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Abstract 

X-rays can be used as a sensitive, non-destructive probe for the character
isation of semiconductors. The energy and wavelength of X-rays is such that 
structural information down to the Angstrom level can be yielded with a depth 
penetration of several microns. As a result X-rays are ideally suited to the 
study of thin layer semiconductors. Double crystal diffractometry in particular 
is widely used throughout industry for the characterisation of heteroepitaxial 
layers. As epitaxial growth techniques become more sophisticated the demand 
for more detailed structural information becomes even greater. In particular, the 
trend towards thinner and thinner layers in optoelectronic devices means that 
conventional characterisation methods are often lacking in sensitivity. This the
sis concentrates on the development of new techniques used in the study of ultra 
thin epitaxial layers. 

Skew beam paths have been utilised to provide enhanced sensitivity to thin 
surface layers. By choosing a suitable asymmetric reflection and rotating the 
sample through the reflection plane normal it is possible to tune the angle of 
incidence to that required. Experiments performed on a single epilayer yielded 
a fourfold increase in intensity of the layer diffraction effects compared to a 
conventional grazing incidence asymmetric reflection. 

Two layer structures have been characterised using Pendellosung fringes. Al
though a conventional technique it has only recently been realised that errors 
may result in layer thickness determination due to direct measurement of fringe 
spacing from the rocking curve. Fourier Analysis has been used to accurately 
determine layer thickness and the conditions necessary for its use have been fully 
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investigated. By evaluating layer thickness in this fashion the process of match
ing theoretical rocking curves with those produced in experiment becomes more 
straightforward and close fits have been achieved. 

X-ray reflectivity is a well established method sensitive to electron density 
change, although as yet it has had little application in the study of epitaxial 
layers. Angular reflectivity using both double and triple crystal diffractometers 
has been used to characterise thin epilayers, and the relative merits of each are 
discussed. A technique known as energy dispersive reflectivity has also been 
investigated and found to be an extremely rapid method of determining layer 
thickness. Theory describing X-ray reflectivity is discussed and a computer pro
gram has been written to model the experimental results. 
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Chapter I 

Introduction 

.1 Optical Communications 

It was in the 1960's when Kao and Hockham (1961) first proposed the use 
of optical fibres for communication purposes. Since that time the rapidity with 
which optical fibre communication systems have been transformed from a novel 
idea into the present day commercial exploitation on a vast scale, has been pri
marily due to the great advances made in reducing optical losses in silica fibres, 
coupled with the rapid development of reliable, long wavelength (1.3-1.6/zm) 
transmitters and detectors. Semiconductor lasers operating at these wavelengths 
are now integral components of many new optical fibre communication systems. 
Higher optical power output and superior dynamic response, where very large 
light intensity changes can be achieved by a relatively small change of current 
through the device, has resulted in lasers almost completely replacing LED's for 
some applications. An excellent account of long-wavelength semiconductor lasers 
including their operation, growth and applications has been given by Agrawal 
and Dutta (1986) while GaAs technology has been reviewed by Mellor (1987). 

Figure 1.1 shows the range of emission wavelengths for various semiconductor 
lasers. Taken together, these materials cover the optical spectrum from near 
ultraviolet to far infrared (Bachman and Goslowsky, 1987). The most important 
criterion in selecting the semiconductor material for a specific heterostructure 
laser is related to the quality of the heterojunction interface between the two 
semiconductors of different band gaps. To reduce the formation of lattice defects, 
the lattice constants of the two materials should match to closer than 0.1%. 

Figure 1.2 shows the interrelationship between the band gap Eg, and the 
lattice constant a, for several ternary and quarternary compounds (Glisson et 
al., 1978). In\-xGaxAsyP\-y lasers, for example, can cover a wavelength range 
of 1.1-1.65/xm by choosing i and y such that the active layer is lattice-matched 
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to InP. Semiconductor lasers emitting at 1.3/xm and 1.55pm wavelengths are of 
particular interest because of their application in optical fibre communications 
(Panish, 1987). 

In an optical fibre communication system, information is transmitted by light 
propagation within an optical fibre as a coded sequence of light pulses. The sig
nal weakens during propagation because of fibre loss and so it becomes necessary 
to regenerate the signal, after some distance, through the use of a repeater (es
sentially a detector-amplifier-transmitter combination). It is therefore necessary 
to maximise what is known as the bit rate-distance product, BL. The bit rate 
is limited inherently by chromatic dispersion in the fibre, which is responsible 
for the broadening of optical pulses during their propagation inside a fibre. The 
choice of the operating wavelength is therefore related to the loss and dispersion 
characteristics of the fibre. Figures 1.3 and 1.4 show the variation of the optical 
loss [in dB/km] and the dispersion coefficient [in ps/(km.nm)] as functions of 
the wavelength for typical single-mode fibres (Miya et al., 1979; Sugimura et al., 
1980). 

The first generation of optical transmission systems utilised GaAs lasers op
erating at a wavelength of about 0.85/im. Relatively high values of the loss and 
dispersion coefficients restricted the repeater spacing to ~ 10km and the bit rate 
to ~ 100Mb/s. The second generation of systems made use of the wavelength 
region around 1.3/xm, where fibre dispersion is negligible. The use of InGaAsP 
lasers coupled with the relatively low fibre loss allowed a repeater spacing of 
about 20km. However, the bit rate had to be below ~ 100Mb/s because of 
modal dispersion in multimode fibres. This problem was overcome in the third 
generation of lightwave transmission systems with the use of single-mode fibres, 
and the absence of chromatic dispersion near 1.3/xm then allowed much higher 
bit rates (B < iGb/s). However, the repeater spacing (~ 50km) was limited by 
the fibre loss at this wavelength. The fourth generation of optical communication 
systems is based on 1.55/zm InGaAsP lasers where the fibre loss is a minimum. 
At this wavelength the repeater spacing can easily exceed lOOfcm for moderate 
bit rates. At high bit rates (B > lGb/s) the repeater station is not limited by 
fibre loss but by the extent of fibre dispersion. Two possible approaches have 
been followed to overcome this problem. In one the zero dispersion wavelength, 

14 



100 

50 

10 

5 

0.5 

CORE DIAMETER 9.4/j.m 
INDEX DIFFERENCE 0.19% 

GQAS 

i n G Q A S P - i 

0.8 1.0 1.2 
WAVELENGTH (ftm) 

1.4 

Figure 1.3: Measured loss in a single-mode silica fibre as a function of wavelength. 
Arrows indicate wavelength regions used for optical fibre communications. Min
imum loss occurs around the 1.55/xm wavelength. After Miya et al (1979). 

20 

10 

10 

O -20 

30 

4 0 

50 
1.0 I.I 1.2 1.3 1.5 .4 1.6 

WAVELENGTH ( u m ) 

Figure 1.4: Measured material dispersion for typical single-mode silica fibres. 
Data points for three fibres are shown. After Sugimura et al (1980). 



which is about 1.3/zm for conventional silica fibres is shifted towards the desirable 
1.55/im region by modifying the fibre characteristics (Okamoto, et al., 1979). In 
the other the effect of fibre dispersion is minimised by reducing the spectral width 
of the 1.55/xm InGaAsP laser source (Bell, 1983). 

In general terms, a laser is an externally pumped self-sustained oscillator and 
consists of a gain medium that is placed inside an optical cavity to provide the 
necessary feedback. In semiconductor lasers a forward biased p-n diode structure 
electrically pumps a semiconductor material, and charge carriers injected into a 
thin active layer provide the gain. No external cavity is required since cleaved 
facets of the semiconductor gain medium itself can provide sufficient optical feed
back. The strength of the external pumping is governed by the injected current 
density, J. The laser threshold is reached when J reaches a critical value Jth at 
which the gain is sufficient to overcome the cavity losses. Any further increase in 
J leads to light emission by stimulated emission. Figure 1.5 shows a schematic 
illustration of a laser. 

Long wavelength photodetectors also form a vital part of any optical fibre 
communication system. The simplest practical detector is the unity gain PIN 
photodiode, as shown schematically in figure 1.6, which can be illuminated ei
ther through the substrate or by direct top illumination (Nelson et al., 1986). 
Radiation is absorbed in the Gain As region and the photogenerated carriers are 
separated by the electric field to produce a photocurrent in the external circuits. 
Another essential component for both integrated optics and coherent communica
tion purposes is the guided wave device, which is necessary for the manipulation 
of optical signals. A cross sectional view through a ridge waveguide phase mod
ulator is shown in figure 1.7. Essential requirements of this structure are firstly 
a low doped Gain As P guide layer to reduce optical transmission loss, and sec
ondly a high quality p-n junction close to the guide layer which is used to deplete 
GalnAsP layer of mobile carriers and thereby change the optical properties via 
the electro-optic effect. 

Low dimensional structures are a powerful new class of semiconductor het-

erostructures in which periodic changes in the heterojunction band structures are 

engineered to occur over small dimensions (Chang, 1983, 1986). Confinement of 
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carriers within the band structure potential wells thus formed, results in the for
mation of quantised energy levels via the quantum size effect, thereby producing 
a range of new optical and electronic properties completely uncharacteristic of 
the original bulk semiconductors. Multi-quantum well (MQW) and superlattice 
structures, as they are know, therefore open up a completely new field of device 
physics (Orton, 1989). 

1.2 Epitaxial Growth 

The development of sophisticated epitaxial techniques has been of major sig
nificance in the development of high-quality, reliable devices. The commonly 
used techniques are liquid-phase epitaxy (LPE) , vapour-phase epitaxy (VPE) , 
and molecular-beam epitaxy (MBE). The V P E technique has also been called 
chemical vapour deposition (CVD) depending on the constituent of the reac-
tants. A variant of the same technique is metal-organic chemical vapour depo
sition (MOCVD) also known as MOVPE, in which metal alkyls are used as the 
compound source. 

1.2.1 Liquid-Phase Epitaxy 

L P E is particularly suited to growing relatively thick layers (2-10^m) of high 
crystalline quality (Nakajima et al., 1980). In L P E a supersaturated solution of 
the material to be grown is brought in contact with the substrate for a desired 
period of time. Three basic types of growth apparatus have been used for L P E , 
illustrated in figure 1.8. They are (a) the tipping furnace, in which the substrate 
is brought in contact with the solution by tilting the furnace (b) the vertical 
furnace, in which the substrate is dipped into the solution and (c) the multibin 
furnace, in which the substrate can be brought in contact with different solutions 
kept in successive bins. The multibin furnace method is extensively used for the 
fabrication of laser structures that require successive growth of several epitaxial 
layers. L P E has been used in the growth of high purity InP and InGaAsP (Cook 
et al., 1982) and in the fabrication of InP'/InGaAsP superlattices (Chang, 1983), 
although presently it is used mainly for the fabrication of LED's. 
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1.2.2 Vapour Phase Epitaxy 

In V P E the source chemicals from which the epitaxial layers are grown are 

gaseous (Chatterjee et al., 1982). V P E is often classified as one of two different 

methods; the chloride and the hydride techniques. In the chloride method, AsCl$ 
or PClz is passed over elemental Go or In to form metal chlorides. These then 

react with AsH$ or PH$ near the InP substrate to form epitaxial layers of 

InGaAsP on InP. The metal chlorides can also be formed by using source 

pieces of GaAs or InP instead of elemental Ga or In. In the hydride method, 

metal chlorides are formed by passing HCl gas over hot In or Go metal. Figure 

1.9 shows a schematic diagram of the growth reactor for the growth of InGaAsP. 

1.2.3 Metal-Organic Vapour-Phase Epitaxy 

MOVPE (or MOCVD) is a variant of the V P E technique that uses metal 

alkyls as sources from which the epitaxial layers form (Stringfellow, 1985). Figure 

1.10 shows a schematic illustration of the MOVPE growth process (Nelson et al., 

1986). Group III alkyls [ G o ( C 2 # 5 ) 3 and In(C2Hb)3] and group V hydrides [AsHz 
and PH$] are introduced into a quartz reaction chamber that contains a substrate 

placed on a radio-frequency heated (~ 500°C) carbon susceptor. The gas flow 

near the substrate is lam- inar, with velocities in the range of 1 to 15cms~l 

for a working pressure between 0.1 and 0.5atm. A stagnant boundary layer is 

formed near the hot susceptor and gas molecules diffuse to the hot surface of 

the substrate. At the hot surface the metal alkyls and the hydrides decompose, 

producing elemental In, Ga, P and As. The elemental species deposit on the 

substrate, forming an epitaxial layer. The gas-flow rates are determined by mass-

flow controllers. Zn(CiH^)z and H2S are used as sources for p-type and n-type 

doping respectively. 

MOVPE has been used for the growth of high quality single thick layers and 

MQW's of GalnAs and InP (Moss and Spurdens, 1984) as well as II-VI layers 

and superlattices (Bhat et al., 1987; Ahlgren et al., 1987). MOVPE has the abil

ity to produce a wide variety of structures, as well as being capable of depositing 

metals and dielectric materials. Large area uniformity and precise thickness and 

composition control makes MOVPE an ideal technique for production (Nelson 

et al., 1986). 
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!.4 Molecular Beam Epitaxy 

In MBE, epitaxial layers are grown by impinging atomic or molecular beams 

on a heated substrate in an ultrahigh vacuum. The constituents of the beam react 

with the substrate, resulting in a lattice-matched layer. The beam intensities can 

be separately controlled to take into consideration the difference between sticking 

coefficients of the various constituents of the epitaxial layers. Figure 1.11 shows 

a cross-sectional view of an MBE system illustrating the configuration of the 

major components (Davies and Andrews, 1985). The widespread use of MBE 

for the growth of different III -V semiconductors resulted from the original work 

of Cho and Arthur (1975). Since then, extensive work on heterostructure lasers, 

microwave devices, quantum-well lasers, and superlattice structures has been 

reported using AlGaAs and other materials prepared by MBE (Chang, 1983; 

Holah, Meeks and Eisele, 1983; Davies and Andrews, 1985). 

.3 Lattice Mismatch and Vegard's Law 

Since ternary alloys of III -V elements are only lattice matched to binary III-V 

substrates at one composition, any deviation from this matched value will lead to 

misfit stress occurring during growth (Griesche et al., 1988). If the mismatch is 

relatively small the strain will be entirely taken up by tetragonal distortion of the 

layer (Olsen and Smith, 1975), whereby the lattice spacing in the substrate plane 

becomes equal to that of the substrate and the spacing perpendicular to the plane 

changes from its relaxed value. Clearly, any lattice parameter measurements 

performed will be of this final structure and it is therefore important to be able to 

relate these values to the initial compositions. Hill (1985) has given an account of 

tetragonal distortion and misfit stress in epilayers for growth on (001) substrates, 

while growth on other planes has been dealt with by Hornstra and Bartels (1978). 

The relaxed lattice constant can be directly related to the composition for 
ternary alloys, using Vegard's law, which states that the lattice parameter is a 
linear function of the composition (Mikkelsen and Boyce, 1982; Fukui, 1984). 
For example, for GaxIn\-xAs as we have 
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Figure 1.11: Cross-sectional view of an MBE system illustrating the configuration 
of the major components. After Davies and Andrews (1985). 



where a is the relaxed lattice parameter. Similar equations exist for other ternar

ies, thus x can be easily determined. 

For quaternaries the variation in lattice parameter is more complicated. Tak

ing GaxIn\-xAsyP\-.y as an example, the lattice parameter is given by the sur

face shown in figure 1.12 (Hill, 1985). Considering the change in lattice parameter 

parallel to the x and y axes we obtain 

da 
= yUGaAs + (1 ~ y)aGaP ~ VO-InAs ~ (1 ~ y)°>InP , I - 2 

and 

— = xacaAs + (1 ~ x)ainAs - xagaP ~ (1 - z)ajnP • 1-3 
oy 

Now at x = 0 and y = 0, a = ajnp , therefore 

aGaxln^xAsyP1-y = x y a G a A s + x ( l - y)aGaP + (1 - x)j /a / n ^ s + (1 - x)(l - y ) a I n P . 

1.4 

The lattice matched composition occurs when a(x,y) = ainp , so that 

0.4526y 
x = 1 - 0.031y 

1.5 

As it is not possible to determine x and y individually from equation (1.4), it is 

necessary to use the empirical relationship between composition and band gap 

(Nahory, 1978). The best fits to the experimental data is shown in Table 1.1 and 

the values of the lattice parameters for some of the common III-V binary alloys 

are shown in Table 1.2. 
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Ternary Band gap (eV) 

In\—xGaxAs Eg{x) = 0.36 + 0.629 + 0.436x2 

InASyP\-y Eg(y) = 1.35 - 1.77y + 0.18t/2 

In\-xGaxP Eg(x) = 1.35 + 0.668x + 0.758x2 

GaAsi-yPy Eg{y) = 2.77- 1.56y + 0.21y2 

In\-xGaxAsyP\-y Eg(x,y) = 1.35 - 0.72i/ + 0.12y2 

Table 1.1: Band gaps of some common Ternary and Quaternary alloys 

Binary Lattice Parameter (A) 

GaAs 5.65325 

InP 5.86875 

InAs 6.0584 

GaP 5.45117 

Table 1.2: Lattice Parameters of III -V Binaries 

.4 Characterisation Methods for Semiconductor Materials 

The precision and quality required of semiconductor materials for use in 
microelectronic and optoelectronic devices requires increasingly precise control 
of growth conditions. As future material and device requirements become in
creasingly sophisticated, so analysis techniques must develop to match them 
(Ambridge and Wakefield, 1985). Other than electrical assessment (Wood and 
Ambridge, 1986), characterisation methods for semiconductor materials can be 
divided into four main groups; optical probes, electron beams, X-ray probes and 
particle beams. Table 1.3 outlines some capabilities of common characterisation 
techniques used in the semiconductor industry today (Shaffner, 1986). Comple
mentary types of information are provided by each of the groups and it is usually 
necessary to use several techniques in order to fully characterise a sample. For 
instance, particle techniques which are sensitive to trace impurities and dopants 
clearly complement those methods employing beams of electrons for defect and 

20 



Table 1.3: Capabilities of some commonly used techniques for semiconductor 
characterisation are compared relative to the type of probing radiation. After 
Shaffner (1986). 

Optical 
Micro
scopy 

Fourier 
Transform 
Infrared 

(FTIR) 

Photo 
Lumines
cence 

(PL) 

Infrared 
and Ultra
violet 

(IR & UV) 

Raman 
Micro-
Probe 

Photo-
Neutron 
Activation 

Depth Analyzed > 1-3 iim 1-10 mm 1-3 itm 1 mm IR 
1 Mm UV 

1 fim 0.5 cm 

Diameter of 
Analysis Region 

- 1 cm 2 mm > 5 urn 1 mm 2 itm 0.5 cm 

Detection Limit 
(atoms/cm3) 

visual 
inspect 

1x10" 1X10'1 5xl0 ' 8 5x10" 5x10" 

Detection Limit 
(ppm) 

visual 
inspect 

2X10" 6 2x10" 8 100 1000 0.1 

In-depth profiling 
resolution 

none none none none none none 

Time for Analysis < 1 hour 2 hours 2 hours < 1 hour < 1 hour 2 hours 

Comments In-depth 
profiling 
achieved by 
angle-lap 
cross section 

Performed at 
10-15°K tempera
tures 

Performed at 
<t°K tempera
tures 

Performed at 
room tempera
ture 

Sulk 
measure
ment only 

(a): Optical probes 

Scanning 
Electron 
Microscopy 

(SEM) 

Auger 
Electron 
Spectroscopy 

<AES) 

Scanning 
Auger 
Mlcroprobe 

(SAM) 

Electron 
Mlcroprobe 

(EMP) 

Analytical 
Electron 
Microscopy 

(AEM) 

High 
Voltage 
TEM 
(HVTEM) 

Depth Analyzed - 1000A 20 A 20 A 1 llOl < 1000A < 1000A 

Diameter of 
Analysis Region 

50A -
5 mm 

100 itm 1000A 1 jim 10 jim 10 itm 

Detection Limit 
(atoms/cm3) 

surface 
image 

Sxi0 1 9 1X102' 5X10'9 defect 
imaging 

lattice 
imaging 

Oetection Limit 
(ppm) 

surface 
image 

1.000 20.000 1000 defect 
imaging 

lattice 
imaging 

In-Oepth Profiling 
Resolution 

stereo 
microscopy 

20 A 20 A none stereo 
microscopy 

none 

Time for Analysis < 1 hour < 1 hour < 1 hour < 1 hour 1-3 days 1-3 days 

Comments In-depth 
profiling 
achieved 
by angle-
lap cross 
section 

Profiling 
achieved 
by argon 
sputtering 

Profiling 
achieved 
by argon 
sputtering 

Wave
length & 
energy 
dispersive 
analysis 

sample preparation requires 
specialized techniques and 
is time consuming 

(b): Electron beams 



Powder Thin Lang Double X-ray X-ray 
X-ray Film X-ray Crystal Fluorescence Photo-
Diffraction Analysis Topography Topography electron 

Spectro
(Seemart- scopy 

(XRD) Bohlin) (Lang) (OCT) (XRF) (XPS.ESCA) 

Oepth Analyzed 10-50 pm 100A • 500 itm 5-100 «m 1-3 nm 20 A 
1 itm 

Diameter of > 1 mm 1x5 mm > 1 cm > 1 cm > 5 mm 5 mm 
Analysis Region 

Detection Limit 5 x 1 0 " 5 x 1 0 " 1X10* 3 1 X 1 0 " 7 1 x i 0 ' 9 5 x 1 0 " 
(atoms/cm3) in Ad/d in Ad/d 

Detection Limit 1000 1000 - — 200 1000 
(ppm) 

In-depth Profiling none none stereo nona none 20 A 
Resolution topography 

Time for Analysis < 1 hour 2 hours 1 hour 4 hours 10 min < 1 hour 

Comments sample grazing whole whole rapid & In-depth 
cannot be incidence slice slice quanti profiling 
amorphous beam used survey survey tative by argon 

sputtering 

(c): X-ray probes 

Rutherford Neutron Ion High Charged 
Backscattaring Activation Microscope Energy Ion Particle 
Spectroscopy Analysis Channeling Activation 

Analysis 
(RBS) (NAA) (IMS.SIMS) (CPA) 

Oepth Analyzed 200 A - 1 iim 50 A 100 A 300 pm 
1 fim 

Diameter of 2 mm > 1 cm > 5 mm 1 mm 5 mm 
Analysis Region 

Detection Limit 5 x 1 0 " 5 x 1 0 " 5 x 1 0 ' * 5 x 1 0 ' * 5 X 1 0 ' 3 

(atoms/cm3) - 5 x 1 0 ' 8 - 5 x l 0 ' 8 

Detection Limit 1000 0.00001 - 0.1 - 1.0 0.001 
(ppm) 100 100 

In-depth Profiling 200 A 1 iim 50 A surface 25 Mm 
Resolution technique 

Time for Analysis 1 hour 2-5 days 1 hour 2 hours 2 hours 

Comments No In-depth Spatial crystal In-depth 
standards profiling by Resolution line substrate profiling by 
needed chemical etching near 1 *im required chemical etching 

(d): Particle beams 



surface definition, while X-ray techniques specialise in crystalline imperfections 

and determination of composition. 

In the growth of bulk crystals, characterisation methods are concerned with 

the identification of bulk impurities, dopants, defects and crystal damage (Dyer, 

1983). GaAs stoichiometry, for instance, has been studied using composition sen

sitive X-ray methods (Cockerton, Green and Tanner, 1989), and infrared spec

troscopy has been used for the characterisation of dopant species, determining 

the presence of carbon and oxygen in silicon (Stalhofer and Huber, 1983). X-ray 

topography (Halliwell, Childs and O'Hara, 1972; Hart, 1975; Tanner, 1976; Bhat, 

1985) is a powerful technique which can be used not only to study macroscopic 

features such as flake chips, surface fractures, scratches, edge cracks and wafer 

warpage, but also microscopic defects including stacking faults, dislocation loops 

and slip. Double crystal topography, in particular, is highly sensitive to lattice 

strains and effects (Bonse and Kappler, 1958) and is ideally suited for study of 

epitaxial films (Riglet et al., 1980; Eaglesham et al., 1988). 

Optical assessment techniques, including Raman spectroscopy and Photo-

luminescence spectroscopy are particularly valuable in the characterisation of 

quantum well and superlattice structures, as well as single epitaxial semicon

ductor layers (Davey, Wakefield and Ambridge, 1987). Raman spectroscopy is 

a technique based on focussing light from a laser into a micron sized spot on 

the specimen and collecting the light in a spectrometer for analysis. The Raman 

vibrational modes excited by the light can be used as a fingerprint to identify 

composition. Raman spectroscopy has been used to determine composition in 

GalnAs/AUnAs MQW structures (Davey, Scott, Wakefield and Davies, 1987; 

Scott, Davey, Halliwell and Davies, 1988; Davey et al., 1989) and in InAs/GaAs 

heterostructures (Diebold, Steinhauser and Mariella, 1989). In photolumines-

cence spectorscopy (PL), a population inversion of electronic excited states is 

created by visible laser light stimulation, and emissions resulting from relaxation 

to the ground state are analysed. Smith (1981) has given a review of the method 

and examples of its use have been in the study of impurity incorporation of 

InGaAs on InP (Goetz et al., 1983), optical properties of InGaAs (Skolnick et 

al., 1986) and determination of energy gaps in AlGaAs (Lambert et al., 1987). 
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For the characterisation of diffusions and implants one of the most useful 

tools is secondary ion mass spectroscopy (SIMS), (Asher, 1988). The technique 

involves bombarding a sample w i t h a pr imary beam resulting in a gross dis

turbance of the near surface region. Sample atoms recoil f r o m the surface, a 

small f rac t ion of which w i l l be ionised. These secondary ions are then focused 

into a mass analyser and the proport ion of different element types i n the surface 

can be determined. This destructive technique has been used, for example, by 

Macrander and Swaminathan (1987), to study InGaAs on InP. 

Dif f rac t ion based characterisation techniques are becoming increasingly i m 

portant i n the development of device technology (Hall iwell , Taylor and Ambridge, 

1985). A major difference in the experimental conditions used in X-ray and elec

t ron di f f rac t ion techniques arises because of the much stronger interaction be

tween electrons and atoms than between X-rays and atoms. Electrons are rapidly 

scattered and absorbed on entering a sample and so only very th in layers (up 

to 1/xm) of a sample may be examined, whereas X-rays can penetrate through 

samples up to the thickness of a typical wafer. Electrons can be readily focused 

using electromagnetic lenses unlike X-rays, and so the spatial resolution is very 

high. X-rays can be used to assess large samples such as complete wafers, up 

to several inches i n diameter. The major advantage of X-rays is that they are 

non-destructive. In electron dif f ract ion techniques this is not the case, as the 

sample generally has to be thinned, however, because the magnification available 

is around four orders of magnitude greater than for the X-ray case, a much more 

detailed study of the defects can be made. 

The Transmission Electron Microscope ( T E M ) consists of an electron source, 

two condenser lenses to focus the electrons on the specimen, an objective lens to 

fo rm the image and di f f rac t ion pat tern, and three post specimen lenses to magnify 

the image or d i f f rac t ion pat tern (Grundy and Jones, 1976). B y the preparation 

of cross sections i t is possible to obtain images of, for example, compositional 

change through a superlattice and misfi t dislocations at strained layer interfaces 

(Chang, Bhattacharya and Gibala, 1989). T E M has been used for the observation 

of small periodic compositional variations in GalnAs and AlInAs layers grown 

by M B E (Alav i et al . , 1983) as well as to ident i fy defects i n M O V P E grown 

GalnAs (Carey, 1985). Schaus et al., (1986) have investigated the properties 
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of GaAsIAlGaAs quantum well heterostructures, using T E M together w i t h PL , 

in order to optimise growth conditions. Dupuis et al. (1987) have observed 

dislocations in M O V P E Ge layers on Si using T E M before and after annealing, 

and together w i t h double crystal d i f f ract ion an assessment of layer quali ty was 

made. Complementary informat ion f rom X-ray di f f rac t ion , P L and T E M has 

been used to f u l l y characterise M Q W structures (Or ton et al. , 1987). 

1.5 Introduction to X-ray Diffraction 

This thesis concentrates on the use of X-ray dif f ract ion methods in the char

acterisation of epitaxial layers. X-ray dif f ract ion is now widely used in industry 

both as a routine assessment technique to aid crystal growth, and as a highly 

sensitive tool for detailed structural studies. I t is especially useful for the char

acterisation of epitaxial layers, where the layer quali ty is high, and differences in 

lattice parameter between substrate and layer are at the parts per mi l l ion (ppm) 

level. 

Epi taxia l layers are single crystals w i t h the same orientation as the substrate. 

In a single crystal the atoms are arranged in a regular three dimensional array, 

known as the crystal lattice. The atoms wi th in a latt ice can be considered as 

ly ing on a series of equally spaced planes which diffract X-rays. The conditions 

under which an X-ray or electron beam is diffracted are given by Bragg's Law, 

nA = 2ti/ ljfc/sin^ . 1.6 

This is i l lustrated in figure 1.13 where 6 is known as the Bragg angle, for which 

constructive interference occurs between rays diffracted f r o m adjacent atomic 

planes, d^ki is the interplanar spacing and the diffracted radiation is said to 

have undergone on lhkl reflection' i f the planes are separated by a/h, b/k and 

c/l respectively i n the three axial directions, where h, k and I are integers. The 

interplanar spacing for an hkl reflection is then given by 

dhki = — i . 1-7 
y/h* /a* + + /2/c2 
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planes d apart is 2cisin0. The Bragg condit ion for constructive interference is 

A = 2ds in0 . A f t e r Hal l iwel l et al (1985). 



As a result, for a fixed wavelength A, and interplanar spacing d, a strong diffracted 

beam only occurs at one fixed angle, which is the basis of X-ray di f f rac t ion. 

I f a sample consists of a mismatched epitaxial layer on a substrate then the 

layer and substrate w i l l f u l f i l the Bragg condition at different angles. Hence by 

rocking the sample w i t h respect to the X-ray beam over a range of angles and 

measuring the two Bragg angles corresponding to d i f f rac t ion maxima, the layer 

interplanar spacing and therefore composition may be determined. This plot 

of diffracted intensity versus angle is known as a rocking curve. The simplest 

method of X-ray d i f f rac t ion is the single crystal technique (Hart , 1981). For layers 

w i t h latt ice mismatch (Ad/d) of greater than 1 0 - 4 , single crystal methods can 

be used to give a rapid indication of layer composition. However, the technique 

is severely l imi ted by beam divergence and wavelength dispersion, and for high 

resolution studies i t is necessary to use double crystal d i f f ract ion. 
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Chapter I I 

Multiple Crystal Diffraction 

2.1 Introduction 

The previous chapter has described the various methods available for the 

characterisation of semiconductors. This chapter deals w i t h mult iple crystal X -

ray diff ract ion techniques, where mul t ip le implies more than one reflection. Single 

crystal diffract ion has many l imi ta t ions because the rocking curve is dominated 

by broadening due to beam divergence, source size and wavelength dispersion. 

The double crystal diffractometer ( D C D ) removes many of these l imitat ions. Its 

theory has been known since the 1920's, and the reader is referred to the papers of 

Schwarzschild (1928); Allison and Wil l iams (1930); Al l ison (1932); Compton and 

All ison (1936) and D u M o n d (1937). Double crystal diffractometers have been in 

existence since the early 1930's (Compton, 1931; D u M o n d and Marlow, 1937), 

although i t is only w i t h the recent development of highly perfect semiconductor 

crystals that their use has become more widespread. This chapter describes the 

theory of the double crystal diffractometer fol lowing the work of Compton and 

All ison; DuMond; and Pinsker (1978). 

The t r iple crystal diffractometer ( T C D ) first proposed by Renninger (1955) is 

able to scan reciprocal space and so allows the study of diffuse scattering around 

the Bragg peaks yielding impor tan t informat ion on the topography of the crystal 

surface. Examples of its use have been in the study of surface perfection of t h in 

surface layers (Afanas'ev, Aleksandrov, Imamov, Lomov and Zavyalov, 1984) 

as well as multilayers and superlattices (Hornstrup, Christensen and Schnopper 

1986; Christensen, Hornstrup and Schnopper, 1988). Cowley and Ryan (1987) 

have used the instrument to study t h i n surface layers and the theory presented 

in this chapter follows the work of Ryan (1986). 

The use of four crystal monochromators to improve spectral resolution as well 

as angular resolution was first studied by Beaumont and Har t (1974). Since then 
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the monochromator has been used in high resolution five crystal diffractometers 

to study th in layers (Bartels, 1983), the resolution funct ion of which has been 

described by Slusky and Macrander (1987). Fewster (1989) has recently combined 

the qualities of a four crystal monochromator w i t h an analyser crystal i n a six 

crystal diffractometer. The theory and relative merits of the various instruments 

are dealt w i th i n this chapter. 

.2 Theory of the Double Crystal Diffractometer 

Figure 2.1 shows the two possible settings of the D C D , w i t h the second 

crystal either parallel or antiparallel to the first. The X-ray beam is collimated 

w i t h two slits before being incident on the first crystal and i t is this which 

defines the angular divergence of the beam. The divergence is made up of two 

components; the horizontal divergence of a ray, a, is defined as the angle made 

w i t h i ts projection on a vertical plane and the vertical divergence of a ray, ip, is 

the angle made w i t h i ts projection on a plane perpendicular to the axes of the 

instrument (a horizontal plane). I f the two slits are rectangular apertures, of 

equal w i d t h W and height H, separated by the distance L, then the maximum 

values of divergence are given by 

Following Compton and All ison (1936), the first crystal is aligned such that a 

central ray in the incident beam makes an angle 

w i t h the reflecting planes, corresponding to the centre of the reflecting range. 

A is dependent on the refractive index of the crystal and its value is given i n 

the next chapter. Consequently, the maximum of the reflecting profile does not 

correspond exactly w i t h the kinematic Bragg angle, 6Q, given by 

W 
•0m = ~r • 2.1 

6 = 00 + A 2.2 

nX 
sin 8n 

2d 
2.3 
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Figure 2.1: I l lus t ra t ion of the two settings of the double crystal diffractometer. 
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Figure 2.2: Deviation of an a rb i t ra ry ray f r o m the central ray due to horizontal 

and vertical divergence. A f t e r Compton and All ison (1935). 



The central ray, passing through the geometrical centre of the slit apertures, 

w i t h a = tp — 0, makes a glancing angle of # (Ao ,n i ) w i t h the first crystal, 

where n\ is the order of reflection. Ao may be thought of as some characteristic 

wavelength in the incident radiat ion, corresponding to the centre of a spectral 

line. In general, a ray incident on the first crystal may be characterised by three 

quantities ( A ^ V O t giving its wavelength, and horizontal and vertical divergence 

respectively. I t may be shown using figure 2.2 that the deviation of an arbi tary 

ray f r o m the central ray is 

1 dd 
a - -V> 2 t a n 0 ( A q , m ) - (A - A 0 ) ^ r - ( A o , n \ ) . 2.4 

The second term corresponds to the deviation due to vertical divergence and the 

t h i r d due to monochromaticity, which takes this fo rm after assuming that w i t h i n 

the spectral w id th of the incident beam the reflection angles change only slightly. 

Figure 2.3 shows the X-ray paths and angles for the two possible settings of 

the D C D . 0 is the angular deviation f rom a position in which the glancing angle 

of the central ray on the second crystal is 6(Xo, n<j). The deviation of an arbi t rary 

ray (A, a, V') f r o m the central ray is given by 

1 96 
±13 T a - - V > 2 t a n 0 ( A o , n 2 ) - (A - A o ) - T 7 - ( A 0 , n 2 ) , 2.5 

where the upper signs correspond to type I and the lower to type I I . 

To determine the intensity reflected f r o m the second crystal, for all angles of 

incident rays, the power i n an element of the beam is considered. This element 

consists of radiation having wavelengths between A and A + dX, and has the 

horizontal and vertical divergences da and dip. The power i n such an elementary 

beam may be wr i t t en 

G{a, ip)J(X - X0)dadXdip. 2.6 

The funct ion G arises f r o m geometrical considerations of the instrument and J 

gives the dis t r ibut ion of energy in the incident spectrum. 
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Figure 2.3: X-ray beam paths and angles of the two double crystal diffractometer 

settings. A f t e r Pinsker (1978). 



The to ta l integrated intensity reflected f rom the second crystal is then 

ifrm \rnax Cm 

f7i \ty — —lift t.a.n 0( \n n.t 
8XQ 

W ) = J J J C i [ a - - ^ t a n ^ ( A o , n i ) - ( A - A 0 ) ^ ( A o , n 1 ) 

x C 2 

1 90 
±PT<x- -ip2 tan 0(A O , n 2 ) - (A - A 0 ) ^ ( A 0 , "2) G(a , ^ ) J ( A - \0)dad\dil>, 

2.7 

where C i and C2 are expressions corresponding to the reflection curves of the 

first and second crystals. The rocking curve is then given by P((3) over the range 

of angles required. 

The general properties of this equation can be studied by considering the 

l im i t i ng case i n which the di f f ract ion patterns of the two crystals are so narrow 

that the power is only non-zero when the arguments of bo th C functions are zero. 

Al though this is non-physical i t may be used to determine the dispersion of the 

instrument. Hence 

1 d0 
a - - V > 2 t a n 0 ( A o , n i ) - (A - ^ 0 ) ^ ( ^ 0 , ^ 1 ) = 0 

1 d0 

±P T a - -rp2 tan 0 (A O , n 2 ) - (A - A o ) ^ ( A o , n 2 ) = 0 

El iminat ing a gives 

/? - y [ t a n 0 (A O , n x ) ± tan 0(A O , n 2 ) } - (A - A 0 ) { | ^ ( A o , n x ) ± Ĵ (A0, " 2 ) } = 0. 
2.8 

Now define D to be 

^ = ^ ( A 0 , n 1 ) ± ^ ( A 0 , n 2 ) . 2.9 

Differentiat ion of Bragg's law gives 

D =

 ni
 ± ^ 21Q 

2dcos^(Ao,n i ) 2dcos0(Ao ,n2) 
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or 

D - - J - { t a n 0 ( A o , n i ) ± t a n 0 ( A o , n 2 ) } . 2.11 
Ao L J 

Substi tution of equations (2.10) and (2.11) into (2.8) gives 

(3 = ^D\0tl>2 + D { \ - \ 0 ) . 2.12 

The dispersion of the D C D is defined as df3/d\, and so, f r o m equation (2.12) 

dp 
Dispersion = — = D. 

dX 

Hence, the dispersion in the parallel arrangement is zero when two identical 

reflections are used. 

We w i l l now consider the parallel (Type I I ) arrangement, denoted by (n , —n). 

I f both crystal reflections are of first order then the notat ion becomes ( 1 , - 1 ) . 

For two identical crystals we have C\ = Ci = C and 0 ( A o , n i ) = 0(Ao,n2) = 0, 

so that equation (2.7) simplifies to 

1 ,•> „ . , 96 
P(0)= J J J G(a,4>)J(X-X0)C 

-1pm A m j„ - « m 

de 

a - ^ 2 t a n 0 - ( A - A o ) ^ 

xC a-13- -zi>Uan0-(A-Ao) 6X0 

dadXdij}. 2.13 

For nearly perfect crystals C is only non-zero over a range of a few seconds of 

arc. The func t ion G(a,t{>) can be wr i t t en as 

G ( a , V ) = Gi(a)G2(i>). 2.14 

The functions G i and Gi are finite over the range of a few minutes of arc, but since 

the term ^ V 2 t a n ^ is v e r v small, the effective region of variat ion of G2 is about 

the same as funct ion C. I t can be shown, however, that the shape of the resultant 
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reflection curve is independent of the vertical divergence of the beam incident 

on the first crystal in the parallel arrangement (see section 2.4). The effective 

values of a for any monochromatic component of the beam of wavelength lie 

very close to the value (d0/d\o)(\ — XQ). The funct ion P((3) is only appreciably 

different f rom zero over a very narrow range of /3. Thus the parallel position 

rocking curves have widths comparable to those of the diff ract ion pat tern of a 

single crystal. The effective wavelength range reflected by the second crystal is 

estimated at 

dX 
X = A 0 ± -^am . 2.15 

I n the parallel position, therefore, the beam entering the detector f rom the second 

crystal at any position on the rocking curve contains effective contributions f r o m 

every wavelength reflected by the first crystal. 

Considering the narrow range of the C functions, and the relatively wide 

ranges of the arguments ip, a and A, (the functions G\, G2 and J change gradually 

w i t h i n seconds of arc), the reflection curve expression can be simplified to 

+00 

P{P) = K J C(a)C(a - P ) d a , 2.16 
—00 

where K represents the functions G\, Gi and J. From inspection of this equation, 

i t should be noted that the reflection curve is symmetrical about (3 = 0, even i f 

the curves C are not symmetrical. 

For unpolarised radiat ion, as produced in the characteristic lines of conven

tional X-ray sources, i t is necessary to consider the contr ibut ion f rom both 7r and 

a polarisations. The rocking curve for unpolarised radiat ion is therefore 

+00 

P((3) = K J [Cff(a)Cff(a - /?) + Cv{a)Cv{a - /3)]da. 2.17 
—00 

30 



The reflecting power, for this case, is given by 

+00 

/ [Ca(a)Ca(a + C^C^a - 0)]da 
R(P) = — • 2.18 

/ [C0(a) + Cr(a)]da 
—00 

.3 DuMond Diagrams 

The theoretical discussion presented in the previous section, although neces

sary to the understanding of the double crystal diffractometer, is mathematically 

complicated and di f f icu l t to visualise. I t was for this reason tha t a graphical rep

resentation was proposed by D u M o n d in 1937, which is especially useful i f more 

than two reflections are considered. Figure 2.4 represents a plot of the Bragg 

equation known as the D u M o n d diagram. The indiv idual curves correspond to 

the different orders n of reflection. Since the reflection occurs over a range of 

angles, a cross section along a line of constant wavelength yields the single crystal 

reflection curve. 

The D u M o n d diagram may be extended to i l lustrate any number of crystal 

reflections. I f the case of two identical symmetric crystals is first considered, 

figure 2.5(a), then i t can be seen that an increase in angle of the first crystal 

corresponds to an equivalent increase in angle of the second. Figure 2.6(a) i l 

lustrates the D u M o n d diagram for this case, w i t h an expanded reflection range. 

The traces are displaced slightly, corresponding to a small rotat ion of the second 

crystal relative to the f i rs t . The diffracted intensity corresponds to the area in 

the overlap of the two perfect crystal D u M o n d diagrams. Mathematical ly this is 

just the convolution of the two perfect crystal reflecting curves calculated f rom 

dynamical theory. Since the crystals are parallel, all wavelengths reflected by 

the first crystal are reflected by the second crystal at the same angle and hence 

the arrangement is non-dispersive i n wavelength. Only a very small angular dis

placement leads to no wavelengths being doubly diffracted, (figure 2.6(b)), so 

i t is possible to obtain rocking curve widths comparable to the intrinsic single 

crystal w i d t h w i t h this configuration. 

The case shown in figure 2.5(b) where the Bragg angles are not equal is illus

trated by the D u M o n d diagram of figure 2.7(a). As the second crystal is rotated 
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Figure 2.5: Double crystal arrangements. 
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relative to the first, the axea of intersection corresponding to diffracted intensity 

changes in wavelength. Hence this arrangement is dispersive in wavelength. 

Figure 2.5(c) illustrates the antiparallel arrangement (n,+n), where an in

crease in the angle of incidence on the first crystal corresponds to a decrease in 

the angle of the second for a Bragg reflection. Again, using the DuMond dia

gram shown in figure 2.7(b) a rotation of the second crystal results in a change of 

wavelength diffracted. This arrangement is also dispersive in wavelength and the 

magnitude of this dispersion is given in equation (2.11). Depending on the degree 

of dispersion in the arrangement, individual wavelengths may be resolved such as 

the Ka\ and K012 doublet on the rocking curve (Schnopper, 1965; Schumacher, 

1987; L i and Xu, 1988). 

.4 T h e Effect of Vertical Divergence on the Rocking Curve 

The DuMond diagrams presented so far have not included the effects of verti

cal divergence of X-ray beams. Even though DuMond considered total reflection 

due to dynamical scattering in the formation of a rocking curve, he did not put it 

into his X-6 diagram, so the details of a rocking curve cannot be fully explained 

by a two dimensional X-6 DuMond diagram. 

Recently, the range of total reflection has been added to a DuMond diagram 

for a certain wavelength, and Yoshimura (1984) has discussed mathematically 

the influence of vertical divergence in DCD's. In order to include this, a three di

mensional (3D) DuMond diagram can be constructed with three coordinate axes 

representing vertical divergence, horizontal divergence and X-ray wavelength. Xu 

and Li (1988) have used 3D DuMond diagrams to analyse successive diffraction 

of multiple crystals. The extent of the 3D DuMond diagram along the tp, 6 and 

A axes represents the vertical and horizontal divergences, and wavelength disper

sion respectively of X-rays emitted from the source, passing through a slit, and 

accepted or reflected by a crystal. DuMond diagrams of an X-ray source and 

slit are shown in figures 2.8(a) and (b), and a single crystal with the range of 

reflection exaggerated is shown in figure 2.8(c). Xu and L i have used these dia

grams to graphically determine the effect of vertical divergence on double crystal 

diffractometers and have derived an expression for the resolution of a DCD. 
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Yoshimura (1984) has considered the effect of vertical divergence mathemat
ically and for a full description the reader is referred to his paper. Hill (1985) 
also presents a summary of his work. A graph of vertical divergence, tp, against 
the change in crystal angle, 8, required to diffract a beam with value W is shown 
in figure 2.9 for two silicon (333) reflections in the parallel setting (+,—) for 
CuKai, with varying values of the tilt angle, x- The vertical divergence, i>, is 
defined to be the vertical coordinate of the incidence beam on the first crystal 
divided by the distance to the X-ray source (for small angles) i.e. half of the 
full beam divergence. W represents the deviation from the exact Bragg angle, 
i.e. — 1 < W < 1 corresponds to the total reflection range. The rocking curve 
for a particular divergence is given by traversing the curve along a line y = if) 
parallel to the 8 axis. If there is no tilt, x = 0> t n e vertically divergent beam 
can be diffracted over its entire length with the same intensity. The curve for a 
non-parallel (+,+) arrangement, with S i ( l l l ) and Si(220) reflections, is shown 
in figure 2.10. As can be seen the wavelength and parameter W vary rapidly 
with ip along the line 8 = 0, and the distribution of high diffraction intensity is 
limited to a narrow vertical range. For a beam with a zero vertical coordinate 
on the first crystal the value of divergence is ip = 0. The relationship between 
the tilt of the second crystal relative to the first, x> a n d the value of 8 for a 
beam with a zero vertical coordinate is shown in figure 2.11. This curve has been 
used to aid the rapid alignment of the double crystal arrangement to zero tilt 
(Fewster, 1985). The value of 8 increases with either positive or negative tilt, 
and the curve becomes broader. In order to minimise the rocking curve width 
8 should be adjusted to a minimum. Yoshimura (1985) has shown that the half 
width of the rocking curve is related to the half width at zero divergence by 

. , _ ^ = 2 . 1 9 

[1 - 1>2/COS28BF 

if the two reflection curves are assumed to be Gaussian and ip < 1. 

Wavelength dispersion is very small when both crystals are aligned in the 
parallel (n, - n ) configuration and the dominant broadening mechanism arises 
from tilt misalignment. Ignoring refraction and dynamical effects Schwarzschild 
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Figure 2.10: Curve of ip vs (6) for a non- parallel (+, - ) setting with S i ( l l l ) and 
Si(220) reflections. CuKai radiation with the abscissa scaled in units of 1.55 arc 
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Figure 2.11: Change in angle 6 required to give the centre of Bragg reflection 
with tilt angle x- After Fewster (1985). 



(1928) showed that the half width due to purely geometrical effects could be 

related to the tilt angle, x, by 

u>\ = 2xip for X > ^(tanfli ± tan62) 

Y 2 

wi = Mi>2 + xi> + ^ for X< ZMip, 2.20 

where M = |(tan#i ± tan #2) with the upper sign for the (+, +) setting and the 

lower for the (+, - ) setting. For the parallel setting M = 0, so the geometrical 

half width varies linearly with tilt angle. For the dispersive setting the tilt 

broadening is usually small compared to dispersion broadening. 

.5 T h e Triple Crys ta l Diffractometer 

The double crystal diffractometer offers a substantial improvement over a 

single crystal diffractometer essentially because of greater resolution. If a paral

lel arrangement is chosen wavelength dispersion disappears and rocking curves 

of width comparable to the perfect single crystal can be obtained. However, 

there is one essential limitation, sample curvature. Most epitaxial structures ac

commodate the lattice mismatch of the layer by tetragonal distortion, and as a 

result mismatched samples are curved. Effectively therefore, the sample crystal 

will satisfy the Bragg condition over a larger range of angles for a finite X-ray 

spot size. This has the effect of broadening the rocking curves and obscuring 

any interesting fine structure. One way of overcoming this problem is a fine slit 

over the detector which selects only those rays diffracted at the correct angle, 

and scanning the second crystal and detector in a 6-26 scan. Unfortunately, this 

significantly reduces the recorded intensity. The solution is the triple crystal 

diffractometer first proposed by Renninger in 1955. The third crystal, known 

as the analyser, causes many of the resolution degrading effects of the DCD to 

simply disappear. 

A major problem of the DCD is the collection of diffusely scattered radia

tion in addition to the Bragg diffracted intensity. T C D removes this problem 

and so gives rocking curves of higher sensitivity. The wide detector angle of the 
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DCD geometry integrates the thermal diffusely scattered intensities in a corre

spondingly wide angular range. T C D registers only the intensity in the angular 

interval of the width of the analyser reflection curve. The use of a perfect anal

yser crystal therefore allows the investigation of the angular distribution of the 

radiation dynamically diffracted by the sample and the angular separation of 

dynamical and diffuse intensities. Figure 2.12 shows a comparison of DCD and 

T C D curves taken from a sample of ion implanted silicon by Zaumseil, Winter, 

Cembali, Servidor and Sourek (1987). The fine structure oscillations are not 

visible with the DCD because of the higher diffuse background and the effects of 

curvature. 

Figure 2.13 shows the crystal arrangement of the T C D in the (n,—n,n) 

configuration with the Bragg angles for the monochromator, sample and analyser 

being 0 m , 0S and 9a respectively. Using the notation of Ryan (1986), the two 

instrument variables are the sample crystal rocking angle, and the analyser 

detector angle. 6m and 0 a remain fixed throughout a measurement. 

The essential feature of the T C D is that it is sensitive only to the angle and 

wavelength of the scattered X-ray beam. In other words the instrument probes 

reciprocal space. The double crystal instrument, however, is also sensitive to the 

position of the scattered beam so that the resolution of the instrument depends on 

many geometrical factors such as source size and intensity distribution, slits and 

sample curvature. These effects simply vanish with the adoption of an analyser 

crystal. 

The main resolution degrading effects of a T C D are the horizontal divergence 

and wavelength spread of the incident beam, a and AA respectively; the angular 

range through which the sample and analyser crystals satisfy the Bragg condition 

A6S and A 0 a respectively, and the vertical divergence if>. Following the same 

approach as section 2.2 the wavelength dispersion of the T C D is given by 

<f$ 1 
— = -[tan0i - 2tan0 2 + tan0 3] • 2.21 

The most common configuration used is the (+1, —n,+l), with 6m = 0 a. Hence, 
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Figure 2.12: Comparison of DCD and T C D curves taken from a sample of ion 
implanted silicon. After Zaumseil et al (1987). 
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Figure 2.13: Arrangement of the triple crystal diffractometer. 



the dispersion relationship simplifies to 

d$ 2 
— = -[tan0i - tan0 2] • 2.22 
oA A 

When 0m = 6S = 8a, tan#i = tan $2 and the dispersion becomes zero. This is 
known as the focusing, or (+1,-1,+1) configuration, which totally eliminates 
wavelength dispersion. 

The main resolution degrading effects may be transformed from real to recip
rocal space in which they are more easily defined. Scattering in reciprocal space 
is extended in the direction normal to the surface, and as discussed by Andrews 
and Cowley (1985), this so called "surface streak" or "crystal truncation rod" 
contains important information on the topography of the crystal surface. The 
locus of the surface streak is well defined in reciprocal space but less well defined 
in space, depending as it does on the geometrical relationship between the 
scattering vector and the crystal surface. 

Figure 2.14 shows a contour map in reciprocal space of a T C D focusing 
(+1,-1,-1-1) configuration using S i ( l l l ) monochromator, sample and analyser 
crystals (Ryan, 1986). The star shape is characteristic of T C D patterns with 
a conventional generator and single reflection beam conditioner and analyser 
crystals (Lucas, Garstein and Cowley, 1989). 

.6 Four Crysta l Monochromators and N-Crys ta l Diffraction 

The use of N-reflection monochromators was first proposed by DuMond 
(1937), although it was not until 1974 when Beaumont and Hart (1974) first 
studied multiple reflection monochromators experimentally using synchrotron 
radiation. Four reflection monochromators in particular, have since been used 
by Bartels (1983); Vandenberg, Hamm, Panish and Temkin (1987); Slusky and 
Macrander (1987); Fewster (1989); and Lyons, Scott and Halliwell (1989). 

The T C D has been shown to give an improvement over the DCD in angu
lar resolving power but no great improvement in spectral resolving power. If 
the instruments use two different crystals or reflections for instance, even in the 
(n, —n) and (n, —n, n) arrangements, significant peak broadening can occur from 
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spectral dispersion (Nakayama et al., 1972). They therefore have the serious 
limitation that only one particular Bragg reflection from one particular sam
ple material may be studied, without significantly changing arrangements, with 
high resolution. This lack of versatility may be overcome with a four crystal 
monochromator. 

Figure 2.15 shows the arrangement of a four crystal monochromator in the 
(+1, - 1 , —1, +1) geometry generally used. The first pair of crystals act as a DCD, 
allowing the whole spectral distribution to pass. The third crystal, however, is set 
in a non-parallel way, and only a small range of wavelengths can satisfy the Bragg 
condition for any fixed angle. The fourth crystal reflects the monochromatic 
beam back into its original direction. A DuMond diagram illustrating this is 
shown in figure 2.16(a), with the region of intersection expanded in 2.16(b). 
The reduction in size of the diamond shaped window at the fourfold intersection 
on the DuMond diagram means a serious reduction in available X-ray intensity. 
However, due to the decrease in the intensity of the tails of the rocking curve and 
reduction in the instrument background, the signal to noise ratio is effectively 
enhanced to allow sensitive study of weak scattering effects. Also, the shape of 
the rocking curve of a specimen can be shown to be independent of the vertical 
divergence (Bubakova, Drahokoupil and Fingerland, 1961), and so the full height 
of the beam may be used. 

Slusky and Macrander (1987) have derived an expression for the reflecting 
power of the five crystal diffractometer for each of the configurations shown in 
figure 2.17. This expression is necessary for the simulation of five crystal rocking 
curves. Figure 2.18 shows the expanded DuMond diagrams from the two settings. 
The diamond shaped intersection of the four crystal curves illustrates the high 
spectral and angular resolution of the instrument. The extra band of intersection 
arises from the sample crystal. 

The four crystal monochromator, therefore, solves the problems associated 
with angular and spectral dispersion, and there are no restrictions on studying 
any reflections, but it still does not overcome the problems associated with a 
curved sample. If a crystal is bent, then it will diffract over an angle given by 
that expected convoluted with a shape function. The shape function is given by 
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Figure 2.15: The four crystal monochromator in the (+1, - 1 , - 1 , +1) configuration. 
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Figure 2.16: DuMond diagram of a four crystal monochromator. 
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Figure 2.18: Expanded DuMond diagrams of the five crystal diffractometer 

arrangements shown in figure 2.17. 



the intensity over the wavelength distribution AA, (Fewster, 1989), 

AA = A(cot0)£, 2.23 

where f = (length sampled in the diffraction plane)/(radius of curvature), ne
glecting vertical divergence effects. The problem is solved by combining the 
qualities of the T C D with a four crystal monochromator, to produce a six crys
tal diffractometer (Fewster, 1989). There are two possible modes of operation. 
In the first, the sample and analyser rotations are coupled to obtain near perfect 
rocking curves from distorted crystals, and in the second mode the two axes are 
decoupled to obtain a map of reciprocal space to study diffuse scattering. The 
result is a very high resolution instrument, with the ability to use any sample 
type or reflection without fear of dispersion broadening, and which enables the 
study of curved specimens. 
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Chapter I I I 

X - R a y Scattering Theory 

.1 Dynamical Theory 

An elementary treatment of X-ray scattering, known as kinematical theory, 
has been dealt with by many authors ( James, 1948; Warren, 1969). It assumes 
that the amplitudes of the scattered waves are small compared with the inci
dent wave amplitude. When crystals are small and for heavily deformed crystals 
having a mosaic structure, kinematical theory describes the scattering satisfac
t o r y . However, for large perfect single crystals the amplitude of the diffracted 
wave becomes comparable with that of the incident beam. In this situation, in
terchange of energy occurs between the beams as they pass through the crystal 
and kinematical theory cannot be applied. The occurrence of multiple scattering 
and absorption can be explained using Dynamical theory. 

The first dynamical theory of X-ray diffraction was given by Darwin (1914), 
while a different treatment was presented independently by Ewald (1916,1917). 
Von Laue (1952) reformulated the Ewald treatment as a problem involving the 
solution of Maxwell's equations for a medium with a periodic complex dielectric 
constant. General introductions to the different forms of dynamical theory can 
be found in books by James (1948); Zachariasen (1945) and Pinsker (1978), and 
reviews have been given by Batterman and Cole (1964); Authier (1970) and 
Hart (1971,1980). The reader is referred to these works for a full description of 
dynamical theory. 

For a Bragg reflection to occur, there will exist two waves inside the crystal 
whose difference in wave-vector is exactly equal to the reciprocal lattice vector 
corresponding to the Bragg reflecting planes. Therefore, inside the crystal a 
standing wavefield is set up whose spacing and orientation are exactly those of 
the diffracting planes. These are known as Bloch waves which form coherent 
solutions to Maxwell's equations. For a two beam approximation, where it is 
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assumed that only one Bragg reflection is excited for a given wavelength and 

angle, the dispersion surface linking the incident and scattered wave-vectors may 

be derived. Each point on the dispersion surface determines the allowed wave-

vectors in the crystal and the amplitude ratio of the component plane wave in 

the Bloch wave. 

In order to determine what is occurring outside the crystal when the crystal 

is excited by a plane wave, it is necessary to match wave-vector and wave am

plitude at the surface. The boundary conditions for field vectors are that the 

tangential components of both E and H_ are continuous across the surface. Since 

the refractive index for X-rays is close to unity, the reflection amplitude at the 

crystal surface is negligible provided that the glancing angle is not comparable 

with the critical angle of total external reflection. This means that, to a very 

good approximation, all of the field vectors are continuous across the crystal sur

face. As well as amplitude matching, the components of the wave-vectors inside 

and outside the crystal must be the same. The dispersion surface is very useful 

in viewing these conditions geometrically. 

Several important results arise from the dynamical theory treatment. The 

full width at half maximum of the Bragg reflection peak, for instance, is given 

by 

M i = 2C(XHXH)> [ M , 3.1 
2 sin20B V 70 

where C is the polarisation factor (1 for a and cos20g for 7r polarisations) and 

0B is the Bragg angle. 70 and 7^ are the direction cosines of the incident and 

diffracted beams respectively, while Xh a nd Xh 3 X 6 t n e complex susceptibilities 

given by 

Fh is known as the structure factor which is a number dependent on the arrange

ment of atoms in a unit cell, essentially the scattering power of a material, and 

is given by 

Fhkl = £ f n e 2 v i ( h X n + k y n + l Z n ) . 3.3 
n 
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The summation is over the n atoms within a unit cell where xn, yn and zn are 
the fractional coordinates of individual atoms and fn is the atomic scattering 
factor. For example, for InP which has a zinc-blende type crystal structure, the 
structure factor for an hkl reflection is given by 

Fhkl = 1 6 ( f l n + f p ) 2 hkl even h + k + l = An 

Hkl = 1 6 ( / / n - f p ) 2 hkl even h + k + l = 4n + 2 

Fhki = ^ ( f l + f2p) hkl odd 

F%kl = 0 hkl mixed. 

For instance, the 004 is an allowed reflection, while the 002 is quasi-forbidden 

and the 112 is totally forbidden. 

The integrated intensity, when absorption is neglected, of a single crystal 
rocking curve is given by 

I /]2*l. 3.4 
3 1 'sin20V 70 

The intensity is therefore proportional to the structure factor for dynamical 
diffraction, compared to the square of the structure factor in kinematical diffrac
tion. The refractive index of the crystal causes a shift in the position of the 
Bragg peak compared to the position expected from Bragg's law. This shift is 
given by 

M = J^L(1+\jhi). 3.5 
2sin20 V 70 / 

As a result of interference between the two wave-fields propagating within the 

crystal, oscillations known as Pendellosung fringes occur on the rocking curve, 

which were first observed by Batterman and Hilderbrandt (1968). The angular 

spacing of the Laue case Pendellosung fringes is given by 

66 = A ^ D * , 3.6 
Ct(xhXh)~2 
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where t is the thickness. The length A(7o|7/ l|)^/C(xhXh)^ I S known as the extinc
tion distance, and corresponds to the separation of the maxima of the wavefield 
excited within the crystal due to the interference of the two Bloch waves prop
agating in the crystal. If absorption is included, the Bragg case Pendellosung 
oscillations become rapidly damped as the thickness of the crystal is increased; 
hence these fringes are only seen in thin crystals. 

Clearly, the approach of dynamical theory could be used to calculate the 
rocking curve from a layered sample by matching the wave-vectors at each in
terface. However, this approach would be extremely laborious, especially for 
multi-layered or graded samples. A much simpler approach, which is well suited 
to computation, is to use the differential equations of Takagi (1962,1969) and 
Taupin (1964). Unfortunately, since only incident and diffracted wave ampli
tudes are retained at each interface, it is not possible to visualise physically what 
is occurring within the crystal. 

.2 T h e Takagi - Taupin Equations 

For a full description of the derivation of Taupin (1964) the reader is referred 
to Pinsker (1978). A summary of the physics involved is given here. 

We assume that the electric displacement vector in a vacuum, given by 

R = 22o(r)earp{t[wot - 27r$ 0(r)]} 3.7 

is a plane wave, so that 

* o ( r ) = A o - r , l&ol = T • 3 - 8 

In the general case D satisfies the wave equation in a vacuum 

V 2 £ + - f £ = 0 . 3.9 
cr 

Considering spherical waves for which the radii of curvature are much larger than 
the wavelength A, we have 

|</rad$o| — \ 
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where 0(A 2 / i? 2 ) represents small terms of higher orders of X/R. For a nearly 
plane incident wave we have 

grad^o = JCQ + Akq 3.11 

and fco-A&o = 0, \Ako\ ^ |£ol> s o t n a t fr°m (3.10) we have 

|*ol = A" 1 , |A*o| = R'1 , 3.12 

corresponding to an incident wave packet with an angular width of the order of 

l/R. 

The function DQ is retained for the phase when describing the wave inside 
the crystal. The amplitude DIQ becomes a complex function of the coordinates, 
which is dependent on the differences in the paths of propagation in the crystal 
and the vacuum. The wavefield in the crystal can be described through the use 
of a variable amplitude Bloch function, 

D = £ £ m e x J i [ w 0 * - Mkm-L))} • 3.13 

For a perfect crystal and plane waves the following values remain constant 

km = ko + hm , ka = grad$o . 3.14 

However, generally and hm are functions of the coordinates. For each point 
in the crystal the vector hm can be determined. 

If the planes in a crystal, denoted by n m , are regarded as a continuous func

tion of the coordinates which takes integral values on each plane m, we find 

km ~ grad nm 3.15 

D = Yl^.mexp[i{^0t - 27r$m)] 3.16 
m 
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where 

* m ( l ) = $o(r) + nm(r) 3.17 

The dielectric constant remains a periodic function of the coordinates, but e(r) 

can be approximately assumed to be an exponential function of nm in each system 

of reflecting planes. The susceptibilities can therefore be written 

X{t) = ^2xmexp[-27rinm(r)] 3.18 
m 

e 2 A 2 

Xm = Xhm = — 7 ~ 2 Z T / ^ m ' 3-19 
m r 7r v 

and for the general case of an absorbing crystal 

XO = X0r + iXQi , Xh = Xhr + iXhi • 3.20 

The variable representing the angular departure from the Bragg condition is 

taken as 

am = 2A0 m s in20 m , 3.21 

which is derived from the approximate values of the expressions 

«m = *o V m + 2(k0.hm)} = A 2 ( ^ - - , 3.22 

where both dm and s in0 m are coordinate dependent. 

The wave equation inside the crystal is derived from Maxwell's equations, 

which are 

curl E = i curl K = - + 4x1) • 

div E = 4irp, div H = 0 . 3.23 
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Taking the curl of both sides we obtain 

1 , dH 1 d 
curl curl E_ = —cur l —— = ——curl H. , 3.24 

c at cat 

curl H = , 3.25 
~ c dt 

and from D = eE = (l + x)R, E ~ (1 - x)H w e obtain 
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curl curl (1 - x)R - -^D . 3.26 

Evaluating the left hand side of equation (3.26) involves rewriting the value of 
(1 — x)H using the solution of the wave equation and Fourier expansion of the 
polarisability. Given that 

ko = grad $o , hm = 0 r a r f nm , km = grad $ m , 3.27 

and using the Bloch solution we get 

2 
r Vi2 m exp(-2i7r$ m ) = A , 

ATT 

A 2 
3.28 

m 

where A is a function with terms of varying magnitude. Neglecting small terms 
( see Pinsker, 1978) we obtain 

a 2 

mRm - 22 Xm-h&h cos Xmh + — ( k m g r a d ) U m = 0 , 
h * 

a 3.29 

where cos Xmh is the polarisation factor. The calculation of the solution for X-ray 
propagation in the perfect crystal is then the solution of this system in first order 
partial derivatives. The variable am is calculated to allow for local deformations 
at any point in the crystal. 
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For the two beam case we need only consider m = 0 and m — h. If SQ and 
are unit vectors in the direction of the incident and diffracted beams respectively, 
then 

SQ = Xko , Sh = Xkh , 3.30 

and for any point on the reflection plane 

r = solo + shlh > 3 3 1 

and the system (3.29) reduces to 

iX 8D0 

-5— = XQDQ + Cxh^h 
7T OSft 

- ^ = (xo " <*h)DH + CXhDo , 3.32 
7T £75/, 

where 
C = cos-Xoh . 

We can include the polarisation factor C in the values Xh and X/i by adding the 
symbols a and 7r, so that 

Xl = X^(|cos20|)- 1 , xl = XKICOS20I)"1 . 3.33 

.3 Solution of the Takagi - Taupin Equations 

The Takagi-Taupin equations (3.32) can now be used to calculate the reflec
tively of a given crystal in the Bragg case. The amplitude ratio of the incident 
and diffracted beams is required. We will assume an incident plane wave, and 
that variations in diffracted intensity will be a function of depth only. 

For asymmetric reflections 70 and 7 ,̂ the direction cosines of the incident and 
diffracted beams with respect to the surface, are not equal. The depth below the 
surface z, is then given by 

z = «070 + Shlh 3.34 
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then (3.32) becomes 
iX dD0 „ „ 
— 70-5— = Xo-Do + CXbPh 
7T OZ 

— Khrjr- = (xo - och)Dh + CxhDo • 3.35 

Note that in general, Xh and X/i 3 X 6 n o t equal in a non-centrosymmetric crys
tal such as the zinc-blende structure except in special cases (such as the 00/ 
reflection). 

The complex reflection coefficient, X , is defined as 

X = 2± . 3.36 
-Do 

Differentiating (3.36) we obtain 

dX = 1 dDh _ Dh dDp 
dz DQ dz DQ dz 

3.37 

and substituting into (3.35) we arrive at 

dX iv f 2 , 70 . 70 x V ^70 \ o 00 

For a crystal/layer structure containing compositional variations, will be 

a function of the depth z, below the surface. Solution of (3.38) would then need 

to be performed numerically. However, if the crystal is divided into a number of 

laminae of constant composition, equation (3.38) can be solved analytically for 

each lamina. The complex amplitude ratios are then matched at each boundary 

in order to obtain the reflectivity at the surface. 

Equation (3.38) can be written as 

^ = iD[AX2 + 2BX + E] , 3.39 
dz 

47 



where 

A = CX-h , B = ( l - b ) ^ + ah^ , D = ~^ , E=-CbXh 

and where 6 = lo/lh is the ratio of the direction cosines of the incident and 
reflected beams relative to the surface normal. Note that if the angles of incidence 
and reflection with respect to the surface are i and e respectively, then 

70 = sin i , lh = ~ sin e 3.40 

and so for a symmetric Bragg case reflection b = — 1. 

Equation (3.39) can be written as 

dX 
dz 

= iDA 
/ B\2 B2 E 
{ X + A ) - J t + A 

3.41 

With the substitution 

B y/EA - B2 „ 
X = - - + t a n F , 

A A 
3.42 

the RHS of (3.41) becomes 

i D A { E A - B 2 \ l + tzn2Y), 

and the LHS becomes 

y/EA - B2. 2„,dY 
- (1 + tan 2 Y)— , 

and so 
= iDyjEA - B2 

dz * 
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Assuming that the reflectively is known at a depth W, i.e. X(W) = k, we obtain 

Y(z) 

J dY = JiD\jEA - B2 dz , 
Y(W) W 

so 

Y(z) = iDy/EA - B\z - W) + tan" 1 ( J ^ * * ^ ) • 

Therefore, from (3.42) 

\ \-B\JEA - B2 + B(Ak + B) t<in(iD\/EA - B2(z - W)) X = 

+(EA - B2)\&a(iD\j EA - B2(z - W)) + (Ak + B)SJEA - B2 

\/EA - B2 - (Ak + B) tan(iD \[EA~~B2(Z - W)) 

And so 

X = 
ky/EA -B2 + {E + Bk) tan(iD\/EA - B2(z - W)) 
VEA - B2 - (Ak + B) ta.n(iDy/EA - B2(z - W)) 

3.44 

Now 
tzn[iD\/EA-B2(z -W)} = - t a n f D ^ 2 " EA(z - W)], 

so that (3.44) can be written as 

X = 
ky/B2 -EA + i(Bk + E) tan(Dy/B2 - EA(z - W)) 
y/B2 - EA - i(Ak + B) t a n ( Z V B 2 - EA(z - W)) 

3.45 

The boundary condition is that k = 0 at a point deep within the substrate. Then 

equation (3.45) becomes 

X = 
iE t a n ( D v

/ B 2 - EA(z - W)) 
y/B2 - EA - iB tan(ZV£ 2 - EA(z - W)) 
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As 

(z-W)^-oo Im[DyjB2 - EA(z - W)} -> +00 if Im(^B2-EA) < 0 

Im[DyjB2 - EA(z - W)] -* - 0 0 if Im(y/B2-EA) > 0 

Therefore 

tan [D\JB2 - EA(z - W)] -> -i Sign[lm(\jB2 - EA)] . 

Hence (3.46) can be written as 

B + VB2 - EA Sign[lm(VB2 - EA)] 
3.47 

The reflectively at the surface of the substrate is calculated using equation 

(3.47). This value serves as a boundary condition for the first epitaxial layer. 

The reflectively at the surface of the layer is then calculated from equation (3.45) 

and the process repeated for all the layers in the structure. The intensity ratio 

R, is then calculated from 

where the ratio of the direction cosines takes into account any beam expansion 
or compression. 

Once the reflectively is obtained the rocking curve can be calculated using 

the convolution equation (2.17), which gives the total power reflected by the 

second crystal at an angle /3. The rocking curve is calculated by performing 

this integration for the range of angles /?, required. CA,B a r e t n e single crystal 

reflectivities for the first and second crystals respectively. For the first crystal 

the reflectively for an infinite crystal is used. 

The rocking curve simulation program written by Hill (1985) contained sev

eral errors which, although irrelevant in the symmetric geometry, emerged when 
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using asymmetric geometries. For this reason the computational section of the 
program (CRUNCH) was rewritten, and the version based on the equations de
rived in this chapter is included in Appendix A. In addition, the input section 
of the program was extended to include a number of II-VI compounds. For a 
full description of the suite of programs, together with an account of the effects 
of sample curvature on the rocking curve, the reader is referred to Hill's thesis 
(1985). Examples of the use of simulation programs based on the Takagi-Taupin 
equations can be found in the work of Halliwell, Lyons and Hill (1984); Hill, 
Tanner, Halliwell and Lyons (1985); Fewster and Curling (1987); Bensoussan et 
al. (1987); Miltat (1987,1988); Barnett et al. (1988) and Fewster (1989). 
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Chapter I V 

Experimental Techniques of Double Crysta l Diffraction 

Introduction 

Although Double Crystal Diffractometers were first used in the 1920's it is 
only recently with the advancement in growth of high quality epitaxial layers 
that they have come into their own as highly sensitive instruments for deter
mining growth structure. A great deal of information is contained in a rocking 
curve (Segmiiller, 1986) concerning the quality of the layers and substrate, com
position and thickness of layers and sample curvature. The use of a simulation 
program, which was introduced in the last chapter is essential, enabling much of 
the information to be recovered from the diffraction profile. 

The primary function of the DCD is the determination of layer composition. 
The difference in lattice parameter of the layer compared to the substrate, known 
as the mismatch, may be measured from the separation of the Bragg peaks (Es-
trop, Izrael and Sauvage, 1976), and since the substrate parameter is known the 
layer composition may be determined. Halliwell (1981) showed that measure
ment of mismatch using a DCD was more precise than with other techniques 
and showed that it was accurate to within 20ppm with 004 and 115 reflections 
from InGaAs and InGaAsP grown on InP. However, when layers become thin 
peaks may become shifted from the position dictated by their composition and 
measurement of mismatch from peak separation is no longer accurate (Fewster 
and Curling, 1987) and it is then necessary to match experimental curves with 
simulation (Fewster, 1989). If layers are highly mismatched they may become 
partially or completely relaxed by the introduction of misfit dislocations at the 
growth interface. Asymmetric reflections with both high and low angle beam 
paths are utilised to determine lattice parameters of incoherent layers (Bartels 
and Nijman, 1978; Wang et al., 1988). Misfit dislocations can be imaged with 
X-ray topography (Oe et al., 1978), which can be used in combination with DCD 
to study strained layers (Chu, Wie, Kim and Lau, 1988). Chang, Bhattacharya 
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and Gibala (1989) have also used T E M to study misfit dislocations in strained 

InGaAs/GaAs MQW's. 

Layer thickness is indirectly obtained from the rocking curve by simulating 
experimental peak profiles (Hill, Tanner, Halliwell and Lyons, 1985; Chu and 
Tanner, 1986, 1987). A more accurate method of determining layer thickness is 
to measure Pendellosung fringe spacing which arises from interference in thin lay
ers and whose period is directly related to layer thickness (Bartels and Nijman, 
1978). This method has been used for V P E grown InGaAs on InP (Macrander 
and Strege, 1986) and for MBE grown InGaAs and InGaAlAs on InP (Fer
rari, Franzosi, Gastaldi and Taiariol, 1988) with a symmetric 004 reflection. In 
combination with simulation, Pendellosung fringe measurement has been used to 
characterise both composition and thickness in AlGaAs on GaAs (Bensoussan, 
Malgrange and Sauvage-Simkin, 1987; Bassignana, Springthorpe and Tan, 1987, 
1989) and in InGaAs on GaAs (Jeong, Schilesinger and Milnes, 1988; Ferrari 
and Franzosi, 1989). Tanner and Halliwell (1988) have noted that direct mea
surement of fringe spacing in two layer structures can lead to deviations from the 
true Pendellosung frequencies and this is discussed in more detail in Chapter 6. 

When characterising epilayers it is important to be aware of tilts of both sub
strate and layers away from the growth plane. Substrate misorientation generally 
leads to epilayer tilt (Nagai, 1974; Kleiman, Park and Mar, 1988) which will pro
duce errors in mismatch measurement if neglected (Tanner, Miles, Peterson and 
Sacks, 1988). Both substrate and layer tilt can be evaluated straightforwardly 
by measuring peak separations from several sample orientations (Hattanda and 
Takeda, 1973) and there is no need to revert to measurement of rocking curve 
width at low incidence angles, as described by Slusky and Macrander (1988), 
which is difficult and too dependent on instrumental factors. An indication of 
sample quality can also be obtained from rocking curve widths, and composi
tional grading can be modelled using simulations (Halliwell, Juler and Norman, 
1983; Bowen, Hill and Tanner, 1987). 

There is presently much interest in the growth of I I -VI semiconductors as 
well as III-V's. Qadri et al. (1988) used DCD and topography to study ZnSe 
on GaAs to give an indication of crystalline quality. Okamoto et al. (1988) 
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used the symmetric 004 reflection to measure alloy composition in ZnSxSe\-x 

on GaAs, and Bhat et al. (1987, 1988) considered the effect of substrate tilt 
on 004 and 115 rocking curves of CdTe on InSb. Ion implanted layers are also 
important in the function of optoelectronic devices and DCD is a valuable tool 
in their characterisation. DCD has been used to study strain and damage in 
ion implanted garnet films (Speriosu, 1981; Speriosu and Wilts, 1983) with the 
aid of a kinematic model of X-ray diffraction. The introduction of strain in 
GaAs by low dose ion implantation has been investigated with symmetric 004 
reflections and the strain depth profile has been modelled kinematically (Paine, 
Hurvitz and Speriosu, 1987). Studies of strain in GaAs by DCD after high 
doses of radiation have found that the strain saturates to a certain level resulting 
in uniform lattice spacing larger than the initial spacing of the lattice (Wie, 
Vreeland and Tombrello, 1985). Models based on dynamical X-ray diffraction 
theory have been used by Larson and Barhorst (1980) to study rocking curves of 
boron implanted laser annealed silicon, and by Capano et al. (1988) to investigate 
gallium implanted silicon. 

Multi-quantum well and superlattice structures are now used in a variety 
of device structures including lasers, photodiodes and optical modulators. The 
first semiconductor superlattices were grown in the early 1970's (Esaki and Tsu, 
1970) and since then their properties have been much investigated (Chang, 1983). 
Segmuller and Blakeslee (1973) used two different approaches to extract struc
tural information from rocking curves showing superlattice reflections or so called 
satellites of the substrate Bragg reflection. The first one approximated the com
positional and lattice distortion as a Fourier series. However, because the well-
barrier composition profile is nearly rectangular it is not described well by a 
Fourier series with only a few harmonics. The second approach used a step func
tion to describe the compositional profile (Segmuller, Krishna and Esaki, 1977). 
Fleming et al. (1980) considered the effect of interdiffusion in AlAs/GaAs mul
tilayers with a Fourier approach. Methods other than X-ray have been used 
to study superlattices, however X-ray diffraction data contains all the informa
tion needed to determine the structural parameters since diffraction angles are 
a function of lattice period and diffracted intensities depend on the nature and 
position of the atoms in the unit cell (Kervarec et al., 1984). Fewster (1986, 
1987) presents a systematic approach to the analysis of multiple quantum well 
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structures using DCD and powder diffraction. Information may be obtained on 

the compositions and thicknesses of the individual wells and barriers as well as 

the average composition and period, and an indication of period fluctuations 

and interfacial quality. Recently models of interfacial roughness and period vari

ations have been proposed (Fewster, 1988) and a new approach to modelling of 

interfacial grading has been developed (Lyons, 1989; Lyons, Scott and Halliwell, 

1989). X-ray diffraction analysis has been performed on AlGaAs/GaAs and 

AlSb/GaSb superlattices (Paine, 1986), and HgTe/CdTe superlattices (Paine, 

Vreeland and Cheung, 1986) with the aid of a kinematical model (Speriosu and 

Vreeland, 1984). The Takagi-Taupin equations have also been used for superlat-

tice simulation in the symmetric (Halliwell, Lyons and Hill, 1984; Hill, Tanner, 

Halliwell and Lyons, 1985) and asymmetric cases (Bartels, Hornstra and Lobeek, 

1986). Intentionally disordered GaAlAs/GaAs superlattices have been studied 

by Auvray, Baudet and Regreny (1987) and a model has been developed which 

can be extended to account for interface roughness and period fluctuation. 

MQW's are examples of band gap engineering whereby band gaps can be 
tailored to that desired using different combinations of thin layers of alternat
ing composition. Strained layer heteroepitaxy gives a further degree of freedom 
allowing layer growth even if the lattice parameter is not exactly matched with 
the substrate. The strain in turn modifies the band gap and hence the electri
cal and optical properties of the materials in a manner which can be of benefit 
to device performance. However, layers will only be coherent if thin, and be
yond a certain critical thickness (Van der Merwe and Jesser, 1989) strain will 
be released through the formation of misfit dislocations which have a detrimen
tal effect on the electrical behaviour of the material. Fiory et al. (1984) and 
Aydinli et al. (1987) have measured critical thickness in GexSi\-x on Si and 
InGaAs on GaAs respectively with Rutherford Back Scattering while Orders 
and Usher (1987) have used DCD to measure it in InGaAs/GaAs single het-
erostructures. It is important that critical thickness is known so that devices 
may be grown without relaxation occurring. Baribeau, Houghton and Kechang 
(1989) studied relaxation in Si/GexSi\-x heterostructures and found that pre
viously coherently strained layers with good crystallanity become progressively 
relaxed upon annealing. The effect of layer strains in InAlAs/GaAs strained 
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layer superlattices (SLS's) has been studied by Kato et al. (1986) and a shrink

age in the fundamental band gap for GaAs wells has been observed. Relaxation 

also has the effect of broadening rocking curves (Wie, 1989). Characterisation 

of Si\-xGex/Si SLS's using X-ray diffraction has been described by Lyons et al. 

(1987) and Baribeau (1988), where the superlattice period and average compo

sition was determined by the symmetric 004 reflection. In order to determine 

the in-plane lattice parameter of the superlattice asymmetric reflections are re

quired with which it is possible to determine the extent of relaxation (Halliwell et 

al., 1989). Barnett, Brown, Houghton and Baribeau (1989) have shown double-

crystal X-ray diffraction to have the ability to distinguish between and quantify 

different types of non-uniformities in Sii-xGex/Si superlattices. The effect of 

thick buffer layers of InAlAs in InAlAs/GaAs superlattices has been investi

gated by Kamigaki et al. (1987) who found that for buffer layer thicknesses of 

greater than 0.5^m the InAlAs layers of both buffer layers and superlattices were 

in a strain free state, while the superlattice GaAs layers showed large tetragonal 

distortions. The buffer was effectively acting as a substrate. I I - V I semiconduc

tor superlattices are also becoming increasingly important with improving crystal 

quality (Tanaka et al., 1987). Fantner (1987) has used X-ray diffraction to study 

PbTe/Pbi-xSnxTe SLS's while Villaflor et al. (1988) used the 004 reflection 

to study GaAs/AlSb SLS's . HgTe/CdTe superlattices grown for the first time 

with photo assisted M O C V D by Ahlgren et al. (1987) were found to be very 

high quality with satellite peaks up to third order shown by X-ray diffraction. 

D C D ' s are used extensively in the analysis of single and multiple epitaxial 

layers as well as complex multi-quantum well structures. As a non-destructive 

relatively inexpensive method of characterisation, double crystal diffraction is 

now used routinely by crystal growers for optimisation of growth conditions and 

in detailed studies of device-quality samples. 

.2 Instrumentation and Experimental Alignment 

The experiments in Durham were performed on a prototype Bede model 150 

diffractometer, based on the design of Hart (1980). An Amstrad PC 1512 DD 

controlled the diffractometer via a Bede Minicam interface using Bede software. 

56 



The detectors used were a Nuclear Enterprises DM1-1 Sodium Iodide Scintil

lation counter and a Centronic PX 28R/Xe proportional counter. Copper Ka 

radiation from an A E G X-ray tube was used throughout, powered by a Hilton-

brooks model DG2 X-ray generator. All experiments were run in a safely inter

locked X-ray enclosure to avoid radiation hazards. 

The Bede double crystal diffractometer is shown in figure 4.1. The first 

crystal axis is coaxial with the main diffractometer axis and the second crystal 

is positioned at an angle of twice the first crystal Bragg angle, with the detector 

mounted on an arm coaxial with the second axis. The first crystal must be 

aligned such that the reflected X-ray beam passes through the centre of the 

second crystal rotation axis and parallel to the plane of the diffractometer. The 

second crystal alignment may then be carried out. 

Fewster's paper on D C D alignment (1985) suggests alignment methods for 

both crystals. The tilt of the first crystal which gives an X-ray beam parallel 

to the diffractometer plane is determined by recording the diffracted intensity 

as a function of tilt. The correct tilt occurs at the peak position in the tilt 

angle profile for crystal rotation angles below the Bragg angle, or the mid-point 

between the peaks in the high angle case. If the vertical divergence is too large 

for the tilt arm angle range then an alignment tool with a horizontal slit can be 

inserted on the second axis, at the correct height. The tilt arm is then rocked 

for maximum intensity. 

For the reflected beam to pass through the centre of the second axis an 

alignment tool with a vertical slit is inserted and the whole diffractometer is 

rotated until the X-ray intensity is a maximum. The first crystal is then scanned 

in angle and accurately set on the peak of the intensity profile. When a small 

source spot size is used the Ka\ KOLI doublet will be resolved and if required 

the Kai peak may be removed using a slit in between the two crystals. 

The second crystal is then mounted accurately over the centre of the axis and 

scanned to find the Bragg reflection. For the parallel (n, —n) arrangement wave

length dispersion is small and most peak broadening arises from tilt misalign

ment. Fewster's method of tilt optimisation, mentioned in Chapter 2, searches 

for the minimum angle of the Bragg peak for a range of tilt values. The tilt angle 

57 



i 

m 

! 

! 

J 
• 

Figure 4.1: The prototype Bede model 150 diffractometer at Durham University. 



giving the minimum peak angle brings the reflecting plane normal parallel to the 

incident beam. Alternatively, because the integrated intensity remains the same 

for any value of tilt, a maximum in peak intensity corresponds to a minimum in 

peak width. So an iterative process of maximising the peak intensity by tilting 

and rotating the second crystal will result in optimisation. Tanner, Chu and 

Bowen (1986) also suggested a method of tilt optimisation, by rotation about an 

axis almost normal to the Bragg planes, which is quick and accurate. 

A rocking curve may now be taken, which is a plot of intensity against crystal 

rotation through the Bragg reflection. An important consideration for good 

rocking curves is the reduction of background noise. At no time should the 

detector see any part of the X-ray source or first crystal diffracted beam. This is 

ensured by surrounding the first crystal with a scatter shield with openings only 

at the correct angles, and by inserting a slit between the first and second axes. 

Additional scattered background is also reduced with a shield over the detector. 

Unless care is taken important information may be lost in background noise. 

4.3 Composition and Thickness of Heteroepitaxial Layers 

4.3.1 Mismatch 

Consider the case of a single mismatched layer grown epitaxially onto a sub

strate. The rocking curve will generally exhibit two peaks corresponding to the 

Bragg angles of the layer and substrate. The separation of these peaks is directly 

related to the difference in lattice parameter, or mismatch, of the layer. The 

mismatch, m, is defined as 

where ao and Or are the lattice parameters of the substrate and layer, respectively, 

in bulk form. When tetragonal distortion is present, the unit cell of the layer 

adopts the dimensions ao x ao x c, where c is the dimension perpendicular to the 

interface. The apparent mismatch, m*, is then given by 

* _ c - ap 
ao 
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m* and m are related from elastic theory (Hornstra and Bartels, 1978) by 

m — m (! + ") 
( 1 - u ) ' 

4.3 

where v = Poisson's ratio (Halliwell, 1981). Values of v for some common semi

conductors are shown in Table 4.1 (Brantley, 1973). Published values are not 

available for ternary and quaternary compounds but they can be derived by ex

trapolating the binary values. Once m is found the composition of ternaries can 

be calculated using Vegard's law. For quaternaries it is slightly more complicated 

and equation (1.4) should be used. 

Semiconductor V 

Si 0.278 

Ge 0.273 

GaAs 0.311 

InP 0.360 

GaP 0.271 

InAs 0.353 

Table 4.1: Poisson's Ratio 

For substrates grown off axis the layer distortion will not be truly tetragonal 

and the layer becomes tilted relative to the substrate. If the stresses in the layer 

build up sufficiently for plastic distortion to occur the layer unit cell dimensions 

will become a\ x oi x c. This plastic distortion takes the form of a network of 

misfit dislocations located close to and parallel with the interface. In the case of 

m* positive a\ will be greater than ao, while c will be less than it would have 

been without plastic deformation. If m* is negative a\ will be less than ao and 

c will be greater than it would have been without plastic deformation. In both 

cases the layer lattice will begin to relax back towards cubic symmetry. Layers 

with ai = ao are said to be coherent while layers with misfit dislocations are said 

to be incoherent. 
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For symmetric reflections a relationship between peak splitting and mismatch 

is found from differentiating Bragg's law: 

4 A d 
m* = — = - cot 6A6 , 4.4 

a 

where A6 = 0§ — OL- M m a y n o w D e calculated from equation (4.3). 

For asymmetric reflections the reflecting planes are not parallel to the sample 

surface and the X-ray beam is either incident at an angle of (0 + (j>) or (0 — (j>) to 

the sample surface, for non-skew geometry. The peak separation is then (dd — d<f)) 

for the high angle of incidence and (d$ + d<f>) for the low angle of incidence, with 

d<j) = <f>i — <f>s- If rocking curves are recorded using both beam paths dO and 

d(j) can be found independently, since dO is half the sum of the two measured 

separations while d<f> is half the difference. The diffracted radiation is said to 

have undergone an 'hkl reflection' if the planes are separated by a/h, a/k and 

c/l in the three axial directions respectively, where h, k and / are integers. The 

interplanar spacing for an hkl reflection is given by 

dhkl = jf , 4.5 

where o and c are the parameters of the tetragonal unit cell which can then be 

calculated form the following equations. 

cos 

2a 

where the subscripts L and S refer to the layer and substrate respectively. ar is 

then given by 

ar = a + { c - a ) ) — ± , 4.7 
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and m can then be calculated using equation (4.1). If only one rocking curve 

is recorded in order to calculate m* the interface is assumed to be coherent. 

Therefore 
m*l(h2 + k2)? 

d<j) 
(/i 2 + fc2 + / 2 ) ' 

m*l tan 6 

D $ = { H 2 + K2 + ,2) > 4 ' 8 

and equation (4.3) is used to obtain m. 

4.3.2 Thickness 

Layer thickness determination is not quite as straightforward as the measure

ment of lattice mismatch. It is necessary to compare the experimental rocking 

curve with simulated curves until a close fit is obtained (Halliwell et al., 1984; Hill 

et al., 1985). However this method is also sensitive to many variables which are 

difficult to quantify such as crystalline quality, interfacial grading and sample cur

vature, and the fitting procedure can become tedious. A more sensitive method 

of determining layer thickness, for relatively thin layers, is the measurement of 

the Pendellosung fringe period discussed in Chapter 3. The fringe spacing, 86, 

is related to the layer thickness, t i , by the following expression (Bartels and 

Nijman, 1978), 
A sin(0 + 6) 

86 = \ • 4.9 
t i s m 26 

The fringe spacing is independent of composition, layer quality and sample cur

vature, although the fringe amplitude is not. These effects are discussed further 

in Chapter 6. It is important to note, however, that Pendellosung fringes are only 

found on rocking curves of thin layers, and so the only way of determining layer 

thickness in thick layers is by matching experimental and theoretical curves. 

4.4 Experimental Determination of Thickness and Mismatch 

Four samples of single epitaxial layers of AlGaAs grown by M B E at Glasgow 

University by C . Stanley were characterised. The substrates were GaAs, (001) 

oriented, and so to avoid dispersion effects a first crystal of GaAs was used, with 

the surface symmetric 004 reflection for both crystals. The layers were nominally 
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2fim in thickness and had expected Aluminium concentrations of 20%, 40%, 60% 

and 80%, corresponding to sample identification codes G A S l , GAS2, G A S 3 and 

GAS4 respectively. Rocking curves were taken over on 800" range using a 4" 

step size with 5 seconds counting time a point. 

Figure 4.2 shows the experimental and simulated rocking curves from the four 

samples. The mismatch used in the simulation was determined directly from the 

experimental peak separation and the thickness varied until a close match was 

attained. It was necessary to include curvature in the simulations to fit the peak 

widths, with more curvature required for the higher mismatched layers. The 

only sample not closely fitted using a single layer was GAS3 . It is likely, in this 

case, that compositional grading exists at the interface, or possibly an actual 

interfacial layer, which causes the asymmetry of the substrate peak. 

Table 4.2 shows the values of mismatch, Aluminium concentration, thickness 

and curvature of the samples determined from the simulations. The curvature is 

expressed in an angular deviation of the sample across the incident beam. The 

mismatches shown are accurate to within ± 2 0 p p m , or ± 1 % Aluminium. The 

error in the thickness determination is about ± 0 . 0 5 / / m ( ± 5 0 0 A ) , but this is on 

the assumption that only one layer exists, as well as no compositional grading or 

layer imperfections. 

Sample Mismatch A l Thickness Curvature 

{ppm) (%) (pm) ( " ) 

G A S l 220 17.3 2.37 6 

G A S 2 490 38.5 2.33 8 

GAS3 680 53.4 2.29 10 

GAS4 920 72.3 2.25 12 

Table 4.2 

These layers were too thick to observe Pendellosung fringes and so the only 

method of layer thickness determination available is by matching experimental 
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Figure 4.2: 004 experimental (solid) and theoretical (dashed) rocking curves; (a) 

GAS1 , (b) GAS2 , (c) GAS3 , (d) GAS4. 
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and theoretical rocking curves. However, two further samples of AlGaAs on 

GaAs, grown by C . Stanley, were characterised with nominal thicknesses of l,2ymn 

and 35% Aluminium; identification codes GAS5 and GAS6. This thickness of 

layer would be expected to show fringes. 

The experimental conditions were the same as before but this time the layer 

thicknesses were characterised both by simulation and by measuring Pendellosung 

fringe spacing. The samples were long strips taken from a 2 inch wafer and 

information on uniformity of growth was required. The samples were mounted 

on a Bede X - Y Translation stage to allow a line scan across the sample without 

remounting the sample at each point. Five rocking curves were taken from each 

sample at points 4mm apart, going from the centre of the wafer to the edge. 

Each rocking curve had a range of 400", a step size of 2" and a counting time of 

72 seconds for each step. 

Figures 4.3 and 4.4 show the experimental and simulated rocking curves of 

G A S 5 and GAS6. The fits were obtained by matching the peak separations, 

relative peak heights and widths only. Again curvature was required for a close 

match. Figures 4.5 and 4.6 show the corresponding experimental rocking curves 

with the intensity plotted on a logarithmic scale. The fringes are clearly visible 

on this type of graph, and the average fringe spacing may be measured. Using 

equation (4.9) the thickness can then be calculated. Table 4.3 illustrates the data 

yielded from both methods of characterisation. 

Several points are evident from the data. Firstly, the layer thickness predicted 

from the simulation method is consistently smaller than from the Pendellosung 

technique. This can be explained because the simulation assumes a perfect layer 

with no compositional grading. This is unlikely in practice (Lyons, 1989) and so 

the thickness difference between the two methods gives an indication of the degree 

of grading and of layer quality, since Pendellosung fringe spacing is independent 

of composition. Therefore, it would appear that GAS6 is of better quality than 

G A S 5 because the layer thickness difference between the two methods is only of 

the order of 5% compared to 10% for GAS5 . This was corroborated by the crystal 

growers who in fact found considerable compositional grading in GAS5 using 

T E M . This grading was periodic and section 4.6.2 deals with its characterisation. 
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Figure 4.3: 004 experimental (solid) and theoretical (dashed) rocking curves of 

GAS5; (a) 2mm, (b) 6mm, (c) 10mm, (d) 14mm, (e) 18mm from wafer centre. 
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Figure 4.4: 004 experimental (solid) and theoretical (dashed) rocking curves of 

GAS6; (a) 2mm, (b) 6mm, (c) 10mm, (d) 14mm, (e) 18mm from wafer centre. 
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Figure 4.5: 004 experimental rocking curves of G A S 5 on a logarithmic scale 

2mm, (b) 6mm, (c) 10mm, (d) 14mm, (e) 18mm from wafer centre. 
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Figure 4.6: 004 experimental rocking curves of GAS6 on a logarithmic scale; (a) 
2mm, (b) 6mm, (c) 10mm, (d) 14mm, (e) 18mm from wafer centre. 
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In addition, the mismatch increases going from the centre to the edge of the wafer, 
while the thickness decreased, for both samples. The wafers were therefore not 
particularly uniform. 

These results illustrate that is not enough to simply fit relative peak heights 
and widths to determine layer thickness accurately. It is evident that excellent 
matches can be obtained even when the layer thickness used is in fact incorrect, 
and compositional grading may be hidden if it is not significant. 

Sample Distance from 

wafer centre (mm) 

Mismatch 

(ppm) 

Composition 

%Al 

Curvature 

( " ) 

Thickness (/im) 

Simulation Pendellosung 

GAS5 2 470 35.9 5 1.28 1.47 

6 480 36.7 5 1.28 1.39 

10 500 38.2 5 1.22 1.30 

14 520 39.8 5 1.19 1.30 

18 560 42.8 6 1.05 1.13 

GAS6 2 450 34.4 6 1.53 1.60 

6 460 35.2 6 1.49 1.56 

10 470 35.9 6 1.45 1.53 

14 500 38.2 6 1.32 1.43 

18 560 42.8 6 1.13 1.21 

Table 4.3 

4.5 Problems Associated with the Characterisation of Epilayers 

4.5.1 The Effect of Epilayer Tilt on Mismatch Measurement 

When substrates are misoriented with respect to the plane of growth, epi
taxial layers tend to grow at an angle to the substrate (Nagai, 1974; Olsen and 
Smith, 1975). This epilayer tilt has been observed in InGaAs layers grown by 
V P E on 3° misoriented InP substrates (Macrander and Strege, 1986), in CdTe 
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layers grown by MOVPE on 2° misoriented InSb substrates (Bhat et al., 1988), 
and also in GaAlAs grown on 2° misoriented GaAs substrates (Tanner, Miles, 
Peterson and Sacks, 1988). Kleiman, Park and Mar (1988) have shown that the 
value of tilt between the layer and substrate planes depends on both the epilayer 
thickness and the orientation of the substrate plane. They proposed a simple 
model based on a stepped substrate surface responsible for a redistribution of 
the bond lengths between the atoms of the substrate and the epilayer in the in
terface region leading to the formation of tilt between the planes in the epilayer 
and the substrate. 

In order to determine the composition of the layer it is not enough to use 
only one rocking curve measure of peak separation. Two rocking curves must 
be taken from the sample separated by 180° rotation about the surface normal 
(Hattanda and Takeda, 1973; Kawamura and Okamato, 1979). For symmetric 
reflections the peak separations, A6, corresponding to the two cases are 

A6a = m* tan6 - 6<f) , A6b = m* tan0 + 6<j> , 4.10 

where 6(f> is the component of tilt between the layer and substrate in the incident 
plane. The mismatch is therefore determined from the average peak separation, 

m* = \{A6a + A0 6)cot0 . 4.11 

In order to measure the absolute tilt, rather than tilt component, it is neces
sary to record four rocking curves rotated 90° with respect to one another for 
convenience (Tanner, Miles, Peterson and Sacks, 1988) although only three are 
actually needed. If 6<f>\ is the tilt determined from the difference between the 0° 
and 180° positions and Sfo is that determined from the difference between the 
90° and 270° positions, then the maximum tilt 6<f>o is given by 

tan 2 6<j)Q = tan 2 6<f>\ + tan 2 6<f>2 . 4.12 

The direction of tilt is at an angle a away from the first measurement setting, 
given by 

tan 6<fo . 1 Q tana = —- . 4.13 
tan o<pi 
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Tanner et al. (1988) recorded a difference of 18" between measurements of peak 
splitting taken from rocking curves 180° apart. If only one rocking curve had 
been taken the calculated aluminium concentration would have been inaccurate 
by 2%. Auvray, Baudet and Regreny (1989) have also reported similar possible 
errors from Al As epitaxial layers and AlAs/GaAs superlattices MBE grown on 
misoriented (001) GaAs substrates and for substrate misorientation above 0.5° 
the tilt is proportional to the miscut angle (Isherwood, Brown and Halliwell, 
1981). 

Figures 4.7(a) and (b) show two 004 rocking curves 180° apart, using a first 
crystal 004 reflection from a strained layer superlattice structure, sample iden
tification Code S L S l , grown with MBE by C. Stanley, the structure of which is 
given in figure 4.8. The l/xm superlattice is surrounded by two 3/xm cladding 
layers of GaAs, grown on a misoriented GaAs substrate. The substrate tilt 
was determined to be 1.4° by taking four rocking curves 90° apart and using a 
modified form of equation (4.12) 

tan 2 <f>o = tan 2 <j>\ + tan 2 4>i , 4.14 

where <f> now represents the tilt of the substrate with respect to the (001) plane. 
The asymmetry seen does not in fact arise from the superlattice itself, as its mis
match is large and the angular range shown is small, but from the cladding. The 
asymmetry is probably due to the smaller unresolved substrate peak combining 
with the stronger cladding layer peak. Its movement with respect to the layer 
peak indicates a tilt between the substrate and superlattice stack. The average 
mismatch of the cladding, using equation (4.11), is zero, but the tilt causing the 
cladding to appear mismatched is 100 ± 10". 

Figure 4.9 shows two 004 rocking curves taken 180° apart along the direction 
of maximum substrate tilt from another strained layer superlattice, code SLS2. 
In this case the first crystal reflection was an 044 from an 011 surface, and 
so the arrangement was dispersive. The rocking curves had a step size of 4" 
and 40 seconds counting time per step. The sample structure was nominally 
the same as SLSl but the top cladding layer had not been deposited and the 
number of superlattice periods was reduced. Using the same method as before 

66 



Count ra tG 
22000 
20000 -I 
18000 
16000 
14000 
12000 -J 
10000 
8000 -
6000 -
4000 
2000 

a 

-200 -0 200 400 600 
S Q C , Axis 2 

Figure 4.7: 004 rocking curves of SLSl with (a) 0° and (b) 180° rotation about 

the surface normal. 

Loun t ra tQ 

18000 -

6000-

14000 -

12000-

10000 -

6000-

2000-

S G C , Axis 2 



30% Indium well/GaAs barrier 
grown on GaAs substrate 

p+ GaAs Cap 

p GaAs Cladding 

i InGaAs/GaAs SLS 

n GaAs Cladding 

n+ GaAs 

n+ GaAs Substrate 

Dimension Doping (cm" ^) 

100 A 5x10 1 8 

3u.m 5 x 1 0 1 6 

1u.m intrinsic 

3u,m 5 x 1 0 1 6 

100A 5 x 1 0 1 8 

=0.6mm n+ 

Room Temperature 
Band-edge of SLS 

InGaAs 
74A 

GaAs 
126A 

1.425eV 
(0.87u.m) 

1.261eV 
(0.984|im) 

3bC 

n=1 e 

1.523eV 
(0.851nm) 

n=1 hh 

n=1 Ih 

Figure 4.8: Structure of SLS1, InGaAs/GaAs strained- layer superlattice. 



1000 h 

3800 3900 4000 4100 

Angle (sees) 

4200 4300 4400 

Figure 4.9: 004 rocking curves of SLS2 with 0° (solid) and 180° (dashed) rotation 

about the surface normal. 



the maximum substrate tilt was found to be 1.6° with the 001 surface. The low 
intensity peaks on the rocking curves correspond to the substrate. The layer-
substrate separation between the two rocking curves was 12" corresponding to 
an epilayer tilt of 6". In this sample the cladding layer was mismatched from the 
substrate by +699ppm probably arising from the doping process. The substrate 
tilt of 1.6° also affects the relative peak heights and the difference between the 
layer peak in the high and low incidence cases is significant. It is vital, therefore, 
in order to measure mismatch and determine layer thicknesses from simulation, 
to record two rocking curves rotated by 180° about the surface normal. The 
characterisation of superlattices is dealt with in detail in section 4.6. 

4.5.2 The Effect of Wavelength Dispersion in the Parallel Setting 

Significant peak broadening can occur if the Bragg angles of the first and 
second crystals are different, even in the parallel setting. When both the Kct\ 
and KOLI components are present in the incident beam they will be resolved 
on the rocking curve if the dispersion is large enough, which complicates its 
interpretation. This is illustrated in the following example. 

A two layer structure grown by T. Krier was characterised using a Bede 
Scientific Instruments QCl desk top diffractometer (Bede Scientific Instruments, 
1987). This instrument had a fixed first crystal of GaAs with both CUKOL\ and 
KOLI components contained in the incident beam. The sample was grown on 
an InAs substrate by L P E and consisted of two layers of nominal composition 
i"n.Aso.86'S,&0.06-Po.08) the first n-doped and the second p-doped. The sample was 
stepped across its surface to expose the first layer and substrate. Three rocking 
curves were taken over 1000" ranges with 4" step size and 2 second counting 
time a step. Since the Bragg angle of InAs is 30.6° compared to 33° for GaAs 
the Ka\ Ka.i peak separation is calculated using equation (2.10) to be 30". 
The rocking curves are shown in figures 4.10(a), (b) and (c), corresponding to 
two layers, one layer and the substrate respectively. The rocking curve in figure 
4.10(a) is complicated and it is not immediately obvious that it arises from only 
two layers. However, the subsidiary maximum on the substrate peak at roughly 
half the peak intensity is present on the rocking curve from the part of the sample 
without growth, figure 4.10(c), and is simply the Ka<i peak. The mismatch may 
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then be determined for each layer using only the separations between the Ka\ 
peaks. The first layer (n-type), is of poor quality and graded in composition. Its 
rocking curve peak is very broad and the Kai peak is not individually resolved 
as a result. The peak shape is characteristic of graded layers (Halliwell, Juler and 
Norman, 1983; Bowen, Hill and Tanner, 1987). In addition, the position of the 
peak changes for different points on the sample which means that the average 
layer composition changes significantly across the surface, from —lAOOppm to 
—990ppm in 10mm. The second layer, (p-type), is of better quality and has a 
mismatch of — 310ppm. 

It was not possible to simulate the structure to determine layer thickness 
because of the Ka.i contamination. For the cases where a dispersive geometry 
cannot be avoided it is good practice to remove the Kai peak with a slit between 
the two axes. The rocking curve peaks will then only be broadened by the 
linewidth of the Ka\ peak. 

4.5.3 The Interpretation of Complicated Rocking Curves 

Figure 4.11 shows an 004 rocking curve of a multilayer structure grown at 
British Telecom by G. Scott using MBE, code INP1. The rocking curve was 
taken on a QCl diffractometer having an InP first crystal with a step size of 4" 
and a counting time of 120 seconds per step. The sample structure consists of 15 
layers and is shown in figure 4.12. The layer thicknesses have been measured by 
T E M but the mismatches are unknown. The rocking curve is highly complex and 
it is evident that there are just too many varying quantities for an interpretation 
to be achieved unless a great deal of time is spent simulating it. Although 
this is an extreme case it illustrates the need for cross referencing with other 
characterisation techniques or other reflections in order to reduce the number of 
unknowns, and hence allow complete characterisation. 

4.6 Characterisation of Superlattices 

4.6.1 Modelling Techniques 

Superlattices and Multi-Quantum Well (MQW) structures generally consist 
of alternating layers of two semiconductors which are sufficiently thin to exploit 
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quantum size effects. The difference between them is that superlattices have 
barrier widths thin enough to allow coupling between the wells from overlapping 
wave-functions, and MQW's do not. The basic structure is equivalent however 
and is described by the superlattice period A, which is defined to be the sum of 
the thicknesses of the well and the barrier, 

A = 2n\a\ + 2niai , 4.15 

(Segmiiller and Blakeslee, 1973; Segmiiller, Krishna and Esaki, 1977). n\ and 

ri2 are the number of monolayers in each layer, and a\ and 02 are the spacings 

between successive molecular layers. This is illustrated for a (Gai-xAlxAs)ni, 
(GaAs)n2 /GaAs(Q01) superlattice in figure 4.13 (Kervarec et al., 1984). 

The rocking curve of a superlattice is quite complex and a simulated superlat

tice of (Gao.38^o.62-^*)wi = 40, (GaAs)ni = 30 /GaAs with 80 repeat periods 

is shown in figure 4.14. The curve consists of a substrate peak together with 

a peak corresponding to the average composition of the superlattice, known as 

the zeroth order peak. Superimposed symmetrically about this peak is a set of 

subsidiary maxima, known as satellite peaks, with spacing determined by the pe

riodicity of the superlattice. Their orders are labelled in figure 4.14 and may be 

analysed to give a great deal of structural information. The following treatment 

in this section follows that of Fewster (1986, 1987, 1988). 

The understanding of the origin of the satellites comes from a consideration 
of the lattice periodicities contained in the superlattice. Apart from the peri
odicity due to the average lattice spacing there exist periodicities arising from 
the lattice spacing ± the superlattice period. In reciprocal space this will give 
rise to additional points near each principal point, representing the additional 
periodicity. Therefore on the rocking curve at least one satellite peak is found on 
each side of the zeroth order peak, whose spacing from it is determined by the 
superlattice period. Another approach is to consider the diffraction pattern as 
the Fourier transform of the structure factor throughout the superlattice. The 
number of satellite peaks observed will depend on the abruptness of the inter
face between periods. So, for example, if the periods were graded so that the 
overall structure factor variation were sinusoidal, only one Fourier component 
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would exist and thus only one pair of satellites. If the interface is abrupt, this is 

equivalent to the Fourier transform of a square wave, which consists of an infinite 

number of odd harmonics and results in a corresponding infinite number of odd 

satellites. The number of observed satellites therefore gives an indication of the 

degree of grading in the interfaces. 

It is unusual that a superlattice is grown with a perfectly constant period 

throughout, and variation in period is known as period dispersion. The zeroth 

order peak remains unchanged because the average composition is the same but 

the satellite spacings will be slightly different for each of the periods found. This 

will affect the higher order satellite peaks more than the lower orders and so 

period dispersion leads to an increase in the width of the satellite peaks with 

satellite order. 

The resolution of higher order satellites from the background requires long 

data collection periods with a D C D . A powder diffractometer has the advantage 

of very high intensities which makes it very fast, and it may be used for many 

of the measurements. Although it cannot usually distinguish the zeroth order 

peak from the substrate peak, it is accurate enough for measurements of satellite 

spacing and relative intensity. However, accurate peak profiles are best obtained 

with double crystal instruments. 

The average superlattice composition x, is determined in the normal way as 

explained in section 4.3. It is important to note that their zeroth order peak 

occurs at the average Bragg angle of the superlattice and not of the alloy layers 

alone. To determine the alloy composition, x, it is necessary to know the well 

thickness d\, as well as the period, x is given by 

xA 
4.16 

The superlattice period is determined from the separation of the satellites on 

the rocking curve. For a period of A the distance between subsidiary maxima in 

reciprocal space is 1/A, and so by Bragg's law 

2Asin#i = L\\ , 2Asin#2 = , etc., 
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for the diffraction orders L\, L2, ...Li,..., Lj, and so for symmetric reflections 

A - { L ' - L ' ) X . 4.17 
2(sin0; — sindj) 

Therefore by measuring the diffraction angles 6 for various diffraction orders L, 

a good estimate of the average period can be obtained by determining A for 

combinations of AL. 

The satellite intensity is affected by the ratio of the well to barrier thicknesses 

within a superlattice unit cell. To determine the thicknesses individually, it is 

necessary to calculate the structure factors of all the observable satellites, sum

ming over atoms in a unit cell, and compare these with the integrated intensities 

actually measured after correcting for any instrumental effects. The calculation 

is iterated until the differences between the calculated and measured intensities 

is minimised as a function of the welhbarrier ratio. The differences are expressed 

as an R factor 
E W - \Fe\ 

R = 4.18 
\Fo\ 

where Fa and Fc are the observed and calculated structure factors. 

The period dispersion is obtained from the increase of satellite widths as a 

function of satellite order. The average full width at half maximum ( F W H M ) of 

the satellites is first determined after correcting for instrument broadening. This 

is straightforward since the profiles are Gaussian and the zeroth order width 

containing the instrumental function, /3o, may simply be subtracted from the 

satellite width, to give the required integral width (Fewster, 1988) 

A = {A - • 4 - 1 9 

Assuming that the satellite peaks are near the Bragg peak and that over that 

range cos0 does not change appreciably, equation (4.17) can be simplified to 

2cos0A0 
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To determine the influence of the period variation on the broadening of each 

satellite equation (4.20) is differentiated to give 

A A = 
{Lj - Lj)XS(A8) 

cos0(A0) 2 
4.21 

where 6(A0) is the difference in angle within the satellite for a period difference 

of A A. The F W H M of the Gaussian distribution of periods is therefore given by 

where f3s is the statistical average F W H M for all the measured satellites. 

Over the region where X-rays are coherently diffracted the diffraction features 

will be the sum of the intensities from this region. Roughness and grading are 

indistinguishable to X-rays which average over the coherence width. Fewster's 

treatment assumes that roughness is confined to less than one monolayer, to ac

count for incommensurability, and that grading accounts for any other variation 

at the interface. The roughness is introduced by adding coherently the structure 

factors of two commensurate periods, with well widths straddling the average 

value. These are then scaled with the previously determined Gaussian disper

sion of periods (equation 4.22) and added to give the overall structure factor for 

that satellite. The structure factor of each satellite is compared with experimen

tal intensities, again using R factors, with the variable being the compositional 

grading away from the interface, altered by one layer at a time. A linear grading 

is usually adequate. 

Lyons, Scott and Halliwell (1989) have shown that compositional grading in 

GalnAs/InP superlattices grown by M B E is limited to 2 or 3 monolayers. They 

have shown that previous methods of modelling superlattices both dynamically 

(Lyons and Halliwell, 1985, 1986) and kinematically (Vandenberg et al., 1986, 

1988) as alternating layers of two materials each having a constant strain and 

composition have serious limitations. Apart from high computational times the 

model is not realistic for layers only one or two monolayers thick and has difficulty 

predicting the way strain varies across the interface (Lyons, 1989). 

<x(A) = 
(Lj - Lj)Xl3t 

cos0(A0) 2 

'a 4.22 
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An alternative approach was used which describes the superlattice period as 

a tetragonal unit cell with the c parameter equal to the superlattice period. The 

structure factor for this extended unit cell is then calculated using the standard 

equations (Segmuller et al., 1977; Kervarec et al., 1984). The interfacial region 

is modelled by a single variable which describes both the scattering factor and 

lattice parameter at any point in the period. Although the structure factor 

approach is essentially kinematic, it is valid for most superlattice structures since 

satellites are generally very weak. Experimental rocking curves were analysed by 

assuming a trial structure and calculating the relative intensities of each satellite 

peak. The first stage was to determine the relative thickness of the individual 

layers by calculating the satellite intensities assuming a perfect interface and 

comparing with the experimental curves. Grading was then introduced at the 

model interfaces to see whether the fit could be further improved. 

Although X-rays cannot distinguish between interfacial grading and rough

ness it is evident that they can give an accurate indication of the quality of 

interfaces. With the trend towards growth of narrower wells, grading over a few 

monolayers may significantly change the electrical and optical properties of de

vices made from superlattices. Simulation programmes modelling experimental 

rocking curves need to become increasingly sophisticated to allow for composi

tional grading and roughness over narrow interfaces which is a real problem in 

the growth of heteroepitaxial layers (Lyons, 1989). 

.2 Characterisation of a Periodically Graded Layer 

The thickness and average composition of GAS5 were determined in section 

4.4. The results suggested that the layer was graded and T E M showed that 

this grading was periodic. The layer could therefore be expected to behave 

like a superlattice and display satellite peaks on its rocking curve. However, as 

explained in the previous section, when the interfaces are graded so much that 

the compositional profile becomes sinusoidal then only one pair of satellites will 

result. 

A rocking curve was recorded using the 004 reflection over a range of several 

degrees with a step size of 40" and a counting time of 200 seconds per step, 

using a proportional counter. The grading was known to be greater at the edge 
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of the wafer and so a point was chosen at 18mm from the wafer centre, the 

short range scan of which is shown in figure 4.3(e), corresponding to a layer 

thickness of 1.13/xm with 42.8% Aluminium. Figure 4.15 shows the long range 

rocking curve at 1% and 0.05% of the substrate peak intensity. The first order 

satellite can be seen on the high angle side of the layer peak. It is a real peak 

as it is significantly different from the noise. Using equation (4.17) the satellite 

separation gives the period of the grading to be A = 55 ± l A . Unfortunately it 

was not possible to simulate this to determine the magnitude of the grading as the 

Durham programme modelled abrupt interfaces only. A qualitative simulation 

did show, however, that the high angle satellite was stronger than the low angle 

satellite which explained why only one satellite was seen experimentally. 

4.6.3 Experimental Characterisation of a Superlattice 

Sample MQW1 was grown by G . Scott of British Telecom using M B E . It con

sisted nominally of 20 repeat periods of AlInAs/InGaAs of thickness 100/20.A 

respectively, grown on InP. A rocking curve was recorded using the symmet

ric 004 reflection over a range of 6000" with a step size of 8" and a counting 

time of 60 seconds. Figure 4.16 shows the experimental and simulated rocking 

curves. The superlattice is seen to be closely lattice matched to the substrate and 

because it is thin (~ 0.25/zm), the layer peak cannot be distinguished from the 

substrate peak. The satellite orders of —2, - 1 and +1 can be seen and from their 

positions the average position of the zeroth order satellite was determined, giving 

an average superlattice mismatch of — 1 0 7 ± 4 0 p p m . The superlattice period was 

also calculated from the average satellite separation and is A = 161 ± SA. This 

is significantly larger than the thickness predicted by crystal growth conditions. 

By measuring the Pendellosung fringe spacing on the wings of the rocking curve 

the total thickness of the superlattice was calculated to be 0.29 ± 0.02/zm. This 

gave the number of repeat periods to be 18 ± 2. The simulated rocking curve 

took the measured period and scaled the individual layer thicknesses by their 

initial ratio of 5 : 1 and for simplicity made their mismatches equal. Obviously 

this is not an accurate fit as the simulation also assumes abrupt interfaces, but 

it gives an idea of the ideal superlattice rocking curve. A background level of 3 

counts per second was added for a better fit. Unfortunately, the signal to noise 

ratio of the experiment is poor and it is difficult therefore to give an indication 
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Figure 4.15: 004 long range rocking curve of GAS5 at 1% and 0.05% of the 

substrate peak intensity. 
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Figure 4.16: 004 experimental (solid) and theoretical (dotted) rocking curves of 
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of interface grading as this requires a detailed comparison of satellite intensities. 

The use of a proportional counter would be a great improvement. 

4.6.4 Superlattice Relaxation 

The mechanisms of relaxation occurring in Si/Si\-xGex strained-layer su-

perlattices (SLS) on Si substrates has been described (Fiory et al., 1984; Tuppen 

et al., 1987). Superlattices can become relaxed in the same way as single het-

eroepitaxial layers and are more likely to do so if the layer mismatch is large, as 

it the case in SLS's . The degree of relaxation can be measured more precisely 

than either Raman spectroscopy or T E M using D C D (Halliwell et al., 1989). 

To determine the difference between the substrate and mean lattice tilts, dtf>, 

and Bragg angles, d6 for incoherent layers, both the high and low angle beam 

paths of an asymmetric reflection must be used, as explained in section 4.3.1. The 

Bragg angle 6m, and the plane tilt <f>m, for the mean cell can then be found and 

used to calculate the a and c parameters of the mean tetragonal unit cell from 

the known substrate lattice parameter using the following expressions derived 

from equation (4.6) 

c = ^ , , 4.23 
2 sin 6m cos <pm 

" 2 + * 2 - : 

a ~ U s i n 2 0 m / A 2 - j 2 / c 2 / ' s in 2 0 m / A 2 - l 2 / c 2 

for an hkl reflection, o and c are then substituted into equation (4.25) to calculate 

the equivalent lattice parameter of a cell with cubic symmetry ar, 

(I ~ v) 
o P = (c - ay. + o , 4.25 + 

where v is Poisson's ratio. The mean composition of the superlattice may now 

be determined. 

For asymmetric reflections equation (4.17) is no longer valid for determining 

the superlattice period. In order to calculate the correct expression which also 

takes into account lattice tilts, an Ewald construction may be used. This is 

75 



essentially a description of Bragg's law in reciprocal space which states that to 

satisfy Bragg's law for a set of planes hkl the reciprocal lattice point hkl must fall 

on the surface of a sphere of radius 1 /A. Figure 4.17 shows the Ewald construction 

for an hkl reflection from the nth order satellite. 

The reciprocal lattice vector for the nth order satellite reflection is given by 

Now for a high angle of incidence beam path the satellite spacing is d(8 + <j>)/dn, 

and for a low angle of incidence the spacing is d(6 — </))/dn. Therefore, from 

equation (4.27) 

h2 + k2 

n 
+ a 

4.26 

and so 
A h2 + k2 

n sin 6 + a 
4.27 

de i 
4.28 

** v'*-[*=*i + 0 ' 
Now 

1 n / c 2 d6_ 
dn 

d6 dd* 
dd* dn 

4.29 

Using (4.27) we have 

A 2 ,h2 + k2 n 2 \ 
+ 3 COS0 4.30 

and combining equations (4.27), (4.29) and (4.30) we find 

de nX2 

4.31 
dn 2c 2 sin 20 ' 

Similarly for d<f>/dn, we have 

tan 4> = 4.32 



nth order satellite 

VX 

n 0 
e 

e 

1/X 

a 

Q 

Figure 4.17: Ewald construction, for a superlattice reflection. 



and so 
d4 _ - V 7 t 2 + k2/ca 
dn~~ ±̂*i + 4 4.33 

Combining equations (4.31) and (4.33) and using equation (4.27) we have there

fore 
d{6 + <j>) nX2 (h2 + k 2 ) h 2 

; — —T,—:—— o tiiqh angle, 
dn 2c 2 sin 26 4cas in 2 0 

d(6-(f>) n\2 (h2 + k2)?X2 

v , ; = n 9 . n n + - — - — 4 — Low angle. 4.34 
dn 2c 2 sin 26 4ca sin 2 6 

For satellites close to the substrate peak n/c is approximately the normal com

ponent of the substrate reciprocal lattice vector. Hence, if we define Sjj and Si 

as the angular spacing of the satellites for the high and low angles of incidence 

respectively, equation (4.34) can now be written as 

SEA = A s i n < ? 0 M _ (h2 + k2)^X2 

sin 26hki 4a s in 2 6hki 

frA=^+ 4.35 
sin 20hki 4a sin' Bhki 

The percentage relaxation, R%, is given by 

R % = h z ^ L x 1 G 0 , 4.36 
( a r - a 0 J 

where ao is the lattice parameter of the substrate (Halliwell et al., 1989). For 

an unrelaxed superlattice the lattice parameters of the mean unit cell and the 

substrate match parallel to the surface, with the mean cell tetragonally distorted 

perpendicular to the surface. This is 0% relaxation. At 100% relaxation the 

mean unit cell is cubic. 

These expressions allowing the mean unit cell parameters to be derived for 

relaxed superlattices as well as the period of the superlattice using asymmetric 

reflections can now be applied experimentally. Sample M Q W 2 was grown by G . 
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Scott using M B E . It consisted of 50 repeat periods of Gain As /InP of nominally 

equal thickness on InP. The experiments were run on a Bede model 150 D C D 

using a rotary stage and a scintillation detector. In order to determine the extent 

of relaxation, if any, the asymmetric 115 reflection was used with both high and 

low angle of incidence beam paths. Also, to determine how the superlattice 

unit cell was relaxed, rocking curves were taken at sample orientations of 0° 

and 90° of one of the [110] cleaved edges with respect to the incident beam. In 

order to take into account the possible epilayer tilt these measurements were 

repeated at 180° and 270° so that a total of eight rocking curves were recorded. 

The step size was 0.5" for the high angle of incidence and l " for the low angle of 

incidence cases, with a counting time of 20 seconds per step. The substrate zeroth 

order satellite peak separations were then measured as accurately as possible for 

each curve resulting in eight equations governing AO, A0 and 88, the epilayer 

tilt component. The subscripts in Table 4.4 refer to the sample orientations of 

0°, 90°, 180°, and 270° with the incident beam. 

High Angle Low Angle 

A0O - A 0 O - 50 o = -128.5" A0O + A 0 O + 50 o = -233.0" 

A0 9 O - A 0 9 O - 50 9 o = -127.4" A0 9 O + A09O + 5090 = -241.6" 

Atfiso - A 0 i 8 O + 50 o = -116.4" A0i8o + A0i 8o - 50o = -245.7" 

A027O - A027O + 5090 = -131.1" A027O + A027O - 5090 = -237.0" 

Table 4.4 

Taking the 0° and 180° directions, and the 90° and 270° directions separately, 

we gain average values of Ad, A0 and 50, and using equations (4.23), (4.24), 

(4.25) and (4.36) the a and c parameters and the relaxation can be calculated. 

Table 4.5 shows the calculated values. 
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0° - 180° 90° - 270° 

a ( A ) 5.86912 ± 0.00005 5.86867 ± 0.00005 

c(A) 5.86277 ± 0.00005 5.86269 ± 0.00005 

R% - 1 4 ± 3 3 ± 3 

6<i>{ " ) 6.2 ± 1 -2 .1 ± 1 

Table 4.5 

The relaxation is asymmetric with 14% relaxation occurring in one direction and 

3% in the other. In practice asymmetric relaxation is highly likely since there 

exist four f i l l ] slip planes two of which have group I I I elements uppermost while 

the other two have group V . The ease of slip along these planes will differ and so 

strain will tend to be released along the easy direction by the formation of misfit 

dislocations. However, because the relaxation is asymmetric the unit cell will no 

longer be tetragonal but orthorhombic, and the calculations of a, c and R will 

be inaccurate. This explains the apparent small difference between the c values 

which should of course be equivalent whichever direction of incidence is used. 

The maximum component of epilayer tilt is 6.5 ± l " . Had the tilt not been 

taken into account the relaxation would have been in error by ± 1 0 % . The sub

strate tilt was measured to be less than 0.25°, which shows that epilayer tilt can 

arise even when the substrate is relatively well oriented. This has been confirmed 

by Auvray, Baudet and Regreny (1989) who have determined a relation between 

the epilayer tilt and mismatch, and have found that this tilt is even present in 

growth on non-intentionally misoriented substrates. 

The superlattice period may now be calculated from the satellite spacings 

of long range rocking curves. In order to gain an accurate measurement, four 

rocking curves were recorded from the 0° and 90° position at high and low inci

dence beam paths. For the high angle case the scan range was 6000" with a 6" 

step size, while for the low angle case the range was 9000" with 10" step size. A 

counting time of 75 seconds per step was used in each case. Figure 4.18 (a)-(d) 

shows the rocking curves. Taking all combinations of satellite separations the 
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average separation was 516.6 ± 1.4" for the high incidence case and 990.0 ± 1.6" 
for the low incidence case, giving an average superlattice period, using equation 
(4.35) of 276.5 ± 0.4A. In order to check this result an 044 glancing incidence 
rocking curve was recorded over 12000" range with 10" step size and 55 second 
counting time, which is shown in figure 4.19. The superlattice period was cal
culated to be A = 283.5 ± 2.3A. The overall weighted mean period is therefore 
A = 276.7 ± 0.4A. It is also interesting that in figure 4.18 (a)-(d) the satellites 
in the unrelaxed direction are narrower in width and greater in intensity than 
those in the relaxed direction. In fact the higher order peaks are indistinguish
able from the noise. This arises because dislocations within the area irradiated 
by the X-ray beam lead to small variations in tilt of the diffracting planes across 
the beam, and so the satellite peaks become broader and less well defined. This 
supports the previous evidence that the superlattice is asymmetrically relaxed. 

.7 Thin Layer Characterisation using Asymmetric Reflections 

From a consideration of structure factors for zinc-blende type crystal struc
tures the strongest allowed symmetric reflection from the 001 plane is the 004. 
The Bragg angle and hence incidence angle (as the reflecting planes are parallel 
to the surface) is 31.7° for InP and 33° for GaAs. Rocking curve layer peaks 
are easily resolved using this reflection for relatively thick layers, but when lay
ers become thin, typically less than 0.2/zm, the peaks become broad and low in 
intensity as shown in figure 4.20. For small mismatch the layer peak may be in
distinguishable from the tail of the substrate Bragg peak and so the measurement 
of mismatch then becomes less accurate and longer counting times are required 
for good statistics. There are some allowed asymmetric reflections which, be
cause of their smaller angles of incidence, increase the layer peak height with 
respect to the substrate. This arises from an increased path length within the 
layer. Figure 4.21 shows simulated rocking curves of an 0.15/xm layer of InGaAs 
with a mismatch of — lOOOppra on InP for the 004 reflection and asymmetric 
224 and 044 reflections, which have incidence angles of 4.8° and 3° respectively. 
This is known as glancing incidence, where the incident angle to the surface is 
6 — <j>. The lower the angle of incidence the more sensitive the reflection is to thin 
layers. The beam paths may also be reversed to give an incidence angle of 0 + <f> 
so that the exit beam is at a small angle to the surface. Glancing exit gives the 
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Figure 4.19: 044 low angle of incidence rocking curve of MQW2. 
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same sensitivity to thin layers as glancing incidence since the path length within 
the layer is the same, but the peak widths are reduced due to the geometry. This 
is discussed in more detail in Chapter 5. 

The asymmetric 044 reflection was applied experimentally to a sample of 
AlInAs on InP with a nominal thickness of 0.1/im capped by 50A of GaAs 
(Bates et al., 1988). The sample, code INP2, was grown by G. Scott using MBE. 
A first crystal 044 reflection from anfOil) surface was utilised so that there was 
no dispersion. The rocking curve was taken on a Bede model 150 diffractometer 
using a scintillation counter, with a step size of 10" and 80 seconds counting 
time. 

Figures 4.22 and 4.23 show the experimental and simulated rocking curves 
respectively, from three points on the sample separated by 5mm. The layer thick
ness variation over the sample is significant with values of 900A, 500A and 250A 
required in the simulation for figures 4.22(a), 4.22(b) and 4.22(c) respectively, 
with mismatches of —4785ppm, —4630ppm and —4500ppm. Figure 4.22(c) is 
plotted on a scale of 2% of the peak intensity so that the layer diffraction fea
tures could be seen. The fit between the simulation and experimental curves is 
not particularly good as the layer is evidently imperfect and some sort of grading 
probably exists. However an indication of layer thicknesses is yielded. Unfortu
nately the background noise was too high to allow observation of Pendellosung 
fringes to give an accurate indication of layer thickness and so the thicknesses 
given are accurate to no more than ±200A. Even with the 044 reflection for very 
thin layers, of less than about 500A, the diffracted intensity from the layer is low 
and characterisation becomes inprecise. 

.8 Conclusion 

This chapter has illustrated the various techniques used in the characteri
sation of heteroepitaxial layers as well as some of the problems associated with 
them. Layers should not be assumed to be perfect and data supplied by crystal 
growers concerning sample characteristics should be carefully considered. There 
is an increasing awareness that growth interfaces are not perfectly abrupt and 
that surface roughness and compositional grading do exist. Epilayer tilt is also 
a real effect even when substrates are not highly tilted, and must be taken into 
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account if accurate measurements of lattice parameters are required. The char
acterisation of superlattices has been discussed and asymmetric relaxation has 
been found in an InGaAs/InP superlattice. For the measurement of very thin 
epitaxial layers conventional glancing incidence asymmetric reflections lack sen
sitivity and it is necessary to consider other geometries which offer enhancement 
of surface diffraction effects. 
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Chapter V 

Skew Asymmetrical Rocking Curve Analysis 

5.1 Introduction 

The previous chapter has illustrated the need for asymmetric diffraction ge
ometries in the characterisation of very thin layers. Limitations of the standard 
glancing angle geometry become apparent however when layers of less than 0.1/xm 
in thickness are studied. The layer peak on the rocking curve becomes low in 
intensity, requiring long counting times in order to differentiate the peak from 
the background. Even when the peak is resolved it is often too broad to give 
an accurate indication of layer mismatch. In order to obtain strong diffraction 
features from thin layers the X-ray path length must be increased within the 
layer. 

Tanner and Hill (1986) and Briihl et al. (1988) have used synchrotron radi
ation to reduce the incident X-ray angle by changing the X-ray wavelength. It 
is possible with this technique to tune the incident angle by rocking the refer
ence crystal to select the required wavelength. Bubakova et al. (1975) described 
a technique, using a conventional X-ray source, where the incident angle could 
be continuously varied which was adopted by Pietsch et al. (1987) to measure 
lattice parameter differences of heteroepitaxial structures. 

This chapter gives a full description of the theoretical aspects of this technique 
together with its experimental realisation (Miles, Green, Tanner, Halliwell, and 
Lyons, 1988). Results derived in the discussion have been used in a dynamical 
simulation program based on the Takagi-Taupin equations to allow theoretical 
modelling of the technique. Lyons and Halliwell (1985) suggested the acronym 
SARCA for the method, which stands for Skew Asymmetrical Rocking Curve 
Analysis. 

It is important to differentiate between this technique and the method of 
structural depth profiling using Glancing Incidence X-ray Scattering known as 
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GIXS (Brennan, 1986; York and Austin, 1986; Huang, Toney, Brennan and Rek, 
1987). In this technique the X-rays are incident to the surface at angles of usually 
less than 1° and even below the critical angle of total external reflection. For 
a set incidence angle the detector is scanned along the 20 circle in a vertical 
plane to record X-rays diffracted from crystal planes essentially perpendicular to 
the sample surface. Total external reflection is employed to improve the surface 
sensitivity of the diffracted beam. The only penetration of X-rays at angles less 
than the critical angle is due to effervescent waves and it is the diffraction of 
these waves that makes the experiment possible. A similar technique known as 
Grazing Incidence Asymmetric Bragg Scattering (GIABS) is also used to study 
thin films (Toney, Huang, Brennan and Rek, 1988; Toney and Brennan, 1988, 
1989). This method differs from GIXS since the detector is scanned to record X-
rays diffracted from crystal planes that are inclined to the surface of the specimen, 
and not X-rays scattered off rows of atoms in the surface plane. 

SARCA bears similarities to these techniques in that the angle of incidence 
may be chosen as desired. However, diffraction from only one set of lattice planes 
is recorded and it is the incident angle and not the detector angle that is scanned. 

5.2 Theoretical Discussion 

For a symmetric reflection the angle of incidence, z, is equal to the angle 
of emergence, e, and the diffracting planes are parallel to the sample surface. 
The range of possible incident and emergent beams, known as the Bragg cone, 
is illustrated in figure 5.1(a). The incident angle is equivalent for all positions 
around the Bragg cone. 

For an asymmetric reflection however, the diffracting planes are not parallel 
to the sample surface and the angle of incidence is not the same as the angle of 
emergence. Figure 5.1(b) shows the Bragg cone of a typical asymmetric reflec
tion. There is a range of possible incidence angles and corresponding emergence 
angles that satisfy the Bragg condition as the sample is rotated about the diffrac
tion plane normal. For some reflections where the angle between the diffracting 
planes and surface, <f>, is greater than the Bragg angle, 0, there is no allowed 
reflection in the normal geometry. However as the sample is rotated about the 
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Figure 5.1(a): Symmetric Bragg cone. 

6+ 0 e -

Figure 5.1(b): Asymmetric Bragg cone. 



diffraction plane normal there exist a range of beam paths that result in a reflec
tion illustrated in figure 5.2. It is thus possible to reduce the angle of incidence 
right down to zero degrees by rotating the sample to the required position. This 
greatly reduces the penetration depth of the incident beam and so enhances the 
sensitivity to thin surface layers. Similarly, it is possible to adopt the glanc
ing exit geometry which also gives enhanced surface sensitivity but results in 
narrower diffraction peaks. 

Consider the general case of an embedded Bragg cone shown in figure 5.2. 
Let SQ and s represent the unit vectors of the incident and emergent X-ray beams 
at the Bragg angle 6. <f> is the angle between the reflecting planes and the sample 
surface, d and dg represent the unit vectors of the normals to the reflecting planes 
and the surface respectively. In order to calculate the relation between incidence 
angle, i, and the angle of rotation, /3, consider the xz projection of the embedded 
Bragg cone, shown in figure 5.3. As SQ is a unit vector then the distances AO 
and OB are equal to unity. It is then straightforward to show that 

sini = sin0cos<£ — cos 0 sin 0 cos/3. 5.1 

Similarly the angle of emergence, e, is defined by 

sin e = sin0 cos<̂ » + cos0sin</>cos/3. 5.2 

The rotation angle for which the angle of incidence is zero, /3o, is given by 

i / t a n f l X 

* = c o s fc> 5- 3 

Figure 5.4 illustrates the way the angle of incidence varies with rotation angle 
for the 044, 333 and 133 reflections for InP, CuKa radiation. Both the 333 and 
133 reflections have </> > 6 and as a consequence it is possible to tune towards zero 
incidence angle. Only a restricted range of rotations and beam paths are found. 
The 044 has a full 180° range of possible rotations but a minimum incidence of 
only 3°. It is interesting to see how the surface sensitivity varies as a function 
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Figure 5.3: xz projection of embedded Bragg cone. 
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Figure 5.4: Relationship between incidence angle and rotation angle for 044 
(solid), 333 (dashed) and 133 (dotted) reflections. 
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Figure 5.5: Relationship between the path length ratio and rotation angle for 
044 (solid), 333 (dashed) and 133 (dotted) reflections. 



of rotation. Defining the path length ratio, £, to be the ratio of the distance 
travelled by the incident beam to the depth below the surface, then 

The corresponding plot of the ratio as a function of rotation angle for the 044, 333 
and 133 reflections is shown in figure 5.5. It is evident that reflections like the 333 
and 133 are extremely sensitive to surface features near 0Q. As glancing incidence 
is approached the width of the peaks increases. From dynamical scattering theory 
(Tanner, 1976), the full width at half maximum (FWHM) is given by 

A0i/2 = kJ^A , 5.5 ' V sinz 

where A; is a constant for a particular reflection. Figure 5.6 illustrates the re
lationship between half width and rotation angle for the 333 reflection of InP. 
In the glancing exit case the half width is expected to become very small. In 
practice however, it tends to converge to a constant value because of broadening 
arising from curvature, specimen imperfections and wavelength dispersion. 

The relationship between the separation of a mismatched epitaxial layer and 
the substrate rocking curve peaks, and rotation is not immediately obvious and 
a geometrical study of two misaligned Bragg cones is necessary. The calculation 
is simplified by defining a cartesian coordinate system with the z component 
parallel to the substrate reflecting plane normal as shown in figure 5.7. The 
locus of the substrate Bragg cone with respect to the origin is defined to be a 
unit vector 

2 = axx + ay$ + az2 . 

The components of the locus of the substrate cone are therefore 

ax = cos 6 cos (3 , ay = cos 6 sin P , az = sin0 . 5.6 

Now consider a mismatched layer with Bragg angle 6 — dB and angle of reflecting 
plane to sample surface <\> + d<j>. The locus of which is given by the unit vector 

b = bxx + byy + bz2 • 
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Figure 5.7: Substrate Bragg cone. 



The xy projection of the layer cone superimposed over the substrate cone is 
shown in figure 5.8(a). In this projection the layer cone is seen as an ellipse and 
the substrate as a circle. The general form of an ellipse not centred on the origin, 
as shown in figure 5.8(b), is given by 

The locus of the layer Bragg cone is determined by finding the intersection of the 
ellipse with the line OP, given by 

y = tan f3 x . 5.8 

Substituting (5.8) into (5.7) results in 

( / 2 + e2 tan 2 p)x2 - i f g x + f2(g2 - e 2) = 0 , 5.9 

which has the solution 

/ ¥ ± e / y ^ + ( e 2 - g

2 ) t a n 2 / 3 . 
(/•' + el tan'' (3) 

where the positive root is taken for 0° < (3 < 90° and negative for 90° < p < 180°. 
Using equation (5.8) it follows that 

by = tan f3 bx . 5.11 

The z component of the layer cone locus is determined using the xz projection 
shown in figure 5.9. It follows that 

sin(0-d6>) , 
bz = —-—r—i- - bx tan d<f> . 5.12 

cos d<p 

bx is defined using the constants 

e = cos(0 - dd) cos d<j> , / = cos(0 - d6) , g = sin(0 - d6) sin d<t> . 5.13 
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Figure 5.8(a): xy projection of the substrate and layer Bragg cones. 
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Figure 5.8(b): General form of an ellipse. 



Figure 5.9: xz projection of the layer Bragg cone. 



The substrate-layer peak separation, Si, is given by the angular separation of the 
two vectors a and 6 denning the substrate and layer Bragg cones as a function 
of rotation angle, 0. Therefore, it follows that 

a.b 
cos Si = , ,,,, . 5.14 

mm 

Now, since a and b are unit vectors 

cos Si = axbx + ayby + azbz . 

Hence 
cos Si = cos 6 cos (3 bx + cos 6 sin 0 by + sin 6 b2 

and so 

Si = cos 1 (cos 6 cos 0 — sin 0 tan d<f> + cos 9 sin 0 tan 0)bx + 
sin0sin(0 - dO) 

cos d<f> 
5.15 

where bx is given by equations (5.10) and (5.13). This equation is used to calcu
late the mismatch of a layer at any value of 0. 

.3 Experimental Details 

The experiments Were carried out using a prototype of the Bede model 150 
double crystal X-ray diffractometer. CuKa radiation was used throughout. The 
sample was mounted on a wedge of angle equal to that between the reflecting 
planes and the sample surface, <f>. This was then mounted on a rotary stage 
so that the reflecting plane normal was parallel to the axis of rotation. Figure 
5.10 shows the experimental arrangement. An important consideration when 
using asymmetric reflections is the orientation of the sample itself in the plane 
of its surface. It is incorrect to mount the sample with its cleaved edges at an 
arbitrary angle as is the case for symmetric reflections. For samples mounted on 
(001) substrates the cleaved edges are usually < 110 > directions. To calculate 
the correct orientation consider the vector diagram in figure 5.11 which shows a 
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Figure 5.10: SARCA experimental arrangement. 
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Figure 5.11: Vector diagram of the sample orientation. 

Reflection 

hkl 

Orientation 

Angle 6 

044 45° 

333 0° 

133 26.6° 

224 0° 

115 0° 

335 0° 

Table 5.1: Angle of orientation with respect to [110] cleaved edges for asymmetric 
reflections 



sample mounted at an angle of 6 to the cleaved edges. The sample is mounted 
such that the diffracting planes are parallel to the base of the wedge, so that 
rotation occurs about the diffraction plane normal, d. n is a vector parallel to 
the sample surface normal. 6 is then given by the angle between the [110] edge 
and the vector v which lies in the surface plane and also the plane containing n 
and d. v and 6 result from the following equations 

Table 5.1 shows the values of the angle of orientation for several asymmetric 

reflections. It is good practice to machine a ledge at the correct angle on the 

wedge for ease and accuracy of specimen mounting. 

It is important when using skew geometry that the incident X-ray beam and 

the sample surface are accurately aligned over the centre of axis 2. It becomes 

increasingly important at highly glancing incidence. If this condition is not met 

then the X-ray beam will either miss the sample entirely or be stopped by the 

side of the wedge. Obviously, as the angle becomes less glancing the beam will 

move back on to the sample again, but the most sensitive range of incident angles 

will be lost. It is also important that the rotation angle is calibrated accurately 

and the rotational steps are accurate to within 0.1°. 

When using first crystal reflections different from that used for the sample it 

is important to eliminate the Koc2 element, to reduce the effects of wavelength 

dispersion, with a slit between reference and specimen crystals. 

.4 Simulation of S A R C A 

The simulation program based on the Takagi-Taupin equations of dynamical 

theory has been described in Chapter 3. In order to model the results of SARCA 

the equations governing the expected positions of layer peaks need to be adapted 

for the skew angle case, and the direction cosines have to describe the changing 

angles of incidence and emergence. Equations (5.1), (5.2) and (5.15) have been 

used to do this, and Appendix A gives a listing of the adapted program. 

v.n = 0 v + n = d 1 
1 [110]} 6 = cos V. V2\v\ 

5.16 
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In the extreme incidence case the normal assumption in dynamical theory 
that the asymptotic forms of the dispersion surface and the incidence circle are 
straight lines is incorrect as they are in fact circles (Brummer et al., 1976; Rus-
tichelli, 1975). Although the Takagi-Taupin equations do not make this assump
tion there is some doubt as to their validity at extreme incidence, especially 
when there is a significant specular reflected beam. Briihl et al. (1988) went 
down as far as 0.35° incidence angle and interpreted the rocking curves using 
a semi- kinematic model of Petrashen (1975). Tanner and Hill (1986) used the 
Takagi-Taupin equations to simulate rocking curves with incidence angle down 
to 1°. A good match between theory and experiment was found which indicates 
that the theory is adequate for most practical incident angles. 

Pietsch and Borchard (1987) have used SARCA to characterise heteroepitax-
ial structures of Cao.435ro.57F2 on GaAs. For small incidence angles the effect 
of refraction becomes more important. They have exploited the fact that both 
the layer and the substrate peaks are shifted by different amounts from the posi
tion calculated from kinematical theory, where absorption and refraction are not 
taken into account. This permits the characterisation of layers of totally lattice-
matched structures. At incident angles of 1° using the 335 reflection they have 
observed substrate-layer peak splittings of around 35" from a perfectly lattice-
matched layer. The theoretical Bragg shift A6 from the Bragg angle 8B has been 
given by Rustichelli (1975), Brummer, Hoche and Nieber (1976) and Hartwig 
(1978) to be 

. _ a a -7o+[7o 2 + ( 7 o | xo | / s i n 2^) ( l+ 7 / l / 7 o ) ( l - 7 o 2 ) 5 j ^ z ) k i „ 
A0 = 6-9B = 1= — j 2— < 6C , 5.17 

( l - 70

2)* 

where 70 and 7^ are direction cosines and xo t n e Fourier component of the 
polarisability calculated from 

CreX2 r. 
xo = Xo + Xo* 5.18 

Here, C is the polarisation factor, r e the classical electron radius, A is the wave
length, and / ' and / " are the real and imaginary parts of the dispersion correc
tion. Zi refers to the ordinary number of atoms involved in the elementary volume 
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V. When applied to the InP based epitaxial layers of InGaAs and InGaAsP a 

similar effect is seen for perfectly matched layers, although smaller in magnitude 

as the polarisabilities are closer than in the Cao.435ro.57F2/GaAs system. Table 

5.2 shows the calculated splittings of perfectly lattice matched layers of InGaAs 

and InGaAsP (band gap = 1.35/xm) on InP for CuKa radiation for several 

reflections and incident angles. There is little to choose from the 335, 333 and 

133 reflections shown in terms of magnitude of peak separation, but the 311 is a 

lot lower. This is because the 7^/70 term dominates in equation (5.17) and for 

the 311 the emergence angle is lower than for the other three reflections. The 

separation does, however, increase markedly with smaller incidence angles for all 

reflections. One problem with this technique of characterising lattice matched 

structures is that as the incident angle decreases the rocking curve peak width in

creases (equation 5.5), and so splittings of the order of 20" become more difficult 

to observe. Yet Pietsch and Borchard (1987) have demonstrated that it is possi

ble, and without the technique there would be no method of characterising layer 

thickness of lattice-matched structures using double-crystal X-ray diffraction. 

5.5 Results 

The sample studied was a single quantum well structure of GalnAsP (band 

gap 1.35/zm) on InP, code INP3, grown by MOCVD at British Telecom research 

Laboratories by P. Spurdens. Crystal growth information estimated the layer 

thickness to be between 0.15//ra and 0.16/xm, and the mismatch to be around 

SOOppm. SARCA data was collected from the 044, 333 and 133 reflections for 

a range of rotation angles. 

Figure 5.12 shows rocking curves for the 044 reflection over a wide range of 

rotation angles, from glancing incidence to glancing exit. For the 044 reflection 

the Bragg cone is not embedded and so only a minimum incidence angle of 3° 

occurs. The maximum layer to substrate peak ratio occurs at rotations of 0° 

and 180°, reaching a minimum at 90°. As the geometry moves from glancing 

incidence to glancing exit the peak separation decreases and the peaks become 

sharper. However, a constant peak width is achieved before 180° rotation is 

reached due to broadening from curvature and sample imperfection. 

91 

http://Cao.435ro.57F2/GaAs


335 Reflection 

Incidence Angle i (°) 

0.75 1.0 1.5 

A0 InGaAs/InP 

A6 InGaAsP/InP 

23.5" 18.2" 12.4" 

16.0" 12.4" 8.5" 

133 Reflection 

Incidence Angle i (°) 

0.75 1.0 1.5 

Ad InGaAs/InP 

AO InGaAsP/InP 

22.0" 17.0" 11.6" 

15.0" 11.6" 7.9" 

333 Reflection 

Incidence Angle i (°) 

0.75 1.0 1.5 

Ad InGaAs/InP 

Ad InGaAsP/InP 

20.8" 16.0" 11.0" 

14.2" 10.9" 7.5" 

311 Reflection 

Incidence Angle i (°) 

0.75 1.0 1.5 

AB InGaAs/InP 

A6 InGaAsP/InP 

9.1" 6.9" 4.7" 

6.2" 4.7" 3.2" 

Table 5.2: Separation of substrate and layer peaks in rocking 
matched structures at glancing incidence. ( Quaternary band 

curves of perfectly 
gap = 1.35//m ). 
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Figure 5.12: SARCA 044 rocking curves of sample INP3 over a range of rotation 
angles. 
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Figure 5.13 shows the corresponding set of rocking curves from the 133 re
flection of the same sample. Again, the same features can be observed, with the 
higher layer to substrate peak ratios at glancing incidence and glancing exit. In 
this case there is little peak width sharpening as glancing exit is approached. 
This is because the first crystal used in the experiment wasfOlljoriented InP, 
using an 044 reflection, and so wavelength dispersion occurs. Broadening due to 
dispersion is given by the following equation 

dd = ^ ( t a n 0 2 - t a n 0 i ) . 5.19 

There is some Ka.<i contamination observed on the rocking curve although most 
of the component was eliminated using a slit. The contamination is small how
ever. Using equation (5.19) the splitting of the Ka\ and KOLI peaks on the 
rocking curve for an 044 first reflection and a 133 second is —211". The rocking 
curve broadening due to dispersion from the line width of the Ka.\ component 
makes the layer peak indistinguishable from the substrate peak at glancing exit. 
Curvature and sample imperfection also broaden the peaks. 

Using the 333 reflection with the same sample an incidence angle of 1.15° (/? = 
51.2°) was achieved and a fuD range of rotation angles is shown in figure 5.14. The 
dotted lines show the simulated rocking curves. The experimental curves closely 
match the theoretical predictions as the geometry is changed which confirms the 
validity of the derived geometrical expressions. In order to achieve a close match 
between the experimental and simulated rocking curves a thin interfacial layer 
was required. The predicted structure is shown in figure 5.15, with the top layer 
having a thickness of 0.12//m and mismatch —680ppm. The combined thicknesses 
of the two layers, and average mismatch agree with the initial crystal growth 
prediction. The interfacial layer complicated the simulation procedure since the 
main layer peak position and intensity were highly sensitive to its thickness and 
mismatch. Changes in thickness of 100A, or mismatches of lOOppm dramatically 
altered the simulated rocking curve. Figure 5.16 shows a series of simulated 
rocking curves for difFerent values of thickness and mismatch of the interfacial 
layer. Figure 5.16(a) is for a mismatch of — 1250ppm and varying thickness. As 
the thickness is increased both the layer peak height and peak separation increase, 
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Figure 5.13: SARCA 133 rocking curves of sample INPZ over a range of rotation 
angles. 
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Figure 5.14: Experimental (solid) and theoretical (dashed) SARCA 333 rocking 
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Figure 5.15: Simulated structure of sample INP3. 
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Figure 5.16(a): Simulated SARCA 333 rocking curve at 0 = 55° for the INPZ 

structure but with interfacial layer thickness of 500A (dashed), 600A (solid) and 

700A (dotted). 
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Figure 5.16(b): Simulated SARCA 333 rocking curve at /? = 55° for the INPZ 
structure but with interfacial layer mismatch of — 1150ppm (dashed), —1250ppm 
(solid) and — lSbOppm (dotted). 



as well as broadening of the substrate peak tail. Figure 5.16(b) is for a thickness 

of 0.06\im and varying mismatch. As the mismatch is increased both the layer 

peak height and peak separation change, but their relationship with mismatch 

becomes involved (Cockerton, Miles, Green and Tanner, 1989). In reality, a more 

complicated structure may exist with the possibility of compositional grading at 

the interface. In order to fit peak widths as closely as possible the effect of sample 

curvature has to be considered. At low angles of incidence the broadening due to 

curvature is greater than at high angles of incidence. The change in angle along 

the incident X-ray beam due to curvature is given by D/Rsini; where D is the 

beam diameter, R the radius of curvature and i the angle of incidence. However, 

it can also be defined as the length sampled in the diffraction plane divided by 

the radius of curvature. It is interesting to note that for samples of finite size 

at low angles of incidence the whole length of the sample is irradiated, so that 

the effect due to curvature tends towards a constant limit. Other broadening 

effects include wavelength dispersion and poor crystalline quality of the sample 

and reference crystals. 

The first rocking curve in figure 5.14 shows the 1.15° incidence case. The 

layer to substrate peak intensity ratio has increased to 53%, in comparison with 

14% from the standard 044 (/3 = 0°) geometry. This is a substantial improvement 

and shows how much more sensitive to thin layers SARCA can be. In practice a 

layer of thickness down to a few hundred Angstroms would be clearly definable 

on a rocking curve at around 1° incidence, and layers of thickness below 100A 

could be characterised if long counting times to obtain good statistics are used. 

The surface sensitivity is governed by the extinction distance, which is given 

by (Authier, 1969) 

where C is the polarisation factor, 70 and 70 direction cosines and \h th e po-

larisability (equation 5.18). This is effectively the distance penetrated below the 

sample surface of an X-ray beam. Figure 5.17(a) shows the way the extinction 

distance changes for the 044 and 133 reflections with rotation angle. For partially 
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Figure 5.17(a): Relationship between extinction distance and rotation angle for 
the 044 (dashed) and 133 (dash-dot) reflections. 
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Figure 5.17(b): Substrate peak height found experimentally for the 133 reflection. 



0 I I I L I I I 1 i 1 1 1 

0 20 40 60 80 100 120 140 160 180 

P (clegs) 

Figure 5.17(c): Relationship between penetration depth and rotation angle for 

the 044 (dashed) and 133 (dash-dot) reflections. 
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Figure 5.17(d): Layer to substrate peak intensity ratio from simulated data of a 
133 reflection. 



embedded reflections like the 133 and 333 the incident angle and hence extinction 
distance can become zero. 

It should be noted however, that the total reflected intensity decreases as 
the incident or emergent beam angle becomes more glancing. If a perfect non-
absorbing crystal is considered, (Authier, 1969), both the width of the reflection 
range and the integrated intensity are proportional to \J\ih\llQ- So that in glanc
ing exit, for instance, the width and integrated intensity decrease but the peak 
height remains constant. Figure 5.17(b) shows the substrate peak height found 
experimentally for the 133 reflection. The intensity decreases towards glancing 
incidence or emergence. This can be explained by increased attenuation due to 
photoelectric absorption as the beam path within the crystal is increased (Halli-
well et al., 1972). Figure 5.17(c) shows the penetration depth, t, for 90% attenu
ation due to photoelectric absorption, of 133 and 044 reflections from InP with 
CuKa radiation. For incident and emergent angles approaching zero the depth 
penetrated by the X-ray beam approaches zero. Figure 5.17(b) also shows that 
the substrate intensity falls off more rapidly for glancing incidence than it does 
for glancing exit. This is because finite sized specimens intercept successively 
smaller fractions of the incident beam as the incident angle drops. Nevertheless, 
the 1.15° rocking curve in figure 5.14 shows that reasonable statistics may be 
attained in a few minutes even for very small glancing angles and figure 5.17(d) 
illustrates the enhanced layer to substrate peak ratio that may be attained for 
the 133 reflection using glancing angles. 

A verification of the validity of the simulated fit was achieved by simulating 
the 044 SARCA results. In order for a good fit to be achieved the only difference 
in the predicted structure was that the interfacial layer mismatch needed to be 
changed to —900ppm. There are several possible explanations for this small 
difference. The first is that the sample may have compositional variation in 
the surface plane, and since the sample had to be remounted for each SARCA 
reflection a different part of the sample was in the beam. Another possible 
difference is the fact that substrate misalignment has been neglected. Most 
British Telecom substrates are grown to within 0.25° orientation, but even that 
small value can dramatically affect the results near glancing incidence. As the 
sample is mounted in a different orientation for each reflection the direction of 
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tilt may be such to have a lesser or greater effect on each reflection at glancing 
incidence. The only way around this problem is to investigate the magnitude and 
direction of this tilt using the method explained in Chapter 4 and include it in the 
simulation routine to take into account its variation with sample rotation. A more 
likely explanation is, however, error in mounting the sample. As explained at 
the beginning of the chapter, the beam and sample surface need to be coincident 
with the centre of axis 2, the sample needs to be accurately mounted in the 
plane of its surface, and the wedge needs to be machined at an angle exactly 
equal to <f>, for perfect alignment. Small errors in these may have led to slight 
discrepancies in the characterisation of the sample. Cockerton, Miles, Green and 
Tanner (1989) have also shown that complications may arise in the simulation 
of multiple epitaxial layers. The comparisons of the simulation with the 044 
experiment for four different rotation angles are shown in figure 5.18. 

Conclusion 

It has been demonstrated that when using SARCA in the extreme glancing 

incidence geometry the sensitivity to thin surface layers is greatly enhanced. 

SARCA enables layers of thickness down to several hundred Angstroms to be 

characterised without much difficulty and thinner ones if longer counting times 

are employed. An additional application of SARCA is the characterisation of 

lattice-matched layers, arising from the splitting of layer and substrate peaks 

due to refraction effects. 

The Takagi-Taupin equations together with geometrical adaptations for skew 

geometries have been used to simulate the experimental results. It is, of course, 

now well known that a simulation program is a necessary tool in the interpretation 

of rocking curves to obtain values of thickness and composition of heteroepitaxial 

structures. Several different reflections have been compared in this chapter for 

use in SARCA. In practice only one reflection is required for standard character

isation. In order to choose which reflection to use, several factors must be taken 

into account: 

(i) <j) > 0, or else the Bragg cone is not embedded and very low incidence angles 

cannot be achieved. 
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curves from sample INP3. 



(ii) By increasing the angular range of allowed rotations the sensitivity to inci
dence angle of rotational steps is enhanced. The 311 for example only had an 
allowed rotation range of 17.6°. 

(iii) It simplifies experimental set up if 6, the orientation angle in the sample 
surface is 0°. 

(iv) The reflection must be intrinsically strong, i.e. the higher the structure 
factor the better. 

Using these criteria, the 333 reflection is a good choice, for layers grown on(00l} 
oriented InP. 

For setting up errors to be minimised it is necessary for the procedure to be 
completely automated. This would involve the provision of a motorised trans
lation stage to allow lateral movement of the sample in and out of the beam so 
that it may be accurately positioned over the centre of axis 2. In addition, pre
cisely machined sample mounting stages need to be prepared for accurate sample 
orientation. The most difficult aspect of using SARCA is the initial setting up 
and if this were automated then the technique would be easily accessible to all 
users of double crystal diffraction. 
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Chapter V I 

Accurate Determination of Layer Thickness in Double 
Heterostruct ures 

6.1 Introduction 

Chapters 4 and 5 have shown examples of the use of a simulation program 
to characterise sample structure. By matching an experimental rocking curve 
with one generated using the Takagi-Taupin equations it is possible to determine 
layer thickness and composition (Hill, Tanner and Halliwell, 1985). However, 
the accuracy in this method of characterisation, especially of layer thickness is 
questionable (Cockerton, Miles, Green and Tanner, 1989). When more than 
one epitaxial layer exists, or if compositional grading occurs at an interface, 
(Lyons, 1989), then complex interference of diffracted waves occurs, which can 
cause peak positions to shift and peak heights to change (Fewster and Curling, 
1987). It is necessary to model the experimental rocking curve closely, often 
studying the long range fine structure to attain an accurate picture of the sample 
structure (Bensoussan, Malgrange and Sauvage-Simkin, 1987 (a)). There are 
often too many degrees of freedom, however, and the matching may be expensive 
in time and computer power. In some cases it is almost impossible to determine 
layer thickness simply by matching peak heights and positions, especially when 
structures contain thin buried layers. 

In order to gain an accurate indication of layer thickness it is necessary to 
study the fine structure present in rocking curves known as the Pendellosung 
fringes (Jeong, Schilesinger and Milnes, 1988; Baumbach, Rhan and Pietsch 
1988; Ferrari and Franzosi, 1989). The period of these oscillations, A0, is re
lated inversely to layer thickness, ti, by the well known relationship (Batterman, 
Hilderbrandt, 1968; Bartels and Nijman, 1978) 

tisin20 
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where <f> is the angle between the sample surface and the Bragg planes. For the 
symmetric 004 reflection from InP this reduces to 

18.668 

where ti is measured in microns and AO in seconds of arc. 

Use of Pendellosung fringes to determine layer thickness is an established 
method both for symmetric reflections (Macrander and Strege, 1986; Bensous-
san et al., 1987 (b); Bocchi et al., 1987; Ferrari, Franzosi, Gastaldi and Taiariol, 
1988; Wie, 1989), and for asymmetric reflections (Prilespki and Sukhodreva, 
1985; Paine, 1986). For single layer heterostructures it is adequate to obtain the 
Pendellosung period by measuring directly from the rocking curve. For multiple 
layer heterostructures, however, where a superposition of Pendellosung frequen
cies occurs it becomes more difficult and in some cases the observed fringe spac
ing appears to deviate from the true Pendellosung period (Tanner and Halliwell, 
1988). This chapter describes a method of Fourier Analysis to determine the 
Pendellosung frequencies and hence layer thicknesses of two layer heterostruc
tures. Macrander, Lau, Strege and Chu (1988) have also independently used the 
technique to measure the thickness of a thin buried layer of InGaAsP under 
a thicker InP cap. This chapter determines the optimum conditions for layer 
thickness characterisation. Several multi-layer structures are studied and close 
matches between experiment and theory are achieved using the known thick
nesses calculated from the Pendellosung fringes. 

.2 Fourier Analysis 

When a function consisting of several frequencies is Fourier transformed the 
resultant function consists of maxima corresponding to each frequency contained 
in the original function. The greater the amplitude of the oscillation, the greater 
the amplitude of the peak corresponding to that frequency. Harmonics of the fre
quencies also exist and peaks corresponding to the sums of individual frequencies 
occur. So, for a two layer structure, peaks corresponding to the two individual 
layers and to the sum of the layers are found on the transform of the rocking 
curve, as well as higher frequency harmonics. It is important that the logarithm 
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of the rocking curve intensity is transformed and not the absolute intensity. This 
is because the Pendellosung fringes are usually at low intensities compared to 
the substrate peak and a Fourier Transform (FT) of the unlogged intensity is 
dominated by the substrate and layer peaks. 

Sensitivity of a F T to layer thickness is dependent on the number and size 
of steps in a rocking curve. The length of the F T x-axis is proportional to the 
reciprocal of the step size. Therefore, if thick samples are to be characterised, the 
rocking curve step size needs to be small in order to pick up the high frequency 
fringes. The number of points in a F T is equal to the number of points in a 
rocking curve, so the greater the number, the smaller the F T step size, and so 
the more accurate the thickness determination. The F T is also symmetrical about 
the centre of its range which is an important consideration during interpretation, 
because higher order harmonics from the right hand side of the F T may be 
visible on the left. Figure 6.1 illustrates the problem with a F T from a simulated 
rocking curve of a three layer structure given in Table 6.1. The peaks on the F T 
correspond to individual layer frequencies as well as harmonics from them. The 
peaks are labelled as such together with an arrow showing their origins. It can 
be a difficult problem to interpret a F T from a structure with more than two 
layers. 

InGaAs — HOOppm 0.213/4771 

B InGaAs +560ppm 0.24/xm 

InGaAs -llOOppm 0.78/Ltm 

InP Substrate 

Table 6.1: Three layer hetreostructure 

The mathematical software package PC-MATLAB was used to carry out the 

F T . When using the fast Fourier transform algorithm contained in the package 

it is necessary to have the number of steps in a rocking curve equal to a power of 

two. If this is not the case then the data is padded with zeros until the condition 

is satisfied, which tends to result in a loss of definition of the peaks from the F T . 
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The package is run on a 1512 Amstrad PC with a mathematical coprocessor 
installed. 

.3 Optimum Conditions for Fourier Analysis 

A study was based on FT's from simulated rocking curves, generated from 

the program written at British Telecom, for various scan ranges and step sizes. 

The sample modelled was a two layer heterostructure composed of an active layer 

of InGaAsP with 1.35/zm band gap, —550ppm mismatch and 0.18^m thickness 

grown on InP, capped by a OAfim thick layer of InP. This sample is fairly typical 

of those currently being grown by British Telecom for laser devices. Figures 6.2(a) 

to (n) show rocking curves and corresponding FT's for various ranges and step 

sizes detailed in Table 6.2. 

Figure Scan Range (") Step Size (") Number of Steps 

2a 512 2 256 

2b 512 4 128 

2c 512 8 64 

2d 512 16 32 

2e 1024 2 512 

2f 1024 4 256 

2g 1024 8 128 

2h 1024 16 64 

2i 2048 4 512 

2j 2048 8 256 

2k 2048 16 128 

21 4096 8 512 

2m 4096 16 256 

2n 8192 16 512 

Table 6.2 
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Two conclusions can be reached from these curves, both of which follow 

intuitively: 

(i) The longer the range, for a given number of steps, the sharper the peaks from 

the F T and so the more precise the determination of layer thickness. 

(ii) The step size is not an important factor until it becomes larger than about 

a quarter of the smallest fringe period. Even when it exceeds this, if the range 

is large enough accurate results are still attained. 

These conclusions are not immediately applicable to the experimental case, how

ever, where background noise is an important consideration. In order to model 

the effect of noise, background levels of 0.001, 0.01 and 0.1% have been included 

in the simulations and transforms taken. Figures 6.3(a) to (1) show the rocking 

curves and corresponding FT's for several combinations of range and background, 

detailed in Table 6.3. 

Figure Scan Range (") Step Size (") Background (%) 

3a 1024 2 0.001 

3b 2048 4 0.001 

3c 2048 8 0.001 

3d 4096 8 0.001 

3e 1024 2 0.01 

3f 2048 4 0.01 

3g 2048 8 0.01 

3h 4096 8 0.01 

3i 1024 2 0.1 

3j 2048 4 0.1 

3k 2048 8 0.1 

31 4096 8 0.1 

Table 6.3 
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Figure 6.3: 004 rocking curves and corresponding Fourier Transforms for various 

levels of background detailed in Table 6.3. 



10 2 1~ 

1 0 1 b 

>- 10° 

E 10"' 

10" -500 

10' 

10° 

x 10-'fe 

i t o - h 

— 1 0 - 3 I 

10" 

10" 

( s e c s ) , A x i s 2 

•1000 -500 0 500 
( s e e s ) . A x i s 2 

500 

1000 

20 h 

0. 2 0. 4 0. 6 0. 8 
T h i c k n e s s (pm) 

0. 2 0. 4 0. 6 0. 8 
T h i c k n e s s (pm) 

g I D " 2 I 
4J -

1000 -500 0 500 
( s e e s ) . A x i s 2 

1000 0. 2 0. 4 0. 6 0. 8 
T h i c k n e s s Cjjm) 

x 10"' 

f. 10' 2 

7 
10" 5 

-2000 -1000 0 1000 
( s e e s ) . A x i s 2 

2000 0. 2 0. 4 0. 6 0. 8 
T h i c k n e s s (jjm) 



io 2 m 

x io° 

e lcr 1 

i o _ i 500 500 

30 h 

( s e c s ) , A x i s 2 
0. 2 0. 4 0. 6 0. 8 

T h i c k n e s s (pm) 

x 10"' 

C 10" z 

10" 5 

-1000 -500 0 500 
( s e e s ) . A x i s 2 

1000 0. 2 0. 4 0. 6 0. 8 
T h i c k n e s s tyjm) 

10' 1 

x 10"' 

c 10" z 

1 0 - 5 

-1000 -500 0 500 
( s e e s ) . A x i s 2 

1000 0. 2 0. 4 0. 6 0. 8 
T h i c k n e s s (pm) 

10' • 

x 10"1 

C 10" 2 

10" s 

-2000 -1000 0 1000 
( s e e s ) . A x i s 2 

2000 0. 2 0. 4 0. 6 0. 8 1 
T h i c k n e s s (jjm) 



For a background level of 0.001%, (signal to noise ratio, S/N 105 ), the effect 
on the F T peaks in the ranges studied is negligible, but for 0.1% (S/N 103) 
it is significant and the peak clarity is obscured. With a background level of 
0.01% (S/N 104) there is no appreciable affect for short ranges, but as longer 
ranges are approached there is some loss in definition of the F T peaks. It is 
important to point out that this is a study of simulated rocking curves, with no 
random statistical variation. So for experimental rocking curves, a good S/N is 
the primary consideration followed by good counting statistics. It is now possible 
to make some conclusions in the light of these observations for the experimental 
case. 

(i) The maximum possible range within the limitations of S/N should be used. 

(ii) The step size should be as large as possible to maximise counting time, but 
not larger than about a quarter of the smallest fringe period. 

Bearing this in mind, Table 6.4 gives some recommended ranges and step 
sizes for various S/N ratios for the sample studied. 

S/N Range (") Step Size (") 

< 103 S/N not adequate for Fourier analysis 

5 x 103 1000 4 

104 2000 8 

5 x 104 4000 8 

> 105 4000+ 8+ 

Table 6.4 

Note that for measuring larger thicknesses, it is necessary to have a smaller step 
size than that shown to be sensitive to higher frequency fringes. 

.4 Measurement of Pendellosung Fringe Spacing 

Tanner and Halliwell (1988) reported an apparent deviation from the Pen
dellosung spacing of the measured fringes arising from a range of simulated rock-
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ing curves of two layer structures with varying cap thickness. This is shown in 
figure 6.4 with the dotted line showing the true Pendellosung frequency. The 
physical explanation behind this becomes clear from Fourier Analysis. If the 
FT's of figures 6.2 and 6.3 are studied, the peaks corresponding to the layers 
in some cases are doublets. Due to complex interference effects, therefore, it 
appears that two frequencies often arise from each layer. A correct frequency 
measurement results from taking the average of this doublet. So if measure
ments of fringe spacing are taken directly from the rocking curve it is possible 
that an appreciable error could be incurred from measuring only one frequency. 
It would be impossible to separate this frequency doublet by eye on a rocking 
curve. Figure 6.5 shows a graph of measured cap thickness using Fourier Anal
ysis against actual cap thickness, from a range of simulated rocking curves with 
cap thickness varying. The structure used was a layer of InGaAsP of — 500ppm 
mismatch and 0.18//m, capped with InP. The simulations were taken over two 
ranges: 2044" and 4088", with an equal number of steps, labelled separately on 
the graph. Where a frequency doublet occurred on the F T the two thickness are 
shown. The graph clearly illustrates that the measured cap thickness does not 
deviate from that expected, unlike the results in figure 6.4. It also shows that the 
doublet splitting is larger for the smaller scan range. Figure 6.6 shows a similar 
plot of measured cap + layer thickness against cap thickness. Again the data 
lies on the Pendellosung line with the larger measurement errors arising from the 
smaller range. For the 4088" range the thickness measurements are accurate to 
within 50A. 

If the cap thickness is constant and the layer thickness is varied a similar 
graph results; figure 6.7. A change in the layer mismatch does not affect the fre
quency of the Pendellosung fringes, although the fringe amplitude does change. 
Figures 6.8(a) to (d) show rocking curves and corresponding FT's from a struc
ture consisting of a 0.4//m cap and a 0.18jzm active layer with mismatch varying 
from — 200ppra to — 1500ppra. The fringe amplitude clearly increases with in
creasing mismatch and this is reflected in the amplitudes of the F T peaks. The 
peak due to the layer in particular becomes more clearly defined. 

To reinforce the need for Fourier Analysis to measure Pendellosung fringe 
spacings, figures 6.9(a) to (c) show simulated rocking curves of two layer struc-
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tures where it is extremely difficult to identity individual Pendellosung periods 
by eye. It would be easy to make substantial errors in the determination of layer 
thickness without Fourier Analysis. 

6.5 Fourier Analysis of Double Heterostructure Rocking Curves 

A good signal to noise ratio is vitally important in the study of rocking 
curve fine structure. Even when the counting time is so high that the statistical 
variation is negligible, as is the case in simulated rocking curves, if the background 
count rate is too large then the fine structure cannot be studied. In order to 
achieve a good S/N it is necessary to shield the detector carefully so that it does 
not see any part of the direct beam or first crystal diffracted beam. Use of a 
scatter shield over the first crystal ensures that no X-ray fluorescence reaches 
the detector. Vertical slits between the first and second crystals ensure that only 
the wavelength range required reaches the sample, by eliminating the Kct2 peak, 
and horizontal slits can be used to cut down vertical divergence. A slit over the 
detector may also be used, so long as the detector is moved with the sample in 
a 6-26 scan. This again ensures that only the required wavelength range at the 
correct angle is detected which reduces the dispersive effect of sample curvature. 
A disadvantage of this, however, is that it cuts down the diffracted intensity, so if 
curvature is not much of a problem the extra slit is not necessary. A proportional 
counter with a high quality counting chain is also an important requirement. 
Electrical noise can be reduced by as much as a factor of ten compared to the 
conventional scintillation detector. 

The Philips 1880 multi-purpose diffractometer at British Telecom with a pro
portional detector can achieve signal to noise ratios of 105 or better. The instru
ment utilises the Germanium four crystal monochromator discussed in Chapter 2 
which eliminates spectral dispersion. This instrument has been used in the (220) 
monochromator mode to study several examples of two layer heterostructures. 

6.5.1 Sample ABA1 

This sample was grown by MOCVD at British Telecom by P. Spurdens. It 
consists of a layer of GalnAsP, of 1.35/im band gap, capped by a layer of InP. 
Figure 6.10 shows its experimental 004 rocking curve along with two simulated 
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rocking curves. The thicknesses used in the simulations are derived from the 
experimental FT's shown in figure 6.11, determined from two scan ranges 1843" 
and 3686", each with the same number of steps and a counting time of 20 seconds. 
The FT's corresponding to the two ranges shown in figure 6.11 exhibit peaks at 
the same thicknesses. The layer thicknesses are measured to be 0.175/ira for the 
layer and 0.469/xro for the cap, with an error of ±0.01/xra. The top plot in figure 
6.10 shows a simulated rocking curve using these values of thickness. However, 
the layer peak is greater in intensity and narrower than seen in experiment. In 
order to achieve a close match, therefore, it was necessary to include substantial 
compositional grading in the active layer, and a small degree of curvature, as 
shown in the bottom plot of figure 6.11. The two curves now have an almost 
perfect match of fringe position and amplitude, as well as equivalent layer peak 
widths, intensities and position relative to the substrate. It is interesting to note 
that grading does not affect the Pendelldsung fringe positions or frequency, but 
it does reduce the amplitude. The bottom plot of figure 6.11 shows the F T of 
this simulated structure. Again the positions of the peaks are the same, although 
sharper due to cleaner statistics. 

It is clear that once the layer thicknesses have been determined using Fourier 
Analysis of the Pendellosung fringes, the process of simulation becomes straight
forward, since two degrees of freedom have been removed. Figure 6.12(a) shows 
the final simulated mismatch and thickness profile of sample ABA1. 

6.5.2 Sample ABA2 

This sample had the same nominal structure as ABA1 as it was grown at 
roughly the same time by P. Spurdens under similar growth conditions. An ex
perimental rocking curve was taken over a range of 1843" with 256 steps and 20 
second counting time, under the same conditions as before. Figure 6.13 shows 
the experimental and simulated rocking curves, the latter derived from the F T 
shown in figure 6.14. Again the values of thickness determined from the F T made 
the simulation procedure more straightforward and it was found that grading was 
required once more to achieve a close match with experiment. It was also neces
sary to include sample curvature again to provide a match of fringe amplitude. 
Figure 6.12(b) shows the simulated compositional profile of sample ABA2. 
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6.5.3 Sample ABA3 

It is often necessary to know the uniformity of epitaxial growth over an 
entire wafer of material. In order to obtain an area scan from a wafer, without 
remounting it each time, an X - Y translation stage is required and software can 
be used to run the scan loop automatically. 

Sample ABA3 was a complete wafer of material grown by S. Cole at British 
Telecom by MOVPE. Its structure was nominally 0.18/xm of GalnAsP, band 
gap 1.1/im, capped by QAfim of InP. The characterisation of this sample is 
made more difficult as it is almost perfectly lattice matched. Figure 6.8 showed 
how the Pendellosung fringe amplitude decreases as the mismatch becomes small. 
The scan range used was 3686" with a step size of 7.2" and counting time of 11.4 
seconds, for each of the nine points on the area scan. 

Figure 6.15 shows the rocking curves obtained from sample ABA3. The 
mismatch clearly changes across the wafer, but it would be very difficult to 
directly measure from the rocking curves any change in the Pendellosung period 
from different points on the sample because the fringe amplitudes are so small. 
Figure 6.16 shows the corresponding FT's , which all exhibit a broad peak between 
0.4 and Q.5fim due to the cap and a sharper peak at roughly 0.6/zm due to the 
sum of the cap, and layer frequencies. Unfortunately the data is not good enough 
to resolve a separate peak due to the layer in most of the cases. 

Figure 6.17 gives the measured values of thickness from the FT's for the nine 

points. The average thicknesses for the cap and layer are 0.44/mi and 0.16/zra 

respectively, and all of the measurements lie within experimental error of these 

averages. The layer thicknesses can be said to be constant over the wafer within 

a measuring accuracy of ±400A. 

6.6 Conclusion 

This chapter has illustrated the need for Fourier Analysis as a tool in measur
ing the Pendellosung fringe spacing. Without it, the errors in thickness determi
nation are large and values may even be incorrect. In some cases it is impossible 
to measure the fringe spacings directly from the rocking curve, when, for exam-
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pie, the layer thicknesses are such that complex interference patterns result, or 
when the fringe amplitudes are small as for closely matched structures. 

The optimum ranges and step sizes for data collection have been established 
for a variety of signal to noise ratios. These have been applied to several double 
layer structures experimentally. Remarkably good fits between simulated and 
experimental rocking curves have been achieved by utilising the thickness values 
first determined by Fourier Analysis. 

The number of variables to be fitted in a simulation routine needs to be 
small for a unique, accurate solution to be attained. The complexity of rocking 
curves from multiple layered epitaxial structures is such, that fitting by simply 
matching peak heights and positions is inadequate. It is vital that thicknesses are 
determined accurately from Pendellosung fringes before simulation takes place. 
This work has shown that by determining layer thicknesses using Fourier Analysis 
the number of degrees of freedom is reduced making simulation straightforward. 
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Chapter V I I 

Triple Crysta l Diffraction and X-ray Reflectometry 

Introduction 

The theory behind Triple Crystal Diffractometers (TCD's) has been ex
plained in Chapter 2. A major advantage of the T C D over the DCD is the 
elimination of the effects of sample curvature and small angle diffuse scatter
ing. The third crystal, or analyser, uses angular collimation by Bragg reflection 
rather than spatial collimation by a slit to define the direction of the scattered 
X-rays recorded by the detector. The angular resolution of the detector sys
tem is effectively the width of the reflection range of the analyser. In addition, 
by decoupling the sample and analyser crystals a map in reciprocal space can 
be produced which gives important information on the quality of samples and 
topography of sample surfaces. 

Triple crystal diffraction has not been used to the same extent as double 
crystal in the characterisation of epitaxial layers probably because, until very 
recently, no commercial instrument was on the market. It has however, been 
applied, for example, to the study of phase transitions in prousite (AgzAsS^) 
(Nelmes et al., 1984; Ryan et al., 1985) as well as structural studies of BaMn^Y 
(Ryan, 1986; Ryan et al., 1986). Afanas'ev et al. (1984) have used a T C D to 
study diffraction far from the Bragg peak to gain information on the structural 
perfection of thin subsurface layers in Ge which had been polished and etched. 
Multilayers of W/Si, Ni/C and ReW/C have been studied by Hornstrup, Chris-
tensen and Schnopper (1986) using T C D , and were all found to show mosaicity. 
Later work by Christensen, Hornstrup and Schnopper (1987, 1988) on similar 
materials found evidence of substrate imperfection, interfacial roughness and in-
terdiffusion. Zaumseil et al. (1987) compared T C D and DCD of ion implanted 
silicon and found that the presence of diffuse scattering in the double crystal 
rocking curve effectively washed out the fine structure seen in the triple crystal 
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rocking curve. The signal to noise ratio is of the order of 106 for the T C D com
pared to 104 for the DCD. Fewster (1989) has used a four-crystal six-reflection 
difFractometer to study an AlGaAs laser structure and an GaAs/AlAs MQW. 
This instrument behaves as a very high resolution T C D . Ryan et al. (1987) have 
exploited the highly asymmetric geometry to determine layer thickness, compo
sition and internal interface roughness of a buried layer only 230A thick. This 
geometry has been used to study a thin layer of AlInAs capped with GaAs using 
a T C D (Lucas, Hatton, Bates, Ryan, Miles and Tanner, 1988) and the results 
compared to those obtained with a DCD (Bates, Hatton, Lucas, Ryan, Miles and 
Tanner, 1988). 

X-ray reflectivity is a well established technique used for the characterisation 
of thin films. As early as 1931, Kiessig showed that measurements of reflectivity 
of surfaces at angles close to the region of total external reflection gave informa
tion on the variation of electron density below the surface. Specular reflectivity 
depends only on the electron density and hence composition and is independent 
of crystal structure. Amorphous layers behave in the same way as crystalline 
layers. A measurement of reflectivity as a function of angle of incidence provides 
information about the refractive index and hence electron density of the mate
rial as a function of depth. As the X-rays penetrate very little into the material, 
due to the very low incidence angle, reflectivity is a highly sensitive probe of 
thin surface layers. X-ray reflectivity is well known as a characterisation tool 
for stratified media such as semiconductor superlattices (Chang, Segmiiller and 
Esaki, 1976; Sugawara et al., 1988) and Langmuir-Blodgett films (Pomerantz, 
Dacol and Segmiiller, 1978; Pomerantz and Segmiiller, 1980; Jark et al., 1989). 
Le Boite et al. (1988) have used it to measure thickness of metallic multilayers 
with high accuracy, whilst Roberts et al. (1989) have used synchrotron radiation 
reflectivity to study polyphenylene thin films. Using a triple crystal difFractome
ter to measure specular reflectivity at grazing incidence, Cowley and Ryan (1987) 
showed that the thickness and roughness of amorphous films on semiconductor 
crystals could be determined experimentally. The presence of a thin surface layer 
causes interference of the X-rays resulting in oscillations in the reflected intensity 
with angle. This may be explained with Fresnel theory (Compton and Allison, 
1935). Parratt (1954) derived a recursion relation for the reflectivity from a 
multi-layered sample. Parratt's treatment, described in this chapter, is valid for 
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hard X-ray radiation such as CuKa, but for softer X- rays, where the critical 
angle is larger, multiple reflections as well as absorption need to be taken into 
account (Heavens, 1965; Jark et al., 1989). Surface and interface roughness have 
been included in the treatment as a gaussian function (Cowley and Ryan, 1987). 
Segmuller (1973) used X-ray reflectivity to study thin films of amorphous sili
con on sapphire, while Rhan and Pietsch (1988) used it to study nanometer scale 
heterostructures, determining both layer thickness and roughness accurately. Re
flectivity of multilayer structures of W/C and W/Si has been studied by Vidal 
and Marfaing (1989) and multilayer roughness has been modelled by Rosen et al. 
(1988). The combination of glancing incidence diffraction and specular reflectiv
ity measurements has been shown to yield structural information on layers as thin 
as 210A (Lucas et al., 1988). Lucas, McMorrow and Bates (1989) have shown 
that X-ray reflectivity and triple crystal diffraction studies on thin layers of I I -
VI semiconductors provide complementary information for the characterisation 
of structures. 

A similar technique known as Energy Dispersive Reflectivity has not been 
used quite as extensively. It is analogous to energy dispersive diffraction, used 
by Hart, Parrish, and Masciocchi (1987) to study a Pd/Xe thin layer and by 
Holy, Cummings and Hart (1988) to study mosaic spread in silicon, germanium 
and calcium fluoride, in that the angle remains constant while the intensity as a 
function of X-ray energy is recorded. Bilderback and Hubbard (1982) have used 
energy dispersive reflectivity to study the effect of roughness and etching on X-
ray mirrors and the reflectivity of platinum coated mirrors. They used a highly 
collimated beam of white X-ray radiation at a glancing angle of incidence and 
recorded the reflected intensity as a function of energy. A similar experiment is 
described in this chapter together with an explanation of Fresnel theory for both 
angular reflectivity and energy dispersive reflectivity, which is used to model the 
results obtained theoretically. 

.2 Triple Crystal Diffraction of a Thin Layer 

The experiments were carried out at Edinburgh University using a triple 
crystal diffractometer based on a Huber 4301 (440) goniometer, and utilising a 
GEC Avionics GX21 rotating anode X-ray generator with a copper target (Lucas 
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et al., 1988). The monochromator and analyser crystals were Ge( l l l ) . The 

sample, consisting of a thin layer of AlInAs on (100) InP, capped by an ultra-

thin layer of Go As, code INP2, was that characterised in Chapter 4 by double 

crystal diffraction. These measurements found that the thickness of the AlInAs 
layer varied over the sample (Bates et al., 1988) and thus it was impossible 

to make a direct comparison between the results of triple and double crystal 

diffraction. In order to maximise the scattering from the surface layers with 

respect to the substrate the asymmetric 440 reflection was used, in the glancing 

incidence mode. The Bragg angle for InP with CuKa is 48° and so the angle 

of incidence is 3°. The triple crystal diffractometer provides high resolution in 

two dimensions in the scattering plane and it is therefore possible to map out the 

intensity distribution of scattered X-rays in an area of reciprocal space. Figure 7.1 

illustrates the intensity around the InP (440) reciprocal lattice point for sample 

INP2. The equal-intensity contours are on a logarithmic scale over four decades 

of intensity. The small peak at (4.017,4,0) has an intensity approximately 10~3 

that of the substrate (440) Bragg peak and arises from the quantum well layer 

of AlInAs. The width of the Bragg peak in the [010] direction is a measure 

of the sample mosaicity and homogeneity across the layer. The presence of 

the secondary Bragg peak is clearer in figure 7.2 which plots the integrated 

intensity in the [010] direction along the face normal [100] direction over the 

scan range. The logarithmic scale over five orders of magnitude emphasises 

the weak scattering observed around the (440) Bragg peak. This profile was 

simulated using a kinematical model developed at Edinburgh University which is 

valid in this case because the layer is very thin, although it is not valid near the 

substrate Bragg peak. The data was fitted with a least squares routine, assuming 

the heterostructure consisted of a semi-infinite substrate and two thin crystalline 

layers. The mismatch of the AlInAs layer was found to be —4450ppm and the 

resulting fit is shown in figure 7.3 with the fitting parameters given in Table 

7.1. The results compare well with the findings of DCD from the region on the 

sample with the thinnest layer. The parameters include roughness and regions 

of disorder at interfaces which probably correspond to interfacial grading. 
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Layer (2) GaAs d2-- = 29 ± OAA oi < l A 

Disordered Layer (2) d = •• 15 ± 0.5A 

Layer (1) InAlAs dl = - 204 ± 0.4A ai = 1 ± 0.7A 

Disordered Layer (1) d: = 20 ± l A 

InP Substrate <r0 = 2.5 ± l A 

Table 7.1 

It was found that triple crystal diffractometry of sample INP2 was more 
sensitive to the thin layer diffraction effects than double crystal diffractometry. 
This is essentially because of the removal of the effects of curvature and reduction 
of the diffuse scattering background. However, much of the difference can be 
attributed to the use of a proportional counter with a good quality counting chain. 
When samples are not appreciably curved double crystal diffraction is almost as 
sensitive to thin layers as triple, providing care is taken over the experimental 
set up. 

7.3 Theory of X-ray Reflectivity 

The refractive index of X-rays in semiconductors is less than one, and so X-
rays are totally externally reflected for sufficiently small angles of incidence. Since 
the X-ray beam then penetrates very little into the material the reflectivity is a 
probe of the properties of the surface. By rocking the sample crystal through the 
position of total external reflection, known as the critical angle, and observing 
the intensity as a function of angle, information on the electron density as a 
function of depth is yielded. The theory of X-ray reflectivity has been developed 
by many authors, including Pomerantz (1987) and Nevot and Croce (1980), but 
the treatment of Parratt (1954) is shown here. 

7.3.1 Two Homogeneous Media 

In order to develop the theory for N layers of varying composition the case 
of two homogeneous media is first considered. The X-ray beam is incident at 
an angle <f>, and a coordinate system in which x-z is the plane of incidence is 
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used, with z taken as positive into the sample and y parallel to the surface. For 
any glancing angle, the expressions for the electric vector of the incident beam 
E\(zi), of the reflected beam Ei(z\), and of the refracted beam £ 2 ( 2 2 ) at a 
perpendicular distance z from the surface, are 

Ei(zi) = £i(0)exp{i[u;t - {k\^xi + khzzi)]} 

E? (21) = Ef(0) exp{z[u;t - ( A ^ x i - kuZl)}} 7.1 

E2(z2) = E2(0) exp{i[u>t - {k2,xx2 + k2,zz2)]} 

where k\ and k2 are the propagation vectors (of magnitudes 2ir/\i and 2ir/\2) 
outside and inside the sample, respectively. The glancing angle <f> is always very 
small for X-rays and we write 

4,x + 4,z = 4 = r\k\ = rl{klJ cos2 <j>) ~ k\a{\ - 262 - 2i(32 + <f>2) , 7.2 

where r2 = 1 — 62 — if32 is the refractive index of the sample, r\ = 1 for air or 
vacuum, and second and higher powers of 62 and /32 are neglected since they are 
each of the order of 10 - 5 or less. fi2 = X^/Air where \i2 is the linear (incoherent) 
absorption coefficient of the layer. 

The boundary condition for the components of the electric vectors is k2,x = 
fci, and for small <j> we can approximate k\,x ~k\. It follows that 

k2,z m h(<t>2 - 262 - 2i/32)5 • 7.3 

Therefore, we can write 

h = {<? ~ 2*2 - 2i/32)5 , 
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and so the expression for the refracted beam becomes 

Ei{z2) = £2(0) exp[i(wt - /C2,x22)] exp[-iA:i/222] • 7.5 

The Fresnel coefficient for reflection, Fi,2, can be written (Compton and Allison, 
1935) 

px 2 = S. - sin 4> - r2 sin </>2 ^ <j> - h _ h ~ h ? g 

£ 1 sin 0 + 7-2 sin fa ~ <j> + /2 /1 + /2 ' 

where 
/ ! = (<£2 - 26! - 2i/3i)5 = <j>. 7.7 

7.3.2 N Homogeneous Media 

Consider now N(N > 2) homogeneous media where the thickness of each 
lamina n(< N) is denoted by dn. Medium 1 is air and medium N is the substrate. 
The tangential components of the electric vectors are shown in figure 7.4, and 
the continuity for the n — 1, n boundary may be expressed as 

an-\En-\ + a'^E^-i = a~lEn + anE^ , 7.8 

( a n _ i £ n _ i - a-^E^U-ik! = {a^En - anE%)fnkx , 7.9 

where the amplitude factor an for half the perpendicular depth dn is, from equa
tion (7.5), 

an = e x p ( - i f c i / „ y ) = e x p ( - i ^ / n d n ) . 7.10 

In equations (7.8) and (7.9), the vector amplitudes En-i, E^-i and En, E„ refer 
to the values midway through medium n — 1 and n, respectively. The solutions of 
equations (7.8) and (7.9) are obtained by dividing their difference by their sum 
and writing the result as a recursion formula 

•Rn- l ,n = < 4 - l 
-Rn,n+1 + i*n-l ,n 

Rn,n+lFn-l,n + lJ ' 
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where 
Rn,n+1 = an(En/En) » 7.12 

and 
Fn-l,n — 

fn-1 ~ fn 

fn—1 "t" /n 
7.13 

The solution of equation (7.11) is obtained by starting at the substrate medium, 
N, and noting that i?i\r,iV+i = 0 since an is zero as the substrate thickness is taken 
to be infinite. Also as medium 1 is air then a\ is unity and so = E^/E\. 

The ratio of the reflected to incident intensity is given by the square of the 
absolute value of (since it is complex), 

IR 
h Ei = | i*l ,2| 5 7.14 

Interface roughness can be accounted for with a gaussian roughness term (Cowley 
and Ryan, 1987) and equation (7.13) becomes 

En-i,n = {" 1 , { n(exp[-j-(47rg nsin)* ) 2 ] } , 
Jn-l + Jn^ ^ A J 

7.15 

where an is the root mean square roughness of the nth layer. 

For a given sample layer containing atoms of type o = A, B,... the refractive 
index can be written as (James, 1948) 

n = 1 - 6* , 

where 
S* = 6 + i/3 = 2.72 x 1 0 1 4 i o A 2 £ ( Z a + A / a ) . 7.16 

A a 

p is the density with units of g/cm?, A is the atomic weight in g, and A is the 
wavelength in A. Note that A / 0 is complex since, 

A / = A / ' + iAf" , 
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where A / ' and A / " are the real and imaginary parts of the dispersion corrections 
respectively. The compositions of ternary and quaternary alloys are calculated 
using Vegards law as explained in Chapter 1. For normal angular reflectivity 
with CuKa radiation the X-rays are assumed to be of one wavelength only 
and the dispersion corrections may be looked up directly from the International 
Tables for X-ray Crystallography Vol. IV (1974). However, for energy dispersive 
reflectivity the wavelength of the X-rays varies and so therefore do the dispersion 
corrections. To a good approximation Honl's model may be used to calculate A / 
for a given A (James, 1948). The dispersion corrections for a particular element 
of atomic number Z are given by 

A / ' = ^ l o g e | x 2 - l | , 

A / " = 9 K \ , x > l ; = 0 , z < 1 , 7.18 xl 

where x = A#/A. A# is the wavelength of the K absorption edge of the element 
while A is the X-ray wavelength. The oscillator strength, is given by 

2 8 e" 4 f 2 1 1 
" 3 ( 1 - A * ) * } ' 7 1 9 

with 
1 fr, 9 1 1 \ 7.20 

where A# is in A, and 

B = (Z - 0.3)2 + 1.33 x lO~b(Z - 0.3)4 . 7.21 

The value of 6* may then be calculated for a given composition and wavelength 
and combined with the angle <f> to give /„ for a particular layer so that the 
reflectivity may then be calculated. The algebra becomes extremely tedious for 
larger values of N and a computer is required to solve the problem quickly. A 
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Fortran program is included in Appendix B which solves this problem using the 
equations derived, for both normal reflectivity and energy dispersive reflectivity, 
for a large range of possible materials. 

.4 Structural Determination using X-ray Reflectivity 

The Parratt model has been used in a simulation program to determine the 
effect of varying different parameters in the reflectivity so that an understanding 
of experimental curves may be achieved. 

l.l Angular Reflectivity 

Figure 7.5 shows the angular reflectivity of InP for various wavelengths cor
responding to the characteristic Ka lines of Ag, Mo, Cu, Fe and Cr. The critical 
angle varies from approximately 0.1° for Ag with A = 0.56A to 0.4° for Cr with 
A = 2.29A. The reflectivity also falls off more steeply for the harder radiation. 
The softer radiation of Cr, Fe and Cu is therefore more applicable to the study of 
semiconductors since experiments are unlikely to achieve more than six decades 
of intensity and so a larger angular range may be examined. 

Figure 7.6 shows the angular reflectivity of InP, GaAs and Si with CuKa 
radiation. The critical angle for InP and GaAs is approximately 0.3°, while for 
Si it is 0.2°. This arises because from Snell's law cos4>c — 1 — a nd as 6 is small 
expanding the cosine gives the critical angle as <f>c = V26. 6 is larger for InP 
and GaAs than for Si. 

The effect of surface roughness on the angular reflectivity at 1.54A for InP is 
shown in figure 7.7. The RMS roughness of the surface is applied as a Gaussian 
function in the model. The reflectivity fall off becomes steeper with increasing 
surface roughness. Internal interface roughness, however, has a different effect. 
This is shown in figure 7.8 for a single 400A layer of lattice matched InGaAs 
on InP with interface roughness of OA and 10A. The reflectivity gradient is un
affected but the interface fringes due to the layer become progressively damped 
with increasing angle. This is shown for a range of roughnesses in figure 7.9 
with the intensity scale of each curve shifted for clarity. The fringe spacing 
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Figure 7.5: Angular reflectivity of InP for various characteristic Ka lines. 
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Figure 7.6: Angular reflectivity of InP (solid), GaAs (dashed) and Si (dash-dot) 

for CuKa radiation. 
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Figure 7.7: The effect of surface roughness on the angular reflectivity of InP for 
CuKa radiation. The RMS roughness is shown in Angstroms. 

0 0.2 0.4 0. 8 0.8 1 1.2 1.4 1.8 1.8 S 
Angl. (dag«> 

Figure 7.8: Angular reflectivity of a 400A layer of lattice matched InGaAs on 

InP for interface roughnesses of OA (solid) and 10A (dashed) with CuKa radi

ation. 
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Figure 7.9: Angular reflectivity of a 400A layer of lattice matched InGaAs on 
InP for a range of interface roughnesses (in Angstroms) with CuKa radiation. 
The Intensity axes are shifted for clarity. 



and reflectivity gradient are unaffected but the damping increases with increas
ing roughness. It should therefore be possible to separate the effects of surface 
roughness and internal interface roughness in experimental reflectivity curves. 

The frequency of the fringes seen in figure 7.9 is directly related to the thick
ness of the layer. Figure 7.10 shows the reflectivity at 1.54A for a lattice matched 
InGaAs layer on InP for a range of thicknesses. The fringes arise because the 
electron density of the layer is different to the substrate, even though the lat
tice parameters are identical. The relationship between fringe period and layer 
thickness can be deduced by considering the conditions necessary for constructive 
interference of X-rays. This is effectively Bragg's law with the layer thickness 
replacing the lattice spacing. Therefore, for angular reflectivity the fringe period, 
A<f>, is given by 

A(f) = n

 X

 J ~ ^ , 7.22 
2tcos<£ 2t 

where t is the layer thickness and <f> is small. Figure 7.11 illustrates the effect 
of varying layer composition on the fringe amplitude, for a 200A thick layer 
of AlGaAs on GaAs at 1.54A. As the mismatch increases, and hence the Al 
percentage, the fringe amplitude increases. The effect is not so marked, however, 
with 200A of InGaAs on InP as shown in figure 7.12 for roughly the same 
percentage compositional change. The difference between these two results arises 
because the electron density difference varies linearly between Al As and GaAs, 
whereas at the lattice matched condition of InGaAs with InP there is a large 
electron density difference, but a relatively large change in mismatch can be 
obtained with a small relative change in electron density. Hence reflectivity 
is sensitive to layer mismatch only when there is a corresponding difference in 
electron density. 

The case of multi-layer reflectivity is analagous to that of interference of Pen-
dellosung fringes in the symmetric geometry. Fringes arising from each layer will 
interfere to form a pattern containing the individual and sum of layer frequencies. 
Figure 7.13 shows the reflectivity of 400A of lattice matched InGaAs on InP 
capped by 150A of InP. The high frequency fringes correspond to the sum of the 
layer and cap thickness, and are modulated by the individual layer frequencies. 
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Figure 7.10: Angular reflectivity of a lattice matched InGaAs layer on InP with 
CuKo. radiation for a range of layer thicknesses. 
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Figure 7.11: Angular reflectivity of a 200A layer of AlGaAs on GaAs with a 

mismatch of 0 (solid), 200 (dashed), 500 (dotted) and lOOOppm (dash-dot) and 

CuKa radiation. 
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Figure 7.12: Angular reflectivity of a 200A layer of InGaAs on InP with a 

mismatch of 0 (solid), -10000 (dashed), -20000 (dotted) and -30000ppm (dash-

dot) and CuKa radiation. 
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Figure 7.13: Angular reflectivity of a 400A layer of lattice matched InGaAs on 
InP capped by 150A of InP with CuKa radiation. 
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Figure 7.14: Energy dispersive reflectivity of InP for a range of incidence angles. 



Fourier analysis may be applied in the same manner explained in Chapter 6 to 
distinguish between the individual frequencies for multilayer structures. 

7.4.2 Energy Dispersive Reflectivity 

Energy dispersive reflectivity shows exactly the same behaviour as angular 
reflectivity, except that energy rather than angle is varied. Figure 7.14 shows 
the energy reflectivity of InP for various angles of incidence with CuKa radia
tion. The critical energy increases as the incidence angle becomes smaller but the 
reflectivity falls off less steeply. It is advantageous therefore, to use a small inci
dence angle, assuming the X-ray source has enough intensity at higher energies. 
However, if the incidence angle is too small the experimental set up becomes dif
ficult and the beam spread will be such that intensity may be lost from the beam 
moving off the sample. In practice, therefore, an angle of incidence between 0.2° 
and 1° is suitable. The slight dip in the reflectivity at 2SkeV arises from the 
In K absorption edge at A = 0.44A. 

Figure 7.15 shows the energy reflectivity for 7nP, GaAs and Si at 0.5° inci
dence, with the same trend for the critical energy, given by Ec = constant y/p/<f>c, 
as for the critical angle. Ec is therefore proportional to the square root of the 
reflecting layer density. The kinks on the graph correspond to the K edges of Si 
at 6.7A, P at 5.8A, Ga at 1.2A, As at l.oA and In at 0.44A. 

The effect of surface roughness on the energy reflectivity at 0.5° incidence 
for InP is shown in figure 7.16. Again the same trends are found as in angular 
reflectivity. Figure 7.17 shows the energy reflectivity at 0.5° incidence for a lattice 
matched InGaAs layer on InP for a range of thicknesses. The relationship 
between fringe period and layer thickness is given by 

. _ he he „ 
AE = — — - ~ — . 7.23 

2t sm (p 2t<f> 

Reflectivity is additionally very sensitive to thin buried layers as is shown in 
figure 7.18, which is the energy reflectivity of a thin, 100A, quaternary layer 
with m = — lOOOppm on InP capped by 0.1 fim of InP. 

119 



D1 • 
-2 . 5 

- 3 . 5 H 

15 
Energy (kev) 

Figure 7.15: Energy dispersive reflectivity of InP (solid), GaAs (dashed) and Si 

(dash-dot) at 0.5° incidence. 

0 
_ l 

10 15 
Energy (kev) 

30 
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in Angstroms at 0.5° incidence. 
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Figure 7.18: Energy dispersive reflectivity of a 100A layer of InGaAsP (1.35/xm), 
mismatch -lQOOppm on InP capped with a 0.1/xm thick layer of InP at 0.5° 
incidence. 



.5 X-ray Reflectivity of Thin Epilayers 

i . l Double Crystal Reflectivity 

Double Crystal Reflectivity (DCR) experiments were performed at Durham 
University and British Telecom on model 150 and model 300 Bede diffractome-
ters, respectively. Initial work occurred in Durham using an 044 first crystal 
reflection from (Oil) InP. A sUt was used in between the first and second crys
tals to reduce background and limit the incident beam size but the detector 
aperture was not limited. The sample used was INP2. Figure 7.19(a) shows the 
resulting reflected intensity as a function of incidence angle using a 100" step size 
and 30 second counting time. The peak corresponds to total external reflection; 
the critical angle for InP being approximately 0.3° at 1.54A wavelength. The 
plot shows a poor signal to noise ratio of only 25 : 1 and a large background 
hump centred at half a degree above the critical angle, which probably arises 
from direct beam contamination. It was evident that a slit was required over the 
detector to accurately define the acceptance angle of the reflected beam. 

At British Telecom the experiment was repeated using an 004 reflection InP 
first crystal with a 1mm slit over the detector. The sample used here, code INP4, 
was a single thin layer of Gain As, nominal thickness 400A on InP grown by 
MBE. Great care was taken in the initial alignment of the sample so that at zero 
incidence angle the sample physically intercepted half of the X-ray beam. This 
was achieved by a combination of sample translation in and out of the beam, 
using a Bede X - Y translation stage, and rocking the sample in angle. Figure 
7.19(b) shows the resultant reflectivity curve with a 54" step size and a count 
time of 650 seconds. The signal to noise ratio has significantly improved to 
greater than 103 and the background hump has disappeared but there are no 
sign of any fringes. 

The experimental set up is evidently vitally important if interference fringes 
from the layer are to be observed. As the incidence angles are so small there is a 
problem with background contamination from the straight through beam since 
the beam is of finite width and will not be entirely intercepted by the sample 
at very low angles. Additionally, sample curvature has a substantial degrading 
effect at very low angles which will tend to wash out any interference fringes. It 
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Figure 7.19(a): Double crystal reflectivity of sample INP2 with no detector slit. 
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Figure 7.19(b): Double crystal reflectivity of sample INP4 with a 1mm detector 
slit. 



was therefore necessary to reduce the slit width to 0.1mm and move the sample 
and detector in a 6-26 scan. Unfortunately, because the slit was so narrow the 
reflected beam tended to be lost by simply rotating the detector by twice the 
sample angle. This was probably due to either some detector or sample misalign
ment. However, by scanning the detector over a small angular range centred on 
the 26 position a peak intensity could be found and measured. The counting 
time for each detector step of 0.01° was up to 300 seconds for the higher sam
ple angle positions. The sample was rotated in steps of 100" and a scintillation 
counter was used to record the reflected intensity. The time for the whole scan 
of 2300" was 48 hours, with the background measured at a relatively high angle 
over a time of 20 minutes. Figure 7.20 shows the resultant reflectivity data after 
background subtraction. When an error bar is not indicated the error is con
tained within the size of the spot. The line drawn through the points is the best 
fit simulated curve to the data found by minimising the sums of the differences 
squared, which corresponds to a layer thickness of 362 ± 10A. A mismatch of 
—500ppm based on previous growth data was assumed for the InGaAs layer as 
the reflectivity was not sensitive to small changes in composition. No surface 
roughness was necessary to yield a good fit although an interface roughness of 
a = 10 ± 5A was used to reduce the fringe amplitude to that of the experimental 
data. Unfortunately, the error bars are relatively large and the number of points 
relatively few for a closer fit to be attained. The reflected intensity for total 
reflection was only 200 counts per second and so very large counting times were 
required to achieve even these statistics. The fine slit over the detector is nec
essary however, because of sample curvature. The fact that the beam tended to 
move off the slit in the simple 6-26 scan necessitated scanning the detector over 
a small range containing the 26 position. If the sample orientation and detector 
position had been set precisely then this would not have been required and much 
time could have been saved. Additionally the X-ray tube at British Telecom was 
nearing the end of its lifetime and had to be run on half power. The use of a 
good tube together with a proportional counter would have significantly reduced 
the total data collection time. It is therefore perfectly feasible to use a standard 
double crystal diffractometer for X-ray reflectivity providing care is taken over 
the experimental set up. 
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Figure 7.20: Double crystal reflectivity of sample INP4 with a 0.1mm detector 
slit. The circles show the experimental data and the solid line is the best fit 
simulated curve. 



7.5.2 THple Crystal Reflectivity 

The advantage of Triple Crystal Reflectivity (TCR) over D C R is the removal 
of the effects of sample curvature with the analyser crystal. Rather than using a 
very fine slit over the detector which reduces the intensity, a third crystal permits 
angular rather than spatial collimation. The background can also be significantly 
reduced as the detector is no longer in line with the direct beam from the first 
crystal. 

Experiments were performed at Edinburgh University on sample INP2 (Lucas 
et al., 1988) using the triple crystal diffractometer described in section 7.2. The 
reflectivity was recorded over a 2° scan range with a typical data collection time of 
24 hours. It was convenient to express the data in terms of a function T = I<j)4, 
since the general form of the reflectivity is that of a l/<f>4 curve. This arises 
because, neglecting absorption, fn = (0 2 — and for <j> >• <f)c we have 

fan) - fan - 1) 
n _ 1 ' n ~ 402 

so that the reflected intensity is proportional to 1/0 . The gradient of the T vs 0 
graph is then only determined by the surface roughness. Figure 7.21 shows this 
representation of the reflectivity data of INP2 on a logarithmic scale. Fringes 
arising from the total layer thickness are clearly seen, and the pattern is modu
lated by a larger period, corresponding to reflection from the thin surface layer. 
The curve drawn through the points is a least squares fit of Parratt theory by 
the Edinburgh group. The parameters used to obtain the fit are given in Table 
7.2, where a is the RMS roughness and Api/p the fractional difference in density 
of the i t h layer from the substrate, and this is represented in figure 7.22. Two 
thin surface layers, in addition to the 210A of AlInAs (layer 1) are required to 
produce the fit. Layer 2 corresponds to the GaAs capping layer of thickness 30A 
and there is an additional surface layer (layer 3) with a very low electron den
sity. Reflectance infrared spectroscopic measurements performed at Edinburgh 
showed complex absorption features corresponding to OH vibrations near the 
surface. This indicates a thin layer of surface contaminants. During earlier work 
investigating contaminant layers on Si/SiOz wafers by the Edinburgh group, it 
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Figure 7.21: Triple crystal reflectivity of sample INP2 shown in the form of a 
T = I<ffi vs <f> curve. The solid line is a least squares fit to the experimental data 
by the Edinburgh group using Parratt theory. 
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Figure 7.22: The electron density profile used for the calculated fit of figure 7.21. 



was discovered that baking of the wafer reduced the contamination to a level at 

which its effect on the X-ray reflectivity measurements is negligible. The sample 

was therefore heated in a vacuum oven at 200° C for 2 hours before repeating the 

X-ray reflectivity and infrared measurements. The new reflectivity data is shown 

in figure 7.23. The parameters used to describe the fit are given in Table 7.3 and 

the electron density profile is represented in figure 7.24. They are significantly 

different from those used to describe the original data as the AlInAs layer has 

decreased in thickness to 197A, resulting in a proportional increase of layer 2. 

Considerable roughening of the interface between these layers indicates transfer 

across the boundary and it is concluded that the heating of the sample reduced 

oxidation in the AlInAs layer. The roughness in effect represents compositional 

grading at the interface as the two effects are indistinguishable to X-rays. The 

roughness of layer 3 was not altered by the heating process and the repeated in

frared measurements again indicate the presence of surface contaminants. This 

manifestation of surface roughness as a low-density surface layer, has also been 

observed in X-ray reflection studies of metal films (Smirnov, Sotnikov, Anokhin 

and Taibin, 1979; Smirnov and Anakhin, 1980). A perfect fit to the reflectivity 

data was impossible to obtain and this may have been due to the inability of 

the model to account for graded electron density layers. It should be noted that 

the Edinburgh model neglects the imaginary part of the refractive index which 

accounts for absorption, and so fitting of parameters to the accuracy quoted is 

optimistic. In addition, the number of variables to be fitted is too high for a sin

gular solution to be reached and it is therefore necessary to reduce the number 

of degrees of freedom by use of other techniques. The results obtained from the 

reflectivity data however, show good agreement with the triple crystal diffraction 

results of sample INP2. The diffraction measurements are sensitive only to crys

talline components of the sample and can be used to measure lattice parameter 

strain accurately as well as layer thickness. The reflectivity measurements are 

also sensitive to amorphous layers and so can reveal the presence of oxide or 

contaminant layers with thicknesses down to 10A. The two techniques therefore 

provide complimentary information on sample structure. 
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Figure 7.23: Triple crystal reflectivity of sample INP2 after baking. The solid 

line is a least squares fit to the experimental data by the Edinburgh group using 

Parratt theory. 
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Figure 7.24: The electron density profile used for the calculated fit of figure 7.23 
shows how the layer thicknesses have changed after oxidation into the quantum 

well. 



Layer (3) d 3 = 22.3 ± 0.7A az < lA A p 3 / p 0 = -0.90 ± 0.02 

Layer (2) d2 = 30.5 ± 0.7A a2 = 8.8 ± 0.6A A p 2 / p 0 = -0.24 ± 0.02 

Layer (1) di = 210.0 ± 0.8A <ri = 8 . 9 ± 0 . 7 A Api /p 0 = -0.11 ± 0.04 

InP Substrate a0 = 4.2 ± 0.8A 

Table 7.2: Sample INP2 before baking 

Layer (3) d 3 = 23.1 ± 0.7A <r3 < lA A p 3 / p 0 = -0.89 ± 0.02 

Layer (2) d2 = 45.4 ± 0.8A a2 = 9.3 ± 0.7A Ap2/po = -0.26 ± 0.02 

Layer (1) di = 197.0 ± 0.9A ax = 20.3 ± 0.8A Api /p 0 = -0.08 ± 0.04 

InP Substrate a0 = 4.0 ± 0.8A 

Table 7.3: Sample INP2 after baking 

.6 Energy Dispersive Reflectivity 

The reflectivity of X-ray mirrors has been studied in detail from the very 
soft end of the spectrum up to about lOkeV (1.2A). Many studies of total 
reflection have generally explored the region just below lOfceV (Parratt, 1954; 
Nevot and Croce, 1980). The experimental measurements were extended into 
the 50keV regime by Bilderback and Hubbard (1982) and the reflectivity was 
measured as a function of energy rather than angle. This technique known as 
energy dispersive reflectivity is sensitive to surface features in the same way as 
angular reflectivity. It is also analagous to energy dispersive diffraction which 
has been used by Hart, Parrish and Masiocchi (1987) to study a thin Pd/Xe film 
and by Holy, Cummings and Hart (1988) to study mosaic spread in Si,Ge and 
CaF2. 

The experimental arrangement of Bilderback and Hubbard (1982, (a)) uses a 
solid state Si(Li) detector to measure the intensity of the X-rays reflected from 
the specimen and the white spectrum from a Tungsten X-ray tube when the 
mirror was withdrawn from the incident beam. A multi-channel analyser (MCA) 
converted the detector output pulse distribution into an energy spectrum. A 
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similar experiment was constructed at Manchester University using the same set 
up as described by Holy et al. (1988), shown in figure 7.25. A tungsten X-ray 
tube was powered by a voltage generator able to deliver up to 150kV at 3.5mA. A 
Ge solid-state detector was used together with an MCA with Canberra software. 
The parallel slits were made from long bars of molybdenum 5mm thick separated 
by spacers. Slit Si had a width of 0.1mm, while 52 was separated by 18/zm 
spacers which gave an effective slit width of 4/zm, however, since the slits were 
not perfectly fiat. This value was determined from the drop in intensity recorded 
when the slit width was reduced from its original known value. This gave an 
incident beam dispersion on the sample of 0.03 mrad which was comparable to 
that attained by Bilderback and Hubbard. The slits provided total attenuation 
of the direct beam in the forward direction even at angles of 1° and yet produced 
no fluorescent background in the 20 to 150fceV spectral range. A vertical slit 
of 1.5mm was also used in front of the detector to reduce vertical divergence 
effects. The generator was run at maximum power of 150kV and 3.5mA and an 
incidence angle of <f> = 0.2° was used. 

Figure 7.26 shows the energy reflectivity of an InGaAsP layer of nominal 
thickness Q.lbfim grown by MOVPE on InP by P. Spurdens, code INP5. The 
data was collected over 12 hours. Several features can be noted on the spectrum 
including the characteristic lines of Tungsten and the Molybdenum absorption 
edge at 20keV. There is also a set of fringes near the 20fceV region arising 
from the layer, shown on an expanded scale in figure 7.27. The fringe spacing 
was measured tobe 1.38±0.05fceV which corresponds.to a layer thickness, using 
equation (7.23), of 0.129 ± 0.005/im. The experiment was run overnight for 
convenience, but an estimate of layer thickness could have been obtained after 
only 10 minutes, as shown in figure 7.28. 

In order to model the reflectivity using the simulation program it is neces
sary to divide the reflected intensity by the straight through spectrum so that 
the characteristic features of the X-ray profile are removed. Unfortunately it was 
found that the straight through beam saturated the detector even with the cur
rent down to its minimum value of 0.3mA. When the reflectivity spectrum was 
divided by the straight through spectrum the characteristic lines were reduced 
but not lost, but since these occurred either before the critical energy or at high 
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Figure 7.25: Experimental arrangement of the energy dispersive reflectivity ap
paratus at Manchester University. 



Figure 7.26: Energy dispersive reflectivity of sample INP5. 
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Figure 7.27: Energy dispersive reflectivity of sample INP5 with an expanded 
scale showing the fringes associated with the interference from the layer, after 12 
hours. 
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Figure 7.28: Energy dispersive reflectivity of sample INP5 after only 10 minutes 

data collection time. 



energies their presence was not important to the region of interest. It was the 
Molybdenum absorption edge, however, arising from the slits, which made sim
ulation impossible, although its effect was also reduced. Figure 7.29 shows the 
straight through spectrum at 15QkV and 0.6mA over a 12 minute data collection 
time. 

Figure 7.30 shows the reflectivity of an annealed ion implanted silicon sample 
produced by K. Bowen of Warwick University. The sample was implanted to a 
concentration of 1.8 x 10 1 8 ions/cm2 with ions, and annealed at a temper
ature of Ta = 1300°C for 5 hours. The reflectivity data collection time was 10 
minutes at 150fcV and 3.5mA. A fringe period is clearly visible, even after this 
short time, giving a thickness for the implanted layer of 0.146 ± 0.010/xm. 

The last sample investigated was a Langmuir-Blodgett (LB) film on silicon 
grown by M. Petty of Durham University. The sample consisted of 50 layers of 
Cadmium Arachidate {Cd(Ar)i). L B films are prepared by transferring floating 
organic monolayers onto solid substrates (Roberts, 1985). The technique was 
first reported over fifty years ago (Blodgett, 1935) however, it is only during 
the past decade that the extensive potential of these films has been recognised, 
with applications in electronics, non-linear optics and biological sensors. Various 
experimental techniques have been used to study L B films including electron 
spin resonance, infra-red dichroism, surface potential and polarised resonance 
Raman spectroscopy (Batey, Roberts and Petty, 1983; Kan, Roberts and Petty, 
1983; Jones et al., 1987; Swalen, 1987; Howarth, Petty, Davies and Yarwood, 
1988). However, for complete assessment of film structure it is advantageous to 
use transmission electron, X-ray or neutron diffraction. X-ray reflectivity is also 
a useful tool in the characterisation of L B films (Pomerantz and Segmiiller, 1980; 
Pomerantz, 1987; Jark et al., 1988). This is the first known study of L B films 
using energy dispersive reflectivity, however. 

Figure 7.31 shows the energy reflectivity of the L B film after a data collection 

time of 150 minutes. There is a strong peak visible at about 39fceV which 

corresponds to the (001) Bragg peak of the film. This gives a layer spacing of 

45.5±1.5A, which is twice the length of the molecule. The fringe period observed 

at lower energies arises from the total thickness of the L B film, giving a thickness 
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Figure 7.29: Spectrum of the Tungsten X-ray tube at 150fcV and 0.6mA 
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Figure 7.30: Energy dispersive reflectivity of an annealed ion implanted sample 
after 10 minutes data collection time. 
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Figure 7.31: Energy dispersive reflectivity of an LB film after 150 minutes data 
collection time. 
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Figure 7.32: Energy dispersive reflectivity of the L B film with the spectrum of 
figure 7.31 divided by the straight through spectrum of figure 7.29. 



of 0.127 ±0.005//m. There is a discrepancy, however, between the bilayer spacing 
of 45.hX and the actual spacing of two cadmium arachidate molecules back to 
back; 53.9A. A possible explanation of this is that if the free acid rather than 
the salt had been deposited then they would be tilted by an angle of about 20°, 
although this would only reduce the apparent layer thickness to 50 .6A. A more 
likely conclusion is that the film has been thermally annealed causing it to break 
up and recrystallise at a different average spacing. This is likely since annealing 
occurs at as little as 50° C and the high energy X-ray beam may have caused an 
increase in the sample temperature. This would also explain the large peak width 
and asymmetry of the peak, arising from a range of layer separations within the 
film. Figure 7.32 shows the result of dividing the reflectivity by the straight 
through spectrum of figure 7.29. The absorption edge is clearly not removed and 
the effect of background is detrimental at higher energies, although up to the 
absorption edge the reflectivity appears to behave as expected. 

Angular reflectivity is a well established technique for the characterisation of 
thin films. Energy dispersive reflectivity is relatively new however, and this work 
has demonstrated that accurate measurements of thickness may be determined 
in very short times. Once the experiment had been set up, interchanging of 
specimens was relatively straightforward and reflectivity plots could be recorded 
without adjusting any of the angles or alignment. It was not actually necessary 
to have the full 150A:V of voltage applied to the X-ray tube since the background 
at higher energies was significant. In practice 60fceV would be sufficient as a 
maximum X-ray energy. For multilayer samples, by varying the incidence angle 
of the X-rays, higher order Bragg peaks could have been observed and so it 
would not be necessary to look at higher energies where the background is more 
significant. Correspondingly, for angular reflectivity, softer radiation than normal 
could be used for the study of multilayer samples. 

.7 Conclusion 

It has been shown that triple crystal diffraction is a sensitive technique for 
the characterisation of thin layer samples and its advantage over double crystal 
diffraction is the reduction of curvature effects and diffuse scattering. When used 
in combination with X-ray reflectivity the techniques provide complementary 

127 



information on thickness of both crystalline and amorphous layers, together with 
interfacial and surface roughness, and composition of layers. X-ray reflectivity, 
because of its very low incidence angles, can quantify layer thickness down to the 
monolayer level. Energy dispersive reflectivity, where energy rather than angle is 
varied, has proved to be an extremely rapid method of thickness determination 
and is likely to become an important characterisation method for ultra-thin films 
and multilayers in the future. 
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Discussion and Suggestions for Further Work 

Double crystal diffractometry has been shown to be a highly versatile and 
sensitive technique for the characterisation of heteroepitaxial layers. With the 
aid of a rocking curve simulation program much information may be determined 
about the sample structure. However, due to the large number of varying param
eters, especially in multi-layered structures, it is often very difficult to attain a 
fit to the experimental rocking curve that defines the parameters singularly and 
accurately. To reduce the number of variables to be modelled the Pendellosung 
fringe period has been measured to precisely determine layer thickness. Once 
layer thickness is known the fitting procedure becomes more straightforward. 

Two layer structures, comprising of a thin active layer capped by a thicker 
layer of substrate material, are also difficult to model because the diffracted 
intensity arising from the buried layer is often weak. Determination of layer 
thickness from direct measurement of Pendellosung fringe spacing can lead to 
incorrect values of layer thickness because the fringe pattern is a complicated 
superposition of frequencies. The use of Fourier Analysis to precisely determine 
the Pendellosung frequencies and so layer thicknesses, has been investigated and 
found to significantly speed up the modelling process, allowing very close matches 
to be achieved. 

It has been shown that epilayer tilt must be taken into account when de
termining layer compositions. In addition, relaxation of epilayers must not be 
neglected. Asymmetric relaxation was found in an InGaAs/InP superlattice, 
even with a relatively small lattice mismatch. To gain an accurate picture of 
the layer unit cell, therefore, including the magnitude and direction of tilt, it is 
necessary to record rocking curves from several sample orientations. 

129 



Asymmetric geometries enhancing surface diffraction effects are necessary 
for the study of very thin layers. A technique which utilises skew beam paths, 
known as SARCA, has been used to improve the surface sensitivity. Very low 
incidence or emergence angles can be achieved with this method and so ultra thin 
layers may be studied. The Durham rocking curve simulation program has been 
adapted to include SARCA, so that experimental curves may be fitted for any 
geometry. The most difficult aspect of using SARCA is the initial sample align
ment, and if this were automated then the technique would be easily accessible 
to all users of double crystal diffraction. 

X-ray reflectivity has also been used for the study of thin layers to give an 
accurate indication of layer thickness. A simulation program has been written 
to model reflectivity of heteroepitaxial layers based on Parratt theory. Angular 
reflectivity with a double crystal diffractometer requires accurate specimen align
ment, and a special specimen mounting stage would need to be designed to make 
the technique more straightforward. The triple crystal diffractometer uses an 
analyser crystal to remove the effects of specimen curvature and can also be used 
for X-ray reflectivity. The reflectivity method is very useful for determining layer 
thickness and gives an indication of internal interface and surface roughness. 

Energy dispersive reflectivity has been used to determine layer thickness 
rapidly in epilayers, ion implanted samples and Langmuir-Blodgett films. It 
has the potential to become a routine assessment technique for sample charac
terisation, because once the experiment has been set up samples may be inter
changed easily and recording of reflectivity curves is rapid. A method needs to 
be investigated which allows the incident spectrum to be recorded without de
tector saturation, so that it can be removed from the reflected spectrum to allow 
modelling of reflectivity curves. Reflectivity is especially useful for the study of 
MQW's and providing the right combination of radiation and angle of incidence 
are chosen, several orders of superlattice reflection could be studied. 

As the demand on characterisation techniques to provide even more accurate 
and detailed information on sample structure increases, so the techniques must 
develop with the demand. For high precision diffractometry it is necessary to 
use more than the two reflections of a conventional double crystal diffractometer. 
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Utilisation of a four crystal monochromator as a first crystal removes the prob
lems of both wavelength dispersion and angular dispersion allowing any reflection 
from the sample without rocking curve broadening and loss of fine structure. In 
addition, an analyser crystal using one or more reflections, removes the problem 
of sample curvature so that specimens may be characterised to high precision. 
If the sample were mounted on a stage which allowed rotation about the sample 
normal as well as about the axis, translation in three dimensions as well as tilt, 
then reflectivity, SARCA and conventional X-ray diffraction would all be possible 
on one high precision instrument, allowing complete sample characterisation. 
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Appendix A 

X-ray Rocking Curve Simulation Program 

This program, originally written by M. Hill (Hill, 1985), has been substan
tially amended to correct previous mistakes and to allow for simulation of SARCA 
data. The program is divided into two parts; the first, INPUT, dealing with the 
entry of sample structure and the second, CRUNCH, calculating the rocking 
curve. A listing of CRUNCH is shown with most of the changes occurring in 
subroutines S U B R E F and L A Y R E F . INPUT has been expanded to include new 
combinations of layer materials as well as II- VI compounds but a print out is not 
included here. 
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C* T H I S PROGRAM DOES THE NUMBER CRUNCHING FOR * 
C* ROCKING CURVES * 
C* USING THE DATA FROM F I L E INPDAT * 
C* WHICH I S GENERATED BY THE PASCAL PROGRAM * 
C* INPUT.PAS * 
C S u b s t a n t i a l l y amended by S J M i l e s . S e p t 1988 
C 

REAL A L P H A ( 2 0 0 0 ) , F S U B ( 2 0 0 0 ) , THETA, PHI, P H I F , PI 
REAL C L A Y R ( 2 0 0 ) . T H I C K ( 2 0 0 ) . F L A Y ( 2 0 0 0 ) . F S I G ( 2 0 0 0 ) 
REAL B E T A ( 2 0 0 0 ) . F P K 2 0 O O ) 
REAL ROT. PROT 
INTEGER H. K, L. I I . J J . KK, PASS 
COMPLEX FH1. FH2. FO. Z S U B ( 2 0 0 0 ) . FFH1. FFH2. FFO 
COMPLEX L F H K 2 0 0 ) . L F H 2 ( 2 0 0 ) . LFOC200) 
CHARACTER*10 POLAR. SUBST. F I R S T , D I F F 
COMMON /AREA1/ ALPHA, ALSTEP, START, F I N I S H , NOPNTS, WAVE, 

1 POLAR. SUBST, F I R S T . D I F F . ROT 
COMMON /AREA2/ FH1, FH2. FO, DSUB, THETA. PHI 
COMMON /AREA3/ FFH1. FFH2. FFO. D F I R S T . THETF, P H I F 
COMMON /AREA4/ BETA. BSTEP. BSTART. B F I N 
COMMON /AREA5/ LFH1. LFH2, LFO, CLAYR. THICK. NOLAYS, 

1 H, K. L, I I , J J , KK 
C 
C Read d a t a f r o m f i l e INPDAT 
C 

CALL READAT 
C 
C No o f d a t a p o i n t s i n s i n g l e c r y s t a l r e f l e c t i v i t y c u r v e s 
C 

NOPNTS = I N T ( ( F I N I S H - ST A R T ) / A L S T E P + 1.5) 
PASS = 1 
WRITE ( 6 , 1 0 ) 

10 FORMAT C & E n t e r a d d i t i o n a l t i l t a n g l e ( d e g r e e s ) ? ' ) 
READ ( 5 , * ) T I L T 
T I L T = T I L T * 3.14159 / 180. 

C F o r SARCA , e n t e r a n g u l a r r o t a t i o n a b o u t B r a g g norma 
ROT = 0. 
I F (PHI .EQ. 0 ) GO TO 20 

11 WRITE ( 6 . 1 2 ) 
12 FORMAT ( ' E n t e r r o t a t i o n a n g l e i n d e g r e e s ' ) 

WRITE ( 6 . 1 3 ) 
13 FORMAT (' 0 f o r g l a n c i n g i n c i d e n c e , 180 f o r g l a n c i n g e x i t " ) 

READ ( 5 . * ) ROT 
I F U R O T . GE. 0 . 0 ) . AND. (ROT. L E . 1 8 0 . 0 ) ) GOTO 15 
PRINT * , ' I n c o r r e c t e n t r y . t r y a g a i n ' 
GO TO 11 

15 ROT = ROT * 3.14159 / 180. 
PROT - ROT 

C 
C C a l c u l a t e s u b s t r a t e r e f l e c t i v i t y c u r v e 
C 

20 CALL S U B R E F ( F H 1 , FH2, FO. DSUB. THETA. PHI. FSUB, ZSUB. 
1 T I L T ) 

C 
C C a l c u l a t e l a y e r r e f l e c t i v i t y c u r v e 
C 

CALL L A Y R E F ( F S U B . ZSUB. FLAY. T I L T ) 
C 



C S e t r o t a t i o n t o z e r o f o r f i r s t c r y s t a l r e f l e c t i v i t y c a l c u l a t i o n 
C 

ROT = 0 
C 
C I f f i r s t c r y s t a l <> s u b s t r a t e c a l c u l a t e i t s r e f l e c t i v i t y 
C 

I F CDIFFC1 : 1 ) .EQ. 'Y') CALL SUBREF( FFH1, FFH2 . FFO. 
1 D F I R S T , THETF, P H I F . FSUB, ZSUB, 0.) 

I F ( D I F F d r l ) . EQ. ' Y ') GO TO 25 
CALL S U B R E F ( F H 1 , FH2. FO. DSUB, THETA, PHI, FSUB. ZSUB, 

1 T I L T ) 
25 CONTINUE 

C 
C C o n v o l u t e r e f l e c t i v i t y o f f i r s t and s e c o n d c r y s t a l s 
C 

I F (PASS .EQ. 1) CALL C0NV0L(FSUB, FLAY. F S I G ) 
I F (PASS .EQ. 2) CALL CONVOKFSUB. FLAY, F P I ) 

C 
C I f random p o l a r i s a t i o n r e d o w i t h p i p o l a r i s a t i o n 
C 

I F ( ( P 0 L A R ( 1 : 1 ) .NE. 'R') .AND. (PASS .EQ. 1 ) ) GO TO 50 
I F (PASS .EQ. 2) GO TO 30 
POLAR = ' P I ' 
PASS = 2 
ROT = PROT 
GO TO 20 

C 
C Add s i g m a and pi p o l a r i s a t i o n s i f random 
C 

30 DO 40 I - 1. NOPNTS 
F S I G ( I ) = F S I G ( I ) + F P I ( I ) 

40 CONTINUE 
C 
C W r i t e d a t a t o o u t p u t f i l e 
C 

50 WRITE ( 1 . * ) NOPNTS 
WRITE ( 1 . * ) BSTEP 
WRITE ( 1 , * ) B E T A ( l ) 
DO 60 I - 1, NOPNTS 

WRITE ( 1 . * ) F S I G ( I ) 
60 CONTINUE 

STOP 
END 

C 
Q ********************************************* 
C * SUBREF - CALCULATES I N F I N I T E CRYSTAL R E F L E C T I V I T Y * 
C * OVER A RANGE OF ANGLES R E L A T I V E TO BRAGG ANGLE * 
Q ******************************************************* 
c 

SUBROUTINE SUBREF(FH1, FH2. FO, DS, THETA. P H I . FSUB, 
1 ZSUB. T I L T ) 
REAL A L P H A ( 2 0 0 0 ) . F S U B ( 2 0 0 0 ) , THETA. P H I . DS, P I , CABS 
REAL A l , AE. TEM 
COMPLEX Z S U B ( 2 0 0 0 ) . FH1. FH2. FO, CHIH1. CHIH2, CHIO 
COMPLEX CSQRT, SQ. B. C H I . CH2 
CHARACTER*10 POLAR. SUBST. F I R S T . D I F F 
COMMON /AREA1/ ALPHA. ALSTEP, START, F I N I S H . NOPNTS. WAVE, 

1 POLAR, SUBST. F I R S T , D I F F , ROT 
WRITE ( 6 . 1 0 ) 

10 FORMAT C CALCULATING SUBSTRATE R E F L E C T I V I T Y ' ) 



PI - 3.141592654 
CER = 2 . 8 1 7 9 1 4 E - 1 5 
VUC - DS ** 3 
FFACT - -(WAVE**2*CER) / ( V U C * P I ) 
CHIH1 - FH1 * FFACT 
CHIH2 = FH2 * FFACT 
CHIO - FO * FFACT 

C C a l c u l a t e a n g l e s o f i n c i d e n c e and em e r g e n c e a t t h e B r a g g a n g l e 
AI - S I N ( T H E T A ) * C O S ( P H I ) - S I N ( P H I ) * C O S ( T H E T A ) * C O S ( R O T ) 
AI - A R S I N C A I ) - T I L T 
AE - S I N ( T H E T A ) * C O S ( P H I ) + S I N ( P H I ) * C O S ( T H E T A ) * C O S ( R O T ) 
AE - A R S I N ( A E ) + T I L T 
TEM = A I * ( 1 8 0 . 0 / P I ) 
WRITE ( 6 . 1 3 ) TEM 

13 FORMAT ('Angle o f i n c i d e n c e S = '. F 1 0 . 5 . ' d e g r e e s * ) 
A L P H A ( l ) - START 
WRITE ( 6 , 2 0 ) THETA. PHI 

20 FORMAT C THETA = '. F 1 0 . 5 . * PHI - F 1 0 . 5 , 1 RADIANS') 
DO 40 I = 1. NOPNTS 

THS - A L P H A ( I ) * PI / ( 3 6 0 0 . 0 * 1 8 0 . 0 ) 
GAMMAO = S I N ( A I + T H S ) 
GAMMAH - -S I N ( A E - T H S ) 
CHI = CHIH1 
CH2 = CHIH2 
I F ( P O L A R ( l r l ) .NE. 'P') GO TO 30 
CHI - CHIH1 * C 0 S ( 2 . 0 * ( T H E T A + T H S ) ) 
CH2 = CHIH2 * COS ( 2 . 0 * ( T H E T A + T H S ) ) 

30 CONTINUE 
B - (CHIO/GAMMAO - CHIO/GAMMAH + 2 . 0 * T H S * S I N ( 2 . 0 * T H E T A ) / 

1 GAMMAH) / 2.0 
SQ - CSQRT(B**2 + CH1*CH2/(GAMMA0*GAMMAH)) 
Z S U B ( I ) = - ( B + S Q * S I G N ( 1 . . A I M A G ( S Q ) ) ) / (CH2/GAMMA0) 
F S U B ( I ) = ( C A B S ( Z S U B d ) ) ) ** 2*ABS(GAMMAH/GAMMAO) 
A L P H A d + 1) - A L P H A ( I ) + ALSTEP 

40 CONTINUE 
RETURN 
END 

C 
Q *************************************** 
C * LAYREF - CALCULATES LAYER R E F L E C T I V I T I E S USING * 
C * R E F L E C T I V I T I E S FROM SUBSTRATE AS STARTING POINT * C ******************************** 
C 

SUBROUTINE L A Y R E F ( F S U B , ZSUB. FLAY, T I L T ) 
REAL A L P H A ( 2 0 0 0 ) . F S U B ( 2 0 0 0 ) . C L A Y R ( 2 0 0 ) . T H I C K ( 2 0 0 ) . PHI 
REAL F L A Y ( 2 0 0 0 ) . PI 
REAL T, A I . AE 
INTEGER H. K. L. I I . J J . KK 
DOUBLE P R E C I S I O N DTHETA. DPHI. DTI 
COMPLEX Z S U B ( 2 0 0 0 ) . L F H K 2 0 0 ) . L F H 2 ( 2 0 0 ) . L F O ( 2 0 0 ) 
COMPLEX FH1, FH2. FO, B. SQ. NUM. DEN. CSQRT. CCOS. C S I N 
COMPLEX CHIH1. CHIH2, CHIO. C H I . CH2. CTN 
CHARACTERMO POLAR. SUBST, F I R S T . D I F F 
COMMON /AREA1/ ALPHA. ALST E P , START, F I N I S H . NOPNTS, WAVE. 

1 POLAR. SUBST. F I R S T . D I F F . ROT 
COMMON /AREA2/ FH1. FH2. FO. DSUB. THETA, PHI 
COMMON /AREA5/ LFH1, LFH2, LFO, CLAYR. THICK, NOLAYS. 

1 H. K, L. II . J J . KK 
PI - 3. 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 
CER = 2 . 8 1 7 9 1 4 E - 1 5 



WRITE ( 6 , 1 0 ) 
10 FORMAT C CALCULATING LAYER REFLECTIVITY') 

AH = FLOAT(H) 
AK - FLOAT(K) 
AL - FLOAT(L) 
A l l - F L O A T ( I I ) 
AJJ = FLOAT(JJ) 
AKK = FLOAT(KK) 
DO 50 I - 1 . NOLAYS 

VUC = DSUB ** 2 * CLAYR(I ) 
FFACT = -(WAVE**2*CER) / (PI*VUC) 
CHIH1 = L F H K I ) * FFACT 
CHIH2 = LFH2CI) * FFACT 
CHIO = L F O ( I ) * FFACT 
OLAY = SQRT(1/(AH**2/DSUB**2 + AK**2/DSUB**2 + 

1 A L * * 2 / C L A Y R ( I ) * * 2 ) ) 
THETL = ARSIN(WAVE/(2 .0*DLAY)) 
PHIL = (AH*AII /DSUB**2 + AK*AJJ/DSUB**2 + 

1 A L * A K K / C L A Y R ( I ) * * 2 ) ** 2 
PHIL = PHIL / ( (AH**2/DSUB**2 + AK**2/DSUB**2 + A L * * 2 / 

1 C L A Y R ( I ) * * 2 ) * ( A I I * * 2 / D S U B * * 2 + AJJ**2/DSUB**2 + AKK**2/ 
1 C L A Y R ( I ) * * 2 ) ) 

PHIL = SQRT(PHIL) 
PHIL = ARCOS(PHIL) 

C C a l c u l a t e a p p a r e n t l a y e r Bragg a n g l e f o r a g i v e n ROT 
DTHETA = THETA - THETL 
DPHI = PHIL - PHI 
W R I T E ( 6 , 1 1 ) D T H E T A * 3 6 0 0 . * 1 8 0 . / P I , D P H I * 3 6 0 0 . 

1 * 1 8 0 / P I 
11 FORMATC DTHETA = ' . F 1 0 . 5 , ' D P H I = \ F 1 0 . 5 ) 

CALL THSEPCDTI.DTHETA,DPHI.THETA,ROT) 
THETL - THETA + DTI 
WRITE(6 .15) D T I * 3 6 0 0 . 0 * 1 8 0 . O / P I 

15 FORMATC' Peak s e p e r a t i o n ' . F 1 0 . 5 , ' s e c o n d s ' ) 
WRITE ( 6 . 2 0 ) I , THETL. PHIL 

20 FORMAT C LAYER NO ' . 13 . * THETA = ' , F 1 0 . 5 . ' PHI = ' 
1 F10 .5 ) 

A I - SIN(THETA)*COS(PHI) - SIN(PHI)*C0S(THETA)*C0S(ROT) 
A I = A R S I N ( A I ) - T I L T 
AE - SIN(THETA)*COS(PHI) + SIN(PHI)*C0S(THETA)*C0S(ROT) 
AE - ARSIN(AE) + T I L T 
DO 40 J - 1 . NOPNTS 

THS - A L P H A ( J ) * P I / ( 3 6 0 0 . 0 * 1 8 0 . 0 ) + THETA - THETL 
GAMMAO - SIN(AI+THS) 
GAMMAH = -SIN(AE-THS) 
D = PI / WAVE 
CHI = CHIH1 
CH2 - CHIH2 
I F ( P 0 L A R ( 1 : 1 ) .NE. ' P ' ) GO TO 30 
CHI = CHIH1 * C0S(2 .0*(THETL + THS)) 
CH2 = CHIH2 * C0S(2 .0*(THETL + THS)) 

30 CONTINUE 
B = (CHIO/GAMMAO - CHIO/GAMMAH + 2.0*THS* 

1 SIN(2.0*THETL)/GAMMAH) / 2 . 0 
SQ = CSQRT(B**2 + CH1*CH2/(GAMMA0*GAMMAH)) 
CTN = C S I N ( S Q * D * ( - T H I C K ( I ) ) ) / CC0S( SQ*D*(-THICK( I ) ) ) 
NUM-ZSUB(J)*SQ+(0.0 .1 .0)*(ZSUB(J)*B-CH1/GAMMAH) * CTN 
DEN = SQ - ( 0 . 0 . 1 . 0 ) * (B + ZSUB(J)*CH2/GAMMA0) * CTN 
ZSUB(J) - NUM / OEN 

FLAY(J) - CABS(ZSUB(J)) * * 2*ABS(GAMMAH/GAMMAO) 
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40 CONTINUE 
50 CONTINUE 

RETURN 
END 

£******************************************************** 
C s u b r o u t i n e t o c a l c u l a t e s u b s t r a t e - l a y e r peak 
C s e p a r a t i o n f o r SARCA 

SUBROUTINE THSEPCDTI.DTH.DPHI.THBR.BETA) 
DOUBLE PRECISION DTI .DTH.DPHI .THBR.BETA,PI 
DOUBLE PRECISION A . B . C . B X . T 
P I -3 .1415926535897932 
A=DCOS(THBR-DTH)*DCOS(DPHI) 
B=DCOS(THBR-DTH) 
C=DSIN(THBR-DTH)*DSIN(DPHI) 
T=DTAN(BETA) 
I F ( ( B E T A . L T . 0 . 5 * P I ) . A N D . ( B E T A . G T . - 0 . 5 * P I ) ) G 0 T 0 20 
BX—1.0*A*B*DSQRT(B*B+(A*A-C*C)*T*T) 
GOTO 30 

20 BX=A*B*DSQRT(B*B+(A*A-C*C)*T*T) 
30 BX=(B*B*C+BX)/(B*B+A*A*T*T) 

DTI=(DCOS(THBR)*DCOS(BETA)-DSIN(THBR)*DTAN(DPHI)+ 
1DC0S(THBR)*DSIN(BETA)*T)*BX 

DTI=DTI+DSIN(THBR)*DSIN(THBR-DTH)/DCOS(DPHI) 
DTI—DAC0S(DTI)*(DTH/ABS(DTH)) 
RETURN 
END 

£******************************************************** 
C * CONVOL - CALCULATES CONVOLUTION OF DATA SETS FSUB & FLAY * 
Q ************************************************************ 
C 

SUBROUTINE CONVOL(FSUB. FLAY, FCON) 
REAL FSUB(2000) , F L A Y ( 2 0 0 0 ) . BETA(2000) , FC0N(2000) 
REAL ALPHA(2000) . F (2000) 
CHARACTER*10 POLAR. SUBST. FIRST. DIFF 
COMMON /AREA1/ ALPHA. ALSTEP. START. F I N I S H . NOPNTS. WAVE. 

1 POLAR. SUBST, FIRST, D I F F . ROT 
COMMON /AREA4/ BETA. BSTEP. BSTART, BFIN 
NPNTS = I N T ( ( B F I N - BSTART)/BSTEP + 1 .5) 
WRITE ( 6 , 1 0 ) 

10 FORMAT C CALCULATING CONVOLUTION') 
B E T A ( l ) = BSTART 
DO 20 I = 1 . NPNTS 

CALL MULT(FSUB, FLAY, B E T A ( I ) , F. NDP) 
FCON(I) - AINTG(ALPHA.F.NDP) 
BETA(I + 1) = B E T A ( I ) + BSTEP 

20 CONTINUE 
RETURN 
END 

C 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C * MULTIPLIES TWO DATA SETS. ONE OFFSET FROM THE OTHER BY BETA * 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C 
SUBROUTINE MULT(FSUB, FLAY, BETA. F, NDP) 
REAL FSUB(2000) , F L A Y ( 2 0 0 0 ) . F ( 2 0 0 0 ) , ALPHA(2000) 
CHARACTER*10 POLAR. SUBST. FIRST. DIFF 
COMMON /AREA1/ ALPHA, ALSTEP, START. F I N I S H . NOPNTS. WAVE. 

1 POLAR. SUBST. FIRST. D I F F , ROT 
NDP = 0 
N = NOPNTS - 1 



L - 1 
IF ( ( A L P H A ( l ) + BETA) .GT. ALPHACNOPNTS)) RETURN 
I F ((ALPHA( NOPNTS) + BETA) . L T . A L P H A ( D ) RETURN 
DO 50 I - 1 , NOPNTS 

I F ( ( A L P H A ( I ) + BETA) .GT. ALPHA(NOPNTS)) GO TO 60 
I F ( ( A L P H A ( I ) + BETA) . L T . A L P H A ( D ) GO TO 40 
DO 20 J - L . N 

H - ALPHA(I ) + BETA - ALPHA(J) 
SH - ALPHA(J + 1) - ALPHA(J) 
I F (H .GT. SH) GO TO 10 
G = FLAY(J) * ( 1 - H/SH) + FLAY(J + 1) * H / SH 
GO TO 30 

10 CONTINUE 
20 CONTINUE 
30 NDP = NDP + 1 

F(NDP) = FSUB(I) * G 
L = J 

40 CONTINUE 
50 CONTINUE 
60 CONTINUE 

RETURN 
END 

C 
Q *************************^ 
C * AINTG - CALCULATES AREA UNDER MULTIPLIED DATA SET F * 

c 
FUNCTION AINTG(ALPHA, F, NDP) 
REAL ALPHA(2000) . F (2000) 
N = NDP - 1 
AINTG - 0 .0 
DO 10 I = 1 . N 

H - ALPHAU + 1) - ALPHA(I ) 
AINTG - AINTG + ( F ( I ) + F ( I + 1 ) ) * H / 2 . 0 

10 CONTINUE 
RETURN 
END 

C 
Q ****************************************** 
C * READAT - READS DATA FROM FILE INPDAT * 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C 
SUBROUTINE READAT 
REAL ALPHA(2000) , BETA(2000) , FSUB(2000) . P H I . PHIF 
REAL THICKC200) , CLAYR(200) 
INTEGER H. K. L , I I . J J . KK 
COMPLEX ZSUB(2000) . FH1, FH2, FO, FFH1, FFH2, FFO 
COMPLEX L F H K 2 0 0 ) . L F H 2 ( 2 0 0 ) , LFOC200) 
CHARACTERMO POLAR. SUBST. FIRST. D I F F . DATE. TIME 
COMMON /AREA1/ ALPHA. ALSTEP, START. F I N I S H . NOPNTS, WAVE. 

1 POLAR, SUBST. FIRST, D I F F . ROT 
COMMON /AREA2/ FH1. FH2. FO. DSUB. THETA. PHI 
COMMON /AREA3/ FFH1, FFH2. FFO, DFIRST, THETF. PHIF 
COMMON /AREA4/ BETA. BSTEP, BSTART, BFIN 
COMMON /AREA5/ LFH1. LFH2. LFO, CLAYR. THICK, NOLAYS. 

1 H . K, L . I I . J J . KK 
C 
C Read d a t a f r o m f i l e INPDAT 
C 

CALL FTNCMD('ASSIGN 3 - I N P D A T ; ' ) 



READ ( 3 . 1 0 ) DATE 
READ ( 3 . 1 0 ) TIME 
READ ( 3 . 1 0 ) SUBST 
READ ( 3 . 1 0 ) FIRST 
READ ( 3 . 1 0 ) DIFF 
READ ( 3 . * ) WAVE 
READ ( 3 . 1 0 ) POLAR 
READ ( 3 . * ) START. FINISH 
READ ( 3 . * ) ALSTEP 
READ ( 3 , * ) BSTART, BFIN 
READ ( 3 , * ) BSTEP 

10 FORMAT ( ' ' . A10) 
WRITE ( 6 . 2 0 ) T IME. DATE 

20 FORMAT C DATA GENERATED AT ' . A10 . ' ON ' . A10) 
WRITE ( 6 . 3 0 ) FIRST. SUBST 

30 FORMAT ( ' F i r s t c r y s t a l i s A10 . ' Second c r y s t a l i s ' 
1 A10) 

WRITE ( 6 . 4 0 ) WAVE 
40 FORMAT C Wave leng th = E12 .5 ) 

WRITE ( 6 . 5 0 ) POLAR 
50 FORMAT ( ' P o l a r i z a t i o n s t a t e i s ' . A10) 

WRITE ( 1 . * ) DATE 
WRITE ( 1 . * ) TIME 
WRITE ( 1 , * ) SUBST 
WRITE ( 1 . * ) FIRST 
WRITE ( 1 . * ) WAVE 
WRITE ( 1 . * ) POLAR 

C 
C Read s u b s t r a t e v a r i a b l e s 
C 

READ ( 3 . * ) THETA 
READ ( 3 . * ) PHI 
READ ( 3 , * ) FH1 
READ ( 3 . * ) FH2 
READ ( 3 . * ) FO 
READ ( 3 . * ) DSUB 
THETA = ARSIN(THETA) 
PHI = ARCOS(PHI) 
WRITE ( 1 , * ) THETA. P H I , DSUB 

C 
C Read l a y e r v a r i a b l e s 
C 

READ ( 3 , * ) NOLAYS 
READ ( 3 . * ) H. K, L 
READ ( 3 . * ) I I . J J . KK 
DO 60 I = 1 . NOLAYS 

READ ( 3 . * ) CLAYR(I ) 
READ ( 3 . * ) T H I C K ( I ) 
READ ( 3 , * ) L F H K I ) 
READ ( 3 . * ) L F H 2 ( I ) 
READ ( 3 . * ) L F O ( I ) 

60 CONTINUE 
WRITE ( 1 . * ) NOLAYS 
WRITE ( 1 . * ) H . K. L 
WRITE ( 1 . * ) I I . J J . KK 
DO 70 1 = 1 . NOLAYS 

WRITE ( 1 . * ) C L A Y R ( I ) . T H I C K ( I ) 
70 CONTINUE 

C 
C Read f i r s t c r y s t a l v a r i a b l e s i f necessa ry 



I F ( D I F F d r l ) .EQ. ' N ' ) GO TO 90 
WRITE ( 6 . 8 0 ) 

80 FORMAT ( ' Reading f i r s t c r y s t a l p a r a m e t e r s ' ) 
REAO ( 3 . * ) THETF 
READ ( 3 . * ) PHIF 
READ ( 3 , * ) FFH1 
READ ( 3 . * ) FFH2 
READ ( 3 . * ) FFO 
READ ( 3 . * ) DFIRST 
THETF - ARSIN(THETF) 
PHIF - ARCOS(PHIF) 

90 CONTINUE 
RETURN 
END 



Appendix B 

X-ray Reflectivity Simulation Program 

The program was written in F O R T R A N on the Durham Amdahl 5860 main

frame computer, using the GHOST80 graphics package. For a given sample struc

ture it calculates the specular reflectivity using the equations given in Chapter 

7, for either angular or energy dispersive reflectivity. The program is divided 

into five basic subprograms which utilise the subroutines and functions detailed 

below. 

Subprogram S A M P L E 

Reads the sample details: number of layers, composition, thickness and 

roughness of each layer, and substrate composition. For ternary and quaternary 

alloys the mismatch is read together with the band gap in quaternaries. 

Subprogram P R N T S 

Writes the sample data to the screen. 

Subprogram X S C A L E 

Asks for the experimental details for either fixed angle or fixed wavelength 

in terms of angular or energy step size, together with the start and end values 

for the reflectivity data. 

Subprogram C O N T R O 

This is the controlling subprogram which calculates the reflectivity for a 

given wavelength or angle using the subroutines C R Y S , F N and R A T I O , and the 

function R O G . 

Subprogram G R A P H 

Produces the graphical output using the G H O S T 8 0 suite of programs. 
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Subroutine C R Y S 

Determines the dispersion corrections for a particular compound and wave

length using subroutine H O N L and then calculates 6*. 

Subroutine H O N L 

Calculates the dispersion corrections for a particular element and wavelength. 

Subroutine F N 

Calculates f n for a particular material, wavelength and angle. 

Subroutine R A T I O 

Calculates the recursion relation ratio for the sample at a particular wave

length and angle. 

Function D E G 

Converts radians to degrees. 

Function R A D 

Converts degrees to radians. 

Function WAV 

Converts energy in keV to wavelength in Angstroms. 

Function R O G 

Calculates Gaussian roughness factor. 

The operation of the program is illustrated in the following series of flow 

diagrams, which is followed by a full listing of the program. 
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Write 7 
title / 

SAM PLE 

PRNTS 

X S C A L E 

CONTRO 

GR^ ̂ PH 

( END ) 



SAMPLE 

READ 
Number of 
layers, NO 

READ 
Substrate 
mater ia l , 

READ 
YES urface Substrate 

Roughness, Kougnr 
RINO + 

NO 

I = N 0 + 1 T 0 2 

STEP - 1 

READ 
/Layer material,/ 

M ( I ) 

READ 
Bandgap, 

B Q ( I ) 

I 

uaternary 

READ 
Mismatch, 

MM ( 1 ) 

I 

uaternar 

ernar 

READ 
fLayer thickness/ 

DID 

Roughness 

READ 
Layer roug 

R ( l ) 

( eND ) 



^ PR NTS ^ 

WRITE 
substrate 

/material & roughness/ 
fM(NO*2 ) ,R(NO«Z)/ 

' I = N 0 + 1 T O 2 

STEP-1 

J = 1 TO NO 

WRITE 
/Layer number 

' & material J , 
M ( I ) 

WRITE 
/Layer t h i c k n e s s , 

& mismatch , 
• ( 1 ) , M M l l ) 

<^Roughness^ 

NoT 

WR TE 
YES / L a y e r roughness, 

Roughness 
R ( l ) 

NO 

Q END ^ 



( X SCALE 

ixed 
wavelength 

READ 
Wavelength 

W 

~ i 
READ 

^Start & end 
X S I , XSF 

RAO 
Convert XSI 
&XSF to radians 

READ 

Step size 
DX 

RAD 
Convert DX 
to radians 

CALC 
Number ot steps 

N 

r I = 0 TO N 

CALC 

XScale,XS(I) 

READ 
'Angle of 

'reflection.PHI 

RAD 
Convert PHI 
to radians 

READ 
'Start & end 

XSI , XSF 

READ 
Step size, 

WRITE 
'Calculating 

ref lec t iv i ty 

Q END ^ 



CONTRO 

Fixed 
wavelength 

1=0 TO 
N 

1=0 TO N 

CALC 

CALC 
Angle PHI , 

wavelength 

J = 2 TO 

NO + 2 J = 2 TO 
N0+ 2 

CRYS 

CALCS RI CRYS 

CALCS RI 

FN 
CALCS 

reflected 
intensity 

K=N0+1 
TO 2 

STEP-1 

RATIO 
CALC total 
reflectivity 

CALC 
reflectivity 

from surface 

ROG 
Gaussian 
roughness 

—I 
CALC 

Absolute 
intensi ty Yd] 

FN 
CALCS 

reflected 
intensity 

K=N0+1 

RATIO 
CALC to ta l 
ref lec t iv i ty 

CALC 
re f lec t iv i ty 

from surface 

ROG 
Gaussian 
roughness 

* 
CALC 

Abso lu te 
intensity Y d ) 

Q END ^ 



1=0 TO N Fixed NO 
avelength 

YES 

= OTON CALC 

log of Y d ) 

DEG 
Convert XII ) 

to degrees 

CALC 

log of Y ( I ) 

GHOST 80 
NUMAC 

plot t ing 

END J 

Angle in 
degrees 

Q RAD 

CALC 
Angle in 

radians 

CALC 
Wavelength 

given the energy 

Q END ^ Q END ^ 



Ge HONL 
CALC 

dispersion 
correction. Ge 

CALC 

DEL 

HONL 
CALC 

dispersion 
correction. Ge 

CALC 

DEL 

Si HONL 

Si 

CALC 

DEL 

HONL 

Si 

CALC 

DEL 

InP HONL 

I n , P 

CALC 

DEL 

HONL 

I n , P 

CALC 

DEL 

G Q As HONL 

Ga, As 

CALC 

DEL 

HONL 

Ga, As 

CALC 

DEL 

InGaAs 
CALC 

% I n , 
PTN 

HONL 

I n , As 

CALC 
% I n , 

PTN 

HONL 

I n , As 

CALC 

DEL(lnGaAs) 

CALC 

DEL InAs) 

HONL 

Ga, As 

Al GaAs CALC 

% A l , PAL 

CALC 

DEL(AlAs) A l , As 

HON L CALC 

DEL (AlGaAs) Ga, As 

InGaAsP CALC CALC 
% As ,Ga , In , 

Energy gap 
P:PAS,PGA,PIN,Plj' 

CALC 

DEL(GaAs) 

T 

HONL 

Ga ,As 

HONL 

DEL I InP ) 

HONL CALC HONL 

I n , As DEL ( I n A s ) Ga, P 

CALC 

DELllnGaAsP) 



HONL 

Element 

p 

G Q 

As 

Al 

Si 

Ge 

Define 
Atomic number 
& Absorption 

PEdqe 

CALC 
dispersion 
corrections 

Q END J 

I 
CALC 

FN using angle 
and RI 

( ) 

^ RATIO ^ ^ ROG ^ 

CALC 
Amplitude 
constant A 

ROG 
Gaussian 
roughness 

CALC 
Reflected 

intensity ratio 

CALC 
Gaussian 
roughness 
f a c t o r 

( END ) 

( EW0 ) 



Q******************************************************** 
c 
C Program REFLECT by S . J . M i l e s 
C 
C 1 0 / 1 / 1 9 8 9 
C 
£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C 
INTEGER N O . I . J . B G ( 2 : 1 0 1 ) . N 
REAL 0 ( 2 : 1 0 1 ) , R ( 2 : 1 0 2 ) , M M ( 2 : 1 0 1 ) , X S ( 0 : 1 0 0 0 0 ) , W , P H I 
REAL Y ( 0 : 1 0 0 0 0 ) 
COMPLEX DF,DELT(2 :102) 
CHARACTER M ( 2 : 1 0 2 ) * 7 , Q . E * 2 

C 
C******************************************************** 
C D i s p l a y t i t l e 

PRINT * ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* R e f l e c t i v i t y S i m u l a t i o n Program * ' 
* w r i t t e n by S . J . M i l e s 1 0 / 1 / 8 9 ** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C 

C 

PRINT * 
PRINT * 
PRINT * 
PRINT * 
PRINT * 
PRINT * 
PRINT * 
PRINT * 
PRINT * 
PRINT * 
PRINT * 

E n t e r sample d e t a i l s 
CALL SAMPLE(NO,M,MM,D.R.BG) 

P r i n t sample d e t a i l s 
CALL PRNTS(NO.M.MM.D.R) 
CALL XSCALE(Q,PHI.W.XS.N) 
CALL CONTRO(M,D,MM.R,BG.XS.NO.Q,N.Y,W,PHI) 
CALL GRAPH(Q,N.XS,Y) 
STOP 
END 

T h i s p rogram can g e n e r a t e r e f l e c t i v i t y ' 
da t a f r o m l a y e r e d s t r u c t u r e s i n t h e ' 
case where t h e w a v e l e n g t h i s f i x e d a n d ' 
t h e i n c i d e n t a n g l e i s v a r i e d o r t h e * 
case where t h e a n g l e i s f i x e d and t h e ' 
w a v e l e n g t h v a r i e d . ' 

£******************************************************** 
C* SAMPLE - reads sample da ta i n t e r a c t i v e l y * 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C 

SUBROUTINE SAMPLE(NO,M,MM.D.R,BG) 
INTEGER N O . N . L . B G ( 2 : 1 0 2 ) 
REAL D ( 2 : 1 0 1 ) , R ( 2 : 1 0 2 ) , M M ( 2 : 1 0 1 ) 
CHARACTER M ( 2 : 1 0 2 ) * 7 , V 

PRINT * . ' E n t r y o f Sample C h a r a c t e r i s t i c s ' 
10 PRINT * , ' e n t e r number o f l a y e r s : ' 

READ * , N 0 
I F ( ( N 0 . G E . 1 ) . A N D . ( N 0 . L E . 1 0 0 ) ) G 0 TO 20 
PRINT * , ' I n c o r r e c t e n t r y , no more t h a n 100 l a y e r s ' 
GO TO 10 

C s u b s t r a t e 
20 PRINT * . ' S u b s t r a t e : ' 

W R I T E ( * , 3 0 ) 
30 F0RMAT( 'Please choose m a t e r i a l f r o m ' . / , ' I n P ' , / . 

1 ' G a A s ' . / . ' S i ' ) 
READ ' ( A 7 ) ' , M ( N 0 + 2 ) 
I F ( ( M ( N 0 + 2 ) . E Q . ' I n P ' ) . 0 R . ( M ( N 0 + 2 ) . E Q . ' S i ' ) ) G 0 TO 40 



I F ( M ( N O + 2 ) . E Q . ' G a A s ' ) G 0 TO 40 
PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 20 

40 PRINT * . ' D o you want t o i n c l u d e s u r f a c e r o u g h n e s s ? ' 
READ ' ( A D ' . V 
R(N0+2)=0 .0 
I F ( ( V . N E . ' Y ' ) . A N D . ( V . N E . ' y ' ) ) G 0 TO 60 

50 PRINT * , ' E n t e r t h e mean roughness o f t h e s u b s t r a t e ' 
PRINT * , ' i n t e r f a c e i n A n g s t r o m s ' 
READ * . R ( N 0 + 2 ) 
I F ( ( R ( N O + 2 ) . G E . 0 . 0 ) . A N D . ( R ( N O + 2 ) . L T . 1 0 0 0 . 0 ) ) G O 

1 TO 60 
PRINT * . ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 50 

C l a y e r s 
60 L=0 

DO 130 N - N O + 1 . 2 . - 1 
MM(N)=0.0 
R ( N ) = 0 . 0 
BG(N)=0 
L=L+1 

70 PRINT * , ' E n t e r t h e m a t e r i a l t y p e o f l a y e r ' , L 
PRINT * , ' Y o u may choose f r o m : ' 
WRITE(* ,80 ) 

80 F 0 R M A T ( ' I n P ' , / . ' G a A s ' . / , ' S i ' , / , ' I n G a A s ' , / , 
1 ' A l G a A s ' . / . ' I n G a A s P ' . / . ' G e ' , / , ' A I I n A s ' ) 

READ ' ( A 7 ) ' , M ( N ) 
I F ( ( M ( N ) . E Q . ' I n P ' ) . 0 R . ( M ( N ) . E Q . ' G a A s ' ) ) G 0 TO 100 
I F ( ( M ( N ) . E Q . ' S i ' ) . 0 R . ( M ( N ) . E Q . ' G e ' ) ) G 0 TO 100 
I F ( ( M ( N ) . E Q . ' I n G a A s ' ) . O R . ( M ( N ) . E Q . ' A l G a A s ' ) ) G 0 

1 TO 90 
I F ( M ( N ) . E Q . ' A l I n A s ' ) G 0 TO 90 
I F ( M ( N ) . E Q . ' I n G a A s P ' ) G 0 TO 85 
PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 70 

C f o r q u a t e r n a r i e s e n t e r band gap 
85 PRINT * , ' E n t e r t h e band gap o f t h e Q u a t e r n a r y ' 

PRINT * , ' l - Q1 .05 . 2 = Q 1 . 3 5 . 3 = 01 .55* 
READ * , B G ( N ) 
I F ( ( B G ( N ) . E Q . 1 ) . 0 R . ( B G ( N ) . E Q . 2 ) ) G 0 TO 90 
I F ( B G ( N ) . E Q . 3 ) G 0 TO 90 
PRINT * . ' I n c o r r e c t e n t r y , t r y a g a i n ' 
GO TO 85 

C f o r t e r n a r i e s and q u a t e r n a r i e s e n t e r mismatch 
90 PRINT * . ' E n t e r t h e mismatch o f l a y e r ' , L 

PRINT * . ' i n ppm' 
READ *.MM(N) 

100 PRINT * . ' E n t e r t h i c k n e s o f l a y e r \ L . 
1 * i n A n g s t r o m s ' 

READ * , D ( N ) 
I F ( D ( N ) . G T . 0 . 0 ) G 0 TO 110 
PRINT * . ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 100 

110 I F U V . N E . ' Y ' ) . A N D . ( V . N E . ' y ' ) ) G 0 TO 130 
120 PRINT * , ' E n t e r t h e mean roughness o f l a y e r ' , L , 

1 ' i n A n g s t r o m s ' 
READ * . R ( N ) 
I F ( ( R ( N ) . G E . 0 . 0 ) . A N D . ( R ( N ) . L T . 1 0 0 0 . 0 ) ) G 0 TO 130 
PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 120 



130 CONTINUE 
RETURN 
ENO 

C* PRNTS - p r i n t s o u t sample d a t a * 

SUBROUTINE PRNTS(NO,M,MM,D.R) 
REAL 0 ( 2 : 1 0 1 ) . R ( 2 : 1 0 2 ) . M M ( 2 : 1 0 1 ) 
CHARACTER M ( 2 : 1 0 2 ) * 7 
INTEGER I , N O . J 
PRINT * . ' S a m p l e d e t a i l s : ' 
PRINT * . ' S u b s t r a t e : \ M ( N O + 2 ) 
I F ( R ( N 0 + 2 ) . N E . 0 . 0 ) T H E N 

PRINT * . 'Roughnes s = ' , R ( N 0 + 2 ) . ' A ' 
ENDIF 
J=0 
DO 100 I - N 0 + 1 . 2 . - 1 

J=J+1 
PRINT * . ' L a y e r * . J . ' M a t e r i a l \ M ( I ) 
PRINT * . ' T h i c k n e s s = ' . D ( I ) . ' A ,

> 

1 ' Mismatch = ' , M M ( I ) , ' p p m ' 
I F ( R ( I ) . N E . 0 . 0 ) T H E N 

PRINT * . 'Roughnes s = ' . R ( I ) . ' A ' 
ENDIF 

100 CONTINUE 
RETURN 
END 

C CRYS - c a l c u l a t e s r e f r a c t i v e i n d e x c o r r e c t i o n . * 
C d e l t a , f o r a g i v e n m a t e r i a l and w a v e l e n g t h * 

SUBROUTINE CRYS(MA.W.MIS.EG.DEL) 
C t h i s s u b r o u t i n e uses s u b r o u t i n e Honl t o c a l c u l a t e 
C i n d i v i d u a l e l e m e n t d i s p r s i o n c o r r e c t i o n s 

INTEGER EG 
REAL M I S . W . B . A R . P I N . P A L . P G A . P P . P A S . Y 
COMPLEX DEL.DE.DF 
CHARACTER MA*7,E*2 

C c a l c u l a t e c o n s t a n t f a c t o r 
B=2.72E-6*W*w 

C d e t e r m i n e d i s p e r s i o n c o r r e c t i o n s f o r each m a t e r i a l t h e n 
C c a l c u l a t e r e f r a c t i v e i n d e x 
C Si 

I F ( M A . E Q . ' S i ' ) T H E N 
E = ' S i ' 
CALL HONL(W.E.DF) 
D E L - B * ( 1 4 . 0 + D F ) * 2 . 3 2 8 3 / 2 8 . 0 8 6 

ENDIF 
C Ge 

I F ( M A . E Q . ' G e ' ) T H E N 
E= 'Ge ' 
CALL HONL(W.E.DF) 
D E L = B * ( 3 2 . 0 + D F ) * 5 . 3 2 3 4 / 7 2 . 5 9 

ENDIF 
C InP 

I F ( M A . E Q . ' I n P ' ) T H E N 
E = ' I n ' 
CALL HONL(W.E.DF) 
DEL=DF 
E = ' P ' 



CALL HONL(W.E.DF) 
DEL=B*(64 .0+DEL+DF)*4 .787 /145 .794 

ENDIF 
C GaAs 

I F ( M A . E Q . ' G a A s ' ) T H E N 
E= 'Ga ' 
CALL HONL(W,E,DF) 
DEL-DF 
E - ' A s ' 
CALL HONL(W.E.DF) 
DEL=B*(64 .0+DEL+DF)*5 .316 /144 .642 

ENDIF 
C InGaAs 

I F ( M A . E Q . ' I n G a A s ' ) T H E N 
A R - 5 . 8 6 8 7 5 * ( M I S * 1 . 0 E - 6 + 1 . 0 ) 
P I N ° ( A R - 5 . 6 5 3 1 5 ) / 0 . 4 0 5 2 3 
E - ' I n " 
CALL HONL(W.E.DF) 
DEL=0F 
E - ' A s * 
CALL HONL(W.E.DF) 
DEL=B*PIN*(82 .0+DEL+DF)*5 .66 /189 .742 
E= 'Ga ' 
CALL HONL(W.E.DF) 
DE=DF 
E='AS* 
CALL HONL(W.E.DF) 
D E L - D E L + B * { 1 . 0 - P I N ) * ( 6 4 . 0 + D E + D F ) * 5 . 3 1 6 / 1 4 4 . 6 4 2 

ENDIF 
C AlGaAs 

I F ( M A . E Q . ' A l G a A s ' ) T H E N 
A R - 5 . 6 5 3 1 5 * ( M I S * 1 . 0 E - 6 + 1 . 0 ) 
P A L = ( A R - 5 . 6 5 3 1 5 ) / 0 . 0 0 9 0 5 
E - ' A l ' 
CALL HONL(W.E.DF) 
DEL=DF 
E - ' A s ' 
CALL HONL(W.E.DF) 
D E L - B * P A L * ( 4 6 . 0 + D E L + 0 F ) * 3 . 8 1 / 1 0 1 . 9 0 4 
E= 'Ga ' 
CALL H0NL(W,E,DF) 
DE=DF 
E - ' A s * 
CALL HONL(W.E.DF) 
D E L - D E L + B * ( 1 . 0 - P A L ) * ( 6 4 . 0 + D E + D F ) * 5 . 3 1 6 / 1 4 4 . 6 4 2 

ENDIF 
C A H n A s 

I F C M A . E Q . ' A l I n A s ' ) T H E N 
A R = 5 . 8 6 8 7 5 * ( M I S * 1 . 0 E - 6 + 1 . 0 ) 
P I N = ( A R - 5 . 6 6 2 2 ) / 0 . 3 9 6 1 8 
E - ' I n ' 
CALL HONL(W.E.DF) 
DEL=DF 
E - ' A s ' 
CALL HONL(W.E.DF) 
DEL=B*PIN*(82 .0+DEL+DF)*5 .66 /189 .742 
E = ' A 1 ' 
CALL HONL(W.E.DF) 
DE=DF 
E - ' A s ' 



CALL HONL(W.E.DF) 
D E L - 0 E L + B * ( 1 . 0 - P I N ) * ( 4 6 . 0 + D E + D F ) * 3 . 8 1 / 1 0 1 . 9 0 4 

ENDIF 
C InGaAsP 

I F ( M A . E Q . ' I n G a A s P ' ) T H E N 
I F ( E G . E Q . 1 ) Y - 1 . 0 5 
I F ( E G . E Q . 2 ) Y = 1 . 3 5 
I F ( E G . E Q . 3 ) Y - 1 . 5 5 
Y - 1 . 2 4 0 8 / Y 
P A S = ( 0 . 7 2 - S Q R T ( 0 . 5 1 8 4 - 0 . 4 8 * ( 1 . 3 5 - Y ) ) ) / 0 . 2 4 
PGA-5.86875*MIS*1.0E-6 - PAS*0.18963 
PGA=PGA/(PAS*5.65315+(1 .0-PAS)*5.4505 -PAS*6.05838 

1 - ( 1 . 0 - P A S ) * 5 . 8 6 8 7 5 ) 
PIN-1 .0 -PGA 
PP- l .O-PAS 
E - ' I n ' 
CALL HONL(W.E.DF) 
DE=OF 
E - ' P ' 
CALL HONL(W.E.DF) 
DEL=B*PP*PIN*(64 .0+DE+DF)*4 .787 /145 .794 
E = ' G a * 
CALL HONL(W.E.DF) 
DE-DF 

A s ' 
CALL HONL(W.E.DF) 
DEL=DEL+B*PGA*PAS*(64.0+0E+0F)*5.316/144.642 
E - ' I n * 
CALL HONL(W.E.DF) 
DE=DF 
E - ' A s ' 
CALL HONL(W.E.DF) 
DEL=0EL+B*PAS*PIN*(82.0+DE+DF)*5.66/189.742 
E- 'Ga* 
CALL HONL(W.E.DF) 
DE=DF 
E- 'P* 
CALL HONL(W.E.DF) 
DEL=OEL+B*PGA*PP*(46.O+DE+DF)*4.13/100.694 

ENOIF 
RETURN 
END 

C HONL - c a l c u l a t e s d i s p e r s i o n c o r r e c t i o n s f o r a * 
C g i v e n e l emen t and w a v e l e n g t h u s i n g H o l n ' s * 
C method * 

SUBROUTINE HONL(W.E.DF) 
REAL W . W K . Z . X . D K . G K . P I 
COMPLEX DF 
CHARACTER E*2 
P I - 3 . 1 4 1 5 9 2 6 5 4 

C f o r t h e e l e m e n t t y p e d e f i n e t h e a t o m i c number and t h e 
C a b s o r b t i o n edge f o r use i n t h e c a l c u l a t i o n 

I F ( E . E Q . ' I n ' ) T H E N 
Z=49 
WK=0.444 

ENOIF 
I F C E . E Q . ' P ' ) T H E N 

Z-15 



WK=5.7886 
ENDIF 
I F ( E . E Q . ' G a ' ) T H E N 

Z - 3 1 
WK-1.196 

ENDIF 
I F ( E . E Q . " A s ' ) T H E N 

Z=33 
WK-1.045 

ENDIF 
I F ( E . E Q . ' A l ' ) T H E N 

Z-13 
WK=7.9511 

ENDIF 
I F ( E . E Q . ' S i ' ) T H E N 

Z=14 
WK=6.7446 

ENDIF 
I F ( E . E Q . ' G e ' ) T H E N 

Z-32 
WK-1.117 

ENDIF 
C c a l c u l a t e t h e r a t i o o f t h e w a v e l e n g t h t o t h e edge 

X=WK/w 
A - ( Z - 0 . 3 ) * * 2 + 1 . 3 3 E - 5 * ( Z - 0 . 3 ) * * 4 

C o s c i l l a t o r s t r e n g t h 
DK=(A-911/WK)/A 
G K = 0 . 5 2 0 9 7 8 * ( 2 / ( ( 1 . 0 - D K ) * * 2 ) - 1 / ( 3 * ( 1 - D K ) * * 3 ) ) 

C r e a l d i s p e r s i o n c o r r e c t i o n 
D F - 6 K * ( L O G ( A B S ( 1 . 0 - X * X ) ) ) / ( X * X ) 

C i m a g i n a r y c o r r e c t i o n 
I F ( X . G E . 1 . 0 ) T H E N 
D F - D F + ( 0 . 0 . 1 . 0 ) * P I * G K / ( X * X ) 
ENDIF 
RETURN 
END 

C* XSCALE - d e t e r m i n e s e x p e r i m e n t a l d e t a i l s i 

SUBROUTINE X S C A L E ( Q . P H I , W . X S . N ) 
REAL P H I . W . X S ( 0 : 1 0 0 0 0 ) . X S I . X S F 
CHARACTER Q 
INTEGER N 

C d e t e r m i n e e x p e r i m e n t a l d e t a i l s 
PRINT * , ' D o you w i s h t o keep t h e w a v e l e n g t h f i x e d ? 
READ ' ( A D ' . Q 
I F U Q . E Q . ' Y ' ) . O R . ( Q . E Q . * y ' ) ) T H E N 

C f i x e d w a v e l e n g t h - v a r i a b l e a n g l e 
10 PRINT * , ' E n t e r t h e w a v e l e n g t h i n A n g s t r o m s ' 

READ *.W 
IF(W.GT.O.0)GO TO 20 
PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 10 

20 PRINT * , ' E n t e r range o f r e f l e c t i o n ( d e g r e e s ) ' 
PRINT * , ' ( s t a r t . f i n i s h ) - ' 
READ * , X S I . X S F 
I F ( X S F . L E . X S I ) G O TO 30 
I F ( ( X S I . G E . 0 . 0 ) . A N D . ( X S F . G E . 0 . 0 ) ) G 0 TO 40 

30 PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 20 



40 XSI=RAD(XSI) 
XSF=RAO(XSF) 

50 PRINT * , " E n t e r s t e p s i z e ( s e c o n d s ) ' 
READ * DX 
DX=RAD(DX)/3600.0 
I F ( ( D X . G T . O . 0 ) . A N D . ( D X . L E . ( X S F - X S I ) ) ) G O TO 60 
PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 50 

60 N=(XSF-XSI) /DX 
IF(N.GT.10000)THEN 

PRINT * . ' T o o many s t e p s t r y a g a i n ' 
GO TO 50 

ENDIF 
ELSE 

C f i x e d a n g l e . v a r i a b l e w a v e l e n g t h 
80 PRINT * , ' E n t e r t h e a n g l e o f r e f l e c t i o n ( d e g r e e s ) ' 

READ * , P H I 
I F ( ( P H I . G T . 0 . 0 ) . A N D . ( P H I . L T . 9 O . 0 ) ) G O TO 90 
PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 80 

90 PHI=RAD(PHI) 
100 PRINT * , ' E n t e r t h e range i n Energy ( k e v ) ' 

PRINT * . ' ( S t a r t . F i n i s h ) - ' 
READ * . X S I , X S F 
I F ( X S F . L E . X S I ) G O TO 110 
I F U X S I . G E . O . O ) .AND.(XSF.GE.0 .O) )GO TO 120 

110 PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 100 

120 PRINT * . ' E n t e r s t e p s i z e ( k e v ) ' 
READ *.DX 
I F ( ( D X . G T . O . O ) . A N D . ( D X . L E . ( X S F - X S I ) ) ) G O TO 130 
PRINT * , ' I n c o r r e c t e n t r y t r y a g a i n ' 
GO TO 120 

130 N=(XSF-XSI) /DX 
I F ( N . L E . 1 0 0 0 0 ) G 0 TO 140 
PRINT * . ' T o o many s t eps t r y a g a i n ' 
GO TO 120 

140 ENDIF 
C p roduce x s c a l e 

DO 150 1=0 ,N 
X S ( I ) = X S I + D X * F L O A T ( I ) 

150 CONTINUE 
PRINT * , ' C a l c u l a t i n g R e f l e c t i v i t y Please W a i t ' 
RETURN 
END 

C* RAD - f u n c t i o n t o c o n v e r t degrees t o r a d i a n s * 

FUNCTION RAD(ANGLE) 
REAL PI.ANGLE 
PI=3 .141592654 
RAD=ANGLE*PI/180.0 
RETURN 
END 

C* FN - c a l c u l a t e s r e f l e c t e d i n t e n s i t y f o r a g i v e n * 
C* w a v e l e n g t h and m a t e r i a l * 

SUBROUTINE FN(ANGLE.DELTA.F) 
COMPLEX DELTA.F 



REAL ANGLE 
F=CSQRT(ANGLE*ANGLE-2.0*DELTA) 
RETURN 
END 

Q******************************************************** 
C* RATIO - c a l c u l a t i o n o f r e f l e c t e d i n t e n s i t y * 
C******************************************************** 

SUBROUTINE RATIO(FN.FN1.T.RN.RN1.SIG.ANGLE,WL) 
C s u b r o u t i n e t o e v a l u a t e E - v e c t o r r a t i o . R ( n - l ) 

COMPLEX FN,FN1,RN,RN1,FF.A 
REAL WL 
PI=3 .141592654 

C e v a l u a t e a m p l i t u d e f a c t o r , a , t o 4 t h power 
A - ( 0 . 0 . - 1 . 0 ) * F N l * T * P I / W L 
A=(CEXP(A) )**4 

C e v a l u a t e c a p i t a l F v a l u e s 
F F - ( ( F N 1 - F N ) / ( F N l + F N ) ) * ( R O G ( S I G . A N G L E . W L ) ) 

C e v a l u a t e R ( n - l ) 
RN1-A*(RN+FF) / (RN*FF+1.0) 
RETURN 
END 

C* ROG - f u n c t i o n t o c a l c u l a t e t h e Gauss ian roughness* 
C* f a c t o r f o r a g i v e n w a v e l e n g t h and a n g l e * 

FUNCTION ROGCSIG,ANGLE,WL) 
REAL PI.ANGLE.WL.ROG 
P I - 3 . 1 4 1 5 9 2 6 5 4 
ROG=PI*SIG*(SIN(ANGLE/WL)) 
R0G=EXP(-8.0*R0G*R0G) 
RETURN 
END 

C* CONTRO - s u b r o u t i n e t o e x e c u t e r e f l e c t i v i t y * 
C* r o u t i n e s f o r g i v e n e x p e r i m e n t a l and * 
C* sample d e t a i l s * 

SUBROUTINE C0NTR0(M.D.MM,R.BG.XS.N0.Q,N.Y.W.PHI) 
REAL 0 ( 2 : 1 0 1 ) , M M ( 2 : 1 0 1 ) , R ( 2 : 1 0 2 ) . X S ( 0 : 1 0 0 0 0 ) 
REAL Y ( 0 : 1 0 0 0 0 ) . W . P H I 
COMPLEX R R ( 1 0 2 ) . F ( 1 0 2 ) . D E L . F F 
INTEGER N 0 , N , B G ( 2 : 1 0 2 ) , 1 . J . K . K K 
CHARACTER M ( 2 : 1 0 2 ) * 7 , Q 

C s e t i n i t i a l c o n s t a n t s 
R R ( N O + 2 ) = ( 0 . 0 . 0 . 0 ) 
I F ( ( Q . E Q . * Y , ) . O R . ( Q . E Q . , y ' ) ) T H E N 

C f i x e d w a v e l e n g t h , v a r i a b l e a n g l e 
DO 200 1=0.N 

P H I - X S ( I ) 
F C D - P H I 

C c a l c u l a t e f v a l u e s 
DO 100 J -2 .N0+2 

CALL C R Y S ( M ( J ) . W . M M ( J ) . B G ( J ) . D E L ) 
CALL F N ( P H I . D E L . F ( J ) ) 

100 CONTINUE 
C c a l c u l a t e r a t i o s 

DO 150 K - N 0 + 1 . 2 . - 1 
KK=K+1 
CALL R A T I 0 ( F ( K K ) , F ( K ) , D ( K ) , R R ( K K ) , R R ( K ) , R ( KK) 

1 .PHI .W) 



150 CONTINUE 
C c a l c u l a t e i n t e n s i t y f r o m t o p l a y e r 

F F = ( F ( 1 ) - F ( 2 ) ) / ( F ( 1 ) + F ( 2 ) ) * 
1 ( R 0 G ( R ( 2 ) . P H I , W ) ) 

R R ( 1 ) = ( R R ( 2 ) + F F ) / ( R R ( 2 ) * F F + 1 . 0 ) 
Y d )=(CABS( RR( 1 ) ) )*(CABS( RR( 1 ) ) ) 

200 CONTINUE 
ELSE 

C f i x e d a n g l e , v a r i a b l e w a v e l e n g t h 
DO 400 1=0,N 

F ( 1 ) = P H I 
W - W A V ( X S d ) ) 

C c a l c u l a t e f v a l u e s 
DO 300 J -2 .N0+2 

CALL C R Y S ( M ( J ) . W . M M ( J ) , B G ( J ) . D E L ) 
CALL F N ( P H I , D E L . F ( J ) ) 

300 CONTINUE 
C c a l c u l a t e r a t i o s 

DO 350 K - N 0 + 1 . 2 . - 1 
KK=K+1 
CALL R A T I O ( F C K K ) , F ( K ) . D ( K ) , R R ( K K ) , R R ( K ) , R ( K K ) 

1 .PHI .W) 
350 CONTINUE 

C c a l c u l a t e i n t e n s i t y f r o m t o p l a y e r 
F F = ( F ( 1 ) - F ( 2 ) ) / ( F ( 1 ) + F ( 2 ) ) * 

1 ( R 0 G ( R ( 2 ) , P H I . W ) ) 
R R ( 1 ) = ( R R ( 2 ) + F F ) / ( R R ( 2 ) * F F + 1 . 0 ) 
Y ( I ) = ( C A B S ( R R ( 1 ) ) ) * ( C A B S ( R R ( 1 ) ) ) 

400 CONTINUE 
ENDIF 
RETURN 
END 

C* WAV - f u n c t i o n t o c a l c u l a t e w a v e l e n g t h i n Angs t roms* 
C* f o r a g i v e n energy * 

FUNCTION WAV(KEV) 
REAL WAV.KEV 
W A V - 1 . 0 E 1 0 * 6 . 6 2 6 E - 3 4 * 3 . 0 E 8 / ( K E V * 1 . 6 0 2 E - 1 6 ) 
RETURN 

END 

C* DEG - f u n c t i o n t o c o n v e r t r a d i a n s t o degrees * 

FUNCTION DEG(RADN) 
REAL DEG.RADN.PI 
P I - 3 . 1 4 1 5 9 2 6 5 4 
DEG=RADN*180.0/PI 
RETURN 
END 

c******************************************************** 
C* GRAPH - p l o t s o u t r e s u l t s u s i n g Ghost80 * 

SUBROUTINE GRAPH(Q,N.X,Y) 
C s u b r o u t i n e t o p l o t da t a u s i n g GHOST80 programs 

REAL X M I N . X M A X . Y M I N . Y M A X . X ( 0 : 1 0 0 0 0 ) , Y ( 0 : 1 0 0 0 0 ) 
REAL T X . T Y . X L X . X L Y . Y L X . Y L Y 
CHARACTER TEXT*30,Q 
INTEGER N . I 

C 



PRINT * , ' G e n e r a t i n g g r aph - use * v i e w - p * t o s ee ' 
PRINT * , ' a n d * r l a s e r - p * f o r a h a r d c o p y ' 
I F U Q . E Q . ' Y ' ) . 0 R . ( Q . E Q . ' y ' ) )THEN 

C f i x e d w a v e l e n g t h 
C c o n v e r t r a d i a n s t o degrees f o r s c a l e 

YMAX—100.0 
YMIN=1.0 
DO 100 1=0.N 

X ( I ) - D E G ( X ( D ) 
C c o n v e r t da t a t o l o g 

Y ( I ) = L O G 1 0 ( Y ( D ) 
C s e t maxima and minima 

I F ( Y M I N . G T . Y ( I ) ) Y M I N = Y ( I ) 
100 CONTINUE 

ELSE 
C f i x e d a n g l e 

YMAX=-100.0 
YMIN=1.0 
DO 200 1=0.N 

C c o n v e r t d a t a t o l o g 
Y ( I ) = L O G 1 0 ( Y ( I ) ) 

C s e t maxima and minima 
I F ( Y M I N . G T . Y ( I ) ) Y M I N = Y ( I ) 

200 CONTINUE 
ENDIF 

XMIN=0.0 
XMAX=X(N) 
YMAX=0.0 

C w r i t e da t a t o f i l e 
DO 205 1=0.N 

W R I T E ( 1 . * ) X ( I ) , Y ( I ) 
205 .CONTINUE 

C s w i t c h on o u t p u t d e v i c e and d e f i n e ranges 
CALL PAPER(l) 
CALL P S P A C E ( 0 . 1 . 0 . 7 . 0 . 1 . 0 . 9 ) 
CALL MAP(XMIN,XMAX,YMIN,YMAX) 

C read t i t l e 
P R I N T * . ' E n t e r t i t l e d e t a i l s ' 
READ ' ( A 3 0 ) ' . T E X T 
CALL AXES 
CALL CURVEO(X.Y,0.N) 

C s e t p o s i t i o n o f t i t l e 
TX=0.5*XMAX 
TY=0.1*YMIN 
XLX=0.5*XMAX 
XLY=-0 .08*YMIN 
YLX=-0.1*XMAX 
YLY=0.5*YMIN 
CALL CTRMAGU5) 
CALL PLOTCS(TX.TY.TEXT) 
CALL CTRMAG(25) 
I F ( ( Q . E Q . ' Y ' ) . 0 R . ( Q . E Q . ' y ' ) ) T H E N 

CALL PCSCENCXLX.XLY.'Angle ( d e g r e e s ) ' ) 
ELSE 

CALL PCSCENULX.XLY. ' E n e r g y ( k e v ) ' ) 
ENDIF 
CALL C T R 0 R K 9 0 . 0 ) 
CALL P C S C E N ( Y L X . Y L Y , ' R e f l e c t i v i t y ( l o g ) ' ) 

C t e r m i n a t e t h e g r aph 
CALL FRAME 



CALL GREND 
CLOSE(5) 
RETURN 
END 
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