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Validation of Viscous~ Thlf<e<e=Dlimenslional 

JFlow CaJculations in an .Axlial Th1rbine Cascade 

J.G.E. Cleak 

Abstract 

This thesis presents a detailed investigation of the capability of a 

modern three-dimensional N avier-Stokes solver to predict the secondary flows 

and losses in a linear cascade of high turning turbine rotor blades. Three 

codes were initially tested, to permit selection of the best of the available 

numerical solvers for this case. This program was then tested 111 more 

detail. Results showed that although very accurate prediction of the effects 

of inviscid fluid mechanics is now possible, the Reynolds stress modelling can 

have profound. effects upon the quality of the solutions obtained. Solutions 

using two different calculation meshes, have shown that the results are not 

significantly grid dependent. 

The flowfield of the cascade was traversed with hot-wires to obtain 

measurements of the turbulent Reynolds stresses. A turbulence generating 

grid was placed upstream of the cascade, to produce a more realistic inlet 

turbulence intensity. Results showed that regions of high turbulent kinetic 

energy are associated with regions of high total pressure loss. Calculation of 

eddy viscosities from the Reynolds stresses showed that downstream of the 

-cascade the eddy ·viscosity is fairly isotropic. Evaluation of terms in the kinetic 

energy equation, also indicated that both the normal and shear Reynolds 

stresses are important as loss producing mechanisms in the downstream flow. 

The experimental Reynolds stresses have been compared with those 

calculated from the eddy viscosity and velocity fields of N avier-Stokes pre

dictions using a mixing length turbulence model, a one equation model, and 

a K - E model. It was found that in the separated, shear flows, agreement 

was poor, although the K - E model performed best. Further experimental 

work is suggested to obtain data with which to determine the accuracy of 

the models within the blade and endwall boundary layers. 
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Chaptell" 1 

Jrntll"odl uctilon 

Although the gas turbine engine is popularly known as a propulsion 

unit for aircraft, it has also found uses as a marine power plant, and in 

the generation of electricity. Smaller units are now also being manufactured 

for application in land vehicles. Within a gas turbine engine there are in 

principle only three major components, a compressor, combustion chamber, 

and turbine. Although this conceptual engine is very simple, and avoids the 

reciprocating action of conventional piston engines, the actual design of all its 

components has proved to be very. complex. Not least of these complexities is 

the successful aerodynamic design of the bladings which form the compressor 

and turbine. 

The turbine's role in the engme 1s to extract energy from the hot 

gases which emerge from the combustion chamber, by expanding them to a 

lower temperature and pressure. In a 'turbojet' engine for aircraft propul

sion applications, the turbine must supply only enough energy to drive the 

compressor. Such an arrangement may then be called a 'gas generator', as it 

produces a high speed jet of hot gas. In 'turbofan' or 'turboprop' engines, 

sufficient shaft power must also be available to drive the propellor or fan. In 

other applications, where the only desired output is shaft power, extra turbine 

stages are . added to the gas generator to extract as much of the remaining 

energy as possible from the hot gases. 

When high pressure ratios are required from a single axial compressor, 

it is desirable for different stages of the compressor to operate at different 

rotational speeds. Hence compressors are often split into two, or three 

sections, each of which is driven by a separate shaft. If heavy gear boxes are 

to be avoided, each shaft will require its own turbine. Hence the turbines in 

modern turbofan engines are often split up into 'high pressure', 'intermediate 

pressure', and 'low pressure' sections, which each drive their own shaft. The 

mechanical design of three concentric drive shafts sets a lower limit to the 
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mner radius of the high pressure turbine annulus. For a given overall flow 

area, the blade height varies inversely to the annulus radius. Hence small 

blade heights are common in high pressure turbine stages. Cohen et al (1972) 

have reviewed many aspects of gas turbine theory, design and operation. As 

they point out, there has been a trend in recent years to higher bypass ratios 

in turbofan engines because propulsive efficiency favours a high mass flow jet 

which only slightly exceeds .the velocity of the surrounding fluid. Thus the 

mass flow rates in the turbines of modern engines are being reduced, and 

hence require less flow area. This compounds the effect of small blade height, 

and so endwall, or annulus effects have become more important. 

Due to the necessity of achieving an acceptable aerodynamic design of 

the bladings, considerable research has been carried out into the performance 

of different profiles. Frequently a linear cascade, which is in effect an annulus 

of infinite radius, is used as a simplified test case. Gostelow (1984) has given 

a good review of cascade research techniques. Early studies concentrated 

upon the effects of different blade profiles upon the midspan flow, well away 

from the hub or tip of the blades. However, in recent years, the range of 

cascade research, has broadened to include detailed investigations of the three

dimensional flows resulting from endwall effects. These so-called 'secondary 

flows' lie behind the generation of 'secondary losses'. Despite their name, the 

'secondary' losses may account for up to half the total losses in a low aspect 

ratio blade row. In a linear cascade, the primary flow _direc~ion is con~idered 

as being that which would develop with a uniform inlet flow, and blades of 

infinite span. The secondary flows, are then identified as being the difference 

between the actual flow, and the primary flow. It is with these secondary 

flows that the work in this thesis is primarily concerned. 

Over the past decade, a program of research has been undertaken at 

Durham University aimed at measuring the detailed three-dimensional flow 

structure within turbine blade rows, and thus gaining a deeper understanding 

of the mechanisms of secondary loss generation. Graves (1985) presented a 

detailed study of a rotor blade, which revealed the major flow features that 

were present. A second cascade was designed and tested by Walsh (1987), 
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who investigated the effects of skew in the inlet endwall boundary layer upon 

the secondary flows and losses. 

Secondary flows are of particular interest to the turbine designer, 

as they result from the turning of endwall boundary layer fluid through a 

blade row. In compressors, the adverse pressure gradient limits the amount 

of turning that can be achieved without serious flow separations occurring. 

In turbines however, the pressure gradient is favourable, and so much larger 

flow turning is common. This means that secondary flows are generally more 

powerful in turbines, than in compressors. 

As secondary flows are a significant cause of losses, and other unde

sirable effects, there is considerable interest in developing flow models which 

can predict, and ultimately help the designer to reduce them. Whilst simple 

models may be reasonably accurate for the flow in compressors, the turbine 

secondary flows are so strong that they require more general techniques. In

deed nothing less than a fully three-dimensional solution of the N a vier-Stokes 

equations seems likely to accurately predict such flows. As three-dimensional 

calculation methods are developed, there is a need for detailed validation of 

predictions, and assessment of their capabilities. It is to this task that the 

work in this thesis is directed. Walsh (1987) has already used his data to 

test two three-dimensional flow solvers, and found that although they showed 

considerable potential, there was a need for further development. 

'[he ~urrent w~rk ~. ajm~d at. inves_tigating the capabilities of 'state of 

the art' computer models, and identifying areas for further development. There 

are many possible causes of error in the numerical solutions, but it is intended 

to concentrate here mainly on the quality of the physical modelling. This is 

because numerical errors, and the benefits of particular solution techniques, 

are considered to be most appropriately addressed by code authors. Thus the 

initial work is concerned with selection of the best of the available flow solvers 

for further study. Where possible however, constructive criticism is also made 

of the solution algorithms. Having selected a flow solver, the next aim of 

this work is to determine the effects of, and quality of, different turbulence 

models within the solution procedure. Thus, in addition to the mean flow 
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data of VValsh ( 198'7), detailed measurements of the turbulent flowfield within 

the cascade are required. H was decided to introduce a turbulence grid to 

the wind tunnel before undertaking a survey with hot-wires, so as to produce 

an inlet turbulence intensity which is more representatiw~ of r.onrlitions in a 

real machine. 

Thus this work has two major facets, namely the testing of computa

tional models, and the aquisition of experimental data for validation purposes. 

It was hoped that the advantage of one person undertaking both tasks would 

be the direction of experimental activity by the requirements for further test 

data indicated by computational results. This has proved to be the case, 

with a choice between investigation of the endwall, or suction surface bound

ary layer, being tilted in favour of the endwall by computational results. 

However, it is also hoped that the experimental investigation of the Reynolds 

stresses within the Durham turbine cascade, will be of lasting value both as 

a test case, and because of the insight it provides into the fundamental flow 

processes. 
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JR.evilew <O>f J8xpeidJroeniali 

'J['uurbiimte §econdlruy JFliow Jinvesii\gaiilons 

This chapter a1ms to r.ev1ew experimental investigations of the three

d_i_mem;ional flows in turbine cascades, and thus build an understanding of the 

basic flow phenomena involved. The current state of knowledge concerning 

loss production location, loss distribution, and possibilities for the mechanisms 

behind these features are described. Investigations concerning the role of 

turbulence in these processes are reviewed, and effects of varying inlet boundary 

layer thickness and skew, blade loading, and aspect ratio are discussed. The 

detailed aerodynamics of linear cascades is then viewed from the context of the 

real machine, where other effects such as radial geometry, tip leakage, Mach 

and Reynolds number effects, and unsteady flow, complicate the simplified 

cascade results. A brief description of traditional methods of modelling the 

secondary flows and losses is given. These start with classical secondary 

flow theory and loss correlations, but also include a more recent approach 

combining a loss model with secondary flow theory. 

Secondary flows are formed when a non-uniform flow velocity profile is 

turned. In the case of a turbine cascade, the secondary flows are considered 

to be the difference between the actual flow direction, and the primary or 

ideal flow direction. The interest in these flows arises from the changes 

in outlet flow angle which they cause, the losses they generate (which in 

low aspect ratio blading may be as much as half the total losses), and the 

undesirable features which result from their presence within the blade passage, 

such as non-uniform blade loading and heat transfer 'hot spots'. Hence there 

is a great deal of interest in developing methods of accurately predicting such 
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flows, and possibly reducing them. Before this may loe attempted however, 

experiments must be carried out io improve the physical understanding of the 

phenomena, ::md provide test cases for any models which are developed. 

The most dominant ·feature of the complex secondary flow structure 

m turbine cascades, is i:eferred to as the passage vortex. This is a vortex 

which results from the over-turning of endwall boundary layer fluid (Figure 

2.1). Within the blade passage, a pressure gradient is formed in response 

to the momentum of the inlet flow, giving rise to high pressure on one 

(pressure) surface, and low pressure on the other (suction) surface of the 

blade. Whilst the fluid in the endwall boundary layer is moving more slowly 

than the 'freestream' fluid, and hence would naturally give rise to a smaller 

cross-passage pressure gradient, it is forced to accept the pressures set up in 

the main stream as no accelerations initially exist in the spanwise direction 

with which to oppose them. Hence the slowly moving fluid of the endwall 

boundary layer is swept from pressure to suction surface, where it is obliged 

to move along the suction surface away from the endwall. A circulation thus 

develops and it is this which is termed the passage vortex. Many examples 

of this phenomena have been investigated, such as the works of Sjolander 

(1975), Langston et al (1977), Marchal and Sieverding (1977), and Gregory·· 

Smith and Graves (1983). This suggests that the passage vortex formation is 

m essence an inviscid phenomenon, with the role of viscosity mainly limited 

to the production of the initial shear flow. Even in a blade row with no 

inlet boundary layer however, Turner (1957) has shown that secondary flows 

will still be formed as the boundary layer which develops within the cascade 

is over-turned. 

2.3 'I'he Holt'sedwe Vortex 

When a cylinder 1s placed m the path of an endwall boundary layer, 
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a vortex w formed in front of it as shown in Egure 2.2. This produces 

two vortex legs, one either side of the cylinder, which are carried away 

downstream with opposite vorticities. Due to the shape of this vortex when 

viewed from above the endwall, it is often referrPd t.o <:~.s ihe horseshoe vortex, 

a.s well as the stagnation vortex. As can be seen in Figure ?,.:J., the horseshoe 

vortex is associated with two separations, which may show up on endwall 

flow visualisations as two distinct separation lines. Sieverding (1985b) in his 

excellent review of linea.r turbine cascade aerodynamics, devotes considerable 

discussion to the importance of this vortex in the cascade environment. 

In a turbine cascade, a horseshoe vortex will be formed in front of 

each blade. Endwall visualisations by Langston et al (1977) and Marchal and 

Sieverding (1977), show that one leg of this vortex on the pressure side of 

the blade, crosses the passage to meet with the suction surface further into 

the cascade. This is called the pressure side leg of the horseshoe vortex. 

The other leg of the vortex, termed the suction side leg, is seen to wrap 

around the leading edge of the blade before meeting the suction surface. 

The horseshoe vortex has received considerable attention in recent years, both 

since it has been shown by Gaugler and Russel (1984) to be associated with 

a peak in endwall heat transfer, and as the pressure side leg is seen to cross 

the passage, rotating in the same sense as the passage vortex. Since the flow 

behind the pressure side leg separation line is highly over-turned and is clearly 

part of the passage vortex (see for example Langston et al (l977) ), this begs 

the question; 'does the horseshoe vortex initiate the passage vortex'? The 

answer is not entirely obvious. Turner (1957) has shown that passage vortices 

may be formed in the absence of horseshoe vortices, which might suggest that 

the latter are relatively unimportant. However the situation is complicated 

by the fact that it is generally agreed that fluid from the pressure side leg 

of the horseshoe vortex, emerges in the passage vortex core e.g. Langston 

(1980) and Moore and Smith (1984). The fate of the suction side leg of the 

horseshoe vortex is rather less clear however. Langston et al (1977) thought 

that it remained in the suction surface/endwall corner, whereas Marchal and 

Sieverding (1977) found it to emerge on the midspan side of the passage 
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vortex in their cascade. Sieverding (1985b) suggests that the suction side 

leg of the horseshoe vortex is convected around the passage vortex on the 

basis of the work of Moore and Smith (1984), who followed this fluid by a 

technique of ethylene detection. Hence the final location of the suction leg 

of the horseshoe vortex is thought to be dependent upon the strength of the 

passage vortex, and is thus influenced by many factors. 

In consideration of this model of the simultaneous evolution of both 

passage and horseshoe vortices, it seems likely that the horseshoe vortex will 

have little bearing upon the passage vortex other than to alter locally the 

rotational velocity of the fluid near the main vortex core where the pressure 

side leg is to be found. Such a view is expressed by Sieverding (1985b ). 

2.4 Corn.er Voll."tices 

Endwall flow visualisations may show the existence of a three

dimensional separation line running downstream from the point where the 

crossflow first meets the suction surface. This then follows a path very 

close to the suction surface (see for example Marchal and Sieverding (1977)). 

A similar line may be observed rising slightly above the endwall on the 

blade suction surface. These are the separation and reattachment lines of 

the passage vortex which cannot completely follow the perpendicular junction 

of blade and endwall. A vortex is often found between these two lines, 

rotating in the opposite sense to the passage vortex. This is probably best 

illustrated by Gregory-Smith and Graves (1983). Sieverding (1985b) refers to 

an endwall visualisation taken by Belik (1975) showing this separation line 

to originate where the crossflow interferes almost perpendicularly with the 

suction surface, and presents the interesting suggestion that a counter vortex 

may be formed by a stagnation process similar in nature to that which forms 

the horseshoe vortex. He also comments that a similar counter vortex may 

be formed in the pressure sidefendwall corner as a result of downwash of the 

pressure surface boundary layer. This effect is not generally reported in the 

literature however, possibly owing to the probable small size of such a vortex. 
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Whatever the prec1se cause of the suction sidejendwall counter vortex, it is 

often associated with a non-negligible loss core (see Gregory-Smith and Graves 

(1983), Langston et al (1977)). It is worth noting however, that real gas 

turbines do not have perpendicular endwrtll /blade junctions, but ·will either 

present a fillet radius or tip gap, either of which will modify the observed 

flow. 

2.5 'Jrhe Endlwalili Bo11m.drury JLayeli' 

The state of the endwall boundary layer within the blade row has not 

yet been entirely resolved. Senoo (1958) found that the boundary layer at the 

throat of a high turning nozzle cascade was laminar and independent of the 

state and thickness of the inlet boundary layer. He suggested that this was 

a relaminarisation effect produced by the strong favourable pressure gradient 

in turbines. Langston et al (1977) in their pioneering paper on secondary 

flow structures within the blade row, found the inlet boundary layer to be 

completely removed from the wall by the powerful passage vortex, and rolled 

up into a loss core. On the basis of this experience they then suggested 

that Senoo had observed a new boundary layer, formed downstream of the 

separation of the inlet boundary layer. Whilst most workers have found this 

new endwall boundary layer too thin to determine its state, Belik (1977) 

measured the wall shear stress along the centreline of two high turning nozzle 

cascades with film gauges. He found that the shear stress increased rapidly 

to a maximum near the point of greatest streamwise pressure gradient. By 

measuring endwall boundary layer noise, he confirmed that this position was 

close to the start of a laminar boundary layer. Further evidence for the state 

of the endwall boundary layer has recently been presented by Harrison (1989). 

Using film gauges he found that large areas of the end wall boundary layer in 

a high turning rotor cascade were laminar. This was found to mainly occur 

in the region of growth of a new endwall boundary layer. 

Hence, although there is not yet much information available, the body 

of evidence seems to be indicating that the thin boundary layer which forms 
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downstream of the inlet boundary layer separation, is probably laminar within 

the blade passage on the pressure side. It is however worth noting, that 

Harrison (1989) found the boundary layer near to the suction surface to be 

indeterminate from the overall loss core, and to be turbulent. 

2.10 Disi:ritbUJltiomt of 1Losse§ 

There are typically three distinct loss cores downstream of turbine 

cascades. The first is the 'corner' loss on the endwall between successive 

passage vortices, which is probably aided by the development of the suction 

side/endwall counter vortex. Another loss core is associated with the passage 

vortex and is composed of fluid from the inlet boundary layer, with extra 

losses from the passage walls which are fed into it within the blade row. 

The third loss core is again in a counter-rotating region between successive 

passage vortices, but this time it is not adjacent to the endwall. This vortex 

is generally identified with the shed vorticity of classical secondary flow 

theory. Such a distribution is evident in the works of Langston et al (1977), 

Gregory-Smith et al (1987), Walsh and Gregory-Smith (1987), and Zunino et 

al (1987), all of whom were investigating high turning rotor cascades. These 

give particularly noticeable manifestations of the various loss features, due to 

the powerful secondary flows which result from their high turning. The work 

of Walsh and Gregory-Smith (1987) was concerned with testing the effects of 

three levels of skew in the inlet boundary layer. For the case of positive 

skew, where the secondary flows are inhibited, the spatial distinction between 

the loss cores described above is quite remarkable, particularly in the plane 

just upstream of the trailing edge. From this distribution of losses, it appears 

that a significant proportion of secondary loss is produced by the action 

of the passage vortex on the suction surface. This sweeps low momentum 

boundary layer fluid into the main flow to form the third of the above loss 

cores. A similar process occurs with the new boundary layer on the endwall, 

with some loss collecting in the endwall/suction surface corner. 

The position of the passage vortex m the exit plane has obvious 
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implications for the outlet flow angle distribution of the blade row, bat it is 

not easily predicted. The passage vortex convects itself (Gregory-Smith and 

Graves (1983)) towards the suction surface, and may then move up the suction 

surface away from the endwall. The extent of this migration is determined 

primarily by the strength of the passage vortex, and thus depends upon many 

parameters such as the blade turning, and inlet boundary layer thickness. 

~.'( Grrowilh of 1Lo§§<e§ 

Most workers appear to find that the secondary losses are fairly 

constant up to the position of maximum suction side velocity, and thereafter 

increase more rapidly (see for instance Langston et al (197'7), Marchal and 

Sieverding (1977)). However, a notable exception to this type of loss growth 

was giVen by Gregory-Smith and Graves (1983), who found a fairly steady 

increase throughout their cascade, with a large jump at the trailing edge due 

to the addition of blade boundary layer losses. Looking closely at the loss 

curve however, there may also be a more rapid increase in the last 25% 

of the cascade which is not picked up by the particular axial planes which 

have been traversed. Certainly in the work of Walsh and Gregory-Smith 

(1987), who investigated the effects of inlet skew in a very similar blade 

row, the rate of loss production 1s seen to rise sharply in the latter half of 

the cascade. Some of this loss might be accounted for as boundary layer 

loss which is not covered by the traverses further upstream, but is convected 

into the mainstream by the passage vortex to add to the losses measured by 

traverses further downstream. However, another possible explanation might 

be deduced from the work of Moore (1985). He presented three-dimensional 

Navier-Stokes calculations of the loss in the cascade of Langston et al (1977), 

and a geometrically similar cascade which was investigated by Moore and 

Adhye (1985). The latter cascade had an inlet boundary layer which was 

almost twice the thickness of that in the tests of Langston et al (1977). He 

shows that although the net loss (see section 2.8) measured and predicted for 

the two cascades is similar, the losses are predicted to be produced earlier in 
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the cascade with the thicker inlet boundary layer. Experimental information 

is not available to test this conclusion, but it would fit in with the early loss 

development observed by Gregory-Smith and Graves (1983), as their cascade 

had an nnmm<~.lly thick inlet shear layer. 

2.§ 1Ililllet Bot~.rrHilali'y JLayeJr Tlb.kkrrn.e§§ 

The thickness of the inlet endwall boundary layer has been varied 

by many investigators. Marchal and Sieverding {1977) showed that varying 

the inlet boundary layer thickness from 8.5% to 31.5% span in a linear 

cascade of nozzle blades, did not alter the rise m loss produced across the 

cascade. Furthermore they showed that this was true independently for the 

losses due to the blade boundary layers ('profile losses') and the secondary 

losses. The more usual loss coefficient is defined relative to some reference 

pressure (typically inlet freestream stagnation pressure), and hence gives non

zero values of loss at the inlet plane due to the presence of the endwall 

boundary layer. This type of coefficient then varies with inlet boundary layer 

thickness, giving rise to a non-constant loss. Marchal and Sieverding defined 

their loss coefficient relative to the inlet plane mass averaged total pressure 

in order to overcome this problem. The coefficient they used then gives a 

measure of loss production by the cascade, and this is often referred to as 

the 'net' loss. 

The work of Gregory-Smith and Graves (1983), tested three inlet 

boundary layer thicknesses varying from 23% to 42% span in a high turning 

rotor cascade. They also concluded that 'the effect of varying inlet boundary 

layer thickness is small on the net increase of loss across the blade row'. 

Atkins (1987) presents results of varying the inlet boundary layer thickness 

m a turbine rotor cascade, over a range of displacement thicknesses from 

0 to 2.1% of axial chord (approximately corresponding to a range of 99% 

thicknesses from 0 to 16% ). Six different boundary layer thicknesses were 

tested, and he also concluded that the rise in loss produced across the cascade 

was constant with respect to this parameter, even down to zero inlet boundary 
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la.yer thickness. However, a slightly different 1esdt has been presented by 

Wolf ( 1961). He shows that for very thin inlet boundary layers, less loss is 

incurred. He plots a graph showing the net loss risine; with inlet boundary 

layer thickness: until a critica.l valnP. is rP.C~rhed, whereafter the net loss remains 

constant. Wolf suggests that this critical inlet boundary layer thickness is 

that just sufficient to cause complete removal of the inlet boundary layer from 

the endwall by the action of secondary flow. 

Unfortunately none of the above references contain information about 

the strength of the vortex produced by the different upstream boundary layers, 

such as the mass averaged kinetic energy of the secondary velocities. One 

might expect that if the passage vortex is mainly formed from the over-turning 

of inlet boundary layer fluid, then thickening of this shear layer would result 

in a greater mass of fluid being subjected to increased deflection, and hence 

greater secondary kinetic energy. Some support for this view may be found in 

the viscous three-dimensional calculations of Moore (1985). He showed that 

whilst varying the inlet boundary layer thickness produced no change in net 

loss for the cascade of Langston et al (1977), the predicted secondary kinetic 

energy was greatly effected. A thicker inlet boundary layer was shown to 

produce stronger secondary flows. 

One effect that variations m upstream boundary layer thickness are 

reported to produce, is the differing radial extent of the passage vortex, and 

the distance from the endwall of its centre. Bailey (1980) showed that a 

reduction of inlet boundary layer thickness moved the passage vortex closer to 

the endwall in a linear nozzle cascade, and Gregory-Smith and Graves (1983) 

showed that a thickened inlet boundary layer resulted in a larger loss zone 

extending further from the endwall. 

2.9 linlet Bolllltldary Layer Skew 

Skew is introduced in the endwall boundary layers of real machines, 

as the fluid emerges from the stationary hub into the rotating blade row. In 

contrast to the effect of boundary layer thickness, the level of skew present 
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has been shown to produce profound changes in the secondary flows and 

losses which develop. Boletis (1984) incorporated some skew tests in his very 

extensive investigation of the newfield in annular cascades. Using low aspect 

ratio high turning nn<;~:zles, he found the introduction of skcvv' was significant, 

and led to the intensification of the secondary flows. \tValsh (198'() presents 

detailed measurements of the secondary flow development in a linear cascade 

of high turning rotor blades, under three different inlet skew conditions. He 

also found that the type of skevv naturally present in a turbine rotor cascade, 

caused significant intensification of all secondary flow features, leading to 

increased secondary kinetic energy and net losses. Walsh (1987) also tested 

an unusual type of skew for his blade, such that inlet boundary layer fluid 

contained momentum in a direction opposing the endwall crossflow which 

generally develops. He found that the flowfield was greatly altered by this 

inlet condition. The horseshoe vortex pressure side leg penetrated further into 

the blade passage before meeting the suction surface. The area of endwall 

covered by 'new; endwall boundary layer fluid was reduced, and the secondary 

kinetic energy and secondary loss were also seen to decrease. 

2ol0 Passage A§pect Ratio 

Variation of blade height was shown by Bailey (1980) to have little 

effect on the secondary flows in a turbine vane passage, even with a change in 

aspect ratio from 1.87 to 0.617. In his review Dunham (1970) points out that 

varying blade height whilst keeping chord and inlet boundary layer thickness 

constant, suggests that the overall cascade loss is inversely proportional to 

aspect ratio. However, if span and inlet boundary layer thickness are constant, 

and blade chord is varied, little change in loss is evident. This might be 

explained if one considers the overall cascade loss to be composed of three 

components; an inlet boundary layer 'loss', an extra secondary loss, and a 
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profile loss. Then, for a linear cascade; 

Loss= 
InletLoss + SecondaryLoss + (ProfileLoss) * Span 

PassageArea UnitS pan PassageArea 

InletLoss + SecondaryLoss _L ( f:TofileLoss\ "- 1 

Span * Pitch 
1 

\ UnitS pan } ... Pit~h 

Thus varying the span independently of everything else will result in 

an inverse relationship between average loss and span (and hence aspect ratio). 

If the chord is varied independently of everything else, then the test becomes 

one of varying cascade Reynolds number. Hence if the various losses are not 

strongly dependent on Reynolds number in the range covered, there may be 

little effect. This does of course also assume that there is no variation in 

secondary loss with pitch to chord ratio. The effect of the blade pitch upon 

the seconda.ry loss is not obvious however. Dunham (1970) comments that 

most workers assume that secondary loss depends upon the blade turning, and 

not the pitch, when defining loss correlations. Unfortunately, no experimental 

evidence is presented in support of this assumption. However, classical 

secondary flow theory (section 2.15) suggests that the secondary vorticity 

depends upon the blade turning, but that the secondary velocities that it 

produces are also dependent upon the passage area (and hence the pitch). 

Thus, the blade chord seems to have no major influence upon the magnitude 

of the secondary losses. 

Atkins (1987) varied the aspect ratio of a linear cascade of turbine 

blades in the range 0.36 to 1.44 and observed no effect on the average losses. 

This change in aspect ratio was achieved by variations in blade span only. 

However, the result does serve to show that the concepts of a two-dimensional 

profile loss and net secondary loss remain valid even when the entire blade 

is swept by secondary flow at very low aspect ratios. 

2.11 Downstream Loss Growth. 

Most workers find that the losses continue to grow downstream of 

the blade row, due to the growth of the endwall boundary layer, and the 
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mixing of non-uniform flows (e.g. Binder and Romey (1983), Harrison (1989), 

Gregory-Smith and Graves (1983), Langston et al (1977)). Perhaps the most 

comprehensive piece of work on the processes of downstream loss generation 

has been provided by Moore and Adhye (1985) and Moore et al (1986). In 

the first paper, Moore and Adhye (1985) traversed four planes from 96% to 

140% of an axial chord from the leading edge, of a linear cascade which 

was a replica of that used. by Langston et al (1977). They showed that 

more than one third of the losses occurred downstream of the trailing edge 

in their cascade. The rise in loss was found to be almost exactly matched 

by a reduction m secondary kinetic energy, with most of this being lost by 

the dissipation of radial velocities. This seems a little strange, as viscous 

dissipation must be occurring in the endwall boundary layer. In a later paper, 

Moore et al (1986) measured the Reynolds stresses at one of the downstream 

planes, and combined these with the earlier measurements of mean velocities, 

in order to calculate the rates of turbulent deformation work. They found 

that two terms could act to produce increases in the mean kinetic energy of 

the primary flow; a deformation work term involving the streamwise normal 

stress, which produced mean kinetic energy from turbulent kinetic energy, and 

a reversible pressure work term which could exchange mean kinetic energy 

between its three components. These two mechanisms offset the 30% of the 

loss production rate which was due to shear in the endwall boundary layer. 

The rest of the loss was found to be balanced by the action of the other 

turbulent stresses, giving a complete picture of the downstream flow. 

2.12 Turbulence Measurements 

When Sieverding (1985b) wrote his review, he concluded that little 

was then known about the structure of turbulence in turbine cascade flows. 

Since that time, however, the literature has expanded, giving rise to a clearer 

understanding of the flow physics. Priddy and Bayley (1988) showed that 

in a high speed turbine rotor cascade, the freestream turbulence intensity 

reduced in accordance with the rising mean flow velocity. Thus the absolute· 
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magnitude of the turbulent fluctuations was found to remam constant in this 

area. Bailey (1980) measured the turbulent flow in a cascade of inlet guide 

vanes. He found maximum turbulence intensities of 4% of local velocity, and 

large regions of the passage vortex to exhibit freestream turbulence levels. He 

then suggested that laminar flow calculations would prove to be accurate tools 

for predicting the flow in turbine cascades. A contrasting result was reported 

by Sharma et al (1985). They set out to investigate the unsteady flow in a 

one and a half stage model turbine. The flow downstream of the first stator 

was found to be steady, with only small variations due to the presence of 

the downstream rotor. Measurements of turbulence in the gap between the 

first stator and the rotor, showed the passage vortex to be turbulent, with 

intensities of up to 28% of axial velocity present. Downstream of the rotor, 

the flow was found to be highly unsteady, and typical turbulence intensities 

in the wake and vortex regions reached 41% of axial velocity. 

The work of Moore et al (1986) showed that at 10% of an axial 

chord downstream of a replica of the cascade used by Langston et al (1977), 

the turbulence intensities reached peaks of 25% of upstream velocity. They 

showed that although only 23% of the total loss could be accounted for directly 

as turbulent kinetic energy, the turbulence was of major significance in the 

loss generation process downstream of the cascade. The cross-passage/radial 

shear stress was shown to be twice as large as the other two, and was 

considered to be important m the mixing out of radial velocities. It was 

also shown that the normal stresses played a major part in the conversion 

between mean and turbulent kinetic energy. In particular, the streamwise 

stress was found to strongly produce mean flow kinetic energy from turbulent 

energy as the mixing process accelerated the turbulent, high loss, low velocity 

regwns. Direct viscous action was found to be relatively insignificant as a 

loss production mechanism. 

Perhaps the most detailed investigation of turbulence within a blade 

passage has been provided by Zunino et al (1987). They investigated the flow 

in a high turning steam turbine rotor cascade. At a position close to the 

passage throat, they found that high turbulence (12% of upstream velocity) 
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wan associated with the three loss cores (section ?..6). At the downstream 

location ( 20% of an a.xial chord from the trailing edge), turbulence intensities 

were found to have risen to peak values of 15% of upstream velocity. The 

turbulent kinetic energy was found to account directly for only 10% of the 

total loss, but the authors expressed the opinion that this reflected a near 

balance between the generation and dissipation of turbulence, rather than 

indicating large quantities of direct viscous dissipation of mean velocities. 

Another detailed investigation of a linear turbine rotor cascade was presented 

by Gregory-Smith et al (1988). They found peak turbulence intensities of 29% 

of upstream velocity in the vortex core, but still only 17% of the loss could 

be accounted for as turbulent kinetic energy. They also found that regions of 

high loss were associated with high turbulent kinetic energy. Downstream of 

the cascade, they found that the wake turbulence dissipated whilst the overall 

turbulent kinetic energy continued to rise. A short spectral survey of the 

tmbuleuce, indicated that a dominant frequency was present in the energy 

spectrum, and it was postulated that this might be associated with a periodic 

shedding of the passage vortex from the passage. No other data seems to be 

available with which to compare this however. A recent paper by Hebert and 

Tiederman (1989), showed turbulence intensities of 18% of upstream velocity, 

to be associated with the passage vortex, and 32% with the separation of the 

passage vortex from the blade suction surface at exit from a turbine stator. 

This is somewhat in contrast with the results of Bailey (1980) mentioned 

previously. 

In conclusion, it appears that significant turbulence levels are present 

in the secondary flow regions of most turbine cascades. This implies that the 

action of the secondary flow in rolling up the endwall boundary layer, and 

its interaction with the blade passage boundary layers, results in significant 

turbulence generation. This process is believed to account for the majority 

of the secondary losses in such cascades. The fact that the losses are not 

manifested as an equal rise in turbulent kinetic energy, is probably due to 

the rate of viscous dissipation of the turbulence almost matching its rate of 

production. The turbulence levels m rotor cascades are likely to be greater 
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than those in inlet guide vanes, as the turning angles are generally much 

larger giving rise to more powerful secondary flows, and the fluid acceleration 

is less. As the turbulent stress distribution has already been shown to be very 

complex (see for example Zunino et al (1987)), there is a need for test data 

with which to validate turbulence models for use in the computation of these 

flows. Also, the above studies were generally for low freestream turbulence 

levels (Zunino et al, Gregory-Smith et al, Moore et al, and Sharma et al, all 

had inlet turbulence intensities :::; 1% ). Hence data concerning the effect of 

variations in inlet turbulence intensity would be valuable. 

2.JL3 §ummaJry of 3-D Linear Thrbiill1e Cascadle Aerodlyxn.amiics 

From the above discussion, quite a detailed description of the three

dimensional flow in a linear turbine cascade can be formed. The endwall 

boundary layer incident onto the blade ieading edges rolls up into a horseshoe 

vortex. The pressure side leg of this vortex then crosses the passage, forming 

a separation line which is a distinct feature of endwall flow visualisations. A 

passage vortex forms under the action of the cross-passage pressure gradient 

on the endwall boundary layer fluid. The strength of the passage vortex is 

greatly influenced by the blade turning angle, and is hence powerful in the 

high turning cascades of turbines. The passage vortex sweeps the endwall 

boundary layer towards the suction surface, and rolls it up into a loss core. 

This may then move up the suction surface if the secondary flows are very 

strong. A new boundary layer forms on the endwall, and is kept very thin by 

the sweeping action of the passage vortex. It appears to be generally laminar 

on the pressure side of the blade passage, undergoing transition towards the 

trailing edge. On the suction side of the passage, the endwall boundary layer 

is indistinguishable from the overall loss core, and is turbulent. High loss 

regions appear to be associated with the separation of the passage vortex 

from the passage surfaces, and these loss cores are observed to be highly 

turbulent. 
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2.14 Reall 'I'm·bii:rme§ 

In a real machine, the flow is much more complex than that in the 

simple test cases which have been considered above. Rotor blades are often 

unshrouded, and thus over-tip leakage flows develop. Dishart and Moore 

(1989) showed that the loss due to tip leakage may be very significant. In a 

replica of Langston's cascade, with a tip gap 2% of blade height, and a very 

thin inlet boundary layer, they measured greater losses than were found m 

the same cascade with no tip gap and a very thick inlet boundary layer. 

Modern turbines often contain transonic blading. Although there will 

be losses associated with the shock waves which must be present, Denton 

and Cumpsty (1987) suggest that these will be small as the shocks are weak 

and oblique. It is the effect on the boundary layers caused by these shocks, 

which they considered to be more important. The high speeds typical in 

modern turbines, may also cause other differences when compared with the 

simplified flows in low speed cascades. Perdichizzi (1989) found the passage 

vortex to move closer to the endwall and grow weaker as the Mach number 

was increased from 0.3 to 1.2. The radial geometry of real machines also 

results in modified flow features. Boletis (1984), investigated the flow through 

an annular cascade which used the same blade profile as that of Marchal 

and Sieverding (1977). The effect of radial pressure gradient was found to 

be significant. Low momentum fluid migrates from casing to hub under the 

action of this pressure gradient, which is formed in response to the swirl 

of the fluid about the axial direction. This low momentum transport was 

found m the blade boundary layers, and the wake, and resulted in greater 

losses at the hub than the tip. Perhaps the most daunting aspect of real 

turbomachines, when compared with simple cascade tests, is the unsteady 

nature of the flow within them. The works of Sharma et al (1985), and 

Hebert and Tiederman (1989), suggest that the flow through a blade row will 

resemble the familiar steady flow pattern when upstream blade wakes impinge 

on the blades, but is markedly different when they enter mid-passage. The 

fiowfield is thus highly unsteady and continuously oscillates between the two 
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extreme cases described. 

In recent years, some attempts have been made to control the sec

ondary flows in isolated, steady flow cascades, e.g. Boletis (1984), Atkins 

(1987), Dominy and Harding (1989). These tests generally aim to contour 

the geometry in such a way as to reduce blade loading near the endwalls, 

and hence lead to less over-turning of the endwall boundary layers. There 

has been a certain amount of success in these approaches, but the three

dimensional design of geometries to achieve these results is far from simple. 

This is one of the areas where modern three-dimensional flow solvers might 

be expected to make advances. 

2.15 Secondary Flow Theory 

Although the details of secondary flows are very complex, it was 

mentioned previously that the formation of the dominant passage vortex, is 

essentially an inviscid phenomenon. Viscous effects are required to produce 

the inlet boundary layer, but thereafter inviscid fluid mechanics will produce 

secondary flow. This was realised in the 1950's, and attempts were made 

to predict secondary flows using inviscid vorticity equations. The solution 

of Squire and Winter {1951 ), who derived an equation for the downstream 

vorticity resulting from a given upstream normal vorticity, heralded the start 

of secondary flow theory in turbomachines. 

A similar solution was derived in a different way by Hawthorne (1951). 

He showed that the equation for the streamwise component of vorticity for 

steady, inviscid, incompressible flow in the absence of body forces was: 

(w") -(w") =-2 f 2
\1P0 sin<Pde 

V 2 V 1 J1 p V2 
(2.1) 
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where 

W 3 = streamwise component of vorticity 

V = velocity magnitude 

Po = stagnation pressure 

p = density 

<P = angle between endwall and normal to Bernoulli sur face 

e = angle of turning of fluid through the bend 

A solution of this equation assuming no change in ¢, an axial velocity 

ratio of unity, and small deflection, is: 

Here 
Wn1 = normal component of vorticity at inlet 

812 = total angle of turning of the cascade 

(2.2) 

This work has been considerably extended by a number of researchers, 

and a good review of the subject has been given by Horlock and Laksmi

narayana (1973). 

Although the above work was based on vector analysis and vorticity 

equations, an alternative approach was suggested by Came and Marsh (1974) 

based on Kelvin's Circulation Theorem. This analysis is more easily visualised, 

and the authors clearly described the three streamwise vorticity components 

to be found downstream, namely distributed secondary vorticity (the passage 

vortex), trailing filament, and trailing shed vorticity. Trailing shed vorticity 

arises from the spanw1se change in circulation around the blades, whereas 

trailing filament vorticity is the result of vortex filaments on the suction 

surface arriving at the trailing edge before the corresponding filament on the 

pressure surface. Hence the filament is stretched in the wake and together 

with the trailing shed vorticity, forms a vortex sheet. 

Once the streamwise vorticity at the passage outlet has been deter

mined, the flow is solved for by introducing a stream function. Gregory-Smith 

(1984) has given a good account of secondary flow theory, and the extent 
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of the work covered gives a clear indication of the effort which has been 

expended on this approach. Indeed, secondary flow theory has met with 

considerable success in cascades of small turning, where the underlying as

sumptions of the theories are not invalidated. However, in the case of many 

modern turbine cascades, the turning is so severe that the endwall boundary 

layer is completely removed from the endwall. The assumption of no rotation 

of Bernoulli surfaces is then obviously in error. Glynn (1982) has proposed 

a method of streamline tracing, in an attempt to address this problem. 

Perhaps one of the most valuable contributions that secondary flow 

theory can make, is in the understanding of cascade flow phenomena, rather 

than numerically exact flow predictions. For instance Marsh (1976), used his 

theory to show that the effect of compressibility on secondary vorticity, was 

much more important in compressors than turbines. However, the need for 

a fast design tool, to aid secondary loss estimation in the early stages of 

design is still accute. It seems likely that secondary flow theory, which does 

contain at least some of the flow physics, will provide a better basis for such 

a model than simple correlations. 

2.16 Secondary Loss JPredictio:n 

In order to enable loss estimation in a turbomachine design, a number 

of correlations have been developed. Dunham (1970) reviewed several such 

loss prediction techniques and found them to give significantly different results. 

Dunham thus produced his own correlation, based on the Ainley and Mathieson 

(1951) blade loading parameter. The secondary loss is then described as :-

where 

P01- Po2 
Ys = ----

Po2- P2 

= * ( ::: ;: ) ( :;J :::::~ f ( 6:) 

2s 
CL = -(tancq - tano:2)coso:m 

c 
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and 
1 

f ( 
6
:) = 0.0055 + 0.078( 

6
:) 

2 

with c = blade chord, h = blade height, a 2 = outlet gas angle, (31 = inlet blade 

angle, s = blade pitch, am = vector mean gas angle = tan- 10(tana1 +tana2 )), 

and 61 = boundary layer displacement thickness. 

The physical basis for such correlations must be derived from the 

results of cascade tests. Most authors appear to regard the blade loading, 

and a length ratio term which is associated with the secondary loss, to be 

of greatest significance. Dunham (1970) has tried to also incorporate the 

inlet boundary layer thickness, as well as the aspect ratio in his correlation, 

since he observed that it is variation in blade height which causes changes 

in secondary loss and not variations in the chord. Thus the assumption that 

the losses depend upon aspect ratio is over-simplified, and he suggested that 

this was due to the importance of the inlet boundary layer. 

More recent correlations have been reviewed by Sieverding ( 1985a). 

Whilst he points out that these now usually take only their physical basis 

from cascade data, and rely upon real turbine performance measurements for 

evaluation of the constants, a disturbing lack of agreement between methods 

is still apparent. 

In reality all correlations must rely upon geometrical similarity between 

blades, and so their use as an innovative design tool is questionable. They 

do still find application m early design stages however, as they are easily 

evaluated, and do not require detailed knowledge of the blade profile. 

A more realistic secondary loss model has been provided by Gregory

Smith (1982). With a knowledge of the flow physics obtained from the 

experimental investigations of the 1970's (e.g. Langston et al (1977), Marchal 

and Sieverding (1977) ), he was able to design a simple model for the end wall 

losses in turbine cascades. He used secondary flow theory to calculate the 

exit vorticity, and solved this for secondary flow velocities using numerical 

solutions of the equation for secondary flow stream function produced by 

Glynn and Marsh (1980). Secondary losses were assumed to be composed 
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of three components, the upstream boundary layer which is shed downstream 

as a loss core, the new skewed boundary layer which forms on the endwall 

behind the separation line of the inlet boundary layer, and an extra secondary 

loss due to the p2.ssage vortex and its interaction with the bounda.ry layers. 

The loss core was assumed to be triangular in shape and had the same mass 

flow and kinetic energy deficit as the inlet boundary layer. It was centred at 

a distance from the endwall equal to the inlet boundary layer thickness. The 

new endwall boundary layer was assumed to be turbulent, and to start at 

the passage throat. A two-dimensional calculation was performed along the 

passage centreline, ignoring the effect of skew. For the extra secondary loss, 

a relationship with secondary kinetic energy seems plausible, and the extra 

secondary loss was assumed to be equal to the secondary kinetic energy. All 

three components were then simply added to give the total loss, which could 

be presented as a function of distance from the endwall. Reasonable results 

were found for several turbine blade rows. 

Work is currently in progress at Durham University (Gregory-Smith 

and Okan (1989)) to develop the above loss model in conjunction with the 

streamline tracing secondary flow theory of Glynn (1982), so as to produce 

a fast calculation method for the secondary flows and losses m a .proposed 

blade row, without the need for a detailed knowledge of the blade profile. 
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3.0 Jint:wductnom. 

This chapter aims to describe the modern application of computational 

fluid dynamics in turbine technology, with particular emphasis on the state 

of three-dimensional N a vier-Stokes solvers. The basic equations, methods of 

solution, examples of codes, and some of the problems of these techniques are 

described. Finally the problem of closure of the N avier-Stokes equations is 

discussed, and a very brief introduction to the modelling of turbulence within 

turbomachinery calculations is given. 

3.1 Computatio:naJ Fluid Dynamics and Secon.d.a1ry Fliows 

The early approaches to the modelling of endwall flows in turboma

chinery aimed to generalise two-dimensional boundary layer theory to cope 

with cross-flows. These are considered to be the components of flow perpen

dicular to the assumed streamwise direction outside the boundary layer. For 

small cross-flows it was found that the boundary layer could be accurately 

represented by an equivalent two-dimensional power law velocity profile, and a 

polar plot of the cross-flow versus 'streamwise' components. Langston (1980) 

quotes Johnston (1960) as modelling the polar plot with a triangular represen

tation. However this could not adaquately describe the over and under-turning 

found in the endwall flow of cascades. Langston (1980) states that after much 

research, it was concluded that no general cross-flow profile existed. Thus 

in the absence of a universal profile, an integral boundary layer calculation 

technique could not be general enough to cope with new geometries. Hence 

as computer power has increased, integral techniques have been abandoned in 

favour of differential methods. Indeed generally the methods which have been 

developed to calculate the flows within turbomachines have been governed by 
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the computational power available to the modellers. Early inviscid methods 

included singularity approaches for two-dimensional flows. However, the rapid 

development of computer hardware has led to ever more general calculations. 

Wu (1952) proposed a method of tackling the three-dimensional flow 

problem by calculating the flow on two intersecting families of stream surfaces. 

The first set are blade to blade surfaces and are generally known as S 1 stream 

surfaces. The other surfaces which lie between the blades, extend from hub 

to tip and are approximately aligned with the flow direction. The solution 

of the flow on these S2 surfaces, is referred to as a through-flow calculation. 

Stow (1985) points out that although Wu's theory can predict the complete 

three-dimensional flow in the cascade by using an iterative procedure which 

links the calculations on the two families of surfaces, most workers have not 

done so. Instead they use the concept of the two families of surfaces, but with 

only one S2 surface (e.g. Jennions and Stow (1985a,b)). The S1 surfaces are 

then taken as surfaces of revolution. This is often referred to as the 'quasi

three-dimensional' model as it can cope with varying radial blade sections, 

and contracting or diverging annulus geometry, but makes no allowance for 

the endwall effects such as secondary flows. However such methods are 

used at present by engine manufacturers, and so are worthy of mention. 

Streamline curvature and stream function techniques for the S1 surfaces are 

used in these design systems. Such calculations usually incorporate a viscous 

boundary layer model for the blade to blade calculations. These models 

generally rely upon correlations for the prediction of transition and are hence 

limited to calculations at, or near, the design incidence. Trailing edges also 

present a problem, and are usually modelled with a cusp. Hence there IS 

interest m more general viscous analyses in two dimensions (e.g. Davis et 

al (1988)), as well as fully three-dimensional calculations. These offer the 

exciting prospect of tailoring blade row geometries in all three dimensions, so 

as to achieve more favourable downstream conditions. 
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Dunham (1986) has strongly supported the continued development 

of computational :fluid dynamics ( CFD) for turbomachinery analysis. He 

convincingly argues that advances in CFD in the past have been closely 

followed by advances in engine design, and moreover, result in less problems 

requiring solution on the test bed. 

3.3 Tlhe Gove!l"m.ing EquatimJJ.s of JF'liUlnd Mecll:tallll.iics 

The full set of governing equations of a :fluid :flow may be obtained 

by considering :flow through a small volume fixed in space, or the motion of a 

small :fluid element. An excellent account of the derivation has been given by 

Anderson (1986). The conservation form of the governing equations derived 

from consideration of a volume fixed in space, maybe written in matrix form 

as :-

F= 

pu 

8U 8F 8G 8H _ oR 8S fJI' J 
&t + ax + By + 8z - ax + By + oz + 

p 0 
pu Pfx 

U= pv }= Pfy 
pw Pfz 
pE p(ufx + vfy + wfz) 

pv 
pu2 + p puv 

pvu G= pv2 + p H= 
pwu pwv 

pw 
puw 
pvw 

pw2 + p 
pu(E + pjp) pv(E + pj p) pw(E + pjp) 

0 0 0 
rxx Tyx Tzx 

R= rxy S= Tyy T= Tzy 
Txz Tyz Tzz 
Rs Ss Ts 

OE 
Rs = K ax + UTxx + VTxy + WTxz 
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8E 
Ss = K By + UTyx + VTyy + WTyz 

8E 
'r. - 1{_ ..l.. ,,,.. ..L .,,... ..L W'T 
"""'"0 - ""'.., 8z I v.., ZZ I v 1 zy I zz 

where 

E =total energy= e + (u2 + v2 + w 2)/2, e = internal energy 

u, v, w = velocity components in x, y, z directions 

K = coefficient of thermal conductivity 

fx, fy, fz = body forces e.g. gravity/electromagnetism 

E = temperature 

Tij = stress m j direction, exerted on plane perpendicular to i - axis 

The matrices F, G, H, are called the flux vectors, and J represents a 

source term which might include terms to cope with blade row rotation, or 

body forces due to gravitational or electromagnetic potentials. The solution 

vector is U. The five equations written in these matrices are the continuity 

equation, the three Navier-Stokes momentum equations (one for each compo

nent), and an energy equation. The equation of state of a perfect gas is then 

used to close the system. These equations are a set of coupled non-linear 

partial differential equations for which no general analytic solution is known. 

The equations can have very different behaviour depending upon their coeffi

cients. If there exist surfaces within the flowfield upon which the solution is 

at best indeterminate, the equations are said to be hyperbolic. These surfaces 

are called characteristic surfaces and if they are real, they bound the region 

which is influenced by the point in the flowfield under consideration. If the 

characteristic surfaces form a plane in the flowfield the equations are said 

to be parabolic, and if they are imaginary, then the equations are elliptic. 

In this last case each point in the flowfield influences all other points. The 

notation arises from the mathematics of conic sections, which are described 

by similar equations. 
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If the VIscous stress terms involving derivatives with respect to x 

are ignored, the N avier-Stokes equations become 'parabolised'. A familiar 

example of parabolic equations is provided by the boundary layer equations, 

which are obtained when velocities normal to a surface are considered to 

be small. Due to their parabolic nature, flow governed by these equations 

may be solved by calculating conditions at a downstream location from those 

existing upstream. Hence the calculation may start from upstream boundary 

conditions, and march downstream in steps, calculating the flow as it proceeds 

(e.g. Patankar and Spalding (1972)). This is called space marching. By 

contrast, subsonic steady flow exhibits elliptic behaviour where the solution at 

any point in the flowfield effects that at any other point, be it upstream or 

downstream. This means that the solution must be calculated simultaneously 

for all points, from boundary conditions defined all around the region to be 

modelled. An example of an elliptic calculation procedure has been given by 

J.G. Moore (1985a). 

3.4 Euler Solvers and Time Marching 

In numerical solutions for the flow through a particular geometry, 

the result is a set of numbers which are values of the flow variables at 

particular discrete points within the region of interest. Hence a grid is set 

up over the calculation domain to define these calculation points. Clearly 

the number of points required for three-dimensional calculations will be much 

greater than that needed to describe a two-dimensional flow. In a solution 

of the full governing equations (often called the Navier-Stokes equations by 

the CFD community) it might be necessary to store five variables, two or 

more turbulence quantities, and possibly other quantities relating to coordinate 

transformations. As this information must be stored at each point in the 

flowfield, it is not surprising that the first three-dimensional methods attempted 

to solve only the in viscid governing equations (called the Euler equations) 

rather than the full N avier-Stokes equations. These equations are easily 

obtained from equation ( 3.1) by setting the right hand side to zero (the 
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SO<li~ce vecim' J may be retained if required). This neglects a!.l the VlSCOt;.S 

terms, and greatly simplifies the simulation task. The Euler equations are 

parabolic in time, regardless of the type of :fiovl'. Thus it is possible to 

solve them by defining some initial starting gue8s, and YlJ;].rrhing fnrw;).rrls m 

time until the steady bound2..ry conditions cause ·~he solution to settle to a 

steady state. This method is called 'time marching' and has been widely 

used in turbomachinery applications, and CFD in general. As an example, 

the following simple equation is considered:-

(3.2) 

The derivatives may be approximated by a truncated Taylor senes to form 

finite difference equations. If a forward difference is used for the time 

derivative, and a central difference for the space derivative, a finite difference 

verswn of equation (3.2) may be written as :-

u~+l - u"!-
' ' 

f1t 
(3.3) 

Here superscripts relate to the time step number, and subscripts to the grid 

point locations (e.g. Figure 3.1 ). As all the values on the right hand side 

of equation (3.3) are written in terms of the current time step, the value of 

1ti+l may be calculated directly from this one equation. This then, is an 

explicit technique. It is worth noting at this point, that equation (3.3) is not 

an exact representation of eq nation ( 3. 2), (unless b.x and b. t tend to zero). 

Hence, when performing CFD calculations, the equations which are actually 

solved are not the governing equations, but an approximate representation of 

them, and this can have significant effects upon the results. 

In equation (3.3) it would be better to write the spatial derivative m 

terms of average properties between times n and n + 1. Then 

Clearly this equation cannot be solved directly for uf+1
. In this case the 

finite difference equations must be constructed for each point in the fiowfield, 
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to giVe a set of simultaneous linea.r equations. These may then be solved 

for the new values at each point in the flowfield, simultaneously. Equation 

(3.4) is an example of the Crank-Nicolson form of time marching and is one 

example of an implicit method. In general it is found that implicit methods 

are much more stable than explicit techniques, which are forced to use small 

time steps if divergence of the solution is to be avoided. Hence long computer 

running times are required to advance an explicit scheme through a given 

time interval. Implicit schemes allow much larger time steps, but involve more 

calculation and hence computer time per time step. As implicit methods are 

considerably more complex to set up and program, most authors of Euler 

solvers have adopted explicit techniques. McNally and Sockol (1985) cite 

Gopalakrishnan and Bozzola (1972) as applying an explicit :finite difference 

scheme (MacCormack's algorithm) to a transonic compressor cascade. This 

algorithm has also been adopted by Chima (1985), and Shang et al (1980). 

Implicit techniques are more popular for full N avier-Stokes solutions (e.g. 

Briley and McDonald (1977)). 

A slightly different approach which is widely used for internal flow 

calculations is the finite volume technique. This is obtained by integrating the 

governing equations over local control volumes surrounding each grid point. 

In the numerical solution, the integration of fluxes over the surface of the 

control volume is approximated by a summation over the number of cell faces 

(usually six in three dimensions) of the average flux through a face multiplied 

by the area of that face. Denton (1985a) describes such a method, and points 

out that its popularity in internal flow calculations, arises from its ability to 

conserve automatically quantities such as mass flow. This results from the 

fact that any error causing say outflow from one control volume, will cause 

an equal inflow to another. Denton's scheme is very well known and has 

been in use for some years, the original method being reported by Denton 

(1975). Another example of an explicit time marching code utilising finite 

volumes, is described by Arts (1984). 

Time marching Euler solvers have the ability to cope with transonic 

flows and are hence very attractive for turbomachinery applications, the shock 
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waves appeanng naturally within the solution. Denton (1985a) argues that 

a calculation method should be simple, as a complex code will only be 

understood and used by its author. The range of reported applications of 

Denton's code (and modifications to it) must lend some support to this 

opinion (e.g. Sato et al (1986a,b ), Atkins (198?), Walsh (1987)). 

3o5 Time Marchnng §tabiillity~ Acc-ux:racy~ and ilhe CJFJL ColOl.dHiolill 

As mentioned before, explicit time marching schemes are generally 

less stable than implicit methods. Indeed generally there is no guarantee 

that finite difference equations will be accurate or stable under all conditions. 

Two sources of error are those errors in representing the governing equations 

in finite difference or finite val ume form (called the discretisation error), and 

the round off error due to repetative calculations to only a finite number 

of significant figures. If the governing equations are linear, a general error 

analysis method (the von Neumann stability method) may be applied to 

obtain a stability limit for the scheme. If such an analysis is applied to the 

first order wave equation 

au au -+- =0 at ax (3.5) 

using first order accurate differences ( discretisation errors of order ~x, .6.t ), 

the stability condition is found to be 

D.t 
c- < 1 

D.x 
(3.6) 

This 1s the famous Courant - Friederics - Lewy condition ( CFL condition) 

which 1s taken as the stability limit for explicit time marching schemes. In 

reality, since the fluid mechanics equations are non-linear, the above stability 

method may not be applied, and the CFL condition gives only an approximate 

guide to the stability limit of the scheme. Anderson (1986) illustrates the 

physical significance of the CFL condition with the aid of a simple example. 

Considering a second order wave equation he shows that if the CFL condition 

is precisely satisfied, the characteristic lines running through a given point to 
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be evaluated exactly bound those points used in the finite difference equation 

by which it is calculated. If the CFL condition is exceeded, then conditions 

at a point are evaluated from conditions at other points which do not cover 

the full range of space which should influence it. This under-couples the 

flowfield and leads to instability. Conversely, if the CFL condition is easily 

satisfied (i.e. b..t is very small), then the calculation of the value at a point 

is influenced by a much greater region of space than is physically the case. 

This procedure is stable but unrealistic, and can produce inaccurate results. 

Hence it is generally desirable to use time steps which closely approach the 

CFL condition. 

3.6 Decoupling, Oscillations, and Smoothing 

Other problems which often occur m CFD are related to the discrete 

nature of the solutions. For example, consider a one-dimensional conservation 

equation for a quantity 'J./1:-

8'1.jl 8'1f -+a-= 0 
&t 8x 

(3.7) 

One finite difference equation which might be written as an approximation 

to this equation is :-

,/,:'+1 _ ,f,J' ("''n .f,n ) 
'P. 'P. 'Pi+l - 'Pi-1 
~----~ = -a~~~--~~ 

~t 2~x 
(3.8) 

This procedure would then allow oscillations such as those in Figure 3.2 to 

exist without damping them. This is often a problem in solutions if nothing 

is done to counteract it, but causes particular difficulties near shock waves. 

Denton (1985b) states that it is usual to have to add damping or smoothing 

terms to the equations in order to prevent 'wiggles' occurring around shock 

waves which might otherwise influence a large part of the flow. In reality 

entropy is produced at shock waves, but computationally the shocks are often 

spread over several grid points and require extra 'numerical' entropy production 

to produce the correct downstream flow. This must be added carefully to 

avoid damaging the whole flow prediction. Some natural 'numerical viscosity' 
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exists in the finite difference equations due to the truncation errors. The 

particular form this takes will depend upon the type of differencing used. For 

instance the right hand side of equation (3.8) should really be a series, with 

(3.9) 

Here the first neglected term m equation (3.8) w dependent upon (.6-x)2. 

Thus finer grids produce more accurate results. Denton (1985a) advocates 

the use of fine meshes rather than higher order accurate equations, in order 

to achieve reliable solutions. It is also apparent that the error term depends 

upon the third derivative of the conserved quantity. This term is analogous to 

the form of the viscous terms in the N avier-Stokes equations. Thus 'in viscid 

solutions' will often generate numerical losses which are convected and effect 

the downstream flowfield just as real viscous losses do. 

If oscillations develop within the solution, they may be damped by the 

addition of extra terms to the equations which introduce viscous type deriva

tives. The finite difference equations for these terms then introduce strong 

coupling of the solution on odd and even grid points, damping oscillations. 

Unfortunately they may also adversely effect the accuracy of the solution, as 

the equations then effectively describe a more viscous fluid. Generally it is 

found sufficient to smooth solutions with fourth order derivatives except in 

shock waves, where second order terms are required. Such smoothing tech

Iliques, or their equivalent, are generally employed in time marching methods 

(e.g. Dawes (1983), Denton (1985a), Chima (1985), Chew and Birch (1987), 

Dawes (1987), Davis et al (1988)). 

3. 7 Acceleratiolll Techniques Fm.- Time Marching §ohltiion§ 

Due to the limits imposed on explicit algorithms by stability reqmre

ments, significant expertise has developed in the acceleration of the convergence 

of the schemes. The most obvious acceleration technique is to use different 

time steps for each control volume. This destroys the physical meaning of 

the transients in the solution, but if a steady state solution is required this 
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is unimportant. Most authors offer the user a choice between uniform, and 

local time steps. Spatially varied time steps may also be used to increase 

the 'robustness' of a method. If the local time step is made inversely depen

dent upon the local ratP. of change of variables, then local instabilities are 

restricted. This can prevent a calculation failing in the early stages when 

large transients are occurring, and is recommended by Denton (1985b). 

Another technique which has been shown to be very effective, 1s 

multigrid. This groups blocks of control volumes together to perform initial 

'coarse grid' calculations, moving on to the refined grid after the initial large 

transients in the flowfield have been washed out to the boundaries. In some 

schemes (e.g. Denton (1985b), Chima (1985)) the calculations on both grids 

are performed in parallel. Denton (1985b) suggests that spatially varied time 

steps can yield 50% savings in CPU time, whereas multigrid may increase 

convergence speed by a factor of five. 

One particular point of interest for time marching algorithms, is that 

they usually perform badly in low speed flows. This is because they solve for 

density, which is almost constant at low Mach numbers. This problem can be 

overcome without seriously compromising accuracy, by modelling the flow with 

the maximum Mach number scaled to 0.3. Such practise is recommended by 

Birch (1989a). However, methods of modifying algorithms to cope with low 

speed flows have also been developed by some workers, such as the use of 

pseudo-compressibility. 

3.8 Calculatio:n Grids 

The choice of grid upon which to perform computations is not trivial. 

Many turbomachinery blade rows exhibit high turning or stagger, and a 

simple square ('H'-type) grid will result in highly sheared cells (Figure 3.3). 

Denton (1985b) describes how such sheared cells will increase numerical errors. 

Considering a simple difference representation, he shows that derivatives with 

respect to x will be poorly evaluated from the four points shown in Figure 
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3.3 smce 

o'lj;p 

ox 2.6.s sine 
(3.10) 

If e is small, !J/; becomes the difference of two large numbers which are only 

approximately evaluated with finite differences. 

One alternative to accepting the numerical errors associated with 

sheared grids is to develop a much more complex grid system. Although 

this has been done by several authors of two-dimensional methods (e.g. 

Delaney (1982), Chima (1985), Davis et al (1988)), such techniques have been 

less widely adopted in three-dimensional calculations owing to the increased 

complexity, and computation requirments. However, with grid generation 

techniques remaining an active area of research in CFD in general, this may 

change in the future. An attractive method is to solve an elliptic equation to 

transform a uniform mesh in one coordinate system, to a body fitted mesh 

in the physical coordinates. Chima (1985), and Davis et al (1988), use a 

Poisson equation to generate a 'C' grid, which certainly contains cells which 

are much more orthogonal than those which are typical of simple meshes. 

Taking the idea of coordinate transformations a stage further, the governing 

equations may be transformed into a 'computational' coordinate system, in 

which the mesh is uniform. Dawes (1983) describes a two-dimensional implicit 

method which works on a uniform mesh in the computational plane. However, 

MeN ally and Sockol (1985) point out that in three-dimensional calculations, 

nine or more metric derivatives need to be stored at each grid point, in 

addition to the flow variables. Hence such techniques are not so common for 

three-dimensional methods. 

As mentioned earlier, the finite difference equations will not be an 

exact representation of the governing equations. The approximation may be 

made more accurate however, by using more grid points in the finite difference 

equations. Usually codes are either first or second order accurate (depending 

upon whether the error term is of order b.x or (b.x)2). Sometimes authors 

will point out that their scheme is second order accurate if it is applied on 

a smoothly varying mesh (e.g. Dawes (1987) ). This arises from neglecting 
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non-uniform mesh spacing when evaluating the fluxes at a cell boundary 

from values stored at adjacent cell centres. Such schemes then are prone to 

give grid dependent solutions, where the use of a carelessly (or inexpertly) 

c.onstructed mesh might yield very poor predictions, even though the code 

can be very accurate when applied to a suitable mesh (e.g. Birch (1989a)). 

Hence the use of transformed equations in a uniform computational plane, 

might prove to be worthwhile, since it allows the accurate use of simple 

algorithms, despite the additional storage requirements and transformational 

complexity. 

3.9 Pseudo Viscous Approximations 

Although Euler solvers have been 'videly used to model blade row 

aerodynamics, they do have some limitations. In compressor cascades the 

growth of boundary layers may have a significant effect on the 'freestream' 

flow by effectively decreasing the passage area. Gostelow (1984) points out 

that differences between early British and American cascade tests, resulted 

from the inclusion of the endwall boundary layer blockage in the British 

case, whereas these boundary layers were removed in the American work. 

Another problem with inviscid methods has been identified by Stow (1985). 

When considering models of the effect of skew in the inlet boundary layer, he 

shows that inviscid calculations can perform badly as they do not account for 

the change in boundary layer profile from the inlet boundary to the leading 

edge. In reality viscous effects can be significant in such a boundary layer, 

resulting in a different profile entering the blade row from that measured 

upstream. Hence Stow concludes that care must be taken when using an 

inviscid calculation to simulate the effects of an inlet boundary layer. 

Denton (1985a) describes a method of transpiring fluid through solid 

surfaces so as to displace the freestream flow by the displacement thickness 

of the boundary layer as calculated with a simple two-dimensional boundary 

layer method. He shows that this technique gives more realistic results than a 

completely inviscid solution in the case of compressor cascades and transonic 
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fans. A different approach to th~ simulation of viscous effects in Euler 

solvers, is to incorporate viscous force terms in the source vector J, as body 

forces. Denton (1985a) describes such a technique where the magnitude and 

distribution of the force are chosen 'empirically' by the user to produce good 

agreement with real flows. Denton himself clearly states that such a model is 

grossly simplified compared with even the simplest Navier··Stokes solver, but 

nevertheless reports improved results with the use of this technique. Gregory~ 

Smith (1989) has compared results of Denton's scheme, ¥.rith those of a state 

of the art implicit time marching Navier-Stokes solver due to Dawes (1986). 

The two schemes produce results of comparable quality in this case. However 

it should be remembered that as soon as empirical constants are introduced 

into calculations, the methods are strictly limited to the range over which 

those constants have been determined. Hence Navier-Stokes solvers are still 

an attractive development as they should offer the possibility of off-design 

analysis (assuming empirical constants in the turbulence models are adaquately 

defined). However, Denton (1985a) comments that it is likely to be some 

time yet before turbulence models are sufficiently accurate to give absolute 

predictions of aerodynamic loss. 

3ol0 Time Mrurchirn.g Naviier-Stokes Solvers 

For viscous solutions the full N avier-Stokes equations are solved. The 

solution procedures are essentially the same as those for the Euler equations. 

Examples of explicit time marching Navier-Stokes solvers have been reported 

by Chima (1985), Davis et al (1988) in two dimensions, and Shang et al 

(1980) in three dimensions. Such algorithms suffer badly as a result of the 

CFL condition as fine meshes are required to resolve shear layers. Hence 

Denton (1987) suggests that implicit methods with bigger time steps are 

much more attractive for viscous analyses than for Euler solvers. Examples 

of implicit codes have been reported by Briley and McDonald (1977), Dawes 

(1983), Dawes (1987), Chew and Birch (1987), and Choi and Knight (1988). 

Viscous time marching schemes should in principle be able to solve for trailing 
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edge flows. However, in practise instabilities may occur and Stow et al (1987) 

suggest that it is usually necessary to smooth this region. This smoothing 

must be very carefully formulated if information concerning aerodynamic loss 

is to be retained. All the viscous methods suffer from the same grid and 

instability problems discussed for Euler solvers. Smoothing is required and 

this is normally a mixture of second and fourth order differences. A further 

application of time marching, is to compute the unsteady flow through 

blade rows, and blade row interaction. This would require time accurate 

calculations and is a maJor incentive to the continued development of time 

marching algorithms. 

3.11 Pressure Cor:rectio:n Techniques 

A completely independent approach to flow modelling which has 

developed alongside time marching is the method of pressure correction. 

The technique was originally developed to deal with flows in which viscous 

effects are significant, before the computational power became available to 

perform three-dimensional time marching Navier-Stokes calculations. However 

the method has been developed to such an extent as to rank alongside time 

marching as a major CFD technique. As mentioned previously, the boundary 

layer equations are parabolic in space, thus permitting solution by marching 

downstream from an inlet boundary. The early pressure correction methods 

were developed to solve the more general problem of parabolised Navier-Stokes 

equations, which are obtained by neglecting the streamwise viscous diffusion 

terms. However the concept has been extended to a wider range of flows as 

greater computer power has become available. 

3.12 The Parabolic Approximation a:ndl Pressure Correction 

The fully parabolic methods require some extra assumption beyond the 

neglect of streamwise viscous diffusion. This might be obtained by assuming 

knowledge of the primary flow direction so that convective derivatives and 
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viscous terms can be ignored in the transverse momentum equations. However 

the method of Patankar and Spalding (1972) utilises a different approach. 

The pressure field is initially guessed, and then the momentum equations are 

solved to give a first approximation to the velocity field at a particular plane. 

Corrections are then made to the pressure field and velocity field so as to satisfy 

the continuity equation over the plane. Approximate relations between the 

pressure corrections and velocity corrections are introduced from consideration 

of the momentum equations. These are substituted into the continuity equation 

to obtain a set of simultaneous equations for the pressure corrections on the 

plane being considered. The additional parabolising assumption is the assumed 

knowledge of the pressure gradient in the marching direction. Patankar and 

Spalding (1972) firstly calculate this by consideration of the overall mass flow 

through the plane and the use of a separate pressure correction. The solution 

may then be marched downstream from an inlet boundary. Only one such 

marching sweep is required. Such parabolic techniques are computationally 

efficient, but cannot cope with reverse flow, upstream transmission of pressme, 

and streamwise viscous transport of momentum. Another example of a 

parabolic method has been presented by Lawrenz (1984). 

3.].3 Partially PruraboHc Pll"essu.:re Correction Methods 

A further generalisation of the range of flows which may be calculated 

can be obtained with the aid of a partially parabolic calculation procedure. 

This uses a parabolic technique to obtain an estimate of velocities and 

pressures, and then sets up a three-dimensional pressure correction equation 

based upon the divergence of the momentum equations. The whole procedure 

can then be iterated until the pressure corrections become small. Such 

methods thus allow for the upstream transmission of pressure. Pratap and 

Spalding (1976), and Moore and Moore (1979) have described the detailed 

application of partially parabolic techniques. Dodge (1977) splits the velocity 

into viscous and potential parts u and v¢. u is obtained from marching 

the momentum equations, and ¢ is updated after each full sweep by solving a 
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three-dimensional elliptic equation obtained from continuity. An approximate 

relation between pressure and <P then enables the pressure field to be updated. 

Althoue;h all partially parabolic calculations involve iteration of the 

scheme, with multiple m<~.rrhes through the flow:field, convergence is usually 

rapid and only a few 'passes' are required when compared with the thousands 

of iterations which might be necessary in a time marching solution. The 

method of Moore and Moore (1979) also iterates on each marching plane 

to ensure convergence of the momentum and continuity equations. Partially 

parabolic techniques are more general than parabolic calculations, and have 

been applied to turbomachinery flow problems (e.g. Pouagare and Delaney 

(1986)). They require greater storage and calculation facilities than fully 

parabolic methods, but still cannot describe reverse flow phenomena such as 

the horseshoe vortex. 

3ol4 Fully Elliiptic Solutions by PressUJre Correction 

Although partially parabolic methods have been used for turboma

chinery flow calculations, the full description of a subsonic flow is an elliptic 

problem. The advantages of an elliptic calculation procedure over a partially 

parabolic method, are that mass, and viscous transport can be transmitted 

upstream. Thus in the turbomachinery environment, the elliptic methods can 

cope with reverse flow phenomena such as the horseshoe vortex (even the 

passage vortex may appear to cause reverse flow if a very poorly aligned 

mesh is used). As an elliptic method implies simultaneous solution over the 

entire flow region, such calculations place greater demands upon the storage 

and processing power of computer hardware, and have only become realistic 

in the past decade. Two main methods of interest which have been developed 

for turbomachinery flow analysis, are those of Moore and Moore (1985), and 

Hah (1984). Both methods utilise finite volume approaches, and solve a fully 

elliptic equation for pressure corrections. The method of Hah (1984) may 

be applied to both steady and unsteady flows, whereas that of Moore and 

Moore is designed to solve for steady flows only. Both codes have been used 
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to model the flow described by Langston et al (19'tf), and results have been 

compared by Moore (1985). The performance of these methods is very en

couraging, with secondary flow phenomena being reasonably predicted in both 

c~cs. Detailed di:fferencf:'s hP.tween these two codes include the discretisation 

technique, and the turbulence model used to simulate turbulent stresses on the 

control volume surfaces. Bah uses an two equation (k-E) model to evaluate 

evaluate a turbulent viscosity, whereas Moore and Moore use a simple Prandtl 

miXmg length model. 

Of particular interest for the work presented in this thesis, is the 

calculation technique of Moore and Moore (1985). The method has been 

described in detail by J.G. Moore (1985a,b), and is based upon Patankar's 

SIMPLER algorithm. The basic calculation procedure is outlined below :-

1. Initial 3D estimate of flowfield. 

2. 

3. 

4. 

5. 

Calculate effective viscosity with turbulence model. 

Calculate density from the gas law (perfect gas). 

Calculate velocity field from the momentum equations. 

Use approximate relation between pressure corrections and velocity 

corrections (obtained from consideration of the form of the momentum 

equations) to form a pressure correction equation from the continuity 

equation. 

6. Solve the set of simultaneous equations for the pressure corrections. 

7. Update the velocity and pressure fields. 

8. Solve the energy equation for rothalpy and calculate the temperatures, 

entropy, etc. 

The calculation IS then repeated from step two, until the pressure 

corrections become acceptably small. In the above sequence the velocity 

field is calculated explicitly from existing conditions. If this calculation is 

performed implicitly, the procedure is similar to Patankar's SIMPLE algorithm. 

This improves convergence of the velocity field, but can lead to divergence of 

the pressure field. Significant under relaxation is then required to maintain 

stability. Hence the procedure which has been adopted alternates between 

explicit and implicit velocity calculations on successive iterations. To maintain 
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stability, the pressure field is not updated on iterations where the momentum 

equations are implicitly solved. This then is the final algorithm which is 

similar to Patankar's SIMPLER algorithm. Discretisation uses linear variations 

of velocities and pressures between grid points, thus giving the scheme second 

order accuracy. 

The advantage of pressure correction methods is that they can be 

very efficient, requiring a few lengthy iterations, compared with the multiple 

quick iterations of explicit time marching procedures. Since few iterations 

are required, with a significant proportion of the time being spent on matri.x 

operations, the use of linear variations of quantities is relatively insignificant 

in terms of computation time. This results in greatly improved capacity to 

cope with distorted grids, and can produce accurate solutions on fairly coarse 

meshes. 

3.15 Upwinding, Accuracy andl §tabHity 

In the past pressure correction techniques have often used upwind 

differencing to obtain well posed equations for control volumes drawn around 

the grid points. In an excellent lecture, J.G. Moore (1985b) describes how 

such a procedure introduces large quantities of numerical viscosity into the 

calculation, which can be of similar magnitude to the physical viscous effects. 

Hence the calculation of losses with such a technique produces spurious results. 

A different approach is then proposed, based upon the use of upwinded control 

volumes. Such upwinded momentum control volumes are used by Moore and 

Moore (1985) in their calculations. They are determined such that they 

approximately follow the local flow direction, and so may change shape as 

the solution progresses. The effect of upwinding control volumes is shown 

by J.G. Moore (1985b) to eliminate artificial viscosity or numerical mixing, 

but she also shows that on a grid that is not well aligned with the local 

flow direction, the technique does result in some artificial cross-convection of 

conserved quantities. Hah (1984) also recognised the problem of upwinding. 

His approach was to use a higher order accuracy differencing scheme which is 
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more stable than simple central differencing. However, he still has to resort to 

upwind differences when the stability limit for a given cell is exceeded. Stow 

(1985) has stressed the importance of such methods of eliminating numerical 

viscosity in calculations. Loss is an important parameter; :mrl he comments 

that before it is possible to validate turbulence models for the calculation of 

losses, grid independence from numerical. viscosity must be achieved. Hah and 

Leylek (1987) investigated the effect of grid refinement upon results produced 

by Hah's code with four different grid sizes. They plotted loss against the 

inverse of the total number of grid points, and showed that substantial grid 

independence was achieved with the use of one hundred thousand points in 

a turbine nozzle row. Moore (1985), comparing losses calculated for the 

Langston cascade with those presented by I-Iah (1984), suggests that Hah's 

method still includes some numerical mixing. It is this numerical mixing 

which is reduced by refinement of the calculation mesh, so the number of 

grid points required to achieve low numerical error will vary from algorithm 

to algorithm. Although smoothing does not appear to be so generally applied 

to pressure correction techniques, the earlier comments about decoupling and 

oscillations do still apply, and damping may be required in certain areas. 

3.16 Code Validation & Pressure Correction Versus Time Marching 

Validation of methods is clearly an important exercise for establishing 

the strengths and weaknesses of different methods and their capabilities. The 

validation process is not trivial as fully three-dimensional flows are being 

computed. Hence there is a need for detailed test cases. The cascade of 

Langston et al (1977) has proved a popular choice for code authors. Hah 

(1984), Moore (1985), and Choi and Knight (1988) have presented results 

of modelling this flowfield. Although specific differences do exist in the 

quality of solutions, there is no maJor difference between the results of all 

three methods, and certainly no large discrepancy is apparent between time 

marching and pressure correction solutions. Kirtley et al (1986) also concluded 

that no significant difference existed between the quality of results obtained 
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from time marching and partially parabolic pressure correction, usmg both 

algorithms on the same calculation grid. The results of Northall et al (1987), 

who modelled the VKI annular turbine cascade tested by Boletis (1984 ), 

showed that the Moore's code can produce good predictions of blade row 

loss production with a fairly modest. grid (21420 points). Although this 1s a 

triumph for the numerical accuracy of the procedure, it was necessary to know 

in advance where the transition of blade boundary la.yers occurred. Thus as 

the numerical accuracy of algorithms increases, so the relative importance of 

turbulence modelling will rise, and it is this concern to which much of the 

work in this thesis will be directed. 

3.17 Turbulence Modelling 

Although the Navier-Stokes equations (equation (3.1)) should describe 

the full turbulent motion of a fluid (provided that the smallest eddy scales are 

orders of magnitude greater than the molecular mean free path), in practise 

calculation grids cannot be made fine enough to do so. Thus the equations 

are Reynolds averaged (i.e. time averaging of turbulent fluctuations) so as 

to maintain time dependent terms for gross unsteadiness within the flow, but 

describe the effects of turbulent motions with a suitable model. 

For a laminar flow, the viscous stress terms in equation (3.1) may be 

written as :-

(3.11) 

where the summation convention is in operation, and bij is the Kronecker 

delta. In a turbulent flow, the Reynolds averaged N avier-Stokes equations 

will include extra terms due to momentum transfer by the turbulent motions. 

These extra terms are the components of the Reynolds stress tensor 

(3.12) 

where u~, uj are fluctuating turbulent velocities such that ui uj = 0. 

Although it is possible to write down transport equations for the Reynolds 
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stresses, these introduce extra source terms involving triple correlations. Again 

transport equations can be written for the triple correlations, but this merely 

introduces higher order correlations, and so the process can be repeated. 

This is ~::~.llP.o the problem of closure, and at some stage it is necessary to 

model the correlations in some way. Generally turbulence models attempt to 

describe the components of the Reynolds stress tensor directly. 

Most models employed in turbomachinery calculations to date have 

been of first order closure, and use the Boussinesq eddy viscosity concept :-

Jlt = ( P.!li. !!!Z.i_ ) 
8Xj + 8Xj 

(3.13) 

This assumes that the turbulent stresses depend upon the mean rate of 

strain in the same way as the molecular viscous stresses do. The effective 

viscosity which is the sum of the molecular and turbulent viscosities, is then 

substituted into equation (3.11) in order to account for the turbulent stresses. 

It is worth noting at this point, that the eddy viscosity hypothesis is in reality 

erroneous, as it tries to compare the interactions of turbulent eddies with 

those of molecules. This cannot be corrrect since the mean free path between 

eddies is not necessarily negligible compared with the flow dimensions, and 

the eddies do not transfer momentum by a series of discrete collisions as 

molecules do. 

The simplest form of turbulence model specifies the eddy viscosity 

algebraically. The concept of a mixing length was introduced by Prandtl 

as an analogy to the mean free path of molecular interactions. Hence the 

mixing length is related to the eddy viscosity by the formula :-

zz[OUi (oUi oUi)]~ 
J..l.-t = p 0 ox . ox . + ox. 

] J 1 

(3.14) 

Prancltl suggested that within the boundary layer the mlXlng length was 

directly proportional to the distance to the wall, and further out was propor

tional to the boundary layer thickness. Von Karman suggested the following 

relation for the mixing length in a simple two-dimensional boundary layer, 

from similarity considerations 

lo o: (3.15) 
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However, the mixing length model, which is used here for work with 

the code of Moore and Moore (1985), follows Prandtl's suggestion and hence 

the m1xmg length is specifi€d hy the equation :-

lo = Jill IN ( K nEv ,\8) (3.16) 

where n 1s the distance to the nearest solid boundary, 5 is the shear layer 

thickness, K, ,\ are constants (0.41, 0.08), and Ev is the Van-Driest damping 

factor, used to cope with near-wall effects. The specification of the shear 

layer thickness, 5, is difficult, and will be discussed in later chapters as 

appropriate. In the freestream, where no shear layer can be identified, a 

constant mi.xing length is assumed. This can be specified directly by the 

user, or it is calculated from the inlet turbulence intensity and a characteristic 

length scale. 

The eddy viscosity has also been modelled by assuming a link with 

turbulent kinetic energy, and solving a transport equation for this quantity. 

Prandtl proposed :-

(3.17) 

where K is the turbulent kinetic energy, l is a length scale, CJ.L is a constant. 

Thus there are a set of turbulence models called one-equation models in which 

a differential equation is solved for the transport of turbulent kinetic energy, 

and the length scale is specified algebraically. Such a model is described by 

Birch (1989b ), and will be considered in more detail later. In two-equation 

models, a transport equation is also solved for the length scale (e.g. Hanjalic 

and Launder (1972)). Usually the transport equation solves for the dissipation 

rate E, which implies a length scale. Hence such models are frequently referred 

to as K - E models. 

Although the complexity of the above models for turbulent stresses is 

rapidly increasing (the K- E model involves solution of two differential transport 

equations), they are all still bound to the concept of an eddy viscosity. To 

move away from the limitations of such an unphysical assumption, it is 

48 



necessary to model the components of the Reynolds stress tensor directly. 

Such a model has been proposed by Launder et al (1975). However McNally 

and Sockol (1985) comment that although the recent focus of modelling has 

shifted to Reynolds stress models, at present they show little or no advantage 

over simpler treatments. This IS especially true of separated flows. One 

problem is that the validation of the models is itself difficult, due to the 

numerical viscosity effects which are often· present in CFD calculations. 

Certainly the modelling of turbulence in turbomachinery flows 1s a 

formidable task. MeN ally and Sockol (1985) suggest that good flow predictions 

should be possible for turbomachinery components using only simple turbulence 

models, as the motion is essentially pressure driven. Whilst this may be true 

for the basic flow patterns, it seems doubtful that losses will be so easily 

evaluated. This is because the losses are really a small part of the total 

flow energy. Even if the small flow perturbations caused by turbulence effects 

seem inconsequential as far as mean velocities are concerned, that does not 

necessarily imply that losses will be similarly unaffected. Indeed experimental 

evidence supports the natural expectation that turbulence is important in the 

loss production process. Hence the level of turbulence modelling that will 

be required to obtain realistic predictions of aerodynamic loss, is a~ present 

unclear. It 1s hoped that the work presented in this thesis will help to, at 

least partially, clarify the situation. 
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This chapter describes the apparatus and techniques used to obtain 

the experimental data presented in this thesis. A brief description is given 

of the large scale, low speed turbine cascade and its associated wind-tunnel. 

A review is made of the instrumentation employed to obtain test data from 

the cascade, and techniques of data aquisition and analysis are also discussed, 

together with considerations of experimental accuracy. The cascade facility 

and several experimental techniques had already been used for research prior 

to this project, hence detailed discussion will be restricted to developments 

introduced since then. 

As well as the experimental techniques, some information IS aiso 

g1ven <tbout the facilities used to run and assess three-dimensional, VIscous 

Navier-Stokes calculations of the flow in the Durham cascade. 

4.]. Tlhe D1llur ham Ca§cade Facility 

As this project forms part of a continuing program of turbomachinery 

research at Durham University, much of the apparatus and experimental tech

niques have been inherited from previous workers. Graves (1985) investigated 

the secondary flows in a linear cascade of turbine blades mounted on the exit 

of a low-speed wind tunnel which remains largely unchanged. The tunnel 

is supplied by a dual entry centrifugal fan, which blows air down a short 

parallel walled section, before allowing it to diffuse through gauzes into a 

large settling chamber. The air is then accelerated through a contraction, 

and finally passes through a honeycombe flow straightener before entering the 

parallel walled working section. The cascade is mounted at the end of this 

section, and exhausts to atmosphere. Walsh (1987), modified the working 

section to include a moving wall (achieved by use of a belt on driven rollers) 
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which he used to investigate the effects of skew in the inlet boundary layer, 

upon the development of secondary flows in a second turbine cascade. All 

work presented in this thesis will be concerned with the flow through this 

more recent cascade (which Walsh termed the 'JAW' cascade). 

Since testing with this facility is restricted to low speed (incompress

ible) flow, excessive suction surface diffusion results from the use of a blade 

profile designed for transonic conditions (e.g. Graves (1985)). Hence a notable 

feature of this cascade is that it was designed to give aerodynamic similarity 

to a typical high pressure turbine blade section, rather than be an exact 

geometrical copy. Although full details of the cascade are g1ven by Walsh 

(1987), the design parameters are reproduced below :-

Table 4.1 Cascade Design Data 

r::-:-

Flow Inlet Angle (degrees) 42.75 

Blade ~xit Angle (degrees) -68.8 

Blade Chord (mm) 224 

Axial Chord (mm) 181 

Blade Span (mm) 400 

Blade Pitch (mm) 191 

Zweifel loading coefficient 0.97 

Cascade Reynolds Number 4 * 10
5 

-

A right handed cartesian coordinate system is defined for the cascade, 

with radial coordinates increasing from zero at one endwall (such that in 

Figure 4.1 the positive radial direction is out of the paper). This axis system 

which is aligned with the scales drawn in Figure 4.1, is referred to as 'cascade 

coordinates' in this thesis. The 'hot-wire coordinates' which are drawn in 

Figure 4.1 refer to the coordinate system in which turbulent Reynolds stresses 

are measured using a hot-wire anemometry technique discussed in section 4.4. 

This 'hot-wire' coordinate system is aligned with the midspan flow direction 

at each tangential position. 
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The level of freestream turbulence which develops naturally in most 

wind tunnels is less than one percent of mean velocity. The Durham tunnel 

was reported by Gregory-Smith et al (1988) to be at the high end of this 

range, with an intensity of approximately one percent. 

Several factors made an investigation of the effects of increasing this 

frccstrcam level seem worthwhile. 'I'he turbulence intensities typical of a 

modern gas turbine are larger than those which are present in most wind 

tunnels, and so a test with a turbulence grid placed upstream of the cascade 

would be more realistic. Also the effect of the freestream level upon the flows 

and losses is not fully understood. It seems likely that an increased turbulence 

would promote earlier transition of boundary layers. As discussed previously, 

the blade profile used in this work was redesigned to give a smaller amount 

of suction surface diffusion when run at low speeds. Despite this, however, a 

small laminar separation bubble was observed on the suction surface of the 

blade at approximately 80% of an axial chord from the leading edge (Walsh 

(1987) ). Hence an increased level of freestream turbulence could eliminate the 

separation bubble completely, promoting a smooth transition from the laminar 

to turbulent states. This would make a more interesting comparison with the 

results of Gregory-Smith et al (1988), who thought that the higher turbulence 

in their cascade, and in particular the presence of a dominant frequency in 

the energy spectrum, could be due to a gross unsteadiness resulting from the 

presence of a large separation bubble on the suction surface of their blade. 

In order to determine the freestream turbulence intensity that would 

be required to eliminate the laminar separation bubble on the blade's suction 

surface, several runs were undertaken with a quasi three-dimensional computer 

code, based on the streamline-curvature technique. Details of the method 

have been presented by Morgan (1984), and by Jennions and Stow (1985a, 

1985b ). Results of three calculations are shown in Figure 4.2, where the 

intermittency of the boundary layer (i.e. the proportion of the time that the 

boundary layer is turbulent) is plotted against the distance along the suction 
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surface from the leading edge. A vertical jump from an intermittency of zero 

to one indicates the presence of a separation bubble. Hence the results show 

that a freestream turbulence intensity of 4% should be sufficient to promote 

a. smooth t!'ansition from the larnin<~.r to tnrhuleni Rta.tes. Tn order to give 

a margin for error, it was decided to design the turbulence grid to give an 

intensity of 5% at inlet to the cascade. 

The aerodynamic design of a suitable geometry is not straight-forward, 

as the limitations imposed by the rig in which the grid is to be mounted, 

force a compromise to be reached with the desirable properties of such a 

device. An excellent account of these aerodynamic factors influencing grid 

design has been given by Roach (1987). Additional factors due to the rig, 

included the moving belt on one endwall, which meant that if the grid was 

to be mounted within a distance of 1200mm of the cascade, it could not be 

supported from one side. Also the large inlet angle of the Durham cascade 

results in significantly varying distances between the grid and the cascade, if 

the grid is mounted perpendicularly to the tunnel. As the turbulence decays 

with downstream distance, this would cause greater turbulence intensities to 

be received by the uppermost blade passages. However, mounting the grid 

parallel to the cascade to overcome this problem, results in a deflection of the 

flow as it passes through the bars. A large distance to the cascade is then 

required to allow the flow to regain as much uniformity as possible before 

inlet. A large distance between the grid and the cascade is also desirable in 

order to prevent significant decay of the turbulence within the blade passage, 

as well as allowing time for individual jets (emerging from the open spaces 

between bars) to mix fully, thus promoting isotropic conditions. However, 

for a given intensity at inlet, the diameter of the bars comprising the grid 

increases with the distance to the cascade. The grid must not present so 

much blockage as to exceed the fan's capability to run the tunnel at the 

required Reynolds number, but too large a pitch results in big jets (which 

take longer to mix) and hence less isotropy of the inlet turbulence. Also 

the grid should have enough bars to act like a grid, and not individual 

obstructions (in the extreme case there would be just one bar vertically and 
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one bar horizontally). 

The initial design was based upon data from a paper by Bains and 

Peterson (1950). The best solution to the problem was felt to be a grid 

of one inch diameter bars, mounted upstream of the belt at a distance of 

1400mm from the cascade. The bars were mounted parallel to the cascade 

at a spacing of 80mm in the horizontal direction. Since the grid is at an 

angle to the incoming flow, and all the design data was based upon grids 

mounted perpendicularly to the flow, it was decided to open up the spacing 

to a distance of co~04";,';5 a in the direction parallel to the cascade, so as to 

present a 'vertical' spacing of 80mm. The bars were made of aluminium 

tubing, and were mounted through holes cut in the tunnel. On the sides of 

the tunnel, two aluminium plates drilled with one inch holes at the required 

spacing were fixed, and used as templates for drilling into the wood. On the 

top and bottom of the tunnel, machined aluminium blocks with the required 

inclined holes were mounted, and also used as templates for drilling. The 

bars were held in tension between these aluminium fixtures, by large nuts 

threaded onto their ends. The resulting grid is shown in Figure 4.3 viewed 

from the side of the tunnel, and in Figure 4.4 viewed from the cascade inlet 

position. The designed conditions at inlet to the cascade have been estimated 

with the methods reported by Roach (1987) and are shown below :-

Table 4.2 Predicted Inlet Thrbulence Characteristics 

Streamwise Direction Orthoganol Directions 

Turbulence Intensity 4:6% 4.1% 

Macro/Integral Scale 38mm 19mm 

Micro/Dissipation Scale 4-Smm 3mm 

To determine the distortion to the mean flow produced by the 

grid, several measurements of total pressure were made, vertically down

wards through the tunnel, and horizontally from endwall to endwall. Figure 

4.5 shows some measurements taken with the five hole probe at midpitch of 
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slot 1. It can be seen that with the grid as designed, the flow just beyonc; 

the endwall boundary layer has suffered less loss than that towards midspan. 

It appears that a sort of 'jet' flow is occurring at the edge of the grid. The 

reason for this is that the grid was designed for the tunnel width of 400mm 

existing at inlet to the cascade. The moving belt facility was designed to 

grow a skewed boundary layer (Walsh (1987)). Hence a false wall was fitted 

extending slightly upstream. of the belt, with an adjustable bleed··off duct, 

to allow the removal of the incoming boundary layer. The width of the 

upstream tunnel is 460mm, and the grid thus left a gap of lOOmm between 

the last bar and the wall of the tunnel on this side. As the grid was only 

15cm upstream of the false wall, it was thought that adjusting the bleed-off 

duct to produce zero incidence onto the false wall, would yield a uniform flow 

through the grid. However, as the results in Figure 4.5 show, this is clearly 

not the case. 

To remedy this problem, it was decided to fit an extra bar to the 

grid near the endwall. This was initially chosen to equalise the blockage 

which the grid presented in this region, to that elsewhere. However, this 

design condition was found to be inadaquate, and so some trial and error 

was necessary before a satisfactory solution was obtained. This consisted of 

a bar of diameter {6 inch, placed at 25mm from the endwall. The resulting 

radial total pressure profile at midpitch of slot 1 is also shown in Figu;:e 

4.5, together with that measured by Walsh (1987) before introduction of the 

grid. Whilst the extra bar has produced an acceptable inlet boundary layer, 

it is clearly different from that reported by Walsh (1987). The new boundary 

layer is actually thinner than the old. This might indicate that a 'jet' flow 

still exists at the start of the false wall, but is slowed by the growth of of a 

boundary layer on it. 

The vertical traverse from top to bottom of the tunnel also revealed 

a change in total pressure, with more energy towards the top of the tunnel. 

This may be because the grid is angled to the flow, hence causing an upward 

deflection, and a higher static pressure towards the top of the tunnel. Then 

the velocity with which the flow traverses the grid, would reduce towards 
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the top of the tunnel, resulting in less loss in this region. The magnitude 

of the variation in stagnation pressure across the traversed blade row is 

approximately 1%. Although this situation is not ideal, no attempt was made 

to correct it as the only obvious solution wonlc1 he to remount the turbulence 

grid perpendicularly to the flow. As discussed previously, this approach would 

introduce other difficulties. Thus no simple solution to the problem seemed 

possible. 

4.3 Five Hole Probe Meammreme:nt Teclhll1ique 

Several traverses have been made with a five hole probe during this 

project, using a technique set up by Graves (1985). Measurements were 

taken with the probe inserted through slots cut in one endwall, such that 

data could be collected on planes of constant axial location (Figure 4.1 ). 

The probe was made of 0.5mm hypodermic tubing, and being of the cobra 

type could be rotated about a perpendicular ax1s without disturbing the 

position of its measuring volume. Freedom of movement in the radial and 

tangential positions was provided by the traverse gear (Figure 4.6) which also 

incorporated a rotary mount, allowing rotation about a spanwise axis. 

A calibration technique proposed by Schaub et al (1964) was employed 

to avoid the necessity of nulling the probe head at each traverse point (indeed 

it was not possible to null in the pitchwise sense). By measuring the pressure 

on each of the five tubes of the probe, and the dynamic head detected by a 

reference pitot-static tube placed upstream of the cascade, it was possible to 

deduce the flow velocity, direction, and loss of stagnation pressure from the 

calibration maps. 

Throughout the work presented in this thesis, use was made of a 

computerised data aquisition system which consisted of a Cifer microcomputer, 

and a specially made data aquisition unit. This allowed automatic reading 

of up to eight voltages, and provided an output which was used to control a 

valve selection box. Thus different combinations of the pressures on the five 

hole probe could be selected, and fed into a differential pressure transducer. A 
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second ~ransd:1.cer co:J.stantly monitored. the output of t;:1e upstream reference 

pitot-static tube. Potentiometers served as positional transducers, leaving only 

the angular setting of the probe, and the settings on a signal conditioner to be 

entered manually for each point. In practise these were rarely varied, and tests 

in the microcomputer programs warned the opera~tor if the volta.ges on any of 

the digital to <malogue converters were out of range. The Cifer microcomputer 

converted readings of voltages into pressures and stored these on a floppy 

disk for later analysis by software run on the University's mainframe service. 

Having set the traverse gear at a particular slot location, the probe 

was used to obtain measurements of the flow at previously determined points 

in the flowfield. By traversing outwards from the endwall in the radial 

direction, the tangential location remained unaltered for long periods, and 

hence unused areas of the slot could be sealed with masking tape. This 

was most important for the early slots, where the higher than atmospheric 

pressure causes significant outflow through exposed passages. Unused slots 

were always kept sealed with special T-shaped wooden fillers, whidt maintained 

a reasonably smooth surface on the remote end-wall. 

Although this technique had been successfully used at Durham for 

several years, it was not trouble-free. Walsh (1987) reported that significant 

losses were measured in regions expected to be governed by potential flow. 

No satisfactory explanation could be found for this and so the early stages 

of this project were spent investigating the problem. 

Throughout the work undertaken with the five hole probe, regular 

checks were made of the validity of its calibration. This was achieved by 

inserting the probe in the working section upstream of the cascade. The 

mounting for this was comprised of two rotary mounts and a right angled 

bracket, which permitted rotation of the probe head in two directions. Thus 

data could be collected for the probe head set at different angles, and later 

run through the analysis program to recover the flow velocity, direction, and 

loss (which should always be zero). 

An initial check of the probe calibration revealed satisfactory mea

surement of angle and velocity, but a variation in the returned value of 
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stagnation pressure equal to three percent of the in1et dynamic head. Fm-· 

ther investigation identified the data aquisition system as the source of this 

problem, with significant noise levels present in the signal fmm the pressure 

transducers. The easiest way to reduce the effects of noise, was to take more 

samples of each pressure and average. Thus the minimum number of samples 

wa.s increased fron~ twenty to two hundred. After this the system examined 

the mean and variance of the data, to determine whether more readings were 

required. If so one hundred samples were added before repeating the check. 

A maximum of one thousand samples was specified to avoid system lock-up 

m highly turbulent regions. To eliminate effects of vibration from the rig, the 

bench on which the instrumentation was mounted was vibrationally isolated 

from the floor. Software on the microcomputer was modified to correct each 

reading of pressure for variations in upstream dynamic pressure, to achieve 

'standardised' data. 

Testing of the modified system showed the measurement of stagnation 

pressure to be au orde!' of magnitude more accurate. Having developed the 

reliability of the system pressure measurement, a re-calibration of the probe 

utilising this methodology appeared desirable. 

The five hole probe was calibrated in the range ±30° yaw and ±30° 

pitch, with data values spaced at intervals of two degrees. Bi-cubic spline 

surfaces were fitted to the data and the quality of the fit determined by 

inspection. Satisfactory fits were then incorporated in the analysis program, 

to give a description of the probe head's response. Use of this calibration 

improved measurements of stagnation pressure, but did not entirely eliminate 

the apparent losses which were recovered from data collected at midpitch of 

the midspan positions. These spurious losses were found to increase with slot 

number, and will be discussed in detail in Chapter 5. 

4.4 X~ Probe Hot~ Wire Anemomet:ry Technique 

The flowfield m the cascade has also been traversed using a hot

Wire method similar to that described by Graves (1985). This combined 
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information obtained from two traverses using x-w1re probes (DISA 55P53 

and DISA 55P54), to measure five of the six independent components of the 

Reynolds stress tensor, as well as the mean velocity components. 

The hot-wires were run by DISA 55M01 constant temperature bridges, 

working at an overheat ratio of 0.8. Although Yavuzkurt (1984) has shown 

that real-time data reduction techniques are generally more accurate than 

time averaging of the hot-wire signals, the later technique was adopted as 

the necessary equipment was readily available. Bridge outputs were calibrated 

against flow velocity, with the probe placed at midspan of slot 10, between the 

blade wakes. It was decided to linearise these signals, as it is more accurate 

to do so m highly turbulent regions, where the slope of the calibration 

graph is not really constant over the range covered by the instantaneous 

velocity vector. Fourth order polynomial fits have been shown by Bruun et 

al (1988) and Swaminathan et al (1986) to give an accurate representation 

of the calibration data, and so two Prosser 6130 linearisers were used to 

produce voltages proportional to flow velocity (Figure 4. 7). These were then 

passed through Prosser 6141 signal conditioners, which removed most of the 

steady voltage levels, and amplified the remaining signals to give stronger 

fluctuating information. The outputs were passed into two units; a DISA 

52B25 turbulence processor which was set to evaluate the correlation between 

then\, and a circuit specially made to determine the mean and root mean 

square levels of the signals. Voltages from this circuitry, the two positional 

transducers, and a differential pressure transducer (connected to the upstream 

reference pitot-static tube), were transformed to integers by analogue to digital 

converters in the data aquisition unit, before downloading to the controlling 

microcomputer. 

The same traverse gear served for both hot-wires and pressure probes, 

and the hot-wire probe supports were designed to keep the position of the 

measuring volume constant when rotating about the spanwise direction. Hence 

the probes could be aligned with the local yaw angle, determined from a 

previous pressure probe traverse. This was the system used by Graves (1985) 

and Walsh (1987) to obtain data from the first Durham turbine cascade. 
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Although there is not a great deal of literature presenting turbulence 

measurements in the swirling, three-dimensional flows of cascades, an apparent 

discrepancy existed between results obtained at Durham and those of other 

workers. Sievcrding (1985b) commented on the opposing results of Bailey 

(1980) who found turbulent stresses to be insignificant in large regions of the 

secondary flow, and Gregory·Smith and Graves (1983) who measured peak 

local turbulence intensities of 30% in the vortex core. This dilemma persisted 

with results of Walsh (1987) showing 92% of the loss in the Durham cascade 

to be manifested as a rise in turbulent kinetic energy, whilst Moore et al 

(1986) found this ratio to be 23%, and Zunino et al (1987) only 10%. 

Indeed the work of Zunino et al (1987) presented another dilemma. 

As they used a twin traverse x-wire method, their results should have shown 

similar quality to those obtained at Durham. Although their analysis method 

was different, following an unlinearised approach proposed by Majola (1974), 

this should not have accounted for the superior quality of their shear stress 

measurements. As both workers used calibrations against mean velocity only, 

ignoring the effects of the thermal inertia of the wire-prong system (described 

by Perry (1982)), this could not be responsible for the differing results. Thus 

although comparison between traverses with hot-wires and five hole probes 

showed Durham's mean flow data to be correct, some doubt was cast on the 

accuracy of fluctuating measurements. 

Investigation of the hot-wire system was approached from two fronts. 

The electronic signal path was examined for integrity at each stage, and the 

analysis equations were thorougly checked. Two problems have been identified. 

In the analysis described by Graves (1985), all the complex equations for the 

response of a hot-wire are 'correct', but the recovery of the root mean square 

of the fluctuating velocity from the voltages measured is not. The circuitry 

which measured signal r.m.s. was not A.C. coupled and so included the mean 

voltage which emerged from the signal conditioner 

MEAN= (E- Offset)* Gain 
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thus the measured Root Mean Square voltage 

(4.2) 

which is not the same as eqnations :.\ 4 pp 181, 182 of Graves' thesis 

(1985). Unfortunately the error term this produced was quite smoothly 

varymg as it depended upon the values of offsets and gains applied by the 

signal conditioners. Hence contour plots of turbulence quantities did not show 

obvious discontinuities. 

The hot-wire data obtained from the first Durham cascade has been 

re-analysed and published by Gregory-Smith et al (1988). Many of the afore

mentioned discrepencies have thus been eliminated, although the turbulence 

levels found in the Durham cascade were still higher than those observed 

elsewhere. 

It had been hoped that re-analysis of the experimental data would 

produce much clearer pictures of the shear stresses working on the fluid. These 

however did not materialise, and so another source of inaccuracy in fluctuating 

quantities had to be sought. This was found to reside in the electronics used 

to measure signal mean and r.m.s. values. Whilst the circuit diagrams 

showed no fault, and the unit should in principle have produced the desired 

outputs, it was not sufficiently accurate to preserve the integrity of shear stress 

information. Errors resulted from the use of noisy operational amplifiers, not 

enough trim circuits, and D.C. coupling of the r.m.s. measurement. Although 

mathematically there is no apparent advantage in measuring the r.m.s. of 

either a D.C. or A.C. coupled signal, the D.C. coupled method produces a 

larger error when there is a certain level of uncertainty inherent in the data. 

Some time was devoted to re-building the mean/r.m.s. measuring unit which 

resulted in greatly increased accuracy as indicated by tests with a sinusoidal 

signal generator over a frequency range of lH z to 40kHz. An amplifier 

was also built to boost the output of the turbulence processor, which was 

generally very small. The combination of these measures was found to achieve 

the desired accuracy, and in particular produce clearly defined shear stress 

distributions. 
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Fluctuating data from the hot-wire system described above was de

termined in the coordinates described by the probe and two perpendicular 

directions. Due to the omission of one of the six independent components 

of the Heynolds 

be determined in another set of axes. Thus as it was intended to compare 

hot-wire information with that obtained from computational models, it was 

considered preferable to alig~ all measurements at a particular tangential coor

dinate, with the midspan flow angle, rather than the local flow angle at each 

radial station as had been the case in the previous work of Gregory-Smith 

et al (1988). This reduces the accuracy of the analysis equations, but some 

testing showed that the system could cope adaquately with the misalignment 

range involved. 

Improvements m the accuracy of measurements, resulted in reliable 

convergence of the higher order analysis proposed by Gregory-Smith, and 

already incorporated in the mainframe software by Graves (1985). Hence all 

data presented in this thesis results from the application of this method. 

4.5 Rotatable Single Wire Technique 

A new hot-wire anemometry technique has been developed, as an 

investigation of the state of the flow very close to the endwall was required. 

A method was n~eded which could determine the_ mean flow velocity, and 

show whether the new, highly skewed, boundary layer which forms after the 

inlet boundary layer has been swept from the endwall, is in a laminar or 

turbulent state. As a minimum distance for readings of one millimeter from 

the endwall was desired, the x-probe method could not be used. Hence a 

single wire approach was required. 

The basic concept of the method utilises the fact that most of the 

effective cooling velocity comes from the velocity component perpendicular to 

the wire. This is especially true of gold-plated wires, where the effects of the 

thermal conductivity of the wire supports, are greatly reduced, by keeping 

them away from the sensing length (Perry (1982)). Hence if several readings 
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are taken at a point, with a single w1re set at vanous angles, the individual 

mean velocity components, and some of the components of the Reynolds stress 

tensor, may be found. 

Since a close approach to the wall was requir~cl i it was decided to 

rotate the wire in a plane parallel to the endwa.ll. This is most easily 

achieved by using a right-angled probe, mounted from the remote endwall. 

By ensuring that the wire was on the line of the main probe support, it could 

be rotated about the spanwise direction without disturbing its position. This 

method naturally offered itself to being mounted on the existing traverse gear, 

with the probe support entering the tunnel through the slots already provided 

(Figure 4.1). However, as a much finer degree of accuracy was required for 

positioning the probe in the radial direction, a standard DISA 55E40 traversing 

mechanism was also fixed onto the rotary mount in Figure 4.6, by means of 

a specially made boss. This was designed such that the probe support passed 

through the centre of the rotary mount. The DISA traversing mechanism 

incorporated a potentiometer which was used as a positional transducer for 

measurements by the data aquisition system. A diagram of the probe support 

1s shown in Figure 4.8. 

The probe support was used to hold DANTEC 55P04 gold plated 

wue probes, which were run at an overheat ratio of 0.8, by a DISA 55M01 

constant temperature bridge. Fourth order polynomials were fitted to probe 

calibration data, and their coefficients set on a Prosser 6130 lineariser so as to 

produce a voltage proportional to flow velocity (Figure 4. 7). The probes were 

calibrated in the working section of another wind tunnel, in order to obtain 

calibration data down to a minimum velocity of four meters per second. 

When traversing, the signal from the lineariser was passed through 

a signal conditioner to amplify the fluctuating component, before being fed 

into the unit used to give steady output voltages equal to the mean and root 

mean square levels of the input signal. These outputs were measured by the 

data aquisition unit and passed to the Cifer microcomputer which was used 

to control the experiments, and log data onto a floppy disk for later analysis 

on the University's mainframe machine. At each point in the fl.owfield, the 
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recorded data consisted of the probe's position, the number of wire angles for 

which the :Bow was measured, and then for each of these, the turret angle 

setting, the offset and gain applied by the signal conditioner, the measured 

mean and r.m.s. voltages, and the upstream dynamic head. 

The method used io run the experiments was similar to that of the 

five hole probe and x-wire measurements. The controlling microcomputer 

guided the operator with a question and answer approach, which prompted 

for the atmospheric conditions, in order to calculate the inlet dynamic head 

required for constant Reynolds number operation. The program then read 

in reference voltages from the positional transducers when placed at known 

positions. In the radial direction a piece of shim material was used to place 

the probe protector pin at a known distance from the endwall. The extension 

of the probe protector pin from the wire was found beforehand with the 

aid of a travelling microscope. The sensitivities of the positional transducers 

were measured separately, and imbedded in the Cifer programs. The program 

then asked if the upstream pressure transducer needed to be calibrated, and 

would take the user into a routine to do this, if required. Values for the 

sensitivity of the wire, and the settings on the signal conditioner were also 

required before the main loop was entered and a prompt given for the next 

probe position to be entered. 

The probe was traversed radially outwards from the endwall, keeping 

exposed areas of the slot covered with masking tape. When the probe was 

set at the correct position, the user was asked to align it as well as possible 

with the flow (i.e. rotate until a maximum output from the mean voltage 

measurement was obtained). The turret setting angle, and signal conditioner 

settings were manually entered, before the system measured the upstream flow 

velocity, and the local mean and r.m.s. effective cooling velocities. These 

were displayed on the microcomputer screen, and if acceptable, the program 

would prompt for the turret setting angle to be set to a new value. After 

entering the signal conditioner settings (if changed) the system would measure 

the flow again. When all the required angles had been recorded, the next 

position in space was requested. 
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The details of the analysis of the smg1e wv:e data are presented :.n 

Appendix A, so a. brief summary of the procedure will suffice here. Firstly the 

program calculated the mean and r.m.s. cooling velocity for each rotational 

setting at a given point. These were corrected according to the upstream 

velocity, so that they corresponded to an arbitrary 1standm·d day' velocity of 

19.1 ms-1 . Although the analysis could cope with the probe being set at 

arbitrary angles (provided the velocity vector was within the probe's acceptance 

cone), and any number of angles e;ren.ter than two, in practice only five angles 

were set for each position. These were at 0°, ±20°, ±40°, to the direction 

which was estimated to be streamwise. Since only three angular settings were 

required to solve the equations, redundant information was obtained from the 

five orientations recorded. The equations were represented in the analysis 

program in matrix form, and solved by a least syuares method in NAG 

subroutine F01AMF. This also allowed a confidence interval to be calculated 

for each solution. The flow was solved for U, ~V, Vv' 2 , ·u'2 , v'2 , ·u/'U1 in the probe's 

coordinates (for the sake of the accuracy of thf! response equations used) and 

then rotated to cascade coordinates for storage. The radial normal stress w'2 

was not measured, and so was assumed to be equal to the average of u 12 and 

v'2
• Although this will obviously be erroneous close to the wall, where large 

radial velocity fluctuations will be damped, it was thought to be a preferable 

assumption to that of assuming zero radial turbulence, as the probe was to 

be traversed radially from 1 to lOmm from the endwall. 

A short spectral survey of the flowfield was undertaken m order to 

determine whether or not there were any dominant frequencies present. A 

Le Croy model 9400 digital oscilloscope was borrowed for this purpose, as 

it had the capability of performing fast Fourier transforms on input signals 

over a wide range of frequencies. The transforms were averaged over two 

hundred samples, to give a smoother spectrum. The display on the screen 

of the oscilloscope was then dumped to a plotter for later presentation. The 
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width of the individual 'frequency bins' for which a power wa.s calculated, 

was typically lH z for a low range spectrum (0 to ?.OOH z) and 200Hz for a 

bigger spectrum (0 to 20kHz). 

The single wire probe was used as a signal source, and its output 

linearised to provide a voltage proportional to flow velocity, before connecting 

to the digital oscilloscope. 

A relatively fast means of gammg some qualitative information con·· 

cernmg a three-dimensional flow, is by use of some form of flow visualisation. 

Walsh (1987) described a method suitable for use in the low speed cascade, 

whereby a mixture of diesel oil and 'Dayglo' pigment (in a ratio of three to 

one by weight) is painted onto the surfaces of the blades and end wall. After 

running the tunnel for some time, fine dry patterns are left on these surfaces, 

and photographs taken. This effectively gives a picture of the streamlines in 

the limit as the vv'all is approached, and clearly shows any lines of separation 

of the flow from the surface. 

4 . .§ §uurface Pressure DistJriburtions 

The central blades in the cascade were fitted with pressure tappings 

at several spanwise distances from the endwall. All tappings at a particular 

fraction of chord, were drilled into the same p1ece of tubing cast under the 

blade's surface, and so all except one had to be covered with tape when 

measuring the surface pressure distribution at a given radial distance. The 

axial locations of the pressure tappings are shown in Figure 4.1. A series 

of distributions at different radial coordinates is useful, as it builds up an 

effective picture of the variations in lift on the aerofoil, due to the action of 

the secondary flows. The pressures were connected to a multi-tubed inclined 

manometer and read manually with the tunnel running at constant Reynolds 

number. 

66 



Although it is almost impossible to assess the overall accuracy of 

experiments which have a very complicated sequence of data processing, with 

a. correspondingly large number of potential sourcee of error, it is important 

to gain some idea of the uncertainty of the results. 

The positional accuracy with which the five hole probe and x-wues 

were located in the flowfield, was estimated to be ±0.5mm i.n both radial and 

tangential coordinates. For the single wire, the same tolerance is appropriate 

for the tangential direction, but the probe was located more accurately 

radially, with an estimated error of ±0.1mm. The upstream dynamic head 

was constantly monitored in all experiments, and kept within two percent of 

the value required to run the cascade at it3 standard Reynolds number. 

The accuracy of the data aquisition system for voltage measurement, 

was regularly checked by comparing the output for a given te:st signal, with 

that ohtn.ined on a. digitfll multimeter. This was also monitored during runs 

to ensure that the system was always performing well. The linearisers, signal 

conditioners, and mean/r.m.s. unit, were also checked at regular intervals for 

satisfactory operation. 

When using an intrusive technique to measure a fluid flow, care must 

be taken to try and minimise the disturbance which the probe support induces 

at the measurement location. The 'cranked' design of the probe's used in 

this work was intended to ensure that this was the case. Also, the five hole 

probe was never used to record the flow within two diameters of its head 

from the endwall, as this would have caused distortion of the streamlines, 

and hence invalidated the calibration technique. 

In the case of a hot-wire, close approach to a solid boundary will 

generally result in an over estimation of the velocity (Wills (1962)). This is 

due to the cooling influence of the wall (assumed at lower temperature than 

the wire) on the fluid immediately surrounding the wire. However, Oka and 

Kostic (1972) used a standard DISA wire of diameter 5J.Lm in their work on 

wall proximity effects. They commented that the distance from the wall at 
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which the increased cooling becomes detectable, decreases with flow velocity. 

The maximum range therefore occurs when there is zero flow, and was found 

to be 1mm. Hence, as similar wires were used in this work, with a closest 

approach of lmm and non-zero flow speeds, wall interference effects may be 

assumed to be insignificant. 

In the case of pressure probes the accurate calibration of pressure 

transducers is clearly important. A subroutine was added to the programs 

runnmg on the Cifer microcomputer, to emtble interactive calibration of the 

transducers. The system measured the voltage output from the transducer, 

and requested that the pressure read from a micromanometer, be typed 

m. The user could keep taking more readings, until the error determined 

by a least squares fit to the calibration data was acceptably small. The 

micromanometer was also monitored during traverses, to validate the readings 

of pressure displayed by the microcomputer. The accuracy of individual 

pressure measurements was estimated to be ±0.05mmH20. 

An indication of the overall performance of the five hole probe tech

rnque was given by the regular probe calibration checks. These returned 

measurements of flow angle to within ±0.2° and velocities to within ±0.2 

ms- 1 when mounted in the calibration position upstream of the cascade. 

However, at a slot location there are also other sources of error, including 

the alignment accuracy between traverse gear and cascade, the action of 

turbulence to cause the over-reading of individual pressures, and Reynolds 

number effects. Thus the total error applicable to angle measurements might 

be as great as ±1 o. A detailed consideration of problems concerning loss 

measurement will be given in Chapter 5. 

An obvious source of inaccuracy in the use of hot-wires, anses from 

the quality of their calibration. The error in calibrations generally increases 

with decreasing velocity, due to inaccurate reading of the dynamic pressure 

on a micromanometer. Using the methods proposed by Yavuzkurt (1984), 

the calibration error typical of this work was found to be within one percent 

over the velocity range encountered. 

Throughout the hot-wire anemometry work presented m this thesis, 
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care was taken to try and mmumse the effects of wire contamination due to 

dust. The inlet to the fan was filtered {Walsh {1987)), which greatly reduced 

the problem, but after a long run the sensors did show reduced sensitivities. 

It might be tempting to allow the wire to reach an equilibrium state of 

dirtiness, and calibrate it without cleaning. Whilst this would probably 

produce reasonable mean flow results, the frequency response of the devise 

would be seriously impaired,. and so fluctuating data would be correspondingly 

de-valued. Hence a point in the flowfield was chosen, and at the end of each 

tangential station the probe was returned to this position to check that its 

sensitivity was still unaltered. If a slight drop in sensitivity was observed 

the probe was removed, cleaned, returned and re-tested. If the probe had 

been very dirty, the data recorded since its previous check, would have to be 

repeated. 

The x-probes were tested for angular response, by placing them at the 

midpitch, midspan position of slot 10, and recording outputs for misalignment 

angles in the range -20° to +20°. The velocity measurements obtained, were 

found to be consistent to within ±0.5 ms-1 , and the angles to ±2°. The 

sum of the normal Reynolds stresses ( u12 + v12 + w'2
) was consistent to ± 1 

( ms-1 ) 2 • Although these results seem quite satisfactory, Yavuzkurt (1984) has 

shown that the measurements of mean velocity and second order correlations, 

using a time averaging -technique- with a slant- wire in -a two dimensional flat 

plate boundary layer, are in error by approximately 5%. Hence, due to the 

similarity of the basic systems, and in the absence of any other evidence, it 

will be assumed that this is a valid estimate of the errors to be expected 

from the x-wires. 

As mentioned previously, the single wire method utilises a least squares 

solution, which enabled the computation of confidence intervals. For a 99% 

confidence interval, the typical errors to be associated with each quantity are 

tabulated below :-
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- -- ~-- -- Quantity - - -- - I Error 
-~~- ---- ----_----==-=----a-- :=-:.:::..____.=_ ___ -, 

Streamwise Mean Velocity [J ±0.5 ms- 1 ! 

Cross-Passage Mec.n V<:>!o,:ity V I +O ,, we' 

1 Radial Mean Velocity W ±1.2 m~-1j 

II---S_treamwise Root Mean Square Velocity W ±6 % il 

Cross-Passage Root Mean Square Velocity H ±11 % [ 

Streamwise/Cross-Passage Velocity Correl<~tt~io~n-u-'·v-1 -l--±-40_o/c_o---ll 
-=--7--.o::---:::::-------:"- ---:::-_-:::---- ---- --- -~-- ---~~------'-----=~--~ -J 

4.10 Computational Facilitie§ [or Navier~§tokes Ccdculations 

As a large proportion of this project involves the running and analysis 

of numerical calculations of the flow in the Durham cascade, significant 

computational power was required. For three-dimensional calculations, the 

memory and time requirements are too great to be handled by most mainframe 

serv1ces, and so a grant was obtained for use of the SERC supercomputing 

facilities at the Rutherford Appleton Laboratory. Batch jobs were submitted 

to a Cray X-MP /48 ( 4 processors, 8 Megawords) machine from an account 

on an IBM CMS service which is used as a front-end. This was accessed 

from Durham via JANET (the Joint Academic NETwork). 

Enormous quantities of information are obtained from one such cal-· 

culation, and so a program was written to interpolate out planes of data 

corresponding to the cascade traverse slots, for transmission to Durham. So

lution convergence could then be determined by examining this data, and the 

details supplied by the calculation procedure itself, before deciding whether 

or not to accept the full three-dimensional output. 

4.11 Output Processing 

The method of presentation of three-dimensional flow data is clearly 

important, if comprehension of the principal phenomena is to be easily 

attained. The methods used to present the experimental data obtained by 
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Walsh (1987) were plots of contours, and vectors, on planes of constant ax.Ia1 

location (traverse slots). Pitch and mass averaging of this data was also 

performed, and overall mass averages were manually plotted to show the 

development of quantities such as loss, against axial distance through the 

cascade. Hence some programs were available, designed to work on the data 

from one traverse plane, and produce the type of output described above. 

Whilst these facilities were perfectly adaquate for the assessment of · 

hard won traverse data, they were not intended to produce rapid descriptions 

of the full three-dimensional solutions emerging from a numerical calculation 

procedure. Hence a more powerful output processing package was required, 

both to ensure satisfactory solution convergence, and to produce output which 

directly compared accepted solutions with the corresponding experimental data. 

It would be nice to be able to produce 'three-dimensional images' of 

the flow field on a piece of paper. Graphics packages are becoming available 

which will certainly improve the options of data presentation for future workers 

(e.g. UNIRAS), but for the duration of this work GHOST80 was still the 

mam graphics library available on the University's mainframe service. Hence 

it was decided to develop facilities based on the same type of output as 

that produced by Walsh (1987), but with much greater flexibility and data 

handling capabilities. 

Two main programs have been produced. They both work on up to 

four clatasets, each of which can contain data for any number of the eleven 

traverse slots. The first program produces plots of contours and vectors ('area 

plots') for a traverse plane chosen interactively by the user, and displays data 

from hot-wires, pressure probes, and numerical Navier-Stokes solvers, side by 

side. The actual data which is displayed is also interactively chosen by the 

user. This gives a basically qualitative comparison of output. 

For exacting quantative assessment, a second code was developed. 

This program, also run interactively, accepts the same input data types 

as the 'areaplotter', and rapidly produces tabular and graphical output of 

pitch and mass averaged quantities. Graphs are also plotted of certain mass 

averaged quantities versus axial distance through the cascade. The graph 
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showing the growth of loss was found to be particularly useful, as an aid to 

assessing the convergence of numerical solutions. 

The total pressure loss coefficient is defined as :-

(4.3) 

where subscript '1' refers to conditions upstream of the cascade. A similar 

expression defines the static. pressure coefficient. 

Data was integrated in the tangential direction, to obtain a pitch 

averaged value (for each radial location) :-

C( ) _ J Vax(Y, z) ~(y, z) dy 
'>\z - J Vax(Y, z) dy 

( 4.4) 

where V ax (y, z) is the axial velocity at that point in the flowfield. 

In the case of the yaw angle :-

Secondary velocity components were defined by the difference between 

the local flow velocity, and that at midspan. The turbulent kinetic energy 

was defined as :-

Turbulent ( 4.6) 

to g1ve a coefficient comparable with the loss coefficient. 

Within the blade passage, experimental data is normally available 

only over a limited range between the blades since the probes are unable 

to approach the solid surfaces very closely. Walsh (1987) extrapolated data 

values from the two tangential locations nearest to the blade, onto the blade 

surface for the purposes of pitch averaging. This was found to produce large 

changes in the results obtained, and so the data in this thesis was integrated 

only over the range traversed. Hence the pitch averaged values obtained for 

positive quantities such as loss, will be an under-estimate of the true value 

within the blade passage. 

Up and downstream of the cascade, traversing generally extends over 

more than one pitch to give some indication of the flow repeatability from 
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passage to passage. Data such as this was averaged first over a regwn from 

the 'left hand' edge of the traverse plane to a location one pitch on from 

that, and then from the 'right hand' edge back to a location one pitch from 

it. The two values for the pitch averaged quantity thus obtained, were then 

averaged. 

Once data had been pitch averaged for each radial location, the 

results were integrated in the radial direction to obtain an area average. All 

integrations were performed using a four point quadrature integration scheme. 
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Chapiell." 5 

Experiimentali ResuUs (JAW 'Fest Case) 

5.0 Introduction 

This chapter aims to describe the initial dataset used for comparison 

with flow models. Much of this data was collected and presented by Walsh 

(1987). In addition, three new traverses have been made to provide greater 

detail of the flow development in the latter half of the blade row, and 

downstream of the trailing edge. A problem with the five hole probe 

measurement technique has been investigated, and this will be discussed in 

detail. Since the majority of experimental data which is available for this 

test case originated from Walsh (1987), it will be referred to as the 'JAW' 

test case in this thesis. 

5.1 The Wa!sh Data 

The JAW turbine cascade at Durham, was constructed by Walsh to 

allow investigation of the effects of skew in the inlet boundary layer upon 

the secondary flows and losses. He presented results of traverses at slots 

1, 3, 5, 8, 10 for three separate skew levels. One of the skew levels he 

tested was that of zero skew. This data, for the case of a colateral inlet 

boundary layer, will be used in this work as a test case for three-dimensional 

calculations. The flow in the JAW cascade was found to develop into the 

usual features of passage vortex, endwall counter vortex, and suction surface 

counter vortex. The aspect ratio of the blading is such that the secondary 

losses are of comparable magnitude to the profile losses. This also means that 

the midspan flow is essentially two-dimensional, which makes identification of 

three-dimensional flow features a simple matter of comparison with midspan 

conditions. Thus the data constitutes a very useful test for flow models. 

Although the linear cascade does not contain any radial pressure gradients, 

the flow is still very complex, and provides a difficult case to predict. 
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Since the flow was found to develop rapidly between slots 5, 8, and 

10, it was decided to traverse some intermediate slots. This would also 

provide an introduction to the traversing and data analysis techniques. 

5.2 Erll'ors m Loss Measureme][]lts 

As discussed previously in section 4.3, certain problems had been 

encountered with the measurement of losses using the calibrated five hole 

probe technique. Walsh (1987) reported that significant losses were measured 

in regions expected to be governed by potential flow. Some time was thus 

spent investigating the accuracy of pressure measurements, and improvements 

were then made to the system, culminating in a new calibration of the five 

hole probe. Despite efforts to improve the accuracy of individual pressure 

measurements, and the new calibration of the five hole probe, the problems 

with loss measurement were not entirely eliminated. A traverse of slot 7, 

analysed with the new calibration, revealed that an average loss of 0.05 

appeared to be present in freestream areas. Analysing the raw pressure data 

with the old probe calibration (as used by Graves (1985), and Walsh (1987)), 

suggested that this freestream loss was 0.1. Hence it was clear that an error 

in the measurement technique was present which was somehow related to the 

probe calibration. 

The problem of non-zero freestream loss persisted in traverses of slots 9 

and 11. Analysis with the new probe calibration suggested that the freestream 

loss was 0.06 in both cases, whereas this value was approximately 0.1 when 

the old calibration was used. Generally, data had been corrected for spurious 

freestream losses, by simply subtracting this apparent loss from the values of 

the total, and static pressure coeffiCients at all points on the traverse plane (a 

process which will be referred to as 'constant loss correction' in this thesis). 

However, after traversing slot 11, it became clear that data analysed with the 

new probe calibration, and corrected in this way, consistently produced lower 

mass averaged losses than data which had been analysed by Walsh with the 

old probe calibration. In Figure 5.1, the results of plotting mass averaged 
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losses from Walsh (1987) with new values obtained for slots 7, 9, 11 are 

plotted under the heading 'mixed calibrations - constant loss correction'. It 

is clear that the curve for loss growth through the cascade thus obtained, is 

somewhat unbelievable, with the losses apparently falling between slots 10 and 

11. This aroused some concern about the validity of the treatment adopted 

for the spurious freestream losses, and so an investigation into the origins of 

the problem was undertaken. 

5.3 P:ro:pe:rties of the Spurious Losses 

As Walsh had found that the magnitude of the freestream losses 

appeared to increase with slot number (and hence velocity), an initial test 

was undertaken to determine the effect of velocity on measured losses. The 

five hole probe was mounted downstream of the cascade whilst the tunnel 

velocity was varied. Results are shown in Figure 5.2(a), which shows that 

despite some random uncertainty in the measurements, there is no significant 

velocity effect over the range of velocities encountered in the cascade. This 

is encouraging as it tends to discount the possibility of a Reynolds number 

effect. 

A second concern was whether or not the spurious losses were sensitive 

to the incidence of the flow onto the probe. With the five hole probe mounted 

downstream of the cascade, and the tunnel running at constant speed, the 

angle of the probe head to the flow was varied. Results are shown in Figure 

5.2(b), where it is possible to see that although a significant 'freestream 

loss' is indicated, it does not appear to vary much with changing angle 

of incidence. This is important as all results have been collected using a 

non-nulling technique. Hence, if the error in total pressure measurement was 

to vary with flow incidence, accurate correction of the data would be very 

difficult. Also this evidence also suggests that the problem is not a Reynolds 

number effect. Hodson and Dominy (1988) have shown that low Reynolds 

number effects are associated with separation of the flow from the probe head, 

and hence are sensitive to flow incidence. 
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A final test was undertaken to confirm that the spurious losses were 

independent of absolute velocity magnitude. The reference pitot tube and 

the five hole probe were mounted upstream of the cascade, and the losses 

recorded. Then the five hole probe was moved to slot 10 (where the velocity 

is increased by a factor of approximately 1.8) leaving the pitot-static probe 

upstream, and more measurements taken. Finally the pitot-static probe was 

mounted alongside the five hole probe at slot 10, giving a measurement at 

the high end of the range of velocities encountered in the cascade. In each 

case the probes were placed in 'potential flow areas' and should have detected 

no losses. Results are shown in Figure 5.2(c). It can be seen that although 

there 1s a bias error in loss measurement of approximately 0.015, it is when 

there is a difference in velocity between the reference pitot-static probe and 

the five hole probe that large losses are calculated. This seems odd,- but the 

position is clarified by Figure 5.3. In Figure 5.3(a) the apparent losses at 

midspan of slot 3 are plotted as a function of tangential distance. As the 

velocity on the suction side of the passage is higher than that on the pressure 

side, the loss appears to fall when moving from one to the other. However, 

it is the loss coefficient which is being considered. If the loss coefficient is 

redefined as the loss in stagnation pressure between the upstream pitot-static 

probe and the five hole probe, divided by local rather than upstream dynamic 

head, a different picture emerges. This new loss coefficient is plotted against 

tangential distance for the midspan data at slot 3 in Figure 5.3(b ). Here 

the error in total pressure measured by the five hole probe appears to be a 

constant fraction of local dynamic head (the random errors mcrease towards 

the pressure side of the passage as the denominator becomes small). 

5.4 Proposed Explanation of Apparent Freestream 1Losses 

The five hole probe calibration technique used at Durham, calculates 

losses from the formula :-

Po - PowcAL = (Po - Pc) - (Pc - Pi)Spi 
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where 

P0 = upstream stagnation pressure 

Pc =pressure on central tube of 5 hole probe 

?; =pressure on left or right hand tube, 

whichever zs at lower pressure 

Spi = stagnation pressure calibration coefficient, which 

is a function· of yaw and pitch angles 

Examination of data shows that the value of P0 - Pc does not account 

for the apparent losses which are calculated in freestream areas. Thus the 

error must arise in the term (Pc-P;)Spi. If one considers a nulled probe head, 

then as the velocity increases (without loss), Pc will be the full stagnation 

pressure, which is constant. However, the pressure on the left or right hand 

tube, Pi, is the local stagnation pressure less some proportion of the dynamic 

pressure. Hence (Pc - Pi) increases with increasing velocity. This suggests 

that the source of error in loss measurement may be a constant error in the 

stagnation pressure calibration Spi, which is amplified at. higher speeds by an 

increased value of Pc - ?;. The calibration of Spi is defined as :-

(5.2) 

Here PowcAL is measured by a pitot tube during calibration. The only 

obvious way in which a systemmatic error could have entered the calibration 

is if the pitot tube recorded a different value of total pressure to that incident 

on the five hole probe. Then :-

where rJ 1s a constant error. Substituting m equation (5.2) yields 

The loss coefficient is normally calculated from the formula 

Po- PowcAL 
!PVoz 

(Po- Pc)- (Pc- Pi)Spi 

!PVo2 
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Thus substituting for Spi from equation (5.4) gives .-

true loss 
.coefficient = 

(R _ p) _ (P _ P.-)SmCAL _ (Pe-P;) '1'1 
0 c c 1 r· (Pc-P;)cAL 'I 

usual loss 
coefficient 

~PVo2 

(Pc - ~) 1] 

rp p) 1 -v;z 
\ c - i CAL 'i,Jl 0 

(5.6) 

For a given angle of incidence, Pc - Pi is a constant fraction of the local 

dynamic head, i.e. :-
. 1 
Pc -Pi = A(O)-pV2 

2 
(5.7) 

where A is a function of incidence angle 0. Substituting into equation (5.6), 

the error term becomes 

Pc - Pi 17 V 2 1J 

(Pc- ~)CAL ~PVo2 = VJAL ~PVo2 
(5.8) 

This formula is then independent of flow incidence angle (), and only depends 

upon the ratio of local to upstream velocity. This explains why the error 

term is roughly constant if the loss coefficient is defined reiative to local 

dynamic head (see Figure 5.3). It also explains why the errors detected using 

the new five hole probe calibration are lower than those obtained with the 

old calibration. The new calibration was performed at a higher velocity than 

the old calibration. 

Thus the above explanation of the source of the spunous freestream 

losses, appears to fit the observed properties of the phenomenon. The error 

in total pressure introduced during calibration, is assumed to be due to a 

small variation in stagnation pressure between the tunnel centre (where the 

five hole probe was located), and the tunnel side (where the pitot tube was 

mounted). The magnitude of the error 1J deduced from freestream data at 

slots 7, 9, 11 analysed with the new calibration, is approximately 0. 1mmH20 

( =3.2% ! pV0
2 ). This value for 7J may be used to correct Spi, to produce a 

calibration which should give zero freestream loss, regardless of velocity (in 

the limited range of the cascade). Results of such an analysis are shown in 

Figure 5.1 under the heading 'corrected new calibration - no loss correction'. 

Also shown is a re-analysis of all the data using the new five hole probe 

calibration, with constant loss correction (i.e. subtraction of the freestream 
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loss from the total and static pressure coefficients at each point on a traverse 

plane). This is headed 'new calibration - constant loss correction'. It may 

be seen from Figure 5.1 that the results of using a 'constant loss correction', 

or the 'corrected new calibration' are very similar outside of the blade row 

where velocities are fairly even over a traverse plane. Within the blade row 

however, the results are quite different due to the high cross-passage pressure 

gradients. 

If the error 71 could be accurately deduced, a corrected probe cali

bration would be attractive, but unfortunately this is not the case. Figure 

5.4 shows a comparison between the midspan losses at slot 5 obtained from 

the old calibration with constant loss correction, the new calibration with 

constant loss correction, and the corrected new calibration with no loss cor

rection. The loss should be close to zero at all tangential locations (the data 

does not reach the blade boundary layers). The old calibration gives a loss 

which increases as the velocity increases, moving from the pressure surface 

to the suction surface. The corrected calibration with no loss correction, 

over compensates for velocity effect, and gives a loss which decreases with 

velocity. The flattest curve IS actually that obtained from analysis with the 

new calibration and constant loss correction. Thus it was decided to use 

this data for further work. The good agreement between results downstream 

of the cascade obtained with a corrected calibration, or the new calibration 

and constant loss correction, allows reasonable confidence in the data in this 

region. Within the blade row the mass averaged loss is always suspect, as 

the entire passage area is not covered by the measurements. Hence accepting 

a constant loss correction, which is clearly not correct for slots with large 

velocity gradients, does not seem to be a great sacrifice. It should be realised 

that the correction, whilst being very significant for the mass averaged loss, 

is small when compared with the losses found within the loss core, and hence 

contour plots of losses on a traverse plane are little effected by it. 

Returning to Figure 5.1, there is a surprisingly large discrepancy 

between the analyses using the new and old calibrations with constant loss 

correction. The reason for the discrepancy was found to be mainly due to 
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the choice of fluid which was assumed to be 'loss free' for deduction of a loss 

correction. At slots 1, 3, 5 Walsh had chosen the midspan data to be free of 

loss. At slots 8 and 10 however, an area had been used. In re-analysing the 

data an area has always been used, though not necessarily the same area as 

that chosen by Walsh. This then was the major source of difference between 

mass averaged losses calculated by Walsh, and those presented in this work. 

These differences highlight the difficulty of correcting data for the errors m 

loss measurement. Some experimentation using different freestream areas to 

deduce the loss correction for each traverse plane, indicated the uncertainty in 

mass averaged loss resulting from the choice of this 'freestream area'. Figure 

5.13 shows the final loss growth curve to be used for validation of calculation 

codes, with error bars indicating the probable uncertainty at each slot. It is 

possible for losses apparently to decrease within the blade row, as traverses 

do not extend to the blade surfaces. 

For the remainder of this thesis it will be assumed that all five hole 

probe measurements are analysed with the new calibration, and corrected for 

apparent freestream losses by constant loss correction. 

5.5 Slot 7 Traverse (87% Cax) 

Results of a five hole probe traverse of slot 7, are shown in Figure 5.5. 

The measurement locations can be deduced from the position of the secondary 

velocity vectors presented in Figure 5.5(e). Although the data is only plotted 

up to a radial distance of 150mm from the endwall, measurements were made 

all the way to midspan at 200mm. In Figure 5.5(a), the static pressure 

coefficient contours, show the minimum pressure to be located near the centre 

of the passage vortex, and away from the suction surface. This effect was 

observed by Langston et al (1977) in their endwall pressure distribution. It 

is clear that the vortical motion of the secondary flow has a profound impact 

upon the pressure distribution in its locality. The yaw angle contours shown 

in Figure 5.5(b) indicate the magnitude of the flow angle variation caused by 

the passage vortex, with over-turning of 20° occurring close to the endwall. In 
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Figure 5.5( c) large pitch angles are also evident, reaching a peak of 60° near 

to the suction surface. The loss contours in Figure 5.5( d) indicate that the 

endwall boundary layer has been swept towards, and up, the suction surface 

by the strong secondary flows. Freestream fluid has been brought into the 

endwall region on the pressure side of the passage. The secondary velocity 

vectors indicate that the vortex centre is approximately half way between its 

positions at slots 5 and 8, which were reported by Walsh (1987). There is 

some evidence of a counter vortex on the midspan side of the passage vortex, 

towards the suction surface, but this is not well covered by the range of 

the traverse. Hence the streamwise vorticity, which is calculated using the 

method of Gregory-Smith et al (1987) and non-dimensionalised by upstream 

velocity and the cascade pitch, does not detect this counter vorticity, and is 

dominated by the presence of the passage vortex. 

The pitch averaged results in Figure 5.6, show that at this stage the 

secondary flow effects extend from the endwall to 70mm radially. The yaw 

angle plot indicates strong over-turning within 30mm radially, and the loss 

coefficient shows that the loss core is not yet detached from the endwall. 

There is a peak in loss at 60mm from the endwall, where the passage 

vortex separates from the suction surface, but this . is not. yet dominant. The 

peak develops rapidly between slots 7 and 8 to produce a distinct loss core. 

Similarly the secondary kinetic energy is greatest near to the endwall at slot 

7, but also develops to give a distinct peak at 60mm from the endwall at slot 

8. The mass averaged results (Figure 5.13) show that whilst the secondary 

kinetic energy is almost fully developed at slot 7, the loss rises rapidly from 

its value of 0.07 to reach 0.1 by slot 8. 

5.6 Downstream Flow Development 

Figure 5.7 shows the results of a traverse of slot 9 (116% Cax). This 

can be compared with Figures 5.9 and 5.11, which show results for slots 10 

(data from Walsh (1987)) and 11 respectively. Slot 10 is 128%, and slot 

11 is 152% of an axial chord downstream of the leading edge. As the flow 
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precedes from slots 9 to 11, the blade wakes broaden, and the peak loss 

within them decreases from approximately 0.8 to 0.5. The static pressure over 

the plane becomes more even, and radial velocities are progressively reduced, 

as evidenced by the pitch angle contours. The blade wake within 75mm of 

the endwali is gradually convected into the loss core by the passage vortex, 

and the counter vorticity which is shed within the blade wake is convected 

around the passage vortex. This is most clearly shown by the vorticity 

contours which steadily decay downstream. Despite the continuous sweeping 

of the blade wake near to the endwall into the loss core, another significant 

loss core emerges, on the endwall between successive passage vortices. This 

is probably caused by an accumulation of endwall boundary layer loss in the 

region of the endwall counter vortex, with additional losses due to the action 

of this vortex upon the endwall. 

Pitch averaged results for slots 9, 10, and 11, are shown in Figures 

5.8, 5.10, and 5.12 respectively. In each case the two curves were obtained 

by integrating the traverse data over a distance of one pitch, in one case 

incorporating only the left hand blade wake, and in the other only the right 

hand wake. This gives an indication of the flow repeatability from passage 

to passage, which is observed to be fair. As the flow develops downstream of 

the cascade, the over-turning on the endwall is decreased by the growth of 

the endwall counter vortex, but the under-turning peak of the passage vortex 

appears to remain unchanged. The loss core spreads slightly further from the 

endwall, and the secondary kinetic energy reduces. 

The quantitative developments of the downstream mass averaged prop

erties are presented in Table 5.1. Also, Figure 5.13 shows the development 

of loss, and secondary kinetic energy. From these graphs it can be seen 

that the secondary kinetic energy appears to decay steadily downstream of 

the cascade, whilst the loss rises more rapidly between slots 9 and 10 than 

between slots 10 and 11. This is slightly different to the results of Moore 

and Adhye (1985) who found that the loss rose quite steadily downstream 

of their cascade, and was matched by an equal decay of secondary kinetic 

energy. However Moore et al (1986), showed that this was the result of an 
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incidental balance between losses generated in the endwall boundary layer, 

and mean kinetic energy created from turbulent kinetic energy. 

Talble 5.1 DownstX"eam Development of Cascade Losses 

JAW TEST CASE Slot 9 Slot 10 Slot 11 

Loss Coefficient 0.183 0.196 0.212 

- Midspan Loss Coefficient 0.088 0.090 0.097 

= Gross Secondary Loss 0.095 0.106 0.115 

- Inlet Loss 0.042 0.042 0.042 

= Net Secondary Loss 0.053 0.064 0.073 

Secondary KE Coefficient 0.049 0.043 0.030 

Secondary KE Coefficient + Loss Coefficient = 0.232 0.239 0.242 

Mixed Out Loss Coefficient 0.234 0.239 0.243 

- Midspan Mixed Out Loss Coefficient 0.089 0.095 0.104 

= Gross Mixed Out Secondary Loss 0.145 0.144 0.139 

- Inlet Loss 0.042 0.042 0.042 

= Net Mixed Out Secondary Loss 0.103 0.102 0.097 

The mixed out loss was calculated at each of the downstream planes 

as an attempt to remove the dependency of the loss on downstream distance. 

The calculation is described by Moore and Adhye (1985). The mixed out 

loss in Table 5.1 rises from slots 9 to 11, due to an apparent increase in 

the midspan coefficient. The secondary loss rises slowly as secondary kinetic 

energy is lost, and a new boundary layer develops on the endwall. However, 

the mixed out secondary loss is observed to be approximately constant at 

each downstream slot and might even reduce slightly. This must be due 

to the streamwise turbulence acting to convert turbulent kinetic energy to 

primary kinetic energy, and/ or the reversible pressure work term discussed by 

Moore et al (1986), acting to convert secondary kinetic energy to primary 

kinetic energy. The combination of these effects must be matching or slightly 

exceeding the rate at which the endwall boundary layer produces extra loss. 

The mixed out loss is well represented by the sum of the loss and the 
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secondary kinetic energy, a result which was also found by Moore and Adhye 

(1985). 

5. 7 Ovell"aH Flow Featu:res 

The data discussed in this chapter (JAW test case) constitutes a 

difficult test case for flow models, as the secondary flows are quite powerful. 

The endwall boundary layer is strongly over-turned, and eventually is entirely 

removed from the endwall, being shed downstream as a loss core. Freestream 

fluid is introduced next to the endwall, but is prevented from developing into 

a significant boundary layer within the blade row. Instead it is continuously 

swept to the passage suction side, and replaced by new freestream fluid. 

The losses are seen to rise rapidly in the latter half of the cascade, 

m accordance with other rotor cascades (e.g. Langston et al (1977)). As 

the flow at midspan is essentially two-dimensional, it should be possible to 

distinguish between the quality of modelling of blade boundary layers, and 

secondary flow effects. 

Finally, Figure 5.14 shows a plot of the blade static pressures, which 

were measured and presented by Walsh (1987). As the endwall is approached, 

the deviation of the suction surface pressures from those at midspan increases. 

The loading is progressively reduced at the leading edge, and increased towards 

the trailing edge, where low pressures result from the proximity of the passage 

vortex. In particular, within 35mm of the endwall, there is a significant 

adverse pressure gradient, on the suction surface in the last 20-30% of an 

axial chord. This may contribute to the rapid rise in loss in this region. 

The variation in blade loading is also of interest for blade stress analysis. As 

the surface pressures are influenced by secondary flows, they will constitute 

a useful test for three-dimensional calculations. 
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Chapter 8 

Modelling Results (JAW Test Case) 

6.0 Introduction 

This chapter describes results of modelling the JAW test case (ex

perimental data described in Chapter 5). Three N a vier-Stokes solvers are 

compared, and some comments are made about the various algorithms. The 

most accurate code for this case (the elliptic flow model of Moore and Moore 

(1985)) is then tested in more detail. The effects of the turbulence model, 

and benefits of improved versions of it are t_ested and discus_sed. Also :results 

of calculations on two different meshes are compared, to determine the 'grid 

dependence' of the results. 

6.1 Three Calculation Codes 

The N avier-Stokes methods which are compared in this study are 

version 5 of the Moore Elliptic Flow Program (MEFP), and two time marching 

codes. The Moore's pressure correction algorithm has already been described 

in Chapter 3, but significant features of the implementation include second 

order accurate finite volume formulation, upwinded control volumes for reduced 

numerical mixing, and smoothing only applied when absolutely necessary. The 

grid system maps the blade onto a box and so some grid points appear inside 

the blades. Whilst this might seem wasteful, it makes the calculation of_ tip 

leakage flows particularly simple. The grid used in this study is shown in 

Figure 6.1(a), and consists of 47 x 25 x 17 points in the axial, tangential, and 

radial directions respectively. The two-dimensional mesh is simply stacked 

to form a three-dimensional mesh. A total of 19975 points is thus used to 

model half the cascade span. A smoothing program was used in an attempt 

to produce more orthogonal cells, and this causes the unusual kinks in the 

repeating boundary. This mesh will be referred to as the 'coarse mesh' in 

further work with the Moore code. 
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The first of the time marching codes is called ANSI, and is an explicit 

method which was developed at the Massachusets Institute of Technology. 

Significant features include finite difference formulation of first order accuracy, 

and fourth order smoothing. The grid system employed by the scheme is 

sophisticated, and incorporates '0', 'C', and 'H' lines to give high definition of 

the blade boundary layers. This system is described by Norton et al (1984) 

in a paper concerning an implicit ve~sion of the code. The grid used in this 

study is shown in Figure 6.1 (b) and consists of 56 x 28 x 18 points. A total 

of 28224 points was thus used to model half the cascade span. 

The second time marching code which is tested is called VICTA, 

and at the time of testing was m an early stage of development at Rolls 

Royce. The program is a finite volume formulation of second order spatial 

accuracy, and employs second order smoothing to damp out oscillations. The 

grid system is a simple 'H' grid, and in this study 50 x 23 x 17 points 

were used to model half the cascade span. Thus a total of 19550 points 

were used, and the resulting two-dimensional mesh is shown in Figure 6.1(c). 

At the time the calculation was performed, no turbulence model had been 

coded into VICTA, so an inviscid run is described. For the other two codes, 

mixing length turbulence models were available. As Walsh (1987) reported a 

laminar boundary layer from the leading edge to 80% of an axial chord on 

the suction surface of the blade, both the MEFP and ANSI runs were set up 

to allow for this feature. Both codes were run turbulent, but with a laminar 

block specified as shown in Figure 6.2(a). This extends from inlet to 80% 

of axial chord in the axial direction, right across the blade pitch, and from 

10% to 50% span in the radial direction (a midspan symmetry condition is 

used for the linear cascade). Values of turbulent viscosity are forced to be 

zero in this region, which is referred to as 'laminar block A' in this thesis. 

6.2 Comparison of Results for the Three Codes 

Plots of the results at slot 7 (87% Cax) are presented in Figure 

6.3(a-l). The location of the calculation grid points show that as intended 
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the three codes have a similar density of points in the secondary flow region. 

Also, the grid spacings reduce as solid boundaries are approached, with ANSI 

giving the best resolution of the blade boundary layer region as expected. 

Results for flow quantities may be compared with the experimentai resuits in 

Figure 5.5. All the calculations appear to under-predict the static pressures 

towards the pressure side of the passage, but most noticable is the oscillatory 

behaviour of the ANSI results in the boundary layer regions. The MEFP 

results seem reasonable, although the depression in static pressure caused by 

the vertical motion of the secondary flow is not captured. VICTA appears 

to have rather too much secondary flow with a large scale depression in the 

static pressure contours, which are generally too low. The secondary velocity 

vectors (Figure 6.3(g-i)) confirm these impressions, and show that MEFP has 

produced a vortex which is too weak, and which has not migrated towards 

the suction surface in the way that the real passage vortex is observed to do. 

The vortex produced by ANSI is the weakest of the three and again has not 

migrated towards the suction surface. VICTA predicts the strongest secondary 

flow, but the tangential positioning of the vortex is incorrect, remaining in 

mid-passage. Comparing the results of the loss predictions it is immediately 

clear that MEFP is the best 'conserver of total pressure'. The ANSI prediction 

is obviously erroneous, particularly in the blade boundary layer areas. Most 

of the passage is covered with loss, which increases towards the suction side. 

This large loss production on the suction side of the passage is also evident in 

the VICTA prediction. However VICTA is being run inviscid. Therefore any 

loss in excess of that present in the inlet boundary layer, must be attributed 

to numerical errors alone, rather than a combination of these, real effects, 

and errors in the turbulence model. 

Similar comments may be made about the solutions at other locations. 

Figure 6.4 shows results at slot 10 (128% Cax), which may be compared 

with the experimental data in Figure 5.9 (from Walsh (1987)). The repeating 

boundary condition has been used to extend the modelling results to cover the 

same range as the experimental data. Clearly the best solution is produced 

by MEFP, although the vortex is not correctly placed, and the blade wakes 
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contain too much loss. The ANSI solution is dominated by loss which covers 

most of the flow area. The dashed contours indicate regions of total pressure 

gain, which are certainly produced by numerical errors. The VICTA solution 

has also produced a large amount of numerical loss, although quite a strong 

passage vortex is also predicted. However, the shape and location of this 

vortex are not representative of the experimental results. 

Mass averaged quantities are presented m Figure 6.5. The best 

prediction of loss is given by MEFP, although it is itself producing at least 

50% too much. VICTA produces a large steady increase in loss, which is 

purely numerical. ANSI is struggling with large losses produced early in 

the cascade and convected downstream. It also predicts far too little kinetic 

energy of the secondary flow. MEFP gives a more realistic prediction, but is 

only producing half of the observed value. VICTA however predicts far too 

much secondary kinetic energy. This might be expected if the inviscid run 

had contained little numerical error, but it is difficult to interpret this result 

when such large levels of numerical viscosity appear to be present. 

Figure 6.6 shows results of performing a mass average of. the losses, 

but first forcing all negative losses (energy gains) to be set to zero. Comparing 

with Figure 6.5 it is clear that ANSI has produced very large total pressure 

losses and gains in the leading edge region. The fact that the loss reduces 

downstream of the cascade suggests that significant total pressure gains are 

also being generated in this region. The mass flow plot also shows that ANSI 

is having difficulties in the leading edge region. 

6.3 Interpretation of the Comparative Study 

In order to attempt to understand the ANSI results some two

dimensional runs were undertaken. With the grid shown in Figure 6.l(b), 

large errors were again produced at the leading edge, giving an overall loss 

prediction eight times that measured experimentally. Also the blade surface 

pressure distribution was poorly predicted. Using a two-dimensional mesh with 

five times as many grid points as used previously, reduced the loss to 2.4 
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times the experimental loss, and gave a much improved pressure distribution. 

Also, running the code at an elevated Mach number such that the Mach 

number at exit was raised from 0.11 to 0.3 was found to improve convergence 

(this is because the code solves for density changes which are very small in 

a low speed flow). The strong influence of grid refinement upon the quality 

of the results, suggests that truncation errors are having significant effects. 

Where the grid spacing changes rapidly serious errors might be entering the 

first order discretisation. In the grid used for the three-dimensional run the 

grid spacing expanded by as much as fifty times when passing from the 'C' 

grid to the 'H' grid. It was therefore felt that ANSI should be modified 

to perform weighted averages so as to achieve second order spatial accuracy. 

Unfortunately such modifications to the software were beyond the scope of 

this project. However, Birch (1989a) has since shown that approaching the 

problem from a different direction, ANSI can give high quality results if the 

mesh is carefully constructed so as to avoid rapid changes in cell size. 

The VICTA result cannot be explained in the same way as the ANSI 

case. Firstly the code is second order accurate, and so should not suffer so 

greatly from rapid changes in grid spacing, and in any case these were avoided 

when setting up the mesh. Secondly the loss growth curve is observed to rise 

steadily, even upstream of the cascade. It thus seems likely that VICTA is 

dominated by excessive smoothing, as apart from truncation errors this is the 

only other possible source of loss productionin an in viscid. solution. Reducing 

the smoothing by a factor of two was found to reduce the loss by almost 

as much. However the smoothing factors cannot be reduced much further as 

the solution then becomes unstable. A second problem was found with the 

method of calculating the time steps. VICTA contained five separate options 

for calculating time steps, and they were found to have a very significant 

effect upon the results of the calculation. Thus it seems that changing the 

time step changes the level of smoothing within the calculation. It was found 

that VICTA solves equations such as :-

6.p = 6.t [- V .pV] +Smoothing (6.1) 
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Clearly the relative significance of the smoothing term will vary with the time 

step (D.t). This makes the use of locally varying time steps interfere with the 

uniformity of smoothing over the grid. The smoothing factors must then be 

raised to cope with the latgest time steps leaving many cells with far greater 

smoothing than is necessary. As the smoothing in VICTA is of second order, 

the smoothing terms look like viscous terms in the equations and generate 

numerical losses. Thus it would be preferable to multiply the smoothing term 

by D.t in equation (6.1), and then evaluate an optimum range of smoothing 

factors. VVith the implementation tested here, the optimum smoothing factors 

depend upon 6-t, and are thus highly grid dependent. Also a fourth order 

smoothing option as used in ANSI, might be of benefit. 

The MEFP result is obviously the most realistic of the three predic

tions. Comparison with some earlier results presented by Walsh {1987) on a 

mesh of only 8398 points, showed that the solution was not significantly grid 

dependent. Thus it seemed that the Moore's code was the most appropriate 

of the available models for further investigation. 

6.4 Moore Code {Version 5) 'Laminar' Run 

Although MEFP proved to g1ve the best prediction of the flowfield 

for this case, some problems remained. The vortex was not found to move 

towards and up the suction surface as happens in the experiment. . Also 

the losses were over-predicted, and the secondary kinetic energy was under

predicted. Since in a turbulent run it is not clear whether excess losses 

are a result of numerical error, or inaccurate turbulence modelling, it was 

decided to perform a laminar calculation of the flowfield. However, as the 

trailing edge flow is unsteady and turbulent, the calculation procedure would 

probably have difficulty in controlling it with only laminar viscosity. Thus 

the turbulence model was left on for a region containing the blade boundary 

layers downstream of 80% axial chord, and the blade wake as shown in Figure 

6.2(b ). However the secondary flow region was still essentially laminar, and so 

this will be referred to as a 'laminar' run. The results of such a calculation 
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should reveal whether the apparent damping of the secondary flow in the 

previous calculation, was a result of numerical viscosity, or an over-active 

turbulence model. 

Figure 6. 7( a-1) shows results of the two Moore code calculations and 

corresponding experimental data (from Walsh (1987)) at slot 8 (97% Cax). 

The yaw angle contours show that the 'laminar' run captures more of the 

under-turning at 70mm from the endwall than the turbulent run with laminar 

block A. Similarly the static pressure contours show that the depression in 

static pressure resulting from the presence of the passage vortex, is much better 

modelled with the laminar flowfield. The most striking change is apparent 

in the secondary velocity vectors (Figure 6.7(g-i)). With t}1e secondary flow 

regwn modelled as turbulent, the vortex remains close to the endwall and 

centred at mid-passage. However, with a laminar secondary flow region the 

vortex is convected in a most convincing manner towards and up the suction 

surface. The loss contours show that the laminar run has more areas of total 

pressure generation than the turbulent run with laminar block A. However 

two distinct loss cores are emerging, and as described in Chapter 2, this is a 

characteristic feature of turbine secondary flows. Pitch averaged results at slot 

8 for the two MEFP solutions and experiment, are shown in Figure 6.8. The 

turbulent run with laminar block A fails to capture the under-turning of the 

flow at 60mm from the endwall, but predicts the over-turning nearer to the 

wall quite well. It also fails to predict the secondary kinetic energy peak at 

60mm from the endwall, and this results in less radial convection of the loss 

core than is experimentally observed. In contrast, the 'laminar' run produces 

too much secondary kinetic energy and thus exhibits a strong under-turning 

peak at 70mm from the endwall. The loss core is also convected radially 

from the endwall. The low loss at 30mm from the endwall results from the 

negative loss present in the contour plot (Figure 6.7(1)) and is thus· a prod~ct 

of numerical error. However, one might expect a laminar run generally to 

under-predict loss. 

The 'laminar' run results at slot 10 (128% Cax) are presented in 

Figure 6.9(a-f). These may be compared with the 'turbulent run with 
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laminar block A' results in Figure 6.4, and the experimental results of Walsh 

{1987) reproduced in Figure 5.9. The calculation grid locations show that the 

blade wakes are fairly well covered. The wakes are similar to those in the 

turbulent run with laminar block A, as both calculations used the turbulence 

model in this region. However the loss core is better defined and contains 

the two peaks that are characteristic of turbine cascades. The passage vortex 

is also better positioned in the 'laminar' run. Comparing the results of the 

'laminar' run with experiment, it can be seen that the static pressure contours 

are no longer in such good agreement as they were at slot 8 (Figure 6.7). 

The depression in static pressure resulting from the rotation of the passage 

vortex is not captured. Also there is a difference between the predicted and 

measured midspan static pressure coefficient. This is a common feature in all 

the Moore code runs, and is thought to result from a difference in incidence 

between experiment and modelling. The models were all run at the design 

incidence of 42.75°, whereas the pitch averaged flow angle at slot 1 presented 

by Walsh (1987) was approximately 46°. Hence the experiment operates at a 

slightly lower mass flow rate than intended, but with the design inlet dynamic 

head. This tends to result in the modelling predicting a higher velocity, and 

lower static pressure downstream of the cascade. Also the modelling slightly 

over-predicts the exit angle, which produces similar effects. The pitch and 

yaw angles are more realistically modelled, however. 

Mass averaged loss and secondary kinetic energy for the two runs are 

compared with experiment in Figure 6.10. The 'laminar' run reduces the 

loss, although it is still greater than that measured experimentally. Both 

runs produce too large a jump in loss across the trailing edge of the blade, 

possibly indicating numerical error or an over-active turbulence model in the 

trailing edge regwn. The most striking change is in the secondary kinetic 

energy. The laminar flowfield produces too much secondary kinetic energy 

within the blade passage. This is encouraging since the true secondary flow 

is probably turbulent (e.g. Gregory-Smith et al {1988), Zunino et al (1987), 

Moore et al (1986)). If the laminar calculation had failed to over-predict 

the secondary kinetic energy, it would indicate that numerical errors were 
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hindering the calculation. This does not appear to be the case within the 

blade passage. However the large drop in secondary kinetic energy across the 

trailing edge might be associated with numerical and/or turbulence modelling 

problems in this region. 

The blade static pressures are presented in Figure 6.11 for the tur

bulent run with laminar block A, and Figure 6.12 for the 'laminar' run. 

These may be compared with the experimental pressures shown in Figure 

5.14 (from Walsh (1987)). The turbulent run with laminar block A, models 

the unloading of the first half of the blade as the endwall is approached, but 

fails to capture the low pressure suction peaks in the second half of the blade 

passage. These result from the proximity . of the passage vortex, and thus 

the turbulent flowfield with its weak vortex positioned at mid-passage, fails 

to predict this feature. The 'laminar' run produces an over energetic vortex, 

and thus over-predicts the suction surface peaks. In both results large spikes 

can be seen in the trailing edge region. These are associated with modelling 

problems in this area, with flow remaining attached for too long, and thus 

experiencing severe acceleration around the trailing edge. 

Table 6.1 MEFP (Version 5) Losses at Slot 10 

JAW TEST CASE Experiment MEFP Turbulent MEFP 

+Lam Block A 'Laminar' Run 

Mixed Out Loss Coefficient 0.239 0.344 0.328 

- Midspan Mixed Out Loss Coefficient 0.095 0.175 0.167 

= Gross Mixed Out Secondary Loss 0.144 0.169 . 0.161 

- Inlet Loss 0.040 0.037 0.036 

= Net Mixed Out Secondary Loss 0.102 0.132 0.125 

Secondary KE Coefficient 0.043 0.018 0.042 

Net Secondary Loss 0.064 0.109 0.074 

( = Loss - Midspan Loss - Inlet Loss) 

Table 6.1 presents an analysis of the losses at slot 10 from the two 

MEFP calculations and experiment. It is clear that most of the error in 
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predicting overall loss is due to a poor prediction of profile loss. The values 

for net mixed out secondary loss are too large, but not excessively so. It 

is also interesting that the values of net mixed out secondary loss from the 

two MEFP calculations are similar. This suggests that making the fiowfield 

laminar, reduces the net secondary loss, but results in an almost equal rise 

in secondary kinetic energy, and this can be seen to be approximately the 

case in Table 6.1. The fact. that the 'laminar' run produces 68% of the net 

secondary loss that the turbulent run produced, suggests that its turbulent 

blade boundary layer from 80% of axial chord onwards, is an important region 

for the production of secondary losses, as laminar losses are likely to be much 

smaller than turbulent losses (Moore et al (1986) have shown this to be true 

downstream of a turbine cascade). 

6.5 Conclusions of Work with Version 5 of the Moore Code 

The comparison between the results of the turbulent run with laminar 

block A, and a similar run by Walsh (1987) on a much coarser grid of 8398 

points (c.f. 19975 points used here), shows that the results from the Moore 

code are not very grid dependent. This suggests that the second order 

accuracy of the scheme is generally controlling truncation errors well. In 

some areas there may be localised problems however. The breakdown of 

losses in Table 6.1 shows that most of the excess loss is produced in the 

calculation of profile loss, and Figure 6.10 indicates that much of this over

prediction occurs in the trailing edge region. Thus a calculation on a finer 

mesh would be a useful test of the grid dependence of the results around the 

trailing edge. 

The magnitude of the change in secondary kinetic energy, and posi

tioning of the vortex when the secondary flow region is specified as laminar 

is surprising. It is not clear whether the changes result from the whole 

passage vortex being laminar, or if it is just the laminar modelling of the 

new endwall boundary layer that has most effect. It is possible that the new 

endwall boundary layer which forms after the inlet boundary layer has been 
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removed from the endwall, is in a laminar state within the blade passage 

(e.g. Harrison (1989)). Hence a turbulent run was proposed, with laminar 

block A, and a new laminar block running from 25% to 100% axial chord 

in the axial direction, right across the pitch in the tangential direction, and 

from 0 to 1% span in the radial direction. This new laminar block will be 

referred to as 'laminar block B' in this thesis, and is shown in Figure 6.2(c). 

16.6 Version 7 of the Moore Code 

As the software used in this work is in a continual state of develop

ment, new versions became available during the period i:g. which the modelling 

was undertaken. Cleak et al (1989) have described results obtained with an 

intermediate version (version 6) of the Moore code. However, to avoid confu

sion, all new results described hereafter will be assumed to have been obtained 

using version 7 of the code (i.e. the MEFP algorithm as implemented within 

verswn 1 of the Rolls Royce Computational Fluid Dynamics System). 

The only changes between version 5, and version 7 of the Moore code 

which are of significance in this work are the changes made to the turbulence 

model, and to the subroutine which adds in the pressure corrections to the 

pressure field. Some problems had been encountered in previous work with 

oscillations developing in the pressure field across the . trailing edge plane. In 

Figure 6. 7(d,f) it is possible to see some, oscillatory behaviour in the static 

pressures towards the pressure side of the passage. The only fix available 

previously was to smooth the pressure field (this was not used with the version 

5 results presented here, but was used by Cleak et al (1989) when working 

with version 6 of the program). Whilst this technique removes pressure 

oscillations, it also compromises the quality of total pressure conservation. 

Since the initial guess of the flowfield does not contain pressure oscillations, 

these must be introduced by the pressure corrections. Thus a better fix 

would be to smooth the pressure corrections, which. should become small at 

convergence. However the upwinded control volume technique (described by 

J.G. Moore (1985b)) which helps to reduce numerical mixing within the Moore 
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code, makes this difficult smce the points at which the pressure corrections 

are stored can move around during the calculation. Thus a simpler fix was 

provided by J.G. Moore as a new option when calling the subroutine. Any 

significant oscillations in the pressure field arc simply clipped to prevent them 

from growing large. This has been found to be quite an effective method of 

stabilising the calculations for the Durham test case. 

The basic mLXmg length turbulence model has been described in 

Chapter 3, and the mixing length is specified by equation (3.16). The mixing 

length model was really developed with a view to two-dimensional, attached 

boundary layers, and its implementation in a three-dimensional separated shear 

flow is difficult. Within such flows, the mixing length is proportional to the 

shear layer thickness, 8. Specification of this shear layer thickness is rather 

arbitrary, and is achieved by looking at gradients of a shear layer parameter 

S, where for incompressible flow S takes the form of a non-dimensional loss 

of total pressure. This is defined such that S has a value of one on walls, 

and zero in the freestream. 

In verswn 5 of the Moore code, a search was made along each of 

the grid directions (forwards and backwards), looking at gradients of the 

shear layer parameter until some arbitrary cutoff value signified the edge of 

the shear layer. The shear layer thickness was th~s obtained by summing 

distances during the search. The values obtained from the searches in three 

directions were then averaged. However the authors noticed that with the 

model set up m this way, blade wakes appeared to mix out more rapidly 

than occurred m experiment. Thus the model was modified to only search 

along the direction with the biggest gradient of the shear layer parameter. 

The value so obtained was then taken to be the shear layer thickness at 

that point. This tends to reduce the shear layer thickness, 8, and thus also 

the mixing length which is proportional to it. Thus the turbulent stresses 

are then generally smaller, and so wakes are found to mix out more slowly, 

achieving better agreement with experimental measurements. 
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15.7 Coarse Gridl Results {MEFP Version 7) 

Initial work with verswn 7 of the Moore code used the same 'coarse' 

calculation mesh as used previously and shown in Figure 6.l(a). One of the 

results of the work with version 5 of the code was the decision to perform 

a run with an extra laminar block. This is called laminar block B, and is 

shown in Figure 6.2(c). It .is intended to simulate crudely the effects of a 

possible laminar endwall boundary layer downstream of the separation of the 

inlet boundary layer. However, as the turbulence model has been changed, 

it is also necessary to repeat a run for comparison with version 5. Thus 

a run with laminar block A was also undertaken as well as the run with 

laminar blocks A and B. A final run was made with the flowfield specified as 

completely turbulent in order to determine the capabilities of the program as 

a purely predictive tool (i.e. if no previous knowledge of transition locations is 

assumed). Firstly however, the comparison is made between results obtained 

with versions 5 and 7 using laminar block A. 

Figure 6.13 shows results for the three versiOn 7 runs at slot 8 (97% 

Cax). Results for the turbulent run with laminar block A may be compared 

with the equivalent run using version 5 of the program shown in Figure 6. 7: 

Looking at the yaw angle contours it is clear that the revised turbulence model 

is allowing more secondary flow to develop, and the results from version 7 . 

compare better with the experimental results which are also shown. in Figure 

6.7. Comparing static pressure contours (Figures 6.7(d,e) and 6.13(e)) it can 

be seen that the depression in static pressure caused by the vertical motion 
. . 

is better modelled in version 7 , with the revised turbulence model. The 

secondary velocity vectors (Figures 6.7(g,h) and 6.13(h)) show the passage 

vortex to be more energetic in version 7, and to have moved slightly further 

away from the end wall and towards the suction sU:rface. . This movement is 

not as great as that observed experimentally, but is more realistic than the 

version 5 result, where the passage vortex remained centred at mid-passage 

and too close to the endwall. The loss contours from version 7 also indicate 

improvements, and do not include the negative losses which can be seen 
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at the edge of the suction surface boundary layer in the verswn 5 result. 

Flow quantities at slot 10 (28% Cax downstream) for the version 7, version 

5, and experimental results, are presented in Figures (6.15(b,e), 6.4(a,d) and 

5.9(e,d) respectively. It can be seen that the version 7 result produces a more 

energetic and better positioned passage vortex, which results in improved loss 

core definition. Looking at the secondary kinetic energy development in Figure 

6.17, it is clear that the version 7 result with the revised turbulence model, 

allows the secondary kinetic energy to develop to a much more realistic level 

than occurred previously with version 5. Also the loss can be seen to grow 

more in the latter half of the cascade in the version 7 result, rather than the 

steady growth which was evident in version 5. The jump in loss across the 

trailing edge has also reduced slightly, although it is still too large. However, 

downstream of the cascade the loss appears to develop more realistically m 

version 7, and indeed it was this objective which motivated the changes to 

the turbulence model. 

The above discussion of the companson of versions 5 and 7 of the 

Moore code, shows that reducing the turbulent stresses by modifying the 

definition of the shear layer thickness, has produced improved secondary flow 

predictions. This is consistent with the results of the version 5 'laminar' 

run discussed previously. The extent of the sensitivity of the secondary flow 

prediction . to the turbulence model is perhaps surprising, and suggests that 

great care should be taken when attempting to.· model such complex flows 

with simple turbulence models. 

Comparison of the three verswn 7 runs is made at. slot 8 in Fi_gure 

6.13. The yaw angle contours indicate that the secondary flow becomes 

more powerful as the flowfield is made to contain progressively more laminar 

regwns. However, the inclusion of laminar block A does not cause large 

changes to the turbulent solution, as the flow is still turbulent from the 

endwall to 40mm radially in this case. In contrast, the addition of laminar 

block B results in surprisingly large changes, and appears to over-predict 

the secondary flow when compared with the experimental results in Figure 

6. 7. The static pressure contours also indicate a stronger passage vortex. 
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Comparing secondary velocity vectors for the three runs (Figure 6.13(g-i)) it 

is clear that laminar block A makes little difference to the secondary flow 

development as intended (it was included to aid the prediction of profile loss). 

However larninar block B (the laminar endwall from 0 to 4mm radially) 

results in greater migration of the passage vortex, leaving it realistically 

located, although the magnitude of the secondary velocities appears to be 

a little too large. The loss ·contours reveal the benefit of laminar block A; 

as compared with the turbulent run it produces a thinner suction surface 

boundary layer. The three runs produce similar loss cores on the suction 

surface at approximately 70mm from the endwall. Addition of laminar block 

B increases the size of this loss core slightly, as fluid from the suction surface 

boundary layer within 70mm from the endwall is convected into it more 

rapidly by the passage vortex. 

Pitch averaged results at slot 8 are presented in Figure 6.14. There 

appears to be a constant error in yaw angle of approximately 2°, which might 

be associated with numerical problems in the trailing edge region. The run 

with laminar block B produces a slightly larger under-turning peak than the 

other two runs, which produce very similar yaw angles. The addition of 

laminar block B also convects loss radially in a more realistic manner. ·At 

midspan the turbulent run produces twice as much loss as the other two runs 

which each include laminar block A. The secondary kinetic energy peak at 

60mm from the end wall is over-predicted _by the run with laminar block B, .. 

but in general the shape of the curve is better modelled by it. 

Results downstream. of the casca~e at slot 10 are presented in Figure. 

6.15. These may be compareci with the experim,ental results in Figure 5.9~ 

The run with laminar block B produces slightly improved positioning of the 

passage vortex. The loss contours show that the addition of laminar block 

A has reduced the loss in the blade wakes, but it is still too great. The 

most interesting change is that the addition of laminar block B has resulted 

in a more clearly defined loss core at coordinate ( -250,70). This. is probably 

composed mainly of inlet boundary layer loss, and compares quite well with 

experiment. 
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Pitch averaged results at slot 10 are presented in Figure 6.16. Again 

there appears to be a constant error in yaw angle of approximately 2°. The 

run with laminar block B produces too much over-turning at approximately 

50mm from the endwall. However its representation of the loss distribution 

is quite good, if the error in midspan prediction is subtracted from all the 

radial points. The turbulent run produces approximately 50% more profile 

loss than the other two, but they still produce twice as much as measured 

experimentally. All three runs appear to have a peak in secondary kinetic 

energy at 70mm from the endwall, but the calculation grid is too coarse to 

locate it more accurately than this. The run with laminar block A, and 

the turbulent run, produce approximately the correct magnitude of this peak, 

but also predict a second peak at 15mm from the endwall. This unrealistic 

feature is not produced by the run with laminar block B, but the peak at 

70mm from the endwall is over-predicted by it. 

The development of mass averaged loss and secondary kinetic energy 

for the three version 7 runs and experiment, is shown in Figure 6.18. As 

laminar blocks are added to the flowfield the loss is steadily reduced, although 

all the runs predict too much loss. The turbulent run, and the run with 

laminar block A, predict similar levels of secondary kinetic energy whl.ch are 

quite realistic. This similarity is expected since the secondary flow region was 

mainly turbulent in both cases. However the secondary kinetic energy is not 

seen to decay downstream of the cascade in a realistic manner. The laminar 

block B, produces a significant increase in secondary kinetic energy_ and thus 

predicts too much, although the rate of its decay downstream appears to 

be more realistic. Table 6.2 presents a breakdown of losses at slot 10 for 

the three version 7 runs and experiment. As mentioned in previous analyses 

of losses, the net mixed out secondary loss is quite well represented by 

the sum of net secondary loss and secondary kinetic energy at a particular 

downstream distance. The net mixed out secondary loss is similar for the 

two runs which included laminar block A. This appears to indicate that the 

addition of laminar block B reduces the loss (presumably due to less endwall 

loss growth) but produces an almost equal rise in secondary kinetic energy. 
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All three runs predict too much profile loss. Apparently the turbulent run 

predicts less mixed out secondary loss than the other two. This is a little 

surprising as the addition of laminar block A was intended to only effect 

the profile loss. Thus a similar prediction of secondary loss was expected 

from the turbulent run and the run with laminar block A only. Perhaps the 

breakdown of losses is becoming slightly inaccurate with such large profile 

losses present in the solution. In general however, all three runs appear to 

give reasonable estimates for the mixed out secondary loss. 

Table 6.2 MEFP (Version 7) Flow at Slot 10 

JAW TEST CASE Experiment MEFP MEFP Turb + MEFP Turb + 

Turbulent Lam Block A Lam Blocks A+B 

Mixed Out Loss 0.239 0.397 0.342 0.321 

- Midspan Mixed Out Loss 0.095 0.269 0.183 0.168 

= Gross Mixed Out Sec. Loss 0.144 0.128 0.159 0.153 

- Inlet Loss 0.040 0.040 0.038 0.037 

= Net Mixed Out Sec. Loss 0.102 0.088 0.121 0.116 

Secondary KE 0.043 0.045 0.050 0.064 

Net Secondary Loss (=Loss 0.064 0.045 0.070 0.047 

- Midspan Loss - Inlet Loss) 

Midspan Mixed Out Angle -67.5° -69.1° -69.3° -69.2° 

The mixed out flow angle is less accurate in all three runs than might 
.- ·- - · . .- . 

have been expected, _and this could be associated with numerical problems 

in the ~railing edge regwn. However, as discussed in Chapter 5, th~ raw 

pressure probe data of Walsh (1987) has been re-analysed in order to resolve 

some problems with the measurement of losses. When analysing data, it is 

often necessary to add a constant to the yaw angles in order to account 

for small misalignments of the fine cranked end of the probe. These are 

determined before and after the traverse by checking the probe's response 

in a known flow. This does not effect the quality of pressure or velocity 

magnitude measurements, as it is purely concerned with relating the angle 
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of the probe to the cascade ax1s system, after the calibration maps have 

determined the angle, velocity, and pressure of the flow onto the probe head. 

When re-analysing the data, the value of this correction was not incorporated, 

and so the value of mixed out flow angle presented at slot 10 by Walsh was 

-68.2° which is different to the value of -67.5° presented m Table 6.2. 

However, a difference of l o in yaw angle is still apparent between experiment 

and the MEFP predictions. · 

6.§ Conclusions of Coarse Grid Runs of MEFP (Version 7) 

The above discussion of results of modelling the end wall flow asJaminar 

within 1% span, and downstream of the inlet boundary layer separation line 

(laminar block B), showed that this produces large changes to the fl.owfield. 

In particular too much secondary kinetic energy was produced, whereas the 

run with only laminar block A predicted approximately the correct amount. 

This contrasts with the results of the run with laminar. block A on version 

5 of the program where only half of the observed secondary kinetic energy 

was generated. The reason for the change in results between versions 5 

and 7 was the changes made to the turbulence model discussed -in section 

6.6. Thus if a run could be performed on version 5 of MEFP (the source 

code is no longer available), with laminar blocks -A and B, -it is possible 

that approximately the correct level of secondary kinetic energy would be 

produced. The revised turbulence model for separated shear flows in ve~sion 

7 does produce a more _ realistic gro~th of loss downstream of the ~-ascade. 

However this alone might not be considered to be sufficient justification for the 

rather arbitrary changes to the turbulence model. Thus some questions arose 

which directed further experimental work. Firstly it would be desirable to 

know what the state of the new endwall boundary layer really is (i.e. laminar 

or turbulent). Secondly a comparison between experimental measurements of 

the Reynolds stresses within the flow, with those predicted by the turbulence 

model, would clearly indicate the accuracy of the model within the separated 

three-dimensional shear flows. 
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The run with a fully turbulent flowfield predicts too much profile 

loss. Thus there is clearly a need to develop models of transition, if the 

N avier-Stokes solvers are not to be tied to transition correlations as are 

currently used in many of the boundary layer calculations which are coupled 

to two-dimensional inviscid solvers. The use of such correlations would limit 

the application of the codes to design incidence, and is thus undesirable. 

All the runs undertaken so far have produced too much loss in the 

trailing edge region. This is a difficult area of the fl.owfield to model, but 

a run on a finer mesh would help to indicate if numerical problems in this 

region could be reduced with the use of more grid points. 

6.9 Fine Grid Results (MEFP Version 7) 

A second calculation mesh was produced for use with the Moore code, 

and is shown in Figure 6.19. This has 60 x 36 x 30 points in the axial, 

tangential and radial directions respectively. A total of 64800 points is thus 

used to model half the cascade span. This mesh will be referred to as the 

'fine' mesh in this thesis, and contains 3.2 times as many points as does the 

'coarse' mesh used previously. 

Two fine grid runs were undertaken, one with a fully turbulent 

fl.owfield, and another incorporating -laminar -block A, as shown in Figure 

2.2(a). A comparison between the two -fine mesh results at slot 8 (97% Cax) 

is made in Figure 6.20. These results_ may pe compared with the equivalent 

coarse mesh runs, shown in Figure 6.13. In general the effect of grid refinement 
~ . . . ,- ' . . . . . . 

is quite small. The pressure surfa~e boundary layer is thinner when_ more 

points are placed in it, but the level of grid refinement is not sufficient to 

change greatly the suction surface boundary layer thickness. The loss core 

is perhaps slightly better defined by the fine mesh, and the static pressure 

contours are more tightly closed around the passage vortex. Surprisingly, the 

oscillatory behaviour in the static pressure field on the pressure side of the 

passage, is slightly worse in the fine grid calculations. 

Results of calculations on the fine mesh at slot 10 (128% Cax) are 
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presented in Figure 6.21. The static pressure contours may be compared 

with the experimental results in Figure 5.9. The fine mesh helps to capture 

the static pressure depression in the centre of the passage vortex. Although 

equivalent coa.rse mesh results are not presented, this feature was not modelled 

so well by them. The midspan pressures are different from those measured 

experimentally, probably due to the experiment running at a slightly different 

incidence, as mentioned previously. The secondary velocity vectors are very 

similar in comparable results with coarse or fine grids. The fine grid slightly 

reduces the loss within the blade wakes but also makes them significantly 

thinner. However there is still too much profile loss. Mass averaged loss 

and secondary kinetic energy for the two fine grid runs are presented in 

Figure 6.22. This may be compared with Figure 6.18 which shows the results 

obtained with the coarse calculation mesh. Clearly the main effect of grid 

refinement is to reduce the jump in loss produced across the trailing edge 

of the cascade to quite a realistic level. The prediction of secondary kinetic 

energy is very little changed however. 

Table 6.3 MEFP (Version 7) Fine Mesh Flow at Slot 10 

JAW TEST CASE Experiment MEFP 'I\trbulent MEFP Thrb 

+ Lam Block A 

Mixed Out Loss Coefficient 0.239 0.337 0.290 

- Midspan Mixed Out Loss Coefficient 0.095 c . 0.192 . 0.138 

= Gross Mixed Out Secondary Loss 0.144 0.145 0.152 

- Inlet Loss 0.040 0.038 0 .. 036 

= Net Mixed Out Secondary Loss 0.102 0.107 0.116 
.. .. 

Secondary KE Coefficient 0.043 0.050 0.049 

Net Secondary Loss 0.064 0.057 0.065 

( = Loss - Midspan Loss - Inlet Loss) 

Midspan Mixed Out Flow Angle -67.5° -68.7° -68.9° 

Table 6.3 presents a breakdown of losses at slot 10 for the two fine 

mesh runs. This can be compared with Table 6.2 for the equivalent coarse 
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mesh results. The biggest change 1s clearly in the prediction of profile loss 

which is much improved with the fine calculation mesh. The predictions of 

net secondary loss and secondary kinetic energy are also quite good. The fine 

grid has also reduced the exit flow angle slightly, so that comparison with 

Walsh's experimental value of -68.2° shows less discrepancy. 

Following Hah (1987), Figure 6.23 presents graphs of mixed out loss 

versus the inverse of the number of grid points used in the calculation mesh. 

Hah tested four separate grids with his pressure correction code, and found 

a linear relationship for this type of plot. Here, a linear relationship is 

assumed with no justification other than Hah's result. However the resulting 

graphs are interesting. The plot for the 'vorticity ML' results concerns results 

discussed in the next section, and so should be ignored here. Looking at 

the graph for a fully turbulent flowfield in Figure 6.23, it appears that the 

mixed out loss which would be obtained with an infinitely fine mesh is 

approximately 0.31. This is greater than the experimental value due to errors 

in turbulence modelling, most obviously by assuming completely turbulent 

blade boundary layers. The graph for a turbulent flowfield . with laminar 

block A, is significantly lower than that obtained with a fully turbulent 

flowfield, and suggests that an infinitely fine mesh . would yield a mixed out 

loss of 0.27 when using this flow regime. It is clear that the graphs for 

the turbulent run, and the t~rbulent run with laminar block A, are 'almost 

parallel. This suggests that refining the grid makes very little difference to 

the loss calculated within the blade boundary layers between zero and. 80% 

axial chord. 

In general, the results of niodelling with the fine calculation mesh 

show that localised improvements may be made to the flow in the trailing edge 

region by using more grid points, but otherwise the solutions are remarkably 

grid independent. This is a result of the use of second order spatial accuracy, 

and is a very attractive feature in a calculation scheme. 

106 



6.10 Vorticity Function Search for Slb.ea:r JLaye:r Thickness 

A new option for determining the shear layer thickness to be used 

m separated regions has recently been provided by J.G. Moore. This uses a 

different definition for the shear layer parameter, S, which is based on vorticity 

rather than total pressure loss. The motivation behind the introduction of 

this option, was that the shear layer parameter as defined previously, could 

sometimes lead to the detection of shear layers where none existed. This 

occurred if a spurious value of pressure existed within the flowfield. Thus it 

is hoped that the new vorticity based search for shear layer thickness will be 

less prone to error, and yield more smoothly varying values for the mixing 

length. 

Two runs have been performed usmg this new search procedure for 

shear layer thickness. These are turbulent runs with laminar block A (Figure 

6.2(a)) on both the coarse and fine calculation meshes. The use of the new 

turbulence modelling option is indicated by the inclusion of 'vorticity ML' 

in the headings of diagrams, to remind the reader of the vorticity based 

determination of the mixing length. Figure 6.24 presents results at slot 8 

(97% Cax) for the new turbulence model with laminar -block A on coarse 

and fine grids. These may be compared with Walsh's experimental results 

which are reproduced in Figure 6.7. The static pressure contours show that 

the depression at the centre of the vortex is better modelled with the fine 

grid. This also helps to draw the contour lines for a value of 3.5 closer 

together at midspan, achieving better agreement with experiment. Comparing 

with equivalent fine mesh results using the standard mixing length model 

and laminar block A in Figure 6.20, shows that the new turbulence model 

results in improved static pressure definition. The secondary velocity vectors 

indicate good agreement between the coarse and fine -mesh solutions, and are 

quite a good representation of Walsh's experimental results (Figure 6. 7). The 

loss contours show that the fine grid produces a slightly better representation 

of the suction surface boundary layer and is generating a secondary loss 

core which exhibits many of the experimental characteristics. Pitch averaged 
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results at slot 8 are presented in Figure 6.25. Again there is a small error in 

midspan angle as discussed previously. However the general representation of 

the secondary flow effects is very good. Both coarse and fine grids produce 

broadly similar results except that perhaps surprisingly, the coarse grid predicts 

generally less loss than the fine grid at this position. The secondary kinetic 

energy has not migrated radially as far as the experimental results indicate, 

and there is a corresponding lack of radial convection of loss. 

Results of the coarse and fine grid runs at slot 10 are shown in 

Figure 6.26( a-1). Experimental results from Walsh (1987) are also plotted 

in Figure 6.26 for clarity. The yaw angle contours show that the fine grid 

slightly improves the coarse grid results, and is in good agreement with the 

experimental results. The fine grid also produces a better representation of 

the static pressures than the coarse grid, and is also superior to the standard 

mixing length model fine grid results in Figure 6.21. The secondary velocity 

vectors indicate broad similarities between the fine and coarse grid solutions, 

and are quite a good model of the experimental results. However the mam 

benefits of the new turbulence model are evident in the loss contours. The 

coarse grid produces results of similar quality to those produced by the 

standard mixing length model on the fine grid (Figure 6.21). The fine grid 

'vorticity ML' results are remarkable. The blade wakes are approximately the 

correct width, although they still contain too much loss. However, the loss 

core definition is excellent and compares very well with experiment. 

Pitch averaged results at slot 10 are presented in Figure 6.27. Again 

there is a small constant error in yaw angle, but the general distribution is 

very good. The loss core is also well defined by both runs, and the fine 

grid run now produces less loss at midspan than the coarse grid run. The 

secondary kinetic energy distribution is quite well modelled, although both 

runs appear to be producing too much. Mass averaged results are presented in 

Figure 6.28. Both runs indicate a decrease in loss between slots 2 and 3 due 

to generation of total pressure gains by numerical error. However, in general 

both runs produce a better prediction of loss than previously obtained. The 

coarse grid produces a total loss which is comparable to that produced by the 
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fine grid previously (Figure 6.22). The fine grid with vorticity based mixing 

length apparently predicts the correct loss. However, both runs over-predict 

secondary kinetic energy. 

Table 6.4 presents a breakdown of losses at slot 10 for the two 

vorticity based mixing length runs and experiment. This may be compared 

with results of the fine mesh run with laminar block A and the standard 

turbulence model, shown in. Table 6.3. The coarse grid with the vorticity 

based mixing length model produces the same overall loss as the fine grid 

with the standard turbulence model. The fine grid run with the vorticity 

based turbulence model produces a much improved prediction of profile loss 

and also models the secondary loss quite well. The -exit angle of -68.8° is 

only 0.6° different from Walsh's experimental value of -68.2°, and overall the 

predictions seem to be remarkably good. 

Table 6.4 MEFP (Version 7 Vorticity ML) Results at Slot 10 

JAW TEST CASE Experiment Coarse Mesh Fine Mesh . 

Lam Block A Lam Block. A 

Mixed Out Loss Coefficient 0.239 0.291 0.256 

- Midspan Mixed Out Loss Coefficient 0.095 0.136 0.110 

= Gross Mixed Out Secondary Loss 0.144 0.155 0.146 

- Inlet Loss 0.040 0.038 0.037 

= Net Mixed Out Secondary Loss 0.102 0.117 0.109 

Secondary KE Coefficient 0.043 0.053 0.053 

Net Secondary Loss 0.064 0.062 0.055 

( = Loss - Midspan Loss - Inlet Loss) 

Midspan Mixed Out Flow Angle -67.5° -69.1° -68.8° 

Returning to Figure 6.23, the benefits of the new turbulence model 

become clear. It appears that with an infinitely fine mesh, the correct loss 

would be predicted. However, this only indicates that the average level of 

Reynolds stress modelling over the whole flow area is correct, and does not 

prove it to be correctly distributed. 
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The blade static pressure distributions for the fine mesh run are 

presented in Figure 6.29. This can be compared with the experimental 

results m Figure 5.14 (from Walsh (1987)) and the two version 5 MEFP 

results in Figures 6.11 and 6.12. All the MEFP results indicate higher static 

pressure on the suction surface for the first 50% of axial chord, than was 

measured experimentally. The reason for this is not clear, but could possibly 

be associated with the experiment running at a higher incidence ( a 1 = 46°) 

than the calculations ( a 1 = 42.75° ). In general, the new turbulence model run 

on the fine grid with laminar block A, produces quite a realistic prediction 

of the variation in loading caused by the passage vortex. In particular, it is 

much better than the coarse grid with l<tmi_;nar block A result from version 5 

using the standard mixing length model, which did not detect these peaks in 

the suction surface pressure coefficient. The pressures in Figure 6.29 are also 

more realistic than those predicted by the laminar run on version 5, which 

over-predicted the suction surface peaks. 

6.11 Conclusions 

The results presented in this chapter have shown that it is possible to 

obtain very good three-dimensional flow predictions with a 'state of the art' 

- N a vier-Stokes solver. Of the three codes tested here, the pressure correction 

method of Moore and Moore (1985) proved to be the most accurate for 

this case. However, the author would not wish to imply that pressure 

correction methods are in general superior to time marching techniques. 

Kirtley et al (1986) have tested a pressure correction technique and a time 

marching technique on the same case, and found no clear advantage of one 

over the other. The pressure correction technique used here was more suited 

to the low speed flow than the time marching techniques which were tested, 

but its main advantages were in its numerical discretisation. The use of 

second order spatial accuracy greatly reduces the grid dependence of the 

scheme. Some localised problems have been found in the trailing edge region, 

but otherwise the secondary flow appears to be quite well represented with 
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relatively few grid points. Figure 6.30 shows a plot of the trailing edge 

region of the coarse and fine meshes which were tested, and corresponding 

midspan velocity vect9rs for the two runs with laminar block A. The flow 

with the fine grid is very smooth with only a small recirculation area behind 

the trailing edge. The coarse mesh does not have so many control volumes 

in this region, and so is unable to contain the trailing edge effects to such 

a small region. The grid is basically too coarse to cover adaquately the 

rapidly varying flow. Hence more numerical errors are produced which are 

convected downstream. Another feature of the Moore code which helps to 

produce good flow predictions, is the upwinded control volume technique 

described by J.G. Moore (1985b). This helps to avoid n~mericaJ viscosity in 

the formulation, which is an essential feature of a program which is intended 

to predict aerodynamic loss. 

Some problems have been observed with the prediction of static 

pressures, and it was suggested that these might be associated with the 

modelling and experiment operating at slightly different inlet angles. To test 

this, a final calculation was performed on the fine mesh, using the vorticity 

based search for shear layer thickness, and incorporating laminar block A as 

shown in Figure 6.2(a). This run was set up to the measured inlet angle, 

and thus the flow entered the calculation region at 45.9°. The general flow 

prediction was found to be very similar to that produced by the same run 

with the design inlet angle of 42.75°. Figure 6.31. presents results of these 

two runs at slot 10. The vortex predictions and loss distribution look very 

similar in the two runs, but there is a. clear difference in static pressure over 

the axial plane. Comparing with _Walsh's experimental results, which are 

reproduced in Figure 5.9, it can be seen that the static pressure is now in 

better agreement with the experiment, although the magnitude of variation 

within the wake and vortex are not captured. 

Pitch averaged results at slot 10 for the two runs and experiment, are 

presented in Figure 6.32. The results are very similar, except that the correct 

inlet angle appears to produce slightly more radial convection, achieving better 

agreement with experiment particularly for the secondary kinetic energy. Mass 
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averaged results are presented in Figure 6.33, and show that the two runs 

produce broadly similar results. An increase in inlet angle might be expected 

to result in slightly greater loss, as is suggested by the modelling results, 

smce the flow is turned through a greater angle in this case. 

Table 6.5 presents mass averaged quantities at slot 10 for the two 

runs and experiment. Clearly the two runs produce similar predictions for loss 

and flow angle. Indeed inspection of the pitch averaged yaw angles showed 

that good agreement was achieved between th_e two solutions by slot 4 (38% 

Cax). 

Table 6.5 Mass Averaged Results 

JAW TEST CASE Experiment MEFP Fine Mesh MEFP Fine Mesh 

Vorticity ML Vorticity ML 

Inlet = 42.75° Inlet = 45.9° 

Mixed Out Loss Coefficient 0.239 0.256 0.265 

- Midspan Mixed Out Loss Coefficient 0.095 0.110 0.107 

= Gross Mixed Out Secondary Loss 0.144. 0.146 0.158 

- Inlet Loss 0.040 0.037 0.036 

= Net Mixed Out Secondary Loss 0.102 0.109 0.122 

Secondary KE Coefficient 0.043 0.053 0.050 

Net Secondary Loss 0.064 0.055 0.068 

( = Loss ~ Midspan Loss - Inlet Loss) 

Midspan Mixed Out Flow Angle -67.5° -68.8° -68.7° 

Finally Figure 6.34 presents a plot of the blade static pressure distri

butions predicted by the fine mesh run at the correct inlet angle. This may 

be compared with that predicted by the equivalent run at the design inlet 

angle (Figure 6.29) and the experimental results (Figure 5.14). Since the 

static pressure coefficient is generally reduced by the greater inlet angle, it is 

seen to be in worse agreement with experiment than that produced previously. 

However, it is felt that the five hole probe measurements are probably a more 

accurate test of the codes performance than the surface pressure coefficient. 
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It is however interesting that the change m inlet angle predicts the slight 

increase in pressure coefficient at 25% axial chord which was observed in the 

measurements. 

Despite the excellent predictions which have been obtained, more 

work is needed to both validate the program, and extend its usefulness. The 

turbulence model which is employed within the solution procedure has been 

shown to have profound effects upon the quality of the resulting secondary 

flow predictions. This is somewhat in contrast to the view which is sometimes 

expressed, which argues that since the flow is primarily pressure driven, the 

turbulence model is not likely to produce major changes to the flowfield. 

Here it has been found that the turbulence model can have a very significant 

effect upon the amount of secondary kinetic energy which is produced, and 

thus the final location of the passage vortex. Seemingly arbitrary changes to 

the mixing length model in areas which are not close to solid boundaries, 

have been found to produce significantly different results. Thus it seems that 

there is a need for experimental Reynolds stress data with which to validate 

the turbulence models which are used in such flow calculations. It should 

be stressed that the fact that such a study can be contemplated is a tribute 

to the accuracy of the numerical solution procedure, as otherwise numerical 

viscosity would swamp the effects of the turbulence model. 

As many turbomachinery blade boundary layers undergo transition, 

a turbulence model which accurately predicts this phenomena would be very 

useful. Such models are currently appearing in Navier-Stokes solvers, and so 

tests of their accuracy are now required. If more general turbulence models 

can be developed, they will greatly extend the predictive capabilities of the 

N avier-Stokes methods, as it seems that they are now the most restrictive 

part of such solutions. 

Finally it is worth recording the calculation times which are involved 

for the runs which have been presented. The solutions generally require forty 

passes of the calculation procedure as described in Chapter 3 to achieve good 

convergence. This requires approximately one hour of CPU time on a CRAY 

XMP-48, with 2.3 Mega Words of storage for a 'coarse' grid solution (19975 
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points). The 'fine' grid solutions (64800 points) required over three hours of 

CPU time and 5.5 Mega Words of storage. Clearly running such calculations 

is expensive. Also, a significant amount of the user's time is required to set 

up the input data for the program. 'Whilst this will become much easier with 

greater automation, it is clear that running such calculations is not a trivial 

matter. Thus there is still a need for rapid, simple calculation techniques 

which can give an estimation of secondary flow effects in the early design 

stages. 

The fine grid solutions were seven times more expensive to run than 

the coarse grid calculations, and the resulting solutions were so large as to be 

difficult to handle. Also, as far as secondary flow predictions are concerned, 

there is not a great deal of advantage in using the fine grid, its benefits being 

mainly restricted to the calculation of profile loss. Therefore it was decided 

to perform all future runs on the coarse calculation mesh, as shown in Figure 

6.1(a). 
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Ch.apter 7 

JExpedmental Results ( J GC ']['est Case) 

7.0 Introduction 

This chapter describes experimental measurements of the flow in 

the Durham turbine cascade, with a turbulence generating grid mounted 

upstream in the working section of the wind tunnel. As the introduction 

of the turbulence grid changed the inlet flow to the cascade, experimental 

measurements obtained with it in place will be referred to as the 'JGC' test 

case in this thesis. Flow visualisation, blade surface pressures, and five hole 

probe traverses at slots 1 and 10 are compared with results obtained by 

Walsh (1987) for the 'JAW' test case. Results of using the x-probe hot-wire 

anemometry technique (section 4.4) to investigate the turbulent flow through 

the cascade are presented. Some calculations are then made from the data 

to determine eddy viscosities, and the contribution of the Reynolds stresses 

to the loss production process downstream of the cascade. Traverses using 

the rotatable single wire technique (section 4.5) to make measurements close 

to the endwall are also presented. Finally, results of a brief spectral survey 

of the turbulence within the flowfield are described. 

7.1 Mean Flow Measurements 

As discussed in Chapter 4, a turbulence grid was designed and fitted 

to the wind tunnel in order to raise the inlet turbulence level to 4.5%. There 

were two motivations for this change. Firstly the natural turbulence level 

which develops in the wind tunnel was reported by Gregory-Smith et al (1988) 

to be approximately 1.4%, which is smaller than the turbulence levels which 

are likely to exist in a real machine. Secondly, a small laminar separation 

bubble was reported by Walsh (1987) on the suction surface of the blade, 

and it was thought that this might be eliminated with a higher freestream 

turbulence. This would then make interesting comparison with the results 
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of Gregory-Smith et al (1988). They thought that the high turbulence levels 

111 their cascade, and in particular the presence of a dominant frequency 

111 the energy spectrum, could be the result of a large separation bubble 

on the suction surface of their blade. Hence, having fitted the turbulence 

grid, surface flow visualisation was used to test for the elimination of the 

suction surface separation bubble, and identify any major changes 111 the 

flowfield. Figure 7.1( a) shows the endwall flow visualisation result. This may 

be compared with the colateral case shown in Figure 5.19 of Walsh's thesis 

(1987), which is the equivalent result with no turbulence grid ('JAW' test 

case). There is very little difference between the 'JAW' and 'JGC' test case 

results. The_ only clear change is that the separation line of the horseshoe 

vortex lies closer to the blade leading edge in the 'J GC' test case. This is 

because the introduction of the turbulence grid thinned the inlet boundary 

layer at inlet to the cascade, as discussed in Chapter 4. Thus the viscous 

drag of the freestream fluid on the fluid close to the wall was increased. This 

tends to delay stagnation of the streamlines, and pull the horseshoe vortex 

closer into the obstruction which causes it. In an inviscid calculation, the 

horseshoe vortex can cause reverse flow to occur as far back as the inlet 

plane, even when this is some distance upstream. 

The suction surface flow visualisation, shown 111 Figure 7.1 (b), may 

be compared with the result for the 'JAW' test case shown in the colateral 

case of Figure 5.20 of Walsh's thesis. Again the two results are very similar, 

except that the vertical line in Walsh's result, which marked the position 

of the laminar separation bubble, is not present in Figure 7.1(b ). Thus 

it is concluded that the higher inlet turbulence intensity has succeeded in 

suppressing the laminar separation bubble, and has forced the suction surface 

boundary layer to undergo smooth transition further upstream. 

Measurements of the blade surface pressures are presented 111 Figure 

7.2, which may be compared with Walsh's results for the 'JAW' test case 

which are reproduced in Figure 5.14. The new measurements indicate that 

the surface pressures from 50mm from the endwall to midspan, are almost 

identical in the first half of the blade passage. This was not the case in the 
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'JAW' test case, possibly indicating a slight radial variation in inlet conditions. 

The unloading of the blade in the first half of the cascade, as the endwall 

boundary layer is penetrated, is slightly reduced in the 'JGC' test case. This 

is probably because the endwall boundary layer ::1,t inlet to the cascade was 

thinner in this case. Also the peaks in the pressure coefficient which result 

from the action of the passage vortex on the suction surface, are reduced. 

This may indicate some reduction of the secondary flow intensity. However, 

the overall shape and positioning of various features, are very similar between 

the two results. 

Results of a five hole probe traverse at slot 1 (14% upstream of 

the leading edge) are presented in Figure '(. 3. Also plotted are results from 

Walsh (1987) for the 'JA\V' test case. The yaw angle contours indicate the 

upstream effect of the blades, and are very simila,r for the two tests. The 

distortion of the J'a'v angles close to the end,~.rall, is perhaps sligl1tly red~tlced 

in the 'J GC' test case, possibly indicating a smaller horseshoe vortex. Static 

pressure contours also support the apparent similarity of the upstream flow 

for the two tests. However, the stagnation pressure loss coefficient contours 

reveal that the end wall boundary layer is thinner in the 'JGC' test case. As 

discussed in Chapter 4, this is believed to result from a 'jet' flow close to 

the endwall downstream of the turbulence grid. This is slowed by viscous 

interaction with the endwall, to form the observed boundary layer profile at 

inlet to the cascade. Table 7.1 presents details of the inlet boundary layer 

evaluated from pitch averaged results at slot 1 for the 'JAW' and 'JGC' test 

cases. 

Table 7.1 Inlet Boundary Layer Characteristics 

All Values arc in mm ·JAW' Test Case 'JGC' Test Case 

99% Thickness (8) 39.0 37.4 

Di8placement Thickness (8") 5.6 4.2 
-

Momeut;um Thickness (8) 3.2 2.2 

Shape Factor (H = 6" /8) 1.8 1.9 
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The 'JGC' shape factor seems large for a turbulent boundary layer, 

but this is not a result of introduction of the turbulence grid as it was 

also large in the 'JAW' test case. Perhaps there may be some source of 

1msteadiness in the upstream flow which IS causing the unusual boundary 

layer development. Pitch averaged results at slot 1 are presented in Figure 

'( .4 together with Walsh's results for the 'JAW' test case. There is some 

difference in the yaw angle within 20mm of the endwall, possibly indicating 

changes in the size of the horseshoe vortex. However, the main difference is 

111 the loss distribution, which indicates the thinner endwall boundary layer 

m the 'JGC' test case. 

Results of a five hole probe traverse at slot 10 (128% Cax) are 

presented in Figure 7.5. This may be compared with results obtained by 

·walsh (1987) for the 'JAW' test case, which are reproduced in Figure 5.9. 

The static pressure contours indicate less depression of static pressure in the 

vortex core for the 'JGC' test case. This also appears to produce a generally 

lower midspan static pressure. Also the yav.f and pitch angles indicate slightly 

less secondary flow· activity in the 'J GC' case, although the general shape 

and positioning of the features are similar to those measured previously by 

Walsh. The loss contours also look very similar, and appear to contain almost 

identical loss peaks. The secondary velocity vectors indicate that whilst the 

passage vortex location has not changed, it is slightly weaker. This is also 

illustrated by the lower values of streamwise vorticity contours, which were 

calculated using the method of Gregory-Smith et al (1987). 

Figure 7.6 presents pitch averaged results at slot 10 for the 'JAW' 

and 'JGC' test cases. There is some discrepancy in the midspan flow angle 

for the two runs, which indicates the difficulty of relating probe angles to 

cascade coordinates. However the main difference in the yaw angle plot is 

the smaller magnitude of the over and under-turning in the 'JGC' test case. 

This is highlighted by the secondary kinetic energy curve which shows the 

'JGC' test case to have a significantly smaller amount of secondary kinetic 

energy than the 'JAW' test case. However, losses in both cases are very 

similar, with the loss core in the 'JAW' test case being slightly bigger. This 
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is probably because it contains more inlet boundary layer loss than the 'JGC' 

test case. Figure 7. 7 presents a plot of loss growth through the cascade for 

both tests. It is clear that although the inlet loss is lower in the 'JGC' 

test case the rise in loss across the cascade is approximately the same as for 

the 'JAW' test case. Also the secondary kinetic energy plot clearly shows a 

reduction in levels between the 'JAW' and 'JGC' test cases. 

Table 7.2 Mass Averaged Five Hole Probe Data 

Loss Coefficient (Slot 10) 

- Midspan Loss Coefficient (Slot 10) 

= Gross Secondary Loss (Slot 10) 

- Inlet (Slot 1) Loss 

= Net Secondary Loss (Slot 10) 

Secondary KE Coefficient (Slot 10) 

Sec KE + Loss Coefficients (Slot 10) 

Mixed Out Loss Coefficient 

- Midspan Mixed Out Loss Coeff 

= Gross Mixed Out Secondary Loss 

- Inlet (Slot 1) Loss 

= Net Mixed Out Secondary Loss 

Midspan Mixed Out Flow Angle 

'JAW' Test Case 

(from Walsh) 

0.196 

0.090 

0.106 

0.042 

0.064 

0.043 

0.239 

0.239 

0.095 

0.144 

0.042 

0.102 

'JGC' Test Case 

0.182 

0.097 

0.085 

0.027 

0.058 

0.026 

0.208 

0.211 

0.100 

0.111 

0.027 

0.084 

Table 7.2 presents a breakdown of mass averaged quantities for both 

the 'JAW' and 'JGC' test cases. The introduction of the turbulence grid has 

possibly increased the profile loss slightly. However, as the accuracy of total 

pressure measurements is ±0.005, the increase of 0.007 is barely significant. 

The net secondary loss appears to have reduced slightly with the introduction 

of the grid, but again the comment about the accuracy of loss measurement 

applies. The rise in loss produced by the cascade (slot 10 loss minus slot 1 

loss) is 0.154 for the 'JAW' test case, and 0.155 for the 'JGC' test case. 
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It can be seen in table 7.2 that there is quite a large drop in secondary 

kinetic energy between the 'JAW' and 'JGC' test cases. As mentioned in 

previous analyses, the mixed out loss is well represented by the sum of the 

loss coefficient and the secondary kinetic energy coefficient at a particular 

downstream plane. Hence the net mixed out secondary loss is lower in the 

case of the 'JGC' test, as less secondary kinetic energy was produced. There 

appears to be a small discrepancy in exit flow angle between the two tests 

of 0.8°. However, this is well within the experimental uncertainty of the 

measurements, which was estimated as ±1 o for the five hole probe. 

It might seem sensible that raising the inlet turbulence intensity, 

would tend to create more dissipation of the secondary flow, and hence result 

in a lower value of secondary kinetic energy. However, it could also be 

that the main effect is the differing thickness of the inlet boundary layer. 

Classical secondary flow theory suggests that reducing the inlet boundary layer 

thickness will result in less secondary kinetic energy at exit. As discussed in 

section 2.8, many workers have varied only the boundary layer thickness at 

inlet to their cascades, and have found that the rise in loss produced by the 

cascade was approximately constant. Although these workers did not present 

the resulting values of secondary kinetic energy, Moore (1985) has presented 

results of modelling the effects of varying inlet boundary layer thickness. 

He found that varying the inlet boundary layer thickness for the cascade of 

Langston et al (1977), results in a constant net. loss, but different secondary 

kinetic energy. Similarly Figure 7.8 presents a plot of mass averaged loss and 

secondary kinetic energy for the Durham cascade, resulting from two runs 

of the Moore code (version 7). These two runs used the standard mixing 

length model, with laminar block A as described in Chapter 6 and shown in 

Figure 6. 2( a). The only difference between the runs is the inlet boundary 

~ayer thickness, which has been tailored to fit the 'JAW' test case in one 

run, and the 'JGC' test case in the other. Clearly both runs predict a 

similar growth of loss across the cascade, but the secondary kinetic energy 1s 

considerably reduced in the 'JGC' test case with the thinner inlet boundary 

layer. Comparing with Figure 7. 7 which shows the experimental results, it 
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can be seen that the prediction for secondary kinetic energy reduction is quite 

realistic. Thus the change in secondary kinetic energy is thought to be a 

result of thinning the inlet boundary layer, rather than raising the freestream 

turbt1lence. 

The work of Harrison (1989) implies that a significant proportion of 

secondary loss might be generated by turbulent and viscous action on the 

endwall and suction surface. It might also seem logical that the overall 

loss could depend upon the magnitude of secondary velocities near to these 

surfaces. Thus the invariance of cascade loss with inlet boundary layer 

thickness, could indicate that the secondary flow near the solid surfaces is not 

greatly altered by the thickness of the inlet shear layer, even if the overall 

secondary kinetic energy changes. This suggestion will be investigated further, 

later in this chapter. 

7.2 Hot-Wire Measurements at Slot 1 (-14% Cax) 

Results of usmg the x-probe hot-wire anemometry technique (section 

4.4) to traverse the flow at slot 1 are presented in Figures 7.9 (a-k). The 

yaw angle contours may be compared with those measured by the five hole 

probe, shown in Figure 7.3(b). The agreement between the two techniques is 

quite good. However the pitch angle contours indicate a region of high pitch 

angle at midspan m front of one of the blades. Although equivalent five 

hole probe results are not presented, they did not detect this feature. Hence 

it seems sensible that such an unlikely result, only found in front of one 

of the blades, and not detected by a more accurate measurement technique, 

should be attributed to experimental error. The secondary velocity vectors 

indicate that there is little secondary flow upstream of the blades, although 

the potential effect of the blades is clearly manifested in ·the total velocity 

magnitude contours. Measurements of turbulence quantities are shown in 

Figure 7. 9 ( f- k). It should be stressed that the scales for the contour plots 

are magnified compared with those for subsequent plots of the flow further 

downstream. The u'v' correlation shows very little activity except in the region 
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m front of the blades and next to the endwall which is probably associated 

with the horseshoe vortex. The u'w' correlation reveals generally negative 

values (positive shear stress) in the endwall boundary layer, which is to be 

expected of <t colateral bo11nclary layer flow. Values of turbulent kinetic energy 

rise as the endwall is approached, but only reach a value of 0.016, which is 

approximately 5% of the loss coefficient value of 0.31 (Figure 7.3(f)). The 

turbulence intensities show that the turbulence at midspan is fairly isotropic, 

and has an intensity of approximately 4.2% which is close to the design value 

of 4.5%. However the characteristics are quite different within the endwall 

boundary layer. The streamwise turbulence intensity ( W) increases most, 

to reach a level of approximately 8% of upstream velocity at 5mm from the 

endwall. The cross-passage turbulence intensity ( W) also rises within the 

boundary layer, but not as rapidly as the streamwise turbulence. The radial 

turbulence hardly changes as the endwall is approached, except for a small 

area which might be associated with the horseshoe vortex. 

Pitch averaged results at slot 1 are compared with results of the five 

hole probe traverse in Figure 7.10. There appears to be a constant difference 

in yaw angle of approximately 0.6°, which is well within the estimated 

uncertainty of the results. The turbulent kinetic energy is much smaller than 

the loss (there is a factor of ten difference in scale for the two curves), and 

the secondary kinetic energy is also very small at this stage. 

7.3 Hot-Wire Measurements at Slot 5 (55% Cax) 

Results of a traverse of slot 5 with the x-probes, are presented in 

Figure 7.11 (a-k). The secondary velocity vectors reveal the passage vortex in 

a relatively early stage of development. It is located closer in to the endwall 

and suction surface than the vortex measured by Walsh (1987) for the 'JAW' 

test case. This might be due to the thinner inlet boundary layer in this 

work. The yaw angle contours show that the main secondary flow effects are 

still confined quite close to the endwall at this stage. Also it is clear that 

the yaw angles vary rapidly within 20mm of the endwall, indicating that the 
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endwall flow is highly skewed. The total velocity magnitude does not appear 

to decrease very much in this reg10n however. The turbulence quantities are 

now very different to those at slot 1. Significant shear stresses are developing 

within the secondary flow, and the turbulent kinetic energy rises to 10-20% of 

inlet dynamic head in the endwall/suction surface corner. This corresponds to 

the region of separation of the passage vortex from the endwall. Comparing 

with the magnitude of the loss levels which Walsh measured at slot 5 for 

the 'JAVI/' test case, the turbulent kinetic energy only accounts directly for 

approximately 10-20% of the loss in the passage vortex. The turbulence 

intensities are also rising to values of 20% of inlet velocity. Thus there 

appears to be significant turbulence generation within the endwall region over 

the first half of the blade passage. Hence it seems likely that the process 

of formation of the passage vortex is giving rise to significant generation of 

turbulence. Gregory-Smith et al (1988) found similar turbulence levels within 

the secondary flow regwn of their rotor cascade. However the freestream 

turbulence intensity in their test was only 1.4% of upstream velocity. Thus 

it appears that the higher inlet turbulence intensity in this test has had little 

effect upon the turbulence levels which are generated within the secondary 

flows. The u'v' correlation (streamwise/cross-passage) is positive throughout 

the traverse, corresponding to negative values of shear stress. This is to be 

expected away from the suction surface boundary layer as the cross-passage 

pressure gradient gives rise to a large velocity gradient in the tangential 

direction (Figure 7.11 (e)). Within the suction surface boundary layer, the 

shear stress should be positive, but the traversing does not approach the 

suction surface closely enough to show this. The u'w' correlation shows a 

sign change across the vortex region, but at this stage generally exhibits lower 

levels than the u'v' correlation. 

Pitch averaged results for slot 5 are shown in Figure 7.12. It is clear 

that most of the secondary flow activity is still concentrated near to the 

endwall at this stage. The over-turning close to the endwall is very large, 

and is accompanied by a peak in turbulent kinetic energy. However, beyond 

40mm radially, the flow is essentially undisturbed by the secondary flows. 
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Figure 7.13 (a-h) presents results of traversing close to the endwall 

usmg the rotatable single wire technique described in section 4.5. The grid 

of measurement locations shows that the traversing was extended to 10mm 

from tl1e e11d\vall to pro,,ide son1e overlap \l..ritl1 t!1e x-probe 111easuren1ents. 

The yaw angle contours agree well with those shown in Figure 7.11 (b), and 

indicate a very large degree of skew in the endwall flow. The total velocity 

magnitude contours also tie up quite well with the x-probe measurements, and 

show that the velocity hardly varies between 1 and 10mm from the endwall. 

Thus any normal concept of a boundary layer must be confined to within 

1mm of the endwall (0.25% span) at this stage. The turbulence quantities, 

u'v', W, W all agree well with the x-probe measurements, and indicate 

that freestream turbulence levels are being brought into the endwall region on 

the pressure side of the passage. This does not show that the endwall flow is 

laminar, but as high turbulence levels are not being generated on the pressure 

side of the passage, it is possible that there is a very thin laminar boundary 

layer in this region. Harrison (1989) found the endwall boundary layer to be 

laminar over a large proportion of the endwall, towards the pressure side of 

the passage in his turbine cascade. However, if such a laminar boundary layer 

exists here it must be extremely thin. As the measurement technique could 

only solve for the square of radial velocity, all spanwise velocities are taken 

as positive, and hence the secondary velocity vectors appear to point in the 

wrong direction radially, towards the pressure side of the passage. The radial 

turbulence intensity was not measured by the single wire, and so the turbulent 

kinetic energy is calculated by assumirig that the radial turbulence intensity is 

equal to the average of the streamwise and cross-passage intensities. This is 

probably reasonably accurate away from the endwall, but becomes less so on 

close approach to it. However, the turbulent kinetic energy contours appear 

to agree reasonably well with the corresponding x-probe measurements in the 

region 5 - lOmm from the endwall. They also clearly indicate that the flow 

on the suction side of the passage is quite turbulent, but to the pressure side 

there are only freestream turbulence levels. 
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7.4 Hot-WiiJre Measurements at §lot 8 {97% Cax) 

Results of an x-probe traverse at slot 8 are presented in Figure 7.14. 

By this stage the secondary flow efFects extend to at least 100mm from the 

endwall. The centre of the passage vortex has moved up and away from 

the suction surface compared with its position at slot 5. However it is still 

approximately 15mm closer to the endwall than it was in the 'JAW' test case. 

The passage vortex is generally quite turbulent with individual turbulence 

intensities reaching 20% of inlet velocity. Near to the suction surface, at 

about 60mm from the endwall there appears to be a region of considerable 

turbulence activity. This corresponds to the region in which the passage vortex 

separates from the suction surface, and so might include turbulence which 

has been convected from the suction surface boundary layer/passage vortex 

interaction. The u'w' correlation shows a rapid sign change in this separation 

region, but is generally quite small elsewhere. The u'v' correlation is still 

generally positive, although the velocity magnitude contours indicate that the 

cross-passage velocity gradient has largely disappeared. Significant u'v' shear 

stress is associated with both the passage vortex core, and the suction surface 

separation. Indeed in the separation region the velocity magnitude contours 

indicate that the sign of the correlation is opposite to that which would be 

expected from a Boussinesq eddy viscosity model. The streamwise turbulence 

is also large over the whole of the suction surface. This may be linked with 

deceleration of the suction surface flow towards the trailing edge, particularly 

close to the endwall, where the surface pressure coefficient peaks (Figure 7.2) 

indicate that quite severe deceleration might be occurring. This could be a 

significant process behind the rapid rise in loss which is usually observed in 

the latter half of rotor cascades (e.g. Langston et al ( 1977)). 

Pitch averaged results at slot 8 are presented in Figure 7.1.5. Com

panng with the results at slot 5 shown in Figure 7.12, it can be seen that 

the secondary flow has spread radially from the endwall. There is still quite 

a large over-turning of the flow within 40mm of the endwall, but a significant 

under-turning peak is now also evident at 60mm radially. The turbulent 
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kinetic energy has formed a distinct core, and the secondary kinetic energy 

exhibits a sharp peak at approximately 55mm from the endwall. 

The endwall flow measurements obtained with the single wue tech

mque, ;;ue presented in Fie;me 7.16. Again agreement with the x-probe 

measurements in the region 5 - lOmm from the endwall is reasonable. The 

yaw angle contours indicate that the level of skew in the endwall flow is now 

very much reduced from that which was observed at slot 5. However, the 

total velocity is still almost constant up to lmm from the endwall, although a 

sharp reduction in velocity is apparent in the endwall/suction surface corner, 

which is probably associated with the counter vortex to be found in this 

region. This is accompanied by a region of intense negative ·u'v' correlation, 

which would agree with an eddy viscosity concept. The endwall flow appears 

to be generally more turbulent at slot 8, and this is in keeping with the re

sults of Harrison (1989) who observed transition of the endwall flow occurring 

upstream of the trailing edge in his cascade. 

7.5 Hot-Wire Measurements at Slot 10 (128% Cax) 

Figure 7.17 presents results of an x--probe traverse at slot 10. Mean 

flow data can be compared with corresponding five hole probe results for the 

'JGC' test case, which are shown in Figure 7.5. The pitch and yaw angle 

contours generally compare very well, as do the secondary velocity vectors. 

The loss core and blade wakes show up clearly in the total velocity magnitude 

contours as areas of velocity deficit. They are also clearly apparent in the 

turbulence quantities. The streamwise and cross-passage turbulence intensities 

reach maximum values of 20% of upstream velocity. The radial turbulence 

intensity has grown larger than the other two, to peak at 30% of upstream 

velocity within the loss core. The turbulent kinetic energy is concentrated 

m the passage vortex, with relatively low levels within the blade wake. This 

IS consistent with the results of Gregory-Smith et al (1988) who observed 

that the wake turbulence appeared to dissipate rapidly downstream of their 

cascade, whilst the turbulence levels within the loss core were maintained. 
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Both the shear stresses which are measured with the x-probe technique, appear 

to change sign across the loss core. The u'v' shear stress also changes sign 

across the wake, in keeping with the sign of the velocity gradients and a 

positive eddy viscosity. However most of the passage vortex now exhibits 

negative u'v' correlation values. Thus the correlation has changed sign between 

slots 8 and 10. This is somewhat surprising, and so terms in the shear stress 

convection equation were approximately evaluated at slot 8. Details are 

presented in Appendix B, but it was found that the convection equation does 

appear to support a change in sign of the u'v' correlation between slots 8 and 

10. As mentioned earlier, the dominant velocity gradient within the blade 

passage is imposed by the large turning angle of the blade and its associated 

cross-passage pressure gradient. This tends to result in positive values of the 

u'v' correlation within the blade passage. Downstream however, the velocity 

gradients in the passage vortex are only a result of the vortex motion, and its 

interaction with the flow from adjacent blade passages. As the secondary flow 

regions are generally areas of velocity deficit (as indicated in the total velocity 

magnitude contours), the shear stresses will tend to change sign across them, 

as observed. Some support for the change in sign of the u'v' shear stress as 

the flow proceeds downstream may be gained from the published literature. 

Moore et al (1986) found negative values of the u'v' correlation within the 

loss core downstream of their cascade. Zunino et al (1987) found positive 

values in the loss core with negative values in the suction surface corner, at 

a plane across the throat of their cascade. Unfortunately they did not show 

shear stress measurements downstream. 

Comparing the turbulence levels found here with those of other work

ers, Zunino et al (1987) found slightly lower turbulence levels in the vortex 

core (turbulent kinetic energy approximately 0.06-0.07) but the levels on the 

endwall were a little higher. Gregory-Smith et al (1988) seem to have slightly 

higher turbulence levels downstream of their cascade, particularly in the cross

passage direction. They thought that these high levels might be associated 

with the large laminar separation bubble on their blade, or the large suction 

surface diffusion. Both of these effects were reduced in this test, and so 
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might explain the slightly lower turbulence levels here. Moore et al (1988) 

found generally similar turbulence levels within the loss core to those reported 

here. However their wake turbulence was somewhat larger, and this may be 

because their mP::tsurement plane was closer to the trailing edge (10% Cax 

downstream) than slot 10 (28% Cax downstream). 

Pitch averaged results at slot 10 are also presented in Figure 7.18, 

together with the five hole probe data. There is some small disagreement in 

midspan angle, but in general the agreement between the two measurement 

techniques is good. This is also evident in the secondary kinetic energy curve, 

giving confidence in the results obtained. The turbulent kinetic energy and 

loss distributions are clearly correlated, but the turbulent kinetic energy 1s 

much smaller than the loss (the curves are plotted on different scales). 

Endwall flow data at slot 10 obtained with the single wire technique, 

1s shown in Figure 7.19. The yaw angles indicate the presence of the 

small counter vortex on the endwall at tangential coordinates -100 and -300. 

Some evidence for this may also be seen in the secondary velocity vectors, 

although the positive radial velocities can make interpretation difficult. The 

total velocity magnitude contours are beginning to indicate the growth of 

a more usual type of boundary layer flow, although it is still only a few 

millimetres thick. The turbulence quantities also indicate that the endwall 

flow is quite turbulent. This agrees with the results of Harrison (1989), who 

found the endwall boundary layer to be turbulent downstream of his cascade. 

In particular here, the streamwise turbulence is rising to considerable levels 

near the endwall. This is to be expected of a turbulent colateral boundary 

layer flow. 

7.6 Turbulent Kinetic Energy, Secondary Kinetic Energy, and Loss 

The results of the x-probe traverses were mass averaged over the 

traverse planes. Figure 7.20 shows a graph of mass averaged turbulent kinetic 

energy coefficient, and secondary kinetic energy coefficient at the various axial 

positions through the cascade. Also shown are the results of five hole probe 
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traverses for the 'JAW' test case (no turbulence grid) and the 'JGC' test 

case. It is clear that the turbulence grows steadily through the cascade, 

but at a much lower level than the loss. Indeed at slot 10 the turbulent 

kinetic. enere;y (0.029) only accounts directly for 16% of the loss (0.182). 

Moore et al (1986) found that 23% of the loss in their cascade appeared as 

turbulent kinetic energy, whereas Zunino et al (1987) found this ratio to be 

10%, and Gregory-Smith et al (1988) 17%. Thus the value found here appears 

to be in accord with other results. Zunino et al (1987) expressed the opinion 

that although only a small fraction of the loss could be accounted for directly 

as turbulent kinetic energy, this did not indicate that some process other 

than the turbulent stresses was causing the development of loss. Instead they 

believed that the rate of viscous dissipation of the turbulence approximately 

matched the rate of its generation, thus preventing any large build up of 

turbulent kinetic energy. 

Returning to Figure 7.20, it can be seen that the secondary kinetic 

energy is considerably reduced in the 'JGC' test case. As discussed previously, 

this is believed to be a result of the thinner inlet boundary layer in this 

case. The agreement between results at slot 10 obtained with the five hole 

probe, and the hot-wire measurements, also serves to give confidence in the 

accuracy of the results. As mentioned previously many workers have found 

that the net cascade loss is not very dependent upon the inlet boundary 

layer thickness. Also it appears that the changes between the 'JAW' and 

'JGC' test cases, and modelling results, suggest that the kinetic energy of the 

secondary flow is quite strongly dependent on the endwall boundary layer at 

inlet. This is a little surprising as it might be thought that the magnitude of 

secondary velocities close to solid surfaces would contribute to the secondary 

loss. Indeed Gregory-Smith (1982) recognised this in his loss model. The 

downstream loss was modelled as the sum of three components. These were 

the inlet boundary layer loss, the loss due to the growth of a new boundary 

layer on the endwall, and an extra secondary loss. This extra secondary 

loss was assumed to be equal to the secondary kinetic energy predicted by 

classical secondary flow theory. Figure 7.21 presents contours of secondary 
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kinetic energy at slots 5, 8, 10 for the 'JAW' test case (from Walsh (1987)) 

and the 'JGC' test case. Two sets of contour intervals are used. The broken 

contours cover the range 0.0 to 0.1, and are in steps of 0.02. The full contours 

cover the full rrmge of data values, and are in steps of 0.1. At slot 5, the 

contours show the majority of the secondary kinetic energy to be located in a 

region near to the endwall. Very close to the endwall, there is more secondary 

kinetic energy in the 'JAW' .test case, with the thicker inlet boundary layer. 

As the vortex rotates, and convects the inlet boundary layer up the suction 

surface, the secondary kinetic energy contours are also convected. By slot 8 

there is a clear secondary kinetic energy core, centred at the position where 

the passage vortex separates from the suction surface. Some more secondary 

kinetic energy has also developed on the endwall. Although there is generally 

more secondary kinetic energy in the 'JAW' test case than in the 'JGC' 

test case, the values close to the endwall are almost identical, and on the 

suction surface similar levels also seem likely. By slot 10 there is a distinct 

secondary kinetic energy core, which is centred between the centre of the 

passage vortex and the counter vortex which is associated with the blade 

shed vorticity (as described by Walsh and Gregory-Smith (1989)). The levels 

of secondary kinetic energy near to the endwall are not very different between 

the two cases, when compared with the magnitude of the levels which are 

seen in the secondary kinetic energy core. Thus it seems that the effect of 

the inlet boundary layer thickness is to determine the amount of secondary 

kinetic energy which is initially imparted to the endwall boundary layer. This 

is rolled up into a core, which is convected up the suction surface. Thus 

the secondary kinetic energy levels close to much of the suction surface and 

endwall, might be little effected in the latter half of the blade passage by 

the thickness of the endwall boundary layer at inlet. 

7.7 Frequency Spectra 

As described in section 4.6, a spectral analysis of hot-wire signals was 

performed at various locations in the flowfield. Two typical curves are shown 
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m Figure 7.22. These show the power density of the hot-wire signal versus 

frequency. Both curves were obtained at slot 8, Figure 7.22( a) being for a 

wire placed in the high turbulence region near the suction surface separation 

line (coordinate (-140,65) in Figure 7.14(h)). The second curve shows the 

spectrum over a much smaller frequency range at midspan and mid-pitch of 

slot 8. In the suction surface separation region, there IS a steady decay 

in power density over the frequency range 0 - 20kHz, with no dominant 

frequencies being detected. In the second curve however, the turbulence levels 

are generally much lower, and there is a clear peak at 15.2H z. This peak 

was detected at all points in the flowfield where it was not swamped by 

higher turbulence levels, and was found both upstream and downstream of 

the cascade. This unexpected feature was not detected by Walsh (1987) 

in the earlier Durham turbine cascade described by Graves (198.5). It is 

possible that the cause of the discrete frequency is an organ resonance in the 

wind tunnel. For a sound speed of 340ms-1 , and a frequency of 15.2H z, a 

wavelength of 22.5m would be expected. The length of the wind tunnel is 

almost exactly 5.6m from the fan to the cascade, which supports the idea 

of a quarter wavelength at 15.2H z with an anti-node at the cascade exit. 

In none of the measurements was any evidence found for an energy peak 

at 32.5H z as detected by Gregory-Smith et al (1988). They observed this 

peak only m the high turbulence regions of the flow downstream of their 

cascade. Their blade had similar inlet and outlet angles to the blade used 

here, similar overall dimensions, and was run at an identical Reynolds number. 

However their blade had a large suction surface diffusion from about 50% axial 

chord with an associated laminar separation bubble. As mentioned previously, 

they also found slightly larger turbulence levels downstream of their cascade 

particularly in the cross-passage direction. This might be associated with the 

large suction surface diffusion present in their cascade. Thus it seems possible 

that an instability due to the large diffusion, or the separation bubble may 

have effected their flow. 

131 



7 .§ lEdldly Viscosities andl Dissipation Rates 

Since all the turbulence models which are tested m this thesis use 

the Boussinesq eddy viscosity hypothesis, it was decided to calculate eddy 

viscosities ( Eij) from the experimental shear stresses, as defined by:-· 

-,-, 
-puiuj 

QQ;,+~ 
&xj &x; 

(7.1) 

Clearly before the eddy Yiscosities may be calculated, the partial 

derivatives of velocity must be determined. This calculation was based 

upon the method described by Gregory-Smith et al (1987) for obtaining 

vorticity from experimental data. Bi-cubic splines were fitted to the data, 

and used to evaluate gradients of velocity and stagnation pressure in the 

radial and tangential directions. Axial gradients were then calculated using 

the incompressible Helmholtz equation. The continuity equation enabled 

determination of the final partial derivative, and these could then be rotated 

to the hot-wire coordinates in which the Reynolds stresses were measured. 

The inverse procedure of determining the components of the Reynolds stress 

tensor in cascade coordinates was not possible, as one of the shear stresses 

( v'w') was not measured. Since the above method requires a measurement of 

total pressure over the traverse plane, the calculations could only be performed 

for traverses of slots 1 and 10 where five hole probe results were available. 

Over large regions of the flowfield, the denominator in the eddy viscosity 

definition approaches zero. Thus the calculation procedure was forced to 

yield a value of zero for eddy viscosity when the denominator fell below a 

cut-off value, and the shear stress was also small. If the shear stress was 

not small, but the denominator approached zero, then interpolation between 

neighbouring points was performed. Thus the final results should be treated 

with some caution. 

The experimental measurements of two of the shear stresses ( u'v', and 

u'w') are compared with eddy viscosities calculated from them in Figure 7.23. 

Also shown are the measurements of turbulent kinetic energy. The eddy 

viscosities are divided by the laminar viscosity, and show maximum levels of 
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around 2000. The calculations from both shear stresses produce most eddy 

viscosity in the loss core region, where the turbulent kinetic energy is highest. 

Both shear stresses yield similar values in this region, and the u'v' calculation 

also shows some ecldy viscosity within the wake. The u'w' calculation was 

too poorly conditioned to detect such a level of eddy viscosity in the wake. 

Thus it appears that at slot 10, an isotropic eddy viscosity is a reasonable 

approximation. However as. mentioned previously, at slot 8 the u'v' shear 

stress implies a negative value of eddy viscosity in some regions. Thus the 

application of an eddy viscosity model within the blade passage may be less 

realistic. 

The partial velocity derivatives may also be used to calculate terms 

in the kinetic energy equation for the flow of a turbulent fluid (Hinze (1975), 

p72). Terms for the production of turbulent kinetic energy are evaluated 

from the Reynolds stress measurements via the equation:-

-p u'u'z J (7.2) 

The rate of VIscous dissipation of mean flow kinetic energy may also be 

determined by the equation:-

(7.3) 

The rates of dissipation of mean flow energy are made dimensionless by 

dividing by the inlet dynamic head, and multiplying by the ratio of axial 

chord to axial velocity. This expresses the rates as 'the fraction of inlet 

dynamic head which would be lost if the rate were to be maintained over a 

distance of one axial chord, whilst travelling at the axial velocity'. This is 

consistent with the definition used by Moore et al (1986) in their work on 

turbulence effects downstream of a turbine cascade. 

The rate of dissipation of mean flow energy by molecular viscosity 

IS plotted in Figure 7.23(f). The corresponding total dissipation rate due to 

the five terms of the Reynolds stress tensor which were measured is shown 

in Figure 7.23(g). It can be seen that the dissipation rate due to the 

five terms of the Reynolds stress tensor which were measured, is generally 
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two orders of magnitude greater than that due to molecular viscosity. The 

contributions of the individual components of the Reynolds stress tensor to 

the overall dissipation rate, are shown in Figure 7.23(h-l). By far the largest 

rates ;:m~ produced by the normal stresses in the cross-passage and spanwise 

directions. These can either act to extract energy from the mean flow, or 

return turbulent kinetic energy to the mean flow. The streamwise normal 

stress has only a minor effect, as the streamwise velocity gradient downstream 

of the cascade is small. This may not be the case within the blade passage, 

where there is strong acceleration of the flow. The u'v' shear stress produces 

some dissipation of the mean flow energy within the loss core and blade wake 

regions, but the u'w' stress has only a small effect. Shear stresses are usually 

dissipative, acting to produce turbulent kinetic energy from mean flow energy, 

since they normally change sign with velocity gradient. The dissipation rates 

shown in Figure 7.23 have been mass averaged over the traverse plane, and 

the results are presented in Table 7.3. 

Table 7.3 Mass Averaged Dissipation of Mean Flow K.E. 

'JGC' Test Case % lpv;z .Ya... 
2 0 'Cor 

Rate of Viscous Dissipation 0.02 

Total Rate of Turbulence Production (less v'w' term) 1.92 

Rate of Turbulence Production by u'" 0.13 

Rate of Turbulence Production by v'' -0.06 

Rate of Turbulence Production by w'2 0.67 

Rate of Turbulence Production by u'v' term) 1.05 

Rate of Turbulence Production by u'w' term) 0.13 

It is clear that the v1scous dissipation of mean flow kinetic energy is 

much smaller than that due to turbulent energy production. The net rate 

of production due to the v12 component is small and negative, despite the 

high local values which were apparent in Figure 7.23(k). However the radial 

normal stress w'2 does have a significant net effect, although not as large 

as that due to the u'v' shear stress. Contour plots of the partial velocity 
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derivatives at slot 10 in both cascade, and hot-wire coordinates are presented 

m Appendix C for the convenience of those who may be interested. 

may 

Detailed comparison of the effects of the individual Reynolds stresses 

hP m::.rlP wit.h rPsnlts nresentecl hv Moore et al (19Rfi) for the flow 
·- - ----- •• ---- - - - --- ·- .&.- - .., \ I 

downstream of their turbine cascade. This was a replica of the cascade 

investigated by Langston et al (1977), although the inlet boundary layer was 

thicker in the work of Moore et al (1986). General agreement is found with 

results presented here, except for the u12 ~~ term which they found to be 

significant. However their measuring plane was closer to the trailing edge 

than slot 10 (10% Cax as compared with 28% Cax). This may mean that 

streamwise gradients were greater in their work, due to the flow being less 

mixed. The overall dissipation rate giVen m Table 7.3 may be compared 

with the rate of loss production at slot 10 if it is assumed that in Figure 

7.20 the gradient of the loss growth curve downstream of the cascade is the 

same for the 'JAW' and 'JGC' test cases. The loss coefficient growth rate 

is 7.9% per axial chord, whereas the total rate of turbulence production is 

only 1.92% per axial chord. However this excludes two components which 

Moore et al (1986) found to be significant. As the v'w' shear stress was not 

measured in this work its effects could not be determined. Moore et al (1986) 

found this stress contributed 31% of the total loss production rate in their 

cascade. Also no estimate has been made of the effect of u'w' in the near 

wall region. Again Moore et ai (1986) suggested that this was significant, 

contributing 30% to the total rate. Thus even though these contributions 

may be relatively smaller here, due to the higher aspect ratio and traverse 

plane location, the value presented in Table 7.3 seems reasonable. The fact 

that the turbulent kinetic energy does not appear to be growing as rapidly 

as the loss, suggests that it is being rapidly dissipated by viscous action. 

Hence it appears that downstream of the cascade, loss is produced 

principally by turbulent Reynolds stresses, and that direct viscous action is 

almost negligible. Unfortunately the equivalent calculations cannot be made 

at slots 5 and 8, as the necessary total pressure traverses are not available. 

The results of Moore et al (1986) suggest that downstream of the cascade, 
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approximately 60% of the loss is produced away from the endwall in the 

shear layers. The results found here do not appear to disagree with this 

conclusion. However within the blade passage, where significant losses may 

also be generated on the suction surface, the relative importance of the loss 

production due to the separated shear layers may be reduced. 

7.9 Con.clusions 

Analysis of mean flow results appears to indicate that the higher 

freestream turbulence in this test has little effect upon the secondary loss or 

kinetic energy of the secondary flow. This may be because the fluid in the 

loss core originates in the inlet boundary layer, where turbulence levels are 

less influenced by the freestream turbulence intensity. However changes were 

observed between the level of secondary kinetic energy which was produced by 

the 'JAW' and 'JGC' test cases. This is thought to be a result of differing 

inlet boundary layer thickness in this case as compared with the 'JAW' test 

case. Also the increased inlet turbulence does successfully suppress the small 

laminar separation bubble which previously existed on the blade's suction 

surface. Thus the suction surface boundary layer now undergoes transition 

earlier, apparently leading to slightly greater profile loss. 

High turbulence energy is associated with the loss core and passage 

vortex region, and also where separation lines on the endwall and suction 

surface feed loss into the main flow. The streamwise/radial shear stress u 1w 1 

changes sign across the position of the suction surface separation line. Within 

the blade passage the streamwisefcross-passage shear stress u1v1 is generally 

negative in the loss core due to the strong cross-passage velocity gradient. 

Downstream of the cascade it responds to local velocity gradients within the 

secondary flow and is thus observed to have changed sign over much of the 

loss core. This change in sign from the flow within the blade passage to the 

flow downstream is supported by consideration of the shear stress transport 

equation. Spectral studies indicate no unusual features of the turbulence 

except that there is a low frequency organ resonance within the wind tunnel. 
I 
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Where the turbulence was high, no dominant frequencies were found. This 

contrasts with the results reported by Gregory-Smith et al (1988), who found 

a low frequency peak downstream of their cascade. The lack of such a 

feature in this study; might be due to the lower suction surface diffusion of 

the blade tested here, or the absence of the large separation bubble which 

was associated with this diffusion. 

Traverses close to the endwall show that the new endwall boundary 

layer which forms behind the separation line of the inlet boundary layer, must 

be extremely thin within the blade passage. Towards the suction side of the 

passage the endwall flow appears to be generally turbulent, but towards the 

pressure side freestream levels of turbulence are observed. Hence the new 

endwall boundary layer might be laminar towards the pressure side of the 

blade passage. This would agree with the results of Harrison (1989) who 

observed a laminar flow over a large area of the endwall in his cascade. Also 

as the flow proceeds downstream, the endwall region becomes more turbulent 

until at slot 10 a turbulent boundary layer across the whole pitch seems 

likely. This again would fit in with Harrison's results. Also the yaw angles 

at slot 5 show the endwall flow to be very highly skewed, varying by 5° 

per millimeter. By slot 8 this skew has reduced to approximately 1 o per 

millimeter. Such a boundary layer flow may well prove difficult to model. 

The rate of dissipation of mean kinetic energy by turbulent and 

v1scous action has been calculated at slot 10. The results suggest that 

turbulence is an important loss producing mechanism downstream of the 

cascade. Comparing with the results of Moore et al (1986) it appears that 

loss production in separated regions away from the endwall IS important in 

the downstream flow. However within the blade passage where loss will also 

be produced on the suction surface, the relative significance of the separated 

shear layers may be smaller. It would be very interesting to calculate rates 

of dissipation at slots 5 and 8 from the Reynolds stress measurements. This 

would require five hole probe traverses at these locations and so unfortunately 

cannot be carried out here due to lack of time. 

Contours of shear stress, turbulent viscosity, and turbulent kinetic 
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energy have been presented. These may be compared with predictions of 

turbulence models within N a vier-Stokes solvers, and were the major objective 

of this study. However, although an isotropic eddy viscosity concept may be 

a reasonable approximation downstream of the cascade, the rapid change in 

sign in u'il from slots 8 to slot 10 indicates that it s application within the 

blade passage may be less realistic. Indeed there are areas at slot 8 where 

the u'v' shear stress implies a negative eddy viscosity. Also an eddy viscosity 

model does not attempt to account for the effects of the normal stresses. 

As seen at slot 10, these can make some significant overall contributions to 

loss production, and locally their effects can be very large. Within the blade 

passage, where the normal rates of strain are large, the normal stresses may 

have important effects. In particular the streamwise normal stress could be 

significant in this region, tending to keep losses low at first, where the suction 

flow accelerates, and then acting to produce turbulence rapidly as the flow 

decelerates. An experimental investigation of the Reynolds stresses in the 

suction surface boundary layer, and the rate at which they produce loss would 

therefore be a very interesting, and valuable contribution. 
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~Five Hole Probe Measurements CJGC Test Case), 
0 Five Hole Probe Measurements CJA~ Test Case from ~alsh (1987)), 
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~ Ftve Hole Probe Measurements (JGC Test Case). 
0 Ftve Hole Probe Measurements (JA~ Test Case from ~alsh !1987ll. 
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~ Frve Hole Probe Measurements. 
0 Hot-~lre Anemometry !X-Probel Measurements. 
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ChapteJr § 

ModeHing Rem.dt§ ( JJ GC 'I'e§t Case) 

§.0 Jintroduciion 

This chapter describes results of modelling the 'JGC' test case (exper

imental data described in Chapter 7). The pressure correction code of Moore 

and Moore (1985) is tested with three different turbulence models. Resulting 

predictions for the Reynolds stresses are calculated from the predicted velocity 

and turbulent viscosity fields, and are compared with the results of hot-wire 

anemometry traverses. ·where appropriate, eddy viscosities and turbulent 

kinetic energy are also compared with experiment. All the N a vier-Stokes 

calculations presented in this chapter were run on the coarse mesh (Figure 

6.1(a)), and used version 7 of the Moore code (as described in Chapter 6). 

§. 1 §tandardl Mixing Length Model Mean Flow Results 

Three runs have been performed usmg the Moore code, with the 

standard mixing length turbulence model as described in Chapter 6. The 

three runs differed in the regions of the flowfield in which the turbulence model 

was allowed to operate. The first run assumed that the flow was turbulent 

everywhere, the second incorporated laminar block A (Figure 6.2(a)), and the 

third included both laminar blocks A and B (Figures 6.2(a), 6.2(c)). 

Figure 8.1 shows pitch averaged results at slot 1 ( -14% Cax) for the 

three calculations and experiment. There is a systemmatic difference m yaw 

angle due to the experiment operating off the design incidence of 42.75°. The 

effects of the model running at a slightly different inlet angle are discussed in 

Chapter 6, and were not found to be very significant for the general secondary 

flow development. The loss curve indicates that all three runs have conserved 

total pressure well from the inlet boundary to slot 1, and have the correct 

inlet boundary layer profile. Although the secondary kinetic energy measured 

experimentally appears larger than that modelled, this is due to some radial 
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variation in the inlet flow angle, and the levels are in any case very small. 

Results at slot 5 (55% Cax) are presented in Figure 8.2 (a-1). These 

may be compared with the hot-wire measurements shown in Figure 7.11. The 

yaw angle contours indicate that the distribution in each of the three runs 

is similar at this stage, but that compared with the experimental results, the 

flow is generally over-turned by approximately 5°. This is rather surprising. 

Comparing yaw angles measured by Walsh (1987) for the 'JAW' test case, 

with those obtained from hot-wire traverses of the 'JGC' test case, reveals 

a systemmatic difference of approximately 2.4 o. This might be attributed 

to experimental error as no change in midspan angle was expected from 

introduction of the turbulence grid (which is the difference between the 'JAW' 

and 'JGC' test cases). Although the equivalent results for the 'JA\V' test 

case have not been presented, a similar difference existed between measured 

and predicted yaw angles. The run described in Chapter 6, which had the 

upstream flow set at the experimental inlet angle, also shows this discrepancy, 

thus eliminating the inlet angle as a possible cause. It is not clear why 

such a difference should exist between measured and predicted values. It is 

perhaps worth bearing in mind however, that at this stage in the cascade 

the flow is being turned very rapidly. Thus agreement between experiment 

and modelling might be obtained by looking at predicted data on an axial 

plane only slightly upstream of slot 5. Despite these problems with the 

midspan flow angles, the over-turning on the endwall appears to be quite well 

modelled by all three runs, as is the distribution of total velocity. However, 

the secondary velocity vectors indicate that the vortex is not centred in the 

correct place in any of the predictions, although the run with laminar block 

B ('laminar endwall ') is perhaps showing some signs of shifting the vortex 

centre towards the suction surface. 

Although no measurements of loss are available at slot 5, the predicted 

losses are presented in Figures 8. 2(j-l). It is clear that the loss is still 

confined quite closely to the endwall at this stage. Some significant loss 

is also appearing on the suction surface, but the fully turbulent run shows 

this to be quite uniform in radial distribution, indicating that it is purely 
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profile loss, and not a result of the secondary flows interacting with the blade 

boundary layer. Also freest ream fluid has been brought into the end wall 

region on the pressure side of the passage. This is in keeping with the results 

of the endwall boundary layer traverse discussed in Chapter 7. 

Figure 8.3 presents pitch averaged results at slot 5. Here the system

matic difference in yaw angle is very clear. As discussed above, 2.4° of this 

might be attributed to experimental error, but the origin of the remaining 

discrepancy is unclear. The loss coefficient and turbulent kinetic energy show 

the secondary flow effects to be confined quite close to the endwall at this 

stage. Also reasonable agreement is apparent between the predicted and 
- - - - -

measured secondary kinetic energy, although the vortex migration observed in 

the vector plots for the run with laminar block B produces the best results. 

Results at slot 8 (97% Cax) are presented in Figure 8.4(a-l). This may 

be compared with the hot-wire results shown in Figure 7.14. The yaw angles 

indicate that the under-turning at 50mm from the endwall is not correctly 

modelled by any of the calculations. However they all predict the over-turning 

near to the endwall more accurately. The total velocity magnitude contours 

indicate good agreement with experiment, and are similar in each case. In 

the turbulent run, the suction surface boundary layer is clearly thicker than 

for the two runs which included laminar block A. However it is not as large 

as that indicated by the experimental results. This is surprising, and the 

experimental boundary layer does seem very thick. This may be a result 

of the very accute angle of the blade to the axial traverse plane at this 

location. Any misplacement of the axial location of the probe, will appear 

to be magnified when viewed in a plot such as Figure 7.14. It is also clear 

that the low velocity regwn associated with the convected inlet boundary 

layer fluid forms slightly further from the endwall in the run with laminar 

block B than in the other two. This· is more realistic, and indicates a 

more energetic passage vortex in this case. The secondary velocity vectors 

confirm this and show the vortex to be quite realistically located in the run 

with laminar block B. Less convection is apparent for the other two runs. 

The loss contours indicate that the suction surface boundary layer is much 

141 



thicker in the turbulent run than in those which incorporated laminar block 

A. Again the run with laminar block B appears to be slightly more realistic 

than the other two, and predicts a distinct loss core forming away from the 

suction surface, with a second core located in the region where the passage 

vortex separates from the blade. Although equivalent experimental results are 

not available, this has been seen previously to be a characteristic feature of 

turbine rotor blade secondary flows. 

Pitch averaged results at slot 8 are presented in Figure 8.5. The yaw 

angles show good agreement with experiment at midspan. Agreement is also 

good within 20mm of the endwall, where the flow is strongly over-turned. 

However, the under-turning at about 60mm from the endwall is less well 

modelled. The run with laminar block B appears to produce the best radial 

positioning, but fails to predict the magnitude of the under-turning. The loss 

coefficient shows that the effect of laminar block B is to encourage radial 

migration of loss. A peak is forming at about 55mm from the endwall, which 

is associated with the suction surface separation, and convected inlet boundary 

layer fluid. The hot-wire measurements also indicate that this is a region of 

high turbulent kinetic energy. None of the runs predict the secondary kinetic 

energy peak at 55mm from the endwall exactly, but the run with laminar 

block B is closer to the experiment in this respect. 

Results at slot 10 (128% Cax) are presented in Figure 8.6( a-r ). These 

may be compared with the five hole probe results shown in Figure 7.5, and 

the hot-wire anemometry results in Figure 7.17. The yaw angles compare well 

with experiment except within the blade wake where the flow appears to be 

over-turned. This is associated with numerical problems in the trailing edge 

region, and can be alleviated with a finer calculation mesh, and modifications 

to the mixing length calculation as described in Chapter 6. The pitch angles 

are reasonably modelled in all the calculations, but the run with laminar 

block A captures the negative pitch angle peak best. The static pressure 

contours show that the modelling predicts too low a static pressure over 

the traverse plane. This was discussed in Chapter 6, and was found to 

result from the incorrect inlet flow angle employed in the modelling, since 
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the experiment is actually runnmg slightly off-design. Despite this, the total 

velocity magnitude contours agree reasonably well with experiment, but all 

show too much reduction of velocity within the blade wake. The secondary 

velocity vectors show that the run with laminar block B has achieved the 

best passage vortex position, with the other runs locating it too close to the 

endwall. The loss contours all indicate too much loss within the blade wake 

as discussed in Chapter 6, but reasonable predictions appear to be obtained 

for the loss core. 

Pitch averaged results at slot 10 are present.ed m Figure 8.7. There 

is a systemmatic difference in yaw angle between experiment and modelling, 
- - - -

and as discussed 111 Chapter 6 this results from numerical problems in the 

trailing edge region. However, if this discrepancy was subtracted from the 

experimental curve at all radial locations, good agreement would be obtained 

with the prediction which incorporated laminar block B. The other two runs 

do not convect the vortex so far from the endwall, and hence locate the under

turning peak at 55mm radially rather than at the experimental position of 

75mm. The loss curve indicates the over-prediction of profile loss in all the 

runs, but is otherwise reasonable. If the midspan loss is subtracted from all 

the modelling results at each radial position, then the two runs which did not 

include laminar block B, produce a reasonably sized loss core, but located 

too close to the endwall. The run with laminar block B produces better 

radial positioning, but smooths out the loss curve a little. The secondary 

kinetic energy curves all appear to generally indicate over-prediction at this 

stage. This is because the secondary kinetic energy generally does not decay 

downstream of the cascade in a realistic manner. Again the run with laminar 

block B appears to produce the most realistic prediction in terms of radial 

distribution. 

8.2 Standard Mixing Length Model Mass Averaged Results 

The mass averaged loss, and secondary kinetic energy for the three 

runs and experiment, are presented in Figure 8.8. The predicted loss reduces 
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as laminar blocks are added to the flowfield, but is generally too large. Also 

the secondary kinetic energy mcreases with increasing laminar regiOns. It is 

interesting that for this test case the run with laminar block B appears to 

give the best prediction of secondary kinetic energy, particularly as the values 

measured within the blade passage did not cover the full flow area, and so 

must be assumed to be too small. For the 'JAW' test case the run with 

laminar block B appeared to_ over-predict secondary kinetic energy. However, 

generally the code has performed very well, and has managed to predict the 

reduced levels of secondary kinetic energy resulting from the thinner inlet 

boundary layer in this case. 

Table B.l presenfs mass averaged- quantities at ·slot 10. Wliilst all the 

runs predict too much profile loss, the predictions of net secondary loss are 

quite good. The sum of secondary kinetic energy and loss gives a reasonable 

prediction of the mixed out loss, as observed in previous chapters. 

Table §.1 Mass Averaged Results 

JGC TEST CASE Experiment MEFP MEFP Turb + MEFP Turb + 

Turbulent Lam Block A Lam Blocks A+ B 

Loss (Slot. 10) 0.182 0.323 0.280 0.254 

- Midspan Loss (Slot 10) 0.097 0.248 0.184 0.176 

= Gross Sec. Loss (Slot 10) 0.085 0.075 0.096 0.078 

- Inlet (Slot 1) Loss 0.027 0.032 0.031 0.030 

= Net Sec. Loss (Slot 10) 0.058 0.043 0.065 0.048 

Secondary KE (Slot 10) 0.026 0.028 0.031 0.033 

Sec KE + LoRs (Slot 10) 0.208 0.351 0.311 0.287 

Mixed Out Loss 0.211 0.370 0.324 0.299 

- Midspan Mixed Out Loss 0.100 0.264 0.191 0.185 

= Gross Mixed Out Sec. Loss 0.111 0.106 0.133 0.114 

- Inlet (Slot 1) Loss 0.027 0.032 0.031 0.030 

= Net Mixed Out Sec. Loss 0.084 0.074 0.102 0.084 

Midspan Mixed Out. Angle -66.7° -69.2° -69.3° -69.3° 

The fully turbulent run under-predicts the secondary loss. The other 
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two runs which include laminar block A predict more secondary loss. This 

is because the subtraction of profile loss was correct for the turbulent run, 

but leaves an extra secondary loss due to the growth of a turbulent suction 

surface boundary layer within 40mm of the endwall for those runs which 

included laminar block A. The best prediction appears to be produced by the 

run with both laminar blocks A and B, although the degree of agreement is 

probably slightly fortuitous .. 

8.3 Calculation of Shear Stresses 

·As it was shown i.n Chapter 6 that the turbulence modelling employed 

within a solution can have major effects upon the quality of the secondary 

flow predictions, it was considered desirable to compare the shear stresses 

used by the code directly with experiment. The shear stresses applied to 

the sides of control volumes are approximately in a streamwise coordinate 

system, as the grid lines are intended to roughly follow the two-dimensional 

flow direction. Thus shear stresses computed in hot-wire coordinates (which 

are aligned with the midspan streamwise direction) should be similar to those 

which are employed within the Navier-Stokes predictions. The Moore code 

was thus made to dump out the eddy viscosity field calculated by the mixing 

length turbulence model on the last iteration of each solution. With the aid of 

the subroutine used in Chapter 7 to calculate eddy viscosities, and developed 

by Gregory-Smith et al (1987), it was possible to calculate partial velocity 

derivatives from the axial planes of data. The method uses bi-cubic spline 

surface fits to determine gradients of velocity and stagnation pressure on a 

traverse plane, and then uses the incompressible Helmholtz equation and the 

continuity equation to find the axial gradients of velocity. The axial planes of 

data were interpolated from the three-dimensional solutions, to correspond to 

the axial traverse planes. The three Reynolds shear stresses ( u'v', u'w', v'w') 

were then calculated from the equation:-

U·U· = _L!E. - + ---, , u.t= (aui auj) 
~ 1 p OXj OXi 

(8.1) 
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The first two stresses u'v', and u'w' may be directly compared with 

the experimental results presented in Chapter 7. The third stress was not 

measured experimentally; but W<l~S calculated for the predictions as it has been 

found by Moore et al (1986) to be important for the secondary flows. 

8.4 Standard Mixing Length Model §hear §tll."esses 

Results of calculating the shear stresses at slot 5 (55% Cax) for the 

three predictions using the mixing length turbulence model are presented in 

Figure 8.9. The definition of the laminar blocks shows up in these plots, 

with laminar block A eliminating turbulence effects above approximately 10% 

span from the endwall, and laminar block B within 1% span of the end wall. 

The::;c distances may not be quite the same as those given in the definition 

of the laminar blocks, as the eddy viscosities are stored within the Moore 

code at cell centres, but had to be interpolated to cell corners for this 

calculation of stresses. The turbulent run shows that significant u'v' shear 

stress is predicted by the mixing length. model on the suction surface, but 

that this is not effected by the secondary flow as the radial distribution is 

almost uniform. In the runs with laminar block A, the shear stress only 

appears within 55mm of the endwall, and so is allowed to contribute to the 

secondary loss when the midspan loss is subtracted from the total loss. This 

is certainly not a predictive capability of the code, and is the result of user 

intervention. The turbulence model was left on in this region as it was felt 

that the passage vortex would probably cause more rapid development of the 

suction surface boundary layer close to the endwall. However the modelling 

does not produce much radial variation of shear stress (Figure 8.9(a)), and 

thus the effect of laminar block A is to allow a poor prediction of the suction 

surface boundary layer to appear in the final solution as part of the secondary 

loss. This effect shows up in the mass averaged results at slot 10, as can 

be seen in the difference between predictions of the net secondary loss by 

the turbulent run, and the run with laminar block A. There is a region of 

positive u'v' correlation near to the suction side of the passage. This agrees 
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with the sign of the experimental measurements shown in Figure 7.11, but 

does not capture the magnitude of this shear stress which is associated with 

the passage vortex. 

The u'w' correlation may also be compared with experimental measure

ments in Figure 7.11. A small negative region is located in the endwallfsuction 

side region of the passage in the turbulent run and the run with laminar 

block A. Experimentally the -stress was measured as positive in this area, but 

the modelling has not predicted the correct location of the passage vortex. 

The run with laminar block B, allows larger over-turning to develop very close 

to the endwall, and this appears to be encouraging the passage vortex to 

migrate towards t-he suction surface/endwall cor~er as it is seen to do exper

imentally. This also appears to be starting to convect the u'w' shear stress 

onto the suction surface and is thus approaching a more realistic solution than 

the other two predictions. Unfortunately, experimental data is not available 

with which to compare the v'w' predictions. A small area of negative v'w' 

correlation is predicted by the turbulent run 111 the endwall/suction surface 

corner. However, the run with laminar block B appears to have less of this 

negative region, and instead is producing a small intense positive region on 

the suction surface of the blade at about 15mm from the endwall. The 

contours of eddy viscosity, show that this is associated with a peak in the 

turbulent viscosity calculated by the mixing length model. It is surprising 

that addition of laminar block A changes the eddy viscosities from those 

present in the turbulent run, and this may be an indication of the sensitivity 

of the calculation to small changes in the :flowfield. However the turbulent 

viscosities only reach values of 100 times the molecular viscosity. Calculations 

of eddy viscosities from the experimental data downstream of the cascade 

showed peak values of 2000 within the loss core. 

Results at slot 8 (97% Cax) are presented 111 Figure 8.10(a-l), and 

may be compared with the experimental results in Figure 7.14. The u'v' 

correlation shows large negative values all over the suction surface. Whilst 

these cannot be seen in ethe experimental results, the sign is consistent with 

a boundary layer on the suction surface, which the experiment did not 
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approach closely enough to measure. These contours are related to the total 

velocity magnitude contours shown in Figure 8.4( d-f). The region of negative 

u'v' in the suction surface/endwall corner was measured by the single wire 

probe. However the general sign of u'v' in the loss core region was found 

experimentally to be positive at slot 8. As discussed in Chapter 7, this is 

a legacy of the strong cross-passage velocity gradient which exists upstream, 

and the experimental shear .stress is rapidly decaying towards values of the 

opposite sign at slot 10. However at slot 8, a negative eddy viscosity would 

be required to predict u'v', so the mixing length model could not be expected 

to model this feature. 

The -u'w'- correlation preClicts a sign -chai1ge across the suction surface 

separation region of the correct sign, but the levels are much too low. Indeed 

the model generally fails to identify the magnitude of the turbulent stresses 

within the three-dimensional flow of the passage vortex. On the endwall, both 

the runs which did not include laminar block B, predict significant negative 

values of u'w'. Whilst the sign is consistent with the growth of an endwall 

boundary layer, the x-probe measurements which extended to 5mm from the 

endwall, did not detect this feature. Thus too much loss is probably being 

produced on the endwall by both of these runs. However, the run with 

laminar block B almost eliminates this shear stress, which is consistent with 

the lower levels of secondary loss predicted by this run, than by the run with 

only laminar block A. 

The v'w' correlation shows generally positive values on the endwall. 

This is consistent with a boundary layer growth from pressure to suction side 

of the passage. However this region is very thin and rapidly changes sign. On 

the suction surface negative values exist in the region where the passage vortex 

sweeps flow radially from the endwall. This is also consistent with a boundary 

layer growing up the suction surface away from the endwall. However a region 

of positive v'w' is identified within the secondary flow. Whilst no experimental 

measurements exist with which to compare this prediction, the model is clearly 

indicating that the v'w' stress is the largest of the three shear stresses within 

the passage vortex. Moore et al (1986) found this to be true in the flow 
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downstream of their cascade, and showed that there the v'w' correlation was 

the largest contributor to loss production. 

Contours of eddy viscosity, although still not identifying very large 

values within the passage vortex, do show a peak in the suction surface 

separation region. Also the two runs which do not include laminar block B, 

show an area of high eddy viscosity on the endwaJl towards the suction side 

of the passage. Although as. seen above, this results in rather large values of 

u'w', an increase in eddy viscosity in this region seems likely as the turbulent 

kinetic energy contours (Figure 7.14) indicate increased turbulence activity. 

The run with laminar block B eliminates this feature entirely. As discussed 

in Chapter 7, a laminar flow over a large proportion of the end wall on the 

pressure side of the passage seems likely, but towards the suction side the 

flow is generally turbulent. Thus allowing laminar block B to extend right 

across the pitch, is a rather crude model of the endwall flow. 

Results at slot 10 (128% Cax) are presented in Figure 8.11, and 

may be compared with the experimental results in Figure 7.17. As the 

calculation of velocity gradients did not force a repeating condition in the 

pitchwise direction, the extension of the data to cover the same range as 

the experimental data has resulted in some problems for the contour plotting 

routine. Thus in places the contours may seem slightly different in one 

wake from those in the other. The u'v' correlation shows reasonable values 

within the wake, but this is aided by the prediction of too large a velocity 

deficit in this region. None of the runs identify the magnitude of the stress 

associated with the separated secondary flows. The u'w' correlation is confined 

predominantly to the endwall region where it clearly indicates growth of an 

endwall boundary layer across the whole pitch. The experimental values may 

possibly indicate that the stress extends a little too far from the wall, but 

do not really approach closely enough to validate the predictions. Again the 

mixing length model clearly identifies the v'w' correlation as being the most 

significant within the passage vortex. A clear sign change is evident across 

the region where the passage vortices from neighbouring passages interact. 

The positive band by the endwall which is predicted by the run with laminar 
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block A, seems unlikely, particularly as the pitch averaged curves (Figure 8.7) 

do not indicate it to have more over-turning in this region than the other two 

runs. Hence this feature is thought to probably result from surface fitting 

problems near to the endwall when calculating the partial velocity gradients. 

This is supported by the fact that the eddy viscosities do not indicate any 

larger values in this region for this run than for the other two. 

The eddy viscosities- may be compared with those calculated from 

the experimental shear stresses and shown in Figure 7.23. The loss core is 

obviously identified as a region of high eddy viscosity, but the peak values of 

about 150 do not approach those calculated from experiment which rise to 

values of 2000 or more~- The eddy viscosity is also -too small within the wake. 

This indicates the problem of using such a simple turbulence model within 

such a complex flow. In some regions significant turbulence generation takes 

place. In these areas the constants in the model would need to be adjusted 

to produce realistic values of the eddy viscosity. However in qther regions 

the turbulence does not increase so much and so a modified turbulence model 

would then over-predict the stresses there. Thus a model which solves a 

turbulent kinetic energy transport equation becomes attractive. 

8.5 Discussion of Mixing Length Model Results 

The under-prediction of the turbulent stresses within the secondary 

loss core by the mixing length model is consistent with the low rate of 

decay of secondary kinetic energy downstream, which is seen in all the Moore 

code predictions. However, the loss growth curve is seen to rise fairly 

realistically downstream. As it is known that a· significant proportion of 

the downstream loss growth results from the action of the turbulent stresses 

within the secondary flow, this suggests that too much loss is being produced 

by the mixing out of the wake and/or the growth of an endwall boundary 

layer (numerical error is of course a third possibility, but it is felt that the 

code has already shown itself to be sufficiently good at conserving stagnation 

pressure to neglect this here). This is supported by approximately correct 
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stress levels within the wake but larger velocity gradients there, and the 

apparently large u'w' in the endwall region. Thus it does not seem that the 

modelling of loss development downstream of the cascade can be considered 

to be realistic. 

It is curious that the code has been shown to be capable of producing 

reasonably good secondary loss predictions for this cascade. Publications have 

also shown this for other cases. Moore (1985) produced good predictions of 

loss in the Langston cascade, whilst Northall et al (1987) showed good results 

for the annular cascade of Boletis (1984 ), which used the same blade profile 

as that tested by Marchal and Sieverding (1977). Also Walsh (1987) found 

that using a very crude calculation mesh, the relative change in secondary 

loss due to skew in the inlet boundary layer was well predicted by the code. 

It seems possible that this loss is a result of sweeping loss produced on the 

suction surface (possibly by a slightly over-active boundary layer model) into 

the main flow. The extent of this removal would then depend to some extent 

upon the power of the passage vortex. If loss is rapidly swept away from the 

suction surface in the secondary flow region, the increased shear will produce 

new loss more rapidly. Thus subtraction of the profile loss from the overall 

loss downstream of the cascade, will appear to leave some extra 'secondary 

loss'. Indeed this niay be a reasonable model of some of the real effects 

which are present. It is possible that a significant proportion of secondary 

loss results from the passage vortex introducing high velocity fluid close to the 

suction surface, and thus increasing the shear in part of the blade boundary 

layer. However the experimental data presented here cannot validate this 

suggestion. It would clearly be helpful to know the rate at which loss is 

being produced by the stresses within the passage vortex. As discussed in 

Chapter 7 this would require a total pressure traverse at slots 5 and 8. It is 

possible that the net effect of the stresses within the experimental shear flow 

is almost zero, which would help to explain the apparently good secondary 

loss predictions. However if this is the case, it must surely be due to a 

fortuitous combination of effects, and the generality of a model which fails to 

identify the true physical processes must then be questioned. 
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8.6 One Equation. Turlbulence Model 

The N a vier-Stokes solver which is tested here, is continuously being 

developed. One of the directions in which progress is being made, 1s m 

the application of more sophisticated turbulence models within the solution 

procedure. Birch (1989b) has given a thorough account of the models currently 

available. At present these are all still limited by a Boussinesq eddy viscosity 

hypothesis, but the new models use the Prandtl-Kolmogorov formula to relate 

the eddy viscosity to the turbulent kinetic energy and a length scale v1a:-

l 

vr = K2l (8.2) 

Here K is the turbulent kinetic energy, and l is a length scale proportional to 

that of the energy containing motions. In a one equation model, a transport 

equation is solved for the turbulent kinetic energy, and the length scale is 

specified algebraically. In Birch's one equation model the turbulent kinetic 

energy formula takes the form:-

where VT is the eddy viscosity and C1, C2, C3 are constants. 

Birch also uses a damping factor to help with near wall effects, so 

that the eddy viscosity 1s calculated from the formula:-

(8.4) 

where C4 is also a constant, and n is the distance to the nearest wall. 

The dissipation length scale is then specified algebraically. In order 

to account for transition, a constant in the definition of the dissipation 

length is adjusted according to the maximum turbulent kinetic energy within 

the boundary layer. This is an important consideration in turbomachinery 

applications, where blade boundary layers may often be transitional. Beyond 

any identifiable boundary layers, the mixing length is adopted as the dissipation 

length scale, and calculated in the same way as that for the mixing length 

model described in Chapter 3 and 6. 
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8.7 One Equation Turbulence Mode~ Mean Flow Results 

The one equation model has been run on the coarse calculation mesh 

for the 'JGC' test case. Results at slot 5 (55% Cax) are presented in Figure 

8.12(a-f). The static pressure contours indicate the strong cross-passage 

pressure gradient that exists within the blade passage. This is also evident 

m the total velocity contou:rs. Comparing these with experimental results 

m Figure 7.11, good agreement is observed, although the suction surface 

boundary layer is perhaps slightly thicker in the modelling. The yaw angle 

contours again show the 5° discrepancy which was observed with the mixing 

length results. T-he over-turning near -to the. endwaTf is reasonably modelled~ 

but the pitch angles are clearly inaccurate. This is because the passage vortex 

is unrealistically located at mid-passage. The loss contours are similar to 

those predicted by the mixing length model, except that the suction surface 

boundary layer is clearly thicker here. 

Results at slot 8 (97% Cax) are presented in Figure 8.13(a-f). Here 

the static pressure contours clearly indicate quite a weak passage vortex 

and are rather reminiscent of the type of results obtained with version 5 of 

the Moore code which incorporated an earlier version of the mixing length 

model (Figure 6.7( d)). The yaw angle contours are reasonable, but do not 

capture the under-turning at 60mm from the endwall which appears in the 

experimental results (Figure 7.14). It can also be seen that the pitch angle 

contours are in poor agreement with experiment. The secondary velocity 

vectors do not predict enough convection of the passage vortex, which has 

been seen previously (Chapter 6) to be a characteristic feature of an over

active turbulence model. Also the loss contours and total velocity magnitude 

contours indicate that the suction surface boundary layer is rather too thick. 

Pitch averaged results at slot 8 are presented in Figure 8.14. The 

results of another run, using a K - € turbulence model are also shown, but 

should be ignored here as they will be discussed later. The yaw angle plot 

shows that the one equation model is failing to predict the radial migration 

of the passage vortex. The loss curve indicates that the one equation model 
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produces a similar level of midspan loss as the fully turbulent m1xmg length 

run (Figure 8.5). However the secondary kinetic energy at 55mm from the 

endwall is not captured by the one equation model. 

Results at slot 10 (128% Cax) are presented m Figure 8.16(a-f) and 

may be compared with five hole probe results in Figure 7.5 and hot-wire 

anemometry results in Figure 7.17. The static pressure contours indicate 

little variation over the flow area, which is supported by the rather weak 

passage vortex. The yaw angle contours fail to identify the under-turning 

peak properly, but do not show the same magnitude of variation of yaw 

angle within the wake as was apparent in the mixing length model results 
-

(Figure 8.6). The pitch angles are rather unrealistic, in keeping with the poor 

prediction of the passage vortex. The loss contours show the blade wake to 

be too wide, and contain too much loss. However, the depression in velocity 

magnitude within the wake is better modelled by the one equation model 

than it was by the mixing length model (Figure 8.6). 

Pitch averaged results at slot 10 are presented in Figure 8.16. The yaw 

angles again show some discrepancy at midspan which is probably associated 

with trailing edge modelling problems. Also it is clear that the prediction of 

the over and under-turning is not very realistic. The loss plot shows that 

too much profile loss is predicted by the one equation model, but that this 

is no worse than results obtained with the mixing length model and laminar 

block A. However, if the over-prediction of profile loss is subtracted from all 

points then the secondary loss core can be seen to be too small, as is the 

loss produced on the endwall. Also the secondary kinetic energy is rather 

unrealistic, predicting too much near to the endwall, and not enough at 75mm 

radially. 

The mass averaged loss and secondary kinetic energy for the one 

equation model and experiment are plotted in Figure 8.17. The model 

predicts a smooth growth of loss through the cascade with a large jump 

across the trailing edge. Downstream the loss does not grow very rapidly, 

which is probably related to the lower loss production observed on the endwall 

in the pitch averaged plot at slot 10 compared with the mixing length model. 
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The overall loss appears to be comparable to that produced by the mtx.mg 

length model with laminar block A, which is encouraging since no specification 

of transition had to be included here. However the secondary kinetic energy 

is too small, and might be considered similar to results obtained with version 

5 of the program with an earlier version of the mixing length model (Figure 

6.10). 

Mass averaged results at slot 10 (128% Cax) are presented in Table 

8.2 together with the five hole probe measurements, and the results of a 

-run usmg a K - E turbulence model-to- be discussed later. -Tlie results in 

Table 8.2 indicate that although the one equation model predicts too much 

loss, most of this is profile loss, and the prediction of secondary loss is too 

small by a factor of 50%. This is rnost surprising, given the good secondary 

loss predictions which have previously been obtained with the mixing length 

model. 

Table 8.2 Mass Averaged Results 

JGC TEST CASE Experiment MEFP One MEFP K- f 

Equation Model Model 

Loss (Slot 10) 0.182 0.272 0.378 

- Midspan Loss (Slot 10) 0.097 0.212 0.268 

= Gross Sec. Loss (Slot 10) 0.085 0.060 0.110 

- Inlet (Slot 1) Loss 0.027 0.036 0.031 

= Net Sec. Loss (Slot 10) 0.058 0.024 0.069 

Secondary KE (Slot 10) 0.026 0.015 0.010 

Sec KE + Loss (Slot 10) 0.208 0.296 0.388 

Mixed Out Loss 0.211 0.297 0.399 

- Midspan Mixed Out Loss 0.100 0.219 0.274 

= Gross Mixed Out Sec. Loss 0.111 0.078 0.125 

- Inlet (Slot 1) Loss 0.027 0.036 0.031 

= Net Mixed Out Sec. Loss 0.084 0.042 0.094 

Midspan Mixed Out Angle -66.7° -68.7° -69.0° 
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8.8 One Equatio:n Turbulence Model Reynolds Stresses 

The shear stresses have been calculated from the one equation model 

solution, using the method described in section 8.3. Figure 8.18 (a-e) presents 

results at slot 5 (55% Cax). These may be compared with the experimental 

results in Figure 7.11, and the mixing length model results in Figure 8.9. 

The u'v' correlation shows so_me negative values near to the suction surface as 

would be expected for the boundary layer flow. These values are rather less 

than those predicted by the turbulent mixing length model run. However, 

the one equation model also predicts positive values beyond the suction 

surface boundary layer, due to the cross-pa8sage velocity gradient. These are 

unrealistically large, and extend right across the span. The model also fails to 

identify the intense shear stress within the passage vortex that was observed 

experimentally. The u'w' correlation predicts some negative values at about 

mid-pitch on the endwall. This is consistent with the growth of an endwall 

boundary layer. Also the v'w' correlation shows positive values immediately 

next to the endwall, but these rapidly change to negative values further 

away. Again the activity is centred at mid-pitch, whereas experimentally 

the turbulence activity was found to be confined to the suction side of the 

passage. The turbulent viscosity can be seen to attain appreciable levels 

on the whole suction side of the passage, and it is these that result in the 

significant u'v' correlation predictions in this region. Also a peak is identified 

with the passage vortex, but this is centred very much at mid-passage. 

The turbulent kinetic energy shows that the one equation model 

IS predicting too much turbulence on the suction surface. This is probably 

because the strong curvature and acceleration within the blade passage interact 

selectively with particular components of the Reynolds stress tensor to promote 

anisotropy. In particular the streamwise · normal stress will act to convert 

turbulent energy to mean flow energy, which ri1ay explain why the one 

equation model is over-predicting the suction surface turbulence. Also some 

turbulent kinetic energy is associated with the passage vortex, but this does 

not approach the levels which are generated within the real secondary flow. 
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Results at slot 8 (97% Cax) are presented in Figure 8.19(a-e). These 

may be compared with the experimental results in Figure 7.14, and the mixing 

length model results in Figure 8.10. A large suction surface boundary layer 

is now in evidence and is associated with significant negative u'v' correlation. 

This is not too much greater than the levels which are predicted by the fully 

turbulent mixing length run. However the one equation model also predicts 

some significant u'v' correlation near to the pressure surface. The values 

very near to the surface are positive, in keeping with a boundary layer flow. 

However just beyond this boundary layer significant negative values appear. 

The u'w' correlation shows very little activity, even on the endwall 

which explains the lower endwall loss growth observed in the pitch averaged 

plots. This is probably more realistic than the mixing length model results. 

The <me equation model also identifies significant v'w' correlation with the 

passage vortex on the suction side of the passage. In this respect it is in 

reasonable agreement with the mixing length model results. The turbulent 

viscosity indicates fairly uniform activity over the flowfield, and does not 

identify any significant peak with the passage vortex. This is also shown by 

the turbulent kinetic energy contours which do not identify the turbulence 

generation which has occurred within the secondary flow. 

Results at slot 10 (128% Cax) are presented in Figure 8.20(a-e) which 

may be compared with Figure 7.17 and 8.11. The u'v' correlation shows a 

similar level of activity within the wake to that predicted by the mixing length 

model with turbulent flowfield, and this is reasonably realistic. However the 

u'w' correlation shows much lower values on the endwall than were observed 

from the mixing length model. The experiment does not approach the endwall 

closely enough to validate this prediction, but as discussed earlier, the mixing 

length values were thought to be too large. However the high shear stress 

values which are associated with the passage vortex are not captured by 

the modelling. The v'w' correlation is something of an exception to this. 

Although the real values might be much higher, significant levels of v'w' are 

predicted by the one equation model and these are clearly associated with 

the secondary flow. The turbulent viscosity nses to a peak of 250 times the 
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laminar viscosity in this region. This _does not compare with the magnitude 

of turbulent viscosities within the secondary flow which Were calculated from 

the experimental measurements (Figure 7.23), but the values within the wake 

appear reasonable. It is interesting to see that the turbulent kinetic energy 

is over-predicted within the wake. Gregory-Smith et al {1988) found that the 

wake turbulence dissipated rapidly downstream of their cascade, and the levels 

measured here (128% Cax) are quite low. Examination of the prediction at 

slots 9 and 11 shows that the model does predict dissipation of the wake 

turbulence so that by slot 11 (152% Cax) the predicted levels are similar to 

those measured at slot 10 (128% Cax). Despite this high wake turbulence, the 

model again fails to identify the turbulence levels within the three-diniimsional 

separated flow of the passage vortex. 

8.9 Discussion of One Equation Turbulence Model Results 

Clearly the one equation model reqmres further development if it 

IS to improve upon results obtained with the mixing length model. One 

encouraging aspect of the model is its transition modelling capability, and the 

profile loss predicted by it is between that obtained from the mixing length 

model with a fully turbulent flowfield, and with laminar block A (Figure 

6.2(a)). However the one equation model does not identify the turbulent 

kinetic energy production within the passage_ vortex, and generally produces 

too much turbulent viscosity over the flowfield. The model may benefit from 

adjustment of constants based upon experience with test cases such as this 

one. Birch ( 1989b) has also suggested that it be modified to cope with the 

effects of streamline curvature. This seems very important, particularly if the 

model is to be used on a wide variety of blade types. 

The observed inaccuracy of the one equation model in predicting 

secondary losses is interesting. In previous experience with the mixing length 

model it appeared that the secondary loss was generally reasonably well 

modelled. However looking back to the first two runs which used version 5 

of the Moore code (Figure 6.10), it can be seen that the loss remains almost 
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constant up to 80% of axial chord in the 'laminar' run. This was because 

the only region in which the turbulence model operated in this run was in 

the blade boundary layers from 80% axial chord to the trailing edge, and 

in the blade wake. Yet this run still managed to produce good secondary 

loss predictions (Table 6.1 ). This indicates that the mixing length model 

produces a large proportion of its secondary loss through the interaction of 

the passage vortex with the ~uction surface boundary layer in the final 20% of 

axial chord, and by interaction of neighbouring passage vortices downstream 

of the trailing edge. Some support for this is provided by the shear stresses 

presented in Figures 8.9 and 8.10. At slot 5 (Figure 8.9) the shear stresses 

within the suction surface flow are virtually unaffected by the passage vortex. 

By slot 8 however (Figure 8.10) significant distortion of the u'v' correlation 

by the secondary flow is clear. It could be that the one equation model 

is over-damping the turbulence in the near-wall region, thus preventing the 

secondary flow influence on the flow in these areas from having so much 

effect. There certainly seems to be cause for some concern, when changing 

the turbulence model can lead to such large changes in the predictions of 

losses. 

8.10 k- t::/Mixing Length Hybrid Model 

Instead of specifying the dissipation length scale l algebraically, as is 

the case in the one equation turbulence model, a separate transport equation 

may be solved for it. As the turbulent kinetic energy K is already being 

solved for, the second equation may solve for any Kazb where a and b are 

constants. At high turbulence Reynolds numbers the energy dissipation rate, 

E, IS g1ven by:-

K~ 
€=-

l 
(8.5) 

hence many two-equation models solve for € and are thus known as K - E 

models. The restriction of high turbulence Reynolds number means that the 

model does not perform well near walls. Although versions of the K - E 
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model exist which are intended to extend right up to the wall, the gradients 

of K and E become very steep, and thus require a large number of grid 

points to be adaquately represented in a discretised solution procedure. This 

is very expensive in three dimensions, and thus it becomes desirable to use 

a separate model for the flow close to the walls. 

In the model tested here, which is described by Birch (1989b ), the 

standard mixing length model is employed within the boundary layers. Clearly 

there must be some interface between the grid cells in which the K - E model 

is used, and those in which the mixing length model operates. This is allowed 

to vary as the calculation proceeds, and is based upon a turbulence Reynolds 

number as defined by:-
1 

K2n 
Ry=-

ll 
(8.6) 

where n is the distance to the nearest wall. In the solution presented here, 

the boundary was set so that the K - E model operated when Ry exceeded 

a value of 400. Boundary conditions are also set at the interface to ensure 

a continuous eddy viscosity, and local equilibrium such that the dissipation 

rate E, matches the rate of turbulence production. 

The standard high Reynolds number K - E model equations are then 

used:-

(8.7) 

and 

DE a liT oE c E aui aui auj c E [ l - [ - -] ( 2) 
- - - 11 + - - + 1 - liT- - + -- - 2 -
Dt - 8xi ( ae) 8xi ( K) OXj 8xi . 8xi K 

(8.8) 

where aK, ae, Cit C2 are constants. The Prandtl-Kolmogorov formula 

(equation 8.2) is then used with equation (8.5) to express the eddy viscosity 

in terms of K and E. 

8.11 Results of a k - E/Mixing Length Hybrid Model Run 

The hybrid K - E/mixing length model has been run on the coarse 

calculation mesh for the 'JGC' test case. As the mixing length model operates 
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within the blade boundary layers, they were forced to be laminar up to 80% 

of axial chord beyond 10% span from the endwall (this is like laminar block 

A, except that the K - c:; model operates away from the boundary layers). 

Results at slot 5 (55% Cax) are presented in Figure 8.21 which may 

be compared with the experimental data in Figure 7.11, and the one equation 

model results in Figure 8.12. Generally the mean flow results appear similar 

to those obtained with the one equation model and indicate a weak passage 

vortex centred at mid-passage. This results in unrealistic pitch angles. The 

yaw angles again indicate a discrepancy with the experiment results, and this 

has been found in all the MEFP predictions at slot 5. The turbulent blade 

boundary layer within 10% span, is clearly evident in the loss contours which 

also indicate that the inlet boundary layer has been swept to the suction side 

of the passage. 

The predicted turbulence quantities may be compared with results of 

the one equation turbulence model in Figure 8.18, the mixing length model 

in Figure 8.9, and the experimental results in Figure 7.11. The results are 

quite remarkable. The turbulent viscosity contours immediately indicate that 

the k - E model is predicting significant turbulence generation within the 

secondary flow. The turbulent kinetic energy contours show that- the model 

is predicting approximately the correct level of turbulent kinetic energy, and 

even possibly too much. This is in sharp contrast with the results of the 

one equation model which failed to identify this feature. The prediction of 

significant eddy viscosity then has a significant impact upon all the shear 

stresses. The u'v' correlation shows the negative values within the suction 

surface boundary layer which are predicted by the mixing length model. 

Beyond this however, there is significant positive u'v' correlation. This is 

in agreement with the experiment, but indicates rather too large an area to 

be associated with these high values with the stress not being confined as 

closely to the endwalljsuction surface corner as it is in the experiment. The 

u'w' correlation shows negative values on the endwall which is consistent with 

the growth of an endwall boundary layer. This does not however fit the 

experimental observation of mainly positive values down to 5mm from the 
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endwall. Also the v'w' correlation is predicted to have a large effect right 

across the pitch and this is strongly linked to the passage vortex. The one 

equation model also detected some of this feature, whereas the mi.....Ung length 

model had much less v'w' at this stage. In particular the run with laminar 

block B almost eliminated it. It could be that this stress is keeping the 

passage vortex from migrating in the one and two equation model solutions. 

Results at slot 8 (97% Cax) are presented in Figure 8.22(a-k) which 

may be compared with the experimental results in Figure 7.14. The static 

pressure contours are quite similar to those predicted by the one equation 

model (Figure 8.13) except that here there is generally lower static pressure 
- -

over the axial plane. The passage vortex and yaw and pitch angles also 

look very similar to those predicted by the one equation model, and show 

the vortex to be rather weak, and 'glued' to the endwall in a way which is 

becoming a familiar indication of over-active turbulence modelling away from 

the boundary layers. However, the total velocity magnitude contours and the 

loss contours indicate larger peaks where the passage vortex separates from 

the suction surface. 

The turbulent viscosity again shows higher values within the secondary 

flow than have been detected by the other models. The turbulent kinetic 

energy identifies a peak in the region where the passage vortex separates from 

the suction surface and the general distribution appears to be good. Another 

peak in turbulent kinetic energy is predicted in the endwall/ suction surface 

corner, and is clearly associated with the passage vortex separation from 

the endwall. This was observed in the experiment, but the predicted level 

appears to be too high. A similar feature is predicted in the endwall/pressure 

surface corner due to separation of the passage vortex from the pressure 

surface. This feature was not detected experimentally, although Marchal and 

Sieverding (1977) did observe a small counter vortex in this region. Also 

generally higher turbulence levels appear to be associated with the pressure 

surface than were observed experimentally. 

The shear stresses generally agree in sign and location with predictions 

by the other models, but show larger values due to the larger predictions 
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of turbulent viscosities. In particular significant u'v' correlation is associated 

with the suction surface boundary layer, significant u'w' correlation with the 

endwall boundary layer, and large v'w' correlation with the passage vortex. 

Figure 8.23(a-k) presents results at slot 10 (128% Cax) which may be 

compared with the experimental results in Figures 7.5 and 7.17. The static 

pressure indicates little variation over the axial plane, and this is unrealistic, 

although a similar result was obtained with the one equation model (Figure 

8.15). The yaw and pitch angles indicate rather less secondary flow than 

was measured experimentally or predicted by any of the other runs. This is 

confirmed by the rather weak passage vortex shown by the secondary velocity 
- - -

vectors, which has clearly not been convected to the correct location. The 

loss contours indicate too much loss within the blade wake, and indeed also 

have some loss in areas which would be expected to be governed by potential 

flow. However more loss appears to be associated with the secondary flow 

than was the case in the one equation model run (Figure 8.15). The total 

velocity magnitude contours indicate similar results to the one equation model, 

and in particular predict less velocity deficit within the blade wake than the 

mixing length model (Figure 8.6). However, in general the secondary flow 

prediction is not of such high quality as that produced -by the mixing length 

model. 

The turbulent kinetic energy contours indicate that the k - E model 

1s predicting too much turbulence within the wake. The one equation model 

also showed this (Figure 8.20) but examination of the predicted results at 

slots 9 and 11 shows that the K - E model initially predicts much higher levels 

than the one equation model. However, it also dissipates these more rapidly, 

so that the levels predicted by the two models at slot 11 are comparable. 

It has been shown experimentally by Gregory-Smith et al (1988) that the 

wake turbulence dissipates rapidly, whilst the levels within the secondary flow 

remam. Since the turbulence levels within the wake are predicted to be 

quite high by the K - E model, the levels within the secondary flow regiOn 

are also large. However the high turbulence region which is associated with 

the secondary flow is not as large as that measured experimentally (Figure 
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7.17) which suggests that either the production is under predicted, or the 

dissipation is over predicted, within the secondary flow downstream of the 

cascade. However the prediction of secondary flow turbulence is superior 

to that produced by the one equation model (Figure 8.20). The turbulent 

viscosity indicates slightly higher levels within the wake than those predicted 

by the one equation model (please note that the contour intervals here are 

different from those employ~d in the plot of experimental results in Figure 

7.23), and reaches higher levels than any of the other models within the 

secondary flow. However the location of this high turbulent viscosity is a 

little suspect, although it is possible that if the v'w' stress had been measured 

-experimentally, it niiglit have suggested high eddy viscosi-ty in this ~egion. \ 

As a result of the high turbulence within the wake the u'v' correlation 

is over-predicted there. However high positive u'v' is also associated with the 

secondary flow which is more realistic. The negative values within the loss 

core are not well modelled however. The u'w' correlation, which is generally 

the least active of the three, shows negative values on the endwall, indicating 

the growth of a boundary layer there. The localised intense values within 

the secondary flow are not predicted. The v'w' stress again predicts large 

values associated with the secondary flow. These values are larger than those 

predicted by any of the other models tested here, and there is clearly a need 

for experimental measurements with which to validate them. 

8.12 k- E/Mixing Length Hybrid Model Mass Averaged Results 

Pitch averaged results at slot 8 are presented in Figure 8.14 together 

with the results from the one equation model, and the experimental hot-wire 

measurements. In terms of yaw angle and secondary kinetic energy, the two 

turbulence models perform fairly similarly, and both fail to identify the under

turning peak at 55mm from the endwall. However the K - E/mixing length 

model clearly predicts more loss than the one equation model in the secondary 

flow region. This correlates moderately well with the experimental turbulent 

kinetic energy curve, which is a reasonable indicator of loss distribution. 
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The pitch averaged results at slot 10 (Figure 8.16) indicate that the 

K- E/mixing length hybrid model is predicting even less secondary flow than 

the one equation model at this stage. Both the runs are predicting too 

much profile loss, but if this is subtracted at all radial points, the hybrid 

model is producing more secondary loss than the one equation model. The 

one equation model indicates more secondary kinetic energy than the hybrid 

model, particularly on the endwall, which is probably because of its lower 

prediction of the shear stresses there. 

The growth of loss and secondary kinetic energy for the one equation 

model, the hybrid K - E/mixing length model, and experiment is shown in 

Figure 8.17. Clearly both models predict too little secondary kinetic energy, 

with the hybrid K- E/mixing length model performing slightly worse in this 

respect. The hybrid model also predicts much more loss than the one equation 

model. However much of this is produced across the trailing edge and is 

associated with problems with the mixing length model in this region. The 

one equation model clearly does much better in this respect. Generally the 

losses up to slot 6 produced by the hybrid model (with laminar blades up to 

80% axial chord and beyond 10% span) are less than those produced by· the 

one equation model. Thereafter the hybrid model (and probably the mixing 

length part of it) produces loss more rapidly. Also downstream it is clear 

that the hybrid model predicts more growth of loss than the one equation 

model. This is probably associated with the larger shear stress observed on 

the endwall, and the associated growth of an endwall boundary layer. 

8.13 Conclusions 

Mass averaged quantities are presented in Table 8.2 for the K -

E/mixing length model, and the one equation model. It can be seen that 

although the K- E/mixing length hybrid model over-predicts the loss, most of 

this appears as profile loss and the prediction of secondary loss is reasonable. 

In particular, comparing with the results of the mixing length run with 

laminar block A in Table 8.1, it can be seen that the predictions of net 
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secondary loss are very similar. However less mixed out secondary loss is 

predicted by the K- E/mixing length model, as the secondary kinetic energy 

was under-predicted by it. Thus it might seem that the shear stresses within 

the secondary flow have had a relatively minor effect compared with those in 

the boundary layers. Also experience with the mixing length model suggests 

that it produces most secondary loss within the suction surface boundary 

layer in the final 20% of a:)Cial chord. Unfortunately it is not possible to 

validate this model with the data available here, and further experimental 

work is required. 

Generally however, the results of the K - E calculation appear to be 

- encouraging. Tlie two transport equations- succeed in -capturing more of the 

secondary flow turbulence behaviour than either of the other models tested 

here. The quality of the secondary flow prediction is clearly impaired by 

the one equation model and the K - E model. However this should not 

be considered to be too discouraging as results in Chapter 6 showed similar 

behaviour with an earlier version of the mixing length model. The m1xmg 

length model thus benefits from its longer period of implementation, and 

correspondingly finer tuning. It seems that a combination of the K - E 

model for the separated flows, with a one equation model for the boundary 

layers, could eventually capture more of the flow physics than the mixing 

length model and thus be correspondingly more generally applicable. However 

the one equation model needs to be carefully validated before being used to 

replace the mixing length model. A treatment of the effects of streamline 

curvature within the one equation model seems almost essential for suction 

surface boundary layer calculations. This might also be a general problem 

resulting from the use of a Boussinesq eddy viscosity hypothesis within a 

highly curved channel. The validity of such an isotropic assumption is highly 

questionable m these circumstances. Leschziner (1989) suggests that such 

flows should be modelled with a Reynolds stress model. However he admits 

that the use of such models within three-dimensional flows is still in early 

days, and that the development of good turbulence models is likely to be 

slow, thus retarding the progress of CFD as a truly predictive technique. 
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~ Flvo Hole Probe Measurements. 
~ MEFP Turbulent + Laminar Blocks A+B8 Mixing Length Hodel. 
~ MEFP Turbulent + Laminar Block A, Mixing Length Model. * NEFP Turbulent Flowfleld0 Mixing Length Model. 
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~ Hot-Yire Anemometry Measurements. 
~ HEFP Turbulent + Laminar Blocks A+80 Mtxtng Length Model. * MEFP Turbulent + Laminar Block A0 Mixing Length Model. 
~ MEFP Turbulent Flowfleld0 Mixing Length Model. 
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~ Hot-Uire Anemometry Measurements, 
~ MEFP Turbulent + Laminar Blocks A+B 0 Mixing Length Model. 
~ MEFP Turbulent + Laminar Block A0 Mixing Length Hodel. 
@ MEFP Turbulent Flowfleld0 Mixing Length Model. 
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~Five Hole Probe Measurements. 
~ NEFP Turbulent + Laminar Blocks A+B0 Mtxtng Length Model. * MEFP Turbulent + Laminar Block A0 Mixing Length Model. 
~ MEFP Turbulent Flowfleld0 Mixing Length Model. 
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'S.O Introduction 

Chaptell." ~ 

Discussion 

This chapter presents a discussion of the experimental and modelling 

results presented in this thesis, with the aim of providing a coherent view of 

the conclusions which may be derived from them. 

9 .!_Experimental Resllllts 

Some additional pressure probe traverses of the flow in the Durham 

turbine cascade without a turbulence grid ('JAW' test case) have been made 

to add to the data presented by Walsh (1987). A traverse at slot 7 (87% Cax) 

revealed the secondary loss core just becoming detached from the endwall. The 

loss contours show that high losses form in the region where the passage vortex 

separates from the suction surface, and also in the suction surface/endwall 

corner where a counter vortex forms. The mass averaged losses show that 

rapid loss generation occurs in the final 20-30% of axial chord, which IS m 

accord with the results of other workers (e.g. Langston et al (1977) ). 

Traverses at slots 9 (116% Cax) and 11 (152% Cax) coupled with 

Walsh's traverse at slot 10 (128% Cax), provide detailed information concerning 

the flow development downstream of the cascade. These results show that 

as the flow proceeds downstream, the static pressure over the traverse plane 

becomes more even, and the high loss zones mix with the surrounding fluid to 

become broader and less intense. The over-turning on the endwall is observed 

to become less severe due to the growth of the counter vortex situated between 

successive passage vortices, which has its origin in the suction surface/endwall 

corner. In contrast the under-turning further away from the endwall remains 

fairly constant as the flow proceeds downstream. Radial velocities however 

reduce considerably, due to the interaction between passage vortices from 

successive passages. 
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The mass averaged secondary kinetic energy is observed to decay 

steadily downstream of the cascade, and the mixed out loss (calculation 

described by IV1oore 3.nd Adhyc (1985)) is well repre:;euted by the sum of loss 

and secondary kinetic energy at a given axial plane. Also the mixed out 

secondary loss is observed to reduce slightly as the flow proceeds downstream. 

This suggests that the normal Reynolds stresses could be acting to produce 

mean flow energy from turbulent kinetic energy, thus offsetting some of the 

turbulent deformation work, and the reversible pressure work term described 

by Moore et al (1986) is acting to convert secondary kinetic energy to primary 

kinetic energy. The sum of these two mechanisms must then be sufficient to 

exceed slightly the rate at which the growth of an endwall boundary layer is 

producing extra loss. 

Measurements have also been presented of the flow in the same turbine 

cascade, but with a turbulence generating grid mounted upstream (' JGC' test 

case). The results show that changing the inlet freest ream turbulence intensity 

from 1.4% to 4.5% promoted earlier transition of the suction surface boundary 

layer. This eliminated the laminar separation bubble which had previously 

been observed on the suction surface, leading to slightly increased profile loss. 

However the effect of the change in inlet freestream turbulence level upon the 

development of the secondary flows and losses was found to be very small. 

This may be because the secondary loss core fluid originates in the endwall 

boundary layer at inlet to the cascade, where the turbulence levels are likely 

to be less effected by the freestream intensity. Also significant turbulence 

generation occurs within the secondary flow, leading to much higher turbulence 

levels than those present in the freestream. 

The introduction of the turbulence grid also resulted in a thinner 

endwall boundary layer at inlet to the cascade. This was because a 'jet' 

flow occurred near to the endwall through the turbulence grid, which was 

then slowed by growth of the endwall boundary layer to yield the observed 

profile at inlet. The thinner inlet boundary layer was found to result in less 

secondary kinetic energy generation within the blade row. However, apart 

from this, the secondary flows and losses were remarkably unchanged by the 
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different inlet conditions. 

Slightly less secondary loss was observed in the 'JGC' test case. This 

may seem surprising at first sie;ht; but could result from the way in which the 

secondary losses are calculated, by subtracting the midspan loss and inlet loss 

from the total loss measured downstream. Since the higher inlet turbulence 

promoted earlier transition of the suction surface boundary layer, more 'profile 

loss' was subtracted from the total loss measured at slot 10 in the 'JGC' test 

case. The separation line running up the suction surface divides it into a 

region in which a two-dimensional boundary layer grows, and a region which 

is swept by the passage vortex. This latter region is then in contact with 

highly turbulent fluid, and thus the growth of a turbulent suction surface 

boundary layer is likely to start earlier below the passage vortex separation 

line, than it does above it. Any additional loss resulting from this over and 

above the undisturbed suction surface boundary layer loss, is then accounted 

for as secondary loss. 

Despite the similarity between secondary losses measured at slot 10 for 

the 'JAW' and 'JGC' test cases, the mixed out secondary loss was observed 

to be smaller in the latter case. This was because the thinner inlet boundary 

layer profile resulted in the generation of less secondary kinetic energy to be 

mixed out. Thinning of the endwall boundary layer also resulted in a smaller 

horseshoe vortex, situated closer to the leading edge. The fact that the 

secondary flows and losses remained largely unchanged despite this, suggests 

that the horseshoe vortex is not a very significant factor in the process of 

passage vortex generation. 

Hot-wire anemometry traverses of the flowfield with a turbulence grid 

placed upstream of the cascade ('JGC' test case) showed that high turbulence 

levels are associated with the secondary flow. Comparison with the results 

of Gregory-Smith et al (1988) reveals similar levels, which suggests that the 

higher inlet turbulence in this test had little bearing upon the turbulence 

development within the secondary flow. Within the blade passage, significant 

positive u'v' correlation was found to be associated with the cross-passage 

velocity gradient and the turbulent secondary flow. Downstream however, 
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the correlation was observed to have changed sign over much of the passage 

vortex, in keeping with the velocity gradients within it. 

At slot 10 (128% Ca.x) the turbulence activity wa,:s observed to be 

concentrated within the secondary flow, with fairly low values within the wake. 

This agrees with the results of Gregory··Smith et al (1988) who observed the 

wake turbulence to decay rapidly downstream of their cascade, whilst that 

within the passage vortex was maintained. In general high turbulence energy 

was found to be associated with the secondary loss core, and regions where 

separation lines on the endwall and suction surface feed loss into the main 

flow. At slot 8 (97% Cax), high streamwise turbulence was observed all 

over the suction surface. Also the surface pressure coefficient measurements 

indicate that there is significant deceleration near to the suction surface over 

the final 20% of axial chord, particularly within 10% span of the endwall. 

This streamwise deceleration coupled with high streamwise turbulence could 

be a significant factor behind the rapid rise in loss which is normally observed 

in the latter half of turbine rotor cascades. 

The endwall flow has been traversed with a rotatable single w1re 

probe. At slot 5 (55% Cax) results showed that the flow has almost constant 

total velocity down to 0.25% span from the endwall, but is highly skewed 

with the under-turning reducing by 5° for each millimetre moved away from 

the endwall. Also freestream turbulence levels were found to be pres~nt. near 

to the endwall on the pressure side of the passage, but on the suction side the 

flow was more turbulent. This lends some support to the results of Harrison 

(1989) who observed a laminar flow over much of the endwall on the pressure 

side of the passage within his turbine cascade. However, if such a boundary 

layer exists here it must be extremely thin. Measurements of the flow at 

slot 8 (97% Cax) indicate that although the total velocity 1s still almost 

constant up to lmm from the endwall, the skew is very much reduced with 

the flow direction only changing by 1 o for each millimetre moved radially. 

In the suction surface/ end wall corner the velocity reduces sharply, due to 

the counter vortex there. The endwall flow was observed to be generally 

more turbulent than at slot 5, which also supports Harrison's results, as he 
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observed transition of the endwall flow on the pressure side of the passage, 

occurring as the trailing edge was approached. 

Downstream of the cascade the e11d\v~ll flo\-v ;vas observ .. ed to be 111ore 

turbulent, and a more usual type of boundary layer starts to develop. Mass 

averagmg of the turbulent kinetic energy over the traverse plane, reveals 

that only 16% of the loss may be accounted for directly as turbulent ki·· 

netic energy. This is in accord with the results of other workers (e.g. Moore 

et al (1986) 23%, Zunino et al (1987) 10%, Gregory-Smith et al (1988) 17%). 

It is thought that this indicates that the dissipation of turbulence by molec

ular viscosity almost matches its rate of generation, thus preventing a large 

accumulation of turbulent kinetic energy. 

The rates at which the turbulent Reynolds stresses transfer mean flow 

kinetic energy to turbulent kinetic energy, and the rate of viscous dissipation 

of mean flow kinetic energy have been calculated at slot 10. The results 

indicate that the turbulent effects are generally two orders of magnitude 

greater than that due to molecular viscosity. By far the largest rates are 

produced by the normal stresses, but these act to extract energy from the 

mean flow in some places, and return turbulent kinetic energy to the mean 

flow in others. Thus their net effect is much smaller than their large local 

effects, but is still found to be significant. This may indicate the inadaquacy 

of a Boussinesq eddy viscosity model (which cannot model normal stresses) 

particularly within the blade passage where the normal rates of strain are 

large. 

Comparing the results calculated from the Durham data with those of 

Moore et al (1986) shows general agreement, except for the term u'2 ~~ which 

they found to be significant. However their measurement plane was closer to 

the trailing edge (10% Cax) than slot 10 (28% Cax), so streamwise gradients 

might be greater due to the flow being less mixed in their case. The mass 

averaged rate of turbulent deformation work was found to account for 25% 

of the rate of loss production downstream of the cascade (as indicated by 

pressure probe measurements of the 'JAW' test case). However two terms 

which Moore et al found to contribute 60% of the total rate in their work, 
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were not accounted for here. Also the downstream rate of loss production 

might be less in the 'JGC' test case than the 'JAW' test case as less secondary 

kinPtir. energy was developed. Hence the value for the total deform<Ltiuu work 

which was calculated seems reasonable. Thus it appears that downstream of 

the cascade loss is produced principally by the turbulent Reynolds stresses, 

and that direct viscous action has only a relatively small effect. 

Calculations of eddy viscosities at slot 10 from the experimental shear 

stress measurements, indicate that downstream of the cascade an isotropic 

eddy viscosity is a reasonable model for the u'v' and u'w' stresses. Peak 

values of eddy viscosity of 2000 times the molecular viscosity were found to 

be associated with the secondary loss core. 

A short spectral survey of the flowfield revealed no dominant fre

quencies in the energy spectrum, except for a low frequency organ resonance 

within the wind tunnel. No evidence was found for the low frequency peak 

observed by Gregory-Smith et al (1988) to be associated with the passage 

vortex downstream of their cascade. This might be because of the smaller 

suction surface diffusion in this test, and the absence of the associated laminar 

separation bubble. 

The invariance of the secondary loss between the 'JAW' and 'JGC' 

test cases when significant variation in secondary kinetic energy was observed 

seems a little surprising. It would seem logical that the secondary loss would 

depend upon the strength of the secondary flow. It could be that most 

secondary loss is produced near to the endwall and suction surface. The 

effect of the inlet boundary layer might be to determine how much secondary 

kinetic energy is initially imparted to the endwall boundary layer. This is 

then rolled up into a core, and is convected up the suction surface. Thus 

most of the change in secondary kinetic energy occurs within this core, and 

the levels close to much of the endwall and suction surface are little changed 

by the differing inlet boundary layer thickness. However, the mechanisms 

of secondary loss production within the cascade are not entirely clear. It 

seems likely that the suction surface flow will undergo earlier transition close 

to the endwall due to the higher turbulence in the endwall boundary layer, 
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and the presence of the turbulent secondary flow. This will contribute some 

loss to the secondary loss downstream of the cascade. Also it seems likely 

that the deceleration of the suction surface flow ·within the last 20% of axial 

chord, is a major contributor to the loss production process. In particular 

the steeper deceleration in the endwall region caused by the presence of the 

passage vortex, and the more turbulent flow which it introduces to the suction 

surface, will tend to result in more suction surface loss production close to 

the endwalL This is particularly true of the region where the passage vortex 

separates from the suction surface since there the flow is very turbulent. 

The above discussion of secondary loss production mechanisms within 

the cascade is speculative, and other processes may also have significant effects. 

In particular the high Reynolds stresses measured within the secondary flow 

away from the passage walls may also be a significant factor in the loss 

production process. Further experimental investigation would be required to 

determine the relative contributions of the various possible secondary loss 

production mechanisms. 

9.2 Modelling Results 

The experimental measurements of the mean flowfield in the Durham 

cascade with no turbulence grid ('JAW' test case) which were reported hy 

Walsh (1987), have been used to test three Navier-Stokes solution techniques. 

The results indicated that it is possible to obtain accurate numerical solutions 

of the three-dimensional pressure driven effects. However, the use of first 

order spatial accuracy in discretisation coupled with inexpert grid generation 

(the resulting mesh was highly non-uniform) was found to produce very large 

numerical errors which completely destroyed the solution accuracy. Also the 

use of excessive second order smoothing was found to be equally damaging 

to the quality of the prediction. The application of second order spatial 

accuracy, coupled with careful consideration of the discretisation so as to 

avoid numerical loss production, was found to be capable of producing very 

accurate predictions of the mean flowfield. This particular code (which is due 
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to Moore and Moore ( 1985)) was thus used in further tests. 

The quality of the solutions obtained has been found to be very sen-

sitive to the turbulence mode! which is used vtithin the calculation procedure. 

Seemingly arbitrary changes to the turbulence model were found to produce 

significantly different mean flow predictions. In particular, the mobility of 

the passage vortex centre, which experimentally is observed to move towards 

and up the suction surface, appears to be greatly effected by the turbulence 

modelling. This suggests that considerable caution should be exercised when 

applying simple turbulence models to such a complex flow. 

The general development of the secondary flow can be modelled with 

relatively few grid points (a calculation mesh of 4 7 axial, ?.5 tangential, and 

17 radial points was used here to model half the cascade span). However 

the required density of points is likely to be dependent upon the formal 

spatial accuracy of the algorithm, and thus may be different for other codes. 

Despite the generally good flow predictions, numerical problems were observed 

in the trailing edge region when using this 'coarse' mesh. The use of a finer 

calculation mesh with 60 axial and 36 tangential points was shown to help 

reduce the numerical loss production in the trailing edge region, and also 

different turbulence models can have a significant effect upon this flow. 

Specification of different regions of the flowfield as laminar was found 

to have some effect upon predictions of the secondary flows and losses. In 

particular specification of the blade boundary layers as laminar in the region 

where they were known to be laminar, produced much improved predictions of 

the profile loss. This also produced some increase in the predicted secondary 

loss, since turbulent blade boundary layers were retained within 40mm of the 

endwall which were than accounted for as 'secondary' rather than 'profile' 

loss. Also specification of the flow close to the endwall as laminar within the 

blade passage, was found to increase the predicted secondary kinetic energy 

and passage vortex migration, generally achieving better agreement with 

experiment. As discussed previously, there is some experimental evidence for 

such a laminar flow on the endwall within the blade passage. This suggests 

that there is a real need for models of transition in order to predict accurately 
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the secondary flow effects, as well as for the prediction of blade profile losses. 

The mixing length turbulence model which is incorporated v:ithin 

thP. mo8t. recent version of t!1e Moore's progran1, appears to produce good 

predictions of the secondary loss. It is also possible to deduce from the 

results obtained, that a large proportion of this secondary loss is generated 

within the blade boundary layers and wake, downstream of 80% axial chord. 

Unfortunately it is not possible to determine the accuracy of this prediction 

with the available experimental data. 

The results of these initial tests indicated that very accur;:de solution 

of the Navier-Stokes equations in three dimensions is now possible usmg a 

'state of the art' finite volume solution technique. Code authors are now 

producing techniques which produce sufficiently low levels of numerical error, 

for the turbulence modelling to be the most limiting part of the solution 

accuracy. These techniques therefore offer the realistic possibility of accurately 

assessing the performance of different turbulence models for three-dimensional 

flows, and should thus aid their development. 

The Navier-Stokes solver of Moore and Moore (1985) has also been 

used to predict the flow in the Durham turbine cascade with a turbulence 

grid placed upstream ('JGC' test case). The code was run with three different 

turbulence models and comparisons made with experiment for predictions of 

the mean flow and the turbulent Reynolds stresses. 

The mixing length turbulence model was found to predict quite 

accurately the reduced secondary kinetic energy resulting from the thinner 

inlet boundary layer in this case. It also appears to produce reasonable 

predictions for the secondary loss. Forcing the endwall flow within the blade 

passage to be laminar, was found to be more significant here than it was in 

the 'JAW' test case. Apparently higher over-turning was produced on the 

endwall, which appeared to help the passage vortex to migrate towards the 

suction surface. 

Comparison of predictions of shear stress produced by the mrxmg 

length model, with those measured experimentally, showed that the rnlX.lng 

length model generally fails to identify the magnitude of the turbulent stresses 
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within the secondary flow. This explains why the mass averaged secondary 

kinetic energy is not observed to decay enough downstream of the cascade 

in the predictions. The apparently realistic loss growth downstream is then 

produced by too much endwall boundary layer growth and/or the mixing out 

of too deep a velocity deficit within the wake. This is not a realistic model 

of the loss production downstream of the cascade. 

"Within the cascade the contribution of the Reynolds stresses within 

the separated three-dimensional secondary flow to the loss production process 

is not known. Thus it is not possible to determine the accuracy of the mixing 

length model prediction of most secondary loss production within the suction 

surface boundary layer in the final 20% of axial chord. As mentioned in the 

discussion of the experimental results, the interaction of the passage vortex 

with the suction surface boundary layer may indeed be a significant factor in 

the process of secondary loss generation. However, whether the mixing length 

turbulence model can be expected to predict accurately such a process in 

which the normal Reynolds stresses are likely to be important is questionable 

particularly for significantly different blade shapes. Even within one blade 

row the mixing length model might be expected to have difficulty in coping 

with the varied flow regimes, such as accelerating flow, decelerating flow, and 

swirling flow. 

A one equation model of turbulence which solves a transport equation 

for the turbulent kinetic energy, and specifies a dissipation length scale 

algebraically, has been used to model the 'JGC' test case. The mean flow 

prediction produced by this model was found to be less accurate than that 

resulting from application of the mixing length model. The secondary kinetic 

energy was under-predicted, and the correspondingly weak passage vortex did 

not migrate as it is observed to do in the experimental results. However 

the model has not been implemented for as long a period as the mixing 

length model, and so may be expected to benefit from 'fine tuning' of its 

constants. Interestingly, this model predicts too little secondary loss and this 

significant change in prediction with the application of a different turbulence 

model might be considered to direct further suspicion at the foundations of 
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the mixing length model's secondary loss predictions. 

Comparison with the experimental turbulence data shows that too 

much turbulent kinetic energy is predicted to be produced on the suction 

surface. This might be because the model does not take account of the 

effects of the passage curvature, which tends to keep losses low on the suction 

surface where the flow accelerates. In contrast, on the endwall the model 

predicts much less 1t'w' correlation than the mixing length model. Despite 

the large prediction of turbulent kinetic energy on the suction surface the 

observed generation of turbulent kinetic energy, and the associated high stresses 

within the secondary flow, are not predicted. Downstream of the cascade the 

model predicts too much turbulent kinetic energy within the wake. Although 

significant decay of the wake turbulence is predicted between slots 9 ancl 11, 

in accord with the results of Gregory-Smith et al (1988) who showed rapid 

decay of wake turbulence to be a feature of the downstream flow, too much 

turbulence is still present at slot 10. 

Thus it seems that this turbulence model needs further development 

before it can be considered to be an acceptable replacement for the mixing 

length model. The inclusion of a transition modelling capability as is available 

within the one equation model is also worthy of development, as it is felt 

that this is one of the major requirements for future extensions of predictive 

capabilities. 

The final turbulence model which was tested in this work is a hybrid 

of the mixing length model for the boundary layers and a standard two 

equation K - E model elsewhere. The use of the mixing length model in the 

near wall regions is intended to avoid the large numbers of grid points which 

are required within boundary layers by K - E models. This would be very 

costly for a three-dimensional calculation. 

Comparison of results with experiment again reveals a poor prediction 

of the mean flow. As with the one equation model the passage vortex was 

predicted to be too weak, and did not migrate as it is observed to do in reality. 

The prediction of secondary loss was found to be reasonable, but this is not 

surprising as the mixing length n1odel was used in the boundary layer regions 
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where most of this is predicted to be produced. A striking improvement which 

is produced by the two equation model solution is the prediction of turbulent 

kinf>tic energy 'Nhich comp::trcs much better with e:X..]Jeriment. The solution of 

a transport equation for the length scale appears to identify the turbulence 

generation within the secondary flow. This was also observed by Zunino 

et al (1988) who tested turbulence models against their experimental data. 

They showed excellent predictions of turbulent kinetic energy by the standard 

K- E turbulence model. However their test used the experimentally measured 

velocity distributions rather than those emerging from a solution coupled to 

the turbulence model. Also their measurement locations are such that they 

only showed comparisons up to the passage throat, whereas they point out 

that significant turbulence development is likely to occur on the suction side 

of the passage downstream of this position. Even in these conditions however, 

they concluded that the turbulence models could only be considered to give 

a qualitative agreement with the experimental measurements. 

The increased predictions of turbulent viscosity within the secondary 

flow by the K- E model result in much larger stresses there. However, as the 

loss at slot 10 is little bigger than that predicted by the mixing length model, 

it appears that these stresses do not produce much loss. The turbulence 

levels within the wake also appear to be over-predicted by the K - E model, 

as observed with the one equation model. However the K - E model predicts 

even larger values within the wake at slot 9, although these decay rapidly to 

become comparable with results of the one equation model by slot 11. 

In general the results of the K- E model appear to be encouraging, and 

development of a hybrid K- E/one equation model with transition prediction 

seems to be an attractive intermediate step before launching into the realm 

of full Reynolds stress models. Indeed there appears to be a requirement for 

further experimental work in order to identify the level of modelling which is 

required for meaningful predictions of aerodynamic loss. It may be that most 

loss is produced in the blade boundary layers within the blade passage, and 

that accurate modelling of the Reynolds stresses within the swirling three

dimensional secondary flows is not really necessary. However this may not 

178 



be the case, and the generality of a model which relies upon a Boussinesq 

eddy hypothesis within such a highly curved duct is in any case questionable. 

Leschzincr (1989) suggests that i.11 such circumstances it is necessary to solve 

for individual components of the Heynolds stress tensor in order to adaquately 

model the anisotropy producing effects of the strong curvature. Although the 

development of such models is likely to be a rather long and difficult process, 

this must surely be one of the most important aims of developments in the 

future. 
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Clhap~err JL[]) 

Conclu.simas and Recommendations 

10.0 Int:roducHoxn 

This chapter presents separately the mam conclusions of the ex

perimental and modelling work presented in this thesis. Recommendations 

for further work using the experimental facilities, and directions for further 

modelling developments are then discussed. 

10.1 Experimental Condusiions 

This thesis presents results of experimental investigations of the flow 

m a large scale, low speed, linear cascade of high turning turbine rotor blades. 

The results obtained with only natural tunnel freestream turbulence at inlet 

('JAW' test case) have shown that: 

a) The flow develops rapidly in the final 20-30% of axial chord, and this 

is accompanied by significant loss generation. 

b) The end wall counter vortex is a significant feature of the downstream 

flow, where it tends to reduce the over-turning near to the endwall. 

c) Downstream of the cascade radial velocities mix out quite rapidly. 

d) The mixed out loss is observed to be fairly constant in the downstream 

flow, despite the growth of an endwall boundary layer. This suggests 

that secondary kinetic energy is being converted to primary kinetic 

energy as the flow proceeds downstream. 

Measurements have also been made of the turbulent flow in the same 

turbine cascade but with a turbulence generating grid mounted upstream 

('JGC' test case). This raised the freestream turbulence from 1.4% to 4.5%, 

and also resulted in a thinner endwall boundary layer at inlet to the cascade. 

The results show that: 
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a) Raising the freestream turbulence intensity promoted earlier transition 

of the suction surface boundary la.yer, resulting in slightly increased 

profile 

b) Raising the freest ream turbulence intensity in the range tested, has 

very little effect upon the secondary flows and losses which develop. 

c) Thinning the end wall boundary layer at inlet makes no significant 

change to the net loss produced by the cascade. However the resulting 

secondary kinetic energy is considerably reduced by this change, and 

hence the mixed out loss is also smaller. 

d) High turbulent kinetic energy is associated with the passage vortex, 

and the regions in which separation lines on the endwall and suction 

surface feed loss into the main flow. Significant u1 w 1 shear stress is 

also located near the suction surface separation line. 

e) Within the blade passage the u1v1 shear stress shows negative values 

within the loss core due to the high cross-passage velocity gradient. 

These change to positive values downstream of the cascade where the 

velocity gradients due to the passage vortex and wake are dominant. 

f) Just upstream of the trailing edge, high streamwise turbulence was 

observed right across the suction surface. The surface pressure mea

surements also indicate that the flow near to the suction surface is 

decelerating in this region. Thus the mechanism u12 ~~ on the suction 

surface, may be a significant contributor to the more rapid rate of loss 

production which is normally observed in the latter half of turbine 

rotor cascades. 

g) The new endwall boundary layer which forms within the blade passage 

away from the suction surface is extremely thin. The flow further 

from the surface has almost constant speed, but is highly skewed. 

Freestream turbulence levels are present on the pressure side of the 

passage close to the endwall, and a thin laminar flow may exist in this 

region. However on the suction side of the passage and downstream 

of the cascade, the endwall flow is turbulent. 

h) The frequency spectrum of the turbulence shows no dominant fre-
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quenCies where the turbulence is high. 

i) Downstream of the cascade a. fa.i.rly isotropic eddy viscosity is seen m 

the loss core. 

j) 7here are significant contributioas to the loss generation process by 

the Reynolds normal stresses, which cannot be allowed for by a 

Boussinesq eddy viscosity model. 

10.2 ModelliJIJlg CoJIJldu.s:ions 

The flowfield of the cascade has been extensively modelled with the 

three-dimensional N a vier-Stokes solution technique of Moore and Moore ( 1985). 

Comparisons between the modelling and experiment have shown that: 

a) Very accurate solution of the governing equations may be obtained 

with a 'state of the art' finite volume calculation procedure. 

b) The second order spatial accuracy of the algorithm permits good 

solutions for the secondary flow to be obtained with a calculation 

mesh of 20000 points. However, a finer mesh is required to restrict 

numerical errors in the trailing edge region to a similar degree. 

c) The quality of the secondary flow predictions is very sensitive to the 

model used to simulate the effects of the turbulent Reynolds stresses. 

Too much turbulent stress modelling results in an under-prediction 

of secondary kinetic energy, and prevents the vortex from migrating 

towards and up the suction surface. 

d) The mixing length turbulence model predicts that most secondary loss 

is produced within the blade boundary layers and wake, downstream 

of 80% axial chord. It is not known how realistic this prediction is. 

e) ·within the separated, three-dimensional, secondary flows, the mixing 

length model, and a one equation turbulence model, do not identify 

the magnitude of the turbulent stresses which are present. Thus 

these models cannot model the loss production in the downstream 

flow correctly. 

f) A K - E model of turbulence appears to predict the generation of 
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turbulent kinetic energy within the secondary flow reasonably well. 

However too much turbulence is predicted within the wake. 

g) The ability of simple turbulence models to predict accurately the 

aerodynamic loss within such a varied and complex flowfield is ques

tionable. In particular the application of a Boussinesq eddy viscosity 

hypothesis within such a highly curved duct, cannot properly account 

for the effects of the high normal rates of strain which are present. 

Great effort should therefore be directed at the development of more 

sophisticated models of the turbulent Reynolds stresses. 

10.3 Recommendations fur Further WoJrk 

On the experimental side, there are clearly several p1eces of work 

which are a natural extension of the work described in this thesis. Firstly a 

traverse at slots 5 and 8 with a pressure probe would allow existing software 

to calculate the rate of turbulent deformation work within the separated shear 

layers. This would clearly indicate the importance of the Reynolds stresses 

within the secondary flow as a loss production mechanism. The use of surface 

mounted film gauges on the endwall could identify the presence of any laminar 

patches there. 

The modelling results suggest that the v'w1 shear stress is important 

for the secondary flow, and Moore et al (1986) showed this to be true for the 

flow downstream of their cascade. Hence measurements of this stress would 

be valuable. Such measurements could be obtained with a third traverse of 

the x-probe technique (probe set at different yaw angle and a new analysis 

program) or alternatively with a triple wire or rotatable single wire probe. 

Traverses very close to the suction surface using pressure probes and hot

wires or laser doppler anemometry, would also be very valuable in order to 

determine its role in the production of secondary loss. It is clear that the 

flow develops rapidly between slots 5 and 8. Detailed traverses of the mean 

and turbulent flowfields between these two locations would provide a useful 

extension to the data, increasing its value as a case with which to test and 
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set up turbulence models. 

The turbulence effects which are present within stator cascades are 

still a little unclear. There is some contrast between the results of Dailey 

(1980), who observed very low turbulence energy in the secondary flow region 

of a cascade of inlet guide vanes, and Sharma et al (1985) who detected 

significant turbulence downstream of the first stator in a one and a half stage 

model turbine. It is possible that the lower turning of nozzle guide vanes, 

and their higher acceleration, results in much less turbulence production than 

is typical of rotor cascades. Hence a detailed investigation of the turbulent 

flowfield in a cascade of nozzle guide vanes would provide both a useful 

contribution to knowledge, and a valuable data set for the evaluation of 

turbulence models. 

On the modelling side the most urgent requirements now appear to be 

for better turbulence models, and for models of transition. The development 

of more sophisticated models is a formidable problem, but should be aided 

by the high accuracy of modern Navier-Stokes solvers. Despite the success of 

the code authors in controlling numerical errors, the modelling of trailing edge 

flows still appears to present some problems. Validation of models over a 

wide variety of cases should be undertaken in order to assess their predictive 

capabilities in this area. 

Developments in grid generation techniques, and more stable algo

rithms should continue to contribute to solution accuracy for some time to 

come. Also as computing power continues to mcrease, models of three

dimensional unsteady flow, and blade row interaction are likely to appear. 

These developments may be particularly accelerated if transputer technology 

is complemented by the development of highly sophisticated parallelising com

pilers. Such a combination would completely revolutionise supercomputing, 

and thus have profound repercussions for computational fluid dynamics. 

The results in this thesis show that current technology is capable of 

accurately predicting the pressure driven effects of secondary flow generation. 

This suggests that some progress might be made by applying such calculation 

techniques to different endwall geometries. Thus an interesting project could 
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consist of the design of end walls with a three-dimensional N avier-Stokes 

solver, and testing of the predictions in an experimental facility. The value 

of such work would however be greatly enhanced if it was extended to radial 

geometries, as the radial pressure gradients are likely to have a significant 

bearing upon the geometry of a. successful design. 

The effects of skew in the endwall boundary layer have been shown by 

Walsh (1987) to have a profound effect upon the development of the secondary 

flows and losses. Thus it may be possible to gain some advantage by ejecting 

endwall coolant flow at an angle so as to introduce positive skew into the 

endwall boundary layer. The application of a specially modified Navier-Stokes 

solver could usefully determine the feasibility of such a suggestion. 
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Appendix A 

Rotatable §ingle Wlire Probe Technique 

A.O Knirodludiolll 

This appendix gives details of the method used to obtain flow mea

surements from a single wire rotated in a plane parallel to the endwall. 

A.l Analysis Of The Respom;e Of A Hot-vVire 

For a hot-wire in the x - y plane (Figure A.l) the velocity vector 

can be resolved into three components, two of which, u and v are themselves 

in the x - y plane. If the angle of the wire to the y-axis is o:, then the 

components are :-

a) Velocity component perpendicular to the wire m the x - y plane 

VL = U cos o: + V sin o: (A.l) 

b) Velocity component along the wire in the x - y plane 

V M = - U sin o: + V cos o: (A.2) 

c) Velocity component normal to the wire and the x - y plane 

(A.3) 

Due to the conduction effects of the probe supports, the effective cooling 

velocity is not merely the sum of the components perpendicular to the wire, 

but may be expressed as :-

(A.4) 

where k and h are factors dependent upon probe geometry. 
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This response equation was proposed by J¢rgensen (1971). He tested 

DISA single wire probes and gold plated wire probes, for their response over 

a wide range of angles. The values he measured for k and h which are most 

appropriate for the probes used here are shown below :-

Table A.l Wire Response Factors 

Probe k h 

DANTEC 55P14 0.286 1.086 

DANTEC 55P04 0.119 1.043 
. - . 

'Ide;\l Wire ' 0.000. -1.000 

Although it might seem that it would be possible to measure these 

responses for each individual wire, in practise an extremely accurate calibration 

facility is required, with very careful data recording. It is far simpler therefore, 

to use those values tabulated above. Care should be taken however, when 

trying to apply results obtained for single wires to x-wires or triple wires, as 

the prong geometry influences the response (Chew and Ha (1988)). 

Substituting individual velocity components into the response equation 

gives 

Vef=1 = (U coso:+ V sin of+ k2
( -U sino:+ V cos o:)2 + h2W 2 

= (cos2 o: + k2 sin2 o:)U2 + (sin2 o: + k2 cos2 o:)V2 

+ sin 2o:(l - k2)UV + h2W2 

(A.5) 

Following Hinze (1975), we split each velocity into a mean and fluctuating 

part :-

U = U + u' V == V + v' 

where u', v', w' = 0 by definition. 

Thus 

W=W+w' 

Ve}f = (cos2 o: + k2 sin2 o:)(U + u')2 
+ (sin2 o: + k2 cos2 o:)(V + v')

2 

+sin 2o:(1 - k2 )(U + u')(V + v') + h2(W + w')2 
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Define 

(A.8) 

h2 
¢ = ------::--

cos2 a + k2 sin2 a 

Then we may write 

{ 
2 [-2 - 2] 2 -2 2 2 . 2 2u' u' V + 2 V v' + v' 

V.:tt=U(cos a+k Slll a) 1+ u +u2+v u2 

. [uv + Vu' + Yiv' + u'v'l , fW2 + 2Ww' + w'
2 l} 

-r ~-" u2 J + cp l u2 J 
(A.9) 

A binomial expansiOn 1s used to obtain the square root of (A.9), 

assuming that the axis system is aligned to the flow, such that U > V 

and U
2 ~ V

2 
(similarly for U and W), and that third and higher order 

correlations of fluctuating terms are very small compared with the second 

order correlations. This yields the following equation :-

_ V { u' [ v p,2] V eff = U ( cos2 a + k2 sin 
2 a) 1 + U + 2 - 8 

!!. [V + v'] p_ [W2 

+ 2Ww' + w'
2

] } 

+ 2 u + 2 u2 

(A.lO) 

Evaluating the mean of (A.lO) gives :-

1 { [-v
2 

_ p,
8
2] [ v

2 
u+2 v'

2

] V ef J = U y ( cos2 a + k2 sin 2 a) 1 + 
(A.ll) 
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Squaring (A.ll) and making the same assumptions as when expanding (A.9) 

yields 

r r-2 /2] -r2 ""2 ; ? . ? • ? • . v + v v eff = u \cos- Q + k- sm- Q) ll + v l u2 

- f12v'2 flV [W2 + w'2]} 
-2 + u + ¢> -2 

4U U 

(A.l2) 

Evaluating the mean of (A.9) gives :-

{ -2 [-2 -2] -2 -2 u' V + v' 
v eft = u ( cos

2 Q + k2 
sin

2 Q) 1 + u2 + v 7]2 

+ ~ [ VV ;, iN] + ¢ [W';, ;?] } (A.l3) 

As 

V , v2 v2 v , -,-2-
Vett = eff + Veff ==? eff = eff + 2 effVeff + Veff (A.14) 

Therefore 

-2- -2 -2- --

veff = v eff + v~ff smce v:!JJ = 0 by definition. (A.l5) 

Thus 
-2- --2- -2 
v~ff = Veff - V eft - equations (A.l3)- (A.l2) (A.16) 

Therefore 

( ~) 
2 

= (cos
2 o + k2 

sin
2 o) [u'' + ~'t + ~v'u'] (A.l7) 

Equations ( A.ll) and (A.l7) represent the mean and r.m.s. responses of a 

wire placed at an angle a to the y-axis. 

A.2 Rotatable Method for Flow Measurement 

If mean voltage E and r.m.s. voltage P (A.C. coupled) are 

measured for a wire set at various angles to the flow, using a linearised 

system, then the corresponding mean and r.m.s. velocities are obtained by 

simply dividing by the wire sensitivity S, obtained from calibration. 
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Consider the case of the turbulence data, for which the equations 

may be written in matrix form :-

v'2 

1 JL2(al) J.L( a I) (cos2 a1 +P sin~ 
4 --;2 

1 J1:2(0.2) J.L( Q2) 

(;:,) 
v2 

4 (cos2 o2+k2 sin2 02) 

1 Jl2 (aa) J.L( Q3) X ~ (A.18) 
4 J 

(cos2 o3+k2 sin2 03) 

1 ~ J.L(a,.) --;2 4 vn 
( cos2 a,. +k2 sin2 a,.) 

If more than three results are recorded, i.e. n > 3, then these simultane

ous linear equations may be solved by a least squares method. This was 

implemented using a Numerical Algorithms Group subroutine F04AMF. 

A.3 Calculation Of Confidence Intervals 

~We may represent equation (A.l8) as a general matrix equation :-

AX=B (A.19) 

for n equations in 3 unknowns. 

Having obtained a least squares solution X, the computed values of the input 

velocities which satisfy this solution are 

S=AX (A.20) 

then the residuals for each angle may be calculated 

Jr=B-S (A.21) 

where r is a vector of rank n. 

The error of the fit is given by 

"" 2 E = L..,i=l ri 

n-q 
(A.22) 

where q is the number of unknowns in the original system of equations. In 

this case q = 3. 

203 



The matrix §inv = (AT At 1 is diagonal. For each diagonal element 

§ii ( i = 1, q) a confidence interval to the solution vector may be calculated 

such that 

C.!.; = fE * ~ ~, t (A.23) 

where t is a statistical parameter obtained from tables, and depends upon 

the number of degrees of freedom, and the limit chosen. For three degrees 

of freedom, and 99% confidence, t = 4.54. 

A.4 Mean Velocity Equation 

Equation (.A.ll) cannot be solved in the same way as equation (A.17), 

since it is non-lineox. An eliminil.tion 111Pthod nf solution wr~s adopted initially 

to solve the equations. In order to obtain inforn1<1tion on thP. ac:c:mil.c:y of 

the method, it was decided to perform a least squares solution as described 

for the turbulence data, but based upon the concept of an ideal wire. For 

an ideal wire with k = 0 and h = 1, equation (A.ll) reduces to :-

1 W 2 

Veff = U coso:+ Vsino: + ---
2 cos 0: u (A.24) 

which is linear. It was found that the results of solving this equation with 

a least squares method, were very similar to the results of solving equation 

(A.ll) with an elimination method. This is because the non-linearity of 

equation (A.ll) is extremely small. Hence it was decided to simply adopt the 

ideal wire solution for mean velocity measurements, and only use gold-plated 

w1res (DANTEC 55P04) which are closer to 'ideal'. 

All equations were solved in a coordinate system approximately aligned 

with the flow direction in order to ensure the validity of the binomial expansion 

used to obtain equation (A.IO). Having solved for the flow in these coordinates, 

the solutions could then be rotated to cascade coordinates for storage. 
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Appexullix B 

Estimation of Change in §hea.Jr §tire§§ firom §Rot § to §liot ]_l{]l 

B.O Introdluciion 

This appendix gives details of a rough assessment of the change in u'v' 

shear stress which might be expected between slots 8 and 10. The assessment 

is based on consideration of the shear stress transport equation, evaluating 

Reynolds stress terms from the hot-wire measurements for the 'JGC' test 

case, and velocity gradients calculated from measurements of the 'JAW' test 

case. 

B.l §hear §tx·ess Transport Equation 

The shear stress transport equation may be written as 

8u~ 8uj 
-2v--

8x1 8x1 

Production 

Redistribution 

Dissipation 

Diffusion 

(B.1) 

Neglecting the redistribution, diffusion, and dissipation terms, and 

considering i = 1, and ) = 2 gives the following equation:-

D- -BU - 2 8U -BU 
--(u'v') ~ u'v'- + v' - + v'w'-

Dt 8x By 8z 
- 2 8V -BV -BV + u' - + u'v'- + u'w'-

ox By oz 

(B.2) 

The substantive derivative on the left hand side may be approximated as 

D- -ou'v' U -
-(u'v') ~ u-- ~ -~(u'v') 
Dt ox ~X 

(B.3) 

Assuming that the V ;Y and W %z terms are small, and that the values remain 

constant over the streamwise distance from slot 8 to slot 10. 
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Values for terms on the right hand side of equation (B.2) may be 

evaluated, if it is assumed that the velocity gradients are little changed 

between the 'JAW' and 'JGC' test cases. Figure B.1 shows plots of the 

partial velocity gradients in hot-wire coordinates, determined from a traverse 

of slot 8 presented by Walsh (1987). Values for the Reynolds stresses (except 

for v'w' which must be ignored) may be read from the contour plots in Figure 

7.14. Summing terms for a point in the loss core at coordinate (-120,40) 

g1ves:-
~(u'v') 

V,2 = -0.096 
u 

(BA) 

The dominant term in the calculation for this point Is v'2 ~~. At the point 

(-140,70) near the suction surface separation line, the change is:-

6.( u' v') 
V2 = -0.1 

u 

with the dominant term here being due to u'v' ~~. 

(B.5) 

Although this analysis is very approximate, and makes several as

sumptions, it does suggest that the data is consistent and that the observed 

change of -0.04 is believable. 
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A pp eJruHx CC 

Parrtial Velodty Dedvative§ 

This appendix presents contour plots of partial velocity derivatives at 

slot 10. The derivatives were evaluated from bi-cubic spline surfaces which 

were fitted to the data as discussed in Chapter 7. The five hole probe traverse 

of slot 10 for the 'JGC' test case was used to evaluate all derivatives, as 

although the hot-wires do provide information about velocities over the traverse 

plane, a total pressure traverse is also required by the calculation procedure 

to determine axial gradients. This is done via the incompressible Helmholtz 

equation, and the method has been described by Gregory-Smith et al (1987) 

who developed it to calculate vorticity from experimental traverses. 

The partial derivatives are presented in both cascade coordinates (axial, 

tangential, radial) and the 'hot-wire' coordinates in which the Reynolds stresses 

were measured. The hot-wires were aligned with Lhe midspan streamwise 

direction for each tangential location, and so the coordinates x, y, z are m 

fact 'streamwise, cross-passage, and radial' in this case. It was necessary to 

calculate the partial velocity derivatives in hot-wire coordinates, as one of 

the components of the Reynolds stress tensor was not measured, preventing 

evaluation of its components in cascade coordinates. The resulting contour 

plots of partial velocity derivatives are presented in Figure C.l. 
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