

Durham E-Theses

$$
\begin{aligned}
& \text { Some amine hydrofluorides and amines in } \\
& \text { organofluorine chemistry }
\end{aligned}
$$

Sandford, Graham

How to cite:

Sandford, Graham (1991) Some amine hydrofluorides and amines in organofluorine chemistry, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6209/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

UNIVERSITY OF DURHAM

A THESIS
 entitled

SOME AMINE HYDROFLUORIDES AND AMINES IN ORGANOFLUORINE CHEMISTRY

submitted by

GRAHAM SANDFORD B. Sc.

(Van Mildert College)

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived from it should be acknowledged.

A candidate for the degree of Doctor of Philosophy
1991

To Mum, Dad and Aly

Acknowledgements

I would like to thank Professor R.D. Chambers for his help and advice throughout this period of research.

Thanks to my industrial supervisor, Dr. Stewart Korn (ICI Specialties), for his useful discussions and willingness to carry out computer searches, provide chemicals, set up biological tests, etc., at ICI. Also, thanks to ICI for providing the grant.

This thesis could not have been completed without the help of the technical staff in the department who are: Dr. Mike Jones and Vince McNeilly (Mass Spectrometry); Dr. Ray Matthews, Dr. Alan Kenwright and Mrs. Julia Say (NMR); Lenny Lauchlan (Chemicals and Chromatography); Mrs. Mollie Cocks (Elemental Analysis); Ray Hart and Gordon Haswell (Glass Blowing), and thanks to Tom Holmes for endless help with practical chemistry and tasteless jokes.

Finally, thanks to the lads in the lab for making this period of study so enjoyable and to the New Inn for never throwing me out.

MEMORANDUM

The work described in this thesis was carried out in the University of Durham between October 1988 and September 1991. This thesis is the work of the author, except where acknowledged by reference, and has not been submitted for any other degree.

The work has been presented, in part, by the author at:

13th. International Symposium on Fluorine Chemistry, Ruhr Universitat, Bochum, Germany, September 1991.

NOMENCLATURE

Throughout this thesis an " F " in the centre of a ring is used to denote that all bonds are to fluorines.

CONTENTS

Chapter One
Sources of Fluoride lon
1.1 General Introduction 1
1.2 Formation of C-F Bonds using Fluoride Ion 2
1.2.1 Nucleophilic Substitution at Saturated Carbon 2
1.2.2 Nucleophilic Substitution Involving Unsaturated Carbon 2
1.2.3 Nucleophilic Substitution at Aromatic Carbon 3
1.3 Sources of Fluoride Ion 3
1.3.1 Alkali Metal Fluorides 3
1.3.1.1 Crown Ether Activation 4
1.3.1.2 Phase Transfer Catalysis 5
1.3.1.3 Additives to Alkali Metals 5
1.3.1.4 Spray-dried and Freeze-dried KF 6
1.3.1.5 KF on Support Reagents 6
1.3.1.6 Ion Exchange Resins 7
1.3.2 Alternatives to Alkali Metal Fluorides 7
1.3.2.1 Tetraalkylammonium and phosphonium Salts 8
1.3.2.2 Phosphoranes 9
1.3.2.3 Amine Hydrofluorides 9
1.3.2.4 DAST and TAS-F 9
1.3.2.5 Tris(morpholino)selenonium fluoride 10
1.4 Hydrogen Fluoride as a Fluorinating Reagent 11
1.4.1 Classical Processes 11
1.4.2 HF used in Conjunction with Lewis Bases 11
1.5 Pyridine Poly(Hydrogen Fluoride) - Olah's Reagent 13
1.5.1 Structure of Pyridine Poly(Hydrogen Fluoride) 13
1.5.2 Reactions of Pyridine Poly(Hydrogen Fluoride) 15
1.6 Amine Hydrofluoride Salts 18
1.6.1 Introduction 18
1.6.2 Spectroscopy of Amine/HF Systems 18
1.6.2.1 Nuclear Magnetic Resonance Spectroscopy 18
1.6.2.1.1 R R_{3} N.nHF Systems 20
1.6.2.2 Infra Red Spectroscopy 22
1.6.2.2.1 Hydrogen Fluoride 22
1.6.2.2.2 Hydrogen Difluoride 22
1.6.2.2.3 Trialkylamine Hydrogen Fluoride Systems 23
1.6.3 Reactions of Amine Hydrofluorides as Fluorinating Agents 24
1.6.3.1 Halogen Exchange Reactions (Halex) 24
1.6.3.2 Halofluorination 24
1.6.3.3 Sulphenylation Fluorination 26
1.6.3.4 Phenylselenofluorination 26
1.6.3.5 Ring Opening Reactions 26
1.6.3.5.1 Aziridines 26
1.6.3.5.2 Aziridinium Ion 27
1.6.3.5.3 Epoxides 27
1.6.3.6 Oxidative Fluorination 28
1.6.3.7 Other Systems 29
1.7 Summary
Chapter Two
1.8-Bis(dimethylamino)naphthalene Hydrofluoride (PS/HF) as.
Pofential Souree of Fluoride Ion
2.1 Introduction 30
2.2 1,8-Bis(dimethylamino)naphthalene (Proton Sponge) 31
2.2.1 Preparation 31
2.2.2 Structure 31
2.2.3 Structure of 1,8-Bis(dimethylamino)naphthalene Salts 32
2.2.4 Basicity 33
2.2.5 Spectroscopy 34
2.2.5.1 UN 34
2.2.5.2 Infra Red 34
2.2.5.3 NMR 35
2.2.6 Reactions 35
2.3 The Use of the Hydrofluoride Complex of Proton Sponge as a Potential Source of Soluble Fluoride Ion 37
2.3.1 Preparation of PS/HF 37
2.3.2 Spectroscopical Studies of PS/HF 37
2.3.2.1 NMR 37
2.3.2.2 Infra Red 39
2.3.2.3 Mass Spectroscopy 40
2.4 Reactions of PS/HF 41
2.4.1 PS/HF as a Catalyst in C-C Bond Forming Reactions 41
2.4.1.1 Oligomerisation Reactions 41
2.4.1.2 Perfluoroalkylation Reactions 43
iii
2.4.2 PS/HF in C-F Bond Forming Reactions 44
2.4.2.1 At Unsaturated Carbon 44
2.4.2.2 At Saturated Carbon 45
2.5 Summary 46
Chapter Three
Oroanic Base Hydrogen Fluoride Complexes as Sources of Soluble Eluoride Ion
3.1 Introduction 48
3.2 Trialkylamine Hydrogen Fluoride Complexes 48
3.2.1 NMR Spectroscopy 48
3.2.2 Low Temperature NMR Study of Bu3N.HF 49
3.2.3 Reactions 51
3.3 Tetramethylpiperidinium Hydrofluoride Complexes 53
3.3.1 Preparation of Penta-alkyl piperidine Bases and their Hydrofluoride Complexes 53
3.3.2 NMR Spectroscopy 54
3.3.3 Reactions 55
3.4 Tetramethylguanidine Hydrofluoride Complex 56
3.5 Conclusions 56
Chapter Four
Annelation_Reactions Between_1.8-Bis(dimethylamino)Naphthalene (Proton Sponge) and Fluorinated Alkenes
4.1 Introduction 58
4.2 Electrophilic Substitution Reactions of 1,8-Bis(dimethylamino) -Naphthalene (PS) 58
4.2.1 Nitration 58
4.2.2 Bromination 59
4.2.3 Alkylsulphination 59
4.2.4 Formylation 59
4.2.5 Reaction with Dinitrobenzofurazan 60
4.3 Reaction of 1,8-Bis(dimethylamino)naphthalene With Fluorinated Alkenes (3) and (43) 61
4.3.1 Structure Elucidation 62
4.3.1.1 NMR Spectra of (4) and (44) 62
4.3.2 Molecular Modelling of Annelation Product (4) 67
4.4 Mechanism of the Annelation Reaction 69
4.4.1 Orientation of Initial Nucleophilic Attack 69
4.5 Reaction of 1,8 -Bis(dimethylamino)naphthalene With Perfluoro-bicyclopentylidene 72
4.5.1 At Low Dilution 72
4.5.2 At High Dilution 73
4.5.2.1 Green Crystals (60) 74
4.5.2.2 Purple Crystals (61) 77
4.5.2.3 Mechanism of Hydrolysis to Form (60) and (61) 80
4.6 Reactions of Perfluorobicyclobutylidene With Tertiary Aromatic Amines 81
4.6.1 With N,N-Dimethylaniline 81
4.6.2 With N -Methylindole 82
4.6.3 With Proton Sponge 83
4.7 Summary 84
Chapier Five
Reactions Between Tertiary Aromatic Amines Acting as Soft Carbon Nucleophlles with Fluorinated Heterocycles
5.1 Introduction 85
5.2 Nucleophilic Substitution Reactions of Trifluoro-s-triazine 85
5.3 Reactions Between Trichloro-s-triazine (Cyanuric Chloride) and Tertiary, Aromatic Amines Acting as Carbon Nucleophiles 86
5.3.1 With N, N-Dialkylanilines and Toluidines 86
5.3.1.1 Mechanism 89
5.3.2 With 5-Membered Heterocyclic Rings 89
5.4 Reactions of Fluorinated Triazines With Pyrroles 94
5.4.1 Spectroscopy of Pyrrolyl-s-Triazines 95
5.4.1.1 ${ }^{1} \mathrm{H}$ NMR 95
5.4.1.2 ${ }^{19}$ F NMR 98
5.4.1.3 ${ }^{13} \mathrm{C}$ NMR 98
5.5 Reactions of Fluorinated Triazines With N-Methylindole 104
5.5.1 Spectroscopy of Indolyl-s-Triazines 105
5.5.1.1 ${ }^{1} \mathrm{H}$ NMR 105
5.5.1.2 ${ }^{19}$ F NMR 105
5.5.1.3 ${ }^{13} \mathrm{C}$ NMR 107
5.6 Reaction of Tetrafluoropyrimidine With N-Methylindole 108
5.7 Reactions of Fluorinated s-Triazines With Anilines 109
5.7.1 Reaction of Trifluoro-s-triazine with N,N-Dimethylaniline 109
5.7.2 Reactions of Perfluoroisopropyl-s-triazine with N,N-Dimethyl- and Diethylaniline 109
5.7.3 Reactions of Perfluorodi-isopropyl-s-triazine with N,N-Dimethyl- and Diethylaniline 111
5.7.4 Collected NMR data for Phenyl-s-triazines 112
5.7.5 Potential Use of Compounds (77)-(82A) as Non-Linear Optic Materials 112
5.8 Reaction of Trifluoro-s-Triazine With PS 114
5.9 Reaction of Trifluoro-s-Triazine With N-Ethylaniline 115
5.10 Reaction of Trifluoro-s-Triazine With N,N-Dimethylamino-2- Methoxybenzene 116
5.11 Reaction of Trifluoro-s-Triazine With N,N,N', N'-Tetramethyl- Diamino-benzene 116
5.12 Reaction of Perfluorodiisopropyl-s-Triazine With 2-(N,N-Dimethyl- amino)-pyridine 117
5.13 Summary 118
EXPERIMENTAL_SECTION
Instrumentation 120
Chapter Six
Experimental to Chapter Two
6.1 Preparation of HF/ether solution 121
6.2 Preparation of PS/HF Complex 121
6.3 Reactions of PS/HF as a Catalyst in C-C Bond Forming Reactions 121
6.3.1 Attempted Oligomerisation of Tetrafluoroethylene 121
6.3.2 Dimerisation of Hexafluoropropene 122
6.3.3 Attempted Oligomerisation of Pewrfluorocyclobutene 122
6.3.4 Attempted Formation of a Stable Perfluorinated Carbanion 122
6.3.5 Perfluoroalkylation of Pentafluoropyridine 123
6.3.6 Perfluoroalkylation of Tetrafluoropyrimidine 123
6.3.7 Perfluoroalkylation of Trifluoro-s-triazine 124
6.4 Reactions of PS/HF in C-F Bond Forming Reactions 124
6.4.1 With Benzoyl Chloride 124
6.4.2 With Hexafluoroacetone 124
6.4.2.1 Preparation of Heptafluoroisopropyl benzoate 125
6.4.2.2 Preparation of Heptafluoroisopropyl benzyl ether 125
6.4.3 With 2,4-Dinitrochlorobenzene 125
6.4.4 With Benzyl Bromide 125
6.4.5 With Octyl Iodide 126
6.4.6 With 1,2-Epoxybutane 126
6.4.7 Preparation of Triflate (21) 126
6.4.8 Attempted Reaction between PS/HF and Triflate (21) 126
6.4.9 Preparation of Tosylate (22) 127
6.4.10 Attempted Reaction of PS/HF with Tosylate (22) 127
Chapter Seven
Experimental to Chapter Three
7.1 Preparation and Reactions of Trialkylamine Hydrogen
Fluoride Complexes 128
7.1.1 Preparation of R_{3} N.HF 128
7.1.2 Methodology for Standard Reactions 128
7.1.2.1 Reaction of Base Hydrofluoride Complexes with Benzoyl Chloride 129
7.1.2.2 Reaction of Base Hydrofluoride Complexes with Benzyl Bromide 129
7.1.2.3 Reaction of Base Hydrofluoride Complexes with 2,4-Dinitrochlorobenzene 129
7.1.3 Reactions of Trialkylamine.HF Complexes 130
7.1.3.1 With Benzoyl Chloride 130
7.1.3.2 With Benzyl Bromide 130
7.1.3.3 With 2,4-Dinitrochlorobenzene 131
7.2 Preparation and Reactions of Polyalkylpiperidine HF Complexes 131
7.2.1 Preparation of Pentasubstituted Piperidine Bases 131
7.2.1.1 N -ethyl-2,2,6,6,-Tetramethylpiperidine 131
7.2.1.2 N -allyl-2,2,6,6-Tetramethylpiperidine 132
7.2.1.3 \mathbf{N}-benzyl-2,2,6,6-Tetramethylpiperidine 132
7.2.2 Preparation of the Base.HF Complexes (35)-(39) 132
7.2.3 Reactions 133
7.2.3.1 With Benzoyl Chloride 133
7.2.3.2 With Benzyl Bromide 134
7.2.3.3 With 2,4-Dinitrochlorobenzene 134
7.3 Preparation and Reactions of Tetramethylguanidine HF Complex 134
7.3.1 Attempted Preparation of Pentamethylguanidine 135
Chapter_Elaht
Experimental to Chapter Four
8.1 Reaction between PS/HF, Perfluorocyclobutene and Hexafluoropropene 136
8.2 Reaction Between PS and Co-dimer (3) 136
8.3 Preparation of Co-dimer (43) 136
8.4 Reaction between PS and Co-dimer (43) 137
8.5 Reaction between PS and Perfluorobicyclopentylidene 137
8.5.1 At Low Dilution 137
8.5.2 At High Dilution 137
8.6 Preparation of Perfluorobicyclobutylidene 138
8.7 Reaction between N,N-Dimethylaniline and Perfluorobicyclobutylidene 138
8.8 Reaction between N -Methylindole and Perfluorobicyclobutylidene 138
8.9 Reaction between PS and Perfluorobicyclobutylidene 139
Chapter Nine
Experimental to Chapter Five
9.1 Preparation of Trifluoro-s-Triazine 140
9.2 Preparation of Perfluoroisopropyl-s-triazine (14) and perfluorodi- isopropyl-s-triazine (15) 140
9.3 Reactions of Pyrroles With Fluorinated Triazines 140
9.3.1 Pyrrole with trifluoro-s-triazine 140
9.3.2 Pyrrole with perfluoroisopropyl-s-triazine 141
9.3.3 Pyrrole with perfluorodi-isopropyl-s-triazine 141
9.3.4 N -methylpyrrole with trifluoro-s-triazine 141
9.3.5 N -methylpyrrole with perfluoroisopropyl-s-triazine 141
9.3.6 N -methylpyrrole with perfluorodi-isopropyl-s-triazine 142
9.4 Reactions of N-Methylindole With Fluorinated triazines 142
9.4.1 With trifluoro-s-triazine 142
9.4.2 With perfluoroisopropyl-s-triazine 142
9.4.3 With perfluorodi-isopropyl-s-triazine 142
9.5 Reaction of N-Methylindole With Tetrafluoropyrimidine 143
9.6 Reactions of Anilines With Fluorinated Triazines 143
9.6.1 N, N-Dimethylaniline with Trifluoro-s-triazine 143
9.6.2 N,N-Dimethylaniline with perfluoroisopropyl-s-triazine 143
9.6.3 N,N-Diethylaniline with perfluoroisopropyl-s-triazine 144
9.6.4 N,N-Dimethylaniline with perfluorodi-isopropyl-s-triazine 144
9.6.5 N,N-Diethylaniline with perfluorodi-isopropyl-s-triazine 144
9.6.6 Proton Sponge with trifluoro-s-triazine 145
9.6.7 N -Ethylaniline with trifluoro-s-triazine 145
9.6.8 N -Ethylaniline with perfluoroisopropyl-s-triazine 145
9.6.9 Preparation of N, N-Dimethylamino-2-methoxybenzene 146
9.6.10 Reaction of N, N-Dimethylamino-2-methoxybenzene with trifluoro-s-triazine 146
9.6.11 Reaction of $\mathrm{N}, \mathrm{N}, \mathrm{N}, \mathrm{N}$ '-Tetramethyl-1,4-diaminobenzene with trifluoro-s-triazine 146
9.6.12 Reaction of 2-N,N-Dimethylamino-pyridine with Perfluoro- di-isopropyl-s-triazine 147
Appendices
Appendix One N.M.R._Spectra 149
Appendix Two Infra Red Spectra 174
Appendix Three Mass Spectra 185
Appendix Four Colloquia and Conferences Attended 228
References 236

CHAPTER ONE

SOURCES OF FLUORIDE ION

1.1.General Introduction

Since the Second World War research in organofluorine chemistry has increased tremendously, motivated by the discovery of the unusual properties acquired by some molecules on the introduction of fluorine or fluorine containing substituents. Organofluorine compounds have been used in an ever widening range of applications from refrigerants to artificial blood (for some examples see Table 1). As fluorine containing compounds are not generally found in nature the area of organofluorine chemistry is entirely synthetic, and consequently a whole new range of reactions and reaction mechanisms may be studied, adding to our understanding of organic chemistry.

Table 1. Some_Applications of Fluorine Containing Compounds

Product
$\mathrm{CF}_{2} \mathrm{Cl}_{2}$
$\mathrm{CF}_{3} \mathrm{CHBrCl}$

- (CF2)n.-

Perfluorodecalin

Fluoro Steroids

5-F-Uracil

Trifluralin

Application

Refrigerant

Anaesthetic
Polymer with high thermal and chemical stability. Non-stick properties
Artificial blood
Anti-inflammatory Agent

Anti-Cancer Drug

Plant Protection (Weed control in Maize)

Surfactants

Dyes containing CF_{3} groups
Good light fastness

Differences in chemical and physical properties between hydrocarbon and fluorocarbon systems are mainly due to a) electronegativity differences, 2) unshared electron pairs on fluorine, 3) the more easy displacement of fluorine as fluoride ion, and 4) the greater bond strength of C-F.

As the number of fluorine containing compounds grows, the variety of fluorinating reagents and methods of synthesis also increase and intense research continues in the development of new classes of fluorinating reagents. This thesis is concerned with the development of new types of fluoride ion reagent and so a brief description of the chemistry and the sources of fluoride ion follows.

1.2 Formation of C-F Bonds using Fluoride Ion

The introduction of fluorine into an organic molecule via the displacement of a leaving group by fluoride ion in a nucleophilic substitution reaction has proved to be extremely efficient in many cases ${ }^{1-4}$. Nucleophilic substitution reactions at saturated, unsaturated and aromatic carbon are possible and general mechanisms are outlined below ${ }^{1}$.

1.2.1 Nucleophilic Substitution at Saturated Carbon

1.2.2 Nucleophilic Substitution Involving Unsaturated Carbon

Three modes of nucleophilic substitution involving fluoride ion can occur in unsaturated systems:-
(i) Addition Elimination

(ii) $\mathrm{S}_{\mathrm{N}} 2$

(iii) Substitution with Rearrangement - $\mathbf{S}_{\mathrm{N}} 21$

1.2.3 Nucleophilic Substitution at Aromatic Carbon

Other aspects of fluoride ion chemistry, such as catalysing the oligomerisation of perfluoroalkenes, are discussed at the relevant sections of the following text.

Hence, fluoride ion is a valuable synthetic reagent and a discussion of modern sources of fluoride ion follows.

1.3 Sources of Fluoride Ion

1.3.1 Alkall Metal Fluorides

A general order of reactivity of the alkali metal fluorides is: CsF $>\mathrm{KF}>\mathrm{NaF}$, LiF, which may be attributed to the fact that caesium fluoride has the lowest lattice energy. The easy availability of the alkali metal fluorides, KF and CsF, means that these reagents continue to be widely used. However, their low reactivity, low solubility, hygroscopic nature and the harsh reaction conditions required has limited their use in more complex systems. Hence, new sources of fluoride ion, which may introduce fluorine into molecules in greater yield and greater selectivity, continue to be developed. A brief description of the main classes of modern fluoride ion reagents which have been investigated in an attempt to alleviate these problems will be discussed here for completeness, but are reviewed in more detail elsewhere ${ }^{5}$.

Examples of the use of these modern reagents in synthesis, from the recent literature (1988-1990 where possible), are presented.

The reactivity of the alkali metal fluorides may be improved by either increasing their solubility or by increasing the surface area of the reagent. The following methods have been used to improve the reactivity of the alkali metal fluorides.

1.3.1.1 Crown Ether Activation

The nucleophilic substitution process is enhanced by the use of a chelating crown ether which selectively complexes with the cation leaving the unsolvated fluoride ion ("naked fluoride") strongly nucleophilic ${ }^{6}$. The addition of a crown ether to KF increases its solubility, thus increasing the concentration of fluoride ion in solution ${ }^{7}$. 18-Crown-6 was found to be the most active catalyst ${ }^{8}$ due to its excelient complexing ability with $\mathrm{K}+$ and Cs^{+}.

Selected examples of the use of alkali metal fluorides in conjunction with crown ethers are as follows ${ }^{6,8}$:-

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Br} \xrightarrow[\text { 18-Crown-6 }]{\mathrm{KF}, \mathrm{MeCN}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{~F}
$$

KF has been used with a combination of 18-Crown-6 and tetraphenylphosphonium bromide in halex reactions ${ }^{9}$.

Primary alcohols are converted to the fluorides by a CsF/18-Crown$6 /$ methanesulphonyl fluoride system ${ }^{10}$.

Fluorodestannylation reactions have been performed ${ }^{11}$.

13.12 Phase Transfer Catalysis

The concentration of fluoride ion in the organic phase of a reaction may be increased by using KF in conjunction with a phase transfer catalyst (PTC). Reactions of the following type were studied ${ }^{12}$:-

$$
\mathrm{RCl}_{\text {(org) }}+\mathrm{KF}_{(\text {s or aq) }} \xrightarrow{\text { PTC }} R F_{(\text {org })}+\mathrm{KCl}_{\text {(s or aq) }}
$$

The role of the PTC, usually a tetraalkylammonium halide, may be considered thus:-

$$
\mathrm{KF}_{(\mathrm{s} \text { or } \mathrm{aq})}+\mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}(\text {org }) \longrightarrow \mathrm{KCl}_{(\mathrm{s} \text { or } \mathrm{aq})}+\mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{F}_{(\text {org })}^{-}
$$

Hence, fluoride ion is transferred from the aqueous/solid phase into the organic phase enhancing the reactivity of KF.

1.3.1.3 Additives to KF

The addition of alkylpyridinium salts ${ }^{13}$ and tetraalkylammonium chlorides ${ }^{14}$ to KF has been shown to be effective in halogen exchange reactions:-

The addition of tetraphenylphosphonium bromide improves the reactivity of KF15. Fluorodenitration reactions have been performed using this system ${ }^{16}$.

Tetraphenyl phosphonium bromide has been used as an additive supported on a cross-linked styrene/p-chloro-methyl styrene copolymer in fluorinations of aromatic chlorides ${ }^{17}$.

1.3.1.4 Spray-Dried and Freeze-Dried KF

The surface area of "normal" KF ($0.1 \mathrm{~m}^{2} / \mathrm{g}$) is much less than that of "spraydried" KF ($1.3 \mathrm{~m}^{2} / \mathrm{g}$) and consequently spray-dried KF shows greater reactivity than normal KF18.

Similarly, "freeze-dried" KF has been investigated, but was originally found to be ineffective for the fluorination of some activated chlorinated compounds ${ }^{19}$. However, renewed interest in this reagent showed that fluorination was possible ${ }^{20}$:-

1,3.1.5 KF on Support Reagents

An alternative to the use of phase transfer catalysis to improve the reactivity of KF is the use of supported reagents which show greater reactivity due to the increased reagent surface area. The reactivity of KF-alumina ${ }^{21}$ was seen to be very low due to surface OH-F hydrogen bonding. However, non-surface hydroxylated support materials, such as $\mathrm{KF}^{2}-\mathrm{CaF}_{2}$, have been successfully applied as sources of fluoride ion ${ }^{22,23}$, as shown below ${ }^{24}$.

Inorganic support materials may be surface dehydroxylated prior to use to avoid $\mathrm{OH}-\mathrm{F}$ interactions ${ }^{\mathbf{2 5}}$. For instance, the surface of alumina is modified by organosilylation of the hydroxyl groups using hexamethyldisilazane. The resultant KFmodified support was used to fluorinate benzyl bromide in 61% yield.

Cross-linked copolymers of divinylbenzene and styrene were used as a support material for KF to good effect. The copolymers contain no surface OH groups and can be synthesized to have specific surface properties ${ }^{26}:-$.

$$
\text { PhCOCl } \frac{\text { KF/polymer }}{\text { r.t., } 10 \mathrm{mins}} \text { PhCOF } \quad \text { (95\%) }
$$

1.3.1.6 Ion Exchange Resins

Anion exchange resins, such as Amberlite IRA 900 of the form below, have been used as carriers of fluoride ion ${ }^{27}$.

$$
\xrightarrow{\text { Amberlite } \mathrm{F}} \mathrm{PhCOCH}_{2} \mathrm{~F}
$$

The resin may be considered as both a phase transfer catalyst and a support material, acting in the following way:-

$$
F_{(\text {resin })}^{-}+R X \longrightarrow R F+X^{-} \text {(resin) }
$$

1.3.2 Alternatives to Alkali_Metal_Eluorides

Compounds based on elements of Group V (nitrogen, phosphorous) and Group VI (sulphur, selenium) have been studied as sources of fluoride ion and a brief outline of
their use is given here. However, the very hygroscopic nature and high cost of some of these reagents give large grounds for improvement.

13.2.1. Tetraalky Ammonium and Phosphonlum Salis

Tetraalkylammonium fluorides such as tetrabutylammonium fluoride (TBAF) have received considerable attention over the last few years. "Anhydrous" TBAF is prepared by heating TBAF. $3 \mathrm{H}_{2} \mathrm{O}$ at $40-45^{\circ} \mathrm{C}$ under high vacuum for several hours. It must be used immediately due to its hygroscopic nature and has been used in a full range of fluoride ion reactions ${ }^{\mathbf{2 8}}$, as shown in Table 2.

Iable 2 Reactions using TBAF as source of Fluoride ion

Substrate	Iime/hr	Product	Yield/\%
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br}$	0.1	$\mathrm{CH}_{2}=\mathrm{CH}_{-} \mathrm{CH}_{2} \mathrm{~F}$	85
$\mathrm{Ph}-\mathrm{CH}_{2} \mathrm{Br}$	8	$\mathrm{Ph}_{2} \mathrm{CH}_{2} \mathrm{~F}$	100
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Br}$	<1	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{~F}$	48
		$\left.\mathrm{CH}_{2}=\mathrm{CH}_{(\mathrm{CH}}^{2}\right)_{5} \mathrm{CH}_{3}$	12
		$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{OH}$	40
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{OTO}$	<1	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{~F}$	98
PhCOCl	<1	PhCOF	81

Also, fluorodenitration reactions of aromatic nitro groups have been performed ${ }^{29}$ and fluorodeoxy sugars have been prepared from pyranosides ${ }^{30}$.

Recently, a method for the preparation of anhydrous and $\mathrm{HF}_{2}{ }^{-}$free tetramethylammonium fluoride has been described ${ }^{31}$. Me4NF. $\mathrm{H}_{2} \mathrm{O}$ is first heated under vacuum to remove most of the water and then recrystallised in dry isopropanol as the alcoholate. The solvated alcohol is removed under vacuum at $80^{\circ} \mathrm{C}$.
$\mathrm{Me}_{4} \mathrm{NF}$ was found to abstract a proton from acetonitrile ${ }^{32}$ resulting in the slow formation of $\mathrm{HF}_{2}{ }^{-}$and the dimerisation of the acetonitrile:-

$$
2 \mathrm{~F}^{-}+\mathrm{CH}_{3} \mathrm{CN} \longrightarrow-\mathrm{CH}_{2} \mathrm{CN}+\mathrm{HF}_{2}^{-}
$$

Also, chlorinated solvents such as chloroform undergo halex reactions.

$$
\mathrm{CHCl}_{3}+\mathrm{Me}_{4} \mathrm{NF} \longrightarrow \mathrm{CHCl}_{2} \mathrm{~F}+\mathrm{CHClF}_{2}+\mathrm{CHF}_{3} \quad \text { (2:3:1 Molar Ratio) }
$$

This shows the remarkable reactivity of the fluoride ion when present as a soluble salt free from $\mathrm{HF}, \mathrm{HF}_{2}{ }^{-}$and water. Their use in organic synthesis is yet to be investigated but their reactions with solvents may be a problem.

Tetraphenylphosphonium hydrogendifluoride has been used successfully in a variety of halogen exchange reactions ${ }^{33}$. Similarly, tetraamidophosphonium hydrogendifluoride reacts with decyl tosylate and p-chloronitrobenzene to give the corresponding fluorides in 100% and 93% yield respectively ${ }^{34}$.

1.3.2.2 Phosphoranes

The salts methyltri-n-butylfluorophosphorane ($\left(\mathrm{n}_{-} \mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{PFCH} 3$) and phenyl tetrafluorophosphorane $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PF}_{4}\right)$ have been used in tosyl displacement reactions in the preparation of 2 -fluoro alkyl compounds ${ }^{35}$.

1.3.2.3 Amine Hydrofluoride Salis

Pyridine/HF mixtures and Triethylamine Trishydrofluoride have been used in a variety of fluorination reactions and will be discussed in detail in sections 1.5 and 1.6.

1.3.2.4 Dlethvlaminosulphur Trifluoride (DAST) and

 Iris(dimethylamino)-sulphonium Difluorotrimethylsilicate (TAS-F)DAST is prepared by reacting diethylaminotrimethylsilane with sulphur tetrafluoride ${ }^{36}$:-

$$
\mathrm{Et}_{2} \mathrm{NSi}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{SF}_{4} \longrightarrow \mathrm{Et}_{2} \mathrm{NSF}_{3}+\mathrm{SiF}\left(\mathrm{CH}_{3}\right)_{3}
$$

The main synthetic use for DAST is converting alcohols to fluorides ${ }^{37}$ and carbonyl groups to geminal difluorides.

However, DAST is thermally unstable and recently the more stable morpholino sulphur trifluoride has been recommended for fluorinations of alcohols ${ }^{38}$.

The more reactive fluoride ion source, TAS-F, is prepared by the reaction of dimethylaminosulphurdifluoride with dimethylaminotrimethylsilane:-

$$
\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{SF}_{2}+\mathrm{Me}_{2} \mathrm{NSI}\left(\mathrm{CH}_{3}\right)_{3} \longrightarrow \underset{\text { TAS-F }}{\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{~S}\right]^{+}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiF}_{2}\right]^{-}}
$$

TAS-F readily converts even unreactive halides to fluorides under very mild conditions and has been used to form stable perfluorinated carbanion salts ${ }^{\mathbf{3 9}}$, in a fluoride promoted C-C bond cleavage reaction.

A comprehensive review on the use and reactions of DAST, TAS-F and related reagents has been published recently ${ }^{36}$.

1.3.2.5 Tris(morpholino)selenonium Fluoride

The reaction of RSiMe_{3} ($\mathrm{R}=$ morpholino) with selenium tetrafluoride gives tris(morpholino) selenonium fluoride, which has been used in a few fluorination reactions ${ }^{40}$.

$$
\begin{align*}
& \mathrm{PhSO}_{2} \mathrm{Cl} \xrightarrow{\mathrm{R}_{3} \mathrm{Se}^{+} \mathrm{F}} \mathrm{PhSO}_{2} \mathrm{~F} \\
& \mathrm{Ph} 2 \mathrm{POCl} \xrightarrow{\mathrm{R}_{3} \mathrm{Se}^{+} \mathrm{F}} \mathrm{Ph}_{2} \mathrm{POF}
\end{align*}
$$

1.4_Hydrogen_Fluoride as a_Fluorinating_Agent

1.4.1 Classical Processes

Anhydrous Hydrogen fluoride (HF) is one of the least expensive fluorinating agents and has been used in a variety of halex and electrophilic addition reactions ${ }^{2}$:-

However, most reactions using HF are performed under pressure or in the vapour phase due to its low boiling point $\left(19.6^{\circ} \mathrm{C}\right)$. The corrosive and harmful nature of HF requires rigorous safety precautions and specialist equipment.

1.4.2 HF used in_Conjunction with Lewis Base Co-solvents

To overcome the high volatility of HF several authors have studied complexes of HF with various Lewis bases as co-solvents.

Stable solutions of HF in amides ${ }^{41}$ (formation of amide/HF complexes), carbamic acids and esters ${ }^{42}$ (hydrofluorination of epoxide rings in steroids), trialkylphosphines ${ }^{43}$ (formation of triethyl and triphenyl phosphine/HF complexes) and tetrahydrofuran ${ }^{44}$ (ring opening hydrofluorination of epoxides in steroids) were investigated. There has been renewed interest in THF/HF solutions ${ }^{45,46}$, the solution formed being a more effective source of fluoride ion than HF and also more acidic than pyridine/HF. Examples of the use of HF/THF solutions are below ${ }^{44-46}$:-

- -via an umpolung strategy involving the phenoxonium ion as an intermediate

(74\%)

It was not until the introduction of amine/HF complexes, in particular Pyridine/HF, that a general fluorinating agent using HF coupled to a base became widely accepted. These reagents are discussed in detail in the next section.

1.5 Pyridine Poly(Hydrogen Fluoride) - Olah's Reagent

The use of Lewis Base/HF solutions as fluorinating reagents became widely accepted upon the introduction of Pyridine/HF solutions by Olah ${ }^{47}$, although pyridine/HF solutions had been used previously in epoxide ring opening hydrofluorination reactions of steroids by Bergstrom ${ }^{48}$.

Pyridine forms stable solutions with anhydrous HF. The solution generally used consists of about 9 equivalents of HF to 1 of pyridine ($70 \% \mathrm{w} / \mathrm{w} \mathrm{HF}, 30 \% \mathrm{w} / \mathrm{w}$ pyridine) and is stable to $55^{\circ} \mathrm{C}$.

Pyridinium Fluoride can be prepared by the reaction of formyl fluoride with pyridine through the decarbonylation of the intermediate N -formylpyridinium fluoride ${ }^{49}$.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}+\mathrm{HCOF} \longrightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N} . \mathrm{H}\right)^{+} \mathrm{F}^{-} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N} . \mathrm{HF}+\mathrm{CO}
$$

However, no spectral data appears in the publication.

1.5.1. Structure of Pyridinium Poly(Hydrogen Fluoride)

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum for pyridinium poly(hydrogen fluoride) shows a typical pattern for pyridinium ring protons but the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum at $-60^{\circ} \mathrm{C}$ shows a quintet $\left(\mathrm{JHF}_{\mathrm{HF}}=120 \mathrm{~Hz}\right)$ at 188.1 ppm , indicating the presence of a polyhydrogen fluoride species in which each fluorine atom is surrounded by four protons:-

It is unclear whether any exchange occurs between the pyridinium cation and the HF matrix and we would also expect to see n.m.r. peaks due to species such as $\mathrm{HF}_{2}{ }^{-\cdot}$. The presence of pyridinium hydrogen difluoride in pyridinium poly(hydrogen fluoride) solutions was shown in low temperature X-ray crystallographic work by Mootz ${ }^{50}$ (see below). Perhaps, as $\mathrm{PyH}+\mathrm{HF}_{2}{ }^{-}$and $\mathrm{PyH}+\mathrm{F}$ have melting points of $-1^{\circ} \mathrm{C}$ and $-31^{\circ} \mathrm{C}$ respectively, from differential thermal analysis, these species were not seen in the n.m.r. spectrum as they are solid at $-60^{\circ} \mathrm{C}$ (No n.m.r. solvent is indicated in the publication). Hence, at $-60^{\circ} \mathrm{C}$ the only species present in pyridinium poly(hydrogen
fluoride)solutions are Pyridine. 5 HF and higher homologues which give rise to the observed quintet.

The pyridine/HF mixture was studied by differential thermal analysis and X ray crystallography by Mootz ${ }^{50}$, who identified 8 intermediary compounds, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} . \mathrm{nHF}$ ($n=1-8$), with melting points between -1 and $-124^{\circ} \mathrm{C}$. X -ray structures of complexes $n=1-4$ were obtained. See Fig. 1 for structures of $n=1,2$.

The following points can be noted from the structures reported:-

1) In complex $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N} . \mathrm{HF}(\mathrm{n}=1)$ the hydrogen atom in the NHF hydrogen bond is found much closer to the fluorine atom than to the nitrogen atom suggesting that the hydrogen bond is of the type F-H..N rather than F..H-N, i.e. the base is not protonated by the

Fig1 X-ray Crystal Structures of Pyridine.nHF Complexes

The structures of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} . \mathrm{nHF}$ with $\mathrm{n}=1,2$, and 3 . One formula unit each with interatomic distances (pm) and angles. The N-F and F-F distances in the hydrogen bonds are underlined.
acid. This is the first hydrogen bond of this type reported and the shortest between nitrogen and fluorine.
2) Complex $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N} .2 \mathrm{HF}\left(\mathrm{n}=2\right.$), can be reformulated as $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \mathrm{HF}_{2}{ }^{-}$, pyridinium hydrogendifluoride, with the H atom in an off-centre position.
3) lonic formulae are also true of the higher pyridine/HF complexes, e.g $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \mathrm{H}_{2} \mathrm{~F}_{3}{ }^{-}(\mathrm{n}=3)$, and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \mathrm{H}_{3} \mathrm{~F}_{4}^{-}(n=4)$.

1.5.2_Reactions of_Pyridinium_ poly(hydrogen_fluoride)

Pyridinium poly(hydrogen fluoride) was found to be an effective fluorinating agent for various additions to alkenes and alkynes, for deaminative and dediazonative halogenation reactions, for fluorine substitution of hydroxyl groups and halogen exchange reactions ${ }^{47,51 \text {, as summarised in Table } 3 .}$

Table 3. Reactions Performed Using_Pyridinium Poly(Hydrogen Fluoride)

Dediazonative fluorinations of \boldsymbol{p}-aminophenols have been performed recently52,53.

More recently, pyridinium poly(hydrogen fluoride) has been used in ring opening hydrofluorination reactions of aziridines ${ }^{54,55}$, azabicycloalkane ${ }^{56}$ and cyclopropane ${ }^{57}$ ring systems, as summarised in Table 4.

Table 4 Ring Opening_Hydrofluorination_Beactions using Pyridine Poly(Hydrogen Eluoride)

Aziridines ${ }^{54,55}$

Ring opening hydrofluorination of 3-aza-1,8,8-trimethyl-tricyclo
[5.2.1.0 ${ }^{2,4}$] octane leads to a variety of products ${ }^{58}$.

Azabicycloalkanes ${ }^{56}$

Cyclopropanes ${ }^{57}$

Poly-4-vinyl pyridinium poly(hydrogen fluoride), a solid pyridine poly(hydrogen fluoride) has been used in hydrofluorinations and bromofluorinations of alkenes ${ }^{59}$.

Most recent publications dealing with Amine/HF systems utilise Et3N.3HF as the fluorinating agents and it is to these systems that we now turn.

1.6 Amine Hydrofluoride Salts

1.6.1 Introduction

Amine hydrofluoride salts have been known since 1879 when Beamer and Clarke ${ }^{60}$ prepared white, crystalline aniline hydrofluoride. A comprehensive study of amine hydrofluorides was carried out by Berliner and Mann ${ }^{61 \text {, who prepared }}$ hydrofluoride salts of aromatic, primary, secondary and tertiary amines. They suggested a structure of base. 4 HF after titration with sodium hydroxide.

The use of amine hydrofluorides as fluorinating agents remained limited to steroids ${ }^{48}$ until Franz ${ }^{62}$ prepared a series of amine trishydrofluorides, such as $\mathrm{Et}_{3} \mathrm{~N} .3 \mathrm{HF}$. These hydrofluoride complexes were found to be stable, distillable under vacuum, could be handled without hazard and did not corrode borosilicate glass. Since then $\mathrm{Et}_{3} \mathrm{~N} .3 \mathrm{HF}$ and other amine trishydrofluorides have been used in a range of fluorination reactions (see Section 1.6.3), similar to those carried out using Olah's reagent (Section 1.5.2). Spectroscopic studies of these systems are discussed here followed by their use in synthesis.

1.6.2 Spectroscopy of Amine.HF Systems

The structure of $\mathrm{R}_{3} \mathrm{~N} . \mathrm{nHF}$ systems ($\mathrm{R}=$ alkyl) is not very well understood. Unlike the case of pyridine/HF, no crystallographic data of the complexes present in $\mathrm{R}_{3} \mathrm{~N} . \mathrm{nHF}$ mixtures has been published. N.m.r. spectroscopy has been used to investigate these systems in solution and so a discussion of the n.m.r. and also the i.r. of $\mathrm{R}_{3} \mathrm{~N}$.nHF and related systems, such as $\mathrm{F}^{-}, \mathrm{HF}$ and $\mathrm{HF}_{2}{ }^{-}$containing species, follows.

1.6.2.1 Nuclear Magnetic Resonance Spectroscopy

Before we can discuss the n.m.r. spectra of R3N.HF salts, we need to review the literature data concerning the species that may be involved in solutions of these salts i.e. $\mathrm{F}^{-}, \mathrm{HF}$ and $\mathrm{HF}_{2}{ }^{-}$

The literature covering the n.m.r. of fluoride ion in solution is very confused; different authors quote different signs for upfield and downfield, references, solvents and concentrations, all of which affect the fluorine shift.The situation was improved on the publication of a review by Hudlicky ${ }^{63}$, who repeated some of the n.m.r. experiments.

The following table is taken from that review ${ }^{63}$, and shows the variation of fluorine shift for each species as measured by various authors.

Iable 5 N.M.R. shifts of $\mathrm{F}^{-}, \mathrm{HF}$ and $\mathrm{HF}_{2}{ }^{-}$. Chemical shifts are given in negative values of ppm upfield of CFCl_{3}.

Species	F^{-}	HF	$\mathrm{HF}_{2}{ }^{-}$
KF(aq)	-124.8		
KF(aq)	-120.2		
KF(aq)	-117.5		
PriNF	-114.6		
HF(aq)		-204.0	
HF(anhyd)		-196.0	
$\mathrm{Bu}_{4} \mathrm{NHF}_{2}$			-144.0
PriNHF2			-149.4

From this table we can make the general assumption that fluoride ion has a shift between -114-125ppm; HF between -160-200ppm and HF_{2} - between -144149ppm.

However, we must note that the shifts for fluoride ion were measured in either aqueous or aqueous organic solutions, and so are not really due to fluoride ion alone because of hydrogen bonding between F^{-}and water. This was confirmed by Christe ${ }^{64}$, who has very recently prepared anhydrous tetramethylammonium fluoride (Me4NF). ${ }^{19} \mathrm{~F}$ n.m.r. of this compound in solution (MeCN) showed a singlet at -73.2ppm, significantly shifted from other values for F - by about 40 ppml However, Me4NF was found to react with the acetonitrile ${ }^{32}$ to form $\mathrm{HF}_{2}{ }^{-}$(section 1.3.2.1), so the fluoride ion is still not "naked" but must hydrogen bond with acetonitrile as F^{-}is such a strong base.

Christe concluded that the large upfield shifts noted for fluoride ion in aqueous solution was probably due to the presence of $\mathrm{HF}_{2}{ }^{-}, \mathrm{HF}$ or both; the shift of the singlet, broadened by the rapid exchange between these species, depending on the relative molar amounts of each species.

The lowfield shift for anhydrous $\mathrm{Me}_{4} \mathrm{NF}$ is supported by solid state measurements on CsF, by Clark ${ }^{65}$. On reducing the water content in CsF samples a downfield shift occurs to the limiting anhydrous CsF case where the shift is -79ppm.

Hence, the amount of water present seems to be a controlling factor on the F- chemical shift.

Intuitively, we would predict that on going from HF to F^{-}, thus increasing the electron density on F, an upfield shift would occur, such as in the case of ${ }^{13} \mathrm{C}$ NMR (e.g. an upfield shift is observed on negatively charged carbon atoms in stable fluorinated carbanions ${ }^{66}$). However in this case, on going from HF to F^{-}, a downfield shift is seen. The change in electron density on F may be negligible due to the small size of the HF molecule.

The shift of F^{-}in $\mathrm{Me}_{4} \mathrm{NF}$ is also dependent on the solvent (e.g. -136.7 in ethanol, -97 in dichloromethane) ${ }^{64}$. This could be attributed to the strength of the hydrogen bonding between the solvent and fluoride ion, but the work of Symons 67 showed that the trends in F^{-}shift (${ }^{19 \mathrm{~F}}$ NMR) in a series of different solvents was similar to the trends in the shifts of Xenon (${ }^{129} \mathrm{Xe}$ NMR), as compared to ${ }^{\mathbf{3 5}} \mathrm{CI}$ NMR data. Xenon would not be expected to hydrogen bond with the solvents, so if the trends in chemical shifts of Xe and F^{-}are analogous then the controlling factor behind the shifts must be the same, but not the strength of the hydrogen bonding with the solvent. However, the factors which effect the shifts in the Xe case are not stated. The ease of solvation of F^{-}may be an important factor.

However as a general rule we may observe that $\mathrm{F}^{-}, \mathrm{HF}$ and $\mathrm{HF}_{2}{ }^{-}$come in the following shift ranges:-

```
F- : -75ppm (anhydrous, ion-pair, e.g. Me4N+F-)
F- :-114-125ppm (in presence of HF and HF2', broad due to exchange)
HF2- : -144-149ppm (JHF=122 Hz)
HF : -160-200ppm (broad due to exchange)
```


1.6.2.1.1_R3N.nHF Systems

The ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ n.m.r. of $\mathrm{R}_{3} \mathrm{~N} . \mathrm{nHF}$ ($\mathrm{n}=1,1.5,2$) systems were studied by Cousseau ${ }^{68}$ at room temperature and at $-80^{\circ} \mathrm{C}$, (Table 6).

Table_6 ${ }^{19}$ E N.M.R. Spectra of R3N.nHF Systems

Chemical shifts are quoted as negative values upfield of CFCl_{3}

	Boom Temperature	$-80^{\circ} \mathrm{C}$	
		$\delta_{\text {F }}\left(\mathrm{F}^{-}\right)$	$\delta_{F}\left(H F F 2^{-}\right)$
Et3N.HF	-150.5	-123.6	-152.0
			($\mathrm{JHF}^{\text {c }}$ 138Hz)
Et3N.1.5HF	-153.0	not observed	-151.7
			($\mathrm{JHF}^{\text {c }}$ 138Hz)
Et3N.2HF	-158.0		
Bu3N.HF	-151.2	-125.3	-152.0
			($\mathrm{JHF}^{\text {c }}$ 138Hz)
$\mathrm{Bu}_{3} \mathrm{~N} .2 \mathrm{HF}$	-159.2		

Hence, we may consider that amine.HF systems are a series of equilibria in solution:-

$$
\begin{align*}
& \frac{\lambda}{\lambda} \mathrm{N}:+2 \mathrm{HF} \rightleftharpoons \mathrm{NH}^{+}+\mathrm{F}+\mathrm{HF} \\
& \frac{\lambda}{2} \mathrm{NH}^{+}+\mathrm{HF}_{2^{-}} \quad \text { (2) }
\end{align*}
$$

These assumptions agree with the observed singlet seen in the ${ }^{19} \mathrm{~F}$ spectrum at room temperature caused by fast proton and fluorine exchange:-

$$
\begin{align*}
& \mathrm{HF}+\mathrm{F} \rightleftharpoons \mathrm{~F}+\mathrm{HF} \tag{3}\\
& \mathrm{HF}+\mathrm{HF}_{2}^{-} \rightleftharpoons H F_{2}^{-}+\mathrm{HF} \tag{4}
\end{align*}
$$

So, in compounds with no "free HF", i.e. R3N.HF, we see signals due to F- and $\mathrm{HF}_{2}{ }^{-}$as the rates of exchanges (3) and (4) are slowed down due to excess amine. Cousseau concluded that Bu3N.HF exists in the ionic forms in solution which give rise to both F^{-}and $\mathrm{HF}_{2}{ }^{-}$signals.

Apart from the low temperature n.m.r. of Olah on pyridine/HF systems ${ }^{47}$ (no F^{-}or HF_{2} observed), this appears to be the only n.m.r. study performed on amine.HF complexes.

1.6.2.2_Infra_Red Spectroscopy

A short discussion of the infra red data concerning HF and $\mathrm{HF}_{2}{ }^{-}$systems appears here, as we need to ascertain later whether Amine.HF salts contain these species.

1.6.2.2.1_Hydrogen Fluoride

The i.r. spectrum of hydrogen fluoride in the gas phase as well as in solution $\left(\mathrm{CCl}_{4}\right)$ was measured ${ }^{69}$ and the absorption band found to be at $2.61 \mu=3820 \mathrm{~cm}^{-1}$.

1.6.2.2.2 Hydrogen Difluoride $\mathrm{HF}_{2}{ }^{\circ}$

The $\mathrm{HF}_{2}{ }^{-}$anion, a linear triatomic species, can exist either as a symmetrical (centred H) or an asymmetrical (non-centred H) species, as reviewed by Emsley ${ }^{70}$. Most difluoride species have a centred $\mathrm{H}, \mathrm{e} . \mathrm{g}$. KHF2, as shown by X-ray crystallography and i.r. spectroscopy ${ }^{71,72}$. The very short $R(F . . . F)$ distance was measured to be 225pm. However, not all crystals have a periectly centred $\mathrm{HF}_{2}{ }^{-}$anion. p -Toluidinium hydrogendifluoride forms a secondary hydrogen bond (N-H..F-H-F) which displaces the proton from the central position ${ }^{73}$.

The i.r. absorptions for both symmetrical and asymmetrical difluoride anions are shown in Table 7, data from ref. 70.

Iable 7. Infra Red absomtions for Hydrogen Difluoride_Species

	Geomety	ν_{1}	ν_{2}		ν_{2}
KHF_{2}	centred	inactive	1225,	1274	1450
$\mathrm{Pr}_{4} \mathrm{NHF}_{2}$	centred	inactive	1255,	1315	1900
$\mathrm{p}-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}-$	non-centred	450	1080,	1230	1740

$\mathrm{NH}_{3}{ }^{+} \mathrm{HF}_{2}{ }^{-}$
All absorptions measured in $\mathbf{c m}^{-1}$.

If the difluoride ion is centred v_{1} is i.r. inactive. The doublet observed for v_{2} in $K_{H} F_{2}$ is due to lattice energy effects lifting the degeneracy of this mode, not due to the
$H F_{2}{ }^{-}$being asymmetric. In asymmetric $H F_{2^{-}}$, the doublet has a separation of $150 \mathrm{~cm}^{-1}$, as in the case of p-ioluidinium hydrogendifluoride.

1.6.2.23 Trialkylamine Hydrogen Fluoride Systems

The IR spectra of Me3N.nHF and Et3N.nHF complexes in solid argon matrices at 10K were measured by Andrews ${ }^{74}$. Fundamental vibration modes for both the $1: 1$ and 1:2 complexes were measured for both systems.

The vibrational modes for $\mathrm{R}_{3} \mathrm{~N} . \mathrm{HF}$ and $\mathrm{R}_{3} \mathrm{~N} .2 \mathrm{HF}$ and the measured absorptions for each system are as follows:-

1:1 Complex

	$\nu_{\mathrm{s}} / \mathrm{cm}^{-1}$	$\nu_{1} / \mathrm{cm}^{-1}$
Me3N.HF	2589	1030
EisN.HF	2527	-

The trimethylamine HF complex also shows two distinct perturbated C-N stretching modes.

1:2 Complex

	$v_{s a} / \mathrm{cm}^{-1}$	$v_{s b} / \mathrm{cm}^{-1}$
Me3N.2HF	1870	2548
Et3N.2HF	1889	-

In general the 1:2 complexes were characterised by a strong band near the $1900 \mathrm{~cm}^{-1}$ region of "shared" proton vibrations. The vibrational spectra suggest that H_{a} is shared between N and the inside $F . H_{b}-F$ is lengthened but H_{b} is too close to the terminal F for F..H-F to be considered as an asymmetric difluoride ion.

1.6.3 Reactions of Amine Hydrofluorides as Fluorinating Agents

Amine.HF systems, usually $\mathrm{Et}_{3} \mathrm{~N} .3 \mathrm{HF}$, have been used to carry out a range of fluorination reactions similar to those performed with pyridine/HF. A comprehensive review of the reactions involving $\mathrm{E}_{3} \mathrm{~N} .3 \mathrm{HF}, \mathrm{iPr}_{2} \mathrm{NH} .3 \mathrm{HF}$ and $\mathrm{Me}_{3} \mathrm{~N} .2 \mathrm{HF}$ as fluorinating agents is discussed here. Halex, halofluorination, sulphenylation fluorination, ring opening hydrofluorination and oxidative fluorination reactions are presented.

1.6.3.1_Halogen_Exchange Reactions (Halex)

Franz used Et3N.3HF to prepare fluoroacetone, cyanuric fluoride, difluorophosgene, oxalyl fluoride, and sulphur tetrafluoride62. Other fluorinations of activated, chlorinated heterocycles have been performed ${ }^{75}$.

1.6.3.2 Halofluorination

Et3N.3HF used in conjunction with N -halosuccinimides is a useful reagent for the halofluorination of alkenes ${ }^{76}$. The reactions are stereospecifically anti-additions and for unsymmetrical alkenes the orientation of addition follows Markownikoff's rule.

Similarly, bromofluorinations of allylic alcohols have been achieved ${ }^{77}$.

In halofluorinations of cyclic dienes, such as cyclodeca-1,5-diene, transannular π-participation of the second double bond is observed 78 .

The same effect is seen in the halofluorination of norbornadiene where a variety of products are obtained ${ }^{79}$.

(5\%)

Similarly, transannular oxygen participation is seen in the halofluorination of 9-oxabicyclo[6.1.0]non-4-ene ${ }^{80}$.

1.6.3.3 Sulphenylation Fluorination

Stereoselective sulphenylation fluorination can be carried out using (MeSSMe $\left.{ }_{2}\right)^{+} \mathrm{BF}_{4}{ }^{-}$with Et3N.3HF to form β-fluoro thio(methyl)ethers ${ }^{81,82 .}$

An alternative method of synthesizing β-fluoro thioethers is by first forming the episulphonium chloride by addition of phenylsulphur chloride to the alkene followed by ring cleavage by the fluorinating agent ${ }^{63}$.

1.6.3.4 Phenviselenofluorination

β-phenylselenofluorides may be synthesized by the reaction of N phenyiselenophthalimide with alkenes in the presence of Et3N.3HF in a one-pot reaction ${ }^{84}$.

Similar reactions are seen with alkynes ${ }^{85}$.

1.6.3.5 Bing Opening_Reactions

1.6.3.5.1 Aziridines

α, β-fluoroamines may be prepared by the ring opening of aziridines ${ }^{\mathbf{8 6}}$.

The stereochemical course of the reaction depends on the relative stabilities of the aziridinium ion and the open carbonium ion and the nature of the fluorinating agent (acidity and nucleophlicity). In cyclic systems trans-fluoroamines were obtained by the reaction of N -activated aziridines with Ei3N.3HF, whereas the cis compound is obtained with Olah's reagent ${ }^{86}$.

1.6.3.5.2 Aziridinium Ion

Fluorodeoxyglucopyranosides have been prepared from altropyranosides bearing N, N-diallylamine and mesylate groups in a trans configuration $87,88$.

Neighbouring group participation by the diallylamino group produces the aziridinium ion which is ring opened by fluoride ion resulting in a 1,2 shift of the nitrogen atom. The diallylamino group is then reduced using hydrogen on a palladium catalyst. Similar reactions have been carried out using this methodology $89,90$.

Triflate groups may be replaced by fluorine in carbohydrate systems using this idea ${ }^{91}$.

1.6.3.5.3 Epoxides

Epoxide ring systems are regioselectively opened with amine. HF complexes to give the corresponding trans-addition products ${ }^{92,} 93$.

28
 (100\%)

Optically active α, β-fluoroalcohols may be prepared from the corresponding optically active epoxide ${ }^{94-96}$.

Fluoroalkyl epoxides give similar products ${ }^{97}$.

1.6.3.6 Oxidative Fluorinations

Phenols may be oxidatively fluorinated at the anode to form difluorocyclohexadienones using Et3N.3HF with lead tetra-acetate ${ }^{98}$.

1.6.3.7 Other Systems

Mixtures of melamine/HF have been used in hydrofluorination reactions of alkenes ${ }^{99,} 100$ (e.g. cyclohexene gives fluorocyclohexane in $\mathbf{9 8 \%}$ yield). Recently, amine. HF systems have been used as catalysts in conjunction with chromium chloride impregnated support materials in the fluorination of carbon tetrachloride by HF to give a mixture of chlorofluorocarbons ${ }^{101}$.

Since the writing of this chapter, a review covering a similar subject area has been published ${ }^{102}$. This review concentrates on the use of the pyridine/HF system and is not comprehensive with respect to the trialkylamine hydrofluoride systems. Also, no discussion of the structures of hydrofluoride salts is present.

1.8-Bis(dlmethylaming)naphthalene Hydrofluoride (PS/HF) as a Potential Source of Soluble Fluoride Ion

2.1 Introduction

The types of fluoride ion reagent that are currently available have been discussed in Chapter One. However, there remains a need for a source of soluble fluoride ion, as reagents such as the alkali metal fluorides are largely insoluble in organic solvents which limits their use in organic synthesis.

One obvious possiblity is the use of amine.HF complexes, as reagents such as $\mathrm{Et}_{3} \mathrm{~N} .3 \mathrm{HF}$ have already been used successfully as fluorinating reagents. Thus, we decided to investigate whether amine. HF systems could act as fluoride ion donors in solution.

However, problems associated with amine. HF complexes in solution are that an equilibrium exists between amine. HF , free $\mathrm{HF}, \mathrm{HF}_{2}{ }^{-}$and the free amine, and the position of equilibrium will affect the reactivity of the amine. HF complex as fluoride ion donors. Factors which may affect this equilibrium are the base strength and the size of the hydrocarbon moiety of the amines. We therefore wanted to determine whether the proton of HF could be effectively "buried" in the hydrocarbon part of the amine thus leaving the fluoride ion free to react with organic substrates.

Hence, a series of amine.HF complexes were synthesised and their reactivity as fluoride ion sources monitored. We chose sterically hindered, non-nucleophilic, strong bases as the carriers of HF in order to "bury" the proton as much as possible. The amine. HF complexes were then used as the source of fluoride ion in a range of experiments designed to measure their reactivity as fluoride ion donors. Details of the experiments performed are given in the following discussion.

Initially we investigated the HF complex of Proton Sponge as PS is a very strong base ($\mathrm{PK} \mathrm{K}_{\mathrm{a}}$ of the conjugate acid $=12.3$), sterically hindered around the basic site and is a large molecule which should aid the solubility of the HF complex in organic solvents. A discussion on the preparation, structure, basicity, spectroscopy and reactions of PS follows.

2.2 1.8-Bis(dimethylamino)Naphthalene (Proton_Sponge)

2.2.1 Preparation

1,8-Bis(dimethylamino)naphthalene was first obtained as an oil by Brown ${ }^{103}$ who reduced 1,8 -dinitronaphthalene by tin chloride $/ \mathrm{HCl}$ to form the diamine which was then methylated using excess methyl sulphate. Alder obtained the product as a solid (m.p. $47-48^{\circ} \mathrm{C}$) by extracting into an aqueous pH 8 solution ${ }^{104}$. An improved synthesis was published in 1972 when the diamine was methylated using excess dimethyl sulphate in the presence of sodium hydride ${ }^{105}$:-

1,8-Bis(dimethylamino)naphthalene is now marketed by Aldrich under the name "Proton Sponge", and will be referred to as PS in the following discussion.

A series of other $N, N, N^{\prime}, N^{\prime}$-tetrasubstituted compounds have been prepared from the parent diamine in a similar manner ${ }^{106}$.

2.2.2 Structure

The structure of PS is especially interesting because of the steric effects that are encountered. The 1,8 -naphthalene substituents are said to be peri to each other and are much closer to one another than to ortho substituents on the aromatic ring.

Steric strain of peri substituents may be overcome by (1) a stretching of the bonds; (2) in-plane deflection of substituents; (3) out-of-plane deflection; (4) distortion or buckling of the ring. A stretching of the bonds is ruled out because of the high energy required for such a process and so a compromise situation is reached. Other factors in the case of PS are (1) there is no possibility of bringing even one of the dimethylamino groups into the plane of the ring; (2) if the methyl groups are out of each others way then the nitrogen lone pairs will be brought face-to-face; (3) if the nitrogen lone pairs are favourably situated, one pair of the methyl groups will interfere strongly with a nitrogen atom.

Einspahr and Robert carried out an X-ray crystal structure determination (Fig. 2) to investigate these effects ${ }^{107}$.

From the structure we can see that the naphthalene ring is non-planar and the molecule has accommodated the bulky peri substituents with surprisingly little strain. The C (ring) -N bonds have retained a significant amount of p-character, and two of the N -C(methyl) bonds remain in the plane of the ring. Close interlocking of the hydrogen atoms is the key to the molecular conformation, the atoms of the methyl groups being neatly staggered with respect to the ring hydrogen atoms.

2.2.3 Structure of 1.8-Bis(dimethylamino)naphthalene Salis

Protonation of PS causes the following modifications to the structure ${ }^{108}$; (1) the N-N distance is shortened as tone pair repulsions are eliminated (this is one contributing factor to the high basicity of PS); (2) the naphthalene ring becomes more planar; (3) in the N-H-N bridge the proton does not exist in a straight line between the nitrogen atoms.

Errors in X-ray crystallography limits the evidence for the proton existing in a symmetric or unsymmetrical N-H-N bridge. $\mathrm{N}_{1 \text { s }}$ ESCA studies ${ }^{109}$ on $\mathrm{PSH}^{+}+\mathrm{BF}_{4}$ - show two inequivalent nitrogen atoms which suggests an unsymmetrical N-H-N bridge. This is supported by positive proton NMR isotope effects ${ }^{110}$.

2,2,4_Basicity

PS (pK_{a} of the conjugate acid $=12.3$) has a much greater basicity than the parent 1,8-naphthalenediamine ($\mathrm{pK}_{\mathrm{a}} 4.6$) and ten million times greater than that of N, N-dimethylaniline ($\mathrm{pK}_{\mathrm{a}} 5.1$). The reasons for this huge increase in basicity have been of considerable interest. Basicities of some substituted 1,8-diaminonaphthalenes are listed below (Table 8).

Table 8. $\mathrm{pK}_{\text {a }}$ Values for Proion Sponge Coniugate Acids and Related Compounds

B	B_{1}	DK_{g}
Me	H	12.1
Et	H	12.7
Me	OMe	16.1
Et	OMe	16.3

The high basicity of PS type compounds is considered to be due to the following reasons; (1) relief of lone pair-lone pair repulsions on protonation resulting in a decrease in the steric strain of the system; (2) protonation gives a monocation with a very stable intramolecular hydrogen bond; (3) the naphthalene ring is forced to be more planar on protonation; (4) recent calculations suggest that the basicity is due to the destabilisation of the neutral form of PS because of its inability to form a hydrogen bond between the methyl groups and the nitrogen atoms ${ }^{111}$.

The increase in basicity on addition of 2,7-methoxy substituents is attributed to the "buttressing" effect, the methoxy groups forcing the naphthalene ring to adopt a more planar configuration in the free base thus giving a greater relief in strain on protonation ${ }^{112,} 113$.

The high basicity of PS is accompanied by very low rates of proton transfer ${ }^{114}$ due to the intramolecular hydrogen bond which is stabilised by hydrophobic NMe_{2} groups. Proton transier is considered to be a two step process; the hydrogen bond is broken followed by deprotonation. This low rate of proton transfer means that PS has not found many uses as a base catalyst in organic syntheses (section 2.2.6).

2.2.5 Spectroscopy

2,2.5.1 Ultraviolet Spectroscopy

The long wavelength band of PS in the UV spectrum appears at 335nm (log $\varepsilon_{\max } 3.96$) which is shifted to $285 \mathrm{~nm}\left(\log \varepsilon_{\max } 3.78\right)$ on protonation ${ }^{104}$.

2.2.5.2 Infra Red Spectroscopy

The infra red spectra of PS salis have been studied by Polish workers ${ }^{115-117}$. The protonic absorption band due to the protonic vibrations in the potential well between the two nitrogen atoms, i.e. $\mathrm{N} \cdot \mathrm{H}^{+}-\mathrm{N}$, is found at low frequencies ${ }^{115}$, e.g. $\mathrm{PS} / \mathrm{HBr}$ at $543 \mathrm{~cm}^{-1}$. The absorption is dependent on the counter ion which interacts with the $\mathrm{N}-\mathrm{H}-\mathrm{N}$ bridge. A shift to higher frequencies is seen with an increase in the base strength of the anion and the isotopic ratio (ISR), $\nu \mathrm{LH} / \mathrm{vD}$, was found to decrease as the frequency increased. N-H-N stretching absorptions and ISR ratios are listed in Table 9.

Table 2 N-H-N Infra Red Stretching absorptions in Proton Sponge Salts.

Low absorption High ISR

High absorption Low ISR

Acid	$\nu_{\mathcal{S}} \mathcal{L e m}^{-1}$	ISR
HBF_{4}	463	1.85
HPF_{6}	479	2.05
HI	509	2.0
HBr	543	1.7
Pentachlorophenol	590	1.0

The rich structure of this band was due to the coupling with other low frequency, internal vibrations of the naphthalene ring. Except for a narrow band at $1200 \mathrm{~cm}^{-1}$, there are no absorptions at a higher frequency that may be due to protonic vibrations.

The IR spectra of the salts in acetonitrile solutions have been investigated ${ }^{117}$. In solution the protonation of PS is seen in the absorptions of the methyl groups. The N -Me bands at $2900-3000 \mathrm{~cm}^{-1}$ disappear for $\mathrm{PS}^{2} \mathrm{HBF}_{4}$ as the base is still fully protonated in solution. Absorptions due to N -Me may still be seen if some free base remains in solution, as is the case for PS.Pentachlorophenol.The absorption at $1576 \mathrm{~cm}^{-1}$ in the free base due to the asymmetry of the buckled naphthalene ring also decreases in intensity when the base is protonated as protonation causes a flattening of the ring removing the asymmetry. The protonic absorption band is a continua extending from $300-3000 \mathrm{~cm}^{-1}$. The interaction of polar solvent molecules cause drastic changes in the bridge geometry and hence the potential shape of the proton motion. For all PS salts the broad continua indicates complete dissociation has taken place.

2.25.3 Nuclear Magnetic_Resonance Spectroscopy

The mode of rotation of the peri NMe2 groups in the free base is an interesting question because of the steric considerations. At room temperature the methyl protons have a shift of 2.77 ppm (singlet) but at $-133^{\circ} \mathrm{C}$ a $1: 1$ doublet is seen, centred at $2.74 \mathrm{ppm}(\mathrm{J}=25.6 \mathrm{~Hz}$). The symmetry of the spectral changes suggests that conformational changes are taking place, the naphthalene ring flipping from the most stable C_{2} conformer through a $\mathrm{C}_{2 v}$ transition state to the other C_{2} conformer ${ }^{118}$.

On protonation, the proton on the nitrogen is extremely deshielded and has a very high shift, e.g. $\mathrm{PSH}^{+} \mathrm{BPh}_{4}{ }^{-} \delta \mathrm{H}_{+}=18.46 \mathrm{ppm}{ }^{110}, \mathrm{PSH}^{+} \mathrm{CO}_{2} \mathrm{CF}_{3}{ }^{-} \delta \mathrm{H}_{+}=19.5 \mathrm{ppm}{ }^{104}$.

2.2.6_Reactions

PS is weakly nucleophilic for steric reasons and is recovered unchanged after four days reflux with ethyl iodide ${ }^{104}$. PS has been used in organic synthesis as a strong hindered, non-nucleophilic base in base catalysed reactions ${ }^{119-120}$, but the slow rate of proton transfer has limited its use.

36

(R)-(+)-
(R)-(+)-

(94\%)

Recently, PS has been shown to react with electrophiles in aromatic substhution reactions but these will be discussed in the introduction to Chapter 4.

2.3.The_Hydrofluoride Complex of 1.8-Bis(dimethylamino)naphthalene (Proton Sponge)

23.1 Preparation of PS/HF

The PS/HF complex (1) is formed by adding the required $1: 1$ stoichiometric amount of an HF/ether solution to an ethereal solution of the base. The ether was removed to leave a white solid. Elemental analysis showed that the solid was a 1:1 base:HF complex. The PS/HF complex was completely soluble in acetonitrile and sulpholane. NMR, IR and mass spectrometry were obtained for the complex in an attempt to rationalise its structure and prove whether it exists as a simple salt or as a mixture of base, base. HF , base $\mathrm{H}^{+}, \mathrm{HF}_{2}^{-}$etc. Spectroscopic data is as follows.

2.3.2 Spectroscopical Studies of PS/HF

23.2.1 NMR

${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded for the complex (1) dissolved in deuterated acetonitrile at 400 MHz . The ${ }^{1} \mathrm{H}$ spectrum is shown overleaf (Fig 3).

From the ${ }^{1} \mathrm{H}$ spectrum we can observe the following; (1) two singlets at 2.8 and 3.0ppm; (2) about five peaks in the aromatic region; (3) broad peaks at 13.6 and 18.7ppm. The ${ }^{19} \mathrm{~F}$ NMR spectrum consists of a sharp singlet at -169 ppm at room temperature.

From the literature we know that the peak at 18.7ppm is due to the protonated
 is uncertain. If it was due to $\mathrm{HF}_{2}{ }^{-}$being present in solution we would expect to see a doublet in the ${ }^{19} \mathrm{~F}$ spectrum at about $-145 \mathrm{ppm}{ }^{63}$ and this is not the case. Hence the peak at 13.6 ppm is probably due to free HF. Thus the complex in solution probably exists as a mixture of base, protonated base in equilibrium with HF , as shown below.

$$
\mathrm{PSH}^{+}+\mathrm{F} \rightleftharpoons \mathrm{PS} / \mathrm{HF} \rightleftharpoons \mathrm{PS}+\mathrm{HF} \Longrightarrow \mathrm{PSH}^{+}+\mathrm{HF}_{2}^{-}
$$

The broadened singlets seen at 2.8 and 3.0 ppm may be explained as corresponding to PS and to protonated PS. Similarly, five resonances are seen in the aromatic region because of this mixture.

The position of the fluorine resonance at -169ppm is downfield from HF (180ppm) and upfield from fluoride ion (-112ppm) (from reference 63 and

established in section 1.6.2.1 for another base.HF system) and indicates an equilibrium between base, HF and fluoride ion.

Low temperature solution state NMR studies were unsuccessful as the solid PS/HF precipitates out of solution at about $-20^{\circ} \mathrm{C}$.

However we can postulate that the PS/HF complex, a 1:1 complex in the solid state, exists as an equilibrium between the free base, protonated base and HF in solution. These exchanges in solution generate fluoride ion which may be used as a source of soluble fluoride ion as discussed in section 2.4

2,3.2.2 Infra_Red

The literature concerning the infra red spectra of related proton sponge salts both in the solid state and in solution have been discussed in section 2.2.5.2.

The infra red spectra of PS and PS/HF complex were recorded in acetonitrile solution at $0.3 \mathrm{~mol}^{-1}$ concentration. The region between 3000 and $1500 \mathrm{~cm}^{-1}$ is shown below (Fig. 4).

Eigure 4

Solution Infra Red Spectra of PS and PSMHF in MeCN

The Bohlmann bands at 2785, 2840, and $2880 \mathrm{~cm}^{-1}$ (A) (lit ${ }^{117}$. 2780, 2831, and $2869 \mathrm{~cm}^{-1}$), are reduced on protonation but do not completely disappear as for fully protonated molecules ${ }^{117}$. Hence we can conclude that there is some free base present in solution which is consistent with the ${ }^{1} \mathrm{H}$ NMR data above. The main difference in the PS/HF spectrum is the appearance of the large broad bands at 1840 and $2050 \mathrm{~cm}^{-1}(\mathrm{~B})$, which are not seen in other PS salts ${ }^{117}$. These must be due to N-H-F vibrations. Free HF occurs ${ }^{69}$ at $3820 \mathrm{~cm}^{-1}$ and so we are observing the effect of the base complexing with the HF. A broad peak is observed at $580 \mathrm{~cm}^{-1}$ which agrees with results for other salts indicating that the N-H-N bridge has a bent geometry as we would expect.

The IR spectrum of PS/HF in a Nujol mull gives different results. A large broad band is seen at $1800 \mathrm{~cm}^{-1}$ which must be due to N-H-F vibrations.

2.3.2.3 Mass Spectroscopy

The PS/HF complex is not observed in the mass spectrum, the complex decomposing in the spectrometer even in the FAB mode, the most appropriate method for analysing salts. The peak seen at 215 corresponding to protonated PS is probably due to the free PS being protonated by the FAB matrix (methanoivglycerol). Thus FAB mass spectrometry was unsuccessful in determining the types of species present in the solid state of the PS/HF complex.

2.4 Reactions of PS/HF

A series of experiments were performed using PS/HF as the source of fluoride ion in order to determine whether the complex could act as a fluoride ion donor in solution.

PS/HF was used to catalyse C-C bond forming reactions (oligomerisations, perfluoroalkylations) and in C-F bond forming reactions (nucleophilic substitution reactions with a range of substrates). The results of the reactions performed using PS/HF as the source of fluoride ion are discussed below along with literature results using other sources of fluoride ion for comparison.

2.4.1 PS/HF as a Catalyst in C-C Bond Forming Reactions

2.4.1.1 Oligomerisation Reactions

It is well established that fluoride ion catalyses the oligomerisation reactions of perfluorinated alkenes ${ }^{121}$, cyclic alkenes ${ }^{122}$ and alkynes ${ }^{123}$. The source of fluoride ion is usually KF or CsF as heterogeneous catalysts and so a series of analogous reactions was performed using PS/HF as a homogeneous catalyst.

Tetrafluoroethylene was not oligomerised using PS/HF as the catalyst even when the temperature of the reaction was raised to $110^{\circ} \mathrm{C}$ and the pressure of the TFE in the reaction vessel was raised to 10 bar. (This reaction was performed at the ICI Experimental Site, Widnes).

Hexafluoropropene was dimerised to its thermodynamic dimer (2), as the only product by GC (72% yield, 100% conversion), at room temperature in two days using acetonitrile as the solvent with the hexafluoropropene in a $7: 1$ molar excess.

(2)

The product dimer separates from the acetonitrile. The solvent layer can then be recharged with hexafluoropropene and the reaction repeated to give the same yield of dimer, demonstrating the catalytic nature of the process. In an analogous reaction hexafluoropropene was dimerised to its thermodynamic dimer (2) in 95% yield under the same conditions when CsF was used as the source of fluoride ion ${ }^{121}$.

Oligomers of perfluorocyclobutene ${ }^{122}$ could not be isolated from its attempted oligomerisation using PS/HF as the catalyst in various solvents and at elevated temperatures.

The co-dimer (3) of hexafluoropropene and perfluorocyclobutene is formed using PS/HF as the catalyst. However, the alkene (3) so formed reacts with the PS to form the annelation product (4).

(2) \%), (4)

Orange Crystals

The co-dimerisation process may proceed by the following route:-

(3)

The perfluorinated alkene then reacts further with PS and this reaction is discussed in detail in Chapter 4.

The mechanism of these oligomerisations may not be a simple fluoride ion catalysed process as proton transfer from the HF to the intermediate carbanion may take place.

Attempts to form a stable perfluorinated carbanion, by the reaction of hexafluoropropene dimer (2) and PS/HF, failed. Stable perfluorinated carbanions have been synthesised in reactions between perfluoroalkenes and CsF66.

2.4.1.2 Perfluoroalkylation_Reactions

Fluoride ion catalyses perfiuoroalkylation reactions of fiuorinated heterocycles the carbanion formed on addition of fluoride ion to the fluoroalkene being trapped by the heterocycle , as outlined in the following mechanism.

Previously, alkali metal fluorides have been used as the source of fluoride ion in perfluoroalkylation reactions between hexafluoropropene and pentafluoropyridine(6) ${ }^{124}$, tetrafluoropyrimidine(9) ${ }^{125}$ and trifluoro-striazine(13) ${ }^{126 .}$

A series of perfluoroalkylation reactions of fluorinated nitrogen heterocycles by hexafluoropropene using PS/HF as the catalyst were performed and are tabulated below.
$\left(R_{F}=\left(C F_{3}\right)_{2} C F\right)$

(6)

(9)

(10) (27\%)

(11)(15\%)

(12)(39\%)

All products were identified by g.c./m.s. and ${ }^{19}$ F NMR as compared to the literature data. Yields were determined by g.c. for accuracy.

In an analogous reaction, (6) was perfluoroalkylated ${ }^{124}$ by hexafluoropropene, using KF as the source of fluoride ion, to give (7)(94\% yield) and (8)(trace) after heating in sulpholane at $130^{\circ} \mathrm{C}$ for 12 hr . Similarly, (9) was perfluoroalkylated ${ }^{125}$ by hexafluoropropene, using CsF as catalyst, to give (11)(45\% yield) and $(12)(43 \%)$ after heating in sulpholane at $100^{\circ} \mathrm{C}$ for 16 hr . Also, (13) gave (14)(39\% yield), (15)(51\%) and the trisubstituted derivative (16)(5\%) using CsF as the catalyst after heating in sulpholane at $70^{\circ} \mathrm{C}$ for 20 hr .

Comparison of perfluoroalkylation reactions using alkali metal fluorides and those using PS/HF as the source of fluoride ion show that much milder conditions are required when PS/HF is used.

2.4.2 The Use of PS/HF in C-F Bond Forming Reactions

A series of reactions designed to form C-F bonds were carried out using PS/HF as the source of fluoride ion in nucleophilic substitution reactions at unsaturated and saturated carbon.

In all the halogen exchange reactions $\mathrm{PS} / \mathrm{HX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ precipitates as the reactions proceed as white solids. Hence the PS may be recovered by heating the PS/HX with base.

2,4.2.1 At Unsaturated Carbon

The reaction between PS/HF and benzoyl chloride gave a 76% yield of benzoyl fluoride at room temperature in acetonitrile after 24 hr . The yield was calculated from NMR integration, referenced to a benzotrifluoride marker.

Hexafluoroacetone reacts with KF to form a carbinolate anion which can then be trapped by electrophiles ${ }^{127}$. The KF-hexafluoroacetone complex was not isolated. PS/HF reacts with hexafluoroacetone to form the same type of species (17) which was observed by ${ }^{19} \mathrm{~F}$ NMR.

$$
\begin{equation*}
\mathrm{PS} / \mathrm{HF}+\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{O} \xlongequal{\mathrm{MeCN}, \text { r.t. }} \mathrm{PSH}^{+}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CFO} \tag{17}
\end{equation*}
$$

The shift of the tertiary fluorine was -107.9ppm, deshielded from usual C-F resonances indicating that the fluorine atom is adjacent to an atom bearing a negative charge, as seen in the NMR shifts in perfluorinated carbanions ${ }^{66}$. The complex (17) was trapped by the electrophiles benzoyl chloride and benzyl bromide to give the products (18) and (19) respectively.

2,4-Dinitrochlorobenzene was fluorinated to 2,4-dinitrofluorobenzene by PS/HF in 45\% yield after 48 hrs reflux in acetonitrile.

2.4.2.2 At Saturated Carbon

Reactions between PS/HF and octyl iodide, benzyl bromide and 1,2epoxybutane were performed and the results are shown below:-
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \xrightarrow[24 \mathrm{hr}]{\text { MeCN, reflux }} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{~F} \quad(65 \%)$

Benzyl bromide is the most reactive species towards nucleophilic attack due to resonance stabilisation of the intermediate carbocation.

There is an increasing need for reagents that can introduce fluorine into biologically active molecules. Consequently we attempted to fluorinate the triflate and tosylate derivatives of diacetone-D-glucose (20) which have previously been fluorinated by Bu4NF.3 $\mathrm{H}_{2} \mathrm{O}^{128}$ and TAS-F ${ }^{129}$ respectively.

The triflate (21) and the tosylate (22) were prepared by literature methods ${ }^{129,130}$, as shown below.

(20)
(i) $\mathrm{R}=$ Trif, $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(ii) $R=$ Tos, Tosyl Chloride, r.t., pyridine

There was no fluorination of the tosylate (22) after two days reflux in acetonitrile. The triflate (21) was not fluorinated at room temperature. Refluxing in acetonitrile caused the glucose to decompose and the triflate salt of PS (23) was recovered. No fluorination of the glucose (20) could be detected.

2.5. Summary

We have shown that the PS/HF system is stable, easily prepared, easily handled, does not corrode borosilicate glass and is completely soluble in acetonitrile. and can be used as a source of soluble fluoride ion in a range of reactions. The PS/HF system has been used to catalyse C-C bond forming reactions and in C-F bond forming reactions.

The structure of the PS/HF system in solution is uncertain but probably exists as a mixture of base, base. HF , base $\mathrm{H}^{+} . \mathrm{HF}_{2}{ }^{-}$etc. in an analogous way to the $\mathrm{Bu}_{3} \mathrm{~N} . \mathrm{HF}$ system (Chapter 3). Whatever the structure of PS/HF and its mode of action, the ability of PS to bind with HF to produce a source of soluble fluoride ion is clear.

A feature of the PS/HF system is that the $\mathrm{PS} / \mathrm{HX}(X=C l, B r, I)$ salts, formed as products in halogen exchange reactions are insoluble in acetonitrile and precipitate out of the reaction mixture.
e.g.

The proton sponge free base can then be regenerated by heating these salis with sodium hydroxide solution.

However, the fact that PS/HF reacted with the fluorinated alkene (3) in situ restricts the use of the system. We decided to investigate other base.HF systems as sources of soluble fluoride ion to determine the factors which may affect the ablity of base.HF complexes acting as fluoride ion donors, as it is clear from the reactions performed using PS/HF as the source of soluble fluoride ion that amine. HF systems can be used as sources of soluble fluoride ion.

BASE HYDROELUORIDE COMPLEXES AS POTENTIAL SOURCES OF SOLUBLE ELUORIDE ION

3.1. Introduction

The success of the PS/HF system as a source of soluble fluoride ion prompted us to synthesize a series of sterically hindered base HF complexes. We hoped to determine the factors which governed the reactivity of these systems as fluorinating agents in order to develop the most efficient reagent. We hoped to distinguish between the effect of increasing the steric hindrance around the basic nitrogen atom and base strength.

After preliminary work in this laboratory ${ }^{5}$ we chose to compare hydrofluoride complexes of trialkylamines, pentamethylpiperidines and tetramethyiguanidine.

The literature concerning hydrofluoride salts has been reviewed in Chapter One.

3.2 Trialkylamine Hydrofiuoride Complexes

The HF complexes of trialkylamines were prepared in the same way as the PS/HF system (section 2.3.1). i.e adding the required 1:1 stoichiometric amount of an HF/ether solution to an ethereal solution of the base.

The following base.HF complexes were prepared:-
R_{3} N.HF : (24) R=Ethyl, (25) R=Butyl, (26) R=Hexyl, (27) R=Octyl, (28) ReDodecyl.

3.2.1 NMR Spectroscopy

${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra for each of the $\mathrm{R}_{3} \mathrm{~N}$. HF complexes were recorded at room temperature in deuterated acetonitrile. The proton resonance for the H-F proton occurs downfield between 10.8 and 12.7ppm as broad singlets as tabulated below (Table 10). All R R_{3} N.HF complexes give a singlet in the ${ }^{19} \mathrm{~F}$ NMR spectrum at room temperature between -154 and -159ppm (Table 10).

Table 10. NMR Chemical Shifts of R3N.HE, ${ }^{1}$ H shift for HE and ${ }^{19}$ E Shifts Only

R	$\boldsymbol{\delta} \mathbf{H}$	$\boldsymbol{\delta} \mathrm{F}$
Et	12.7	-154.8
Bu	12.7	-157.1
Hex	12.5	-157.0
Oct	10.8	-156.6
Dodec	11.6	-159.3

No information about the species that are present in solution can be gained from the NMR spectra at room temperature except to say that the HF has bound to the base as the fluorine shift is downfield from free HF. Consequently a study of the low temperature NMR of Bu3N.HF complex was carried out and is discussed in the next section.

3.2.2 Low Temperature NMR Study of Bu_N.HE

Following the work by Cousseau ${ }^{68}$ we investigated the low temperature NMR spectrum of $\mathrm{Bu}_{3} \mathrm{~N} . \mathrm{HF}$ at $-80^{\circ} \mathrm{C}$ in an attempt to ascertain the species that are present in solutions of Base.HF complexes. The spectrum obtained for Bu3N.HF complex at $80^{\circ} \mathrm{C}$ is shown overleaf.

Using the information discussed in Section 1.6.2.1.1 the following assignments may be made:-

Peak

-65.38
-111.99
-126.56
-131.42
-144.97
-147.82
-148.74
-150.68
-174.12

Assionment
Ion Pair e.g BuzNH+F-
Fluoride lon F^{-}hydrogen bonding with the solvent ${ }^{63}$ Si-F or B-F from etched NMR tube
$\mathrm{SiF}_{6}{ }^{2-}$ from etched NMR
tube ${ }^{64}$
$\mathrm{H}_{2} \mathrm{~F}_{3}{ }^{-}$
$\mathrm{HF}_{2}{ }^{-63}$
Bu_{3} N.HF Complex ${ }^{68}$
$\mathrm{H}(\mathrm{HF})_{\mathrm{n}}{ }^{+}$type species ${ }^{68}$

The NMR spectrum at $-80^{\circ} \mathrm{C}$ shows that there are a number of species present in solutions of Bu3N.HF systems. The peaks at -112 indicating F^{-}, at -174 indicating $\mathrm{H}(\mathrm{HF})_{\mathrm{n}^{+}}$species and the smaller triplet and doublet at -144 and -148 ppm corresponding to $\mathrm{H}_{2} \mathrm{~F}_{3}$ and $\mathrm{HF}_{2}{ }^{-}$respectively proves that a number of exchange processes must be occurring in Bu3N.HF solutions which may be summarised as follows:-

$$
\text { etc. } \stackrel{H F}{\rightleftharpoons} \mathrm{R}_{3} \mathrm{NH}^{+} . \mathrm{H}_{2} \mathrm{~F}_{3}^{-}
$$

The peak at -112ppm is direct evidence for the existence of fluoride ion in Bu3N.HF solutions. All the exchange processes listed above must be occurring very rapidly for a singlet to result in the ${ }^{19} \mathrm{~F}$ NMR spectrum at room temperature.It seems reasonable to assume the same model for all amine. HF systems in solution.

3.2.3 Reactions

Three standard experiments were carried out using each of the Base.HF complexes as the source of soluble fluoride ion. The reactions chosen and conditions are given below:-

1) Benzoyl Chloride

PhCOCI $\xrightarrow{\text { MeCN, r.t., } 1 \text { day }}$ PHCOF
2) Benzyl Bromide

3) 2,4-Dinitrochlorobenzene

All reaction yields were calculated by ${ }^{19} \mathrm{~F}$ NMR integration on the Bruker AC250 spectrometer operating at 235 MHz with reference to a benzo trifluoride marker. This procedure was adopted to avoid loss of products in reaction work-up and hence provide a more accurate picture of the fluorinating ability of the base.HF salts.

Yields for the three standard reactions using trialkylamine. HF complexes (24)-(28) as sources of fluoride ion are collated in Table 11. In all cases the Base.HX ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) salts produced do not precipitate from solution unlike the PS case (section 2.4.2).

Iable 11. Reaction_Yieids Using_Trialkylamine Hydrofiuoride_Complexes as Sources of Eluoride_lon

Base.HE	Phcocl	PhCH2Br	Dinitrochloro- benzene
(24)	91	18	34
(25)	88	12	84
(26)	90	17	77
(27)	68	14	61
(28)	79	11	14

From the table we can make the following general observations:-
(1) Benzoyl Chloride is easily fluorinated in good yield by all base.HF complexes.
(2) Benzyl bromide did not fluorinate in good yield indicating that these systems are probably not very good reagents for $\mathrm{S}_{\mathrm{N}} 2$ processes.
(3) Bu3N.HF appears to be the most efficient fluorinating agent. The Dodec3N.HF shows less reactivity probably due to its lower solubility.

3.3 Tetramethylpiperidinium Hydrofluoride Complexes

2,2,6,6-Tetramethylpiperidine is a very hindered, non-nucleophilic base due to the steric constraints around the nitrogen atom caused by the α-methyl groups. Nalkylation increases this effect.

Hence, we synthesized a series of pentaalkylpiperidinium hydrofluoride complexes to determine whether these complexes are convenient sources of soluble fluoride ion.

A large literature exists for tetramethylpiperidine bases and their derivatives as emphasised in a recent review ${ }^{131}$. Most of the work conducted in this field was directed towards the development of anti-ganglionic blocking drugs (29) (relieves hypertension) and in the development of iminoxy radicals for use in ESR (30).

(29)

(30)

The pKa's of the conjugate acids of tetramethylpiperidine (31) and pentamethylpiperidine (29) are 11.24 and 11.25 respectively.

3.3.1 Preparation of Penta-alkylpiperidine Bases and Their Hydrofluoride Complexes

Both 2,2,6,6-Tetramethyl- and 1,2,2,6,6-Pentamethyl-piperidine were obtained commercially (Aldrich). The N -ethyl-, allyl- and benzyl-2,2,6,6tetramethylpiperidines ($32-34$) were prepared by reacting the parent piperidine (31) with the appropriate tosylate or bromide as shown below ${ }^{132}$.

(i) Et-OTos, $100^{\circ} \mathrm{C}, 24 \mathrm{hr}, 21 \%$ yield
(ii) allyl bromide, $50^{\circ} \mathrm{C}, 3$ days, 24% yield
(iii) benzyl bromide, $100^{\circ} \mathrm{C}, 8 \mathrm{hr}, 32 \%$ yield

The HF salts of these five tetramethylpiperidine bases were prepared in the same manner as for all other HF complexes. i.e. pipette the required stoichiometric amount of HF/ether solution into an ethereal solution of the base. The following HF complexes (35)-(39) were prepared:-

(35) $R=H$
(36) $R=M e$
(37) $R=E t$
(38) $R=$ allyl
(39) $R=$ benzyl

Each complex was totally soluble in acetonitrile.

3.3.2 NMR Spectroscopy

Both proton and fluorine NMR spectra of each salt (35)-(39) were recorded in deuterated acetonitrile at room temperature. The resonances corresponding to HF in the proton spectra are collated in Table 12 along with the shifts of the singlets seen in the fluorine spectra.

Table 12. NMR Chemical Shifts ior Poly-alkylpiperidine.HF Complexes. ${ }^{1} \mathrm{H}$ Shitt for HF in Base. HF and ${ }^{19}$ E shifts Only

Base. HF	$\delta \mathcal{F F}$	δF
(35)	9.30	-135.0
(36)	12.7	-148.9
(37)	11.1	-143.9
(38)	12.1	-146.0
(39)	11.7	-152.4

Again, no information about the nature of the species in solution can been obtained from the NMR spectral data at room temperature except to say that HF has bound to the base to form a complex.

3.3.3_Reactions

The same three standard reactions were performed as described in section 3.2.3 using the piperidine hydrofluoride salts (35)-(39) as the sources of soluble fluoride ion. In all cases the Piperidine. $\mathrm{HX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ produced in the nucleophilic substitution reactions remain in solution in contrast to the PS/HF system.

Yields of the reactions are collated in Table 13.

Table 13. Reaction_Yields Using Pentaalkylpiperidine_Hydrofluoride Complexes (35)(39) as Sources of Fluoride Ion

Base.HE	PhCOCl	PhCH2Br	Dinitrochloro- benzene
(35)	83	25	49
(36)	64	84	78
(37)	78	38	94
(38)	55	no reaction	31
(39)	42	no reaction	23

From the table we can make the following general observations:-
(1) Both methyl and ethyl tetramethylpiperidine HF complexes are good sources of fluoride ion showing good reactivity. These bases have about the same pK_{a} as tetramethylpiperidine and so there appears to be increased reactivity with increased steric hindrance around the nitrogen atom in these systems.
(2) Allyl and benzyl tetramethylpiperidine HF complexes show little reactivity as sources of fluoride ion. This is perhaps due to the following exchange processes occuring in solution decreasing the availability of the fluoride ion :-

3.4 Tetramethylguanidine Hydrofluoride Complex

Tetramethylguanidine is a very strong base (pK a of the conjugate acid $=$ 13.6) ${ }^{133}$ and so it seemed a good alternative to PS in forming a hydrofluoride complex to use as a source of soluble fluoride ion. (PS/HF was found to react with certain substrates which limit its use (section 2.4.1.1)).

The HF complex of tetramethylguanidine was prepared in the same way as for other HF complexes and the two reactions were performed using this complex (40) as the source of fluoride ion. Benzoyl chloride gave benzoyl fluoride in 65% yield and dinitrochlorobenzene gave dinitrofluorobenzene in 36\% yield.

Attempts to prepare pentamethylguanidine (41) were unsuccessful. The reaction between tetramethylguanidine and methyl iodide gives pentamethylguanidinium hydriodide (42), in agreement with literature results ${ }^{133}$. Attempts to remove the HI to generate pentamethylguanidine resulted in the formation of a mixture of tetramethylguanidine and pentamethylguanidine which could not be separated.

3.5 Conclusions

We have shown that a series of sterically hindered strong bases may be coupled with HF to produce complexes that may be used as sources of soluble fluoride ion in a variety of reactions.

The most effective fluorinating reagents were the complexes of the strongest bases e.g. PS, ethyl-tetramethylpiperidine.

To ascertain why these are the most effective reagents we need to find out the species involved in solutions of these complexes. Low temperature NMR is the best method for doing this but was unfortunately unsuccessful for these systems. However,
a ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathrm{Bu} 3 \mathrm{~N} . \mathrm{HF}$ complex was obtained at $-80^{\circ} \mathrm{C}$. From the spectrum we have shown that a series of equilibria are present forming a variety of species.

Thus we can postulate that the success of a reagent as a fluoride ion source depends on the following equilibrium:-
R_{3} N.HF $\frac{k_{1}}{k_{.1}} R_{3} N_{1} . H^{+}+F^{-}$
For a good fluoride ion source \mathbf{k}_{1} must be large and \mathbf{k}_{-1} small. The equilibrium is improved by increasing the base strength of the base (increases \mathbf{k}_{1}) and the steric hindrance around the basic nitrogen atom (reduces K_{-1}).

However the situation is complicated by the fact that other equilibria are occuring as seen in low temperature NMR.
e.g. $\mathrm{R}_{3} \mathrm{~N} . \mathrm{HF}+\mathrm{HF} \rightleftharpoons \mathrm{R}_{3} \mathrm{NH}^{+} . \mathrm{HF}_{2}{ }^{-}$

Whether the presence of $\mathrm{HF}_{2}{ }^{-}$effects the reactivity of these reagents in these types fluorination reactions is unclear, but $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{HF}_{2}{ }^{-}$has been shown to be an effective source of fluoride ion in its own right ${ }^{134}$.

Comparison of the reactivities of the tetramethylpiperidine HF systems suggests that increasing the steric hindrance around the nitrogen atom causes an increase in fluoride ion reactivity.

These preliminary studies give some idea about the nature of the reactivity of amine.HF complexes as sources of fluoride ion in that amine. HF complexes exist in solution as an equilibrium between numerous species which we have identified by low temperature NMR. Increasing the steric hindrance around the basic site in the amine appears to increase reactivity of the amine. HF systems as sources of fluoride ion.

We have shown that amine. HF complexes can act as fluoride ion donors in solution in several nucleophilic substitution reactions, but the amine.HF systems can not be compared with alkali metal fluorides as their mode of reactivity involves an equilibrium situation.

CHAPTER FOUR

ANNELATION REACTIONS BETWEEN 1.8-BIS(DIMETHYLAMINO): NAPHTHALENE (PROTON SPONGE) AND FLUORINATED ALKENES

4.1 Introduction

Proton Sponge (PS) was found to react with fluorinated alkenes via the naphthalene ring in electrophilic substitution reactions to form novel products. Reactions of aromatic systems with electrophiles are well known ${ }^{135}$ but only a few reactions between PS and electrophiles have been recorded and are reviewed below. Reactions between soft carbon nucleophiles with fluorinated alkenes have not been reported, to our knowledge.

4.2 Electrophilic Substitution Reactions of 1.8-Bis(dimethylamino)naphthalene (PS)

4.2.1_Nitration

PS is nitrated at the 4 position by a mixture of concentrated nitric and sulphuric acids. However a mixture of nitric and acetic acid produces the 1,4,5,8tetra nitrated product ${ }^{136}$.

4.2.2 Bromination

PS is brominated to 4-Bromo-1,8-bis(dimethylamino)naphthaiene by using bromine in conjunction with an iron/iron (III) chloride catalyst in 39% yield ${ }^{137}$. The same product is realised in greater yield (80%) on bromination with bromine in sulphuric acid ${ }^{138}$.

The Grignard reagent of this 4-bromo derivative may be prepared and may undergo coupling reactions with other aromatic bromides to form potential monomers ${ }^{137}$.

4.2.3 Alkylsulphination

PS is alkylsulphinated in the 4 position ${ }^{139}$.

4.2.4 Eormvlation

PS is formylated using the complex of dimethylformamide and phosphorus oxychloride (the Vilsmeir reagent) as formylating agent ${ }^{138}$. 4,5-diformyl-1,8bis(dimethylamino)naphthalene is formed which then undergoes an intramolecular Cannizarro reaction to produce a naphthopyranone derivative in 36% yield. This reaction is an example of an annelation reaction involving PS.

4.2.5 Beaction with Dinitrobenzofurazan_(DNBZ)

PS reacts with the very strong electrophiles dinitrobenzofuroxan (DNBF) and dinitrobenzofurazan (DNBZ) to form zwitterionic products ${ }^{140}$, which exist as two conformers, proved by low temperature n.m.r, with restricted rotation around the C4-C7' bond ${ }^{141}$.

4.3 Reactions of 1.8-Bis(dimethylamino)naphthalene with Fluorinated Alkenes (3) and (43)

The success of the PS/HF system in catalysing the dimerisation of hexafluoropropene (section 2.4.1.1) prompted us to try to prepare the co-dimer of perfluorocyclobutene and hexafluoropropene using PS/HF as the catalyst.

PS/HF does indeed catalyse the co-dimerisation but the alkene so formed reacts further with the naphthalene ring of PS in an electrophilic substitution reaction to form two solid products which could be separated by column chromatography. The major product, an orange solid (4) was isolated in 21% yield. A red solid (5)(trace) was also isolated but remains unidentified.

This reaction therefore revealed a range of possible reactions between tertiary aromatic amines and perfluorinated alkenes. Thus, the direct reaction between PS and the co-dimer (3) gave the same product (4) in a comparative yield (22\%).

Similarly PS reacts with the fluoroalkene (43) to give the annelation product (44), another orange solid, in 13\% yield.

4.3.1 Structure Elucidation

Before any mechanistic considerations (section 4.4) we must prove the structures of (4) and (44), which was done using all avallable spectroscopic techniques. As (4) and (44) have similar structures we will consider their spectral properties together.

Both (4) and (44) gave satisfactory elemental analyses for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{10}$ and $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{12}$ respectively and mass spectra in the Cl^{+}and Cl^{-}modes.

4.3.1.1 NMR Specira of (4) and (44)

${ }^{1} \mathrm{H}$ NMB - The ${ }^{1} \mathrm{H}$ NMR spectrum of (4) consists of two singlets at 2.81 and 2.88ppm each having a relative intensity of six, corresponding io the NMe2 groups, and two $A X$ systems in the aromatic region ($6.79 \cdot 7.85 \mathrm{ppm}$) each with a relative intensity of two, thus corresponding to four aromatic protons. The two $A X$ systems ($\mathrm{J}_{\mathrm{AX}}=8.3$ and 8.8 Hz) indicate that the naphthalene ring must be a $1,4,5,8$-tetrasubstituted derivative.

Similarly, the ${ }^{1} \mathrm{H}$ NMR spectrum of (44) consists of two singlets $(2.88,2.94$ ppm) and two AX systems (6.86-7.52ppm, $\mathrm{J}_{\mathrm{AX}}=8.4$ and 8.8 Hz).
These results agree with a similar tetrasubstituted PS system (45) ${ }^{138}$.

(4) is an unsymmetrical molecule and so the NMe_{2} groups each give a singlet. The peak which is further upfield is assigned to the NMe2 group with the more electronegative substituent on the 4-position of the same benzene ring which gives a deshielding effect, i.e we assume that (CF3)2 C is a more electron withdrawing group than the cyclobutene ring as more fluorine atoms are present in this substituent. Similarly, the aromatic protons are assigned in this way.
${ }^{19}$ F NMR - ${ }^{19}$ F NMR was essential in proving the structures for (4) and (44) and hence the orientation of initial nucleophilic attack by PS on the fluoroalkene.

${ }^{19}$ E NMR for Annelation Product (4)

There are two possible sites of nucleophilic attack by PS on the fluoroalkene which would produce different products according to the mechanism oullined (section 4.4).

(46)
(${ }^{1} \mathrm{H}$ NMR of (4) and (46) would be similar)
(The red solid (5) isolated in small yield shows two singlets in the ${ }^{19} \mathrm{~F}$ NMR spectrum at -68.9 and -110.5 ppm , and hence could not be (46). The red solid is most probably a hydrolysed product of (4) as the infra red spectrum reveals a peak at 1790 cm -1 which may be a carbonyl group. However, attempts to hydrolyse (4) failed.)

We would expect (4) to give a ${ }^{19} \mathrm{~F}$ NMR spectrum consisting of three resonances ($\mathrm{CF}_{3}, \mathrm{CF}_{2}, \mathrm{CF}_{2}$) of relative intensities 6:2:2, and (46) to give a spectrum consisting of four resonances ($\mathrm{F}, \mathrm{CF}_{3}, \mathrm{CF}_{2}, \mathrm{CF}_{2}$) of relative intensities 1:3:4:2. The spectrum obtained consists of three singlets at -67.2 (6F, 2CF3), -105.1 (2F, CF2) and -112.5 ($2 \mathrm{~F}, \mathrm{CF}_{2}$) corresponding to structure (4).
${ }^{19}$ E NMR for Annelation_Product_(44)

Again two possible products could be envisaged.
 Pathway 2

For structure (44) we would expect a ${ }^{19}$ F NMR spectrum consisting of four resonances (4CF2) with relative intensities of 2:2:4:4, and for structure (47) a spectrum consisting of five resonances (5CF2) with relative intensities 2:2:2:4:2.
The spectrum obtained consists of four resonances; -104.9 (s, 2F), -114.6 (s, 2F), $-135.2(\mathrm{~s}, 4 \mathrm{~F})$ and -112.8 and $-116.0\left(\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=250 \mathrm{~Hz}, 4 \mathrm{~F}\right)$; the spectrum along with the ${ }^{19} \mathrm{~F}$ 2-D COSY spectrum is shown overieaf (Fig 6).

In the AB system, the peaks centred at -112.8ppm are broader than those at 116.0ppm which is probably due to long distance F-H coupling. The fact that this is an $A B$ system is proved by the COSY spectrum, indicating that the peaks at -112.8 and 116.0 are indeed coupled. Thus the COSY spectrum confirms that there are three singlets and an $A B$ system with the required relative intensities for structure (44).

Also, the shifts of the CF2 groups in the cyclobutene ring substructures are similar for structures (4) and (44) as shown below.
Eloure 6

-112.5

-114.6
${ }^{13}$ C NMR - ${ }^{13} \mathrm{C}$ NMR was not very helpful in establishing the structures of (4) and (44) because of the complexity of the spectra between 115 and 120ppm due to C-F coupling. However, peaks may be assigned for the "hydrocarbon half" of the molecules where C-F coupling is absent.
${ }^{13} \mathrm{C}$ spectra were assigned using the chemical shifts for published, unsubstituted compounds as models ${ }^{106}$, and are collated in Table 14.

Iable 14. ${ }^{13}$ C_NMR Data_for 1.8-(bisdimethylamino) naphthalene Compounds (Aromatic_Ring_only)

The following numbering system has been used for the naphthalene nucleus for both published compounds (48)-(51), (4) and (44). (For (4) and (44) positions 4 and 5 are substituted).

(48) $\mathrm{R}=\mathrm{Me}_{2}$
(49) $R=-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-$
(50) $R=-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{2}-$
(51) $\mathrm{R}=-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}^{-}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$

$C-1$	$C-2$	$C-3$	$C-4$	$C-9$	$C-10$	$N\left(C_{H}\right)_{2}$
$\frac{C-8}{C-7}$	$C-7$	$C-6$	$\underline{C-5}$			
150.7	112.6	125.4	121.7	120.5	137.8	44.4
147.7	108.2	125.4	119.2	119.2	137.4	-
151.2	113.0	125.3	123.4	120.8	137.7	-
149.6	113.2	125.6	123.8	120.0	137.8	-
156.1	111.5	130.4	107.7	121.4	134.1	43.5
152.9	108.9	126.9	116.7			
158.2	111.4	135.8	107.4	unass	134.0	43.0
154.4	109.4	128.6	unass			

The assignment of the peaks is aided by the fact that non-quaternary carbon atoms, i.e.aromatic C-H, have low relaxation times and hence give large peaks. Thus C2, C-3, C-6 and C-7 are easily assigned. The shifts are similar to those reported but, of course, C-4 and C-5 substitution would alter their shifts slightly.

For structures (4) and (44) C-2 has a greater shift value than $\mathrm{C}-7$ (C-3 > C6 etc) as $\mathrm{C}-4$ has the more electronegative substituent ((CF3)2 C) causing a deshielding of that part of the naphthalene ring.

C-1 and C-8 all occur at around 150ppm, as seen in table.14.
A full assignment was not possible due to the complexity of the spectra but the four $\mathrm{CAr}_{\mathrm{Ar}} \mathrm{H}$ peaks provide further evidence of a tetrasubstituted naphthalene derivative for structures (4) and (44).

4.3.2 Molecular Modelling_of Annelation_Product (4)

Molecular modelling studies were carried out by Dr. J. Morley, ICI. and predicted structures are shown overleaf (Fig 7).

From the diagrams we see that the naphthalene ring is slightly buckled and the lone pairs do not face each other but are parallel, much the same as in PS itself ${ }^{107 .}$ Hence we would predict that the annelation product (4) to have the same high basicity as PS.

Eloure 7

Computer Generated Structure of (4)

(A)

(B)
(A) - Side-on View
(B) - Head-on View - looking along the plane of the Naphthalene Ring from above the Dimethylamino Groups

4.4 Mechanism of the Annelation Reaction

The following mechanism has been postulated for the reaction of PS with fluorinated alkenes (shown is formation of product (4)).

4.4.1 Orientation of Initial Nucleophilic Attack

For each fluoroalkene (3) and (43) there are two possible sites for initial nucleophilic attack.

We have proved that pathway (1) is preferred and following is a rationale of these observations.

The potential intermediate species for each pathway are as follows:-

(52A)
(2)

(53A)

(52B)

(53B)

We would expect the angle strain around the spiro carbon atom in intermediates (52A) and (52B) to be much less than in (53A) and (53B). The formation of intermediates via pathway (1) is more energetically favourable and so the orientation of attack may be controlled by the angle strain in the reaction intermediates.

Also, two intermediate carbanions are possible ${ }^{142}$.

When the nucleophile is fluoride ion, (54A) is formed exclusively as shown by the formation of stable perfluorinated carbanions ${ }^{142}$. The stability of perfluorocarbanions is governed by the substituents on the carbanion centre. Essentially, C-F is destabilising due to electron pair repulsions and C-C-F is stabilising due to the inductive effect ${ }^{143}$. However for fluoroalkenes (3) and (43) both are of the general formula ($\left.R_{F}\right)_{2} C=C\left(R_{F}\right)_{2}$ and so the stabilising effects on each carbanion are apparently very similar. Also the Frontier Orbitals at each unsaturated carbon atom will have similar coefficients ${ }^{144}$. Therefore we would not expect there to be any selectivity in the direction of nucleophilic attack if the stablity of the intermediate carbanions are the controlling factor.

The direction of nucleophilic attack at C_{1} rather than C_{2} has been attributed to the increased electronegativity of carbon $\left(C_{2}\right)$ in the ring ${ }^{143}$. This may be explained by a consideration of the hybridisation of the orbitals on C_{1} and $\mathrm{C}_{\mathbf{2}}$.

SP2 hybridised orbitals are at 120° angles and sp3 orbitals are at 109° angles. $\mathbf{s p}_{3}$ hybridised orbitals have greater \mathbf{p} character than sp2 orbitals, and conversely sp2 orbitals have greater \mathbf{s} character than $\mathbf{s p}_{3}$ orbitals. Also, \mathbf{s} orbitals are more electronegative than p orbitals as s orbitals are closer to the nucleus of the atom.

In the case of (54A) the angle of the orbitals forming the bonds in the ring are constrained to being less than 90°. Hence, these orbitals are more like sp3 orbitals than Sp_{2} orbitals and so are rich in p character. Thus, the orbital containing the carbanion must be rich in scharacter. In the case of (54B) the orbitals forming the bonds with the CF_{3} groups are at an angle of greater than 90° and are not as rich in p character as in the case of (54A). So, the orbital containing the carbanion in (54B) is not as rich in s character as in (54A). So, the orbital containg the carbanion in (54A) has more s character than in (54B). Orbitals richer in s character are more electronegative and so the carbanion is more stable in orbitals rich in scharacter. Thus the most stable carbanion is (54A) and hence the most likely reaction intermediate. Thus the nucleophile initially attacks C_{1} for the more stable carbanion (54A) to be formed, in accordance with our findings.

4.5 Reaction of 1.8-Bis(dimethylaminolnaphthalene with Perfluoroblcyclopentylidene (55)

4.5.1 At Low Dilution

When PS and fluoroalkene (55) were stirred overnight at room temperature in acetonitrile a dark olive green solid precipitated which was purified by recrystallisation to give flat, square, dark green crystals (56).

Mass spectrometry and elemental analysis of this product gave a molecular formula of $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{12}$ which is two fluorine atoms less than that of the expected annelation product (57).

(57)

No NMR spectra of the product were obtainable and so the structure of (56) is uncertain. Hence single crystal X-ray Crystallography is being attempted for a structure determination.

The molecular formula of the product indicates that defluorination of the starting alkene has taken place. This can occur by reduction of the alkene in a 1-electron transfer process ${ }^{145}$.

(58)

The diene (58) so formed could then react with PS in the following type of process ${ }^{145}$.

In a separate experiment ${ }^{146}$ PS reacted with the diene (58) to give the same product as that obtained between the alkene (55) and PS. The reduction of alkene (55) to the diene (58) has previously been performed using a sodium amalgam route ${ }^{145}$, and so this reaction shows the possibility of using tertiary amines as reducing agents (electron donors) in reactions of this type.

The most probable structures are shown below.

(56)

(59)

The structure is most likely to be (56) because of the crystallinity of the product and the formation of molecular ions in the $\mathrm{El}^{+}, \mathrm{Cl}^{+}$and Cl^{-}mass spectra. However, an X ray structure is required.

4.5.2 At High Dilution

Initially we thought that the product arising from the reaction between PS and perfluorobicyclopentylidene (55) gave the polymeric structure (59). Hence we repeated the reaction at high dilution in an attempt to isolate any monomeric products. Three products were isolated by column chromatography, the first compound eluted being (56).The second and third compounds had a remarkable appearance. The second compound eluted was bright green flakes (60) of a metallic lustre which in solution gave a purple colouration and the third compound eluted was purple flakes (61) of a metallic appearance which in solution gave a green colourationl Firstly we must attempt to prove the structures of these fascinating compounds.

4.5.2.1 Green Crystals (60)

Mass spectrometry and elemental analysis suggest a molecular formula of $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{12} \mathrm{O}$.
${ }^{1} \mathrm{H}$ NMR - The ${ }^{1} \mathrm{H}$ NMR spectrum shows a singlet at 2.16 ($12 \mathrm{H}, \mathrm{NMe}_{2}$ groups) and two AX systems in the aromatic region between 6.95 and 7.92ppm.

The broad peak seen between 2.5 and 3.4ppm may be due to complexing between the solvent and the compound. This may explain the change in colour on going from the crystalline form into solution.

Each AX pattern has additional splitting on the more upfield peaks probably due to long-range proton-fluorine coupling.

However, the singlet at 2.16 ppm and the iwo AX patterns in the aromatic region corresponding to four protons indicate the presence of a 1,4,5,8-tetrasubstituted PS system, as before.
${ }^{19}$ F NMB - The ${ }^{19} \mathrm{~F}$ and ${ }^{19} \mathrm{~F}$ 2-D COSY NMR spectra are shown overleaf (fig 8).

The spectrum consists of four resonances; an AB system between -111.0 and 113.4ppm (relative intensity 4), a broadened resonance, essentially a singlet or pseudo $A B$, at -132.3 ppm (4F), and two other singlets (pseudo $A B$) at -117.8 (2F) and -131.4ppm (2F).

The molecular formula suggests that a structure similar to the expected annelation product (57) is present, with a CF_{2} group substituted by a carbonyl group. The infra red spectrum reveals a peak at $1720 \mathrm{~cm}^{-1}$ which could correspond to the carbonyl group. Possible structures based on this assumption are shown below.

(60)

(60A)

(60B)

We would expect the $C F_{2}$ group adjacent to the $C=C$ double bond to be more easily hydrolysed and so it is unlikely that the structure is (60A).

The AB system and singlet at -133 ppm are similar to the shifts found for the spiro-cyclopentene substructure in compound (44) and are compared below.

The other two singlets are consistent with all three possible structures (60), (60A) and (60B). However, because of the metallic nature of the compound, structure (60) is favoured as conjugation of the π system is spread throughout the molecule. This structure would give the molecule charge-transfer properties as an electron donor group (NM_{2}) is connected via a conjugated π system to an electron acceptor group ($\mathrm{C}=\mathrm{O}$). The molecules may then align in a one-dimensional stack, giving the crystalline state a metallic nature ${ }^{147}$. These donor-acceptor properties may also explain the change in colour in going from the crystalline state into solution.

A final assignment of the ${ }^{19}$ F NMR spectrum is as follows:-

The analysis for (60) is slightly in error. This could be due to complexing with water, which is known for α-fluorocarbonyl compounds. If one molecule of water is present for each of (60) the analysis is correct.

4.5.2.2 Purple Crystals (61)

Mass spectrometry and elemental analysis point to a molecular formula of $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{10} \mathrm{O}$. Hence we would expect a structure similar to (56).
${ }^{1}$ H NMR - Again we see a singlet at 2.16ppm corresponding to the NMe_{2} groups and two AX systems between 6.4 and 7.4 ppm , which point to a $1,4,5,8$-tetrasubstituted PS system.

The appearance of the broadened quartet between 2.6 and 3.1ppm may again be due to complexing of the compound with the solvent, which may explain the colour of the compound in solution. The proton decoupled ${ }^{19}$ F NMR spectrum shows that protonfluorine coupling does occur and this may explain the added complexity of the AX systems.
${ }^{19}$ F NMB - The ${ }^{19} \mathrm{~F}$ NMR spectrum is very complex and ${ }^{19} \mathrm{~F} 2-\mathrm{D}$ COSY spectroscopy was essential in determining which peaks were coupled, and is shown overleaf (fig 9).

The COSY spectrum clearly shows the presence of five $A B$ systems and the integrations confirm that these correspond to five inequivalent CF_{2} groups. The molecular formula suggests a structure similar to (56), so we can suggest the following structures, each having five inequivalent CF_{2} groups.

(61)

(61A)

(61B)

We would expect the chemical shifts of the CF_{2} groups in the carbonyl substituted pentene ring to have similar values to those in the green crystals, structure (60). If we take the mid points of the $A B$ systems and compare the shifts with the singlets in structure (61) this is indeed so.

Again structure (61) is prefered because of the charge transfer properties associated with a fully conjugated π system connecting electron donor and acceptor groups.

A final assignment of the ${ }^{19}$ F NMR spectrum of (61) is below. Shifts coressponding to the mid-points of the AB systems are given.

4.5.23 Mechanism of Hydrolysis to form (60) and (61)

Both green (60) and purple (61) crystals are the product of hydrolysis of the expected products via the following proposed mechanism.

The water may have been present in the solvent or hydroxyl groups on the alumina used in the separation may have caused hydrolysis.

4.6 Reactions of Perfluoroblcyclobutylidene (62) with Tertiary Aromatic Amines

It was of interest to know whether fluorinated alkenes would react with single ring systems. Hence, the fluoroalkene (62) was reacted with PS, N,Ndimethylanailine and N -methylindole. Although the reactions with the aniline and indole are not annelation reactions, we feel that it is wise to include them at this point as they are reactions between fluoroalkenes and soft, carbon, aromatic nucleophiles.

4.6.1 Reaction_with_N.N-Dimethylaniline

N,N-Dimethylaniline reacts with (62) to give the electrophilic substitution product (63) as white crystals in 73% yield.

(63)

The ${ }^{1} \mathrm{H}$ NMR spectrum of (63) shows the familiar $A A^{\prime} X X$ ' splitting pattern between 6.76 and 7.16 ppm ($\mathrm{JAX}_{\mathrm{AX}}=8.7 \mathrm{~Hz}$) indicative of a para-disubstituted benzene ring and a singlet at corresponding to the NMe_{2} group.

The ${ }^{19} \mathrm{~F}$ NMR spectrum shows five resonances of relative intensity 1:2:2:4:2 which have been assigned in comparison with a similar unsubstituted fluoroalkene (64), as shown below.

(63) gives satisfactory elemental analysis and mass spectra.

4.6.2 Reaction with N -Methylindole

Similarly, N-methylindole reacts with fluoroalkene (62) to give the product (65) as white crystals in 46% yield. The orientation of electrophilic substitution in indoles will be discussed in section 5.5.

The ${ }^{1} \mathrm{H}$ NMR spectrum of (65) is similar to those of adducts (73)-(75) as discussed in section 5.5.

The ${ }^{19}$ F NMR spectrum is similar to that of product (63). Satisfactory analysis and mass spectra were obtained.

4.6.3 Reaction with_PS

PS and perfluorobicyclobutylidene were stirred together in acetonitrile. Addition of water to the reaction mixture gave a white solid, elemental analysis giving a formula of $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$. Clearly hydrolysis of the expected annelation product had taken place.
${ }^{19}$ F NMR of the product (66) gives two resonances; a singlet at -120.1 ppm and an $A B$ system at 129.8 and $133.8 p p m$ with the same relative intensities. This suggests a symmetrical structure and we have tentatively suggested structure (66).

(66)

The singlet at -120.1 ppm is assigned to the CF_{2} groups adjacent to the carbonyl groups and the AB system to the asymmetric CF_{2} groups.

The ${ }^{1} \mathrm{H}$ spectrum is more complex in the aromatic region compared to (4) and (44) and this may be due to isomeric forms of the product. The product (66) decomposes in the mass spectrometer so no confirmation of the structure is possible. The infra red spectrum shows an absorption at $1770 \mathrm{~cm}^{-1}$ which could be attributable to the carbonyl bonds.

The product (66) may be formed by the hydrolysis of the expected annelation product, as follows:-

84

4.7 SUMMARY

We have shown that tertiary aromatic amines can act as carbon nucleophiles in reactions with perfluorinated alkenes. In particular, annelation reactions between 1,8-bis(dimethylamino)naphthalene (PS) and alkenes (3) and (43) have been performed. A mechanism for this reaction has been proposed and reasons for the direction of nucleophilic attack on the fluoroalkene discussed.

The general reaction may be extended to anilines and indoles. Hence we have discovered a general route for the nucleophilic substitution of fluorinated alkenes by soft carbon aromatic nucleophiles which, to our knowledge, has not been reported previously.

REACTIONS BETWEEN TERTIARY AROMATIC AMINES ACTING AS SOFI CARBON NUCLEOPHILES WITH ELUORINATED HETEROCYCLES

5.1 Infroduction

The success of the reaction between tertiary aromatic amines and fluorinated alkenes (Chapter Four) prompted us to try reactions between tertiary aromatic amines and filuorinated heterocyclic systems. The reactivity of perfluoroheterocyclic compounds towards nucleophiles is well known ${ }^{148}$.

Reactions between trifluoro-s-triazine and soft, aromatic carbon nucleophiles were performed. Some reactions between trichloro-s-itiazine ${ }^{149}$ and aromatic carbon nucleophiles have been reported and are reviewed below, but we are unaware of any previous detailed investigations of reactions between trifluoro-s-triazine and aromatic amines acting as carbon nucleophiles. The only comparable example that we have found in the literature is the reaction between trifluoro-s-triazine and N methylpyrrole ${ }^{150}$ (see below).

5.2 Nuclepphilic Substitution Reactions of Trifluoros-striazine

Trifluoro-s-triazine is very reactive towards nucleophiles and reactions with O, N and perfluorinated carbanion nucleophiles have been well studied ${ }^{148}$. Some examples of nucleophilic substitution reactions of trifluoro-s-triazine are given below which proceed via the mechanism outlined previously in section 2.4.1.2.

Conditions and Yields
(i) r.t., THF, $2 \mathrm{hr}, 74 \%$
(ii) $0^{\circ} \mathrm{C}$, Ether, $1 \mathrm{hr}, 90 \%$
(iii) r.t., THF, $\mathrm{K}_{2} \mathrm{CO}_{3}, 2 \mathrm{hr}, 77 \%$
(iv) $70^{\circ} \mathrm{C}$, sulpholane, $20 \mathrm{hr} . \mathrm{n}=1,39 \% ; n=2,51 \% ; n=3,5 \%$

5.3 Reactions between Trichioro-s-triazine (Cyanuric Chioride) and Tertiary. Aromatic Amines Acting as Carbon Nucleophiles

5.3.1 With N.N-Dialkylanilines and Toluidines

Reactions between cyanuric chloride and N,N-Dialkylanilines were studied by Shaw ${ }^{151}$. It was found that the aniline acted as a ambident nucleophile 10 give a mixture of products of types (IIA), (IIIA) and (IVA), as outlined in the following scheme.

Table 15 is taken from this paper ${ }^{151}$ and a discussion of the results follows. All reactions were carried out in the absence of solvent at a temperature of $90^{\circ} \mathrm{C}$ for 8 hours.

Iable 15. Beactions Between_Cyanuric Chloride and_N.N-Dialky_Anilines and Ioluidines.

From the table the following points may be rationalised:-
(1) N, N-Dimethylaniline gives only the nitrogen substituted product (II).
(2) N, N-Diethylaniline gives a $1: 2$ mixture of carbon substituted product to nitrogen substituted product (II). There is an increase in the amount of carbon substituted product with increasing alkyl chain length on the nitrogen. This was accounted for by the increased steric hindrance around the nitrogen atom and the increasing inductive effects of the alkyl chain making the p-carbon more activated towards electrophilic substitution.
(3) Both the 2- and 4-methyl toluidines yielded only the nitrogen substituted products. For the 4-isomer reaction can only occur at the nitrogen; no orthosubstitution was observed. With the 2 - isomer, the 2 -methyl group prevents the NEt2 group from conjugating with the ring and hence decreases activation towards electrophilic attack and so only the nitrogen substituted product is obtained.

In reactions between N, N-dialkylnaphthylamines and cyanuric chloride the carbon substitution product forms exclusively ${ }^{152}$. This was attributed to the greater activation of the naphthalene ring towards electrophilic attack and steric hindrance of the nitrogen by the peri hydrogen atom.

The carbon substituted compounds (II) have been patented ${ }^{153}$.

The UV, IR and ${ }^{1} \mathrm{H}$ NMR spectra of the carbon substituted compounds were presented in a separate paper ${ }^{154}$, but details will be included later in the discussion for comparison with our data.

5.3.1.1 Mechanism

A mechanism for the formation of the carbon substituted compounds of cyanuric chloride has been postulated ${ }^{155}$, and is shown below. The reaction is claimed to proceed via successive π and σ complexes. The charge transfer complexes may be seen by UV spectroscopy.

5.3.2 With 5-Membered Heterocycilc Rings

Pyrroles are electron rich heterocycles that react readily with a wide range of electrophiles. Generally, substitution at the 2-position is favoured over the 3position as the intermediate carbocation formed is more extensively delocalised ${ }^{156}$, as shown below.

Reactions between cyanuric chloride and furans, pyrroles and thiophenes have been studied in a series of publications by Chakrabarti and Todd for the Lilley Chemical Company. Initially, a metallated derivative of the unsubstituted thiophene or pyrrole was used to couple with the triazine to produce the desired dihalogeno-heteroaryl-striazine ${ }^{157}$. The metallation involved either reaction with n-butyl lithium or formation of a Grignard reagent, as shown below.

(2:1 ratio)

In a subsequent publication ${ }^{158}$, the use of a metallated species was found to be unnecessary and a series of pyrrolyl-s-triazines were produced by electrophilic substitution reactions.

Unusually, the reaction of cyanuric chloride with 2-acetyl-1-methylpyrrole gave an equimolar mixture of two products ${ }^{159}$.

This reaction proceeds via the intermediate (V) which is the likely product of the reaction of cyanuric chloride with an acetyl derivative ${ }^{160}$.

(V)

In similar work, Shaw reported the reaction of cyanuric chloride with N -ethyl pyrrole and indole to give carbon substituted electrophilic products ${ }^{161}$.

The reaction between trifluoro-s-triazine and N -methylpyrrole was recorded ${ }^{150}$.

However, no spectral data appears in the publication and no detailed investigation of the reactions of trifluoro-s-triazine appears in the literature.

The pyrrolyl-dichloro-s-triazines have been patented as anti parasitic agents ${ }^{162}$ and fungicides ${ }^{163-165}$, showing biological activity against fungi such as anthracnose (Collectotrichum lagenarium), rice leaf spot disease and grey mold of grapes (Botrytis cinerea), amongst others.

The hydrolysis of (N -methylpyrrol-2-yl)-dichloro-s-triazine was studied ${ }^{150}$. Successive hydrolyses to the triazin-2-one and then to the triazine-2,4dione by sodium hydroxide in water was found.

Pyrazoles also react nucleophilically with cyanuric chloride via a metallated species ${ }^{166}$.

However, reactions with the more basic heterocycles such as imidazoles, thiazoles, benzothiazoles, and pyridines do not give electrophilic substitution products but instead give quaternary salts. For example, pyridine reacts with 2-chloro-4,6-dimethoxy-s-triazine to give the unstable chloride salt which slowly hydrolyses to the hydroxide ${ }^{166}$.

(46\%)

5.4_Reactions of Fluorinated_Trlazines with_Pyrroles

Both pyrrole and N -methyipyrrole react with trifluoro-s-triazine (13), perfluoroisopropyl-s-triazine (14) and perfluorodiisopropyl-s-triazine (15) to form electrophilic substitution products (67)-(72), in good yield.

(67) $R=H, R_{1}=F, R_{2}=F$
(68) $R=H, R_{1}=F, R_{2}=R_{F}$
(69) $R=H, R_{1}=R_{F}, R_{2}=R_{F}$
(70) $R=M e, R_{1}=F, R_{2}=F$
(71) $R=M e, R_{1}=F, R_{2}=R_{F}$
(72) $R=M e, R_{1}=R_{F}, R_{2}=R_{F}$
$R_{F}=\left(C_{3}\right)_{2} C F$.

The products were precipitated from the reaction mixture by adding water and then purified by vacuum sublimation.

Electrophilic substitution occurs at the 2-position of the pyrrole ring, as expected, and this is proved by the values of the proton-proton coupling constants (section 5.4.1.1).

Yields, melting points and UV spectral data for compounds (67)-(72) are collated in table 16, below. Satisfactory elemental analyses and mass spectra were recorded for each compound (67)-(72).

Compound No.	R	R_{1}	R_{2}	Yield (\%)	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	$\lambda_{\text {max }}(\mathrm{nm})$ $\left(\log _{10} \varepsilon\right)$
(67)	H	F	F	65	156-160	310.1
						(4.48)
(68)	H	F	$\mathrm{R}_{\boldsymbol{F}}$	71	112-115	336.0
						(4.41)
(69)	H	$\mathbf{R F}_{\mathbf{F}}$	R_{F}	68	64-66	344.8
						(4.58)
(70)	Me	F	F	45	117-118	314.6
						(4.44)
(71)	Me	F	RF_{F}	54	110-111	324.5
						(4.38)
(72)	Me	RF_{F}	Rf	48	88-89	349.4
						(4.33)
$\left(R_{F}=\left(C F_{3}\right)_{2} C F-\right)$						

5.4.1 Spectroscopy of Pyrrolyl-s-Triazines

5.4.1.1 ${ }^{1} \mathrm{H}$ NMR

All products (67)-(72) gave similar proton NMR spectra and are collated in table 17. The spectra were assigned with reference to shifts of similar pyrroles bearing electron-withdrawing substituents at the 2-position taken from the literature ${ }^{167}$; two literature compounds are included in table 17, for comparison.

Iable $17{ }^{1} \mathrm{H}$ NMR Spectra of Pyrrolyt-s-triazines, Chemical_Shifts ($\mathrm{H}_{\mathrm{H}}, \mathrm{H}$ I

		$\mathrm{H}-2$ H	Me) triazi		
Compound	$\mathrm{N} \cdot \mathrm{H}$	$\mathrm{N}-\mathrm{CH}_{3}$	$\begin{aligned} & \mathrm{H}-2 \\ & \left(\mathrm{~J}_{2}, 3\right) \end{aligned}$	$\begin{aligned} & H-3 \\ & (J 3,4) \end{aligned}$	$\begin{aligned} & H-4 \\ & \left(\mathrm{~J}_{2,4}\right) \end{aligned}$
	$\stackrel{-}{-}$	-	6.91	6.03	6.64
			-	-	-
		-	6.76	5.90	6.54
			-	-	-
(67)	10.30	-	7.23	6.40	7.34
			(2.3)	(4.0)	(1.6)
(68)	10.62	-	7.27	6.43	7.40
			(2.4)	(4.0)	(1.2)
(69)	9.50	-	7.15	6.31	7.29
			(1.7)	(3.5)	(1.5)
(70)	-	4.04	7.14	6.27	7.44
			(2.4)	(4.0)	(1.8)
(71)	-	4.12	7.35	6.33	7.52
			(2.3)	(4.2)	(1.8)
(72)	-	4.07	7.05	6.32	7.66
			(2.3)	(4.2)	(1.9)

The ring proton coupling constants for pyrroles are diagnostic of the position of substitution. Typical values for the coupling constants in pyrrole rings are as follows ${ }^{167}$:-
$J_{2,4}$ 1.35-1.80 < $J_{2,5} 1.95-2.30<J_{2,3}$ 2.40-3.10< $J_{3,4}$ 3.40-3.80
The ${ }^{1} \mathrm{H}$ NMR spectrum of (70) is shown overleaf (Fig. 10), and is typical of the spectra obtained for compounds (67)-(72). From the spectrum we can see that the resonance at 6.27 ppm has coupling constants 2.39 and 4.00 Hz , and the resonance at 7.43ppm has coupling constants 1.80 and 4.2 Hz . From the list of typical values of coupling constants above we can assign the resonance at 6.27ppm to be $\mathrm{H}-3$, and at 7.43ppm to be H-4. Hence, the pyrrole has undergone substitution at the 2-position, as expected from the electrophilic substitution mechanism outlined in section 5.3.2.

Eigure 10

$5.4 .12^{19} \mathrm{E}$ NMR

The ${ }^{19}$ F NMR shifts for compounds (67)-(72) are tabulated below (Table 18) along with the shifts of the unsubstituted triazines ${ }^{126}$ (13)-(15), for comparison.

Table 18. ${ }^{19}$ E NMR Shifts for Pyrrolyl-s-Triazines.

Compound	BingE	CE3 $_{3}$	C-F
(13)	-30.4	-	-
(14)	-30.4	-74.4	-183.8
(15)	-30.5	-74.8	-185.2
(67)	-39.7	-	-
(68)	-39.7	-74.4	-184.5
(69)	-	-74.4	-184.7
(70)	-45.6	-	-
(71)	-38.4	-74.2	-184.3
(72)	-	-75.0	-185.2

The spectra are as expected by comparison with the shifts of the parent triazines (13)-(15).

$5.4 .1 .3^{13} \mathrm{C}$ NMR

${ }^{13} \mathrm{C}$ spectra were recorded for compounds (68)-(72), (67) being too insoluble for a ${ }^{13} \mathrm{C}$ spectrum to be obtained.

The ${ }^{13} \mathrm{C}$ NMR shifts for the carbon atoms in the pyrrole ring were assigned by comparison with similar literature compounds bearing electron withdrawing groups at the 2 -position ${ }^{167}$. Assignment of these peaks is helped by the fact that there is not any C-F coupling and so the peaks are singlets. Also, peaks due to aromatic C-H are large due to their short relaxation time.
${ }^{13} \mathrm{C}$ NMR shifts for the pyrrole ring carbons in the pyrrolyl-s-triazines are collated in table 19. Shifts for two literature compounds are also included for comparison.

Iable_19. ${ }^{13}$ C_NMR_shifts_for_Pyrrole_Ring_Camon_Atoms in_Pyrrolyl-s-Triazines (68)-(72)

Compound	$\mathrm{N}-\mathrm{CH}_{3}$	C-2	C-3	c-4	C-5
$\stackrel{H}{\dot{N}},$	-	133.8	121.8	112.3	129.8
$\dot{\mathrm{V}} \mathrm{COMe}$		133.4	118.5	111.2	127.0
(68)	-	128.5	121.2	114.5	130.5
(69)		128.2	121.3	114.3	130.6
(70)	39.2	136.1	123.3	111.1	128.0
(71)	39.3	136.8	123.9	111.5	128.0
(72)	39.1	137.7	124.7	111.9	128.1

The assignment of the peaks for the triazine ring carbon atoms in (68)-(72) is more complex as C-F coupling is present. Typical coupling values for 1 bond C-F coupling (${ }^{1} \mathrm{JC}-\mathrm{F}$), 2 bond (${ }^{2} \mathrm{JC}-\mathrm{F}$), 3 bond (${ }^{3} \mathrm{JC}-\mathrm{F}$) and 4 bond (${ }^{4} \mathrm{~J} \mathrm{C}-\mathrm{F}$) are as follows ${ }^{168}$:-
${ }^{1} \mathrm{JC}-\mathrm{F}=158-408 \mathrm{~Hz}$
${ }^{2} \mathrm{~J}_{\mathrm{C}}$-F $=0-103 \mathrm{~Hz}$
${ }^{3} \mathrm{~J} C-\mathrm{F}=0-43 \mathrm{~Hz}$
${ }^{4} \mathrm{~J} C-\mathrm{F}=0-24 \mathrm{~Hz}$
Examples of C-F coupling in a related system are as follows and may be taken as a guide in assigning the spectra of (68)-(72).

For mono-, di- and tri-substituted triazines we would expect the following peaks to be seen in the ${ }^{13} \mathrm{C}$ NMR spectrum, given that carbon couples with fluorine through at least four bonds.

Using these models and expected JC-F values as a guide the ${ }^{13} \mathrm{C}$ NMR spectra for (68)-(72) have been assigned as shown in table 20.

Iable_20 ${ }^{13}$ C_NMR_shifts for Triazine_Bing_Carbon_Atoms_in_Pyrrolyl-s-Triazines (68)-(72)

Monosubstituted_Triazine_(70)

compound	$\frac{c-2}{t(3 \mathrm{~J})}$	$\frac{C-4}{d d}\left({ }^{1} \mathrm{~J}, 3 \mathrm{~J}\right)$

Disubstituted Triazines (68) and (71)

Compound	C-2	C-4	C-6	C-a	C-B
	dd	dd	dd	d sept	
	$\left({ }^{3} \mathrm{~J},{ }^{4} \mathrm{~J}\right)$	($2 \mathrm{~J}, 3 \mathrm{~J}$)	(${ }^{1}$, ${ }^{4} \mathrm{~J}$)	(1J, 2J)	(1J, 2J)
(68)	170.4	169.2	171.2	90.9	121.3
	$(13,3)$	$(22,12)$	$(229,3)$	(211, 33)	(288, 27)
(71)	170.2	168.2	170.3	90.3	120.8
	$(13,3)$	$(21,12)$	$(228,3)$	(211, 35)	(288, 27)

Compound	$C-2$	$C-4$	$C-\alpha$	$C-B$
	t	$d d$	d sept	qd
	$(4 \mathrm{~J})$	$(2 \mathrm{~J}, 3 \mathrm{~J})$	$(1 \mathrm{~J}, 2 \mathrm{~J})$	$\left({ }^{1} \mathrm{~J}, 2 \mathrm{~J}\right)$
(69)	166.5	165.9	90.4	120.8
	(3)	$(22,4)$	$(211,33)$	$(288,27)$
(72)	166.6	165.5	90.2	120.7
	(3)	$(22,3)$	$(218,33)$	$(288,27)$

The complete ${ }^{13} \mathrm{C}$ NMR spectrum of compound (72) is shown overleaf (Fig. 11).

5.5 Reactions of Fluorinated_Triazines With N-Methylindole

N -methylindole reacted with the triazines (13)-(15) to give electrophilic substitution products (73)-(75), respectively, in good yield.

(73) $R_{1}=F, R_{2}=F$
(74) $R_{1}=F, R_{2}=R_{F}$
(75) $\mathrm{R}_{1}=\mathrm{R}_{\mathrm{F}}, \mathrm{R}_{2}=\mathrm{R}_{\mathrm{F}}$
$\left(R_{F}=\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CF}-\right)$

Indoles are very nucleophilic heterocycles and react easily with electrophiles. Electrophilic substitution occurs preferentially at the $\mathrm{C}-3$ site rather than at $\mathrm{C}-2$, in contrast to pyrrole systems, because the intermediate cation formed by attack at C-3 is more stable than that formed at $\mathrm{C}-2$ as the positive charge may be delocalised without involving the benzene ring part of the molecule ${ }^{156}$.

-Yields and melting points for compounds (73)-(75) are collated in table 21, below. Satisfactory elemental analyses and mass spectra were recorded for each compound (73)-(75).

Table_21. Yields and_melting points of Indolyl-s-triazines

Compound No.	Yield (\%)	m.p. $\left({ }^{\circ} \mathrm{C}\right)$
(73)	78	244
(74)	90	$190-194$
(75)	87	$205-206$

5.5.1 Spectroscopy of Indolyl-s-Triazines

5.5.1.1_1 ${ }^{1}$ _NMB

The ${ }^{1} \mathrm{H}$ NMR spectrum of (74) is shown overleaf (Fig 12). From the spectrum we can see five protons in the aromatic region. The four multiplets are due to the indole ring protons and the singlet corresponds to the proton at the 2-position of the indole ring, by comparison with literature data ${ }^{167}$. This singlet proves that the electrophilic substitution has taken place at the 3-position as long range coupling would be seen if the 3-proton was present.

$5.5 .1 .2^{19} \mathrm{E}$ NMR

${ }^{19}$ F NMR spectra for the indolyl-s-triazines were similar to those found for the pyrrolyl-s-triazines and were assigned in the same way. The ${ }^{19} \mathrm{~F}$ NMR shifts for the indolyl-s-triazines (73)-(75) are collated in table 22.

Table 22. ${ }^{19} \mathrm{~F}$ NMR Shifts for Indolyl-s-Triazines. (73)-(75)

Compound No.	BingF	CF3	C-F
(73)	-40.2	-	-
(74)	-39.2	-74.2	-184.2
(75)	-	-74.2	-184.4

A ${ }^{13} \mathrm{C}$ spectrum was recorded for compound (74), but (73) and (75) are too insoluble for ${ }^{13} \mathrm{C}$ spectra to be obtained.

The ${ }^{13} \mathrm{C}$ NMR shifts for the carbon atoms in the indole ring were assigned by comparison with similar literature compounds bearing electron withdrawing groups at the 3 -position ${ }^{167}$. Assignment of these peaks is helped by the fact that there is not any C-F coupling and so the peaks are singlets. Also, peaks due to aromatic C-H are large due to their short relaxation time.
${ }^{13} \mathrm{C}$ NMR shifts for the indole ring carbons in the indolyl-s-triazines are collated in table 23. Shifts for two literature compounds are also included for comparison.

Table 23. ${ }^{13}$ C NMR shifts for Indole Ring Carbon Atoms in Indolyl-s-Triazines (74)

B	$C-2$	$C-3$	$C-4$	$C-5$	$C-6$	$C-7$	$C-8$	$C-9$
CON:	133.4	116.2	122.0	120.9	120.9	111.4	124.4	135.9
CD	138.1	118.2	123.3	122.0	120.8	112.3	124.2	137.1
(74)	140.5	111.7	127.2	124.0	123.0	112.0	124.6	139.6

The similar ${ }^{13} \mathrm{C}$ shifts of literature compounds and the product (74) is further proof of the position of substitution at the 3-position.

The ${ }^{13} \mathrm{C}$ NMR shifts for the triazine ring carbon atoms were assigned in the same way as for the pyrrolyl-s-triazines. The shifts for the triazine ring carbons in the pyrrolyl compounds (68), (71) and the indolyl compound (74) are tabulated below (Table 24) for comparison.
(Same nomenclature as in Table 20)

Compound	C-2	C-4	C-6	c-a	C-B
	dd	dd		d sept	
	$\left({ }^{3} \mathrm{~J},{ }^{4} \mathrm{~J}\right)$	($2 \mathrm{~J}, 3 \mathrm{~J}$)	($1 \mathrm{~J}, 4 \mathrm{~J}$)	($1 \mathrm{~J}, 2 \mathrm{~J}$)	(1J, $\left.{ }^{2} \mathrm{~J}\right)$
(68)	170.4	169.2	171.2	90.9	121.3
	$(13,3)$	$(22,12)$	$(229,3)$	(211, 33)	(288, 27)
(71)	170.2	168.2	170.3	90.3	120.8
	$(13,3)$	(21, 12)	$(228,3)$	(211, 35)	$(288,27)$
(74)	175.0	168.1	170.3	90.2	120.8
	$(13,3)$	(multiplet)	(229)	(210, 33)	(287, 27)

5.6 Reaction of Tetrafluoropyrimidine with N-Methylindole

N -methylindole also reacts with tetrafluoropyrimidine, which is less activated towards nucleophilic attack than trifluoro-s-triazine, to give a similar electrophilic substitution product (76) as yellow crystals (m.p. $231^{\circ} \mathrm{C}$) in 36% yield.

Satisfactory elemental analysis and mass spectra were recorded. The product was too insoluble for NMR spectra to be recorded.

5.7 Reactions of Fluorinated-s-triazine with Anilines

5.7.1 Reaction of Trifluoro-s-triazine with $N . N$-Dimethylaniline

Trifluoro-s-triazine reacts with N, N-dimethylaniline to give the carbonsubstituted product (77) exclusively, as brown-red crystals (m.p. 234-237${ }^{\circ} \mathrm{C}$) in 28\% yield.

The ${ }^{1} \mathrm{H}$ NMR spectrum proves the carbon-substituted structure (77) as shown. The spectrum shows a singlet at 3.10 ppm corresponding to 6 protons and an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system in the aromatic region (6.80 and $8.28 \mathrm{ppm}, J_{A X}=9.0 \mathrm{~Hz}$), corresponding to 4 protons, as is usual for a 1,4 -disubstituted benzene ring. This agrees with ${ }^{1} \mathrm{H}$ NMR data for an analogous compound produced by Shaw in the reaction between cyanuric chloride and N, N-diethylaniline ${ }^{154}$.

The reaction between cyanuric chloride and N, N-dimethylaniline gave no carbon substituted product ${ }^{151}$. This shows that trifluoro-s-triazine is more susceptible to nucleophilic attack than trichloro-s-triazine.

5.7.2 Reaction of Perfluoroisopropyl-s-triazine (14) with N.N. Dimethyl- and Diethyl-aniline

Similarly perfluoroisopropyl-s-triazine (14) reacts with N,Ndimethylaniline to produce the carbon-substituted product (78) in 36% yield. Again, ${ }^{1} \mathrm{H}$ NMR proves the structure of (78) and is included in table 25.

However the reaction between N,N-diethylaniline and triazine (14) is not as simple. The same work-up procedure was used to obtain a yellow solid which gave elemental analysis and mass spectra consistent with the formula $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~F}_{8} .{ }^{1} \mathrm{H}$ and ${ }^{19}$ F NMR revealed the presence of two products which must be isomers from the elemental analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum of this product mixture is shown overleaf.

$$
\begin{aligned}
& \text { H. NMB Specirum of N.N-(Dieihylamino)-perfluorolsopronyl-s-Triazine } \\
& \text { ortho and Para lsomers }
\end{aligned}
$$

${ }^{1}$ H_NMR Spectrum of N.N-(Dlethylamino)-perfluorolsopropyl-s-Triazine

The major product seen in the NMR spectra is the expected para substituted product (79A) which gives a triplet and a quartet at 1.20 and 3.49 ppm respectively and an $A A^{\prime} X X$ ' system at 6.80 and $8.27 \mathrm{ppm} \quad\left(J_{A X}=9.6 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. The minor product must be the ortho substituted isomer (79) as shown below.

(78) $R=M e, 36 \%$ yield, only A formed.
(79) $R=E t, 45 \%$ yield, $A: B=69: 31$.

The nitrogen substituted product (80) was prepared directly from N ethylaniline and triazine (14) as a white solid (section 5.9) for comparison of NMR data.

The formation of ortho-substituted products has not been noted before in reactions between cyanuric chloride and anilines ${ }^{151}$ (section 5.3.1).

5.73 Reaction of Perfluorodiisopropyl-s-trlazine (15) with_N.N-Dimethyl- and Diethyl-aniline

Reactions between N, N-dimethyl- and diethyl-aniline and triazine (15) both gave a mixture of isomers (81 A)-(82B).

(81) $R=M e, 77 \%$ yield, $A: B=44: 56$
(82) $R=E t, 72 \%$ yield, $A: B=63: 37$

5.7.4 Collected NMR Data_For_Phenyl-s-Triazines (77)-(82)

Although products (77)-(82) could not be separated from their respective ortho isomers, the ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR shifts for these compounds could be assigned from the spectra of the mixtures of isomers (Table 25).

Table $25{ }^{1} \mathrm{H}$ NMR Spectra of Phenyl-s-triazines (77)-(82A)

Compound	$\mathrm{N}-\mathrm{Me}$	CH_{3}	CH_{2}	$A^{\prime}{ }^{\prime} X X^{\prime}$	$\pm \mathrm{AX}\left(\mathrm{H}_{2}\right)$
				System	
(77)	3.10	-	-	6.80, 8.28	9.0
(78)	3.40	-	-	6.98, 8.65	9.4
(81A)	3.08	-	-	$6.67,8.36$	9.2
(79A)	-	1.20	3.49	6.80, 8.27	9.6
(82A)	-	1.18	3.42	$6.65,8.33$	9.2

Table 26 ${ }^{19} \mathrm{E}$ NMR Spectra of 4-Phenyl-s-Triazines (77)-(82A)

Compound	Bing	CE3 $_{3}$	C-E
(77)	-40.1	-	-
(78)	-37.2	-74.3	-184.8
(81A)	-	-73.7	-184.0
(79A)	-43.5	-78.1	-188.2
(82A)	-	-73.1	-183.8

The enhanced reactivity of the triazines (14) and (15) must be the reason for the formation of the ortho substituted products. All the ortho substituted products give complicated ${ }^{1} \mathrm{H}$ NMR spectra each having four aromatic protons. The ${ }^{19} \mathrm{~F}$ NMR spectra of the ortho substituted compounds are similar to the spectra recorded for the para substituted compounds, as expected. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR are listed in the appendix.

5.7.5 Potential Use of Compounds (77)-(82A) as Non-Linear Optic Molecules.

Organic molecules with an electron donor group connected to an electron acceptor group via a conjugated π system may show charge transfer properties, i.e. electron density transferred from the donor part of the molecule to the acceptor part thus creating charge separation. There is a great amount of interest in using these types of molecules in non-linear optical devices ${ }^{169}$. Their fluorescent properties have
been studied ${ }^{170}$. It is beyond the scope of this thesis to consider the physics of these systems but the following molecules, which all have donor-acceptor structures, exhibit physical properties of interest to non-linear optic theory ${ }^{171}$.

We may consider the phenyl-s-triazines to have the following structure:-

This donor acceptor structure is plausible as fluorinated triazine rings have been shown to be capable of supporting a negative charge in the formation of stable σ complexes ${ }^{172}$.

In computer modelling studies (81A) was found to be non-planar, the benzene ring being at an angle to the triazine ring, as shown below (Fig 13).

Elaure 13

Computer Generated Structure of (81)

This twisted geometry may give rise to unusual fluorescent properties as seen in molecules of a similar structure. Indeed, the fluorescent properties of 2-(N,N-diethylamino)-4,6-dichloro-s-triazine have been studied ${ }^{170}$.

Computer calculations suggest that molecules of the type (77)-(82A) do exhibit non-linear optical behaviour but are no better than more readily available molecules.

5.8 Beaction of 1.8-Bis(dimethylamino)nanhthalene with Trifluoro-s: triazine

1,8-Bis(dimethylamino)naphthalene reacts with trifluoro-s-trlazine to produce a tetrasubstituted naphthalene derivative (83) as red crystals in 53% yield.

${ }^{1} \mathrm{H}$ NMR of the product (83) is similar to those of the annelation products (4) and (44) as discussed in Chapter 4, proving the tetrasubstituted naphthalene structure. Elemental analysis and mass spectra were obtained consistent with the assigned structure.

5.9 Reactions of Fluorinated osotriazines with N -Ethylaniline

Reactions between trifluoro-s-triazine and secondary amines are well known as outlined in section 5.2. Reactions between N -ethylaniline and the triazines (13) and (14) were performed to ascertain whether any carbon substituted products were formed. We found that only the nitrogen substituted products (84) and (80) were produced in 69 and 89% yield respectively.

The position of substitution of the triazine ring is proved by the ${ }^{1} \mathrm{H}$ NMR spectra. No N-H resonances are seen indicating that the N-H proton has been substituted. Also, five protons are seen in the aromatic region rather than four protons forming an AB system which we would expect for a carbon-substituted product.
${ }^{19}$ F NMR, mass spectra, UV spectra, IR spectra and elemental analyses were obtained for (84) and (80) in accordance with the assigned structures.

We may conclude that N-H is a stronger nucleophile than the activated aromatic ring acting as a carbon nucleophile.

5.10 Reaction of Trifluoro-s-triazine with_2-(N.N-Dimethylamino): Methoxybenzene

Trifluoro-s-triazine reacts with 2-(N,N-dimethylamino)-methoxybenzene to produce the nitrogen substituted product (85) in 31\% yield.

The structure is proved by the ${ }^{1} \mathrm{H}$ NMR spectrum. Four protons are seen in the aromatic region and there are two singlets at 3.47 and 3.84 ppm each having a relative intensity of three indicating that one methyl group on the nitrogen atom has been substituted.
${ }^{19}$ F NMR, mass spectra, UV spectra, IR spectra and elemental analyses were obtained for (85) in accordance with the assigned structure.

This result indicates that the 2-methoxy group prevents the NMe_{2} group from conjugating with the ring thus decreasing activation towards electrophilic attack on the ring, in agreement with Shaws' results in reactions between 2 -toluidine and cyanuric chloride ${ }^{151}$ (section 5.3.1).

5.11 Reaction of Trifiuore-s-iriazine with N.N.N'N'-Tetramelhyl-

 1.4-DiaminobenzeneTrifluoro-s-triazine reacts with $\mathrm{N}, \mathrm{N}, \mathrm{N}$ ', N^{\prime}-tetramethyl-1,4-diaminobenzene to produce the nitrogen substituted product (86) in 15% yield.

The structure of (86) is proved by the ${ }^{1} \mathrm{H}$ NMR spectrum. Two singlets at 2.97 and 3.50 ppm with relative intensities 6 and 3 respectively indicate that one of the methyl groups has been substituted. Also, the AB system (6.78 and 7.17ppm ($\mathrm{J}_{\mathrm{AB}}=8.9 \mathrm{~Hz}$)) indicative of a para-substituted benzene ring remains.
${ }^{19}$ F NMR, mass spectra, UV spectra, IR spectra and elemental analyses were obtained for (86) in accordance with the assigned structure.

The nitrogen-substituted product is obtained as the 4-position is blocked. No ortho substituted products were obtained, in agreement with Shaws' results in the reaction between 2 -toluidine and cyanuric chloride ${ }^{151}$ (section 5.3.1).

5.12 Reaction beiween 2-(N.N-Dimethylamino)-pyridine and

 Perfluorodi-lsopropyl-s-triazine2-(N,N-Dimethylamino)-pyridine reacts with perfluorodi-isopropyl-striazine to give the pyridinium hydroxide salt (87) after the reaction was washed with water.

(47\%)

No carbon substituted products were obtained in agreement with Chakrabarti's results ${ }^{166}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum shows a singlet at 3.25 ppm corre; ponding to the NMe2 group and four protons in the aromatic region. Elemental analysis is consistent with a molecular formula of $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{~F}_{14} \mathrm{O}$.

5.13 Summary

We have shown that pyrroles, indoles and tertiary anilines can act as carbon nucleophiles in reactions with perfluorinated heterocycles in electrophilic substitution reactions.

Pyrroles are substituted at the 2 -position, as proved by ${ }^{1} \mathrm{H}$ NMR coupling constants, whereas indoles undergo substitution at the 3 -position, proved by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, which is in accordance with the literature ${ }^{167}$.

Tertiary anilines react via the para carbon atom to form electrophilic substitution products. The reaction is complicated by the formation of the ortho species when the nucleophile is stronger.

EXPERIMENTAL SECTION

INSTRUMENTATION

Gas liquid Chromatography (g.c.) analysis was carried out on a Hewlett Packard 5890A gas chromatograph fitted with a 25 m cross-linked methyl silicone capillary column. Preparative g.c. was performed on a Varian Aerograph Model 920 (catharometer detector) gas chromatograph.

Fractional distillation of product mixtures was carried out using a Fischer Spahltrohr MMS 255 small concentric tube apparatus. Boiling points were recorded during distillation. Melting points were carried out at atmospheric pressure and are uncorrected.

Carbon, hydrogen and nitrogen elemental analyses were obtained using a Perkin-Elmer 240 Elemental Analyser or a Carlo Erba 1106 Elemental Analyser. Analysis for halogens were performed as described in the literature.

Ultraviolet spectra were recorded on a Perkin-Elmer Lambda 2 or a PyeUnicam PU 8720 UV/Vis spectrophotometer.

Infra Red spectra were recorded on either a Perkin-Elmer 457 or 577 Grating Spectrophotometer using conventional techniques.

Proton NMR spectra were recorded on a Hitachi Perkin-Elmer R-24B $(60 \mathrm{MHz})$, a Bruker $\mathrm{AC} 250(250 \mathrm{MHz})$ and a Varian VXR400S(400MHz) NMR spectrometer.

Fluorine NMR spectra were recorded on a Varian EM360l (56.45 MHz), a Bruker AC250 (235 MHz) and a Varian VXR400S (365 MHz) NMR spectrometer.

Carbon NMR were recorded on a Varian VXR400S (100MHz) NMR spectrometer.

Mass Spectra of solid samples were recorded on a VG 7070E spectrometer. G.c. mass spectra were recorded on the VG 7070E spectrometer linked to a Hewlett Packard 5790A gas chromatograph fitted with a 25 m cross-linked methyl silicone capillary column.

REAGENTS

In general chemicals were used as received from suppliers (Aldrich, Lancaster, Fluka) and solvents were dried by literature procedures.

CHAPTER SIX

EXPERIMENTAL TO CHAPTER TWO

6.1 Preparation of HF/Ether Solution

Anhydrous Hydrogen Fluoride gas was bubbled through dry diethyl ether (100 ml), under anhydrous conditions, which was contained in an ice cooled FEP bottle. Face masks, gloves and an efficient fume hood are essential when handling anhydrous HF. The concentration of HF was determined by titrating an aliquot of the ether solution with a standard solution of sodium hydroxide using phenolphthalein as the indicator. e.g. a 1 ml aliquot of HF/ether solution required 5.65 ml of 1.192 M NaOH solution giving a $0.1349_{\mathrm{HF}} / \mathrm{ml}$ solution.

6.2 Preparation of 1.8-Bis(dimethylaming)naphthalene Hydrogen Eluoride Complex (PS/HF)

1,8-Bis(dimethylamino)naphthalene (Proton Sponge) ($1.5 \mathrm{~g}, 7 \mathrm{mmol}$) was dissolved in the minimum amount of dry diethyl ether and the required 1:1 stoichiometric amount of the HF/ether solution ($0.134 \mathrm{gHF} / \mathrm{ml}$) ($1.05 \mathrm{ml}, 7 \mathrm{mmol}$) was added by pipette. A white solid immediately precipitated and the ether was carefully removed under reduced pressure to leave 1,8-Bis(dimethylamino)naphthalene hydrofluoride (PS/HF) (1)(1.62g, 98\%); m.p. 117-118² ${ }^{\circ}$; (Found: C, 69.7; $\mathrm{H}, 8.5$; $\mathrm{N}, 11.5$. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~F}$ requires $\mathrm{C}, 71.8 ; \mathrm{H}, 8.1 ; \mathrm{N}, 11.95 \%$); i.r. spectrum 1; n.m.r. spectrum 1; mass spectrum 1.

The preparation was repeated many times as the material was required usually on the 3 g scale, but was scaled up to 25 g without any problems. In all the following reactions 1,8 -Bis(dimethylamino)-naphthalene hydrogen fluoride complex will be referred to as PS/HF.

6.3 Reactions using PS/HF as the Catalyst in C-C Bond Forming Reactions

6.3.1 Attempted Oligomerisation of Tetrafluoroethylene

This experiment was carried out at the ICI Experimental Site, Widnes with Dr. J. Hutchinson and Mr. M. Martin on 30/1/90.

A 0.51 autoclave was charged with PS/HF (23g, 98mmol) in dimethylformamide and α-Pinene (2 drops) was added (to inhibit any free radical reactions). The autoclave was flushed out with dry nitrogen four times and then with
tetrafluoroethylene three times. Then tetrafluoroethylene was added up to a maximum pressure of 10 bar and a maximum temperature of $110^{\circ} \mathrm{C}$. No pressure drop was observed on the manometer. Consequently, on cooling, the autoclave was opened to reveal a red solvent layer and no lower fluorocarbon layer.

6.3.2 Dimerisation of Hexafluoropropene

A Carius tube was charged with PS/HF (1.63g, 7mmol) and acetonitrile (35 ml), and hexafluoropropene $(7.34 \mathrm{~g}, 49 \mathrm{mmol}$) was transterred under vacuum to the tube which was cooled in liquid air. The tube was sealed and allowed to warm to room temperature in a steel casing and then agitated on a rotating arm for 48 hr at room temperature. The tube was opened to reveal a lower fluorocarbon layer which was collected and determined to be the thermodynamic dimer of hexafluoropropene (2) $(5.3 \mathrm{~g}, 72 \%)$ as the only product by $\mathrm{GC} ; \delta \mathrm{F}\left(60 \mathrm{MHz}, \mathrm{CFCl}_{3}\right)-60 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{~F}$, CF 3), -63 ($\mathrm{m}, 3 \mathrm{~F}, \mathrm{CF}_{3}$), $-86\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right.$), -100.5 ($\left.\mathrm{s}(\mathrm{br}), 1 \mathrm{~F}, \mathrm{CF}\right),-119$ ($\mathrm{m}, 2 \mathrm{~F}$, $\left.C F_{2}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{El}^{+}\right) 281\left(\mathrm{M}^{+}-\mathrm{F}, 24 \%\right.$); as compared to the literature data ${ }^{121}[\mathrm{~F}=-$ 60.2ppm (m, 3F, CF3), -62.8 (m, 3F, CF3), 86.4 ($\mathrm{m}, 3 \mathrm{~F}, \mathrm{CF}_{3}$), -100.1 (s (br), 1F, CF), -119.6 (m, 2F, CF2); m/z (El+) 281 ($\mathrm{M}^{+}-\mathrm{F}, 27 \%$) J.

6.3.3 Attempted Oligomerisation of Perfluorocyclobutene

A Carius tube was charged with PS/HF ($1.07 \mathrm{~g}, 5 \mathrm{mmol}$) and acetonitrile (30 ml), and perfluorocyclobutene ($12.90 \mathrm{~g}, 79 \mathrm{mmol}$) was transferred under vacuum to the tube which was cooled in liquid air. The tube was sealed and allowed to warm to room temperature in a steel casing and then agitated on a rotating arm for 48 hr at room temperature. All volatiles were transferred under vacuum to a trap and analysis by GC/MS and ${ }^{19} \mathrm{~F}$ n.m.r. showed no evidence for perfluorocyclobutene oligomers.

The reaction was repeated at $50^{\circ} \mathrm{C}$ in acetonitrile and using sulpholane as the solvent but no oligomers of perfluorocyclobutene were isolated.

6.3.4 Attempted Formation of a Stable Perfluorinated Carbanion

A flask was charged with hexafluoropropene dimer (2)(1.8g, 6 mmol$), \mathrm{PS} / \mathrm{HF}$ $(1.4 \mathrm{~g}, 6 \mathrm{mmol})$ and sulpholane (5 ml) under a plume of dry nitrogen and the mixture was stirred for one week at room temperature. ${ }^{19} \mathrm{~F}$ NMR of the mixture revealed only start material. The reaction was repeated in tetraglyme and acetonitrile but only start material was observed by ${ }^{19} \mathrm{~F}$ NMR.

6.3.5 Perfluoroalkylation of Pentafluorepyridine

A flask was charged with PS/HF ($0.75 \mathrm{~g}, 3 \mathrm{mmol}$), pentafluoropyridine (6)(2.20g, 13 mmol) and dry sulpholane (20 ml) and then cooled in liquid air and evacuated. After warming to room temperature, hexafluoropropene ($3.4 \mathrm{~g}, \mathbf{2 3 \mathrm { mmol } \text {) }) ~}$ was added via an expandable gas reservoir and the mixture was stirred vigorously for 7 days at room temperature. The volatile products were removed from the reaction mixture by flash distillation (4.8 g). GC/MS showed three main products, which were separated using an SE 30 column at $100^{\circ} \mathrm{C}$ and identified as hexafluoropropene dimer (2)(2\%); pentafluoropyridine (6)(49\%); perfluoro-4-isopropylpyridine (7)(44\%); $\delta_{F}\left(235 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}\right)-75.4$ ($6 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}$), 86.7 (2F, s, 2,6ring F), -135.3, 137.5 ($2 \mathrm{~F}, \mathrm{~d}, 3,5-\mathrm{ring} \mathrm{F}$), -180.5 ($1 \mathrm{~F}, \mathrm{~m}, \mathrm{C}-\mathrm{F}$); m/z (El+) 319 ($\mathrm{M}^{+}, 41 \%$), $250\left(15, \mathrm{M}-\mathrm{CF}_{3}\right.$), 200 ($100, \mathrm{M}-\mathrm{C}_{2} \mathrm{~F}_{5}$), as compared to the literature data ${ }^{124}\left(\delta F=-74.3\left(6 F, 5,2 C F_{3}\right),-87.3(2 F, s, 2,6-\right.$ ring $F),-135.1$ ($2 \mathrm{~F}, \mathrm{~s}, 3,5$-ring F), -178.5 ($1 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}$); m/e 319 (M)). Trace amounts of perfluorodi-isopropylpyridine (8)(2%); m/z (EI+) 469 ($\mathrm{M}^{+}, 18 \%$); and, perfluorotri-isopropylpyridine (12)(1\%); m/z (EI+) 619 ($\mathrm{M}^{+}, 16 \%$); were also observed by GC/MS.

6.3.6 Perfluoroalkylation of Tetrafluoropyrimidine

A flask was charged with PS/HF ($1.40 \mathrm{~g}, 6 \mathrm{mmol}$), tetrafluoropyrimidine (9) $(2.30 \mathrm{~g}, 15 \mathrm{mmol})$ and dry sulpholane $(30 \mathrm{ml})$ and then cooled in liquid air and evacuated. After warming to room temperature, hexafluoropropene ($5.23 \mathrm{~g}, 35 \mathrm{mmol}$) was added via an expandable gas reservoir and the mixture was stirred vigorously for 3 days at room temperature. The volatile products were removed from the reaction mixture by flash distillation (6.1 g). The product mixture was analysed by GC/MS and ${ }^{19} \mathrm{~F}$ n.m.r. and found to consist of perfluoro-4-isopropylpyrimidine (10)(27\%); δ_{F} ($235 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$) -48.7 ppm (2-ring F), 72 (6 -ring F), -76.1 (CF_{3} groups), -154 (5 -ring F), -186.9 (CF); m/z (EI+) 302 ($\mathrm{M}^{+}, 35 \%$), 283 (20, M F), 233 ($18, \mathrm{M}-\mathrm{CF}_{3}$), 183 ($51, \mathrm{M}-\mathrm{C}_{2} \mathrm{~F}_{5}$); as compared to the literature data ${ }^{125}$ [$\delta \mathrm{F}=-48.7 \mathrm{ppm}\left(2\right.$-ring F), 72.5 (6 -ring F), -78.1 (CF_{3}), - 154.5 (5 -ring F), 188.7 (CF); m/e (El+) 302 ($\mathrm{M}^{+}, 65 \%$), 283 (36, M-F), 233 (20, M-CF3), 183 (57, $M-C_{2} F_{5}$)]; perfluoro-2,6-di-isopropylpyrimidine (11)(15\%); $\delta \mathrm{F}$ (235MHz, $\mathrm{CD}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$) -48.7ppm (2-ring F), -76.2 (CF_{3}), -133.5 (5-ring F), -186.9 (CF); m/e (El+) 452 (${ }^{+}, 22 \%$), 433 (33, M - F), 383 (16, M - CF3), 333 (40 , $\mathrm{M}-\mathrm{C}_{2} \mathrm{~F}_{5}$); as compared to the literature data ${ }^{125}[\delta \mathrm{~F}=-48.6$ (2-ring F), -76.5 (CF3), -132.5 (5-ring F), -186.3 (CF); m/e (EI+) 452 ($\mathrm{M}^{+}, 42 \%$), 433 ($44, \mathrm{M}$ F), 383 (22, M-CF3), 333 (37, $M-\mathrm{C}_{2} \mathrm{~F}_{5}$)]; perfluoro-2,4,6-triisopropylpyrimidine (12)(39\%); $\delta_{\mathrm{F}}\left(235 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}\right)-76.2\left(\mathrm{CF}_{3}\right),-$
124.1 (5 -ring F), -182 (CF), -186.9 (CF); m/e ($\mathrm{El}{ }^{+}$) 602 ($\mathrm{M}^{+}, 5 \%$), 583 ($9, \mathrm{M}$ - F), 533 ($4, \mathrm{M}-C F_{3}$), 452 ($14, \mathrm{M}-\mathrm{C}_{3} \mathrm{~F}_{6}$); as compared to the literature data ${ }^{125}$ [$\delta_{F}=-76.5 \mathrm{ppm}\left(\mathrm{CF}_{3}\right),-123.1$ (5 -ring F), -182.1 (CF), -186.3 (CF); m/e (EI+) 602 (M+, 46\%), 583 (50, M-F), 533 (22, M-CF3)].

6.3.7 Perfluoroalkylation of Trifluoro-s-triazine

A flask was charged with PS/HF ($0.70 \mathrm{~g}, 3 \mathrm{mmol}$), trifluoro-s-triazine (13)(1.80g, 13 mmol$)$ and dry sulpholane (20 ml) and then cooled in liquid air and evacuated. After warming to room temperature, hexafluoropropene ($7.5 \mathrm{~g}, 50 \mathrm{mmol}$) was added via an expandable gas reservoir and the mixture was stirred vigorously for 3 days at room temperature. The volatile products were removed from the reaction mixture by flash distillation (8.2 g). The product mixture was analysed by ${ }^{19} \mathrm{~F}$ n.m.r. and GC/MS and found to consist of two main products; perfluoroisopropyl-s-triazine (14)(35\% by GC); m/z (EI+) 285 (${ }^{+}$, 100\%), 266 ($98, \mathrm{M}$ - F), 197 ($88, \mathrm{M}$ FCF 3), 166 ($51, M \cdot C_{2} F_{5}$); perfluorodi-isopropyl-s-triazine (15)(8\%); m/z ($\left.\mathrm{E}\right|^{+}$) 435 ($\mathrm{M}^{+}, 65 \%$), 416 (100, M - F), 347 (38, M - FCF3), 316 (11, M $\mathrm{C}_{2} \mathrm{~F}_{5}$). ${ }^{19} \mathrm{~F}$ n.m.r. of the product mixture revealed perfluoroalkylation; $\delta \mathrm{F}$ (235 MHz , $\mathrm{CD}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$) -33 ppm ($\mathrm{N}=\mathrm{C}-\mathrm{F}$), -73 (CF_{3}), -183.8 (CF); as compared to the literature data ${ }^{126}\left[\delta F=-30.4-30.6 p p m\right.$ (ring F), -74.4-75.4 ($C F_{3}$ groups), -183.8-186.5 (CF)].

6.4 Reactions Using PS/HF in C-F Bond Forming Reactions

6.4.1 With Benzoyl Chloride

A mixture containing PS/HF (1.07g, 4.5mmol), benzoyl chloride (0.70 g , 5 mmol) and acetonitrile was allowed to stand at room temperature for 24 hr . A white solid, 1,8 -bis(dimethylamino)naphthalene hydrochloride ($\mathrm{PS} / \mathrm{HCl}$), precipitated. The mixture was filtered and benzo trifluoride ($0.17 \mathrm{~g}, 1.16 \mathrm{mmol}$) was added as an nmr marker. ${ }^{19} \mathrm{~F}$ n.m.r. revealed benzoyl fluoride (76% yield by integration); δ_{F} (235 $\mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$) +17.0 ($1 \mathrm{~F}, \mathrm{~s}, \mathrm{CO}-\mathrm{F}$); as compared to the literature data $\left(\delta_{F}=+17.1 \mathrm{ppm}\right)^{173}$.

6.4.2 Reaction between Hexafluoroacetone and PS/HF

A Carius tube was charged with PS/HF (5.1g, 22mmol) in acetonitrile (20 ml) and hexafluoroacetone $(5.3 \mathrm{~g}, 32 \mathrm{mmol})$ was transferred under vacuum to the trap which was cooled in liquid air.The tube was sealed and allowed to stand at room temperature overnight. The solution went pale yellow. The tube was opened and ${ }^{19} \mathrm{~F}$
n.m.r. revealed the desired carbinolate species (17); δ ($235 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$) 80.33 ($6 \mathrm{~F}, \mathrm{~s}, \mathrm{CF} 3$), -107.88 ($1 \mathrm{~F}, \mathrm{~s}(\mathrm{br}), \mathrm{CF}$). There was no peak at -164ppm indicating that all the PS/HF had reacted, hence the solution contained 22 mmol of the carbinolate species. The reaction solution was used in the two following trapping reactions.

6.4.2.1 Preparation of HeptafiuoroisopropyL_benzoate (18)

Benzoyl chloride ($1.7 \mathrm{~g}, 12 \mathrm{mmol}$) was added dropwise to the carbinolate solution prepared above ($10 \mathrm{ml}, 11 \mathrm{mmol}$) and the mixture was stirred overnight. The volatiles were transferred under vacuum and analysed by GC/MS and ${ }^{19} \mathrm{~F}$ n.m.r. There were two products; benzoyl fluoride (51\%); and, heptafluoroisopropyl benzoate (18) (49\%) which was isolated by preparative GC using a 30% SE 30 column at $150^{\circ} \mathrm{C} ; \delta_{F}$ ($235 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$) -78.1 ($6 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}$), -141.1 (1F, s, CF); m/z (El^{+}) 290 ($\mathrm{M}^{+}, 22 \%$), 105 (100, $\mathrm{Ar}-\mathrm{C}=0$), 77 (60, $\mathrm{C}_{6} \mathrm{H}_{5}$), 69 (11, CF_{3}).

6.4.2.2 Preparation of Heptafluoroisopropyl benzyl ether (19)

Benzyl bromide ($2.3 \mathrm{~g}, 13 \mathrm{mmol}$) was added dropwise to the carbinolate solution prepared above ($10 \mathrm{ml}, 11 \mathrm{mmol}$) and the mixture was stirred overnight at room temperature. All volatile materials were transferred under vacuum and analysed by GC/MS and ${ }^{19} \mathrm{~F}$ n.m.r. There were two components; benzyl bromide (39\%) and, heptafluoroisopropyl benzyl ether (19)(61\%) which was isolated by preparative scale GC using a 30% SE 30 column at $150^{\circ} \mathrm{C}$; $v_{\max } 1230 \mathrm{~cm}^{-1}$ (C-O-C stretch); $\delta \mathrm{H}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $5.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta \mathrm{F}(235 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \mathrm{CFCl}_{3}$) - 79.5 ($6 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}$), -142.6 ($1 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}$); m/2 ($\mathrm{El}{ }^{+}$) 276 ($\mathrm{M}^{+}, 33 \%$), 91 (100, Ar-CH2); m/z (El+) 276 ($\mathrm{M}^{+}, 33 \%$), 91 (100, Ar-CH Cl_{2}.

6.4.3 With_2.4-Dinitrochlorobenzene

A mixture containing PS/HF (3.06g, 13mmol) and 2,4-dinitrochlorobenzene ($2.69 \mathrm{~g}, 13 \mathrm{mmol}$) was refluxed in acetonitrile for 2 days. Benzotrifluoride was added as an nmr marker and ${ }^{19} \mathrm{~F} \mathrm{nmr}$ revealed 2,4-dinitrofluorobenzene (45\% yield by integration) at -109 ppm , as compared to the literature data $(\delta \mathrm{F}=-107.7 \mathrm{ppm})^{173}$.

6.4.4 With_Benzyl_Bromide

A mixture containing PS/HF ($1.87 \mathrm{~g}, 8 \mathrm{mmol}$), benzyl bromide (1.30 g , $8 \mathrm{mmol})$ and acetonitrile ($(15 \mathrm{ml})$ was refluxed for 24 hr . A white solid, 1,8bis(dimethylamino)naphthalene hydrobromide ($\mathrm{PS} / \mathrm{HBr}$), precipitated (i.r.
spectrum). The mixture was filtered and benzo trifluoride ($0.19 \mathrm{~g}, 1.30 \mathrm{mmol}$) was added as an nmr marker. ${ }^{19} \mathrm{~F}$ n.m.r. revealed benzyl fluoride (72% by integration); δ_{F} ($235 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$) -206.4 ($1 \mathrm{~F}, \mathrm{t}, \mathrm{JHF}_{\mathrm{HF}}=49 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{~F}$); as compared to the literature data ($\delta \mathrm{F}=-207 \mathrm{ppm})^{173}$.

6.4.5 With Octyl lodide

A mixture containing PS/HF ($1.10 \mathrm{~g}, 4.7 \mathrm{mmol}$), octyl iodide (0.91 g , 3.8 mmol) and acetonitrile was heated at reflux for 24 hr . On cooling white crystals, 1,8-bis(dimethylamino)naphthalene hydriodide, precipitated (i.r.spectrum). The mixture was filtered and and benzo trifluoride ($0.23 \mathrm{~g}, 1.57 \mathrm{mmol}$) was added as an nmr marker. ${ }^{19} \mathrm{~F}$ n.m.r. revealed octyl fluoride (65% yield by integration); δ_{F} (235 $\mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$) $218.0\left(1 \mathrm{~F}, \mathrm{t}, \mathrm{JHF}=42 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{~F}\right.$); as compared to the literature data ($\delta \mathrm{F}=-219 \mathrm{ppm})^{173}$.

6.4.6 Attempted Reaction Between PS/HF and 1.2-Epoxybutane

A mixture containing $\operatorname{PS} / \mathrm{HF}$ ($1.54 \mathrm{~g}, 6.6 \mathrm{mmol}$), 1,2 -epoxybutane $(0.43 \mathrm{~g}$, 6.0 mmol) and acetonitrile (15 ml) was refluxed for $48 \mathrm{hr} .{ }^{19} \mathrm{~F}$ n.m.r. of the mixture showed that no reaction had taken place. The reaction was repeated in sulpholane at $130^{\circ} \mathrm{C}$ for 3 days with no hydrofluorination taking place, by ${ }^{19} \mathrm{~F}$ n.m.r.

6.4.7 Preparation of 1.2:5.6-Di-0-isopropylidene-3-0-triflic-a-Dgulofuranose (21)

Diacetone-D-glucose $(20)(1.83 \mathrm{~g}, 7 \mathrm{mmol})$ and pyridine $(2.5 \mathrm{~g}, 32 \mathrm{mmol})$ were dissolved in dichloromethane (50 ml) and the solution, under dry nitrogen, was cooled down to $0^{\circ} \mathrm{C}$ with an ice/salt bath. Triflic anhydride ($5.1 \mathrm{~g}, 18 \mathrm{mmol}$) was added dropwise, with the temperature of the reaction maintained under $5^{\circ} \mathrm{C}$. The solution was stirred at $5^{\circ} \mathrm{C}$ for 30 mins. A white solid was deposited and the solution went pale yellow. The solution was washed sequentially with ice-cold dilute hydrochloric acid and water. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to leave a solid, the desired triflate (21)(2.17g, 79\%); $\delta \mathrm{F}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CFCl}_{3}\right)-76.0\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right)$; as compared to the literature data ${ }^{129}$; and was used immediately in the next reaction.

6.4.8 Attempted Beaction Between PS/HF and Triflate (21)

A mixture containing triflate (21)(2.17g, 5.5mmol), PS/HF (1.80g, 7.7 mmol) and acetonitrile (20 ml) was refluxed overnight. The solution went dark brown and a solid precipitated. This solid was collected by filtration and recrystallised
from water as white needles and found to be the salt, 1,8-bis(dimethylamino)naphthalene hydrotriflate (23); m.p. $215-218^{\circ} \mathrm{C}$; (Found: $\mathrm{C}, 49.7 ; \mathrm{H}, 5.3 ; \mathrm{N}, 7.6$. Calc for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~F}_{3} \mathrm{SO}_{3}: \mathrm{C}, 49.5 ; \mathrm{H}, 5.2 ; \mathrm{N}, 7.6 \%$); i.r. spectrum recorded; m / z (EI^{+}) 214 (naphthalene ion, 40%). ${ }^{19} \mathrm{~F}$ n.m.r. of the remaining reaction solution showed no evidence for a fluorinated glucose. The triflate salt may have been produced after decomposition of the triflated glucose.

The reaction was repeated at room temperature but no fluorinated glucose was observed, by ${ }^{19} \mathrm{~F}$ n.m.r.

6.4.9 Preparation of 1.2:5,6-Di-O-isopropylidene-3-0-ioluene-p-sulphonyl-a-D-allofuranose (22)

Diacetone-D-glucose (20)(3.00g, 11.5 mmol$)$ was dissolved in pyridine (40 ml) and cooled to $0^{\circ} \mathrm{C}$. A solution of tosyl chloride ($7.00 \mathrm{~g}, 36.7 \mathrm{mmol}$) in pyridine (20 ml) was added dropwise. The solution was stirred at room temperature for two days. Water (4 ml) was added and the solution was left to stand for a further 20 mins. It was then poured onto ice/water (300 ml) and the crude sulphonate was filtered off and recrystallised from aqueous ethanol to yield the desired tosylate (22)(2.50g, 52%); m.p. $120-122^{\circ} \mathrm{C}$ (lit. ${ }^{130}$, $122-123^{\circ} \mathrm{C}$); (Found: C, 54.5; H, 6.2. Calc for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{SO}_{8}: \mathrm{C}, 55.1 ; \mathrm{H}, 6.3 \%$); IR spectrum recorded; $\delta \mathrm{H}\left(235 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right.$) 1.15, 1.19, 1.31 and $1.48\left(3 \mathrm{H}, \mathrm{s}\right.$, acetal groups), $2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.89-4.06$ ($4 \mathrm{H}, \mathrm{m}$, unassigned $2 \mathrm{CH}, \mathrm{CH}_{2}$) $, 4.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 4.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3,4}=3.6 \mathrm{~Hz}, \mathrm{H}\right.$ 4), $5.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1}, 2=3.6 \mathrm{~Hz}, \mathrm{H}-1\right), 7.34$ and $7.83\left(4 \mathrm{H}, \mathrm{AB}, \mathrm{J}_{A B}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\right)$; as compared to the literature data ${ }^{130}$.

6.4.10 Attempted Reaction Between PS/HF and Tosylate (22)

A mixture containing tosylate (22)(0.80g, 1.9 mmol$), \mathrm{PS} / \mathrm{HF}(0.70 \mathrm{~g}$, 3 mmol) and acetonitrile (5 ml) was refluxed overnignt. ${ }^{19} \mathrm{~F}$ n.m.r. of the reaction mixture showed unreacted PS/HF and no evidence for a fluorinated glucose.

CHAPTER_SEVEN

Experimental to Chapter Three

71 Preparation and Reactions of Trialkylamine Hydrofluoride Complexes

7.1.1 Preparation of Trialkylamine Hydrofluoride Complexes (24)(28)

All bases were used as supplied (Aldrich). The hydrofluoride salts were prepared by adding a stoichiometric amount of a callibrated HF/ether solution to an ethereal solution of the base, followed by evaporation of the solvent to leave the salt, as described previously (Section 6.1).

The following salts were prepared:-

1) Iriethylamine Hydrofluoride (24); hygroscopic solid at r.t; i.r. spectrum 2; n.m.r. spectrum 2; mass spectrum 2.
2) Iributylamine Hydrofluoride (25); liquid; i.r. spectrum 3; n.m.r. spectrum 3; mass spectrum 3.
3) Irihexylamine Hydrofluoride (26); liquid; i.r. spectrum 4; n.m.r. spectrum 4; mass spectrum 4.
4) Irioctylamine Hydrofluoride (27); liquid; i.r. spectrum 5; n.m.r. spectrum 5; mass spectrum 5.
5) Iridodecylamine Hydrofluoride_(28); liquid; i.r. spectrum 6; n.m.r. spectrum 6; mass spectrum 6.

Z.12_Methodolocy for Standard Reactions

Three standard experiments were performed using each amine. HF complex as the source of soluble fluoride ion. The experiments were chosen to provide a range of fluoride ion reactions. i.e. nucleophilic substitution reactions at unsaturated, saturated and aromatic carbon positions. The same methodology was used for each hydrofluoride salt, so general procedures for the three standard reactions appear in this section. The quantities of each reagent used can be found in the tables listed under the appropriate
section. Any deviation from these procedures are listed under the appropriate sections; e.g. solubility of HCl salt formed in the reactions using the piperidine HF salts. All yields quoted are n.m.r. yields of the crude reaction mixtures, not isolated yields. We chose not to work-up the reactions due to their small scale and the fact that crude n.m.r. yields give the true maximun yield as there are no handling losses associated with work-up.

Z1.2.1 Reaction of_Base Hydrofluoride Complexes with Benzoyl Chloride

A mixture containing Base/HF, benzoyl chloride and acetonitrile (10ml) was allowed to stand at room temperature for 24 hr . A white solid, the corresponding Base $/ \mathrm{HCl}$ salt, was precipitated. Benzotrifluoride was added to the reaction mixture which was shaken to ensure homogeneity. The mass, and hence the number of moles of benzotrifluoride provided a marker for n.m.r. integration. ${ }^{19} \mathrm{~F}$ n.m.r. of the reaction mixture was recorded; $\delta \mathrm{F}\left(235 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}\right.$); to reveal a peak at +16.7 ppm due to benzoyl fluoride, as compared to the literature data ${ }^{173}$; at -63ppm due to the benzotrifluoride marker and between -150 and -170 ppm due to unreacted Base/HF. The yield of benzoyl_fluoride was calculated by comparing the integration of the peak due to the benzotrifluoride marker and that due to benzoyl fluoride.

7.1.2.2 Reaction of Base Hydrofluoride Complexes with_Benzy_Bromide

A mixture containing Base/HF, benzyl bromide and acetonitrile (15ml) was refluxed for 24 hr . On cooling, a white solid, the corresponding Base/ HBr salt precipitated. Benzotrifluoride was added to the reaction mixture which was shaken to ensure homogeneity. The mass, and hence the number of moles of benzotrifluoride provided a marker for n.m.r. integration. ${ }^{19} \mathrm{~F}$ n.m.r. of the reaction mixture was recorded; $\delta \mathrm{F}\left(235 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}\right)$; to reveal a peak at -63 ppm due to the benzotrifluoride marker; a peak between -150 and -170 ppm due to unreacted Base/HF and a peak at $-206.4\left(\mathrm{t}, \mathrm{J}_{\mathrm{HF}}=49 \mathrm{~Hz}\right.$) due to benzyl fluoride, as compared to the literature data ${ }^{173}$. The yield of benzyl fluoride was calculated by comparing the integration of the peak due to the benzotrifiuoride marker and that due to benzyl fluoride.

Z.1.2.3 Reaction of Base Hydrofluoride Complexes and 2.4: Dinitrochlorobenzene

A mixture containing Base/HF, 2,4-dinitrochlorobenzene and acetonitrile was refluxed for 48 hr . A white solid, the corresponding Base $/ \mathrm{HCl}$ salt, was precipitated. Benzotrifluoride was added to the reaction mixture which was shaken to ensure
homogeneity. The mass, and hence the number of moles of benzotrifluoride provided a marker for n.m.r. integration. ${ }^{19} \mathrm{~F}$ n.m.r. of the reaction mixture was recorded; δ_{F} ($235 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$); to reveal a peak at -63 ppm due to the benzotrifluoride marker; at -108.8 ppm due to 2,4-dinitrofluorobenzene, as compared to the literature data ${ }^{173}$ and a peak between -150 and -170 ppm due to unreacted Base/HF. The yield of 2,4-dinitrofluorobenzene was calculated by comparing the integration of the peak due to the benzotrifluoride marker and that due to dinitrofluorobenzene.

71.3 Reactions of Trialkylamine.HF Complexes

The three standard reactions were performed using the trialkylamine. HF complexes as the source of Fluoride ion. See above for details of the methodology. Hence, in the following tables the HF salt used was R3N.HF, where $R=$ alkyl.

7.3.1. Reaction with Benzoyl_Chloride

B	HF salt $\mathrm{g}, \mathrm{mmol}$	Benzovi_Chloride $\mathrm{g}, \mathrm{mmol}$		Benzotrifluoride $\mathrm{g}, \mathrm{mmol}$
Et	$0.89,7.35$	$0.86,6.10$	Yield $\%$	
But	$1.01,4.93$	$0.62,4.41$	$0.17,1.16$	88
Hex	$1.29,4.46$	$0.54,3.84$	$0.29,1.99$	90
Oct	$2.32,6.22$	$0.80,5.69$	$0.28,1.92$	68
Dodec	$0.62,1.15$	$0.28,1.98$	$0.19,1.35$	79

7,1.3.2_Reaction with Benzyl_Bromide

B	HFsalt $\mathrm{g}, \mathrm{mmol}$	Benzyl_Bromide $\mathrm{g}, \mathrm{mmol}$	Benzotrifluoride $\mathrm{g}, \mathrm{mmol}$	Yield $\%$
Et	$0.75,6.20$	$0.86,5.03$	$0.25,1.71$	18
But	$0.90,4.39$	$0.72,4.21$	$0.25,1.71$	12
Hex	$1.91,6.61$	$1.01,5.91$	$0.29,1.98$	17
Oct	$2.22,5.94$	$0.95,5.55$	$0.23,1.57$	14
Dodoc	$1.90,3.50$	$0.53,3.09$	$0.24,1.64$	11

Z.1.3.3 Beaction with 2.4-Dinitrochlorobenzene

B	HF sall g, mmol	DNCBenzene g, mmol	Benzotrifluoride g, mmol	Yield $\%$
Et	$0.39,3.22$	$0.52,2.57$	$0.22,1.50$	34
But	$0.72,3.51$	$0.63,3.11$	$0.33,2.26$	84
Hex	$1.81,6.26$	$1.06,5.23$	$0.20,1.37$	77
Oct	$1.54,4.13$	$0.75,3.70$	$0.33,2.26$	61
Dodec	$1.02,1.88$	$0.36,1.78$	$0.21,1.44$	14

72 Preparation and Reactions of Polysubstituted Ploeridine Hydrofluoride Complexes

7.2.1 Preparation of Pentasubstituted Piperidine Bases

Tetramethylpiperidine (31) and pentamethylpiperidine (29) were used as supplied (Aldrich). The three other piperidine bases were prepared as follows:-

Z2,1.1 Preparation of N-Ethyl-2.2,6.6-Tetramethylpiperidine $(32)^{132}$

A mixture containing tetramethylpiperidine (31)(24.7g, 0.17 mol$)$ and ethyl p-toluene sulphonate ($18.0 \mathrm{~g}, 0.09 \mathrm{~mol}$) was heated at $100^{\circ} \mathrm{C}$ for 24 hr in a flask fitted with an air condenser. The mixture solidified into a partly browned cake. On cooling, the product mixture was washed thoroughly with diethyl ether to precipitate a white solid which was collected by filtration and identified as the salt, tetramethylpiperidinium tosylate; m.p. 218-222 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{132} 219-221^{\circ} \mathrm{C}$); IR spectrum recorded; $\mathrm{m} / \mathrm{z}\left(E I^{+}\right) 142$ (M^{+}piperidinium cation, 6.6%). The ether layer was dried and evaporated and the residue was distilled on the Fischer Spahltrohr to yield N-Ethyl-2,2,6,6-tetramethylpiperidine (32)(6.38g, 21\%); b.p. 95.6$96^{\circ} \mathrm{C} / 24 \mathrm{mmHg}$; (Found: C, 78.1; H, 14.2; N, 8.4. Calc for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 78.1 ; \mathrm{H}$, 13.6; $\mathrm{N}, 8.4 \%$); IR spectrum recorded; $\delta \mathrm{H}\left(235 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}, \mathrm{TMS}\right) 1.28(15 \mathrm{H}, \mathrm{m}$, CH_{3}), $1.62\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}-\mathrm{CH}_{2}-\mathrm{N}\right), 1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), 2.72(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, CH_{2}); m/z (EI+) $168\left(\mathrm{M}^{+}, 3.8 \%\right), 154\left(\mathrm{M}^{+}-\mathrm{Me}\right.$ group).

72.1.2 Preparation of N-Allyl-2.2.6.6-Tetramethylpiperidine $(33)^{132}$

A mixture containing tetramethylpiperidine (31)(30.7g, 0.22 mol$)$ and allyl bromide ($13.2 \mathrm{~g}, 0.11 \mathrm{~mol}$) was heated at $50^{\circ} \mathrm{C}$ for 3 days. The mixture turned pale yellow. The mixture was washed thoroughly with diethyl ether and filtered. The ether layer was dried and evaporated and the residue was distilled on the Fischer Spahltrohr to yield N -allyl-2,2,6,6-tetramethylpiperidine (33)(9.3g, 24\%); b.p. 103$109^{\circ} \mathrm{C} / 20 \mathrm{~mm} \mathrm{Hg}$ (pure by GC); (Found: C, 79.5; $\mathrm{H}, 13.1 ; \mathrm{N}, 7.9$. Calc for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}$: C, 79.5; $\mathrm{H}, 12.7$; $\mathrm{N}, 7.7 \%$); IR spectrum recorded; $\delta \mathrm{H}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) 1.1$ ($12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), l. $5\left(6 \mathrm{H}, \mathrm{s}\right.$, ring CH_{2}), $3.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 5.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right)$, 5.9 ($1 \mathrm{H}, \mathrm{m},-\mathrm{CH}=$); m/z (El+) 181 ($\mathrm{M}^{+}, 9.9 \%$), 166 ($100 \%, \mathrm{M}^{+}-\mathrm{Me}$ group).

7.2.1.3 Preparation of N-Benzyl-2.2.6.6-Teiramethylolperidine $(34)^{132}$

Benzyl bromide ($12.2 \mathrm{~g}, 71 \mathrm{mmol}$) was added to tetramethylpiperidine (31) $(26.6 \mathrm{~g}, 0.19 \mathrm{~mol})$ over -20 mins at $60^{\circ} \mathrm{C}$ with stirring. The solution was heated at $100^{\circ} \mathrm{C}$ for 8 hr . On cooling, the reaction mixture was washed thoroughly with diethyl ether and filtered. The ether layer was dried and evaporated and the residue was distilled on the Fischer Spahlirohr to yield N -benzyl-2,2,6,6-tetramethylpiperidine (34)(5.4g, 32\%); b.p. $135^{\circ} \mathrm{C} / 6 \mathrm{~mm} \mathrm{Hg}$; m.p. $30-32^{\circ} \mathrm{C}$; (Found: C, 83.7; H. 11.1; N, 6.1. Calc for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}: \mathrm{C}, 83.1 ; \mathrm{H}, 10.8 ; \mathrm{N}, 6.1 \%$); IR spectrum recorded; $\delta \mathrm{H}$ $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) 0.97\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.5\left(6 \mathrm{H}, \mathrm{m}\right.$, ring $\left.\mathrm{CH}_{2}\right), 3.75(2 \mathrm{H}, \mathrm{s}, \mathrm{N}-$ $\mathrm{CH}_{2}-\mathrm{Ar}$), 7.25 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); m/z ($\mathrm{El}{ }^{+}$) 231 ($\mathrm{M}^{+}, 3.3 \%$), 216 ($100 \%, \mathrm{M}^{+}$-Me group).

7.2.2 Preparation of the Hydrofluoride Complexes (35)-(39)

The hydrofluoride salts were prepared by adding a stoichiometric amount of a callibrated HF/ether solution to an ethereal solution of the base, followed by evaporation of the solvent to leave the salt, as described previously (Section 6.1).

The following salts were prepared:-

1) 2.2.6.6-tetramethylpiperidine Hydrofluoride (35); m.p. $76-80^{\circ} \mathrm{C}$; (Found: C , 66.5; $\mathrm{H}, 12.4 ; \mathrm{N}, 7.6$. $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NF}$ requires $\mathrm{C}, 67.1 ; \mathrm{H}, 12.4 ; \mathrm{N}, 8.7 \%$); i.r. spectrum 7; n.m.r. spectrum 7; mass spectrum 7.
2) 1.2 .26 .6 -pentamethylpiperidine Hydrofluoride (36); m.p. $122-124^{\circ} \mathrm{C}$; i.r. spectrum 8; n.m.r. spectrum 8; mass spectrum 8.
3) N -ethyl-2.2.6.6-tetramethylpiperidine Hydrofluoride_(37); m.p. $74-76^{\circ} \mathrm{C}$; i.r. spectrum 9; n.m.r. spectrum 9; mass spectrum 9.
4) N -allyl-2,2,6.6-tetramethylpiperidine Hydrofluoride (38); m.p. $72-74^{\circ} \mathrm{C}$; i.r. spectrum 10; n.m.r. spectrum 10; mass spectrum 10.
5) N -benzyl-2.2.6.6-tetramethylpiperidine Hydrofluoride (39); m.p. $83-86^{\circ} \mathrm{C}$; i.r. spectrum 11; n.m.r. spectrum 11; mass spectrum 11.

72,3 Reactions of Piperidine.HF Complexes (35)-(39)

The same standard reactions were performed using the piperidine. HF salts as the source of Fluoride ion, under the same conditions as those carried out previously with other salts. See Section 7.1.2 for the methodology. However, in these reactions the hydrochloride/hydrobromide salt produced as a side product does not precipitate but remains in solution. In the following tables R refers to the group attached to the nitrogen atom in the piperidine. HF complex.

7.2.3.1_Reaction_with_Benzoyd_Chloride

B	HF sall $\mathrm{g}, \mathrm{mmol}$	Benzoylchloride $\mathrm{g}, \mathrm{mmol}$	Benzotrifluoride $\mathrm{g}, \mathrm{mmol}$	Yield $\%$
H	$0.81,5.0$	$0.57,4.0$	$0.14,0.9$	83
Me	$0.43,2.46$	$0.32,2.28$	$0.25,1.71$	64
Et	$1.05,5.55$	$0.70,4.99$	$0.22,1.51$	78
Allyl	$0.06,0.29$	$0.27,1.95$	$0.25,1.71$	55
Benzyl	$0.49,1.95$	$0.27,1.95$	$0.17,1.16$	42

72.3.2_Reaction_with_Benzy__Bromide

B	HF sall $\mathrm{g}, \mathrm{mmol}$	Benzylbromide $\mathrm{g}, \mathrm{mmol}$	Benzotrifluoride $\mathrm{g}, \mathrm{mmol}$	Yield $\%$
H	$1.35,8.40$	$1.40,8.20$	$0.14,0.8$	25
Me	$0.95,5.43$	$0.84,4.91$	$0.31,2.12$	84
Et	$0.58,3.07$	$0.49,2.86$	$0.27,1.85$	38
Allyl	$0.45,2.24$	$0.27,1.58$	$0.21,1.44$	n.r.
Benzyl	$0.27,2.08$	$0.18,1.05$	$0.11,0.64$	n.r.

Z.2.3.3 Reaction with_2.4-Dinitrochlorobenzene

B	HF salt $\mathrm{g}, \mathrm{mmol}$	DNCBenzeng $\mathrm{g}, \mathrm{mmol}$	Benzotrifluoride $\mathrm{g}, \mathrm{mmol}$	Yield $\%$
H	$1.12,6.90$	$1.31,6.40$	$0.44,3.0$	49
Me	$0.57,3.26$	$0.63,3.11$	$0.25,1.71$	78
Et	$1.08,5.71$	$0.80,3.95$	$0.42,2.88$	94
Allyl	$0.37,1.84$	$0.36,1.78$	$0.15,1.03$	31
Benzyl	$0.31,1.23$	$0.28,1.38$	$0.18,1.23$	23

7.3 Preparation and Reactlons of Tetramethylquanidine HF Complex

The tetramethylguanidine hydrogen fluoride complex (40) was prepared in the same manner as for the preparation of PS/HF (section 6.1).

Ietramethylguanidine Hydrogen Fluoride Complex (40); m.p. $66-68^{\circ} \mathrm{C}$; (Found: C, 41.8; $\mathrm{H}, 11.1 ; \mathrm{N}, 29.4$. $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~F}$ requires $\mathrm{C}, 44.4 ; \mathrm{H}, 10.4 ; \mathrm{N}, 29.4 \%$; i.r. spectrum 12; n.m.r. spectrum 12; mass spectrum 12.

Two reactions were performed as described above (section 7.2.3); quantities used and yields are tabulated below:-

Substrate	Substrate $\mathrm{g} / \mathrm{mmol}$	HE complex $\mathrm{g} / \mathrm{mmol}$	PhCE3 $\mathrm{g} / \mathrm{mmol}$	Yield $\%$
PhCOCl	$1.40,9.9$	$1.15,9.0$	$0.21,1.4$	65
Dinitrochloro-	$1.37,7.0$	$1.07,8.0$	$0.24,1.6$	36
benzene				

73.1_Attempted Preparation_of Pentamethylouanidine (411) ${ }^{133}$

Tetramethylguanidine $(4.6 \mathrm{~g}, 53 \mathrm{mmol})$ and methyl iodide ($7.6 \mathrm{~g}, 54 \mathrm{mmol}$) were stirred in toluene (50 ml) at room temperature overnight. A white solid is slowly deposited and this was collected by filtration and identified as pentamethylguanidinium hydriodide (42)(3.2g, 29\%); m.p. $137^{\circ} \mathrm{C}$ (from aq. EIOH) (lit ${ }^{133}, 137^{\circ} \mathrm{C}$); (Found: C, 30.0; $\mathrm{H}, 6.5 ; \mathrm{N}, 14.9$. Calc for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{I} .0 .5 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \mathrm{C}, 30.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 15.0 \%$); $\delta \mathrm{H}\left(60 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{TMS}\right) 2.9 \mathrm{ppm}(\mathrm{s}, 4 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 4.7(\mathrm{~s}, 1 \mathrm{H},=\mathrm{N}-\mathrm{Me})$.

Heating the pentamethylguanidinium hydriodide salt with NaOH caused a mixture of tetramethylguanidine and pentamethyiguanidine to be produced (gc/ms) which could not be separated by distillation.

CHAPTER 8

EXPERIMENTAL TO CHAPTER 4

8.1 Reaction between PS/HF. Perfluorocyclobutene and

 HexafluoropropeneA Carius tube was charged with 1,8-bis(dimethylamino)naphthalene hydrofluoride (1)(2.5g, 10.6 mmol) in acetonitrile $(20 \mathrm{ml})$ and perfluorocyclobutene ($6.7 \mathrm{~g}, 41 \mathrm{mmol}$) and hexafluoropropene ($5.0 \mathrm{~g}, 33 \mathrm{mmol}$) were transferred under vacuum to the tube which was cooled in liquid air. After agitating on a rotating arm at room temperature for two days, the tube was opened to reveal a red solvent layer. On adding water (20 ml), an orange solid precipitated and was collected by filtration. TLC showed that the solid contained two components. The solid was evaporated onto chromatographic alumina and light petroleum eluted 1.1-Bistrifluoromethyl-(6.7-bisdimethylamino)-2.3-tetrafluoroethano-[1H]-phenalene (4) (1.1g, 21\%) as orange crystals; $R_{F}=0.5$; m.p. $128^{\circ} \mathrm{C}$ (from aqueous ethanol); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ $273.6 \mathrm{~nm}\left(\log _{10} \varepsilon\right.$ 3.78), 367.6 (3.45), 451.2 (3.78); (Found: C, 52.2; H, 3.4; N, 5.6; F, 38.0. $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{10}$ requires $\mathrm{C}, 51.9$; $\mathrm{H}, 3.3$; $\mathrm{N}, 5.8 ; \mathrm{F}, 39.0 \%$). n.m.r. spectrum 13; i.r. spectrum 13; mass spectrum 13.

A red solid (5) was also isolated (0.05 g) as yet unidentified; $\delta \mathrm{F}\left(\mathrm{CFCl}_{3}\right.$, $C D_{3} \mathrm{CN}, 235 \mathrm{MHz}$) -68.9ppm (s, 6F), -110.5 (s, 2F); i.r. spectrum 14; mass spectrum 14.

8.2 Reaction Between PS and Co-dimer (3)

A mixture containing PS ($0.7 \mathrm{~g}, 3.2 \mathrm{mmol}$), co-dimer (3)($1.0 \mathrm{~g}, 3.2 \mathrm{mmol}$) and acetonitrile (10 ml) was stirred at room temperature for two days. Water was added to the mixture to precipitate an orange solid.which was collected by filtration. The same proceedure was then carried out as above (section 8.1) to yield pure (4)(0.35g, 22%) as orange crystals; m.p. $128^{\circ} \mathrm{C}$; spectral data as above.

8.3 Preparation of Codimer (43)

A Carius tube was charged with pyridine $(2.5 \mathrm{~g}, 32 \mathrm{mmol})$ and perfluorocyclobutene (20g, 0.12 mol) and perfluorocyclopentene ($25 \mathrm{~g}, 0.12 \mathrm{~mol}$) were transferred to the tube which was cooled in liquid air. After rotating on a rotating arm for two days the tube was opened and all volatile products were transferred under vacuum to a trap. These were washed with water, dried $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ and distilled on the Fischer Spahltrohr to yield perfluorobicyclobutylidene (62)(2.9g, 8\%); b.p. 74 -
$85^{\circ} \mathrm{C}$; and, codimer (43) (2.3g, 5%); b.p. $98-100^{\circ} \mathrm{C}$; as compared to the literature data ${ }^{121 .}$

8.4 Reaction between PS and Codimer (43)

A mixture containing PS ($0.6 \mathrm{~g}, 2.8 \mathrm{mmol}$) and codimer (43) ($1.0 \mathrm{~g}, 2.7 \mathrm{mmol}$) was refluxed overnight in acetonitrile (5 ml). The solvent was removed to leave an orange solid which was washed with water, collected and dried. The solid was evaporated onto chromatographic alumina and $40 / 60$ petroleum ether eluted Spiroloctafluorocyclopentane-1.1'-(6.7-bisdimethylamino)-2'3'-tetrafluoroethano- $[1 \mathrm{H}]$-phenalene (44) $(0.2 \mathrm{~g}, 13 \%$) as orange crystals; m.p. 137 $139^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}=0.5$; $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 273.6 \mathrm{~nm}\left(\log _{10} \mathcal{E} 4.06\right), 365.6$ (3.74), 452.8 (4.10); (Found: C, 50.4; H, 3.9; N, 4.4. $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{12}$ requires $\mathrm{C}, 50.3 ; \mathrm{H}, 2.9 ; \mathrm{N}$, 5.1\%). Mass required for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{12}$: 548.11219. Found: 548.11762 a.m.u.; n.m.r. spectrum 14; i.r. spectrum 15; mass spectrum 15.

8.5 Reaction between PS and Perfluoro-bicyclopentylldene (55)

8.5.1 At Low Dilution

A mixture containing PS ($1.1 \mathrm{~g}, 5.1 \mathrm{mmol}$) and perfluorobicyclopentylidene $(55)(1.0 \mathrm{~g}, 2.3 \mathrm{mmol})$ was stirred overnight at room temperature in acetonitrile (5 ml). A dark olive green precipitate formed. Water was added to the mixture and the solid was collected by filtration. The solid was absorbed onto chromatographic alumina and light petroleum/dichloromethane (4:1) eluted (7.8)-(9.10)-dihexafluoro-propano-(3.4-bisdimethylamino)-cycloheptald_e]-naphthalene $\quad(56)(0.54 \mathrm{~g}$, 42\%); m.p. $243-45^{\circ} \mathrm{C}$ (decomp) (from acetonitrile); $\mathrm{R}_{\mathrm{F}}=0.65$; (Found: $\mathrm{C}, 51.3 ; \mathrm{H}$, 2.8; $N, 4.9 ; F, 40.0$. $C_{24} H_{16} N_{2} F_{12}$ requires $C, 51.4 ; \mathrm{H}, 2.8 ; \mathrm{N}, 5.0 ; F, 40.7 \%$). no n.m.r. could be recorded; i.r. spectrum 16; mass spectrum 16.

8.5.2 At High Dilution

A mixture containing PS ($0.5 \mathrm{~g}, 2.5 \mathrm{mmol}$) and perfluorobicyclopentylidene $(55)(1.0 \mathrm{~g}, 2.3 \mathrm{mmol})$ was stirred overnight at room temperature in acetonitrile (120 ml). The solvent was removed under vacuum to leave a solid residue, which was absorbed onto chromatographic alumina and petroleum ether/dichloromethane (4:1) eluted (56)(0.23g, 18\%), as above; Spiro-loctafluoro-cyclopentane-1.1'-(6.7. bisdimethylamino)-2'.3'-letrafluoropropan-1"-one-[1H]-phenalene (60)(0.14g, 10%) as bright green metallic looking flakes; m.p. $>280^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{F}}=0.45$; (Found: C , 48.4; $\mathrm{H}, 2.75 ; \mathrm{N}, 4.50$. $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{12} \mathrm{O}$ requires $\mathrm{C}, 50.0 ; \mathrm{H}, 2.75 ; \mathrm{N}, 4.5 \%$.
$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{12} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 48.5 ; \mathrm{H}, 3.0 ; \mathrm{N}, 4.7 \%$); n.m.r. spectrum 15; i.r. spectrum 17; mass spectrum 17; and, Z.8-propano-9.10-propan-1'-one-cyclohepta-[d.e]-naphthalene (61)(0.12g, 9\%) as bright purple metallic looking flakes; m.p. $>280^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{F}}=0.3$; (Found: C, 53.2; $\mathrm{H}, 3.05 ; \mathrm{N}, 4.75 . \mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{10} \mathrm{O}$ requires $\mathrm{C}, 53.5 ; \mathrm{H}, 2.95 ; \mathrm{N}, 5.2 \%$); $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~F}_{10} \mathrm{O}$ requires 538.110295 a.m.u. Found 538.1100900 a.m.u; n.m.r. spectrum 16; i.r. spectrum 18; mass spectrum 18.

8.6 Preparation of Perfluoroblcyclobutylidene (62)

A Carius tube was charged with pyridine ($1.04 \mathrm{~g}, 13 \mathrm{mmol}$) and perfluorocyclobutene $(28.3 \mathrm{~g}, 0.15 \mathrm{~mol})$ was transferred to the tube which was cooled in liquid air. After agitating on a rotating arm for two days the tube was opened and all volatiles were transferred under vacuum. These were washed with water and the lower fluorocarbon layer was separated, dried ($\mathrm{P}_{2} \mathrm{O}_{5}$) and distilled on the Fischer Spahltrohr to yield perfluorobicyclobutylidene (62)(5.2g, 10%); b.p. $74-85^{\circ} \mathrm{C}$; as compared to the literature data ${ }^{121}$.

8.7 Reaction between N,N-Dimethylaniline and Perfluorobicyclobutylidene

A mixture containing N, N-Dimethylaniline $(0.5 \mathrm{~g}, 4.1 \mathrm{mmol})$ and perfluorobicyclobutylidene (62)($1.1 \mathrm{~g}, 3.4 \mathrm{mmol}$) was stirred at room temperature overnight in acetonitrile (5 ml). Water (15 ml) was added to the mixture to precipitate the solid product which was collected by filtration. Recrystallisation from aqueous ethanol and vacuum sublimation yielded Spirolhexafluorocyclobutane-3,1'-1,2-tetrafluoroethano-1-fluoro-3-(4"-N.N-dimethylaminophenyl)-propenel (63) (1.05g, 73%) as white needles; m.p. $84-85^{\circ} \mathrm{C}$; (Found: C, 45.0; H, 2.3; N, 3.2. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{NF}_{11}$ requires $\mathrm{C}, 45.2 ; \mathrm{H}, 2.3$; $\mathrm{N}, 3.3 \%$). n.m.r. spectrum 17; i.r. spectrum 19; mass spectrum 19.

8.8 Reaction of N-methylindole with Perfluorobicyclobutylidene (62)

A mixture containing N -methylindole $(0.4 \mathrm{~g}, 3 \mathrm{mmol})$ and perfluorobicyclobutylidene (62)(1.0g, 3mmol) was refluxed in acetonitrile (5 ml) for 1 hr . On cooling, water (15 ml) was added to the reaction mixture to precipitate the solid product which was collected by filtration, dried and purified by vacuum sublimation (oll bath temperature $100^{\circ} \mathrm{C},<0.1 \mathrm{~mm} \mathrm{Hg}$) to white crystals and identified as Spirolhexafluorocyclobutane-3.1'-1.2-tetrafluoroethano-1-fluoro-3-(N-methyl-indol-3'-yl)-propenel (65)(0.60g, 46%); m.p. $59-60^{\circ} \mathrm{C}$; (Found: C, 47.25 ; H,
1.8; N, 3.1. $\mathrm{C}_{17} \mathrm{H}_{8} \mathrm{NF}_{11}$ requires $\mathrm{C}, 46.9 ; \mathrm{H}, 1.85 ; \mathrm{N}, 3.2 \%$). n.m.r. spectrum 18; i.r. spectrum 20; mass spectrum 20.

8.9 Reaction between 1.8-Bis(dimethylamino)naphthalene and

Perfluoro-bicyclobutylidene

A mixture containing 1,8 -bis(dimethylamino) naphthalene ($1.16 \mathrm{~g}, 5.4 \mathrm{mmol}$) and perfluorobicyclobutylidene (62)($1.56 \mathrm{~g}, 4.8 \mathrm{mmol}$) was stirred overnight at room temperature in acetonitrile (5 ml). An orange solid precipitated which was collected by filtration and washed with water. Recrystallisation from aqueous acetonitrile yielded a white solid which was identified as the substitution product (66) ($0.83 \mathrm{~g}, 35 \%$); m.p. $210-215^{\circ} \mathrm{C}$ (decomp); (Found: C, 53.2; H, 3.6; N, 5.6; F, 29.7. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ requires $C, 53.4 ; H, 3.6 ; N, 5.6 ; F, 30.7 \%$). n.m.r. spectrum 19; i.r. spectrum 21.

CHAPTER NINE

EXPERIMENTAL TO CHAPTER FIVE

9.1 Preparation of Trifluoro-s-triazine (13)

An autoclave (460 ml , No. 14) was charged with trichloro-s-triazine (37 g , 0.2 mol) and flame dried potassium fluoride $(125 \mathrm{~g}, 2 \mathrm{~mol})$, evacuated and then heated at $310^{\circ} \mathrm{C}$ for 16 hrs (Furnace No. 3). The volatile products were transferred from the hot autoclave to a trap which was cooled in liquid air. The product, trifiuoro-striazine (13)(20g, 74\%) did not require any further purification and was stored in a rotaflo tube.

9.2 Preparation of Perfluoroisopropyl-s-triazine (14) and Perfiuoro-dilsopropyl-s-triazine (15)

A flask was charged with trifluoro-s-triazine (13)(15.0g, 0.11 mol$)$, potassium fluoride ($5.0 \mathrm{~g}, 86 \mathrm{mmol}$) and dry sulpholane (100 ml). The flask was frozen down in liquid air and evacuated. Hexafluoropropene ($17 \mathrm{~g}, 0.11 \mathrm{~mol}$) was added via a bladder and the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 16 hrs with vigourous stirring. All volatile products were removed by transfer under vacuum and then distilled on the Fischer Spahlitrohr to yield perfluoroisopropyl-s-triazine (14)(5.8g, 18\%); b.p. $105-106^{\circ} \mathrm{C} ; \mathrm{m} / \mathrm{z}\left(\mathrm{El}^{+}\right) 285\left(\mathrm{M}^{+}, 43 \%\right)$ and perfluorodi-isopropyl-striazine (15)(4.9g, 10\%); b.p. $133.7-135.2^{\circ} \mathrm{C}$; m/z (El^{+}) 435 ($\mathrm{M}^{+}, 24.5 \%$); as compared to the literature data ${ }^{126}$.

9.3 Reactions of Pyrroles with Fluorinated Triazines

General Procedure - A mixture containing a pyrrole and the corresponding fluorinated triazine was refluxed in acetonitrile (5 ml) for two hours. On cooling, water (15 ml) was added to the reaction mixture to precipitate the solid product, which was collected by filtration, dried in a desiccator and purified by vacuum sublimation (Oll bath temperature $130^{\circ} \mathrm{C},<0.1 \mathrm{~mm} \mathrm{Hg}$). All yields are quoted for pure, isolated products.

9.3.1 Reaction of Pyrrole with perfluoro-s-triazine (13)

Pyrrole ($0.5 \mathrm{~g}, 7.4 \mathrm{mmol}$) and perfluoro-s-triazine (13)(1.0g, 7.4 mmol$)$ gave 2-(0yrrol-2-yl)-4.6-difluoro-s-triazine (67)(0.87g, 65\%) as white crystals; m.p. $156-160^{\circ} \mathrm{C}$; (Found: $\mathrm{C}, 46.0 ; \mathrm{H}, 2.1 ; \mathrm{N}, 30.8 . \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~F}_{2}$ requires C ,
46.15; H, 2.2; $N, 30.75 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 310.1 \mathrm{~nm}\left(\log _{10} \varepsilon 4.48\right) ;$ n.m.r. spectrum 20; i.r. spectrum 22; mass spectrum 21.

9.3.2 Reaction of Pyrrole with perfluoroisopropyl-s-triazine (14)

Pyrrole $(0.80 \mathrm{~g}, 12 \mathrm{mmol})$ and perfluoroisopropyl-s-triazine (14)(2.5g, 9mmol) gave 2-(pyrrol-2-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (68)(2.05g, 71\%) as pale yellow needles; m.p. 112-115${ }^{\circ} \mathrm{C}$; (Found: C, 35.7; H, 1.2; $\mathrm{N}, 16.5 ; \mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~F}_{8}$ requires $\left.\mathrm{C}, 36.1 ; \mathrm{H}, 1.2 ; \mathrm{N}, 16.85 \%\right)$; $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 336.0 \mathrm{~nm}$ $\left(\log _{10} \varepsilon 4.41\right)$. n.m.r. spectrum 21; i.r. spectrum 23; mass spectrum 22.

9.3.3 Reaction of Pyrrole with Perfluorodi-isopropyl-s-triazine (15)

Pyrrole ($0.27 \mathrm{~g}, 4.0 \mathrm{mmol}$) and perfluorodi-isopropyl-s-triazine (15)(1.46g, 3.3mmol) gave 2-(pyrrol-2-yl)-4.6-perfluorodi-isopropyl-s. triazine (69)(1.1g, 68%) as pale yellow needies; m.p. $64-66^{\circ} \mathrm{C}$; (Found: $\mathrm{C}, 32.2 ; \mathrm{H}$, 0.75 ; $\mathrm{N}, 11.5 . \mathrm{C}_{13} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~F}_{14}$ requires $\mathrm{C}, 32.4 ; \mathrm{H}, 0.8 ; \mathrm{N}, 11.6 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right.$) $344.8 \mathrm{~nm}\left(\log _{10} \varepsilon 4.58\right.$). n.m.r. spectrum 22; i.r. spectrum 24; mass spectrum 23.

9.3.4 Reaction of N -methylpyrrole with perfluoro-s-triazine (13)

N -methylpyrrole ($1.0 \mathrm{~g}, 12 \mathrm{mmol}$) and perfluoro-s-triazine (13) $(1.6 \mathrm{~g}$, 12mmol) gave 2-(N -methylpyrrol-2-yll)-4.6-difluaro-s-triazine (70)(1.06g, 45%) as pale yellow needles; m.p. $117-118^{\circ} \mathrm{C}$; (Found: C, 48.5; H, 3.0; N, 28.4. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~F}_{2}$ requires $\mathrm{C}, 49.0 ; \mathrm{H}, 3.1 ; \mathrm{N}, 28.6 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 314.6 \mathrm{~nm}\left(\log _{10} \varepsilon\right.$ 4.44) n.m.r. spectrum 23; i.r. spectrum 25 ; mass spectrum 24.

9.3.5 Reaction of N -methylpyrrole with perfluoroisopropyl-s-triazine (14)

N -methylpyrrole $(0.30 \mathrm{~g}, 3.7 \mathrm{mmol}$) and perfluoroisopropyl-s-triazine (14)(1.05g, 3.7 mmol) gave 2-(N-methylpyrrol-2-yll)-4-perfluoroisopropyl-6-fluoro-s-triazine (71) $\left(0.69 \mathrm{~g}, 54 \%\right.$) as pale yellow needles; m.p. $110-111^{\circ} \mathrm{C}$; (Found: C, 38.2; H, 1.5; $\mathrm{N}, 15.9 ; \mathrm{F}, 43.4 . \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~F}_{8}$ requires $\mathrm{C}, 38.15 ; \mathrm{H}, 1.7 ; \mathrm{N}$, 16.2; F, 43.95\%); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 324.5 \mathrm{~nm}\left(\log _{10} \varepsilon 4.38\right)$. n.m.r. spectrum 24; i.r. spectrum 26; mass spectrum 25.

9.3.6 Reaction of N-methylpyrrole with Perfluorodi-isopropyl-s. triazine (15)

N -methylpyrrole $(0.3 \mathrm{~g}, 3.7 \mathrm{mmol})$ and perfluorodi-isopropyl-s-triazine (15)(1.5g, 3.5mol) gave 2-(N-methylpyrrol-2-yl)-4.6-perfluorodi-isopropyl-s-triazine (72)($0.73 \mathrm{~g}, 48 \%$) as pale yellow needles; m.p. $88-89^{\circ} \mathrm{C}$; (Found: C , 33.9; $\mathrm{H}, 1.1 ; \mathrm{N}, 11.3$; $\mathrm{F}, 53.9$. $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~F}_{14}$ requires $\mathrm{C}, 33.9$; $\mathrm{H}, 1.2 ; \mathrm{N}, 11.3$; F , 53.6%); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 349.4 \mathrm{~nm}\left(\log _{10} E\right.$ 4.33). n.m.r. spectrum 25; i.r. spectrum 27; mass spectrum 26.

9.4_Reactions of N -methylindole with Fluorinated Triazines

General_Proceedure - A mixture containing N-methylindole and the corresponding fluorinated triazine was refluxed in acetonitrile (5 ml) for 30 mins . On cooling, water (15 ml) was added to precipitate the solid product which was dried and purified by vacuum sublimation (Oil bath temperature $150^{\circ} \mathrm{C},<0.1 \mathrm{~mm} \mathrm{Hg}$).

9,4.1 Reaction of N -methylindole with perfluoro-s-triazine (13)

N -methylindole ($1.0 \mathrm{~g}, 7.6 \mathrm{mmol}$) and perfluoro-s-triazine (13)(1.0g, 7.4 mmol) gave 2-(N-methylindol-3-yl)-4.6-difluoro-s-triazine (73)(1.43g, 78%) as white crystals (from acetone); m.p. $244^{\circ} \mathrm{C}$; (Found: C, 58.25; H, 3.25; N, 22.6. $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~F}_{2}$ requires $\mathrm{C}, 58.5 ; \mathrm{H}, 3.25 ; \mathrm{N}, 22.75 \%$). n.m.r. spectrum 26; i.r. spectrum 28; mass spectrum 27.

9.4.2 Reaction of N-methylindole with Perfluoroisopropyl-s-triazine (14)

N -methylindole ($0.7 \mathrm{~g}, 5.3 \mathrm{mmol}$) and perfluoroisopropyl-s-triazine (14)(1.5g, 5.3 mmol$)$ gave 2-(N-methylindol-3-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (74)(1.76g, 90\%) as pale yellow needles; m.p. 190-194² (Found: C, 45.7; H, 2.0; N, 14.2; F, 38.1. $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~F}_{8}$ requires $\mathrm{C}, 45.45 ; \mathrm{H}, 2.0 ; \mathrm{N}$, 14.1; F, 38.4\%); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 262.4 \mathrm{~nm}\left(\log _{10} \varepsilon 4.12\right), 355.3$ (4.31);. n.m.r. spectrum 27; i.r. spectrum 29; mass spectrum 28.

2.4.3 Reaction of N-methylindole with Perfluorodi-isopropyl-s: triazine (15)

N -methylindole $(0.3 \mathrm{~g}, 2.3 \mathrm{mmol})$ and perfluorodi-isopropyl-s-triazine (15)(1.0g, 2.3mmol) gave 2 -(N -methylindol-3-vl)-4.6-perfluorodi-isopropyl-
s-triazine (75)(1.1g, 87\%) as yellow crystals; m.p. 205-206 ${ }^{\circ} \mathrm{C}$; (Found: C, 39.25; $\mathrm{H}, 1.45 ; \mathrm{N}, 9.9$; $\mathrm{F}, 48.9$. $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~F}_{14}$ requires $\mathrm{C}, 39.55 ; \mathrm{H}, 1.45 ; \mathrm{N}, 10.25$; F , 48.7\%); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 213.0 \mathrm{~nm}\left(\log _{10} E 4.56\right), 246.0$ (4.02), 265.0 (4.23), 276.0 (4.14), 365.0 (4.53); n.m.r. spectrum 28; i.r. spectrum 30 ; mass spectrum 29.

9.5 Reaction of N -methylindole with Tetrafluoropyrimidine

A mixture containing N-methylindole $(0.8 \mathrm{~g}, 6 \mathrm{mmol})$ and tetrafluoropyrimidine ($1.0 \mathrm{~g}, 6.5 \mathrm{mmol}$) was refluxed overnight in acetonitrile (5 ml). On cooling, water (15 ml) was added to the reaction mixture to precipitate the solid product which was collected by filtration, dried, recrystallised from acetone as yellow plates and identified as $6-(N$-methylindol-3-yl)-2.4.5-trifluoropyrimidine (76)(0.58g, 36\%); m.p. $231^{\circ} \mathrm{C}$; (Found: C, 59.35; H, 3.0; N, 15.9; F, 22.0. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~F}_{3}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 3.05 ; \mathrm{N}, 15.95 ; \mathrm{F}, 21.7 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ 214.0 nm ($\log _{10}$ e 4.75), 263.0 (4.35), 344.0 (4.78); i.r. spectrum 31; mass spectrum 30.

2.6 Reactions of Anilines With Fluorinated s-Triazines (13)-(15)

9.6.1 Reaction of N.N-Dimethylanlline with Trifluoro-s-triazine (13)

A mixture containing N, N-Dimethylaniline ($1.75 \mathrm{~g}, 14 \mathrm{mmol}$) and trifluoro-striazine (13)($2.0 \mathrm{~g}, 15 \mathrm{mmol}$) was refluxed overnight in acetonitrile (5 ml). On cooling a red/brown solid precipitated which was collected by filtration, washed with water and recrystallised from acetonitrile to yield pure $2-(4-N, N$ -dimethylaminophenyl)-4.6-difluoro-s-triazine (77)(0.96g, 28\%); m.p. 234 $237^{\circ} \mathrm{C}$; (Found: C, 55.6; H, 4.05; N, 23.5. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~F}_{2}$ requires $\mathrm{C}, 55.9 ; \mathrm{H}, 4.25 ; \mathrm{N}$, 23.7\%); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 364.0 \mathrm{~nm}\left(\log _{10} \varepsilon 4.51\right) ; \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~F}_{2}$ requires 236.08735amu. Found 236.08416amu; n.m.r. spectrum 29; i.r. spectrum 32; mass spectrum 31.

9.6.2 Reaction of N.N-Dimethylaniline with Perfluoroisopropyl-s: triazine (14)

A mixture containing N, N-Dimethylaniline $(0.5 \mathrm{~g}, 4.1 \mathrm{mmol})$ and perfluoroisopropyl-s-triazine ($1.2 \mathrm{~g}, 4.2 \mathrm{mmol}$) was refluxed in acetonitrile (5 ml) for 2 hr . On cooling, water (15 ml) was added to precipitate the solid product which was collected by filtration and dried. Vacuum sublimation yielded pure 2-(4-N.N-dimethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (78)(0.62g,
36%) as a yellow solid; m.p. $168-170^{\circ} \mathrm{C}$; (Found: C, 42.8; $\mathrm{H}, 2.5$; N, 14.2. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~F}_{8}$ requires $\mathrm{C}, 43.5 ; \mathrm{H}, 2.6 ; \mathrm{N}, 14.5 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 368.8 \mathrm{~nm}\left(\log _{10} \varepsilon\right.$ 4.40). n.m.r. spectrum 30 ; i.r. spectrum 33 ; mass spectrum 32.

9.6.3 Reaction of N.N-Diethylaniline with Perfluoroisopropyl-s. triazine (14)

A mixture containing N, N-Diethylaniline $(0.5 \mathrm{~g}, 3.4 \mathrm{mmol})$ and perfluoroisopropyl-s-triazine (14)(1.0g, 3.5 mmol$)$ was refluxed in acetonitrile (5 ml) for 2 hr . On cooling, water (15 ml) was added to precipitate the solid product which was collected by filtration and dried. Vacuum sublimation yielded a mixture of the two isomers 2-(4-N.N-diethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (79A) and $2-(2-N . N$-diethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (79B)(0.63g, 45\%) as a yellow solid; (Found: C, 46.0; H, 3.5; N, 13.6. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~F}_{8}$ requires $\mathrm{C}, 46.35 ; \mathrm{H}, 3.4 ; \mathrm{N}, 13.5 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 228.0 \mathrm{~nm}$ ($\log _{10} \varepsilon 3.86$), 260.9 (3.93), 405.3 (4.39). n.m.r. spectrum 32; i.r. spectrum 35; mass spectrum 34.

9.6.4 Reaction of N.N-Dimethylaniline with Perfluorodi-Isopropyl-striazlne_(15)

A mixture containing N, N-Dimethylaniline $(0.5 \mathrm{~g}, 4.1 \mathrm{mmol})$ and perfluorodi-isopropyl-s-triazine (15)($1.5 \mathrm{~g}, 3.4 \mathrm{mmol}$) was refluxed in acetonitrile (5 ml) for 3 hr. On cooling, water (15 ml) was added to the reaction mixture to precipitate the solid product which was collected by filtration and dried. Vacuum sublimation yielded a mixture of the two isomers 2-(4-N.N-dimethylaminophenyl)-4.6-perfluorodilsopropyl-s-triazine (81 A) and 2-(2-N.N-dimethylaminophenyl)-4.6-perfluorodiisopropyl-s-triazine (81 B)($0.95 \mathrm{~g}, 77 \%$) as a yellow solid; (Found: C , 37.9; $\mathrm{H}, 2.0 ; \mathrm{N}, 10.3 . \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~F}_{14}$ requires $\mathrm{C}, 38.05 ; \mathrm{H}, 1.85 ; \mathrm{N}, 10.45 \%$; ; $\lambda_{\text {max }}$ ($\mathrm{CH}_{3} \mathrm{CN}$) 412.0nm ($\log _{10} \mathrm{E} 4.28$); n.m.r. spectrum 31; i.r. spectrum 34; mass spectrum 33.

9.6.5 Reaction of N.N-Diethylaniline with Perfluorodi-isopropyl-s: trlazine (15)

A mixture containing N, N-Diethylaniline $(0.6 \mathrm{~g}, 4 \mathrm{mmol})$ and perfluorodi-isopropyl-s-triazine (15) $(1.0 \mathrm{~g}, 2.3 \mathrm{mmol}$) was refluxed in acetonitrile (5 ml) for 2 hr . On cooling, water (15 ml) was added to the reaction mixture to precipitate an orange oil which solidified on standing. This solid was washed repeatedly with water and analysis confirmed the solid to be a mixture of the two isomers $2-(4-N \cdot N$ -
diethylaminophenyll-4.6-perfluarodiisopropyl-s-triazine (82A) and 2-(2-N.N-diathylaminophenyll-4.6-perfluorodiisopropyl-s-triazine (82B)(0.93g, 72\%); (Found: C, 40.3; H, 2.7; N, 9.6. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~F}_{14}$ requires $\mathrm{C}, 40.4 ; \mathrm{H}, 2.5 ; \mathrm{N}, 9.9 \%$); $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) 419.6 \mathrm{~nm}$ ($\log _{10} \varepsilon 4.47$); n.m.r. spectrum 33 ; i.r. spectrum 36 ; mass spectrum 35.

9.6.6 Reaction between 1.8-(Bisdimethylamino)-naphthalene and Irlfluoro-s-triazine (13)

A mixture containing 1,8-(bisdimethylamino)-naphthalene (2.1g, 10mmol) and trifluoro-s-triazine $(13)(1.5 \mathrm{~g}, 11 \mathrm{mmol})$ was stirred at room temperature overnight in acetonitrile (5ml). The solution turned orange immediately and gradually red crystals precipitated which were collected by flltration and recrystallised from acetonitrile to yield pure 1.8-(bisdimethylamino)-4.5-(bisdifluoro-s-triaz-1. vll-naphthalene (83)(2.3g, 53%); m.p. $258-260^{\circ} \mathrm{C}$; (Found: C, 53.7 ; H, 3.6; N, 24.9. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{~F}_{4}$ requires $\mathrm{C}, 54.0 ; \mathrm{H}, 3.6 ; \mathrm{N}, 25.2 \%$). $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{~F}_{4}$ requires 444.1434amu. Found $444.1272 a m u ;$ n.m.r. spectrum 34; i.r. spectrum 37; mass spectrum 36.

9.6.7 Reaction of N-ethylaniline with Trifluoro-s-triazine (13)

A mixture containing N -ethylaniline $(0.9 \mathrm{~g}, 7.4 \mathrm{mmol})$ and trifluoro-striazine (13)($1.0 \mathrm{~g}, 7.4 \mathrm{mmol}$) was refluxed in acetonitrile (5 ml) for 3 hr . The solvent was removed under reduced pressure to leave an off-white solid which was washed with water and collected by filtration. Vacuum sublimation yielded pure 2. (ethylphenylamino)-4.6-difluero-s-triazine (84)(1.2g, 69\%) as white needles; m.p. $63.5-64^{\circ} \mathrm{C}$; (Found: $\mathrm{C}, 55.6 ; \mathrm{H}, 4.0 ; \mathrm{N}, 24.0 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~F}_{2}$ requires $\mathrm{C}, 55.9 ; \mathrm{H}$, 4.2; $\mathrm{N}, 23.7 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 236.0 \mathrm{~nm}\left(\log _{10} \varepsilon\right.$ 4.26). n.m.r. spectrum 35; i.r. spectrum 38; mass spectrum 37.

9.6.8_Reaction of N-ethylaniline with Perfluoroisopropyl-s-triazine (14)

A mixture containing N-ethylaniline $(0.63 \mathrm{~g}, 5.2 \mathrm{mmol})$ and perfluoroisopropyl-s-triazine (14)(1.5g, 5.2 mmol) was refluxed overnight in acetonitrile (5 ml). The solvent was removed under reduced pressure to leave an offwhite solid which was washed with water and collected by filtration. Vacuum sublimation yielded pure 2-(ethylphenylamino)-4-perfluorolsopropyl-s-triazine $(80)(1.8 \mathrm{~g}, 89 \%)$ as white crystals; m.p. $70-72^{\circ} \mathrm{C}$; (Found: C, 43.8; H, 2.65; N , 14.8; F, 40.0. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~F}_{8}$ requires C , 43.5; $\mathrm{H}, 2.6 ; \mathrm{N}, 14.5 ; \mathrm{F}, 39.4 \%$); $\lambda_{\text {max }}$
($\mathrm{CH}_{3} \mathrm{CN}$) 239.0nm ($\log _{10} \mathrm{E} 4.30$); n.m.r. spectrum 36; i.r. spectrum 39; mass spectrum 38.

9.6.9 Preparation of N.N-Dimethylamino-2-methoxybenzene

A flask was charged with 2 -methoxyaniline ($20 \mathrm{~g}, 0.16 \mathrm{~mol}$) and trimethylphosphite ($22 \mathrm{~g}, 0.16 \mathrm{~mol}$). The mixture was heated until a fine mist appeared after which the heat source was removed and the reaction allowed to subside. The reaction was then heated at reflux for a further 2 hrs. After cooling to $90^{\circ} \mathrm{C}$, sodium hydroxide solution (22 g in 170 ml water) was added and the aqueous mixture was left to stand for 1.5 hrs . The amines were extracted with ether and distilled on the Fischer Spahltrohr to yield N, N-Dimethylamino-2-methoxybenzene ($13.0 \mathrm{~g}, 54 \%$); pure by GC; b.p. $81.7-82^{\circ} \mathrm{C} / 5 \mathrm{~mm} \mathrm{Hg}$; IR spectrum recorded; $\mathrm{m} / \mathbf{2}$ ($\mathrm{El}{ }^{+}$) 151 (M^{+}, 100\%).
9.6.10 Reaction of $\mathrm{N} . \mathrm{N}$-Dimethylamino-2-methoxybenzene with Irlifuore-s-triazine (13)

A mixture containing N,N-Dimethylamino-2-methoxybenzene (1.0g, 6.6 mmol) and trifluoro-s-triazine (13)($1.2 \mathrm{~g}, 8.8 \mathrm{mmol}$) was refluxed overnight in acetonitrile (5 ml). Water (15 ml) was added to the mixture to precipitate the solid product which was collected by filtration. Vacuum sublimation yielded pure 2-methyl(2-methoxyphenyl)-amino-4.6-difluore-s-triazine (85)(0.51g, 31\%) as white crystals; m.p. $139^{\circ} \mathrm{C}$; (Found: C, 52.25; $\mathrm{H}, 3.85$; $\mathrm{N}, 22.35 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OF} 2$ requires $C, 52.4 ; \mathrm{H}, 3.95$; $\mathrm{N}, 22.2 \%$). n.m.r. spectrum 37 ; i.r. spectrum 40 ; mass spectrum 39.

9.6.11 Reaction of N.N.N'N'-tetramethyl-1.4-diaminobenzene with trifluoro-s-triazlne (13)

A mixture containing N, N, N ' N^{\prime}-tetramethyl-1,4-diaminobenzene $(0.6 \mathrm{~g}$, 3.6 mmol) and trifluoro-s-triazine (13)($0.4 \mathrm{~g}, 3.0 \mathrm{mmol}$) was refluxed overnight in acetonitrile (5 ml). Water was added to the mixture to precipitate the solid product which was collected by filtration. Vacuum sublimation ylelded pure 2-methyl(4-N.N. dimethylaminophenyl)amino-4.6-difluoro-s-triazine (86) ($0.12 \mathrm{~g}, 15 \%$) as white crystals; (Found: C, 54.5; H, 5.1; N, 26.7. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~F}_{2}$ requires $\mathrm{C}, 54.3 ; \mathrm{H}, 4.9 ; \mathrm{N}$, 26.4\%). n.m.r. spectrum 38; i.r. spectrum 41; mass spectrum 40.

9.6.12 Reaction between 2-N.N-dimethylamino-pyridine and

 Perflyorodi-lsopropyl-s-triazine (15)A mixture containing $2-\mathrm{N}, \mathrm{N}$-dimethylaminopyridine ($0.5 \mathrm{~g}, 3.5 \mathrm{mmol}$) and perfluorodi-isopropyl-s-triazine $(1.5 \mathrm{~g}, 3.4 \mathrm{mmol}$) was refluxed in acetonitrile (5 ml) for 6 hr . On cooling, water (15 ml) was added to precipitate the solid product which was collected by filtration. Vacuum sublimation yielded the pyridinium salt (87)(0.9g, 47\%) as a pale yellow solid; (Found: C, 34.65; H, 1.7; N, 12.8. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OF}_{14}$ requires $\mathrm{C}, 34.6 ; \mathrm{H}, 2.0$; $\mathrm{N}, 12.6 \%$). n.m.r. spectrum 39; i.r. spectrum 42; mass spectrum 41.

NUCLEAR MAGNETIC RESONANCE SPECTRA

1. 1,8-(Bisdimethylamino)-naphthalene Hydrogen Fluoride Complex (PS/HF) (1)
2. Triethylamine Hydrogen Fluoride Complex (24)
3. Tributylamine Hydrogen Fluoride Complex (25)
4. Trihexylamine Hydrogen Fluoride Complex (26)
5. Trioctylamine Hydrogen Fluoride Complex (27)
6. Tridodecylamine Hydrogen Fluoride Complex (28)
7. 2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (35)
8. N-Methyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (36)
9. N-Ethyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (37)
10. N-Allyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (38)
11. N-Benzyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (39)
12. Tetramethylguanidine Hydrogen Fluoride Complex (40)
13. 1,1-Bistrifluoromethyl-6,7-bisdimethylamino-2,3-tetrafluoro-ethano- [1H]-phenalene (4)
14. Spiro[octafluorocyclopentane-1,1'-(6,7-bisdimethylamino)-2',3'- tetrafluoroethano-[1H]-phenalene] (44)
15. Spiro[octafluorocyclopentane-1,1'-(6,7-bisdimethylamino)-2',3'-tetrafluoro-propan-1"-one-[1H]-phenalene](60)
16. 7,8-propano-9,10-propan-1"-one-cyclohepta-[d,e]-naphthalene (61)
17. Spiro[hexafluorocyclobutane-3,1'-1,2-tetrafluoroethano-1-fluoro-3-(4'- N, N-dimethylaminophenyl)-propene] (63)
18. Spiro[hexafluorocyclobutane-3,1'-1,2-tetrafluoroethano-1-fluoro-3-(N- methylindol-3"-yl)-propene] (65)
19. White Solid (66)
20. 2-(pyrrol-2-yl)-4,6-difluoro-s-triazine(67)
21. 2-(pyrrol-2-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (68)
22. 2-(pyrrol-2-yl)-4,6-perfluorodi-isopropyl-s-triazine (69)
23. 2-(N-methylpyrrol-2-yl)-4,6-difluoro-s-triazine (70)
24. 2-(N-methylpyrrol-2-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (71)
25. 2-(N-methylpyrrol-2-yl)-4,6-perfluorodi-isopropyl-s-triazine (72)
26. 2-(N-methylindol-3-yl)-4,6-difluoro-s-triazine (73)
27. 2-(N-methylindol-3-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (74)
28. 2-(N-methylindol-3-yl)-4,6-perfluorodi-isopropyl-s-triazine (75)
29. 2-(4-N,N-dimethylaminophenyl)-4,6-difluoro-s-triazine (77)
30. 2-(4-N,N-dimethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (78)

31. 2-(4-N,N-dimethylaminophenyl)-4,6-perfluorodi-isopropyl-s-triazine (81A) and 2-(2-N,N-dimethylaminophenyl)-4,6-perfluorodi-isopropyl-s-

 triazine (81B)32. 2-(4-N,N-diethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (79A) and 2-(2-N,N-diethylaminophenyl)-4-perfluoroisopropyl-6-fluoro- s-triazine (79B)
33. 2-(4-N,N-diethylaminophenyl)-4,6-perfluorodi-isopropyl-s-triazine (82A) and 2-(2-N,N-diethylaminophenyl)-4,6-perfluorodi-isopropyl-s-itiazine (82B)
34 1,8-(Bisdimethylamino)-4,5-(bisdifiuoro-s-triaz-2-yl)-naphthalene (83)
34. 2-(ethylphenylamino)-4,6-difluoro-s-triazine (84)
35. 2-(ethylphenylamino)-4-perfluoroisopropyl-6-fluoro-s-triazine (80)
36. 2-methyl-(2-methoxyphenyl)-amino-4,6-difluoro-s-triazine (85)
37. 2-methyl-(4-N,N-dimethylaminophenyl)-amino-4,6-difluoro-s-triazine (86)
38. Pyridinium Salt (87)

NMR spectra were recorded in d_{3}-acetonitrile solutions unless otherwise stated. Reference compounds (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{Me}_{4} \mathrm{Si}^{19} \mathrm{~F}-\mathrm{CFCl}_{3}$) were used internally.

${ }^{1} \mathrm{H}$ NMR Spectrum of PS/HF in $\mathrm{CD}_{3} \mathrm{CN}$

Assignment of ${ }^{1} \mathrm{H}$ NMR spectrum discussed in section 2.3.2.1
${ }^{19}$ F NMR Spectrum
-169.0ppm (s)

No. 5 Ini-n-ccivlamine HE Comolex

No. 7 2.2.6.6-Tetramethyloiperidine Hydroaen Fluoride Complex

Chemical Shith (RDO)	Multiplicily Counding Constans (Hzi)	Relative_Intensily	Assionment
'⿴囗			
1.21	s	12H	a
1.52	m	4H	b
1.65	m	2 H	c
4.90	s (br)	1H	d
9.30	s (br)	iH	e
${ }^{19} \mathrm{E}$			
. 134.96	s (br)		1

No. $\mathrm{B} \quad$ 1.2.2.6-Pentamelthypiperidine HF Complex

Chemical Shill (00m)	Mulliolicily Couplina Conslanis (Hz)	Helative Intensity	Assionmenl
${ }^{1} \mathrm{H}$			
1.27	s	12 H	a
1.68	m	6H	b. c
2.48	5	3H	d
12.74	s (br:	1H	e
${ }^{19} \mathrm{E}$			
-148.9	s (br.		1

No. 9 N-Ethyl-2,2.6.6-Tetramelhylpiperidine HF Complex

No. 12

No. 12	Ietramethylquanidine $\begin{gathered} \mathrm{a}_{2} \mathrm{Me}_{2} \mathrm{~N} \\ \mathrm{Me}_{2} \mathrm{~N}^{\prime} \end{gathered}$	Hydroaen Fluo $\begin{array}{rl} b & c \boldsymbol{c} \\ =\mathrm{N}-\mathrm{H} & . \mathrm{HF} \end{array}$	Complex
Chemical Shint (DRm)	Mulliolicity Cousaling Constants_(Hz)	Coudina Constants_(Hzu)	Assionment
${ }^{\prime} \mathbf{H}$			
2.71	s	12 H	a
3.63	s	1 H	b
8.63	s (br)	1H	c
${ }^{19} \mathrm{E}$			
. 142.97			d

No. 13 1.1-Bistrifluoromethyl-6.7-bisdimethylamino-2.3-tetrafluoro-ethano-[1/HI-phenalene

Chemical Shilt (Dom)	Mulliolicity Counding Constants (Hz)	Belative Intensily	Assionment
${ }^{1} \mathrm{H}$			
2.81	s	6H	a
2.88	s	6H	p
${ }^{6.79} 1$	-AX JAX=8.3	1H	c
7.45		1 H	d
${ }^{6.98} 1$	$\text { -AX } \quad J_{A X}=8.8$	1 H	n
7.85		$1{ }^{1}$	m
${ }^{19} \mathrm{E}$			
-67.23	s	6F	k
-105.10	s	2F	g
-112.55	s	$2 F$	n
${ }^{13} \mathrm{c}$			
43.5	s (br)		a.p
107.7	s		1
108.9	s		c
111.5	s		n
115.120	many overlapping peaks		CF_{2} and $\mathrm{CF}_{3} \mathrm{~g}, \mathrm{n}, \mathrm{k}$
116.7	s		e
121.4	s		q

123.7	s		l
126.0	s	i	
126.9	s	d	
130.4	s		m
134.1	s	l	
152.9	s	b	
153.0	m	l	
156.1	s	l	

The complexity of the ${ }^{13} \mathrm{C}$ spectrum prevents a lull assignment, especially for peaks in the region of 115-125ppm.

109.4	s	c
111.4	s	o
115.4	s	r
115.120	many overlapping peaks	$\mathrm{g}, \mathrm{h}, \mathrm{k}, \mathrm{l}$
128.6	s	d
134.0	s	s
135.8	s	n
151.9	m	l
154.4	s	b
158.2	s	l

No. 15
Spiroloctailuorocyclopentane-1.1'-(6.7-bisdimethylamino). 2:3'-tetrafluoropropan-2"-one-ClHI-phenalenel

No. 17
Soiro-Ihexafluorocyclobutane-3.1'-1.2-tetrafluoroethano: 1-fluoro-3-(4"-N.N.Dimeihylaminophenyll-oropene

Chemical Shith	Multiolicily	Belative_nlensily	Assionment
(00m)	Couplina Conslants (Hz)		

${ }^{1} \mathrm{H}$

2.96	5		6 H	a
6.76			2 H	b
	$A B$	$\mathrm{J}_{\text {AB }}=8.7$		
7.16			2 H	c

${ }^{19} \mathrm{E}$

naphthalene

 ${ }^{19} \mathrm{E}$

$-106.5 \underbrace{}_{A B}$	$J_{A B}=278$	2F	d
-128.8			
${ }^{-109.3} \neq A B$	$J_{A B}=262$	$2 F$	n
-133.1			
${ }^{.119 .4} \neq \mathrm{AB}$	$J_{A B}=\mathbf{2 6 0}$	2F	1
.128.0 ${ }^{\text {J }}$			
$-128.8{ }^{-1 B}$	$J_{A B}=283$	$2 F$	θ
.136.0 ${ }^{\text {] }}$			
. 133.4			

No. 20 2-Jpyriol-2-yl1-4.6-difluoro-s-Iriazine

Chemical Shitt	Multiolicity Coupling Constan(s_(Hz)		Belative Intensity	Assionment
${ }^{1} \mathrm{H}$				
6.40		$\mathrm{J}_{\mathrm{c}, \mathrm{d}=4.0}$	1 H	c
7.23	m	$\mathrm{J}_{\mathrm{b}, \mathrm{c}=2.3}$	1 H	b
7.34	dd	$\mathrm{J}_{\mathrm{b} . \mathrm{d}=1.6}$	1 H	d
10.30	s b		1H	a
${ }^{19} \mathrm{E}$				
. 39.68	s			e

No. 21 2-(pyrrol-2-yl)-4-fluoro-6-perfluoroisoprepyt-s: triazine

$\begin{aligned} & \text { Chemical_Shill } \\ & \text { Lom) } \end{aligned}$	Mulliolicily Cquplina Constants_(Hz)		Belative -ntensily	Assionment
${ }^{1} \mathrm{H}$				
6.43	m	$J_{\text {c.d }}=4.0$	1H	c
7.27	m	$J_{\text {d. }}=2.4$	1 H	b
7.40	m	$J_{\text {b } .0}=1.2$	1H	d
10.62	s (br)		1H	a
${ }^{19} \mathrm{E}$				
. 39.68	s		if	j
.74.43	s		6 F	1
-184.47	s		$1 F$	n
${ }^{13} \mathrm{C}$				
90.9	d sept	211, 33		n
114.5	s			c
121.2	s			d
121.3	ad	288, 27		i
128.5	s			-
130.5	s			b
169.2	dd	22. 12		g
170.4	dd	13. 3		1
171.2	dd	229. 3		1

No. 22

2-1pyrrol-2-yll-4.6-perfluorodi-isopropyl-s-

 triazine

Chemical Shift (DOD)	Mulliolicity Coupling Constanis_(Hz)		Relative Intensily	Assianment
${ }^{1} \mathrm{H}$				
6.31	dd	$J_{c . d}=3.5$	1H	c
7.15	m	$J_{\text {b.c }}=1.7$	1H	b
7.29	dd	$J_{b . d}=1.5$	1H	d
9.50	s (br)		1H	a
${ }^{19} \mathrm{E}$				
. 74.42	s		6 F	i
-184.72	5		1F	n
${ }^{13} \mathrm{C}$				
90.4	d sept	211. 33		h
114.3	5			c
120.8	qd	288. 27		i
121.3	s			d
128.2	s			e
130.6	s			b
165.9	dd	22. 4		9
166.5	1	3		1

No. 23
2.(N-methyloyrrol-2-yll-4.6-difluora-s-Iriazine

Chemical Shill (opm)	Mulliplicity Coupting Constanis (Hz)	Relative Intensity	Assianment
${ }^{1} \mathrm{H}$			
4.04	s	3H	a
6.27	dd $J_{c, d}=4.0$	1H	c
7.15	m J Jb.c $=2.4$	$1 \mathrm{H}^{\text {1 }}$	b
7.44	dd $J_{\text {b }} \mathrm{d}=1.8$	i H	d
${ }^{19} \mathrm{E}$			
. 45.60	s (broad)		g.h
${ }^{13} 8$			
39.21	s		a
111.09	s		c
123.34	s	\checkmark	d
128.0	5		e
136.13	s		b
172.03	dd 226. 19		g. n
172.35	14		1

Fot ${ }^{13} \mathrm{C}$ spectra, it is important to nave the proton decoupler on during acquisition bul oll during detay. This prevents arilicial nuclear overhouser enhancement of peaks wilh tow relaxation times (e.g. non-substituted aromatic carbons). hence giving greater resolution tor peaks with a longer relaxation lime (e.g. C-F carbons). However, a much longer acquisilion time is necessary.

Chemical Shill (DPD)	Multiolicity Couplino Constants (Hz)		Belative_Intensily	Assimnment
${ }^{1} \mathrm{H}$				
4.12	s		3 H	a
6.33	dd	$J_{\text {c.d }} 4.2$	$1 \mathrm{H}^{\text {d }}$	c
7.35	m	$J_{\text {b }, ~}^{\text {c }}$ = 2.3	$1{ }^{\text {H }}$	b
7.52	dd	$J_{\text {b }, \mathrm{d}}=1.8$	1H	d
${ }^{19} \mathrm{E}$				
-38.4	5		1F	1
. 74.2	5		$6 F$	1
-184.3	s		$1 F$	h
${ }^{13} \mathbf{c}$				
39.28	s			a
90.28	d sept	211. 35		h
111.55	s			c
120.76		288. 27		1
123.95	s			d
128.06	s			-
136.85	s			b
168.18	dd	21. 12		9
170.21	dd	13, 3		1
170.27	dd	228, 3		I

No. 25

2-IN-mathyipyrrol-2-yll-4,6-perfluorodi-isopropyl-

 s-triazine

Chemical Shith	Multiolicily	Belative_Intensily	Assionment

${ }^{1} \mathrm{H}$

4.07	s		3 H	a
6.32	dd	$\mathrm{J}_{\mathrm{c}, \mathrm{d}=4.2}$	1 H	c
7.05	m	$\mathrm{~J}_{\mathrm{b}, \mathrm{c}=2.3}$	1 H	b
7.66	dd	$\mathrm{J}_{\mathrm{b}, \mathrm{d}=1.9}$	1 H	d

${ }^{19} E$

.74 .96	5	$6 F$	1
-185.19	5	$1 F$	h

${ }^{13} 6$

39.09	s	
90.21	d sepl 218.	a
111.88	s	h
120.73	qd	288.27
124.75	s	
128.12	s	c
137.67	s	
165.55	dd	22.3
166.62	l	3

Chemical_Shif (0pm)	Mulliolicity Couplina_Constants (Hz)	Belative intensity	Assionment
${ }^{1} \mathrm{H}$			
4.1	s	3H	a
7.4	m	2H	d.e
7.7	m	1H	1
8.6	m	1H	c
8.7	s	1H	b
${ }^{19} \mathrm{E}$			
-40.2	s		g

Resolution of ${ }^{1} \mathrm{H}$ spectrum is poor due to the low solubility of the product

No. $28 \quad \begin{aligned} & \text { 2-(N-methylindol-3-yl)-4.6-oerfluorodi-isopropyl-s: } \\ & \text { triazine }\end{aligned}$

Chemical Shill (00m)	Mulliplicity Coupling Constants (Hz)	Belative tolensily	Assionment
'H			
3.97	s	3H	a
7.43	m	2 H	d, 8
7.59	m	1 H	1
8.44	m	1H	c
8.56	s	1H	b
${ }^{19} \mathrm{E}$	\checkmark		
. 74.17	s	6 F	h
-184.44	s	IF	g

Resolution on ${ }^{1} \mathrm{H}$ spectrum poor due to the low solubility of the product

No. 27 2-(N-methylindol-3-yll-4-perfluoroisopropyl-6-fluoro-s: Lriazine

Chemical_Shith Mulliolicity Belative Intensily Assianment

(Dom) Couplino Conslants (Hz)

Spectra recorded in d_{6}-acetone
${ }^{1} \mathrm{H}$

4.04	s		3 H	a
7.36	m		2 H	f. 9
7.67	dd	$J_{g . h}=6 J_{\text {l }} / \mathrm{h}=2$	1 H	h
8.45	dd	$J_{\theta .1}=6.5 J_{\theta .9}=3$	1 H	e
8.59	s		1 H	b
-39.2	s		1F	,
.74.2	s		6 F	n
-184.2	s		1F	m

${ }^{13} 6$
34.23 s
90.17 d sepl 210.33
111.72 d 1.9
$\begin{array}{lll}111.98 & s & \\ 120.77 & \text { dq } & 287.27\end{array}$
122.98 s
123.98 s
124.63 s
127.16 s
139.65 s
-

No. 31 2.14-N.N-Dimethylaminophenyll-4.6-periluorodi-isoprooyd-s-triazine

Para Isomer

Chemical Shill	Multiolicily
(opm) Belative Intensity	Assianment
Coupling Constants.(Hz)	

Ortho Isomer

Chemical_Shill (00m)	Mulliplicily Coupling Conslants (HzI		Belative frensily	Assionment
${ }^{1} \mathrm{H}$				
3.11	s		6 H	a
7.40-8.90			4 H	b.c.d.e
${ }^{19} \mathrm{E}$				
. 73.48	d	6.8	6 F	g
-184.13	sept	6.8	$1 F$	1

fluoro-s-triazine

Para_isomer

Ortho Isomer

Chemical Shith	Mulliplicity Conoling Constans (Hz)

The resonances corresponding to the ortho isomer in the ${ }^{13} \mathrm{C}$ spectrum cannot be resolved due to the small concentration of this isomer. However, line broadening of the specirum indicates the

Orthe Isomer

Chemical Shill (DRO)	Multiolicily Coupling Constants (H_{2})			Assionmen
${ }^{1} \mathbf{H}$				
1.05	1	7.2	6 H	a
3.42	9	7.2	4 H	b
7.34-7.60			4 H	c, d, e. 1
${ }^{19} E$				
. 73.33	d	7.5	6 F	i
. 183.60	sept	7.2	1 F	h

No. 34

1.8-(Bisdimethylamino)-4.5-(bisdifluorotriaz-1-yll)-

 naphthalene

No 35

2-(ethylphenylamino)-4.6-difluoro-5-triazine

Uriazine

Chemical Shill (opm)	Multiolicily Couplina Constants $\left[\mathrm{H}_{2}\right]$		Belative Inlensily	Assionmen:
${ }^{1} \mathrm{H}$				
1.24	1	7.2	3H	a
4.76	9	7.2	2 H	b
7.29	1	7.2	2 H	d
7.48	m		3 H	c.e
${ }^{19} \mathrm{E}$				
-39.9	s		IF	1
.74.45	5		6F	h
-184.65	s		IF	9

No. 37
2-(methyl-l2-methoxy-phenyllamino-4.6-difluoro-s-triazine

Relative Intensity
Chemical Shill Mulliolicily

Assionmen

3.47	s		$3 H$	a or I
3.84	s		$3 H$	a or I
7.06	I	7.0	$1 H$	cord
7.18	d	8.1	$1 H$	bore
7.33	d	7.5	$i H$	bore
7.39	1	7.6	$1 H$	cord

-40.33	s	IF	9
-41.14	5	$1 F$	g

Coupling Conslanis (Hz)

Spectra recorded in d_{6}-acetone
${ }^{1} \mathrm{H}$
${ }^{19} \mathrm{E}$

Spectra recorded in d_{6}-acelone
'H

	2.97	s		6 H	d
	3.50	s		3 H	a
6.787				2 H	b
		- AB	$J_{A B}=8.9$		
	7.17]			2H	c
${ }^{19} \mathrm{E}$					
	-40.6	s		1F	e
	-41.1	s		1F	e

No. 39 Pyridine Sall

OH

Assionment
Relative Intensity-

6.84 dd ${ }^{2}$
7.06 ddd $\mathrm{Ja}_{\mathrm{a}} \mathrm{b}=9 \mathrm{l} \quad 1 \mathrm{H}$ $\mathrm{J}_{\mathrm{a} . \mathrm{c}}=0.8$ Ja. $d=0.8$
7.91 ddd Jb. $=7 \quad v^{1 H}$ $J_{b} . d=1.9$
e
H
c a

B
8.06 ddd

H
d
${ }^{19} E$

.74 .95	s	$6 F$	g
-185.30	s	$1 F$	1

INFRA_RED SPECTRA

1. 1,8-(Bisdimethylamino)-naphthalene Hydrogen Fluoride Complex (PS/HF) (1)(Nujol mull)
2. Triethylamine Hydrogen Fluoride Complex (24)
3. Tributylamine Hydrogen Fluoride Complex (25)
4. Trihexylamine Hydrogen Fluoride Complex (26)
5. Trioctylamine Hydrogen Fluoride Complex (27)
6. Tridodecylamine Hydrogen Fluoride Complex (28)
7. 2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (35)
8. N-Methyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (36)
9. N-Ethyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (37)
10. N-Allyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (38)
11. N-Benzyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (39)
12. Tetramethylguanidine Hydrogen Fluoride Complex (40)
13. 1,1-Bistrifluoromethyl-6,7-bisdimethylamino-2,3-tetrafluoro-ethano- [1H]-phenalene (4)
14. Unidentified Red Solid (5)
15. Spiro[octafluorocyclopentane-1,1'-(6,7-bisdimethylamino)-2',3'-tetrafluoroethano-[1H]-phenalene] (44)
16. (7,8)-(9,10)-dihexafluoropropano-3,4-bisdimethylamino-cyclohepta-[d,e]- naphthalene (56)
17. Spiro[octafluorocyclopentane-1,1'-(6,7-bisdimethylamino)-2',3'- tetrafluoropropan-2"one-[1 H]-phenalene] (60)
18. 7,8-propano-9,10-propan-2"-one-cyclohepta-[d,e]-naphthalene (61)
19. Spiro[hexafluorocyclobutane-3,1'-1,2-tetrafluoroethano-1-fluoro-3-(4'- N,N-dimethylaminophenyl)-propene] (63)
20. Spiro[hexafluorocyclobutane-3,1'-1,2-tetrafluoroethano-1-fluoro-3-(N- methylindol-3"'yl)-propene] (65)
21. White Solid (66)
22. 2-(pyrrol-2-yl)-4,6-difluoro-s-triazine (67)
23. 2-(pyrrol-2-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (68)
24. 2-(pyrrol-2-yl)-4,6-perfluorodi-isopropyl-s-triazine (69)
25. 2-(N-methylpyrrol-2-yl)-4,6-difluoro-s-triazine (70)
26. 2-(N-methylpyrrol-2-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (71)
27. 2-(N-methylpyrrol-2-yl)-4,6-perfluorodi-isopropyl-s-triazine (72)
28. 2-(N-methylindol-3-yl)-4,6-difluoro-s-triazine (73)
29. 2-(N-methylindol-3-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine(74)
30. 2-(\mathbf{N}-methylindol-3-yl)-4,6-perfluorodi-isopropyl-s-triazine
31. 6-(N-methylindol-3-yl)-2,4,5-trifluoro-pyrimidine (76)
32. 2-(4-N,N-dimethylaminophenyl)-4,6-difluoro-s-triazine (77)
33. 2-(4-N,N-dimethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (78)
34. 2-(4-N,N-dimethylaminophenyl)-4,6-perfluorodi-isopropyl-s-triazine (81A) and 2-(2-N,N-dimethylaminophenyl)-4,6-perfluorodi-isopropyl-striazine (81B)
35. 2-(4-N,N-diethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (79A) and 2-(2-N,N-diethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (79B)
36. 2-(4-N,N-diethylaminophenyl)-4,6-perfluorodi-isopropyl-s-triazine (82A) and 2-(2-N,N-diethylaminophenyl)-4,6-perfluorodi-isopropyl-s-triazine (82B)
37. 1,8-(Bisdimethylamino)-4,5-(bisdifluoro-s-triaz-2-yl)-naphthalene (83)
38. 2-(ethylphenylamino)-4,6-difluoro-s-triazine (84)
39. 2-(ethylphenylamino)-4-perfluoroisopropyl-6-fluoro-s-triazine (80)
40. 2-methyl-(2-methoxyphenyl)-amino-4,6-difluoro-s-triazine (85)
41. 2-methyl-(4-N,N-dimethylaminophenyl)-amino-4,6-difluoro-s-triazine (86)
42. Pyridinium Salt (87)

All solids were recorded as KBr discs unless otherwise stated. All liquids were run as thin films between KBr plates

No. 6 M Mcrons

No. 12

No. 15

$\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

$\begin{array}{llllllllllllll}4600 & 3500 & 3000 & 1500 & 2000 & 1800 & 1500 & 1400 & 1200 & 1000 & 850 & 660 & 400 & 250\end{array}$

No. 20

11111111

No. 23

No. 25

No. 26

No. 29

$\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
No. 30

No. 31

No. 33
 111111111

$\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

No. 38

No. 39

No. 40

MASS SPECTRA

1. 1,8-(Bisdimethylamino)-naphthalene Hydrogen Fluoride Complex (PS/HF) (1)
2. Triethylamine Hydrogen Fluoride Complex (24)
3. Tributylamine Hydrogen Fluoride Complex (25)
4. Trihexylamine Hydrogen Fluoride Complex (26)
5. Trioctylamine Hydrogen Fluoride Complex (27)
6. Tridodecylamine Hydrogen Fluoride Complex (28)
7. 2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (35)
8. N-Methyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (36)
9. N-Ethyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (37)
10. N-Allyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (38)
11. N-Benzyl-2,2,6,6-Tetramethylpiperidine Hydrogen Fluoride Complex (39)
12. Tetramethylguanidine Hydrogen Fluoride Complex (40)
13. 1,1-Bistrifluoromethyl-6,7-bisdimethylamino-2,3-tetrafluoro-ethano- [1H]-phenalene (4)
14. Unidentified Red Solid (5)
15. Spiro[octafluorocyclopentane-1,1'-(6,7-bisdimethylamino)-2', 3^{\prime} -tetrafluoroethano-[1H]-phenalene](44)
16. (7,8)-(9,10)-dihexafluoropropano-3,4-bisdimethylamino-cyclohepta-[d,e]- naphthalene (56)
17. Spiroloctafluorocyclopentane-1,1'-(6,7-bisdimethylamino)-2',3'-tetrafluoropropan-2"one-[1H]-phenalene] (60)
18. 7,8-propano-9,10-propan-2"-one-cyclohepta-[d,e]-naphthalene (61)
19. Spiro[hexafluorocyclobutane-3,1'-1,2-tetrafluoroethano-1-fluoro-3-(4'"- N, N-dimethylaminophenyl)-propene] (63)
20. Spiro[hexafluorocyclobutane-3,1'-1,2-tetrafluoroethano-1-fluoro-3-(N- methylindol-3"-yl)-propene] (65)
21. 2-(pyrrol-2-yl)-4,6-difluoro-s-triazine (67)
22. 2-(pyrrol-2-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (68)
23. 2-(pyrrol-2-yl)-4,6-perfluorodi-isopropyl-s-triazine (69)
24. 2-(N-methylpyrrol-2-yI)-4,6-difluoro-s-triazine (70)
25. 2-(N-methylpyrrol-2-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (71)
26. 2-(N-methylpyrrol-2-yl)-4,6-perfluorodi-isopropyl-s-triazine (72)
27. 2-(N-methylindol-3-yl)-4,6-difluoro-s-triazine (73)
28. 2-(N-methylindol-3-yl)-4-perfluoroisopropyl-6-fluoro-s-triazine (74)
29. 2-(N-methylindol-3-yl)-4,6-perfluorodi-isopropyl-s-triazine (75)
30. 6-(N-methylindol-3-yl)-2,4,5-trifluoro-pyrimidine (76)
31. 2-(4-N,N-dimethylaminophenyl)-4,6-difluoro-s-triazine (77)
32. 2-(4-N,N-dimethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-striazin(78)
33. 2-(4-N,N-dimethylaminophenyl)-4,6-perfluorodi-isopropyl-s-triazine (81A) and 2-(2-N,N-dimethylaminophenyl)-4,6-perfluorodi-isopropyl-striazine (81B)
34. 2-(4-N,N-diethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (79A) and 2-(2-N,N-diethylaminophenyl)-4-perfluoroisopropyl-6-fluoro-s-triazine (79B)
35. 2-(4-N,N-diethylaminophenyl)-4,6-perfluorodi-isopropyl-s-triazine (82A) and 2-(2-N,N-diethylaminophenyl)-4,6-perfluorodi-isopropyl-s-triazine (82B)
36. 1,8-(Bisdimethylamino)-4,5-(bisdifluoro-s-triaz-2-yl)-naphthalene
37. 2-(ethylphenylamino)-4,6-difluoro-s-triazine (84)
38. 2-(ethylphenylamino)-4-perfluoroisopropyl-6-fluoro-s-triazine (80)
39. 2-methyl-(2-methoxyphenyl)-amino-4,6-difluoro-s-triazine (85)
40. 2-methyl-(4-N,N-dimethylaminophenyl)-amino-4,6-difluoro-s-triazine (86)
41. Pyridinium Salt (87)

Mass	\% Sase		
:67. 09	411		
:67. 21	0.29	:96.8!	
167.58	0.31	-97 : 2	
:67.61	0.28	:97	- 53
-68 09	30.07	: 37 5!	3:
!6909	12. 20	:98 1:	± 65
: 69.68	0.40	:98 50	6.23
:70. 10	:1.82	!99.12	9. 53
$: 70.45$	\bigcirc	:99 36	- 33
; 70.88	0.25	-00. 12	5.61
170.93	0.28	-00. 27	
:71.11	6. 37	-01.	7
:71.45	0. 36	-02 ! :	
:72.12	2. 79	-03 03	
:73.13	2.15	208. 07	- 99
:74.09	J. 44	209.08	0.34
:-4 92	0.41	210.09	0. 49
:78 98	- 39	211.33	
: 50.cs	. 32	212.05	0.34
:31.07	E. 05	212.14	0.51
.32.07	928	21313	4.16
:32.3!	129	213.59	0.69
:33.10	, 11	214.15	7.57
: 33.65	$\bigcirc 23$	215.15	100.00
iad 10	- 26	216.16	17.55
:35 1:	338	217.15	
185. 56	$\bigcirc 29$	21808	3. 80 1.89
:85. 92	J. 66	21902	0. 39
:86. 1 :	$\therefore .06$	221.10	0. 75
		222. 08	0.74
		223. 15	087
		22504	0.63

No. 2

El+ Data

Mas 5	\% yase		
23 41	0.31		
25.94	3.08	82.82	1.60 0.60
26.95	16.50	83.93	0. 60
27.90	2.92	84.81	91. 17
27.94	11.18 F	84.93	0.23 4.21
27.95	3. 56 F		4.21 100.00
28.96	16.44	85.94 86.81	100.00 2.52
29.95	28.87	86. 84	2. 52 5.85
30.96	0.23	86.98	5.85 0.23
32.90	0.94	90.89 99.94	6. 236
38.93	1.30	100.95	6.56 23.58
39.93	0.77	101.95	23. 69
40.94	2. 77	103.80	2.69 0.90
41.94	14. 30	104.80	0. 35
42. 39	0.22	148.81	083
42. 92	0.44	14 Bl	
42.95	1.76		
43. 89	0.40		
43.95	10.73		
46.87	4.18		
51.91	0.21		
53.92	1.54		
54.93	1.03		
55.93	7.65		
56.94	2.07		
57.94	25.66		
58.94	0.78		
65.83	0.98		
67.91	0.31		
68.92	0.32		
69.92	3. 62		
70.92	1. 37		
71.93	3.55		
81.84	2.50		

Mass	$\%$ Base
40.88	24.03
41.88	15.07
42.90	5.42
43.90	18.49
52.94	0.69
53.95	0.62
54.97	4.31
55.97	3.38
56.99	7.92
57.99	15.48
70.05	2.30
84.05	3.00
84.98	2.58
86.10	3.19
98.11	4.50
100.12	50.37
101.13	2.96
128.12	0.69
142.17	100.00
143.18	8.73
184.20	7.77
185.21	6.81
186.22	8.04

El+ Data

Hass	\% Base		
40.87	9.19	140. 12	0. 8
41.87	4.06	142.14	0.23
42. 89	17.32	154. 13	0.78
43. 89	8.62	156. 14	0.21
44. 80	0.23	168. 12	0.32
52.93	0.47	184. 16	1.08
53. 94	0.29	185.17	0.27
54. 96	4.43	186.18	0.30
58.96	1.59	196.18	0.70
56.97	2. 47	187.18	0.26
57.98	8.24	198. 19	100.00
58.89	0.27	189.20	14.98
67.01	0.35	200.20	1.05
68.01	0.28	212.20	0.31
69.04	0.61	224.22	0.42
70.03	1.75	240.24	0.49
71.04	0.50	284.26	0.39
72.05	0.25	268.28	3.22
81.06	0.24	269.28	2.83
82.06	0.37	270.29	4. 45
83. 07	0.48	271.29	0.78
84.07	3.53		
84.96	2.53		
85.08	0.55		
96.07	0.23		
98.09	4.59		
99.09	0.35		
100.10	0.36		
112.10	1.05		
114. 10	3.47		
118.10	0. 28		
126.08	2.52		
127.09	0.26		
128.09	23.13		
129.10	2. 10		

No. 5
El^{+}

Mass	\% 日ase		
119.03	14. 66	166. 18	1.34
120.05	54. 90	167. 14	0.58
121.06	16.40	168. 14	3.56
122.08	1.78	169.04	10.30
123.11	0.53	170.14	0.60
124. 10	0.61	171.16	0.39
125.14	0.57	243.05	2.03
126. 16	1.78	247.17	2. 38
127.12	1.34	252.33	1.94
128. 12	2. 03	253. 34	1. 0.41
129. 11	1.20	254. 35	28.16
130.12	0. 38	255.31	5. 93
131.03	14.69	256.36	0.63
132.04	0.56	260.15	1.04
135.11	0.36	267. 06	0.54
137.08	0.51	268. 36	$0 . .41$
138.14	0.42	269. 05	1.81
139.11	2.03	278. 16	0.71
140.16	4. 99	280.37	1. 10
141.12	3. 58	281.06	3. 56
142.19	16.20		
143.13	2. 05		
145.16	0.46		
149.07	1.23		
150.04	0.74		
151.05	0.96		
152.08	23.17		
153.10	3.16		
134. 18	1.78		
155. 10	1.91		
186.20	4. 49		
157.16	0.70		
162.03	1.78		
163.05	0.74		
165.15	0.54		

No. 6
$E I^{+}$

El^{+}Data

Mas 5	\% Base		
353. 14	2.04	478. 31	1.64
354. 15	2. 19	479.31	0.61
355. 16	0.55	492. 33	1.00
362. 12	0.51	493. 33	0.38
363. 13	0.28	506. 35	0.61
364. 13	10.32 F	507. 35	0. 24
365. 09	3. 60 F	518.35	1.07
366. 14	100.00 FO	519.36	1.17
36716	73.26 F	520.36	18. 16
368. 16	11.24	521.37	日. 44
369.17	1. 26	522. 39	22.54
378. 16	0.33	523. 39	8. 95
380.17	1. 08	524.40	1.85
381.18	0. 36	525.40	0.21
382.17	0.54		
392.18	2.94		
393. 17	1. 00		
394. 19	0.90		
395.19	0.25		
406. 20	0.29		
408. 21	0.72		
409.22	0.26		
420.22	0.25		
422.23	0.79		
423.24	0.26		
434. 23	0.28		
436. 25	0.82		
437.25	0.27		
448.26	0.31		
450.27	1.05		
451.28	0.30		
462. 27	0.24		
464. 29	1.57		
465.30	0.58		
476.30	0.28		

No. 7
693688* x Bad=6 2]-APR-89 14:3+8:日8:51 78[C1.
 G.SAKDFORD $\quad P T=0^{0} \quad$ Cal:PFKR6APR

mass. Base	
44.04	1.10
5日. 06	12.84
70.06	4.55
98.09	1.36
113.11	1.01
120.08	0.05
121.11	0.04
122.07	0.19
123.10	0.11
124.01	0.03
124.11	0.27
125.12	0.23
125.61	0.03
125.68	0.04
125.73	0.04
126.13	21.79
126.42	0.04
127.14	2.03
129.14	0.18
129.10	0.04
130.08	0.05
130.12	0.04
131.08	0.07
132.07	0.02
132.11	0.04
133.09	0.20
134.07	0.06
134.12	0.04
135.09	0.07
136.08	0.04
136.11	0.04
137.06	0.05
137.08	0.04
137.14	0.06
138.13	0.79
139.03	0.07
139.13	0.19

140.14	0.27
140.47	0.03
140.51	0.03
140.55	0.04
140.60	0.05
140.67	0.03
142.24	$100.00 F 0$
143.17	31.60 F
143.69	0.04
143.74	0.04
143.76	0.04
143.83	0.05
143.90	0.04
143.93	0.05
144.17	1.62

194

No. 8
Cl^{+}

Mas 5	\% ease		
56	23		6
三8	05	j	
70.	C. 4	-	3
	-		
34	05	3	9
:24	06	0	1
:26	07	2	2
, 46	09	22	
141	08		
142	09		
154	08	\checkmark	5
:56	13	100	0
157	10	$: 3$	2
: 58	1:	:	9

:

mass	\% Base		
121.14	0.43	182.21	
122.18	0.65	162. 21	0.48
123.15	0.71	164.21	0.83
124.15	0.83	168. 20	0.27
125.17	0.44	168.27	0.20
126. 18	5.58	168.23	0. 47
127.18	0.80	167.21	0.22
128. 19	0. 48	168.25	0.87
132. 18	0.31	169.26	0.84
133. 15	0.41	170.28	100.00
134. 16	0.41	171.28	12. 32
138.17	0.35	172.26	0.87
136.17	0.42	173.20	0.28
137.19	0.38	174.21	0.24
138.21	0.98	178. 22	0.33
139.20	0.39	176.23	0.28
140.24	0.88	177.20	0.29
141. 18	0.22	178.24	0.31
142.28	16.61	178.28	0.24
143.27	1.47	180.26	0.28
144. 21	0.30	182.26	0.32
148.17	0.28	183.23	0.22
146.20	0.29	184. 25	0.23
147. 19	0.84		
1148.20	0.36		
148.21	0.40		
180.22	0. 36		
181.21	0.28		
182.22	0.82		
183.23	0.48		
184.26	33.71		
188.26	3.88		
186.26	0.69		
188.20	0.26		
1 189. 20	0.23		
160.20	0.24		
161. 20	0.34		

No. 10

Mass	\% Base				
20. 95	1.09	77.90	0.25		
24.94	0.32	78.91	1.77	180.97 181.98	18.41 20.27
25.94	2. 70	79.91	2.27	181.98 182.98	20.27 2.67
26. 95	12.93	80.92	4.79	182.98 366.19	2.67 0.36
27. 95	4. 73 F	81.92	17.97		
27.96	4. 15 F	82.93	2. 42		
28.97	11.69	83.94	2. 47		
29.96	8.97	92. 92	1.36		
36. 92	0.65	93.91	2. 62		
37. 93	1.37	94.92	1.81		
38.94	24. 74	95.93	6.97		
39.94	4. 43	96.93	5. 26		
40.95	71.83	97.94	32. 55		
41.95	22.71	98.94	2. 20		
42.96	4. 47	107. 92	3.23		
43.96	1.14	10893	5. 30		
44.94	0.47	109.3	72.91		
49.91	0.49	110.93	6.55		
50.92	0.96	111.94	1.05		
51.92	0.57	119.90	0.23		
52.93	5. 72	121.91	1.73		
53. 93	4. 40	122.92	0.68		
54.94	13.23	123.93	2.40		
-55.94	13.73	124.93	2. 79		
- 56.95	2.31	125.94	4. 20		
57. 95	11.95	149.93	7.55		
58. 95	0.37	150.93	0.90		
64.91	1. 10	151.95	1.16		
65.91	0.67	153.96	2.27		
66. 92	6.54	184.96	0.33		
67.91 68.93	3. 77	163.94	1.23		
68.93 69.93	32.98 6.47	164.94	5. 69 F		
69.93 70.93	6.97 1.11	165.97 166.98	100.00 FO		
71.94	1.00	166.96 167.96	40.71 F		
76.90	0.86	179.96	3.98		

Cl^{+}Data

Mas	\%. Base		
29.98	0.24	159.99	0.53
31.98	1. 16	162.85	0.23
32. 99	0.45	198.01	0.27
35. 01	100.000	203.04	0.21
36.00	2.53	216.05	11.14
43. 98	1. 12	217.06	1.86
44.98	0.25	230.07	0.47
46.00	0.24	232. 12	100.000
52.01	1. 12	233. 10	35.66
57.98	1. 68	234. 10	3.23
59.96	0.45	279.05	0.60
60.95	0.75	322. 17	0.25
69.97	0.29		
71.98	0.30		
73.96	0.43		
76. 98	0.95		
77.97	1. 02		
79.95	0.20		
81.97	0.32		
87. 98	0.56		
90.96	1. 62		
98.98	0.21		
.101.99	0.56		
105.00	0.37		
105.96	1. 11		
107.98	5. 75		
108.98	0.51		
112.99	0.42		
113.98	0.27		
119.99	0.31		
119.00	0. 26		
126.01	1. 51		
138.98	0.21		
142.04	2. 75		
145.98	0.28		
147.99	0.70		

No. 12

No. 13
M.Wt. 486
$\mathrm{Cl}^{+} / \mathrm{Cl}^{-}$

Cl+ Data

Mass	\because Base	
397.20	1. 42	
398.17	3. 70	F
399.18	10.05	F
400. 19	2.18	
401.20	0.57	
402.21	0.80	
403.17	079	
404.17	0.82	
408.21	0.73	
411.25	0.73	
412.25	0.73	
413.17	0.72	
414.21	0.72	
417.18	1. 59	
418.19	1.26	
419.19	3.85	
420. 20	1.09	
464.84	1.19	F
467.14	78.65	F
468.16	21.04	F
469.17	3. 24	F
. 470.15	1. 04	
.47421	0.72	
477.20	0.72	
485. 17	0.76	
486.14	1. 17	F
187. 14	20.32	F
488.16	4. 46	F
489.16	1. 12	
498.21	0.70	

El+ Data

Mass	\% 日ase
11.69	5. 09
44.01	+ 95
58.08	32.98
59.09	2.75
308.24	2. 47
321.24	- 03
322.25	9. 69
323.26	290
324.27	786
335. 25	5.48
536.26	+. 96
337.27	- 07
35024	± 96
35126	E. 00
352. 26	+. 69
364. 27	3. 47
365.27	3. 13
367. 32	4. 19
376.31	6.78
377. 32	2. 35
379.28	2. 78
395.32	100.00
396.32	22.62
397.32	2.67
145.33	2.59
- 450.21	0.33
- 459.35	0.07
456.37	007
457.34	0.22
459.34	0.23
459.35	0.08
463.31	2. 32
163.74	0.05
464. 32	82.73
164.86	0.06
165.33	46.51
+66. 33	910
467.34	0. 96
166.34	0.08

CI+ Data

M.Wt. 560

$\mathrm{El}^{+} / \mathrm{Cl}^{+} / \mathrm{Cl}^{-}$

658112149\% xI 日gd=28 22-JUN-99 13:47+8:03:35 78E EI-

 PT= 8^{0} Cal PFKIJUNE,

El+ Data

Mass	\% Bas		
41.93	7.45	546. 29	1.62
42. 95	1. 35	547. 30	0.16
43. 95	31.78	557.71	0.04
44.97	7.97	558.01	0.05
45.98	7. 41	558.11	0.10
57.01	1. 62	558.27	0.04
58.02	90.75	560.12	64.24 F
59.02	3. 05	560.37	100.00
70.06	2. 42	561.32	28.08 F
71.07	078	$\begin{aligned} & 361.34 \\ & 562.33 \end{aligned}$	4.58
214.14	8.08		
215.15	1. 66		
514.20	10.04		
515.10	4. 47 F		
515.29	4. 95 F		
516.22	7. 49		
517.22	1.82		
518.23	0.79		
519.15	0.16		
519.33	0.15		
522.29	0.24		
523. 24	0.07		
525. 13	0.07		
525. 31	0. 19		
-527. 20	0.17		
528. 20	2. 34		
529.21	2. 57		
530.20	1. 05		
531.24	0.24		
538.29	0.15		
539. 25	0.17		
540.35	0.11		
541.29	4.91		
542. 31	1. 37		
543. 28	0.53		
544. 29	0.22		
545. 27	4. 43		

Cl^{-}Data

Hass	\% 8ast
40.95	0.49
41.93	1.21
43. 84	0.47
58. 97	3. 49
56. 96	1. 12
57.95	1. 17
71. 95	0.83
88.95	0.42
126. 76	100.000
127.88	0.42
147.82	0.51
189.81	0.34
419.62	0.56
421.65	0.32
431.62	0.36
530.52	0.81
532.53	0.55
533.57	0.34
535.58	1.86
538.54	2.39 F
937.55	5.57 F
538.54	1.89
-539.56	1. 36
- 558. 34	10.10
588. 54	3.25
557.55	4. 24
558.85	0.84
559.52	1.07
580. 48	0.31
581. 51	1.03
575. 52	71.71 F
576. 54	17.57 F
577. 54	2. 93
578.54	0.50
591.56	0.32

Cl+ Data

Mass	\% Base
43.89	7.11
44.89	0.80
45.90	8.41
48.90	0.48
51.91	0.55
57.87	1.68
59.88	0.55
69.84	0.31
445.10	0.55
463.11	0.45
488.11	0.58
481.05	$3.79 F$
482.59	$1.09 F$
482.04	0.40
493.05	0.55
501.13	1.64
518.23	1.09 F
521.12	1.74 F
523.98	1.64 F
598.08	3.00 F
538.13	100.00 F
540.13	27.20 F
541.14	4.29 F
542.82	0.55 F
577.16	0.55

EI+ Data

Mass	\% Base		
41.97	1.20		
43.99	1. 16	404.42 405.44	152 130
97. so	93.87	405. 44	5. 64
170.22	3.59	407 d5	1.07
224. 26	0.92	110 42	1 ga
225.26	1.34	422	J. 82
231.22	2.57	423 ل」	1) 58
232. 26	0.72	424	29.80
256. 30	0.81	+25. 45	100.00
268.28	0.89	426.46	20.55
274. 29	2.03	427.4	1.98
275. 30	4. 18	451.52	
281. 26	6. 41		
282. 31	19.95		
283. 32	2. 65		
293. 28	0.55		
30432	0.93		
305.33	1. 10		
306. 34	1. 44		
309. 31	0.54		
310. 32	2.59		
311.31	1. 04		
312. 30	0.86		
- 323. 31	0.50		
324. 32	29.64		
325. 33	28.28		
326. 33	4.05		
331. 32	0.84		
336.37	0.59		
35437	1. 36		
355. 38	0.92		
356. 39	2.58		
361. 34	1.07		
37440	$+46$		
375. 41	2.23		
381. 37	0.70		
386.42	0. 55		

CI+. Data

Mass	\% Base
43.96	0.90
44.96	0.39
58.03	0.50
132.14	1.19
138.17	0.58
204.22	3. 08
254.20	0.51
278.28	3.05
292.25	0.78
334.29	0.43
338. 29	0.79
366.28	0.59
358.30	0.71
363.36	3.07
376.32	4.34
377.33	1.84
378.34	0.60
398.37	0.55
415.38	0.68
416.38	0.58
418.36	10.08
435.31	2. 48
436.42	28.55
437.80	5. 48
456. 46	1. 40

El+ Data

Mass	\% Base	
40.01	6.66	
41.01	19.60	
43.04	2. 15	F
44.98	11.31	F
45.02	2. 00	F
48. 99	36.95	
50.99	3.73	
52.00	8.63	
52. 99	6. 63	
58.03	2.06	F
56.98	2. 49	F
61.98	2.02	
62. 98	6.81	
63. 99	18.09	
68. 00	18. 39	
66.00	5.53	
70. 97	13.05	
89.95	5.34	
90.97	5. 85	
91.99	46. 90	
92. 99	3. 38	
108.97	2.77	
-109.97	3. 60	
135.95	3. 38	
141.94	12.81	
142. 84	2.98	
153.93	2. 18	
194. 94	30.42	
158.94	5.60	
180.93	6.68	
181.94	100.00	0
182.94	26.61	
183.94	1.81	

No. 22
M.Wt. 332
$\mathrm{El}^{+} / \mathrm{Cl}^{+} / \mathrm{Cl}^{-}$

El+ Data

Mass	\% Base
45.02	0.59
57.06	0.52
60.02	0.46
69.05	0.37
81. 91	0.39
83.06	0.38
92.01	6. 99
93.02	0.89
96.06	0.38
97.07	0.39
118.01	2. 02
119.01	0.32
141.00	0.39
149.00	0.92
163.01	1.01
185.97	0.62
192.99	4. 18
195.96	1.64
235.98	0.34
236.19	0.55
243.00	11.60
244. 00	2. 12
263.01	6.90
284. 01	1.77
$\bullet 304.98$	0.45
312.03	0.62
313.02	7.04
314.04	0.68
331.01	0.42
332.02	100.00
333.03	15.01
334.03	1.23
379.08	4.06
380.09	0.75
424.09	1.58
439.14	0.52
482. 06	1. 61

No. 23
M.Wt. 482
$\mathrm{El}^{+} / \mathrm{Cl}^{+} / \mathrm{Cl}^{-}$

El+ Data

Mass	\% Base	413.11	1.62
40.03	1.65	414.11	1.16
41.03	5.75	415.13	025
46.01	2. 49	425.09	0.09
52.02	2.18	433.05	0.16
53.01	1.94	434.08	0. 13
63.01	1.66	444.11	1.17
64.02	7. 11	445. 11	0.39
65.02	6. 75	446.12	0.14
66.03	3. 45	454.09	0.47
68.99	62.68	455.09	0.09
70.00	1.62	463.11	18.03
76.00	4. 35	464. 15	3. 46
91.03	4.21	465. 15	1. 37
92.04	73. 22	466. 16	0.27
93.03	5.09	478.72	0.06
99.99	3.23	482.08	100.00
107.00	2. 19	483.11	29.01
108. 01	1.62	484. 24	3.33
118.05	21.36	486.04	0.06
119.03	1.87		
126.00	10.71		
127.01	1.00		
133. 01	1.06		
176.01	3.78		
196.02	2. 71		
218.06	5.29		
221.02	3. 78		
268.07	1. 52		
286.07	1. 60		
321.05	7. 26		
371.04	1.49		
394.10	3.07		
412.09	0.08		

El+ Data

Mass	\% 日ase
25.73	1.02
26.74	2.77
27.74	3.02
30.73	1.34
36.77	1.22
37.78	2.56
38.79	5.38
39.79	0.98
40.81	2.63
41.82	3.55
44.80	0.51
45.81	10.35
46.82	0.37
49.84	1.60
50.89	5.12
51.86	5.25
52.87	4.19
53.88	1.43
54.89	0.89
56.85	0.46
58.88	1.09
59.89	0.55
62.89	0.69
63.90	4.16
64.92	1.21
65.92	0.71
66.92	0.41
66.93	0.38
70.91	2.56
71.93	0.65
74.92	0.79
75.93	1.83
76.94	1.00
77.95	12.18
78.95	3.24
79.97	10.24

Cl^{-}Data

Mass	\% Base		
25.71	2.95	361.93	1.62
45. 81	0.70	362.88	0.76
58.89	0.36	362.88 364.69	0. 90
63. 96	0.50	364. 69	0.75
73. 95	0.41	371.92	0.32
88.00	0.50	371.92	0.32 4.89
88. 96	4.89	386.87	
106.94	0.80		
108.96	0.38		
126. 82	3.70		
126.92	0.52		
132.89	0.41		
141.94	0.72		
143.89	0.58		
151.86	0.54		
155.89	1. 35		
156.88	0.97		
156.92	1.29		
157.90	7.34		
158. 90	1.32		
323.84	0.86		
323.98	1.24		
324. 78	0.78		
328.81	15.10 F		
325.96	11.19 F		
326.12	0.50		
326.97	6.06		
327.85	0.71		
328.00	0.70		
328.92	0.63		
329.01	0.41		
329.88	0.71		
342.83	0.50		
343.27	0.44		
343.78	0.73		
344.82	2. 45		
348. 85	100.00		
346.36	0. 46		
346.77	17. 13		
346.95	14.91 F		
347.71	0.97		
347.87	1.01		
348.01	1.02		

EI+ Data

Mass	\% Base	132.93	0.33
26. 75	1. 32	139.90	0.60
27. 75	1. 62	175.85	2.98
37.79	0.66	177.89	0.63
38.80	3. 80	195.84	2.04
40.82	1. 14	202. 66	0.44
41.83	2. 98	203. 88	0.55
45.82	1.49	204. 87	0.48
49.85	0.49	210.89	0.32
50.86	2. 38	211.87	0.91
51.87	3. 02	231.86	1. 57
52.89	1.77	241.84	0. 31
53.89	0.71	256.85	0.47
54.90	1. 49	281.80	1.07
63.91	2. 26	298.80	0.31
64.92	0.83	299.79	0.50
65.94	0.86	320.81	0.79
66.94	0.56	325.82	0. 75
68.91	14.92	326. 81	0.32
75.94	1.85	337. 77	0. 75
76.96	0.82	338. 79	0.40
77.96	9. 61	357.76	0.51
78.97	3. 94	370.67	1.52
79.98	7. 92	375.73	1.90
80.99	0.45	406. 71	12.52
- 90.95	0.52	407.72	2.25
91.96	0.66	425.68	5. 96
99.91	0.94	426.69	56.89
103. 95	1. 49	427.70	10.01
104. 95	32. 11	428.69	0.62
105. 96	14.98	453.72	0.49
106.95	0.91	456.72	0.32
107.92	1.02	476.66	21.93
125. 89	3.25	477.68	4.13
126.91	0.51	478.68	0. 78
129.93	0.65	494.60	47.68
130.94	0.70	495.64	100.00
131.94	3. 30	496.64	29.81
		497.64	3.25

No. 27

6SD18124, xl Bgd=6 14-fEB-91 16:32-8:02:16 78E CL

$\mathrm{Cl}+$ Data

Mass.	\% Base
45.	
117.75	0.39
129.73	0.78
130.72	0.78
154.71	0.39
158.75	1.17
169.75	0.39
183.75	0.79
201.77	0.78
203.71	0.77
204.70	0.40
217.64	0.78
224.69	1.56
226.74	0.41
228.68	0.79
239.70	2.54
242.06	2.55 F
243.74	0.78 F
244.69	2.58 F
245.72	25.24 F
246.74	100.00 FO
247.76	17.23 F
248.94	1.56 F
261.78	0.39
288.78	0.39

No. 28
M.Wt. 396

El+ Data

Mas 5	$\%$ Base						
68.89	8. 41	F	99.91	1. 25			
68. 97	5.84	F	100.42	1.29		171.92 172.93	26.19
69.97	3.77		100.92	4.59		172.93 173.93	26.19 3.66
70.98	15.43		101.93	6.00		173.93 174.92	3.66 0.50
71.44	0.80		102.94	11.31		226.83	0.50
71.96	0.98		103.94	2.75		226.83 229.83	O. 49
72.45	1.07		112.97	2. 19		229.83 230.86	0.75 0.30
72. 94	1. 38		113.92	5.60		238. 898	0.30 0.31
73. 92	3. 64		114.93	10.60		244.82	1.07
74.93 75.93	5. 03 4.84		115.93	9.98		245.82	3.00
76.95	17.50		116.93 117.93	5.29 2.08		326.78	6.72
77.44	0.90		125.90	2.08		327.76	1. 13
77. 95	日. 08		126.91	2. 45	F	344. 70	0.42
78. 45	1.78		127.01	1.61	F	345.71 370.67	0.55
78. 96	3. 65		127.92	9. 44		370.67	1.38
79.97	0.69		128.93	6.32	F	376.69 377.70	3.59 0.95
80.98	2. 06		129.93	68.03	F	377.70 381.66	0.95 0.60
81.99	1.67	.	130.94	100.00		381.66 392.70	0.60 0.39
83.00 84.00	3. 70		131.93	10.97		392.70 394.48	0.39 3.27
88.01	2.14 10.22		132.92	1.18		395.67	57.42
85.46	0.46		136.98 138.93	0.33 0.54		396.69	10.27
85.95	1.45		139.91	1.67		397. 69	0.87
86.46	0. 90		140.92	4. 61		448.77	1. 14
86.93	2.82		141.91	2.87			
87.93	3.63		142.92	12.08			
89.94	15.95		143.92	6.75			
89.94	9.10		144.92	3.24			
90.95	4.98		153.90	2. 46			
91.93	0.73		154. 89	12.88			
92.96	0.73		155.90	23.03			
93.96	0.39		156.91	7.79			
94.97	1. 15		157. 92	75. 31			
95. 97	1.10		158.92	9.35			
96.99	3.07						
97.97	1.24						
98.99	2.95						

No. 29
M.Wt. 546
$\mathrm{El}^{+} / \mathrm{Cl}^{+} / \mathrm{Cl}^{-}$

El+ Data

Mass	\% Base							
68.97	64. 44	F	103. 01	2. 73				
69.06	5.74	F	103.99	2.73		156.01	100.00	0
69.98	1.06	F	108.01	1.61		157.02	14.66	
70.06	2. 34	F	106.95	2.38	F	158.01	1.17	
70.98	1.56	F	107.98	1.58	F	166.99	2.79	
71.07	4. 10	F	109.07	1.58 1.43		188.02	3. 13	
73.02	1. 56		111.08	1.48		168.92	1.19	F
74.01	7.70		112.88	1.97	F	178.48	10.43	
75.00	4. 19		113.98	16.03	F	175.96	2.69	
75.97	8.90	F	115.00	16.78		180.00	1.95	
76.01	7.44	F	116.00	12.78		181.00	3. 11	
77.01	10.43		117.02	1.87		182.01	17.91	
77.51	1.17		119.98	1.88	F	183.01	2.27	
78.01	17.21		119.05	1.92	F	457.95	4. 40	
78.51	1. 99		120.98	1.17	F	488.94	1.17	
79.03	1. 58		125.96	27.39	F	476. 95	3.34	
81.04	2. 39	F	126.98	27.39 4.65	F	477. 96	1. 17	
82.03	1.56		128.01	11.51		507.94	0.61	
83.06	3.02		129.01	6.78		526.94	20.64	
84.06	1.23		130.03	6.24		827.94	4. 78	
85.06	2. 78	F	130.94	5. 24 1.97	F	528.95	1.56	
87.00	5.30		131.03	1.97	F	531. 93	1.91	
87.99	5.26		132.00	1.19	F	543. 88	0.78	F
89.00	2. 12		139.01	1.17 1.03		544. 80	3.91	F
91.01	3.93		139.99	2.97		545. 90	100.00	
93.00	1. 56		141.00	12.03		546. 93	37.84	F
95.04	2.29		142.02	2.42 7.42		547.94	3. 60	
96.06	1. 23		143.03	1. 22		548.95	0.39	
97.06	2.73		148.98	42.34				
98.98	1.05	F	149.98	3.93				
99.97	3.39		152.99	2. 73				
101.00	9.72		153.96	4.27				
102.00	4.81		154. 18	1.17	F			
			154.99	49.01				

El+ Data

Mass
Mass
151.28

Base

El+ Data

Mass	\% Base				
40.04	1.18	108. 13	0.38		
41.06	2. 24	110.62	0.36	235.27	97.22
42.06	7.72	115.12	0.36	238.28	100.00
43.07	1.29	116.13	1.10	237.28	13.70
44.08	2. 48	117.14	0. 60	238.29	0.89
48.03	1.34	118.15	3. 28		
46.04	8.33	119.16	1.00		
50.05	2.57	120. 17	0.71		
51.06 52.06	2.81 0.99	127.13	0.37		
55.09	0. 59	128.14	0.77		
96. 10	0.38	129.14	3. 46		
57.11	1. 12	130.15	2.30		
60.06	0.31	143.17	0.75		
62.06	1. 13	144. 18	0.40		
63. 06	1.93	148.19	7.30		
64.06	1.95	146. 19	1.28		
65.07	0.38	147. 15	8. 58		
66.08	0.73	148.16	0.67		
69.11	1.13	149.14	1. 48		
71. 08	1.71	170.21	0.70		
71. 13	0.47	179.17	0.39		
72. 88	0.56	192. 19	9.07		
74.07 78.07	0.90 2.87	193. 19	1.98		
76.08	2.93	194.21	1.58		
77.09	1. 81	198.22	0.49		
78.09	0. 49	208.20	0.35		
81.13	0.34	208.21	2.05		
88.08	0.58	207.22	O.84		
89.10	0.84	219.23	9. 05		
90.08	2. 82	220.24	9. 83		
91.09	0.79	221.24	3.37		
98. 10	0.38	222.25	0.92		
101.10	0.47	233.25	0.91		
102. 11	12.05	234.28	1.02		
104. 12	2.37 3.92				

6SC15118. x1 Bgd=1 24-0CT-98 14:26-8:81:39 78E EI+
Bph=8 $\quad l=2.81 \quad H_{n=446} \quad$ IIC=37e96889
6.CREE GOAL PORCMERD.SRMTFORD

189
88
68.
48
48
28
8.

$\mathrm{R}_{\mathrm{F}}=\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CF}$.

65C15122. $\quad x 1$ 日gt=7 24-0ct-98 14:26+8:81:49 785 C1+

EI + Data

Mass	\% 日ase		
42.03	3. 10	342.09	1.82
43.04	0.31	367.19	6.87
44. 05	1.20	368. 19	1.28
46. 01	1.09	389.15	0.58
50.02	0.41	370.15	0.65
51.03	0.86	371.17	0.74
63.03	0.49	372. 17	0.41
69.00	9.87	384. 19	1. 16
71.00	1.27	385. 19	56.36
75.02	0.84	388. 19	100.00
76.01	0.77	387.20	29.80
77.04	0.83	388.21	3.35
90.04	0.31	446.33	0.57
102.04	3. 60		
103.05	0.94		
104.05	0.96		
116.05	0.64		
117.08	0.34		
118.07	0.60		
120.09	1. 20		
121.09	2. 59		
129.08	2. 31		
130.06	1.84		
131.07	1.28		
143.07	0.42		
148.09	12.59		
148.09	3. 32		
147.05	1. 22		
172. 10	0.41		
266. 13	6.25		
267. 13	0.91		
297.15	2.10		
298. 17	0.96		
301.12	0.45		
316.15	9.12		
317.15	4.05		
318. 16	0. 58		

Cl^{-}Data

Mass	\% Base			
126.83	0.97	497. 98	1.06	
156.91	1.26	501. 98	71.22	F
168.90	0.40	502. 97	14.00	F
175.90	1. 85	503.98	1.38	
184. 69	0.99	818.00	1.37	
211.86	0.58	517.00	1.69	
281.94	0.98	518.02	1.73	
344. 90	0.95	519.01	0.32	
351.95	0.39	920.98	0.30	
352.96	2.01	522.00	4. 11	
383.97	0.30	523.02	1.02	
358.96	0.81	534. 88	1.29	F
386.95	1.80	536.00	100.00	F
367.97	1. 17	537.01	19.45	F
398. 97	1. 50	538.02	2.15	
387.88	1.63	532.03	0.62	
383.69	0.34			
384. 90	0.48			
386.89	0.40			
408. 90	0.58			
407.23	0.95			
414.89	1.97			
412.88	3.53			
413.88	0.48			
418.88	11.93			
416.89	1. 45			
429.80	0.63			
430.90	1. 60			
431.89	3. 12			
432.90	2. 01			
459.96	0.36			
482.02	0.98			
483. 95	0.68			
486. 97	0.71			
489.94	0.56			
481.93	2.02			
482.96	0. 50			
483.97	1. 87			
484. 97	0.41			

Cl^{-}Data

Mass	$\%$ Ease
393.93	1.22
385.02	1.47
411.92	4.98
412.92	6.07
413.99	1.81
415.99	1.33
431.90	3.34
432.90	3.05
518.98	4.60
516.98	0.32
528.02	2.13
536.02	0.46
544.01	7.56
548.01	3.47
548.03	3.81
547.05	0.49
562.01	2.27
583.04	1.86
564.02	100.00
565.02	22.30
566.01	2.07

$\mathrm{Cl}+$ Data

Mass	\% Base
44.06	1.67
46.08	2.74
58.08	0.76
88.10	0.38
330.30	3.45
331.30	0.71
400.27	0.58
402.28	0.32
413.27	0.33
429.30	0.60
431.32	0.86
442.36	0.96
443.35	0.34
444.29	$1.52 F$
448.31	100.00 FO
446.33	27.20 F
447.34	10.34
448.34	2.51
448.35	0.41

No. 37
M.Wt. 236
$\mathrm{El}^{+} / \mathrm{Cl}^{+}$

El+ Data

69.00	0.58	ava.ve	8. 88		
69.07	1.73	105.08	2.91	161.07	0.58
70.09	0.58	106.08	0.58	162.07	1.77
71.01	8. 08	110.05	0.58	167.07	0.58
71.10	1.36	110.55	0. 88	168.07	0.38
72.03	2.88	111.14	0.49	169.08	0.58
73.05	0.98	113.08	0.58	171.10	0.58
74. 03	1.73	114.10	0.58	176.09	0.58
75. 03	1.73	115.05	0.38	181.09	1. 15
76.04	3.04	115.08	0.58	189.09 196.12	0.58 0.58
77.05	39.99	116.04	2. 30	196.12 206.08	0.38 1.36
78. 05	5. 39	117.05	2. 50	206.08 207.08	1.36 24. 10
79.07	1.15	118.07	4.26	207.08	24. 10
80.07	0.58	119.09	2. 03	208.09 209.10	5.80 0.60
81.09	0.82	120. 11	4. 81	209.10 217.12	0.60 0.58
82.08	0.58	121.09	1. 15	217.12 219.09	0.58 0.58
83. 10	1.15	122.07	2.06	219.09 220.09	0.58 0.58
85.12	0.70	128.08	0.82	220.09	0.58 10000
87.06	0.58	129.08	0.81	221.10	100.00
88.04	0.58	131.09	0.58	222. 11	12.80
89. 05	0.65	132.05	0.58	223.13	1.15 0.58
90.05	4. 04	134.06	0.58	233.13 234.16	
91.06	4.61	135.06	1.73	234. 16	0.58 14.98
92.06	1.17	136.07	0.39	235.13	14.98 46.86
93. 06	0. 64	139.07	0.64	236.14	46.86
94. 06	1. 15	143.06	1. 23	237. 15	6.33
95.08	0.58	144.08	1. 33	238. 16	0.58
96.08	0.58	145.07	0. 88		
97.12	0.58	147. 06	0. 72		
102.05	0.58	149.05	6.68		
103.07	1. 25	150. 06	0.58		
		156.09	0.90		
		157.07	0.58		
		158.08	0.58		
		159.07	1.73		
		160.06	0.58		

M.Wt. 386
$\mathrm{El}^{+} / \mathrm{Cl}^{+} / \mathrm{Cl}^{-}$

El+ Data

Mass	\% Base					
41.03	1.33	120.02	20.65		385.91	76. 16
42.03	6.38	121.02	3. 40		386.93	21.57
46.00	9.77	121.98	5.53		387.93	2. 48
50.00	6. 32	127.98	1.20		482.98	1. 47
51.01	27.25	128.98	1.59			
52.01	2.93	129.98	3.67			
83.01	2.07	130.99	4. 52			
62.00	1.44	134.97	1. 49			
63.00	5. 31	142.98	2. 77			
64. 01	3. 50	143.98	4.04			
63.02	9.99	144.89	1.09			
66.02	1.44	155.97	1. 25			
68. 97	20.25 F	161.96	2.41			
69.02	2.17 F	174.98	9. 66			
70.98	13.87	175.98	4.96			
71.98	6.44	187.95	1.37			
73.99	1.52	189.98	4.26			
74.98	1.94	198.90	1. 34			
75. 99	3.67	227.89	2. 16			
77.01	72.27	237.92	3. 40			
78.01	8.73	266.88	1. 44			
79.01	1.88	267.90	1.04			
88. 98	1. 01	288.91	2. 14			
89.99	5. 20	287.90	3. 97			
81.00	7. 36	288.90	1.97			
92.00	1. 54	288.93	1. 44			
94.00	1.19	301.92	2.88			
99.98	1.61	308.90	2.04			
101.98	1.03	316.84	3. 39			
102.98	4.87	386.73	9.38	F		
104.00	20.93	357.89	9.24	F		
105.01	6.75	388.80	1. 44			
108.01	2.93	366.93	10.78			
107.98	1. 25	367.93	1.92			
115.98	1. 54	370.88	100.00	F		
116.98	d. 31	371.91	18.93	F		
118.00	12. 42	372.91	1.27			
119.00	4.77	384. 84	10.38	F		

No. 39
M.Wt. 252

Mass	\% Base					
69.06	2. 76		115.04	0.33	235. 02	0.66
70.07	1. 14		116.00	1.21	236.03	0.84
70.99	3. 64	F	117.01	1.33	237.04	1.07
71.07	2. 07	F	118.01	0.44	251.05	0. 48
72.00	1. 29		119.05	0.43	252.06	9. 30
73.02	111		120.03	2. 95	253.07	1.34
74.01	0.91		121.01	5.74	293.96	1. 30
75.01	1. 05		122.02	1. 47	325.94	0.36
76.02	3. 35		123.02	0.64	446.17	1. 49
77.03	10.28		128.02	0.51	447.18	0.49
78.03	4. 28		129.04	0.57		
79.03	1. 27		132.01	0.70		
80.05	0.36		134.03	0.53		
81. 06	1. 30		135.04	1. 16		
82.07	0.95		137.98	0.59		
83.02	1.97	F	143.00	0.59		
83.07	1. 70	F	144.04	0.70		
84.08	0.49		145.02	1.02		
85.09	1. 26		149.00	30.23		
86.02	0.31		150.01	2.64		
86.96	0.94		151.01	0.68		
87.03	0.33		154.02	0.42		
89.03	0.39		161.02	0.30		
90.02	1.45		162.96	0.57		
91.04	2. 51		167.01	1. 32		
92.03	1.71		168.02	0.85		
93.02	2.01		172.03	0.84		
94.05	0.47		178.06	1. 36		
95.06	1.52		182.96	2. 12		
96.08	0.59		190.00	0.52		
97.06	1.68		193.02	0.90		
99.99	0.44		194.02	1. 19		
102.02	0.56		205.06	0.53		
103.02	0.90		206. 02	5.58		
104.02	2. 63		207.03	1.56		
105.02	6. 36		208. 03	0.49		
106.03	1. 15		209.04	1. 92		
107.04	0.65		210.04	0. 40		
108.04	0.49		221.04	100.00		
109.08	0.68		222. 05	12.97		
111.10	0.89		$\begin{aligned} & 223.07 \\ & 233.06 \end{aligned}$	2.59		

226

El+ Data

Mass	\% Base				
69.04	0.99	123. 47	0.43	222.97	0.34
70.97	3. 42	124.48	0. 73	229.97	0.56
71.05	0. 45	128.98	0.50	232.93	0.59
71.97	3.75	129.98	0.69	233.94	6.67
73.01	1.21	130.99	2.02	234.98	3.64
74.00	0. 73	131.48	2. 31	235. 98	0.59
74. 99	1.15	131.99	2.64	245.99	0.35
75. 99	1. 97	132. 49	3. 44	247.99	6.13
77.00	6.87	133.00	3.06	248.96	4.58
78.00	2. 93	134.02	1.86	249.96	22.67
79.01	1.24	135.01	2.03	250.97	3.93
79.89	0.36	143.98	1.89	261.96	0.32
81.03	0. 40	144.98	0.98	262.98	0.77
81.88	0.39	146.00	0.43	263.95	33.96
82. 01	0.38	147.01	2. 68	284.96	100.00
87.98	0.32	148.02	1.75	265.96	14.67
88. 99	0.55	148.95	3. 80	F 266.99	-. 90
89.99	2. 66	149.03	2. 00	F 266.	
91.00	2. 13	157.99	0.51		
92.00	1.61	159.00	0.45		
93.00	1. 52	160.00	2. 28		
100.00	0.55	160.99	0.41		
101.98	1.00	162.04	1. 75		
102.98	0.65	164.05	0.58		
103. 99	4. 17	177.06	0.31		
104. 98	12. 87	184.99	0.40		
106.00	1. 56	192.94	0.56		
107.02	0.87	193.94	0.64		
108.02	0.98	204.93	0.39		
115.96	1. 31	205.94	6.61		
116.96	2. 95	206.94	2. 48		
118.00	3.52	207. 95	0.56		
119.00	2. 17	218.94	0.40		
120.02	4.21	219.94	1.31		
121.02	3.80	220.95	4.04		
122.03	0.83	221.96	0.69		

No. 41
M.Wt. 538
$\mathrm{El}^{+} / \mathrm{Cl}^{+}$

El+ Data

68. 91	68. 33	157.90	1.22
69.92	1. 21	188.92	19.15
70.92	1. 32	189.82	2. 08
75. 53	4. 24	432.63	g. 22
76.98	1.57	433.65	13.70
77.96	33. 24	434.66	1.59
78. 97	72. 30	438.69	0.33
79.87	14.13	444. 68	0.31
80.96	1. 20	482.73	0.67
87.92	0.30	483.74	2. 18
89.94	0.50	484. 75	0.46
90.94	1. 17	487.68	0.54
91.94	4. 00	493.63	0.39
92.97	27.22	501.59	1.17
93.95	2.87	502.59	0.53
94. 95	0.64	503.62	18.41
99.90	4.84	504.61	3. 66
102.94	1. 56	508.63	0.42
103.94	1. 68	507.61	5.63
104.95	5.69	508. 62	1. 42
105.95	1.79	509.62	0.72
106.97	90.01	510.60	0.53
107.95	7. 42	517.65	2. 73
108.96	0.48	518.64	0.64
111.90	0.58	521.58	5.94
113.91	1.39	522.61	56. 13
116.94	0. 55	523.60	77.24
117.95	1.61	524.62	13.28
118.92	1.77	525.60	1.37
119.95	0.78	535.64	0.86
120.96	4. 41	536.64	9.59
121.97 122.99	51.54 100.00	537.66	14.64
122.98	100.00	538.66	2. 85
123.98	8. 63	573.65	0.64
124.98 125.89	0.32	574. 63	0.34
125.89	1.99 2.86		
126. 68	2.86		
127.90	0. 42		
129.93	0.59		
130.89	1.29		
131.94	7.81		
132.93	6.74		

APPENDIX FOUR

The Board of Studies in Chemistry requires that each postgraduate research thesis contains an appendix listing:-
(1) all research colloquia, seminars and lectures arranged by the Department of Chemistry during the period of the author's residence as a postgraduate student;
(2) lectures organised by Durham University Chemical Society;
(3) all research conferences attended and papers presented by the author during the period when research for the thesis was carried out;
(4) details of the postgraduate induction course.

COLLOQUIA. LECTURES AND SEMINARS GIVEN BY INVITED SPEAKERS, OCTOBER_1988 - SEPTEMBER_1991

(Those attended are marked *)

18.10 .88	Dr. J. Dingwall (Ciba Geigy)
	Phosphorous Containing Amino Acids: Biologically Active Natural and Unnatural
	Products

24.11.88 Drs. R.R. Baldwin and R.W. Walker (Hull University) Combustion: Some Burning Problems
12.88 Dr. G. Hardgrove (St. Olaf College, USA)

Polymers in the Physical Chemistry Laboratory
25.1.89 Dr. L. Harwood (Oxford University) Synthetic Approaches to Phorbols Via Intramolecular Furan Diels-Alder Reactions: Chemistry Under Pressure
2.2.89 Prof. L.D. Hall (Addenbrooke's Hospital, Cambridge)

* NMR - A Window to the Human Body
9.2.89 Prof. J.E. Baldwin (Oxford University)
* Recent Advances in the Bioorganic Chemistry of Penicillin Biosynthesis

$15.2 .89$	Dr. A.R. Butler (St. Andrews University)
*	Cancer in Linxiam: The Chemical Dimension
16.2.89	Prof. B.J. Aylett (Queen Mary College, London) Silicon Based Chips: The Chemist's Contribution
1.3 .89	Dr. R.J. Errington (Newcastle University) Polymetalate Assembly in Organic Solvents
15.3 .89	Dr. R. Aveyard (Hull University) Surfactants at your Surface
20.4.89	Dr. M. Casey (Salford University) Sulphoxides in Stereoselective Synthesis
27.4.89	Dr. D. Crich (University College, London) Some Novel Uses of Free Radicals in Organic Synthesis
11.5 .89	Dr. J. Frey (Southampton University) Spectroscopy of the Reaction Path: Photodissociation Raman Spectra of NOCl
10.11 .89	Prof. J.I.G. Cadogan (B.P.) From Pure Science to Profit
$17.10 .89$	Dr. F. Palmer (Nottingham University) Thunder and Lightning
25.10 .89	Prof. C. Floriani (Lausanne University, Switzerland) Molecular Aggregates - A Bridge Between Homogeneous and Heterogeneous Systems
1.11 .89	Dr. J.P.S. Badyal (Durham University) Breakthroughs in Heterogeneous Catalysis
9.11 .89	Prof. N.N. Greenwood (Leeds University) Novel Cluster Geometries in Metalloborane Chemistry
$10.11 .89$	Prof. J.E. Bercaw (California Institute of Technology) Synthetic and Mechanistic Approaches to Ziegler-Natta Polymerisation of Olefins.

13.11 .89	Dr. J. Becher (Odense University)
	Synthesis of New Macrocyclic Systems using Heterocyclic Building
	Blocks
16.11 .89	Dr. D. Parker (Durham University)
	Macrocycles, Drugs and Rock 'n' Roll
29.11 .89	Prof. D.J. Cole-Hamilton (St. Andrews University)
	New Polymers from Homogeneous Catalysis
30.11 .89	Dr. M.N. Hughes (King's College, London)
*	A Bug's Eye View of the Periodic Table
4.12.89	Dr. D. Graham (B.P. Research Centre)
	How Proteins Absorb on Interfaces
6.12 .89	Dr. R.L. Powell (ICI)
*	The Development of CFC Replacements
7.12 .89	Dr. A. Butler (St. Andrews University)
*	The Discovery of Penicillin: Facts and Fancies
13.12 .89	Dr. J. Klinowski (Cambridge University)
	Solid State NMR Studies of Zeolite Cages
15.12 .89	Prof. R. Huisgen (Universitat Munchen)
*	Recent Mechanistic Studies of [2+2] Additions
24.1 .90	Dr. R.N. Perutz (York University)
	Ploting the Course of C-H Activations with Organometallics
31.1 .90	Dr. U. Dyer (Glaxo)
*	Synthesis and Conformation of C-Glycosides
1.2 .90	Prof. J.H. Holloway (Leicester University)
*	Noble Gas Chemistry
7.2 .90	Dr. D.P. Thompson (Newcastle University)
	The role of Nitrogen in Extending Silicate Crystal Chemistry

8.2.90	Rev. R. Lancaster (Kimbolton Fireworks)
	Fireworks - Principles and Practice
12.2.90	Prof. L. Lunazzi (University of Bologna)
	Application of Dynamic NMR to the Study of Conformational Isomerism
14.2.90	Prof. D. Sutton (Simon Fraser University, Vancouver B.C.)
	Synthesis and Applications of Dinitrogen and Diazo Compounds of
	Rhenium and Iridium
15.2 .90	Prof. L. Crombie (Nottingham University)
	The Chemistry of Cannabis and Khat
21.2.90	Dr. C. Bleasdale (Newcastle University)
	The Mode of Action of some Anti-tumour Agents
22.2.90	Prof. D.T. Clark (ICI Wilton)
	Spatially Resolved Chemistry using Nature's Paradigm in the Advanced
	Materials Area
28.2.90	Dr. R.K. Thomas (Oxford University)
	Neutron Reflectometry from Surfaces
$1.3 .90$	Dr. J.F. Stoddart (Sheffield University)
	Molecular Lego
$8.3 .90$	Dr. A.K. Cheetham (Oxford University)
	Chemistry of Zeolite Cages
21.3 .90	Dr. I. Powis (Nottingham University)
	Spinning off in a huff: Photodissociation of Methyl Iodide
23.3.90	Prof. J.M. Bowman (Emory University)
	Fiting Experiment with Theory in Ar-OH
$9.7 .90$	Prof. L.S. German (USSR Academy of Sciences - Moscow)
	New Syntheses in Fluoroaliphatic Chemistry: Recent Advances in the Chemistry of Fluorinated Oxiranes

9.7.90	Prof. V.E. Platonov (USSR Academy of Sciences - Novosibirsk)
	Polyfluoroindanes: Synthesis and Transformation

$9.7 .90$	Prof. I.N. Rozhkov (USSR Academy of Sciences - Moscow) Reactivity of Perfluoroalkyl Bromides
$11.10 .90$	Dr. W.A. MacDonald (ICI Wilton) Materials for the Space Age
24.10 .90	Dr. M. Bochmann (U.E.A.) Synthesis, Reactions and Catalytic Activity of Cationic Titanium Alkyls
$26.10 .90$	Prof. R. Soulen (South Western University, Texas) Chemistry of some Fluorinated Cyclobutenes
$31.10 .90$	Dr. R. Jackson (Newcastle University) New Synthetic Methods: α-aminoacids and Small Rings
1.11 .90	Dr. N. Logan (Nottingham University) Rocket Propellants
$6.11 .90$	Dr. P. Kocovsky (Uppsala) Stereo-controlled Reactions Mediated by Transition and Non-Transition Metals
7.11 .90	Dr. D. Gerrard (B.P.) Raman Spectroscopy for Industrial Analysis

7.11.90	Dr. W. Dolbier (Gainsville, Florida)
	Rearrangements of bis CF $_{3}$ Vinyl Aromatics: a Route to 1,35-Hexatrienes

8.11.91 Dr. S.K. Scott (Leeds University)

* Clocks, Oscillations and Chaos
$\begin{array}{ll}\text { 14.11.90 } & \text { Prof. T. Bell (SUNY, Stony Brook) } \\ \text { * Functional Molecular Architicture and Molecular Recognition }\end{array}$
21.11.90 Prof. J. Pritchard (Queen Mary and Westfield College, London)
Copper Surfaces and Catalysts

28.11.90	Dr. B.J. Whitaker (Leeds University)
	Two-dimensional Velocity Imaging of State-selected Reaction Products

29.11 .90	Prof. D. Crout (Warwick University) Enzymes in Organic Synthesis
$5.12 .90$	Dr. P.G. Pringle (Bristol University) Metal Complexes with Functionalised Phosphines
13.12 .90	Prof. A.H. Cowley (University of Texas) New Organometallic Routes to Electronic Materials
15.1.91	Dr. B.J. Alder (Lawrence Livermore Labs., California) Hydrogen in all its Glory
17.1.91	Dr. P. Sarre (Nottingham University) Comet Chemistry
23.1 .91	Prof. J.S. Higgins (Imperial College, London) Rheology and Molecular Structure of Ionomer Solutions
24.1.91	Dr. P.J. Sadler (Birkbeck College, London) Design of Inorganic Drugs: Precious Metals, Hypertension and HV
30.1.91	Prof. E. Sinn (Hull University) New Results in High T_{C} Superconductivity
$31.1 .91$	Dr. D. Lacey (Hull University) Liquid Crystals
$6.2 .91$	Dr. R. Bushby (Leeds University) Biradicals and Organic Magnets
$14.2 .91$	Dr. M.C. Petty (Durham University) Molecular Electronics
20.2.91	Prof. B.L. Shaw (Leeds University) New Chemistry with Transition Metal Multihydrides
28.2.91	Dr. J. Brown (Oxford University)

6.3 .91	Dr. C.M. Dobson (Oxford University) NMR Studies of Dynamics in Molecular Crystals
7.3 .91	Dr. J. Markam (ICI Pharmaceuticals)
*	DNA Fingerprinting
24.4.91	Prof. R.R. Schrock (MIT)
*	Metal-ligand Multiple Bonds and Metathesis Initiators
25.4.91	Prof. T. Hudlicky (Virginia Polytechnic Institute) Biocatalysis and Symmetry Based Approaches to the Efficient Synthesis of Complex Natural Products
20.6.91	Prof. M.S. Brookhart (University of North Carolina) Olefin Polymerisations, Oligomerisations and Dimerisations Using Electrophilic Late Transition Metal Catalysts
29.7.91	Dr. M.A. Brimble (Massey University, New Zealand) Synthetic Studies Towards the Antibiotic Griseusin-A
Besearch_	onferences_Attended
Dec 88	Royal Society of Chemistry Perkin Division, One Day Meeting, York University.
April 1989	North East Graduate Symposium, Durham University.
5.7 .89	Royal Society of Chemistry Heterocyclic Group, Postgraduate Heterocyclic Symposium, Sheffield University.
Aug. 89	European Symposium on Fluorine Chemistry, Leicester University.
13.12 .89	Modern Aspects of Stereochemistry, One Day Meeting, Sheffield University
15.12 .89	Royal Society of Chemistry Perkin Division, One Day Meeting, Durham University.

7.3.90 SCI Graduate Symposium, York University.
2.4.90 North East Graduate Symposium, Newcastle University.

Sept 91 13th International Symposium on Fluorine Chemistry, Ruhr Universităt, Bochum, Germany.

EIRST YEAR INDUCTION COURSE

This course consists of a series of one hour lectures on the services available in the department.

Departmental Organisation - Dr. E.J.F. Ross
Safety Matters - Dr. M.R. Crampton
Electrical Appliances - Mr. B.T. Barker
Chromatography and Microanalysis - Mr. T.F. Holmes
Atomic Absorptiometry and Inorganic Analysis - Mr. R. Coult
Library Facilities - Mr. R.B. Woodward
Mass Spectroscopy - Dr. M. Jones
Nuclear Magnetic Resonance Spectroscopy - Dr. R.S. Matthews
Glass-blowing Techniques - Mr. R. Hart and Mr. G. Haswell

REFERENCES

1. R.D. Chambers, "Fluorine in Organic Chemistry", John Wiley and Sons, New York, 1973.
2. M.R.C. Gerstenberger and A. Haas, Angew. Chem., Int. Ed. Engl., 1981, 20, 647.
3. S. Rozen and R. Filler, Tetrahedron, 1985, 41, 1111.
4. J. Mann, Chem. Soc. Rev., 1987, 16, 381.
5. J. Emsley, M. Sc. Thesis, University of Durham, 1988.
6. C.L. Liotta and H.P. Harris, J. Am. Chem. Soc., 1974, 96, 2250.
7. G.C. Yakobson, J. Fluorine Chem., 1985, 28, 73.
8. K. Makuo and H. Yoshioka, J. Fluorine Chem., 1987, 35, 677.
9. Y. Yoshida and Y. Kimura, Chem. Lett., 1988, 1355.
10. K. Makino and H. Yoshioka, J. Fluorine Chem., 1987, 35, 677.
11. M. Gingras and D.N. Harpp, Tetrahedron Lett., 1988, 37, 4669.
12. S. Dermiek and Y. Sason, J. Org. Chem., 1985, 50, 879.
13. G.L Cantrell, U.S. Patent No. 4849552 (1989). C. Abstr. 112: $118436 f$.
14. E. Kysela and R. Braden, German Patent DE 3827436 (1990). C. Abstr. 113: 40127e.
15. J.H. Clark and D.J. MacQuarrie, Tetrahedron Lett., 1987, 28, 111.
16. N. Yazawa, H. Suzuki, Y. Yoshida, O. Furusawa, and Y. Kimura, Chem. Lett., 1989, 2213.
17. Y. Yoshida, Y. Kimura, and M. Tomoi, Chem. Lett., 1990, 769.
18. N. Ishikawa, T Kitazume, T. Yamazaki, Y. Mochida, and T. Tatsuio, Chem. Lett., 1981, 761.
19. N. Ishikawa, T. Kitazune, and M. Nakabayashi, Chem. Lett., 1980, 1089.
20. Y. Kimura and H. Suzuki, Tetrahedron Lett., 1989, 30, 1271.
21. A. McKillop and D.W. Young, Synthesis, 1979, 401, 481.
22. J.H. Clark, A.J. Hyde, and D.K. Smith, J. Chem. Soc., Chem. Commun., 1986, 791.
23. J. Ichihara, T. Matsuo, T. Hanafusa, and T. Ando, J. Chem. Soc., Chem. Commun., 1986, 793.
24. K. Takemoto, J. Ichihara, A. Hanabusa, and T. Ando, Japanese Patent 62114 939 (1987).
25. H. Liu, H. Lu, P. Wang, P. Sun, and F. Zhang, J. Chem. Soc., Perkin Trans. I, 1990, 2624.
26. H. Liu, P. Wang, and P. Sun, J. Fluorine Chem.,1989, 43, 429.
27. J Cousseau and P. Albert, J. Org. Chem., 1989, 54, 5380.
28. D.P. Cox, J. Terpinski, and W. Lawrynowicz, J. Org. Chem., 1984, 49, 3216.
29. J.H. Clark and D.K. Smith, Tetrahedron Lett., 1985, 26, 2233.
30. I. Latif, A. Malik, and W. Voetter, Liebigs Ann. Chem., 1987, 617.
31. K.O. Christe, Inorg Chem, in press
32. K.O. Christe and W.W. Wilson, J. Fluorine Chem., 1990, 47, 117.
33. S.J. Brown and J.H. Clark, J. Chem. Soc., Chem. Commun., 1985, 672.
34. A.A. Kolomeitsev, Y.L Yagupol'skii, G.N. Koidan, A.P. Marchenko, and A.M. Pinchuk, Zh. Org. Chim., 1990, 26, 1143.
35. J. Leroy, E. Hebert, and C. Wakselman, J. Org. Chem., 1979, 44, 3406.
36. M. Hudlicky, "Organic Reactions", Vol 35, John Wiley and Sons, New York, 1986.
37. T. Hamatani, S. Matsubara, H. Matsuda, and M. Schlosser, Tetrahedron, 1988, 44, 2875.
38. P.A. Messina, K.C. Mange, and W.J. Middleton, J. Fluorine Chem., 1989, 42, 137.
39. W.B. Farnham, D.A. Dixon, and J.C. Calabrese, J. Am. Chem. Soc., 1988, 110, 2607.
40. L.N. Markovskii, V.L Tovstenko, E.G. Martynyuk, V.E. Pashinnik, Y.V. Shermolovich, and S.V. Iksanova, Zh. Org. Chim., 1990, 26, 1372.
41. S.S. Hecht and E.S. Rothman, J. Org. Chem., 1973, 38, 395.
42. French Patent 1374591 (1964), Ciba Ltd: C. Abstr., 62: P9212a.
43. M. van der Akken and F. Jellinek, Recl. Trav. Chim. Pays-Bas, 1967, 86, 275.
44. R.F. Hirschmann, R. Miller, J. Wood, and R.E. Jones, J. Am. Chem. Soc., 1956, 78, 4956.
45. W.R. Dolbier, T.A. Gray, and K. Ohnishi, Synthesis, 1987, 956.
46. W.R. Doibier, L. Celewicz, and K. Ohnishi, Tetrahedron Lett., 1989, 30, 4929.
47. G.A. Olah, J.T Welch, Y.D. Vankar, M. Nojima, I. Kerekes, and J.A. Olah, J. Org. Chem., 1979, 44, 3872.
48. C.G. Bergstrom, R.T Nicholson, and R.M Dodson, J. Org. Chem., 1963, 28, 2633.
49. G.A. Olah and S.J. Kuhn, J. Am. Chem. Soc., 1960, 82, 2380.
50. D. Boenigk and D. Mootz, J. Am. Chem. Soc., 1988, 110, 2135.
51. G.A. Olah, Acc. Chem. Res., 1980, 13, 330.
52. T. Fukuhara, S. Sasaki, N. Yoneda, and A. Suzuki, Bull. Chem. Soc. Jpn., 1990, 63, 2058.
53. T. Fukuhara, N. Yoneda, K. Takamara, and A. Suzuki, J. Fluorine Chem., 1991, 51, 299.
54. Y. Girault, S. Geribaldi, M. Rouillard, and M. Azzaro, Tetrahedron, 1987, 43, 2485.
55. G. Haufe, S. Lacombe, A. Laurent, and C. Rousset, Tetrahedron Lett., 1983, 24, 5877.
56. G. Alvernhe, A. Laurent, K. Touhami, R. Bartnik, and G. Mloston, J. Fluorine Chem., 1985, 29, 363.
57 S. Kanemoto, M. Shimizu, and H. Yoshioka, Tetrahedron Lett., 1987, 28, 663.
57. Y. Girault, M. Rouillard, M. Decouzan, and S. Geribaldi, J. Fluorine Chem., 1990, 49, 231.
58. G.A Olah and X.Y. Li, Synlett., 1990, 267.
59. A. Beamer and W. Clarke, Ber., 1879, 12, 1067.
60. J.F.T. Berliner and R.M. Mann, J. Phys. Chem., 1928, 32, 1142.
61. R. Franz, J. Fluorine Chem., 1980, 15, 423.
62. M. Hudlicky, J. Fluorine Chem., 1985, 28, 461.
63. K.O. Christe and W.W. Wilson, J. Fluorine Chem., 1990, 46, 339.
64. J.H. Clark, E.M. Goodman, D.K. Smith, S.J. Brown, and J.M. Miller, J. Chem. Soc., Chem. Commun., 1986, 657.
65. A.E. Bayliff and R.D. Chambers, J. Chem. Soc., Perkin Trans. I, 1988, 201.
66. C. Carmona, G. Eaton, and M.C.R Symons, J. Chem. Soc., Chem. Commun., 1987, 873.
67. L. Gouin, J. Cousseau, and J.A.S. Smith, J. Chem. Soc., Faraday Trans. II, 1977, 73, 1878.
68. A.M. Buswell, R.L. Maycock, and W. H. Rodebush, J. Chem. Phys., 1940, 8, 362.
69. J. Emsley, Chem. Soc. Rev., 1980, 91.
70. S.W. Peterson and H. A. Levy, J. Chem. Phys., 1952, 20, 704.
71. K.M. Harmon, S.L. Madeira, and R.W. Carling, Inorg. Chem., 1974, 13, 1260.
72. I. Gennick, K.M. Harmon, and M.M. Potvin, Inorg. Chem., 1977, 16, 2033.
73. L. Andrews, S.R. Davis, and G.L. Johnson, J. Phys. Chem., 1986, 90, 4273.
74. M. Bimmler, M. Von Janta-Lipinski, P. Langen, and H. Plaul, East German Patent DD 221, 736.
75. G. Alvernhe, A. Laurent, and G. Haufe, Synthesis, 1987, 562.
76. I. Chehidi, M.M. Chaabouni, and A. Baklouti, Tetrahedron Lett., 1989, 30, 3167.
77. G. Haufe, G. Alvernhe, and A. Laurent, Tetrahedron Lett., 1986, 27, 4449.
78. G. Alvernhe, D. Anker, A. Laurent, G. Haufe, and C. Beguin, Tetrahedron, 1988, 44, 3551.
79. G. Haufe, G. Alvernhe, and A. Laurent, J. Fluorine Chem., 1990, $46,83$.
80. G. Alvernhe, A. Laurent, and G. Haufe, French Patent, 2616145 (1988); C. Abstr. 112: 20544q.
81. G. Haufe, G. Alvernhe, D. Anker, A. Laurent, and C. Saluzzo, Tetrahedron Lett., 1988, 29, 2311.
82. C. Saluzzo, G. Alvernhe, and D. Anker, J. Fluorine Chem., 1990, 47, 467.
83. C. Saluzzo, G. Alvernhe, D. Anker, and G. Haufe, Tetrahedron Lett., 1990, 31, 663.
84. C. Saluzzo, G. Alvernhe, D. Anker, and G. Haufe, Tetrahedron Lett., 1990, 31, 2127.
85. G. Alvernhe, C.M. Ennakoua, S.M. Lacombe, and A.J. Laurent, J. Org. Chem., 1981, 46, 4938.
86. D. Picq, D. Anker, C. Rousset, and A. Laurent, Tetrahedron Lett., 1983, 24, 5619.
87. D. Picq, I. Drivas, G. Carret, D. Anker, and M. Abou-Assali, Tetrahedron, 1985, 41, 2681.
88. P. Nebois, D. Picq, and D. Anker, J. Carbohydr. Chem., 1990, 9, 359.
89. D. Picq and D. Anker, Carbohydr. Res., 1987, 166, 309.
90. D. Picq and D. Anker, J. Carbohydr. Chem., 1985, 4, 113.
91. G. Alvernhe, A. Laurent, and G. Haufe, J. Fluorine Chem., 1986, 34, 147.
92. M. Muehlbacher and C.D. Poulter, J. Org. Chem., 1988, 53, 1026.
93. S. Takano, M. Yanase, and K. Ogasawara, Chemistry Lett., 1989, 1689.
94. H. Amri and M.M. El Gaieo, J. Fluorine Chem., 1990, 46, 75.
95. J. Umezawa and K. Furuhashi, Japanese Patent JP 02, 167, 240 (1990).
96. M.M. Chaabouni and A. Baklouti, Bull. Chim. Soc. Fr., 1989, 549.
97. J.H. Meurs, D.W. Sopher, and W. Eilenberg, Angew. Chem., Int. Ed. Eng., 1989, 28, 927.
98. N. Yoneda, T. Abe, T. Fukuhara, and A. Suzuki, Chem. Lett., 1983, 7, 1135.
99. N. Yoneda, S. Nagata, T. Fukuhara, and A. Suzuki, Chem. Lett., 1984, 1241.
100. D. Haas, E. Kemnitz, M. Roennebeck, U. Schmidt, R. Kaden, and C. Henke, Patent Ger. (East) DD 268170 (1989). C. Abstr., 111: P216313u.
101. N. Yoneda, Tetrahedron, 1991, 47, 5329.
102. W.G. Brown and N.J. Letang, J. Am. Chem. Soc., 1941, 63, 358.
103. R.W. Alder, P.S. Bowmann, W.R.S. Steele, and D.R. Winterman, J. Chem. Soc., Chem. Commun., 1968, 723.
104. H. Quast, W. Risler, and G. Dollscher, Synthesis, 1972, 558.
105. R.W. Alder, M.R. Bryce, N.C. Goode, N. Miller, and J. Owen, J. Chem Soc., Perkin Trans I, 1981, 2840.
106. H. Einspahr, J.-B. Robert, R.E. Marsh, and J.D. Roberts, Acta. Crystallogr., Sect. B, 29, 1611.
107. M.R. Truker and B.L. Vickery, J. Chem. Soc., Dalton Trans., 1972, 395.
108. E. Haselbach, A. Henriksson, F. Jachimowicz, and J. Wirz, Helv. Chim. Acta., 1972, 55, 167.
109. L.J. Altman, D. Laungani, G. Gunnarsson, H. Winnerstrom, and S. Forsen, J. Am. Chem. Soc., 1978, 100, 8264.
110. S.S. Pachkovskii and A.A. Voityuk, Z. Fiz. Khim., 1990, 64, 1592.
111. H.A. Staab and T. Saupe, Angew. Chem. Int. Ed. Eng., 1988, $27,865$.
112. R.W. Alder, Chem. Rev., 1989, 89, 1215.
113. F. Hibbert, Acc. Chem. Res., 1984, 17, 115.
114. E. Grech, Z. Malarski, and L. Sobczyk, Chem. Phys. Lett., 1986, 128, 259.
115. E. Grech, Z. Malarski, and L. Sobczyk, J. Mol. Struct., 1985, 129, 35.
116. B. Brzezinski, E. Grech, Z. Malarski, and L. Sobczyk, J. Chem. Soc. Faraday Trans., 1990, 86, 1777.
117. R.W. Alder and J.E. Anderson, J. Chem. Soc., Perkin Trans. II, 1973, 2086.
118. M.J Diem, D.F. Burow, and J.L. Fry, J. Org. Chem., 1977, 42, 1801.
119. A. Ishida and T. Mukaiyama, Chem. Lett., 1976, 1127.
120. A. Bayliff, Ph. D., Thesis, Durham University, 1986.
121. R.D. Chambers, G. Taylor, and R.L. Powell, J. Chem. Soc., Perkin Trans. I, 1980, 426.
122. R.D. Chambers, S. Partington, and D.B. Speight, J. Chem. Soc., Perkin Trans. I, 1974, 2673.
123. R.D. Chambers, J.A. Jackson, and R.A Storey, J. Chem. Soc., (C), 1968, 2221.
124. C.J. Drayton, W.T. Flowers, and R.N. Hazeldine, J. Chem. Soc., (C), 1971, 2750.
125. R.L. Dressler and J.A. Young, J. Org. Chem., 1967, 32, 2004.
126. A.G. Pittman, D.L. Sharp, and R.E. Lundin, J. Polymer Sci., All, 1966, 4, 2637.
127. J.S. Brimacombe, A.B. Foster, R. Hems, J.H. Westwood, and L.D. Hall, Can. J. Chem., 1970, 48, 3946.
128. W.A. Szarek, G.W. Hay, and B. Doboszewski, J. Chem. Soc., Chem. Commun., 1985; 663.
129. J.S. Brimacombe, P.A. Gent, and M. Stacey, J. Chem. Soc. (C)., 1968, 567.
130. L.N. Yakhontov, Russ. Chem. Rev., 1984, 53, 757.
131. I.B. Simon and V.P. Vvedenskii, Zh. Obs. Khim., 1964, 34, 4037.
132. S.J. Angyal and W.K. Warburton, J. Chem. Soc., 1951, 2492.
133. P. Bosch, F. Camps, E. Chamarro, V. Gasol, and A. Guerroro, Tetrahedron Lett., 1987, 28, 4733.
134. J. March, "Advanced Organic Chemistry", John Wiley and Sons, New York, 1985.
135. V. Kurasov, Zh. Org. Khim., 1983, 19, 590.
136. M.L. Hallensleben and H. Kansy, Makromol. Chem., 1989, 190, 231.
137. N.V. Vistorobskii and A.F. Pozharskii, Z. Org. Chim., 1989, 25, 2154.
138. G. Opitz, K. Rieth, and G. Rimmler, Tetrahedron Lett., 1986, 27, 167.
139. F. Terrier, J-C. Halle, M-J. Pouet, and M-P. Simonnin, J. Org. Chem., 1986, 51, 409.
140. M-P. Simonnin, J-C. Halle, M-J. Pouet, F. Terrier, and D. Davoust, Can. J. Chem., 1986, 64, 404.
141. R.D. Chambers, R.S. Matthews, G. Taylor, and R.L. Powell, J. Chem. Soc., Perkin Trans. I, 1980, 435.
142. R.D. Chambers and M.R. Bryce in "Comprehensive Carbanion Chemistry", eds. E. Buncel and T. Durst, Elsevier, Amsterdam, 1987, ch. 5, p. 293.
143. M.R. Bryce, R.D. Chambers, and G. Taylor, J. Chem. Soc., Perkin Trans. I, 1984, 509.
144. M.W. Briscoe, R.D. Chambers, S.J. Mullins, T. Nakamura, and F.G. Drakesmith, J. Chem. Soc., Chem. Commun., 1990, 1127.
145. T. Nakamura, these laboratories.
146. D.J. Cowley and I. Pasha, J. Chem. Soc., Perkin Trans. 2., 1981, 918.
147. R.D Chambers, Adv. Heterocycl. Chem., 1981, 28, 1.
148. J.M.E. Quirke, in "Comprehensive Heterocyclic Chemistry", Eds. A.J. Boulton and A McKillop, Pergamon, Oxford, 1984.
149. J.K. Chakrabarti, A.F. Cockerill, G.L.O. Davies, T.M. Hotten, D.M. Rackham, and D.E. Tupper, J. Chem. Soc., Perkin Trans II, 1974, 861.
150. R.A. Shaw and P. Ward, J. Chem. Soc., 1965, 5446.
151. R.A. Shaw and P Ward, J. Chem. Soc. (B), 1968, 1431.
152. R.A. Shaw and P. Ward, Brit. Pat., 1, 119, 824 (1968). C. Abstr., 69 : P87024.
153. R.A. Shaw and P. Ward, J. Chem. Soc., (B), 1967, 123.
154. R.A. Shaw and P. Ward, J. Chem. Soc. (B), 1969, 596.
155. T.L. Gilchrist, "Heterocyclic Chemistry", Pitman, London, 1985.
156. J.K. Chakrabarti, R.W. Goulding, and A. Todd, J. Chem. Soc. Perkin Trans I, 1973, 2499.
157. J.K. Chakrabarti and D.E. Tupper, J. Het. Chem., 1974, 11, 417.
158. J.K. Chakrabarti and D.E. Tupper, J. Org. Chem., 1975, 40, 958.
159. J.R. Sandler, J. Org. Chem., 1970, 35, 3967.
160. R.A. Shaw and P. Ward, J. Chem. Soc., Perkin Trans II, 1973, 2075.
161. J.K. Chakrabarti and A. Todd, Eur. J. Chem.-Chim. Ther., 1974, 9, 146.
162. J.K. Chakrabarti and A. Todd, U.S. Pat., 3, 830, 915 (1974). C. Abstr., 81: P164750t.
163. J.K. Chakrabarti and A. Todd, Ger. Pat., 2, 117, 100 (1971). C. Abstr., 76: P46220u.
164. J.K. Chakrabarti and A. Todd, Brit. Pat., 1, 353, 581 (1970). C. Abstr., 81: P63688y.
165. J.K. Chakrabarti and D.E. Tupper, Tetrahedron, 1975, 31, 1879.
166. D.J. Chadwick, in "Comprehensive Heterocyclic Chemistry", Eds. C.W. Bird and G.W.H. Cheeseman, Pergamon, Oxford, 1984.
167. H-O. Kalinowski, S. Berger, and S. Braun, " ${ }^{13}$ C NMR Spectroscopy", John Wiley and Sons, New York, 1988.
168. D.J. Williams, Angew. Chem. Int. Ed. Engl., 1984, 23, 690.
169. W. Rettig, Angew. Chem., Int. Ed. Engl., 1986, 25, 971.
170. L.S. Pu, J. Chem. Soc., Chem. Commun., 1991, 429.
171. R.D. Chambers, P.D. Philpot, and P.L. Russell, J. Chem. Soc., Perkin Trans. I, 1977, 1605.
172. C.H. Dungan and J.R. Van Wazer, "Compilation of Reported ${ }^{19}$ F NMR Chemical Shifts", Wiley-Interscience, New York, 1970.
