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A B S T R A C T 

In 1986 Polyakov published his theory of rigid string. I 

investigate the instantons associated with the consequent new fine 

structure of strings in four dimensional Euclidean space-time. I reduce 

the self-dual equation of rigid string instantons to a simple form and 

show that (p,q) torus knots satisfy the equation, thus forming an 

interesting new class of solutions. I calculate by computer the 

world-sheet self-intersection number of the first few such closed 

knotted strings and derive a very simple formula for the 

self-intersection number of a torus knot. I consider an interpretation 

in terms of the first Chem number and discover the empirical formula 

Q = q - p for the inslanton number, Q, of torus knots and links. 

In 1987 Biran, Floratos and Savvidy pioneered an approach for 

constructing self-dual equations for membranes. I present some new 

solutions for self-dual membranes in three dimensions. In 1989 

Grabowski and Tze pointed out a new class of exceptional immersions for 

which self-dual equations can be constructed and for which there are no 

known non-trivial solutions. By analogy with (p,q) torus knots, I 

describe an algorithm for generating a class of potential solutions of 

self-dual lumps in eight dimensions. I show how these come to within a 

single sign change of solving all the required constraints and come 

very close to solving all the 32 self-dual (4;8)-brane equations. 



C H A P T E R 1 

A R E V I E W O F S T R I N G F I N E S T R U C T U R E 

In some sense, strings lead not only to 
unification of interactions but to 

unification of ideas. 

A.iM.PolyaJcov 

§1.1 Introduction 

The S-matrix theory of elementary particle physics reached a 

crescendo in 1968 when Veneziano found a unified description of duality 

which seemed to be in the spirit of the bootstrap philosophy. The idea 

that S-matrix theory might be fundamental then began to wane with the 

construction of a string theoretic derivation of the Veneziano formula. 

With the advent of Q C D in 1973, interest in both S-matrix theory and 

hadronic string theory diminished considerably. String theory, however, 

was elevated in 1974 to the status of a potential theory of everything, 

including gravity, because quantised string at the Planck scale 

(~10" '̂̂ cms), which is way beyond the hadronic scale (~10"'^cms), 

contains a massless spin 2 state in its spectrum, which Scherk and 

Schwarz interpreted as a graviton. 

Orthodox string theory (see Green, Schwarz and Witten [1]) rests 

on the physical principle, first proposed by Nambu (1970) and Goto 

(1971), that nature prefers to minimise the area of the 2-dimensional 
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string world-sheet. The theory, only clearly recognised as a theory of 
relativistic string by 1973, was quantised and found in 1972 to be 
ghost-free in less than or equal to 26 dimensions. It was anomaly-free 
only in 26 dimensions. Then the theory was made supersymmetric, first 
on the world-sheet in 1971, and then in space-time in 1981. Quantum 
superstring was found to be anomaly-free only in 10 dimensions. Bosonic 
string and superstring with N=l supersymmetry were combined in 1985 to 
make 'heterotic string' which is Lorentz invariant, tachyon-free and 
consistent only for gauge groups SO(32) or E ® E . Since this 

8 8 

symmetry is easily large enough to incorporate the Standard Model 

symmetry, SU(3)^ ® SU(2)^ ® U(l)y , the stringy theory of everything, 

for the first time, began to make some contact with elementary particle 

phenomenology via compactification scenarios. 

A number of unorthodox string theories have been developed along 

the way. Chan and Paton [2] attached quarks to the ends of open strings 

in an attempt to include their quantum numbers. Chodos and Thorn [3] 

investigated the possibility of associating a finite rest mass density 

with the relativistic string. Kikkawa et al. [4] discussed a model of 

string with a massive particle at each end. More recently, Freund and 

Olson [5] have developed a non-Archemedean string theory in which the 

coordinates on the string world-sheet are taken to be p-adic numbers. 

The unorthodox string theory with fine structure, which we are 

going to look at in the first two chapters of this thesis, was 

introduced by Polyakov [6,7]. It involves giving string a rigidity by 

adding an extrinsic curvature term to the orthodox action. This leads 

7 
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to smooth and creased string world-sheet phases. It has been argued by 
Ambj0rn and Durhuus [8] that "regularised bosonic string needs 
extrinsic curvature". According to Polyakov, "it is conceivable, though 
not proved, that QCD is described by this new string theory". 

The physical appeal of the addition of rigidity to the orthodox 

string model means that the Polyakov string theory has had a long 

prehistory involving, for example, discussion by Saito et al. [9] of 

the statistical mechanical theory of stiff chains (of elongated 

molecules such as polymers) and discussion by Peliti and Leibler [10] 

of thermal fluctuations of lipidic membranes (such as red blood cells). 

The latter argue that there is a low temperature phase in which the 

membrane surface is rigid and flat and a high temperature phase in 

which the membrane surface appears crumpled. This resembles the phase 

structure of the rigid string world-sheet. 

We now consider some of the consequences demonstrated by Polyakov 

of adding an extrinsic curvature term to the string theory action. 

First we show how to derive the relevant curvature relations. Then we 

introduce rigid string and rigid particle actions. 
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§1.2 Extrinsic Geometry 

The reparametrisation invariant distance between two points P and 

Q on a surface M" parametrised by curvilinear coordinates = (^',4") 

= (T,a) and embedded in a flat higher dimensional space is ds, where 

This is the first fundamental quadratic form associated with the 

surface and, writing a = dld'^. 

is the induced metric tensor. 

Consider the case \i = 1,2,3; that is W ^ > IRI There is a 

second fundamental quadratic form connected with such an embedding. It 

relates to the vertical drop associated with translations on the 

surface and it can be defined as 

dsdt = -^^^dX^dN^ 
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where ds is an infinitesimal translation on the surface and d'^ is the 
resulting angular departure from the tangent plane. A^(^) is the unit 
vector perpendicular to the tangent plane at any point X^{^) on the 
surface, so that the vectors ( a ^ ^ , 3 ^ ^ , N^), shown in figure 1.2.1, 
form a moving triad basis. In three dimensions 

dX A dX 
N = — 5 _ . (1.2.4) 

\d^X A 3 ^ 1 

We define 

KiX^ = -^aX^d/' (1.2.5) 
ab )J.V a b 

as the extrinsic curvature tensor. Dividing equation (1.2.3) by 

equation (1.2.1) gives the normal curvature ^ ~ ^ which can be 

regarded as a function of ?i = ^ , the slope of a line on the surface. 
J . 

The extreme values of KfA.) are used in the definitions' of mean 

curvature, + K ), and total or Gaussian curvature, K K . . 
2 max mm' max mm 

Note that the total curvature of a cylinder, or a corrugated sheet, or 

a plane with a straight crease in it, is zero since in these cases 

K^.^ = 0 . Expressing d^dX^ in the moving triad ( a ^ ^ , a ^ ^ , iV^) leads 

to the Gauss equations which are differential equations relating the 

components of g and K (see e.g. [11]), 

a a x ^ = r a X ^ + K . (1.2.6) 
a b . ab c ab 

^ These are the standard definitions to be found in, for ^example, 
Struik [11]. Note that the mean curvature has dimensions [L ] while 
total curvature has dimensions [L"^]. 

10 
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Figure 1.2.1 An arbitrary surface showing the moving triad basis 

Since d lie in the tangent plane to the surface, they can be 

written as linear combinations of and d^^. The coefficients can 

be expressed in terms of the components of g and K giving the 

Weingarten equations [11] 

ah" c 
(1.2.7) 

Applying the identity d^[ddX^) = d^{dBX^) to the Gauss equations 

(1.2.6) and using the Weingarten relations (1.2.7) leads to the 

Codazzi-Mainardi equations [11] 

dK - K = BK - K , 
a be ba dc c ba be da 

(1.2.8) 

where are the usual Christoffel symbols defined by 
be 

11 
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r (?) = i ?'Va 0 + a g - a g ) . (1.2.9) 
2 * c^db b^dc d'^bc' ^ ^ 

Using the equations of Gauss (1.2.6) and Weingarten (1.2.7) in the 

usual expression for the intrinsic curvature scalar associated with the 

surface. 

gives 

= /'far* - a r + r r - r r i , (1.2.10) 
° V c ab b ac ab ec ac cb-' 

R(g) = (^) ' - K / ^ ) , (1-2.11) 

which relates intrinsic to extrinsic curvature. 

Al l these equations can be generalised to the case of a surface 

embedded in a four dimensional Euclidean space, <̂ > R^. Here the 

space complementary to the surface is two dimensional, so we must 

introduce two normals at each point /V'^^(^) ; A = 1,2 ; | i = 1,2,3,4 . 

They are chosen to be orthogonal to the tangent space vectors. 

N^^dX^ = 0 , (1.2.12) 

and mutually orthonormal, 

12 
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y V ^ V ^ = 5 ^ . (1.2.13) 

(Since the background is flat there is no need to distinguish covariant 

from contravariant (Greek) indices.) There are then two extrinsic 

curvature tensors, , defined at each point in Ŵ . Expressing 8 8 
ab a b 

Gauss equations [6] 

in the moving tetrad basis ( 5 ^ ^ , ' ^ ' ^^^^^ "-̂ ^ generalised 

ddX^ = r d X ^ + K\N''^ , (1.2.14) 
a b ab c ab 

and generalised Weingarten equations [12] 

5 Â ^̂ ^ = -r/V^^5 N^'']N^^ - g'^a . (1.2.15) 
a a ' ab c 

The relation between the curvature scalar of the Riemannian manifold 

M'̂  and the extrinsic curvature tensor associated with its embedding is 

now [6] 

R = (K^'f - K'^'K^^ . (1.2.16) 
V a-* b a 

This relationship plays a vital role in the development of the rigid 

string model which we shall now describe. 

13 
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§1.3 Rigidity 

String theory normally begins with the Nambu-Goto action 

5 = H (1.3.1) 

where )i has dimensions of force, [ML" ] (taking c = 1), and is 

interpreted as the constant string world-sheet surface tension. The 

Lagrangian 

= / Det g 
ab 

1 12 

(1.3.2) 

is the area density of a parallelogram with sides a^dx and d^da. 

Therefore dA = Vg~^dxda defines an element of area of the string 

world-sheet. Taking the string action to be °= dA implies a principle 

of least world-sheet area analagous to the particle action 

implying a principle of shortest world-line length. 

ds 

However, can also be viewed as a cosmological term in the 

action for the metric tensor field g on (M̂ , u, being the cosmological 
ab 

constant. From this point of view the Einstein term « cf^ /g^ R 

should also be added. In the case of a two dimensional manifold, (M", 

14 
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the integrand is a total divergence and the integral is the Euler 

characteristic, x(p) = 2-2p, where p is the (constant) genus of (M̂ . So 

the Einstein term does not influence free string dynamics. 

Polyakov [6] noticed that the individual terms on the right hand 

side of (1.2.16) are not total divergences, although they are related 

by a total divergence which makes them equivalent under integration. 

This leads to the scale invariant generalisation of the Nambu-Goto 

action (1.3.1) 

5 = 5, + 5̂  

= 1̂  d"^ vr K \ (1.3.3) 

The new constant, p, has dimensions [ML] (A '̂̂ '̂  are unit vectors, ^ = 

1,...,D ; A = l,...,D-2). p is interpreted as string world-sheet 

rigidity because it measures the opposition to extrinsic world-sheet 

bending. has the dynamical role of distinguishing smooth 

world-sheets of a given area from creased world-sheets of the same 

area because, while 5̂  is the same in both cases, 5̂  is small for 

smooth and large for creased world-sheets. 

5̂  can be rewritten as 

ab (1.3.4) 

15 
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where 

. a b 
(1.3.5) 

This can be demonstrated by substituting (1.3.5) into (1.3.4) and then 

using (1.2.14) and the orthogonality properties of to get an 

expression for K^^JC^^^. Alternatively, 5̂  can be written as 

S, = P d"^ V N""^ , (1.3.6) 

where 

a a V a •' 
(1.3.7) 

= - g'^ax^ 
ab c 

(1.3.8) 

from (1.2.15), as can be verified by substituting (1.3.8) into (1.3.6). 

By analogy with rigid string, we can introduce rigid point 

particles (see e.g. Pavsic [13]). We write the action as 

= m (1.3.9) 

16 
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(1.3.10) 

Compare this with (1.3.4) and (1.3.5). is the usual relativistic 

particle action, which scales as while IS also 

reparametrisation invariant and scales as [ L ' ' ] , a curvature. has 

dimensions [ML^], an inertia. 

17 
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§1.4 Progress with Rigid String 

Curtright et al. [12] investigated the consequences of rigidity 

on classical motions of string. They found that open rigid string has 

identical solutions to orthodox open string but that closed rigid 

string has new solutions which correspond to string wrapped a number of 

times round a circle which becomes more oblate with increasing angular 

momentum (an ellipse rotating about its minor axis). The string tension 

is balanced by the centripetal acceleration and rigidity. They 

evaluated the angular momentum and energy of these solutions and found 

that, for small angular velocity, the Regge trajectories are 

non-linear. In the case of zero angular momentum, and hence zero 

centripetal acceleration, they found a finite energy static circular 

'hoop' solution where the string tension exacdy balances the string 

rigidity. 

Braaten and Zachos [14] analysed the stability of this static 

hoop of radius i /p / j l and energy ATtVp\i. They showed that it is unstable 

to radial perturbations because the vibration modes have complex 

frequencies. Numerically, they found that the radius of the circular 

string either rapidly grows to °° or decreases to zero. They concluded 

that the static hoop solution is not the ground state solution to the 

closed rigid string. 

A number of authors believe that color flux tubes in QCD can be 

described effectively by the theory of rigid strings. Bagan [15] 

18 
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compared the rigid string model with QCD at intermediate energies and 
found good agreement for a particular choice of the rigidity constant 
p. Others [16-18] have calculated the static quark potential. Kogut et 
al. [19] have performed lattice calculations to investigate 
confinement. 

There has been much interest in the application of rigid string 

theory to the theory of random surfaces (reviewed in [20]) because 

spikes encountered in the triangulation of the bosonic string 

world-sheet are smoothed out by the addition of an extrinsic curvature 

term. 

There have been a number of attempts to advance beyond the 

Polyakov rigid string. Alonso et al. [21] introduced rigid superstrings 

(or supersprings [22]) by supersymmetrising the Polyakov rigid action 

in the light-cone gauge. Lindstrom et al. [23] have proposed a Weyl 

invariant string with rigidity term as well as supersymmetric versions 

of the theory [24]. Ichinose [25] has performed semi-classical 

quantisation of the theory while Itoi and Kubota [26] have shown how 

BRST quantisation can be achieved by reducing the Lagrangian to a 

simpler form. 

Viswanatha and Zhou [27]- discovered a new invariance of the 

extrinsic curvature term, which they call H-invariance. Itoi and Kubota 

[28] discovered an action which is equivalent to string theory with 

extrinsic curvature and keeps its gauge invariance but does not have 

19 
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its higher order derivatives. Itoi [29] added a new scale invariant 
extrinsic torsion term to the rigid string which makes the A '̂̂ ^ as well 
as the into dynamical variables. 

For future reference, we note that Lindstrom [30] has given a 

derivation of the rigid string action by starting from a membrane 

action and compactifying, keeping some dependence of the string on the 

compactified coordinate. 

20 
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C H A P T E R 2 

RIGID STRING INSTANTONS AND TORUS KNOTS 

One is tempted to propose the trefoil 

knot as an emblem of our universe. 

G.Burde & H2ieschang 

§2.1 Instantons 

Consider a rigid particle on a closed path in two Euclidean 

dimensions; |LI = 1,2. Noticing from (1.3.10) that ^ = 1, we can write 

the action (1.3.9) as 

S = )i-AJ^dt^Y 
•/nT'Vg'^ dx 

+ 
dx 

(2.1.1) 

So the action is bounded by a topological part, the second part of 

(2.1.1), and this bound is attained for 

Vnr-/g~^ dx 
(2.1.2) 

Solving for and picking a convenient origin gives 

23 
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VrfrVg~^ dl 
(2.1.3) 

which describes a circle radius XlVrrT. This finite action solution is 

an instanton (anti-instanton) with parametric solution 

Cos d(-c). Sin 0(t) (2.1.4) 

which represents closed self-intersecting world-lines on a plane, where 

is an arbitrary function of x. 

The second part of (2.1.1) can be shown to be topological by 

proving that its variation is zero by using the fact that is 

parallel to dt^ldi . This topological part of the action gives the 

algebraic total number of times the particle world-line intersects 

itself. This can be demonstrated by substituting (2.1.4) into the 

topological part of the action and finding that it reduces to 0(2:c) -

We can apply similar arguments to the rigid string action. In 

particular (1.3.4) can be expressed as 

± 3 - r . 
a b 

(2.1.5) 

where 

24 



2. Rigid String Instantons and Torus Knots 

(2.1.6) 

S^ is bounded by a topological part to the action and this bound is 

attained for 

L^iv _ *^v) = 0 . (2.1.7) 

Consider the (instanton) equation (2.1.7) with negative sign. We can 

find [1] (see also Wheater [2]) instanton solutions of 

(2.1.8) 

where c^^ are the constants from integration of (2.1.7). 

We choose a Euclidean conformal gauge in which 

and 

d^^ d^^ = 0 

J V / 

(2.1.9) 

(2.1.10) 

Then equation (2.1.8) becomes, from (2.1.6) and (1.3.5), 

4 -
(2.1.11) 

25 



2. Rigid String Instantons and Torus Knots 

Contracting equation (2.1.11) with gives 

= c^^ d^^ 

Contracting (2.1.11) with gives 

(2.1.12) 

(2.1.13) 

Combining (2.1.12) and (2.1.13) gives 

c^v ,̂P î ^ . gvp (2.1.14) 

Also, since t^^ and *t^^ are antisymmetric, so is c^^ from (2.1.8): 

(2.1.15) 

A solution to (2.1.14) and (2.1.15) is 

' 0 -a 0 0 ] 
a 0 0 0 
0 0 0 -p 
0 0 P 0 

(2.1.16) 

in which a ' = = 1 . 

Substituting this into (2.1.11) we find that |3 = -a . Then 

(2.1.12) and (2.1.13) give 

26 



2. Rigid String Instantons and Torus Knots 

a / = a a / 

a / = a a ^ 

a / = 

(2.1.17) 

These are the rigid string instanton equations. Note that any X^ 

satisfying (2.1.17) automatically satisfies the Euclidean string 

constraint equations (2.1.9) and (2.1.10). By differentiating (2.1.17) 

we see that the string equation of motion 

(2.1.18) 

is satisfied automatically. 

Take a = 1 and notice that the first two relationships in 

(2.1.17) are the Cauchy-Riemann relations for an analytic function 

F{z) = X-iz) + iX\z) , (2.1.19) 

where z = x+io. Similarly the last two relationships in (2.1.17) are 

the Cauchy-Riemann relations for 

C(z) = X\z) + iAz) . (2.1.20) 

Thus we can generate an instanton solution from any two complex 

27 



2. Rigid String Instantons and Torus Knots 

analytic functions F and G as 

Im F, Re F, Re G, Im G (2.1.21) 

As in the case of the particle in two dimensions, where the 

topological part of the action was interpreted as giving the algebraic 

number of self-intersections of the Euclidean particle world-line, so 

in the rigid string case, the topological part of the. action can, 

according to Polyakov, be interpreted as the algebraic number of 

self-intersections of the string world-sheet. For instantons, of 

(2.1.5) becomes 

5 = P (2.1.22) 

Polyakov [3] gives the self-intersection number of the surface as 

I M 
V. J 

1 

27tp 271 . 
(2.1.23) 

which Mazur and Nair [4] write, using (1.3.5), (2.1.6) and (1.2.14). as 

1_ 
K d^t g e K K 

^ ° AB ac bd 
(2.1.24) 

We shall use this last formula for the self-intersection number in our 

discussion in §2.2 of the first Chern number which is associated with a 

rigid string world-sheet in four dimensional space-time. 
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2. Rigid String Instantons and Torus Knots 

§2.2 Torus Knots 

We are interested to find an example of a self-dual string 

world-sheet with a finite non-zero number of self-intersections. Taking 

F oc G gives V = 0 , so this would be too trivial. 

However, a string with a knot in it would seem to offer hope of 

providing an example of a world-sheet with a few undeniable 

self-intersections, the number increasing with the complexity of the 

knot. 

Begin by considering the simplest possible knot, the trefoil of 

figure 2.2.1(A). This can be generated from 

+ = 0 ; (M,V) 6 . (2.2.1) 

Consider two orthogonal complex planes with arbitrary points u on the 

first and v on the second. I f we consider the set of pairs (w,v) for 

which the relationship + = 0 holds, then the intersection of 

this set of points with a small sphere, 5^ , centered at the origin of 

C", forms a trefoil knot (see e.g. Milnor [5]). 

As the 5p sphere gets a little bigger so the knot gets bigger, 

but as Sl gets smaller the knot contracts to a point giving us a 

singularity at the origin. It will be by integrating over such 

singularities that our self-intersection number, v, will take on 

integral values. 
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2. Rigid String Instantons and Torus Knots 

The solution of -i- = 0 in terms of a complex parameter 

can be written as 

3 2 
u = z ; V = - z 

(2.2.2) 

The trefoil can therefore be specified in terms of two analytic 

functions, and -z .̂ 

Take the functions in (2.2.2) as our required functions F and G 

in (2.1.21), where z = x+ic. 

Im z^ Re z, Re -z , Im -z , 

= [ 3 r a - a^ - 3tcr, - x\ -2xa 1 , (2.2.3) 

a = [ 6xa, 3ixW), -2t, -2a ] , 

& a 3(T^-a-), -6xc, 2o, -2x 

(2.2.4) 

The string constraints and equation of motion are satisfied by (2.2.3). 

Calculate Vg^ and d^^d^^ and hence find t^" and a^/^'. Since we 

are considering instanton solutions for which, from (2.2.7), 

a^^^ = a * ^ ^ (2.2.5) 
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2. Rigid String Instantons and Torus Knots 

and since we are working in the Euclidean conformal gauge, the 
expression for the self-intersection number simplifies to 

V = 
271 a 

(2.2.6) 

For the trefoil we find that 

^2 288 

9(t-+a^) + 4 
(2.2.7) 

Integrating this over all 0 < a < 27t for a closed string and -«> < 

T < «> , we find 

v(trefoil) = 4 (2.2.8) 

The construction of the trefoil based on the complex curve u" + 

V"' = 0 can be generalised to the construction of the infinity of (p,q) 

torus knots based on the complex curves iJ^ + = 0 , where p and q 

are chosen to be relatively prime. Thus the trefoil is a (2,3) torus 

knot. 
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2. Rigid String Instantons and Torus Knots 

Figure 2.2.1 (p,q) torus knots and links formed by plotting the set 

of points (x,y,z) which lie on a torus of major radius R and minor 

radius r, where x = (R+rCos27Ctq)Cos2Ttlp. y = (R+rCos27ttq)Sin27ttp 

and z = rSin27ltq. I is a parameter which takes a discrete 

number of values between 0 and 1. Hidden lines going round the 

back of the torus are dotted. 

(A) (2,3)knot (B) (2,5)knol ( C ) (2,7) knot (D) (2,9)knot 

( E ) (3,4) knot (F) (3,5) knot ( G ) (3,7) knot (H) (4,5) knot 

(1.) (4.7)knot (J ) (5,6)knot ( K ) (5,7)knoi (L) (5,8) knot 

(M) (6,7)knot (N) (7,8)knot ( 0 ) (7,9)knol (P) (8.9)knot 

(Q) (8 , l l )knol (R) (9,10)knot ( S ) (9,ll)knot (T) (503.634)knol 

(U) (2,4)1 ink (V) (3,30) l i n k (W) (7,98) l ink (X) (51,204)iink 
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2. Rigid String Instantons and Torus Knots 

Following the calculation for the trefoil, we take for the (2,5) 
torus knot 

Im z\ Re z\ Re -i , Im -z (2.2.9) 

This gives 

v(2,5) = ± 
•271 

dxdcs 
7200 (T^ + a^)^ 

25(r+a-)^ + 4 
(2.2.10) 

7200 r-
dr -

0 
(25 r^ + 4)^ 

(2.2.11) 

v(2,5) = 12 (2.2.12) 

Similarly, 

v(2,7) = 
27C 

d\d<5 
39200 (t^ + a - ) ^ 

49(x^+a^)^ + 4 
N 2 

(2.2.13) 

.-. v(2,7) = 20 (2.2.14) 

Results for some other knots, computed using program 2.2.1, are shown 

in table 2.2.1 . 
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2. Rigid String Instantons and Torus Knots 

% I n t e ^ r s n d f o r Winding No* of (pyo) Torus Knot.3/4/89 
X 
% Put i n V 3nd Q f o r <P?Q) t o r u s b e f o r e r u n n i n a . 
% « ; = ? ? 
o p e r a t o r x? o p e r a t o r s f depend ? s ( 1 ) ? s ( 2 ) ? 
s : = s < l ) + i * 5 ( 2 ) 5 2 P:=-Z**P? 
X ( 1 ) : =coef f n (zc? y i y 1) y X ( 2 ) : =coef f n ( z a > i y 0) ? 
x ( 3 ) :=coeffn(2:py i yO) y x ( 4 ) : =coef f n(ZPy i y 1) ? 
m a t r i x d x ( 2 y 4 ) ; 

f o r a:-=i:2 do 
f o r mt--lXA do 

dx(3ym) J=--df ( x ( l T l ) y S ( 3 ) ) * 

r o o t ^ : = f o r i T i:=lM sum d x ( l y m ) * * 2 $ 
m a t r i x t m n ( 4 y 4 ) ? 

f o r mJ=:i;4 do 
f o r n: = l M do 

tmn (m y n ) J --dx (1 y m) *dx (2 y n) $ 
tmn;=tmn~tp(tmn)$ tmnI=tmn/root^$ 
m a t r i x d i t m n ( 4 y 4 ) y 

f o r m t - l M do 
f o r n:=--lM do 

d .1 tmn < m y n) X ~df (tmn (m y n) y s ( 1 ) ) $ 
m a t r i x d2tmri<4y4)? 

f o r m ? - l l 4 do 
f o r n:-=i;4 do 

d2tmn(m y n ) : - d f ( t m n ( m y n)y s ( 2 ) ) * 
f o r a: = l M do 

f o r b J = i : 4 do 
d1tmn( 3 y b ) : = d l t m n ( a y b)**2$ 

f o r a I = l M do 
f o r bJ=--lM do 

d2tmn < a.b)S =d2tmn(a»b)**2$ 
m a t r i x dtmn(4y4)y 
dtmn t=dltmnfd2tmn$ 
o p e r a t o r temp? 

f o r m: -;l. M do 
temp (m ) I -"f o r n J -1 M sum dtmn (m y n ) $ 

irite : d r 3 r i d 5 =f o r m J ~ l J 4 sum temp(ni)$ 
on .<acdy i n t e i ^ r a n d ? end? 
'/ _ ._ 

Program 2.2.1 R E D U C E program for taltulaiing ihe integrand for 

the .self-intersection number of a (p.q) loms knot. 
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2. Rigid String Instantons and Torus Knots 

Table 2.2.1 Self-intersection number, V . for a (p,q) 

torus knot rigid string insianton. 

p dr in tegrand V 

2 3 288r/(9r^+ 4 ) " 4 

2 5 7200/-V(25r^+ 4 ) ^ 12 

2 1 3 9 2 0 0 r V ( 4 9 r ' ° + 4)^ 20 

2 9 127008/- 'V(81r 'S 4)^ 28 

3 4 1152r/(16r-+ 9 ) ^ 4 

3 5 7200rV(25r ' '+ 9 ) ^ 8 

3 7 56448rV(49r^+ 9 )^ 16 

4 5 3200r/(25r-+ 16)^ 4 

4 7 5 6 4 4 8 r V ( 4 9 r S 16)^ 12 

5 6 7200r/(36r^+ 25)^ 4 

5 7 3 9 2 0 0 r V ( 4 9 r V 25)^ 8 

5 8 115200rV(64r^+ 25)^ 12 

6 7 14112r/(49r-+ 36)^ 4 

7 8 25088r/(64r-+ 49)^ 4 

7 9 1 2 7 0 0 8 r V ( 8 1 r S 49)^ 8 

8 9 41472r/(81r-+ 64)^ 4 

8 11 557568r^/(121r^+ 64)^ 12 

9 10 64800r/(100r-+ 81)" 4 

9 11 3 1 3 6 3 2 r V ( 1 2 1 r S 81)^ 8 

Looking at these results, the general form for v{p,q) would seem 

to be given by the empirical formula 

\{p,q) = 4 dr 
0 

2(cj-pfqVr^'-'-''^' 
(2.2.15) 

So we find 
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2. Rigid String Instantons and Torus Knots 

V{p,q) = A {q - p) , (2.2.16) 

which represents an infinite hierarchy of knotted instantons. 

Notice that that v always turns out to be a multiple of 4. Mazur 

and Nair [4] argue, from a different point of view, that v = Ac^ 

where is the first Chern number and c^e Z. 

In the case of a two dimensional manifold embedded in four 

dimensions we have a special situation. The curvature 2-form defined on 

M', integrated over the two dimensions of Ŵ , gives an integer, the 

Euler characteristic. Also, since the co-dimension is two, the 

curvature associated with the embedding connection 2-form integrated 

over W gives another integer, the first Chern number. 

Write the covariant derivative of the normal vectors as 

a b 

(2.2.17) 

where A'^^ is an 50(2) connection for the parallel transport of the 

normal vectors on M ,̂ and the covariant derivative of the tangent 

vectors 

r̂ ^ = aX^^ (2.2.18) 
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2. Rigid String Instantons and Torus Knots 

in the form 

D ^ ^ a t ^ - r ^ 
a b a b ab c 

= K^ N^^ , 
ab 

from (1.2.14). 

We see from (1.3.7) that 

(2.2.19) 

(2.2.20) 

From this connection we can derive the field strength tensor 

ab a b a b 
(2.2.21) 

The first Chern number is then defined in [4] as 

tr F = ^ 2 . gAB ^ab ^ A B 

ab 
(2.2.22) 

Using (2.2.17), (2.2.21) and (2.1.24) gives 

(2.2.23) 

which leads to the suggestion [4] that we use Exp i-&j to represent 

the effect of d vacua. 
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2. Rigid String Instantons and Torus Knots 

§2.3 Links 

When p and q are not relatively prime then the complex curve 

given by the reducible polynomial M'' + v*' = 0 represents a number of 

closed linked strings. For example, M" + = 0 represents two closed 

hoops lying on the surface of a torus and linking together once, like 

two links in a chain. In general, p tells the number of closed strings 

involved and qlp tells the number of times each wraps round the body of 

the torus, as can be seen from figure 2.2.1(U-X). 

We calculate winding number, v, for a few simple links and obtain 

the results in table 2.3.1 . 

p q ^dr in tegrand v /4 

2 2 0 0 

2 4 128r-/(4r^+ 1)^ 2 

2 6 1152rV(9/-*+ 1)^ 4 

3 3 0 0 

3 6 288rV(4/-^+ 1)^ 3 

4 4 0 0 

4 6 1 1 5 2 r - / ( 9 r S 4 ) " 2 

6 8 4 6 0 8 r V ( 1 6 r S 9 ) ' 2 

8 10 12800r - / (25 rV 16)' 2 

Tabic 2.3.1 Sclf-ihlcrseclion numbcr.V, for (p.q) 

linlted rigid string instantons. 
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2. Rigid String Instantons and Torus Knots 

From these results we infer the formula 

vip,q) = 4 
°° 2 { q - p f ^ ' f r ' ' ' - ' - ' ' ' ' 

dr --— , (2.3.1) 

($^ r ^ ^ ^ - ^ U ^ V 

where 

P = 
CCD {p,q) 

and (2-3.2) 

A 
(I = CCD (p,q) 

Cancelling out the greatest common divisors we again find 

V{p,q) = 4 {q - p) , (2.3.3) 

contrary to an assertion in [6], which states that (2.2.15) does not 

hold true for links. 

The interpretation of v in the case of links is rather different 

to that of knots. For links, some of the integers contributing to v/4 

come from the previous knot singularities but now there are other 

contributions from higher order contacts between surfaces. Thus a (4,6) 

link gets its contributions from, two copies of the trefoil, while a 

(2,4) link gets its contributions from a second order contact. A (p,p) 

link only involves point contact which contributes nothing to v. 
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2. Rigid String Instantons and Torus Knots 

Links are also represented by complex curves such as 

+ u + u = 0 (2.3.4) 

or 

v\ + u^ + = 0 . (2.3.5) 

These give more complicated integrands which are much harder to 

integrate. For example, (2.3.4) gives 

32 [9 ( t '+ a^) ' + 6{x^- c^) + 1 
dxda ^ — . (2.3.6) 

9(T^+ o^f + 2(5a^- T^) + l ' 

Notice that the denominator of the integrand of (2.3.6) cannot be zero 

for real T and, therefore, (2.3.4) will have finite self-intersection 

number. We leave further analysis of such links to future researches. 

We close this chapter with an allusion to a recent paper by 

't Hooft [7] in which he shows that certain gravitational instanton 

solutions describe actual physical particles like solitons, but which 

are unstable. and decay into large numbers of ordinary particles. 

Experience shows that knots are usually highly stable. Knotted 

rigid string instantons are likely to be quite stable and might in some 

way represent elementary particles, perhaps along the lines of Jehle 

[8] who considered torus knots of quantised flux. Jehle claims that 

this can solve the problem of quark fractional charges, by addition of 
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2. Rigid String Instantons and Torus Knots 

spinning (about the straight torus axis) angular momentum and whirling 
(about the circular internal torus axis) angular momentum, and that the 
strangeness quantum number can be identified with the unknotting number 
of the knot. It would be interesting to know the energies of the very 
simplest set of knots (not necessarily torus knots) to compare with the 
known elementary particle mass spectrum. One might speculate that the 
universe is gradually becoming more knotted, and the structure (of 
protons, galaxies etc.) which we see developing around us is associated 
with the stability of knots in strings. One might even entertain as 
elementary (i.e. fundamental) a 'cotton wool' model of matter. 
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C h a p t e r 3 

A R E V I E W OF BOSOMC AND SUPER P - BRANES 

I propose that one should allow 

the electron to have, in general, 

an arbitrary shape and size. 

P.A.M.Dirac 

§3.1 Brane Dynamics 

Classical membrane theory can describe the motion of an elastic, 

perfectly flexible rubber sheet stretched on the x - y plane under 

tension T which is given gentle oscillations by a force whose component 

in the z direction is F. Analysis of the equilibrium of an 

infinitesimal surface area element leads to the equation of motion 

_ 5 

ax 

• 

rp ai J az 

. 5 ^ , ay 
= p ^1 - F{t,x,y) , 

at 
(3.1.1) 

where p is the mass per unit area of the rubber sheet. This equation of 

motion can be derived from the action 

s = dtdxdy 

r 2 • 2n 2 

T dz + dz . P dz - F.Z 

2 . d y . 2 at 
, (3.1.2) 
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3. A Review of Bosonic and Super p-Branes 

which encapsulates the physics of simple membranes. 

I f T is constant and F is zero then (3.1.1) reduces to 

^ + ^ = _ L ^ £ 
dx^ dy" c- dt^ 

(3.1.3) 

where 

c = (3.1.4) 

Relativistic membrane theory begins here if we take c to be the speed 

of light. 

I f we give our membrane a rectangular boundary of sides a and b 

then a solution of (3.1.3) is 

z{t^,y) = Cos{2nft) Sin 
a 

(3.1.5) 

with frequency 

/ = I 
m ^ n 

a 
(3.1.6) 

A pair of natural numbers, (m,n), labels a normal mode of vibration of 

membrane with a rectangular boundary. 

If we give our membrane a circular boundary at radius a then a 

solution of (3.1.3) is 
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3. A Review of Bosonic and Super p-Branes 

z(f,r,d) = J (nr) Cos{m^) Cos{nct) , (3.1.7) 
m 

with boundary condition J (na) = 0 , and where the Bessel function 
m 

J (Tj) is m 

k\ Tim + k + \) 
k = 0 ^ ' 

One whole and one natural number, {m,n), label a normal mode of 

vibration of an ideal rubber drum. A closed bubble would involve the 

spherical harmonics, et cetera. 

The new theory of membranes as elementary extended objects begins 

with a generalisation of general relativity. In general relativity a 

particle moves along a world-line. In curvilinear coordinates the 

distance ds between neighbouring points is given by 

ds' - - C ^ , ^ V 

= . dx' , (3.1.9) 
dx dx 

where the elements of the metric tensor G^^ are, in general, functions 

of these coordinates. The particle (0-brane) action is then 
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3. A Review of Bosonic and Super p-Branes 

S = - mc 

= - mc 

ds 

dx ' G ^ ^ 
dx dx 

(3.1.10) 

where x signifies a reparametrisation of the world-line. 

String theory generalises (3.1.10) to the string (1-brane) 

Nambu-Goto action 

5 = - K 

= - K 

dA 

J - Del G 
aV 3 ^ 

(3.1.11) 

in which the integrand now represents a reparametrisation invariant 

area element of the string world-sheet, and a,b = 1,2 . Membrane theory 

generalises (3.1.11) to the membrane (2-brane) action, first written 

down by Dirac [1], 

5 = - T 

= - T 

dV 

- Det G d_X^ aj^ (3.1.12) 

which describes "the minimal immersion of a three dimensional membrane 

world-volume into a higher dimensional space-time with metric G 

C^^(X), as illustrated in figure 3.1.1 . 
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3. A Review of Bosonic and Super p-Branes 

Action (3.1.12) generalises to the p-branQ (i.e. p dimensionally 

extended object) action 

5 = - T A / - Oe, C ^ , . X\ (3.1.13) 

where d = p + I and a,b = l,2,...,d . Also X^ = — 
,a 3 ^ a 

Figure 3.1.1 World-volume illustrated by equal time interval 

snapshots of a square membrane vibrating in normal 

mode (2,2), showing the 3 tangents at some point X. 

Variation of (3.1.13) gives the generalised geodesic equation 

g'' 1 dX^ - r # + VKX"" X ^ \ = 0 . (3.1.14) 
" 1 a ,b ab ,c VA, .a ,b J 
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3. A Review of Bosonic and Super p-Branes 

In the case of a flat Minkowski space-time background this equation of 
motion reduces to the wave equation 

^ ( I • "bvU = 0 , (3.1.15) 

in which g , = X ^ X,, ^ and g = Det g . 
ab ,a |J.,b ao 

From (3.1.12) one can find the momentum current density 

associated with the membrane motion, 

• . . 5 L = T / T 8 % , 

. 1 

(3.1.16) 

and hence find constants of the motion defined by 

and (3.1.17) 

Reparametrisation invariance of the world-volume leads to the 

local identities 
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3. A Review of Bosonic and Super p-Branes 

and 

+ T ' Detlx^ X„ , = 0 

. (3.1.18) 

where i,j = 2,3 . (See (4.1.5 & 6) for a more general statement.) 

In the same way as the ends of open relativistic string are found 

to move at the speed of light, Laziev and Savvidy [2] have shown that 

the boundary of open relativistic membrane moves at the speed of light. 

Collins and Tucker [3] have analysed membrane which is partially 

closed to form a cylinder. It is described with the usual 

parametrisation by 

X^ = { X, r (T) Cos a, r{T) Sin G, p 

They derived 

f 0 0 ' 

0 2 
-r 0 

0 0 - 1 . 

(3.1.19) 

(3.1.20) 

which leads to harmonic motion for r, the radius of the cylinder. 

r{T) = - r (T) , (3.1.21) 

where is the maximum radius. Collins and Tucker also analysed 
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completely closed spherical membranes in four dimensions described by 

= { r ( T ) Sin c Cos p, r{x) Sin a Sm p, r{x) Cos a 

(3.1.22) 

which gives induced metric 

0 

{) 

0 0 

- r - 0 

0 -rSina 

(3.1.23) 

The equation of motion of the radius is 

r{T) = 

, 1 /2 
(3.1.24) 

which gives the pulsating solution depicted in figure 3.1.2 

Figure 3.1.2 One period ol' ihc pulsaling. closed .spherical 

membrane of Collins and Tucker. 
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Sawhill [4] has taken this spherical membrane and considered it 

in a non-flat background described by the Schwartzschild metric 

G^^ = Diag I 1-p, -(1-P)-', -r\ -r" 5/Vi3 | , (3.1.25) 

where P = IGMIr^ {M is the membrane mass resulting from its non-zero 

surface tension and G is Newton's gravitational constant). He found 

the equation of motion 

-4rr(p-l) + 8/-'(p-l) + pr' + P(p-l)^r - 8(p-l)^ = 0 , (3.1.26) 

which reduces to (3.1.24) when P = 0. A spherical membrane described 

by (3.1.26) does not collapse to a point but asymptotically approaches 

its own self-induced event horizon, giving it a certain stability. 

Recently, there has been a lot of excitement concerning 

discoveries about the symmetry of closed membranes. The first step was 

made by Hoppe [5] who showed that, after light cone gauge fixing of 

relativistic membrane, there still remains a residual symmetry which is 

equivalent to preservation of the area of the membrane. Hoppe then 

showed that this gave the Hamiltonian a symmetry which approximated to 

SU{N) when N approached the lirriit N > <» . Thus, he proved that the 

group of diffeomorphisms of the sphere, SDiff{S^), can be approximated 

by SU{N — > oo). Floratos et al. [6] demonstrated how the gauge fields 
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A^{x) of an SU{N) Yang-Mills theory become functions A|^(j:,d,(p) whereby 

and (p parametrise an 'internal' sphere at a point. 

The second major step forward in the investigation of membrane 

symmetries was made by Floratos and Iliopoulos [7] and Antoniadis et 

al. [8] who investigated infinitesimal diffeomorphisms of a toroidal 

membrane where the variables and parametrise the angles of two 

circles in s'x s' = T .̂ They found that they could write the generators 

of the group of infinitesimal area-preserving diffeomorphisms of the 

surface of a torus, SDiffiA 
as 

: = i h 
8(5 3a. 

(3.1.27) 

where 

(3.1.28) 

together with 

P = 
i 

i = 1,2 (3.1.29) 

The generators (3.1.27 & 29) satisfy the algebra 
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2 ' ^ ' " , • ' " 2 ^ 

r 2 J 

P ,P. 
' J 

= ( A z - mn^) L^^^^^ 

= n L 
i 

= 0 . 

(3.1.30) 

They then proceeded to show that algebra (3.1.30) has a Virasoro 

subalgebra wherein the Virasoro generators are written as linear 

combinations of the L 's. Hence they made contact with string 

theory. 

Figure 3.1.3 Snapshot of an area preserving diffcomorphism 

of a toroidal membrane. 
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§3.2 Quantisation 

Since the equation of motion of a membrane is non-linear in any 

gauge, it cannot be quantised canonically. One way of proceeding is to 

perform a semi-classical quantisation. We give a formal schematic 

outline of the steps involved in this method. 

h Find a stable classical solution, X^^, and expand around 

it with small fluctuations, Y: 

X^ = X^ + —L . 
c l > . 

/ T 
This approximation becomes exact in the limit T > <» . 

2. Substitute X into the usual action to obtain an action to 

second order in quantum fluctuations: 

5 = 5 + 
cl 

3. Find the (linear) equation of motion for Y. 

4. Find the general solution, e.g. 

Y = y + P^ + CO 

1 ^/(ma+np) 

V 2 '--^ mn 
m , n = 1 

. , /(O T -/to t-
a' c + a e 

mn -m-n 

5. Find P, the conjugate momentum to Y. 

6. Impose equal x commutation relations, e.g. 

p\(5,^)f{<^A = -(271)'/ 5^" 5(0-0-) 5(p-p') 
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7. Find the commutation 

coefficients, e.g. 

and 

mn m n 

relations of the expansion 

mn 5; 5? 
CO mm nn 

mn 

8. Find the constraint equations, e.g. 

(j) = P . Y = 0 
.a 

9. Impose the condition that they annihilate physical states. 

(j) phys > = 0 . 

10. Look at the spectrum of states. 

Using this method, Kikkawa and Yamasaki [9] arrived at a 

conclusion concerning the existence of a critical dimension and 

massless gauge bosons which seemed rather unfortunate for the 

proponents of fundamental membrane. Their argument, in outline, runs as 

follows. 

In string theory, the dimensions of the string tension constant, 

K, are [MT ' ' ] . Therefore, on dimensional grounds, one can derive 

uniquely a classical expression for the spin / in terms of the mass m 

(total energy), the speed of light c and the string tension K, viz 

J = A K\mc)- , (3.2.1) 
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where A is a dimensionless number. This implies a linear Regge 

trajectory ( / v rn). A quantum mechanical analysis introduces a new 

constant h and (3.2.1) becomes 

J = A K\mcf + B h , (3.2.2) 

where 6 is a dimensionless number. This second term causes the Regge 

trajectory to be shifted by an amount corresponding to the ground state 

energy (Casimir energy) of the string. A quantum consistent theory for 

bosonic string requires that B e l . Brink and Nielsen [10] found, 

after a novel process of regularisation using the Riemann ^-function, 

that for open string, B = ^ D - 2 ) , which means that the bosonic string 

is quantum consistent in D = 26 dimensional space-time, the critical 

dimension. 

Kikkawa and Yamasaki attempt a similar calculation of the Casimir 

energy of bosonic membrane. Dimensional analysis leads uniquely to 

-1/2 3/2 
J = A T (mc) + B h (3.2.3) 

for membrane, which implies non-linear Regge trajectories. To calculate 

B they stabilize open membrane by rotating it simultaneously in two 

independent planes, X' - X' and X^ - X^. (Thus they require D > 5 .) 

Applying the semi-classical quantisation method to this stable 
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classical solution, they calculate the Casimir energy and, after a 
rather involved and delicate calculation, they find, for the leading 
trajectory of massless membrane, that 

oo oo 

n = 0 1 = -oo 

oo oo 

+ (3.2.4) 

n = 0 1 = -oo 

By using a new generalised ^-function regularisation method, followed 

by numerical integration, they argue that (3.2.4) gives 

B = (0.1392569...)D - 1.1717121... . (3.2.5) 

Thus a spin 1 massless state (gauge boson) requires a space-time of 

dimension D = 11.387989... while a spin 2 massless state (graviton) 

requires a space-time of dimension D = 18.568962... . They conclude 

that no massless state can be expected in the membrane model and hence 

that it can't be a unification model. 

They did leave open the possibility that the introduction of 

supersymmetry might allow massless states in integer dimensions. We 

shall mention later that one of the current objections to supermembrane 

is that there are too many (a continuum of) massless states. 

However, their conclusion regarding bosonic membrane has been 
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questioned. For example, Kikkawa and Yamasaki introduce an ultraviolet 
cutoff parameter which effectively gives the membrane a thickness. This 
new dimensionful parameter might be able to be used to weaken the above 
vital dimensional arguments. Also, it has been suggested that string 
borders open membrane which again introduces a new dimensionful 
parameter. Alternatively, it has been argued that membrane of a 
different topology from that considered above might contain the 
massless states being sought. 

One could also envisage [11] the following criticism. Kikkawa and 

Yamasaki derive the expression 

/ = I f H ' . I H^'^'E^ 1 , (3.2.6) 
3 V r r 2 

where p and q are relatively prime integers describing membrane 

revolving p times in the X' - X^ plane and q times in the - X^ plane 

in one period. / / ^ ' is supposed to represent the Hamiltonian operator 

associated with the fluctuation part of the action, and calculation of 

the vacuum expectation value of 0>, is used to derive 

(3.2.4). Dimensional analysis gives 

a ( i - 3a) (1 - 3a) 2a 
o. T m h . (3.2.7) 

Without a representative mass, a = ^, leaving an expression for t^^^ 
2/3 

involving h which is suspect because it seems most unlikely that 

58 



3. A Review of Bosonic and Super p-Branes 

this basic physical quantity should be given in terms of cube roots of 
a universal constant. In particular, it is hard to see how this could 
arise from a perturbative approach. In any event, it seems that the 
no-go conclusion of Kikkawa and Yamasaki has not been universally 
accepted and work on fundamental bosonic membranes continues. 

One advance of great importance in the BRST method of 

quantisation to be described shortly, as well as in the supersymmetric 

discussion later in this chapter, is an alternative form of the /j-brane 

action which has the identities (3.1.18) built in. The alternative form 

for the particle action (3.1.10) is 

S[X{xy,8(X)] = - i 
^ dx dx ' 

in which g is taken to be a new independent field. Varying the action 
2 2 

with respect to g leads to the equation p = m . Substituting back the 

equation of motion for g into (3.2.8) returns the original expression 

for the action, (3.1.10). 

Similarly for massless string, the alternative to the Nambu-Goto 

action in (3.1.11) is the Polyakov action 

s[x^{^y,g'\x)] = - \ k 

It has been shown by Howe and Tucker [12] for membrane, and by Sugamoto 
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[13] for the general /7-brane alternative action, that one must add a 
cosmological term giving 

s[xHy,8''m = -j'Tp cT'^ / 7 y - ' X ^ / ^ , } • (3.2.10) 

The cosmological term disappears for string because p = I . This is the 

form of the action which is to be compared, in the case of a Minkowski 

space-time metric, with the simple action of (3.1.2). 

Requiring the variation of the action with respect to the 

world-body metric, 55/5g*'', to be zero leads to an expression for the 

stress-energy tensor 

= i { * - ^^V = ° • 

from which the p-brane local identities now follow as constraints on 

the motion. I f the cosmological term is not added in (3.2.10) then 

contracting the resulting T with "̂'̂  gives 

' ]\p + 1) = f Y , 

which is inconsistent unless p = \. 

By introducing this new independent metric on the p-brane 

world-body we have introduced a tensor with ]^ - \){p - 1) components. 

From reparametrisations of the world-body we have (p + 1) independent 
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gauge invariances which leaves ]-p(p + 1) components of g free. In the 
case of string this one free function, (j), can be chosen so that g^^ is 
written 

where T) is the two dimensional flat Minkowski metric. It then happens 
3.0 

that the Polyakov action (3.2.9) can be considerably simplified because 

:7 = y : ^ n̂ " = ^^. (3.2.14) 

Thus the action (3.2.9) is independent of 0 (i.e. has Weyl invariance) 

and this fact is responsible for much of the progress which has been 

made in string theory. 

This simplification is not possible in the case of p > 1 . W e 

shall mention two important gauge choices in the case of membranes. 

Here there are three free functions in g and these can be chosen to 
ah 

lie on the diagonal. A diagonal gauge choice has obvious scope for 

simplifying problems and an example will be mentioned in the next 

chapter. Another gauge choice, often called the Hoppe gauge but which 

is really more restrictive than a gauge choice, is specified by 

g " + Det g'̂  = • 0 ; = 0 , (3.2.15) 

in which i,j = 2,3 . In two dimensions this reduces to the Weyl gauge 

61 



because 

3. A Review of Bosonic and Super p-Branes 

8 
T 

11 

-1 0 

0 1 
(3.2.16) 

as in (3.2.12). 

We now outline one non-historical way to understand the modern 

method of quantisation due to Becchi, Rouet, Stora and Tyutin. One 

starts from the recognition that any gauge invariant theory necessarily 

has variables which do not correspond to true degrees of freedom: gauge 

invariance implies non-physical degrees of freedom. Using the 

Fadeev-Popov method of adding ghosts and anti-ghosts to the action one 

can reduce the number of degrees of freedom. This procedure does not 

change the path integral (i.e. the physics) although it does expand the 

Fock space. In order to avoid overcounting in the path integral it is 

necessary to gauge fix the action (i.e. completely specify a gauge). 

This leads to an effective action which can be written as 

5 = 5 + 5 + 5 
Effective F-P ghosts Gauge Fix 

(3.2.17) 

This effective action is no longer gauge invariant but it does have a 

residual symmetry, called BRST symmetry, which reflects the generalised 

Ward identities. 

Given an action with a local symmetry, one can derive a Noether 

current and hence a conserved charge, Q. In the case under discussion. 
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this charge generates the BRST symmetry transformation. The crucial 
property of Q is that Q = 0. The final step in the BRST procedure is 
to use this nilpotent BRST charge, Q, to project out the original 
theory from the expanded Fock space by the condition on physical states 
that 

Q I phys > = 0 . (3.2.18) 

In the next section we shall discuss an application of this 

quantisation method to bosonic membrane theory. 
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§3.3 Some of the Recent Progress 

Quantisation of the membrane action ( (3.2.10) with p = 2 ), 

according to the BRST method, has been performed by Fujikawa and Kubo 

[14] (see also [15]). Using the Hoppe gauge, they integrate out the 

auxiliary fields and eliminate the world-volume meu-ic, using its 

equation of motion to derive an effective action 

^eff = { I ( x^. 
^2 

- Det h+ /C 
2 ij 0 

- c\ 
.0 .i 

+ iC.C li 
,0 J ' 

(3.3.1) 

in which 

h = x^x„ + /r.c". + r.c*. 
ij ,i [i.J • J J 

and where i,j = 1,2 . and C are Fadeev-Popov ghosts and antighosts 

(a = 0,1,2). The charge associated with the residual BRST symmetry of 

5 they find to be 
eff 

Q = X^ ] + - Det h. 
.0 2 ij 

+ CX^ 
,i |I.O 

OL .i icac. 
> 0 

(3.3.2) 

By analogy with string theory, Fujikawa and Kubo introduce 

generalised Virasoro generators from the definition 
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(3.3.3) 

They find the following (anti)commutation relations amongst these 

operators. 

' Q , X ^ ' 

Q ,C' • 

{ 2 . r „ } 

.b 

= H + i a,. 

= 0 , 

a 

e t c . . . 

. (3.3.4) 

where = ald^ = d/dx and the Hamiltonian density, H, is 

+ Det h.. 
,0 fl.O ij 

+ iCC. 
0 .i 

(3.3.5) 

We have the required nilpotency of Q from the last 

anti-commutation relation in (3.3.4). This condition leads to the 

critical dimension of 26 in the case of string. For membrane however, 

by calculating the commutation relations explicidy, Fujikawa and Kubo 

find that there are no anomalous terms in the commutation relations 

and hence there is apparently no critical dimension (although see [16] 

for a more general analysis of this question). From (3.3.3) and the 

second last anticommutation relation in (3.3.4) we have 
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L = H + /a 
0 0 a 

(3.3.6) 

and thus the first generalised Virasoro constraint for BRST invariant 

states (arising from reparametrisation invariance): 

<L^> = <H + i3^ > = 0 . (3.3.7) 

This constraint, together with the techniques of semi-classical 

quantisation, are used by Kubo [17] to derive a critical dimension of 

27 for bosonic membrane. In bosonic membrane theory a critical 

dimension does not seem to follow from consistency requirements, as it 

does in bosonic string theory, but could follow from reality 

requirements (i.e. the existence of massless gauge bosons). Kubo shows 

that in a narrow membraiie limit the Virasoro constraint (3.3.7) reduces 

to the same form as for bosonic string. Since string in 26 dimensions 

has massless vector bosons, in the adjoint representation of a 

simply-laced Lie group, Kubo argues that D = 27 is singled out for 

membrane. 

Kubo begins by compactifying A' of the D membrane coordinates on 

an /V-torus, T*̂ , formed from an integral lattice, F, by 

= H-̂ '/ r . (3.3.8) 

He then considers the zero modes of and regards them as the 
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background solution 

X = X + Tpx + Y ^ . (3.3.9) 

where the allowed winding numbers, W., lie on the lattice, F, and ^' = 

('C,a\a^) . In order to remove zero mass degeneracy, Kubo compactifies 

on T*̂  X s' rather than and divides the allowed momenta into left 

moving (p) and right moving (p) parts. 

Kubo adds quantum fluctuations about this stable background: 

X = X. + Y , (3.3.10) 

and, from the resulting new contribution to the action, he obtains an 

expression for Y of the form 

Y = Y_{ fC")"'V) .-'•<f̂ *'"-<« + h.c. } 

j ^i^i^ixE{m)'^'bim) + E{m)^^b{m) 

in which the energy is given by 

(3.3.11) 

E{m) 2^^"-^ j \ - ~pf + ^ 2 
1/2 

(3.3.12) 
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which might be compared with (3.1.6). Also 

2Tim ^ , 27im, _2 (3.3.13) 

Imposing equal time commutation relations on the X's leads to 

a^im) , a^{m') = 5(m - m') r\ (3.3.14) 

and similarily for b{m). Inserting X into the first Virasoro condition 

(3.3.7) gives an expression of the form 

< p~ + p^ + 2itaT • ^ 1 ' " , ! 2aim)'^M(m) + b{m).b{-in) 

a 
—{D - 3) 
2K 

( a a \ r ° ° ( 

1 2 

. 7l(p - p) J L 
m , n =1 *• 

CO _ -

• a; 4. a y - p?"" 1 -
n = 1 ' 

a \ ' 
a V + 

P - P ] 

> = 0 (3.3.15) 

The crucial step in the argument is to take the narrow membrane 

limit, which is defined as the limit in which the ratio of the length 

of one side of the membrane, a^, to the length of the other, a^, 

becomes zero. In this limit, together with the infinite tension limit, 

T > oo , keeping aT constant, and truncating oscillators with n 

modes, Kubo shows that the Virasoro constraint reduces to that of 
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compactified bosonic string in the conformal gauge. Thus he claims that 
bosonic membrane has a critical dimension of 27 because of a reality 
rather than a consistency condition. 

In this section we have attempted to give an overview of some of 

the ways in which bosonic membrane theory is currently developing. 
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§3.4 Classification of Super p-Branes 

Ordinary numbers commute while Grassmann numbers anticommute. In 

canonical quantum theory, bosonic fields satisfy commutation relations 

while fermionic fields satisfy anticommutation relations. A simple 

supemumber, z, has a body consisting of an ordinary (commuting) real 

number part, x, and a soul consisting of a Grassmarm anticommuting 

number part, 9. Thus z = {x,Q) defines a point in a simple superspace 

R ' X R ' , which represents the commuting and anticommuting parts 
c a 

separately. 

A superfield is a function ranging over supernumbers. It can be 

used to represent the (anti)commutation relations of both bosonic and 

fermionic fields at once. For example, the position of a superparticle 

in superspace, with 4 real (m = 1,2,3,4) and 4 Grassmann (|i = 1,2,3,4) 

dimensions, at some time T , could be given by 

Z ( T ) = ' . A T ) , e^ (̂x) 1 . (3.4.1) 

Al l labels now have two parts, e.g. M = (m,^). Roman capitals label 

sup)erspace coordinates, Roman small letters label the usual commuting 

space coordinates and Greek small letters label the new anticommuting 

space coordinates. Early alphabet are tangent space components, middle 

alphabet are space components. (These conventions represent a change 

from the conventions used up until this point in the thesis.) 
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Wess and Zumino [17] have demonstrated how to give a geometrical 

formulation of supergravity in superspace. They introduce a 

supervielbein, E^\z), A = (a,a), which transform world tensors into 

tangent space tensors and has submatrices £ ^ E,,^, E ^ and £,.^. 

Similarily, they introduce the superconnection ^ f ^ - the 

supervielbein and the superconnection can be written as coefficients of 

1-forms: 

£A I M r- A 

M 

A MA 

(3.4.2) 

Using d = dz^ia/dz^), the supercurvature 2-form is 

d B I j N . M n B R = - dz A dz R 
A 2 MNA A A C 

(3.4.3) 

and the supertorsion 2-form is 

dE^ + E^A (3.4.4) 

Torsion is usually zero in ordinary space but is not zero in 

superspace. 

With the above geometrical interpretation, a Lagrangian with a 

supersymmetry can be viewed as a description of an arrangement of 
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bosons and fermions in superspace such that there is a 
supertransformation which transforms bosons into fermions and vice 
versa without changing the action. I f we take D = 11 supergravity, 
which has a local supersymmetry, then the curved superspace to be 
considered has 11 ,v's and 2L°^- I=32 0 'S (the minimum size of spinors in 
D dimensions). The notation ^p^ij means round down ~ to the nearest 
integer. So m = 1,2,....,11 and \i = 1,2,....,32 which gives the 

I I 3 2 

superspace R^ x R ^ . It turns out that in the superspace formulation 

of D = 11 supergravity, the equations of motion can be written as 

restrictions on the components of the supenorsion (3.4.4). We shall 

see the importance of this for super p-branes soon. 

Now trace the evolution of the action from (3.2.9), written 

S = - K cf^ i / 7 8^E^EX , (3.4.5) 

where 

E' = a.A:'"(^) E \X) (3.4.6) 
i i m 

and £ * is the vielbein, so that 
m 

G = E ' E \ . (3.4.7) 
mn m n ab 

The D = 10 space-time supersymmetric Green-Schwarz action [18] has the 

same form as (3.4.5) except that 
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E^ = a A^) E^{z) , (3.4.8) 

reflecting the introduction of fermionic coordinates (3=a/a^'). In 

order to incorporate the superparticle local fermionic K-symmetry 

defined in (3.5.1), Witten [19] added a Wess-Zumino term to the 

Green-Schwarz action to give the superstring action 

5 = - K 9) 

where A are the components of a super 2-form. Hughes et al. [20] were 
B A 

the first to show that, despite beliefs to the contrary, fermionic 

K-symmetry can be generalised from string. They extended it to super 

(4;6)-brane. 

The superstring action, (3.4.9), was extrapolated by Bergshoeff 

et al. [21] to the supermembrane action. 

S = -T / E^E\ - 1 
^ i j 'ab 

3! i j k CBA J 

and hence to super p-branes generally (p = d - 1), i.e. 

(3.4.10) 

5 = - k . - w - 2) 

i i . . . i A A , A^ 

i 8 ' - ' E ' E \.. E ' (3.4.11) 
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where the (p + l)-form A can be regarded as the potential for a closed 

(p + 2)-form field strength F , where ¥ = dA . Evans [22] has derived an 

explicit formula for A for any p in the case of a flat D dimensional 

superspace and Azcarraga and Townsend [23] have shown that F is a 

member of the (p+2)* Chevalley-Eilenberg cohomology (supertranslation) 

group of the superspace. 

R 
R X R 

c a 

Figure 3.4.1 Schematic picture of the embedding of a d-dimensional 

world-body into a D-dimensional space-time. 

A formal version of the action (3.4.11) may be written 5~ (*1+A) 

and a formal diagram of the embedding may be written 
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W ^ > IM 
wb s I 

n n 

Using the Bianchi identity, d¥ = 0, one can show that the 

condition for the existence of a closed {p + 2)-form reduces to a gamma 

matrix identity (e.g. (3.5.15)) and hence to the condition that the 

number of physical (transverse) bosonic and fermionic degrees of 

freedom should match. Achiicarro et al. [24] express this condition as 

D - d = - 1 - ^ , (3.4.13) 
4 

where N is the number of space-time supersymmetries and n is the (real) 

dimension of the (possibly chiral) spinor representation of the D 

dimensional Lorentz group. So nN is the total number of components of 

^Q1[1Q2H 0N^^ The divisor of 4 comes from a halving of the number 

of fermionic degrees of freedom as a result of fermionic K-symmetry and 

another halving from the requirement that the spinors be 

self-conjugate. They then show that (3.4.12) is only satisfied, for d < 

D, in 12 cases. These 12 possible /?-brane (i.e. (cf;D)-brane^ ) theories 

are plotted in figure 3.4.3 . 

^ The use of a semi-colon in this context distinguishes our notation 
from that of some other authors who call this a (/7,£))-brane. 
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The four sequences are labeled R, c , H and 0 to reflect the fact 

that they have, respectively, 1, 2, 4 and 8 bosons and fermions, which 

seems potentially of deep significance [25]. 

D 

1 1 

1 0 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

I 

0 f ...._......(H 
IH 

H 

H- r I - C 
1 !-/ 
1 c 
1./ 

C R 
R 

II 1 1 1 1 I I I 1 1 1 1 

1 2 3 4 5 6 

particle s tr ing Imembrane lump 4-brane 5-brane 

Figure 3.4.2 Plot of the 4 sequences of allowed (d:D)-brane theories 

Believing that a theory of everything should predict the 

signature of space-time as well as its dimensionality, Blencowe and 

Duff [26] investigated the situation with S space and T time dimensions 

in space-time and s space and t time dimensions in the world-body 

(s<S,t<T) and found various generalisations of figure 3.4.2 . The only 

visible change in the action (3.4.11) is that / -g is replaced by 

/ ( - l ) 'g . No new theories appear on figure 3.4.2 , but various 

versions of each theory, with d = sH and D = S+T, become possible. For 
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example, from considerations of femionic K-symmetry, restricting to N = 
1 flat superspace and assuming super-Poincare invariance, they found, 
for the allowable values of S and T, those plotted in figure 3.4.3 . 

s 

11 

10 0 
9 DH\0 0 
8 IH 

7 H 
6 IH 0 
5 c C\lH IH IH IH 1H\ (D 0 
4 C 
3 iR\C H 
2 R H 0 
1 R R \ C C C \ l H IH IH IH IH\0 0 
0 C •iH — T 

11 
0 1 2 3 4 5 6 7 8 9 10 11 

Figure 3.4.3 Plot of allowed super (l,s;T,S)-brane theories, 

assuming super-Poincare invariance. 

The original supersymmetric version of string theory involved a 

supersymmetry on the world-sheet and is called spinning string theory. 

Only much later was a space-time supersymmetric version found, called 

superstring theory. It was shown to be essentially equivalent in the 

light cone gauge to spinning string (via the GSO projection). 

Similarily with membrane, the earliest attempt to introduce 

supersymmetry was as spinning membrane by Howe and Tucker [27]. They 

showed that world-volume supersymmetrisation of (3.2.10), with p=2, 

requires the three dimensional supergravity fields to satisfy certain 

constraints which makes the world-volume metric, which was added in as 
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a free auxiliary field, no longer independent. This makes the bosonic 
sector of the supersymmetrised Howe-Tucker action inequivalent to the 
Dirac action. I f the supergravity fields are left unconstrained then 

supersymmetrisation requires that the Einstein-Hilbert term / -g R be 

added, which again makes the bosonic sector inequivalent to the Dirac 

action. Bergshoeff et al. [28] proposed a no-go theorem to the effect 

that no spinning version of the Dirac action is possible. 

However, Lindstrom and Rocek [29] have recently introduced a new 

alternative p-brane action which is Weyl invariant (i.e. invariant 

under rescalings of g') for any p: 

S = -T 
p 

d'^'^/^lg'X^XrC (X)]^ . (3.4.14) 
^ ° 1 ° ,1 ,j mn 

They show that this action can be used to construct spinning p-branes. 

The auxiliary fields remain auxiliary and can be eliminated by their 

equation of motion to give, in the case of membrane, an action which is 

equivalent to the Dirac action in the bosonic sector. 

But Abraham et al. [30] show that the Weyl invariance of (3.4.14) 

for > 1 implies that there is no possibility of space-time conformal 

invariance. They call this an "exclusion principle" between space-time 

and world-body conformal invariance. This would seem to imply a new 

no-go theorem for p > 1 namely that spinning /?-branes and super 

p-branes cannot be reconciled. Probably for this reason, interest seems 

to have temporarily moved to consideration of supersymmetric spinning 

particle actions and generalisations thereof. 
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§3.5 Super (3;11)-Brane 

Supermembrane in 11 dimensions is the progenitor of all other 

super p-branes in the sense that all others can be obtained from it by 

simultaneous dimensional reduction (labelled ^ in figure 3.4.2) and 

duality transformations of A (labelled - ). Duff et al. [31] have 

shown by the Kaluza-Klein method how to carry out dimensional reduction 

of super (3;ll)-brane to yield type IIA super (2;10)-brane. They make a 

partial gauge choice by identifying die ( = p) dimension of the 

membrane with the X ' ' dimension of the space-time. Then they compactify 

this dimension on a circle, throwing away all massive modes on 

space-time and the world-volume. This done, the supermembrane equation 

of motion reduces to that of the superstring. Generally, we can say, 

for any k e l , 

3 SupeT(d;D)-Brane A 3 k:0 < k < p => 3 SupeT(d-k;D-k)-Brane. 

In other words, given an allowed super (d;D)-bTane, i f there is an 

integer between 0 and p = d-\ then there also exists an allowed super 

{d-k;D-k)-hTanc. 

The super (3;ll)-brane has the following known symmetries. 

I . Global super-Poincare invariance. 
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5z^ = ( 5X^, 50*̂  ) 

= i r x" a'", 1 r"e^ ) . 
n 4 mn 

2. World-volume diffeomorphism invariance. 

5z^ = n'(^) . 

'ij ^ ^ ' / h . 

1 

6. = r ^ a . + 2a^^Ti^^, 

3. Superspace diffeomorphism invariance. 

4. Superspace 3-form gauge invariance. 

and the discrete transformation A^^^ —> - A^̂ ^̂ ptogether 

with an odd number of space or time reflections. 

5. Global space-time supersymmetry. 

Sz"" = { bX"" , 56̂ ^ ) 
= ( ii^ f " , 6 ^ ) . 

In a physical gauge some of the rigid space-time 

supersymmetry survives and becomes rigid world-volume 

supersymmetry. This allows transformation of the 8 

bosonic and 8 femionic degrees of freedom into one 

another. 
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6. Local world-volume fermionic K-invariance ( Siegel 

symmetry ), 

= ' 0 , (1 + f)°^p A^) ] , (3.5.1) 

where K'^(^) is a 32 component spinor in space-time and a 

scalar on the world-volume. 

f% = ^- e'j" E'E^'E' (r )"o , (3.5.2) 

where 

^ r r r . (3.5.3) 
abc [a b c] 

It was to ensure this symmetry that the 

Wess-Zumino-Witten term had to be added in (3.4.9). One 

can show by symmetry arguments that 

P = 1 

y ^ 3 = ^ P 
i.e. r".. r^o = (3.5.4) 

which allows one to define orthogonal idempotent 

projection operators, ^1 ± F), which can be used to 

remove ^ of the femionic degrees of freedom, as was 

needed in the derivation of (3.4.13). 

Consider closed membrane.- Varying the super (3;ll)-brane action 

(3.4.10) with respect to g'' gives 
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5L = i 5 v ^ g^E^E\ + i ^8'E^E\ - dV^ , (3.5.5) 
and using 

5V^ = l V ^ g.̂ Sg'J , (3.5.6) 

together with 

^ = 0 , (3.5.7) 

leads to 

8.. = E'E\ ^ , (3.5.8) 
° i j 1 J ab 

which is the equation of motion for the metric tensor. 

Varying with respect to z"̂  gives, in the bosonic sector, as one 

may expect from (3.1.14), 

m 
npq 

(3.5.9) 

where 

F = 4 a A . (3.5.10) 
mnpq [m npq] 

Varying with respect to and gives 
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(3.5.11) 

where 

5 £ / = 6 

= a (5£^ ) + 5z^(a.z^) 
i 1 

6£: ^ A N M N 5E 
M 

M 

' 1 M N 1 M N 
(3.5.12) 

from (3.4.4). Demanding invariance under Siegel symmetry (6) yields 

constraints such as 

and 

abttP ab 

a(3 
(3.5.13) 

(3.5.14) 

Using d¥ = 0 with (3.5.14) leads to one of the F-matrix identities used 

to derive (3.4.13): 

pad 
(aP [ ^ JTS) 

= 0 . (3.5.15) 

Constraint (3.5.13) is a constraint on the torsion of superspace. 
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the magical aspect of super (3;1 l)-brane, found by Bergshoeff et al. 
[21] and which has given impetous to much of the research in 
supermembranes, is the discovery that the constraints on the torsion in 
superspace, required for Siegel symmetry of the action, are exactly 
equivalent to the constraints on the torsion in superspace implied by 
the equations of motion of D = 11 supergravity. This replicates the 
intimate connection between background and foreground found in super 
(2;10)-brane theory and gives D = 11 supergravity a much needed raison 
d'etre. 

There has been very little discussion of self-dual super p-branes 

in the literature. It may be that the conditions adopted by Zumino [32] 

in his discussion of super Yang-Mills could be adapted for super 

p-branes. In particular we might consider 

F = * F 

with 

e = i ( 1 + f ) e 

(3.4.16) 

to extend self-duality to the fermionic sector. By the first equation 

in (3.4.16) we mean something of the form of (4.4.3). We shall not 

pursue this here, although we shall pursue self-dual bosonic p-branes 

in the next chapter. 

Although many aspects of the subject are omitted from this survey 
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of current research in super (3;1 l)-brane, we note that 
compactification schemes of supermembranes are being considered (e.g. 
[34]), area-preserving diffeomorphisms of supermembrane are being 
investigated (e.g. [35]), and a debate is currently underway between 
those who argue that supermembranes have a continuous mass spectrum, 
and are therefore inherently unstable [36], and those who argue that 
backgrounds can be found which give supermembrane a stable vacuum and a 
discrete spectrum of massive states [37]. This last work joins the 
growing literature on (super) singletons. We shall now look a little 
closer at the issue of the mass spectrum. 
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§3.6 Mass Spectrum and Related Problems 

A number of approaches have been proposed to extract information 

about the quantum theory of super (3;1 l)-branes. We consider 

semi-classical quantisation, path integral and group theoretical 

methods. 

Mezincescu et al. [37] followed the approach of Kikkawa and 

Yamasaki for the case of supermembrane. They closed the flat open 

membrane by making a pancake of two open discs and joining their edges. 

Without a rigidity term in the action the crease is non-singular. To 

stabilize it, they rotated it simultaneously in the - and X^ - X^ 

planes. They considered fluctuations, now involving fermionic 

coordinates, about the stable classical solution X^^: 

X = + {Y,x) (3.6.1) 

and calculated the Casimir energy. Like Kikkawa and Yamasaki, they 

found that massless states could not exist in integer dimensions and so 

concluded that supermembrane could not be a unification theory either. 

Their calculation has been criticised on the grounds that it was 

performed in a non-supersymmetric background which does not allow the 

mode by mode cancellation of the vacuum energy which is required. 

Again using the method of semi-classical quantisation. Duff et 

al. [38] stabilised super (3;ll)-brane by wrapping it on a torus by 
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R " — > X T'̂  . Fluctuations now include fermionic components as in 
(3.6.1). For the bosonic sector the results followed the steps of 
§3.2 . For the fermionic sector, step 4 now includes 

(na+mp) . id) 1 -/CO T m - in ^ tan ^ ^ ^ tnn 

(0 mn -m-n 

(3.6.2) 

and step 7 includes 

5 « , 5' P 1 = 2 5 « P . (3.6.3) 
00 00 

The spectrum is generated by terms of the form 

^ S"̂  . . . S"*" I vac > . (3.6.4) a 
m n m.n. p a , p.q. 

1 1 1 1 1 1 J J 

By this means they found that the boson and fermion contributions to 

the vacuum energy cancel, which is encouraging as regards the existence 

of massless states. 

Bergshoeff et al. [39] consider path integration as a way to get 

beyond semi-classical quantisation. This approach has to take into 

account world-volumes of arbitrary genus. The integration therefore has 

to be separated into an integration over all metrics for a 3-volume of 

definite topology followed by a sum over all topologies i.e. 
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z ~ 
a l l 

t o p o l o g i e s 

D[g] e'^ 

^ a t opo 1ogy 

(3.6.5) 

However, the classification of all compact 3-manifolds is an unsolved 

problem. The classification of all compact 2-manifolds has been 

achieved in terms of the simply connected homogeneous Riemannian 

2- manifoIds S , E " and B which have positive, zero and negative 

curvature respectively. A l l compact 2-manifolds can be obtained by 

quotients of these with freely acting discrete isometry groups, T. It 

has been conjectured [40] that there is an analogous list for 

3- manifolds, S ,̂ E ^ B^, S^x R, B^X (R, SLOM, Nil and Sol, from which 

all compact 3-manifolds can be obtained by quotienting with T, and 

possibly involving surgical sums. Nil is the nilpotent Heisenberg group 
â 1 b" 

and Sol is the solvable group of real matrices of the form o i/a c 
[o 0 1̂  

with a positive. 

Despite this problem, progress with the path integral method 

might still be possible because massless states only need to exist in 

one particular topology. We note that Ho and Hosotani [41] have 

developed a bosonic membrane field theory defined as a theory of 

surface functionals. Considering only toroidal membrane, they have 

found an exact solution involving massless states and an equally spaced 

mass-squared spectrum. 

Bars, Pope and Sezgin [42] have employed arguments of group 

theory to obtain definitive results. Given that space-time 
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supersymmetry remains unbroken non-perturbatively (proved post hoc in 
[43] and [44]) they conclude immediately that there are massless 
particles because the ground state energy is zero. The quantum numbers 
of these particles are determined by quantising the zero modes. These 
zero modes are the degrees of freedom of a completely collapsed 
membrane (effectively a superparticle with the embedding of figure 
3.4.1 reducing to equation (3.4.1) ). They use the light cone gauge so 
that the physical degrees of freedom can be counted directly without 
analysing constraints. In D = 11 a fermionic state has 32 degrees of 
freedom. But after Siegel projection and an appropriate gamma matrix 
representation, these can be shown to reduce to 16 real degrees of 
freedom. The 16 real fermionic zero modes satisfy a Clifford algebra 
similar to (3.6.3). This algebra is realised on 2^'^ = 256 states with 
2̂ "̂̂  = 128 bosons and 128 fermions. These states are classified under 

B F 

the transverse SOiD-2) = 50(9) group as 

[ 44 e 84 ] e 128 , (3.6.6) 
B F 

which is the D = 11 supergravity supermultiplet including a graviton 

(44). Thus the mass spectrum of supermembrane coincides with the 

allowed background fields. Similar arguments apply to the zero modes of 

the closed superstring yielding the D = 10 supergravity supermultiplet. 

Repeating this analysis for all the allowed super p-branes shows that 

only these two super p-brane theories, the octonionic sequence of 

figure 3.4.2 , contain a graviton in their spectrum. Their conclusion 
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is that D = 11 is the critical dimension for supermembranes. 

A second argument from group theory concerns the presence of 

anomalies in the classically allowed super p-brane theories. Bars [45] 

bases his argument on the assertion that, in the light cone 

quantisation of an SO{l,D-\) covariant theory, closure of the Lorentz 

generators implies that the massive states should reassemble into 

complete representations of the little group SO(,D-\). I f this fails for 

the first massive level in any topological sector then the theory in 

question breaks Lorentz invariance and therefore has incurable 

anomalies. 

The case of closed super (l,l;l,9)-brane (see figure 3.4.3 for 

interpretation) has manifest SO{S) symmetry in the light cone gauge. 

Modes are divided into left movers (L) and right movers (R). The three 

8-dimensional representations of SO{S), with Dynkin labels 

1 0 

have vector (v), spinor (s) and antispinor (s) states with contents 8v, 

8s and 8s respectively. The first massive states are those from the 

stringy version of (3.6.4) of the form 

a] a\ or s \ S[ or a\ S\ or 5^ |vac> , (3.6.7) 
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so the first massive level has symmetry 

s s V s V s vac> 

e 8„ ® 8 0 8-
V ^ 

1 v a o . (3.6.8) 
L 

V 3 

The vacuum itself has the symmetry of the D = 10 supergravity 

supermultiplet which can be written 

v a o = L > ® R > = 8 v ® % ® r 8y ® 8̂  
L L - 'R 

(3.6.9) 

Therefore left movers (and similarly for right movers) have symmetry 

> v e 8„ ® 8 ^ ® 8 -

• 1̂  © 28̂  ® 35̂  ® 8̂  ® 56̂  

[ 44 ® 84 ] e 128̂  , 
*• B F 

8- © 8g © 56̂  © 56g 

(3.6.10) 

which is a complete representation of S(9(9), as required. 

Bars then investigates the situation for the case of die first 

excited states of super (l,2;l,10)-brane compactified on a torus. Again 

it has manifest 50(8) symmetry in the light cone gauge. The states are 

now 
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« 10 « - 0 10 - 1 0 10 - 1 0 - 1 0 ^ ' l O 1^^"^ 

(3.6.11) 

The symmetry in this case is, using (3.6.6), 

8 © 8 
V s 

® > v © 8-
s 

vao 

= [ 44 © 84 ]g © 128p ® [ 44 © 84 ]g © 128̂  

(3.6.12) 

and forms a complete representation of 50(10) as required. 

Similar arguments for all other p-hranes have failed in some 

topology. Bars concludes that apart from D = 10 superstring, only D = 

11 supermembrane might be quantum consistent. In some sense, 

supermembrane contains superstring and therefore there is reason to 

consider quantised super (3;ll)-brane as, possibly, the unique theory 

of everything. 
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C H A P T E R 4 

S E L F - D U A L Q U A T E R N I O N I C L U M P S I N O C T O N I O N I C S P A C E - T I M E 

Time and space are modes by which we think 
and not conditions in which we live. 

A.Einstein 

§4.1 Introduction to Self-Dual p-Branes 

Moving from strings to p-branes has given extra vitality to 

discussion of the geometry of minimal immersions. The second order 

equations of motion of p-branes are in general highly non-linear and, 

as such, are hard to solve. However, Biran, Floratos and Savvidy [1] 

have pioneered an approach for constructing self-dual equations for 

membranes which are first order and have been solved in panicular 

cases. 

It has been noticed [2] that there are new classes of exceptional 

geometries for which self-dual equations can be constructed. This was 

noticed independently recently by Grabowski and Tze [3]. This chapter 

describes self-dual p-branes in various backgrounds, in particular 

self-dual membranes (2-branes) and lumps (3-branes) immersed in the 

exceptional geometries, concentrating especially on the case of a 

3-brane (lump) in 8 dimensions, which we call a (4;8)-brane. 
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By analogy with {p,q) torus knots invoked in chapter 2 in the 

solution of self-dual (2;4)-brane [4], we introduce the quatemionic 

counterpart as a proposal for the formulation of specific solutions of 

the self-dual (4;8)-brane equation. (No non-trivial solutions are 

currently known.) We describe an algorithm for generating this class of 

potential solutions which we call 'quots' (quatemionic knots). 

Although tantalizingly close to satisfying the 32 self-dual equations, 

we argue that some new idea is required before this ansatz will yield 

the infinite hierarchy of exact solutions analogous to that in [4]. 

The action of a (c;̂ ;D)-brane is given by the generalised 

Einstein-Nambu-Goto volume integral 

S = T (4.1.1) 

where 

^ab - 7^7 \ V = ^ ^ , a ^^.b ' 
(4.1.2) 

with |i,v = 0,1,...,D-1 and a,b = 0,1 d-\ , unless D and d are 

odd in which case we count from 1 to D and 1 to d respectively. The 

fundamental constant of the theory, T, has dimensions [ML'"**], with the 

speed of light c = 1. 

The (J;D)-brane is taken to be closed so that no boundary 

conditions need to be considered. 

97 



4. Self-Dual Quaternionic Lumps in Octonionic Space-Time 

We consider the case of a flat Euclidean background space where 

T[^y = Diag (1,1,...,!). We also introduce the conjugate momentum 

^a^i ^ 5 L _ ^ T / r . (4.1.3) 

The equation of motion (see (3.1.14)) then reduces to 

a/' '^ = 0 . (4.1.4) 
a 

The appropriate identities can be written 

' 'V^ = = T / F 8 ; . (4.1.5) 

which corresponds to the vanishing of the Hamiltonian, and 

2 2 * * 

which is the extended object generalisation of p =m for relativistic 

particles. 
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§4.2 Self-Dual (d;d)-Branes 

Consider (2;2)-brane (string in two dimensional space-time) and 

define self-dual (2;2)-brane by 

where ê** is the two dimensional permutation symbol fixed by 

e°' = +1 . (4.2.2) 

Recall that the two dimensional permutation tensor € '̂' is defined by 

(4.2.1) 
,b 

gab ^ . (4.2.3) 
y 

Also note that / I T = 1 and therefore that 

ê ^̂  = ê ^̂  (4.2.4) 

in our particular case. is thus a world-sheet tensor density which 

satisfies (4.1.4), since a is symmetric in a and b while e'" is 

antisymmetric. 

Expanding explicitly for the (2;2)-brane gives 
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(4.2.5) 

while expanding P""^^ ^ gives 

0 f x ' , / . , x » / J 

(4.2.6) 

showing that constraint (4.1.5) is satisfied. Substituting (4.2.1) into 

(4.1.6) gives 

p a pbH ^ j 2 ^ac y E^'E^XP^ 
\l | I V ,c p ,d 

t 2 „ „ab (4.2.7) 

So constraint (4.1.6) is satisfied. The self-dual equation is therefore 

X^ = e ' e ^ x \ 
•a a V ,b 

(4.2.8) 

Similarily it can be shown [5] that self-dual (J;£i)-branes can be 

defined generally by 
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(4.2.9) 

This satisfies the equation of motion by symmetry arguments. It also 

satisfies the constraints from the properties of contracted products of 

permutation tensors and by the definition of determinant in terms of 

permutation tensors. 

The covariant self-dual (3;3)-brane equation is therefore 

.a, - ^ ^a, M,̂ 3 ^ .a. 

In a gauge in which g is diagonal, Biran et al. simplify (4.2.10) to 

/ . = l e A A . (4.2.11) 

where 

= 1_ (4.2.12) 

,a 

and show that 

X{\) = R(^)[ Cos^i^) Cos^il;), Com^) Sin^i^-l Sin^(^') • 

(4.2.13) 

101 .f/C>i% 
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and 

X{^) = • R + r(^') Cos^i^') Cos'Vi^^ 

,r(^,') Sin^(^') 

R + K^') Cos^i^^) Sin^'(^-), 

(4.2.14) 

are solutions of (4.2.11). 

Since any orthogonal transformation of these solutions will give 

new solutions, we have verified that, for example, 

X(^) = I R(^') S(^') Cos@(^'), R(^') S(^') Sine(^'), 

R(V) - S(^') (4.2.15) 

and 

X(^) = X\ Sinh@(^') 5m<Df̂ '; Cos^'(%^}, SinhQ(^') Sin^(^^) Sin'¥(^'), 

CoshQil,') Cos^ik^)\ (4.2.16) 

are also solutions of (4.2.11). 
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Figure 4.2.1 Solution (4.2.13) for Ri^') = ^ \ ^ i ^ ' ) = ^ \ = A ' 

Figure 4.2.2 Solution (4.2.14) for r(^')=^V M (̂̂ ')=27lS/>/̂ ^ ^ & = ^ ^ 
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§4.3 Self-Dual (d;D)-Branes 

The self-dual equation of rigid string instantons (2.1.17) [4], 

self-dual (2;4)-branes, can be derived by defining 

where an almost complex strucmre has been imposed on space-time by 

(4.3.1) 

r 0 1 0 01 
-1 0 0 0 
0 0 0 1 
0 0 -1 0 

(4.3.2) 

(4.3.1) automatically solves (4.1.4) and (4.1.6), but only 

satisfies (4.1.5) on condition that 

as is the case if X^ has the symmetry of 

X^ ~ 

which is true in, for example, the case of 

A -B 
B A 
C D 

-D C 

of 

(4.3.3) 

(4.3.4) 

x̂ - 3Ta^ 3 r a - a \ a"- T ^ -2xa (4.3.5) 
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where T = ^° and O = ( c.f. (2.2.3) ). 

Another interesting example of a self-dual ((i;£))-brane { d < D ) 

has been discussed by Grabowski and Tze [3]. This is the first 

exceptional case (see [6]), a (3;7)-brane (see also [7] for a self-dual 

(3;5)-brane). Define 

where ^y^yj\ ĥe octonion structure constants. (4.3.6) satisfies 

(4.1.4) because of the complete antisymmetry of C^^-^. (4.3.6) also 

satisfies (4.1.6) as can be demonstrated using the identity 

C , C P ^ ^ = 5 PS ^ - 6 ^5 P + / / , (4.3.7) 

where |i,v,.. = 1,2,...,7 and f^^yf^^ is a completely antisymmetric rank 4 

tensor which quantifies the non-associativity of octonion 

multiplication in a similar way that ^^xvX quantifies their 

non-commutativity. 

However, (4.1.5) is only satisfied if 

Consider the self-dual (3;7)-brane equation resulting from (4.3.6) and 

(4.1.3), 
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,a 2 a VA. .b ,c 
(4.3.9) 

Contracting (4.3.9) with X gives (4.3.8). The right side of (4.3.8) 

can be regarded as a generalised Jacobian for immersions. 

As a first step towards solving (4.3.9), we shall consider how to 

find solutions of (4.3.8). One approach to obtaining a solution to 

(4.3.8) is to take the self-dual (3;3)-brane solutions (4.2.13 - 16) as 

trivial (3;7)-brane solutions. is invariant under 

transformations. Taking a general matrix G^^^ e , then 

(4.3.10) 

Substituting this into (4.3.8) gives 

(4.3.11) 

Thus applying a general transformation of the seven dimensional 

representation of the exceptional Lie group G^ to our trivial 

(3;7)-brane solutions will give the solutions in a form which might be 

more interesting. We shall not pursue this approach here but we shall 

make a few more remarks about C^^-^. 

A basis for octonion multiplication is defined as admissible if 

it is such that 
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(4.3.12) 

where 

o\ = y[sco] + VecO . VecO (4.3.13) 

is the norm of octonion 0. Equation (4.3.12) is equivalent to the 

condition that 

VecO^ A VecO^ = Det VecO . Veco] , (4.3.14) 

where i,j=l,2. The caret symbol signifies the cross product in 7 

dimensions which is defined by ^^y)^ (see [8]) and the dot signifies the 

7 dimensional dot product. Both these products are a consequence of 

octonion multiplication. VecO, O e 0, is similar to ImZ, Z 6 C, and 

selects the 7 dimensional vector part of 0. (For a quaternion g G H, 

VecQ selects the 3 dimensional vector part of Q.) ScO is similar to Rez 

and selects the scalar part of O. 

The Moufang identity. 

pax ~ 3 ^ îp va "-̂ .x ' 
(4.3.15) 

is also only valid in an admissible basis, as is the equivalent 

identity. 
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which follows by application of (4.3.7) to (4.3.15). 

A particular basis is specified by a list of 7 triples each 

involving 3 of the integers 1 to 7 without repetition. Cyclic rotations 

of a triple give an equivalent triple. The quatemionic analogue is the 

basis for the usual cross product in 3 dimensions. This cross product 

is based on the S0(3) invariant tensor e which is characterised by a 
abc 

single triple involving the integers 1 to 3. The triple 123 is 

equivalent to 312 or 231 and specifies 

abc 

by defining ê ^̂  = -i-l, which uniquely implies, by complete 

antisymmetry, all of the other components of ê ^̂ . The only alternative 

basis for quaternions is the triple 132 which signifies the distinction 

between left and right handed coordinate systems in 3 dimensions. 

For octonions there are 480 different choices of basis, 240 

clockwise and 240 anti-clockwise. We call a basis anti-clockwise if it 

can be represented on the diagram in figure 4.3.1 where A to G are to 

be identified one to one with the integers 1 to 7 in some order. 

Each of the 7 triangles represents one of the 7 triples, the 

arrow indicates the order. If, for example, A to G are identified with 

1 to 7 respectively then figure 4.3.1 represents the basis 
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Figure 4.3.1 Rcpresenlalion of the 240 anli-clockwisc ba.ses 

of ocionionic multiplicalion. 

This is interpreted as meaning that C^^^ = 1 along with the 

other two even permutations. C = C, = 1 . The three odd 
413 341 

permutations are then -1. C = C = C , , = -1. This assignment 
143 314 431 

process is repeated for each of the 7 triples and all other elements of 

^\LvX '^^^^^ °" ^^^^ °^ ^' ^^y^ placing 

1 to 7 on figure 4.3.1 . However the starting position is arbitrary so 

7! should be divided by 7. Also, since cyclic permutations are 

irrelevant, each basis is equivalent to two others generated by 

cyclically permuting the entire columns of the basis. Figure 4.3.1 

therefore represents = 240 distinct bases. Changing the 

directions of all the arrows on figure 4.3.1 gives the 240 clockwise 

bases. 
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In summary, any admissible basis can be written such that each 

of the integers 1 to 7 appears one and only one time in each column, 

and each row does not have repetitions. The other important 

characteristic of an admissible basis is that no two rows have more 

than one integer in common. This rules out as inadmissible a basis such 

as i 
An alternative way of representing bases by a triangle and circle 

does not allow one to distinguish readily an admissible basis, figure 

4.3.2 , from an inadmissible one, figure 4.3.3 . 
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Figure 4.3.2 An admi.s.sibic basis. 

Figure 4.3.3 An inadmissible basis. 
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§4.4 Self-Dual (4;8)-Brane 

Since quaternions have embeddings in octonions, IH ^ > 0 , it 

is natural to generalise the (3;7)-brane, seen as VecM <^ > VecQ , 

to (4;8)-brane. This involves the second fundamental geometry with an 

exceptional automorphism group. For self-dual (4;8)-brane, we write 

The completely antisymmetric tensor T^^^^ was introduced in [9]. It can 

be defined, making use of (4.3.7), from 

T = H 
|ivpa jivpa ' 

(4.4.2) 

where ji,v = 1,2,...,7 but |i,v ?i 0 . Choosing the positive sign 

defines a self-dual tensor, T^^^^ (|i,v = 0,1,2,....,7), while choosing 

the negative sign defines an anti-self-dual tensor. Changing between 

anti-clockwise and clockwise bases of C^^^ has an equivalent effect so 

we can take the positive sign in (4.4.2) without loss provided we 

consider both clockwise and anti-clockwise bases. 

Consider the 1024 'doubly self-dual' equations analogous to 

self-dual Yang-Mills 
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a b 4 ab P O c d 

where 

F^^ ^X^ . (4.4.4) 
a b , [ a ,b] 

Contracting (4.4.3) with X gives 

bed ^ p (4 4 5) 
,a 3! a Vpa .b .c ,d 

which are the 32 self-dual equations arising from (4.4.1) and (4.1.3). 

Contracting (4.4.5) with X^^ gives 

which is the condition necessary for (4.4.1) to satisfy constraint 

(4.1.5) . The equation of motion (4.1.4) and the second constraint 

(4.1.6) are automatically satisfied by (4.4.1) without further 

conditions. 

113 



4. Self-Dual Quaternionic Lumps in Octonionic Space-Time 

§4.5 (p,q) Quots 

We wish to find a solution of (4.4.5). First we look for a 

solution of (4.4.6). Consider the quatemionic equation 

f / P + = 0 ; e (H . (4.5.1) 

A solution of (4.5.1) is given by 

U = , V = -f^ \ K e ^ (4.5.2) 

Take the case where 

K = t + xi + yj + zk = t + r (4.5.3) 

and p=2, q=3, then 

and 

U = {t^ - 3tr^) + (3t^ - r^)r , 

V = (r^ - r ) - 2tr 

(4.5.4) 

Call this quaternion analogy of a (2,3) torus knot, a (2,3) quot. Now 
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construct an octonion, X, by catenating U to V, inserting a 
dimensionful constant (with dimensions of length), L , (which we shall 
henceforth set to 1) to avoid dimensional problems: 

" A - = ( , L " ^ " V ) (4.5.5) 

Then consider as a potential solution of (4.4.5) or (4.4.6). 

Writing ""X^ = ( ScU, VecU, ScV, VecV ) then 

23 X^ = ^ - 3tr^), f 3 r - r ' j r , (r - t^). -2tr (4.5.6) 

Let us first compute V g ' from this ^^X. We find 

9(t^+ r^) + 4 (3t-- r ' ) \ (2t)\ . (4.5.7) 

For to have a chance of solving (4.4.6), Det "g must be a 23. 

ab 

perfect square. (4.5.7) shows that '^X does satisfy this non-trivial 

criterion. 

The left side of (4.4.6) does not appear to depend upon the basis 

chosen for octonion multiplication whereas the right side certainly 

does, from (4.4.2). Therefore '^X could only be expected to satisfy 

(4.4.6) in one particular choice of basis. What basis should we use? 

In fact we have made an implicit choice of basis in our 
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construction of ^^X. Defining a complex number as two real numbers 

catenated together is equivalent to saying that the first is the real 

part and the second is the imaginary part of the complex number. 

Symbolically; 

(4.5.8) 

However, the situation is more involved in the case of quaternions 

because the real and imaginary parts are now themselves complex 

numbers. 

- (C,,cp - (C + yep ^ {(R, + /R,p + ;(R^ + /R^p • 

= ( ^ 1 + ' ^ 2 + ^ 2 2 ^ ' 
(4.5.9) 

in the usual 123 basis. Note the appearance of the minus sign. To avoid 

this we shall choose to put the basis element to the right of the 

coefficient. (Although we could have used j in (4.5.8).) So our 

understanding of how we have derived an octonion from two quaternions 

is, symbolically. 

0 = (Hj,Hp = (H + ^ j ) = • 

= (R +R 0+(R +R l)J + 
^ ^ 111 112 121 122-

(R +R /)+(R„ +R,,,0; 
^ 211 212 221 222 

(4.5.10) 
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Further, we choose the convention that we evaluate innermost brackets 

first. It is this we are taking to be our octonion. Therefore we are 

implicitly taking ij = k (i.e. 123), // = m (i.e. 145), = n 

(i.e. 246) and {if)l = kl = o (i.e. 347). The only admissible basis 

Changing the signs of various with those assignments is 1 
734 

coefficients of X is equivalent to choosing different implicit 

bases. 

Calculating the right hand side of (4.4.6) in this basis gives 

''TXXXX ^ T - ^ v p a ' ^ V ^ ^ ' ' ^ ^ / ' ^ ^ 

= r^)\9(t^+ ?) + 4 (3t^-?)- (It) (4.5.11) 

Comparing with (4.5.7) we see that the only difference is a single 

sign. 

For the case of a (2,5) quot we have 

" X = l O r V ^ 5 r / j , (5r ' -10fV^ r')r_ , (r^- t'), -2tr 

(4.5.12) 

We find 

2 2^ 

(4.5.13) 
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while, in the chosen basis, 

^^TXXXX = (t^+ r^)\l5(t-+ r^)+ A 
2 2 

f5f'- l O r W - (It) 

(4.5.14) 

These again only differ by a single sign. Similarily, 

e f3f'- r-) \ , 

(4.5.15) 

and 

= (t^+ r ' / [ l 6 f r V r^j + 9]i(5tU0tV+ / j ' 9 f3f^- , 

(4.5.16) 

where ® identifies the offending sign. 
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ZSDH0B35 Self-Dual ( H ; 0)-Pr3ne (3F5) Quot 24/7/89 
•/.-
OPERATOR X* OPERATOR S« DEPEND X .S ( 1 ) -S ( 2 ) »S ( 3 ) fS(4 ) * 
OPERATOR XnOTX* X D O T X : = S ( 2 ) « « 2+S ( 3 ) * « 2+S( 4 ) * * 2 * 
OPERATOR yECF* VECF:=5*S(1)**4-10*XD0TX*S(1)**2+XD0TX*#2* 
X ( 1 ) : = S ( 1 ) * « 5 - 1 0 * X D 0 T X * S ( 1 ) « * 3 + 5 « S ( 1 ) * X r i O T X * * 2 $ Z \ 

/ (ScU f VecU 7Scy f UecV) 

: = i:4 DO Xii.3<mra) :=DF(X(m) rS(3) >« 

X(2):=UECF*S(2)* 
X(3):=yECF*S(3)» 
X(4):=UECF*S(4)« 
X(5) :=3*S(1)*XD0TX-S(1)**3« \ 
X(6> : = (XD0TX-3*S< 1 )#*2)«S(2)* 7. \ 
X<7) : = <XD0TX-3«S< 1)««2)*S<3)« \ 
X<8) ! = <XD0TX-3*S( 1 )«*2)«S(4)» /-
MATRIX Xm3<8f4)* FOR m!=i:8 DO FOR = 
MATRIX G3t>(4f4)« Gati: = (TP Xros)*Xii.3» 
s<i):=t$ s(2):=x4 s(3):=a» s(4):=z« 7. ; 
ARRAY E3bcd(4f4f4»4)« FOR 3:=1!4 DO FOR b:=i:4 DO FOR c:=i:4 DO FOR d:=i:4 DO 

EabccKarbfCfd):=(1/12)*(b-a)«<c-b>*(d-c)*(c-a)«(d-b)«(d-a)» 
MATRIX PS<7F3)« B A S I S ««***#*«*««**«**#*****#««*******#«#*«* ; 

Bs•=MAT((lj2r3)i(2f4r6)r(3»6f5)r(4f5fl).(5.7f2)r(6flf7)F(7f3r4))« /;«*«*«*« : 
ARRAY CiJk<7f 7f 7)» FOR l<.:=i:7 DO 

«Ci Jk (Bs (k r 1) F Bs (k»2 >. Bs (k f 3) ) : = 1 ( Ci Jk (Bs (k »2) »Bs (k r 3) f Bs (k f 1)) : =1 f 
Ci Jk ( Bs (k f 3) f Bs < k . 1)» Bs (k »2) ) : = 1J Ci Jk ( B s (k»1). B s < k f 3 ) F Bs (k r 2) ) : =-1 ! 
CiJk(Bs(k>2)FBs(kf1)FBs(kF3)):=-lFCiJk<Bs(kF3)FBs(k>2)FBs(k»1)) :=-l»« : 

%============= HiJkl = DilDJk - DikDJl + CiJhCklh ========================== 
MATRIX DiJ(7.7)* FOR 3: = i:7 DO Di J < a . a) .* = 1 $ 
ARRAY DiJDkl<7»7f7»7)« FOR i :=i :7 DO FOR J!=i:7 DO FOR k:=i:7 DO FOR i:=i:7 DO 

DiJDkl(i fJfkf1):=DiJ< ifJ>«DiJ(kFl)» 
ARRAY CiJhCklh(7F7F7f7)« FOR i:=l!7 DO FOR j :=i :7 DO FOR k:=i:7 DO FOR i:=i :7 DO! 

CiJhCklh<iFjfk»l):=FOR h!=i:7 SUM CiJk(irJfh)*CiJk(kr1rh)» 
ARRAY HiJkl(7,7f7f7)$ FOR i:=i :7 DO FOR j :=i :7 DO FOR k:=i:7 DO FOR l!=i :7 DO : 

HiJkKif Jfkrl>:=DiJDkl(itl>J»k>-DiJDkl(i»kf J»l)+CiJhCklh(if JfkrD* 
2=== Tmnrs = HiJkl f Tlnrs = Tmnls = CiJk f Tmlrs = Tmnrl = -CiJk =========== 
ARRAY Tmnrs(8T8»8f8)* FOR i:=i :7 DO FOR j := i :7 DO FOR k:=i:7 DO FOR i:=i :7 DO j Tmnrs(l+if1+Jf1+kfl+l);=HiJkl(ifJrkf1)» 

FOR i:=i :7 DO FOR j ;= i ; 7 DO FOR k:=i;7 DO 
<<Tmnrs(lrl + if1+J.l+k);=CiJk(i»Jfk)« Tmnrs(1 + i»1F1 + J»1+k):=-CiJk( i»Jrk)« 

Ttnnrs(l + i . 1 + J f 1»1+k) : =Ci Jk ( i f J f k ) * Tmnrs (1+ i »1 + J r 1+k f 1) : =-Ci Jk < i »Jr k )»« 
ARRAY TXXX(3r4f4r4>» FOR m:=i:8 DO FOR b:=i:4 DO FOR c:=i:4 DO FOR d:=i:4 DO 

TXXX<m»b.c»d) :=FOR n: = i;8 SUM FOR r; = l.*8 SUM FOR s: = i:8 SUM 
Tronrs < m r n ? r» s ) *Xiii3 (n r b) «Xm3 ( r»c ) «Xm3 < s r d) $ 

MATRIX P3m(4r8)« FOR 3:=l:4 DO FOR m: = i:8 DO Pan.(afm)I = (1/6)*FOR b! 
FOR c:=i:4 SUM FOR d:=i:4 SUM E3bcd(3»bfC»d)«TXXX(mrb»c>d)» 

Txxxx:=FOR iii: = i:8 SUM FOR n:=i:8 SUM FOR r:=i:8 SUM FOR S:=I :8 SUM 
Tmnrs (iTifn r rr s)*Xma(m» 1 )*Xma <n»2 )*Xma( r»3)«Xma< s r 4) » 

MATRIX p3Xb<4,4)* PaXb=P3m*Xm3« 
MATRIX P3Pb(4f4)* PaPb:=p3m«TP Pam* 
G:=DET Gab* rG:=SQRT G» 
% Checks 
p3Xb(l»2>f PaXb<1.3)f p3Xb(2f3); 
PaXbClf1)-TXXXX; PaXb(l»l)-rGJ 
P3Pb-G*l/Gabf 
ON FACTOR; 
TXXXX-rGJ TXXXX? rG; END* 
% 

= i;4 SUM 

Program 4.5.1 REDUCE program lo calculate TXXXX and 

and to check equalion of molion and constraints. 
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These results enable us to formulate the general empirical result 

that 

where 

qV+ r'r+ A{f(q) + f(p) 

(4.5.17) 

f(n) = Y (-^) 

j= i 

n 

[ 2;-i J 

^n-2j+l ^2(j-l) (4.5.18) 

in which means round up to the nearest integer. The corresponding 

expression for ^TXXXX requires only the last + sign in (4.5.17) to be 

changed. Note that Det ^g is always a perfect square. Changing, for 

example, the signature of the space-time metric was found, in the cases 

considered, to destroy this necessary condition. Notice ^^TXXXX = 0 . 

Also note, i f f(p) = 0 then '"'X is a solution of (4.4.6). 

The formulae of (4.5.17 & 18) enabled us to correcdy predict 

/ V = f r . r^) 49(t-+ r^)'+ 4 \(lt^- 35rV-H 21rV- 0 (2tf • . 

(4.5.19) 
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X - 0.5 

« • 0 

%' 
X' x* 
l ' 
X' 

t - 0 

y - 0 

2 • 0 

t - 1.5 

iitllMII 

i i i i D i i i i i i i t l l l l i r l H I I I I I I I M I I I I 

! - 1 . 

Figure 4.5.1 A prescntaiion of the (2.3) quoi of equation (4..').6) 

using a general program introduced in 110], intended 

for data of an arbitrary number of dimensions. 

Figure 4.5.2 A presentation of a (3.4) quot. 
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Obviously one would hope that changing to another basis, or 

taking the anti-self-dual version of T^^^^, or rearranging the rows and 

columns of X^^ , or multiplying some of the rows and columns of X^̂  

by -1 , all of which leave V g " unchanged, would enable one to alter 

the offending sign in TXXXX. We argue that this is not possible. 

Firsdy note that all of these variables are absorbed in the 'change of 

basis' variable. 

Take "^X^ and write it out explicidy. 

23 X ^ = 

'3t'- 3r' -6tx -6ty -6tz 

6tx 3r- . , 2 2 2 
3x -y -z 

-2xy -2xz 

6ty -2xy 3t -X - 3 2 2 ^ 
V -z -2yz 

6tz -2xz -2yz 3tW-y 

-2t 2x 2y 2z 

-2x -2t 0 0 

.2y 0 -2t 0 

-2z 0 0 -2t 

(4.5.20) 

23 TXXXX picks one entry from each column for the non-zero components of 

•^jxvpa niultiplies them together with a ±1 in front depending upon 

the basis chosen. Notice that J'^g in (4.5.7) contains terms +16/'*, 

+4/, +4ŷ  and +4z^. There is only one way to obtain these terms in 

23 TXXXX: 
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-f-16r' => T 
4567 

= +1 
••• ^4567 

= +1 , (4.5.21) 

+4/ => T 
5423 

= -1 .-. H 
4523 

= +1 , (4.5.22) 

+Ay^ => T 
6143 

= -1 
••• ^4163 

= +1 , (4.5.23) 

+4z^ => T 
7124 

= -1 .-. H 
4127 

= +1 . (4.5.24) 

Using (4.3.7), (4.5.21 & 22) imply that Ĉ ^̂  = C^^ = Ĉ ^̂  and 

(4.5.23 & 24) imply that Ĉ ^̂  = Ĉ ^̂  = C^^^ . We require an admissible 

basis to exist containing which of necessity requires one of the 

unknown rows to be 437 or 473 because both missing rows must contain a 

.4 and the remaining four elements must be taken from 2,3,6 and 7 since 

every number has to appear three times in total. Now, rotating the rows 

into standard form in which there is no repetition in the columns, we 

find, fixing the first row as 145, only two possibilities. and 

s both of which have 4,3 and 7 in the same column. Therefore it is 

impossible to add 437 or 473 as a new row without introducing 

repetition in the central column. Therefore no basis can make (4.5.11) 

equal to (4.5.7). 

Thus we have shown that the infinite set of {p,q) quots very 

nearly solve (4.4.6), but for a single sign in (4.5.17). There are many 

possible ways of altering terms on the left or the right hand side of 

(4.4.6) but there seems to be no obvious way of correcting the 

problematic sign. The aim is to find a solution to the 32 equations of 
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(4.4.5) . We have presented an algorithm which is so close to solving 

(4.4.6) that we believe there is a way to make it solve (4.4.6) and 

(4.4.5). 
23 

To see how close X, for example, can come to solving (4.4.5), 

we use program 4.5.1 to compare of equation (4.2.1) with of 

(4.1.3), which is exactly equivalent to (4.4.5). We find that, overall, 
,1231 

there is good agreement in the admissible clockwise basis 5l4 
For 

example, in the 24 terms in the polynomial of and in the polynomial 

of P^^ only a single term is different: 

P'' = 27?' - 45 rV - 45ry -45f'z' + lit' + 2ltV + AltV/ 

+ 42tVz' - llt'x' + 21fy + 426V - 12ry 

+ 2ltV e 4tV - 3x' - 9xy - 9 A - - 9xy 

- ISxVz' - 9xV - 3 / - 9 / r - 9yV - 3z' . 

(4.5.25) 

The only difference between (4.5.25) and P' ' is that © is a minus 

sign in P^^ and the coefficient is 12 not 4. Similarily, the only 

difference between and f ' ^ is that has one extra term, Styz. 

The other 11 terms agree exacdy. The same happens for and F'^. 

has one extra term, -Stxz, the other 11 agree. For the other 29 

equations, there is again overall agreement, but it is not exact. We 

believe that there is some way to make quots solve (4.4.6), and that 

when this is accomplished then they will also satisfy (4.4.5) exactly. 
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We also believe our expression for the right hand side of (4.4.6) 
rather than the left hand side because, in general, it factorizes more 
than the left hand side. 

If this infinite hierarchy of self-dual (4;8)-brane solutions can 

be made to work properly, then it might yield an exact mathematical 

classification of 'arrangements' analogous to the torus knot 

classification of paths. The corresponding (3;7)-brane solutions might, 

similarily, classify foams. 
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