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Validation of Viscous, Three-Dimensional

Flow Calculations in an Axial Turbine Cascade
J.G.E. Cleak

Abstract

This thesis presents a detailed investigation of the capability of a
modern three-dimensional Navier-Stokes solver to predict the secondary flows
and losses in a linear cascade of high turning turbine rotor blades. Three
codes were initially tested, to permit selection of the best of the available
numerical solvers for this case. This program was then tested in more
detail. Results showed that although very accurate prediction of the effects
of inviscid fluid mechanics is now possible, the Reynolds stress modelling can
have profound . effects upon the quality of the solutions obtained. Solutions
using two different calculation meshes, have shown that the results are not
significantly grid dependent. V

The flowfield of the cascade was traversed with hot-wires to obtain
measurements of the turbulent Reynolds stresses. A turbulence generating
grid was placed upstream of the cascade, to produce a more realistic inlet
turbulence intensity. Results showed that regions of high turbulent kinetic
energy are associated with regions of high total pressure loss. Calculation of
eddy viscosities from the Reynolds stresses showed that downstream of the
cascade the eddy viscosity is fairly isotropic. Evaluation of terms in the kinetic
energy equation, also indicated that both the normal and shear Reynolds
stresses are important as loss producing mechanisms in the downstream ﬁow.

The experimental Reynolds stresses have been compared with those
calculated from the eddy viscosity and velocity fields of Navier-Stokes pre-
dictions using a mixing length turbulence model, a one equation model, and
a K — ¢ model. It was found that in the separated, shear flows, agreement
was poor, although the K — ¢ model performed best. Further experimental
work is suggested to obtain data with which to determine the accuracy of

the models within the blade and endwall boundary layers.



Acknowledgements

I am most grateful for the interest and enthusiasm of my supervisor
Dr. David Gregory-Smith. His most capable guidance, and the many useful
discussions with him, have been of great benefit to me during my period of
post-graduate study. k

My grateful thanks are also extended to Dr. Nigel Birch, Dr. John
Northall, and Dr. Peter Stow of Rolls-Royce Plc. Their helpfulness and
expert advise have been greatly appreciated. I am also indebted to them for
their help in exporting and running Rolls-Royce software on the Rutherford
CRAY.

I would also like to thank all staff, both academic and technical, of
the School of Engineering and Applied Science, for their assistance during my
pericd as a research student. Particular thanks must go to Jan Glassford,
who made pieces of experimental equipment for me with consistent care, and
great attention to detail.

The financial support of Rolls-Royce Plc, and the Science and Engi-
neering Research Council, are also gratefully acknowledged.

Finaliy, I would like to thank Dr. Joe Walsh for his interest and
help, and for permitting me to reproduce his data within this thesis. His
assistance in supplying me with the programs he used, and the discussions

-we have had, have been very much appreciated.



Contents

A DS At ot e e e e
Aknowledgements ......... ..
(@feY 175311 7: TP
Nomenclature . .....ovin i e e e
List of Figures ... ..o e e

Chapter 1 : Introduction ........... .. .o,

Chapter 2 : Review of Experimental Turbine Secondary
Flow Investigations

2.0 Introduction ... i e
2.1 Secondary Flows ......iiiiiiiiii i e e
2.2 The Passage Vortex .........oiiniiiiiiiiiiiiiiii e,
2.3 The Horseshoe Vortex .........c. ittt
2.4 Corner VOIrtICES ..ttt it it e e e
2.5 The Endwall Boundary Layer ............ . ..o,
2.6 Distribution of Losses ............ ... ... ...
2.7 Growth of Losses .......c. i
2.8 Inlet Boundary Layer Thickness ...............................
2.9 Inlet Boundary Layer Skew ........... .ot
2.10 Passage Aspect Ratio ........ ... i
2.11 Downstream Loss Growth ......... ... ... ... .................
2.12 Turbulence Measurements ............ccciiiiiiiiiiiiiiiiinnn...
2.13 Summary of 3-D Linear Turbine Cascade Aerodynamics ......
2.14 Real Turbines ........ ..ottt e
2.15 Secondary Flow Theory ...
2.16 Secondary Loss Prediction .............. .. i i,

Figures 2.1 to 2.2

Chapter 3 : Computational Fluid Dynamics and Secondary
Flow Simulations

3.0 Introduction ...... ... ... e
3.1 Computational Fluid Dynamics and Secondary Flows .........
3.2 The Quasi-Three-Dimensional Approach .......................
3.3 The Governing Equations of Fluid Dynamics ..................
3.4 Euler Solvers and Time Marching .............. ... ... .. ....
3.5 Time Marching Stability, Accuracy, and the CFL Condition

3.6 Decoupling, Oscillations, and Smoothing .......................
3.7 Acceleration Techniques for Time Marching Solutions .........
3.8 Calculation Grids .......c.oiiiiiiiiiii i
3.9 Pseudo Viscous Approximations ..............ccooeeviiiiiiainn.
3.10 Time Marching Navier-Stokes Solvers ..........................
3.11 Pressure Correction Techniques ................ .. .. ... .......
3.12 The Parabolic Approximation and Pressure Correction ........
3.13 Partially Parabolic Pressure Correction Methods ..............
3.14 Fully Elliptic Solutions by Pressure Correction ................
3.15 Upwinding, Accuracy, and Stability ............................
3.16 Code Validation and Pressure Correction Versus Time Marching

3.17 Turbulence Modelling ... ciiiiiiiiiiii e

Figures 3.1 to 3.3

vii



Chapter 4 : Apparatus and Techniques

S N et et
OO U W O

NGNS

Introduction ..., PR
The Durham Cascade Facility ................. e

Turbulence Grid ... . i e e
Five Hole Probe Measurement Technique ......................

Rotatable Single Wire Technique .................cc.c it
Spectral Analysis of Hot-Wire Signals .........................
Flow Visualisation ........... .. ciiiiiiiiiiiiiiiiiiiiiiiinnen.
Surface Pressure Distributions ................ ... ... ...
Experimental Accuracy ........... i
Computational Facilities for Navier-Stokes Calculations ........
Output Processing ........coiiiiiiiiiiiiiii i

Figures 4.1 to 4.8

Chapter 5 : Experimental Results (JAW Test Case)

5.0 Introduction . ..ov ittt
5.1 The Walsh Dataset ...t e

5.2 Errors in Loss Measurement ...........coiuiininiirnennneenn.

)
5.
5.
5
3.

4
)
6
7

.3 Properties of the Spurious Losses ................... ... . ...

Proposed Explanation of Apparent Freestream Losses .........
Slot 7 Traverse (87% Cax) ....coovviiiiiiiiiiiiiiaian.
Downstream Flow Development .............. ... ... ... . ...
Overall Flow Features ......................... e

Figures 5.1 to 5.14

Chapter 6 : Modelling Results (JAW Test Case)

LD ORI RDIIDD

oo
—

WO WO

- o

Introduction ..ot
Three Calculation Codes ...
Comparison of Results for the Three Codes ...................
Interpretation of the Comparative Study ......................
Moore Code gVersion 5) ‘Laminar Run’ .......................
Conclusions of Work with Version 5 of the Moore Code ......
Version 7 of the Moore Code ...,
Coarse Grid Results (MEFP Version 7) .......................
Conclusions of Coarse Grid Runs of MEFP (Version 7) .....

Fine Grid Results gMEFP Version 7)  .iveevrinvinnn... SN
Vorticity Function Search for Shear Layer Thickness .........
ConclusIONS . .ottt e e

Figures 6.1 to 6.34

Chapter 7 : Experimental Results (JGC Test Case)

Introduction ..ot e e
Mean Flow Measurements ..........coiiiomnneiiinennn..
Hot-Wire Measurements at Slot 1 (-14% Cax) ...............

Hot-Wire Measurements at Slot 5 (55% Cax) ................
Hot-Wire Measurements at Slot 8 (97% Cax) ................

Hot-Wire Measurements at Slot 10 (128% Cax) ..............
Turbulent Kinetic Energy, Secondary Kinetic Energy, and Loss

Frequency Spectra ...t
Eddy Viscosities and Dissipation Rates .......................
ConcluSions  ...viir i e e

Figures 7.1 to 7.23

viii



Chapter 8 : Modelling Results (JGC Test Case)

8.0 Introduction ....... ... i e 139
8.1 Standard Mixing Length Model Mean Flow Results .......... 139
8.2 Standard Mixing Length Model Mass Averaged Results ...... 143
8.3 Calculation of Shear BIESSES .ttt 145
8.4 Standard Mixing Length Model Shear Stresses ............... 146
8.5 Discussion of Mixing Length Model Results .................. 150
8.6 One Equation Turbulence Model ............................. 152
8.7 One Equation Turbulence Model Mean Flow Results ......... 153
8.8 One Equation Turbulence Model Reynolds Stresses .......... 156
8.9 Dlscussmn of One Equation Turbulence Model Results ....... 158
8.10 K — ¢/Mixing Length Hybrid Model ......................... 159
8.11 Results of K — ¢/Mixing Length Hybrid Model Run ......... 160
8.12 K — ¢/Mixing Length Hybrid Model Mass Averaged Results . 164
8.13 ConcluSIONSs ... .ottt e 165

Figures 8.1 to 8.23

Chapter 9 : Discussion

9.0 Introduction ........ ... e 167
9.1 Experimental Results ..... ... ... . ... L. 167
9.2 Modelling Results ....... ... i i 173

Chapter 10 : Conclusions and Recommendations for
Further Work

10.0 Introduction ...t e 180
10.1 Experimental Conclusions ............ ... . ... ... ... ... 180
10.2 Modelling Conclusions ............ccoiiiiiiiiiiiinnnieannans 182
10.3 Recommendations for Further Work ...... ... . ... ... ... .... 183
Reeferences ... e e e e 186

Appendix A : Rotatable Single Wire Technique

A0 Imtroduction ...ooi i e 199

A.1 Analysis of the Response of a Hot-Wire ..................... 199

A.2 Rotatable Method for Flow Measurement .................... 202

A.3 Calculation of Confidence Intervals ........................... 203

A.4 Mean Velocity Equation ...........cc i 204
Figure A.1

Appendix B : Estimation of Change in Shear Stress
from Slot 8 to Slot 10

B.0 Introduction ......... .. i e 205

B.1 Shear Stress Transport Equation ............................. 205
Figure B.1

Appendix C : Partial Velocity Derivatives ..................... 207
Figure C.1

ix



Nomenclature

C Blade chord
Cax Axial chord

e Internal energy

E Total energy = e + VTZ

E, Van Driest damping factor

f Body force e.g. gravity or electromagnetism
h Blade span

H Boundary layer shape factor

K Coeflicient of thermal conductivity

or turbulent kinetic energy

lo Mixing length
n Distance from nearest solid surface
P Pressure A
Py Stagnation pressure
R, Re Reynolds number
S Blade pitch
Spr Stagnation pressure calibration coeflicient

for five hole probe

uv,w Velocity components in z,¥, z directions
u, v, w Fluctuating air velocity components
|4 Gas speed
Y, Secondary loss
o Gas angle
B Blade angle
6 Boundary layer thickness
€ Temperature
or Energy dissipation rate
€ Eddy viscosity calculated from ij shear stress
D Loss coefficient = —@L:f#{;?-“ﬂ
7 Molecular viscosity ’
e Eddy viscosity
v Kinematic viscosity (= %)
p Density
Tij Stress in j-direction on plane Perpendicular to i-axis
Wy Normal vorticity
W Streamwise vorticity
Subscripts
az, rad, tan Axial, Radial, Tangential
CAL Measured during calibration
1,7,k Quantity in x,y or z direction
or quantity stored at calculation mesh point (3i,j,k)
1 Upstream or inlet
2 Downstream or exit
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Chapter 1

]Imrnductﬁ@n

Although the gas turbine engine is popularly known as a propulsion
unit for aircraft, it has also found uses as a marine po;;ver plant, and in
the generation of electricity. Smaller units are now also being manufactured
for application in land vehicles. Within a gas turbine engine there are in
principle only three major compohents, a compressor, combustion chamber,
and turbine. Although this conceptual engine is very simple, and avoids the
reciprocating action of conventional piston engines, the actual design of all ité
components has proved to be very complex. Not least of these complexities is
the successful aerodynamic design of the bladings which form the compressor

and turbine.

The turbine’s role in the engine is to extract energy from the hot
gases which emerge from the combustion chamber, by expanding them to a
lower temperature and pressure. In a ‘turbojet’ engine for aircraft propul-
sion applications, the turbine must supply only enough energy to drive the
compressor. Such an arrangement may then be called a ‘gas generator’, as it
produces a high speed jet of hot gas. In ‘turbofan’ or ‘turboprop’ engines,
sufficient shaft power must also be available to drive the propellor or fan. In
other applications, where the only desired output is shaft power, extra turbine
stages are ;adAc»ied to the gas genera._tor to extract as much of the réx-nainix‘lg

energy as possible from the hot gases.

When high pressure ratios are required from a single axial compressor,
it is desirable for different stages of the compressor to operate at different
rotational speeds. Hence compressors are often split into two, or three
sections, each of which is driven by a separate shaft. If heavy gear boxes are
to be avoided, each shaft will require its own turbine. Hence the turbines in
modern turbofan engines are often split up into ‘high pressure’, ‘intermediate
pressure’, and ‘low pressure’ sections, which each drive their own shaft. The

mechanical design of three concentric drive shafts sets a lower limit to the
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inner radius of the high pressure turbine annulus. For a given overall flow
area, the blade height varies invetsely to the annulus radius. Hence small
blade heights are common in high pressure turbine stages. Cohen et al (1972)
have reviewed many aspects of gas turbine theory, design and operation. As
they point out, there has been a trend in recent years to higher bypass ratios
in turbofan engines because propulsive efficiency favours a high mass flow jet
which only slightly exceeds the velocity of the surrounding fluid. Thus the
mass flow rates in the turbines of modern engines are being reduced, and
hence require less flow area. This compounds the effect of small blade height,
and so endwall, or annulus effects have become more important.

Due to the necessity of achieving an acceptable aerodynamic design of
the bladings, considerable research has been carried out into the performance
of different profiles. Frequently a linear cascade, which is in effect an annulus
of infinite radius; is used as a simplified test case. Gostelow (1984) has given
a good review of cascade research techniques. Early studies concentrated
upon the effects of different blade profiles upon the midspan flow, well away
from the hub or tip of the blades. However, in recent years, the range of
cascade research, has broadened to include detailed investigations of the three-
dimensional flows resulting from endwall effects. These so-called ‘secondary
flows’ lie behind the generation of ‘secondary losses’. Despite their name, the
‘secondary’ losses may account for up to half the tqta,l losses in a low aspect
ratio blade row. In a linear cascade, the primary flow direction is considered
as being that which would develop with a uniform inlet flow, and blades of
infinite span. The secondary flows, are then identified as being the difference
between thé actual flow, and the primary flow. It is with these seconda,fy
flows that the work in this thesis is primarily concerned.

Over the past decade, a program of research has been undertaken at
Durham University aimed at measuring the detailed three-dimensional flow
structure within turbine blade rows, and thus gaining a deeper understanding
of the mechanisms of secondary loss generation. Graves (1985) presented a
detailed study of a rotor blade, which revealed the major flow features that

were present. A second cascade was designed and tested by Walsh (1987),
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who investigated the effects of skew in the inlet endwall boundary layer upon
the secondary flows and losses. '

Secondary flows are of particular interest to the turbine designer,
as they result from the turning of endwall boundary layer fluid through a
blade row. In compressors, the adverse pressure gradient limits the amount
of turning that can be achieved without serious flow separations occurring.
In turbines however, the pressure gradient is favourable, and so much larger
flow turning is common. This means that secondary flows are generally more
powerful in turbines, than in compressors.

As secondary flows are a significant cause of losses, and other unde-
sirable effects, there is considerable interest in developing flow models which
can predict, and ultimately help the designer to reduce them. Whilst simple
models may be reasonably accurate for the flow in compressors, the turbine
secondary flows are so strong that they require more general techniques. In-
deed nothing less than a fully three-dimensional solution of the Navier-Stokes
equations seems likely to accurately predict such flows. As three-dimensional
calculation methods are developed, there is a need for detailed validation of
predictions, and assessment of their capabilities. It is- to this task that the
work in this thesis is directed. Walsh (1987) has already used his data to
test two three-dimensional flow solvers, and found that although they showed
considerable potential, there was a need for further development.

- The current work is aimed at investigating the capabilities of ‘state of
the art’ compufer models, and identifying areas for further development. There
are many possible causes of error in the numerical solutions, but it is intended
to concentrate here mainly on the quality of the physical modelling. This is
because numérica.l errors, and the benefits of p.articﬁlar solution techﬁiques,
are considered to be most appropriately addressed by code authors. Thus the
initial work is concerned with selection of the best of the availé,ble flow solvers
for further study. Where possible however, constructive criticism is also made
of the solution algorithms. Having selected a flow solver, the next aim of
this work is to determine the effects of, and quality of, different turbulence

models within the solution procedure. Thus, in addition to the mean flow

3



data of Walsh (1987), detailed measurements of the turbulent flowfield within
the cascade are required. It was decided to introduce a turbulence grid to
the wind tunnel before undertaking a survey with hot-wires, so as to produce
an inlet turbulence intensity which is more representative of conditions in a
real machine.

Thus this work has two major facets, namely the testing of computa-
tional models, and the aquisition of experimental data for validation purposes.
It was hoped that the advantage of one person undertaking both tasks would
be the direction of experimental activity by the requirements for further test
data indicated by computational results. This has proved to be the case,
with a choice between investigation of the endwall, or suction surface bound-
ary layer, being tilted in favour of the endwall by computational results.
However, it is also hoped that the experimental investigation of the Reynolds
stresses within the Durham turbine cascade, will be of lasting value both as
a test case, and because of the insight it provides into the fundamental flow

Processes.



Chapter %
Review of Experimental

Turbine Secondary Flow Investigations

2.0 Introduction

This chapter aims to review experimental investigations of the three-
dimensional flows in turbine cascades, and thus build an understanding of the
basic flow phenomena involved. The current state of knowledge concerning
loss production location, loss distribution, and possibilities for the mechanisms
behind these features are described. Investigations concerning the role of
turbulence in these processes are reviewed, and effects of varying inlet boundary
layer thickness and skew, blade loading, and aspect ratio are discussed. The
detailed aerodynamics of linear cascades is then viewed from the context of the
real machine, where other effects such as radial geometry, tip leakage, Mach
and Reynolds number effects, and unsteady flow, complicaie the simplified
cascade results. A brief description of traditional methods of modelling the
secondary flows and losses is given. These start with classical secondary
flow theory and loss correlations, but also include a more recent approach

combining a loss model with secondary flow theory.

2.1 Secondary Flows

Secondary flows are formed when a non-uniform flow velocity profile is
turned. In the case of a turbine cascade, the secondary flows are considered
to be the difference between the actual flow direction, and the primary or
ideal flow direction. The interest in these flows arises from the changes
in outlet flow angle which they cause, the losses they generate (which in
low aspect ratio blading may be as much as half the total losses), and the
undesirable features which result from their presence within the blade passage,
such as non-uniform blade loading and heat transfer ‘hot spots’. Hence there

is a great deal of interest in developing methods of accurately predicting such
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Jows, and possibly reducing them. Before this may be attempted however,
experiments must be carried out to improve the physical understanding of the

phenomena, and provide test cases for any models which are developed.

2.2 The Passage Vortex

The most dominant -feature of the complex secondary flow structure
in turbine cascades, is referred to as the passage vortex. This is a vortex
which resulis from the over-turning of endwall boundary layer fluid (Figure
2.1). Within the blade passage, a pressure gradient is formed in response
to the momentum of the inlet flow, giving rise to high pressure on one
(pressure) surface, and low pressure on the other (suction) surface of the
blade. Whilst the fluid in the endwall boundary layer is moving more slowly
than the ‘freestream’ fluid, and hence would naturally give rise to a smaller
cross-passage pressure gradient, it is forced to accept the pressures set up in
the main stream as no accelerations initially exist in the spanwise direction
with which to oppose them. Hence the slowly moving fluid of the endwall
boundary layer is swept from pressure to suction surface, where it is obliged
to move along the suction surface away from the endwall. A circulation thus
develops and it is this which is termed the passage vortex. Many examples
of this phenomena have been investigated, such as the works of Sjolander
(1975), Langston et al (1977), Marchal and Sieverding (1977), and Gregory-
Smith and Graves (1983). This suggests that the passage vortex formation is
in essence an inviscid phenomenon, with the role of viscosity mainly limited
to the production of the initial shear flow. Even in a blade row with no
inlet boundary layer however, Turner (1957) has shown that secondary flows
will still be formed as the boundary layer which develops within the cascade

is over-turned,

2.3 The Horseshoe Vortex

When a cylinder is placed in the path of an endwall boundary layer,
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a vortex is formed in front of it as shown in Figure 2.2. This produces
two vortex legs, one either side of the cylinder, which are carried away
downstream with opposite vorticities. Due to the shape of this vortex when
viewed from above the endwall, it is often referred to as the horseshoe vertex,
as well as the stagnation vortex. As can be seen in Figure 2.2, the horseshoe
vortex is associated with two separations, which may show up on endwall
flow visualisations as two distinct separation lines. Sieverding (1985b) in his
excellent review of linear turbine cascade aerodynamics, devotes considerable

discussion to the importance of this vortex in the cascade environment.

In a turbine cascade, a horseshoe vortex will be formed in front of
each blade. Endwall visualisations by Langston et ol (1977) and Marchal and
Sieverding (1977), show that one leg of this vortex on the pressure side of
the blade, crosses the passage to meet with the suction surface further into
the cascade. This is called the pressure side leg of the horseshoe vortex.
The other leg of the vortex, termed the suction side leg, is seen to wrap
around the leading edge of the blade before meeting the suction surface.
The horseshoe vortex has received considerable attention in recent years, both
since it has been shown by Gaugler and Russel (1984) to be associated with
a peak in endwall heat transfer, and as the pressure side leg is seen to cross
the passage, rotating in the same sense as the passage vortex. Since the flow
behind the pressure side leg separation line is highly over-turned and is clearly
part of the passage vortex (see for example Langston et al (1977)), this begs
the question; ‘does the horseshoe vortex initiate the passage vortex’? The
answer is not entirely obvious. Turner (1957) has shown that passage vortices
may be formed in the absence of horseshoe vortices, which might suggest that
the latter are relatively unimportant. However the situation is complicated
by the fact that it is generally agreed that fluid from the pressure side leg
of the horseshoe vortex, emerges in the passage vortex core e.g. Langston
(1980) and Moore and Smith (1984). The fate of the suction side leg of the
horseshoe vortex is rather less clear however. Langston et al (1977) thought
that it remained in the suction surface/endwall corner, whereas Marchal and

Sieverding (1977) found it to emerge on the midspan side of the passage
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vortex in their cascade. Sieverding (1985b) suggests that the suction side
leg of the horseshoe vortex is convected around the passage vortex on the
basis of the work of Moore and Smith (1984), who followed this fluid by a
technique of ethylene detection. Hence the final location of the suction leg
of the horseshoe vortex is thought to be dependent upon the strength of the
passage vortex, and is thus influenced by many factors.

In consideration of this model of the simultaneous evolution of both
passage and horseshoe vortices, it seems likely that the horseshoe vortex will
have little bearing upon the passage vortex other than to alter locally the
rotational velocity of the fluid near the main vortex core where the pressure

side leg is to be found. Such a view is expressed by Sieverding (1985b).

2.4 Corner Vortices

Endwall flow visualisations may show the existence of a three-
dimensional separation line running downstream from the point where the
crossflow first meets the suction surface. This then follows a path very
close to the suction surface (see for example Marchal and Sieverding (1977)).
A similar line may be observed rising slightly above the endwall on the
blade suction surface. These are the separation and reattachment lines of
the passage vortex which cannot completely follow the perpendicular junction
of blade and endwall. A vortex is often found between these two lines,
rotating in the opposite sense to the passage vortex. This is probably best
illustrated by Gregory-Smith and Graves (1983). Sieverding (1985b) refers to
an endwall visualisation taken by Belik (1975) showing this separation line
to originate where the crossflow interferes almost perpendicularly with the
suction surface, and presents the interesting suggestion that a counter vortex
may be formed by a stagnation process similar in nature to that which forms
the horseshoe vortex. He also comments that a similar counter vortex may
be formed in the pressure side/endwall corner as a result of downwash of the
pressure surface boundary layer. This effect is not generally reported in the

literature however, possibly owing to the probable small size of such a vortex.
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Whatever the precise cause of the suction side/endwall counter vortex, it is
often associated with a non-negligible loss core (see Gregory-Smith and Graves
(1983), Langston et al (1977)). It is worth noting however, that real gas
turbines do not have perpendicular endwall/blade junctions, but will either
present a fillet radius or tip gap, either of which will modify the observed

flow.

2.5 The Endwall Boundary Layer

The state of the endwall boundary layer within the blade row has not
yet been entirely resolved. Senoo (1958) found that the boundary layer at the
throat of a high turning nozzle cascade was laminar and independent of the
state and thickness of the inlet boundary layer. He suggested that this was
a relaminarisation effect produced by the strong favourable pressure gradient
in turbines. Langston et al (1977) in their pioneering paper on secondary
flow structures within the blade row, found the inlet boundary layer to be
completely removed from the wall by the powerful passage vortex, and rolled
up into a loss core. On the basis of this experience they then suggested
that Senoo had observed a new boundary layer, formed downstream of the
separation of the inlet boundary layer. Whilst most workers have found this
new endwall boundary layer too thin to determine its state, Belik (1977)
measured the wall shear stress along the centreline of two high turning nozale
cascades with film gauges. He found that the shear stress increased rapidly
to a maximum near the point of greatest streamwise pressure gradient. By
measuring endwall boundary layer noise, he confirmed that this pdsition was
close to the start of a laminar boundary layer. Further evidence for the state
of the endwall boundary layer has recently been presented by Harrison (1989).
Using film gauges he found that large areas of the endwall boundary layer in
a high turning rotor cascade were laminar. This was found to mainly occur
in the region of growth of a new endwall boundary layer.

Hence, although there is not yet much information available, the body

of evidence seems to be indicating that the thin boundary layer which forms

9



downstream of the inlet boundary layer separation, is probably laminar within
the blade passage on the pressure side. It is however worth noting, that
Harrison (1989) found the boundary layer near to the suction surface to be

indeterminate from the overall loss core, and to be turbulent.

2.6 Distribution of Losses

There are typically three distinct loss cores downstream of turbine
cascades. The first is the ‘corner’ loss on the endwall between successive
passage vortices, which is probably aided by the development of the suction
side/endwall counter vortex. Another loss core is associated with the passage
vortex and is composed of fluid from the inlet boundary layer, with extra
losses from the passage walls which are fed into it within the blade row.
The third loss core is again in a counter-rotating region between successive
passage vortices, but this time it is not adjacent to the endwall. This vortex
is generally identified with the shed vorticity of classical secondary flow
theory. Such a distribution is evident in the works of Langston et al (1977),
Gregory-Smith et al (1987), Walsh and Gregory-Smith (1987), and Zunino et
al (1987), all of whom were investigating high turning rotor cascades. These
give particularly noticeable manifestations of the various loss features, due to
the powerful secondary flows which result from their high turning. The work
of Walsh and Gregory-Smith (1987) was concerned with testing the effects of
three levels of skew in the inlet boundary layer. For the case of positive
skew, where the secondary flows are inhibited, the spatial distinction between
the loss cores described above is quite remarkable, particularly in the plane
just upstream of the trailing edge. From this distribution of losses, it appears
that a significant proportion of secondary loss is produced by the action
of the passage vortex on the suction surface. This sweeps low momentum
boundary layer fluid into the main flow to form the third of the above loss
cores. A similar process occurs with the new boundary layer on the endwall,
with some loss collecting in the endwall/suction surface corner.

The position of the passage vortex in the exit plane has obvious
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implications for the outlet flow angle distribution of the blade row, but it is
not easily predicted. The passage vortex convects itself (Gregory-Smith and
Graves (1983)) towards the suction surface, and may then move up the suction
surface away from the endwall. The extent of this migration is determined
primarily by the strength of the passage vortex, and thus depends upon many

parameters such as the blade turning, and inlet boundary layer thickness.

2.t Growth of lLosses

Most workers appear to find that the secondary losses are fairly
constant up to the position of maximum suction side velocity, and thereafter
increase more rapidly (see for instance Langston et al (1977), Marchal and
Sieverding (1977)). However, a notable exception to this type of loss growth
was given by Gregory-Smith and Graves (1983), who found a fairly steady
increase throughout their cascade, with a large jump at the trailing edge due
to the addition of blade boundary layer losses. Looking closely at the loss
curve however, there may also be a more rapid increase in the last 25%
of the cascade which is not picked up by the particular axial planes which
have been traversed. Certainly in the work of Walsh and Gregory-Smith
(1987), who investigated the effects of inlet skew in a very similar blade
row, the rate of loss production is seen to rise sharply in the latter half of
the cascade. Some of this loss might be accounted for as boundary layer
loss which is not covered by the traverses further upstream, but is convected
into the mainstream by the passage vortex to add to the losses measured by
traverses further downstream. However, another possible explanation might
be deduced from the work of Moore (1985). He presented three-dimensional
Navier-Stokes calculations of the loss in the cascade of Langston et al (1977),
and a geometrically similar cascade which was investigated by Moore and
Adhye (1985). The latter cascade had an inlet boundary layer which was
almost twice the thickness of that in the tests of Langston et al (1977). He
shows that although the net loss (see section 2.8) measured and predicted for

the two cascades is similar, the losses are predicted to be produced earlier in

11



the cascade with the thicker inlet boundary layer. Experimental information

is not available to test this conclusion, but it would fit in with the early loss

development observed by Gregory-Smith and Graves (1983), as their cascade
k

had an unnnsnally thick

2.8 Inlet Boundary Layer Thickness

The thickness of the inlet endwall boundary layer has been varied
by many investigators. Marchal and Sieverding (1977) showed that varying
the inlet boundary layer thickness from 85% to 31.5% span in a linear
cascade of nozzle blades, did not alter the rise in loss produced across the
cascade. Furthermore they showed that this was true independently for the
losses due to the blade boundary layers (‘profile losses’) and the secondary
losses. The more usual loss coefficient is defined relative to some reference
pressure (typically inlet freestream stagnation pressure), and hence gives non-
zero values of loss at the inlet plane due to the presence of the endwall
boundary layer. This type of coefficient then varies with inlet boundary layer
thickness, giving rise to a non-constant loss. Marchal and Sieverding defined
their loss coefficient relative to the inlet plane mass averaged total pressure
in order to overcome this problem. The coefficient they used then gives a
measure of loss production by the cascade, and this is often referred to as
the ‘net’ loss.

The work of Gregory-Smith and Graves (1983), tested three inlet
boundary layer thicknesses varying from 23% to 42% span in a high turning
rotor cascade. They also concluded that ‘the effect of varying inlet boundary
layer thickness is small on the net increase of loss across the blade row’.
Atkins (1987) presents results of varying the inlet boundary layer thickness
in a turbine rotor cascade, over a range of displacement thicknesses from
0 to 2.1% of axial chord (approximately corresponding to a range of 99%
thicknesses from 0 to 16%). Six different boundary layer thicknesses were
tested, and he also concluded that the rise in loss produced across the cascade

was constant with respect to this parameter, even down to zero inlet boundary
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layer thickness. However, a slightly differeni result has been presented by
Wolf (1961). He shows that for very thin inlet boundary layers, less loss is
incurred. He plots a graph showing the net loss rising with inlet boundary
layer thickness, until a critical value is reached, whereafter the net loss remains
constant. Wol{ suggesis that this critical inlet boundary layer thickness is
that just sufficient to cause complete removal of the inlet boundary layer from
the endwall by the action of secondary flow.

Unfortunately none of the above references contain information about
the strength of the vortex produced by the different upstream boundary layers,
such as the mass averaged kinetic energy of the secondary velocities. One
might expect that if the passage vortex is mainly formed from the over-turning
of inlet boundary layer fluid, then thickening of this shear layer would result
in a greater mass of fluid being subjected to increased deflection, and hence
greater secondary kinetic energy. Some support for this view may be found in
the viscous three-dimensional calculations of Moore (1985). He showed that
whilst varying the inlet boundary layer thickness produced no change in net
loss for the cascade of Langston et al (1977), the predicted secondary kinetic
energy was greatly effected. A thicker inlet boundary layer was shown to
produce stronger secondary flows.

One effect that variations in upstream boundary layer thickness are
reported to produce, is the differing radial extent of the passage vortex, and
the distance from the endwall of its centre. Bailey (1980) showed that a
reduction of inlet boundary layer thickness moved the passage vortex closer to
the endwall in a linear nozzle cascade, and Gregory-Smith and Graves (1983)
showed that a thickened inlet boundary layer resulted in a larger loss zone

extending further from the endwall.

2.9 Inlet Boundary Layer Skew

Skew is introduced in the endwall boundary layers of real machines,
as the fluid emerges from the stationary hub into the rotating blade row. In

contrast to the effect of boundary layer thickness, the level of skew present
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bas been shown to produce profound changes in the secondary flows and
losses which develop. Boletis (1984) incorporated some skew tests in his very
extensive investigation of the flowfield in annular cascades. Using low aspect
ratio high turning nozzles, he found the introduction of skew was significan
and led to the intensification of the secondery flows. Walsh (1987) presents
detailed measurements of the secondary flow development in a linear cascade
of high turning rotor blades, under three different inlet skew conditions. He
also found that the type of skew naturally present in a turbine rotor cascade,
caused significant intensification of all secondary flow features, leading to
increased secondary kinetic energy and net losses. Walsh (1987) also tested
an unusual type of skew for his blade, such that inlet boundary layer fluid
contained momentum in a direction opposing the endwall crossflow which
generally develops. He found that the flowfield was greatly altered by this
inlet condition. The horseshoe vortex pressure side leg penetrated further into
the blade passage before meeting the suction surface. The area of endwall
covered by ‘new’ endwall boundary layer fluid was reduced, and the secondary

kinetic energy and secondary loss were also seen to decrease.

2.10 Passage Aspect Ratio

Variation of blade height was shown by Bailey (1980) to have little
effect on the secondary flows in a turbine vane passage, even with a chaﬁge in
aspect ratio from 1.87 to 0.617. In his review Dunham (1970) points out that
varying blade height whilst keeping chord and inlet boundary layer thickness
constant, suggests that the overall cascade loss is inversely proportional to
aspect ratio. However, if span and inlet boundary layer thickness are constant,
and blade chord is varied, little change in loss is evident. This might be
explained if one considers the overall cascade loss to be composed of three

components; an inlet boundary layer ‘loss’, an extra secondary loss, and a
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profile loss. Then, for a linear cascade;

T InletLoss + SecondaryLoss (ProfileLoss) Span
PassageArea UnitSpan PassageArea
_ InletLoss + SecondaryLoss N {frquileLoss\ 1
) Span = Pitch ' \ UnitSpan } " Pitch

Thus varying the span independently of everything else will result in
an inverse relationship between average loss and span (and hence aspect ratio).
If the chord is varied independently of everything else, then the test becomes
one of varying cascade Reynolds number. Hence if the various losses are not
strongly dependent on Reynolds number in the range covered, there may be
little effect. This does of course also assume that there is no variation in
secondary loss with pitch to chord ratio. The effect of the blade pitch upon
the secondary loss is not obvious however. Dunham (1970) comments that
most workers assume that secondary loss depends upon the blade turning, and
not the pitch, when defining loss correlations. Unfortunately, no experimental
evidence is presented in support of this assumpiion. However, classical
secondary flow theory (section 2.15) suggests that the secondary vorticity
depends upon the blade turning, but that the secondary velocities that it
produces are also dependent upon the passage area (and hence the pitch).
Thus, the blade chord seems to have no major influence upon the magnitude
of the secondary losses.

Atkins (1987) varied the aspect ratio of a linear cascade of turbine
blades in the range 0.36 to 1.44 and observed no effect on the average losses.
This change in aspect ratio was achieved by variations in blade span only.
However, the result does serve to show that the concepts of a two-dimensional
profile loss and net secondary loss remain valid even when the entire blade

is swept by secondary flow at very low aspect ratios.

2.11 Downstream Loss Growth

Most workers find that the losses continue to grow downstream of

the blade row, due to the growth of the endwall boundary layer, and the
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mixing of non-uniform flows (e.g. Binder and Romey (1983), Harrison (1989),
Gregory-Smith and Graves (1983), Langston et al (1977)). Perhaps the most
comprehensive piece of work on the processes of downstream loss generation
has been provided by Moore and Adhye (1985) and Moore et ol (1986). In
the first paper, Moore and Adhye (1985) traversed four planes from 96% to
140% of an axial chord from the leading edge, of a linear cascade which
was a replica of that used by Langston et al (1977). They showed that
more than one third of the losses occurred downstream of the trailing edge
in their cascade. The rise in loss was found to be almost exactly matched
by a reduction in secondary kinetic energy, with most of this being lost by
the dissipation of radial velocities. This seems a little strange, as viscous
dissipation must be occurring in the endwall boundary layer. In a later paper,
Moore et al (1986) measured the Reynolds stresses at one of the downstream
planes, and combined these with the earlier measurements of mean velocities,
in order to calculate the rates of turbulent deformation work. They found
that two terms could act to produce increases in the mean kinetic energy of
the primary flow; a deformation work term involving the streamwise normal
stress, which produced mean kinetic energy from turbulent kinetic energy, and
a reversible pressure work term which could exchange mean kinetic energy -
between its three components. These two mechanisms offset the 30% of the
loss production rate which was due to shear in the endwall boundary layer.
The rest of the loss was found to be balanced by the action of the other

turbulent stresses, giving a complete picture of the downstream flow.

2.12 Turbulence Measurements

When Sieverding (1985b) wrote his review, he concluded that little
was then known about the structure of turbulence in turbine cascade flows.
Since that time, however, the literature has expanded, giving rise to a clearer
understanding of the flow physics. Priddy and Bayley (1988) showed that
in a high speed turbine rotor cascade, the freestream turbulence intensity

reduced in accordance with the rising mean flow velocity. Thus the absolute
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magnitude of the turbulent fluctuations was found to remain constant in this
area. Bailey (1980) measured the turbulent flow in a cascade of inlet guide
vanes. He found maximum turbulence intensities of 4% of local velocity, and
large regions of the passage vortex to exhibit freestream turbulence levels. He
then suggested that laminar flow calculations would prove to be accurate tools
for predicting the flow in turbine cascades. A contrasting result was reported
by Sharma et al (1985). They set out to investigate the unsteady flow in a
one and a half stage model turbine. The flow downstream of the first stator
was found to be steady, with only small variations due to the presence of
the downstream rotor. Measurements of turbulence in the gap between the
first stator and the rotor, showed the passage vortex to be turbulent, with
intensities of up to 28% of axial velocity present. Downstream of the rotor,
the flow was found to be highly unsteady, and typical turbulence intensities
in the wake and vortex regions reached 41% of axial velocity.

The work of Moore et al (1986) showed that at 10% of an axial
chord downstream of a replica of the cascade used by Langston et al (1977),
the turbulence intensities reached peaks of 25% of upstream velocity. They
showed that although only 23% of the total loss could be accounted for directly
as turbulent kinetic energy, the turbulence was of major significance in the
loss generation process downstream of the cascade. The cross-passage/radial
shear stress was shown to be twice as large as the other two, and was
considered to be important in the mixing out of radial velocities. It was
also shown that the normal stresses played a major part in the conversion
between mean and turbulent kinetic energy. In particular, the streamwise
stress was found to strongly produce mean flow kinetic energy from turbulent
energy as the mixing process accelerated the turbulent, high loés, low velocity
regions. Direct viscous action was found to be relatively insignificant as a
loss production mechanism.

Perhaps the most detailed investigation of turbulence within a blade
passage has been provided by Zunino et al (1987). They investigated the flow
in a high turning steam turbine rotor cascade. At a position close to the

passage throat, they found that high turbulence (12% of upstream velocity)
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was associated with the three loss cores (section 2.6). At the downstream
location (20% of an axial chord from the trailing edge), turbulence intensities’
were found to have risen to peak values of 15% of upstream velocity. The
turbulent kinetic energy was found to account directly for only 10% of the
total loss, but the authors expressed the opinion that this reflected a near
baiance between the generation and dissipation of turbulence, rather than
indicating large quantities of direct viscous dissipation of mean velocities.
Another detailed investigation of a linear turbine rotor cascade was presented
by Gregory-Smith et al (1988). They found peak turbulence intensities of 29%
of upstream velocity in the vortex core, but still only 17% of the loss could
be accounted for as turbulent kinetic energy. They also found that regions of
high loss were associated with high turbulent kinetic energy. Downstream of
the cascade, they found that the wake turbulence dissipated whilst the overall
turbulent kinetic energy continued to rise. A short spectral survey of the
turbulence, indicated that a dominant frequency was present in the energy
spectrum, and it was postulated that this might be associated with a periodic
shedding of the passage vortex from the passage. No other data seems to be
available with which to compare this however. A recent paper by Hebert and
Tiederman (1989), showed turbulence intensities of 18% of upstream velocity,
to be associated with the passage vortex, and 32% with the separation of the
passage vortex from the blade suction surface at exit from a turbine stator.
This is somewhat in contrast with the results of Bailey (1980) mentioned

previously.

In conclusion, it appears that significant turbulence levels are present
in the secondary flow regions of most turbine cascades. This implies that the
action of the secondary flow in rolling up the endwall boundary layer, and
its interaction with the blade passage boundary layers, results in significant
turbulence generation. This process is believed to account for the majority
of the secondary losses in such cascades. The fact that the losses are not
manifested as an equal rise in turbulent kinetic energy, is probably due to
the rate of viscous dissipation of the turbulence almost matching its rate of

production. The turbulence levels in rotor cascades are likely to be greater
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than those in inlet guide vanes, as the turning angles are genevally much
larger giving rise to more powerful secondary flows, and the fluid acceleration
is less. As the turbulent stress distribution has already been shown to be very
complex (see for example Zunino et al (1987)), there is a need for test data
with which to validate turbulence models for use in the computation of these
flows. Also, the above studies were generally for low freestream turbulence
levels (Zunino et al, Gregory-Smith et al, Moore et al, and Sharma et al, all
had inlet turbulence intensities < 1% ). Hence data concerning the effect of

variations in inlet turbulence intensity would be valuable.

2.13 Summary of 3-D Linear Turbine Cascade Aerodynamics

From the above discussion, quite a detailed description of the three-
dimensional flow in a linear turbine cascade can be formed. 'The endwall
boundary layer incident onto the blade leading edges rolls up into a horseshoe
vortex. The pressure side leg of this vortex then crosses the passage, forming
a separation line which is a distinct feature of endwall flow visualisations. A
passage vortex forms under the action of the cross-passage pressure gradient
on the endwall boundary layer fluid. The strength of the passage vortex is
greatly influenced by the blade turning angle, and is hence powerful in the
high turning cascades of turbines. The passage vortex sweeps the endwall
boundary layer towards the suction surface, and rolls it up into a loss core.
This may then move up the suction surface if the secondary flows are very
strong. A new boundary layer forms on the endwall, and is kept very thin by
the sweeping action of the passage vortex. It appears to be vgenerally laminar
on the pressure side of the blade passage, undergoing transition towards the
trailing edge. On the suction side of the passage, the endwall boundary layer
is indistinguishable from the overall loss core, and is turbulent. High loss
regions appear to be associated with the separation of the passage vortex
from the passage surfaces, and these loss cores are observed to be highly

turbulent.
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2.14 Real Turbines

In a real machine, the flow is much more complex than that in the
simple test cases which have been comnsidered above. Rotor blades are often
unshrouded, and thus over-tip leakage flows develop. Dishart and Moore
(1989) showed that the loss due to tip leakage may be very significant. In a
replica of Langston’s cascade, with a tip gap 2% of blade height, and a very
thin inlet boundary layer, they measured greater losses than were found in

the same cascade with no tip gap and a very thick inlet boundary layer.

Modern turbines often contain transonic blading. Although there will
be losses associated with the shock waves which must be present, Denton
and Cumpsty (1987) suggest that these will be small as the shocks are weak
and oblique. It is the effect on the boundary layers caused by these shocks,
which they considered to be more important. The high speeds typical in
modern turbines, may also cause other differences when compared with the
simplified flows in low speed cascades. Perdichizzi (1989) found the passage
vortex to move closer to the endwall and grow weaker as the Mach number
was increased from 0.3 to 1.2. The radial geometry of real machines also
results in modified flow features. Boletis (1984), investigated the flow through
an annular cascade which used the same blade profile as that of Marchal
and Sieverding (1977). The effect of radial pressure gradient was found to
be significant. Low momentum fluid migrates from casing to hub under the
action of this pressure gradient, which is formed in response to the swirl
of the fluid about the axial direction. This low momentum transport was
found in the blade boundary layers, and the wake, and resulted in greater
losses at the hub than the tip. Perhaps the most daunting aspect of real
turbomachines, when compared with simple cascade tests, is the unsteady
nature of the flow within them. The works of Sharma et al (1985), and
Hebert and Tiederman (1989), suggest that the flow through a blade row will
resemble the familiar steady flow pattern when upstream blade wakes impinge
on the blades, but is markedly different when they enter mid-passage. The
flowfield is thus highly unsteady and continuously oscillates between the two
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extreme cases described.

In recent years, some attempts have been made to control the sec-
ondary flows in isolated, steady flow cascades, e.g. Boletis (1984), Atkins
(1987), Dominy and Harding (1989). These tests generally aim to contour
the geometry in such a way as to reduce blade loading near the endwalls,
and hence lead to less over-turning of the endwall boundary layers. There
has been a certain amount of success in these approaches, but the three-
dimensional design of geometries to achieve these results is far from simple.
This is one of the areas where modern three-dimensional flow solvers might

be expected to make advances.

2.15 Secondary Flow Theory

Although the details of secondary flows are very complex, it was
mentioned previously that the formation of the dominant passage vortex, is
essentially an inviscid phenomenon. Viscous effects are required to produce
the inlet boundary layer, but thereafter inviscid fluid mechanics will produce
secondary flow. This was realised in the 1950’s, and attempts were made
to predict secondary flows using inviscid vorticity equations. The solution
of Squire and Winter (1951), who derived an equation for the downstream
vorticity resulting from a given upstream normal vorticity, heralded the start

of secondary flow theory in turbomachines.

A similar solution was derived in a different way by Hawthorne (1951).
He showed that the equation for the streamwise component of vorticity for

steady, inviscid, incompressible flow in the absence of body forces was:

Wy W, 2 gPysin ¢
—) - (=] =- Z—-———_1d .
(V)z (V)l 2-[ p V2 d (2.1)
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where

w, = streamwise component of vorticity
V = velocity magnitude
Py = stagnation pressure
p = density
¢ = angle between endwall and mnormal to Bernoulli surface

6 = angle of turning of fluid through the bend

A solution of this equation assuming no change in ¢, an axial velocity

ratio of unity, and small deflection, is:
Wiy — W, = — 2w, b12 (2.2)

Here
wy, = normal component of worticity at inlet

f12 = total angle of turning of the cascade

This work has been considerably extended by a number of researchers,
and a good review of the subject has been given by Horlock and Laksmi-
narayana (1973).

Although the above work was based on vector analysis and vorticity
equations, an alternative approach was suggested by Came and Marsh (1974)
based on Kelvin’s Circulation Theorem. This analysis is more easily visualised,
and the authors clearly described the three streamwise vorticity components
to be found downstream, namely distributed secondary vorticity (the passage
vortex), trailing filament, and trailing shed vorticity. Trailing shed vorticity
arises from the spanwise change in circulation around the blades, whereas
trailing filament vorticity i.s the- result of vortex filaments on the suction
surface arriving at the trailing edge before the cofresponding filament on the
pressure surface. Hence the filament is stretched in the wake and together
with the trailing shed vorticity, forms a vortex sheet.

Once the streamwise vorticity at the passage outlet has been deter-
mined, the flow is solved for by introducing a stream function. Gregory-Smith

(1984) has given a good account of secondary flow theory, and the extent
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of the work covered gives a clear indication of the effort which has been
expended on this approach. Indeed, secondary flow theory has met with
considerable success in cascades of small turning, where the underlying as-
sumptions of the theories are not invalidated. However, in the case of many
modern turbine cascades, the turning is so severe that the endwall boundary
layer i1s completely removed from the endwall. The assumption of no rotation
of Bernoulli surfaces is then obviously in error. Glynn (1982) has proposed

a method of streamline tracing, in an attempt to address this problem.

Perhaps one of the most valuable contributions that secondary flow
theory can make, is in the understanding of cascade flow phenomena, rather
than numerically exact flow predictions. For instance Marsh (1976), used his
theory to show that the effect of compressibility on secondary vorticity, was
much more important in compressors than turbines. However, the need for
a fast design tool, to aid secondary loss estimation in the early stages of
design is still accute. It seems likely that secondary fiow theory, which does
contain at least some of the flow physics, will provide a better basis for such

a model than simple correlations.

2.16 Secondary Loss Prediction

In order to enable loss estimation in a turbomachine design, a number
of correlations have been developed. Dunham (1970) reviewed several such
loss prediction techniques and found them to give significantly different results.
Dunham thus produced his own correlation, based on the Ainley and Mathieson

(1951) blade loading parameter. The secondary loss is then described as :-

Y, = Poy — Pyo
Py — P,
Cp\? cos? 5
_ffcose) (YL c033 @2 12 (2.3)
h \cosp1 ) \s/c) cosda,” \ ¢
where
2s
Cp = —(tana; — tanay)cosay,
c
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and

1
§ 6.\ 2
f (?1) = 0.0055 + 0.078(—1)
C

with ¢ = blade chord, h = blade height, a; = outlet gas angle, ; = inlet blade
angle, s = blade pitch, a,, = vector mean gas angle = tan"l(%(tanal +tanay)),
and 6, = boundary layer displacement thickness.

The physical basis for such correlations must be derived from the
results of cascade tests. Most authors appear to regard the blade loading,
and a length ratio term which is associated with the secondary loss, to be
of greatest significance. Dunham (1970) has tried to also incorporate the
inlet boundary layer thickness, as well as the aspect ratio in his correlation,
since he observed that it is variation in blade height which causes changes
in secondary loss and not variations in the chord. Thus the assumption that
the losses depend upon aspect ratio is over-simplified, and he suggested that
this was due to the importance of the inlet boundary layer.

More recent correlations have been reviewed by Sieverding (1985a).
Whilst he points out that these now usually take only their physical basis
from cascade data, and rely upon real turbine performance measurements for
evaluation of the constants, a disturbing lack of agreement between methods
is still apparent.

In reality all correlations must rely upon geometrical similarity between
blades, and so their use as an innovative design tool is questionable. They
do still find application in early design stages however, as they are easily
evaluated, and do not require detailed knowledge of the blade profile.

A more realistic secondary loss model has been provided by Gregory-
Smith (1982). With a knowledge of the flow physics obtained from the
experimental investigations of the 1970’s (e.g. Langston et al (1977), Marchal
and Sieverding (1977)), he was able to design a simple model for the endwall
losses in turbine cascades. He used secondary flow theory to calculate the
exit vorticity, and solved this for secondary flow velocities using numerical
solutions of the equation for secondary flow stream function produced by

Glynn and Marsh (1980). Secondary losses were assumed to be composed
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of three components, the upstream boundary layer which is shed downstream
as a loss core, the new skewed boundary layer which forms on the endwall
behind the separation line of the inlet boundary layer, and an extra secondary
loss due to the passage vertex and its interaction with the boundary layers.
The loss core was assumed to be triangular in shape and had the same mass
flow and kinetic energy deficit as the inlet boundary layer. It was centred at
a distance from the endwall equal to the inlet boundary layer thickness. The
new endwall boundary layer was assumed to be turbulent, and to start at
the passage throat. A two-dimensional calculation was performed along the
passage centreline, ignoring the effect of skew. For the extra secondary loss,
a relationship with secondary kinetic energy seems plausible, and the extra
secondary loss was assumed to be equal to the secondary kinetic energy. All
three components were then simply added to give the total loss, which could
be presented as a function of distance from the endwall. Reasonable results
were found for several turbine blade rows.

Work is currently in progress at Durham University (Gregory-Smith
and Okan (1989)) to develop the above loss model in conjunction with the
streamline tracing secondary flow theory of Glynn (1982), so as to produce
a fast calculation method for the secondary flows and losses in a proposed

blade row, without the need for a detailed knowledge of the blade profile.
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Chapter 3
Computational Fluid Dynamics

and Secondary Flow Simulations

3.0 Introduction

This chapter aims to describe the modern application of computational
fluid dynamics in turbine technology, with particular emphasis on the state
of three-dimensional Navier-Stokes solvers. The basic equations, methods of
solution, examples of codes, and some of the problems of these techniques are
described. Finally the problem of closure of the Navier-Stokes equations is
discussed, and a very brief introduction to the modelling of turbulence within

turbomachinery calculations is given.

3.1 Computational Fluid Dynamics and Secondary Flows

The early approaches to the modelling of endwall flows in turboma-
chinery aimed to generalise two-dimensional boundary layer theory to cope
with cross-flows. These are considered to be the components of flow perpen-
dicular to the assumed streamwise direction outside the boundary layer. For
small cross-flows it was found that the boundary layer could be accurately
represented by an equivalent two-dimensional power law velocity profile, and a
polar plot of the cross-flow versus ‘streamwise’ components. Langston (1980)
quotes Johnston (1960) as modelling the polar plot with a triangular represen-
tation. However this could not adaquately describe the over and under-turning
found in the endwall flow of cascades. Langston (1980) states that after much
research, it was concluded that no general cross-flow profile existed. Thus
in the absence of a universal profile, an integral boundary layer calculation
technique could not be general enough to cope with new geometries. Hence
as computer power has increased, integral techniques have been abandoned in
favour of differential methods. Indeed generally the methods which have been

developed to calculate the flows within turbomachines have been governed by
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the computational power available to the modellers. FEarly inviscid methods
included singularity approaches for two-dimensional flows. However, the rapid

development of computer hardware has led to ever more general calculations.

3.2 The Quasi-Three-Dimensional Approach

Wu (1952) proposed a method of tackling the three-dimensional flow
problem by calculating the flow on two intersecting families of stream surfaces.
The first set are blade to blade surfaces and are generally known as S1 stream
surfaces. The other surfaces which lie between the blades, extend from hub
to tip and are approximately aligned with the flow direction. The solution
of the flow on these S2 surfaces, is referred to as a through-flow calculation.
Stow (1985) points out that although Wu’s theory can predict the complete
three-dimensional flow in the cascade by using an iterative procedure which
links the calculations on the two families of surfaces, most workers have not
done so. Instead they use the concept of the two families of surfaces, but with
only one S2 surface (e.g. Jennions and Stow (1985a,b)). The S1 surfaces are
then taken as surfaces of revolution. This is often referred to as the ‘quasi-
three-dimensional’ model as it can cope with varying radial blade sections,
and contracting or diverging annulus geometry, but makes no allowance for
the endwall effects such as secondary flows. However such methods are
used at present by engine manufacturers, and so are worthy of mention.
Streamline curvature and stream function techniques for the S1 surfaces are
used in these design systems. Such calculations usually incorporate a viscous
boundary layer model for thé blade to blade calculations. These models
generally rely upon correlations for the prediction of transition and are hence
limited to calculations at, or near, the design incidence. Trailing edges also
present a problem, and are usually modelled with a cusp. Hence there is
interest in more general viscous analyses in two dimensions (e.g. Davis et
al (1988)), as well as fully three-dimensional calculations. These offer the
exciting prospect of tailoring blade row geometries in all three dimensions, so

as to achieve more favourable downstream conditions.
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Dunham (1986) has strongly supported the continued development
of computational fluid dynamics (CFD) for turbomachinery analysis. He
convincingly argues that advances in CFD in the past have been closely
followed by advances in engine design, and moreover, result in less problems

requiring solution on the test bed.

3.3 The Governing Equations of Fluid Mechanics

The full set of governing equations of a fluid flow may be obtained
by considering flow through a small volume fixed in space, or the motion of a
small fluid element. An excellent account of the derivation has been given by
Anderson (1986). The conservation form of the governing equations derived

from consideration of a volume fixed in space, maybe written in matrix form

as :-
_8_U @_}_B_Ci_*__aﬁ_—_aﬁ_i_a_s_*__az_}_t] (31)
8t 8z Oy 0z Oz Oy Oz '
P 0
pU pfe
U= pv ) J = pfy
pw pf
oE p(ufe + vfy +wf.)
ou pv pw
,ou2 +p puv puw
F= puu , G=| p?+p |, H= pow
pwu pwv pw? +p
pu(E + p/p) pu(E + p/p) pw(E + p/p)
0 0 0
Tex Tyz Tax
R= |7y |, S=|my|, T=]|7y
sz Tyz TZZ
R5 55 T5
Ry = Kﬁ + UTgg + UTgy + WTy,
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[

Sy = K By + UTyp + UTyy + wWTy,
O¢
Ty = K 7 + UT,p + VT + Wy,

where
E = total energy = e + (v +v2 +w?)/2, e = internal energy

u, v, w = velocity components in xz, y, 2z directions
K = coef ficient of thermal conductivity
fer [y f.=body forces e.g. gravity/electromagnetism
€ = temperature
T;; = stress in j direction, ezerted on plane perpendicular to i— azis

The matrices F, G, H, are called the flux vectors, and J represents a
source term which might include terms to cope with blade row rotation, or
body forces due to gravitational or electromagnetic potentials. The solution
vector is U. The five equations written in these matrices are the continuity
equation, the three Navier-Stokes momentum equations (one for each compo-
nent), and an energy equation. The equation of state of a perfect gas is then
used to close the system. These equations are a set of coupled non-linear
partial differential equations for which no general analytic solution is known.
The equations can have very different behaviour depending upon their coeffi-
cients. If there exist surfaces within the flowfield upon which the solution is
at best indeterminate, the equations are said to be hyperbolic. These surfaces
are called characteristic surfaces and if they are real, they bound the region
which is influenced by the point in the flowfield under consideration. If the
characteristic surfaces form a plane in the flowfield the equations are said
to be parabolic, and if they are imaginary, then the equations are elliptic.
In this last case each point in the flowfield influences all other points. The
notation arises from the mathematics of conic sections, which are described

by similar equations.
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If the viscous stress terms involving derivatives with respect to x
are ignored, the Navier-Stokes equations become ‘parabolised’. A familiar
example of parabolic equations is provided by the boundary layer equations,
which are obtained when velocities normal to a surface are considered to
be small. Due to their parabolic nature, flow governed by these equations
may be solved by calculating conditions at a downstream location from those
existing upstream. Hence the calculation may start from upstream boundary
conditions, and march downstream in steps, calculating the flow as it proceeds
(e.g. Patankar and Spalding (1972)). This is called space marching. By
contrast, subsonic steady flow exhibits elliptic behaviour where the solution at
any point in the flowfield effects that at any other point, be it upstream or
downstream. This means that the solution must be calculated simultaneously
for all points, from boundary conditions defined all around the region to be
modelled. An example of an elliptic calculation procedure has been given by

J.G. Moore (1985a).

3.4 Euler Solvers and Time Marching

In numerical solutions for the flow through a particular geometry,
the result is a set of numbers which are values of the flow variables at
particular discrete points within the region of interest. Hence a grid is set
up over the calculation domain to define these calculation points. Clearly
the number of points required for three-dimensional calculations will be much
greater than that needed to describe a two-dimensional flow. In a solution
of the full governing equations (often called the Navier-Stokes equations by
the CFD community) it might be necessary to store five variables, two or
more turbulence quantities, and possibly other quantities relating to coordinate
transformations. As this information must be stored at each point in the
flowfield, it is not surprising that the first three-dimensional methods attempted
to solve only the inviscid governing equations (called the Euler equations)
rather than the full Navier-Stokes equations. These equations are easily

obtained from equation (3.1) by setting the right hand side to zero (the
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source vector J may be retained if required). This neglects ail the viscous
terms, and greatly simplifies the simulation task. The Euler equations are

parabolic in time, regardless of the type of flow. Thus it is possible to

solve them by defining some initial starting guess, and marching forwards in
time until the steady boundary conditions cause %the solution to settle to a
steady state. This method is called ‘time marching’ and has been widely
used in turbomachinery applications, and CFD in general. As an example,

the following simple equation is considered:-

ou  O%u
9t~ 0x2 (3.2)

The derivatives may be approximated by a truncated Taylor series to form
finite difference equations. If a forward difference is used for the time
derivative, and a central difference for the space denvative, a finite difference

version of equation (3.2) may be written as :-

uttt — u?

6

u?—i‘l - ?L + uz 1
= 3
Ai (bo)? (3:3)

Here superscripts relate to the time step number, and subscripts to the grid

point locations (e.g. Figure 3.1). As all the values on the right hand side
of equation (3.3) are written in terms of the current time step, the value of
u?*! may be calculated directly from this one equation. This then, is an
explicit technique. It is worth noting at this point, that equation (3.3) is not
an exact representation of equation (3.2), (unless Az and At tend to zero).
Hence, when performing CFD calculations, the equations which are actually
solved are not the governing equations, but an approximate representation of
them, and this can have significant effects upon the results,

In equation (3.3) it would be better to write the spatial derivative in

terms of average properties between times n and n 4 1. Then :-

n+1 n n+1 n+1 n n+1 n
L . 1( i1t uRy — 2w - 2up 4w ‘*"‘%‘-1) (3.4)

At ) (Az)?

n+l

Clearly this equation cannot be solved directly for wu] In this case the

finite difference equations must be constructed for each point in the flowfield,
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to give a set of simultaneous linear equations. These may then be solved
for the new values at each point in the flowfield, simultaneously. Equation
(3.4) is an example of the Crank-Nicolson form of time marching and is one
example of an implicit method. In general it is found that implicit methods
are much more stable than explicit techniques, which are forced to use small
time steps if divergence of the solution is to be avoided. Hence long computer
running times are required to advance an explicit scheme through a given
time interval. Implicit schemes allow much larger time steps, but involve more
calculation and hence computer time per time step. As implicit methods are
considerably more complex to set up and program, most authors of Euler
solvers have adopted explicit techniques. McNally and Sockol (1985) cite
Gopalakrishnan and Bozzola (1972) as applying an explicit finite difference
scheme (MacCormack’s algorithm) to a transonic compressor cascade. This
algorithm has also been adopted by Chima (1985), and Shang et al (1980).
Implicit techniques are more popular for full Navier-Stokes solutions (e.g.
Briley and McDonald (1977)).

A slightly different approach which is widely used for internal flow
calculations is the finite volume technique. This is obtained by integrating the
governing equations over local control volumes surrounding each grid point.
In the numerical solution, the integration of fluxes over the surface of the
control volume is approximated by a summation over the number of cell faces
(usually six in three dimensions) of the average flux through a face multiplied
by the area of that face. Denton (1985a) describes such a method, and points
out that its popularity in internal flow calculations, arises from its ability to
conserve automatically quantities such as mass flow. This results from the
fact that any error causing say outflow from one control volume, will cause
an equal inflow to another. Denton’s scheme is very well known and has
been in use for some years, the original method being reported by Denton
(1975). Another example of an explicit time marching code utilising finite
volumes, is described by Arts (1984).

Time marching Euler solvers have the ability to cope with transonic

flows and are hence very attractive for turbomachinery applications, the shock
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waves appearing naturally within the solution. Denton (1985a) argues that
a calculation method should be simple, as a complex code will only be
understood and used by its author. The range of reported applications of
Denton’s code (and modifications to it) must lend some support to this

opinion (e.g. Sato et al (1986a,b), Atkins (1987), Walsh (1987)).

3.5 Time Marching Stability, Accuracy, and the CFL Condition

As mentioned before, explicit time marching schemes are generally
less stable than implicit methods. Indeed generally there is no guarantee
that finite difference equations will be accurate or stable under all conditions.
Two sources of error are those errors in representing the governing equations
in finite difference or finite volume form (called the discretisation error), and
the round oft error due to repetative calculations to only a finite number
of significant figures. If the governing equations are linear, a general error
analysis method (the von Neumann stability method) may be applied to
obtain a stability limit for the scheme. If such an analysis is applied to the

first order wave equation

Ju Ou
— 4+ — =0 3.5

ot + Oz (3.5)
using first order accurate differences (discretisation errors of order Az, At),
the stability condition is found to be

— <1 .6
cx < (36)

This is the famous Courant - Friederics - Lewy condition (CFL condition)
which is taken as the stdbility limit for explicit time marching schemes. In
reality, since the fluid mechanics equations are non-linear, the above stability
method may not be applied, and the CFL condition gives only an approximate
guide to the stability limit of the scheme. Anderson (1986) illustrates the
physical significance of the CFL condition with the aid of a simple example.
Considering a second order wave equation he shows that if the CFL condition

is precisely satisfied, the characteristic lines running through a given point to
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be evaluated exactly bound those points used in the finite difference equation
by which it is calculated. If the CFL condition is exceeded, then conditions
at a point are evaluated from conditions at other points which do not cover
the full range of space which should influence it. This under-couples the
flowfield and leads to instability. Conversely, if the CFL condition is easily
satisfied (i.e. At is very small), then the calculation of the value at a point
is influenced by a much greater region of space than is physically the case.
This procedure is stable but unrealistic, and can produce inaccurate results.
Hence it is generally desirable to use time steps which closely approach the

CFL condition.

3.6 Decoupling, Oscillations, and Smoothing

Other problems which often occur in CFD are related to the discrete
nature of the solutions. For example, consider a one-dimensional conservation

equation for a quantity :-

o Oy _

One finite difference equation which might be written as an approximation

to this equation is :-

¢?+1_7/"? . ( ?+1— ?—1)
At YT 2az (3.8)

This procedure would then allow oscillations such as those in Figure 3.2 to
exist without damping them. This is often a problem in solutions if nothing
is done to counteract if, but causes particular difficulties near shock waves.
Denton (1985b) states that it is usual to have to add damping or smoothing
terms to the equations in order to prevent ‘wiggles’ occurring around shock
waves which might otherwise influence a large part of the flow. In reality
entropy is produced at shock waves, but computationally the shocks are often
spread over several grid points and require extra ‘numerical’ entropy production
to produce the correct downstream flow. This must be added carefully to

avoid damaging the whole flow prediction. Some natural ‘numerical viscosity’
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exists in the finite difference equations due to the truncation errors. The
particular form this takes will depend upon the type of differencing used. For
instance the right hand side of equation (3.8) should really be a series, with

(0u\" _ ¥y —vby (0" (Az)
\53: T 2Az 8$3}s &

Here the first neglected term in equation (3.8) is dependent upon (Az)?.

3

Thus finer grids produce more accurate results. Denton (1985a) advocates
the use of fine meshes rather than higher order accurate equations, in order
to achieve reliable solutions. It is also apparent that the error term depends
upon the third derivative of the conserved quantity. This term is analogous to
the form of the viscous terms in the Navier-Stokes equations. Thus ‘inviscid
solutions’ will often generate numerical losses which are convected and effect
the downstream flowfield just as real viscous losses do.

If oscillations develop within the solution, they may be damped by the
addition of extra terms to the equations which introduce viscous type deriva-
tives. The fimte difference equations for these terms then introduce strong
coupling of the solution on odd and even grid points, damping oscillations.
Unfortunately they may also adversely effect the accuracy of the solution, as
the equations then effectively describe a more viscous fluid. Generally it is
found sufficient to smooth solutions with fourth order derivatives except in
shock waves, where second order terms are required. Such smoothing tech-
niques, or their equivalent, are generally employed in time marching methods
(e.g. Dawes (1983), Denton (1985a), Chima (1985), Chew and Birch (1987),
Dawes (1987), Davis et al (1988)).

3.7 Acceleration Techniques For Time Marching Solutions

Due to the limits imposed on explicit algorithms by stability require-
ments, significant expertise has developed in the acceleration of the convergence
of the schemes. The most obvious acceleration technique is to use different
time steps for each control volume. This destroys the physical meaning of

the transients in the solution, but if a steady state solution is required this
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is unimportant. Most authors »offer the user a choice between uniform, and
local time steps. Spatially varied time steps may also be used to increase
the ‘robustness’ of a method. If the local time step is made inversely depen-
dent upon the local rate of change of variables, then local instabilities are
restricted. This can prevent a calculation failing in the early stages when

large transients are occurring, and is recommended by Denton (1985b).

Another technique which has been shown to be very effective, is
multigrid. This groups blocks of control volumes together to perform imitial
‘coarse grid’ calculations, moving on to the refined grid after the initial large
transients in the flowfield have been washed out to the boundaries. In some
schemes (e.g. Denton (1985b), Chima (1985)) the calculations on both grids
are performed in parallel. Denton (1985b) suggests that spatially varied time
steps can yield 50% savings in CPU time, whereas multigrid may increase

convergence speed by a factor of five.

One particular point of interest for time marching algorithms, is that
they usually perform badly in low speed flows. This is because they solve for
density, which is almost constant at low Mach numbers. This problem can be
overcome without seriously compromising accuracy, by modelling the flow with
the maximum Mach number scaled to 0.3. Such practise is recommended by
Birch (1989a). However, methods of modifying algorithms to cope with low
speed flows have also been developed by some workers, such as the use of

pseudo-compressibility.

3.8 Calculation Grids

The choice of grid upon which to perform computations is not trivial.
Many turbomachinery blade rows exhibit high turning or stagger, and a
simple square (‘H’-type) grid will result in highly sheared cells (Figure 3.3).
Denton (1985b) describes how such sheared cells will increase numerical errors.
Considering a simple difference representation, he shows that derivatives with

respect to = will be poorly evaluated from the four points shown in Figure
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3.3 since

Obp (e —Yw) 1 (v —9s)
oz 2As  sind 20y

cotf (3.10)

If 6 is small, %f becomes the difference of two large numbers which are only
approximately evaluated with finite differences.

One alternative to accepting the numerical errors associated with
sheared grids is to develop. a much more complex grid system. Although
this has been done by several authors of two-dimensional methods (e.g.
Delaney (1982), Chima (1985), Davis et al (1988)), such techniques have been
less widely adopted in three-dimensional calculations owing to the increased
complexity, and computation requirments. However, with grid generation
techniques remaining an active area of research in CFD in general, this may
change in the future. An attractive method is to solve an elliptic equation to
transform a uniform mesh in one coordinate system, to a body fitted mesh
in the physical coordinates. Chima (1985), and Davis et al (1988), use a
Poisson equation to generate a ‘C’ grid, which certainly contains cells which
are much more orthogonal than those which are typical of simple meshes.
Taking the idea of coordinate transformations a stage further, the governing
equations may be transformed into a ‘computational’ coordinate system, in
which the mesh is uniform. Dawes (1983) describes a two-dimensional implicit
method which works on a uniform mesh in the computational plane. However,
McNally and Sockol (1985) point out that in three-dimensional calculations,
nine or more metric derivatives need to be stored at each grid point, in
addition to the flow variables. Hence such techniques are not so common for
three-dimensional methods.

As mentioned earlier, the finite difference equations will not be an
exact representation of the governing equations. The approximation may be
made more accurate however, by using more grid points in the finite difference
equations. Usually codes are either first or second order accurate (depending
upon whether the error term is of order Az or (Az)?). Sometimes authors
will point out that their scheme is second order accurate if it is applied on

a smoothly varying mesh (e.g. Dawes (1987)). This arises from neglecting
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non-uniform mesh spacing when evaluating the fluxes at a cell boundary
from values stored at adjacent cell centres. Such schemes then are prone to
give grid dependent solutions, where the use of a carelessly (or inexpertly)
constructed mesh might yield very poor predictions, even though the code
can be very accurate when applied to a suitable mesh (e.g. Birch (1989a)).
Hence the use of transformed equations in a uniform computational plane,
might prove to be worthwhile, since it allows the accurate use of simple
algorithms, despite the additional storage requirements and transformational

complexity.

3.9 Pseudo Viscous Approximations

Although Euler solvers have been widely used to model blade row
aerodynamics, they do have some limitations. In compressor cascades the
growth of boundary layers may have a significant effect on the ‘freestream’
flow by effectively decreasing the passage area. Gostelow (1984) poiats out
that differences between early British and American cascade tests, resulted
from the inclusion of the endwall boundary layer blockage in the British
case, whereas these boundary layers were removed in the American work.
Another problem with inviscid methods has been identified by Stow (1985).
When considering models of the effect of skew in the inlet boundary layer, he
shows that inviscid calculations can perform badly as they do not account for
the change in boundary layer profile from the inlet boundary to the leading
edge. In reality viscous effects can be significant in such a boundary layer,
resulting in a different profile entering the blade row from that measured
upstream. Hence Stow concludes that care must be taken when using an
inviscid calculation to simulate the effects of an inlet boundary layer.

Denton (1985a) describes a method of transpiring fluid through solid
surfaces so as to displace the freestream flow by the displacement thickness
of the boundary layer as calculated with a simple two-dimensional boundary
layer method. He shows that this technique gives more realistic results than a

completely inviscid solution in the case of compressor cascades and transonic
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fans. A different approach to the simulation of viscous effects in Euler
solvers, is to incorporate viscous force terms in the source vector J, as body
forces. Denton (1985a) describes such a technique where the magnitude and
distribution of the force are chosen ‘empirically’ by the user to produce good
agreement with real flows. Denton himself clearly states that such a model is
grossly simplified compared with even the simplest Navier-Stokes solver, but
nevertheless reports improved results with the use of this technique. Gregory-
Smith (1989) has compared results of Denton’s scheme, with those of a state
of the art implicit time marching Navier-Stokes solver due to Dawes (1986).
The two schemes produce results of comparable quality in this case. However
it should be remembered that as soon as empirical constants are introduced
into calculations, the methods are strictly limited to the range over which
those constants have been determined. Hence Navier-Stokes solvers are still
an attractive development as they should offer the possibility of off-design
analysis (assuming empirical constants in the turbulence models are adaquately
defined). However, Denton (1985a) comments that it is likely to be some
time yet before turbulence models are sufficiently accurate to give absolute

predictions of aerodynamic loss.

3.10 Time Marching Navier-Stokes Solvers

For viscous solutions the full Navier-Stokes equations are solved. The
solution procedures are essentially the same as those for the Euler equations.
Examples of explicit time marching Navier-Stokes solvers have been reported
by Chima (1985), Davis et al (1988) in two dimensions, and Shang et al
(1980) in three dimensions. Such algorithms suffer badly as a result of the
CFL condition as fine meshes are required to resolve shear layers. Hence
Denton (1987) suggests that implicit methods with bigger time steps are
much more attractive for viscous analyses than for Euler solvers. Examples
of implicit codes have been reported by Briley and McDonald (1977), Dawes
(1983), Dawes (1987), Chew and Birch (1987), and Choi and Knight (1988).

Viscous time marching schemes should in principle be able to solve for trailing
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edge flows. However, in practise instabilities may occur and Stow et al (1987)
suggest that it is usually necessary to smooth this region. This smoothing
must be very carefully formulated if information concerning aerodynamic loss
is to be retained. All the viscous methods suffer from the same grid and
instability problems discussed for Euler solvers. Smoothing is required and
this is normally a mixture of second and fourth order differences. A further
application of time marching, is to compute the unsteady flow through
blade rows, and blade row interaction. This would require time accurate
calculations and is a major incentive to the continued development of time

marching algorithms.

3.11 Pressure Correction Techniques

A completely independent approach to flow modelling which has
developed alongside time marching is the method of pressure correction.
The technique was originally developed to deal with flows in which viscous
effects are significant, before the computational power became available to
perform three-dimensional time marching Navier-Stokes calculations. However
the method has been developed to such an extent as to rank alongside time
marching as a major CFD technique. As mentioned previously, the boundary
layer equations are parabolic in space, thus permitting solution by marching
downstream from an inlet boundary. The early pressure correction methods
were developed to solve the more general problem of parabolised Navier-Stokes
equations, which are obtained by neglecting the streamwise viscous diffusion
terms. However the concept has been extended to a wider range of flows as

greater computer power has become available.

3.12 The Parabolic Approximation and Pressure Correction

The fully parabolic methods require some extra assumption beyond the
neglect of streamwise viscous diffusion. This might be obtained by assuming

knowledge of the primary flow direction so that convective derivatives and
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viscous terms can be ignored in the transverse momentum equations. However
the method of Patankar and Spalding (1972) utilises a different approach.
The pressure field is initially guessed, and then the momentum equations are
solved to give a first approximation to the velocity field at a particular plane.
Corrections are then made to the pressure field and velocity field so as to satisfy
the continuity equation over the plane. Approximate relations between the
pressure corrections and velocity corrections are introduced from consideration
of the momentum equations. These are substituted into the continuity equation
to obtain a set of simultaneous equations for the pressure corrections on the
plane being considered. The additional parabolising assumption is the assumed
knowledge of the pressure gradient in the marching direction. Patankar and
Spalding (1972) firstly calculate this by consideration of the overall mass flow
through the plane and the use of a separate pressure correction. The solution
may then be marched downstream from an inlet boundary. Only one such
marching sweep is required. Such parabolic techniques are computationally
efficient, but cannot cope with reverse flow, upstream transmission of pressure,
and streamwise viscous transport of momentum. Another example of a

parabolic method has been presented by Lawrenz (1984).

3.13 Partially Parabolic Pressure Correction Methods

A further generalisation of the range of flows which may be calculated
can be obtained with the aid of a partially parabolic calculation procedure.
This uses a parabolic technique to obtain an estimate of velocities and
pressures, and then sets up a three-dimensional pressure correction equation
based upon the divergence of the momentum equations. The whole procedure
can then be iterated until the pressure corrections become small. Such
methods thus allow for the upstream transmission of pressure. Pratap and
Spalding (1976), and Moore and Moore (1979) have described the detailed
application of partially parabolic techniques. Dodge (1977) splits the velocity
into viscous and potential parts U and \y¢. U 1is obtained from marching

the momentum equations, and ¢ is updated after each full sweep by solving a
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three-dimensional elliptic equation obtained from continuity. An approximate
relation between pressure and ¢ then enables the pressure field to be updated.

Although all partially parabolic calculations involve iteration of the
scheme, with multiple marches through the flowfield, convergence is usually
rapid and only a few ‘passes’ are required when compared with the thousands
of iterations which might be necessary in a time marching solution. The
method of Moore and Moore (1979) also iterates on each marching plane
to ensure convergence of the momentum and continuity equations. Partially
parabolic techniques are more general than parabolic calculations, and have
been applied to turbomachinery flow problems (e.g. Pouagare and Delaney
(1986)). They require greater storage and calculation facilities than fully
parabolic methods, but still cannot describe reverse flow phenomena such as

the horseshoe vortex.

3.14 Fully Elliptic Solutions by Pressure Correction

Although partially parabolic methods have been used for turboma-
chinery flow calculations, the full description of a subsonic flow is an elliptic
problem. The advantages of an elliptic calculation procedure over a partially
parabolic method, are that mass, and viscous transport can be transmitted
upstream. Thus in the turbomachinery environment, the elliptic methods can
cope with reverse flow phenomena such as the horseshoe vortex (even the
passage vortex may appear to cause reverse flow if a very poorly aligned
mesh is used). As an elliptic method implies simultaneous solution over the
entire flow region, such calculations place greater demands upon the storage
and processing power of computer hardware, and have only become realistic
in the past decade. Two main methods of interest which have been developed
for turbomachinery flow analysis, are those of Moore and Moore (1985), and
Hah (1984). Both methods utilise finite volume approaches, and solve a fully
elliptic equation for pressure corrections. The method of Hah (1984) may
be applied to both steady and unsteady flows, whereas that of Moore and

Moore is designed to solve for steady flows only. Both codes have been used
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to model the flow described by Langston et al (1977), and results have been
compared by Moore (1985). The performance of these methods is very en-
couraging, with secondary flow phenomena being reasonably predicted in both
cases. Detailed differences hetween these two codes include the discretisation
technique, and the turbulence model used to simulate turbulent stresses on the
control volume surfaces. Hah uses an two equation (k-¢) model to evaluate
evaluate a turbulent viscosity, whereas Moore and Moore use a simple Prandtl
mixing length model.

Of particular interest for the work presented in this thesis, is the
calculation technique of Moore and Moore (1985). The method has been
described in detail by J.G. Moore (1985a,b), and is based upon Patankar’s
SIMPLER algorithm. The basic calculation procedure is outlined below :-
Initial 3D estimate of flowfield.

Calculate effective viscosity with turbulence model.
Calculate density from the gas law (perfect gas).

Calculate velocity field from the momentum equations.

Gl L o

Use approximate relation between pressure corrections and velocity
corrections (obtained from consideration of the form of the momentum
equations) to form a pressure correction equation from the continuity
equation.

6. Solve the set of simultaneous equations for the pressure corrections.

7. Update the velocity and pressure fields.

8. Solve the energy equation for rothalpy and calculate the temperatures,

entropy, etc.

The calculation is then repeated from step two, until the pressure
corrections become acceptably small. In the above sequence the velocity
field is calculated explicitly from existing conditions. If this calculation is
performed implicitly, the procedure is similar to Patankar's SIMPLE algorithm.
This improves convergence of the velocity field, but can lead to divergence of
the pressure field. Significant under relaxation is then required to maintain
stability. Hence the procedure which has been adopted alternates between

explicit and 1mplicit velocity calculations on successive iterations. To maintain
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stability, the pressure field is not updated on iterations where the momentum
equations are implicitly solved. This then is the final algorithm which is
similar to Patankar’s SIMPLER algorithm. Discretisation uses linear variations
of velocities and pressures between grid points, thus giving the scheme second
order accuracy.

The advantage of pressure correction methods is that they can be
very efficient, requiring a few lengthy iterations, compared with the multiple
quick iterations of explicit time marching procedures. Since few iterations
are required, with a significant proportion of the time being spent on matrix
operations, the use of linear variations of quantities is relatively insignificant
in terms of computation time. This results in greatly improved capacity to
cope with distorted grids, and can produce accurate solutions on fairly coarse

meshes.

3.15 Upwinding, Accuracy and Stability

In the past pressure correction techniques have often used upwind
differencing to obtain well posed equations for control volumes drawn around
the grid points. In an excellent lecture, J.G. Moore (1985b) describes how
such a procedure introduces large quantities of numerical viscosity into the
calculation, which can be of similar magnitude to the physical viscous effects.
Hence the calculation of losses with such a technique produces spurious results.
A different approach is then proposed, based upon the use of upwinded control
volumes. Such upwinded momentum control volumes are used by Moore and
Moore (1985) in their calculations. They are determined such that they
approximately follow the local flow direction, and so may change shape as
the solution progresses. The effect of upwinding control volumes is shown
by J.G. Moore (1985b) to eliminate artificial viscosity or numerical mixing,
but she also shows that on a grid that is not well aligned with the local
flow direction, the technique does result in some artificial cross-convection of
conserved quantities. Hah (1984) also recognised the problem of upwinding.

His approach was to use a higher order accuracy differencing scheme which is
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more stable than simple central differencing. However, he still has to resort to
upwind differences when the stability limit for a given cell is exceeded. Stow
(1985) has stressed the importance of such methods of eliminating numerical
in calculations. Loss is an important parameter, and he comments
that before it is possible to validate turbulence models for the calculation of
losses, grid independence from numerical viscosity must be achieved. Hah and
Leylek (1987) investigated the effect of grid refinement upon results produced
by Hah’s code with four different grid sizes. They plotted loss against the
inverse of the total number of grid points, and showed that substantial grid
independence was achieved with the use of one hundred thousand points in
a turbine nozzle row. Moore (1985), comparing losses calculated for the
Langston cascade with those presented by Hah (1984), suggests that Hah’s
method still includes some numerical mixing. It is this numerical mixing
which is reduced by refinement of the calculation mesh, so the number of
grid points required to achieve low numerical error will vary from algorithm
to algorithm. Although smoothing does not appear to be so generally applied
to pressure correction techniques, the earlier comments about decoupling and

oscillations do still apply, and damping may be required in certain areas.

3.16 Code Validation & Pressure Correction Versus Time Marching

Validation of methods is clearly an important exercise for establishing
the strengths and weaknesses of different methods and their capabilities. The
validation process is not trivial as fully three-dimensional flows are being
computed. Hence there is a need for detailed test cases. The cascade of
Langston et al (1977) has proved a popular choice for code authors. Hah
(1984), Moore (1985), and Choi and Knight (1988) have presented results
of modelling this flowfield. Although specific differences do exist in the
quality of solutions, there is no major difference between the results of all
three methods, and certainly no large discrepancy is apparent between time
marching and pressure correction solutions. Kirtley et al (1986) also concluded

that no significant difference existed between the quality of results obtained
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from time marching and partially parabolic pressure correction, using both
algorithms on the same calculation grid. The results of Northall et al (1987),
who modelled the VKI annular turbine cascade tested by Boletis (1984),
showed that the Moore’s code can produce good predictions of blade row
loss production with a fairly modest grid (21420 points). Although this is a
triumph for the numerical accuracy of the procedure, it was necessary to know
in advance where the transition of blade boundary layers occurred. Thus as
the numerical accuracy of algorithms increases, so the relative importance of
turbulence modelling will rise, and it is this concern to which much of the

work in this thesis will be directed.

3.17 Turbulence Modelling

Although the Navier-Stokes equations (equation (3.1)) should describe
the full turbulent motion of a fluid (provided that the smallest eddy scales are
orders of magnitude greater than the molecular mean free path), in practise
calculation grids cannot be made fine enough to do so. Thus the equations
are Reynolds averaged (i.e. time averaging of turbulent fluctuations) so as
to maintain time dependent terms for gross unsteadiness within the flow, but
describe the effects of turbulent motions with a suitable model.

For a laminar flow, the viscous stress terms in equation (3.1) may be

written as :-

A ANEN
Tk (6mj * Bmi) N % (3:1)

where the summation convention is in operation, and é;; is the Kronecker
delta. In a turbulent flow, the Reynolds averaged Navier-Stokes equations
will include extra terms due to momentum transfer by the turbulent motions.

These extra terms are the components of the Reynolds stress tensor

where uj, w; are fluctuating turbulent velocities such that ul = u—; = 0.

Although it is possible to write down transport equations for the Reynolds
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stresses, these introduce extra source terms involving triple correlations. Again
transport equations can be written for the triple correlations, but this merely
introduces higher order correlations, and so the process can be repeated.
This is called the problem of closure, and at some stage it is necessary to
model the correlations in some way. Generally turbulence models attempt to
describe the components of the Reynolds stress tensor directly.

Most models employed in turbomachinery calculations to date have

been of first order closure, and use the Boussinesq eddy viscosity concept :-
— puiu;

He = (& + 20
Ozx; dz;

(3.13)

This assumes that the turbulent stresses depend upon the mean rate of
strain in the same way as the molecular viscous stresses do. The effective
viscosity which is the sum of the molecular and turbulent viscosities, is then
substituted into equation (3.11) in order to account for the turbulent stresses.
It is worth noting at this point, that the eddy viscosity hypothesis is in reality
erroneous, as it tries to compare the interactions of turbulent eddies with
those of molecules. This cannot be corrrect since the mean free path between
eddies is not necessarily negligible compared with the flow dimensions, and
the eddies do not transfer momentum by a series of discrete collisions as
molecules do.

The simplest form of turbulence model specifies the eddy viscosity
algebraically. The concept of a mixing length was introduced by Prandtl
as an analogy to the mean free path of molecular interactions. Hence the
mixing length is related to the eddy viscosity by the formula :-

T (6T 7. \1%
T

Prandtl suggested that within the boundary layer the mixing length was

directly proportional to the distance to the wall, and further out was propor-
tional to the boundary layer thickness. Von Karman suggested the following

relation for the mixing length in a simple two-dimensional boundary layer,

o7
lh « ( ;?ﬁ) (3.15)

dy?

from similarity considerations

47



However, the mixing length model, which is used here for work with

the code of Moore and Moore (1985), follows Prandil’s suggestion and hence

is specified by the equation :-

the mixin

o3
;
09

lo = MIN(KnE, , )6) (3.16)

where n 1s the distance to the nearest solid boundary, é§ is the shear layer
thickness, K, A are constants (0.41, 0.08), and E, is the Van-Driest damping
factor, used to cope with near-wall effects. The specification of the shear
layer thickness, 4, is difficult, and will be discussed in later chapters as
appropriate. In the freestream, where no shear layer can be identified, a
constant mixing length is assumed. This can be specified directly by the
user, or it is calculated from the inlet turbulence intensity and a characteristic
length scale.

The eddy viscosity has also been modelled by assuming a link with
turbulent kinetic energy, and solving a transport equation for this quantity.

Prandtl proposed :-
pe = C’,,pK%l (3.17)

where K is the turbulent kinetic energy, [ is a length scale, C, is a constant.
Thus there are a set of turbulence models called one-equation models in which
a differential equation is solved for the transport of turbulent kinetic energy,
and the length scale is specified algebraically. Such a model is described by
Birch (1989b), and will be considered in more detail later. In two-equation
models, a transport equation is also solved for the length scale (e.g. Hanjalic
and Launder (1972)). Usually the transport equation solves for the dissipation
rate ¢, which implies a length scale. Hence such models are frequently referred
to as K — ¢ models.

Although the complexity of the above models for turbulent stresses is
rapidly increasing (the K —¢ model involves solution of two differential transport
equations), they are all still bound to the concept of an eddy viscosity. To

move away from the limitations of such an unphysical assumption, it is
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necessary to model the components of the Reynolds stress tensor directly.
Such a model has been proposed by Launder et al (1975). However McNally
and Sockol (1985) comment that although the recent focus of modelling has
shifted to Reynolds stress models, at present they show little or no advantage
over simpler treatments. This is especially true of separated flows. One
problem is that the validation of the models is itself difficult, due to the
numerical viscosity effects which are often” present in CFD calculations.
Certainly the modelling of turbulence in turbomachinery flows is a
formidable task. McNally and Sockol (1985) suggest that good flow predictions
should be possible for turbomachinery components using only simple turbulence
models, as the motion is essentially pressure driven. Whilst this may be true
for the basic flow patterns, it seems doubtful that losses will be so easily
evaluated. This is because the losses are really a small part of the total
flow energy. Even if the small flow perturbations caused by turbulence effects
seem inconsequential as far as mean velocities are concerned, that does not
necessarily imply that losses will be similarly unaffected. Indeed experimental
evidence supports the natural expectation that turbulence is important in the
loss production process. Hence the level of turbulence modelling that will
be required to obtain realistic predictions of aerodynamic loss, is at present
unclear. It is hoped that the work presented in this thesis will help to, at

least partially, clarify the situation.

49



1y -1

P+1,71-1

LAk _Lan,
Caleulagian Ge

[AY
AY
AN II |
\
! \
‘ \
‘ \
\
g | \
’ \
\
l; \ x |
\ rd
‘
]
| - O— ’
’ | 1 |
I \
, fa : < |
A | |
/I ; | |
‘ 7
O— / | ’
\
1 y | I
A o \ I
\ / \ l
| \
’
\ ’ \ I
\ , \\ /
\ / \
\ ’
\ I \
' ’
' 7
' ’
\
A
AR
A\

DR
¢ Odd/Even Poine Selusie

! pling of

3.2 Oecoup

ELGURE.




VAN
/

Ovp _ Yy —¥s

Oy 2Ay

OYp _ Y5 —Yw

Js 2As
9 _30

sinf + _8_ cosf

0s Oz Jdy

Ovp _dr—Yw 1 v - s
0z~ 2As  sind 2Ay

cotf




Chapter 4

Apparatus and Techniques

4.0 Introdnection

This chapter describes the apparatus and techniques used io obtain
the experimental data presented in this thesis. A brief description is given
of the large scale, low speed turbine cascade and iis associated wind-tunnel.
A review is made of the instrumentation employed to obtain test data from
the cascade, and techniques of data aquisition and analysis are also discussed,
together with considerations of experimental accuracy. The cascade facility
and several experimental techniques had already been used for research prior
to this project, hence detailed discussion will be restricted to developments
introduced since then.

As well as the experimental techniques, some information 1s also

given about the facilities used to run and assess three-dimensional, viscous

Navier-Stokes calculations of the flow in the Durham cascade.

4.1 The Durham Cascade Facility

As this project forms part of a continuing program of turbomachinery
research at Durham University, much of the apparatus and experimental tech-
niques have been inherited from previous workers. Graves (1985) investigated
the secondary flows in a linear cascade of turbine blades mounted on the exit
of a low-speed wind tunnel which remains largely unchanged. The tunnel
is supplied by a dual entry centrifugal fan, which blows air down a short
parallel walled section, before allowing it to diffuse through gauzes into a
large settling chamber. The air is then accelerated through a contraction,
and finally passes through a honeycombe flow straightener before entering the
parallel walled working section. The cascade is mounted at the end of this
section, and exhausts to atmosphere. Walsh (1987), modified the working

section to include a moving wall (achieved by use of a belt on driven rollers)
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which he used to investigate the effects of skew in the inlet boundary layer,
upon the development of secondary flows in a second turbine cascade. All
work presented in this thesis will be concerned with the flow through this

more recent cascade (which Walsh termed the ‘JAW’ ca,sca,de).

Since testing with this facility is restricted to low speed (incompress-
ible) flow, excessive suction surface diffusion results from the use of a blade
profile designed for transonic conditions (e.g. Graves (1985)). Hence a notable
feature of this cascade is that it was designed to give aerodynamic similarity
to a typical high pressure turbine blade section, rather than be an exact
geometrical copy. Although full details of the cascade are given by Walsh

(1987), the design parameters are reproduced below :-

Table 4.1 : Cascade Design Data

Flow Inlet Angle (degrees) | 42.75

Biade Exit Angle (degrees) | —68.8

Blade Chord (mm) 224
Axial Chord (mm) 181
Blade Span (mm) 400
Blade Pitch (mm) 191

Zweifel loading coeflicient 0.97

Cascade Reynolds Number | 4 » 10°

A right handed cartesian coordinate system is defined for the cascade,
with radial coordinates increasing from zero at one endwall (such that in
Figure 4.1 the positive radial direction is out of the paper). This axis system
which is aligned with the scales drawn in Figure 4.1, is referred to as ‘cascade
coordinates’ in this thesis. The ‘hot-wire coordinates’ which are drawn in
Figure 4.1 refer to the coordinate system in which turbulent Reynolds stresses
are measured using a hot-wire anemometry technique discussed in section 4.4.
This ‘hot-wire’ coordinate system is aligned with the midspan flow direction

at each tangential position.
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4.2 Turbulence Crid

The level of freestream turbulence which develops naturally in most
wind tunnels is less than one percent of mean velocity. The Durham tunnel
was reported by Gregory-Smith et ol (1988) to be at the high end of this

range, with an intensity of approximately one percent.

Several factors made an investigation of the effects of increasing this
frecstream level seem worthwhile.  The turbulence intensities typical of a
modern gas turbine are larger than those which are present in most wind
tunnels, and so a test with a turbulence grid placed upstream of the cascade
would be more realistic. Also the effect of the freestream level upon the flows
and losses is not fully understood. It seems likely that an increased turbulence
would promote earlier transition of boundary layers. As discussed previously,
the blade profile used in this work was redesigned to give a smaller amount
of suction surface diffusion when run at low speeds. Despite this, however, a
small laminar separation bubble was observed on the suction surface of the
blade at approximately 80% of an axial chord from the leading edge (Walsh
(1987)). Hence an increased level of freestream turbulence could eliminate the
separation bubble completely, promoting a smooth transition from the laminar
to turbulent states. This would make a more interesting comparison with the
results of Gregory-Smith et al (1988), who thought that the higher turbulence
in their cascade, and in particular the presence of a dominant frequency in
the energy spectrum, could be due to a gross unsteadiness resulting from the

presence of a large separation bubble on the suction surface of their blade.

In order to determine the freestream turbulence intensity that would
be required to eliminate the laminar separation bubble on the blade’s suction
surface, several runs were undertaken with a quasi three-dimensional computer
code, based on the streamline-curvature technique. Details of the method
have been presented by Morgan (1984), and by Jennions and Stow (1985a,
1985b). Results of three calculations are shown in Figure 4.2, where the
intermittency of the boundary layer (i.e. the proportion of the time that the

boundary layer is turbulent) is plotted against the distance along the suction

52



surface from the leading edge. A vertical jump from an intermittency of zeirc
to one indicates the presence of a separation bubble. Hence the results show
that a freestream turbulence intensity of 4% should be sufficient to promote
a smooth transition from the laminar to turbulent states. Tn order to give

a margin for error, it was decided to design the turbulence grid to give an

intensity of 5% at inlet to the cascade.

The aerodynamic design of a suitable geometry is not straight-forward,
as the limitations imposed by the rig in which the grid is to be mounted,
force a compromise to be reached with the desirable properties of such a
device. An excellent account of these aerodynamic factors influencing grid
design has been given by Roach (1987). Additional factors due to the rig,
included the moving belt on one endwall, which meant that if the grid was
to be mounted within a distance of 1200mm of the cascade, it could not be
supported from one side. Also the large inlet angle of the Durham cascade
results in significantly varying distances between the grid and the cascade, if
the grid is mounted perpendicularly to the tunnel. As the turbulence decays
with downstream distance, this would cause greater turbulence intensities to
be received by the uppermost blade passages. However, mounting the grid
parallel to the cascade to overcome this problem, results in a deflection of the
flow as it passes through the bars. A large distance to the cascade is then
required to allow the flow to regain as much uniformity as possible before
inlet. A large distance between the grid and the cascade is also desirable in
order to prevent significant decay of the turbulence within the blade passage,
as well as allowing time for individual jets (emerging from the open spaces
between bars) to mix fully, thus promoting isotropic conditions. However,
for a given intensity at inlet, the diameter of the bars comprising the grid
increases with the distance to the cascade. The grid must not present so
much blockage as to exceed the fan’s capability to run the tunnel at the
required Reynolds number, but too large a pitch results in big jets (which
take longer to mix) and hence less isotropy of the inlet turbulence. Also
the grid should have enough bars to act like a grid, and not individual

obstructions (in the extreme case there would be just one bar vertically and
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one bar horizontally).

The initial design was based upon data from a paper by Bains and
Peterson (1950). The best solution to the problem was felt to be a grid
of one inch diameter bars, mounted upstream of the belt at a distance of
1400mm from the cascade. The bars were mounted parallel to the cascade
at a spacing of 80mm in the horizontal direction. Since the grid is at an
angle to the incoming flow, and all the design data was based upon grids

mounted perpendicularly to the flow, it was decided to open up the spacing

80mmn

cos 42.75°

to a distance of in the direction parallel to the cascade, so as to
present a ‘vertical’ spacing of 80mm. The bars were made of aluminium
tubing, and were mounted through holes cut in the tunnel. On the sides of
the tunnel, two aluminium plates drilled with one inch holes at the required
spacing were fixed, and used as templates for drilling into the wood. On the

top and bottom of the tunnel machined aluminium blocks with the required

inclined holes were mounted, and also used as templates for drilling. The
bars were held in tension between these aluminium fixtures, by large nuts
threaded onto their ends. The resulting grid is shown in Figure 4.3 viewed
from the side of the tunnel, and in Figure 4.4 viewed from the cascade inlet

position. The designed conditions at inlet to the cascade have been estimated

with the methods reported by Roach (1987) and are shown below :-

Table 4.2 : Predicted Inlet Turbulence Characteristics

Streamwise Direction | Orthoganol Directions
Turbulence Intensity 4.6% 4.1%
Macro/Integral Scale 38mm 19mm
Micro/Dissipation Scale 4-5mm Imm

To determine the distortion to the mean flow produced by the
grid, several measurements of total pressure were made, vertically down-
wards through the tunnel, and horizontally from endwall to endwall. Figure

4.5 shows some measurements taken with the five hole probe at midpitch of
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slot 1. It can be seen thai with the grid as designed, ¢he flow just beyonc
the endwall boundary layer has suffered less loss than that towards midspan,
It appears that a sort of ‘jet’ flow is occurring at the edge of the grid. The
reason for this is that the grid was designed for the tunnel width of 400mm
existing at inlet to the cascade. The moving belt facility was designed to
grow a skewed boundary layer (Walsh (1987)). Hence a false wall was fitted
extending slightly upstream of the belt, with an adjustable bleed-off duct,
to allow the removal of the incoming boundary layer. The width of the
upstream tunnel is 460mm, and the grid thus left a gap of 100mm between
the last bar and the wall of the tunnel on this side. As the grid was only
15¢m upstream of the false wall, it was thought that adjusting the bleed-off
duct to produce zero incidence onto the false wall, would yield a uniform flow
through the grid. However, as the results in Figure 4.5 show, this is clearly
not the case.

To remedy this problem, it was decided to fit an extra bar to the
grid near the endwali. This was initially chosen to equalise the blockage
which the grid presented in this region, to that elsewhere. However, this
design condition was found to be inadaquate, and so some trial and error
was necessary before a satisfactory solution was obtained. This consisted of
a bar of diameter 1% inch, placed at 25mm from the endwall. The resulting
radial total pressure profile at midpitch of slot 1 is also shown in Figure
4.5, together with that measured by Walsh (1987) before introduction of the
grid. Whilst the extra bar has produced an acceptable inlet boundary layer,
it is clearly different from that reported by Walsh (1987). The new boundary
layer is actually thinner than the old. This might indicate that a ‘jet’ flow
still exists at the start of the false wall, but is slowed by the growth of of a
boundary layer on it.

The vertical traverse from top to bottom of the tunnel also revealed
a change 1n total pressure, with more energy towards the top of the tunnel.
This may be because the grid is angled to the flow, hence causing an upward
deflection, and a higher static pressure towards the top of the tunnel. Then

the velocity with which the flow traverses the grid, would reduce towards
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the top of the tunnel, resulting in less loss in this region. The magnitude
of the wvariation in stagnation pressure across the traversed blade row 1is
approximately 1%. Although this situation is not ideal, no attempt was made
to correct it as the only obvious solution wonld be to remount the turbulence
grid perpendicularly to the flow. As discussed previously, this approach would
introduce other difficulties. Thus no simple solution to the problem seemed

possible.

4.3 Five Hole Probe Measurement Technique

Several traverses have been made with a five hole probe during this
project, using a technique set up by Graves (1985). Measurements were
taken with the probe inserted through slots cut in one endwall, such that
data could be collected on planes of constant axial location (Figure 4.1).
The probe was made of 0.5mm hypodermic tubing, and being of the cobra
type could be rotated about a perpendicular axis without disturbing the
position of its measuring volume. Freedom of movement in the radial and
tangential positions was provided by the traverse gear (Figure 4.6) which also
incorporated a rotary mount, allowing rotation about a spanwise axis.

A calibration technique proposed by Schaub et al (1964) was employed
to avoid the necessity of nulling the probe head at each traverse point (indeed
it was not possible to null in the pitchwise sense). By measuring the pressure
on each of the five tubes of the probe, and the dynamic head detected by a
reference pitot-static tube placed upstream of the cascade, it was possible to
deduce the flow velocity, direction, and loss of stagnation pressure from the
calibration maps.

Throughout the work presented in this thesis, use was made of a
computerised data aquisition system which consisted of a Cifer microcomputer,
and a specially made data aquisition unit. This allowed automatic reading
of up to eight voltages, and provided an output which was used to control a
valve selection box. Thus different combinations of the pressures on the five

hole probe could be selected, and fed into a differential pressure transducer. A
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second transducer constantly monitored the output of the upstream reference
pitot-static tube. Potentiometers served as positional transducers, leaving only
the angular setting of the probe, and the settings on a signal conditioner {o be
entered manually for each point. In practise these were rarely varied, and tests
in the microcomputer programs warned the operator if the voltages on any of
the digital to analogue converters were out of range. The Cifer microcomputer
converied readings of voltages into pressures and stored these on a floppy
disk for later analysis by software run on the University’s mainframe service.

Having set the traverse gear at a particular slot location, the probe
was used to obtain measurements of the flow at previously determined points
in the flowfield. By traversing outwards from the endwall in the radial
direction, the tangential location remained unaltered for long periods, and
hence unused areas of the slot could be sealed with masking tape. This
was most important for the early slots, where the higher than atmospheric
pressure causes significant outflow through exposed passages. Unused slots
were always kept sealed with special T-shaped wooden iillers, which maintained
a reasonably smooth surface on the remote end-wall.

Although this technique had been successfully used at Durham for
several years, it was not trouble-free. Walsh (1987) reported that significant
losses were measured in regions expected to be governed by potential flow.
No satisfactory explanation could be found for this and so the early stages
of this project were spent investigating the problem.

Throughout the work undertaken with the five hole probe, regular
checks were made of the validity of its calibration. This was achieved by
inserting the probe in the working section upstream of the cascade. The
mounting for this was comprised of two rotary mounts and a right angled
bracket, which permitted rotation of the probe head in two directions. Thus
data could be collected for the probe head set at different angles, and later
run through the analysis program to recover the flow velocity, direction, and
loss (which should always be zero).

An initial check of the probe calibration revealed satisfactory mea-
surement of angle and velocity, but a variation in the returned value of

I
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stagnation pressure equal to three percent of the imiet dynamic head. Fup-
ther investigation identified the data aquisition system as the source of this
problem, with significant noise levels present in the signal from the pressure
transducers. The easiest way to reduce the effects of noise, was to take more
samples of each pressure and average. Thus the minimum number of samples
was increased from twenty to two hundred. After this the system examined
the mean and variance of the data, to deiermine whether more readings were
required. If so one hundred samples were added before repeating the check.
A maximum of one thousand samples was specified to avoid system lock-up
in highly turbulent regions. To eliminate effects of vibration from the rig, the
bench on which the instrumentation was mounted was vibrationally isolated
from the floor. Software on the microcomputer was modified to correct each
reading of pressure for variations in upstream dynamic pressure, to achieve
‘standardised’ data.

Testing of the modified system showed the measurement of stagnation
pressure to be an orvder of magnitude more accurate. Having developed the
reliability of the system pressure measurement, a re-calibration of the probe
utilising this methodology appeared desirable.

The five hole probe was calibrated in the range +30° yaw and +30°
pitch, with data values spaced at intervals of two degrees. Bi-cubic spline
surfaces were fitted to the data and the quality of the fit determined by
inspection. Satisfactory fits were then incorporated in the analysis program,
to give a description of the probe head’s response. Use of this calibration
improved measurements of stagnation pressure, but did not entirely eliminate
the apparent losses which were recovered from data collected at midpitch of
the midspan positions. These spurious losses were found to increase with slot

number, and will be discussed in detail in Chapter 5.

4.4 X-Probe Hot-Wire Anemometry Technique

The flowfield in the cascade has also been traversed using a hot-

wire method similar to that described by Graves (1985). This combined
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information obtained from two traverses using x-wire probes (DISA 55P53
and DISA 55P54), to measure five of the six independent components of the
Reynolds stress tensor, as well as the mean velocity components.

The hot-wires were run by DISA 55MO01 constant temperature bridges,
working at an overheat ratio of 0.8. Although Yavuzkurt (1984) has shown
that real-time data reduction techmiques are generally more accurate than
time averaging of the hot-wire signals, the later technique was adopted as
the necessary equipment was readily available. Bridge outputs were calibrated
against flow velocity, with the probe placed at midspan of slot 10, between the
blade wakes. It was decided to linearise these signals, as it is more accurate
to do so in highly turbulent regions, where the slope of the calibration
graph is not really constant over the range covered by the instantaneous
velocity vector. Fourth order polynomial fits have been shown by Bruun et
al (1988) and Swaminathan et al (1986) to give an accurate representation
of the calibration data, and so two Prosser 6130 linearisers were used to
produce voltages proportional to flow velocity (Figure 4.7). These were then
passed through Prosser 6141 signal conditioners, which removed most of the
steady voltage levels, and amplified the remaining signals to give stronger
fluctuating information. The outputs were passed into two units; a DISA
52B25 turbulence processor which was set to evaluate the correlation between
them, and a circuit specially made to determine the mean and root mean
square levels of the signals. Voltages from this circuitry, the two positional
transducers, and a d}fferential pressure transducer (connected to the upstream
reference pitot-static tube), were transformed to integers by analogue to digital
converters in the data aquisition unit, before downloading to the controlling
microcomputer.

The same traverse gear served for both hot-wires and pressure probes,
and the hot-wire probe supports were designed to keep the position of the
measuring volume constant when rotating about the spanwise direction. Hence
the probes could be aligned with the local yaw angle, determined from a
previous pressure probe traverse. This was the system used by Graves (1985)
and Walsh (1987) to obtain data from the first Durham turbine cascade.

=
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Although there is not a great deal of literature presenting turbulence
measurements in the swirling, three-dimensional flows of cascades, an apparent
discrepancy existed between results obtained at Durham and those of other
workers.  Sieverding (1985b) commented on the opposing results of Bailey
(1980) who found turbulent stresses to be insignificant in large regions of the
secondary flow, and Gregory-Smith and Graves (1983) who measured peak
local turbulence intensities of 30% in the vortex core. This dilemma persisted
with results of Walsh (1987) showing 92% of the loss in the Durham cascade
to be manifested as a rise in turbulent kinetic energy, whilst Moore et al

(1986) found this ratio to be 23%, and Zunino et al (1987) only 10%.

Indeed the work of Zunino et al (1987) presented another dilemma.
As they used a twin traverse x-wire method, their results should have shown
similar quality to those obtained at Durham. Although their analysis method
was different, following an unlinearised approach proposed by Majola (1974),
this should not have accounted for the superior quality of their shear stress
measurements. As both workers used calibrations against mean velocity only,
ignoring the effects of the thermal inertia of the wire-prong system (described
by Perry (1982)), this could not be responsible for the differing results. Thus
although comparison between traverses with hot-wires and five hole probes
showed Durham’s mean flow data to be correct, some doubt was cast on the

accuracy of fluctuating measurements.

Investigation of the hot-wire system was approached from two fronts.
The electronic signal path was examined for integrity at each stage, and the
analysis equations were thorougly checked. Two problems have been identified.
In the analysis described by Graves (1985), all the complex equations for the
response of a hot-wire are ‘correct’, but the recovery of the root mean square
of the fluctuating velocity from the voltages measured is not. The circuitry
which measured signal r.m.s. was not A.C. coupled and so included the mean

voltage which emerged from the signal conditioner

MEAN = (E - Of fset) x Gain (4.1)
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thus the measured Root Mean Square voltage

RMS = \/(¢” = Gain?) + MEAN? (4.2)

which is not the same as equations 2, 4 pp 181, 182 of Graves’ thesis

(1985).  Unfortunately the error term this produced was quite smoothly
varying as it depended upon the values of offsets and gains applied by the
signal conditioners. Hence contour plots of turbulence quantities did not show
obvious discontinuities.

The hot-wire data obtained from the first Durham cascade has been
re-analysed and published by Gregory-Smith et al (1988). Many of the afore-
mentioned discrepencies have thus been eliminated, although the turbulence
levels found in the Durham cascade were still higher than those observed
elsewhere.

It had been hoped that re-analysis of the experimental data would
produce much clearer pictures of the shear stresses working on the fluid. These
however did not materialise, and so another source of inaccuracy in fluctuating
quantities had to be sought. This was found to reside in the electronics used
to measure signal mean and r.m.s. values. Whilst the circuit diagrams
showed no fault, and the unit should in principle have produced the desired
outputs, it was not sufficiently accurate to preserve the integrity of shear stress
information. Errors resulted from the use of noisy operational amplifiers, not
enough trim circuits, and D.C. coupling of the r.m.s. measurement. Although
mathematically there is no apparent advantage in measuring the r.m.s. of
either a D.C. or A.C. coupled signal, the D.C. coupled method produces a
larger error when there is a certain level of uncertainty inherent in the data.
Some time was devoted to re-building the mean/r.m.s. measuring unit which
resulted in greatly increased accuracy as indicated by tests with a sinuscidal
signal generator over a frequency range of 1Hz to 40kHz. An amplifier
was also built to boost the output of the turbulence processor, which was
generally very small. The combination of these measures was found to achieve
the desired accuracy, and in particular produce clearly defined shear stress

distributions.
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Fluctuating data from the hot-wire system described above was de-
termined in the coordinates described by the probe and two perpendicular
directions. Due to the omission of one of the six independent components
of the Reynolds stress tensor {v'w') th
be determined in another set of axes. Thus as it was intended to compare
hot-wire information with that obtained from computational models, it was
considered preferable to align all measurements at a particular tangential coor-
dinate, with the midspan flow angle, rather than the 1pcal flow angle at each
radial station as had been the case in the previous work of Gregory-Smith
et al (1988). This reduces the accuracy of the analysis equations, but some
testing showed that ‘the system could cope adaquately with the misalignment
range involved.

Improvements in the accuracy of measurements, resulted in reliable
convergence of the higher order analysis proposed by Gregory-Smith, and
already incorporated in the mainframe software by Graves (1985). Hence all

data presented in this thesis results from the application of this method.

4.5 Rotatable Single Wire Technique

A new hot-wire anemometry technique has been developed, as an
investigation of the state of the flow very close to the endwall was required.
A method was needed which could determine the mean flow velocity, and
show whether the new, highly skewed, boundary layer which forms after the
inlet boundary layer has been swept from the endwall, is in a laminar or
turbulent state. As a minimum distance for readings of one millimeter from
the endwall was desired, the x-probe method could not be used. Hence a
single wire approach was required.

The basic concept of the method utilises the fact that most of the
effective cooling velocity comes from the velocity component perpendicular to
the wire. This is especially true of gold-plated wires, where the effects of the
thermal conductivity of the wire supports, are greatly reduced, by keeping

them away from the sensing length (Perry (1982)). Hence if several readings

62



are taken at a point, with a single wire set at various angles, the individual
mean velocity components, and some of the components of the Reynolds stress
tensor, may be found.

Since a close approach to the wall was required, it was decided to
rotate the wire in a plane parallel to the endwall. This is most easily
achieved by using a right-angled probe, mounted from the remote endwall.
By ensuring that the wire was on the line of the main probe support, it could
be rotated about the spanwise direction without disturbing its position. This
method naturally offered itself to being mounted on the existing traverse gear,
with the probe support entering the tunnel through the slots already provided
(Figure 4.1). However, as a much finer degree of accuracy was required for
positioning the probe in the radial direction, a standard DISA 55E40 traversing
mechanism was also fixed onto the rotary mount in Figure 4.6, by means of
a specially made boss. This was designed such that the probe support passed
through the centre of the rotary mount. The DISA traversing mechanism
incorporated a potentiometer which was used as a positional transducer for
measurements by the data aquisition system. A diagram of the probe support
is shown in Figure 4.8.

The probe support was used to hold DANTEC 55P04 gold plated
wire probes, which were run at an overheat ratio of 0.8, by a DISA 55M01
constant temperature bridge. Fourth order polynomials were fitted to pfobe
calibration data, and their coefficients set on a Prosser 6130 lineariser so as to
produce a voltage proportional to flow velocity (Figure 4.7). The probes were
calibrated in the working section of another wind tunnel, in order to obtain
calibration data down to a minimum velocity of four meters per second.

When traversing, the signal from the lineariser was passed through
a signal conditioner to amplify the fluctuating component, before being fed
into the unit used to give steady output voltages equal to the mean and root
mean square levels of the input signal. These outputs were measured by the
data aquisition unit and passed to the Cifer microcomputer which was used
to control the experiments, and log data onto a floppy disk for later analysis

on the University’s mainframe machine. At each point in the flowfield, the
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recorded data consisted of the probe’s position, the number of wire angles for
which the flow was measured, and then for each of these, the turret angle
setting, the offset and gain applied by the signal conditioner, the measured
mean and r.m.s. voltages, and the upstream dynamic head.

The method used to run the experiments was similar to that of the
five hole probe and x-wire measurements. The controlling microcomputer
guided the operator with a question and answer approach, which prompted
for the atmospheric conditions, in order to calculate the inlet dynamic head
required for constant Reynolds number operation. The program then read
in reference voltages from the positional transducers when placed at known
positions. In the radial direction a piece of shim material was used to place
the probe protector pin at a known distance from the endwall. The extension
of the probe protector pin from the wire was found beforehand with the
aid of a travelling microscope. The sensitivities of the positional transducers
were measured separately, and imbedded in the Cifer programs. The program
then asked if the upstream pressure transducer needed to be calibrated, and
would take the user into a routine to do this, if required. Values for the
sensitivity of the wire, and the settings on the signal conditioner were also
required before the main loop was entered and a prompt given for the next
probe position to be entered.

The probe was traversed radially outwards from the endwall, keeping
exposed areas of the slot covered with masking tape. When the probe was
set at the correct position, the user was asked to align it as well as possible
with the flow (i.e. rotate until a maximum output from the mean voltage
measurement was obtained). The turret setting angle, and signal conditioner
settings were manually entered, before the system measured the upstream flow
velocity, and the local mean and r.m.s. effective cooling velocities. These
were displayed on the microcomputer screen, and if acceptable, the program
would prompt for the turret setting angle to be set to a new value. After
entering the signal conditioner settings (if changed) the system would measure
the flow again. When all the required angles had been recorded, the next

position in space was requested.
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The details of the analysis of the singie wire data are presented in
Appendix A, so 2 brief summary of the procedure will suffice here. Firstly the
program calculated the mean and r.m.s. cooling velocity for each rotational
setting at a given point. These were corrected according to the upstream
velocity, so that they corresponded to an arbitrary ‘standard day’ velocity of
19.1 ms™*.  Although the analysis could cope with the probe being set at
arbitrary angles (provided the velocity vector was within the probe’s acceptance
cone), and any number of angles greater than two, in practice only five angles
were set for each position. These were at 0°, +20°, £40° to the direction
which was estimated to be streamwise. Since only three angular settings were
required to solve the equations, redundant information was obtained from the
five orientations recorded. The equations were represented in the analysis
program in matrix form, and solved by a least squares method in NAG

subroutine FO4AAMYF. This also allowed a confidence interval to be calculated

for each solution. The flow was solved for U, V, V/i’,-u-’z,;’?,w in the probe's
coordinates (for the sake of the accuracy of the response equations used) and
then rotated to cascade coordinates for storage. The radial normal stress w?
was not measured, and so was assumed to be equal to the average of u” and
v, Although this will obviously be erroneous close to the wall, where large
radial velocity fluctuations will be damped, it was thought to be a preferable
assumption to that of assuming zero radial turbulence, as the probe was to

be traversed radially from 1 to 10mm from the endwall.

4.6 Spectral Analysis of Hot-Wire Signals

A short spectral survey of the flowfield was undertaken in order to
determine whether or not there were any dominant frequencies present. A
Le Croy model 9400 digital oscilloscope was borrowed for this purpose, as
it had the capability of performing fast Fourier transforms on input signals
over a wide range of frequencies. The transforms were averaged over two
hundred samples, to give a smoother spectrum. The display on the screen

of the oscilloscope was then dumped to a plotter for later presentation. The
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width of the individual ‘frequency bins' for which a power was calculated,
was typically 1Hz for a low range spectrum (0 to 200Hz) and 200Hz for a
bigger spectrum (0 to 20kH z).

The single wire probe was used as a signal source, and its output
linearised to provide a voltage proportional to flow velocity, before connecting

to the digital oscilloscope.

4.7 Flow Visualisation

A relatively fast means of gaining some qualitative information con-
cerning a three-dimensional flow, is by use of some form of flow visualisation.
Walsh (1987) described a method suitable for use in the low speed cascade,
whereby a mixture of diesel oil and ‘Dayglo’ pigment (in a ratio of three to
one by weight) is painted onto the surfaces of the blades and endwall. After
running the tunnel for some time, fine dry patterns are left on these surfaces,
and photographs taken. This effectively gives a picture of the streamlines in
the limit as the wall is approached, and clearly shows any lines of separation

of the flow from the surface.

4.8 Surface Pressure Distributions

The central blades in the cascade were fitted with pressure tappings
at several spanwise distances from the endwall. All tappings at a particular
fraction of chord, were drilled into the same piece of tubing cast under the
blade’s surface, and so all except one had to be covered with tape when
measuring the surface pressure distribution at a given radial distance. The
axial locations of the pressure tappings are shown in Figure 4.1. A series
of distributions at different radial coordinates is useful, as it builds up an
effective picture of the variations in lift on the aerofoil, due to the action of
the secondary flows. The pressures were connected to a multi-tubed inclined
manometer and read manually with the tunnel running at constant Reynolds

number.
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4.9 FEycerimentar Accuracy

Although it is almost impossible to assess the overall accuracy of
experiments which have a very complicated sequence of data processing, with
a correspondingly large number of potential sources of error, it is important
to gain some idea of the uncertainty of the results.

The positional accuracy with which the five hole probe and x-wires
were located in the ﬂowﬁeld; was estimated to be £0.5mm in both radial and
tangential coordinates. ¥or the single wire, the same tolerance is appropriate
for the tangential direction, but the probe was located more accurately
radially, with an estimated error of +£0.1mm. The upstream dynamic head
was constantly monitored in all experiments, and kept within two percent of
the value required to run the cascade at its standard Reynolds number.

The accuracy of the data aquisition system for voltage measurement,
was tegularly checked by comparing the output for a given tesi signal, with
that obtained on a digital multimeter. This was also monitored during runs
to ensure that the system was always performing well. The linearisers, signal
conditioners, and mean/r.m.s. unit, were also checked at regular intervals for

satisfactory operation.

When using an intrusive technique to measure a fluid flow, care must
be taken to try and minimise the disturbance which the probe support induces
at the measurement location. The ‘cranked’ design of the probe’s used in
this work was intended to ensure that this was the case. Also, the five hole
probe was never used to record the flow within two diameters of its head
from the endwall, as this would have caused distortion of the streamlines,
and hence invalidated the calibration technique.

In the case of a hot-wire, close approach to a solid boundary will
generally result in an over estimation of the velocity (Wills (1962)). This is
due to the cooling influence of the wall (assumed at lower temperature than
the wire) on the fluid immediately surrounding the wire. However, Oka and
Kosti¢ (1972) used a standard DISA wire of diameter 5um in their work on

wall proximity effects. They commented that the distance from the wall at
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which the increased cooling becomes detectable, decreases with flow velocity.
The maximum range therefore occurs when there is zero flow, and was found
to be 1mm. Hence, as similar wires were used in this work, with a closest
approach of 1mm and non-zero flow speeds, wall interference effects may be
assumed to be insignificant.

In the case of pressure probes the accurate calibration of pressure
transducers is clearly important. A subroutine was added to the programs
running on the Cifer microcomputer, to enable interactive calibration of the
transducers. The system measured the voltage output from the transducer,
and requested that the pressure read from a micromanometer, be typed
in. The user could keep taking more readings, until the error determined
by a least squares fit to the calibration data was acceptably small. The
micromanometer was also monitored during traverses, to validate the readings
of pressure displayed by the microcomputer. The accuracy of individual
pressure measurements was estimated to be +£0.05mmH,0.

An 1indication of the overall performance of the five hole probe tech-
nique was given by the regular probe calibration checks. These returned
measurements of flow angle to within £0.2° and velocities to within £0.2
ms~! when mounted in the calibration position upstream of the cascade.
However, at a slot location there are also other sources of error, including
the alignment accuracy between traverse gear and cascade, the action of
turbulence to cause the over-reading of individual pressures, and Reynolds
number effects. Thus the total error applicable to angle measurements might
be as great as +1°. A detailed consideration of problems concerning loss
measurement will be given in Chapter 5.

An obvious source of inaccuracy in the use of hot-wires, arises from
the quality of their calibration. The error in calibrations generally increases
with decreasing velocity, due to inaccurate reading of the dynamic pressure
on a micromanometer. Using the methods proposed by Yavuzkurt (1984),
the calibration error typical of this work was found to be within one percent

over the velocity range encountered.

Throughout the hot-wire anemometry work presented in this thesis,

68



care was taken to try and minimise the effects of wire contamination due to
dust. The inlet to the fan was filtered (Walsh (1987)), which greatly reduced
the problem, but after a long run the sensors did show reduced sensitivities.
It might be tempting to allow the wire to reach an equilibrium state of
dirtiness, and calibrate it without cleaning. Whilst this would probably
produce reasonable mean flow results, the frequency response of the devise
would be seriously impaired, and so fluctuating data would be correspondingly
de-valued. Hence a point in the flowfield was chosen, and at the end of each
tangential station the probe was returned to this position to check that its
sensitivity was still unaltered. If a slight drop in sensitivity was observed
the probe was removed, cleaned, returned and re-tested. If the probe had
been very dirty, the data recorded since its previous check, would have to be

repeated.

The x-probes were tested for angular response, by placing them at the
midpitch, midspan position of slot 10, and recording outputs for misalignment
angles in the range —20° to +20°. The velocity measurements obtained, were
found to be consistent to within +0.5 ms~!, and the angles to +2°. The
sum of the normal Reynolds stresses (Z’?+;’?+F) was consistent to +1
(ms~1)2. Although these results seem quite satisfactory, Yavuzkurt (1984) has
shown that the measurements of mean velocity and second order correlations,
using a time averaging technique- with a slant wire in-a two dimensional flat
plate boundary layer, are in error by approximately 5%. Hence, due to the
similarity of the basic systems, and in the absence of any other evidence, it
will be assumed that this is a valid estimate of the errors to be expected

from the x-wires.

As mentioned previously, the single wire method utilises a least squares
solution, which enabled the computation of confidence intervals. For a 99%
confidence interval, the typical errors to be associated with each quantity are

tabulated below :-
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Table 4.3 : Errorvs for the Rotatable Single Wire Method

N e e . —
Qualmty Error
Streammse Mean Velocity U +0.5 ms”
Cross-Passage Mean Velocity v +0.5 ms™!
Radial Mean Velocity W +£1.2 ms!
Lo - — ,.)‘
Stleamwme Root Mean Square Velocxty Vu ”? +6 %
Cross-Passage Root Mean Square Ve10c1ty V' +11 %
Stleamwxse/CxObs Passage Velocxty Correlatlon uv +40 %

4.10 Computational Facilities for Navier-Stokes Calculations

As a large proportion of this project involves the running and analysis
of numerical calculations of the flow in the Durham cascade, significant
computational power was required. For three-dimensional calculations, the
memory and time requirements are too great to be handled by most mainframe
services, and so a grani was obtained for use of the SERC supercomputing
facilities at the Rutherford Appleton Laboratory. Batch jobs were submitted
to a Cray X-MP/48 (4 processors, 8 Megawords) machine from an account
on an IBM CMS service which is used as a front-end. This was accessed
from Durham via JANET (the Joint Academic NETwork).

Enormous quantities of information are obtained from one such cal-
culation, and so a program was written to interpolate out planes of data
corresponding to the cascade traverse slots, for transmission to Durham. So-
lution convergence could then be determined by examining this data, and the
details supplied by the calculation procedure itself, before deciding whether

or not to accept the full three-dimensional output.

4.11 Output Processing

The method of presentation of three-dimensional flow data is clearly
important, if comprehension of the principal phenomena is to be easily

attained. The methods used to present the experimental data obtained by
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Walsh (1987) were plots of contours, and vectors, on planes of constant axia
location (traverse slots). Pitch and mass averaging of this data was also
performed, and overall mass averages were manually plotted to show the
development of guantities such as loss, against axial distance through the
cascade. Hence some programs were available, designed to work on the data
from one traverse plane, and produce the type of output described above.

Whilst these facilities were perfectly adaquate for the assessment of -
hard won traverse data, they were not intended to produce rapid descriptions
of the full three-dimensional solutions emerging from a numerical calculation
procedure. Hence a more powerful output processing package was required,
both to ensure satisfactory solution convergence, and to produce output which
directly compared accepted solutions with the corresponding experimental data.

It would be nice to be able to produce ‘three-dimensional images’ of
the flow field on a piece of paper. Graphics packages are becoming available
which will certainly improve the options of data presentation for future workers
(e.g. UNIRAS), but for the duration of this work GHOST80 was still the
main graphics library available on the University’s mainframe service. Hence
it was decided to develop facilities based on the same type of output as
that produced by Walsh (1987), but with much greater flexibility and data
handling capabilities.

Two main programs have been produced. They both work on up to
four datasets, each of which can contain data for any number of the eleven
traverse slots. The first program produces plots of contours and vectors (‘area
plots’) for a traverse plane chosen interactively by the user, and displays data
from hot-wires, pressure probes, and numerical Navier-Stokes solvers, side by
side. The actual data which is displayed is also interactively chosen by the
user. This gives a basically qualitative comparison of output.

For exacting quantative assessment, a second code was developed.
This program, also run interactively, accepts the same input data types
as the ‘areaplotter’, and rapidly produces tabular and graphical output of
pitch and mass averaged quantities. Graphs are also plotted of certain mass

averaged quantities versus axial distance through the cascade. The graph
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showing the growth of loss was found to be particularly useful, as an aid to
assessing the convergence of numerical solutions.

The total pressure loss coefficient is defined as :-

. Poir—Po (4.3)
%PVl2

where subscript ‘1’ refers to conditions upstream of the cascade. A similar
expression defines the static pressure coefficient.
Data was integrated in the tangential direction, to obtain a pitch

averaged value (for each radial location) :-

F‘;—) — f Vaz(y’ Z) f(ya 2) dy
' J Vaa(y, z) dy

where V,;(y,z) is the axial velocity at that point in the flowfield.

In the case of the yaw angle :-

s

1 (Vtan(y: Z) — tan—l (f Vﬂiﬂ(y’ Z) Vttm(y’ Z) dy\ (45)
) J Vaaly,2)ay) )

Secondary velocity components were defined by the difference between

@ = tan~

the local flow velocity, and that at midspan. The turbulent kinetic energy
was defined as :-
u? + o7+ w?)

Turbulent KF = ( 5
Vi

(4.6)

to give a coeflicient comparable with the loss coefficient.

Within the blade passage, experimental data is normally available
only over a limited range between the blades since the probes are unable
to approach the solid surfaces very closely. Walsh (1987) extrapolated data
values from the two tangential locations nearest to the blade, onto the blade
surface for the purposes of pitch averaging. This was found to produce large
changes in the results obtained, and so the data in this thesis was integrated
only over the range traversed. Hence the pitch averaged values obtained for
positive quantities such as loss, will be an under-estimate of the true value
within the blade passage.

Up and downstream of the cascade, traversing generally extends over

more than one pitch to give some indication of the flow repeatability from
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passage to passage. Data such as this was averaged first over a region from
the ‘left hand’ edge of the traverse plane to a location one pitch on from
that, and then from the ‘right hand’ edge back to a location one pitch from
it. The two values for the pitch averaged quantity thus obtained, were then
averaged.

Once data had been pitch averaged for each radial location, the
results were integrated in the radial direction to obtain an area average. All

integrations were performed using a four point quadrature integration scheme.
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Chapter 5
Experimental Results (JAW Test Case)

5.0 Introduction

This chapter aims to describe the initial dataset used for comparison
with flow models. Much of this data was collected and presented by Walsh
(1987). In addition, three new traverses have been made to provide greater
detail of the flow development in the latter half of the blade row, and
downstream of the trailing edge. A problem with the five hole probe
measurement technique has been investigated, and this will be discussed in
detail. Since the majority of experimental data which is available for this
test case originated from Walsh (1987), it will be referred to as the ‘JAW’

- test case in this thesis.

5.1 The Walsh Data

The JAW turbine cascade at Durham, was constructed by Walsh to
allow investigation of the effects of skew in the inlet boundary layer upon
the secondary flows and losses. He presented results of traverses at slots
1, 3, 5, 8, 10 for three separate skew levels. One of the skew levels he
tested was that of zero skew. This data, for the case of a colateral inlet
boundary layer, will be used in this work as a test case for three-dimensional
calculations. The flow in the JAW cascade was found to develop into the
usual features of passage vortex, endwall counter vortex, and suction surface
counter vortex. The aspect ratio of the blading is such that the secondary
losses are of comparable magnitude to the profile losses. This also means that
the midspan flow is essentially two-dimensional, which makes identification of
three-dimensional flow features a simple matter of comparison with midspan
conditions, Thus the data constitutes a very useful test for flow models.
Although the linear cascade does not contain any radial pressure gradients,

the flow is still very complex, and provides a difficult case to predict.
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Since the flow was found to develop rapidly between slots 5, 8, and
10, it was decided to traverse some intermediate slots. This would also

provide an introduction to the traversing and data analysis techniques.

5.2 Errors in Loss Measurements

As discussed previously in section 4.3, certain problems had been
encountered with the rneasﬁremenf of losses using the calibrated five hole
probe technique. Walsh (1987) reported that significant losses were measured
in regions expected to be governed by potential flow. Some time was thus
spent investigating the accuracy of pressure measurements, and improvements
were then made to the system, culminating in a new calibration of the five
hole probe. Despite efforts to improve the accuracy of individual pressure
measurements, and the new calibration of the five hole probe, the problems
with loss measurement were not entirely eliminated. A traverse of slot 7,
analysed with the new calibration, revealed that an average loss of 0.05
appeared to be present in freestream areas. Analysing the raw pressure data
with the old probe calibration (as used by Graves (1985), and Walsh (1987)),
suggested that this freestream loss was 0.1. Hence it was clear that an error
in the measurement technique was present which was somehow related to the
probe calibration.

The problem of non-zero freestream loss persisted in traverses of slots 9
and 11. Analysis with the new probe calibration suggested that the freestream
loss was 0.06 in both cases, whereas this value was approximately 0.1 when
the old calibration was used. Generally, data had been corrected for spurious
freestream losses, by simply subtracting this apparent loss from the values of
the total, and static pressure coefficients at all points on the traverse plane (a
process which will be referred to as ‘constant loss correction’ in this thesis).
However, after traversing slot 11, it became clear that data analysed with the
new probe calibration, and corrected in this way, consistently produced lower
mass averaged losses than data which had been analysed by Walsh with the

old probe calibration. In Figure 5.1, the results of plotting mass averaged
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losses from Walsh (1987) with new values obtained for slots 7, 9, 11 are
plotted under the heading ‘mixed calibrations - constant loss correction’. It
is clear that the curve for loss growth through the cascade thus obtained, is
somewhat unbelievable, with the losses apparently falling between slots 10 and
11. This aroused some concern about the validity of the treatment adopted
for the spurious freestream losses, and so an investigation into the origins of

the problem was undertaken.

5.3 Properties of the Spurious Losses

As Walsh had found that the magnitude of the freestream losses
appeared to increase with slot number (and hence velocity), an initial test
was undertaken to determine the effect of velocity on measured losses. The
five hole probe was mounted downstream of the cascade whilst the tunnel
velocity was varied. Results are shown in Figure 5.2(a), which shows that
despite some random uncertainty in the measurements, there is no significant
velocity effect over the range of velocities encountered in the cascade. This
is encouraging as it tends to discount the possibility of a Reynolds number
effect.

A second concern was whether or not the spurious losses were sensitive
to the incidence of the flow onto the probe. With the five hole probe mounted
downstream of the cascade, and the tunnel running at constant speed, the
angle of the probe head to the flow was varied. Results are shown in Figure
5.2(b), where it is possible to see that although a significant ‘freestream
loss’ is indicated, it does not appear to vary much with changing angle
of incidence. This is important as all results have been collected using a
non-nulling technique. Hence, if the error in total pressure measurement was
to vary with flow incidence, accurate correction of the data would be very
difficult. Also this evidence also suggests that the problem is not a Reynolds
number effect. Hodson and Dominy (1988) have shown that low Reynolds
number effects are associated with separation of the flow from the probe head,

and hence are sensitive to flow incidence.
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A final test was undertaken to confirm that the spurious losses were
independent of absolute velocity magnitude. The reference pitot tube and
the five hole probe were mounted upstream of the cascade, and the losses
recorded. Then the five hole probe was moved to slot 10 (where the velocity
is increased by a factor of approximately 1.8) leaving the pitot-static probe
upstream, and more measurements taken. Finally the pitot-static probe was
mounted alongside the five hole probe at slot 10, giving a measurement at
the high end of the range of velocities encountered in the cascade. In each
case the probes were placed in ‘potential flow areas’ and should have detected
no losses. Results are shown in Figure 5.2(c). It can be seen that although
there is a bias error in loss measurement of approximately 0.015, it is when
there is a difference in velocity between the reference pitot-static probe and
the five hole probe that large losses are calculated. This seems odd, but the
position is clarified by Figure 5.3. In Figure 5.3(a) the apparent losses at
midspan of slot 3 are plotted as a function of tangential distance. As the
velocity on the suction side of the passage is higher than that on the pressure
side, the loss appears to fall when moving from one to the other. However,
it is the loss coefficient which is being considered. If the loss coefficient is
redefined as the loss in stagnation pressure between the upstream pitot-static
probe and the five hole probe, divided by local rather than upstream dynamic
head, a different picture emerges. This new loss coeflicient is plotted against
tangential distance for the midspan data at slot 3 in Figure 5.3(b). Here
the error in total pressure measured by the five hole probe appears to be a
constant fraction of local dynamic head (the random errors increase towards

the pressure side of the passage as the denominator becomes small).

5.4 Proposed Explanation of Apparent Freestream Losses

The five hole probe calibration technique used at Durham, calculates

losses from the formula :-

PO—POLOCAL :(PO_PC)—(PC_Pi)Spi (5'1)

(s



P, = upstream stagnation pressure

P, = pressure on central tube of 5 hole probe

P, = pressure on left or right hand tube,
whichever is at lower pressure

Spi = stagnation pressure calibration coef ficient, which
is a function of yaw and pitch angles

Examination of data shows that the value of Py, — P, does not account
for the apparent losses which are calculated in freestream areas. Thus the
error must arise in the term (P.—P;)Spi. If one considers a nulled probe head,
then as the velocity increases (without loss), P, will be the full stagnation
pressure, which is constant. However, the pressure on the left or right hand
tube, P, is the local stagnation pressure less some proportion of the dynamic
pressure. Hence (P, — P;) increases with increasing velocity. This suggests
that the source of error in loss measurement may be a constant error in the
stagnation pressure calibration Spi, which is amplified at. higher speeds by an
increased value of P, — P,. The calibration of Spi is defined as :-

POLOCAL ~ P,

sz: PC_H

(5.2)

Here Py, ..., is measured by a pitot tube during calibration. The only
obvious way in which a systemmatic error could have entered the calibration
is if the pitot tube recorded a different value of total pressure to that incident

on the five hole probe. Then :-

Porrue = Pocar +1 (5.3)
where 7 is a constant error. Substituting in equation (5.2) yields :-

.TRUE {CAL n
Pt P * (1 c— li)CAL (5 )

The loss coefficient is normally calculated from the formula :-

o~ Porocar — (Po -~ P.)— (P. — P)Spi
%pvoz ‘%p‘/o2
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Thus substituting for Spi from equation (5.4) gives :-

true loss _ (PO - PC) - (P'—' - P")SpiCAL — (P:CI;:QALU

coefficient — 1443 (5.6)

__usual loss _ (P. — P) 7
coeflicient ~ (P, — P)ou; 30VE

For a given angle of incidence, P, — P; is a constant fraction of the local
dynamic head, ie. :-

P, - P = A(G)%sz (5.7)

where A is a function of incidence angle §. Substituting into equation (5.6),
the error term becomes :-

Pc - R n _ V2 n
(Pe = Poar, 3pY6  Véar 3pV6

(5.8)

This formula is then independent of flow incidence angle 8, and only depends

upon the ratio of local to upstream velocity. This explains why the error
term is roughly constant if the loss coeflicient is defined relative to local
dynamic head (see Figure 5.3). It also explains why the errors detected using
the new five hole probe calibration are lower than those obtained with the
old calibration. The new calibration was performed at a higher velocity than
the old calibration.

Thus the above explanationr of the source of the spurious freestream
losses, appears to fit the observed properties of the phenomenon. The error
in total pressure introduced during calibration, is assumed to be due to a
small variation in stagnation pressure between the tunnel centre (where the
five hole probe was located), and the tunnel side (where the pitot tube was
mounted). The magnitude of the error n deduced from freestream data at
slots 7, 9, 11 analysed with the new calibration, is approximately 0.7mmH,0
(=3.2% 3pV#). This value for 7 may be used to correct Spi, to produce a
calibration which should give zero freestream loss, regardless of velocity (in
the limited range of the cascade). Results of such an analysis are shown in
Figure 5.1 under the heading ‘corrected new calibration - no loss correction’.
Also shown is a re-analysis of all the data using the new five hole probe

calibration, with constant loss correction (i.e. subtraction of the freestream
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loss from the total and static pressure coeflicients at each point on a traverse
plane). This is headed ‘new calibration - constant loss correction’. It may
be seen from Figure 5.1 that the results of using a ‘constant loss correction’,
or the ‘corrected new calibration’ are very similar outside of the blade row
where velocities are fairly even over a traverse plane. Within the blade row
however, the results are quite different due to the high cross-passage pressure
gradients.

If the error 7 could‘ be accurately deduced, a corrected probe cali-
bration would be attractive, but unfortunately this is not the case. Figure
5.4 shows a comparison between the midspan losses at slot 5 obtained from
the old calibration with constant loss correction, the new calibration with
constant loss correction, and the corrected new calibration with no loss cor-
rection. The loss should be close to zero at all tangential locations (the data
does not reach the blade boundary layers). The old calibration gives a loss
which increases as the velocity increases, moving from the pressure surface
to the suction surface. The corrected calibration with no loss correction,
over compensates for velocity effect, and gives a loss which decreases with
velocity. The flattest curve is actually that obtained from analysis with the
new calibration and constant loss correction. Thus it was decided to use
this data for further work. The good agreement between results downstream
of the cascade obtained with a corrected calibration, or the new calibration
and constant loss correction, allows reasonable confidence in the data in this
region. Within the blade row the mass averaged loss is always suspect, as
the entire passage area is not covered by the measurements. Hence accepting
a constant loss correction, which is clearly not correct for slots with large
velocity gradients, does not seem to be a great sacrifice. It should be realised
that the correction, whilst being very significant for the mass averaged loss,
is small when compared with the losses found within the loss core, and hence

contour plots of losses on a traverse plane are little effected by it.

Returning to Figure 5.1, there is a surprisingly large discrepancy
between the analyses using the new and old calibrations with constant loss

correction. The reason for the discrepancy was found to be mainly due to
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the choice of fluid which was assumed to be ‘loss free’ for deduction of a loss
correction. At slots 1, 3, 5 Walsh had chosen the midspan data to be free of
loss. At slots 8 and 10 however, an area had been used. In re-analysing the
data an area has always been used, though not necessarily the same area as
that chosen by Walsh. This then was the major source of difference between
mass averaged losses calculated by Walsh, and those presented in this work.
These differences highlight the difficulty of correcting data for the errors in
loss measurement. Some experimentation using different freestream areas to
deduce the loss correction for each traverse plane, indicated the uncertainty in
mass averaged loss resulting from the choice of this ‘freestream area’. Figure
5.13 shows the final loss growth curve to be used for validation of calculation
codes, with error bars indicating the probable uncertainty at each slot. It is
possible for losses apparently to decrease within the blade row, as traverses
do not extend to the blade surfaces.

For the remainder of this thesis it will be assumed that all five hole
probe measurements are analysed with the new calibration, and corrected for

apparent freestream losses by constant loss correction.

5.5 Slot 7 Traverse (87% Cax)

Results of a five hole probe traverse of slot 7, are shown in Figure 5.5.
The measurement locations can be deduced from the position of the secondary
velocity vectors presented in Figure 5.5(e). Although the data is only plotted
up to a radial distance of 150mm from the endwall, measurements were made
all the way to midspan at 200mm. In Figure 5.5(a), the static pressure
coefficient contours, show the minimum pressure to be located near the centre
of the passage vortex, and away from the suction surface. This effect was
observed by Langston et al (1977) in their endwall pressure distribution. It
is clear that the vortical motion of the secondary flow has a profound impact
upon the pressure distribution in its locality. The yaw angle contours shown
in Figure 5.5(b) indicate the magnitude of the flow angle variation caused by

the passage vortex, with over-turning of 20° occurring close to the endwall. In
passag g g
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Figure 5.5(c) large pitch angles are also evident, reaching a peak of 60° near
to the suction surface. The loss contours in Figure 5.5(d) indicate that the
endwall boundary layer has .been swept towards, and up, the suction surface
by the strong secondary flows. Freestream fluid has been brought into the
endwall region on the pressure side of the passage. The secondary velocity
vectors indicate that the vortex centre is approximately half way between its
positions at slots 5 and 8, which were reported by Walsh (1987). There is
some evidence of a counter vortex on the midspan side of the passage vortex,
towards the suction surface, but this is not well covered by the range of
the traverse. Hence the streamwise vorticity, which is calculated using the
method of Gregory-Smith et al (1987) and non-dimensionalised by upstream
velocity and the cascade pitch, does not detect this counter vorticity, and is
dominated by the presence of the passage vortex.

The pitch averaged results in Figure 5.6, show that at this stage the
secondary flow effects extend from the endwall to 70mm radially. The yaw
angle plot indicates strong over-turning within 30mm radially, and the loss
coefficient shows that the loss core is not yet detached from the endwall.
There is a peak in loss at 60mm from the endwall, where the passage
vortex separates from the suction surface, but this is not. yet dominant. The
peak develops rapidly between slots 7 and 8 to produce a distinct loss core.
Similarly the secondary kinetic energy is greatest near to the endwall at slot
7, but also develops to give a distinct peak at 60mm from the endwall at slot
8. The mass averaged results (Figure 5.13) show that whilst the secondary
kinetic energy is almost fully developed at slot 7, the loss rises rapidly from
its value of 0.07 to reach 0.1 by slot 8.

5.6 Downstream Flow Development

Figure 5.7 shows the results of a traverse of slot 9 (116% Cax). This
can be compared with Figures 5.9 and 5.11, which show results for slots 10
(data from Walsh (1987)) and 11 respectively. Slot 10 is 128%, and slot
11 is 152% of an axial chord downstream of the leading edge. As the flow
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procedes from slots 9 to 11, the blade wakes broaden, and the peak loss
within them decreases from approximately 0.8 to 0.5. The static pressure over
the plane becomes more even, and radial velocities are progressively reduced,
as evidenced by the pitch angle contours. The blade wake within 75mm of
the endwall is gradually convected into the loss core by the passage vortex,
and the counter vorticity which is shed within the blade wake is convected
around the passage vortex. This is most clearly shown by the vorticity
contours which steadily decay downstream. Despite the continuous sweeping
of the blade wake near to the endwall into the loss core, another significant
loss core emerges, on the endwall between successive passage vortices. This
is probably caused by an accumulation of endwall boundary layer loss in the
region of the endwall counter vortex, with additional losses due to the action
of this vortex upon the endwall.

Pitch averaged results for slots 9, 10, and 11, are shown in Figures
5.8, 5.10, and 5.12 respectively. In each case the two curves were obtained
by integrating the traverse data over a distance of one pitch, in one case
incorporating only the left hand blade. wake, and in the other only the right
hand wake. This gives an indication of the flow repeatability from passage
to passage, which is observed to be fair. As the flow develops downstream of
the cascade, the ovér-turning on the endwall is decreased by the growth of
the endwall counter vortex, but the under-turning peak of the passage vortex
appears to remain unchanged. The loss core spreads slightly further from the
endwall, and the secondary kinetic energy reduces.

The quantitative developments of the downstream mass averaged prop-
erties are presented in Table 5.'1. Also, Figure 5.13 shows the development
of loss, and secondary kinetic energy. From these graphs it can be seen
that the secondary kinetic energy appears to decay steadily downstream of
the cascade, whilst the loss rises more rapidly between slots 9 and 10 than
between slots 10 and 11. This is slightly different to the results of Moore
and Adhye (1985) who found that the loss rose quite steadily downstream
of their cascade, and was matched by an equal decay of secondary kinetic

energy. However Moore et al (1986), showed that this was the result of an
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incidental balance between losses generated in the endwall boundary layer,

and mean kinetic energy created from turbulent kinetic energy.

Table 5.1 : Downstream Development of Cascade Losses

JAW TEST CASE Slot 9 | Slot 10 | Siot 11

Loss Coeflicient 0.183 | 0.196 0.212

- Midspan Loss Coefficient 0.088 | 0.090 0.097

= Gross Secondary Loss 0.095 | 0.106 0.115

- Inlet Loss 0.042 | 0.042 0.042

= Net Secondary Loss 0.053 | 0.064 0.073
Secondary KE Coeflicient 0.049 | 0.043 0.030
Secondary KE Coeflicient 4+ Loss Coeflicient = | 0.232 0.239 0.242
Mixed Out Loss Coefficient 0.234 | 0.239 0.243

- Midspan Mixed Out Loss Coefficient 0.089 | 0.095 0.104
= Gross Mixed Out Secondary Loss 0.145 | 0.144 0.139
- Inlet Loss - 0.042 | 0.042 0.042

= Net Mixed Out Secondary Loss 0.103 | 0.102 0.097

The mixed out loss was calculated at each of the downstream planes
as an attempt to remove the dependency of the loss on downstream distance.
The calculation is described by Moore and Adhye (1985). The mixed out
loss in Table 5.1 rises from slots 9 to 11, due to an apparent increase in
the midspan coefficient. The secondary loss rises slowly as secondary kinetic
energy is lost, and a new boundary layer develops on the endwall. However,
the mixed out secondary loss is observed to be approximately constant at
each downstream slot and might even reduce slightly. This must be due
to the streamwise turbulence acting to convert turbulent kinetic energy to
primary kinetic energy, and/or the reversible pressure work term discussed by
Moore et al (1986), acting to convert secondary kinetic energy to primary
kinetic energy. The combination of these effects must be matching or slightly
exceeding the rate at which the endwall boundary layer produces extra loss.

The mixed out loss is well represented by the sum of the loss and the
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secondary kinetic energy, a result which was also found by Moore and Adhye

(1985).

5.7 Overall Flow Features

The data discussed in this chapter (JAW test case) constitutes a
difficult test case for flow models, as the secondary flows are quite powerful.
The endwall boundary layer is strongly over-turned, and eventually is entirely
removed from the endwall, being shed downstream as a loss core. Freestream
fluid is introduced next to the endwall, but is prevented from developing into
a significant boundary layer within the blade row. Instead it is continuously
swept to the passage suction side, and replaced by new freestream fluid.

The losses are seen to rise rapidly in the latter half of the cascade,
in accordance with other rotor cascades (e.g. Langston et al (1977)). As
the flow at midspan is essentially two-dimensional, it should be possible to
distinguish between the quality of modelling of blade boundary layers, and
secondary flow effects.

Finally, Figure 5.14 shows a plot of the blade static pressures, which
were measured and presented by Walsh (1987). As the endwall is approached,
the deviation of the suction surface pressures from those at midspan increases.
The loading is progressively reduced at the leading edge, and increased towards
the trailing edge, where low pressures result from the proximity of the passage
vortex. In particular, within 35mm of the endwall, there is a significant
adverse pressure gradient, on the suction surface in the last 20-30% of an
axial chord. This may contribute to the rapid rise in loss in this region.
The variation in blade loading is also of interest for blade stress analysis. As
the surface pressures are influenced by secondary flows, they will constitute

a useful test for three-dimensional calculations.
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Five Hole Probe Measurements (JAY Test Case).
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Chapter 6
Modelling Results (JAW Test Case)

6.0 Introduction

This chapter describes results of modelling the JAW test case (ex-
perimental data described in Chapter 5). Three Navier-Stokes solvers are
compared, and some comments are made about the various algorithms. The
most accurate code for this case (the elliptic flow model of Moore and Moore
(1985)) is then tested in more detail. The effects of the turbulence model,
and benefits of improved versions of it are tested and discussed. Also results
of calculations on two different meshes are compared, to determine the ‘grid

dependence’ of the results.

6.1 Three Calculation Codes

The Navier-Stokes methods which are compared in this study are
version 5 of the Moore Elliptic Flow Program (MEFP), and two time marching
codes. The Moore’s pressure correction algorithm has already been described
in Chapter 3, but significant features of the implementation include second
order accurate finite volume formulation, upwinded control volumes for reduced
numerical mixing, and smoothing only applied when absolutely necessary. The
grid system maps the blade onto a box and so some grid points appear inside
the blades. Whilst this might seem wasteful, it makes the calculatibn of tip
leakage flows particularly simple. The grid used in this study is shown in
Figure 6.1(a), and consists of 47 x 25 x 17 points in the axial, tangential, and
radial directions respectively. The two-dimensional mesh is simply stacked
to form a three-dimensional mesh. A total of 19975 points is thus used to
model half the cascade span. A smoothing program was used in an attempt
to produce more orthogonal cells, and this causes the unusual kinks in the
repeating boundary. This mesh will be referred to as the ‘coarse mesh’ in

further work with the Moore code.
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The first of the time marching codes is called ANSI, and is an explicit
method which was developed at the Massachusets Institute of Technology.
Significant features include finite difference formulation of first order accuracy,
and fourth order smoothing. The grid system employed by the scheme is
sophisticated, and incorporates ‘O’, ‘C’, and ‘H’ lines to give high definition of
the blade boundary layers. This system is described by Norton et al (1984)
in a paper concerning an implicit version of the code. The grid used in this
study is shown in Figure 6.1(b) and consists of 56 x 28 x 18 points. A total
of 28224 points was thus used to model half the cascade span.

The second time marching code which is tested is called VICTA,
and at the time of testing was in an early stage of development at Rolls
Royce. The program is a finite volume formulation of second order spatial
accuracy, and employs second order smoothing to damp out oscillations. The
grid system is a simple ‘H’ grid, and in this study 50 x 23 x 17 points
were used to model half the cascade span. Thus a total of 19550 points
were used, and the resulting two-dimensional mesh is shown in Figure 6.1(c).
At the time the calculation was performed, no turbulence model had been
coded into VICTA, so an inviscid run is described. For the other two codes,
mixing length turbulence models were available. As Walsh (1987) reported a
laminar boundary layer from the leading edge to 80% of an axial chord on
the suction surface of the blade, both the MEFP and ANSI runs were set up
to allow for this feature. Both codes were run turbulent, but with a laminar
block specified as shown in Figure 6.2(a). This extends from inlet to 80%
of axial chord in the axial direction, right across the blade pitch, and from
10% to 50% span in the radial directioh (a midspan symmetry condition is
used for the linear cascade). Values of tur-bulen't. viscosity are forced to be

zero in this region, which is referred to as ‘laminar block A’ in this thesis.

6.2 Comparison of Results for the Three Codes

Plots of the results at slot 7 (87% Cax) are presented in Figure
6.3(a-1). The location of the calculation grid points show that as intended
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the three codes have a similar density of points in the secondary flow region.
Also, the grid spacings reduce as solid boundaries are approacheci, with ANSI
giving the best resolution of the blade boundary layer region as expected.
Results for flow quantities may be compared with the experimental results in
Figure 5.5. All the calculations appear to under-predict the static pressures
towards the pressure side of the passage, but most noticable is the oscillatory
behaviour of the ANSI results in the boundary layer regions. The MEFP
results seem reasonable, although the depression in static pressure caused by
the vortical motion of the secondary flow is not captured. VICTA appears
to have rather too much secondary flow with a large scale depression in the
static pressure contours, which are generally too low. The secondary velocity
vectors (Figure 6.3(g-1)) confirm these impressions, and show that MEFP has
produced a vortex which is too weak, and which has not migrated towards
the suction surface in the way that the real passage vortex is observed to do.
The vortex produced by ANSI is the weakest of the three and again has not
migrated towards the suction surface. VICTA predicts the strongest secondary
flow, but the tangential positioning of the vortex is incorrect, remaining in
mid-passage. Comparing the results of the loss predictions it is immediately
clear that MEFP is the best ‘conserver of total pressure’. The ANSI prediction
is obviously erroneous, particularly in the blade boundary layer areas. Most
of the passage is covered with loss, which increases towards the suction side.
This large loss production on the suction side of the passage is also evident in
the VICTA prédiction. However VICTA is being run inviscid. Therefore any
loss in excess of that present in the inlet boundary layer, must be attributed
to numerical errors alone; rather than a combination of thes‘e, real effects,

and errors in the turbulence model.

Similar comments may be made about the solutions at other lbcations.
Figure 6.4 shows results at slot 10 (128% Cax), which may be compared
with the experimental data in Figure 5.9 (from Walsh (1987)). The repeating
boundary condition has been used to extend the modelling results to cover the
same range as the experimental data. Clearly the best solution is produced

by MEFP, although the vortex is not correctly placed, and the blade wakes
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contain too much loss. The ANSI solution is dominated by loss which covers
most of the flow area. The dashed contours indicate regions of total pressure
gain, which are certainly produced by numerical errors. The VICTA solution
has also produced a large amount of numerical loss, although quite a strong
passage vortex is also predicted. However, the shape and location of this
vortex are not representative of the experimental results.

Mass averaged rquantities are presented in Figure 6.5. The best
prediction of loss is given by MEFP, although it is itself producing at least
50% too much. VICTA produces a large steady increase in loss, which is
purely numerical. ANSI is struggling with large losses produced early in
the cascade and convected downstream. It also predicts far too little kinetic
energy of the secondary flow. MEFP gives a more realistic prediction, but is
only producing half of the observed value. VICTA however predicts far too
much secondary kinetic energy. This might be expected if the inviscid run
had contained little numerical error, but it is difficult to interpret this result
when such large levels of numerical viscosity appear to be present.

Figure 6.6 shows results of performing a mass average of. the losses,
but first forcing all negative losses (energy gains) to be set to zero. Comparing
with Figure 6.5 it is clear that ANSI has produced very large total pressure
losses and gains in the leading edge region. The fact that the loss reduces
downstream of the cascade suggests that significant total pressure gains are
also being generated in this region. The mass flow plot also shows that ANSI

is having difficulties in the leading edge region.

6.3 Interpretation of the Comparative Study

In order to attémpt to understand the ANSI results some two-
dimensional runs were undertaken. With the grid shown in Figure 6.1(b),
large errors were again produced at the leading edge, giving an overall loss
prediction eight times that measured experimentally. Also the blade surface
pressure distribution was poorly predicted. Using a two-dirﬁensional mesh with

five times as many grid points as used previously, reduced the loss to 2.4
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times the experimental loss, and gave a much improved pressure distribution.
Also, running the code at an elevated Mach number such that bthe Mach
number at exit was raised from 0.11 to 0.3 was found to improve convergence
(this is because the code solves for density changes which are very small in
a low speed flow). The strong influence of grid refinement upon the quality
of the results, suggests that truncation errors are having significant effects.
Where the grid spacing' changes rapidly serious errors might be entering the
first order discretisation. In the grid used for the three-dimensional run the
grid spacing expanded by as much as fifty times when passing from the ‘C’
grid to the ‘H’ grid. It was therefore felt that ANSI should be modified
to perform weighted averages so as to achieve second order spatial accuracy.
Unfortunately such modifications to the software were beyond the scope of
this project. However, Birch (1989a) has since shown that approaching the
problem from a different direction, ANSI can give high quality results if the

mesh is carefully constructed so as to avoid rapid changes in cell size.

The VICTA result cannot be explained in the same way as the ANSI
case. Firstly the code is second order accurate, and so should not suffer so
greatly from rapid changes in grid spacing, and in any case these were avoided
when setting up the mesh. Secondly the loss growth curve is observed to rise
steadily, even upstream of the cascade. It thus seems likely that VICTA is
dominated by excessive smoothing, as apart from truncation errors this is the
only other possible source of loss production in an inviscid solution. Reducing
the smoothing by a factor of two was found to reduce the loss by almost
as much. However the smoothing factors cannc;ﬁ be reduced much further as
the solution then becomes unstable. A second problem Was found .with the
method of calculating the time steps. VICTA contained five sepa,ra,ter options
for calculating time steps, and they were found to have a very éigniﬁcant
effect upon the results of the calculation. Thus it seems that changing the
time step changes the level of smoothing within the calculation. It was found

that VICTA solves equations such as :-

Ap = At{— 7 .pV] + Smoothing (6.1)
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Clearly the relative significance of the smoothing term will vary with the time
step (At). This makes the use of locally varying time steps interfere w1th the
uniformity of smoothing over the grid. The smoothing factors must then be
raised to cope with the largest time steps leaving many cells with far greater
smoothing than is necessary. As the smoothing in VICTA is of second order,
the smoothing terms look like viscous terms in the equations and generate
numerical losses. Thus it would be preferable to multiply the smoothing term
by At in equation (6.1), and then evaluate an optimum range of smoothing
factors. With the implementation tested here, the optimum smoothing factors
depend upon At, and are thus highly grid dependent. Alsc a fourth order
smoothing option as used in ANSI, might be of benefit.

The MEFP result is obviously the most realistic of the three predic-
tions. Comparison with some earlier results presented by Walsh (1987) on a
mesh of only 8398 points, showed that the solution was not significantly grid
dependent. Thus it seemed that the Moore’s code was the most appropriate

of the available models for further investigation.

6.4 Moore Code (Version 5) ‘Laminar’ Run

Although MEFP proved to give the best prediction of the flowfield
for this case, some problems remained. The vortex was not found to move
towards and up the suction surface as happens in the experiment. . Also
the losses were over-predicted, and the secondary kinetic energy was under-
predicted. Since in a turbulent run it is not clear whether excess losses
are a result of numerical error, or inaccurate turbulence modelling, it was
decided to perform a laminar calculation of the ﬂowﬁéld Ho&vew}er, as the
trailing edge flow is unsteady and turbulent the calculatlon procedure would
probably have dlfﬁculty n controlhng it with only ‘laminar viscosity. Thus
the turbulence model was left on for a region containing the blade boundary
layers downstream of 80% axial chord, and the blade wake as shown in Figure
6.2(b). However the secondary flow region was still essentially laminar, and so

this will be referred to as a ‘laminar’ run. The results of such a calculation
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should reveal whether the apparent damping of the secondary flow in the
previous calculation, was a result of numerical viscosity, or an oner—active
turbulence model.

Figure 6.7(a-1) shows results of the two Moore code calculations and
corresponding experimental data (from Walsh (1987)) at slot 8 (97% Cax).
The yaw angle contours show that the ‘laminar’ run captures more of the
under-turning at 70mm from the endwall than the turbulent run with laminar
block A. Similarly the static pressure contours show that the depression in
static pressure resulting from the presence of the passage vortex, is much better
modelled with the laminar flowfield. The most striking change is apparent
in the secondary velocity vectors (Figure 6.7(g-i)). With the secondary flow
region modelled as turbulent, the vortex remains close to the endwall and
centred at mid-passage. However, with a laminar secondary flow region the
vortex is convected in a most convincing manner towards and up the suction
surface. The loss contours show that the laminar run has more areas of total
pressure generation than the turbulent run with laminar block A. However
two distinct loss cores are emerging, and as described in Chapter 2, this is a
characteristic feature of turbine secondary flows. Pitch averaged results at slot
8 for the two MEFP solutions and experiment, are shown in Figure 6.8. The
turbulent run with laminar block A fails to capture the under-turning of the
flow at 60mm from the endwall, but predicts the over-turning nearer to the
wall quite well. It also fails to predict the secondary kinetic energy peak at
60mm from the endwall, and this results in less radial convection of the loss
core than is experimentally observed. In contrast, the ‘lafninar’ run proaucés
too much secondary kinetic energy and thus exhibits a strong undér-fcurning
peak at 70mm from the endwall. The loss coré 1s als-s(A)‘ coAni'ect;.e»d radiéﬂ&
from the endwall. The low loss at 30mm from the endwall results from the
negative loss present in the contour plot (Figure 6.7(1)) and is thus a product
of numerical error. However, one might expect a laminar run generally to
under-predict loss.

The ‘laminar’ run results at slot 10 (128% 'Cax) are presented in

Figure 6.9(a-f). These may be compared with the ‘turbulent run with
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laminar block A’ results in Figure 6.4, and the experimental results of Walsh
(1987) reproduced. in Figure 5.9. The calculation grid locations show that the
blade wakes are fairly well covered. The wakes are similar to those in the
turbulent run with laminar block A, as both calculations used the turbulence
model in this region. However the loss core is better defined and contains
the two peaks that are characteristic of turbine cascades. The passage vortex
is also better positioned in the ‘laminar’ run. Comparing the results of the
‘laminar’ run with experiment, it can be seen that the static pressure contours
are no longer in such good agreement as they were at slot 8 (Figure 6.7).
The depression in static pressure resulting from the rotation of the passage
vortex is not captured. Also there is a difference between the predicted and
measured midspan static pressure coefficient. This is a common feature in all
the Moore code runs, and is thought to result from a difference in incidence
between experiment and modelling. The models were all run at the design
incidence of 42.75°, whereas the pitch averaged flow angle at slot 1 presented
by Walsh (1987) was approximately 46°. Hence the experiment operates at a
slightly lower mass flow rate than intended, but with the design inlet dynamic
head. This tends to result in the modelling predicting a higher velocity, and
lower static pressure downstream of the cascade. Also the modelling slightly
over-predicts the exit angle, which produces similar effects. The pitch and

vaw angles are more realistically modelled, however.

Mass averaged loss and secondary kinetic energy for the two runs are
compared with experiment in Figure 6.10. The ‘laminar’ run reduces the
loss, although it is still greater than thnt measurecl experimentally. Both_
runs produce too large a Jump in loss ‘across the tralllng edge of the blade
p0351bly 1nd1cat1ng numerlcal error or an over-a,ctlve turbulence model in the
trailing edge region. The most stnkmg change is in the secondary k1net1c
energy. The laminar flowfield produces too much secondary kinetic energy
within the blade passage. This is encouraging since the true secondary flow
is probably turbulent (e.g. Gregory-Smith et al (1988), Zunino et al (1987),
Moore et al (1986)). If the laminar calculation had failed to over-predict

the secondary kinetic energy, it would indicate that numerical errors were
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hindering the calculation. This does not appear to be the case within the
blade passage. However the large drop in secondary kinetic energy across the
trailing edge might be associated with numerical and/or turbulence modelling
problems in this region.

The blade static pressures are presented in Figure 6.11 for the tur-
bulent run with laminar block A, and Figure 6.12 for the ‘laminar’ run.
These may be compared with the experimental pressures shown in Figure
5.14 (from Walsh (1987)). The turbulent run with laminar block A, models
the unloading of the first half of the blade as the endwall is approached, but
fails to capture the low pressure suction peaks in the second half of the blade
passage. These result from the proximity of the passage vortex, and thus
the turbulent flowfield with its weak vortex positioned at mid-passage, fails
to predict this feature. The ‘laminar’ run produces an over energetic vortex,
and thus over-predicts the suction surface peaks. In both results large spikes
can be seen in the trailing edge region. These are associated with modelling
problems in this area, with flow remaining attached for too long, and thus

experiencing severe acceleration around the trailing edge.

Table 6.1 : MEFP (Version 5) Losses at Slot 10

JAW TEST CASE Experiment | MEFP Turbulent MEFP
.+ Lam Block A | ‘Laminar’ Run

Mixed Out Loss Coefficient 0.239 0.344 0.328 h
- Midspan Mixed Out Loss Coeflicient - 0.095 - 0.175 0.167
= Gross Mixed Out Secondary Loss - 0.144 0.169 . - 0161
- Inlet Loss ] 0.040 0.037 . 0.036
= Net Mixed Out Secondary Loss 0.102 0.132 0.125
Secondary KE Coefficient 0.043 0.018 0.042
Net Secondary Loss 0.064 0.109 0.074

(= Loss - Midspan Loss - Inlet Loss)

Table 6.1 presents an analysis of the losses at slot 10 from the two

MEFP calculations and experiment. It is clear that most of the error in
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predicting overall loss is due to a poor prediction of profile loss. The values
for net mixed out secondary loss are too large, but not excessively so. It
is also interesting that the values of net mixed out secondary loss from the
two MEFP calculations are similar. This suggests that making the flowfield
laminar, reduces the net secondary loss, but results in an almost equal rise
in secondary kinetic energy, and this can be seen to be approximately the
case in Table 6.1. The fact.that the ‘laminar’ run produces 68% of the net
secondary loss that the turbulent run produced, suggests that its turbulent
blade boundary layer from 80% of axial chord onwards, is an important region
for the production of secondary losses, as laminar losses are likely to be much
smaller than turbulent losses (Moore et al (1986) have shown this to be true

downstream of a turbine cascade).

6.5 Conclusions of Work with Version 5 of the Mgore Code

The comparison between the results of the turbulent run with laminar
block A, and a similar run by Walsh (1987) on a much coarser grid of 8398
points (c.f. 19975 points used here), shows that the results from the Moore
code are not very grid dependent. This suggests that the second order
accuracy of the scheme is generally controlling truncation errors well. In
some areas there may be localised problems however.. The breakdown of
losses in Table 6.1 shows that most of the excess loss is produced in the
calculation of profile loss, and Figure 6.10 indicates that much of this over-
prediction occurs in the trailing edge region. Thus a calculation on a finer
mesh would be a usefui test bf the grid dependence of the results around the
trailing edge. | | - | S

The magnitude of the chéﬁge in secondary kinéfic energy, and posi-
tioning of the vortex when the secondary flow region is specified aé laminar
is surprising. It is not clear whether the changes result from the whole
passage vortex being laminar, or if it is just the laminar. niodelling of the
new endwall boundary layer that has mosi effect. It is ‘possible that the new

endwall boundary layer which forms after the inlet boundary layer has been
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removed from the endwall, is in a laminar state within the blade passage
(e.g. Harrison (1989)). Hence a turbulent run wa,s.prc.)posed, with laminé.r
block A, and a new laminar block running from 25% to 100% axial chord
in the axial direction, right across the pitch in the tangential direction, and
from 0 to 1% span in the radial direction. This new laminar block will be

referred to as ‘laminar block B’ in this thesis, and is shown in Figure 6.2(c).

6.6 Version 7 of the Moore Code

As the software used in this work is in a continual state of develop-
ment, new versions became available during the period in which the modelling
was undertaken. Cleak et al (1989) have described results obtained with an
intermediate version (version 6) of the Moore code. However, to avoid confu-
sion, all new results described hereafter will be assumed to have been obtained
using version 7 of the code (i.e. the MEFP algorithm as implemented within
version 1 of the Rolls Royce Computational Fluid Dynamics System).

The only changes between version 5, and version 7 of the Moore code
which are of significance in this work are the changes made to the turbulence
model, and to the subroutine which adds in the pressure corrections to the
pressure field. Some problems had been encountered in previous work with
oscillations developing in the pressure field across the trailing edge plane. In
Figure 6.7(d,f) it is possible to see some oscillatory behaviour in the static
pressures towards the pressure side of the passage. The only fix available
previously was to smooth the pressure field (this was not used with the veréion
5 results presented here, but was used by Cieak et al (1989) when working
with version 6 of the program). Whilst this fechnique removés pressure
oscillations, it also compromises the qualify of total pressure conservation.
Since the initial guess of the flowfield does not contain pressure ‘oscillations,
these must be introduced by the pressure corrections. Thus a better fix
would be to smooth the pressure corrections, which should become small at
convergence. However the upwinded coﬁtrol volume technique (déscribed by

J.G. Moore (1985b)) which helps to reduce numerical mixing within the Moore
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code, makes this difficult since the points at which the pressure corrections
are stored can move around during the calculation. Thus a simpler fix was
provided by J.G. Moore as a new option when calling the subroutine. Any
significant oscillations in the pressure field are simply clipped to prevent them
from growing large. This has been found to be quite an effective method of

stabilising the calculations for the Durham test case.

The basic mixing length turbulence model has been described in
Chapter 3, and the mixing length is specified by equation (3.16). The mixing
length model was really developed with a view to two-dimensional, attached
boundary layers, and its implementation in a three-c_limensiona,l separated shear
flow is difficult. Within such flows, the mixing length is proportional to the
shear layer thickness, §. Specification of this shear layer thickness is rather
arbitrary, and is achieved by looking at gradients of a shear layer parameter
S, where for incompressible flow S takes the form of a non-dimensional loss
of total pressure. This is defined such that S has a value of one on walls,

and zero in the freestream.

In version 5 of the Moore code, a search was made along each of
the grid directions (forwards and backwards), looking at gradients of the
shear layer parameter until some arbitrary cutoff value signified the edge of
the shear layer. The shear layer thickness was thus obtained by summing
distances duriﬁg the search. The values obtained from the searches in three
directions were then averaged. However the authors noticed that with the
model set up in this way, blade wakes appeared to mirxrout more rapid_ly_
than of:curred in experiment. Thus the modei Waé rmo‘diﬁed toﬂonliy ééafch
along the direction with the biggest gradient of the shear layer parameter.
The value so obtained was then taken to be the shear layer thickness at
that point. This tends to reduce the shear layer thickness, §, and thus also
the mixing length which is proportional to it. Thus the turbulent stresses
are then generally smaller, and so wakes are found td- mix out more slowly,

achieving better agreement with experimental measurements.
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6.7 Coarse Grid Results (MEFP Version 7)

Initial work with version 7 of the Moore code used the same ‘coarse’
calculation mesh as used previocusly and shown in Figure 6.1(a). One of the
results of the work with version 5 of the code was the decision to perform
a run with an extra laminar block. This is called laminar block B, and is
shown in Figure 6.2(c). It is intended to simulate crudely the effects of a
possible laminar endwall boundary layer downstream of the separation of the
inlet boundary layer. However, as the turbulence model has been changed,
it is also necessary to fepeat a run for comparison with version 5. Thus
a run with laminar block A was also undertaken as well as the run with
laminar blocks A and B. A final run was made with the flowfield specified as
completely turbulent in order to determine the capabilities of the program as
a purely predictive tool (i.e. if no previous knowledge of transition locations is
assumed). Firstly however, the comparison is made between results obtained

with versions 5 and 7 using laminar block A.

Figure 6.13 shows results for the three version 7 runs at slot 8 (97%
Cax). Results for the turbulent run with laminar block A may be compared
with the equivalent run using version 5 of the program shown in Figure 6.7.
Looking at the yaw angle contours it is clear that the revised turbulence model
is allowing more secondary flow to develop, and the results from version 7.
compare better with the experimental results which are also shown in Figure
6.7. Comparing static pressure contours (Figures 6.7(d,e) and 6.13(e)) it can
be seen that the depression in static pre_s_suré _causeci by_the ‘vort_ical' ﬁlotibn
is better modelled in version 7 Xwi't-_h tlie revised turbulence model. The
secondary velocity. vectors (Figﬁi‘es 6.7(g,h) and 6.1>3(l.1)) rshow the passage
vortex to be more energetic in version 7, and to have moﬁed slightly fﬁrther
away from the endwall and towards the suction surface. ‘This movement is
not as great as that observed experimentally, but is more realistic than the
version 5 result, where the passage vortex remained centred at mid-passage
and too close to the endwall. The loss contours from version 7 also indicate

improvements, and do not include the negative losses which can be seen
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at the edge of the suction surface boundary layer in the version 5 result.
Flow quantities at slot 10 (28% Cax downstream) for the version 7, version
5, and experimental results, are presented in Figures (6.15(b,e), 6.4(a,d) and
5.9(e,d) respectively. It can be seen that the version 7 result produces a more
energetic and better positioned passage vortex, which results in improved loss
core definition. Looking at the secondary kinetic energy development in Figure
6.17, it is clear that the version 7 result with the revised turbulence model,
allows the secondary kinetic energy to develop to a much more realistic level
than occurred previously with version 5. Also the loss can be seen to grow
more in the latter half of the cascade in the version 7 result, rathér than the
steady growth which was evident in version 5. The jump in loss across the
trailing edge has also reduced slightly, although it is still too large. However,
downstream of the cascade the loss appears to develop more realistically in
version 7, and indeed it was this objective which motivated the changes to

the turbulence model.

The above discussion of the comparison of versions 5 and 7 of the
Moore code, shows that reducing the turbulent stresses by modifying the
definition of the shear layer thickness, has produced improved secondary flow
predictions. This is consistent with the results of the version 5 ‘laminar’
run discussed previously. The extent of the sensitivity of the secondary flow
prediction .to the turbulence model is perhaps surprising, and suggests that
great care should be taken when attempting to model such complex flows
with simple turbulence models.

Comparison of the Vthree; version 7 runsl is made at sigt 8 in Figure
6.13. The yaw angle contours indicate that the secondary flow becomes
more powerful as the ﬂdwﬁeld is made to contain: progréssively mor>e laﬁlinar
regions. However, the inclusion of laminar block A does not cause large
changes to the turbulent sblutibh,' as the ﬂ()w- is still turbulent from the
endwall to 40mm radially in this case. In contrast, the addition of laminar
block B results in surprisingly large changes, and appears to over-predict
the secondary flow when compared with the experimental results Ain Figure

6.7. The static pressure contours also indicate a stronger passage vortex.
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Comparing secondary velocity vectors for the three runs (Figure 6.13(g-i)) it
is clear that laminar block A makes little difference to the secondary ﬂowv
development as intended (it was included to aid the prediction of profile loss).
However laminar block B (the laminar endwall from 0 to 4mm radially)
results in greater migration of the passage vortex, leaving it realistically
located, although the magnitude of the secondary velocities appears to be
a little too large. The loss-contours reveal the benefit of laminar block A;
as compared with the turbulent run it produces a thinner suction surface
boundary layer. The three runs produce similar loss cores on the suction
surface at approximately 70mm from the endwall. Addition of laminar block
B increases the size of this loss core slightly, as fluid from the suction surface
boundary layer within 70mm from the endwall is convected into it more
rapidly by the passage vortex.

Pitch averaged results at slot 8 are presented in Figure 6.14. There
appears to be a constant error in yaw angle of approximately 2°, which might
be associated with numerical problems in the trailing edge region. The run
with laminar block B produces a slightly larger under-turning peak than the
other two rums, which produce very similar yaw angles. The addition of
laminar block B also convects loss radially in a more realistic manner. At
midspan the turbulent run produces twice as much loss as the other two runs
which each include laminar block A. The secondary kinetic energy peak at
60mm from the endwall is over-predicted by the run with laminar block B,
but in general the shape of the curve is better modelled by it.

Results downstre(arm_o_f» the caséagie a;_t slqt_ 10 rarer preﬁsente‘c_i in Figulje_
6.15. These may be compared with the experimental results in Figure 5.9.
The run with laminar block B produces slightly impfoved positioning of fhé
passage vortex. The loss contours show that the addition of laminar block
A has reduced the loss in the blade wakes, but it is‘still too Vgreat. " The
most interesting change is that the addition of laminar block B has resulted
in a more clearly defined loss core at coordinate (-250,70). This is probably
composed mainly of inlet boundary layer loss, and compares quite well with

experiment.
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Pitch averaged results at slot 10 are presented in Figure 6.16. Again
there appears to be a constant error in yaw angle of approximetely 2°. The
run with laminar block B produces too much over-turning at approximately
50mm from the endwall. However its representation of the loss distribution
is quite good, if the error in midspan prediction is subtracted from all the
radial points. The turbulent run produces approximately 50% more profile
loss than the other twe, but they still produce twice as much as measured
experimentally. All three runs appear to have a peak in secondary kinetic
energy at 70mm from the endwall, but the calculation grid is too coarse to
locate it more accurately than this. The run with laminar block A, and
the turbulent run, produce approximately the correct magnitude of this peak,
but also predict a second peak at 15mm from the endwall. This unrealistic
feature is not produced by the run with laminar block B, but the peak at

70mm from the endwall is over-predicted by it.

The development of mass averaged loss and secondary kinetic energy
for the three version 7 runs and experiment, is shown in Figure 6.18. As
laminar blocks are added to the flowfield the loss is steadily reduced, although
all the runs predict too much loss. The turbulent run, and the run with
laminar block A, predict similar levels of secondary kinetic energy which are
quite realistic. This similarity is expected since the secondary flow region was
mainly turbulent in both cases. However the secondary kinetic energy is not
seen to decay downstream of the cascade in a realistic manner. The laminar
block B, produces a significant increase in secondary kinetic energy and thus_
predicts too much, although the rate of its decay downstream a.ppears to
~ be more realistic. Table 6.2 presents a brea.kdown of losses at slot 10 for
the three version 7 runs and experiment. As mentloned in previous analyses
of losses, the net mixed out secondary loss is quite well represented by
the sum of net secondary loss and secondary kinetic energy at a particular
downstream distance. The net mixed out seeondqry loss is similar for the
two runs which included laminar block A. This appears to indicate that the
addition of laminar block B reduces the loss (presumably due to less endwall

loss growth) but produces an almost equal rise in secondary kinetic energy.




All three runs predict too much profile loss. Apparently the turbulent run
predicts less mixed out secondary loss than the other two; This is a little
surprising as the addition of laminar block A was intended to only effect
the profile loss. Thus a similar prediction of secondary loss was expected
from the turbulent run and the run with laminar block A only. Perhaps the
breakdown of losses is becoming slightly inaccurate with such large profile
losses present in the solution. In general however, all three runs appear to

give reasonable estimates for the mixed out secondary loss.

Table 6.2 : MEFP (Version 7) Flow at Slot 10

JAW TEST CASE Experimernt MEFP MEFP Turb + | MEFP Turb +
Turbulent | Lam Block A | Lam Blocks A+B

Mixed Out Loss 0.239 0.397 0.342 0.321

- Midspan Mixed Out Loss 0.095 0.269 0.183 0.168

= Gross Mixed Out Sec. Loss 0.144 0.128 0.159 0.153
- Inlet Loss 0.040 0.040 0.038 0.037

= Net Mixed Out Sec. Loss 0.102 0.088 0.121 0.116
Secondary KE 0.043 0.045 0.050 0.064

Net Secondary Loss (=Loss 0.064 0.045 0.070 0.047

- Midspan Loss - Inlet Loss)

Midspan Mixed Out Angle —67.5° -69.1° -69.3° —69.2°

The mixed out flow angle is less accurate in all three runs than might
have been expected, and this could vbe _associated with ﬁu_mericai prolblems
in the trailing edge region. ,Howeve;, as discussed in Chapter 5, the raw
pressure probe data of Walsh (19875 has been re-analysed in order to 'resolve
some problems with the measurement of losses. When analysing data, it is
often necessary to add a constant to the yaw angle.s‘in order to account
for small misalignments of the fine cranked end of the probe. These are
determined before and after the traverse by checking the probe's response
in a known flow. This does not effect the quality of pressure or veiocity

magnitude measurements, as it is purely concerned with relating the angle

102




of the probe to the cascade axis system, after the calibration maps have
determined the angle, velocity, and pressure of thé flow onto the probe head.
When re-analysing the data, the value of this correction was not incorporated,
and so the value of mixed out flow angle presented at slot 10 by Walsh was
—68.2° which is different to the value of —67.5° presented in Table 6.2.
However, a difference of 1° in yaw angle is still apparent between experiment

and the MEFP predictions. -

6.8 Conclusions of Coarse Grid Runs of MEFP (Version 7)

The above discussion of results of modelling the endwall flow as_-laminar
within 1% span, and downstream of the inlet boundary layer separation line
(laminar block B), showed that this produces large changes to the flowfield.
In particular too much secondary kinetic energy was produced, whereas the
run with only laminar block A predicted approximately the correct amount.
This contrasts with the results of the run with laminar block A on version
5 of the program where only half of the observed secondary kinetic energy
was generated. The reason for the change in results between versions 5
and 7 was the changes made to the turbulence model discussed in section
6.6. Thus if a run could be performed on version 5 of MEFP (the source
code is no longer available), with laminar blocks -A and B, it is possible
that approximately the correct level of secondary kinetic energy would be .
produced. The revised turbulence model for separated shear flows in ve;sion _
7 does produce a more _- réalistic growth _o«f 1psé dowhstrearn of the g‘ésc.:gde.r
However this alone might not be considered to be sufficient justification .for the
rather arbitrary changes to the turbulence ﬁxodel. Thﬁs sdme qﬁestioﬁs arose
which directed further experimental work. Firstly it- would be desirable to
know what the state of the new endwall boundary layer 'really is (i.e. laminar
or turbulent). Secondly a comparison between experimental measurements of
the Reynolds stresses within the flow, with those predicted by the turbulence
model, would clearly indicate the accuracy of the model within the separated

three-dimensional shear flows.
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The run with a fully turbulent flowfield predicts too much profile
loss. Thus there is clearly a need to develop models of transition, if the
Navier-Stokes solvers are not to be tied to transition correlations as are
currently used in many of the boundary layer calculations which are coupled
to two-dimensional inviscid solvers. The use of such correlations would limit
the application of the codes to design incidence, and is thus undesirable.

All the runs undertaken so far have produced too much loss in the
trailing edge region. This is a difficult area of the flowfield to model, but
a run on a finer mesh would help to indicate if numerical problems in this

region could be reduced with the use of more grid points.

6.9 Fine Grid Results (MEFP Version 7)

A second calculation mesh was produced for use with the Moore code,
and is shown in Figure 6.19. This has 60 x 36 x 30 points in the axial,
tangential and radial directions respectively. A total of 64800 points is thus
used to model half the cascade span. This mesh will be referred to as the
‘fine’ mesh in this thesis, and contains 3.2 times as many points as does the
‘coarse’ mesh used previously.

Two fine grid runs were undertaken, one with a fully turbulent
flowfield, and another incorporating-laminar -block A, as shown in Figure
2.2(a). A comparison between the two -fine mesh results at slot 8 (97% Cax)
is made in Figure 6.20. These results may be compared with the equivalent
coarse mesh runs, shown in Figqre 6.13. In géneraj the effect. of grid refinement
is quite small. The pressure surface boundary }_l_a,yer is thinner when more
points are placed in it, but the >leve1 of érid refinement is not sufﬁci-ent> to
change greatly the suction surface boundary layer thickness. The losé core
is perhaps slightly better defined by >the ﬁné.mesh, and the stafic' pressure
contours are more tightly closed around the passage vortex. Surprisingly, the
oscillatory behaviour in the static pressure field on the pressure side of the
passage, is slightly worse in the fine grid calculations.

Results of calculations on the fine mesh at slot 10 (128% Cax) are
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presented in Figure 6.21. The static pressure contours may be compared
with the experimental results in Figure 5.9. The fine mesh helps to capture
the static pressure depression in the centre of the passage vortex. Although
equivalent coarse mesh results are not presented, this feature was not modelled
so well by them. The midspan pressures are different from those measured
experimentally, probably due to the experiment running at a slightly different
incidence, as mentioned previously. The secondary velocity vectors are very
similar in comparable results with coarse or fine grids. The fine gnid slightly
reduces the loss within the blade wakes but also makes them significantly
thinner. However there is still too much profile loss. Mass averaged loss
and secondary kinetic energy for the two fine grid runs are presented in
Figure 6.22. This may be compared with Figure 6.18 which shows the results
obtained with the coarse calculation mesh. Clearly the main effect of grid
refinement is to reduce the jump in loss produced across the trailing edge
of the cascade to quite a realistic level. The prediction of secondary kinetic

energy is very little changed however.

Table 6.3 : MEFP (Version 7) Fine Mesh Flow at Slot 10

JAW TEST CASE Experiment | MEFP Turbulent MEFP Turb
+ Lam Block A
Mixed Out Loss Coeflicient 0.239 0.337 0.290
- Midspan Mixed Out Loss Coefficient 0095 - |- 0192 - -| - --0.138 -
= Gross Mixed Out Secondary Loss . 0.144 0.145 0.152
CInlet Loss | 0.040 0.038 10,036
= Net Mixed Out Secondary Loss 0.102 0.107 0.116
Secoﬁdary KE Coefficient 0.043 0050 B C0.049 7
Net Secondary Loss 0.064 0.057 0.065
(= Loss - Midspan Loss - Inlet Loss)
Midspan Mixed Out Flow Angle —67.5° —B68.7° - —068.9°

Table 6.3 presents a breakdown of losses at slot 10 for the two fine

mesh runs. This can be compared with Table 6.2 for the equivalent coarse
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mesh results. The biggest change is clearly in the prediction of profile loss
which is much improved with the fine calculation mesh. The predictions of
net secondary loss and secondary kinetic energy are also quite good. The fine
grid has also reduced the exit flow angle slightly, so that comparison with

Walsh’s experimental value of —68.2° shows less discrepancy.

Following Hah (1987), Figure 6.23 presents graphs of mixed out loss
versus the inverse of the number of grid points used in the calculation mesh.
Hah tested four separate grids with his pressure correction code, and found
a linear relationship for this type of plot. Here, a linear relationship is
assumed with no justification other than Hah's result. However the resulting
graphs are interesting. The plot for the ‘vorticity ML’ results concerns results
discussed in the next section, and so should be ignored here. Looking at
the graph for a fully turbulent flowfield in Figure 6.23, it appears that the
mixed out loss which would be obtained with an infinitely fine mesh is
approximately 0.31. This is greater than the experimental value due to errors
in turbulence modelling, most obviously by assuming completely turbulent
blade boundary layers. The graph for a turbulent flowfield with laminar
block A, is significantly lower than that obtained with a fully turbulent
flowfield, and suggests that an infinitely fine mesh would yield a mixed out
loss of 0.27 when using this flow regime. It is clear that the graphs for
the turbulent run, and the turbulent run with laminar block A, are almost
parallel. This suggests that refining the grid makes very little difference to
the loss calculated within the blade boundary layers between zero and 80%

axial chord. o

In general, the results of :nl'odelling with the fine calculation mesh
show that localised improvements may be made to the flow in the trailing edge
region by using more grid pbints, but otherwise the solutions are remarkably
grid independent. This is a result of the use of seco_nd.-order spatial éccuracy,

and is a very attractive feature in a calculation scheme.
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6.10 Vorticity Function Search for Shear Layer ‘Thickness

A new option for determining the shear layer thickness to be used
in separated regions has recently been provided by J.G. Moore. This uses a
different definition for the shear layer parameter, S, which is based on vorticity
rather than total pressure loss. The motivation behind the introduction of
this option, was that the shear layer parameter as defined previously, could
sometimes lead to the detection of shear layers where none existed. This
occurred if a spurious value of pressure existed within the flowfield. Thus it
is hoped that the new vorticity based search for shear layer thickness will be
less prone to error, and yield more smoothly varying values for the mixing

length.

Two runs have been performed using this new search procedure for
shear layer thickness. These are turbulent runs with laminar block A (Figure
6.2(a)) on both the coarse and fine calculation meshes. The use of the new
turbulence modelling option is indicated by the inclusion of ‘vorticity ML’
in the headings of diagrams, to remind the reader of the vorticity based
determination of the mixing length. Figure 6.24 presents results at slot 8
(97% Cax) for the new turbulence model with laminar block A on coarse
and fine grids. These may be compared with Walsh’s experimental results
which are reproduced in Figure 6.7. The static pressure contours show that
the depression at the centre of the vortex is better modelled with the fine
grid. This also helps to draw the contour lines for a value of 3.5 closer
_together at midspan, Achieviné_ bet’;trer a.grééménfcx A_Aw~i'th éxperim‘ent.- Comp?i‘inrg
with equivalent fine mesh results using the stand_ard: mixing ‘leAr}gth. mpd_ei
and laminé.r block A 1n Figﬁfe '6.20, -sho;rvs; ‘thz-itritﬂe -ne.x.vA t;xrﬁliience n;odel
results in improved static pressure definition. The secondary velocity vectors
indicate good agreement between the coarse and fine 'n‘lreshrsolutions, and are
quite a good representation of Walsh’s experimental results (Figure 6.7). The
loss contours sbhow that the fine grid produces a slightly better representation
of the suction surface boundary layer and is 'g-enera,ting a secondary loss

core which exhibits many of the experimental characteristics. Pitch averaged
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results at slot 8 are presented in Figure 6.25. Again there is a small error in
midspan angle as discussed previously. However the general representation of
the secondary flow effects is very good. Both coarse and fine grids produce
broadly similar results except that perhaps surprisingly, the coarse grid predicts
generally less loss than the fine grid at this position. The secondary kinetic
energy has not migrated radially as far as the experimental results indicate,
and there is a correspohding lack of radial convection of loss.

Results of the coarse and fine grid runs at slot 10 are shown in
Figure 6.26(a-1). Experimental results from Walsh (1987) are also plotted
in Figure 6.26 for clarity. The yaw angle contours show that the fine grid
slightly improves the coarse grid results, and is in good agreement with the
experimental results. The fine grid also produces a better representation of
the static pressures than the coarse grid, and is also superior to the standard
mixing length model fine grid results in Figure 6.21. The secondary velocity
vectors indicate broad similarities between the fine and coarse grid solutions,
and are quite a good model of the experimental results. However the main
benefits of the new turbulence model are evident in the loss contours. The
coarse grid produces results of similar quality to those produced by the
standard mixing length model on the fine grid (Figure 6.21). The fine grid
‘vorticity ML’ results are remarkable. The blade wakes are approximately the
correct width, although they still contain too much loss. However, the loss
core definition is excellent and compares very well with experiment.

Pitch averaged results at slot 10 are presented in Figure 6.27. Again
there is a small constant error in yaw angle, but the general distribution is
very good. The loss core is also well defined by both runs, and the fine
grid run now produces less loss at midspan than the ;:oarse -grid rﬁn. The
secondary kinetic energy distribution is quite well modelled, although both
runs appear to be producing too much. Mass averaged results are presented in
Figure 6.28. Both runs indicate a decrease in loss between slots 2 and 3 due
to generation of total pressure gains by numerical error. However, in general
both runs produce a better prediction of loss than previously obtained. The

coarse grid produces a total loss which is comparable to that produced by the
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fine grid previously (Figure 6.22). The fine grid with vorticity based mixing
length apparently predicts the correct loss. However, both runs over-predict

secondary kinetic energy.

Table 6.4 presents a breakdown of losses at slot 10 for the two
vorticity based mixing length runs and experiment. This may be compared
with results of the fine mesh run with laminar block A and the standard
turbulence model, shown in Table 6.3. The coarse grid with the vorticity
based mixing length model produces the same overall loss as the fine grid
with the standard turbulence model. The fine grid run with the vorticity
based turbulence model produces a much improved prediction of profile loss
and also models the secondary loss quite well. The -exit angle of —68.8° is
only 0.6° different from Walsh’s experimental value of —68.2°, and overall the

predictions seem to be remarkably good.

Table 6.4 : MEFP (Version 7 Vorticity ML) Results at Slot 10

JAW TEST CASE Experiment | Coarse Mesh Fine Mesh .

Lam Block A | Lam Block. A
Mixed Out Loss Coefficient 0.239 0.291 0.256
- Midspan Mixed Out Loss Coefficient |  0.095 0.136 0.110
= Gross Mixed Out Secondary Loss 0.144 0.155 0.146
- Inlet Loss 0.040 0.038 0.037
= Net Mixed Out Secondary Loss |~ 0.102 0.117 0.109
Secondary KE Coefficient 0.043 0.053 0.053
Net Secondary Loss 0.064 0.062 0.055

(= Loss - Midspan Loss - Inlet Loss)

Midspan Mixed Out Flow Angle —67.5° -69.1° —68.8°

Returning to Figure 6.23, the benefits of the new turbulence model
become clear. It appears that with an infinitely fine mesh, the correct loss
would be predicted. However, this only indicates that the average level of
Reynolds stress modelling over the whole flow area is correct, and does not

prove it to be correctly distributed.
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The blade static pressure distributions for the fine mesh run are
presented in Figure 6.29. This can be compared with the experiméntal
results in Figure 5.14 (from Walsh (1987)) and the two version 5 MEFP
resuits in Figures 6.11 and 6.12. All the MEFP results indicate higher static
pressure on the suction surface for the first 50% of axial chord, than was
measured experimentally. The reason for this is not clear, but could possibly
be associated with the experiment running at a higher incidence (a; = 46°)
than the calculations (; = 42.75°). In general, the new turbulence model run
on the fine grid with laminar block A, produces quite a realistic prediction
of the variation in loading caused by the passage vortex. In particular, it is
much better than the coarse grid with laminar block A result from version 5
using the standard mixing length model, which did not detect these peaks in
the suction surface pressure coefficient. The pressures in Figure 6.29 are also
more realistic than those predicted by the laminar run on version 5, which

over-predicted the suction surface peaks.

6.11 Conclusions

The results presented in this chapter have shown that it is possible to
obtain very good three-dimensional flow predictions with a ‘state of the art’
“ Navier-Stokes solver. Of the three codes tested here, the pressure correction
method of Moore and Moore (1985) proved to be the most accurate for
this case. However, the author would not wish to imply that pressure
correction methods are in general superior to time marching techniques.
Kirtley et al (1986) have tested a pressure correction technique and a time
marching technique on the same case, and found no ;lear advantage of one
over the other. The pressure correction technique used here was more suited
to the low speed flow than the time marching techniques which were tested,
but its main advantages were in its numerical discretisation. The use of
second order spatial accuracy greatly reduces the grid dependence of the
scheme. Some localised problems have been found in the trailing edge region,

but otherwise the secondary flow appears to be quite well represented with

110



relatively few grid points. Figure 6.30 shows a plot of the trailing edge
region of the coarse and fine meshes which. wére tested, and corresponding
midspan velocity vectors for the two runs with laminar block A. The flow
with the fine grid is very smooth with only a small recirculation area behind
the trailing edge. The coarse mesh does not have so many control volumes
in this region, and so is unable to contain the trailing edge .effgcts to -such
a small region. The é;rid is basically too coarse to cover adaquately the
rapidly varying flow. Hence more numerical errors are produced which are
convected downstream. Another feature of the Moore code which helps to
produce good flow predictions, is the upwinded control volume technique
described by J.G. Moore (1985b). This helps to avoid numerical viscosity in
the formulation, which is an essential feature of a program which is intended
to predict aerodynamic loss.

Some problems have been observed with the prediction of static
pressures, and it was suggested that these might be associated with the
modelling and experiment operating at slightly different inlet angles. To test
this, a final calculation was performed on the fine mesh, using the vorticity
based search for shear layer thickness, and incorporating laminar block A as
shown in Figure 6.2(a). This run was set up to the measured inlet angle,
and thus the flow entered the calculation region at 45.9°. The general flow
prediction was found to be very similar to that produced by the same run
with the design inlet angle of 42.75°. Figure 6.31 presents rtesults of these
two runs at slot 10. The vortex predictions and loss distribution look very
similar in the two runs, but there is a_élear difference in static pressure over
the axial plane. Comparing _with ‘Walsh’s experimental results, which are
reproduced in Figure 5.9, it can be seen fha,t the- static pressure is ﬁow in
better agreement with the experimént, although the maignitude of variation
within the wake and vortex are not captured.

Pitch averaged results at slot 10 for the two runs and experiment, are
presented in Figure 6.32. The resﬁlts are very similar, except that the correct
inlet angle appears to produce slightly more radial convection, achieving better

agreement with experiment particularly for the secondary kinetic energy. Mass
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averaged results are presented in Figure.6.33, and show that the two runs
produce broadly similar results. An increase in inlet angle might be expected
to result in slightly greater loss, as is suggested by the modelling results,

since the flow is turned through a greater angle in this case.

Table 6.5 presents mass averaged quantities at slot 10 for the two
runs and experiment. Clearly the two runs produce similar predictions for loss
and flow angle. Indeed inspection of the pitch averaged yaw angles showed
that good agreement was achieved between the two solutions by slot 4 (38%

Cax).

Table 6.5 : Mass Averaged Results

JAW TEST CASE Experiment | MEFP Fine Mesh | MEFP Fine Mesh
: Vorticity ML Vorticity ML
Inlet = 42.75° Inlet = 45.9°
Mixed Out Loss Coefficient - 0.239 0.256 0.265
- Midspan Mixed Out Loss Coefficient 0.095 0.110 0.107
= Gross Mixed Out Secondary Loss 0.144 - 0.146 0.158
- Inlet Loss 0.040 0.037 0.036
= Net Mixed Out Secondary Loss 0.102 0.109 0.122
Secondary KE Coefficient 0.043 0.053 0.050
Net Secondary Loss 0.064 0.055 0.068
(= Loss - Midspan Loss - Inlet Loss) ' ]
Midspan Mixed Out Flow Angle ~67.5° -68.8° —68.7°

Finally Figure 6.34 presents a plot of the bl:-a,dev static pressure distri-
butions predicted by the fine meshA run at the correct inlet angle. This may
be compared with that predicted by the equivalent run ét the design inlet
angle (Figure 6.29) and the experimental results (Figure 5.14). Since the
static pressure coefficient is generally reduced by the greater inlet angle, it is
seen to be in worse agreement with experiinent than that produced previously.
However, it is felt that the five hole probe measurements are probably a more

accurate test of the codes performance than the surface pressure coefficient.
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It is however interesting that the chang;e in inlet angle predicts the slight
increase in pressure coefficient at 25% axial chord which was observed in> the
measurements.

Despite the excellent predictions which have been obtained, more
work is needed to both validate the program, and extend its usefulness. The
turbulence model which is employed within the solution procedure has been
shown to have profound effects upon the quality of the resulting secondary
flow predictions. This is somewhat in contrast to the view which is sometimes
expressed, which argues that since the flow is primarily pressure driven, the
turbulence model is not likely to produce major changes to the flowfield.
Here it has been found that the turbulence model can have a very significant
effect upon the amount of secondary kinetic energy which is produced, and
thus the final location of the passage vortex. Seemingly arbitrary changes to
the mixing length model in areas which are not close to solid boundaries,
have- been found to produc.;e significantly different results. Thus it seems that
there is a need for experimental Reynolds stress data with which to validate
the turbulence models which are used in such flow calculations. It should
be stressed that the fact that such a study can be contemplated is a tribute
to the accuracy of the numerical solution procedure, as otherwise numerical
viscosity would swamp the effects of the turbulence model.

As many turbomachinery blade boundary layers undergo transition,
a turbulence model which accurately predicts this phenomena would be very
useful. Such models are currently appearing in Navier-Stokes solvers, and so
tests of their accuracy are now required. If more general turbulence models
can be developed, they will greatly extend the predictive capabilities of the
Navier-Stokes methods, as it seems that they are noW the most reétrictive
part of such solutions.

Finally it is worth recording the calculation times which are involved
for the runs which have been presented. The solutions generally require forty
passes of the calculation procedure as described in Chapter 3 to achieve good
convergence. This requires approximately one hour of CPU time on a CRAY

XMP-48, with 2.3 Mega Words of storage for a ‘coarse’ grid solution (19975
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points). The ‘fine’ grid solutions (64800 points) required over three hours of |
CPU time and 5.5 Mega Wordis of sfofa.ge. Clearly running such calculations
is expensive. Also, a significant amount of the user’s time is required to set
up the input data for the program. Whilst this wili become much easier with
greater automation, it is clear that running such calculations is not a trivial
matter. Thus there is still a need for rapid, simple calculation techniques
which can give an estimation of secondary flow effects in the early design
stages.

The fine grid solutions were seven times more expensive to run than
the coarse grid calculations, and the resulting solutions were so large as to be
difficult to handle. Also, as far as secondary flow predictions are concerned,
there is not a great deal of advantage in using the fine grid, its benefits being
mainly restricted to the calculation of profile loss. Therefore it was decided
to perform all future runs on the coarse calculation mesh, as shown in Figure

6.1(a).
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& Experiment (from Yalsh (1987)).

i MEEP (Ver 7), Turbulent yith Laminar Blocks A end B.
3 MEFP (Yer 7), Turbulent yith Laminar Block A.

g MEFP (Yer 7), Turbulent Run.
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Total Pressure Loss Coefficlent

® Experiment
w MEFP (Ver ?7), Turbulent with Laminar
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¢ Experiment (slots 1,3,5,8,10 from Walsh (1987)),

® MEFP (Yer 7), Turbulent with Laminar Blocks A and B.
% MEFP (Ver 7), Turbulent with Laminar Block A.
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MEFP (Ver 7}, Fine Calculation Hesh, Fully Turbulent Flowfield.
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MEFP (Ver ?), Fine Calculstion Hesh, Fully Turbulent Flovfiald.
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Total Pressure Loss Coefficlent

® Experiment (slots 1,3,5,8,10 from Walsh (1987)),
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Mixed Out Loss Coefficient
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HEFP (Yer 7 < VortnciEy ML), Cosrse Calculaticn Mesh, Turb ¢ Laminer Block A.
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® Experimant (from Yelsh (1987)).
3 MEFP (Ver 7 Vorticity ML), Coarse Mesh, Turb + Laminar Block A.
& MEFP (Ver 7 Vorticity ML), Fine Mesh, Turb + Laminar Block A.
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Coerse Magh, Yorticity M., Lem Block A

Experiment From Yaolsh (198711,

Fine Hooh, Yereleley KL, Lo Bleck A
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Cocroo Hogh, Yereictey KL, Lo Blesh A Exporinone (Frea Haloh (198711, Fino Hoch, Yergiecley KL, Loo Blesk A
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® Experiment (from Halsh (1987)).
3% MEFP (Ver 7 Vorticity ML), Coarse Mesh, Turb + Laminar Block A,
@ MEFP (Ver 7 Vorticity ML), Fine Mesh, furb + Laminar Block A.
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® Experiment (slots 1,3,5,8,10 from Walsh (1987)),
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Fine Mesh, Vobtﬂcﬂay ML, Laminar Block A, Inlet
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R Experimental Measurements.
% Fine Mesh, Vorticity ML, Lam Block A, Inlet Angle = 45.90 Degrees
& Fine Mesh, Yortictity ML, Lem Block A, Inlet Angle = 42.75 Degrees

a) Yaw Angle (Degrees)

~60 4
~65 4
-70 -

75 | 2

-80 + 4

0 20 40 60 80 100 120 140 160 180 200

b) Total Pressure Loss Coefficient

0. 45 155

0. 30 -

0. 15 4

0. 00 4
1

0 20 40 60 80 100 120 140 160 180 200

c) Secondary Kinetic Energy Coefficlent

0.2 4

0.1+ o

0.0 4

0 20 40 60 80 100 120 140 160 180 200
Spanwise Distance From Endwall (mm)




® Experimental Measurements.
3 Fine Mesh, Vorticity ML, Lam Block A, Inlet Angle
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Chapter 7
Experimental Results (JGC Test Case)

7.0 Introduction

This chapter describes experimental measurements of the flow in
the Durham turbine cascade, with a turbulence generating grid mounted
upstream in the working section of the wind tunnel. As the introduction
of the turbulence grid changed the inlet flow to the cascade, experimental
measurements obtained with it in place will be referred to as the ‘JGC’ test
case in this thesis. Flow visualisation, blade surface pressures, and five hole
p?o%e traverses at slots 1 and 10 are compared with results obtail;eiiwby
Walsh (1987) for the ‘JAW’ test case. Results of using the x-probe hot-wire
anemometry technique (section 4.4) to investigate the turbulent flow through
the cascade are presented. Some calculations are then made from the data
to determine eddy viscosities, and the contribution of the Reynolds stresses
to the loss production process downstream of the cascade. Traverses using
the rotatable single wire technique\(sectidn 4.5) to make measurements close
to the endwall are also presented. Finally, results of a brief spectral survey

of the turbulence within the flowfield are déscribed.

7.1 Mean Flow Measurements

As discussed in Chapter 4, a tﬁrbulence grid was designed and fitted
to the wind tunnel in order to raise the inlef turbulence level to 4.5%. There
were two motivations for this change. -Firstly the natural turbulence level
which develops in the wind tunnel was reported by Gregory-Smith et al (1988)
to be approximately 1.4%, which is smaller than the turbulence levels which
are likely to exist in a real machine. Secondly, a small laminar separation
bubble was reported by Walsh (1987) on the suction surface of the blade,
and it was thought that this might be eliminated with a higher freestream

turbulence. This would then make interesting comparison with the results
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of Gregory-Smith et al (1988). They thought that the high turbulence levels
in their cascade, and in particular the presence of a dominant frequency
in the energy spectrum, could be the result of a large separation bubble
on the suction surface of their blade. Hence, having fitted the turbulence
grid, surface flow visualisation was used to test for the elinlination of the
suction surface separation bubble, and identify any major changes in the
flowfield. Figure 7.1(a) shows the endwall flow visualisation result. This may
be compared with the colateral case shown in Figure 5.19 of Walsh’s thesis
(1987), which is the equivalent result with no turbulence grid (‘JAW’ test
case). There is very little difference between the ‘JAW' and ‘JGC’ test case
_results. The only clear change is that the separation line of the horseshoe
vortex lies closer to the blade leading edgeﬁin tge ‘JGC; ‘test case. This is
because the introduction of the turbulence grid thinned the inlet boundary
layer at inlet to the cascade, as discussed in Chapter 4. Thus the viscous
drag of the freestream fluid on the fluid close to the wall was increased. This
tends to delay stagnation of the streamlines, and pull the horseshoe vortex
closer into the obstruction which causes it. In an inviscid calculation, the
horseshoe vortex can cause reverse flow 'to occur as far back as the inlet
plane, even when this is some distance upstream.

The suction surfacé flow visualisation, shown in Figure 7.1(b), may
be compared with the result for the ‘JAW’ test case shown in the colateral
case of Figure 5.20 of Walsh’s thesis. Again the two results are very similar,
except that the vertical line in Walsh’s result, which marked the position
of the laminar separation bubble, is not present in Figure 7.1(b). Thus
it is concluded that the higher inlet turbulence intensity has succeeded in
suppressing the laminar separation bubble, and has forced the suction surface
boundary layer to undergo smooth transition further upstream.

Measurements of the blade surface pressures are presented in Figure
7.2, which may be compared with Walsh’s results for the ‘JAW’ test case
which are reproduced in Figure 5.14. The new measurements indicate that
the surface pressures from 50mm from the endwall to midspan, are almost

identical in the first half of the blade passage. This was not the case in the
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‘JAW’ test case, possibly indicating a slight radial variation in inlet conditions.
The unloading of the blade in the first half of the cascade, as the endwall
boundary layer is penetrated, is slightly reduced in the ‘JGC’ test case. This
is probably because the endwall boundary layer at inlet to the cascade was
thinner in this case. Also the peaks in the pressure coefficient which result
from the action of the passage vortex on the suction surface, are reduced.
This may indicate some reduction of the secondary flow intensity. However,
the overall shape and positioning of various features, are very similar between

the two results.

Results of a five hole probe traverse at slot 1 (14% upstream of
the leading edge) are presented in Figure 7.3. Also plotted are results from
Walsh (1987) for the ‘JAW’ tcst case. The yaw angle contours indicate the
upstream effect of the blades, and are very similar for the two tests. The
distortion of the yaw angles close to the endwall is perhaps slightly reduced
in the ‘JGC’ test case, possibly indicating a smaller horseshoe vortex. Static
pressure contours also support the apparent similarity of the upstream flow
for the two tests. However, the stagnation pressure loss coeflicient contours
reveal that the endwall boundary layer is thinner in the ‘JGC’ test case. As
discussed in Chapter 4, this is believed to result from a ‘jet’ flow close to
the endwall downstream of the turbulence grid. This is slowed by viscous
interaction with the endwall, to form the observed boundary layer profile at
inlet to the cascade. Table 7.1 presents details of the inlet boundary layer
evaluated from pitch averaged results at slot 1 for the ‘JAW’ and ‘JGC’ test

cases.

Table 7.1 : Inlet Boundary Layer Characteristics

All Values are in mm *JAW'™ Test Case | ‘JGC* Test Case
99% Thickuess (6) 39.0 37.4
Displacement Thickness (67) 5.6 4.2
Momentum Thickness "(’9) 3.2 2.2
Shape Factor (H =47/6) 1.8 1.9

117



The ‘JGC’ shape factor seems large for a turbulent boundary layer,
but this is not a result of introduction of the turbulence grid as it was
also large in the ‘JAW’ test case. Perhaps there may be some source of
unsteadiness in the upstream flow which is causing the unusual boundary
layer development. Pitch averaged results at slot 1 are presented in Figure
7.4 together with Walsh’s results for the ‘JAW’ test case. There is some
difference in the yaw angle within 20mm of the endwall, possibly indicating
changes in the size of the horseshoe vortex. However, the main difference is
in the loss distribution, which indicates the thinner endwall boundary layer
in the ‘JGC’ test case.

Results of a five hole probe traverse at slot 10 (128% Cax) are
presented in Figure 7.5. This may be compared with results obtained by
Walsh (1987) for the ‘JAW’ test case, which are reproduced in Figure 5.9.
The static pressure contours indicate less depression of static pressure in the
vortex core for the ‘JGC’ test case. This also appears to produce a generally
lower midspan static pressure. Also the yaw and pitch angles indicate slightly
less secondary flow activity in the ‘JGC’ case, although the general shape
and positioning of the features are similar to those measured previously by
Walsh. The loss contours also look very similar, and appear to contain almost
identical loss peaks. The secondary velocity vectors indicate that whilst the
passage vortex location has not changed, it is slightly weaker. This is also
illustrated by the lower values of streamwise vorticity contours, which were
calculated using the method of Gregory-Smith et al (1987).

Figure 7.6 presents pitch averaged results at slot 10 for the ‘JAW’
and ‘JGC’ test cases. There is some discrepancy in the midspan flow angle
for the two runs, which indicates the difficulty of relating probe angles to
cascade coordinates. However the main difference in the yaw angle plot is
the smaller magnitude of the over and under-turning in the ‘JGC’ test case.
This is highlighted by the secondary kinetic energy curve which shows the
‘JGC’ test case to have a significantly smaller amount of secondary kinetic
energy than the ‘JAW’ test case. However, losses in both cases are very

similar, with the loss core in the ‘JAW’ test case being slightly bigger. This
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is probably because it contains more inlet boundary layer loss than the ‘JGC’
test case. Figure 7.7 presents a plot of loss growth through the cascade for
both tests. It is clear that although the inlet loss is lower in the ‘JGC’
test case the rise in loss across the cascade is approximately the same as for
the ‘JAW?’ test case. Also the secondary kinetic energy plot clearly shows a

reduction in levels between the ‘JAW’ and ‘JGC’ test cases.

Table 7.2 : Mass Averaged Five Hole Probe Data

*JAW® Test Case | ‘JGC’ Test Case
(from Walsh)

Loss Coefficient (Slot 10) 0.196 0.182
- Midspan Loss Coefficient (Slot 10) 0.090 0.097
= Gross Secondary Loss (Slot 10) 0.106 0.085
- Inlet (Slot 1) Loss 0.042 0.027
= Net Secondary Loss (Slot 10) 0.064 0.058
Secondary KE Coefficient (Slot 10} 0.043 0.026
Sec KE + Loss Coeflicients (Slot 10) 0.239 0.208
Mixed Out Loss Coefficient ‘ 0.239 0.211
- Midspan Mixed Out Loss Coeff 0.095 0.100
= Gross Mixed Out Secondary Loss 0.144 0.111
- Inlet (Slot 1) Loss 0.042 0.027
= Net Mixed Out Secondary Loss 0.102 0.084
Midspan Mixed Out Flow Angle -67.5° -66.7°

Table 7.2 presents a breakdown of mass averaged quantities for both
the ‘JAW’ and ‘JGC’ test cases. The introduction of the turbulence grid has
possibly increased the profile loss slightly. However, as the accuracy of total
pressure measurements is +0.005, the increase of 0.007 is barely significant.
The net secondary loss appears to have reduced slightly with the introduction
of the grid, but again the comment about the accuracy of loss measurement
applies. The rise in loss produced by the cascade (slot 10 loss minus slot 1

loss) is 0.154 for the ‘JAW’ test case, and 0.155 for the ‘JGC’ test case.
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It can be seen in table 7.2 that there is quite a large drop in secondary
kinetic energy between the ‘JAW’ and ‘JGC’ test cases. As mentioned in
previous analyses, the mixed out loss is well represented by the sum of the
loss coefficient and the secondary kinetic energy coeflicient at a particular
downstream plane. Hence the net mixed out secondary loss is lower in the
case of the ‘JGC’ test, as less secondary kinetic energy was produced. There
appears to be a small discrepancy in exit flow angle between the two tests
of 0.8°. However, this is well within the experimental uncertainty of the

measurements, which was estimated as +1° for the five hole probe.

It might seem sensible that raising the inlet turbulence intensity,
would tend to create more dissipation of the secondary flow, and hence result
iﬁ a lower value of secondary kinetic elierg&. However, it could also be
that the main effect is the differing thickness of the inlet boundary layer.
Classical secondary flow theory suggests that reducing the inlet boundary layer
thickness will result in less secondary kinetic energy at exit. As discussed in
section 2.8, many workers have varied only the boundary layer thickness at
inlet to their cascades, and have found that the rise in loss produced by the
cascade was approximately constant. Although these workers did not present
the resulting values of secondary kinetic ‘energy, Moore (1985) has presented
results of modelling the effects of varying inlet boundary layer thickness.
He found that varying the iniet boundary layer thickness for the cascade of
- Langston et al (1977), results in a constant net loss, but different secondary
kinetic energy. Similarly Figure 7.8 presents a plot of mass averaged loés and
secondary kinetic energy for the Durham cascade, resulting from two runs
of the Moore code (version 7). These two runs used the standard mixing
length model, with laminar block A as described in Chapter 6 and shown in
Figure 6.2(a). The only difference between the runs is the inlet béunda.ry
layer thickness, which has been tailored to fit the ‘JAW’ test case in one
run, and the ‘JGC’ test case in the other. Clearly both runs predict a
similar growth of loss across the cascade, but the secondary kinetic energy is
considerably reduced in the ‘JGC’ test case with the thinner inlet boundary

layer. Comparing with Figure 7.7 which shows the experimental results, it
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can be seen that the prediction for secondary kinetic energy reduction is quite
realistic. Thus the change in secondary kinetic energy is thought to be a
result of thinning the inlet boundary layer, rather than raising the freestream
turbulence.

The work of Harrison (1989) implies that a significant proportion of
secondary loss might be generated by turbulent and viscous action on the
endwall and suction surface. It might also seem logical that the overall
loss could depend upon the magnitude of secondary velocities near to these
surfaces.  Thus the invariance of cascade loss with inlet boundary layer
thickness, could indicate that the secondary flow near the solid surfaces is not
greatly altered by the thickness of the inlet shear layer, even if the overall
secondary kinetic energy changes. This suggestion will be investigated further,

later in this chapter.

7.2 Hot-Wire Measurements at Slot 1 (-14% Cax)

Results of using the x-probe hot-wire anemometry technique (section
4.4) to traverse the flow at slot 1 are p.resented in Figures 7.9 (a-k). The
yaw angle contours may be compared with those measured by the five hole
probe, shown in Figure 7.3(b). The agreement between the two techniques is
quite good. However the pitch angle contours indicate a region of high pitch
angle at midspan in front of one of the blades. Although equivalent five
hole probe results are not presented, they did not detect this feature. Hence
it seems sensible that such an unlikely result, only found in front of one
of the blades, and not detected by a more accurate measurement technique,
should be attributed to experimental error. The secondary velocity vectors
indicate that there is little secondary flow upstream of the blades, although
the potential effect of the blades is clearly manifested in the total velocity
magnitude contours. Measurements of turbulence quantities are shown in
Figure 7.9 (f-k). It should be stressed that the scales for the contour plots
are magnified compared with those for subsequent plots of the flow further

downstream. The u/v' correlation shows very little activity except in the region
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in front of the blades and next to the endwall which is probably associated
with the horseshoe vortex. The u/w’ correlation reveals generally negative
values (positive shear stress) in the endwall boundary layer, which is to be
expected of a colateral houndary layer flow. Values of turbulent kinetic energy
rise as the endwall is approached, but only reach a value of 0.016, which is
approximately 5% of the loss coefficient value of 0.31 (Figure 7.3(f)). The
turbulence intensities show that the turbulence at midspan is fairly isotropic,
and has an intensity of approximately 4.2% which is close to the design value
of 4.5%. However the characteristics are quite different within the endwall
boundary layer. The streamwise turbulence intensity (\/;‘—7 ) increases most,
to reach a level of approximately 8% of upstream velocity at 5mm from the
endwall. The cross-passage turbulence intensity (\/;T? ) also rises within the
boundary layer, but not as rapidly as the streamwise turbulence. The radial
turbulence hardly changes as the endwall is approached, except for a small
area which might be associated with the horseshoe vortex.

Pitch averaged results at slot 1 are compared with results of the five
hole probe traverse in Figure 7.10. There appears to be a constant difference
in yaw angle of approximately 0.6°, which is well within the estimated
uncertainty of the results. The turbulent kinetic energy is much smaller than
the loss (there is a factor of ten difference in scale for the two curves), and

the secondary kinetic energy is also very small at this stage.

7.3 Hot-Wire Measurements at Slot 5 (55% Cax)

Results of a traverse of slot 5 with the x-probes, are presented in
Figure 7.11 (a-k). The secondary velocity vectors reveal the passage vortex in
a relatively early stage of development. It is located closer in to the endwall
and suction surface than the vortex measured by Walsh (1987) for the ‘JAW’
test case. This might be due to the thinner inlet boundary layer in this
work. The yaw angle contours show that the main secondary flow effects are
still confined quite close to the endwall at this stage. Also it is clear that

the yaw angles vary rapidly within 20mm of the endwall, indicating that the
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endwall flow is highly skewed. The total velocity magnitude does not appear
to decrease very much in this region however. The turbulence quantities are
now very different to those at slot 1. Significant shear stresses are developing
within the secondary flow, and the turbulent kinetic energy rises to 10-20% of
inlet dynamic head in the endwall/suction surface corner. This corresponds to
the region of separation of the passage vortex from the endwall. Comparing
with the magnitude of the loss levels which Walsh measured at slot 5 for
the ‘JAW’ test case, the turbulent kinetic energy only accounts directly for
approximately 10-20% of the loss in the passage vortex. The turbulence
intensities are also rising to values of 20% of inlet velocity. Thus there
appears to be significant turbulence generation within the endwall region over
the first half of the blade passage. Hence it seems likely that the process
of formation of the passage vortex is giving rise to significant generation of
turbulence. Gregory-Smith et al (1988) found similar turbulence levels within
the secondary flow region of their rotor cascade. However the freestream
turbulence intensity in their test was only 1.4% of upstream velocity. Thus
it appears that the higher inlet turbulence intensity in this test has had little
effect upon the turbulence levels which are generated within the secondary
flows. The wv' correlation (streamwise/cross-passage) is positive throughout
the traverse, corresponding to negative values of shear stress. This is to be
expected away from the suction surface boundary layer as the cross-passage
pressure gradient gives rise to a large velocity gradient in the tangential
direction (Figure 7.11(e)). Within the suction surface boundary layer, the
shear stress should be positive, but the traversing does not approach the
suction surface closely enough to show this. The ww' correlation shows a
sign change across the vortex region, but at this stage generally exhibits lower

levels than the u/v' correlation.

Pitch averaged results for slot 5 are shown in Figure 7.12. It is clear
that most of the secondary flow activity is still concentrated near to the
endwall at this stage. -The over-turning close to the endwall is very large,
and is accompanied by a peak in turbulent kinetic energy. However, beyond

40mm radially, the flow is essentially undisturbed by the secondary flows.
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Figure 7.13 (a-h) presents results of traversing close to the endwall
using the rotatable single wire technique described in section 4.5. The grid
of measurement locations shows that the traversing was extended to 10mm
from the endwall to provide some overlap with the x-probe measurements.
The yaw angle contours agree well with those shown in Figure 7.11(b), and
indicate a very large degree of skew in the endwall flow. The total velocity
magnitude contours also tie up quite. well with the x-probe measurements, and
show that the velocity hardly varies between 1 and 10mm from the endwall.
Thus any normal concept of a boundary layer must be confined to within
1mm of the endwall (0.25% span) at this stage. The turbulence quantities,
w', ﬁ , \/;_;; all agree well with the x-probe measurements, and indicate
that freestream turbulence levels are being brought into the endwall region on
the pressure side of the passage. This does not show that the endwall flow is
laminar, but as high turbulence levels are not being generated on the pressure
side of the passage, it is possible that there is a very thin laminar boundary
layer in this region. Harrison (1989) found the endwall boundary layer to be
laminar over a large proportion of the endwall, towards the pressure side of
the passage in his turbine cascade. Howevér, if such a laminar boundary layer
exists here it must be extremely thin. As the measurement technique could
only solve for the square of radial velocity, all spanwise velocities are taken
as positive, and hence the secondary velocity vectors appear to point in the
wrong direction radially, towards the pressure side of the passage. The radial
turbulence intensity was not measured by the single wire, and so the turbulent
kinetic energy is calculated by assuming that the radial turbulence intensity is
equal to the average of the streamwise and cross-passage intensities. This is
probably reasonably accurafe away from the endwall, but becomes less so on
close approach to it. However, the turbulent kinetic energy contours appear
to agree reasonably well with the corresponding x-probe measurements in the
region 5 — 10mm from the endwall. They also clearly indicate that the flow
on the suction side of the passage is quite turbulent, but to the pressure side

there are only freestream turbulence levels.
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7.4 Hot-Wire Measurements at Slot 8 (97% Cax)

Results of an x-probe traverse at slot 8 are presented in Figure 7.14.
By this stage the secondary flow effects extend to at least 100mm from the
endwall. The centre of the passage vortex has moved up and away from
the suction surface compared with its position at slot 5. However it is still
approximately 15mm closer to the endwall than it was in the ‘JAW’ test case.
The passage vortex is generally quite turbulent with individual turbulence
intensities reaching 20% of inlet velocity. Near to the suction surface, at
about 60mm from the endwall there appears to be a region of considerable
turbulence activity. This corresponds to the region in which the passage vortex
separates from the suction surface, and so might include turbulence which
has been convected from the suction surface boundary layer/passage vortex
interaction. The u/w’ correlation shows a rapid sign change in this separation
region, but is generally quite small elsewhere. The w/v’ correlation is still
generally positive, although the velocity magnitude contours indicate that the
cross-passage velocity gradient has largely disappeared. Significant u'v' shear
stress is associated with both the passage vortex core, and the suction surface
separation. Indeed in the separation region the velocity magnitude contours
indicate that the sign of the correlation is opposite to that which would be
expected from a Boussinesq eddy viscosity model. The streamwise turbulence
is also large over the whole of the suction surface. This may be linked with
deceleration of the suction surface flow towards the trailing edge, particularly
close to the endwall, where the surface pressure coefficient peaks (Figure 7.2)
indicate that quite severe deceleration might be occurring. This could be a
significant process behind the rapid rise in loss which is usually observed in

the latter half of rotor cascades (e.g. Langston et al (1977)).

Pitch averaged results at slot 8 are presented in Figure 7.15. Com-
paring with the results at slot 5 shown in Figure 7.12, it can be seen that
the secondary flow has spread radially from the endwall. There is still quite
a large over-turning of the flow within 40mm of the endwall, but a significant

under-turning peak is now also evident at 60mm radially. The turbulent
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kinetic energy has formed a distinct core, and the secondafy kinetic energy
exhibits a sharp peak at approximately 55mm from the endwall.

The endwall flow measurements obtained with the single wire tech-
are presented in Figure 7.16. Again agreement with the x-probe
measurements in the region 5 — 10mm from the endwall is reasonable. The
yaw angle contours indicate that the level of skew in the endwall flow is now
very much reduced from that which was observed at slot 5. However, the
total velocity is still almost constant up to 1mm from the endwall, although a
sharp reduction in velocity is apparent in the endwall/suction surface corner,
which is probably associated with the counter vortex to be found in this
region. This is accompanied by a region of intense negative w/'v' correlation,
which would agree with an eddy viscosity concept. The endwall flow appears
to be generally more turbulent at slot 8, and this is in keeping with the re-
sults of Harrison (1989) who observed transition of the endwall flow occurring

upstream of the trailing edge in his cascade.

7.5 Hot-Wire Measurements at Slot 10 (128% Cax)

Figure 7.17 presents results of an x-probe traverse at slot 10. Mean
flow data can be compared with corresponding five hole probe results for the
‘JGC’ test case, which are shown in Figure 7.5. The pitch and yaw angle
contours generally compare very well, as do the secondary velocity vectors.
The loss core and blade wakes show up clearly in the total velocity magnitude
contours as areas of velocity deficit. They are also clearly apparent in the
turbulence quantities. The streamwise and cross-passage turbulence intensities
reach maximum values of 20% of upstream velocity. The radial turbulence
intensity has grown larger than the other two, to peak at 30% of upstream
velocity within the loss core. The turbulent kinetic energy is concentrated
in the passage vortex, with relatively low levels within the blade wake. This
is consistent with the results of Gregory-Smith et al (1988) who observed
that the wake turbulence appeared to dissipate rapidly downstream of their

cascade, whilst the turbulence levels within the loss core were maintained.
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Both the shear stresses which are measured with the x-probe technique, appear
to change sign across the loss core. The wv' shear stress also changes sign
across the wake, in keeping with the sign of the velocity gradients and a
positive eddy viscosity. However most of the passage vortex now exhibits
negative u'v’ correlation values. Thus the correlation has changed sign between
slots 8 and 10. This is somewhat surprising, and so terms in the shear stress
convection equation were approximately evaluated at slot 8. Details are
presented in Appendix B, but it was found that the convection equation does
appear to support a change in sign of the w/v’ correlation between slots 8 and
10. As mentioned earlier, the dominant velocity gradient within the blade
passage 1s imposed by the large turning angle of the blade and its associated
cross-passage pressure gradient. This tends to result in positive values of the
uwv’ correlation within the blade passage. Downstream however, the velocity
gradients in the passage vortex are only a result of the vortex motion, and its
interaction with the flow from adjacent blade passages. As the secondary flow
regions are generally areas of velocity deficit (as indicated in the total velocity
magnitude contours), the shear stresses will tend to change sign across them,
as observed. Some support for the change in sign of the u/v’ shear stress as
the flow proceeds downstream may be gained from the published literature.
Moore et al (1986) found negative values of the w'v' correlation within the
loss core downstream of their cascade. Zunino et al (1987) found positive
values in the loss core with negative values in the suction surface corner, at
a plane across the throat of their cascade. Unfortunately they did not show

shear stress measurements downstream.

Comparing the turbulence levels found here with those of other work-
ers, Zunino et al (1987) found slightly lower turbulence levels in the vortex
core (turbulent kinetic energy approximately 0.06-0.07) but the levels on the
endwall were a little higher. Gregory-Smith et al (1988) seem to have slightly
higher turbulence levels downstream of their cascade, particularly in the cross-
passage direction. They thought that these high levels might be associated
with the large laminar separation bubble on their blade, or the large suction

surface diffusion. Both of these effects were reduced in this test, and so

127



might explain the slightly lower turbulence levels here. Moore et al (1988)
found generally similar turbulence levels within the loss core to those reported
here. However their wake turbulence was somewhat larger, and this may be
because their measurement plane was closer to the trailing edge (10% Cax
downstream) than slot 10 (28% Cax downstream).

Pitch averaged results at slot 10 are also presented in Figure 7.18,
together with the five hole probe data. There is some small disagreement in
midspan angle, but in general the agreement between the two measurement
techniques is good. This is also evident in the secondary kinetic energy curve,
giving confidence in the results obtained. The turbulent kinetic energy and
loss distributions are clearly correlated, but the turbulent kinetic energy is
much smaller than the loss (the curves are plotted on different scales).

Endwall flow data at slot 10 obtained with the single wire technique,
is shown in Figure 7.19. The yaw angles indicate the presence of the
small counter vortex on the endwall at tangential coordinates -100 and -300.
Some evidence for this may also be seen in the secondary velocity vectors,
although the positive radial velocities can make interpretation difficult. The
total velocity magnitude contours are beginning to indicate the growth of
a more usual type of boundary layer flow, although it is still only a few
millimetres thick. The turbulence quantities also indicate that the endwall
flow is quite turbulent. This agrees with the results of Harrison (1989), who
fouhd the endwall boundary layer to be turbulent downstream of his cascade.
In particular here, the streamwise turbulence is rising to considerable levels
near the endwall. This is to be expected of a turbulent colateral boundary

layer flow.

7.6 Turbulent Kinetic Energy, Secondary Kinetic Energy, and Loss

The results of the x-probe traverses were mass averaged over the
traverse planes. Figure 7.20 shows a graph of mass averaged turbulent kinetic
energy coeflicient, and secondary kinetic energy coefficient at the various axial

positions through the cascade. Also shown are the results of five hole probe
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traverses for the ‘JAW’ test case (no turbulence grid) and the ‘JGC’ test
case. It is clear that the turbulence grows steadily through the cascade,
but at a much lower level than the loss. Indeed at slot .10 the turbulent
kinetic energy (0.029) only accounts directly for 16% of the loss (0.182).
Moore et al (1986) found that 23% of the loss in their cascade appeared as
turbulent kinetic energy, whereas Zunino et al (1987) found this ratio to be
10%, and Gregory-Smith et al (1988) 17%. Thus the value found here appears
to be in accord with other results. Zunino et al (1987) expressed the opinion
that although only a small fraction of the loss could be accounted for directly
as turbulent kinetic energy, this did not indicate that some process other
than the turbulent stresses was causing the development of loss. Instead they
believed that the rate of viscous dissipation of the turbulence approximately
matched the rate of its generation, thus preventing any large build up of

turbulent kinetic energy.

Returning to Figure 7.20, it can be seen that the secondary kinetic
energy is considerably reduced in the ‘JGC’ test case. As discussed previously,
this is believed to be a result of the thinner inlet boundary layer in this
case. The agreement between results at slot 10 obtained with the five hole
probe, and the hot-wire measurements, also serves to give confidence in the
accuracy of the results. As mentioned previously many workers have found
that the net cascade loss is not very dependent upon the inlet boundary
layer thickness. Also it appears that the changes between the ‘JAW’ and
‘JGC’ test cases, and modelling results, suggest that the kinetic energy of the
.seconda,ry flow is quite strongly dependent on the endwall boundary layer at
inlet. This is a little surprising as it might be thought that the magnitude of
secondary velocities close to solid surfaces would contribute to the secondary
loss. Indeed Gregory-Smith (1982) recognised this in his loss model. The
downstream loss was modelled as the sum of three components. These were
the inlet boundary layer loss, the loss due to the growth of a new boundary
layer on the endwall, and an extra secondary loss. This extra secondary
loss was assumed to be equal to the secondary kinetic energy predicted by

classical secondary flow theory. Figure 7.21 presents contours of secondary
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kinetic energy at slots 5, 8 10 for the ‘JAW’ test case (from Walsh (1987))
and the ‘JGC’ test case. Two sets of contour intervals are used. The broken
contours cover the range 0.0 to 0.1, and are in steps of 0.02. The full contours
cover the full range of data values, and are in steps of 0.1. At slot 5, the
contours show the majority of the secondary kinetic energy to be located in a
region near to the endwall. Very close to the endwall, there is more secondary
kinetic energy in the ‘JAW’ test case, with the thicker inlet boundary layer.
As the vortex rotates, and convects the inlet boundary layer up the suction
surface, the secondary kinetic energy contours are also convected. By slot 8
there is a clear secondary kinetic energy core, centred at the positidn where
the passage vortex separates from the suction surface. Some more secondary
kinetic energy has also developed on the endwall. Although there is generally
more secondary kinetic energy in the ‘JAW’ test case than in the ‘JGC’
test case, the values close to the endwall are almost identical, and on the
suction surface similar levels also seem likely. By slot 10 there is a distinct
secondary kinetic energy core, which is centred between the centre of the
passage vortex and the counter vortex which is associated with the blade
shed vorticity (as described by Walsh and Gregory-Smith (1989)). The levels
of secondary kinetic energy near to the endwall are not very different between
the two cases, when compared with the magnitude of the levels which are
seen in the secondary kinetic energy core. Thus it seems that the effect of
the inlet boundary layer thickness is to determine the amount of secondary
kinctic energy which is initially imparted to the endwall boundary layer. This
is rolled up into a core, which is convected up the suction surface. Thus
the secondary kinetic energy levels close to much of the suction surface and
endwall, might be little effected in the latter half of the blade passage by

the thickness of the endwall boundary layer at inlet.

7.7 Frequency Spectra

As described in section 4.6, a spectral analysis of hot-wire signals was

performed at various locations in the flowfield. Two typical curves are shown
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in Figure 7.22. These show the power density of the hot-wire signal versus
frequency. Both curves were obtained at slot 8, Figure 7.22(a) being for a
wire placed in the high turbulence region near the suction surface separation
line (coordinate (-140,65) in Figure 7.14(h)). The second curve shows the
spectrum over a much smaller frequency range at midspan and mid-pitch of
slot 8. In the suction surface separation region, there is a steady decay
in power density over the frequency range 0 — 20kHz, with no dominant
frequencies being detected. In the second curve however, the turbulence levels
are generally much lower, and there is a clear peak at 15.2Hz. This peak
was detected at all points in the flowfield where it was not swamped by
higher turbulence levels, and was found both upstream and downstream of
the cascade. This unexpected feature was not detected by Walsh (1987)
in the earlier Durham turbine cascade described by Graves (1985). It is
possible that the cause of the discrete frequency is an organ resonance in the
wind tunnel. For a sound speed of 340ms~!, and a frequency of 15.2Hz, a
wavelength of 22.5m would be expected. The length of the wind tunnel is
almost exactly 5.6m from the fan to the cascade, which supports the idea
of a quarter wavelength at 15.2Hz with an anti-node at the cascade exit.
In none of the measurements was any evidence found for an energy peak
at 32.5Hz as detected by Gregory-Smith et al (1988). They observed this
peak only in the high turbulence regions of the flow downstream of their
cascade. Their blade had similar inlet and outlet angles to the blade used
here, similar overall dimensions, and was run at an identical Reynolds number.
However their blade had a large suction surface diffusion from about 50% axial
chord with an associated laminar separation bubble. As mentioned previously,
they also found slightly larger turbulence levels downstream of their cascade
particularly in the cross-passage direction. This might be associated with the
large suction surface diffusion present in their cascade. Thus it seems possible
that an instability due to the large diffusion, or the separation bubble may

have effected their flow.
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7.8 Eddy Viscosities and Dissipation Rates

Since all the turbulence models which are tested in this thesis use
the Boussinesq eddy viscosity hypothesis, it was decided to calculate eddy

viscosities (e;;) from the experimental shear stresses, as defined by:-

1ot
ot 9U;
Oz dr;

Clearly before the eddy viscosities may be calculated, the partial
derivatives of velocity must be determined. This calculation was based
upon the method described by Gregory-Smith et al (1987) for obtaining
vorticity from experimental data. Bi-cubic splines were fitted to the data,
and used to evaluate gradients of velocity and stagnation pressure in the
radial and tangential directions. Axial gradients were then calculated using
the incompressible Helmholtz equation. The continuity equation enabled
determination of the final partial derivative, and these could then be rotated
to the hot-wire coordinates in which the Reynolds stresses were measured.
The inverse procedure of determining the components of the Reynolds stress
tensor in cascade coordinates was not possible, as one of the shear stresses
(v'w') was not measured. Since the above method requires a measurement of
total pressure over the traverse plane, the calculations could only be performed
for traverses of slots 1 and 10 where five hole probe results were available.
Over large regions of the flowfield, the denominator in the eddy viscosity
definition approaches zero. Thus the calculation procedure was forced to
yield a value of zero for eddy viscosity when the denominator fell below a
cut-off value, and the shear stress was also small. If the shear stress was
not small, but the denominator approached zero, then interpolation between
neighbouring points was performed. Thus the final results should be treated
with some caution.

The experimental measurements of two of the shear stresses (u'v/, and
w'w') are compared with eddy viscosities calculated from them in Figure 7.23.
Also shown are the measurements of turbulent kinetic energy. The eddy

viscosities are divided by the laminar viscosity, and show maximum levels of
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around 2000. The calculations from both shear stresses produce most eddy
viscosity in the loss core region, where the turbulent kinetic energy is highest.
Both shear stresses yield similar values in this region, and the u/v’ calculation
alsc shows some eddy viscosity within the wake. The w/w' calculation was
too poorly conditioned to detect such a level of eddy viscosity in the wake.
Thus it appears that at slot 10, an isotropic eddy viscosity is a reasonable
approximation. However as. mentioned previously, at slot 8 the u/v’ shear
stress implies a negative value of eddy viscosity in some regions. Thus the
application of an eddy viscosity model within the blade passage may be less
realistic.

The partial velocity derivatives may also be used to calculate terms
in the kinetic energy equation for the flow of a turbulent fluid (Hinze (1975),
p72). Terms for the production of turbulent kinetic energy are evaluated

from the Reynolds stress measurements via the equation:-

o
&

(7.2)

1,1
—p 'U,i’U,j
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The rate of viscous dissipation of mean flow kinetic energy may also be

determined by the equation:-

, {an an] av; 3)

Oz; + Oz; | Oz;
The rates of dissipation of mean flow energy are made dimensionless by
dividing by the inlet dynamic head, and multiplying by the ratio of axial
chord to axial velocity. This expresses the rates as ‘the fraction of inlet
dynamic‘ head which would be lost if the rate were to be maintained over a
distance of one axial chord, whilst travelling at the axial velocity’. This is
consistent with the definition used by Moore et al (1986) in their work on
turbulence effects downstream of a turbine cascade.

The rate of dissipation of mean flow energy by molecular viscosity
is plotted in Figure 7.23(f). The corresponding total dissipation rate due to
the five terms of the Reynolds stress tensor which were measured is shown
in Figure 7.23(g). It can be seen that the dissipation rate due to the

five terms of the Reynolds stress temsor which were measured, is generally
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two orders of magnitude greater than that due to molecular viscosity. The
contributions of the individual components of the Reynolds stress tensor to
the overall dissipation rate, are shown in Figure 7.23(h-1). By far the largest
rates are produced by the normal stresses in the cross-passage and spanwise
directions. These can either act to extract energy from the mean flow, or
return turbulent kinetic energy to the mean flow. The streamwise normal
stress has only a minor effect, as the streamwise velocity gradient downstream
of the cascade is small. This may not be the case within the blade passage,
where there is strong acceleration of the flow. The w/v’ shear stress produces
some dissipation of the mean flow energy within the loss core and blade wake
regions, but the w/w’ stress has only a small effect. Shear stresses are usually
dissipative, acting to produce turbulent kinetic energy from mean flow energy,
since they normally change sign with velocity gradient. The dissipation rates
shown in Figure 7.23 have been mass averaged over the traverse plane, and

the results are presented in Table 7.3.

Table 7.3 : Mass Averaged Dissipation of Mean Flow K.E.

‘JGC’ Test Case % 3pVE.- &
Rate of Viscous Dissipation 0.02
Total Rate of Turbulence Production (less v'w’ term) 1.92
Rate of Turbulence Production by u”® 0.13
Rate of Turbulence Production by v -0.06
Rate of Turbulence Production by w’ 0.67
Rate of Turbulence Production by w'v’ term) 1.05
Rate of Turbulence Production by w'w’ term) 0.13

It is clear that the viscous dissipation of mean flow kinetic energy is
much smaller than that due to turbulent energy production. The net rate
of production due to the v? component is small and negative, despite the
high local values which were apparent in Figure 7.23(k). However the radial
normal stress w” does have a significant net effect, although not as large

as that due to the v’ shear stress. Contour plots of the partial velocity
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derivatives at slot 10 in both cascade, and hot-wire coordinates are presented

in Appendix C for the convenience of those who may be interested.

Detailed comparison of the effects of the individual Reynolds stresses
downstream of their turbine cascade. This was a replica of the cascade
investigated by Langston et al (1977), although the inlet boundary layer was
thicker in the work of Moore et al (1986). General agreement is found with
results presented here, except for the F?g term which they found to be
significant. However their measuring plane was closer to the trailing edge
than slot 10 (10% Cax as compared with 28% Cax). This may mean that
streamwise gradients were greater in their work, due to the flow being less
mixed. The overall dissipation rate given in Table 7.3 may be compared
with the rate of loss production at slot 10 if it is assumed that in Figure
7.20 the gradient of the loss growth curve downstream of the cascade is the
same for the ‘JAW’ and ‘JGC’ test cases. The loss coefficient growth rate
is 7.9% per axial chord, whereas the total rate of turbulence production is
only 1.92% per axial chord. However this excludes two components which
Moore et al (1986) found to be significant. As the v'w’ shear stress was not
measured in this work its effects could not be determined. Moore et al (1986)
found this stress contributed 31% of the total loss production rate in their
cascade. Also no estimate has been made of the effect of w/w’ in the near
wall region. Again Moore et al (1986) suggested that this was significant,
contributing 30% to the total rate. Thus even though these contributions
may be relatively smaller here, due to the higher aspect ratio and traverse
plane location, the value presented in Table 7.3 seems reasonable. r.]_“he fact
that the turbulent kinetic energy does not appear to be growing as rapidly
as the loss, suggests that it is being rapidly dissipated by viscous action.

Hence it appears that downstream of the cascade, loss is produced
principally by turbulent Reynolds stresses, and that direct viscous action is
almost negligible. Unfortunately the equivalent calculations cannot be made
at slots 5 and 8, as the necessary total pressure traverses are not available.

The results of Moore et al (1986) suggest that downstream of the cascade,
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approximately 60% of the loss is produced away from the endwall in the
shear layers. The results found here do not appear to disagree with this
conclusion. However within the blade passage, where significant losses may
also be generated on the suction surface, the relative importance of the loss

production due to the separated shear layers may be reduced.

7.9 Conclusions

Analysis of mean flow results appears to indicate that the higher
freestream turbulence in this test has little effect upon the secondary loss or
kinetic energy of the secondary flow. This may be because the fluid in the
loss core originates in the inlet boundary layer, where turbulence levels are
less influenced by the freestream turbulence intensity. However changes were
observed between the level of secondary kinetic energy which was produced by
the ‘JAW’ and ‘JGC’ test cases. This is thought to be a result of differing
inlet boundary layer thickness in this case as compared with the ‘JAW’ test
case. Also the increased inlet turbulence does successfully suppress the small
laminar separation bubble which previously existed on the blade’s suction
surface. Thus the suction surface boundary layer now undergoes transition
earlier, apparently leading to slightly greater profile loss.

High turbulence energy is associated with the loss core and passage
vortex region, and also where separation lines on the endwall and suction
surface feed loss into the main flow. The streamwise/radial shear stress u/w’
changes sign across the position of the suction surface separation line. Within
the blade passage the streamwise/cross-passage shear stress w/'v’ is generally
negative in the loss core due to the strong cross-passage velocity gradient.
Downstream of the cascade it responds to local velocity gradients within the
secondary flow and is thus observed to have changed sign over much of the
loss core. This change in sign from the flow within the blade passage to the
flow downstream is supported by consideration of the shear stress transport
equation. Spectral studies indicate no unusual features of the turbulence

except that there is a low frequency organ resonance within the wind tunnel.

136



Where the turbulence was high, no dominant frequencies were found. This
contrasts with the results reported by Gregory-Smith et al (1988), who found
a low frequency peak downstream of their cascade. The lack of such a
fcature in this study, might be due to the lower suction surface diffusion of
the blade tested here, or the absence of the large separation bubble which
was associated with this diffusion.

Traverses close to the endwall show that the new endwall boundary
layer which forms behind the separation line of the inlet boundary layer, must
be extremely thin within the blade passage. Towards the suction side of the
passage the endwall flow appears to be generally turbulent, but towards the
pressure side freestream levels of turbulence are observed. Hence the new
endwall boundary layer might be laminar towards the pressure side of the
blade passage. This would agree with the results of Harrison (1989) who
observed a laminar flow over a large area of the endwall in his cascade. Also
as the flow proceeds downstream, the endwall region becomes more turbulent
until at slot 10 a turbulent boundary layer across the whole pitch seems
likely. This again would fit in with Harrison’s results. Also the yaw angles
at slot 5 show the endwall flow to be very highly skewed, varying by 5°
per millimeter. By slot 8 this skew has reduced to approximately 1° per
millimeter. Such a boundary layer flow may well prove difficult to model.

The rate of dissipation of mean kinetic energy by turbulent and
viscous action has been calculated at slot 10. The results suggest that
turbulence is an important loss producing mechanism downstream of the
cascade. Comparing with the results of Moore et al (1986) it appears that
loss production in separated regions away from the endwall is important in
the downstream flow. However within the blade passage where loss will also
be produced on the suction surface, the relative significance of the separated
shear layers may be smaller. It would be very interesting to calculate rates
of dissipation at slots 5 and 8 from the Reynolds stress measurements. This
would require five hole probe traverses at these locations and so unfortunately

cannot be carried out here due to lack of time.

Contours of shear stress, turbulent viscosity, and turbulent kinetic
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energy have been presented. These may be compared with predictions of
turbulence models within Navier-Stokes solvers, and were the major objective
of this study. However, although an isotropic eddy viscosity concept may be
a reasonable approximation downstream of the cascade, the rapid change in
sign in u'v’ from slots 8 to slot 10 indicates that it s application within the
blade passage may be less realistic. Indeed there are areas at slot 8 where
the u'v’ shear stress implies a negative eddy viscosity. Also an eddy viscosity
model does not attempt to account for the effects of the normal stresses.
As seen at slot 10, these can make some significant overall contributions to
loss production, and locally their effects can be very large. Within the blade
passage, where the normal rates of strain are large, the normal stresses may
have important effects. In particular the streamwise normal stress could be
significant in this region, tending to keep losses low at first, where the suction
flow accelerates, and then acting to produce turbulence rapidly as the flow
decelerates. An experimental investigation of the Reynolds stresses in the
suction surface boundary layer, and the rate at which they produce loss would

therefore be a very interesting, and valuable contribution.
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x¢ Five Hole Probe Measurements (JGC Test Case).
@ Five Hole Probe Measurements (JAY Test Case from Yalsh (1987)).
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3t Five Hole Probe Messurements (JGC Test Case).
£x Five Hole Probe Measurements (JAY Test Case from Halsh (1987)).
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1¢ Five Hole Probe Measuremants.
g Hot-Yire Anemometry (X-Probe) Measurements.
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i Hot-Yire Anemometry (X-Probe) Measurements.
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Hot=Yire Anemomstry (X-Probe) Measurements
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Hot-Yire Anemomstry (X-Probs) Measurements
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% Hot-Y1re Anemometry (X-Probe) Measurements.
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3 Five Hole Probe Messurements.
» Hot-Y1re Anemometry (X-Probe) Measurements.
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& Five Hole Probe Measurements (JGC Test Case).
% Hot-Yire Anemometry (X-Probe) Measurements (JGC Test Case).
& Five Hole Probe Measurements (JAW Test Case from Yalsh (1987)).
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Chapter 8
Modelling Results (JGC Test Case)

8.0 Imtroduction

This chapter describes results of modelling the ‘JGC’ test case (exper-
imental data described in Chapter 7). The pressure correction code of Moore
and Moore (1985) is tested with three different turbulence models. Resulting
predictions for the Reynolds stresses are calculated from the predicted velocity
and turbulent viscosity fields, and are compared with the results of hot-wire
anemometry traverses. Where appropriate, eddy viscosities and turbulent
kinetic energy are also compared with experiment. All the Navier-Stokes
calculations presented in this chapter were run on the coarse mesh (Figure

6.1(a)), and used version 7 of the Moore code (as described in Chapter 6).

8.1 Standard Mixing Length Model Mean Flow Results

Three runs have been performed using the Moore code, with the
standard mixing length turbulence model as described in Chapter 6. The
three runs differed in the regions of the flowfield in which the turbulence model
was allowed to operate. The first run assumed that the flow was turbulent
everywhere, the second incorporated laminar block A (Figure 6.2(a)), and the
third included both laminar blocks A and B (Figures 6.2(a), 6.2(c)).

Figure 8.1 shows pitch averaged results at slot 1 (-14% Cax) for the
three calculations and experiment. There is a systemmatic difference in yaw
angle due to the experiment operating oftf the design incidence of 42.75°. The
effects of the model running at a slightly different inlet angle are discussed in
Chapter 6, and were not found to be very significant for the general secondary
flow development. The loss curve indicates that all three runs have conserved
total pressure well from the inlet boundary to slot 1, and have the correct
inlet boundary layer profile. Although the secondary kinetic energy measured

experimentally appears larger than that modelled, this is due to some radial
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variation in the inlet flow angle, and the levels are in any case very small.

Results at slot 5 (55% Cax) are presented in Figure 8.2 (a-1). These
may be compared with the hot-wire measurements shown in Figure 7.11. The
yaw angle contours indicate that the distribution in each of the three runs
is similar at this stage, but that compared with the experimental results, the
flow is generally over-turned by approximately 5°. This is rather surprising.
Comparing yaw angles measured by Walsh (1987) for the ‘JAW’ test case,
with those obtained from hot-wire traverses of the ‘JGC’ test case, reveals
a systemmatic difference of approximately 2.4°. This might be attributed
to experimental error as no change in midspan angle was expected from
introduction of the turbulence grid (which is the difference between the ‘JAW’
and ‘JGC’ test cases). Although the equivalent results for the ‘JAW’ test
case have not been presented, a similar difference existed between measured
and predicted yaw angles. The run described in Chapter 6, which had the
upstream flow set at the experimental inlet angle, also shows this discrepancy,
thus eliminating the inlet angle as a possible cause. It is not clear why
such a difference should exist between measured and predicted values. It is
perhaps worth bearing in mind however, that at this stage in the cascade
the flow is being turned very rapidly. Thus agreement between experiment
and modelling might be obtained by looking at predicted data on an axial
plane only slightly upstream of slot 5. Despite these problems with the
midspan flow angles, the over-turning on the endwall appears to be quite well
modelled by all three runs, as is the distribution of total velocity. However,
the secondary velocity vectors indicate that the vortex is not centred in the
correct place in any of the predictions, although the run with laminar block
B (‘laminar endwall’) is perhaps showing some signs of shifting the vortex
centre towards the suction surface.

Although no measurements of loss are available at slot 5, the predicted
losses are presented in Figures 8.2(j-1). It is clear that the loss is still
confined quite closely to the endwall at this stage. Some significant loss
is also appearing on the suction surface, but the fully turbulent run shows

this to be quite uniform in radial distribution, indicating that it is purely
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profile loss, and not a result of the secondary flows interacting with the blade
boundary layer. Also freestream fluid has been brought into the endwall
region on the pressure side of the passage. This is in keeping with the results
of the endwall boundary layer traverse discussed in Chapter 7.

Figure 8.3 presents pitch averaged results at slot 5. Here the system-
matic difference in yaw angle is very clear. As discussed above, 2.4° of this
might be attributed to experimental error, but the origin of the remaining
discrepancy is unclear. The loss coefficient and turbulent kinetic energy show
the secondary flow effects to be confined quite close to the endwall at this
stage. Also reasonable agreement is apparent between the predicted and
measured secondary kinetic energy, although the vortex migra,ti_on observed in
the vector plots for the run with laminar block B produces the best results.

Results at slot 8 (97% Cax) are presented in Figure 8.4(a-1). This may
be compared with the hot-wire results shown in Figure 7.14. The yaw angles
indicate that the under-turning at 50mm from the endwall is not correctly
modelled by any of the calculations. However they all predict the over-turning
near to the endwall more accurately. The total velocity magnitude contours
indicate good agreement with experiment, and are similar in each case. In
the turbulent run, the suction surface boundary layer is clearly thicker than
for the two runs which included laminar block A. However it is not as large
as that indicated by the experimental results. This is surprising, and the
experimental boundary layer does seem very thick. This may be a result
of the very accute angle of the blade to the axial traverse plane at this
location. Any misplacement of the axial location of the probe, will appear
to be magnified when viewed in a plot such as Figure 7.14. It is also clear
that the low velocity region associated with the convected inlet boundary
layer fluid forms slightly further from the endwall in the run with laminar
block B than in the other two. This is more realistic, and indicates a
more energetic passage vortex in this case. The secondary velocity vectors
confirm this and show the vortex to be quite realistically located in the run
with laminar block B. Less convection is apparent for the other two runs.

The loss contours indicate that the suction surface boundary layer is much
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thicker in the turbulent run than in those which incorporated laminar block
A. Again the run with laminar block B appears to be slightly more realistic
than the other two, and predicts a distinct loss core forming away from the
suction surface, with a second core located in the region where the passage
vortex separates from the blade. Although equivalent experimental results are
not available, this has been seen previously to be a characteristic feature of
turbine rotor blade secondary flows.

Pitch averaged results at slot 8 are presented in Figure 8.5. The yaw
angles show good agreement with experiment at midspan. Agreement is also
good within 20mm of the endwall, where the flow is strongly over-turned.
However, the under-turning at about GOmT;L-_from the endwall is less well
modelled. The run with laminar block B appears to produce the best radial
positioning, but fails to predict the magnitude of the under-turning. The loss
coefficient shows that the effect of laminar block B is to encourage radial
migration of loss. A peak is forming at about 55mm from the endwall, which
is associated with the suction surface separation, and convected inlet boundary
layer fluid. The hot-wire measurements also indicate that this is a region of
high turbulent kinetic energy. None of thé runs predict the secondary kinetic
energy peak at 55mm from the endwall exactly, but the run with laminar
block B is closer to the experiment in this respect.

- Results at slot 10 (128% Cax) are presented in Figure 8.6(a-r). These
may be compared with the five hole probe results shown in Figure 7.5, and
the hot-wire aﬁemometry results in Figure 7.17. The yaw angles compare well
with experiment except within the blade wake where the flow appears to be
over-turned. This is associated with numerical problexﬁs in the trailing edge
region, and can be alleviated with a finer calculation mesh, and modifications
to the mixing length calculation as described in Chapter 6. The pitch angles
are reasonably modelled in all the calculations, but the run with laminar
block A captures the negative pitch angle peak best. The static pressure
contours show that the modelling predicts too low a static pressure over
the traverse plane. This was discussed in Chapter 6, and was found to

result from the incorrect inlet flow angle employed in the modelling, since
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the experiment is actually running slightly off-design. Despite this, the total
velocity magnitude contours agree reasonably well with experiment, but all
show too much reduction of velocity within the blade wake. The secondary
velocity vectors show that the run with laminar block B has achieved the
best passage vortex position, with the other runs locating it too close to the
endwall. The loss contours all indicate too much loss within the blade wake
as discussed in Chapter 6, but reasonable predictions appear to be obtained
for the loss core.

Pitch averaged results at slot 10 are presented in Figure 8.7. There
is a systemmatic difference in yaw angle between experiment and modelling,
and as discussed in Chapte; 6 this results from numerical préblems in the
trailing edge region. However, if this discrepancy was subtracted from the
experimental curve at all radial locations, good agreement would be obtained
with the prediction which incorporated laminar block B. The other two runs
do not convect the vortex so far from the endwall, and hence locate the under-
turning peak at 55mm radially rather than at the experimental position of
75mm. The loss curve indicates the over-prediction of profile loss in all the
runs, but is otherwise reasonable. If the vmidspan loss is subtracted from all
the modelling results at each radial position, then the two runs which did not
include laminar block B, produce a reasonably sized loss core, but located
too close to the endwall. The run with laminar block B produces better
radial positioning, but smooths out the loss curve a little. The secondary
kinetic energy curves all appear to generally indicate over-prediction at this
stage. Tﬁis is because the secondary kinetic energy gehera,lly does not decay
downstream of the cascade in a realistic manner. Again the run with laminar
block B appears to produce the most realistic prediction in terms of radial

distribution.

8.2 Standard Mixing Length Model Mass Averaged Results

The mass averaged loss, and secondary kinetic energy for the three

runs and experiment, are presented in Figure 8.8. The predicted loss reduces
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as laminar blocks are added to the flowfield, but is generally too large. Also
the secondary kinetic energy increases with increasing laminar regions. It is
interesting that for this test case the run with laminar block B appears to
give the best prediction of secondary kinetic energy, particularly as the values
measured within the blade passage did not cover the full flow area, and so
must be assumed to be too small. For the ‘JAW’ test case the run with
laminar block B appeared to over-predict secondary kinetic energy. However,
generally the code has performed very well, and has managed to predict the
reduced levels of secondary kinetic energy resulting from the thinner inlet
boundary layer in this case.

Table 8.1 presents mass averaged quantities at slot 10. Whilst all the
runs predict too much profile loss, the predictions of net secondary loss are
quite good. The sum of secondary kinetic energy and loss gives a reasonable

prediction of the mixed out loss, as observed in previous chapters.

Table 8.1 : Mass Averaged Results

JGC TEST CASE Experiment | MEFP | MEFP Turb + | MEFP Turb +
Turbulent | Lam Block A | Lam Blocks A+B
Loss (Slot 10) 0.182 0.323 0.280 0.254
- Midspan Loss (Slot 10) 0.097 0.248 0.184 0.176
= Gross Sec. Loss (Slot 10) 0.085 0.075 0.096 0.078
- Inlet (Slot 1) Loss 0.027 0.032 0.031 0.030
= Net Sec. Loss (Slot 10) 0.058 0.043 0.065 0.048
Secondary KE (Slot 10) 0.026 0.028 0.031 0.033
Sec KE + Loss (Slot 10) 0208 | 0.351 0.311 0.287
Mixed Out Loss 0.211 0.370 0.324 0.299
- Midspan Mixed Out Loss 0.100 0.264 0.191 0.185
= Gross Mixed Out Sec. Loss 0.111 0.106 0.133 0.114
- Inlet (Slot 1) Loss 0.027 0.032 0.031 0.030
= Net Mixed Out Sec. Loss 0.084 0.074 0.102 0.084
Midspan Mixed Out Angle -66.7° —69.2° —69.3° —69.3°

The fully turbulent run under-predicts the secondary loss. The other
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two runs which include laminar block A predict more secondary loss. This
is because the subtraction of proﬁle loss was correct for the turbulent run,
but leaves an extra secondary loss due to the growth of a turbulent suction
surface boundary layer within 40mm of the endwall for those runs which
included laminar block A. The best prediction appears to be produced by the
run with both laminar blocks A and B, although the degree of agreement is

probably slightly fortuitous. .

8.3 Calculation of Shear Stresses

"As it was shown in Chapter 6 that the turbulence modelling employed
within a solution can have major effects upon the quality of the secondary
flow predictions, it was considered desirable to compare the shear stresses
used by the code directly with experiment. The shear stresses applied to
the sides of control volumes are approximately in a streamwise coordinate
system, as the grid lines are intended to roughly follow the two-dimensional
flow direction. Thus shear stresses computed in hot-wire coordinates (which
are aligned with the midspan streamwise direction) should be similar to those
which are employed within the Navier-Stokes predictions. The Moore code
was thus made to dump out the eddy viscosity field calculated by the mixing
length turbulence model on the last iteration of each solution. With the aid of
the subroutine used in Chapter 7 to calculate eddy viscosities, and developed
by Gregory-Smith et al (1987), it was possible to calculate partial velocity
derivatives from the axial planes of data. The method uses bi-cubic spline
surface fits to determine gradients of velocity and stagnation pressure on a
traverse plane, and then uses the incompressible Helmholtz equation and the
continuity equation to find the axial gradients of velocity. The axial planes of

data were interpolated from the three-dimensional solutions, to correspond to

the axial traverse planes. The three Reynolds shear stresses (u'v/,u'w’,v'w’)

were then calculated from the equation:-

A ou; | oU;
L p (33:]- + B2, (8.1)

u,
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The first two stresses u'v’, and w/w’ may be directly compared with
the experimental results presented in Chapter 7. The third stress was not
measured experimentally, but was calculated for the predictions as it has been

found by Moore et al (1986) to be important for the secondary flows.

8.4 Standard Mixing Length Model Shear Stresses

Results of calculating the shear stresses at slot 5 (55% Cax) for the
three predictions usingb the mixing length turbulence model are presented in
Figure 8.9. The definition of the laminar blocks shows up in these plots,
with la;nliﬁa;r block A eliminating turbulence effects above approximately 10%
span from the endwall, and laminar block B within 1% span of the endwall.
Thesc distances may not be quite the same as those given in the definition
of the laminar blocks, as the eddy viscosities are stored within the Moore
code at cell centres, but had to be interpolated to cell corners for this
calculation of stresses. The turbulent run shows that significant w'v’ shear
stress is predicted by the mixing length model on the suction surface, but
that this is not effected by the secondary flow as the radial distribution is
almost uniform. In the runs with laminar block A, the shear stress only
appears within 55mm of the endwall, and so is allowed to contribute to the
secondary loss when the midspan loss is subtracted from the total loss. This
is certainly not a predictive capability of the code, and is the result of user
intervention. The turbulence model was left on in this region as it was felt
that the passage vorfex would probably cause more rapid development of the
suction surface boundary layer close to the endwall. However the modelling
does not produce much radial variation of shear stress (Figure 8.9(a)), and
thus the effect of laminar block A is to allow a poor prediction of thé suction
surface boundary layer to appear in the final solution as part of the secondary
loss. This effect shows up in the mass averaged results at slot 10, as can
be seen in the difference between predictions of the net secondary loss by
the turbulent run, and the run with laminar block A. There is a region of

positive uv' correlation near to the suction side of the passage. This agrees
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with the sign of the experimental measurements shown in Figure 7.11, but
does not capture the magnitude of this shear stress which is associated with
the passage vortex.

The uw' correlation may also be compared with experimental measure-
ments in Figure 7.11. A small negative region is located in the endwall/suction
side region of the passage in the turbulent run and the run with laminar
block A. Experimentally the -stress was measured as positive in this area, but
the modelling has not predicted the correct location of the passage vortex.
The run with laminar block B, allows larger over-turning to develop very close
to the endwall, and this appears to be encouraging the passage vortex to
migrate towards the suction surface/endwall corner as it is seen to do exper-
imentally. This also appears to be starting to convect the ww’ shear stress
onto the suction surface and is thus approaching a more realistic solution than
the other two predictions. Unfortunately, experimental data is not available
with which to compare the v'w’ predictions. A small area of negative v/w’
correlation is predicted by the turbulent run in the endwall/suction surface
corner. However, the run with laminar block B appears to have less of this
negative region, and instead is producing a small intense positive region on
the suction surface of the blade at about 15mm from the endwall. The
contours of eddy viscosity, show that this is associated with a peak in the
turbulent viscosity calculated by the mixing length model. It is surprising
that addition of laminar block A changes the eddy viscosities from those
present in the turbulent run, and this may be an indication of the sensitivity
of the calculation to small changes in the flowfield. However the turbulent
viscosities only reach values of 100 times the molecﬁlar viécosity. Calculations
of eddy viscosities from the experimental data downstrea,m‘of the cascade
showed peak values of 2000 within the loss core.

Results at slot 8 (97% Cax) are presented in Figure 8.10(a-1), and
may be compared with the experimental results in Figure 7.14. The /v’
correlation shows large negative values all over the suction surface. Whilst
these cannot be seen in:the experimental results, the sign is consistent with

a boundary layer on the suction surface, which the experiment did not
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approach closely enough to measure. These contours are related to the total
velocity magnitude contours shown in Figure 8.4(d-f). The region of negative
w'v’ in the suction surface/endwall corner was measured by the single wire
probe. However the general sign of ¥/v' in the loss core region was found
experimentally to be positive at slot 8. As discussed in Chapter 7, this is
a legacy of the strong cross-passage velocity gradient which exists upstream,
and the experimental shear stress is rapidly decaying towards values of the
opposite sign at slot 10. However at slot 8, a negative eddy viscosity would
be required to predict wv’, so the mixing length model could not be expected
to model this feature.

The wWw' correlation predicts a sign change across the suction surface
separation region of the correct sign, but the levels are much too low. Indeed
the model generally fails to identify the magnitude of the turbulent stresses
within the three-dimensional flow of the passage vortex. On the endwall, both
the runs which did not include laminar block B, predict significant negative
values of ww’. Whilst the sign is consistent with the growth of an endwall
boundary layer, the x-probe measurements which extended to 5mm from the
endwall, did not detect this feature. Thﬁs too much loss is probably being
produced on the endwall by both of these runs. However, the run with
laminar block B almost eliminates this shear stress, which is consistent with
the lower levels of secondary loss predicted by this run, than by the run with
only laminar block A.

The v'w' correlation shows generally positive values on the endwall.
This is consistent with a boundary layer growth from pressure to suction side
~of the passage. However this region is vefy thin and rapidly changes sign. On
the éuction surface negé.tive values exist in the region where the passage vortex
sweeps flow radially from the endwall. This is also consistent with a boundary
layer growing up the suction surface away from the endwall. However a region
of positive v/w’ is identified within the secondary flow. Whilst no experimental
measurements exist with which to compare this prediction, the model is clearly

indicating that the v'w' stress is the largest of the three shear stresses within

the passage vortex. Moore et al (1986) found this to be true in the flow
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downstream of their cascade, and showed that there the v/w’ correlation was
the largest contributor to loss production.

Contours of eddy viscosity, although still not identifying very large
values within the passage vortex, do show a peak in the suction surface
separation region. Also the two runs which do not include laminar block B,
show an area of high eddy viscosity on the endwall towards the suction side
of the passage. Although as-seen above, this results in rather large values of
w'w’, an increase in eddy viscosity in this region seems likely as the turbulent
kinetic energy contours (Figure 7.14) indicate increased turbulence activity.
The run with laminar block B eliminates this feature entirely. As discussed
ir;_(gi;;l.pter 7, z; laminar flow over a large proportion of the endwall on the
pressure side of the passage seems likely, but towards the suction side the
flow is generally turbulent. Thus allowing laminar block B to extend right
across the pitch, is a rather crude model of the endwall flow.

Results at slot 10 (128% Cax) are presented in Figure 8.11, and
may be compared with the experimental results in Figure 7.17. As the
calculation of velocity gradients did not force a repeating condition in the
pitchwise direction, the extension of the‘ data to cover the same range as
the experimental data has resulted in some problems for the contour plotting
routine. Thus in places the contours may seem slightly different in one
wake from those in the other. The wv' correlation shows reasonable values
within the wake, but this is aided by the prediction of too large a velocity
deficit in this region. None of the runs identify the magnitude of the stress
associated with the separated secondary flows. The ww’ correlation is confined
predominantly to the endwall region where it clearly indicates growth of an
endwall boundary layer across the whole pitch. The experimental valués may
possibly indicate that the stress extends a little too far from the wall, but
do not really approach closely enough to validate the predictions. Again the
mixing length model clearly identifies the v'w’ correlation as being the most
significant within the passage vortex. A clear sign change is evident across
the region where the passage vortices from neighbouring passages interact.

The positive band by the endwall which is predicted by the run with laminar
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block A, seems unlikely, particularly as the pitch averaged curves (Figure 8.7)
do not indicate it to have more over-turning in this region than the other two
runs. Hence this feature is thought to probably result from surface fitting
problems near to the endwall when calculating the partial velocity gradients.
This is supported by the fact that the eddy viscosities do not indicate any
larger values in this region for this run than for the other two.

The eddy viscosities may be compared with those calculated from
the experimental shear stresses and shown in Figure 7.23. The loss core is
obviously identified as a region of high eddy viscosity, but the peak values of
“about 150 do not approach those calculated from experiment which rise to
values of 2000 or more. The eddy viscosity is also too small within the wake.
This indicates the problem of using such a simple turbuience model within
such a complex flow. In some regions significant turbulence generation takes
place. In these areas the constants in the model would need to be adjusted
to produce realistic values of the eddy viscosity. However in other regions
the turbulence does not increase so much and so a modified turbulence model
would then over-predict the stresses there. Thus a model which solves a

turbulent kinetic energy transport equation becomes attractive.

8.5 Discussion of Mixing Length Model Results

The under-prediction of the turbulent stresses within the secondary
loss core by the mixing length model is consistent with t‘he‘ lowb rate of
decay of secondary kinetic energy doWnstream, which is seen in all the Moore
code predictions. Howe\}er, the loss growth curve is seen to rise fairly
realistically downstream. As it is known that a significant proportion of
the downstream loss growth results from the action of the turbulent stresses
within the secondary flow, this suggests that too much loss is being produced
by the mixing out of the wake and/or the growth of an endwall boundary
layer (numerical error is of course a third possibility, but it is felt that the
code has already shown itself to be sufficiently good at conserving stagnation

pressure to neglect this here). This is supported by approximately correct
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stress levels within the wake but larger velocity gradients there, and the
apparently large w/'w' in the endwall region. Thus it does not seem that the
modelling of loss development downstream of the cascade can be considered

to be realistic.

It is curious that the code has been shown to be capable of producing
reasonably good secondary loss predictions for this cascade. Publications have
also shown this for other cases. Moore (1985) produced good predictions of
loss in the Langston cascade, whilst Northall et al (1987) showed good results
for the annular cascade of Boletis (1984), which used the same blade profile
as that tested by Marchal and Sieverding (1977). Also Walsh (1987) found
that using a very crude calculation mesh, the relative change in secondary
loss due to skew in the inlet boundary layer was well predicted by the code.
It seems possible that this loss is a result of sweeping loss produced on the
suction surface (possibly by a slightly over-active boundary layer model) into
the main flow. The extent of this removal would then depend to some extent
upon the power of the passage vortex. If loss is rapidly swept away from the
suction surface in the secondary flow region, the increased shear will produce
new loss more rapidly. Thus subtraction. of the profile loss from the overall
loss downstream of the cascade, will appear to leave some extra ‘secondary
loss’. Indeed this may be a reasonable model of some of the real effects
which are present. It is possible that a significant proportion of secondary
loss results from the passage vortex introducing high velocity fluid close to the
suction surface, and thus increasing the shear in part of the blade boundary
layer. However the experimental data presented here cannot validate this
suggestion. It would clearly be helpful to know 'vthe rate at which loss is
being produced by the stresses within the passage vortex. As discussed in
Chapter 7 this would require a total pressure traverse at slots 5 and 8. It is
possible that the net effect of the stresses within the experimental shear flow
is almost zero, which would help to explain the apparently good secondary
loss predictions. However if this is the case, it must surely be due to a
fortuitbus combination of effects, and the generality of a model which fails to

identify the true physical processes must then be questioned.
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8.6 One Equation Turbulence Model

The Navier-Stokes solver which is tested here, is continuously being
developed. One of the directions in which progress is being made, is in
the application of more sophisticated turbulence models within the solution
procedure. Birch (1989b) has given a thorough account of the models currently
available. At present these are all still limited by a Boussinesq eddy viscosity
hypothesis, but the new modéls use the Prandtl-Kolmogorov formula to relate

the eddy viscosity to the turbulent kinetic energy and a length scale via:-

vr = K3l (8.2)

Here K is the turbulent kinetic energy, and [ is a length scale proportional to
that of the energy containing motions. In a one equation model, a transport
equation is solved for the turbulent kinetic energy, and the length scale is
specified algebraically. In Birch’s one equation model the turbulent kinetic
energy formula takes the form:-

DK 8 0K ou; (8U;  oU; Cy K
Dt~ Oz [(V+ VT)arcj]JrVT [81:,— (c%j + ax,-)] —[CZVT + 03”] 7 (8:3)

where vr is the eddy viscosity and C;, Ci, C3 are constants.
Birch also uses a damping factor to help with near wall effects, so

that the eddy viscosity is calculated from the formula:-
. canichy -
vp = Co K2l |1 —e™ 7 v } ’ (8.4)

where Cy is also a constant, and n is the distance to the nearest wall.
The dissipation length scale is then specified algebraically. In c_er-er.
to account for tranmsition, a constant in the definition of ithe -'diss.ipé,tion
length is adjusted according to the maximum turbulent kinetic energy within
the boundary layer. This is an importa.n;c consideration in turbomachinery
applications, where blade boundary layers may often be transitional. Beyond
any identifiable boundary layers, the mixing length is adopted as the dissipation
length scale, and calculated in the same way as that for the mixing length

model described in Chapter 3 and 6.
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8.7 One Equation Turbulence Model Mean Flow Results

The one equation model has been run on the coarse calculation mesh
for the ‘JGC’ test case. Results at slot 5 (55% Cax) are presented in Figure
8.12(a-f). The static pressure contours indicate the strong cross-passage
pressure gradient that exists within the blade passage. This is also evident
in the total velocity contours. Comparing these with experimental results
in Figure 7.11, good agreement is observed, although the suction surface
boundary layer is perhaps slightly thicker in the modelling. The yaw angle
contours again show the 5° discrepancy which was observed with the mixing
length results. The over-turning near to the endwall is reasonably modelled,
but the pitch angles are clearly inaccurate. This is because the passage vortex
is unrealistically located at mid-passage. The loss contours are similar to
those predicted by the mixing length model, except that the suction surface

boundary layer is clearly thicker here.

Results at slot 8 (97% Cax) are presented in Figure 8.13(a-f). Here
the static pressure contours clearly indicate quite a weak passage vortex
and are rather reminiscent of the type of results obtained with version 5 of
the Moore code which incorporated an earlier version of the mixing length
model (Figure 6.7(d)). The yaw angle contours are reasonable, but do not
capture the under-turning at 60mm from the endwall which appears in the
experimental results (Figure 7.14). It can also be seen that the pitch angle
contours are in poor agreement with experiment. The secondary velocity
vectors do not predict enough convection of the passage vortex, which has
been seen previously (Chapter 6) to be a characteristic feature of an over-
active turbulence model. Also thev loss contours and total velocity magnitude

contours indicate that the suction surface boundary layer is rather too thick.

Pitch averaged results at slot 8 are presented in Figure 8.14. The
results of another run, using a K — ¢ turbulence model are also shown, but
should be ignored here as they will be discussed later. The yaw angle plot
shows that the one equation model is failing to predict the radial migration

of the passage vortex. The loss curve indicates that the one equation model

153



produces a similar level of midspan loss as the fully turbulent mixing length
run (Figure 8.5). However the secondary kinetic energy at 55mm from the
endwall is not captured by the one équa,tion model.

Results at slot 10 (128% Cax) are presented in Figure 8.16(a-f) and
may be compared with five hole probe results in Figure 7.5 and hot-wire
anemometry results in Figure 7.17. The static pressure contours indicate
little variation over the flow area, which is supported by the rather weak
passage vortex. The yaw angle contours fail to identify the under-turning
peak properly, but do not show the same magnitude of variation of yaw
angle within the wake as was apparent in the mixing length model results
(Figurre 8.63. The pifch anélesiare rather u11re$listic, in kéeping with the poor
prediction of the passage vortex. The loss contours show the blade wake to
be too wide, and contain too much loss. However, the depression in velocity
magnitude within the wake is better modelled by the one equation model
than it was by the mixing length model (Figure 8.6).

Pitch averaged results at slot 10 are presented in Figure 8.16. The yaw
angles again show some discrepancy at midspan which is probably associated
with trailing edge modelling problems. Aiso it is clear that the prediction of
the over and under-turning is not very realistic. The loss plot shows that
too much profile loss is predicted by the one equation model, but that this
is no worse than results obtained with the mixing length model and laminar
block A. However, if the over-prediction of profile loss is subtracted from all
points then thé secondary loss core can be seen to be too small, as is the
loss produced on the endwall. ,Al‘so the secondary kinetic energy is rather
unrealistic, predicting too much near to the endwall, and not enough a,f 75mm
radially. |

The mass averaged loss and secondary kinetic energy for the one
equation model and experiment are plotted in Figure 8.17. The model
predicts a smooth growth of loss through the cascade with a large jump
across the trailing edge. Downstream the loss does not grow very rapidly,
which is probably related to the lower loss production observed on the endwall

in the pitch averaged plot at slot 10 compared with the mixing length model.
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The overall loss appears to be comparable to that produced by the mixing
length model with laminar block A, which is encouraging since no specification
of transition had to be included here. However the secondary kinetic energy
is too small, and might be considered similar to results obtained with version
5 of the program with an earlier version of the mixing length model (Figure

6.10).

Mass averaged results at slot 10 (128% Cax) are presented in Table
8.2 together with the five hole probe measufements, and the results of a
run using a K — e turbulence model to be discussed later. "Thé results in
Table 8.2 indicate that although the one equation model predicts too much
loss, most of this is profile loss, and the prediction of secondary loss is too
small by a factor of 50%. This is most surprising, given the good secondary

loss predictions which have previously been obtained with the mixing length

model.
Table 8.2 : Mass AQeraged Results
JGC TEST CASE Experiment MEFP One MEFP K — ¢
Equation Model Model
Loss (Slot 10) 0.182 0.272 0.378
- Midspan Loss (Slot 10) 0.097 0.212 0.268
= Gross Sec. Loss (Slot 10) 0.085 0.060 0.110
- Inlet (Slot 1) Loss 0.027 0.036 0.031
= Net Sec. Loss (Slot 10) 0.058 0.024 0.069
Secondary KE - (Slot 10) 0.026 0.015 0.010
Sec KE + Loss (Slot 10) 0.208 0.296 0.388
Mixed Out Loss 0.211 0.297 0.399
- Midspan Mixed Out Loss 0.100 0.219 0.274
= Gross Mixed Qut Sec. Loss 0.111 0.078 0.125
- Inlet (Slot 1) Loss 0.027 0.036 0.031
= Net Mixed Out Sec. Loss 0.084 0.042 0.094
Midspan Mixed Out Angle —-66.7° -68.7° -69.0°




8.8 One Equation Turbulence Model Reynolds Stresses

The shear stresses have been calculated from the one equation model
solution, using the method described in section 8.3. Figure 8.18 (a-e) presents
results at slot 5 (55% Cax). These may be compared with the experimental
results in Figure 7.11, and the mixing length model results in Figure 8.9.
The u/v' correlation shows some negative values near to the suction surface as
would be expected for the boundary layer flow. These values are rather less
than those predicted by the turbulent mixing length model run. However,
the one equation model also predicts positive values beyond the suction
surface boundary layer, due to the cross-passage velocity gradient. These are
unrealistically large, and extend right across the span. The model also fails to
identify the intense shear stress within the passage vortex that was observed
experimentally. The u"w’ correlation predicts some negative values at about
mid-pitch on the endwall. This is consistent with the growth of an endwall
boundary layer. Also the v'w’ correlation shows positive values immediately
next to the endwall, but these rapidly change to negative values further
away. Again the activity is centred at mid-pitch, whereas experimentally
the turbulence activity was found to be confined to the suction side of the
passage. The turbulent viscosity can be seen to attain appreciable levels
on the whole suction side of the passage, and it is these that result in the
significant w/v’ correlation predictions in this region. Also a peak is identified

with the passage vortex, but this is centred very much at mid-passage.

The turbulent kinetic energy shows that the one equation modei
is predicting too much turbulence on the suction surface. This is probabiy
because the strong curvature and aééelefation within the bla‘dev passége interact
selectively with particular components of the Reynolds stress tensor to promote
anisotropy. In pé,rticular the streamwise normal stress will act to convert
turbulent energy to mean flow energy, which may explain why the omne
equation model is over-predicting the suction surface turbulence. Also some
turbulent kinetic energy is associated with the passage vortex, but this does

not approach the levels which are generated within the real secondary flow.
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Results at slot 8 (97% Cax) are presented in Figure 8.19(a-e). These
may be compared with the experimental results in Figure 7.14, and the mixing
length model results in Figure 8.10. A large suction surface boundary layer
is now in evidence and is associated with significant negative w'v’ correlation.
This is not too much greater than the levels which are predicted by the fully
turbulent mixing length run. However the one equation model also predicts
some significant w'v’ correlation near to the pressure surface. The values
very near to the surface are positive, in keeping with a boundary layer flow.
However just beyond this boundary layer significant negative values appear.

The W correlatipn shows very little activity, even on the endwall
which explains the lower endwall loss growth observed in the pitch averaged
plots. This is probably more realistic than the mixing length model results.
The one equation model also identifies significant v'w’ correlation with the
passage vortex on the suction side of the passage. In this respect it is in
reasonable agreement with the mixing length model results. The turbulent
viscosity indicates fairly uniform activity over the flowfield, and does not
identify any significant peak with the passage vortex. This is also shown by
the turbulent kinetic energy contours which do not identify the turbulence
generation which has occurred within the secondary flow.

Results at slot 10 (128% Cax) are presented in Figure 8.20(a-e) which
may be compared with Figure 7.17 and 8.11. The 4+’ correlation shows a
similar level of activity within the wake to that predicted by the mixing length
mode_l with turbulent flowfield, and this is reasonably realistic. However the
ww' correlation shows much lower values on the endwall than -weré pbse~rved
from the mixing length model. The experiment does not approach the endwall
closely enough to validate this prediction, But as discussed earlier, the mixing
length values were thought to be too large. However the high shear stress
values which are associated with the passage vortex are not captured by
the modelling. The vw' correlation is something of an exception to this.
Although the real values might be much higher, significant levels of v'w’ are
predicted by the one equation model and these are clearly associated with

the secondary flow. The turbulent viscosity rises to a peak of 250 times the
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laminar viscosity in this region. This does not compare with the magnitude
of turbulent viscosities within the secondary flow which were calculated from
the experimental measurements (Figure 7.23), but the values within the wake
appear reasonable. It is interesting to see that the turbulent kinetic energy
is over-predicted within the wake. Gregory-Smith et al (1988) found that the
wake turbulence dissipated rapidly downstream of their cascade, and the levels
measured here (128% Cax) are quite low. Examination of the prediction at
slots 9 and 11 shows that the model does predict dissipation of the wake
turbulence so that by slot 11 (152% Cax) the predicted levels are similar to
those measured at slot 10 (128% Cax). Despite this high wake turbulence, the
model again fails to identify the turbulence levels within the three-dimensional

separated flow of the passage vortex.

8.9 Discussion of One Equation Turbulence Model Results

Clearly the one equation model requires further development if it
is to improve upon results obtained with the mixing length model. One
encouraging aspect of the model is its traﬁsition modelling capability, and the
profile loss predicted by it is between that obtained from the mixing length
model with a fully turbulent flowfield, and with laminar block A (Figure
6.2(a)). However the one equation model does not identify the turbulent
kinetic energy production within the passage vortex, and generally produces
too much turbulent viscosity over the flowfield. The model may benefit from
adjustment of constants based upon experience -with test cases such as this
one. Birch (1989b) has also suggested that it be modified to cope with the
effects of streamline curvature. This seems very importanf, particulé:rly‘if the
model is to be used on a wide variety of blade types.

The observed inaccuracy of the one equation model in predicting
secondary losses is interesting. In previous experience with the mixing length
model it appeared that the secondary loss was generally reasonably well
modelled. However looking back to the first two runs which used version 5

of the Moore code (Figure 6.10), it can be seen that the loss remains almost
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constant up to 80% of axial chord in the ‘laminar’ run. This was because
the only region in which the turbulence model operated in this run was in
the blade boundary layers from 80% axial chord to the trailing edge, and
in the blade wake. Yet this run still managed to produce good secondary
loss predictions (Table 6.1). This indicates that the mixing length model
produces a large proportion of its secondary loss through the interaction of
the passage vortex with the suction surface boundary layer in the final 20% of
axial chord, and by interaction of neighbouring passage vortices downstream
of the trailing edge. Some support for this is provided by the shear stresses
presented in Figures 8.9 and 8.10. At slot 5 (Figure 8.9) the shear stresses
within the suction surface flow are vir?u'ally unaffected by the passage vortex.
By slot 8 however (Figure 8.10) significant distortion of the w'v' correlation
by the secondary flow is clear. It could be that the one equation model
is over-damping the turbulence in the near-wall regioﬁ, thus preventing the
secondary flow influence on the flow in these areas from having so much
effect. There certainly seems to be cause for some concern, when changing
the turbulence model can lead to such large changes in the predictions of

losses.

8.10 k — ¢/Mixing Length Hybrid Model

Instead of specifying the dissipation length scale ! algebraically, as is
the case in the one equation turbulence model, a separate transport equation
may be solved for it. As the turbulent kinetic energy K is alrea.dy beixig
solved for, the second equation may solve for any K°l* where a and b are
constants. At high turbulence Reynolds nurﬁbers the energy dissipation rate,

€, 1s given by:-

i

€ = —l—' . (85)

hence many two-equation models solve for ¢ and are thus known as K — ¢
models. The restriction of high turbulence Reynolds number means that the

model does not perform well near walls. Although versions of the K — ¢
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mode] exist which are intended to extend right up to the wall, the gradients
of K and ¢ become very steep, and thus require a large number of grid
points to be adaquately represented in a discretised solution procedure. This
is very expensive in three dimensions, and thus it becomes desirable to use
a separate model for the flow close to the walls.

In the model tested here, which is described by Birch (1989b), the
standard mixing length model is employed within the boundary layers. Clearly
there must be some interface between the grid cells in which the K — ¢ model
is used, and those in which the mixing length model operates. This is allowed
to vary as the calculation proceeds, and is based upon a turbulence Reynolds
number as defined by:- _

R =—" (8.6)

where n 1s the distance to the nearest wall. In the solution presented here,
the boundary was set so that the K — ¢ model operated when R, exceeded
a value of 400. Boundary conditions are also set at the interface to ensure
a continuous eddy viscosity, and local equilibrium such that the dissipation
rate €, matches the rate of turbulence production.

The standard high Reynolds number K — ¢ model equations are then

used:-

DE _ 9 [(u + E) BK] 0, 00 [6@? + aﬁj] —€ (8.7)

Dt — 9z ox/ 0x; VTazj Oz; O,

and

De 0 vr\ Oe € av; [oT; = oT; 2
Dt s, [(V * Uf> 3‘”1’] TG (K) VT@:E,’ [339;' * Bmi] -G (?) (8.8)

where ok, o, C;, C, are constants. The Prandtl-Kolmogorov formula

(equation 8.2) is then used with equation (8.5) to express the eddy viscosity

in terms of K and e

8.11 Results of a k — ¢/Mixing Length Hybrid Model Run

The hybrid K — ¢/mixing length model has been run on the coarse

calculation mesh for the ‘JGC’ test case. As the mixing length model operates
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within the blade boundary layers, they were forced to be laminar up to 80%
of axial chord beyond 10% span from the endwall (this is like laminar block
A, except that the K — ¢ model operates away from the boundary layers).

Results at slot 5 (55% Cax) are presented in Figure 8.21 which may
be compared with the experimental data in Figure 7.11, and the one equation
model results in Figure 8.12. Generally the mean flow results appear similar
to those obtained with the one equation model and indicate a weak passage
vortex centred at mid-passage. This results in unrealistic pitch angles. The
yaw angles aga,in indicate a discrepancy with the experiment results, and this
has been found in all the MEFP predictions at slot 5. The turbulent blade
boundary layer within 10%7 ;I-m,n, is—cléarly evident m the loss contwo;t;r_srwhiclfl
also indicate that the inlet boundary layer has been swept to the suction side
of the passage.

The predicted turbulence quantities may be compared with results of
the one equation turbulence model in Figure 8.18, the mixing length model
in Figure 8.9, and the experimental results in Figure 7.11. The results are
quite remarkable. The turbulent viscosity contours immediately indicate that
the k£ — ¢ model is predicting significant turbulence generation within the
secondary flow. The turbulent kinetic energy contours show that the model
is predicting approximately the correct level of turbulent kinetic energy, and
even possibly too much. This is in sharp contrast with the results of the
one equation model which failed to identify this feature. The prediction of
significant eddy viscosity then has a significant impact upon all the shear
stresses. The wv’' correlation shows the negative values within the suction
surface boundary layer which are predicted by the mixing length model.
Beyond this however, there is significant positive w/v/ correlation. 'This is
in agreement with the experiment, but indicates rather too large an area to
be associated with these high values with the stress not being confined as
closely to the endwall/suction surface corner as it is in the experiment. The
uw'w' correlation shows negative values on the endwall which is consistent with
the growth of an endwall boundary layer. This does not however fit the

experimental observation of mainly positive values down to 5mm from the
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endwall. Also the v’ correlation is predicted to have a large effect right
across the pitch and this is strongly linked to the passage vortex. The one
equation model also detected some of this feature, whereas the mixing length
model had much less v’ at this stage. In particular the run with laminar
block B almost eliminated it. It could be that this stress is keeping the
passage vortex from migrating in the one and two equation model solutions.

Results at slot 8 (97% Cax) are presented in Figure 8.22(a-k) which
may be compared with the experimental results in Figure 7.14. The static
pressure contours are quite similar to those predicted by.the one equation
model (Figure 8.13) except that here there is generally lower static pressure
over the axial élane. 7 The pa,ssﬂageA vortex_ and yawiand pitch—angles also
look ;rery similar to those predicted by the one equation model, and show
the vortex to be rather weak, and ‘glued’ to the endwall in a way which is
becoming a familiar indication of over-active turbulence modelling away from
the boundary layers. However, the total velocity magnitude contours and the
loss contours indicate larger peaks where the passage vortex separates from
the suction surface.

The turbulent viscosity again shons higher values within the secondary
flow than have been detected by the other models. The turbulent kinetic
energy identifies a peak in the region where the passage vortex separates from
the suction surface and the general distribution appears to be good. Another
peak in turbulent kinetic energy is predicted in the endwall/suction surface
corner, and is clearly associated with the passage vortex separation from
the endwall. This was observed in the experiment, but the predicted level
appears to be too high. A similar feature is predicted in the endwall/pressure
surface corner due to separation of the passage vortex from the pressure
surface. This feature was not detected experiméntally, although Marchal and
Sieverding (1977) did observe a small counter vortex in this region. Also
generally higher turbulence levels appear to be associated with the pressure
surface than were observed experimentally.

The shear stresses generally agree in sign and location with predictions

by the other models, but show larger values due to the larger predictions
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of turbulent viscosities. In particular significant w'v' correlation is associated
with the suction surface boundary layer, significant ww' correlation with the
endwall boundary layer, and large v'w’ correlation with the passage vortex.

Figure 8.23(a-k) presents results at slot 10 (128% Cax) which may be
compared with the experimental results in Figures 7.5 and 7.17. The static
pressure indicates little variation over the axial plane, and this is unrealistic,
although a similar result was obtained with the one equation model (Figure
8.15). The yaw and pitch angles indicate rather less secondary flow than
was measured experimentally or predicted by any of the other runs. This is
confirmed by the rather weak passage vortex shown by the secondary velocity
vectors, which has clearly not been convected to the correct location. The
loss contours indicate too much loss within the blade wake, and indeed also
have some loss in areas which would be expected to be governed by potential
flow. However more loss appears to be associated with the secondary flow
than was the case in the one equation model run (Figure 8.15). The total
velocity magnitude contours indicate similar results to the one equation model,
and in particular predict less velocity deficit within the blade wake than the
mixing length model (Figure 8.6). However, in general the secondary flow
prediction is not of such high quality as that produced by the mixing length
model.

The turbulent kinetic energy contours indicate that the & — ¢ model
is predicting too much turbulence within the wake. The one equation model
also showed this (Figure 8.20) but examination of the predicted results at
slots 9 and 11 shows that the K —¢ model initially predicts much higher levels
than the one equation model. However, it also dissipates these more rapidly,
so that the levels predicted by the two models at slot 11 are comparable.
It has been shown experimentally by Gregory-Smith et al (1988) that the
wake turbulence dissipates rapidly, whilst the levels within the secondary flow
remain. Since the turbulence levels within the wake are predicted to be
quite high by the K — ¢ model, the levels within the secondary flow region
are also large. However the high turbulence region which is associated with

the secondary flow is not as large as that measured experimentally (Figure
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7.17) which suggests that either the production is under predicted, or the
dissipation is over predicted, within the secondary flow downstream of the
cascade. However the prediction of secondary flow turbulence is superior
to that produced by the one equation model (Figure 8.20). The turbulent
viscosity indicates slightly higher levels within the wake than those predicted
by the one equation model (please note that the contour intervals here are
different from those employed in the plot of experimental results in Figure
7.23), and reaches higher levels than any of the other models within the
secondary flow. However the location of this high turbulent viscosity is a
little suspect, although it is possible that if the v'w’ stress had been measured
“experimentally, it might have suggested high eddy viscosity in this region. °

As a result of the high turbulence within the wake the v/ correlation
is over-predicted there. However high positive /v’ is also associated with the
secondary flow which is more realistic. The negative values within the loss
core are not well modelled however. The uww’ correlation, which is generally
the least active of the three, shows negative values on the endwall, indicating
the growth of a boundary layer there. The localised intense values within
the secondary flow are not predicted. The v'w’ stress again predicts large
values associated with the secondary flow. These values are larger than those
predicted by any of the other models tested here, and there is clearly a need

for experimental measurements with which to validate them.

8.12 k — ¢/Mixing Length Hybrid Model Mass Averaged Results

. Pitch averaged results at slot 8 are presented in Figﬁre 8.14 together A
with the results from the‘one equation model, and the experimental hot-wire
measurements. In terms of yaw angle and secondary kinetic energy, the two
turbulence models perform fairly similarly, and both fail to identify the under-
turning peak at 55mm from the endwall. However the K — ¢/mixing length
model clearly predicts more loss than the one equation model in the secondary

flow region. This correlates moderately well with the experimental turbulent

kinetic energy curve, which is a reasonable indicator of loss distribution.
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The pitch averaged results at slot 10 (Figure 8.16) indicate that the
K — ¢/mixing length hybrid model is predicting even less secondary flow than
the one equation model at this stage. Both the runs are predicting too
much profile loss, but if this is subtracted at all radial points, the hybrid
model is producing more secondary loss than the one equation model. The
one equation model indicates more secondary kinetic energy than the hybrid
model, particularly on the endwall, which is probably because of its lower
prediction of the shear stresses there.

The growth of loss and secondary kinetic energy for the one equation
model, the hybrid K — ¢/mixing length model, and experiment is shown in
Figure 8.17. Clearly both models pred_ict too little seéondafy kinetic energy,
with the hybrid K —¢/mixing length model performing slightly worse in this
respect. The hybrid model also predicts much more loss than the one equation
model. However much of this is produced across the trailing edge and is
associated with problems with the mixing length model in this region. The
one equation model clearly does much better in this respect. Generally the
losses up to slot 6 produced by the hybrid model (with laminar blades up to
80% axial chord and beyond 10% span) are less than those produced by-the
one equation model. Thereafter the hybrid model (and probably the mixing
length part of it) produces loss more rapidly. Also downstream it is clear
that the hybrid model predicts more growth of loss than the one equation
model. This is probably associated with the largerv shear stress observed on

the endwall, and the associated growth of an endwall boundary layer.

8.13 Conclusions

Mass averaged quantiﬁes are presented in Table 8.2 for the K —
¢/mixing length model, and the one equation model. It can be seen that
although the K — ¢/mixing length hybrid model over-predicts the loss, most of
this appears as profile loss and the prediction of secondary loss is reasonable.
In particular, comparing with the results of the mixing length run with

laminar block A in Table 8.1, it can be seen that the predictions of net
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secondary loss are very similar. However less mixed out secondary loss is
predicted by the K — ¢/mixing length model, as the secondary kinetic energy
was under-predicted by it. Thus it might seem that the shear stresses within
the secondary flow have had a relatively minor effect compared with those in
the boundary layers. Also experience with the mixing length model suggests
that it produces most secondary loss within the suction surface boundary
layer in the final 20% of axial chord. Unfortunately it is not possible to
validate this model with the data available here, and further experimental
work 1s required.

Generally however, the results of the K — ¢ calculation appear to be
“encouraging. The two transport equations succeed in _Ez;.pturiﬁg more of the
secondary flow turbulence behaviour than either of the other models tested
here. The quality of the secondary flow prediction is clearly impaired by
the one equation model and the K — ¢ model. However this should not
be considered to be too discouraging as results in Chapter 6 showed similar
behaviour with an earlier version of the mixing length model. The mixing
length model thus benefits from its longer period of implementation, and
correspondingly finer tuning. It seems that a combination of the K - ¢
model for the separated flows, with a one equation model for the boundary
layers, could eventually capture more of the flow physics than the mixing
length model and thus be correspondingly more generally applicable. However
the one equation model needs to be carefully validated before being used to
replace the Vmi-xing length model. A treatment of the effects -of streamline
curvature within the one equation model seems almost essential for suction
surface boundary layer calculations. This might also be a general problem
resulting from the use of a Boussinesci eddy viscosity hypothesis within a
highly curved channel. The validity of such an isotropic assumption is highly
questionable in these circumstances. Leschziner (1989) suggests that such
flows should be modelled with a Reynolds stress model. However he admits
that the use of such models within three-dimensional flows is still in early
days, and that the development of good turbulence models is likely to be

slow, thus retarding the progress of CFD as a truly predictive technique.
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@ Hot-Yire Anemometry Measurements.

® MEFP Turbulent + Laminar Blocks A+B, Mixing Length Model.
¥ MEFP Turbulent + Laminar Block A, Mixing Length Hodel.

# MEFP Turbulent Flowfield, Mixing Length Model.
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@ Hot-Yire Anemometry Measurements.

® MEFP Turbulent + Laminar Blocks A+B, Mixing Length Model.
3 MEFP Turbulent + Laminar Block A, Mixing Length Hodsl.

@ MEFP Turbulent Flowfield, Mixing Length Madel.
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¢ Five Hole Probe Measurements.

® MEFP Turbulent + Laminar Blocks A+B, Mixing Length Hodel.
3 MEFP Turbulent + Laminar Block A, Mixing Length Model.

s MEFP Turbulent Flowfield, Mixing Length Model.
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@ Five Hole Probe Measurements.
g MEFP Turbulent + Laminar Blocks A+B, Mixing Length Model.
% MEFP Turbulent + Laminar Block A, Mixing Length Model.

@ MEFP Turbulent Flowfield, Mixing Length Model.
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o STATIC PRESSURE COEFFICIENT
CONTOUR INTERVALS 0.2

One Equation Turbulence Model Resulets (Turbulent Flovfield)

b YAY ANGLE CONTOURS
CONTQUR INTERVALS 5.0 DECREES

c PITCH ANGLE CONTOURS

06 CONTOUR INTERVALS 5.0 DEGREES
1 t 3620 10 ¢+ 00 ) 1 1 1 1 ) 1 ) 1 1 1 s N 1 1 ' 1 ) 1
| ' 1 1 P.S. . .
1o | - ' P.S el S. S ’wo P.S. ol S. S P.S.
[ 1 / °
[ |
120 ¢ ! : ) 1204 120 ©
) 1
g
100 + 1 t 100 + 100 4
po! |
L
80 + 1 " \ 80 ¢ 8 4
vy \ o
1 \ -60
& 1 | 1 ] &0
SR
) ! \
40 v ! \ 40 ¢+ &0
[ S
vy \
20 l } ‘\ 1 20 20 |
] !
| \\
) J [ Lo 0 @T\ s
N N . + . . N
-20 0 20 40 &0 80 100 120 140 -20 0 20 40 60 80 100 120 140 -20 0 20 40 &0 80 100 120 140
d TOTAL PRESSURE COEFFICIENT o SECONDARY VELOCITIES f TOTAL'VELOCITY MAGNITUDE
CONTOUR INTERVALS 0.2 —+—  VECTOR SCALE 20 HETRES/SEC CONTOUR INTERVALS 2.0 W/S
R ) ' ' o t ' ' [ TR L 1 1 130 70 10 '
LIS P.S. S. § P.S. 5.8 P. 5
140 ¢ 0-0 1o { 1w L
1201 120} 120 4 ,
100 + 100 + 100 +
1 .
80 i 80 &0 J(
&0 t &0 0 4
1t 2 7 A e = e N NN Y Y ()
& 4 y 40 40 1
20 ¢t 0:2 . 20 20 4 ’/’(
0 |§&\—/\ — : 0 0 //
20 0 20 4 60 80 100 120 140 20 0 20 40 60 8 106 120 180 20 0 20 4 0 8 100 120 140
FIGURE 8,12 (a-f) s Area Plots For Slot S



One Equation Turbulence Modal Results (Turbulent Flovf H@id)
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& Hot-Y1re Anemometry Measurements.
3¢ K-Eps1 lon/Mix1ng Length Hybrid Turbulence Model Results.
¢ One Equation Turbulence Model Results.
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One Equation Turbulence Model Results (Turbulant Floufiaid)
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® Filve Hole Probe Measurements.
3¢ K-Epsilon/Mixing Length Hybrid Turbulence Model Results.
£1 One Equation Turbulence Model Results.
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® Experimental Measurements.
3t K-Eps1lon/Mixing Length Hybrid Turbulence Model Results.
g One Equation Turbulence Model Results.
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One Equation Turbulence Model Resultg (Turbulent Flowfield)
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K-Epsi lon/Mixing Length Hybrid Turbulence Model Results
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K-Epsi lon/Mixing Length Hybrid Turbulence Hodel Results
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K-Epstlon/Mixing Length Hybrid Turbulencs Model Results
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Chapter 9

Discussion

9.0 Imtroduction

This chapter presents a discussion of the experimental and modelling
results presented in this thesis, with the aim of providing a coherent view of

the conclusions which may be derived from them.

9.1_Experimental Results

Some additional pressure probe traverses of the flow in the Durham
turbine cascade without a turbulence grid (‘JAW’ test case) have been made
to add to the data presented by Walsh (1987). A traverse at slot 7 (87% Cax)
revealed the secondary loss core just becoming detached from the endwall. The
loss contours show that high losses form in the region where the passage vortex
separates from the suction surface, and also in the suction surface/endwall
corner where a counter vortex forms. The mass averaged losses show that
rapid loss generation occurs in the final 20-30% of axial chord, which is in
accord with the results of other workers (e.g. Langston et al (1977)).

Traverses at slots 9 (116% Cax) and 11 (152% Cax) coupled with
Walsh’s traverse at slot 10 (128% Cax), provide detailed information concerning
the flow development downstream of the cascade. These results show that
as the flow proceeds downstream, the static pressure over the traverse plane
becomes more even, and the high loss zones mix with the surrounding fluid to
become broader and less intense. The over-turning on the endwall is observed
to become less severe due to the growth of the counter vortex situated between
successive passage vortices, which has its origin in the suction sﬁrface/endwa,ll
corner. In contrast the under-turning further away from the endwall remains
fairly constant as the flow proceeds downstream. Radial velocities however
reduce considerably, due to the interaction between passage vortices from

successive passages.
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The mass averaged secondary kinetic energy is observed to decay
steadily downstream of the cascade, and the mixed out loss (calculation
described by Moocre and Adhyc {1985)) is well represenied by the sum of loss
and secondary kinetic energy at a given axial plane. Also the mixed out
secondary loss is observed to reduce slightly as the flow proceeds downstream.
This suggests that the normal Reynolds stresses could be acting to produce
mean flow energy from turbulent kinetic energy, thus offsetting some of the
turbulent deformation work, and the reversible pressure work term described
by Moore et al (1986) is acting to convert secondary kinetic energy to primary
kinetic energy. The sum of these two mechanisms must then be sufficient to
exceed slightly the rate at which the growth of an endwall boundary layer is
producing extra loss.

Measurements have also been presented of the flow in the same turbine
cascade, but with a turbulence generating grid mounted upstream (‘JGC’ test
case). The results show that changing the inlet freestream turbulence intensity
from 1.4% to 4.5% promoted earlier transition of the suction surface boundary
layer. This eliminated the laminar separation bubble which had previously
been observed on the suction surface, leading to slightly increased profile loss.
However the effect of the change in inlet freestream turbulence level upon the
development of the secondary flows and losses was found to be very small.
This may be because the secondary loss core fluid originates in the endwall
boundary layer at inlet to the cascade, where the turbulence levels are likely
to be less effected by the freestream intensity. Also significant turbulence
generation occurs within the secondary flow, leading to much higher turbulence
levels than those present in the freestream.

The introduction of the turbulence grid also resulted in a thinner
endwall boundary layer at inlet to the cascade. This was because a ‘jet’
flow occurred near to the endwall through the turbulence grid, which was
then slowed by growth of the endwall boundary layer to yield the observed
profile at inlet. The thinner inlet boundary layer was found to result in less
secondary kinetic energy generation within the blade row. However, apart

from this, the secondary flows and losses were remarkably unchanged by the
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different inlet conditions.

Slightly less secondary loss was observed in the ‘JGC’ test case. This
may seem surprising at first sight, but could result from the way in which
secondary losses are calculated, by subtracting the midspan loss and inlet loss
from the total loss measured downstream. Since the higher inlet turbulence
promoted earlier transition of the suction surface boundary layer, more ‘profile
loss’ was subtracted from the total loss measured at slot 10 in the ‘JGC’ test
case. The separation line running up the suction surface divides it into a
region in which a two-dimensional boundary layer grows, and a region which
is swept by the passage vortex. This latter region 1s then in contact with
highly turbulent fluid, and thus the growth of a turbulent suction surface
boundary layer is likely to start earlier below the passage vortex separation
line, than it does above it. Any additional loss resulting from this over and
above the undisturbed suction surface boundary layer loss, is then accounted
for as secondary loss,

Despite the similarity between secondary losses measured at slot 10 for
the ‘JAW’ and ‘JGC’ test cases, the mixed out secondary loss was observed
to be smaller in the latter case. This was because the thinner inlet boundary
layer profile resulted in the generation of less secondary kinetic energy to be
mixed out. Thinning of the endwall boundary layer also resulted in a smaller
horseshoe vortex, situated closer to the leading edge. The fact that the
secondary flows and losses remained largely unchanged despite this, suggests
that the horseshoe vortex is not a very significant factor in the process of
passage vortex generation.

Hot-wire anemometry traverses of the flowfield with a turbulence grid
placed upstream of the cascade (‘JGC’ test case) showed that high turbulence
levels are associated with the secondary flow. Comparison with the results
of Gregory-Smith et al (1988) reveals similar levels, which suggests that the
higher inlet turbulence in this test had little bearing upon the turbulence
development within the secondary flow. Within the blade passage, significant

positive u'v’ correlation was found to be associated with the cross-passage

velocity gradient and the turbulent secondary flow. Downstream however,
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the correlation was observed to have changed sign over much of the passage
vortex, in keeping with the velocity gradients within it.

At slot 10 (128% Cax) the turbulence activity was observed to be
concentrated within the secondary flow, with fairly low values within the wake.
This agrees with the results of Gregory-Smith et al (1988) who observed the
wake turbulence to decay rapidly downstream of their cascade, whilst that
within the passage vortex was maintained. In general high turbulence energy
was found to be associated with the secondary loss core, and regions where
separation lines on the endwall and suction surface feed loss into the main
flow. At slot 8 (97% Cax), high streamwise turbulence was observed all
over the suction surface. Also the surface pressure coefficient measurements
indicate that there is significant deceleration near to the suction surface over
the final 20% of axial chord, particularly within 10% span of the endwall.
This streamwise deceleration coupled with high streamwise turbulence could
be a significant factor behind the rapid rise in loss which is normally observed
in the latter half of turbine rotor cascades.

The endwall flow has been traversed with a rotatable single wire
probe. At slot 5 (65% Cax) results showed that the flow has almost constant
total velocity down to 0.25% span from the endwall, but is highly skewed
with the under-turning reducing by 5° for each millimetre moved away from
the endwall. Also freestream turbulence levels were found to be present near
to the endwall on the pressure side of the passage, but on the suction side the
flow was more turbulent. This lends some support to the results of Harrison
(1989) who observed a laminar flow over much of the endwall on the pressure
side of the passage within his turbine cascade. However, if such a boundary
layer exists here it must be extremely thin. Measurements of the flow at
slot 8 (97% Cax) indicate that although the total velocity is still almost
constant up to Imm from the endwall, the skew is very much reduced with
the flow direction only changing by 1° for each millimetre moved radially.
In the suction surface/endwall corner the velocity reduces sharply, due to
the counter vortex there. The endwall flow was observed to be generally

more turbulent than at slot 5, which also supports Harrison’s results, as he
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observed transition of the endwall flow on the pressure side of the passage,
occurring as the trailing edge was approached.

Downstream of the cascade the endwall flow was observed to
turbulent, and a more usual type of boundary layer starts to develop. Mass
averaging of the turbulent kinetic energy over the traverse plane, reveals
that only 16% of the loss may be accounted for directly as turbulent ki-
netic energy. This is in accord with the results of other workers (e.g. Moore
et al (1986) 23%, Zunino et al (1987) 10%, Gregory-Smith et al (1988) 17%).
It is thought that this indicates that the dissipation of turbulence by molec-
ular viscosity almost matches its rate of generation, thus preventing a large
accumulation of turbulent kinetic energy.

The rates at which the turbulent Reynolds stresses transfer mean flow
kinetic energy to turbulent kinetic energy, and the rate of viscous dissipation
of mean flow kinetic energy have been calculated at slot 10. The results
indicate that the turbulent effects are generally two orders of magnitude
greater than that due to molecular viscosity. By far the largest rates are
produced by the normal stresses, but these act to extract energy from the
mean flow in some places, and return turbulent kinetic energy to the mean
flow in others. Thus their net effect is much smaller than their large local
effects, but is still found to be significant. This may indicate the inadaquacy
of a Boussinesq eddy viscosity model (which cannot model normal stresses)
particularly within the blade passage where the normal rates of strain are
large.

Comparing the results calculated from the Durham data with those of
Moore et al (1986) shows general agreement, except for the term -'L_L’_?%—-T which
they found to be significant. However their measurement plane was closer to
the trailing edge (10% Cax) than slot 10 (28% Cax), so streamwise gradients
might be greater due to the flow being less mixed in their case. The mass
averaged rate of turbulent deformation work was found to account for 25%
of the rate of loss production downstream of the cascade (as indicated by
pressure probe measurements of the ‘JAW’ test case). However two terms

which Moore et al found to contribute 60% of the total rate in their work,
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were not accounted for here. Also the downstream rate of loss production
might be less in the ‘JGC’ test case than the ‘JAW’ test case as less secondary
kinetic energy was develo ormation work
which was calculated seems reasonable. Thus it appears that downstream of
the cascade loss is produced principally by the turbulent Reynolds stresses,
and that direct viscous action has only a relatively small effect.

Calculations of eddy -viscosities at slot 10 from the experimental shear
stress measurements, indicate that downstream of the cascade an isotropic
eddy viscosity is a reasonable model for the w/v/ and ww' stresses. Peak
values of eddy viscosity of 2000 times the molecular viscosity were found to
be associated with the secondary loss core.

A short spectral survey of the flowfield revealed no dominant fre-
quencies in the energy spectrum, except for a low frequency organ resonance
within the wind tunnel. No evidence was found for the low frequency peak
observed by Gregory-Smith et al (1988) to be associated with the passage
vortex downstream of their cascade. This might be because of the smaller
suction surface diffusion in this test, and the absence of the associated laminar
separation bubble.

The invariance of the secondary loss between the ‘JAW’ and ‘JGC’
test cases when significant variation in secondary kinetic energy was observed
seems a little surprising. It would seem logical that the secondary loss would
depend upon the strength of the secondary flow. It could be that most
secondary loss is produced near to the endwall and suction surface. The
effect of the inlet boundary layer might be to determine how much secondary
kinetic energy is initially imparted to the endwall boundary layer. This is
then rolled up into a core, and is convected up the suction surface. Thus
most of the change in secondary kinetic energy occurs within this core, and
the levels close to much of the endwall and suction surface are little changed
by the differing inlet boundary layer thickness. However, the mechanisms
of secondary loss production within the cascade are not entirely clear. It

seems likely that the suction surface flow will undergo earlier transition close

to the endwall due to the higher turbulence in the endwall boundary layer,
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and the presence of the turbulent secondary flow. This will contribute some
loss to the secondary loss downstream of the cascade. Also it seems likely
that the deceleration of the suction surface flow within the last 20% of axial
chord, is a major contributor to the loss production process. In particular
the steeper deceleration in the endwall region caused by the presence of the
passage vortex, and the more turbulent flow which it introduces to the suction
surface, will tend to result in more suction surface loss production close to
the endwall. This is particularly true of the region where the passage vortex
separates from the suction surface since there the flow is very turbulent.
The above discussion of secondary loss production mechanisms within
the cascade is speculative, and other processes may also have significant effects.
In particular the high Reynolds stresses measured within the secondary flow
away from the passage walls may also be a significant factor in the loss
production process. Further experimental investigation would be required to
determine the relative contributions of the various possible secondary loss

production mechanisms.

9.2 Modelling Results

The experimental measurements of the mean flowfield in the Durham
cascade with no turbulence grid (‘JAW’ test case) which were reported by
Walsh (1987), have been used to test three Navier-Stokes solution techniques.
The results indicated that it is possible to obtain accurate numerical solutions
of the three-dimensional pressure driven effects. However, the use of first
order spatial accuracy in discretisation coupled with inexpert grid generation
(the resulting mesh was highly non-uniform) was found to produce very large
numerical errors which completely destroyed the solution accuracy. Also the
use of excessive second order smoothing was found to be equally damaging
to the quality of the prediction. The application of second order spatial
accuracy, coupled with careful consideration of the discretisation so as to
avoid numerical loss production, was found to be capable of producing very

accurate predictions of the mean flowfield. This particular code (which is due
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to Moore and Moore (1985)) was thus used in further tests.

The quality of the solutions obtained has been found to be very sen-

sitive to the turbulence model which is used within the calculation procedure.

4}

Seemingly arbitrary changes to the turbulence model were found to produce
significantly different mean flow predictions. In particular, the mobility of
the passage vortex centre, which experimentally is observed to move towards
and up the suction surface, appears to be greatly effected by the turbulence
modelling. This suggests that considerable caution should be exercised when
applying simple turbulence models to such a complex flow.

The general development of the secondary flow can be modelled with
relatively few grid points (a calculation mesh of 47 axial, 25 tangential, and
17 radial points was used here to model half the cascade span). However
the required density of points is likely to be dependent upon the formal
spatial accuracy of the algorithm, and thus may be different for other codes.
Despite the generally good flow predictions, numerical problems were observed
in the trailing edge region when using this ‘coarse’ mesh. The use of a finer
calculation mesh with 60 axial and 36 tangential points was shown to help
reduce the numerical loss production in the trailing edge region, and also
different turbulence models can have a significant effect upon this flow.

Specification of different regions of the flowfield as laminar was found
to have some effect upon predictions of the secondary flows and losses. In
particular specification of the blade boundary layers as laminar in the region
where they were known to be laminar, produced much improved predictions of
the profile loss. This also produced some increase in the predicted secondary
loss, since turbulent blade boundary layers were retained within 40mm of the
endwall which were than accounted for as ‘secondary’ rather than ‘profile’
loss. Also specification of the flow close to the endwall as laminar within the
blade passage, was found to increase the predicted secondary kinetic energy
and passage vortex migration, generally achieving better agreement with
experiment. As discussed previously, there is some experimental evidence for
such a laminar flow on the endwall within the blade passage. This suggests

that there is a real need for models of transition in order to predict accurately
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the secondary flow effects, as well as for the prediction of blade profile losses.

The mixing length turbulence model which is incorporated within
the most recent version of the Moore’s
predictions of the secondary loss. It is also possible io .‘deduce from the
results obtained, that a large proportion of this secondary loss is generated
within the blade boundary layers and wake, downstream of 80% axial chord.
Unfortunately it is not possible to determine the accuracy of this prediction
with the available experimental data.

The results of these initial tests indicated that very accurate solution
of the Navier-Stokes equations in three dimensions is now possible using a
‘state of the art’ finite volume solution technique. Code authors are now
producing techniques which produce sufficiently low levels of numerical error,
for the turbulence modelling to be the most limiting part of the solution
accuracy. These techniques therefore offer the realistic possibility of accurately
assessing the performance of different turbulence models for three-dimensional
flows, and should thus aid their development.

The Navier-Stokes solver of Moore and Moore (1985) has also been
used to predict the flow in the Durham turbine cascade with a turbulence
grid placed upstream (‘JGC’ test case). The code was run with three different
turbulence models and comparisons made with experiment for predictions of
the mean flow and the turbulent Reynolds stresses.

The mixing length turbulence model was found to predict quite
accurately the reduced secondary kinetic energy resulting from the thinner
inlet boundary layer in this case. It also appears to produce reasonable
predictions for the secondary loss. Forcing the endwall flow within the blade
passage to be laminar, was found to be more significant here than it was in
the ‘JAW’ test case. Apparently higher over-turning was produced on the
endwall, which appeared to help the passage vortex to migrate towards the
suction surface.

Comparison of predictions of shear stress produced by the mixing
length model, with those measured experimentally, showed that the mixing

length model generally fails to identify the magnitude of the turbulent stresses
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within the secondary flow. This explains why the mass averaged secondary
kinetic energy is not observed to decay enough downstream of the cascade
in the predictions. The apparently realistic loss growth downstream is then
produced by too much endwall boundary layer growth and/or the mixing out
of too deep a velocity deficit within the wake. This is not a realistic model
of the loss production downstream of the cascade.

Within the cascade the contribution of the Reynolds stresses within
the separated three-dimensional secondary flow to the loss production process
is not known. Thus it is not possible to determine the accuracy of the mixing
length model prediction of most secondary loss production within the suction
surface boundary layer in the final 20% of axial chord. As mentioned in the
discussion of the experimental results, the interaction of the passage vortex
with the suction surface boundary layer may indeed be a significant factor in
the process of secondary loss generation. However, whether the mixing length
turbulence model can be expected to predict accurately such a process in
which the normal Reynolds stresses are likely to be important is questionable
particularly for significantly different blade shapes. Even within one blade
row the mixing length model might be expected to have difficulty in coping
with the varied flow regimes, such as accelerating flow, decelerating flow, and
swirling flow.

A one equation model of turbulence which solves a transport equation
for the turbulent kinetic energy, and specifies a dissipation length scale
algebraically, has been used to model the ‘JGC’ test case. The mean flow
prediction produced by this model was found to be less accurate than that
resulting from application of the mixing length model. The secondary kinetic
energy was under-predicted, and the correspondingly weak passage vortex did
not migrate as it is observed to do in the experimental results. However
the model has not been implemented for as long a period as the mixing
length model, and so may be expected to benefit from ‘fine tuning’ of its
constants. Interestingly, this model predicts too little secondary loss and this
significant change in prediction with the application of a different turbulence

model might be considered to direct further suspicion at the foundations of
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the mixing length model’s secondary loss predictions.

Comparison with the experimental turbulence data shows that too
much turbulent kinetic energy is predicted to be produced on the suction
surface. This might be because the model does not take account of the
effects of the passage curvature, which tends to keep losses low on the suction
surface where the flow accelerates. In contrast, on the endwall the model
predicts much less ww’ correlation than the mixing length model. Despite
the large prediction of turbulent kinetic energy on the suction surface the
observed generation of turbulent kinetic energy, and the associated high stresses
within the secondary flow, are not predicted. Downstream of the cascade the
model predicts too much turbulent kinetic energy within the wake. Although
significant decay of the wake turbulence is predicted between slots 9 and 11,
in accord with the results of Gregory-Smith et al (1988) who showed rapid
decay of wake turbulence to be a feature of the downstream flow, too much
turbulence is still present at slot 10.

Thus it seems that this turbulence model needs further development
before it can be considered to be an acceptable replacement for the mixing
length model. The inclusion of a transition modelling capability as is available
within the one equation model is also worthy of development, as it is felt
that this is one of the major requirements for future extensions of predictive
capabilities.

The final turbulence model which was tested in this work is a hybrid
of the mixing length model for the boundary layers and a standard two
equation K — ¢ model elsewhere. The use of the mixing length model in the
near wall regions is intended to avoid the large numbers of grid points which
are required within boundary layers by K — € models. This would be very
costly for a three-dimensional calculation.

Comparison of results with experiment again reveals a poor prediction
of the mean flow. As with the one equation model the passage vortex was
predicted to be too weak, and did not migrate as it is observed to do in reality.
The prediction of secondary loss was found to be reasonable, but this is not

surprising as the mixing length model was used in the boundary layer regions
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where most of this is predicted to be produced. A striking improvement which
is produced by the two equation model solution is the prediction of turbulent
better with experiment. The solution of
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a transport equation for the length scale appears to identify the turbulence
generation within the secondary flow. This was also observed by Zunino
et al (1988) who tested turbulence models against their experimental data.
They showed excellent predictions of turbulent kinetic energy by the standard
K — € turbulence mode]l. However their test used the experimentally measured
velocity distributions rather than those emerging from a solution coupled to
the turbulence model. Also their measurement locations are such that they
only showed comparisons up to the passage throat, whereas they point out
that significant turbulence development is likely to occur on the suction side
of the passage downstream of this position. Even in these conditions however,
they concluded that the turbulence models could only be considered to give
a qualitative agreement with the experimental measurements.

The increased predictions of turbulent viscosity within the secondary
flow by the K — ¢ model result in much larger stresses there. However, as the
loss at slot 10 is little bigger than that predicted by the mixing length model,
it appears that these stresses do not produce much loss. The turbulence
levels within the wake also appear to be over-predicted by the K — ¢ model,
as observed with the one equation model. However the K — ¢ model predicts
even larger values within the wake at slot 9, although these decay rapidly to
become comparable with results of the one equation model by slot 11.

In general the results of the K —e model appear to be encouraging, and
development of a hybrid K — ¢/one equation model with transition prediction
seems to be an attractive intermediate step before launching into the realm
of full Reynolds stress models. Indeed there appears to be a requirement for
further experimental work in order to identify the level of modelling which is
required for meaningful predictions of aerodynamic loss. It may be that most
loss is produced in the blade boundary layers within the blade passage, and
that accurate modelling of the Reynolds stresses within the swirling three-

dimensional secondary flows is not really necessary. However this may not
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be the case, and the generality of a model which relies upon a Boussinesq
eddy hypothesis within such a highly curved duct is in any case questionable.
Leschziner (1989) suggests that in such circumstances it is necessary to solve
for individual components of the Reynolds stress tensor in order to adaquately
model the anisotropy producing effects of the strong curvature. Although the
development of such models is likely to be a rather long and difficult process,
this must surely be one of the most important aims of developments in the

future.
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Chapter 10
Conclusions and Recommendations

NRT

for Further Work

10.¢0 Introduction

This chapter presents separately the main conclusions of the ex-
perimental and modelling work presented in this thesis. Recommendations
for further work using the experimental facilities, and directions for further

modélling developments are then discussed.

10.1 Experimental Conclusions

This thesis presents results of experimental investigations of the flow
in a large scale, low speed, linear cascade of high turning turbine rotor blades.
The results obtained with only natural tunnel freestream turbulence at inlet
(‘JAW’ test case) have shown that:

a) The flow develops rapidly in the final 20-30% of axial chord, and this
is accompanied by significant loss generation.
b) The endwall counter vortex is a significant feature of the downstream

flow, where it tends to reduce the over-turning near to the endwall.
¢) Downstream of the cascade radial velocities mix out quite rapidly.

d) The mixed out loss is observed to be fairly constant in the downstream
flow, despite the growth of an endwall boundary layer. This suggests
that secondary kinetic energy is being converted to primary kinetic
energy as the flow proceeds downstream.

Measurements have also been made of the turbulent flow in the same
turbine cascade but with a turbulence generating grid mounted upstream
(‘JGC’ test case). This raised the freestream turbulence from 1.4% to 4.5%,
and also resulted in a thinner endwall boundary layer at inlet to the cascade.

The results show that:
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)

d)

h)

Raising the freestream turbulence intensity promoted earlier transition
of the suction surface boundary layer, resulting in slightly increased
rofile loss.

Raising the freestream turbulence intensity in the range tested, has
very little effect upon the secondary flows and losses which develop.
Thinning the endwall boundary layer at inlet makes no significant
change to the net loss produced by the cascade. However the resulting
secondary kinetic energy is considerably reduced by this change, and
hence the mixed out loss is also smaller.

High turbulent kinetic energy is associated with the passage vortex,
and the regions in which separation lines on the endwall and suction
surface feed loss into the main flow. Significant w/w’ shear stress is
also located near the suction surface separation line.

Within the blade passage the u'v’ shear stress shows negative values
within the losé core due to the high cross-passage velocity gradient.
These change to positive values downstream of the cascade where the
velocity gradients due to the passage vortex and wake are dominant.
Just upstream of the trailing edge, high streamwise turbulence was
observed right across the suction surface. The surface pressure mea-
surements also indicate that the flow near to the suction surface is

decelerating in this region. Thus the mechanism u’z%g on the suction
surface, may be a significant contributor to the more rapid rate of loss
production which is normally observed in the latter half of turbine
rotor cascades.

The new endwall boundary layer which forms within the blade passage
away from the suction surface is extremely thin. The flow further
from the surface has almost counstant speed, but is highly skewed.
Freestream turbulence levels are present on the pressure side of the
passage close to the endwall, and a thin laminar flow may exist in this
region. However on thé suction side of the passage and downstream

of the cascade, the endwall flow is turbulent.

The frequency spectrum of the turbulence shows no dominant fre-
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quencies where the turbulence is high.
1) Downstream of the cascade a fairly isotropic eddy viscosity is seen in
j) There are significant contributions to the loss generation process by
the Reynolds normal stresses, which cannot be allowed for by a

Boussinesq eddy viscosity model.

10.2 Modelling Conclusions

The flowfield of the cascade has been extensively modelled with the
three-dimensional Navier-Stokes solution technique of Moore and Moore (1985).
Comparisons between the niodelling and experiment have shown that:

a) Very accurate solution of the governing equations may be obtained
with a ‘state of the art’ finite volume calculation procedure.

b) The second order spatial accuracy of the algorithm permits good
solutions for the secondary flow to be obtained with a calculation
mesh of 20000 points. However, a finer mesh is required to restrict
numerical errors in the trailing edge region to a similar degree.

¢) The quality of the secondary flow predictions is very semsitive to the
model used to simulate the effects of the turbulent Reynolds stresses.
Too much turbulent stress modelling results in an under-prediction
of secondary kinetic energy, and prevents the vortex from migrating
towards and up the suction surface.

d) The mixing length turbulence model predicts that most secondary loss
is produced within the blade boundary layers and wake, downstream
of 80% axial chord. It is not known how realistic this prediction is.

e) Within the separated, three-dimensional, secondary flows, the mixing
length model, and a one equation turbulence model, do not identify
the magnitude of the turbulent stresses which are present. Thus
these models cannot model the loss production in the downstream
flow correctly.

f) A K — ¢ model of turbulence appears to predict the generation of
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turbulent kinetic energy within the secondary flow reasonably well.
However too much turbulence is predicted within the wake.

g) The ability of simple turbulence models to predict accurately the
aerodynamic loss within such a varied and complex flowfield is ques-
tionable. In particular the application of a Boussinesq eddy viscosity
hypothesis within such a highly curved duct, cannot properly account
for the effects of the high normal rates of strain which are present.
Great effort should therefore be directed at the development of more

sophisticated models of the turbulent Reynolds stresses.

10.3 Recommendations fur Further Work

On the experimental side, there are clearly several pieces of work
which are a natural extension of the work described in this thesis. Firstly a
traverse at slots 5 and 8 with a pressure probe would allow existing software
to calculate the rate of turbulent deformation work within the separated shear
layers. This would clearly indicate the importance of the Reynolds stresses
within the secondary flow as a loss production mechanism. The use of surface
mounted film gauges on the endwall could identify the presence of any laminar
patches there.

The modelling results suggest that the v'w' shear stress is important
for the secondary flow, and Moore et al (1986) showed this to be true for the
flow downstream of their cascade. Hence measurements of this stress would
be valuable. Such measurements could be obtained with a third traverse of
the x-probe technique (probe set at different yaw angle and a new analysis
program) or alternatively with a triple wire or rotatable single wire probe.
Traverses very close to the suction surface using pressure probes and hot-
wires or laser doppler anemometry, would also be very valuable in order to
determine its role in the production of secondary loss. It is clear that the
flow develops rapidly between slots 5 and 8. Detailed traverses of the mean
and turbulent flowfields between these two locations would provide a useful

extension to the data, increasing its value as a case with which to test and
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set up turbulence models.

The turbulence effects which are present within stator cascades are
11 a little unclear. There is some contrast between the results o©
(1980), who observed very low turbulence energy in the secondary flow region
of a cascade of inlet guide vanes, and Sharma et al (1985) who detected
significant turbulence downstream of the first stator in a one and a half stage
model turbine. It is possible that the lower turning of nozzle guide vanes,
and their higher acceleration, results in much less turbulence production than
is typical of rotor cascades. Hence a detailed investigation of the turbulent
flowfield in a cascade of nozzle guide vanes would provide both a useful
contribution to knowledge, and a valuable data set for the evaluation of
turbulence models.

On the modelling side the most urgent requirements now appear to be
for better turbulence models, and for models of transition. The development
of more sophisticated models is a formidable problem, but should be aided
by the high accuracy of modern Navier-Stokes solvers. Despite the success of
the code authors in controlling numerical errors, the modelling of trailing edge
flows still appears to present some problems. Validation of models over a
wide variety of cases should be undertaken in order to assess their predictive
capabilities in this area.

Developments in grid generation techniques, and more stable algo-
rithms should continue to contribute to solution accuracy for some time to
come. Also as computing power continues to increase, models of three-
dimensional unsteady flow, and blade row interaction are likely to appear.
These developments may be particularly accelerated if transputer technology
is complemented by the development of highly sophisticated parallelising com-
pilers. Such a combination would completely revolutionise supercomputing,

and thus have profound repercussions for computational fluid dynamics.

The results in this thesis show that current technology is capable of
accurately predicting the pressure driven effects of secondary flow generation.
This suggests that some progress might be made by applying such calculation

techniques to different endwall geometries. Thus an interesting project could
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consist of the design of endwalls with a three-dimensional Navier-Stokes
solver, and testing of the predictions in an experimental facility. The value
of such work would however be greatly enhanced if it was extended to radial
geometries, as the radial pressure gradients are likely to have a significant
bearing upon the geometry of a successful design.

The effects of skew in the endwall boundary layer have been shown by
Walsh (1987) to have a profound effect upon the development of the secondary
flows and losses. Thus it may be possible to gain some advantage by ejecting
endwall coolant flow at an angle so as to introduce positive skew into the
endwall boundary layer. The application of a specially modified Navier-Stokes

solver could usefully determine the feasibility of such a suggestion.
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Appendix A
Rotatable Single Wire Probe Technique
A.0 Introduction
This appendix gives details of the method used to obtain flow mea-
surements from a single wire rotated in a plane parallel to the endwall.
A.1 Anmnalysis Of The Response Of A Hot-Wire

For a hot-wire in the z — y plane (Figure A.1) the velocity vector
can be resolved into three components, two of which, v and v are themselves
in the z — y plane. If the angle of the wire to the y—axis is «, then the

components are :-

a) Velocity component perpendicular to the wire in the = — y plane
Vi =Ucosa+ Vsina (A1)
b) Velocity component along the wire in the z — y plane
Vi = -Usina +V cos{a (A.2)
c¢) Velocity component normal to the wire and the z — y plane
Vy =W (A.3)

Due to the conduction effects of the probe supports, the effective cooling
velocity is not merely the sum of the components perpendicular to the wire,

but may be expressed as :-
Vs = Vi 4+ BV + hPVy? (A.4)

where k& and h are factors dependent upon probe geometry.
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This response equation was proposed by Jgrgensen (1971). He tested
DISA single wire probes and gold plated wire probes, for their response over
a wide range of angles. The values he measured for & and A which are most

appropriate for the probes used here are shown below :-

Table A.1 : Wire Response Factors

Probe k h
DANTEC 55P14 | ().286 | 1.086
DANTEC 55P04 | 0.119 | 1.043

- ‘Ideal Wire' 0.000 | 1.000 |~

Although it might seem that it would be possible to measure these
responses for each individual wire, in practise an extremely accurate calibration
facility is required, with very careful data recording. It is far simpler therefore,
to use those values tabulated above. Care should be taken however, when
trying to apply results obtained for single wires to x-wires or triple wires, as
the prong geometry influences the response (Chew and Ha (1988)). .

Substituting individual velocity components into the response equation

gives :-
Vi = (Ucosa+ Vsina)® + k*(~Usina + V cos a)® + K*W?
= (cos® a + k*sin? a)U? + (sin® a + k? cos® a)V? (A.5)
+sin 2a(1 — k*)UV + R2W?

Following Hinze (1975), we split each velocity into a mean and fluctuating

part :- -
U=U+4 V=V+ W=W+u (A.6)

where v/, v',w' = 0 by definition.
Thus
Vi = (cos” a+ k sin® a)(T +w)’ + (sin’ & + ¥ cos” a)(V + v')’ (A7)
N
+sin2a(1 ~ K)(T + )V +) + B + )’

200



Define -

sin? a + k2 cos® o

cos?a + k2sin’ o

V=

sin 2a (1 — k?)

= A.
cos? a + kZsin? o (A4.8)
h2
" cos?a+ k?sinla
Then we may write :-
—n, . 5 . o ' V24 oV 4"
Vf = U"(cos® a + k*sin? a {1+:+_ + v i
If ( ) U U2 U2 ’ ‘
L _ . , (A.9)
OV TV + T + v’ W+ 2w + v |
TR =3 J +o l p—)
U U

A binomial expansion is used to obtain the square root of (A.9),
assuming that the axis system is aligned to the flow, such that U > V
and U > V° (similarly for U and W), and that third and higher order
correlations of fluctuating terms are very small compared with the second

order correlations. This yields the following equation :-

V& + 2V + 0"

72

/ 2
Vess = U\/(cos2 a + k?sin’ a) {1 + 2 + [K — ,u_}

U 2 8 7
e[V, ¢ [ 2w 4w
2 —U 2 U?
(A.10)
Evaluating the mean of (A.10) gives :-
V=0T ~ v @2 [V 40"
Veff:U\/(COSZCY"*‘kZSlHZa) 1+ 35 =
wV o ¢ [WPyw? (A.11)
+ == + = —_— }
2U 2 U
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Squaring (A.11) and making the same assumptions as when expanding (A.9)

yields

72 F7L, . ) e .
V.ss = U (cos’ a + k?sin’ ) 1

(. (V +v’2}

o v T T (A.12)
prt o
——F t+t = t¢ —
U U’ }
Evaluating the mean of (A4.9) gives :
—2 =2 u’ v? + "
V. =U(cos’a+ k*sina){1+ = +v —
eff 2 U2
_ 5 — (A.13)
UV + vy W™+ w”
+ p { —3 } + ¢ = }
U’ U’
As
Therefore
VZ, =V + oy since ;=0 by definition. (A.15)
Thus
E = Vi — szf = equations (A.13) — (4.12) (A.16)
Therefore
2 _ 2?2— L
( vfff) = (cos® a + k%sin® ) {u* + + pv'v! (A.17)

Equations (A.11) and (A.17) represent the mean and r.m.s. responses of a

wire placed at an angle o to the y-axis.

A.2 Rotatable Method for Flow Measurement

If mean voltage E and r.m.s. voltage e” (A.C. coupled) are
measured for a wire set at various angles to the flow, using a linearised
system, then the corresponding mean and r.m.s. velocities are obtained by

simply dividing by the wire sensitivity S, obtained from calibration.
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Consider the case of the turbulence data, for which the equations
may be written in matrix form :-

12

Y
1 5 401) #(Oq) {cos? Ql‘f_’k; sin? ay)
2 —_— v
1 2(4012) ,U,(Ot;z) "LL_Iz_ (cos? 012-_{»_2_2 sin? az)
1 £ (4(13) plag) | X | v* | = ot (A.18)
i . w (cos? az+k? sin® a3)
: 2 : :
I GO "

n
(cos? an+k2 sin? an)

If more than three results are recorded, i.e. 7n > 3, then these simultane-
ous linear equations may be solved by a least squares method. This was
implemented using a Numerical Algorithms Group subroutine FO4AMF.
A.3 Calculation Of Confidence Intervals

We may represent equation (A.18) as a general matrix equation :-

AX =B (A.19)

for n equations in 3 unknowns,
Having obtained a least squares solution X, the computed values of the input

velocities which satisfy this solution are
S=AX _ (A.20)

then the residuals for each angle may be calculated

r=B-8 (A.21)
where r is a vector of rank n.
The error of the fit is given by
n 2 .
E= &=l (A.22)
n-—4q

where ¢ is the number of unknowns in the original system of equations. In

this case ¢ = 3.
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The matrix Sipy = (AT A)™! is diagonal. For each diagonal element

Si#i (¢ =1,q) a confidence interval to the solution vector may be calculated

Cli= B+ \[syxt (A4.23)

where ¢ is a statistical parameter obtained from tables, and depends upon

such that

the number of degrees of freedom, and the limit chosen. For three degrees

of freedom, and 99% confidence, t = 4.54.

A.4 Mean Velocity Equation

Equation (A.11) cannot be solved in the same way as equation (A.17),
since it is non-linear. An elimination method of solution was adopted initially
to solve the equations. In order to obtain information on the accuracy of
the method, it was decided to perform a least squares solution as described
for the turbulence data, but based upon the concept of an ideal wire. For
an ideal wire with £ = 0 and h = 1, equation (A.11) reduces to :-

w2
2cosa U

Vess = Ucosa+ Vsina + (A.24)

which is linear. It was found that the results of solving this equation with
a least squares method, were very similar to the results of solving equation
(A.11) with an elimination method. This is because the non-linearity of
equation (A.11) is extremely small. Hence it was decided to simply adopt the
ideal wire solution for mean velocity measurements, and only use gold-plated
wires (DANTEC 55P04) which are closer to ‘ideal’.

All equations were solved in a coordinate system approximately aligned
with the flow direction in order to ensure the validity of the binomial expansion
used to obtain equation (A.10). Having solved for the flow in these coordinatés,

the solutions could then be rotated to cascade coordinates for storage.
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Appendix B
Estimation of Change in Shear Stress from Slot 8 to Slot 10

B.0 Introduction

This appendix gives details of a rough assessment of the change in w'v’
shear stress which might be expected between slots 8 and 10. The assessment
is based on consideration of the shear stress transport equation, evaluating
Reynolds stress terms from the hot-wire measurements for the ‘JGC’ test
case, and velocity gradients calculated from measurements of the ‘JAW’ test

case.
B.1 Shear Stress Transport Equation
The shear stress transport equation may be written as

U, —_48U;
—D—t(uiu]) = - [uzu} % + uiufaa—gl] Production
I I

! a ! au’.
+ ‘% ( Yoy ’) Redistribution

0 |— oulu’ )
h 3—34 {u;u;u; -V ;;1:] + %(5]1“; + 5uu;) Dif fusion
T T
- - ssipatt
1/5331 83:1 . p on

(B.1)
Neglecting the redistribution, diffusion, and dissipation terms, and

considering ¢ = 1, and 7 = 2 gives the following equation:-

_2(&1—1)/) ~ u/vli_U___ _*_—72_.8__[2 + W_a_g
Dt - Oz dy Oz (B.2)
s 7w |
Ox Oy 0z
The substantive derivative on the left hand side may be approximated as
D & U, —
() ~ ~ (]
Dt(u V') o 5 = A;EA(u v') (B.3)

Assuming that the Va% and VV—E% terms are small, and that the values remain

constant over the streamwise distance from slot 8 to slot 10.
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Values for terms on the right hand side of equation (B.2) may be
evaluated, if it is assumed that the velocity gradients are little changed
between the ‘JAW’ and ‘JGC’ test cases. Figure B.1 shows plots of the
partial velocity gradients in hot-wire coordinates, determined from a traverse
of slot 8 presented by Walsh (1987). Values for the Reynolds stresses (except
for v'w’ which must be ignored) may be read from the contour plots in Figure
7.14. Summing terms for a point in the loss core at coordinate (-120,40)

gives:- L
A(u'v')
Vi

= —0.096 (B.4)

The dominant term in the calculation for this point is ;;’—2%—? . At the point

-140,70) near the suction surface separation line, the change is:-
P g

A(TY)

72
W

= -0.1 (B.5)
with the dominant term here being due to W%%.
Although this analysis is very approximate, and makes several as-

sumptions, it does suggest that the data is consistent and that the observed

change of -0.04 is believable.
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Pertial Velocicy Derivatives for JAY Test Case in Hot-Yire Coordinates
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Appendix C

Partial Velocity Derivatives

This appendix presents contour plots of partial velocity derivatives at
slot 10. The derivatives were evaluated from bi-cubic spline surfaces which
were fitted to the data as discussed in Chapter 7. The five hole probe traverse
of slot 10 for the ‘JGC’ test case was used to evaluate all derivatives, as
although the hot-wires do provide information about velocities over the traverse
plane, a total pressure traverse is also required by the calculation procedure
to determine axial gradients. This is done via the incompressible Helmholtz
equation, and the method has been described by Gregory-Smith et al (1987)
who developed it to calculate vorticity from experimental traverses.

The partial derivatives are presented in both cascade coordinates (axial,
tangential, radial) and the ‘hot-wire’ coordinates in which the Reynolds stresses
were measured. The hot-wires were aligned with t(he midspan streamwise
direction for each tangential location, and so the coordinates z,y, z are in
fact ‘streamwise, cross-passage, and radial’ in this case. It was necessary to
calculate the partial velocity derivatives in hot-wire coordinates, as one of
the components of the Reynolds stress tensor was not measured, preventing.
evaluation of its components in cascade coordinates. The resulting contour

plots of partial velocity derivatives are presented in Figure C.1.
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Partial Yelocity Derivatives for JGC Test Case
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Pertial Yelocity Oerivatives for JOC Test Cese in Cascade Coordinates
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Partieal Yelocity Dertvetives for JGC Test Case in Cascade Ccoordinates
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