is an instanton 

and Zj^-M+l is an anti-instanton. In terms of the projection formulation, this is 

equivalent to stating that the projection matrix 

M+j-l 

IP. = Z,Z} = J2 ^'^•4 (2-50) 

solves equation (2.39). The solutions constructed above are called "generic" solu­

tions, as they depend on the maximal number of holomorphic functions. However, 

the bosonic G{N, M) model is known to have other types of solutions called "de­

generate" and "reducible" [39]. The degenerate solutions are constructed in the 

same way as the generic solutions except that the number of the input holomor­

phic vectors is less than M. The reducible solutions are obtained from the same 

set of orthonormal vectors (2.48) but the condition that Z should consist of M 

consecutive vectors is relaxed in a rather specific way [39 . 
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For the special case of M = 1, the orthonormal vectors ei, ••• ,ejv are 

obtained from 

by the Gramm-Schmidt procedure. In this case, each ej satisfies the equations of 

the GP^-^ model. 

Din and Zakrzewski [30,37,40] have studied various properties of the above 

mentioned solutions. They computed the corresponding action and topological 

charge densities and showed that only the instanton and anti-instanton solutions 

are relative minima of the action. In fact, in both the GP^"-"^ [30,37] and the 

general grassmannian [40] case, they proved that all non-instanton (or non-anti-

instanton) solutions do not correspond to local minima of the action and so are 

unstable. 

Returning to the principal chiral model, it has been known for some time that 

all solutions of grassmannian models are also solutions of the two-dimensional 

^7(7V) chiral models (as the grassmannian subspace is totally geodesic in U{N)) 

41]. To see this, we write 

g = (1 - 2P), (2.51) 

for some projector JP. Then our Lagrangian density (2.1) becomes 

L = Tr {df,JP d^JP), (2.52) 

and the equations of motion (2.5) become 

[a,,a,,P,P] = 0. (2.53) 

However, as we have shown before 

]P = ZZ^ (2.54) 
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solves equation (2.53), where Z is a grassmannian solution. Thus the grassman­

nian solution is also a solution of the U(N) chiral model. 

Until quite recently not much was known about other solutions of the U{N) 

chiral models. However, in an interesting paper [42], Uhlenbeck suggested how 

further solutions can be found. Namely, she proved a theorem showing that all 

classical solutions of the chiral model are of the form 

= K{1 - 2Ri){l - 2R2) •••{!- 2Re), (2.55) 

where i is an integer (which Uhlenbeck called the "uniton" number), K is a 

constant matrix and i?.,:'s are projectors which satisfy some first order differential 

equations. 

Uhlenbeck's theorem [42] provides a convenient way of generating new solu­

tions from the old ones; namely, one writes 

Q = Qo{l - 2R). (2.56) 

Then, as Uhlenbeck has shown, Q satisfies the equations of motion if Qo does 

and if the projector R satisfies the equations 

RA^{\ - R) =0 , 

(1 - R)[d-R A_R] =0 , 

where 

(2.57) 

If QQ = K, equation (2.57) becomes 

d-RR = 0, 

that is, the self-duality equations for the instantons of the grassmannian models. 

For QQ ^ K we obtain more general solutions, which include non-instanton 

solutions of grassmannian models and also non-grassmannian solutions. 
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Moreover, as was shown by Uhlenbeck, all finite action solutions of the U{N) 

model can be constructed from the constant solutions by adding to them less than 

N unitons. As a consequence, for N = 2, the most general solutions of the ^7(2) 

are the one-uniton solutions, i.e. the instanton solutions of the CP^ model. A 

further consequence of the Uhlenbeck construction of solutions, which is easy to 

prove, is that [43] all ^-uniton solutions possess an important property, namely 

their Ai_ is given by 

e 
Ai. = Y^d-Ri. (2.58) 

i-l 

The main aspect of the Uhlenbeck construction is that it reduces the problem 

of solving the equations of motion to having to solve a first order non-linear 

partial differential equation coupled with a nonlinear algebraic equation. This 

last equation admits two obvious solutions, namely 

= 0 and A-{1 - R) = 0. 

This last observation was exploited by Wood [44], who called unitons which satisfy 

these equations "basic" and "antibasic" respectively. Moreover, in that paper [44], 

Wood showed that any uniton factor (1 — 2P) corresponding to a given solution 

QQ can be factorised as 

(1 - 2P) = (1 - 2 P i ) ( l - 2P2) ••• (1 - 2Pfc) 

for some k < N, where (1 — 2Pi) is a basic uniton factor for QQ and (1 — 2Pj) 

are basic uniton factors for the solutions 

Q, = go(l - 2Pi) ••• (1 - 2P i - i ) . 

Recently, Piette and Zakrzewski [45,29] have performed an explicit construc­

tion of all finite action classical solutions of the U(3), U(4) and of some solutions 
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of the U{N) chiral models. Their construction is based on Uhlenbeck's theo­

rem. Here we will present these solutions for the U{3) model and discuss the 

general construction of solutions for the U(N) model. To give explicit forms of 

these solutions, in the U(3) case, we consider an orthogonal sequence consisting 

of the vectors where / is an analytic vector and P^f are defined CLS in 

(2.42)-(2.44). These vectors satisfy the following properties [34]: 

1. ( n / ) ^ ( ^ + / ) = 0 if ^7^;, 

2. a_(P^/) = - P i - V 7 g ^ , 

3. d. 
Plf \ _ P ^ V 

(2.59) 

4. P^f = 0. 

Next we introduce the notation that, if ^ is a vector then the corresponding 

projector is denoted by -P(V'), i.e. 

(2.60) 

Also, we introduce the notation 

Po = PU\ ••• ,Pk = P{P+f)- (2-61) 

Then, as we know from Uhlenbeck's theorem that for U{N) the largest uniton 

number is less than N, Piette and Zakrzewski [45] have shown that all solutions 

of the U(3) model correspond to either one- or two-uniton solutions and so, up to 

a multiplication from the left by an arbitary constant matrix, are given by 

Qi = ( 1 - 2Po), 

Q2={1 - 2(Po + Pi)), • (2.62) 

Q,={1- 2(Po + P i ) ) ( l - 2P(7i)). 
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where Vi is given by 

V, = af + /3Plf, 

with Q: and /3 holomorphic, i.e. functions of x+. 

For the C/(4) model [45], all solutions can be expressed as either one-, two- or 

three-uniton solutions. For more detailed description of these solutions, we refer 

the reader to [45]. In addition, let us observe that all fields of the U{3) model 

can be embedded into the ^7(4) model, and so we see that the ^7(3) solutions are 

automatically also solutions of the U(4) model. 

Wood's factorisation theorem tells us that to construct all solutions of the 

U(N) model, we have to add successive basic unitons to the one-uniton solution. 

However, this appears to be a very difficult task. Even in the {/(4) case Piette and 

Zakrzewski [45,29] have found that the construction of the general three-uniton 

configurations was rather difficult to perform. Nevertheless, they observed that 

all solutions correspond to configurations which can be obtained by the addition 

of a general basic uniton to the already known general grassmannian solutions 

34,46 . 

To discuss this observation we, first of all, consider a general matrix V and 

the associated projector P{V). When V is of maximal rank, this projector is 

given by 

P(V) = V{V^Vy^Vl (2.63) 

Then we observe that the one-uniton solutions of the U{N) model are of the form 

Q = K{1- 2Pi), (2.64) 

where P i satisfies 

(1 - Ri)d-Ri = 0. (2.65) 

These solutions are the so-called instanton solutions of grassmannian models that 
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have been known for some time [34]. The most general solutions for i?i of this 

class are given by 

P i = P(P), (2.66) 

where P is a holomorphic matrix {i.e. whose entries are functions of only x+ ) of 

maximal rank. 

Having determined the most general form of the one-uniton solution we can 

now construct a two-uniton solution by adding a basic uniton to the one-uniton 

configuration. Thus following Piette and Zakrzewski [29], we construct an or­

thogonal holomorphic basis sequence of DZ type [46]. This construction can be 

summarised as follows (for a detailed description of the construction see [29,46]). 

We start by taking a set of hnearly independent holomorphic matrices 

Fi,F2, ••• ,F2r+i, (2.67) 

which are of maximal rank and which satisfy 

(1 - PiF))d+Fi = 0, (2.68) 

where P is a matrix constructed out of matrices Pi, P2, • . . , P^+i by putting 

them side-to-side. Then we construct an orthogonal holomorphic basis sequence 

i - l 
Yi = Fi, Y, = {1 -J2PiY^))Fi, (2.69) 

j=i 

where by construction, all the Y^s have the natural holomorphic normalisation, 

which means that they satisfy 

Y,^d-Yi - 0 (2.70) 

and in addition they also satisfy 

Y^d±Y, = 0, (2.71) 
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for all i, j such that | i — j | > 2. Then 

Q = {1 - 2Pi), (2.72) 

where 
r 

Pi = 5]P(Y2^), (2.73) 
i=l 

is a grassmannian solution of the U(N) model. Observe that, when r = 1 and 

Yi is empty, we recover the instanton solutions described before. 

To add a basic uniton to these solutions, we have to split each set Yi into 

various subsets 

Y, = {V„Ui,W„Ii), (2.74) 

chosen in such a way that 

Mjd±Nj = 0 , i j t j (2.75) 

where Mi and Nj stand any set from Vi, Ui or Wi. Then the general basic 

uniton R2 which we can add to this grassmannian solution so that the resultant 

two-uniton solution takes the form 

Q - (1 - 2Pi ) ( l - 2P2), (2.76) 

is given by [29 
2r+l 

(2.77 
27-f-l 

and where â 's are holomorphic matrices of maximal rank. Note that 

V.ld-Vj = 0, U^d-V, = 0 

is satisfied for all i and j. Observe that if all â 's but one vanish, the solution 
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becomes a grassmannian solution. In other words, the above non-grassmannian 

U{N) solutions interpolate between many different grassmannian solutions. 

Now that we have discussed the solutions of the U{N) a model, i t is interesting 

to state some of their properties established by Piette and Zakrzewski [47]. In 

particular, they have calculated the values of the action of the solutions and 

studied their stability. First let us point out the fact [43] that for a general 

solution corresponding to ^-unitons 

g = (1 - 2 i ? i ) ( l - 2R2) •••(!- 2Re), (2.78) 

the value of the action is given by 

e 
5 = ^ 9 i , (2.79) 

where qi is the topological charge corresponding to the projector Ri given by 

q, = J d?x Tr {^+R^R^^-R^ - d-RiRid+Ri). (2.80) 

Moreover, i f P{V) is a projector for which F is a maximal rank matrix wi th the 

natural holomorphic normalisation, i.e. V'^d-V = 0, then [47 

q{P{V)) = j d^xd+d- In det\V\'^ = 2TTk, (2.81) 

where k is the leading power of dei | F | at infinity. 

I t is now straightforward to show that [47]: 

q(R^) = J d^x In det\Yi 
i=l 
2r+l 

(2.82) 

q{R^) = fd^x^Y, d+d- In det\Vi\'^ + d+d- In det j f / ^ 
i = l 

are the topological charges corresponding to the projectors Ri and R2 given by 

(2.73) and (2.77) respectively. 
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Piette et al. [43] have proved that all the non-constant solutions of the U(N) 

a model are unstable. In fact they showed that the operator of the fluctuation 

around these solutions possesses at least one negative mode, thus showing their 

instability. 

We finish this section by observing that the above procedure of constructing 

solutions of the U(N) model has also given us solutions of the SU(N) chiral model. 

I n the later case we have to choose appropriately the arbitrary constant matrix 

K i n (2.55). 

2.2 SUPERSYMMETRIC SiGMA MODELS 

So far we have introduced only bosonic models. However, in most physical ap­

plications, fermions are also important. I n field theories, fermions are described by 

anticommuting spinor fields. A convenient and frequently used method of includ­

ing fermions into sigma models is that which renders the theory supersymmetric 

(Susy). In this case the most convenient way of proceeding is through the use 

of superspace. As the inclusion of fermions to the U(N) a models wi l l represent 

one of our main topics under consideration later on in this thesis, here we restrict 

ourselves to the discussion of the Susy CP^~^ and grassmannian models. 

The Susy €P^~^ models have been constructed by D'Adda et al. [16] in 

analogy wi th the case of Susy 0{N) a models [17]. To define them, we follow 

closely the conventions of ref. [48]. Thus we introduce a two-dimensional super-

space (a^i, X 2 , ^ 1 , ^ 2 ) , where the anticommuting Q\ and &2 are two components 

of a real Grassmannian spinor Q. Notice that the word 'grassmannian' is used 

here to denote that the corresponding quantities are anticommuting and not that 

they are elements of a grassmannian space. Then we consider a superfield which, 

i n this case, is st i l l given by an A'^-component vector 

^a{xx,xi,hM) = Z^{xi,X2) + i9j^^{xuX2) + ieid2Fa{xi,X'i), (2.83) 
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where Za is a pure bosonic CP-^ ^ field, Xa is a two-component (anticommuting) 

spinor and F^, is an auxihary scalar field. 

We introduce also the two-dimensional 7-matrices defined by 

/ l 0 \ M / 0 1 

^ ' ^ \ , - i j ' o j ' ^ ^ = ^ 1 ^ 2 - 0 

Moreover, we introduce the supercovariant derivative 

b ^ d - ( $ t a $ ) , (2.84) 

where d is given by 

3 = 3 , , i p e = { ' " ' ' ^ ' ^ ' - ' ' ^ ' - ^ \ . (2.85) 

w i t h OQ^ — ^ and dxi = Observe that the operators D and ^ are fermionic 

in nature and so in all calculations we have to apply their anticommuting prop­

erties. 

The action of the Susy (CP^~^ model is given by [16,48]: 

5 = y d^xdBide2 (2.86) 

where, as in the purely bosonic model, $ satisfies 

= 1. (2.87) 

In [16] D'Adda et al. have performed the integration over 9i and 62, and elimi­

nated all auxiliary fields using their equations of motion ending up wi th 

(2.88) 
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where ipa = Xa — Zaizj^xp)', w i t h the constraints 

ZlZa = 1, Zli^a = tplZc, = 0, (2.89) 

and where D^.Za = d„Za - (Z^d^^Zp) Z^. 

The action (2.88) is invariant under the following gauge transformations 

Za —^ =e^^(^^'^^)Z«, 
(2.90) 

and under the Susy transformations 

SZa =ie'ipa, 

Ha = -^ieZai^lipp + ^ilbeZai^pl^btpp) (2.91) 

+ li^e [D^Za - ^iZa (^^7m^/3) • 

As in the purely bosonic case discussed in the previous section, D'Adda et at. 

16] have pointed out that the Susy €P^ model is identical to the Susy 0(3) a 

model. This can be shown as easily as in the non-Susy case by defining a field 

= i = 1^2,3. 

Then the action (2.86) and the constraint (2.87) wri t ten in terms of become 

the action and the constraint of the Susy 0 (3 ) a model. 

Let us now reformulate the Susy <DP^~^ model by changing our variables to 

the complex variables 

x± = X i ± iX2. 

Also, we introduce the similar conventions for the spinors 6 and x given by 

e± ^ 9i ± i92, x± = ^ ( X l ± iX2)-
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I n this formulation, our superfield $ 
OL becomes 

$ = Z + i{B^X- + ^ - X + ) + (2.92) 

The constraint (2.87) thus implies 

Z ^ Z = 1 , 

^ ^ • X ± + x 5 : - ^ = 0 , 

F t . Z + Z t - F = 2 ( x i - X + - x L - X - ) , 

where the "dot" denotes the scalar product in the (DP^~^ space. 

The action of the model now becomes 

S = '2 J d^xde+dd_ [ ( ^ + $ ) t • {b+^) - ( I ) _ $ ) ^ • ( ^ - $ ) ] , (2.93) 

where the supercovariant derivative is 

D± = d± - ( $ t . a ± $ ) , 

w i t h the generators of the Susy transformations given by: 

The equations of motion, corresponding to (2.93), are given by 

b+D-^ + (Z)_$) t • ( ! ) - $ ) $ = 0. (2.94) 

The self-dual solutions of these equations are given by the solutions of 

= 0, (2.95) 

while Z)-|.$ = 0 corresponds to the antiself-duahty case. 
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A solution of (2.95) is easily seen to be 

w $ = , (2.96) 

where the scalar superfield w depends only on xj^ and i.e. is given by a 

holomorphic superfield, 

w{x+,e+) = f{x+) + ie+g{x+). (2.97) 

As in the purely bosonic (DP^~^ case, i t is sufficient to consider / and g which 

are iV-vectors of only polynomials in x+ without common roots. Of course the 

function g{x^) is a grassmann function of its variable. Using (2.92), (2.96) and 

(2.97), Din et al. [48] have presented explicit expressions for the fields Z, x± and 

F for the Susy <CP^~^ instanton solutions. Moreover, they found that, for these 

solutions, the fermionic part of the action vanishes and that the bosonic part is 

the same as for the instantons of the pure bosonic €P^~^ model. 

To find Susy solutions of the nonhnear equations (2.94), Din et al. [48] have 

generalised the algorithm for obtaining the general classical solutions of the purely 

bosonic (DP^~^ model. In their procedure one starts wi th a holomorphic su­

perfield w{x+,0+) and constructs a sequence of further holomorphic superfields 

d+w, d\w, • • • , d\w and then Gramm-Schmidt orthonormahses them, obtaining 

a sequence of superfields which solve the equations of motion. However, there is 

a problem in this approach; namely, the superfields 5^10 for odd i's are spinorial 

and thus do not belong to the space f rom which one would like to construct a 

basis. 

To solve this problem. Din et al. [48] have introduced a set of constant grass­

mannian (anticommuting) variables ê "̂̂  = e[^^ ± ie^2^, and then considered the 

sequence 

w, e+d^w, dlw, e f d l w , (2.98) 
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These vectors are now all bosonic, although, some of them are just grassmann 

even, i.e. are not given by ordinary functions. Din et al. [48] have circumvented 

this by treating such even elements as usual c-numbers. This is an additional 

assumption, but an assumption which leads to reasonable results {i.e. allows us 

to obtain expressions which are solutions of the equations of motion). Then pro­

ceeding as before, i.e. Gramm-Schmidt orthonormalising the first A'^-independent 

vectors in the sequence (2.98) one obtains [48]: 

= i ^ L i — ^ L ^ , i = 0 , . . . N - l , (2.99) 

where 

h' = w A e+d+w A dlw A e^^^dlw A ••• A aid^w, 

and where 

J 1, i = 2p; 

Then one can easily show that [48] for every k 

= ^ (2.100) 

is a solution of the equations of motion (2.94). 

Also in ref. [48], some properties of these solutions were studied. In particular 

i t was shown there that the value of the action corresponding to the solution 

is given by 

5a, 

A;-l 
i |2 = / d\\2d+d- In |e^|2 + 4 In |e (2.101) 

This is always an integer multiple of 27r which can be found exphcitly in terms of 

the structure of w. 
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We can now briefly consider the problem of a fermion in the fixed background 

of a bosonic €P^~^ solution [48,49]. This problem comes from the action of 

the Susy €P^~^ model by droping all nonlinear terms in Tpa and iplt in the 

equations of motion corresponding to (2.88). In this case one obtains the so-

called background Dirac-like equation: 

(PV)a - ZaiZ^plPp) = 0, (2.102) 

together w i t h the constraint 

ZiZa = 1, Zi^a = V i ^ a = 0. 

The fermion solutions of (2.102) for the case of the background field Za being 

an instanton or anti-instanton solution were reported in [16]. For a general back­

ground field Za, such solutions were given by Din and Zakrzewski in [49 . 

Next we tu rn our attention to the Susy grassmannian a model. This model 

is a generalisation of the Susy CP-'^"^ model discussed above. However, here, the 

fields Z, X and F are N x M matrices and so is the superfield ^{xi,X2,9i,92), 

w i t h the constraint $ = IM- Using the same conventions as before, the action 

of the Susy grassmannian model is defined by [50,51] 

S = J d^xd9id92 Tr [ (Z)$ )^75Z)$] . (2.103) 

Fuj i i et al. [50,51] have performed the integration over ^'s and eliminated the 

auxiliary field F and obtained 

S = f d^xTr [2(D+Z)UD+Z) + 2{D-Z)^D-Z) 
J (2.104) 

- ii{ijlD+iP+ + lA+J^-V'-) + 4 ( t / ; ^ ^ + V l ^ - - V'+V'-V'IV'+)] , 

together w i t h the constraint 

Z ^ Z = 1M, = 0, (2.105) 

where tp± = ^{tpi ± iip2)-, and D± = d±- Z^d±Z. 
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As in ref. [51], the equations of motion can be obtained by minimizing the 
s 

action (2.104) w i t h the constraint term 

Sc = J cfix Tr [X{Z^Z - 1) + AiZ^V+ + ^ + V + ^Z^i^- + i>lZv% (2.106) 

where the Lagrange multiplier fields A, ji, v are M x M matrices and A is hermi-

t ian and bosonic whereas fi and v are fermionic. The Euler-Lagrange equations 

read: 

D+D-Z + Z{D^Z)\D-Z) + i{ii;+ijlD+Z - f V - ^ + i ^ - Z ) 

-i[{D+Z)^U+ + {D-Z)',i;\^-] = 0, 
(2.107) 

(1 - ZZ'^)D+i;+ + i{i^-i^U+ - i^+^U-) = 0, 

(1 - ZZ^)D-IIJ- + iiip+^plip- - 'ip-tplij+) = 0. 

As in the Susy CP^~^ model, i f we neglect the second and th i rd order terms 

in the fermion field V', we obtain the equation of the pure bosonic grassmannian 

model, studied in the last section, and the linearized Dirac equations 

(1 - ZZ^)D±ij± = 0, (2.108) 

together w i t h the constraint (2.105). Fuj i i et al. [50] and Zakrzewski [34] have 

obtained fermion classical solutions for equations (2.108) in which Z is a pure 

bosonic grassmannian solution, namely 

Z = Zj = ( e j , ej+i, ••• , eu+j-i), j ^ 1,2, • • • , N - M + 1, 

(see equation (2.49) for more detail). Defining the N x N projection matrices 

M+j-l j-1 N 

Pj = ZjZ} = Yl ^'-'l = Yl^kel Rj = Yl ^ ^ 4 ' 
k=j k=l k=M+j 

P + Q + = 1 , 
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the fermion solutions are easily found to be [50,34 

ij+ = Qjr+a], ^. = RjT-a-\ (2.109) 

where and F - are N x M (anti) holomorphic matrices (5+r4. = 0, <9_r_ = 0), 

and the M x M matr ix aj is defined by 

a, Z]Fj, w i t h Fj = (/,-, fj+i, •••JM+J-I), (2.110) 

i.e. aj is the transformation matrix between the holomorphic functions and the 

orthonormal vectors and as such is non-singular. Observe that, at this stage, the 

fermionic character of the field ip is irrelevant; however, i f one wants to endow ip 

w i t h the fermionic character, this can be done by treating the arbitrary functions 

T± as grassraann numbers. 

Fuj i i et al. [51] have given explicit solutions of the coupled nonlinear boson-

fermion equations (2.107), under the same assumption as in the <CP^~^ case in­

troduced by Din et al. [48]; namely, that the fermion field can be treated as a com­

muting (c-number) field. Their construction [51] started wi th 2 M linearly inde­

pendent iV-component holomorphic vectors / i , / 2 , • • • , / 2 M w i th d-fi — 0; then 

they constructed another set of iV-component vectors /2M-1-I) f2M+2-, • • • > / iV de­

fined as 

/ 2 M + I = /2M+2 = <94-/2, • • • , / 3 M = 5+ /M, 

,f2M+i = d+fi, ••• , / j v . 

Supposing that the vectors / i , • • • , / i v are linearly independent, they orthonor-

malized them by the Gramm-Schmidt procedure and obtained a basis of C^ : 

e i , 62, • • • , e i v , e. • efc = Sik-

Next they considered 3 M consecutive vectors f rom this set and groups them into 

36 



the following three N x M matrices 

= ( e j - M , e j _ M + l , • • • , e j - l ) , 

Z(Q) - { e j , ej^i, • • • ,ej^M-\), (2-111) 

Z{\) = ( e j + M , ej+M- i-1, • • • ,&i+2M-\), 

where 1 < j - M. and N > j -\- 2M - 1. Then Fuj i i et al. [51] showed that a 

generic solution of equations (2.107) is given by 

Z - Z(o), 

4^+ = c + Z ( _ i ) ( a f _ ^ P ^ a f ^ j , (2.112) 

in which c± are arbitrary complex constants satisfying c+c_ = —i. The non-

singular M X M matrices a(fc), k = - 1 , 0 , 1 can be defined in a way similar to 

(2.110) and they satisfy D+aj^,^ = 0 and D^a~^^~^ = 0. 
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3. The U{N) a Models with the Wess-Zumino-Witten Term. 

In the previous chapter, we reviewed the basic formulations of the grassman­

nian and U{N) a models in two-dimensions. We showed how the instanton and 

non-instanton solutions can be constructed for these models and we stated some 

of the most important properties of these solutions. In the present chapter, we 

shall study the two dimensional U{N) WZW-cr model. We shall hmit ourselves to 

constructing explicit finite action classical solutions of this model. We wi l l show 

how to relate solutions of this model to the solutions of the Lax-pair system for 

the corresponding sigma model without the WZW-te rm. Then we wil l describe 

the construction of these solutions and study their properties. We wil l compute 

the value of the action of the WZW-cr model for some of these solutions, and then 

prove that all solutions of this model have the same number of negative modes 

as the corresponding solutions of the model without the WZW-term, and so, as a 

consequence [43], that they are all unstable. 

First let us introduce the WZW-te rm. As we said in the introduction, this 

term was first introduced by Wess and Zumino [23], then reintroduced by Polyakov 

and Wiegmann [24] and Wi t t en [25]. I t represents a topological term. The inclu­

sion of this term naturally involves a space wi th one extra dimension and such 

that the physical space is its boundary. In our model, this term is given by a 

three-dimensional integral [25,27] which is locally (but not globally) a total diver­

gence. The definition of the W Z W - t e r m requires, however, that we extend the 

field configuration g{xi,X2) G U{N) to a field configuration g{xi,X2,t) € U{N) 

which depends on an additional variable t which satisfies 0 < i < 1. Following 

Wi t t en [25] we choose the boundary conditions of this extension to be such that 

g{xi,X2,l) = g{x\,X2) and g{xi,X2,0) = K, 

where K \s a. constant unitary matrix. More details of our continuation wil l be 
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given later on. 

For reasons which w i l l become clearer later we choose to write the action of 

the WZW-cT models as 

S = \ j d^x i:x{d,,g^d^9) + y 1 ^ ' ^ Tr {g^ d^g d.g dpg)e^''P, (3.1) 

where A is a purely imaginary parameter and g and g are unitary matrices: 

9^g^9^9 = l. (3.2) 

The first term in (3.1) is the standard U{N) a model action of the field g (wliich 

corresponds to Q of the previous chapter). The second contribution in (3.1) is the 

W Z W topological term. The variation of the action (3.1) under g g + 6g can 

be easily shown to be 

SS = J d'x Tr [gHgi^df^ig^d^g) - '-^e^^^d^ig^d^g)]]. (3.3) 

The equations of motion of the W Z W - a model therefore do not depend on our 

extension and are given by 

d^^ig^d^g) - iXe'^'^d.^ig^d^g) = 0, (3.4) 

together w i t h the constraint (3.2). 

I f we now perform the change of variables 

x± = xi ± ix2, (3-5) 

the action of the WZW-cr model (3.1) can be rewritten as 

S =1 fd^xTv {d+g^ d-g + d^g^ d+g) 
. (3.6) 

- \ d \ Tr [{d+g^d-g - d-g'^ d^g)g^ g\, 

where the "dot" denotes the partial derivative wi th respect to t. Also, the equa-
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tions of motion (3.4) become 

(1 - \)d+{g^d.9) + \)d-{9^d+9) = 0. (3.7) 

Clearly, when A = 0 the equations reduce to the well studied equations of the 

model without the WZW-te rm. 

As we w i l l discuss relations between solutions of both models, we adopt the 

convention that the fields and the solutions of the model wi th the WZW-term wi l l 

be denoted by g and those of the model without this term by Q. Clearly, the 

solutions of the model without the WZW-te rm satisfy: 

d+{Q^d^Q) + d^Q^d+Q) = 0, (3.8) 

together w i th the constraint Q = 1. In the next section we wi l l show how 

to relate the solutions of (3.7) to the solutions of the Lax-pair system for the 

corresponding sigma model without the WZW-te rm. 

3.1 SOLUTIONS OF T H E W Z W - a MODELS 

Despite the fact that one of the original motivations for the inclusion of the 

W Z W - t e r m in the Lagrangian has been to reduce some of i t symmetries [25] many 

of these symmetries remain [26,27] and i f we consider only the classical version 

of the theory and its equations of motion, the functional space of the solutions of 

the equations of motion exhibits many symmetries [27], which can be exploited in 

the construction of these solutions. For example, i t is well known that i f Q is a 

solution of (3.8) then is also its solution. This symmetry can be extended to 

a property of ^'s i.e. for all A's: i f g{X) is a solution of (3.7) then so is ^ ( - A ) ^ 

The two-dimensional a models are known to be integrable [6,52] as we can as­

sociate wi th them a Lax-pair formalism (also called the Hilbert-Riemann problem 
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in some papers [53]) and so they possess an infinite number of conservation laws. 

Recently [27], i t has been shown that the WZW-cr models are also integrable. In 

what follows we wi l l show that this is not unexpected, as we wi l l demonstrate that 

the solutions of both models are related, and can be derived f rom each other. 

To do this, let us consider the equations of the Lax-pair problem for the U[N) 

a model: 

a+* = t ^ , = (3.9) 

where 

A±^\Q^d±Q, (3.10) 

and where ^{x.^,x-,\) is a N x N matrix-valued function, and A is an ad­

dit ional complex parameter. To claim that (3.9) is a linear system of equations 

for the U(N) a model, we need to show that the integrability conditions for $ 

imply the equations of motion for the U{N) a model. To see this, we multiply 

the first equation of (3.9) by (1 — A) and differentiate i t wi th respect to x^, and 

mul t ip ly the second equation by (1 -|- A) and differentiate i t wi th respect to x^, 

then subtract the results and get 

(1 - X)[{d-^)A+ + ^d-A+] - (1 + X)[{d+^)A- + *(9+yl_] = 0. (3.11) 

Puting (3.9) in (3.11), and then performing some simple manipulations we obtain 

* X{d+A- + d-A+) + (^d+A- - d^A+ + 2[A+,A-]^ = 0. (3.12) 

We see that the integrability of ^ for arbitrary A implies that 

d+A- + d-A+ = 0 , 

(3.13) 
and d+A- - d-A+ + 2[A+,A-] = 0 . 

These are just the equations of motion and the curvatureless conditions of A± for 

the U{N) a model. 
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The unitar i ty of Q provides us w i t h some further conditions on 4' [54], namely 

that 

* t - i ( ^ ) ^ * ( - A * ) . (3.14) 

As a consequence, we see that i f A is imaginary, then ^ is unitary and (3.9) can 

be rewritten as 

(1 + \)¥d+m = 2A^, (1 - A ) $ t 5 _ * = 2A- (3.15) 

f rom which we see that 

(1 + \)d^{¥d^<l>) + (1 - A)5+(*^a_*) = 2{d-A+ •+ a+^ - ) . (3.16) 

Thus, as Q satisfies (3.8), 

satisfies (3.7). This means that the solutions of the Lax-pair problem for the a 

model have provided us wi th a simple way of constructing solutions of the WZW-cr 

model. 

Note that we could have chosen to construct the Lax-pair problem for our 

system in a different way; namely, we could have chosen 

2 B 2 B 
d+if = ^ ( f , d - i f = ^ ip, (3.17) 

where 

B± = \d^QQl (3.18) 

Once again, as is a solution of (3.8), i t is easy to show that fp{—\) satisfies 

(3.7) for the imaginary values of A. 
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Before we proceed any further let us show that there is a simple relationship 

between the solutions of (3.9) and those of (3.17). To see this we observe that we 

can always take 

^ = QX-^ (3.19) 

for some matrix X. Inserting this expression into (3.17) and multiplying it from 

the left by and from the right by X we find that 

d+X = X d-X = X , (3.20) 
1 + A 1 - A 

thus showing that 

^(A) = Q^-\X-'). (3.21) 

In fact, we can consider ip^ as a solution of (3.9), in which Q is replaced by Q^. 

In addition we can show how any solution of the WZW-cr model can be trans­

formed into a solution of the usual a model. Asuming that 5 is a solution of (3.7) 

we define 

C± = (1 ± X)g^d±g. (3.22) 

I t is then straightforward to show that 

a+C_ + = 0, C l = -C+. (3.23) 

These two equations imply [6,54] that we can set 

C± = Q^d±Q, (3.24) 

where Q = 1, and then Q is a. solution of (3.8), which, however, in general 

does depend on A. We see that each solution of the WZW-cr model can be related 

to a solution of the usual a model with the relation provided by the solutions of 

the Lax-pair equations for the a model. 
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We may now ask if any solution g of ( 3 . 7 ) is automatically also a solution of 

one of the Lax-pair equations ( 3 . 9 ) or ( 3 .17 ) . This question is eqmvalent to asking 

whether C± does not depend on A. As such, this question is not well posed, as, 

in reality, we have here a family of solutions parametrised by A. 

Take, for example, (5(/3), a family of solutions of the U{N) a model where 

f3 is some parameter. Computing ^'(/3) provides us with a family of solutions of 

the WZW-cr model. If we now decide to choose /9 = A, then C± = (1 ± \)g^d±g 

will depend on A, in agreement with the claim above. 

What we should be asking is then: given a solution g^iXo) of the WZW-cr 

model for a fixed value AQ of A, is i t possible to extend it to a function ^'(A), 

such that g' is a solution of both ( 3 . 7 ) and of either the Lax-pair ( 3 . 9 ) or ( 3 . 1 7 ) for 

all values of A, in which A± or respectively B± are independent of A, and such 

that ^'(Ao) = 5'o('^o)- To do this we simply solve ( 3 . 9 ) for A± = g\d±gQ (1 ± AQ) 

or ( 3 . 1 7 ) for B± = d±gQgl{l ± AQ). Then *o(A) or <PQ{-\) is the required 

solution. 

3 . 2 S O L U T I O N S O F T H E L A X - P A I R E Q U A T I O N S F O R T H E U[N) a M O D E L S 

Before constructing any solutions of the Lax-pair equations ( 3 . 9 ) or ( 3 . 1 7 ) 

given in the previous section, we briefly recall Uhlenbeck's [42] construction of 

solutions of the U{N) sigma model discussed in the previous chapter. There we 

showed that according to Uhlenbeck's theorem [42], any solution of ( 3 .8 ) can 

be factorised as 

Qe = Kil - 2i?i)(l - 2R2) •••{!- 2Re), ( 3 . 25 ) 

where K is a, constant matrix, i is an integer (the uniton number), and i?j's are 
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projectors which can be constructed by induction, as they satisfy 

Re At'{I - Re) = 0, 
(3.26) 

(1 - Re){d-Re + A^'Re) = 0, 

where 

Ai = ^Q\d-Qe. (3.27) 

From this construction we can deduce, that if we define (by induction) 

Ke = Ke_i{l - aRe), (3.28) 

where a is a complex number (which does not depend on i) and /?i's are the 

projectors which satisfy the equations given above, then 

= {I ~ bRe) K^},, (3.29) 

where 6 is a complex number, which satisfies 

a + b - ab =0. (3.30) 

As a result we can now prove that 

K-'d-Ke = bAl 
(3.31) 

K^'d+Ke = aA\. 

We prove this by induction. The result is trivialy true for the constant factor and 

R-^d-Ke ^b\d-Re{\ - aR^) + At' 
- bReAf - a At'Re + abReAt^Re 

= b[At^ + d-Re - a ( ( l - Re)d-Re + At'Re - Re^t')], 

(3.32) 
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but from (3.26), we have 

{1 - Rf,)d_Ri + At^Re - ReAt^ ^ 0. (3.33) 

Thus 

R-^d-Ki = hAi. (3.34) 

A similar calculation proves also the other equation for K(,. 

As an immediate consequence, we see that if we choose 

2 . 2 
a = 

the condition (3.30) is satisfied and 

^ = (3.36) 

is a solution of (3.9) corresponding to Q^. 

Moreover, as this solution is unique up to a multiplication by a constant 

matrix, we see that we have thus solved (3.9) completely. 

We would like to point out that our expression for Kf^ agrees with expressions 

given in ref. [53]. In that paper, various solutions of the grassmannian models 

were studied and the solutions of the corresponding Lax-pair equations were de­

rived in an explicit form. As the grassmannian space is totally geodesic in U{N) 

these grassmannian solutions are also solutions of the U(N) model and so the 

results of ref. [53] provide us with various solutions of the WZW-a models. How­

ever, as we now know from Uhlenbeck's equations, all grassmannian solutions, 

when considered as solutions of the U(N) models, are in fact contained in the 

expression (3.25) for some I and some choice of projectors Ri. Thus we see that 

the interesting dependence on A observed in ref. [53] comes from the product of 

factors a and the properties of our projectors Ri. 
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Let us point out at this stage that our solutions have already been given in 

the Uhlenbeck paper [42]. In that paper Uhlenbeck, using a diff'erent but related 

parameter A, introduced auxiliary functions Ex , which she then used to prove 

her factorisation theorem for the ordinary chiral model. These functions E\ 

correspond, in fact, to our functions 

We finish this section by pointing out that due to the relation (3.21) the 

solutions to (3.17) are given by 

<p = QeK^\ (3.37) 

where the parameter b appearing in K^', as defined in (3.29), is given by 

b = ^ y (3.38) 

3.3 P R O P E R T I E S O F T H E S O L U T I O N S O F T H E W Z W - C T M O D E L S 

As we have shown in the previous sections, the solutions of the U{N) WZW-a 

model can be obtained very easily from the solutions of the U{N) a model. It 

would then be interesting to see whether the properties of both sets of solutions 

are similar. In particular, is the action of the solutions of the model with the 

WZW-term also quantised, and can it be related to the topological charges of the 

projectors i?.j's out of which the solutions are constructed? Another interesting 

question would be to determine whether the solutions are also unstable, or if, on 

the contrary, the WZW-term stablises them. 

Before we can answer these questions, we have to find a convenient way of 

computing explicitly the contribution of the WZW-term. As this term is given 

by a three-dimensional integral, we know [25,27], as we have already said earlier 

in this chapter, that we have to extend our field g{xi,X2) to a field g{xi,X2,t), 

47 



defined over the three-dimensional space locally parametrised by xi, xi and 

with 0 < t < 1 and such that 

f P(a;i,a;2), at i = 1; 
g{xx,xi,t) = \ (3.39) 

U , at t = 0. 

This extension shows that our cylinder, with an infinitely large base described 

by x i , X2 and "height" t, is being mapped by g into a full-two sphere in U(N), 

the surface of which is nothing else but the field g{xi,X2). To perform this ex-

pUcitly, let us first consider a one-uniton-like field configuration 

g{x+,x-) = (1 - aR), (3.40) 

where a — Y+J • For our extension we can now use 

g{x+,x-,t) = ( 1 — aRf 

= {l-a{t)R) (3.41) 

where 

a{t) = (1 - ê «*) (3.42) 

with 

- .A - 1' 
ia = Inil , • • -(-- » ) = l „ ( i ^ ) . (3.43) 

The extension for other configurations is given by induction, i.e. for 

g,{x^,x^) - 5£- l (x+,a;_)( l - aRt\ (3.44) 

(3.45) 

we use 
5^.(x+,a;_,i) = ^ £ _ i ( x + , x _ , i ) ( l - a/?^)* 

To extend solutions corresponding to we apply the same method by raising 

each factor of both Q and ^ to the power t. 
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To study properties of our solutions of the WZW-a model, let us first of all 

calculate explicitly the values of the action (3.1) for these solutions. We start by 

considering the solution of (3.7), constructed by solving (3.9) for the one-uniton 

field configuration 

namely: 

where 

1 + A ' 

For this solution, according to our extension, we have 

Qi = (1 - 2i?i), (3.46) 

51 = (1 - aRi), (3.47) 

(3.48) 

51 = (1 - a(t)Ri), (3.49) 

where a(t) is given by (3.42), and from Uhlenbeck's construction, the projector 

Ri satisfies 

d-RiRi - 0. (3.50) 

Note that had we solved (3.17) instead of (3.9), we would have obtained the same 

solution. Now when A = 0, we recover the one-uniton solution of the usual i!7(iV) 

a model for which, as we mentioned in the previous chapter, the action is given 

by [47] 

5o = 4 / ( f x Tr {d-Rid+Ri) 
J (3.51) 

= 4g(/2i), 

where 

q{Ri) = j Sx Tr [d+Ri Rid-Ri - d^R^ Rid+Ri) (3.52) 

is the topological charge corresponding to the projector Ri. For nonvanishing 

values of A, we can apply the relations (3.31) for this solution and i t is then easy 
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to show that the action of the WZW-a model (3.6) is given by 

S ^ - j d^x \a\^Tx{AlA\) 

+ X J ( f x 2a | a ( f ) |2 Tr [{A\AI - A I A \ ) R I . 

If we now insert the values of A^. for our case, which are given by 

Al = d-Ru 4 = - ( ^ i ) ^ 

then, equation (3.53) becomes 

S = J d^x |a|2 Tr {d-Ri d+Ri) 

- J d^xiaXlait)]"^ Tr [{d+Rid-Ri - d-Ri d+Ri)Ri]. 

Using the properties of the projector i?i we get 

S 

From (3.51), this equation becomes 

^ = 4 

1 

dtiaX\a{t)\'^ SQ, 

(3.53) 

(3.54) 

1 

a|2 + J dtiaX\a{t)\^] J d^x Tr (d.Rid+Ri). (3.55) 

(3.56) 

where SQ is the action of the corresponding solution of the usual cr model. Writing 

A = ik and using relations between a, a and A, it is easy to perform the t 

integration and obtain 

S = h{k)So, (3.57) 

where 

h{k) = 1 - k arctg{k ^). (3.58) 

It is important to note that in (3.42) a is defined only up to the addition of an 

integer multiple of 2 7r and, as a consequence, the value of (3.55) is not uniquely 
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defined. This well known fact [25,27] comes from the possibility of choosing dif­

ferent extensions of g, which in our case correspond to different choices of the 

arbitrary constant in a. In (3.57) and in (3.58) this freedom is hidden in the choice 

of the phase of arctg" in h{k). I f we fix this phase by choosing 0 < isin~^{k~^) < TT, 

then h(k) is monotonic in k. As k varies from —oo to -l-oo, then h[k) decreases 

from oo to 0, and for k = 0, h[k) — 1. 

Observe that if we now consider a solution of (3.7), constructed by solving 

(3.17) instead of (3.9), for the one-uniton solution Qi, then, according to (3.37), 

we will find that 

gi = (1 - 2Ri)(l - bRi), (3.59) 

where 6 takes the same form as in (3.38). Moreover, the action of this solution 

is exactly the same as in the previous solution (3.47). 

The computation of the value of the action for more general solutions is far 

more complicated. I f we consider, for example, the solution constructed from a 

two-uniton solution 

^ 2 = (1 - 2i?i)(l - 2R2), (3.60) 

where we have taken K = I, by using the Lax-pair (3.9), we have 

52 = (1 - aRi){l - aR2), (3-61) 

and 

52 = (1 - ait)R,){l - a{t)R2), (3.62) 

where a = and a{t) = 1 - e*"*. Then, from Uhlenbeck's construction, the 

projectors Ri and R2 satisfy, in addition to (3.50), 

R2d-Ri{l - R2) =0 , 
(3.63) 

{I - R2){d-R2 + d-RiR2) =0. 
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For A = 0, the action of the solution is given by 

So = ^[q{Ri) + g(i?2)), (3.64) 

where 

q{R-) = J d^x Tr {d+RiRid-Ri - d-RiRid+Ri) (3.65) 

is the topological charge corresponding to Ri, which can be computed exphcitly 

for any given solution [47]. For nonvanishing values of A we can use the relations 

(3.31) and obtain for the WZW-a model action: 

s - J d'x\a\'Tv{AlAl) 

+ X J d^x ia |a(i)|2 Tr ^{AIAI - AIAI) 

X [Ro + (1 - a*{t)R2)Ri{l - a{t)R2)] 

(3.66) 

Inserting the corresponding A^., which are now given by 

Al = d-Ri + d-Ri, Al = - ( 4 ) ^ (3.67) 

and as before, writing A = ik, and using the relations between a, a and A, i t is 

then easy to show that 

S =h(k)SQ 

+ ak j d3x|a(t)|2 Tr ((9+i?2 <9-i?2 - a_i?2 5+i?2 i?i - d-Rid+R2). 

(3.68) 

If i?2 is ^ basic uniton [44,29], then i t satisfies 

R2d-Ri = 0, 
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while for an antibasic uniton we have 

d-Ri (1 - R2) = 0. 

Thus we find that 

1 

S = h{k)SQ + ak j dt\a{t)\^ j d'^xd+d- Tr {R2 Ri). (3.69) 

0 

However, as 

J d^x d+d- Tr (Ri R2) = 0 (3.70) 

for any two projectors, we conclude that 

S = h{k)So, (3.71) 

which generalises the result obtained for the one-uniton like configuration in the 

sense that the action of the solution of the U(N) a model with the WZW-term 

is given by the action of the corresponding solution of the usual f/(iV) a model 

multiplied by h{k\ 

We now consider a solution constructed from the two-uniton solution Q2 of 

the a model, given by (3.60), but derived by using the second Lax-pair equations 

(3.17). In this case, according to (3.37), we find 

91 = (1 - 2 i ? i ) ( l - 2i?2)(l - hR2){\ - bRi), (3.72) 

where b is the same as in (3.38). The action of this solution can be shown to be 

equal to the action of our previous solution (3.61) and so is given by (3.68), or 

(3.71) when our unitons are basic or antibasic. 
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Unfortunately, so far, we have been unable to find a corresponding result for 

the more general case. However, it is easy to show that i f the action of Q, a 

solution of the U{N) a model without the WZW-term, is finite, the action of g, 

the corresponding solution of the U{N) WZW-cr model, is also finite. To prove 

this, we consider 

gt = - aRi), (3.73) 
i=i 

for which 

ge = - ait)Ri), (3.74) 

where a and a{t) are the same as before. In this case, the action (3.6) takes the 

form 

( i - A ) ( i + A)y ^ ^ 

- \ d^x Tr [\a{t)f[AtAi - A^_At]glte 

where 

A'_ = ^ g { 9 - g ^ (3.76) 

At this stage, let us prove by induction that for our expression (3.74), we have 

git, = iaJ^Rj^ (3-77) 
j=l 

where 

Rj = (1 - a{t)Rey •••{!- a{t) Rj^^)^ Rj {1 - a{t) R,+i) • • • (1 - a{t) Re), 

(3.78) 

for j < i — 1, and Re — Re- To do this, it is easy to check that the result is 

true for the one- and two-uniton solutions. Then assuming that it is true for the 
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^-uniton solution, we have to prove that it is also true if we add another uniton 

factor. Thus we take 

g^gi{l-aR), g = g^il - a{t) R). (3.79) 

In this case, we find that 

g^t - ( 1 - ait)R)^9lU^ - ait) R) - (1 - a%t)R)R^ 

e 

= i a ( ( l - a{t)Ry J^Rjil - a{t)R) + i?) (3.80) 

^+1 
= i a ^ R j , 

where 

Rj = ( 1 - a ( i ) i? ) t ( l - a{t)Ri)^ •••{!- a{t) Rj+i)^ Rj 

X (1 - ait)Rj+i)---{l - a{t)Re){l - a{t) R), 
(3.81) 

for all j < I, and R(,^\ = R, thus showing that (3.77) is valid for the general 

^-uniton solutions (3.74). Returning to the finiteness problem, we see that as 

0 < ^ d^x Tr {A^} A^_ Rj) < J d^x Tr ( > l i U i ) (3.82) 

for all Rj, the action (3.75) must be finite if Qi is a finite action solution of the 

U{N) a model. 

One of the most important properties of any solution is its stability when 

subjected to small fluctuations. To study this property for our solutions g of the 

WZW-a model, we follow the procedure of Piette et al. [43] who investigated the 

stability properties of the usual U{N) a model (without the WZW-term). We 
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consider a small fluctuation by assuming that the field g' in the neighbourhood 

of g can be written in the form 

9' - 9e^\ (3.83) 

where e is small and the matrix field X satisfies 

X^' = - X , (3.84) 

in order that g' G U{N). Substituting (3.83) into the action of the WZW-cr model 

(3.1) and calculating only to second order in e, it is easy to see that 

S(g') =Sig) + \ j d'x Tr [{d^{g^d^g) - i\e^'''{d^g^d,g)) X 

+ d^xTv [d,,X^d^X - g^d^g{Xd^X - d^XX)] 

+ 2i\ j d^x Tr {g^d,gg^dpg(^^X^g^d^g + ^g^d,,gX^ + ^d^X^ 

- Xg^d^gX - Xd,,x) + (d,,X + g^d^^gX - Xg^d^g) 

X {d,X + g^d.gX - Xg^d,g)g^dpg}e>'''P], 

(3.85) 

where g{xi,X2,t) and X{xi,X2-,t) are the extension of 5 (x i , X 2 ) and X(a;i,a;2) 

respectively, defined over the three-dimensional space. However, from the equa­

tions of motion of the WZW-cr model we see that the first order terms in e vanish. 

Then the lowest nonvanishing terms of 

8S = S{g') - S{g) 
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are given by: 

J d'x Tr [d,,X^d,,X - g^d^g{Xd,,X - d^^X X)] 

+ 2iX j d^x Tr [d^XduXg^dp'g 

- i {d,X X - Xd,,X)g^d,g g^dp'g] e^^^^ (3.86) 

= j[Jd^xTr {d,,X^d^X - g^dpQiXd^X - d,.X X)] 

+ iX j d^xd,, Tr [{Xd^X - dyXX)g^dpg]e''''P . 

Next we integrate by parts, and change the variables to the complex coordinates 

x± and obtain 

.2 
8S = y j d^x Tr [d-X^d+X + d+X^d-^X 

- (1 + X)g^d+g{Xd-X - d-XX) 

- (1 - X)g^d-g{Xd+X - d^XX) . 

(3.87) 

As we have seen before, g, a solution of the WZW-cr model is related to Q, 

a solution of the usual a model by 

g^d±g = 
1 ± A 

(3.88) 

Thus, (3.87) becomes 

,2 
6S = |- j d^x Tr [d-X^d+X + d+X^d-X 

Q^d+Q{Xd-X - d - X X ) - Q^d-Q{Xd+X - d+X X)], 

(3.89) 

which, in turn, can be written in the xi, X2 variables as 

2 r 

SS ^ - d^x Tr [df,X^d^,X - Q^df.Qid^X^X - X^d^X)]. (3.90) 

In fact, this is nothing else but the stability equation for the a model without the 

WZW-term for the solution Q studied by Piette et al. [43]. In other words, the 
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negative fluctuation modes for g are exactly the same as the negative modes for 

Q and, as all solutions of the cr model are unstable [43], so are the solutions of 

the WZW-a model. 

For solutions which are unstable, it is interesting to know the number of 

directions of instability, the so-called negative modes of the fluctuation operator 

around a given solution. Clearly to find these negative modes of fluctuation, we 

need to find X such that 6S is negative. Piette et al. [43] have shown how to 

do this in the case of the grassmannian embeddings of the SU{N) chiral models. 

They considered fluctuations which are hermitian, X^ = X. In this case 

Q = A{1-2JP), (3.91) 

where P is a grassmannian projector satisfies 

F = p t = p 2 ^ 

Pa+P =0 , (3.92) 

9 + P P =d+W, 

and ^ is a constant matrix, so chosen that detQ = 1. Then they showed that 

43] for 

X = ]PKJP-j^TvlPK, (3.93) 

where K is a. constant matrix, which can be written as 

K = VV\ (3.94) 

with V is an iV-component vector, 

6S ^ - ~ j d ' x |yta+P V\' {! + - ) , (3.95) 

which clearly shows that this is a negative mode. 
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Let us proceed further and show that some negative modes of the fluctuation 

operator are given by solutions of the associated background Dirac problem. To 

see this we observe that, as we wi l l see later, the associated background Dirac 

problem reduces to 

+ [^Q^d+Q,i^+] = 0 , (3.96) 

d-^- + [ i g t a _ Q ^ ^ _ ] ^ 0 , (3.97) 

where ip± denotes the helicity eigenstates of a spinor ip (more detailes wi l l be 

given later). Notice that, i f I/J^ solves (3.96), then a solution of (3.97) is given by 

^ _ = ± ( ^ + ) t . 

I f following ref. [43] we seek fluctuations which are hermitian, we can take for 

X a hermitian solution of (3.96), which, as we said above, is also a solution of 

(3.97). On the other hand, i f we seek antihermitian fluctuations, we can take for 

X the antihermitian solution of (3.96), which also solves (3.97). 

To claim that such fluctuations are indeed negative modes, we observe that 

equation (3.89) can be rewritten as 

SS = J ( f x Tr (^d-X^ d+X 

+ 5 _ X t [-Q^d^Q,X] - d+X [^Q^d.Q,X]). 

(3.98) 

Then i f we substitute 

d+X = - [^Q^d+Q,X], 

d-X = - [^Q^d-Q,X], 
(3.99) 

we get 

.55 = -e^ 
J d'^xTv ( ( a + x ) t a + x ) , (3.100) 

which clearly is negative definite, and so X = V+ = ±(V' - )^ provides a negative 
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mode of fluctuation. The problem of finding solutions of the background Dirac 

problem w i l l be considered in the next chapters. 

We finish this chapter by observing that the grassmannian models can be 

considered as special cases of the corresponding chiral models in which the basic 

unitary matrix-valued fields Q are also hermitian, — Q. However, as we saw 

in the previous chapter, in the construction of multi-uniton solutions to the chiral 

model we have found that one-uniton solutions do satisfy this condition. This is 

also true for the mult i-uniton solutions 

Q ^ KY[{\ - 2 i ^ o , (3.101) 

for which the projectors RiS commute wi th each other and K isa. constant unitary 

and hermitian matrix. These properties do not generalise to the solutions of the 

WZW-cr models. To see this observe that 

(5(A))^ = ^(A*) ^ 5(A), (3.102) 

even for the one-uniton solutions. This is not surprising, as one can not add the 

W Z W - t e r m to grassmannian models. To have models wi th such a term the sigma 

models must take values in the group and not in a coset space. 
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4. The Supersymmetric U{N) a Models w i t h the 

Wess-Zumino-Witten Term. 

So far we have studied only bosonic U{N) a models w i th the WZW-term. We 

constructed classical solutions for these models and we found that these solutions 

are related to, and in fact can be derived from, the solutions of the Lax-pair 

problem for the U(N) a model without the WZW-te rm. Moreover, studying 

the stability properties of the WZW-cr model we have found that they are not 

altered by the addition of the WZW-te rm. In fact the fluctuation determinant is 

independent of this term. 

The real, more physical models, should include fermions. A convenient way 

of including fermions into a models discussed before, consists of extending these 

models to become Susy. In this chapter, we wif l study the Susy extension of the 

U(N) a model w i th and without the WZW-te rm. These are the so-called "Susy a 

models" and "Susy WZW-cr models". I t is interesting to check how many of the 

properties found for the purely bosonic U(N) a model do survive the addition of 

fermions. In particular, w i l l the addition of fermions make the model less stable 

in the case wi th and without the WZW-term? 

This chapter is organized as follows. I n the next section, we introduce the 

Susy WZW-CT models and derive their equations of motion. The Susy o models 

w i l l be introduced as a special case f rom the Susy WZW-cr models. In section 4.2 

we generalise Uhlenbeck's factorisation [42] to the Susy a models. We construct 

general Susy solutions of the Susy a models by following a procedure similar to 

the one used in the purely bosonic a model [29]. In section 4.3 we use solutions of 

the Lax-pair problem for the Susy a model to derive solutions of the Susy W Z W -

cr model. I n the last section we study some properties of these solutions. We 

calculate the value of the action for some of these solutions and show that they 

are related to those of the purely bosonic model. Then we discuss the stability 
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properties of these solutions and prove that all these solutions are unstable. 

4.1 F O R M U L A T I O N O F T H E S U S Y W Z W - c r M O D E L S 

Recall that in the Susy procedure, in addition to the standard coordinates 

x i , X2 one has to introduce also anticommuting (Grassmannian) coordinates 9i, 

02 which are two components of a real Grassmannian spinor 9. Also, the bosonic 

field g{xi,X2) is replaced by a scalar superfield ^{xi,X2,9i,92) defined on the 

superspace w i t h coordinates x i , X 2 , 9i, 02. Such a procedure of supersymmetri-

sation for the U(N) a model w i t h the WZW-te rm was discussed in some detail 

by Abdalla et al. [55] and D i Vecchia et al. [56]. We wi l l adopt i t too, but here, 

for convenience, we choose to define our superfield $ as: 

$ ( x i , X 2 , ^ i , ^ 2 ) = gixi,X2)[l + i9\i)2{xi,X2) - i92i^\[xi,X2) + i9\92F{xi,X2)\, 

(4.1) 

where • ^ i and -^2 are two components of a complex anticommuting spinor field 

(which anticommutes wi th 9i) and F is an auxiliary scalar field. The hermitian 

conjugate of $ is 

$ t = [1 + i ^ j ^ t _ ^-^2^;} + i9i92F'^\g^. 

On $ we impose the constraint 

$ t $ = $ $ t ^ 1. (4.2) 

This constraint, when expanded in power series in ^ i , implies the following con­

ditions on fields g, ip-i and F: 

g^g = 1 , 

V'J = - A, (4.3) 

F + F^ =^(V 'I^2 -
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For the action of the Susy W Z W - a model we take [55,56] 

S = I J d?xd^e Tr en£)^$t£)^$) ^^^d^Q Tr [ ( i?^$t P ^ $ ) # t 4 ]̂  

(4.4) 

where is a real parameter and the superfields $ and $ are unitary matrices 

and so satisfy $^ $ = $ = 1. As in the pure bosonic model, the 'dot' denotes 

part ial derivative w i t h respect to the additional variable t. The supercovariant 

derivatives are defined by 

i^.^V ( d e , -f 2 ( ^ i 5 x . + ^ 2 5 x 3 ) \ 
= de + ipe = , (4.5) 

where dg. = , = ^ and where we have introduced the two-dimensional 

7-matrices defined by 

/ i o \ f ^ 

The first term in (4.4) is the Susy extension of the U{N) a model action of the 

superfield $. The second contribution in (4.4) is the Susy WZW-te rm in which the 

matrix-valued superfield ^{xi,X2,0i,92) has been extended to ^(xi,X2,t,6i,92), 

where the additional variable t satisfies 0 < t < 1. As in the previous chapter, 

following W i t t e n [25], we choose the boundary conditions of this extension to be 

such that 

^xi,X2,l,01,02) = Hxi,X2,du92) and ^xi,X2,Q,01,02) = K, 

where i i ' is a constant unitary matrix. 

I t is convenient to change the Euclidean variables xi, X2 to the holomorphic 

and antiholomorphic variables 

X± = Xi i: iX2-

Also, we introduce the similar conventions for the spinor components 0i, i.e. we 
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define 

9± = 9i ± id2, 

and we write the helicity components of the two-component spinor tp as 

In terms of these conventions, our superfield (4.1) and its hermitian conjugate 

can be rewritten as 

$ = ^ [ 1 - + S-'4>+ + l^-^F], (4.6) 

and 

$ t = [ 1 - 9+i;l + 9-^1 \9-9+F^\gl (4.7) 

Also, the constraint (4.2) implies that 

g^g = 1 , 

4 = - ^ T > (4.8) 

F + F^ = 2 ( ^ i V + - V ' l ^ - ) -

Moreover, we defiire 

which, using the above expressions, can be wri t ten as 

P ± = % + i9±d±, (4.9) 

where de^ = ^ and d± - From the above definitions, one can easily show 
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that 

= idxi > 

D+D+ = id+, D-D- = id-, (4.10) 

{D+,D-} = 0, Di = -D+. 

According to the standard rules of Grassmannian integration, we have 

/ d92d9i 9i92 = / d9+de- 9-9+ = 1, (4.11) 

and f rom the relation 9± — 9i± i92, we have 

9-9+ = 2i9i92. (4.12) 

Equations (4.11) and (4.12) thus imply 

d'^9 = d92d9i = 2id9+d9. 

A t this stage, the action of the Susy W Z W - a model (4.4) can be rewritten as 

5 = ^ y " d^xd9+d9- Tr ( I > + $ t £ ) _ $ _ D-^^ D+^) 

- ik f d^xd9+d9- Tr \{D+^^ D-^ + £ ) + $ ) <|t !• 

(4.13) 

Next we perform the integration over the anticommuting variables in the ac­

t ion (4.4). Thus, we see that only the coefiicient of the quadratic term in the 

expansion of the Lagrangian in (4.4) in powers of 9 contributes to 5. Also, we 

eliminate the auxiliary field (using its equations of motion) and after a couple 

65 



of pages of algebra, we find that 

S = So + ] f d'^xTv [iij^pip + ii^^g^pg^ + -M^Toi^) 
A J 4 

j.2 

+ —{tp^tp)'^ - ikip^j^j'^ipg^d^g], 

(4.14) 

where 

So = \ J d'x Tr {d,,g^d,,g) - \ j Tr e^'^'Pig^d^g g^d,g g^dpg). (4.15) 

Notice that 5*0 is exactly the action of the purely bosonic model defined in the 

previous chapter w i th A — ik. Clearly, when A; = 0, S reduces to the action of 

the Susy a model without the WZW-te rm. 

The equations of motion corresponding to (4.4) can be easily shown not to 

depend on our extension used in the definition of the WZW-term, but be given 

by 

e^"'D,,{^^D,^) - kD,,{^^D,,^) = 0, (4.16) 

which can be rewritten in the form 

(1 - A)£)+($^£)_$) - (1 + X)D-{<^^D+^) = 0, (4.17) 

where A = ik. Again, i t is clear that when k = 0, the equations reduce to the 

equations of motion of the Susy cr model 

D+{<j)^D.-4>) - D-{(j)^D+(l>) = 0, (4.18) 

where ^ denotes the corresponding superfield which is required to satisfy the 

constraint (p^cp = 1. 
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Observe that i f we define 

A+ = ^ $ ^ I > ± $ , 

which satisfy the zero-curvature condition 

D+A- + D-A+ + 2{A+,A-} = 0, (4.19) 

and consider 

C± = (1 ± X)A+, 

then equation (4.17) becomes 

D+C- - D.C+ = 0. (4.20) 

However, f rom (4.17) and (4.19), i t is easy to see that 

D+C- + D-C+ + 2{C+,C-} = 0. (4.21) 

This means that there must exist a matrix superfield G which satisfies the con­

straint G^G = 1 and is related to C by 

C± = ^G^D+G. 

This matr ix superfield G can then be expressed in terms of the component fields 

gjipi and F. Moreover, equations (4.20) and (4.21) together guarantee that the 

Susy WZW-cr model is integrable [28 . 
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Returning to (4.17), we see that the equations of motion can be resolved into 

the components 

d+i:+ + ^-{l + \)Wd+g,^+] - '-{1^\){^.F ^ FH-) = 0 

d-i>- + i ( l - A) [g^d-g, ^ _ ] -h ^ ( 1 - A) ( ^ + F + F^ij+) = 0 

{l-X)[d+{g^d-g) + id+iM+)] + {l + \)[d-{g^d+g) + ia_(^_^_)] = 0 , 

(4.22) 

w i t h F given by 

F = {1 + A)V'+V'- - (1 - A ) ^ _ ^ + . 

This shows that they describe a rather complicated system of coupled bosonic and 

fermionic fields. I t is easy to see that [28] the last equation in (4.22) corresponds 

to the conservation of the Noether currents J+: 

d+J- + d-J+ = 0, 

where 

J_ = ( 1 - X){g^d-g + itP+ij+), 

J+ = ( 1 + \){g^d+g + Z^P-TP-). 

I n the next two sections, we wi l l present solutions of the Susy a model equations 

of motion (4.18) and of the equations of motion of the Susy WZW-cr model (4.17). 

4.2 S O L U T I O N S O F T H E S U S Y cr M O D E L 

To construct solutions of the U(N) Susy cr model, we wi l l follow a procedure 

very similar to the one used to construct classical solutions of the purely bosonic 

U{N) a model [29], which we discussed in the second chapter. First we need to 

prove a generahsation of Uhlenbeck's factorisation for the Susy cr model. To do 
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this we assume that (po is a given solution of (4.18) and that i? is a projector 

which satisfies 

RA^_{1 - R) =0, 
(4.23) 

(1 - R){D-R + A^R) = 0 , 

where 

Then, the factorisation states that 

(Pi = ^ o ( l - 2R) (4.24) 

is another solution of (4.18). To prove this i t is sufficient to note that 

Al = ^4>\D-(t>i = A - + D-R, 

A\ ={Aiy = Al - D+R. 

Thus 

D+Al - D-Al - D+A^ - D-AI + D+D^R + D-D+R. 

As (j)o is a solution of (4.18) and {D+,D-} = 0, we see that the right hand 

side vanishes and that (pi satisfies the equations of motion (4.18). Notice that 

we have proved that solutions can be constructed in this way. However, we don't 

know whether this procedure gives us all solutions of these equations. In the 

purely bosonic case, when we restrict ourselves to solutions of finite action, this is 

guaranteed by Uhlenbeck's theorem but we don't know whether her theorem can 

be extended to cover also the Susy case. 

Applying the above mentioned procedure several times enables us to construct 

new solutions f rom any given one by successively adding new projector factors 

corresponding to Uhlenbeck's unitons; here, in what foUows, we wiU call them 

Susy unitons. 
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We are now ready to construct classes of solutions for the U{N) Susy cr mod­

els. The simplest of these are the Susy one-uniton solutions (Susy self-dual so­

lutions); namely, those obtained f rom (4.24) w i th (pQ a constant (we choose 

h = 1), i-e. 

= 1 - 2R, (4.25) 

where 

(1 - R)D-R = 0. (4.26) 

The simplest solutions of this equation are those for which 

R = P{V) = V{VW)-^V\ (4.27) 

where 1/ is a maximal rank matrix superfield which satisfies 

D-V = 0. (4.28) 

The solutions of (4.28) are of the form 

V = Vo{x+) + i9+V-{x+), (4.29) 

where VQ is a holomorphic maximal rank bosonic matrix and V_ is any holomor-

phic fermionic matr ix. Such solutions were first considered by D'Adda et al. [16 

and Din et al. [48] i n their studies of Susy grassmannian a models. 

To construct more general solutions of the U{N) Susy a-models, we follow 

the steps used in ref. [29] by adding Susy unitons to the Susy one-uniton solution 

constructed above. So a Susy ^-uniton solution wi l l be of the type 

(f>e = K{1 - 2Ri){l - 2R2) ••• (1 - 2Ri), (4.30) 

where i ^ ' is a constant matrix, Ris are projectors which satisfy (4.23) for the 

corresponding AlT^ = I ^ l - i ^-(pi-i and £ represents the Susy uniton number. 
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The method used in ref. [29] consists of constructing a set of mutually em­

bedded vector subspaces equivalent to the so-called holomorphic basis sequence 

of DZ type [46]. Applying this technique, we w i l l first construct some Susy non-

self-dual grassmannian solutions. Some of these solutions wi l l be different f rom 

those discussed by Din et al. [48]. Then, we w i l l add an additional Susy uniton 

to these solutions and construct some Susy non-grassmannian U{N) solutions. 

Before constructing such solutions, let us give a simple example of a Susy 

non-self-dual CP^~^ solution. Consider the matrix 

F = [ f , d + f ) + i0+[d+f , a i / ) r , (4.31) 

where / is an holomorphic bosonic vector {d-f = 0) and where { f , d + f ) stands 

for a N X 2 matr ix whose first column is / , and T is given by 

/ r „ ri2 
r = 

V 0 r22. 

where r i i ,r i2 and r22 are fermionic constants. I f riiri2 = riir22 = 0 and, in 

addition, i f 

V = f + i0+rnd+f, 

then 

D+V =id+f(0+ + Til) 

( 0 
= iF 

\0+ + Vii 

Thus as P{F)P{V) = P{V), we see that 

(1 - P{F))D±P{V) = 0. (4.32) 

We can now take 

(̂ 0 = (1 - 2 F ( F ) ) , and R = P{V). (4.33) 
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Then as D-F = D-V — 0, i t is easy to check that (4.23) is satisfied and so 

= (1 - 2P{F)){1 - 2P{V)) = ( l - 2{P{F) - P{V))) (4.34) 

is a new solution of (4.18). This is actually a Susy <DP^~^ solution of the U{N) 

model spanned by a regular vector (i.e. a vector which possesses a projector) 

u = { 1 - P{V))[d+f + i0+{Ti2d+f + T22dlf)]. 

To generalise the above construction, we start f rom a regular superholomor-

phic matr ix 

Vi = i^i(a;+) + i0+Gi{x+), w i th D-Vi = 0, 

where i ^ i is a maximal rank bosonic matrix and Gi a fermionic matrix. Next 

we construct another superholomorphic regular matrix 

V2 = ( F I ( X + ) , F2{x+)) + I0+[GI{X+) , G2{x+)), 

such that 

D+Vi = V2UJ, 

for some fermionic holomorphic matr ix u: 

u) = u)Q + i0^u)-. 

This condition imposes some restrictions on F2 and G2, namely: 

iGi = ( F I , F2)uQ, 

d+Fi = {GI , G2)uo + [FI , i^2) 

(4.35) 
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Thus we can put, in f u l l generality, 

G2 = (FI , ^ 2 ) ^ 2 + G'2, 

for some matr ix A2 and for some G'2 orthogonal to Fi and F2: 

( F I , î ^2)^G'2 = 0. 

I t is easy to check that the restriction (4.35) implies that F2 must be such that Fi 

and F2 together span Gi. Moreover, d+Fi must be spanned by F\, F2 and G'2-

Given the matr ix V i , i t is easy to construct V2 which satisfies (4.35) and which 

is such that 

P{V2)P{Vi) = P{Vi). 

For such a V2, we see that 

(1 - P{V2))D+P{Vi) = 0, 

which by (4.23) and (4.26) implies that 

</. = (1 - 2P{V2m - 2P(Vi ) ) (4.36) 

is a solution of (4.18). As P{V2) and PiVi) commute, we see that (p is grass­

mannian (0^ = (/)). 

Applying the method described above, i t is easy to construct a set of super-

holomorphic matrices 

V ^ i , V 2 , - - - ,14 

w i t h D-Vi = 0 for all i, such that 

p{v,)p{y,) = p{v,) 
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for all i > j and 

(1 - P{V,))D+P(Vj) = 0 z > j , 

and which moreover satisfy 

(1 - P{V,))D^P(V,) = 0 i > j . 

These matrices are equivalent to what is called in refs. [29,46] a holomorphic basis 

sequence of DZ type. Defining 

(Pi = (1 - 2Pk){l - 2Pk-i) •••{!- 2Pi), (4.37) 

as in the purely bosonic case [29], we prove by induction that 

= ^ P - P ( I 6 ) , 
j=i 

and 

P ( V - - I ) A L = 0 for all i. 

From Uhlenbeck's factorisation, we can now conclude that each P{Vi) is a Susy 

version of a basic [44] uniton for the solution (pi-i\ and, (pi, given by (4.37), is a 

solution of (4.18). 

A l l the solutions constructed so far are grassmannian solutions of the Susy 

U{N) cr models, but they are different f rom those constructed by Din et al. [48] 

as all our expressions are given by well defined projectors. 

To construct non-grassmannian solutions, we must add a further Susy uniton 

to the solution (4.37). To do this let us first define, for all j such that 1 < j < ^, 
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the "largest" matr ix Yj such that 

where each aj is a rectangular matr ix and V^'s are so chosen that 

(1 - p m o + Y , = 0. 

Next we construct 

<fj = (1 - P{Vj_,))Yj, 

and taking 

e+i 

for an arbitrary regular superholomorphic matrix bj, we find that 

1 
= [](! - 2P{V,)){1 - 2PiW)) (4.38) 

is a non-grassmannian solution of (4.18). The proof of this statment is similar to 

the one given in the purely bosonic case [29]. Thus first we observe that 

iplD-P{Vk) = 0 for all j ,k 

and so that 

if^Ai. = 0 for all 

thus demonstrating that the first equation in (4.23) is satisfied. Moreover, as 

D-P{Vk)<Pj = 0 for all k ^ j - 1, 

we see that 

A^^j = P{V,.i)D-P{V,_^)Y^. 

Then few lines of algebra show that the second equation of (4.23) is also satisfied 

75 



as [29 

(1 - P{W)){D_W + AiW) = - - ^ ( ^ ) - P{Vi-l))D-P{V^-l)Yiai = 0, 

which completes the proof. 

4.3 SOLUTIONS OF T H E SUSY W Z W - a M O D E L 

As we said in previous chapters many two-dimensional models are known to be 

integrable, as one can associate wi th them linear systems (the Lax-pair formalism) 

and so they possess an infinite number of conservation laws. In ref. [28] i t was 

shown that the Susy W Z W - a models possess these properties. 

As in the purely bosonic model discussed in the previous chapter i t is easy to 

see that the solutions of the Susy W Z W - c r model are very closely related to the 

solutions of such a linear system. To see this, consider the Lax-pair equations for 

the Susy U(N) a model: 

= * j - ^ , = * ^ — ^ , (4.39) 

where 

and where '9{x^,x-,6^,6-,\) is a NxN matrix-valued superfield, and A is an 

additional complex parameter. Then, exactly as in the purely bosonic case, the 

unitar i ty of (f> provides us w i th some further conditions on [54], and i f A is 

imaginary, then 4* is unitary. Moreover i t is easy to see that, i f (j) satisfies (4.18), 

$ = * (4.40) 

satisfies (4.17). This shows that the solutions of the Lax-pair problem for the 

Susy U{N) a model provide us w i th a simple way of constructing solutions of the 

Susy W Z W - a model. 
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Notice that, like in the previous chapter, we could have chosen to construct 

the Lax-pair problem in the form 

where 

B± = \D±<j>(l)l 

Then as (f>^ is a solution of (4.18), i t is easy to show that x(—A) satisfies (4.17) 
for the imaginary value of A. 

Moreover, as in the previous chapter, i t is easy to prove that the solutions '5' 

of (4.39) are related to the solutions x of (4.41) by 

X(A) = <^*-^(^). (4.42) 

Following the construction discussed in the previous chapter, we define 

Ke = Ke^iil - a Re), (4.43) 

where a is a complex number (which does not depend on i ) and Ri's are the 

projectors which satisfy (4.23). Then 

= {1 - bRi)K[}^, (4.44) 

where b is the complex number, which satisfies 

a + b-ab=0. (4.45) 

As a result we can now deduce that 

K^^D-Ki = bAi, 
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where 

4 = \<t>\D±h. (4.47) 

The proof is exactly the same as the one given in the previous chapter for the 

purely bosonic case. 

As an immediate consequence, we see that i f we choose 

2 A 2 a = r , 0 = 
1 + A ' ^ 1 - A ' 

the condition (4.45) is satisfied and 

^ = Ki (4.48) 

is a solution of (4.39) corresponding to (f)^. 

4.4 PROPERTIES OF T H E SUSY SOLUTIONS 

After we have shown how to construct solutions of the Susy U{N) a model 

w i t h and without the WZW-te rm, i t is interesting to study some of the properties 

of these solutions. I n particular, we would like to compute the values of the action 

corresponding to these solutions. I t would then be interesting to check whether 

these values are related to the values of the action of the purely bosonic U{N) a 

models w i th and without the WZW-te rm, studied in the previous chapters, and 

whether they can be related to the topological charges of the projectors i^^'s which 

appear in the construction of the solutions. Moreover, we would Uke to know how 

the values of the Susy action are related to the properties of the superholomorphic 

matrices Vi's. A further interesting point would be to determine whether these 

solutions are unstable. 
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Before we proceed to do this, let us recall that in the purely bosonic U{N) a 

model, the value of the action of a ^-uniton solution is given by the sum of the 

topological charges of all the projectors corresponding to each uniton. To check 

whether this property can be extended to the Susy models discussed above, we 

consider the action of the Susy U{N) a model 

So = \ j d?^ d9+d9_ Tr {D+(f>^ D-4> - D_(f>'^ D+(f>) 

= - 4 J d^xde+de-Tr {A+A-), 

(4.49) 

where 

A± = ^(l>^D±4>-

Then we look at a Susy solution constructed by the factorisation procedure 

d) = <f>o{l - 2R), (4.50) 

where is a given solution of the Susy a model and i? is a projector which 

satisfies (4.23). We recall f rom the previous sections that for this solution 

A+ = A l - D+R, 

A_ =A°_ + D-R, 

where = ^<l^lD±h- For the solution (4.50), the action (4.49) becomes 

So = - i j d'xde+dd- Tr [A^A^ - D+RD-R + A^D-R- D+RA^]. (4.51) 

Using (4.23) and the trace properties, i t is easy to see that 

Tr D+RA^_ = - Tr D+R{1 - R)D.R, 

Tr A^D-R = Tr D+R{1 - R)D-R. 
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Then a few fines of algebra show that 

So SoM + 4 J cfix de+dO- Q, (4.52) 

where S'o(</'o) is the action of the Susy a model for the solution (po and where 

Q = Tr {D+R RD-R + D-R RD+R) (4.53) 

is the Susy topological charge density of the projector R. A t this stage we conclude 

that, as in the purely bosonic model, the action of a Susy ^-uniton solution can 

be computed by adding the Susy topological charge densities in superspace of all 

projectors defining each uniton and so the action is given by 

So 
f ^ 

= 4 / d^xde+dO-
i=i 

(4.54) 

where the Susy topological charge density Qi is given by 

Qi = Tr {D+Ri RiD-Ri + D-Ri RiD+Ri). (4.55) 

Let us now calculate the value of the action (4.49) for a Susy ^-uniton solution 

^ K{1 - 2Ri){l - 2R2) ••• (1 - 2Ri). (4.56) 

As we have seen, all we need to do is to compute the topological charge density 

(4.55) for every projector R-i in (4.56). To do this we write 

Ri = P{V,) = V - ( 7 / V - ) - V / , (4.57) 

and normafise Vi in such a way that 

V,ID-V, = 0. 
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Then we find that 

Qi = - Tr \^D^v}D-Vi\Vi\-'^ + D-V}(\ - Pi^i))D^Vi\Vi\-

= Tr D+(^D^\Vi\^ \Vi\-^). 

Thus (4.54) becomes 

5o = 4 y" d^xde+dd^ Tr D+(^D-\Vif \Vi\-^y 

Performing the 9 integration using the property that for any matrix-valued su-

perfield X 

J d9+d9_X - de^de_X = D+D_X \e^^e.=o, (4-60) 

we find that 

(4.59) 

So e+=e-=o 

I f we now write 

r0\2 

Vi = + i9+V- + i9-V+ - f 9-9+V,\ 

and use the properties (4.10) and the fact that for any invertible matrix A 

d^, Tr (In det {A)) = Tr {d^A A'^), (4.61) 

then we end up w i t h 

So =4 J d^xd+d- In det\Vl 

= J d^xdf^d^ In det\V.^\\ 

which is, in fact, the action corresponding to the purely bosonic projector 

In the particular case corresponding to the Susy one-uniton solution given by 

(4.62) 
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(4.25),(4.26) the action of the Susy a model is given by 

So = - i J d^xde^de^ Tr {D.RD+R) 

= - 4 I d^x\ D+D- Tr {D-RD+R) 

(4.63) 

where we have used the property (4.60). I f we now reexpress the projector R in 

terms of the superholomorphic matr ix V, which is given by (4.27)-(4.29), we find 

that 

So 4 / d'x D+D- Tr [D-V^{1 - P{V))D+V \V\-^] 

I 

' + = 6 i _ = 0 

2 n I T / 1 - 2 D+D+[D-D-\V\'^ \V\-'^ - D-\V\^ D-\V\-^] 

and so that 

5o = / d'^x d^df, In det\Vof (4.64) 

Of course this is the value of the action for the corresponding solution of the 

purely bosonic U{N) a model [47]. We see that there is no fermionic contribution 

to the action. In fact, this result has already been obtained by Din et al. [48] for 

the case of the Susy ( D P ^ - ^ model. 

Next, we calculate the action of the Susy WZW-cr model defined by (4.13). To 

do this, we have to find a convenient way of computing explicitly the contribution 

of the Susy WZW-te rm. As we have already mentioned before, for the extension of 

the superfield $ to $ we w i l l follow the procedure given in the previous chapter 

for the purely bosonic model. 

We start by considering the solution of (4.17) constructed by solving (4.39) 

for the Susy one-uniton configuration 

0 = (1 - 2R), 
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namely: 

where 

* = (1 - ai?) . 

D-RR = 0 and a = 

(4.65) 

1 + A 

For our extention we can now take 

$ ( a j + , x _ , t , ^ + , ^ _ ) = ( 1 - aRf 

= (1 - a{t) R) (4.66) 

where 

JatR 
^ t 

a{t) = (1 - e -*) . 

w i t h 

ia = l n ( l - a) = In 
A - 1 

A + 1 

I t is now easy to show that for this solution, the action of the Susy WZW-cr 

model (4.13) is given by 

S = - J d^xde+dO^ Tr {D-RD+R)\a\^ 

+ k f d^xde+dO- a\a(t) 2 Tr \(D+RD-R + D-RD+R)R] 

1 

= - |a|2 - J dt ak\a{t)\'^ J d^xdO+dO- Tr (D-RD+R). 

0 

Using the relations between a and a, and wri t ing A = ik, we can perform the 

t integration and obtain 

5 = -4h{k) f dhde+dd- Tr (D-RD+R) 
J (4.68) 

^h{k)So, 

where SQ is the action of the corresponding solution of the Susy cr model without 
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the W Z W - t e r m given by (4.63) or (4.64), and where 

h{k) = 1 - t a n - i ( f c - ^ ) (4.69) 

Notice that h{k) is exactly the same factor as in the purely bosonic W Z W - a 

model established in the previous chapter. As we have already mentioned in that 

chapter, i t is important to note that as in the purely bosonic case the value of a is 

defined only up to the addition of an integer multiple of 2 TT and, as a consequence, 

the value of (4.67) is not uniquely defined. 

We see that the action of the solution of the Susy WZW-cr model is given by 

the action of the corresponding solution of the Susy a model multipUed by h{k). 

Moreover, as we have shown above, the value of the action of the solution of the 

Susy W Z W - a model is given by the action of the corresponding solution of the 

purely bosonic U(N) a model multiplied by the same factor h{k). 

Next we study one of the most important properties of our Susy solutions, that 

is their stability under small fluctuations. Following the procedure of ref. [43], 

which we used in the previous chapter for the purely bosonic case, we consider 

eX (4.70) 

where $ is a solution of the equations of motion of the Susy WZW-cr model 

(4.17), and where X is an antihermitian {X^ = - X ) matrix-valued superfield. 

Then i t is easy to check that the first order terms in e vanish because of the 

equations of motion and that the lowest nonvanishing terms of 

8S = 5 ( $ ' ) - 5 ( $ ) 
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are given by: 

<55 = ^ J d^xd^OTr \^2D+XD-X + (1 + X)^^D+^{XD-X - D - X X ) 

- (1 - \)^^D^^{XD+X - D+XX)V 

(4.71) 

where A = ik. However, as we have shown before, the solutions # of the Susy 

WZW-cr model are related to the solutions ^ of the Susy cr model without the 

W Z W - t e r m by 

(1 ± A ) $ ^ D ± $ = (l>'^D±(j). (4.72) 

Using this property we find that (4.71) takes the form 

8S =e^ J d'^xde+dO- Tr D-XD+X 

- ^(I>^D+(I) {XD-X - D - X X ) + ^(f>^D^(l) {XD+X - D+X X ) 

(4.73) 

Let us point out that had we started wi th a Susy model without the W Z W -

term {i.e. considered (4.13) w i t h k — 0) and used the corresponding equations of 

motion of the model we would have got exactly the same stability equation (4.73). 

Thus we see that the negative fluctuation modes for $ are exactly the same as 

the negative modes for (j). 

Let us now prove that , as for the purely bosonic model [43], all the Susy i-

uni ton solutions, given by (4.56), are unstable. To see this, we consider the field 

configuration given by 

e e. 

<t>f = 11(1 - 2^0* = - ^ ( ^ ) ^ O ' ( ^ • ^ ' ^ ^ 

where 

a(0 = (1 - e-*). 

Notice that for i = 1 this corresponds to (4.56). I f we now compute the action 
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of the Susy a model without the WZW-te rm for this field configuration we find 

that 

S[4i^) = d'xd9+d9_ Tr - D.<j>f^ D^4>f). 

Using relation (4.46), i t is easy to show that 

SW<") = S(«M^ = s ( « ( i ^ f l M ) . (4.75) 

As this function decreases as we move away from t = I , we can conclude that all 

Susy ^-uniton solutions of the Susy a model are unstable. 

To find the corresponding negative modes, we first perform the integration 

over ^'s in equation (4.73). Thus we consider 

cj) = Q[\ - 9^^!;- ^ 9-i^+ + U-9+F], (4.76) 

Also, we consider a general fluctuation X in the form 

X ^ Xo + 9+X- + 9-X+ + 9-9+Xi. (4.77) 

The condition X^ = -X thus implies 

^ 0 = ~ ^ 0 , 

X^ - X ^ , 4 _ 
± -

X{ = - X i . 

Then a few pages of calculation shows that the expression for 6S, equation (4.73), 
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after the integration over ^'s becomes 

8S ^e' I d^x Tr [-d-Xod+Xo - d-Xo [{^Q^d+Q + ^ V - V ' - ) , ^ o ] 

- d+Xo [{\Q^d-Q + ^ V + V ' + ) , ^ o ] 

+ zd-X-X- + 2i{^Q^d-Q + ^ i ^ + ^ + ) X _ X _ 

+ id+X+X+ + 2i{^Q^d+Q + '-i>-i;-)X+X+ 

+ [Xo, 9 - X _ ] + [X_,d.Xo] } - [Xo, d+x+] + [X+,d+Xo] } 

+ ^ { a _ V ' - [ X o , x _ ] - a + V ' + [ ^ o , ^ + ] } 

1 

(4.78) 

Clearly, in general, this expression is rather complicated but i f we choose our 

fluctuation X to be independent of ^'s, i.e. 

X - = X + = X i = 0, 

then bS takes the form 

^5 = - dx^ Tr \d-Xod^Xo + a_Xo [ (^Q^a+Q - f ^ V - ^ - ) , ^o ] 

,1 
(4.79) 

-h a+Xo [ {-Q'^d-Q + 2^+^+)' ^ o ] 

But even this expression is difficult to study in f u l l generality. Thus, to sim­

pl i fy the calculations even further let us look at the simplest Susy one uniton 

solution and the corresponding purely bosonic solution: 

,/> = 1 - 2i?, Q = 1 - 21P, (4.80) 
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(4.81) 

w i t h the projectors R and IP defined by 

R = h{h^h)-'h^, p = / ( / v ^ v ^ 

where 

h = f{x+) + ie+g{x+). 

From (4.76) and (4.80) we deduce that 

= 2 i ( i - p ) 5 ( / t / ) - v ^ 

^ + = 2 i / ( / t / ) - i g t ( i _ jpy 

As a consequence we see that 

= V - V * - = 0, 

and equation (4.79) now becomes 

SS = j j d'x Tr [d^xld^Xo - Q^d,,Q{d^XlXo - X J a ^ X o ) ] , (4.82) 

which again reproduces the stabiUty equation for the purely bosonic models estab-

hshed in the previous chapter. This shows that any negative mode for the bosonic 

one uniton solution is also a negative mode for the corresponding Susy one uni­

ton solution. I n general we expect further negative modes. However, we expect 

these modes to be purely bosonic in nature, i.e. we believe that the fermionic 

fluctuations do not lead to any new instabilities. A l l our attempts to find such 

instabihties have failed, as they have always given zero modes of the fluctuation 

operator. The general proof of this property is s t i l l an open question. 



5. Solutions of a Boson-Fermion Model Based on 

the Susy WZW-cr Model. 

So far we have studied classical solutions of the Susy U(N) a models wi th 

and without the WZW-te rm. We have found that the addition of fermions to the 

purely bosonic U{N) a models does not introduce any further instabilities but 

that i t leads only to the appearance of further zero modes. 

The Susy versions of sigma models provide interesting examples of interacting 

systems of bosons and fermions. In this chapter, we wi l l investigate classical 

solutions of one such model. This model is based on the Susy version of the 

U(N) a model w i th the W Z W - t e r m studied in the previous chapter. I t describes 

a coupled system of boson and fermion fields wi th their interactions fixed by the 

requirement of supersymmetry. 

We recall f rom the previous chapter that the equations of motion of the Susy 

WZW-cr model can be resolved into the components 

d+i^+ + ^{l + X)[g^d+g,i;+] - ^(1 + A ) ( V ' - F + =o, 

d-ij- + i ( l - A ) [ 5 t a _ ^ , ^ _ ] + '-{1-X){i^+F + F V + ) = 0 , 

{l-X)[d+{g^d-g.) + ia+(V'+V'+)] + {l + \)[d4g^d+g) + ic>_(V'-V-)] = 0 , 

(5.1) 
where 

F = {1 + \)^+^- - (1 - A ) V ' - V ' + -

In fact, the equations given above describe a rather complicated system of cou­

pled bosonic and fermionic fields. To understand this system better, we consider 

the linearized fermion equations, i.e. the equations for fermions in the fixed back­

ground of a bosonic field g, which satisfies its own, purely bosonic, equations 

of motion. These equations come f rom (5.1) by neglecting all higher than linear 
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terms in Tp±, and so are given by 

+ (1 + X)[^g^d+g,ij+] = 0 , (5.2) 

- f (1 - X)[^g^d-g,ij.] = 0 , (5.3) 

and 

(1 - X)d+i9^d^g) + (1 - f X)d4g^d+g) = 0, (5.4) 

together w i th the constraints 

g^g = l , 4 = -V-T- (5.5) 

Clearly, equation (5.4) shows that for g we should take a solution of the purely 

bosonic U{N) cr-model w i th the WZW-te rm discussed in chapter three. 

I t is important to notice that had we considered the Susy cr model without 

the W Z W - t e n n , i.e. w i t h the action given by 

5 = d^xdd+dO- Tr {D+<t>'^ D-(t> - D-cj)'^ D+<f)), 

we would have got the following equations of motion: 

<9_̂ _ + i [ Q t ^ _ g , + 1 (,/,+F + FH+) = 0, (5-6) 

d+iQ^d-Q + iiP+ip+) + d-{Q^d+Q + i V - ^ - ) = 0 , 

where 

F = i/i+V- -

I f we now neglect all higher than linear terms in ip± we get the corresponding 

hnearized fermion equations: 

+ ^[Q^d+Q,ij+] = 0 , (5.7) 
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+ \ [Q^d-Q,7P-] =0 , (5.8) 

and 

5+(gta_g) + d-{Q^d+Q) = o, (5.9) 

together with the constraints 

Q^Q = l, 4 = -V 'T- (5.10) 

Equation (5.9) shows that Q must be a solution of the purely bosonic U{N) a 

model without the WZW-term, i.e. this time Q does not depend on A. 

In the next section, we will present some classes of solutions of the above 

hnearized Dirac-hke equations (5.2)-(5.3) for which g solves (5.4). As a particular 

case, we will look at the corresponding solutions of (5.7)-(5.8) for which Q solves 

(5.9). In the following section, we will study some properties of these solutions 

and show that a class of the obtained solutions are related to the components of 

the energy-momentum tensor of the purely bosonic U[N) a model. In addition, 

we will prove that some classes of these solutions are traceless. 

5.1 F E R M I O N S O L U T I O N S 

Before we discuss solutions of the linearized Dirac-like equations, let us recall 

briefly the procedure of constructing solutions of the WZW-cr model given in 

chapter three. In that procedure, following the original ideas of Uhlenbeck [42], 

we have mentioned that any solution of (5.4) can be factorised as 

9t = K{1 - aRi){l - ai?2) • • • (1 - aRe), (5.11) 

where i f is a constant matrix, I is an integer (the uniton number), Ri's are 

91 



projectors which satisfy 

ReAt-\l - Re) =0 , 

(1 - Ri){d^Re + At'Re) =0 , 
(5.12) 

and where A±. are given by 

At = -gld-ge, ^+ = -9ed+ge, (5.13) 

where a and b are complex numbers which satisfy 

a + b — ab = 0. (5.14) 

In the hmit a = 6 = 2 we see that ge, a solution of the WZW-a model, becomes 

Qe, a solution of the U{N) a model without the WZW-term, i.e. a solution of 

(5.9). Moreover, these solutions possess an important property, namely their Ai_ 

is given by [43 

A'_ = (5.15) 

We are now ready to construct some classes of fermion solutions for the sys­

tems (5.2)-(5.3) and (5.7)-(5.8) corresponding to the above bosonic solutions. To 

start off let us observe that had we considered grassmannian bosonic solutions 

(i.e. those ge for which gj = ge) then we have to require that a = b. However, 

from (5.14) we see that this requirment leads to a — b — 2 and that this cor­

responds to the solutions Qe of the model without the WZW-term. This claim 

agrees with what we stated at the end of chapter three, namely 

(5(A))t = ^(A*) ̂  g{X). 

Thus, since there are no nontrivial grassmannian solutions for (5.4), there are no 

corresponding fermion solutions for the Unearized equations (5.2)-(5.3). 
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However, for the grassmannian solutions Qe of the purely bosonic U{N) a 

model without the WZW-term, it is easy to see that 

7/̂ + = ^ - = iQe (5.16) 

solve the linearized equations (5.7)-(5.8). The simplest solution of this class is a 

one-uniton solution (we drop the irrelevant constant matrix K): 

Qi = {I - 2Ri) (5.17) 

with the projector Ri defined by 

^1 = /(/V)"V^ (5.18) 

for some holomorphic A^-component vector /(a;+). 

However, in the previous chapter, in which we studied the stability properties 

of the Susy solutions of the Susy a model with and without the WZW-term, we 

derived expressions for Tp±, namely 

=2iii ~ i?l)5(/V)-v^ 
(5.19) 

^ + = 2 z 7 ( / V ) - V ( l - ^ i ) , 

where the projector i?i is defined as in (5.18), and g = g{x-^.) is a grassmannian 

(anticommuting) A*"-vector of polynomials in x^. Then, a few lines of calcula­

tion show that the expressions (5.19) solve the hnearized equations (5.7)-(5.8) 

corresponding to the one-uniton solution (5.17). 

Next we present more general classes of solutions of the linear systems (5.2)-

(5.3) and (5.7)-(5.8). To construct them we consider 

= V - = (5.20) 
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where A± are given by (5.13) with 

1 + A ' 1 - A 

In this case, equations (5.2) and (5.3) become 

d+A- + [A+,A-] =0 , 

d-A+ + [A-,A+] =0. 

However, adding these two equations together we get 

d+A- + d-A+ = 0, 

which is the equation of motion (5.4) of the purely bosonic U{N) WZW-a model. 

Since (^±)^ = —A^, we see that 4'± given by (5.20) satisfy the constraint (5.5) 

and solve (5.2)-(5.3). 

Notice that the solutions (5.20) satisfy (5.2)-(5.3) up to an overaU multipli­

cation of tl)^ {i^-) by a function of x_ [x^) respectively. Notice also that the 

expressions (5.20) in which we can set a = 6 = 2 in the definitions of A± would 

solve the hnearized fermion equations (5.7)-(5.8). 

We are now ready to construct further solutions of the equations (5.2)-(5.3) 

and (5.7)-(5.8). To do this we introduce a method of generating new solutions 

from the old ones. Thus we consider 

(1) (5.21) 

Then it is easy to see that ^± given by (5.21) satisfy (5.2)-(5.3) if V' i^ For 

we can take 

(5.22) 
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which, as have shown above, are solutions of (5.2)-(5.3). Thus we find that 

(5.23) 

are new solutions of (5.2)-(5.3). Repeating this procedure many times we find 

that 

^+ = (^_)", ^- = [A^y (5.24) 

satisfy equations (5.2)-(5.3) for all integer values of n. However, to satisfy the 

constraint (5.5), we must multiply each solution by an appropriate constant for 

each n. Notice that the expressions (5.24) also solve (5.7)-(5.8), where we have 

to set a = 6 = 2 in the definitions of A±. 

5.2 P R O P E R T I E S O F F E R M I O N S O L U T I O N S 

Before we study various properties of the above constructed solutions, let us 

calculate first the energy-momentum tensor T^^ of the purely bosonic U[N) a 

model without the WZW-term, i.e. the model defined in terms of the Lagrangian 

density 

L = i Tr 5,,g^ ^^,Q. (5.25) 

For this model, it is easy to see that the energy-momentum tensor 
'^\iv is given 

by 

= ^ Tr [ a/,gt Q^Q + Q^Q\ Q^^Q _ dpQ^ dpQ]. (5.26) 

Clearly, T/uy satisfies 

Tfij^i — 0, Ti^tv — Tiifj,, dpTp,i, — 0, 

i.e. the energy-momentum tensor of the model is traceless, symmetric and con-



served. I f we now introduce the complex variables x±, we find that 

T = T , , , , + i T , , , , = Tvd-Q^d-Q. (5.27) 

However, we know that A± of the model are given by 

A± = ^Q^diQ. 

Thus, equation (5.27) can be rewritten as 

T = - 4 Tr A-A^. (5.28) 

From the above discussion, we see that the components of the energy-momentum 

tensor of the U(N) a model are related to our solutions of the corresponding 

linearized fermion background equations of the same model. 

To investigate some properties of these solutions let us consider first the one-

uniton solution given by 

Qi^il-aRi) with i?i = / ( / V r V ^ (5.29) 

For this solution, according to (5.15), it is easy to see that 

A_ = ^,R^ = ^ ^ ^ , {A-)' = 0, (5.30) 

where the operator P+ is defined in the same manner as in chapter two. In that 

chapter, we reported that all vectors P^f were orthogonal to each other. Thus 

for the one-uniton solution (5.29) we find that 

Tr {A-)"' = 0, for all n. (5.31) 
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Next we consider a simple two-uniton solution given by 

^2 = (1 - aRi){l - aR2), (5.32) 

where i?i is defined as above, and where 

R2 = Ri + 
{P^f){P+fy 

Then, due to (5.15), we see that for this solution 

A- =d-Ri + a_i?2 = 

(A-) 

\P+f\' \f? 

.2 f i p i f y (5.33) 

\f\' 

(^_)3 = 0 . 

This shows that for our simple two-uniton solution (5.32), the property (5.31) is 

also satisfied for all n. 

Given these results we may wonder whether this property holds for any number 

of unitons. Let us try to prove this property by induction on the number of uniton 

factors in a given solution. We have proved above that this property holds for a 

one- and (some) two-uniton solutions. Next we assume that any ^-uniton solution 

A- satisfies 

Tr (A_)'^ = 0. (5.34) 

Then the induction requires the proof that adding to this solution a uniton factor 

given by (1 — aR) where i? is a projector which satisfies (5.12), the result is still 

true, i.e. that 

Tr {A- + d-Py = 0. (5.35) 

To prove (5.35) we, first of all, expand {A- + 5_i?)". As in general A- and 

d-R do not commute we prove first the following lemmas: 
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Lemma (5.2.1) 

If i? is a basic uniton (antibasic uniton) [29], then 

(i?_)'M_ = 
{-1)PA-{R-A-)P, i f n = 2p; 

{-l)P{R-A-y+\ i f n = 2 p + l . 
(5.36) 

for all p, where i?_ = d-R. 

Proof: Let us consider the case when i? is a basic uniton. In this case we 

have 

RA- = 0. (5.37) 

For antibasic uniton we would have 

A_{1 - R) = 0. 

From (5.12) and (5.37), it is easy to see that 

{R-f = -{A-RR- + R-A-R), (5.38) 

which, in turn, imphes that 

{ R - f A - = -A-R-A. (5.39) 

The proof is now straightforward; we apply (5.39) sufficiently many times to the 

left hand side of (5.36). For example, if n = 2p, we have 

{R-fPA- = - ( i ? _ ) 2 p - 2 ^ _ i ? _ ^ _ = {R_fP-^A-{R-A-f 

= ••• = {-1)PA-{R-A.)P. 
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Lemma (5.2.2) 

For the projector R 

Tr (/?_)"• 
2{-1)PTT {R-A-)P, i f n = 2p; 

0, if n = 2p + 1. 
(5.40) 

Proof: Using (5.38), it is easy to verify that 

-2TT R { R - f P - ^ A - , n^2p; 

-2Tr i?(i?_)2P^_, n = 2p + l . 

Then when n = 2p -|- 1, we can use (5.36) and find that 

Tr (i?_)"' (5.41) 

Tr (i?_)'^ = - 2 Tr R{R_fPA_ = 2 ( - l ) P + i Tr RA^ {R.A_)P = 0, 

where we have used (5.37). On the other hand, when n = 2p, also we use (5.36) 

and (5.37) and find that 

Tr(i?_) '^ = - 2 Tr i ? ( i ? _ ) 2 p - M _ = 2{-l)P Tr R R^A-{R-A.)P-\ 

Then from the fact that 

RR-A_ = (/?_ - R-R)A- = R-A^, 

we get the required result. 

We are now ready to present our expansion 

Proposition 

For a general (non-commuting) A- and R- which satisfy the lemmas above 

n-l 

{A^ + R-r = j][(^-)"-^(i?-)ni?_(^-)"-'(i?-)'-'J + (^-r+(^-r> 
(5.42) 

k=l 

for all n. 
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Proof: Before we give a proof of this expansion, let us mention that we have 

guessed the form of (5.42) by applying REDUCE to expand {A- + i?_)^ for a 

few values of n. 

We prove our expansion by induction. It is clearly true for n = 1,2 and 

3. Assuming that it is true for n, we have to show that if we multiply (5.42) 

corresponding to n by another factor {A- + R-), we get the same expansion 

(5.42) in which n has to be replaced by (n -|- 1). To do this, we calculate 

7).-l 

(A_ + i?-)"(^_ + i?_) = ;^[(^-)"-^i?-) '+' + R-{A-r~'{R-y 
k=l 

71-1 
+ ^[(^_)'^-*Xi?-)^^- + R-{A-)''-\R-)''-'A-

+ (yl_)"+i + (i?_)"+i + (^_)^i?_ + {R.)''A.. 
(5.43) 

Then few lines of algebra show that this expression can be rewritten as 

7). 

{A- + R-y\A. + R-) = Y^ [(^-)"~^+^(i?-)^ + /?-(^-)"-'^+^(i2-)^-^' 

n - l 

+ ^ [ ( y 4 _ ) " - ^ ( i ? _ ) ^ y 4 _ + i?_(yl_)"-'=(i?_)^-M_ 

k=l 

+ (A_)"+^ + (i?-)"+' + {R-)''A. - i?_(A-)" 
(5.44) 

If we now use our lemma (5.2.1) and perform some simple manipulations, it is 

easy to show that 

71-1 71-1 

J2 [ (A_)"-^( i?_)*^^_ + R-{A-y'-''{R-)''-'A- + ( i i : _ ) M _ - i ?_ (^_ ) " = 0. 
k=l 

(5.45) 

Looking at (5.45) and (5.44) we observe that the remaining terms of (5.44) are 

nothing else but the expansion (5.42) for (n + 1) thus completing the proof. 

Having proved these two lemmas and established our expansion of the non-

commuting A- and R-, we are now ready to complete the proof that (5.35) is 
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satisfied for a,ll. n. To do this, we observe that from (5.42) we have 

n - l 

Tr (A_ + R-T = Tr ( 2 ̂ ( i ?_ )^ (^_)" -*= + ( ^ - ) " + (R-T). (5.46) 
i,—1 

However, from (5.34) we see that the second term on the right hand side of (5.46) 

vanishes and from (5.39) we find that 

n-l 

Tr ^ ( i ? l ) ^ ( A _ ) ' * - ^ = 
- ( - l ) P T r (i?_^_)P, i f n = 2p; 

0, if n ^ 2p + 1. 
(5.47) 

Finally, from lemma (5.2.2) and equation (5.47), we find that the remaining terms 

of (5.46) mutually cancel and so that (5.35) is satisfied for all n. 

So far we have proved (5.35) only for A- which correspond to the solutions in 

which all uniton factors involve only unitons which are either basic or antibasic. 

However, Wood [44] has shown that all uniton factors can be factorised further 

into finite products of uniton factors involving only basic (or antibasic) unitons. 

Hence our result holds in full generality. 
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6. CONCLUSION. 

In this thesis we have studied models which are known to possess many prop­

erties in common with four-dimensional non-abelian gauge theories; namely the 

two-dimensional sigma models. As these models are two-dimensional, all relevant 

calculations are simpler to perform than in four-dimensional non-abehan gauge 

theories. Al l studies in this thesis have been performed in Euclidean space, as we 

think of these calculations as providing the first step towards the quantisation of 

the theory in terms of path integrals. Because of this we have considered only 

the finite action classical solutions of the Euler-Lagrange equations of the the­

ory. We see that, in contradistinction to the four-dimensional non-abelian gauge 

theories case, the solutions of the self-duahty equations (instantons) and of the 

non-self-duality equations (non-instantons) for these models can be constructed 

very easily and explicitly. 

One of the main topics of this thesis was the construction of finite action 

classical solutions of the sigma models for which the target manifolds are group 

spaces; namely, the purely bosonic U{N) WZW-a models and the Susy U{N) a 

models with and without the WZW-term. However, for completeness, in chapter 

2, we presented a brief review of the well known €P^~' and grassmannian models 

and their Susy extensions, in which case the fields take values in coset spaces, and 

also of the purely bosonic U{N) a model (principle chiral model). In particular, 

we presented the Euler-Lagrange equations for these models and their general 

instanton and non-instanton solutions and showed that the instanton and anti-

instanton solutions of the CP^~' and grassmannian models are relative minima 

of the action, and so are stable. Moreover, we also showed that all non-trivial 

solutions of the U(N) a model do not correspond to minima of the action, and so 

being saddle points of the action are unstable under small fluctuations. Also in 

chapter 2 we looked at the hnearized fermion equations in the fixed background 
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of bosonic C P ^ ^ and grassmannian fields. 

Then we constructed finite action classical solutions of the Euclidean two-

dimensional U(N) WZW-a models. We showed that these solutions are related 

to and in fact can be derived from the solutions of the Lax-pair problem for the 

corresponding U{N) a model without the WZW-term. In addition, we showed 

that each solution of the WZW-a model can be related to a solution of the usual 

a model with the connection being provided by the solutions of the Lax-pair 

equations for the a model. To study properties of these solutions, we had to find 

a way of computing the contribution of the WZW-term. As this term is given 

by a three-dimensional integral, we followed Witten [25] and extended our field 

^ ( a ; i , X 2 ) to a field g{xi,X2^t) defined over the three-dimensional space locally 

parametrised by xi, xi and i with 0 < t < 1 and such that 5(a;i,a;2,l) = 

g{x\.,X2) and ^ ( x i , X 2 , 0) = 1. Next we computed the values of the action of the 

WZW-(7 model for some of our solutions. We found that these values are given 

by the action of the corresponding solutions of the usual a model multiplied by 

some function /i(/c) given by 

h{k) = I - k tan-^ (fc-^). (6.1) 

Moreover, studying the stability properties of the solutions of the WZW-o" model 

we found that the WZW-term does not stablise them but that they have the same 

number of negative modes as the corresponding solutions of the model without 

the WZW-term, and so, as a consequence, that they are all also unstable. 

It is worth adding at this point that the action and the equations of motion 

of the U{N) WZW-cr model, when formulated in Euchdean space in terms of the 

complex coordinates x± = xi ± ix2, are given by 

S = \ f d'xTv {d+g^ d^g + d^g^ d+g) 
^ . (6.2) 
- X d^x Tr [{d+g^d-g - d-g^d+g)g^ t], 
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and 

(1 - \)d+{g^d-g) + (1 + X)d-{g^d+g) = 0, (6.3) 

together with the constraint g^ g = 1. I f we want to formulate this model in 

Minkowski space in terms of Hght-cone coordinates x^ = xi ± X2, then the 

Minkowskian WZW-cr model takes the same form, with the same expression for 

the action and the same equations of motion as in Euclidean space. The only dif­

ference lies in the nature of the variables. Strictly speaking, the WZW-term has 

to be defined in Euclidean space. Thus, if we deal with the Minkowskian model we 

have to use the equations of motion obtained from the action in Euclidean space 

after continuing them back to Minkowski space using the substitution (analytic 

continuation) 

X2 —> ix2. (6.4) 

Of course it is clear from the above discussion that the Minkowskian and 

Euclidean U(N) a model without the WZW-term are indistinguishable too with 

the same action and equations of motion. 

We should add a few words of explanation at this point on the reality of our ac­

tion in Euclidean space. The original Lagrangian, introduced in Minkowski space, 

has a real coefficient of its WZW-term, i.e. X has to be real in the Minkowskian 

action (6.2). This implies that the two terms in the EucHdean action will have 

different reality conditions. In consequence, except for the special values A = ± 1 , 

as discussed by Witten [25], the equations of motion mix the reahty conditions 

and so are more restrictive than in the case without the WZW-term. To overcome 

this problem we can either continue analytically in A to A being purely imaginary 

(keeping the g field unitary) or keep A real and accept non-unitary solutions for 

g (in this case g^ should be interpreted as g~')- This is essentially the approach 

adopted in this thesis where the solutions of the Euclidean model were seeked in 
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which A was continued to purely imaginary values (of course, our solutions can 

also be considered as solutions for A real (except A = i l ) , then the fields are 

non-unitary and g^ should be interpreted as g~^). 

The question then arises whether a solution of one type of the Euchdean or 

Minkowskian model will give a solution of the corresponding model of the other 

type after the substitution (6.4). To consider this problem we notice that after the 

substitution (6.4), in general, the matrix g will no longer be unitary. Indeed, this 

substitution does not commute with the constraint g^ g = 1. So if, for real x\, X2, 

one has g^{xi,X2) = 9~^{xi,X2), then in general g^{xi,ix2) ^ g~^{xi,ix2). Thus 

the substitution (6.4) transforms a solution of the Euclidean model into a solution 

of the Minkowskian model and vice versa only for the SL(N) and GL[N) models. 

So if one wants to construct classical solutions of the U(N) models, they have to 

be studied separately for both types of models. 

To consider fermion effects in sigma models, we studied Susy extensions of 

the U{N) chiral models with and without the WZW-term in two dimensions. We 

exhibited some classical solutions of these models and discussed their properties. 

We showed that, as in the purely bosonic WZW-cr models, the solutions of the Susy 

WZW-(7 model can be derived from the solutions of the Lax-pair equations for the 

corresponding Susy a model. We generalised the procedure due to Uhlenbeck [42 

and used it to construct some of these solutions in an explicit form. Computing 

the value of the action of the Susy model for some of these solutions we have found 

that they are related to those of the purely bosonic model, and so, are given by 

the laplacian of a logarithm of an appropriate function. 

One of the most important properties of the solutions is their stability and so 

we looked at this problem for our Susy solutions. We showed that the solutions 

of the Susy WZW-cr model have the same number of negative modes as the cor­

responding solutions of the Susy a model. Naively, we would expect solutions in 
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a bigger space to be less stable but we did not find this to be the case. It appears 

that the inclusion of fermions does not introduce any further instabilities but, as 

expected, it leads only to the appearace of further zero modes. We have no proof 

of these claims but having looked at various cases we are reasonably convinced 

that they are true. This problem is still unsolved. 

The obtained results show that the introduction of fermions does not modify 

the theory in an unexpected way. This is true at least for our solutions. We 

found that the introduction of fermions does alter the bosonic part of the theory 

very much as expected. In fact, for most solutions, the fermionic contributions 

to the equations of motion cancel. On the other hand the fermionic part does 

depend crucially on the specific form of the bosonic fields but its expression can 

be derived quite easily. Thus we would expect that any quantisation of the full 

theory would reproduce all effects of its purely bosonic part modified by the usual 

effects associated with the existence of fermions. 

The Susy extension of sigma models provide interesting examples of boson-

fermion interactions. The final topic of this thesis was the study of a Euclidean 

two-dimensional model which describes a coupled set of interacting boson and 

fermion fields whose nonhnear interactions are fixed by the requirement of su-

persymmetry. We constructed some classes of solutions of the linearized fermion 

equations in the fixed background of a bosonic field. The background field was 

taken to be a solution of the U(N) a model with and/or without the WZW-term. 

We studied various properties of these solutions and showed that a class of the 

obtained solutions is related to the components of the energy-momentum tensor of 

the purely bosonic U(N) a model. In addition, we have proved that some classes 

of the constructed solutions are traceless. 

Even though our solutions were obtained for the linearized equations, some of 

them also solve the full equations. In particular, this is the case for the solutions 
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ip+ = and Tp- = (^+)"', where n is the uniton number of the background 

field. The reason for this is that for these solutions the additional nonlinear 

contributions to the equations of motion vanish. 

Let us point out that the problem of solving linear equations may appear to 

be relatively straightforward. However, it is easy to check that as our linearized 

equations contain ip± fields which are matrix-valued and as the equations involve 

their commutators, the problem is far from trivial. Of course we could have tried 

to seek solutions for which the commutators vanish or even such that the ip± fields 

are proportional to the unit matrix. However such solutions would have tended 

to possess singularities or would grow linearly at infinity. Moreover, they would 

not have depended on the properties of the background field. Our solutions of 

the linearized equations are intrinsically tied to the properties of the background 

fields, are regular everywhere and, at least for the simplest cases discussed in the 

text, vanish at infinity. Thus they belong to the class of fields one would consider 

in the study of the Atiyah-Singer theorem. In fact this theorem involves solutions 

of the linearized equations which are normaliseable on the sphere, and so vanish 

at infinity. This condition is satisfied by our solutions. Thus they encode the 

information about the topological properties of the purely bosonic and/or Susy 

models. 

Finally, as was shown in ref. [43], our solutions of the linearized equations 

provide us with some negative modes of the fluctuation operator of a purely 

bosonic theory. 
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