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ABSTRXCT~ 

The work described in this thesis was concerned with the synthesis and attempted 

Ring Opening Metathesis Polymerisations (ROMP) of a series of monocyclic 

phospholenes and organophosphorus derivatives of bicyclo[2.2.l]heptene using a 

variety of catalysts and conditions. 

This thesis comprises five chapters. The first chapter deals with the background 

of fire retardancy, industrial water treatment and ROMP. Chapter two describes the 

synthesis and characterisation of some potential organophosphorus monomers. Chapter 

three gives details of the attempted ROMP of the potential monomers prepared in 

chapter two. Investigations into the possible preparation of oligomers using a variety 

of chain transfer agents are described in chapter four. The conclusions and proposals 

for future work are outlined in the final chapter. 
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1.1 Introduction. 

The objective of the work described in this thesis was to investigate the 

possibility of preparing phosphorus containing polymers by Ring Opening Metathesis 

Polymerisation (ROMP). Such polymers are of potential interest in a number of fields 

of application, such as water treatment (i.e. scale prevention), surface coating 

applications related to corrosion inhibition and in the general area of flame retardancy.1 

In this chapter the motivation and objectives of the work will be set in context. 

1.2 The use of flame retardants. 

The flammability of organic polymers, including those occurring naturally, has 

been a problem for several hundred years and this has led to the detailed investigation 

into fire retardancy.2•3 The first known fire retardants were used by the Egyptians and 

later by the Romans, who used alum (potassium aluminium sulphate) and vinegar to 

decrease the ease of combustion of wood and other natural organic polymers. The first 

patent to describe a method for treating wood to reduce its flammability was issued to 

Wild in 1735,4 the substrate was exposed to a mixture of alum, borax and vitriol. In 

1783 the Montgolfier brothers coated their balloons with alum to reduce the fire 

hazards from the fabric. The first phosphorus containing fire retardants, comprising a 

mixture of ammonium phosphate, ammonium chloride and borax, were used by 

Gay-Lussac to protect the wood and textiles used in theatres.5 

Today as the use of synthetic organic polymers becomes more widespread the 

flammability risks increase and more fire retardants have to be used, not only to 

prevent flaming combustion but also to inhibit the production of toxic fumes. 6 

The burning of a polymer is a highly complex process involving a series of 

interrelated and/or independent stages. Three phases are involved, the condensed 
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-phase, the-gaseous phase and the interfacebetween il£ condensed and gaseous phases.3 

In order to reduce the flammability of a material it is essential to break into this 

complex series of processes at one or more stages and reduce the rate and/or change the 

mechanism at that point. 2•7 

The first and most important step in the combustion of a polymer is the fuel 

production stage in which an external heat source causes an increase in temperature, 

which results in the dissociation of chemical bonds and the evolution of volatile 

materials. These diffuse into the surrounding air creating a flammable mixture and 

combustion starts when this mixture reaches the ignition temperature. Once initiated 

the combustion reaction is exothermic. The third stage is flaming combustion, which 

only proceeds if the heat is sufficient to decompose the polymer and the temperature is 

high enough to ignite the decomposition products and the amount of heat transferred 

back to the polymer is high enough to maintain the cycle (Figure 1.1). 6 

(A) 
• • • 

POLYMER --i•~THERMAL DECOMPOSITION__;._. VOLATILE 
: PRODUCTS 

..... ······(~) 
(B) 

• • • . 

HEAT AND PRODUCTS..----------ir-----.-. FLAME 
OF COMBUSTION 

Figure 1.1: The combustion of a polymer. 

Fire retardants therefore have to interrupt the cycle at one of the three points (A) 

-by modifying the thermal decomposition, (B) -quenching the flame or (C) -reducing 

the heat supply from the flame back to the decomposing polymer. 

Smouldering or non-flaming combustion occurs with high surface area polymers 

3 



-

whicn breaK- down -to fonn chars. The first stage involves thennal or oxidative 

breakdown followed by ignition and the burning of the char, occurring at much lower 

temperatures than the ignition temperatures of the volatiles, and non-flaming 

combustion occurs if there is no local ignition source or if the rate of production of the 

volatiles is too low. 

There are two main types of fire retardant namely, reactive and additive 

retardants. A reactive fire retardant chemically binds to the polymer structure so that it 

effectively fonns a copolymer, whereas an additive retardant is added to the polymer 

and blended by physical means. The additive type is more widely used as it is more 

flexible, is less likely to alter the physical properties of the original polymer and can be 

incorporated in the final stages of production. 3 

There are, in principle, several modes of action by which a fire retardant can act 

(a) Both additive and reactive types may change the mechanism of breakdown of 

the polymer in such a way that the rate of evolution and type of gaseous decomposition 

products are altered so that when the gases interdiffuse with the air the resulting 

mixture is no longer flarrunable. 

(b) The flame retardant may cause the chemical termination of the free radical 

chain reactions in the condensed phase, which are responsible for the thennal 

decomposition of the polymer. 

(c) Inert solids, known as fillers, are often incorporated into the polymers to act 

as heat sinks, conducting heat away in order to prevent the polymers reaching their 

decomposition temperatures. 

(d) If the flame retardants decompose endothermically they may have a cooling 

effect on the system by consuming some of the heat and the temperature can be kept 

below the ignition point. 

(e) The surface of the polymer can be coated with a non-flammable protective 

layer, which insulates the polymer from the external heat source preventing either the 

fonnation of the volatile decomposition gases or their liberation into the gas phase. The 
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(;OI!ting may also exclude ox-Ygen from the-system~ 

(f) Some flame retardants incorporated into or coated on the polymer react or 

decompose in the condensed phase to form a highly insulating protective char coating 

which is non-flammable at normal oxygen concentrations. Inorganic acids, such as 

phosphoric acid and polyphosphoric acid are examples of good char promoters. If the 

intermediates of the char fonning reaction are kept in a viscous elastic state at the final 

decomposition stage, the volatile gases can be trapped in the char layer to form an 

intumescent foam coating.2·3 

Other methods of fire retardancy involve the inhibition of combustion: 

(a) The additive may reduce the spread of the flame by releasing reactive gases, 

which subsequently participate in the flame reactions by quenching the highly active 

free radicals. 

(b) By the release of small mists of particles a flame inhibitor may interfere with 

propagation of the flame by inducing chain termination by catalytic recombination of 

the free radicals created from the thetmal decomposition of the polymer on the mist 

particle surface. 

(c) Inert gases can also be released by the additives on d~omposition of the 

polymer. These alter the composition of the gaseous products, which after 

interdiffusion with oxygen are no longer capable of sustaining the flame reactions. 

(d) Certain additives are released as a heavy vapour when the polymer bums. 

This vapour smothers the flame. 

(e) In some systems the fire retardant additive has the effect of depolymerisation 

of the polymer to lower the molecular weight, which eases melting. As the melted 

polymer drips it carries away some of the heat which would have been used to 

decompose the polymer, hence decreasing the flammability. The major drawback with 

this method is that the flame may be spread by the polymer drips. 

(f) The inhibition of flame production can also be achieved by coating the 

polymer so that when it burns incandescent sections disintegrate from the original 
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polymer and remove- heat- with them from the comb~;tion ;egion. 3 This process is 

known as ablation and is the solid phase analogue of liquid phase melt/dripping. 8 If a 

surface char layer is formed, the polymeric bulk is isolated from the external heat 

source and the disintegration, involving melting, vaporization, oxidation or pyrolysis, 

takes place underneath.? 

Unambiguous identification of fire retardant mechanisms is difficult although it is 

possible to identify in which phase a particular kind of mechanism occurs. It is also 

believed that several mechanisms may be brought about by one retardant and that some 

of these mechanisms may be acting simultaneously. If the flame retardant acts by the 

interference with the decomposition mechanism of the polymer, it is generally believed 

that the effect is independent of the nature of the oxidant but depends on the polymer 

structure, and if the additive interferes with the flame reactions, the effect is dependent 

on the oxidising atmosphere but, to a large degree independent of the structure of the 

polymer. 

Smouldering combustion can not be inhibited by the same flame retardants that 

prevent flaming combustion, although the mechanisms of prevention are similar. 

Flame retardants affecting non-flaming combustion include borates and phosphates, 

which act in the condensed phase by affecting the polymer decomposition, and halogen 

and sulphur compounds, which affect the gas phase reactions. 

Fire retardants in general may be useful in the ignition, flame spread and growth 

phases of a fire, where the heat flux on the bulk of the fuel is low, but they are 

ineffective in the later stages of burning when the heat fluxes are higher.7 

1.3 Phosphorus containing flame retardants. 

1.3.1 General Details. 

Most flame retardant additives contain heteroelements from Groups (Ill), (V) or 

(VII), with six elements being patticularly associated with fire retardancy in polymers, 
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namely boron, aluminium, phosphorus, antimony, chlorine and bromine.3•9 Generally 

boron and aluminium containing additives inhibit heat flow, chlorine, bromine and 

antimony act by quenching the flame and phosphorus tends to change the thermal 

degradation mechanism. 

Both inorganic and organic phosphorus containing flame retardants are useful for 

fire retardancy, especially those containing phosphorus salts and esters.2 These 

phosphorus containing species act as precursors to phosphoric acids, which have 

significant effects on the thermal degradation of the polymers. 3 

1.3.2 Inorganic phosphorus flame retardants. 

Ammonium polyphosphate is an effective flame retardant for polyurethanes and 

poly(methylmethacrylate), producing polyphosphoric acid on decomposition (Figure 

1.2) and altering the degradation mechanism in such a way that decomposition occurs 

30°C lower than in the untreated polymer.10 

0 0 0 
II II II 

"""' p - 0 - p - 0 - p """"' 0 0 0 
I I I 

ONH4 ONH4 ONH4 
II II II 

'VVV'P-0-P-O-P~ 

I OH I 
0 OH 0 
I I I 

"""'p -0- p -0- p ~ 
II II II 
0 0 0 

ONH4 ONH4 ONH4 
I I I 

"""" p - 0 - p - 0 - p 'IJVV' 

II II II 

0 0 0 

Ammonium Polyphosphate Polyphosphoric Acid 

Figure 1.2: Formation of poly phosphoric acid from ammonium polyphosphate. 

The decomposition of polyurethanes is accelerated by the presence of the 

ammonium polyphosphate, but it is directed in such a way that the volatile products of 
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the reaction are chariged-dfamatically and bec~~e le-ss fl~~mable. 11 The ease of 

ignition of common polyurethane foams is associated with the evolution of butadiene, 

the production of which is inhibited if ammonium polyphosphate is used as a fire 

retardant.10 A layer of char, which protects the undecomposed material by impeding 

the transfer of heat to the bulk of the polymer, is also produced during the degradation. 

The major disadvantage of using ammonium polyphosphate as a flame retardant for 

polyurethanes is that ammonia, aniline and other toxic compounds are by-products of 

the degradation. Similar effects are seen if ammonium polyphosphate is used in 

conjunction with poly(methylmethacrylate).10 The primary effect is the conversion of 

ester groups to anhydride rings which affect the depolymerisation process, so that 

monomer production (i.e. fuel production) is decreased. 

1.3.3 Red phosphorus. 

Although red phosphorus burns under certain conditions and is used in safety 

matches, it has been claimed that it can be used as an effective flame retardant in a 

specified concentration range. During combustion red phosphorus (Figure 1.3) can be 

a very concentrated source of phosphoric acids and hence an effective flame retardant 

for polyolefins, polystyrene, polyesters and epoxy resins, although occasionally 

coadditives are required to achieve a desirable flame retardancy.12 

Figure 1.3: Red phosphorus. 

Despite these claims there is a major inhibition to using red phosphorus in as 

much as it can be flammable and it does revert slowly to white phosphorus (Figure 
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1.4), which is spontaneously flammable.9· 13 

Figure 1.4: White phosphorus. 

1.3.4 Organophosphorus flame retardants. 

1.3.4a Additive flame retardants. 

Phosphorus additive fire retardants have the greatest utility with highly 

oxygenated polymers such as cellulose, where the phosphoric acids that are formed in 

the additive/cellulose degradation reaction, esterify the hydroxyl groups.6 This results 

in char, which protects the polymer from the heat of combustion, and water being 

formed at the expense of flammable volatiles, hence altering the fuel production step. 

Additives can also work by catalysing thermal depolymerisation of the polymer melt, 

facilitating the flow/drip of the melt away from the combustion zone. Some additives, 

for example phosphate esters, are stable under flame conditions,3 they are released as a 

heavy vapour and may inhibit the combustion of non-hydroxylated polymers by 

blanketing the flame. 

Examples of additive flame retardants include:-12 

a) Tricresyl phosphate { P(OC6H4CH3)J}, the first major commercial 

organophosphorus fire retardant, is used in PVC and cellulosic formulations. 

b) Alkyl acid phosphates {P(OH)(OR)2fP(OHh(OR), where R= Me, Bu}, which 

have a high phosphorus content and originate from low cost starting materials and are 

used in many commercial plastics. 

c) Trialkylphosphates {P(ORh, where R= Et, Oct), which also are low cost 
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additives with a high phosphoms content, and are used in cellulosics and polyester 

laminates. Due to their water-solubility there is a weathering disadvantage. 

d) Dimethyl methylphosphonate {CH3P(O)(OCH3h}, which is a high phosphorus 

containing additive, is very effective in the flame retardancy of thermosets because of 

its high volatility. It is also used to increase the phosphorus content of other fire 

retardants in rigid foams. 

e) Halogenated alkyl phosphates and phosphonates are used in conjunction with 

polyurethanes, eg. tris-(2-chlorethyl)phosphate { P(O)(OCH2CH2Cl)3 }, which can also 

be reacted with dimethyl methylphosphonate to form oligomeric halogen-free 

phosphorus esters (Figure 1.5). 12 

+ 

0 
II 

(ClCH2CH20hP 

0 0 
II II 

-t('---- OCH2CH2Q- P - OCH2CHz0- P )n 
I 

OCH2CH20- P(O) - OCH3 
I 
CH3 

Figure 1.5: Preparation of oligomeric phosphorus esters. 

These oligomers, which are used in air filters, have a high phosphorus content, 

low volatility and are water soluble. Introducing halogens into phosphorus retardants 

often produces synergistic behaviour. This occurs when the combined effect of two or 

more retardants is greater than the sum of each of the two components on their own. It 
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has been suggested that this behaviour may be due to the presence of phosphorus 

halides produced during polymer decomposition, which may inhibit the flames. 15 

1.3.4b Reactives flame retardants. 

Reactive compounds are generally more effective than additives as they are 

incorporated into the polymeric structure and hence are not lost through evaporation or 

leaching with solvents.3 They are also immediately available to protect the polymer in 

a fire since they are liberated as the polymer decomposes, whereas the decomposition 

temperature of an additive has to be matched with that of the polymer, so that it is not 

available before it is required or after the polymer has degraded. The disadvantages of 

reactive retardants are that they are more expensive and affect the chemical stability of 

the polymer and therefore may affect the mechanical strength and the electrical and 

optical properties of the polymer as well. They may also be more susceptible to 

thermal and photolytic oxidation. 15 

As with all reactive retardants, reactive phosphorus compounds alter the 

pyrolysis of the polymer and the fuel production processes. They cause the break up of 

polymer chains and loss of pendant groups at lower temperatures than normal. This 

effect may result in: 

a) Reduced flammability of volatile materials, 

b) The mixture of air and flammable gases being outside the flammable limits for 

sustained burning, 

c) The ignition temperature of the flammable mixture being raised above the 

temperature of the external heat source. 

A secondary effect can be char formation from dehydration and elimination 

reactions. Although the phosphorus can be volatilised during burning, 16 a substantial 

amount remains behind in the char, increasing its mechanical strength. 17 

The effect of phosphorus on the polymer depends on the position and type of 

bonds present, for example a main chain phosphorus atom will have a different effect 
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than a phosphorus atom in a side chain. Other differences will arise from whether the 

phosphorus is bonded to oxygen or carbon atoms.2 

i) A main chain P-C bond is a weak point in a polymer chain because it is readily 

broken by thermal and thermal oxidative processes. 

ii) A P-C bond in a side chain may result in the elimination of a P-H compound if 

a ~-hydrogen is present. 

iii) If the phosphorus atom occurs in the side chain, bonded to an oxygen atom, 

the ~-hydrogen should facilitate the elimination of a P-OH compound. 

The polymer degrades as a result of these processes producing low molecular 

weight phosphorus compounds, which in turn produce one or more phosphonic acids. 

Reactive phosphorus compounds may be prepared by several methods. The 

copolymerisation of vinyl and/or allyl phosphonates with vinyl monomers, the addition 

of phosphines to unsaturated polymers and the condensation polymerisation of 

hydroxyalkylphosphates and phosphonates (Figure 1.6) in polyesters and polyurethanes 

are all methods that have been used commercially.10•12 

0 0 
II II 

HO- R- 0 -f- ~ -0- R - 0 J"n H HO- R -0 -t- r -0-R-OtH 

OR' R' 

Hydroxyalkyl Phosphate Hydroxyalkyl Phosphonate 

Figure 1.6: Hydroxyalkylphosphates and phosphonates. 

Reactions of these phosphates and phosphonates with diisocyanates and varying 

amounts of non-phosphorus polyols, produces polyurethanes with a range of 

phosphorus contents (Figure 1.7).10 
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HQ-R-O"f- r -0- R-OtH + 0 = C = N- Ph- N = C = 0 

R' 

0 0 0 
II II II 

+-C-NH- Ph- NH- C -0- R -0---t- P -0- R -0~ \ I )n Jm 

R' 

Figure 1. 7: Condensation polymerisation of an hydroxyalkyl phospho nate with a 

diisocyanate. 

1.4 Summary. 

Phosphorus based flame retardants act mainly in the condensed phase 

encouraging the formation of char, especially with highly hydroxylated polymers such 

as cellulose, or polymers that become so, for example epoxy resins. If phosphorus fire 

retardants are used with hydrocarbon thermoplastics, then the retardant mechanism acts 

in the gas phase either by chemical or physical methods. 

The recent development of phosphorus flame retardants has led to the production 

of less volatile materials and the question of inhibition of smoke and toxic by-products 

eg. phosphorus retardants decrease the amount of hydrogen cyanide evolved in the 

burning of polyurethanes.18 

1.5 Treatment of industrial water. 

Industrial plants use vast amounts of water every year in manufacturing 
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processes, most of which comes from reservoirs and contains dissolved salts, which 

may interfere with the plant operation.19 These unsuitable "hard waters" can cause 

several problems in industrial water systems, notably deposition of scale and corrosion, 

which in tum may lead to leakage and bulging of heating pipes and boilers. Scale 

formation is a major problem because it reduces heat transfer due to its poor thermal 

conductivity and this may well result in the unit being shutdown for scale removal, 

causing a costly loss of production.20 Scale is also a large problem in the petroleum 

industry since large amounts of water are brought to the surface during primary 

recovery of crude oil. Many of the pipes become clogged and the removal of the scale 

is often an expensive process. 

The dissolved salts creating most concern are:-21 

(i) Calcium and magnesium chlorides, which can be a source of HCl resulting in 

the corrosion and pitting of metal pipes. 

(ii) Sodium chloride, which can contribute to the corrosion of nonferrous metals. 

(iii) Calcium and magnesium bicarbonates, which cause temporary hardness 

scales. This type of scale is deposited in boiler systems as a soft sludge and can 

be removed by a "blown down" process (i.e. high pressure flushing) or with wire 

brushing. 

(iv) Barium sulphate, calcium sulphate, calcium phosphate and calcium 

carbonate, which are known as hard scales.21 These inorganic precipitates 

adhere firmly to the walls of pipes and can be removed by the addition of acids, 

but since this increases the rate of corrosion of the pipes, such scales are 

preferably chipped away.21.22 

Calcium carbonate occurs in many fonns from pearls to limestone. Any deposit 

of calcium carbonate can be dissolved by water, particularly if the water is slightly 

acidic. Rainwater exists as carbonic acid, formed as water dissolves the carbon dioxide 

in the air (Figure l.Ba), and this weak acid readily dissolves calcium carbonate in the 

form of calcium hydrogen carbonate (Figure l.Bb), allowing calcium carbonate to be 
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transported in aqueous solution. 

(a) 

Figure 1.8: Formation of calcium hydrogen carbonate. 

Calcium carbonate is the most common scale forming salt and exists in three 

forms, calcite, vaterite and aragonite.23•24 Calcite, occurring at temperatures below 

50°C, has a trigonal crystal structure and is the chief constituent of limestones and 

marbles. It is also a major component of inorganic scales. Vaterite is hexagonal in 

structure and being metastable is the least common form, readily converting to the 

calcite structure. Aragonite, the orthorhombic form, occurs above 50°C 25 and is harder 

and denser than the other two stmctures, because of this is the most troublesome form 

of scale.26 It is the most common industrial scale found in boilers, desalination plants 

and heating systems where operating temperatures are above 70°C. As the temperature 

increases the solubility of calcium carbonate and calcium sulphate decreases and this 

unusual behaviour means that scale readily precipitates on metal surfaces, especially 

heating pipes, where the temperature is the highest.22 

Scale inhibits the flow of heat through boiler plates and pipes preventing direct 

contact between the water and the metal surfaces, which subsequently become 

overheated and strained. Overheating may result in corrosion or the occurrence of 

chemical changes in the water constituents. The corrosive compounds, formed from 

these changes, then adhere to the metal pipes, and because they are shielded from the 

water by the scale deposits they are not washed away but remain in situ to attack the 

metal.20 

When grease is present in the system overheating can be so severe that the metal 
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surfaces soften and deformation of the pipes can result. Tubes may become so clogged 

that rivets are sheared and seams opened leading to rupture and collapse of the 

system.20 

In most arid countries sea water has to be distilled in desalination plants to 

provide a potable water supply and this creates similar problems to those encountered 

in boiler systems. Although brackish water, which has a lower salinity than sea 

water,22 can be treated by ion exchange,27 the salt content of sea water is too high to 

make this process economically viable. Scale deposits are produced as the brine is 

heated in the boiler and in the cooling pipes of the condenser. These act as heat 

exchangers, preheating the inlet water before it reaches the boiler hence minimising the 

heating costs. The inorganic scale precipitates in the metal pipes, reducing the heat 

transfer and flow, adversely affecting the efficiency and economics of the desalination 

process.27 

In order to reduce the rate of deposition of the industrial scales in all of the water 

systems mentioned, pretreatment of the water is required to remove or alter the 

constituents to make the water suitable for use. 20 Some industrial steam generating 

plants use sophisticated treatments before the water is fed into the boiler, including 

softening, coagulation and filtration techniques, but these are only partially effective. It 

is therefore necessary to delay or inhibit the formation of scale by the use of water 

soluble polymers and other compounds,28 which maintain the dissolved salts in solution 

or suspension by modifying the crystal growth, thus inhibiting attachment to the walls 

of the metal pipes. Additives can do this in four ways:-

(i) Preventing homogeneous nucleation.29-31 

As calcium and carbonate ions are transported in solution highly concentrated 

regions, known as supersaturated regions, are formed. The ions are electrostatically 

attracted to each other fanning thermodynamically unstable clusters called critical 

nuclei. The nuclei may either undergo a phase change and become solid crystal nuclei 

or may diperse to relieve the thermodynamically unstable situation. When an 
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antiscalant polymer is introduced into the system the functional groups on the polymer 

interact electrostatically with the calcium ions reducing the electrostatic attraction 

between the calcium cations and the carbonate anions and this results in the radius of 

the critical nucleus being increased. This radial increase maybe too energetically 

unfavourable for the critical nucleus to be produced and homogeneous nucleation is 

prevented. 

(ii) Preventing heterogeneous nucleation. 

Coating of the metal pipe with an antiscalant polymer, containing carboxylic acid 

or phosphoric acid functional groups, prevents scale nucleating and adhering at the 

metal surface. 

(iii) Comp/exation.28 .32 

In this case functional groups on a polymeric additive complex with the calcium 

ions reducing the concentration of cations available to form the aragonite structure. 

Large concentrations of polymer must be used to complex significant amounts of the 

calcium ions in order to prevent crystallisation. 

(iv) Crystal surface modification.2S,30,33 

If nucleation has already occurred the antiscalant polymer may interact with one 

of the faces of the growing crystal preventing fmther growth and limiting the amount of 

aragonite precipitated. 

The commercial polymers currently used for inhibiting the formation of aragonite 

are predominantly poly( acrylic acid) and its derivatives and the reaction products of the 

free radically initiated polymerisation of maleic acid in the presence of xylene.34 

Recent work has led to the use of simpler polycarboxylic acids of fairly uniform 

structure for the inhibition of aragonite,28 but such materials are ineffective against 

other forms of scale such as calcium and barium sulphate.19 Phosphates and 

polyphosphates are also capable of removing preformed scale and residual hardness in 

the water and also can be used as corrosion inhibitors. 35-37 For example; the 

poly(alkenylphosphonic acid)s (Figure 1.9),38 the most useful polymer was found to be 
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poly(2-isopropenylphosphonic acid (R 1= Me in Figure 1.9), usually known as 

poly(isoprenylphosphonic acid). 

Rl 
I 

t--CH?-C ] - I n 
RQ-p-QR 

R = H or metal cation. 

II 
0 

R1 =alkyl group containing 1-6 carbon atoms. 

Figure 1.9: The poly(alkenyl)phosphonic acids. 

The monomer is prepared from acetone and PC13 followed by the addition of 

acetic acid and hydrochloric acid and dehydrochlorination (Figure 1.10). 

Me Me o- Me Cl 

" " / (i) Acetic acid " / 
C=O + PC13 --~... · C ... c, 

/ / " (ii) HCI / ' Me Me P +CI3 Me P(O)(OH)z 

Me" /Cl 

/c, 
Me P(O)(OH)z 

(-HCl) ... CH2= c-P(O)(OH)z 

I 
Me 

Figure 1.10: Synthesis of2-propenyl phosphonic acid. 

Poly(2-propenylphosphonic acid) is prepared by radical chain addition 

polymerisation. 

Tests on the phosphonic acid polymers have been carried out in simulated boiler 

and cooling water systems and these polymers have been shown to be reasonably 
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effective in the inhibition of calcium sulphate, calcium carbonate and calcium 

phosphate formation. They can also be used in conjunction with a variety of organic 

and inorganic, phosphonic and phosphoric acids and their derivatives to increase the 

activity of the polymers.38 The amount of polymer added to any system depends on a 

variety of factors such as, the area of pipe subjected to corrosion, the quantity of water 

present and the pH and temperature of the system.38 

1.6 The olefin metathesis reaction. 

1.6.1 Historical background. 

The olefin metathesis reaction is defined as a catalytically induced bond 

reorganisation reaction involving the making and breaking of carbon-carbon double 

bonds. The total number and type of bonds remains unchanged during the process. 

The reaction has proved useful in three kinds of process, all of which proceed via 

a chain mechanism, involving metal carbenes and metallacyclobutanes as the chain 

carrying species. 39 

(a) Olefin disproportionationlexchange reaction involving acyclic olefins (Figure 

1.11). 

+ + 

1.11: The olefin disproportion reaction. 

(b) Ring Opening Metathesis Polymerisation (ROMP) involving cyclic or 

polycyclic olefins (Figure 1.12). 
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n 
ROMP 

Figure 1.12: Ring Opening Metathesis Polymerisation ofnorbornene. 

(c) Degradative metathesis. Unsaturated networks may be degraded after swelling with 

an acyclic olefin. 

Probably the first citation of a metathesis reaction was reported by Anderson and 

Merckling of Du Pont40 in 1955 with the ROMP of norbomene (Figure 1.12) using 

TiC14 and EtMgBr at 50°C. However, it was not until 1960 that the polymer was 

identified as a poly(alkylene vinylene) by Truett.41 In 1964 Banks and Bailey,42 whilst 

attempting to develop a new heterogeneous catalyst for olefin alkylation, reported that 

in the presence of heterogeneous catalysts, prepared from tungsten and molybdenum 

carbonyls supported on alumina, acyclic olefins gave rise to higher and lower 

molecular weight fractions. They analysed the process as proceeding via an exchange 

of alkylidene units and named the reaction olefin disproportionation. Although over 

the next few years a series of patents and papers reported a number of catalysed 

exchange/disproportionation and ROMP reactions,4349 it was not until 1967 that the 

term olefin metathesis was first introduced, when Calderon realised that the 

mechanisms of the ROMP of cyclic and polycyclic olefins and the exchange reaction of 

acyclic olefins were identical. The history and development of the ROMP reaction has 

been reviewed in a series of recent publications.39·51-54 

1.6.2 Olefm metathesis initiator systems. 

Olefin metathesis can be initiated by a variety of transition metal catalysts from 
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groups (IV A) to (VIII). 39 

IVA VA VIA VIlA VIII 

Ti v Cr 

Zr Nb Mo Ru Rh Pd 

Hf Ta w Re Os Ir Pt 

Table 1.1: Metals active in the catalysis of metathesis. 

The most widely used catalysts are compounds of W,Mo and Re, which are 

capable of initiating the metathesis of acyclic olefins42 as well as less strained cyclic 

olefins such as cyclopentene. 39 Metathesis of strained rings, such as norbornene, can 

be achieved by the use of Ti, V, Ru, Os and Ir. Some non transition metal catalyst 

systems have been reported to be capable of initiating metathesis, for example 

The catalysts can initially be classified into two types, heterogeneous and 

homogeneous systems. 

(a) Heterogeneous catalysts are generally transition metal oxides, sulphides or 

carbonyls absorbed onto a high surface area refractory support such as alumina or 

silica; examples are listed in Table 1.2. 

Oxides Sulphides Carbonyls 

MoW Re 
V SnTe 
NbTa La MoW MoW Re 
Ru Os Ir 
Rh SrBa 

Table 1.2: Heterogeneous metal catalysts. 
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The three main methods of preparing the catalysts are:- (i) dry mixing, (ii) 

coprecipitation and (iii) impregnation of the support with a compound that decomposes 

at high temperatures to leave the catalyst precursor. The catalysts are activated in an 

inert atmosphere and used with cocatalysts and/or promoters. The selectivity of these 

reactions is always below 100% du~the numerous side reactions that occur eg. 

polymerisation and isomerisation, which can be minimised to a certain extent by the 

addition of alkali56 or alkaline earth57 metals or copper or silve.-58 before catalyst 

activation. Heterogeneous catalysts can initiate metathesis of acyclic olefins but they 

are rarely used for ROMP. 

(b) Homogeneous catalysts are usually used in the liquid phase, either in neat 

monomer or dissolved in a solvent, and although they are termed homogeneous 

catalysts, some of them may react giving finely divided heterogeneous catalysts. 

The classical supposedly homogeneous catalyst systems can be divided into three 

main categories:-

I) Single component systems which already comprise a metal/ocarbene (Figure 

1.13).59-65 The initial Fischer carbenes (CO)sM=C(OR)R', where M = Cr, R =Me and 

R' = Ph, had disappointing activity as organometallic catalysts and only reacted with 

strained olefins such as cyclobutene and monomers similar in structure to norbornene. 

Their activity is increased on addition of Lewis Acid cocatalysts. However Casey 

carbenes are more reactive and can initiate less strained cyclic olefins. 

Ph 

~ 
C=W(C0)5 

/ 
MeO 

Ph 

"" C=W(C0)5 

/ 
Ph 

Fischer Carbene Casey Carbene 

Figure 1.13: Metal carbenes used to initiate metathesis. 
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(IT) Two or three component systems involving cocatalysts and/or promoters. 

This type of classical initiator usually contains a transition metal compound (eg. a 

halide) and an alkyl, aryl or allyl containing cocatalyst, eg. MoClsfSnMe4 and 

WC16f'SnPh4• The metal cat·bene is generated by the reaction of the two components. 66 

Ultra-violet spectroscopic studies of the WC16f'SnMe4 system led to the following 

proposed mechanism for metallocarbene formation (Figure 1.14).61-69 The reaction is 

complex and many side reactions are possible. 

Figure 1.14: Mechanism for metallocarbene generation using WCIJSnMe4• 

Grubbs,70 using WClcfSnMe4, and Muetterties,71 with WClc;!ZnM~. later 

confirmed the production of methane during the reaction. Sometimes the reaction will 

not proceed and a third component, known as a promoter or activator is required eg. 
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water72 or ethanol. 73 

(ill) Compounds that contain neither a pregenerated metallocarbene nor an 

alkyl, aryl or allyl containing species. Examples of this kind of system are the 

transition metal halides:- WCI6, ReCI5, RuC13, OsC13 and IrC13. This kind of initiator 

generates the metallocarbene in situ by reaction of the transition metal halide with the 

first monomer unit, although activators are sometimes required, eg. oxygen, water or 

ethanoL 

Ruthenium, osmium and iridium hydrated trichlorides (XC13.3H20) are 

somewhat unique in that they initiate ROMP in protic media (water and ethanol), 

unlike most other metathesis catalysts, which are destroyed by such solvents. These 

aqueous initiators are capable of ring opening strained monocyclic rings (eg. 

cyclobutene75 and 3-methylcyclobutene76) substituted norbornenesn-86 and 

oxanorbornenes, in alcoholic and aqueous emulsified systems between 20-1 00°C. 

RuCI33H20 H 
;:;. I 

[Ru] E 
H20 I 

OH 

[Ru] 

E 

... 

> 

[Ru] 
I 

OH 

A 
H- [Ru] 

I 
OH 

u 

Figure 1.15: Mechanism for metallocarbene generation using RuCl3.3H20. 
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The ROMP mechanism involving the group VIllA transition metal chlorides, 

such as ruthenium trichloride, is not fully understood but is believed to generate a 

metallocarbene via the initial formation of Ru-H bonds (Figure 1.15).87-88 Generally 

ruthenium catalysts polymerise monomers at a faster rate in water than the osmium and 

iridium initiators, 86 whereas the behaviour is reversed and iridium trichloride is more 

active if ethanol is used as the solvent. 77 

The ill-defined classical catalysts have a few disadvantages:-

(i) There is a lack of molecular weight control when they are used, due to the 

activity of the M=C bond which tends to react with the C=C bonds in the 

polymer chain producing linear and cyclic oligomers (see section 1.6.4). 

(ii) There is an element of irreproducibility because the production of the 

initiating carbene tends to be dependant on physical parameters such as 

temperature, 89 concentration and mixing rates. 90 

(iii) Stereoregular polymers are rarely produced. 

(iv) Alkylidene complexes are produced only in low yield and decompose easily. 

(v) They also have a limited tolerance towards functional groups. Most classical 

tungsten, molybdenum and rhenium initiators, for example, are destroyed by 

oxygen, water and oxygen containing monomers and solvents. Difficulties often 

arise if heterocyclic compounds are used, the heteroatom, which has donor 

properties, reacts with the carbene initiator and occupies the active acceptor sites 

on the initiator thus destroying it. However there are numerous cases where 

monomers containing heteroatoms have been polymerised. 86·91-99 

In recent years Schrock,100-102 Grubbs103•104 and Osbom105 have reported a series 

of transition metal carbenes or metallacyclobutanes, which are able to initiate "living" 

ROMP of cyclic olefins, such species are generally referred to as well defined 

initiators. An outline of one such synthesis is shown in Figure 1.16. 
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2LiOCMe3 

Et20 

2,6, Lutidene 
Me3SiCl 

2ArNHSiMe3 

DME 

DME 

Ar = 2,6 diisopropylphenyl 

c: = DME = CH30CH2CH20CH3 

Cl 

(o"I~NAr 
Mo 

o/I~NAr 
Cl 

N 

2Me3CCH2MgCl 

Et20 

II R' .. M=< ,, .... ,. 
RO ''' H 

RO 

M=WorMo 

R'= Alkyl (usually •su) 
R = tsu, CMe2(CF 3), CMe(CF 3)z. 

Figure 1.16: Metathesis initiators prepared by Schrock. 
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Highly stereoregular monodisperse polymers and well defined block copolymers can 

be prepared from cyclic olefins, in favourable cases, using these catalysts. The living 

system allows addition of a second monomer after the first has been consumed hence 

producing the block copolymer. Examples of these initiators include Schrock's four 

coordinate tungsten and molybdenum alkylidene complexes (Figure 1.16);106•107 and 

Grubbs' titanacyclobutane/titanium carbene complex104 derived from Tebbe's reagent 

(Figure 1.17)108 and related tantalum compounds.100 

~ CH2 Me 

Ti/ v 
©' 'c( ~e 

Tebbe's Reagent 

I 
RCH=CHR' 

Pyridine 

+ 
~ CH 

~ / "',R' Ti C 

r;:;x( ">( ~H 
~ R H 

Figure 1.17: Metathesis initiator derived from Tebbe's reagent. 

The molybdenum and tungsten initiators are more active than the titanium and 

tantalum catalysts, showing a greater tolerance towards polar functional groups.109•110 

The most recent development in this area has been reported by Grubbs, 104 who 

observed that a stable ruthenium metallocarbene was capable of initiating "living" 
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ROMP of strained olefins in organic media, both in the absence and in the presence of 

protic solvents by preparing block copolymers of norbornene and 

2,3-dideuterionorbornene in the presence of ethanol and water. The stable carbene was 

prepared from the reaction of 3,3-diphenylcyclopropene with either RuC12(PPh3)3 or 

RuCl2(PPh3)4 (Figure 1.18). 

PPh3 

C~·-•... 1 ... ····'' PPh
3 

Ru + 

c( I 'PPh3 

P~h ~Ph . . 

PPh3 

CH2C12fC6H6 

53°C/11hrs 

PPh3 Ph 
c~,. I --;) r=::==/ 

• •.. Ru-=./- - ""-.Ph +2PPh3 

c(l 
PPh3 

Figure 1.18: Preparation of the Grubbs ruthenium metallocarbene. 

1.6.3 Mechanistic rationalisation of metathesis reactions. 

There have been several attempts to provide a mechanistic rationalisation for the 

metathesis reaction. The non-pairwise mechanism of polymerisation, which is 

generally accepted now, was initially proposed by Herrison and Chauvin111 in 1970 

after studying the products of cross metathesis between a series of cycloalkenes and 

linear unsymmetrical alkenes. The mechanism involves transalkylidenation via the 

cleavage of the C=C double bond and the production of a transition metal carbene, 

which possesses a vacant coordination site and acts as the chain carrier. In the scheme 

outlined in Figure 1.19, the C=C double bond first coordinates to the vacant site on the 

metal carbene forming a metal x-complex, this is followed by the formation of a 

metallacyclobutane intermediate via a [2+2] cycloaddition. The metallacyclobutane 

cleaves either degeneratively or productively resulting in the formation of a new metal 

carbene and a new x-complexed C=C double bond, which then decoordinates from the 

metal carbene to regenerate the active species. Several of the steps are reversible and 

the outcome in the metathesis of acyclic alkenes and in ROMP depends on reaction 
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conditions (temperature, concentration), the nature of the chain carrier and the olefin. 

... 
0 
~ .. H 'f ... ~ , 

-M=C ... 0 
/1 "" Pn 

! l 

= Polymer chain. 

a = Vacant coordination site. 

n = Cyclic Olefin. 

Figure 1.19: Propagation mechanism/or Ring Opening Metathesis Polymerisation. 

The scheme is supported by existence of stable metallocarbenes at low 

temperatures, such as the Casey59-61 and the Fisher62-65 carbenes, and the isolation of 

stable metallacyclobutanes derived from Tebbe reagent (Figure 1.17), 104•108 both of 

which will initiate metathesis polymerisation of strained cyclic olefins. Further 

evidence of a metallacyclobutane intermediate was reported by Green, 112 who stated 

that stable metallacyclobutanes produced metal carbenes and alkenes on thermolysis or 

photolysis. Osborn produced the final confirmation when he observed the simultaneous 

occurrence and interconversion of a W=C metal carbene and tungsten 

metallacyclobutane during the ROMP of norbornene with the Osborn catalyst (Figure 
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1.20).113 More recently Schrock and co-workers have also isolated 

metallacyclobutanes from the reaction of molybdenum carbenes (Figure 1.16) and 

substituted norbomene derivatives.106,107 

Br 
t-BuCH2 0 "'······ I ... ··''H 

W==C 

/1 ' t-BuCHz 0 Br t-Bu 

I 
GaBr3 

Figure 1.20: The Osborn catalyst. 

1.6.4 Termination of ROMP. 

The termination of the ROMP reaction can occur in a number of ways, which can 

be divided into two main types; (i) reactions where the propagating metallocarbene is 

destroyed and (ii) metathesis reactions, which do not destroy the chain carrier. 

(i) Although alcohols and water destroy some active initiators presumably by 

adding to the reactive metal carbene, some initiators are inert towards protic solvents. 

Wittig-type reactions involving other oxygen containing species, notably benzaldehyde 

and acetone, are often used in controlled termination of both "living" and "classical" 

metathesis reactions (Figure 1.21).114 

)=a 

-~/' 

+ 
[w 
c 
'Pn 

pn = Polymer chain. 

+ [M]=O 

[M] = 0 = Unreactive transition 
metal oxide. 

Figure 1.21: Termination of metathesis using acetone. 
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Two other "destructive" termination reactions observed are the formation of 

cyclopropanes (Figure 1.22) and ~-hydrogen abstraction (Figure 1.23). 

~CHR 
RHC ~ CHR' ____ ___. ~ 

IJlao Pt""""' HC + [M] 

~CHR' 
P0~Hc [M] 

Figure 1.22: Termination of metathesis by the formation ofcyclopropanes. 

M=CH M-CH 

I 
H-C-R 

I II 
H C-R 

I I 
R' R' 

Figure 1.23: Termination of metathesis by P-hydrogen abstraction. 

(ii) Chain transfer reactions can occur between the propagating metallocarbene 

and a C=C double bond in another polymer chain. The polymer C=C double bonds 

compete with those in the monomer for the active metallocarbene species, hence 

reducing the availability of these species (Figure 1.24). 

P1""""' H1 CH~ P, 

[M]= CH\/VV\1 P3 

P 1''"""' CH 

II + 
[M] 

CH\1\/VVV' P 2 

II 
CH\IVVVV' P 3 

Figure 1.24: Chain transfer between propagating metallocarbene and the polymer 

chains. 
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A similar reaction can take place intramolecularly between the active 

metallocarbene and the C=C double bonds from the same polymer chain resulting in 

the formation of cyclic oligomers. This reaction is known as back biting and can result 

in a lower molecular weight and higher polydispersity of the resulting polymer (Figure 

1.25). If the initial concentration of monomer [M0 ] is above a certain critical value 

then an equilibrium exists between the high molecular weight polymer and the low 

molecular weight cyclic oligomers. The higher the concentration of initiator the higher 

the proportion of high molecular weight polymer at equilibrium. If [M0 ] is below the 

critical value then no high molecular weight polymer is formed.l15,1l 6 

C= [M] 

p~ t 
C=Cvv. p2 

[M] 

+ II 
c~P2 

Figure 1.25: Formation of cyclic oligomers via back-biting. 

Cross metathesis between acyclic olefins and the C=C double bonds in the 

polymer chain can also result in a lower molecular weight and broader molecular 

weight distributions as linear oligomers are produced. This type of reaction, where the 

acyclic olefin is known as a chain transfer agent, is often used in controlling the 

molecular weight of the polymer by the interruption of the chain growth (Figure 1 .26). 

The new metallocarbene formed may induce further degenerative metathesis or initiate 

formation of a new polymer chain. 

[M]=CH~Pl 

R-HcLCH-R' 

CH\I\IVVV' P1 

II 
CH 

'R' 

Figure 1.26: Chain transfer between acyclic olefins and the polymer chains. 
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Chain transfer between polymerising cyclic olefins and acyclic olefins can have 

two kinds of outcome. The first results from the effect small amounts of acyclic olefin 

(Cf A) can have on the yield, molecular weight and cis content of a polymer produced 

from a cyclic monomer (M). The second concerns the use of larger amounts of chain 

transfer agent in attempts to produce telomers with well defined end groups. In the 

case of an unsymmetrical chain transfer agent (R 1 HC=CHRv there is the possibility of 

three types of telomers, [R1HC=(M0 )=CHR1], [R1HC=(M0 )=CHR2]/ 

[R2HC=(M0)=CHRtl and [R2HC=(M0)=CHRz]. For low molecular weight polymers 

(<5000) it is possible to detect polymer end groups using 13c NMR.86,1ll,117-120 

The prospect of molecular weight control of potential commercial polymers has 

resulted in several acyclic olefins being used as possible chain transfer agents for the 

ROMP of cyclic olefins, eg. norbornene and cyclopentene. Generally an increase in 

[Cf A]/[M] reduces the molecular weight and if the ratio is high enough, telomers are 

produced. The structure of the acyclic olefin, the type of catalyst system used and the 

cis content of the resulting polymer all determine how effective the chain transfer agent 

is in reducing the molecular weight. The order of effectiveness is as follows:-

RCH=CH2 > R1CH=CHR2(cis) > R1CH=CHR2(trans) >> R1R2C=CH2. 

It has also been observed that acyclic olefin additives have less effect on 

controlling the molecular weight when high cis polymers are produced, 122 which is 

rationalised in terms of the intramolecular coordination of the previously formed cis 

C=C double bond to the metallocarbene.39·123 Certain olefins increase the cis content 

of the resulting ROMP polymer but have significant effects on the yield, allyl 

2,4,6-tribromophenyl ether increases the amount of polymer recovered from 

cyclopentene, 124 whereas ethyl acrylate, diethyl maleate and diethyl fumarate decrease 

the yield of polynorbornene.I25,126 

The gradient of plots of 1/Mn against [CfA]/[M] give the chain transfer constant 

for a particular acyclic olefin (see appendix H), which is defined as the ratio of the 

chain transfer rate constant to the propagation rate constant. The constants give a 
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reasonable indication of how effective the chain transfer agents are but the values are 

not entirely accurate due to experimental uncertainties, such as how the formation of 

cyclic oligomers affects M0 , and whether they are still present after recovery of the 

ROMP polymer. 

1.6.5 Factors affecting the ROMP of cyclic olefins. 

The thermodynamics and kinetics of ring opening play a large part in 

understanding ROMP, with effective metathesis requiring a low energy barrier between 

the metal carbene and the metallacyclobutane, and a negative Gibbs Free Energy of 

Ring Opening (.1GR) required for polymerisation. 

AGa= AHa- T .1Sa . 

.1HR is the enthalpy of ring opening, T the temperature(K.) and .1SR is the entropy of 

ring opening. The entropy term .1SR is always negative due to the monomers being 

bound into macromolecules, hence reducing their freedom. Therefore -T .1SR is always 

positive and for a favourable reaction the AHR term must be larger than the T ASR term. 

As the temperature is increased the entropy term increases and the Gibbs Free Energy 

eventually becomes positive. So a temperature must exist where AGR= 0 ie. mR = 

T.1SR, this is known as the "ceiling temperature", above which polymerisation does not 

occur. 127 

Ring strain and ring size are important factors in determining whether 

monocyclic and bicyclic olefins undergo metathesis polymerisation. Generally in the 

case of 3,4 and 8-12 membered rings, metathesis occurs readily, whereas for 5,6 and 7 

membered rings, where the ring strain is reduced, other physical factors will contribute, 

such as temperature, concentration and pressure.39 The position, nature and size of 

substituents also influences .1GR· In general only substituents well separated from the 

C=C double bond can be tolerated, as the substituent gets closer to the double bond it 

has more effect on the polymerisability of the cyclic olefm, hence although 

3-methylcyclopentene polymerises, 1-methylcyclopentene does not.128 Exceptions 
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occur in highly strained molecules such as 1-methylcyclobutene, which will undergo 

ROMP,129 and in some strained bicyclic monomers, where a methyl substituent can be 

tolerated in any position. 130-135 The size of the substituent also has an effect on the 

outcome, if a substituent is too bulky the olefin may not polymerise, as is the case with 

3-isopropylcyclopentene.136 There is also the possibility of orbital interactions between 

distant substituents and the C=C double bond, which may reduce the electron density 

on the double bond and making coordination to the M=C metallocarbene less 

favourable. 137-138 

1.6.6 Microstructure and stereochemistry of ROMP polymers. 

There are several ways of incorporating a monomer repeat unit into a polymer 

chain, altering the microstructure and morphology and hence the physical properties of 

the polymer. The microstructure can be controlled in certain circumstances by altering 

the catalyst system and the reaction conditions, so that it may be possible to synthesise 

a polymer with the required physical characteristics for a specific application. The 

three main factors which define the microstructure are:-

(a) the cis/trans vinylene frequency and distribution, 

(b) the head/head and head/tail frequency and distribution 

and (c) tacticity effects. 

By altering each of the factors a large range of polymers can be obtained, in 

principle, from one monomer. 

(a) Ring opened polymers resulting from norbornene-type structures are 

unsaturated and each C=C double bond can have cis or trans geometry (Figure 1.27). 
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H H 

Figure 1.27: Cis/Trans geometry of double bonds in polynorbornene. 

The proportion of cis double bonds in a particular polymer, denoted by crc, is 

primarily dependant on the catalyst system but concentration, temperature and the 

nature of the monomer may also have an influence. A polymer with crc= 1.0 has all cis 

double bonds and one with crc= 0 has all trans double bonds. 

The model proposed by lvin 131 for the formation of cis or trans double bonds is 

based on the hypothesis of a chain propagating species which is an octahedrally 

substituted metallocarbene with one vacant site. As the metal centre is chiral, the 

propagating metallocarbene has two enantiomeric forms Pr and P1 (Figure 1.28), each 

of which can attack the least hindered exo-face of the norbornene-type monomers in 

two ways depending on the orientation of the monomer . 

.... H .... ,, .... 
P ••• • , ...... I 

ri .... • : ........._ c· : 
: II : 
-=-[Ml-1 a 
=------ I = • • I t 
: I : ....... 
• • •• . ... ... 

•• p 
•••• , ...... , n .... , ..... ' . 

H·· .-· • : ........._c.. : 
: II : 
-=--[M]-1 a 
=------ I = • • • • • • . .. 
• • •• 
I •• • • . 

• • .. 

Figure 1.28: The two enantiomericforms of the propagating metallocarbene. 
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The monomer may approach with the bridging methylene group orientated out of 

the paper (M1) or into the paper CMr) (Figure 1.29). 

Figure 1.29: The possible orientations ofnorbornene . 
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p -···· ~~ ......... : 
,n........._ c·.... • 
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• • ••• ••••• 

•• • Pn ... ,~. H····· ~ ........... : 
......_ .·• I 

I ...__ c··· I • • : II : . ~ 
-:-[M] I D 

=.------- I = • • • • • • • • • •• • •• • • •• • •• • • • •• 

(1) CIS 

(2) CIS 

i Pn+l ,, 
........ 

l!lo [M]=~ 

H 

Figure 1.30a: The two possible cis-forming additions of propagating metallocarbene 

and norbornene. 
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Figure 1.30b: The two possible trans-forming additions of propagating 

metallocarbene and norbornene. 

H 

In this picture the geometry of the C=C double bond is determined by the 

stereochemistry of the addition of monomer to the propagating species. The above 

schemes (Figure 1.30alb) can therefore explain the possibility of preparing 

stereoregular polymers. The alternate repetition of schemes (1) and (2) result in a 

highly cis-syndiotactic polymer and the repetition of schemes (3) and (4) result in a 

trans-isotactic polymer. It is considered that atactic polymers originate from achiral 

propagating metallocarbene species, or those where stereochemistry is not retained 

between successive steps. 

(b) In the case of unsymmetrically substituted monomers the possibility of 
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head/head, head/tail effects exists. For example the polymer poly{2,5-

[3-dimethylphosphonate]cyclopentylene }vinylene, of interest in the work reported in 

this thesis, has the numbering system illustrated in Figure 1.31, with carbons 2, 3, 7 

and the phosphonate group (P(O)(OMeh) being the head part(H) of the polymer and 

carbons 4, 5 and 6 being the tail part('D. 

3 

P(O)(OMeh 

Figure 1.31: Poly{2,5-[3-dimethylphosphonate] cyclopentylene}vinylene. 

Therefore the head part of the polymer can be in two possible environments, 

either HH or HT, depending on whether the adjacent repeat unit is in the head or tail 

configuration, this is illustrated in Figure 1.32 . 

• • • • • • • 

HH • HH TH • • • • • HT TT • TT • • • I • • • • • • • • • • • • • • • • --- - -• • • • • • • • • • 
R R • • • 

• • • R 
• • • • • • • • • • • • 

Figure 1.32: Head/Head, Head/Tail effects in 

poly{2,5 -[3 -dimethylphosphonate ]cyclopentylene }vinylene. 

R 

Stereoregular polymers can be synthesised from unsymmetrically substituted 

monomers using a variety of initiator systems. In the case of the polymerisation of 
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1-methylnorbornene130, for example, ReCI5 gives an all cis all HT syndiotactic 

polymer, whereas with OsC13 an all trans HT polymer is observed. It has been 

suggested that the cis HH arrangement is not formed with 1-methylnorbornene due to 

steric hindrance in the metallocyclobutane intermediate. This is a subtle effect, for 

example, with 5,5-dimethylnorbornene there is less steric hindrance and the cis HH 

junction can be formed in polymerisations initiated with ReCI5.83 

The head/tail bias (B) is a measure of the likelihood of forming head/tail repeat 

units and is given by:-

B= HT+TH 
HH+TT 

If we consider an unsymmetrical monomer capable of forming head/tail repeat 

units, such as 1-methylnorbornene, there are two possible propagating species, one 

where the methyl substituent is adjacent to the propagating metallocarbene (PH) and 

one where the methyl group is remote from the carbene (PT)· 

Me~ 
H '''··· .. \_) "'CH=CHP 

'-. ···''' n 'c···· 
II/ 

-[M]---G 

/I 

O<
,,Me 

' ...... ·" ,CH=CHP, 
c 
II/ 

-[M]-

/1 

Figure 1.33: The four theoretically possible propagating species from 

1-methylnorbornene. 
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As in the case of cis/trans double bond formation (Section 1.6.6a) the 

propagating metallocarbene centre is chiral and therefore two enantiomeric forms exist 

for each of the PH and Pr species, arbitrarily labelled"+" and "-" (Figure 1.33). 

The monomer also exists in two enantiomeric forms, again labelled "+" and "-". 

Each of these can approach the propagating metallocarbene in two ways, either with the 

bridging methylene directed into (r) or out of the plane (1) of the page, hence resulting 

in the four possible orientations (Figure 1.34). 

~ 
Me 

p . . 
. 
. 

Me 

M(+), M(+)r 

Me 

~ 
. 

b . 

Me 

M(-), M(·)r 

Figure 1.34: The four theoretically possible orientations of 1-methylnorbornene. 

Catalysts that produce highly cis syndiotactic polymers also show a marked 

head/tail bias and the formation of such polymers can be explained by the alternate 

copolymerisation of the ( +) and (-) 1-methylnorbornenes, which is illustrated in the 

reaction scheme in Figure 1.35. 
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Figure 1.35: The formation of cis-HT syndiotactic poly(l-methylnorbornene). 

Both enantiomers are required for the polymerisation to continue, and the product 

is an entirely regio and stereospecific alternating copolymer of enantiomers. The steric 

fit with the C7 methylene and existing polymer chain syn with respect to each other 

and attack exclusively on the exo face of the monomer to give a cis cyclobutane 

provides a complete account of this remarkably specific reaction. 

The reactions that lead to trans C=C double bonds do give head/head and taiVtail 

linkages, implying that the steric fit restrictions invoked to account for the polymer 

resulting from ReC15 initiation are relaxed with other initiators. 

(c) The allylic carbons C2 and C5 are chiral and each can have R or S 

configuration. Therefore there is the possibility of the two carbons having the same 

chiralities, resulting in racemic (r) dyads, or different chiralities, giving meso (m) 

dyads. Sequences of racemic dyads give rise to syndiotactic polymers and sequences 
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of meso dyads define isotactic polymers. Polymers with a random distribution of dyads 

are known as atactic. Each of the vinylic bonds can be cis or trans geometry, hence 

there are four possible tacticities for a stereoregular polymer as illustrated in Figure 

1.36. 

Meso dyads - Cis isotactic polymer 

Meso Dyads - Trans isotactic polymer 

Racemic Dyads - Cis syndiotactic polymer 

H H 

Racemic Dyads - Trans syndiotactic polymer 

Figure 1.36: The possible tacticities of polynorbornene. 
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Chaoter Two: 
Synthesis and Characterisation 

of Potential Monomers. 
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2.1 General Introduction. 

This chapter describes the syntheses and characterisations of a series of 

monocyclic 1-hydroxy and 1-alkoxy-1-oxo-3-phospholenes and organophosphorus 

derivatives of bicyclo[2.2.1]heptene. The synthetic routes involve the formation of 

monocyclic and bicyclic compounds via cycloaddition reactions with butadiene and 

cyclopentadiene respectively. 

2.2 General Background. 

2.2.1 The Diels Alder reaction. 143 

The Diels Alder reaction is one of the most effective and widely used routes to 

six membered carbocyclic ring compounds. It involves a [4+2] cycloaddition reaction, 

so called since it takes place between a four 1t-electron system and a two 1t-electron 

system. An olefin or acetylene, known as the dienophile, adds to a conjugated diene in 

a one step process involving a cyclic transition state. The 1t-orbitals on the dienophile 

overlap with the termini of the 1t-orbitals on the diene, ie. carbons 1 and 4. These 

positions are rehybridised during reaction from sp2 to sp3 to form two new a-bonds, 

whereas carbons 2 and 3 remain sp2 hybridised and a new double bond is formed 

between them in the product (Figure 2.1 ). 144 

Diene Dienophile 

Figure 2.1: The Diels Alder reaction. 
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The reaction only occurs if the diene is capable of adopting a cisoid conformation 

about the single bond, where carbons 1 and 4 on the diene are close enough to allow 

reaction with the dienophile to occur. The 1t-orbitals at the ends of a transoid diene are 

too far apart to overlap those on the dienophile and no cycloaddition occurs. Some 

dienes can not adopt the cisoid conformation due to geometric constraints and steric 

hindrance and hence do not undergo Diels Alder reactions. 

The cycloaddition is more favourable if there are electron withdrawing 

substituents on the dienophile and electron donating groups on the diene, this is known 

as a "normal" Diels Alder reaction. An inverse Diels Alder reaction, which is also a 

favourable reaction, involves electron withdrawing substituents on the diene and 

electron donating groups on the dienophile. 

Cyclopentadiene is often used in the preparation of bicyclic compounds via Diels 

Alder reactions since the double bonds are "locked" in a coplanar, cisoid configuration. 

The addition of a substituted dienophile to the diene results in the formation of endo 

and exo isomers. The ratio of isomers is dependant on the reaction conditions, the 

exo-isomer being the product of thermodynamic control, and the endo-isomer being the 

kinetic product. 

Other important features of the Diels Alder reaction are that it can be catalysed 

by Lewis Acids and it is a very stereospecific reaction. A cycloaddition between a cis 

dienophile and a diene results in the retention of traces of the cis stereochemistry in the 

product.144 In this work the Diels-Alder reactions between cyclopentadiene and ethene 

phosphonates and ethene bisphosphonates have been used to prepare monomers for 

polymerisation studies. 

2.2.2 Five membered phosphorus heterocycles. 

Heterocycles containing phosphorus and carbon are of general interest because of 

their potential application to fire retardancy and biological chemistry. McCormack145 

in 1953, described a method using trivalent phosphorus halides and 1,3-dienes to 
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prepare five membered phosphorus heterocycles (Figure 2.2 ). 

r\ + RPC12 0 P CI-/" Cl R 

Phosphonium Salt 

Figure 2.2: Preparation of phosphorus heterocycles. 

The resulting compound is a useful precursor in the synthesis of new heterocyclic 

compounds, due to the presence of a double bond and a reactive phosphorus group. 

The 1,4 cycloaddition of trialkyl phosphites to a-dicarbonyl compounds has also been 

reported (Figure 2.3). 146-148 

n + P(OR)J 

0 0 

Figure 2.3: Preparation of oxyphosphoranes. 

Obviously the diene must be capable of adopting a cisoid conformation as with 

Diels Alder reactions. The trivalent phosphorus in each of these reactions is capable of 

utilising its unpaired 3s electrons to form a higher covalency, usually tetravalent. It 

may therefore be regarded as an analogue of a dienophile in these 1,4 additions, which 

are sometimes described as Diels Alder type reactions. The 3s electrons are used in 

such a way that sp3 bonds may be formed, resulting in a tetrahedral structure. In 
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forming the teu·ahedral arrangement the phosphorus may adopt a covalent structure, as 

in phosphorus oxides and acids, or an ionic structure as in the case of phosphonium 

salts (Figure 2 .2). It is also possible that the 3d orbitals are utilised to create sp3d 

pentacovalency, but this is relatively rare. 149 

The original aim of the research project was to prepare a number of 

1-alk:oxy-1-oxo-3-phospholene heterocycles (Figure 2.4) and then attempt to ring open 

them via Ring Opening Metathesis Polymerisation. 

Q 
#" 0/ OR 

Figure 2.4: 1-Alkoxy-1-oxo-3-phospholenes. 

Numerous routes have been proposed for the preparation of these compounds, but 

the simplest method seems to involve the preparation of 1-chloro-1-oxo-3-phospholene 

as an intermediate (Figure 2.5). 150 

Q 
o~ "'-cl 

Figure 2.5: 1-Chloro-1-oxo-3-phospholene. 

This compound is formed in the reaction between phosphordichlorodites and 

butadiene (Figure 2 .6). 151.152 The initial product is a dihalophosphorane, which is 
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unstable and subsequently undergoes dealkylation to the 1-chloro-1-oxo-3-phospholene 

via an Arbuzov type reaction. 

Figure 2.6: Preparation of 1-chloro-1-oxo-3-phospholenefrom the reaction between 

phosphordichlorodites and butadiene. 

Moedritzer150 observed that the reaction between phosphorus trichloride, 

butadiene and tris(chloroethyl) phosphite resulted in the 1:1 mixture of the two isomers 

of 1-chloro-1-oxo-phospholene. The phosphorus trichloride and tris(chloroethyl) 

phosphite react to form the (2-chloroethyl) phosphonic dichloride intermediate, which 

undergoes a 1,4-cycloaddition reaction with butadiene to yield the product. Although 

the synthesis is a one step, high yield procedure there is the problem of the separation 

of the two phospholene isomers. The synthesis of isomerically pure 

1-chloro-1-oxo-3-phospholene can be achieved by the reaction between ethylene oxide, 

phosphorus trichloride and 1,3 butadiene (Figure 2.7). The ratio of the isomers can be 

controlled by altering the amount of ethylene oxide in the reaction mixture (Table 2.1). 

As can be seen from the table a slight excess of ethylene oxide favours the production 

of the 3-phospholene isomer, so that n=3. 154 Since the ethylene oxide I PC13 and the 

tris(chlorethyl)phosphite I PCl3 reagents are both believed to react via the same 

intermediate it is not clear why the latter reagent should give an isomerically pure 

product. However, the author has found the synthesis is effective as described. 
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PC13 .., 3P(OCH2CH2Cl)Cl2 
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p~ 

c( ~o 

+ 

Figure 2.7: Synthesis of the 1-alkoxy-1-oxo-phospholene isomers. 

Ethylene Oxide Ratio of 3-Isomer Yield (Mol) to 2-Isomer 

1.10 100:0 92% 

1.01 100:0 93% 
1.00 73:27 83% 
0.90 20:80 81% 

Table 2.1: Variation of isomeric purity with differing amounts of ethylene oxide. 

2.3 Experimental. 

2.3.1 Reactants. 

All reactants (Aldrich Chemical Co. Ltd. I Fluka Chemicals Ltd.) and solvents 

(May and Baker I BDH, laboratory grade) were used as supplied unless otherwise 

stated. 
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2.3.2 Characterisation. 

All NMR spectra were recorded on a Varian VXR 400 NMR spectrometer, 

operating at 399.952 MHz for 1H NMR, 100.577 MHz for 13C NMR and 161.90 MHz 

for 31P NMR, a Broker AMX 500 NMR spectrometer operating at 125.770 MHz for 

13C NMR and 202.460 MHz for 31P NMR or a Broker AC250 Ff NMR spectrometer 

operating at 97.15 MHz for 31 P NMR. Mass spectra were recorded on a VG Analytical 

Model 7070E mass spectrometer. Infrared spectra were recorded on a Perkin Elmer 

1600 series Fourier Transform Infrared spectrometer or a Perkin Elmer 577 

spectrometer. 

2.3.3 The use of inhibitors. 

To prevent the formation of polymeric adducts or butadiene polymers, inhibitors 

have to be used. Copper (II) Stearate and butyl pyrocatechol have been used 

extensive1y145•149 for this purpose and so were used in the synthesis of 

1-chloro-1-oxo-phosphol-3-ene. 

2.4 Synthesis and characterisation of 1-chloro-1-oxo-phosphol-3-ene. 

2.4.1 Synthesis of 1-chloro-1-oxo-phosphol-3-ene. 

Phosphorus trichloride (204g/1.50 mol) and copper stearate (ca. l.Og) were 

placed in a 2-litre glass lined stainless steel autoclave and ethylene oxide (67g/1.52 

mol) and 1,3-butadiene (81g/1.50 mol) were introduced by vacuum transfer. The 

resulting mixture was then heated for 10 hours at 105°C. After the reaction was 

completed the volatiles were vented and trapped in a sodium hydrogen carbonate/ice 

bath and the excess phosphorus trichloride (b.p. 75°C) and the by-product 

dich1oroethane (b.p. 83°C) were removed by distillation. The residue was distilled 

under vacuum (10cm Vigreaux column) and pure 1-chloro-1-oxo-phosphol-3-ene was 

collected as a colourless liquid (80-90°C/lmm), which crystallised in the receiver, 59% 
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yield, white crystals (m.p. 52-53°C. Lit. 154 52-53°C). This distillation was carried out 

using a Bunsen burner to ensure that it occurred rapidly to prevent decomposition of 

the 1-chloro-1-oxo-phosphol-3-ene product, which is heat sensitive and gives a lot of 

tarry residues when a conventional slow fractional distillation is attempted. 

2.4.2 Characterisation of 1-chloro-1-oxo-phosphol-3-ene. 

The 1H-decoupled 31 P NMR spectrum (97.15 MHz/CDCl:f Appendix C1) shows 

one singlet at 76.61 ppm due to the presence of one phosphorus environment. The 

infrared spectrum of 1-chloro-1-oxo-phosphol-3-ene was recorded as a KBr disc and is 

shown in appendix D 1. The peaks were consistent with the assigned structure with the 

most important diagnostic infrared bands being:- vinylic CH stretches at 3010 cm-1, 

CH2 stretch at 2960 cm-1, a C=C stretch at 1595 cm-1 and P=O stretch at 1210 cm-1. 

The chemical ionisation mass spectrum (appendix E1) is somewhat equivocal due 

to the fragmentation of 1-chloro-1-oxo-phosphol-3-ene in the mass spectrometer. 

Although there is evidence of a mass peak at 102 (C4H6PO { + H+}) corresponding to 

the loss of a chlorine atom from the protonated parent ion, peaks at 182 and 184 could 

not be accounted for and may indicate the presence of higher molecular weight 

impurity in this compound or some complex process in the mass spectrometer source 

region. 

The number and shifts of the signals in the 1 H NMR spectrum, and their 

integrations, are consistent with the assigned structure, 1-chloro-1-oxo-phosphol-3-ene 

(see appendix A1), with the assignments and chemical shifts summarised in Table 2.2. 

52 



Assignment Shift (ppm) Multiplicity 

H1,H4 2.92 Multiplet 

H2,H3 6.02 Doublet 
3JpH =38.51Hz 

Table 2.2: 1H NMR spectral assignments for 

1-chloro-1-oxo-phosphol-3-ene (399.952 MHz/CDC/3). 

The signal at 2.92 ppm appears as a multiplet due to the two H1 protons, and 

similarly the two H4 protons, being non-equivalent. This creates an A2B2X 

environment with the phosphorus atom, one proton having a syn position with respect 

to the P=O bond and the other having a anti position. In low field spectra the allylic 

signal often appears as a doublet in phospholenes due to a deceptive simplification of 

the signal, but the observation of a multiplet in the higher field 400 MHz NMR 

spectrum of 1-chloro-1-oxo-phosphol-3-ene is in agreement with the expected 

non-equivalence of the protons in the 3-phospholenes. 

The 13C NMR spectrum is consistent with the assigned structure, 

1-chloro-1-oxo-phosphol-3-ene (see appendix B1), with the assignments and chemical 

shifts summarised in Table 2.3. 
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Assignment Shift (ppm) Multiplicity 

C1,C4 36.49 Doublet 
1 Jpc =76.24Hz 

C2,C3 126.17 Doublet 
2Jpc =17.50Hz 

Table 2.3: 13C NMR spectral assignments for 1-chloro-1-oxo-phosphol-3-ene 

(100.577 MHz/CDC/3). 

2.5 Synthesis and characterisation of 1-hydroxy-1-oxo-phosphol-3-ene. 

2.5.1 Synthesis of 1-hydroxy-1-oxo-phosphol-3-ene. 150 

1-Chloro-1-oxo-phosphol-3-ene (lOg/0.073 mol) was hydrolysed by slow 

addition to ice with constant cooling in an ice bath. The evolved HCl was vented into a 

sodium hydrogen carbonate/ice bath and the excess water was subsequently removed 

on a rotary evaporator (bath temperature 80°C). The resulting white crystals were dried 

in vacuo over potassium hydroxide pellets and finally recrystallised from hot toluene in 

98% yield. (m.p. 84-85°C. Lit. 150 86°C). 

2.5.2 Characterisation of 1-hydroxy-1-oxo-phosphol-3-ene. 

The 1H-decoupled 31 P NMR spectrum (97.15 MHz/CDCly Appendix C2) shows 

one singlet at 75.53 ppm due to the presence of one phosphorus environment. The 
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infrared spectrum of 1-hydroxy-1-oxo-phosphol-3-ene is shown in appendix D2 and is 

consistent with the assigned stmcture with the most important diagnostic infrared bands 

being:- vinylic CH stretches at 3040 cm·1, CH2 symmetric and unsymmetric stretches 

at 2960 cm·1 and 2900 cm·1, a C=C stretch at 1605 cm·1 and a P=O stretch at 1235 

cm·1• The broad bands at ""3500 cm·1 and ""1700 cm·1 were indications of the probable 

retention of traces of water by the sample. 

The electron impact mass spectrum (Appendix E2) is consistent with the assigned 

structure and contains a molecular ion at 118 and a base peak at 54 (C4H6 +) resulting 

from the extrusion of P02H from the molecular ion, a sort of retro-Diels Alder reaction. 

The number and shifts of the signals in the 1 H NMR spectrum, and their 

integrations, are consistent with the assigned structure (see appendix A2) with the 

assignments and chemical shifts summarised in Table 2.4. 

Assignment Shift (ppm) Multiplicity 

H1,H4 2.52 Doublet 
2Jpif'l3.84Hz 

H2,H3 5.92 Doublet 
3JpfF33.68Hz 

H5 10.13 Singlet 

Table 2.4: 1H NMR spectral assignments for 1-hydroxy-1-oxo-phosphol-3-ene 

(399.952 MHz!CDC13). 
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The 13C NMR spectrum is consistent with the assigned structure (see appendix 

B2), with the assignments and chemical shifts summarised in Table 2.5. 

Assignment Shift (ppm) Multiplicity 

Cl,C4 30.15 Doublet 
1 Jpc =95.35Hz 

C2,C3 126.90 2 
Doublet 

Jpc =15.19Hz 

Table 2.5: 13C NMR spectral assignments for 1-hydroxy-1-oxo-phosphol-3-ene 

(100.577 MHziCDC13). 

2.6 Synthesis and characterisation of 1-methoxy-1-oxo-phosphol-3-ene. 

2.6.1 Synthesis of 1-methoxy-1-oxo-phosphol-3-ene. 

Dichloromethane, methanol and triethylamine were distilled and stored under 

nitrogen over 3A molecular sieves. 

1-Chloro-1-oxo-phosphol-3-ene (lOg I 0.013 mol), dissolved m dry 

dichloromethane (50ml), was added dropwise to a solution of dry methanol 

(2.53g/0.079 mol) and dry triethylamine (7.55g/0.075 mol), kept at 0°C. The resulting 

white slurry was allowed to warm to room temperature and was stirred for two hours. 
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The hydrochloride salts were removed by filtration, washed with dichloromethane and 

the low boiling materials were removed by distillation under nitrogen. The resulting 

brown residue was distilled in vacuo (lOcm Vigreaux column) to give 

1-methoxy-1-oxo-phosphol-3-ene as a colourless liquid (50-60°C/0.05 mm) in 45% 

yield. 

2.6.2 Characterisation of 1-methoxy-1-oxo-phosphol-3-ene.155 

The number and shifts of the signals in the 1 H NMR spectrum, and their 

integrations, are consistent with the assigned structure (see appendix A3) with the 

assignments and chemical shifts summarised in Table 2.6. 

Assignment Shift (ppm) Multiplicity 

Hl,H4 2.44 Doublet 
2JpH=12.20Hz 

H2,H3 5.94 Doublet 
3JpH=32.81Hz 

H5 3.77 Doublet 
3JPH=11.20Hz 

Table 2.6: 1 H NMR spectral assignments for 1-methoxy-1-oxo-phosphol-3-ene 

(399.952 MHzJD20). 
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The 13C NMR spectrum is consistent with the assigned structure (see appendix 

B3), with the assignments and chemical shifts summarised in Table 2.7. 

Assignment Shift (ppm) Multiplicity 

Cl,C4 28.59 Doublet 
1 Jpc =90.82Hz 

C2,C3 127.02 Doublet 
2Jpc =15.29Hz 

C5 51.33 Doublet 
2Jpc =6.94Hz 

Table 2.7: 13C NMR spectral assignments for 1-methoxy-1-oxo-phosphol-3-ene 

(100.577 MHz/D20). 

The 1H-decoupled 31 P NMR spectrum (97.15 MHz/CDCly' Appendix C3) shows 

one singlet at 85.28 ppm due to the presence of one phosphorus environment. The 

infrared spectrum of 1-methoxy-1-oxo-phosphol-3-ene is shown in appendix 03 and is 

consistent with the assigned stmcture with the most important diagnostic infrared bands 

being:- vinylic CH stretches at 3040 cm-1, CH2/CH3 stretches at 2940 cm-1 and 2900 
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cm-1, a C=C stretch at 1615 cm-1 and a P=O stretch at 1243 cm-1• The broad bands at 

""3500 cm-1 and "'1700 cm-1 were indications of the probable retention of traces of 

water by the sample. 

The electron impact mass spectrum (Appendix E3) is consistent with the assigned 

structure and contains a molecular ion at 132 and a base peak at 54 (C4H6 +). 

2.7 Synthesis and characterisation of 1-phenoxy-1-oxo-phosphol-3-ene. 

2. 7.1 Synthesis of 1-phenoxy-l-oxo-phosphol-3-ene.l56 

Toluene and triethylamine were distilled and stored under nitrogen over 3A 

molecular sieves. 

1-Chloro-1-oxo-phosphol-3-ene (lOg/0.073 mol), dissolved in dry toluene (50ml), 

was added dropwise to a solution of dry triethylamine (7.78g/0.077 mol), phenol 

(6.89g/0.074 mol) and toluene (lOOml), kept at 0°C. The resulting white slurry was 

then was allowed to warm to room temperature and was stirred for 48 hours. The 

hydrochloride salts were removed by filtration, washed with toluene and the low 

boiling fractions were removed by distillation under nitrogen. The residue was distilled 

under vacuum (lOcm Vigreaux column) to produce a colourless liquid 

(80-90°C/0.07mm), which was left to recrystallise in the freezer. The white crystals of 

1-phenoxy-1-oxo- phosphol-3-ene were recovered in 60% yield. (m.p.= 46-48°C. 

Lit.l56 49-50oC). 

2. 7.2 Characterisation of 1-phenoxy-1-oxo-phosphol-3-ene. 

The number and shifts of the signals in the 1 H NMR spectrum, and their 

integrations, are consistent with the assigned structure (see appendix A4) with the 

assignments and chemical shifts summarised in Table 2.8. 
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Assignment Shift (ppm) Multiplicity 

Hl,H4 2.55 Multiplet 

H2,H3 5.95 Doublet 
3JpH =34.00Hz 

H6-HIO 7.25 Multiplet 

Table 2.8: 1H NMR spectral assignments/or 1-phenoxy-1-oxo-phosphol-3-ene 

(399.952 MHz!CDC13). 

The 13C NMR spectrum is consistent with the assigned structure (see appendix 

B4), with the assignments and chemical shifts summarised in Table 2.9. The 

assignments of C5-CIO have been made with reference to P(O)Ph3 data. 157 
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Assignment Shift (ppm) Multiplicity 

Cl,C4 29.04 Doublet 
1 Jpc =91.53Hz 

C2,C3 126.99 Doublet 
2Jpc=16.09Hz 

C5 150.87 Doublet 
2Jpc =8.34Hz 

C6,C10 120.32 Doublet 
3Jpc =4.53Hz 

C7,C9 129.93 Singlet 

C8 124.94 Singlet 

Table 2.9: 13C NMR spectral assignments for 1-phenoxy-1-oxo-phosphol-3-ene 

(100.577 MHz!CDC13). 

The 1H-decoupled 31P NMR spectrum (97.15 MHz/CDClyl Appendix C4) 

shows one singlet at 73.73 ppm due to the presence of one phosphorus environment. 
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The infrared spectrum of 1-phenoxy-1-oxo-phosphol-3-ene is shown in appendix D4 

and is consistent with the assigned structure with the most important diagnostic infrared 

bands being:- vinylic CH stretches at 3060 cm-1, 3010 cm-1, CH2 stretch at 2920 cm-1, 

C=C stretches at 1620 cm-1 and 1595 cm-1 and a P=O stretch at 1243 cm-1• The broad 

band at "'3500 cm-1 is probably due to the retention of traces of water by the sample. 

The electron impact mass spectrum (Appendix E4) is consistent with the assigned 

structure and contains a molecular ion at 194 and a base peak at 140 (M+-C4H6 +). 

2.8 Synthesis and characterisation of 1-neopentoxy-1-oxo-phosphol-3-ene. 

2.8.1 Synthesis of 1-neopentoxy-1-oxo-phosphol-3-ene. 

Toluene and triethylamine were distilled and stored under nitrogen over 3A 

molecular sieves. 

1-Chloro-1-oxo-phosphol-3-ene (10g/0.073 mol), dissolved in dry toluene (50 

ml), was added dropwise to a solution of neopentanol (6.60g/0.074 mol), dry 

triethylamine (7.56g/0.075 mol) and dry toluene (lOOml), kept at 0°C. The resulting 

white slurry was allowed to warm to room temperature and was stirred for 24 hours. 

The hydrochloride salts were removed by filtration, washed with toluene and the low 

boiling materials were removed by distillation under nitrogen. The residue was 

distilled under vacuum (lOcm Vigreaux column) to produce a colourless liquid 

(80-85°C/0.05mm), which was left to recrystallise in the freezer. The white crystals of 

1-neopentoxy-1-oxo-phosphol-3-ene were recovered in 66% yield. (m.p. 49-51°C). 

2.8.2 Characterisation of 1-neopentoxy-1 oxo-phosphol-3-ene. 

The number and shifts of the signals in the 1 H NMR spectrum, and their 

integrations, are consistent with the assigned structure (see appendix A5) with the 

assignments and chemical shifts summarised in Table 2.10. 
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H4 

p H4 

~" 0 0 

Hs Hs 

H7 H9 

H7 H9 

H7 H9 
Hs Hg 

Hs 

Assignment Shift (ppm) Multiplicity 

H1,H4 2.44 Doublet 
2
JpH =12.40Hz 

H2,H3 5.93 3 
Doublet 

JpH =33.20Hz 

H5 3.67 Doublet 
3JpH =5.60Hz 

H7-H9 0.95 Singlet 

Table 2.10: 1H NMR spectral assignments for 1-neopentoxy-1-oxoaphosphol-3-ene 

(399.952 MHz!CDC/3). 

The 13C NMR spectrum is consistent with the assigned structure (see appendix 

B5), with the assignments and chemical shifts summarised in Table 2.11. 
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Assignment Shift (ppm) Multiplicity 

C1,C4 28.94 Doublet 
1Jpc=91.53Hz 

C2,C3 127.03 2 
Doublet 

Jpc =15.28Hz 

C5 74.09 Doublet 
2Jpc =6.84Hz 

C6 31.99 3 
Doublet 

Ipc =6.84Hz 

C7-C9 26.04 Singlet 

Table 2.11: 13C NMR Spectral Assignments for 1-Neopentoxy-1-oxo-phosphol-3-ene 

(100.577 MHz/CDC/3). 

The 1H-decoupled 31 P NMR spectrum (97.15 MHz/CDCl:J Appendix C5) shows 

one singlet at 74.19 ppm due to the presence of one phosphorus environment. The 

infrared spectrum of 1-neopentoxy-1-oxo-phosphol-3-ene is shown in appendix D5 and 

is consistent with the assigned structure with the most important diagnostic infrared 

bands being:- vinylic CH stretches at 3060 cm-1, 3010 cm-1, CH2/CH3 stretches at 2960 
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cm-1 and 2880 cm-1, a C=C stretch at 1595 cm-1 and a P=O stretch at 1252 cm-1. The 

broad band at "'3500 cm-1 is probably due to the retention of traces of water by the 

sample. 

The chemical ionisation mass spectrum (Appendix E5) is consistent with the 

assigned structure and contains a molecular ion peaks at 189 (M + H+) and at 206 (M + 

NH4+). 

2.9 Synthesis and characterisation of 

dimethylbicyclo[2.2.1 ]hept-2-ene-5-phosphonate. 

2.9.1 Synthesis of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 157-16l 

0 
II 

r P-OMe 

~ bMe 
16hrs 

0 
II 
P-OMe 
I 

OMe 

Figure 2.8: Synthesis of dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate. 

Dimethyl vinyl phosphonate (50g/0.248 mol), cyclopentadiene (16.4g/0.248 mol) 

and hydroquinone (ca.O.lg) were sealed in a 160 ml Hastelloy autoclave and heated for 

16 hours at 180°C. The brown reaction mixture was distilled in vacuo (10 em Vigreaux 

column) to give two colourless fractions, dimethyl vinyl phosphonate (50-60°C/O.lmm) 

and dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate (80-90°C/O.lmm). The second 

fraction was redistilled in vacuo (10 em Vigreaux column) to give a mixture of the exo 

and endo isomers of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in 70% yield, in 

65 



an exo/endo ratio, based on NMR and g. I. c., of 1.11:1 (Figure 2 .9). Detailed analysis 

of the NMR data (see later) shows the exo fonn to be the more abundant isomer. 

Exo-isomer 

P(O)(OMeh 

H 

En do-isomer 

Figure 2.9: The exo and endo isomers of 

dimethylbicyclo[2.2.1] hept-2 -ene-5 -phosphonate. 

H 

P(O)(OMeh 

2.9.2 Characterisation of dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate. 

Chromatography techniques were unsuccessful in separating the two isomers and 

therefore characterisation was cmTied out on the exolendo mixture. A 1H-decoupled 

31P NMR spectnJm (97.15 MHz/CDCI1/ Appendix C6) shows the presence of two 

peaks corresponding to the endo and exo environments:- endo-isomer 33.39 ppm 

(singlet), exo-isomer 34.48 ppm (singlet). The infrared spectrum of dimethylbicyclo 

[2.2.1]hept-2-ene-5-phosphonate is shown in appendix 06 and is consistent with the 

assigned structure with the most important diagnostic infrared bands being:- vinylic CH 

stretches at 3060 cm·1• 3010 cm· 1• CH::!/CH3 stretches at 3000 cm·1, 2880 cm·1 and 

2850cm-1, a C=C stretch at 1570 cm· 1 and a P=O stretch at 1236 cm·1. The broad 

bands at "'3500 cm· 1 and "'1700 cm· 1 were indications of the probable retention of 

traces of water by the sample. The electron impact mass spectrum (Appendix E6) was 

consistent with the assigned structure with a small molecular ion being present at 202 

and the base peak at 137 (C4H100 3P) from a retro Diels Alder reaction accompanied by 

a hydrogen atom transfer. 

The 1H NMR spectrum (appendix A6) is summarized m Table 2.12. The 
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assignments are based on a knowledge of the exolendo ratio derived from analysis of 

the Be NMR (appendix B6), DEPT (appendix F1), COSY (appendix F2) and 

HETCOR (appendix F3) spectra. The overall shifts and integrations are self consistent. 

~ ~8 P(O)(OMeh 
- P(O)(OMeh = - P - 0- C8- H8 

Hl 

Exo/Endo Mixture. 

Assignment 
H1 (endo/exo) 

H2/H3 (endo/exo) 
H4 (exo) 

H4 (endo) 
H5 (endo) 
H5 (exo) 

H6 (endo/exo) 

H7 (exo) 

H7 (endo) 

H8 ( endo/exo) 

Shift (ppm) 
2.965 
6.120 
3.148 
3.073 
2.316 
1.561 
1.959 
1.300 
1.643 
1.214 
1.450 
1.310 
3.720 

I I 
0 H8 
I 

Hs- C8- H8 
I 

Hg 

Multi_plicity 
Broad Multiplet 

Multiplet 
Broad Multiplet 
Broad Multiplet 

Multiplet 
Multiplet 
Multiplet 
Multill_let 

AB Quartet 

Multiplet 
Doublet 

Multiplet 

Table 2.12: 1H spectral assignments for 

dimethylbicyclo[2.2.1] hept-2 -ene-5 -phospho nate (399.952MHz!CDC13). 

The Be NMR spectrum was more informative and is summarized in Table 2.13 

with the phosphorus-carbon coupling constants listed in Table 2.14. DEPT spectra 

allowed easy assignment of the CH, CH2 and CH3 carbons and these are discussed in 

detail below. 
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C1 
C2 
C3 
C4 
C5 
C6 
C7 

C8 

~ ~8 
- P(O)(OMe)z = - P - 0- C8- H8 

EXO-ISOMER 
Shift (ppm) Multiplicity 
41.07-41.04 doublet 

135.88 singlet 
135.84-135.68 doublet 
42.663-42.656 doublet 

33.92-33.53 doublet 
26.95 singlet 
45.49 singlet 

51.56-51.49 doublet 

I I 
0 H8 
I 

H8- C8- H8 
I 

Hg 

ENDO-ISOMER 
Shift (ppm) Multiplicity 
41.54-41.48 doublet 

135.65 singlet 
132.04-131.99 doublet 
43.49-43.48 doublet 
34.57-33.05 doublet 
26.12-26.11 doublet 
49.44-49.27 doublet 

(a) 51.30-51.23 doublet 
(b) 51.17-51.10 doublet 

Table 2.13: 13C spectral assignments for 

dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate (100.577MHzJCDC13). 

EXO-ISOMER ENDO-ISOMER 
Carbon P-C Coupling (Hz) P-C Coupling (Hz) 

C1 3.02 6.84 
C2 -------- --------
C3 15.69 4.62 
C4 0.70 1.91 
C5 130.30 153.38 
C6 -------- 1.21 
C7 -------- 16.80 

C8 6.84 (a) 6.93 
(b) 6.54 

Table 2.14: Phosphorus-carbon coupling constants for 

dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 
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A blank indicates that the coupling, if any, was too small to be detected under our 

measuring conditions. 

C-H Carbons. 

In the vinylic region there are six signals corresponding to two exo and two endo 

carbons. The presence of six signals can be explained by the fact that for both exo- and 

endo- isomers carbon C(3) is split by the phosphorus, whereas C(2) is not, hence a 

doublet and a singlet are observed for each of the two isomers. The major isomer 

appears to have the larger coupling constant between C(3) and phosphorus cJJp,c3 = 

15.69 Hz compared to 3Jp,c3 = 4.62 Hz for the minor isomer) and using a Karplus-type 

relationship for 3-bond carbon-phosphorus coupling it can be deduced that the major 

isomer (135.839-135.683 ppm {doublet} and 135.653 ppm {singlet}) is the exo form. 

Large coupling constants are normally observed between carbon and phosphorus 

when they are adjacent and this is the case for P-C(5). Two large coupling constants 

are observed for the major isomer at 33.924-32.529 ppm (1Jp,cs = 130.30 Hz) and the 

minor isomer at 34.573-33.048 ppm (1 Jp,cs = 153.38 Hz). In similar compounds162-1 65 

the 1 Jp,c coupling constant in the en do-isomer is larger than that of the exo-isomer 

hence this strengthens the case for the major isomer being the exo-form. 

Carbon (1) and carbon (4) were originally difficult to distinguish from each other 

as all four signals are doublets with very small coupling constants and appear in the 

same region of the spectrum. A HETCOR spectrum was required to correlate the C(l) 

and C(4) signals with their respective protons and a COSY spectrum was used to assign 

the proton regions. There is evidence from the COSY spectrum of coupling between 

the protons on C(6) and one of these unknown regions. This unknown region could 

now be assigned to the protons on C(l), as C(l) and C6) are adjacent it is more likely 

that H(6) protons would couple with the protons on C(l) than those on C(4). Therefore 

the doublets at 41.074-41.044 ppm cJJP,Cl = 3.02 Hz) and 41.544-41.476 ppm eJP,Cl = 
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6.84 Hz) were assigned to the C(l) exo- and endo-isomers respectively, and the 

doublets at 42.663-42.656 ppm (2Jp,c4 = 0.70 Hz) and 43.494-43.475 ppm (2Jp,c4 = 1.91 

Hz) correspond to C(4) exo and C(4) endo respectively. These assignments also agree 

with the literature162-165 in that the endo coupling constants are larger than the 

corresponding exo values. 

CH2 Carbons. 

In similar compounds the P-C coupling constants for the C(7) carbons in 

endo-isomers are considerably larger than the corresponding coupling constants in 

exo-isomers, which is consistent with a Karplus analysis. Indeed it is not uncommon 

for exo-isomers to show no P-C(7) coupling. 164•165 Using this information the doublet 

at 49.437-49.270 ppm eJP,C7 = 16.80 Hz) and the singlet at 45.489 ppm are assigned to 

the C(7) endo and exo carbons respectively. Again the assignments are consistent with 

the exo-forrn being the major isomer. 

The values of 2-bond P-C coupling constants can often be very small or even zero 

in some cases, and this is observed with the C(6) signals. The major and minor (exo 

and endo) isomers give rise to a singlet at 26.945 ppm and a doublet at 26.119-26.107 

ppm (ZJP,C6 =1.21 Hz) respectively. 

HETCOR and COSY spectra were used to correlate the carbons with their 

respective protons and to observe the proton-proton couplings so that the C(7) and C(6) 

assignments could be confirmed. 

CH3 Carbons 

The only CH3 signals are those of carbon (8) which comprises a large doublet at 

51.561-51.493 ppm (2Jp,c8 = 6.84 Hz) and two smaller doublets at 51.296-51.227 ppm 

CZJP,CS = 6.93 Hz) and 51.167-51.102 ppm (2Jp,cs = 6.54 Hz). The larger doublet is due 

to the major (exo) isomer with the minor (endo) form being represented by the two 

smaller doublets. This phenomenon can be explained by the fact that the two methyl 
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groups are equivalent in the e.:ro-compound, giving lise to one doublet, whereas they 

are non-equivalent in the endo-form hence producing two signals. The methyls in the 

major (exo) isomer can rotate freely but in the case of the minor (endo) isomer the 

methyls must experience steric constraints, which creates two environments and the 

two doublets. It is well known that exo-substituents are less crowded than endo 

substituents in norbornenes. 

2.10 Synthesis and characterisation of 

diethylbicyclo[2.2.1]hept-2-ene-5-r>hosphonate. 

0 
II 

r P-OEt 

~ bEt 
16hrs 

0 
II 
P-OEt 
I 
OEt 

Figure 2.10: Synthesis of diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 

2.10.1 Synthesis of diethylbicyclol2.2.1]hept-2-ene-5-phosphonate. 158-159 

Diethyl vinyl phosphonate (25.g/0.152mol), cyclopentadiene (10g/0.152mol) and 

hydroquinone (O.lg) were sealed in a 160 ml Hastelloy autoclave and heated for 16 

hours at 180°C. The brown liquid product was distilled in vacuo to give two colourless 

fractions, diethyl vinyl phosphonate (50-60°C/O.lmm) and diethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate (R0-90°C/0.1 mm). The second fraction was redistilled in 

vacuo (10 em Vigreaux column) to give a mixture of the exo and endo isomers of 

diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in 66% yield in an exolendo ratio, based 

on NMR and g.l.c. analysis, of 1.13:1. 
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2.10.2 Characterisation of diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 

The 1H NMR spectrum (appendix A7) is summarised in Table 2.15. The 

assignments are based on a knowledge of the exo/endo ratio derived from comparative 

analysis of the 13C NMR, DEPT, COSY and HETCOR spectra of 

dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. The overall shifts and integrations 

are self consistent. 

P(O)(OEth 

HI 

Exo/Endo Mixture. 

Assignment 
H 1 ( endo/exo) 

H2/H3 (endo/exo) 
H4 (exo) 
H4 (endo) 
H5 (endo) 
H5 (exo) 

H6 (endo/exo) 

H7 (exo) 

H7 (endo) 

H8 (endo/exo) 
H9 (endo/exo) 

- P(O)(OEth 

Shift (ppm) Multiplicity 
2.971 Broad Multiplet 
6.114 Multiplet 
3.148 Broad Multiplet 
3.069 Broad Multiplet 
2.309 Multiplet 
1.557 M ultii>_let 

1.986 Multiplet 
1.300* Multiplet 

1.686 AB Quartet 1.204 

1.457 Multiplet 
1.300* Doublet 
3.720 Multiplet 
1.314 Multiplet 

*-peak obscured by (H9) multiplet. 

Table 2.15: 1 H spectral assignments for 

diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate (399.953MHz!CDC13). 
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The 13C NMR spectrum (appendix B7) is assigned by comparison with the 

dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate 13C spectrum and is summarised in 

Table 2.16. 

EXO-ISOMER ENDO-ISOMER 

Shift (ppm) Multiplicity Shift (ppm) Multiplicity 

C1 41.98-41.95 doublet 42.47-42.40 doublet 

C2 136.75* singlet 136.43 singlet 

C3 136.88-136.7 4 doublet 132.98-132.93 doublet 

C4 43.62 doublet 44.45 singlet 

C5 35.52-34.12 doublet 36.06-34.53 doublet 

C6 27.91 singlet 27.15 singlet 

C7 46.34 singlet 50.37-50.21 doublet 

C8 61.49-61.42 doublet (a) 61.26-61.19 doublet 
(b) 61.11-61.04 doublet 

C9 16.53 singlet 16.59 singlet 

* -peak obscured by (C3) doublet. 

Table 2.16: 13C spectral assignments for 

diethylbicyclo[2.2.1]hept-2-ene-5 -phospho nate ( 1 00.577M Hz!CDC13). 
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The phosphorus-carbon coupling constants are as follows:-

EXO-ISOMER ENDO-ISOMER 
Carbon P-C Coupling; (Hz) P-C Coupling (Hz) 

C1 2.71 6.84 
C2 -------- --------
C3 13.78 4.53 
C4 -------- --------
C5 140.71 153.80 
C6 -------- --------
C7 -------- 16.39 

C8 6.84 (a) 6.84 
(b) 6.84 

C9 -------- --------

Table 2.17: Phosphorus-carbon coupling constants for 

diethylbicyclo[2.2.J]hept-2-ene-5-phosphonate. 

A blank indicates that the coupling, if any, was too small to be detected under our 

measuring conditions. 

The 13C NMR assignments are consistent with those of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate (Section 2.9.2), but the small P-C4 coupling present in the 

dimethyl phosphonate monomer is not observed m diethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate. The carbon (C8) signals again appear as a large doublet at 

61.45ppm eJpc= 6.84 Hz) and two smaller doublets at 61.22ppm eJpc= 6.84 Hz) and 

61.07ppm eJpc= 6.84 Hz). The larger doublet is due to the exo-isomer with the 

endo-isomer being represented by the two smaller doublets. This can be explained by 

the two methyl groups being equivalent in the exo-isomer, giving rise to one doublet. 

However, the endo-isomer experiences steric constraints and the two methyl groups are 

non-equivalent creating two methyl environments and hence the two doublets. 

Therefore it would be expected that the C9 signals show a similar effect but the 

splitting is unresolved and the signals appear as two singlets at 16.53ppm and 

16.59ppm, corresponding to the exo and endo-isomers respectively. 
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A 1H-decoupled 31P NMR spectrum (97.15 MHzJCDCly Appendix C7) shows 

the presence of two peaks corresponding to the endo and exo environments:-

endo-isomer 33.32 ppm (singlet), exo-isomer 34.42 ppm (singlet). The infrared 

spectrum of diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate is shown in appendix D7 

and is consistent with the assigned structure with the most important diagnostic infrared 

bands being:- vinylic CH stretches at 3070 cm-1, 3010 cm-1, CH2/CH3 stretches at 3000 

cm-1, 2880 cm-1 and 2850cm-1, a C=C stretch at 1570 cm-1 and a P=O stretch at 1240 

cm-1• The broad bands at ""3500 cm-1 and "'1700 cm-1 were indications of the probable 

retention of traces of water by the sample. 

The electron impact mass spectrum (Appendix E7) was consistent with the 

assigned structure with the small molecular ion being present at 230 and the base peak 

at 165 (C6H140 3P) arising from a retro Diels Alder reaction with hydrogen transfer to 

the charge carrying fragment. 

2.11 Synthesis and characterisation of 

exo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.l]hept-2-ene. 

2.11.1 Synthesis of trans-ethene-l ,2-bis(dimethylphosphonate).166-168 

Cl 

P(OMe)] + ~CI 
NiC12 " (MeOh(O)P~ 

P(O)(OMeh 

Figure 2.11: Synthesis of trans-ethene-1 ,2-bis( dimethylphosphonate). 

Trimethyl phosphite (25g/0.20 mol), trans-1,2-dichloroethene (10g/0.10 mol), 

and nickel (II) chloride (ca. 0.5g) were sealed in a 160 ml Hastelloy autoclave and 

heated for 4 hours at 190°C. The brown reaction product was distilled to remove the 
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low boiling fractions and the distillation was continued in vacuo (lOcm Vigreaux 

column) to produce trans-ethene-1,2-bis(dimethylphosphonate) as a colourless liquid 

(140-145°C/0.1mm) in 65% yield. 

2.11.2 Characterisation of trans-ethene-1,2-bis(dimethylphosphonate). 

The 1H-decoupled 31P NMR spectrum (202.46 MHz/CDC13/Appendix C8) shows 

the presence of one peak at 16.40 ppm corresponding to one phosphorus environment. 

The infrared spectrum of trans-ethene-1,2-bis(dimethylphosphonate) (appendix D8) is 

consistent with the assigned stmcture with the most important diagnostic infrared bands 

being:- vinylic CH stretches at 3010 cm-1, CH2/CH3 stretches at 2990 cm-1 and 

2850cm-1 and a P=O stretch at 1255 cm-1. The broad bands at "'3500 cm-1 and "'1700 

cm-1 were indications of the probable retention of traces of water by the sample. The 

electron impact mass spectrum (Appendix E8) was consistent with the assigned 

structure with the small molecular ion being present at 244 and the base peak at 135 

(C4H80 3P) resulting from the loss of one of the P(O)(OMeh groups. 

The number and shifts of the signals in the 1 H NMR spectrum, and their 

integrations, are consistent with the assigned structure (see appendix A8) with the 

assignments and chemical shifts summarised in Table 2.18. The 13C NMR spectrum is 

consistent with the assigned structure (see appendix B8), with the assignments and 

chemical shifts summarised in Table 2.19. The detailed analysis leading to these 

assignments is explained in appendix G. 
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Assignment 

Hl/H2 

H3 

~ ~3 
- P(O)(OMeh = - P - 0- C3- H3 

Shift (ppm) 

6.80 

3.79 

I I 
0 H3 
I 

H3- C3- H3 
I 

H3 

Multiplicity 

multiplet 

multiplet 

Table 2.18: 1 H spectral assignments for trans-ethene-1 ,2-bis( dimethylphosphonate) 

(399.952MHzJCDC13). 

Assignment Shift (ppm) Multiplicity 

multiplet 

C1/C2 136.18 
1Jpc=179.0 Hz 
2Jpc = 2.35 Hz 
3J = 94.1 Hz pp 

C3 53.00 multiplet 
2Jpc = 5.90 Hz 

Table 2.19: 13C spectral assignments for trans-ethene-1,2-bis(dimethylphosphonate) 

( 125. 77MHzJCDC13). 

2.11.3 Synthesis of exo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.1]hept-2-ene.170 

Cyclopentadiene (14g/0.21 mol) and trans-ethene-l ,2-bis(dimethylphosphonate) 

(23g/0.1 mol) were heated in a 160 ml Hastelloy autoclave for 3 hours at l15°C 

followed by 7 hours at l25°C. The low boiling fractions were removed by Kugelrohr 

distillation (40°C/O.lmm) to give as a pot residue exo,endo-5,6-bis(dimethyl 

phosphonate)bicyclo[2.2.1]hept-2-ene in 90% yield. An attempted vacuum distillation 
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of the product resulted in a retro Diels Alder reaction; consequently characterisation 

was carried out on the undistilled product. 

(MeOh(O)~ 

P(O)(OMeh 

0 

Figure 2.12: Synthesis of 

P(O)(OMeh 

P(O)(OMeh 

exo,endo-5,6-bis( diethylphosphonate)bicyclo[2.2.1]hept-2-ene. 

2.11.4 Characterisation of exa,enda-5,6-bis(dimethylphosphonate) 

bicyclo[2.2.l]hept-2-ene. 

The number and shifts of the signals in the 1 H NMR spectrum, and their 

integrations, are consistent with the assigned structure (see appendix A9) with the 

assignments and chemical shifts summarised in Table 2.20. The assignments are based 

on a comparative analysis of the 13C NMR, DEPT (Appendix F4), COSY (Appendix 

F5) and HETCOR (Appendix F6) spectra with those of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate. 
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~ ~8 P(O)(OMeh 
(exo) - P(O)(OMeh = - P - 0- C8- H8 

.... ,.,, 
P(O)(OMe}, 

( endo) 

Assignment Shift {ppm) 

H2 6.28 

H3 6.19 

H8 3.75 

H4 3.27 

H1 3.22 

H5/H6 2.65 
1.98 

H7 1.74 
1.41 

I I 
0 H8 
I 

H8- C8- H8 
I 

Hs 

Multiplicity 

multiplet 

multiplet 

multiplet 

broad multiplet 

broad multiplet 

multiplet 
multiplet 

doublet 
multiplet 

Table 2.20: 1H spectral assignments for 

exo,endo-5,5-bis(dimethylphosphonate)bicyclo[2.2.1]hept-2-ene 

(399.952MHz!CDC13). 

The 13C NMR spectrum (see appendix B9) is assigned by comparative analysis of 

the 13C NMR, DEPT (Appendix F4), COSY (Appendix F5) and HETCOR (Appendix 

F6) spectra with those of the exolendo mixture of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate, with the assignments and chemical shifts summarised in 

Table 2.21. 

79 



H 
I ~ ~8 H / C4..... .; P(O)(OMeh 

'c/ \ "-c' (exo) 
- P(O)(OMeh = - P - 0- C8- H8 

3 5· .• , 

II H . c 7- H 1 ,,, H 

c / c6...-H 
H/ ~C~ ..• ,,,,P(O)(OMeh 

I (endo) 

H 

Assignment Shift (ppm) 

C3 136.22 

C2 135.15 

C8 52.64 

C7 47.98 

Cl 45.51 

C4 45.25 

C6 37.25 

C5 37.00 

3Jpc 

3Jpc 

2Jpc 

I I 
0 H8 
I 

H8- C8- H8 
I 

Hs 

Multiplicity 

doublet 
= 14.54 Hz 

doublet 
= 4.22 Hz 

multiplet 
= 6.84 Hz 

doublet 
3JP(endo)C = 15.59 Hz 

3Jpc 
multiplet 
= 3.52 Hz 

2Jpc = 1.91 Hz 

3Jpc 
multiplet 
= 6.64 Hz 

2Jpc = 1.11 Hz 

doublet 
lJpc =140.81 Hz 

lJpc 
multiplet 
=153.13 Hz 

2Jpc = 2.62 Hz 

Table 2.21: 13C spectral assignments for 

exo,endo-5,6-bis( dimethylphosphonate)bicyclo[2.2.1]hept-2-ene 

(100.577MHz!CDC13). 

DEPT spectra allowed easy assignment of the CH, CH2 and CH3 carbons and 
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these are discussed in detail below. 

C-H Carbons. 

In the vinylic region there are two doublets corresponding to the two olefinic 

carbons C(2) and C(3). Carbon C(2) is split by the endo phosphorus atom and similarly 

the C(3) carbon is split by the exo phosphorus atom, and each case, as with the 

dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate monomer, there is no four bond P-C 

coupling. By comparing the assignments of the endo/exo mixture of dimethylbicyclo 

[2.2.1]hept-2-ene-5-phosphonate and using a Karplus-type relationship for three bond 

coupling, it can be deduced that the larger coupling constant 3J= 14.54 Hz, centred at 

136.22ppm, corresponds to the P(exo)-C(3) coupling and the 3J= 4.22 Hz, centred at 

135.15ppm, corresponds to P(endo)-C(2) coupling. 

Large coupling constants are normally observed between carbon and phosphorus 

when they are adjacent and this is the case for P(exo )-C(5) and P(endo )-C(6). There 

are two large coupling constants observed for the doublet at 37.25ppm and the doublet 

of doublets at 37.00ppm. The smaller coupling in the doublet of doublets arises from 

two bond P-C coupling. The values of two bond coupling constants can often be small 

or even zero in some cases, and this is observed for the case of the doublet. In similar 

compounds164•165 endo substituents are more likely to undergo two bond coupling than 

exo substituents. It was therefore concluded that the doublet of doublets corresponds to 

carbon C(5) and carbon C(6) gives rise to the doublet. This is again consistent with the 

observations made in the characterisation of the endo/exo mixture of dimethylbicyclo 

[2.2.1]hept-2-ene-5-phosphonate (see section 2.9.2). 

Carbons C(l) and C(4) were again difficult to distinguish from each other as both 

signals are doublets of doublets with small coupling constants and they appear in the 

same region of the spectrum. HETCOR and COSY spectra were again required to 

correlate the C(l) and C(4) signals with their respective protons and to assign the 

proton regions. There is evidence on the COSY spectrum of coupling between the H(6) 
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protons and one of these unknown regions. This unknown region can now be assigned 

to the protons on C(l), as C(l) and C(6) are adjacent and it is more likely that the H(6) 

protons would couple with the H(l) protons than those on C(4). Therefore the doublet 

of doublets at 45.25ppm eJpc = 6.64 Hz, 2Jpe = 1.11 Hz) was assigned to carbon C(4) 

and the doublet of doublets at 45.51ppm eJpc = 3.52 Hz, 2Jpc = 1.91 Hz) was assigned 

to carbon C(l). It can be seen that the three bond coupling constants are larger than the 

two bond coupling constants and that the P(endo)-C(l) and P(endo)-C(4) coupling 

constants are larger than the corresponding exo values. These observations are 

consistent with the assignments of dimethylbicyclo [2.2.1]hept-2-ene-5-phosphonate 

and with the literature. 164-165 

CH, Carbons. 

In similar compounds the P-C coupling constants for C(7) carbons for endo 

substituents are considerably larger than those for exo substituents, which is in 

agreement with a Karplus-type relationship, and it is not uncommon for there to be no 

P(exo)-C(7) coupling. 164•165 It was therefore deduced that coupling constant for the 

doublet at 47.98ppm eJpc = 15.59 Hz) arises from P(endo)-C(?) coupling. 

CH3 Carbons. 

The multiplet, centred at 52.64ppm, comprises four doublets (all 2Jpc= 6.84 Hz) 

corresponding to the four C(8) carbons. This phenomenon can be explained by the fact 

that the two methyl groups on each phosphonate substituent must be non-equivalent 

due to steric constraints, hence creating four different environments in all. Each of the 

four carbons is therefore split by a phosphorus atom and this results in the four 

doublets. This differs slightly to the assignments for the endo/exo mixture of dimethyl 

bicyclo[2.2.1]hept-2-ene-5-phosphonate, where methyl groups on the exo substituent 

were equivalent and could rotate freely resulting in one phosphorus environment and 

one doublet (section 2.9.2). The presence of two phosphonate groups on the 
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exo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.1]hept-2-ene creates further steric 

hindrance and accounts for this difference. 

The 1H-decoupled 31 P NMR spectrum shows a doublet of doublets at 17.72 ppm 

resulting from the two phosphorus environments giving rise to an AB spin system. The 

infrared spectrum of exo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.1]hept-2- ene 

(appendix 09) is consistent with the assigned structure with the most important 

diagnostic infrared bands being:- vinylic CH stretches at 3070 cm·1, 3010 cm·1, 

CHg/CH3 stretches at 2990 cm·1, 2880 cm·1 and 2850cm·1, a C=C stretch at 1570 cm·1 

and a P=O stretch at 1230 cm· 1. The broad bands at "'3500 cm·1 and "'1700 cm·1 were 

again due to the retention of traces of water by the sample. 

The electron impact mass spectrum (Appendix E9) was consistent with the 

assigned structure with the molecular ion being present at 310 and the base peak at 244 

(C6H1406P2) from the retro Diels Alder reaction. 

2.12 Synthesis and characterisation of 

exo,endo-5,6-bis(diethylphosphonate)bicyclo[2.2.1]hept-2-ene. 

2.12.1 Synthesis of trans-ethene-1 ,2-bis(diethylphosphonate).166-168 

Cl .., (EtOh(O)P~ 
""-- NiC12 

P(OEt)J + ~Cl ___ __.. 
P(O)(OEth 

Figure 2.13: Synthesis of trans-ethene-1 ,2-bis( diethylphosphonate ). 

Triethyl phosphite (33g/0.20 mol), trans-1,2-dichloroethene (10g/0.10 mol) and 

nickel (II) chloride (ca. 0.5g) were sealed in a 160 ml Hastelloy autoclave and heated 

for 4 hours at 190°C. The brown reaction product was distilled to remove the low 

boiling fractions and the distillation was continued in vacuo (10cm Vigreaux column) 
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to produce trans-ethene-1,2-bis(diethylphosphonate) as a colourless liquid 

(140-145°C/0.1mm) in 61% yield. 

2.12.2 Characterisation of trans-ethene-1 ,2-bis(diethylphosphonate). 

The 1H NMR spectrum is consistent with the structure of trans-ethene-1,2-bis 

(diethylphosphonate) and is shown in appendix A10 with the chemical assignments and 

chemical shifts summarised in Table 2.22. 

~ ~4 ~4 
(EtOh(O)P>=<H, 

- P(O)(OEth =- P -o-cr C4-H4 

Ht P(O)(OEth 

Assignment Shift (ppm) 

H1/H2 6.80 

H3 4.13 

H4 1.35 

I I I 
0 H3 H4 
I 

H3-C3-H3 
I 

H4- C4-H4 
I 

H4 

Multiplicity 

multiplet 

multiplet 

multiplet 

Table 2.22: 1 H spectral assignments for trans-ethene-1 ,2-bis( diethylphosphonate) 

(399.952MHziCDCl3). 

The 1H-decoupled 31P NMR spectrum (202.46 MHz/CDClfAppendix ClO) 

shows the presence of one peak at 13.97 ppm corresponding to one phosphorus 

environment. The infrared spectrum of trans-ethene-1,2-bis(diethylphosphonate) 

(appendix 010) is consistent with the assigned structure with the most important 

diagnostic infrared bands being:- vinylic CH stretches at 3010 cm-1, CH2/CH3 stretches 

at 2880 cm-1 and 2850cm-1 and a P=O stretch at 1260 cm-1• The broad bands at ""3500 
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cm·1 and ---1700 cm·1 were indications of the probable retention of traces of water by 

the sample. The electron impact mass spectrum (Appendix E8) was consistent with the 

assigned structure with the small molecular ion being present at 300 and the base peak 

at 163 (C6H120 3P) resulting from the loss of one of the P(O)(OEt)z groups. 

- P(O)(OEt)z 

Assignment Shift (ppm) Multiplicity 

multiplet 

C1/C2 135.59 lJpc =178.3Hz 
2Jpc = 2.04 Hz 
3Jpp = 93.3 Hz 

C3 62.54 multiplet 
2Jpc = 5.55 Hz 

C4 16.38 
3Jpc 

multiplet 
= 6.24 Hz 

Table 2.23: 13C spectral assignments for trans-ethene-1,2-bis(diethylphosphonate) 

(125.77MHz/CDCIJ). 

2.12.3 Synthesis of exo,endo-5,6-bis(diethylphosphonate )bicyclo[2.2.1]hept-2-ene.170 

Cyclopentadiene (14g/0.21 mol) and trans-ethene-1,2-bis(diethylphosphonate) 

(23g/O.l mol) were heated in a 160 m1 Hastelloy autoclave and heated for 3 hours at 

ll5°C followed by 7 hours at l25°C. The low boiling fractions were removed by 

Kugelrohr distillation (40°C/0.1mm) to produce exo,endo-5,6-bis(diethylphosphonate) 

bicyclo[2.2.1]hept-2-ene in 88% yield. Vacuum distillation resulted in a retro Diels 
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Alder reaction and so characterisation was canied out on the undistilled product. 

(EtO):,(O)P~ 

P(O)(OEt)z 

0 ... 

Figure 2.14: Synthesis of 

P(O)(OEt)z 

P(O)(OEt)z 

exo,endo-5,6-bis( diethylphosphonate)bicyclo[2.2.1]hept-2-ene. 

2.12.4 Characterisation of exo,endo-5,6-bis(diethylphosphonate) 

bicyclo[2.2.1) hept-2-ene. 

The 1H-decoupled 31 P NMR spectrum shows a doublet of doublets at 15.14 ppm 

resulting from the two phosphorus environments giving rise to an AB spin system. The 

infrared spectrum of exo ,endo-5,6-bis( dieth y lphosphonate) bicyclo[2.2.1 ]hept-2-ene 

(Appendix Dll) is consistent with the assigned structure with the most important 

diagnostic infrared bands being:- vinylic CH stretches at 3070 cm-1, 3010 cm-1 and a 

C=C stretch at 1570 cm-1, CH2/CH3 stretches at 3000 cm-1, 2950 cm-1 and 2880cm-1 

and a P=O stretch at 1250 cm-1. The broad bands at ""3500 cm-1 and ""1700 cm-1 were 

again due to the retention of traces of water by the sample. 

The electron impact mass spectrum (Appendix Ell) was consistent with the 

assigned structure with the small molecular ion being present at 366 and the base peak 

at 229 (C11H180 3P) due to the loss of a P(O)(OEt)z group. 

The number and shifts of the signals in the 1 H NMR spectrum, and their 

integrations, are consistent with the assigned structure (see appendix All) with the 

assignments and chemical shifts summarised in Table 2.24. The assignments are based 

on a comparative analysis of the 1 H NMR spectrum of exo,endo-5,6-bis(dimethyl 
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phosphonate )bicyclo[2. 2.1] hept-2-ene. 

P(O)(OEt)? 
(exo) -

,,,,, 
Hs 
H6 

··.,,, P(O)(OEt}, 
(endo) -

Assignment 

H2 

H3 

H8 

H4 

H1 

H5/H6 

H7 

H9 

- P(O)(OEt)z 

Shift (ppm) 

6.26 

6.21 

4.11 

3.27 

3.21 

2.64 
1.97 

1.76 
1.33 

1.33 

Multiplicity 

multiplet 

multiplet 

multiplet 

broad multiplet 

broad multiplet 

multiplet 
multiplet 

doublet 
multiplet* 

multiplet 

* -peak obscured by H9 multiplet. 

Table 2.24: 1 H spectral assignments for 

exo,endo-5,5-bis(diethylphosphonate)bicyclo[2.2.J]hept-2-ene (399.952MHz!CDC13). 

The Be NMR spectrum was assigned by comparison with the Be NMR 

spectrum of exa,enda-5,6-bis(dimethylphosphonate)bicyclo[2.2.1]hept-2-ene. The 

assignments, chemical shifts and P-C coupling constants are consistent with those of 

exa,enda-5,6-bis(dimethylphosphonate )bicyclo[2.2.1 ]hept-2-ene (Section 2.11.4). The 

carbon C(8) signals again appear as four doublets (all 2Jpc= 6.84 Hz). This can be 
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explained by the two methyl groups in each phosphonate substituent being 

non-equivalent due to steric constraints and this creates four carbon environments in 

all. Each carbon is split by a phosphorus atom resulting in the four doublets. This 

phenomenon is not observed in the endo/exo mixture of diethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate. Although the two carbon C(8) CH2 groups on the 

endo-isomer experience steric constraints and are non-equivalent giving rise to two 

doublets, the carbon C(8) CH2 groups on the exo-isomer are equivalent and can rotate 

freely, resulting in one phosphorus environment and one doublet (Section 2.10.2). The 

presence of two phosphonate groups on the exo,endo-5,6-bis(diethylphosphonate) 

bicyclo[2.2.1]hept-2-ene creates further steric hindrance and accounts for this 

difference. Therefore it would be expected that the C9 signals show a similar effect but 

the splitting is unresolved and the signals appear as two singlets at 16.25ppm and 

16.19ppm, corresponding to the exo and endo phosphonate substituents respectively. 

The 13C NMR spectrum is shown in appendix B 11 with the chemical 

assignments and chemical shifts summarised in Table 2.25. 
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Assignment Shift (ppm) Multiplicity 

C3 136.79 doublet 
3Jpc = 14.48 Hz 

C2 135.10 doublet 
3Jpc = 4.22Hz 

C8 61.46 
2Jpc 

multiplet 
= 6.84 Hz 

C7 47.65 doublet 
3JP(endo)C = 15.59 Hz 

3Jpc 
multiplet 

C1 45.41 = 3.22 Hz 
2Jpc = 2.31 Hz 

3Jpc 
multiplet 

C4 45.17 = 6.49 Hz 
2Jpc = 0.70 Hz 

C6 37.71 doublet 
lJpc =140.71 Hz 

lJpc 
multiplet 

C5 37.41 =153.18 Hz 
2Jpc = 1.91 Hz 

C9(exo) 16.19 singlet 
C9(endo) 16.25 singlet 

Table 2.25: 13C spectral assignments for 

exo,endo-5,6-bis(diethylphosphonate)bicyclo[2.2.1]hept-2-ene (100.577MHz/CDCl3). 
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2.13 Attempted preparation of bicyclo[2.2.l]hept-2-ene-5-phosphonic acid. 

0 

II 
P-OMe 
I 
OMe 

Figure 2.15: Attempted hydrolysis of 

dimethylbicyclo[2.2.1] hept-2 -ene-5 -phosphonate. 

0 

II 
P-OH 
I 

OH 

The hydrolysis of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate was carried 

out in attempts to obtain monomers with pendant phosphonic acid groups. The 

objective being to increase the water solubility of the resulting polymers. In principle 

hydrolysis can be carried out by three methods, acid catalysed hydrolysis, base 

catalysed hydrolysis and by the reaction with bromo-trimethylsilane. It is reported that 

both of the alkyl groups are removed by acid catalysed hydrolysis and by the reaction 

with bromo-trimethylsilane, 171 ·173 whereas only one is cleaved by base catalysed 

hydrolysis.171 

2.13.1 Acid catalysed hydrolysis. 

Dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate (5.0g/0.025 mol) was dissolved 

in an 18% HCl solution (50ml) and refluxed for 6 hours. Analysis of the resulting 

mixture revealed that although partial hydrolysis had occurred, evident from the 

reduction of the P-OR infrared signal and the decrease of the methyl signals in both 1 H 

and 13C NMR, the conditions used were appropriate for acid catalysed addition of 

water across the double bond, consequently a complex intractable mixture of products 

was obtained. 
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2.13.2 Base catalysed hydrolysis. 

Dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate (5.0g/0.025 mol) was dissolved .) 

in a saturated solution of sodium hydroxide (50ml) and refluxed for 6 hours. Analysis 

again revealed that the conditions were suitable for promoting addition of water across 

the double bond and the reaction product was a complex intractable mixture 

2.13.3 Attempted hydrolysis via initial reaction with bromotrimethylsilane.172-173 

In an attempt to find a milder more specific reagent bromo-trimethylsilane was 

investigated. 

TMSBr ... 
P(O)(OMeh P(O)(OTMS)z 

+MeBr 

P(O)(OH)2 

+TMSOH 

Figure 2.16: Attempted synthesis of bicyclo[2.2.l]hept-2-ene-5-phosphonic acid 

using bromotrimethylsilane. 

Bromotrimethylsilane (50g/0.33 mol) was added dropwise to dimethylbicyclo 

[2.2.1]hept-2-ene-5-phosphonate (20g/0.10 mol) kept at 0°C, and the mixture was 
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stirred for 30 minutes. Water (15ml/0.83 mol) was then added dropwise and the 

resulting slurry was stirred for a fmther 30 minutes and allowed to warm up to room 

temperature. The hydroxytrimethylsilane was filtered off and the water was removed 

on a rotary evaporator (bath temperature 80°C). The product was dried in vacuo for 24 

hours to give a brown viscous semi-solid. 

1 .., ,_JAil .... a..tA. 
-

Figure 2.17: 1 H spectrum of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate 

(399.952 MHz/CDCl3). 

Figure 2.18: 1H spectrum of hydrolysis product (399.952 MHz!D20). 
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l 

Figure 2.19: 13C spectrum of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate 

(100.577 MHz!CDC/3). 

.. -

Figure 2.20: 13C spectrum of hydrolysis product (100.577 MHzJD20). 

Analysis of the product reveals that the methyl group signals disappear from the 

1H NMR (3.720 ppm)and 13C NMR (<::::50-51 ppm) spectra, the relative intensity of the 

vinylic carbon signal is decreased and the vinylic to aliphatic ratio of protons is 

decreased from 2:7 in the starting material (excluding the methyl groups) to 2:65 in the 
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product. There is also a slight difference in the spectral shifts between the product and 

starting material and an increased complexity of signals in the spectra of the product 

On the basis of these data it is concluded that the TMSBr method is effective in 

the removal of the methyl groups and a water soluble acid product is obtained. This is 

supponed by the evolution of a gas during the reaction which was presumed to be 

CH3Br. The norbomene vinylic region of the product is involved in an uncharacterised 

reaction leading to a water soluble product which gives peaks in its aqueous GPC 

analysis at masses corresponding to approximately 23xl03, 12xl03 and 3xHP. 
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Figure 2.21: Aqueous GPC of hydrolysis product. 

There is probably some error in the absolute values of the m~ due to the 

presence of three peaks close to each other, but it is clear that we do not have a simple 

exo/endo mixture of bicyclo[2.2.1 ]hept-2-ene-5-phosphonic acid as the product of this 

reaction. It seems reasonable to assume that some "polymerisation" of the norbornene 
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structure is caused by the sn·ong pro tic acid. Using this procedure the author has 

successfully made vinyl phosphonic acid from the demethylation of dimethyl 

vinylphosphonate, and the product was isolated in good yield. 173 The failure to obtain 

the analogous norbomene product must therefore be attributed to the enhanced 

susceptibility of the norbornene double bond to cationic reactions. The only plausible 

route to polymers with pendant P(O)OH)z units would therefore appear to be via 

demethylation of the polymers containing pendant esters using TMSBr, such an 

approach is unfortunately prohibitively expensive for conventional polymer syntheses 

and in any event the free P(O)(OH)z groups might be expected, in light of this 

experience, to react with or catalyse reactions of the main chain double bonds. 
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ChaQter Three: 
Syntheses and Attempted 

Syntheses of ROMP Polymers. 
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3.1 General Introduction. 

This chapter describes the syntheses and characterisations of high molecular 

weight polymers via Ring Opening Metathesis Polymerisation (ROMP) of bicyclic 

organophosphorus monomers in organic and aqueous solvents using various transition 

metal chlorides as the precursors to the initiating and propagating species. The 

initiating species, which are presumed to contain a metallocarbene, are formed in situ 

and are ill defined with respect to structure.39 Unsuccessful attempts to polymerise 

monocyclic 3-phospholenes via ROMP are also described. 

3.2 Experimental. 

3.2.1 Reactants. 

All transition metal chlorides, WC16, MoCl5, RuC13.3H20, IrC13.3H20, 

OsC13.3H20 and PdC12 (Aldrich Chemical Co. Ltd.) and solvents (May and Baker I 

BDH, laboratory grade) were used as supplied unless otherwise stated. The attempted 

aqueous ROMP of the monomers prepared in chapter 2 used distilled water. 

3.2.2 Characterisation. 

Polymer characterisation was performed using the apparatus described in Section 

2.3.2. The molecular weights of the ring opened polymers were measured by Gel 

Permeation Chromatography (GPC) using chloroform as the eluent. The equipment 

comprised a Waters model 590 HPLC pump, a Waters R401 Refractive Index (RI) 

detector, a Waters U6K injection valve with 2001ll injection loop and a three column set 

(51l 105 A 30cm + 51l 103 A 30cm + 51l 100A 30cm from Polymer Laboratories Ltd.). 

The calculation of molecular weights from the raw data was performed using the 

Polymer Laboratories Ltd. software package and the equipment was calibrated using 

polystyrene standards (Polymer Laboratories Ltd.). 
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3.3 Attempted ROMP of lMhydmxyM and 1-alkoxyMl-oxo-3-phospholenes. 

3.3.1 Attempted ROMP of 1-hydroxy-1-oxo-phosphol-3-ene using WC1JSnMe4 and 

MoC15/SnMe4. 

0-. OR "' / ~p~ 

Figure 3.1: Attempted ROMP of the 1-hydroxy-1-oxo-3-phospholene. 

1-Hydroxy-1-oxo-3-phospholene (l.Og/0.005-0.008 mol) was dissolved in dried 

toluene in a dry oxygen free reaction vessel connected directly to the vacuum/nitrogen 

manifold. The solution was degassed by a freeze/thaw procedure and eventually let 

down to a dry nitrogen atmosphere. A toluene solution of WClJSnMe4 was prepared 

by dissolving tungsten hexachloride and tetramethyl tin in dried, degassed toluene 

under nitrogen in a vessel connected to a vacuum/nitrogen line. The resulting solution 

was a deep chocolate brown/red colour, characteristic of an active initiator derived 

from this catalyst/co-catalyst mixture. The premixed WClf1SnMe4 solution was 

injected into the monomer solution using a syringe, yielding a blue/black colour 

immediately on addition, indicating the destruction of the active initiator species. 

Spectroscopic analysis of the solution revealed the monomeric starting material. The 

experiment was repeated using molybdenum pentachloride/tetramethyl tin as the 

catalyst/co-catalyst system and using chlorobenzene as the solvent, but no 

polymerisation resulted. Control reactions were performed with norbomene to verify 

that the initiators were active and the experimental technique adopted was satisfactory 

in each case. The P(O)(OH) group on the 1-hydroxy-1-oxo-phosphol-3-ene results in 
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this material being very hygroscopic and the moisture free conditions required for the 

WClcfSnMe4 and MoC15/SnMe4 classical initiator systems almost certainly were not 

obtained, thus accounting for the rapid quenching of the active initiator. The infra-red 

spectrum (Appendix 02) of the monomer suggests that it retains moisture despite our 

attempts to dry it. 

3.3.2 Attempted ROMP of the 1-alkoxy-1-oxo-phosphol-3-enes using WClJSnMe4 

and MoClsfSnMe4• 

The experimental procedure outlined in section 3.3.1 was repeated for each of the 

three 1-alkoxy-1-oxo-3-phospholenes with the results tabulated below (Table 3.1). 

3.3.3 Attempted aqueous ROMP of 1-hydroxy-1-oxo-phosphol-3-ene. 

The aqueous ROMP of 1-hydroxy-1-oxo-phosphol-3-ene was attempted using 

several transition metal chlorides as the precursors to the initiating and propagating 

species. In each reaction the 1-hydroxy-1-oxo-phosphol-3-ene (1.0g,0.008 mol) was 

placed in a test tube, dissolved in solvent (6.5ml) and stirred for 30 minutes with a 

magnetic stirrer at 55°C. Transition metal chloride (70mg) was then added and the 

resulting solution was stirred at 55°C for seven days. The resulting solution was freeze 

dried to recover a dark solid, which was extracted with diethyl ether to separate organic 

material from the catalyst residues, in each case the monomeric starting material was 

recovered~ 0.93g). 

The same experiment was repeated several times at different temperatures 

between 25°C and 85°C and left for times varying between two days and one week. 

Polymerisation was not observed under any of the conditions investigated. 

Control reactions were performed in each case with exa,exa-7-oxabicyclo[2.2.1.] 

hept-5-ene-2,3-dicarboxylic acid (Figure 3 .2) to verify that the initiators were active 

and the experimental technique adopted was satisfactory. Although the polymerisation 

of the 1-hydroxy-1-oxo-3-phospholene proved to be unsuccessful, the control 
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experiment produced the expected ring opened polymer in every case. 

n 
C02H Aqueous 

ROMP 

Figure 3.2: Aqueous ROMP of 

exo,exo-7 -oxabicyclo[2.2.1.] hept-5 -ene-2,3 -dicarboxylic acid 

3.3.4 Attempted aqueous ROMP of the 1-alkoxy-1-oxo-phosphol-3-enes. 

The experimental procedure outlined in section 3.3.3 was repeated for each of the 

three 1-alkoxy-1-oxo-3-phospholenes with the results tabulated below (Table 3 .1), 

where R = H, Me, Ph or neopentyl and X indicates a failed polymerisation attempt. 
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Solvent Initiator H Me Ph Neopentyl 

H20 RuC13 X X X X 

EtOH RuC13 X X X X 

Ph-Cl RuC13 X X X X 

H20!EtOH RuC13 X X X X 

Ph-Cl/EtOH RuC13 X X X X 

H20 IrC13 X X X X 

EtOH IrC13 X X X X 

Ph-Cl IrC13 X X X X 

H20/EtOH IrCl3 X X X X 

Ph-Cl/EtOH IrCI3 X X X X 

H20 OsC13 X X X X 

EtOH OsC13 X X X X 

Ph-Cl OsCI3 X X X X 

H20/EtOH OsCl3 X X X X 

Ph-Cl/EtOH OsCl3 X X X X 

Ph-Cl WCIJSnMe4 X X X X 

Ph-Me WClJSnMe4 X X X X 

Ph-Cl MoCI.sfSnMe4 X X X X 

Ph-Me MoCl.sfSnMe4 X X X X 

Table 3.1: Results of attempted ROMP experiments with 3-phospholenes. 
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3.3.5 Discussion of observations on non-polymerisability of 3-phospholenes. 

In order to investigate why the 3-phospholenes and cyclopentene fail to undergo 

ROMP with aqueous initiators we must take into account the important factors 

affecting the free energy of polymerisation, which are (see section 1.1.3): 

(i) Size and nature of the ring, hence the ring strain. 

(ii) Substituents on the monomer. 

(iii) The cis/trans geometrical isomerism of the polymer. 

(iv) Tacticity of the polymer. 

The ring size and substitution are the two major factors in this set. Dainton and 

Ivin127 considered the hypothetical ring opening polymerisation of a series of 

cycloalkanes by estimating the Gibbs Free Energy of Ring Opening (L1GRo) from 

thermodynamic data (Table 3.2) and plotting the results against the size of the ring 

(Figure 3.3).53 

Cyclic Hydrocarbon t1GRo Polymerises 

Cyclobutane Large negative No 

Cyclopentane Small negative No 

Cyclohexane Small positive No 

Cycloheptane Small negative No 

Cyclooctane Large negative No 

Cyclobutene Large negative Yes 

Cyclopentene Small negative Yes 

Cyclohexene Small positive No 

Cycloheptene Small negative Yes 

Cyclooctene Large negative Yes 

Table 3.2: Polymerisability of cycloalkanes and cycloalkenes. 
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------------------

Atoms in the Ring. 

A= Unsubstituted Cycloalkane. 
B = Methyl Substituted Cycloalkane. 
C = 1,1-Dimethyl Substituted Cycloalkane. 

Figure 3.3: Free energy of polymerisation of cycloalkanes as a function of the 

number of atoms in the ring. 

Although it is not possible to polymerise cycloalkanes by metathesis the ~GRo 

values for cycloalkanes are approximately equal to those of the cycloalkenes and 

therefore direct comparisons can be made. All the values are negative except for that 

of cyclohexene, which is the only cycloalkene that will not undergo ROMP. The 

~GRo- ring strain relationship is emphasised by the fact cyclobutene and cyclooctene 

have large negative ~GRo values and undergo ROMP to completion, whereas 

cyclopentene has a small negative ~GRo value and stops short of completion. This 

suggests that the polymerisations of cyclobutene and cyclooctene are irreversible 

reactions, whereas the polymerisation of cyclopentene is essentially an equilibrium 

process. When the ~GRo value is small, slight changes in the chemical structure (eg. 

substitution - see Figure 3.3) and physical conditions may render the monomer 

unpolymerisable. This is the case for cyclopentene, where the monosubstituted 
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compounds undergo ROMP but the disubstituted cyclopentenes do not. From this we 

can see that the polymerisation of five membered rings is very dependant on the nature 

of the ring and it has been concluded that the bond lengths and angles result in a low 

ring strain. Therefore it is believed that the aqueous initiators, which are less 

electrophilic than the tungsten and molybdenum initiators, are unable to offset the 

small free energy of ring opening. 53 

It would therefore seem there is a delicate balance between ring strain and 

conditions as to whether the five membered rings polymerise or not. Thus favourable 

conditions have not yet been met for the case of the ring opened polymerisations of the 

3-phospholenes. This is emphasised by the fact that 1,1-dimethylsilacyclopent-3-ene 

(Figure 3 .4)114 and cyclopentene undergo ROMP with classical and "living" initiators 

and a wide range of phosphorus heterocycles such as 2-alkoxy-2-oxo-1,3,2-

dioxaphospho1ane175 ring open polymerise via anionic and cationic polymerisation 

(Figure 3 .5). 

ROMP 

Figure 3.4: ROMP of 1 ,1-dimethylsilacyclopent-3-ene. 

1\ Anionic/Cationic 
0 
"- /

0 
Polymerisation 
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Figure 3.5: The polymerisation o/2-alkoxy-2-oxo-1,3,2-dioxaphospholane. 
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3.4 Synthesis and characterisation of 

poly{2,5[3-dimethylphosphonate]cyclopentylene}vinylene. 

3.4.1 Attempted ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate using 

WCIJSnMe4 and MoC15/SnMe4~ 

Dimethylbicyclo[2.2.1 ]hept-2-ene-5-phosphonate (l.Og, 0.005 mol) was 

dissolved in dried toluene in a dry oxygen free reaction vessel connected directly to the 

vacuum/nitrogen manifold. The solution was then degassed by a freeze/thaw procedure 

and eventually let down to a dry nitrogen atmosphere. A toluene solution of 

WClcJSnMe4 was prepared by dissolving tungsten hexachloride and tetramethyl tin in 

dried, degassed toluene under nitrogen in a vessel connected to a vacuum/nitrogen line. 

The resulting solution was a deep chocolate brown/red colour, characteristic of an 

active initiator derived from this catalyst/co-catalyst mixture. The premixed 

WClc/SnMe4 solution was injected into the monomer solution using a syringe, yielding 

a blue/black colour immediately on addition, indicating the destruction of the active 

initiator species. Work up of the solution, as described earlier, gave the monomeric 

starting material in good yield. The experiment was repeated using molybdenum 

pentachloride/teu·amethyl tin as the catalyst/co-catalyst system and using 

chlorobenzene as the solvent, but no polymerisation resulted. Control reactions were 

performed in each case with norbornene to verify that the initiator was active and the 

experimental technique adopted was satisfactory. The P(O)(OMeh group on the 

dimethylbicyclo [2.2.l]hept-2-ene-5-phosphonate monomer results in this material 

being very hygroscopic and the moisture free conditions required for the WClc/SnMe4 

and MoC15/SnMe4 classical initiator systems almost certainly were not obtained, thus 

accounting for the rapid quenching of the active initiator. The infra-red spectrum 

(Appendix 06) of the monomer suggests that it retains moisture despite our attempts to 

dry it. 
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3.4.2 Agueous ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 

P(O)(OMeh Aqueous 
-----':........,....---! ..... 

n 

ROMP 

P(O)(OMeh 

Figure 3.6: Aqueous ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 

The aqueous ROMP of dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate was 

attempted using various transition metal chlorides as the precursors to the initiating 

species in a variety of solvent systems. In each reaction the dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate monomer (1 g, 0.005 mol) was placed in a test tube, 

dissolved in solvent (6.5ml) and stirred for 30 minutes with a magnetic stirrer at 55°C. 

Transition metal chloride (70mg) was then added and the resulting solution was stirred 

at 55°C for two days. Polymerisation occurred, as was evident from the precipitation 

of a rubbery gel. The polymers (poly{2,5-[3-dimethylphosphonate]cyclopentylene} 

vinylenes) were recovered by decantation and/or filtration, dissolved in ethanol and 

reprecipitated into water. This process was repeated twice and the polymers were 

obtained as stringy, solvent swollen materials, which were dried in vacuo for 24 hours. 

Successful polymerisations were achieved with IrC13.3H20, RuC13.3H20 and 

OsC13.3H20 but no polymers were formed with PdCl2. A series of reactions were 

performed to discover how yield and molecular weight varied with variations in solvent 

composition and the results are tabulated below (Tables 3.3-3 .7). Plots of reciprocal 

number average weight against ethanol volume concentration (% ), for each set of 

results, are presented in Figures 3.7-3.11. All sets of experiments were performed 

using the same batches of initiator, monomer, distilled water and ethanol, in the same 

water bath and worked up and analysed in the same way. 
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Figure 3.7: Graph of reciprocal number average molecular weight against ethanol 

volume concentration(%) for the ROMP of dimethylbicyclo[2.2.1]hept-2-ene-

5-phosphonate using IrC13.3H20 and ethanol/water. 

Ethanol Water Mn Mw Mw/Mn Yield (ml) (ml) 

6.5 ml Oml 40000 195000 4.872 75% 

6.0 ml 0.5ml 74000 204000 2.757 68% 

5.0ml 1.5 ml 79000 264000 3.346 69% 

4.0ml 2.5ml 92000 276000 3.002 70% 

3.25 ml 3.25 ml 122000 318000 2.606 72% 

3.0 ml 3.5 ml 129000 234000 1.820 68% 

2.0 ml 4.5 ml 138000 330000 2.394 71% 

1.0 ml 5.5 ml 233000 501000 2.141 74% 

Oml 6.5 ml 304000 493000 1.620 81% 

Table 3.3: Aqueous ROMP of dimethyl bicyclo[2.2.1]hept-2-ene-5-phosphonate 

using lrC13.3H20 and ethanol/water. 
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Figure 3.8: Graph of reciprocal number average molecular weight against ethanol 

volume concentration(%) for the ROMP of dimethyl bicyclo[2.2.1]hept-2-ene-

5-phosphonate using lrCl3.3H20 and ethanol/chlorobenzene. 

Ethanol Ph-Cl Mn Mw Mw/Mn Yield (ml) (ml) 

6.5 ml Oml 40000 195000 4.872 75% 

6.0ml 0.5ml 12000 40000 3.429 66% 

5.0ml 1.5 ml 6000 18000 3.152 67% 

4.0ml 2.5ml 8000 13000 1.558 64% 

3.25 ml 3.25 ml 9000 18000 1.912 60% 

3.0 ml 3.5ml 9000 17000 1.848 62% 

2.0ml 4.5ml 8000 11000 1.442 61% 

1.0 ml 5.5ml 10000 17000 1.638 63% 

Oml 6.5 ml 10000 22000 2.259 61% 

Table 3.4: Aqueous ROMP of dimethyl bicyclo[2.2.1]hept-2-ene-5-phosphonate 

using JrCl3.3H20 and ethanollchlorobenzene. 
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Figure 3.9: Graph of reciprocal number average molecular weight against ethanol 

volume concentration(%) for the ROMP of dimethyl 

bicyclo[2.2.l]hept-2-ene-5-phosphonate using RuCl3.3H20 and ethanol/water. 

Ethanol Water Mn Mw Mw/Mn Yield (ml) (ml) 

6.5ml Oml 7000 37000 5.588 11% 

6.0ml 0.5 ml 8000 21000 2.782 11% 

5.0ml 1.5 ml 13000 45000 3.520 30% 

4.0ml 2.5 ml 19000 55000 2.848 72% 

3.25 ml 3.25 ml 40000 103000 2.567 73% 

3.0ml 3.5 ml 37000 92000 2.509 69% 

2.0ml 4.5ml 58000 195000 3.352 70% 

l.Oml 5.5 ml 109000 209000 1.909 78% 

Oml 6.5 ml 173000 491000 2.841 91% 

Table 3.5: Aqueous ROMP of dimethyl bicyclo[2.2.1]hept-2-ene-5-phosphonate 

using RuCl3.3H20 and ethanol/water. 
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Figure 3.10: Graph of reciprocal number average molecular weight against ethanol 

volume concentration (%)for the ROMP of dimethylbicyclo[2.2.1]hept-2-ene-

5-phosphonate using RuCl3.3H20 and ethanol/chlorobenzene. 

Ethanol Ph-Cl Mn Mw Mw/Mn Yield (ml) (ml) 

6.5 ml Oml 7000 37000 5.588 11% 

6.0ml 0.5 m1 16000 98000 6.198 30% 

5.0 m1 1.5 m1 21000 71000 3.426 26% 

4.0ml 2.5 m1 22000 91000 4.158 15% 

3.25 m1 3.25 m1 15000 49000 3.294 2% 

3.0 m1 3.5ml 9000 28000 3.174 1% 

2.0ml 4.5ml ----- ----- ----- 0% 

1.0 m1 5.5ml ----- ----- ----- 0% 

Oml 6.5ml ----- ----- ----- 0% 

Table 3.6: Aqueous ROMP of dimethyl bicyclo[2.2.1]hept-2-ene-5-phosphonate 

using RuCl3.3H20 and ethanol!chlorobenzene. 
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Ethanol Water Yield (ml) (ml) 

6.5 ml 0 ml 0% 

6.0 ml 0.5 ml 1% 

5.0 ml 1.5 ml 2% 

4.0 ml 2.5 ml 10% 

3.25 ml 3.25 ml 14% 

3.0 ml 3.5 ml 15% 

2.0 ml 4.5 ml 17% 

1.0 ml 5.5 ml 23% 

0 ml 6.5 ml 26% 

Table 3.7: Aqueous ROMP of dimethyl bicyclo[2.2.1]hept-2-ene-5-phosphonaJe 

using OsC13.3H20 and ethanol/water. 

Intensity 

10.00 15.00 20.00 25.00 

Elution Time(Minutes) 

Intensity 
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Elution TimetMinutes) 

Figure 3.11: GPC chromatograms showing variation in molecullu weight 

distribution witll ethanol/water solvent composition with (a) /rCI3.3H20 and (b) 

RuCI3.3H20. 
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The variations in molecular weight with the proportion of ethanol in an ethanol/ 

water solvent mixture using IrCl3.3H20 and RuC13.3H20 are illustrated in Figures 

3.lla and 3.llb respectively. 

The 1H decoupled 31 P NMR spectra (eg. 97.15 MHz/CDCl3/Appendix C12) of 

the polymers produced by the route described above, indicated the presence of two 

phosphorus peaks at 34.18 ppm and 31.7 5 ppm corresponding to the environments of 

phosphorus nuclei in repeat units derived from the endo and exo monomers. It is 

evident from the spectrum that the exo derived peak is larger than the endo derived 

peak and as the ratio has increased from 1: 1 in the monomer mixture to 2:1 in the 

polymer, it would seem that the e:ro isomer preferentially undergoes ROMP. This 

observation would explain all the yields being less than 100% since all the endo isomer 

is not consumed during the reaction, probably due to the bulky enda-phosphonate group 

being too close to the C=C double bond on the norbornene and hence inhibiting the 

ROMP reaction. This result is as expected since exo substituted norbornenes have been 

found to undergo ROMP more readily than the corresponding endo substituted 

compounds. The infrared spectrum of the polymer is shown in appendix D12 and is 

consistent with the assigned structure with the most important diagnostic infrared bands 

being:- vinylic CH stretches at 3010 cm-1, CH2/CH3 stretches at 2990 cm-1, 2880 cm-1 

and 2850 cm-1, a C=C stretch at 1620 cm-1 and a P=O stretch at 1240 cm-1. The 1H 

NMR (399.952 MHz/CDCl3/Appendix A12) and 13C NMR spectra (100.577 

MHz/CDClyAppendix B 12) are very complex due to the presence of cis/trans and 

endolexo derived residues and the further complication of 31 P coupling and complete 

analyses could not be achieved. The Cl, C4, C5 and C7 carbon signals, which were 

resolved in the monomer spectrum, coalesce in the polymer spectrum, giving the very 

complicated signals centred at 42 ppm. The vinylic carbons also coalesce and there is a 

noticeable upfrequency shift for carbon 6 (CHv. The methyl groups on the 

phosphonate remain in the same position as the monomer. 
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3.4.3 Discussion of Results. 

Analysis of the results using the IrCI3.3H20 derived initiator and the 

ethanoVwater solvent system suggested that molecular weight control was possible by 

varying the proportion of ethanol in the solvent for the ROMP reaction without a 

significant influence on the yield of polymer. Several further reactions were carried out 

and the trends recorded in Table 3.3 were reasonably reproducible. In an attempt to 

analyse the data, the reciprocal number average molecular weight (Mn) was plotted 

against volume percentage of ethanol in the reaction solvent. Apart from the 100 % 

point a reasonably good straight line plot was obtained. This analysis is analogous to 

that used for determining chain transfer constants for chain growth polymerization, 

which are given by the gradient of a plot of 1/Mn versus ICTAIJ[M] (where [CTA] and [M] 

are the concentrations of chain transfer agent and monomer respectively). In this case 

[M] is kept constant and the water and ethanol contents are changing. However, 

tempting as it may be to suggest that transfer to solvent is occurring, we have to keep in 

mind that this reaction is non-ideal. The initial problem is that we do not know 

whether the mixture was a solution, suspension or a dispersion due to the dark colour of 

the initiator, but the major problem was that the polymer separates fully as a rubbery 

precipitate in water, whereas as the percentage of ethanol increases it becomes more 

like a swollen viscous gel. The graph does at least indicate the promise of reasonably 

well controlled molecular weight regulation with this system but if the polydispersity is 

analysed it can be seen that it is variable. It is difficult to measure the polydispersity 

because the base-lines were noisy and the exact position of the base-line could not be 

defined with any precision. 

A different situation arose when an ethanol/chlorobenzene mixture was used, the 

yield of polymer was largely unaffected by the variation of ethanol concentration in the 

solvent, as was the case with ethanol/water, but results in Table 3.4 suggest there is no 

direct relationship between the solvent composition and the molecular weight of the 

resultant polymer. 
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For the RuCl3.3H20 system as the precursor to the initiator in the ethanol/water 

solvent system, a similar relationship to that observed for IrC13.3H20 was found but the 

results were not as convincing and the yield of polymer was severely reduced with 

increasing ethanol concentration (Table 3.5). The graph of 1/Mn versus ethanol 

concentration shows a fairly smooth curve and the linear form seen for the IrC13.3H20 

case is not evident casting doubt on any analysis in tenns of chain transfer to solvent, 

but again indicating the possibility of reasonably well controlled molecular weight 

regulation. 

The ethanol/chlorobenzene solvent mixture proved to be very poor with 

RuCI3.3H20 as the precursor to the initiator, yields were all low and there seemed to be 

no obvious relationship between molecular weight and the concentration of ethanol 

present in the solvent (Table 3 .6). 

The use of OsC13.3H20 as the precursor to the initiator, in an ethanol/ 

chlorobenzene mixture, yielded no polymer, whereas in the ethanol/water series of 

reactions, polymeric material was recovered. However these polymers were insoluble 

in water and the common organic solvents investigated (variety of aromatic and 

aliphatic hydrocarbons, alcohols, amines, esters, ethers and halogenated solvents), 

suggesting that they were probably crosslinked (Table 3.7). 

By observation of the colour changes occurring during the ROMP reactions an 

approximate indication of the time of initiation of each reaction can be obtained. When 

IrCI3.3H20 was used as the initiator in water the initial red/brown colour of the solution 

turned to yellow after approximately 2 hours but there was no detectable change in 

viscosity. The colour became red/orange after 36 hours and this process was 

accompanied by separation of a rubbery polymer. Using RuC13.3H20 the initial brown 

colour changed to red after 6 hours and green after 2 days, the first evidence of 

polymerisation occmTed as the green colour appeared. There were no colour changes 

observed with the black OsC13.3H20 catalyst solution but crosslinked polymeric 

material was recovered in low yield after two days. If we assume that the colour 
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changes are an indication of the formation of an active propagating species it would 

appear that the aqueous ROMP of dimethylbicyclo[2.2.1]hept-2-ene- 5-phosphonate 

occurs more readily with the iridium initiator than with ruthenium. The characteristics 

of the reaction using osmium in water are more difficult to measure as there is no 

colour change and a more complex reaction appears to be occurring, which results in 

crosslinked polymer being precipitated. These results contrast with the findings of 

Harrison, 86 who reported that aqueous ROMP was faster with a series of disubstituted 

oxanorbomene monomers using OsC13.3H20 and slowest for IrC13.3H20 with the 

ruthenium initiator being of intermediate activity. 

When IrC13.3H20 was used as the initiator for the polymerisation of 

dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate in ethanol the initial red/brown colour 

of the solution turned to yellow after approximately 1 hour and to a red/orange solvent 

swollen gel after 1 day, and the use of chlorobenzene resulted in colour changes after 5 

hours and 2 days respectively. Using RuC13.3H20 the initial brown colour changed to 

red after 24 hours and to a green gel after approximately 2 days but no polymerisation 

occurred using RuC13.3H20 in chlorobenzene. No polymer was recovered using 

OsC13.3H20 in either ethanol or chlorobenzene. By again assuming the colour changes 

are an indication of the presence of active propagating species, it can be seen that the 

initiation of ROMP of dimethylbicyclo[2.2.1]hept-2-ene- 5-phosphonate with the 

iridium initiator is accelerated by using ethanol as the solvent but decelerated by the 

presence of chlorobenzene. These results are consistent with the work of Michelotti77, 

who suggested that iridium chlorides are considerably more active initiators in 

ethanolic solvents than the ruthenium and osmium chlorides. 

The colour changes do not necessarily correspond to the formation of the metal 

carbene and hence only give a vague indication of events in the polymerisation process 

As the aqueous metathesis initiators are generated in situ from transition metal 

chlorides, which are a mixture of chlorides and oxychlorides, 176 the precise form of the 

initiator is not known and neither are the factors involved in carbene production. 
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Therefore there are many variables in the experimental procedure, such as slight 

changes in temperature and solvent which can affect the reaction, to come to 

unambiguous conclusions about the reaction mechanism of aqueous ROMP, on the 

basis of the presently available data and systems. is not possible. 

3.5 Synthesis and characterisation of 

poly{2,5[3-diethylphosphonate]cyclopentylene}vinylene. 

3.5.1 Aqueous ROMP of diethylbicyclol2.2.llhept-2-ene-5-phosphonate. 

Diethylbicyclo[2.2.1lhept-2-ene-5-phosphonate (lg, 0.004 mol) was placed in a 

test tube (diameter 13mm), dissolved in solvent (6.5ml) and stirred for 30 minutes with 

a magnetic stirrer at 55°C. Transition metal chloride (70mg) was then added and the 

resulting solution was stirred for four days at 55°C. The resulting polymers 

(poly{ 2,5[3-diethylphosphonateJcyc lopentylene} vinylenes) were recovered by 

decantation and/or filtration then dissolved in ethanol and reprecipitated into water. 

This process was repeated twice and the polymers were dried in vacuo for 24 hours. 

n P(O)(OEth Aqueous .... 
ROMP 

P(O)(OEth 

Figure 3.12: Aqueous ROMP of diethyl bicyclo[2 .2 .l}hept-2 -ene-5 -phosphonate. 

A 1H-decoupled 31 P NMR spectra (eg. 97.15 MHz/CDCiiAppendix C13) of the 

polymers indicated the presence of two phosphorus peaks at 35.58 ppm and 33.35 ppm, 

corresponding to the two phosphorus nuclei in repeat units derived from the exo and 
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endo monomers. It is again evident that the exo derived peak is larger than the endo 

derived peak, the exo:endo ratio has increased from 1:1 in the monomer to 7:3 in the 

polymer and hence the exo isomer again seems to preferentially undergo ROMP, 

presumably for similar reasons to the dimethyl ester case. The infrared spectrum of the 

polymer is shown in appendix D 13 and is consistent with the assigned structure with 

the most important diagnostic infrared bands being:- vinylic CH stretches at 3010 cm-1, 

CH2fCH3 stretches at 2990 cm-1, 2870 cm-1 and 2850 cm-1, a C=C stretch at 1620 cm-1 

and a P=O stretch at 1210 cm-1. The 1H NMR (399.952 MHz/CDCl3/Appendix A13) 

and 13C NMR spectra (100.577 MHz/CDCl3/Appendix B13) were again very 

complicated and complete analyses could not be achieved. 

A limited number of polymerisation studies were attempted with the transition 

metal chlorides, which resulted in successful reactions in the cases recorded in Tables 

3.8-3.9. Plots of reciprocal number average weight against ethanol volume 

concentration(%), for each set of results, are presented in Figures 3.13-3.14. 
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Figure 3.13: Graph of reciprocal number average molecular weight against ethanol 

volume concentration (%)for the ROMP of diethylbicyclo[2.2.l]hept-2-ene-

5-phosphonate using IrC13.3H20 and ethanol/water. 

Ethanol Water Mn Mw Mw/Mn Yield (ml) (ml) 

6.5ml Oml 24000 88000 3.637 63% 

6.0ml 0.5ml 18000 68000 3.734 59% 

5.0 ml 1.5 ml 34000 152000 4.424 63% 

4.0ml 2.5ml 28000 89000 3.217 46% 

3.25 ml 3.25 ml 39000 191000 4.917 47% 

3.0 ml 3.5 ml 30000 125000 4.212 41% 

2.0ml 4.5ml 86000 272000 3.177 45% 

1.0 ml 5.5ml 44000 237000 5.436 29% 

Oml 6.5 ml 222000 551000 2.482 32% 

Table 3.8: Aqueous ROMP of diethyl bicyclo[2.2.l]hept-2-ene-5-phosphonate using 

lrC13.3H 20 and ethanol/water. 
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Figure 3.14: Graph of reciprocal number average molecular weight against ethanol 

volume concentration (%)for the ROMP of diethylbicyclo[2.2.1]hept-2-ene-

5-phosphonate using RuCl3.3H20 and ethanol/water. 

Ethanol Water Mn Mw Mw/Mn Yield (ml) (ml) 

6.5 ml Oml 12000 29000 2.48 16% 

4.0ml 2.5 ml 23000 61000 2.65 18% 

3.25 ml 3.25 ml 16000 62000 3.89 22% 

2.0ml 4.5ml 35000 105000 2.99 19% 

Oml 6.5 ml 79000 266000 3.37 22% 

Table 3.9: Aqueous ROMP of diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate using 

RuCl3.3H20 and ethanol/water. 

3.5.2 Discussion of Results. 

The diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate is not as soluble in water as 

the dimethyl analogue and this affects the results considerably. Although the graph of 
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1/Mn versus ethanol concentration shows again indicates the possibility of reasonable 

control of molecular weight using IrC13.3H20, the yields of polymer were significantly 

less than those obtained using dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 

For the RuC13.3H20 system as the precursor to the initiator in the ethanoVwater 

solvent system a similar relationship to that observed for IrC13.3H20 was found but the 

results were again not as convincing. The yields are all low due to the combination of 

the poor activity of RuC13.3H20 in ethanol and the poor solubility of the monomer in 

water. The graph of 1/Mn versus ethanol concentration shows a fairly straight line and 

again there are indications of the possibility of reasonably well controlled molecular 

weight regulation. 

The use of OsC13.3H20 in the ethanol, water, ethanoVwater, chlorobenzene and 

ethanoVchlorobenzene solvent systems and IrC13.3H20 or RuC13.3H20 in 

chlorobenzene yielded no polymeric material. 

The observation of colour changes occurring during the ROMP reaction again 

give some indication of the time at which active propagating species were formed. 

When IrC13.3H20 was used as the initiator in water, the initial red/brown colour of the 

solution turned to yellow after approximately 6 hours and red/orange after two days, 

accompanied by the precipitation of polymer. Using RuC13.3H20 the initial brown 

colour changed to red after approximately 12 hours and green after 2/3 days, the first 

sign of polymerisation occurring as the green colour appeared. Again the use of 

ethanol favours the reaction using IrC13.3H20 as the initiator, with the analogous colour 

changes taking place after 4 hours and 36 hours respectively. However the use of 

ethanol is disadvantageous with RuC13.3H20 as the initiator and the colour changes 

take place after 24 hours and 48 hours respectively. These findings are again consistent 

with the work of Michellotti,77 who reported the increased activity of IrC13.3H20 in 

ethanolic solvents. Comparison of these results with those in section 3.4.3 reveal that 

the ROMP of diethylbicyclo[2.2.1]-hept-2-ene-5-phosphonate is considerably less 

favourable than the ROMP of the dimethylphosphonate analogue. This may be 
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attributed to the increased size of the phosphonate substituent. Functionalised 

monomers can coordinate to the metathesis initiator but large side groups are believed 

to affect the rate of polymerisation and the subsequent reactivity and this would 

account for the differing rates of reaction. As the diethylbicyclo[2.2.1]-hept-2-ene-

5-phosphonate is less soluble in water than dimethylbicyclo[2.2.1]-hept-2-ene-

5-phosphonate this would also affect the rates of the two reactions. 

3.6 Attempted synthesis and characterisation of 

poly(2,5-(3,4-bis(dimethylphosphonate)cyclopentylene)vinylene. 

3.6.1 Aqueous ROMP of 

exo,endo-5,6-bis( dimeth y I phosphonate )-bicyclo[2.2.1]hept-2-ene. 

P(O)(OMeh 
Aqueous ... 
ROMP 

P(0)(0Me)2 (MeO)z(O)P P(O)(OMe)z 

Figure 3.15: Aqueous ROMP of 

exo,endo-5,6-bis(dimethylphosphonate)-bicyclo[2.2.1]hept-2-ene. 

n 

exo,endo-5,6-Bis(dimethylphosphonate)-bicyclo[2.2.1] hept-2-ene (l.Og/0.003 

mol) was placed in a test tube (diameter 13mm), dissolved in solvent (6.5ml) and 

stirred for 30 minutes with a magnetic stirrer at 55°C. Transition metal chloride 

(70mg) was then added and the resulting solution was stirred for two days at 55°C. The 

solvent was removed by rotary evaporation and the resulting oligomers (poly(2,5-

(3,4-bis(dimethylphosphonate)cyclopentylene)vinylenes) were dissolved in ethanol, 
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reprecipitated into pentane and dried in vacuo for 24 hours. The results are discussed 

in Section 3.8. 

The product in each of the successful reactions was a series of oligomers in very 

low yields (:::; 10%). GPC analysis indicated that these mainly consisted of trimers and 

dimers (eg. Figure 3.16). It can be seen from the chromatogram that there is a 

considerable amount of unreacted monomer present in the samples, which could not be 

removed during the work up of the oligomers. 

Dimer 

g g 8 8 
~ ~ i i 

FJulioa nme cMimdell 

Figure 3.16: GPC chromatogram showing oligomersformedfrom the ROMP of the 

exo,endo-5 ,6-bis( dialkylplwsphonate )- bicyclo[2.2.1]hept-2-enes. 

The 1H decoupled 31 P spectrum (202.46 MHz/CDC13/Appendix C14) shows the 

presence of two peaks at 29.85 ppm and 29.07 ppm probably corresponding to the two 

phosphorus environments in the dimer. There is also a series of smaller peaks probably 
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corresponding to the higher molecular weight oligomers. 

The infrared spectrum of the product is shown in appendix 014 and is consistent 

with the assigned structure with the most important diagnostic infrared bands being:

vinylic CH stretches at 3010 cm- 1, CH2/CH3 stretches at 2990 cm-1, 2950 cm-1 and 

2850 cm-1, a C=C stretch at 1600 cm-1 and a P=O stretch at 1260 cm-1. 

The 1H NMR (399.952 MHz/CDClyAppendix A14) and 13C NMR spectra 

(100.577 MHz/CDC13/Appendix B14) are very complex due to the presence of 

cis/trans and endolexo derived repeat units and the further complication of 31P coupling 

and unreacted monomer being present and therefore complete analyses could not be 

achieved. The C1, C4, C5 and C7 carbon signals, which were resolved in the monomer 

spectrum, coalesce in the polymer spectrum, giving the very complicated signals 

centred at 40 ppm. 

3.7 Attempted synthesis and characterisation of 

poly(2,5-(3,4-bis( diethyl phos phonate )cyclopentylene )vinylene. 

3.7.1 Aqueous ROMP of 

exo,endo-5,6-bis(diethylphosphonate )-bicyclo[2.2.1] hept -2-ene. 

exo,endo-5,6-Bis(diethylphosphonate)-bicyclo[2.2.1]hept-2-ene (l.Og/0.003 mol) 

was placed in a test tube (diameter 13mm), dissolved in solvent (6.5ml) and stirred for 

30 minutes with a magnetic stirrer at 55°C. Transition metal chloride (70mg) was then 

added and the resulting solution was stirred for two days at 55°C. The solvent was 

removed by rotary evaporation and the resulting oligomers (poly(2,5-(3,4-

bis(diethylphosphonate)cyclopentylene)vinylenes) were dissolved in ethanol, 

reprecipitated into pentane and dried in vacuo for 24 hours. The results are discussed 

in Section 3.8. 
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Figure 3.17: Aqueous ROMP of 

exo,endo-5,6-bis( diethylphosphonate)-bicyclo[2.2.l]hept-2-ene. 

n 

The product in each of the successful reactions was again a series of oligomers in 

very low yields (:::; 10%). GPC analysis again indicated that these mainly consisted of 

trimers and dimers (eg. Figure 3 .16). 

The 1H decoupled 31 P spectrum (202.460 MHz/CDC13/Appendix C15) shows the 

presence of two peaks at 27.45 ppm and 26.62 ppm probably corresponding to the two 

phosphorus environments in the dimer. There is also a series of smaller peaks probably 

corresponding to the higher molecular weight oligomers. The infrared spectrum of the 

polymer (Appendix 015) is consistent with the assigned structure with the most 

important diagnostic infrared bands being:- vinylic CH stretches at 3020 cm-1, 

CH2/CH3 stretches at 2990 cm-1, 2900 cm-1 and 2850 cm-1, a C=C stretch at 1600 cm-1 

and a P=O stretch at 1260 cm-1. The 1H NMR (399.952 MHz/CDClyAppendix A15) 

and 13C NMR spectra (100.577 MHz/CDC13/Appendix B15) are again complex and 

complete analyses could not be achieved. 

3.8 Discussion of results obtained from ROMP of 

exo,endo-5,6-bis(dialkylphosphonate)-bicyclo[2.2.l]hept-2-enes. 

Several reactions were performed to discover how yield and molecular weight 

varied with solvent composition and the results are tabulated below (Table 3.11). All 
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sets of experiments were perfonned using the same batches of monomer, distilled 

water, ethanol and initiator in the same water bath and worked up and analysed in the 

same way. No colour changes were observed during the reaction and with the yields 

being very low no infonnation conceming the rates of the ROMP reaction was 

obtained. 

Solvent Initiator Me Et 
H20 RuC13 oligomers oligomers 

EtOH RuC13 X X 
Ph-Cl RuC13 X X 

H20/EtOH RuC1 3 oligomers oligomers 

Ph-Cl/EtOH RuCh X X 
H20 lrC1 3 oligomers oligomers 

EtOH IrC13 oligomers oligomers 

Ph-CI IrCI3 X X 

H20/EtOH IrC13 oligomers oligomers 

Ph-Cl/EtOH IrCI3 oligomers X 
H20 OsCl3 X X 

EtOH OsC13 X X 

Ph-Cl OsCI3 X X 

H20/EtOH OsCI 3 X X 

Ph-Cl/EtOH OsCI3 X X 

Table 3.11: Results of ROMP attempts using 

exo,endo-5 ,6-bis( dialkylphosphonate )-bicyclo[2.2.1] hept-2 -enes. 

The results again indicate that IrC13.3H20 is a more effective initiator than 

RuC13.3H20 and OsC13.3H20 in organic solvents such as ethanol and chlorobenzene by 

initiating polymerisation of e.ro,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.1] 

hept-2-ene in these solvents. The low yields in each case can be explained by the 

presence of the large endo dialkylphosphonate groups on the monomers, which are 

close to the C=C double bond in the norbornene structure and, as we noted in the 

monosubstituted norbornene case, inhibit ROMP. These results are consistent with the 
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earlier findings, as is the restricted polymerisation of the exo,endo-5,6-bis(diethyl 

phosphonate) bicyclo[2.2.1] hept-2-ene monomer. 
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Chapter Four. 
Attempted Syntheses of 

Oligorners Using Chain Transfer 
Agents. 
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4.1 General Introduction. 

The objective of the work described in this chapter was to prepare oligomers of 

(poly{2,5[3-dimethylphosphonate]cyclopentylene }vinylene) of varying molecular 

weight by aqueous Ring Opening Metathesis Polymerisation. The oligomers were 

formed by the cross metathesis of the chain propagating species with a series of acyclic 

olefins, known as chain transfer agents, a method that has been successful in reducing 

the molecular weight in previous studies.86•177-182 The olefins used as potential chain 

transfer agents in this chapter are cis-but-2-ene-1,4-diol, dimethylvinylphosphonate and 

trans-ethene-1,2-bis(dimethylphosphonate). 

4.2 Experimental. 

4.2.1 Reactants and characterisation. 

The transition metal chlorides RuC13.3H20 and IrC13.3H20 (Aldrich Chemical 

Co. Ltd.) and solvents (May and Baker I BDH, laboratory grade) were used as supplied 

unless otherwise stated. The preparations of monomers was described in chapter 2 and 

the polymerisations were carried out in distilled water or distilled ethanol. 

The characterisation of the polymers was performed using the techniques and 

apparatus described in section 3.2.2. 

4.3 Control of molecular weight using chain transfer agents. 

4.3.1 Attempted synthesis of oligomers of (poly{2,5[3-dimethylphosphonate] 

cyclopentylene}vinylene) using cis-but-2-ene-1,4-diol as a potential chain transfer 

agent 

Dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate monomer(lg I 0.005 mol) was 

placed in a test tube, dissolved in a waterlcis-but-2-ene-1,4-diol solvent mixture(6.5ml) 
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and stirred for 30 minutes with a magnetic stirrer at 55±0.1 °C. Transition metal 

chloride (70mg) was then added and the resulting solution was stirred for two days at 

55±0.1 °C. The resulting polymers (poly { 2,5[3-dimethylphosphonate]cyclopentylene} 

vinylenes) were recovered as described previously, dissolved in ethanol and 

reprecipitated into water. The reactions were all carried out using the same batches of 

distilled water, monomer and transition metal chloride in the same water bath. The 

intended process is indicated in Figure 4.1. The results and graphs of the reciprocal of 

the number average molecular weight (1/Mn) against the ratio of the chain transfer agent 

concentration to the monomer concentration (ICTAIJ1M]) are tabulated in Tables 4.1 and 

4.2 and Figures 4.2-4.3 respectively. 

+ COH 

OH 
P(O)(OMe)z 

Aqueous ROMP 

HO OH 

P(O)(OMe)z 

Figure 4.1: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate using 

cis-but-2-ene-1,4-diol as a potential chain transfer agent. 
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Figure 4.2: Graph of 1 I Mn against fCTAlJ lMJ the ROMP of dimethylbicyclo£2.2.1] 

hept-2-ene-5-phosphonate in water using IrC13.3H20 and cis-but-2-ene-1,4-diol as a 

potential chain transfer agent. 

[CTA] Mn 1<f Mw Yield [M] 1VIif 1VIif 

0.133 74000 1.36 2.19 71% 

0.323 61000 1.63 2.62 55% 

0.412 60000 1.67 2.08 57% 

0.500 56000 1.78 3.39 43% 

0.662 54000 1.84 2.98 40% 

1.11 41000 2.44 4.79 21% 

1.66 41000 2.48 2.33 12% 

1.85 38000 2.60 1.53 10% 

3.13 27000 3.64 2.90 5% 

3.85 25000 4.06 2.59 6% 

4.76 15000 6.53 2.10 2% 

Table 4.1: ROMP of dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate in water using 

lrC13.3H20 and cis-but-2-ene-1,4-diol as a potential chain transfer agent. 
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Figure 4.3: Graph of 1 I Mn against fCTAJ;[MJfor the ROMP of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate in water using RuCl3.3H20 and cis-but-2-ene-1,4-diol as a 

potential chain transfer agent. 

[CTA] Mn 
10' Mw Yield [M] Mn Mn 

0.020 17000 5.72 2.67 52% 
0.041 15000 6.56 2.99 53% 
0.050 14000 7.19 2.23 51% 
0.070 12000 8.32 2.13 49% 
0.082 14000 7.27 2.82 49% 
0.089 11000 9.28 2.20 47% 
0.100 10000 9.98 1.83 42% 
0.123 9000 10.75 2.12 39% 
0.249 9000 11.65 2.81 26% 
0.373 7000 14.38 2.68 27% 
1.19 6000 17.84 1.80 21% 
1.25 8000 12.17 1.98 20% 
2.28 4000 27.50 1.48 11% 
4.21 1000 76.63 3.21 10% 

Table 4.2: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in water using 

RuCl3.3H20 and cis-but-2-ene-1,4-diol as a potential chain transfer agent. 
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The ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate using 

cis-but-2-ene-1,4-diol as a chain transfer agent was attempted with IrC13.3H20 and 

RuC13.3H20 in ethanol. Using IrC13.3H20 as the initiator a series of low molecular 

weight oligomers (dimers, tlimers and tetramers) were produced in very low yields 

( <10%) if low concentrations of the chain transfer agent were used. No polymeric 

material was recovered in the case of the RuC13.3H20 initiator, even with very small 

concentrations of the acyclic olefin. 

4.3.2 Discussion of results obtained using cis-but-2-ene-,1,4-diol as a potential 

chain transfer agent. 

It can be seen from Tables 4.1 and 4.2 that similar sets of results were obtained 

for IrC13.3H20 and RuC13.3H20. GPC analysis shows that the molecular weight of the 

polymers and oligomers are related to the concentration of cis-but-2-ene-1,4-diol used 

in each ROMP reaction. However the yield of polymer is considerably affected by the 

presence of the diol and although it is possible to obtain low molecular weight 

oligomers with high concentrations of the diol, there is very poor recovery of these 

materials. This suggests that the metallocarbene formed from chain transfer of the diol 

with dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate is unable to initiate further 

metathesis. However it is more likely that the cis-but-2-ene-1,4-diol deactivates the 

metallocarbene and in high concentrations prevents the ROMP reaction occurring 

altogether. These results differ slightly from those of Harrison,86 who reported that 

cis-but-2-ene-1,4-diol is an effective chain transfer agent in the presence of 

dicarboxylic acid- and dimethoxymethyl- substituted oxanorbomenes, but has no effect 

on the yield of polymer. Harrison also reported, on the basis of the observation of 

colour and physical state changes occun·ing during the reaction, that ROMP appeared 

to be faster in the presence of high concentrations of the diol. These observations were 

attributed to solvent effects causing changes in the polarity of the system. In the work 

carried out for this thesis, the ROMP of dimethylbicyclo[2.2.1]hept-2-ene-
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5-phosphonate was not found to be accelerated by the use of cis-but-2-ene-1 ,4-diol. 

It can be shown that the gradients of plots of reciprocal number average 

molecular weight ci/M11) against the ratio of the chain transfer agent concentration to the 

monomer concentration (lCTAI;[Ml) give the chain transfer constant (Appendix H).184 

This constant is defined as the ratio of the chain transfer rate constant to the 

propagation rate constant.39 The plots for chain transfer using cis-but-2-ene-1,4-diol, 

shown in Figures 4.2 and 4.3, are reasonably straight lines and the chain transfer 

constants using IrCI3.3H20 and RuCI3.3H20 as initiators were calculated as 9.72x10-6 

and 1.46x10-4 respectively. However these numerical values have little quantitative 

significance since the chain transfer agent has a considerable effect on the recovery of 

the polymer and there is an uncertainty concerning the M11 values, as fractionation may 

have occurred during the isolation of product. Although the results show that in the 

RuC13.3H20 system the dial appears to be a more effective chain transfer agent than in 

the IrC13.3H20 initiator system, it may be the case that slight changes in solvent 

composition contribute to the reduction of molecular weight (see section 3.4.3). 

In the absence of the diol the IrCI3.3H20/ ethanol initiator system gives a 

polymer with a molecular weight of approximately M11= 40,000, but in the presence of 

small concentrations of the dial oligomers are found to be the only product. It appears 

that the chain transfer mechanism involving cis-but-2-ene-1 ,4-diol is more favourable 

in ethanol than in water with small amounts of the dial considerably affecting the 

results. This may be a result of the polymer being soluble in ethanol and not 

precipitating during the reaction as in the IrC13.3H20/ water situation. 

The ROMP of dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate with 

RuC13.3H20 in ethanol, in the absence of a chain transfer agent, gives a poor yield of a 

low molecular weight polymer (M 11= 6500 - see section 3.4.3). The presence of 

cis-but-2-ene-1,4-diol results in only the monomer being recovered. This can be 

attributed to a combination of low yields of polymer being formed in RuC13.3H20/ 

ethanol systems, a very effective chain transfer reaction taking place and the dial 
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deactivating the catalyst or monopolising activity through preferred degenerate 

exchange of the chain transfer agent. 

4.3.3 Attempted synthesis of oli!.!omers of (poly{2,5[3-dimethylphosphonate] 

cyclopentylene }vinylene) using dimethylvinylphosphonate as a potential chain transfer 

+ \ 
P(O)(OMeh P(0)(0Me)2 

Aqueous ROMP 

P(O)(OMeh 

P(O)(OMeh 

Figure 4.4: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate using 

dimethylvinylphosplwnate as a potential chain transfer agent. 

Dimethylbicyclo[2.2.1 ]hept-2-ene-5-phosphonate monomer(lg I 0.005 mol) was 

placed in a test tube, dissolved in a water/dimethylvinylphosphonate solvent 

mixture(6.5ml) and stirred for 30 minutes with a magnetic stirrer at 55±0.1°C. 

Transition metal chloride (70mg) was then added and the resulting solution was stirred 

for two days at 55±0.1°C. The resulting polymers (poly{2,5[3-dimethylphosphonate] 

cyclopentylene }vinylenes) were recovered as described previously, dissolved in 

ethanol and reprecipitated into water. The reactions were all carried out using the same 

batches of distilled water, monomer and transition metal chloride in the same water 
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bath. The intended process is outlined in Figure 4.4 and the results and graphs of the 

reciprocal of the number average molecular weight (1/Mn) against the ratio of the chain 

transfer agent concentration to the monomer concentration (lCTAlfrMJ) are tabulated in 

Tables 4.3-4.5 and Figures 4.5,4.7 and 4.8 respectively (see page 139 for the 

discussion). 
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Figure 4.5: Graphs of 11 Mn against fCTAlf [MJfor the ROMP of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate in water using lrCl3.3H20 and dimethylvinylphosphonate 

as a potential chain transfer agent. 
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1 (a) Mn= 233K 

(b) M 0 = 23K 

2 (a) M 0 = 250K 

(b) MD= 21K 

3 (a) M 0= 246K 

(b) M 0= lJK 

4 (a) M 0= 251K 

(b) Mn= 9K 
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(4) 

0 
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2 

0 
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Figure 4.8: GPC chromatograms to show the two fractions formed/rom the ROMP 

of dimethylbicyclo[2.2.1]/zept·2-ene-5-plzosphonate in water using IrCI~HP and 

dimethyl•inylphosphonate as a potential chain transfer agenL 
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In the following table:-

(a) and (b) correspond to the high molecular weight and low molecular weight 

fractions respectively. 

[CfA] (a)Mn (a)106 (a)Mw (b)Mn (b)1o'i (b)Mw Yield [M] Mn Mn Mn Mn 

0.017 233000 4.30 1.37 23000 4.45 1.87 57% 
0.026 224000 4.47 1.75 19000 5.25 1.69 53% 
0.057 225000 4.45 1.65 20000 5.03 1.37 48% 

0.068 220000 4.54 1.62 20000 4.91 1.58 45% 
0.085 250000 3.99 2.14 21000 4.66 1.88 39% 

0.170 225000 4.44 1.73 21000 4.81 1.32 44% 
0.226 222000 4.51 1.66 21000 4.76. 1.33 41% 
0.284 221000 4.52 2.13 21000 4.68 1.26 32% 
0.566 231000 4.33 1.72 19000 5.40 1.22 22% 
0.680 242000 4.14 1.79 19000 5.40 1.76 23% 

0.850 249000 4.02 1.54 17000 5.93 1.50 20% 

1.70 224000 4.47 1.89 14000 7.11 1.45 12% 
1.98 225000 4.44 2.44 16000 6.43 1.36 14% 
2.27 246000 4.06 1.56 13000 7.99 1.14 11% 
2.93 248000 4.03 1.71 10000 10.48 1.26 8% 
3.42 248000 4.03 1.64 10000 9.63 1.23 3% 

3.78 224000 4.45 1.98 9000 11.18 1.36 6% 
4.11 251000 4.98 1.55 9000 11.19 1.19 2% 
4.52 227000 4.41 1.55 6000 15.67 1.27 1% 
4.82 226000 4.43 1.94 7000 14.43 1.13 1% 
5.94 247000 4.05 1.59 5000 18.70 1.21 1% 

Table 4.3: ROMP of dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate in water using 

IrC13.3H 20 and dimethylvinylphosphonate as a potential chain transfer agent. 
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UD 

Figure 4.7: Graph of 11 Mn against fCTAJ;fMJfor the ROMP of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate in water using RuC13.3H20 and dimethylvinyl 

phosphonate as a potential chain transfer agent. 

[CfA] Mn Ht Mw Yield [M] Mil Mil 

0.017 8700 1.15 2.19 19% 
0.023 8400 1.19 2.21 17% 
0.034 7500 1.33 2.13 17% 
0.040 7800 1.28 2.42 16% 
0.074 7400 1.36 1.36 12% 
0.086 5500 1.81 1.98 10% 
0.111 5200 1.91 1.88 5% 
0.128 5300 1.89 1.92 9% 
0.149 4800 2.10 1.93 8% 
0.223 4300 2.35 1.71 4% 
0.297 3600 2.76 2.02 1% 

Table 4.4: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in water using 

RuC13.3H20 and dimethylvinylphosphonate as a potential chain transfer agent. 
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Figure 4.8: Graph of 11 Mn against fCTAJtfMJfor the ROMP of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate in ethanol using IrCl3.3Hp and dimethylvinyl 

phosphonate as a potential chain transfer agent. 

[CfA] Mn 
105 Mw Yield [M] -win Mil 

0.017 46000 2.19 3.88 51% 
0.086 51000 1.97 3.91 53% 
0.343 45000 2.20 3.79 38% 
0.523 52000 1.93 3.69 36% 
0.854 65000 1.54 3.06 29% 
0.940 65000 1.53 3.29 30% 
1.11 33000 3.01 4.52 25% 
1.37 55000 1.81 3.13 19% 
1.71 45000 2.23 3.48 18% 
1.88 50000 2.01 3.28 12% 
2.14 59000 1.69 3.33 10% 
2.39 65000 1.54 2.29 11% 
3.01 45000 2.21 3.88 8% 
3.39 54000 1.85 3.69 3% 
4.14 58000 1.74 3.75 4% 

Table 4.5: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in ethanol 

using lrCl3.3H20 and dimethylvinylphosphonate as a potential chain transfer agent. 
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4.3.4 Discussion of results obtained using dimethylvinylphosphonate as a potential 

chain transfer agent. 

The use of dimethylvinylphosphonate (DMVP) as a potential chain transfer agent 

in an IrC13.3H20/ water initiator system results in two fractions being formed. GPC 

analysis reveals that the high molecular weight fraction is unaffected by the presence of 

dimethylvinylphosphonate (Figure 4.8). This fraction has a molecular weight 

approximately equal to that found using IrC13.3H20 in water in the absence of any 

chain transfer agent (section 3.4.3). The molecular weight of the second fraction is 

related to the concentration of dimethylvinylphosphonate used in the ROMP of 

dimethylbicyclo [2.2.1]hept-2-ene-5-phosphonate. The lowest molecular weight 

polymers being formed with the highest concentrations of dimethylvinylphosphonate. 

However the recovery of polymer is considerably affected by the olefin and again the 

metallocarbene is deactivated by the chain transfer agent, as in the case of 

cis-but-2-ene-1,4-diol. Using the RuC13.3H20/ water initiator system and 

dimethylvinylphosphonate as a potential chain transfer agent, only one fraction is 

produced, indicated by the presence of one peak on the GPC. The molecular weight of 

this fraction is again related to the concentration of the phosphonate, but again the yield 

is also affected as the olefin deactivates the metallocarbene. 

These phenomena can be explained by two processes, the ROMP of 

dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate and the chain transfer reaction, 

competing with each other. In the case of the IrC13.3H20/ water/DMVP system the 

ROMP reaction is considerably more effective than the chain transfer process. This 

result could be rationalised on the assumption that the high molecular weight polymer 

is formed relatively rapidly at the beginning of the reaction, and this process is 

followed by a chain scission reaction occurring between the polymer and DMVP. 

Hence the high molecular weight polymer is cleaved to form the lower molecular 

weight fraction and the appearance of the two peaks on the GPC. Using RuC13.3H20/ 

water/DMVP, the ROMP reaction is less favourable (section 3.4.3) and the chain 
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transfer process competes effectively from the start. As the polymer is formed, chain 

transfer occurs between the polymer and dimethylvinylphosphonate resulting in a 

reduction in the molecular weight of the polymer. As the concentration of the 

phosphonate is increased the chain transfer process is more effective, but unfortunately 

so is the deactivation of the catalyst, hence the decrease in yield. The result of this 

process is the fonnation of one fraction and the presence of one peak on the GPC. 

The dimethylvinylphosphonate has no effect on the molecular weight of the 

polymer formed during the ROMP of dimethylbicyclo[2.2.1 ]hept-2-ene-5-phosphonate 

using IrCl3.3H20 in ethanol, but again appears to deactivate the initiating species, 

hence affecting the polymetic yield. The use of DMVP produces polymers with a 

molecular weight (Mn""' 45,000) comparable to that fanned in the absence of a chain 

transfer system (Mn""' 40,000). In this case the ROMP reaction is considerably more 

favourable in ethanol than in water (section 3.4.3) and the high molecular weight 

polymer is formed but the subsequent chain transfer reaction is not observed, as with 

water, before the DMVP deactivates the metallocarbene. 

In the RuC13.3H20/ ethanol/ DMVP system the chain transfer reaction appears to 

be more favourable and the results are comparable to those found using 

cis-but-2-ene-1 ,4-diol as a chain transfer agent. In the absence of a chain transfer agent 

a low molecular weight polymer (Mn= 6500) is produced in low yield, but the use of 

dimethylvinylphosphonate results in only the monomer being recovered (section 3.4.3). 

This is a consequence of a combination of low yields of polymer being formed in 

RuC13.3H20/ ethanol systems, a vety effective chain transfer reaction taking place and 

the DMVP deactivating the catalyst. 

The chain transfer constants for the IrCI3.3H20/ H20/ DMVP and RuC13.3H20/ 

H20/ DMVP systems were calculated as 2.llxl0-5 and 6.0lx104 respectively. These 

values again have little quantitative significance as the yield is affected by the chain 

transfer agent and fractionation may be occurring during recovery of the polymer. 

As with the dial, the ROMP of dimethylbicyclo[2.2.l]hept-2-ene-5-phosphonate 
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was not found to be accelerated by the use of DMVP, which contrasts with Harrison's 

results.86 

4.3.5 Attempted synthesis of oligomers of (poly{2,5[3-dimethylphosphonate] 

cyclopentylene }vinylene) using trans-ethene-1 ,2-bis(dimethylphosphonate) as a 

potential chain transfer agent. 

+ 

P(O)(OMe)z 

P(O)(OMe)z 

(OMeh(O)~ 
Aqueous ROMP 

(MeO)z(O)P P(O)(OMe)z 

P(O)(OMe)z 

Figure 4.9: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate using 

trans-ethene-1 ,2 -his( dimethylphosphonate) as a potential chain transfer agent. 

Dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate monomer(1g I 0.005 mol) was 

placed in a test tube, dissolved in a water I trans-ethene-1 ,2-bis(dimethylphosphonate) 

solvent mixture(6.5ml) and stin·ed for 30 minutes with a magnetic stirrer at 55±0.1 °C. 

Transition metal chloride (70mg) was then added and the resulting solution was stirred 

for two days at 55±0.1 °C. The resulting polymers (poly{2,5[3-dimethylphosphonate] 

cyclopentylene }vinylenes) were recovered as described previously, dissolved in 

ethanol and reprecipitated into water. The reactions were all carried out using the same 

batches of distilled water, monomer and transition metal chloride in the same water 
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bath. The intended process is indicated in Figure 4.9. The results and graphs of the 

reciprocal of the number average molecular weight (1/MJ against the ratio of the chain 

transfer agent concentration to the monomer concentration (lCfAif[MJ) are tabulated in 

Tables 4.6-4.8 and Figures 4.11-4.13 respectively. 

Using IrCI3.JH20 • Mn = 290K 

Using RuCI3.3H20 • Mn = 200K 

0 
Cll 

'" -

Monomer 

Oligomers Mn= 3600 

0 
Q 

a 
"' 

Figure 4.10: GPC chromatogram to show the high molecular weight fraction and the 

series of oligomers formed from tl1e ROJliP of dimethylbicyclo{2.2J] 

hept-2-ene-5-phosplzonate in water rzsing IrCl1JH20 or RuC11.3H20 and 

dimethylvinylphosphonate as a potential chain transfer agent 
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Figure 4.11: Graph of 1 I Mn against fCTAJ I fMJfor the ROMP of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate in water using IrC13.3H20 and trans-ethene-1,2-

bis( dimethylphosphonate) as a potential chain transfer agent. 

[CI'A] Mn 106 Mw Yield [M] Mn Mn 

0.027 265000 3.78 1.86 57% 

0.054 266000 3.77 2.78 49% 
0.134 344000 2.91 1.63 37% 

0.201 300000 3.33 1.81 29% 
0.268 289000 3.46 2.46 22% 
0.335 335000 2.99 1.72 19% 
0.402 338000 2.96 1.46 10% 
0.536 290000 3.45 2.01 13% 

0.603 362000 2.76 1.39 10% 
0.670 317000 3.15 1.58 2% 

0.804 282000 3.55 1.71 2% 

1.01 253000 3.96 2.61 1% 

Table 4.6: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in water using 

IrC13.3H20 and trans-ethene-1,2-bis( dimethylphosphonate) as a potential chain 

transfer agent. 
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Figure 4.12: Graph of11Mn againstfCTAJ;fMJfor the ROMP of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate in water using RuCl3.3H20 and trans-ethene-1,2-

bis( dimethylphosphonate) as a potential chain transfer agent. 

[CTA] Mn 
106 Mw Yield [M] Mn Mn 

0.033 206000 4.85 1.91 39% 
0.066 222000 4.51 2.44 36% 
0.165 193000 5.18 2.14 29% 

0.247 201000 4.98 2.11 25% 

0.330 253000 3.95 2.63 21% 

0.412 242000 4.13 2.83 17% 
0.473 189000 5.29 2.47 13% 

0.494 160000 6.25 2.51 12% 

0.519 194000 5.16 2.62 9% 

0.576 175000 5.71 2.33 7% 
0.623 189000 5.29 1.99 2% 

0.691 243000 4.12 2.17 1% 
0.742 163000 6.14 2.47 1% 

Table 4.7: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in water using 

RuCl3.3H20 and trans-ethene-1,2-bis( dimethylphosphonate) as a potential chain 

transfer agent. 
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Figure 4.13: Graph of11Mn against fCTAlJ[MJfor the ROMP of dimethylbicyclo[2.2.1] 

hept-2-ene-5-phosphonate in ethanol using IrCl3.3H20 and trans-ethene-1,2-

bis( dimethylphosphonate) as a potential chain transfer agent. 

[CTA] Mn 
105 Mw Yield [M] Mn Mn 

0.015 33000 3.03 3.67 59% 
0.031 62000 1.61 3.58 53% 
0.060 45000 2.22 3.91 49% 
0.103 51000 1.95 3.87 31% 
0.198 34000 2.95 3.71 28% 
0.304 42000 2.39 3.86 21% 
0.416 57000 1.75 3.91 23% 
0.511 41000 2.44 3.68 21% 
0.751 35000 2.86 4.02 15% 
1.08 48000 2.08 3.89 12% 
1.28 55000 1.82 3.63 11% 
1.56 61000 1.64 3.65 9% 
1.73 40000 2.50 3.99 2% 
2.02 42000 2.38 4.11 1% 

Table 4.8: ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in ethanol 

using lrCl3.3H20 and trans-ethene-1,2-bis(dimethylphosphonate) as a potential 

chain transfer agent. 
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Similar sets of results to those obtained with trans-ethene-1,2-

bis(dimethylphosphonate), as described above were obtained when trans-ethene-1,2-

bis(diethylphosphonate) was used as a potential chain transfer agent. They add nothing 

to the account and are not discussed in this thesis. 

4.3.6 Discussion of results obtained using trans-ethene-1,2-bis(dimethylphosphonate) 

as a potential chain transfer agent. 

The use of trans-ethene-1,2-bis(dimethylphosphonate) as a potential chain 

transfer agent in the ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate in 

water gave similar results for both the iridium and ruthenium initiator systems. In each 

case GPC analysis (Figure 4.1 0) revealed the presence of a high molecular weight 

fraction (see Tables 4.64.7) and a series of oligomers (M0= 3000). Intermediate 

molecular weights were not observed. This may be rationalised if the chain transfer 

process is more favourable than the ROMP reaction and the series of oligomers are 

formed at the beginning of the reaction. When the phosphonate transfer agent is 

consumed the monomer is polymerised to high dp with no interference from the 

oligomers. If this is the case, an increase in the intensity of the oligomer peaks and a 

decrease in the intensity of the main polymer peak would be expected with increasing 

amounts of chain transfer agent. Although GPC analysis indicated a slight increase in 

the intensity of the oligomer peaks with increasing transfer agent concentration, the 

effect is not convincingly demonstrated as high concentrations of the transfer agent, 

trans-ethene-1,2-bis(dimethylphosphonate), deactivates the initiating species and yields 

drop. 

The use of trans-ethene-1,2-bis(dimethylphosphonate) in the ROMP of 

dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate using IrC13.3H20 in ethanol gives 

similar results to those found using dimethylvinylphosphonate as a potential chain 

transfer agent. There is no effect on the molecular weight of the polymer formed in the 

ROMP reaction but again the yield is affected, presumably as a result of the 
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phosphonate deactivating the catalyst. 

As a result of low yields of polymer being formed in RuC13.3H20/ ethanol 

systems, a very effective chain transfer reaction taking place and the chain transfer 

agent deactivating the initiating species, no polymer is recovered for the RuC13.3H20/ 

ethanoV trans-ethene-1 ,2-bis( dimethylphosphonate) system. 

These results are comparable to those found using cis-but-2-ene-1,4-diol (section 4.3.2) 

and dimethylvinylphosphonate (section 4.3.4) as potential chain transfer agents. 

The ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate does not appear 

to be accelerated by the use of trans-ethene-1,2-bis(dimethylphosphonate) in any of 

these systems. 

4.4 Summary. 

The work outlined in this chapter shows that low molecular weight polymers and 

oligomers of poly{2,5[3-dimethylphosphonate]cyclopentylene}vinylene can be 

prepared by the aqueous ROMP of dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate 

using cis-but-2-ene-1,4-diol or dimethylvinylphosphonate as chain transfer agents and 

IrC13.3H20 or RuC13.3H20 as the initiator. However in each case the yield of 

polymer/oligomer is severely affected by the chain transfer agents, which appear to 

deactivate the initiating species. Although trans-ethene-1 ,2-bis( dimethylphosphonate) 

also appears to act as a chain transfer agent in the aqueous ROMP of 

dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate, the low molecular weight oligomers 

that are formed can not be isolated. The work has also shown that low molecular 

weight polymers/oligomers can not be prepared using the chain transfer agents in 

ethanol. Therefore if high yields of low molecular weight polymers are required, a 

more effective chain transfer agent is needed, which does not deactivate the initiating 

species or monopolise the initiator activity through preferred degenerate exchange of 

the chain transfer agent. 
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Cha]Jter Five. 
Conclusions and Future Work. 

149 



5.1 Introduction. 

The original aims of the work described in this thesis were:-

(a) to prepare a series of organophosphorus polymers by Ring Opening 

Metathesis Polymerisation (ROMP), which may be of potential interest 

in water treatment. fire retardancy and/or surface corrosion inhibition; 

(b) to see how the ROMP process was affected by the use of different 

catalysts and changes in solvent composition; 

(c) to investigate the possibility of preparing low molecular weight 

polymers/oligomers by ROMP using a series of chain transfer agents. 

The work has shown that:-

(i) the monocyclic !-hydroxy- and 1-alkoxy-1-oxo-phospholenes do not 

undergo ROMP with aqueous initiators (RuC13.3H20, OsC13.3H20, 

IrC13.3H20); 

(ii) the monosubstituted organophosphorus derivatives of bicyclo[2.2.1] 

hept-2-ene undergo ROMP using IrC13.3H20 and RuC13.3H20 as 

precursors to the initiating species, whereas only low yields of oligomers 

are formed from the ROMP of disubstituted organophosphorus 

derivatives of norbornene using these initiator systems; 

(iii) solvent composition and the type of initiator used both have a 

considerable effect on the yield and molecular weight of the polymer 

fanned from the ROMP of the dialkylbicyclo[2.2.1]hept-2-ene-

5-phosphonates; 

(iv) low molecular weight polymers can be prepared by the aqueous ROMP 
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of dialkylbicyclo[2.2.1 ]hept-2-ene-5-phosphonate using chain transfer 

agents, such as cis-but-2-ene-1 ,4-diol and dimethylvinylphosphonate, 

but the yield is affected by the presence of the chain transfer agents 

since they are believed to deactivate or monopolise the activity on the 

catalyst. 

The proposals for future work, which are presented below, are put forward in the 

light of these findings. 

5.2 Proposals for future work. 

Some unexpected results have arisen during the course of this work, notably the 

molecular weight vmiation with ethanol concentration during the ROMP of the 

dialkylbicyclo[2.2.l]hept-2-ene-5-phosphonates in the water/ ethanol/ IrC13.3H20 and 

water/ ethanol/ RuC13.3H20 systems and the unusual chain transfer results obtained 

with cis-but-2-ene-1,4-diol, dimethylvinylphosphonate and trans-ethene-1,2-bis 

(dimethylphosphonate). These phenomena need to be investigated further. A kinetic 

investigation into the chain transfer reaction may reveal whether the theories proposed 

in chapter four are correct or not. This would also include a detailed study of the 

polymer product fmmed as the ROMP reaction proceeds. The problem of initiator 

deactivation by the chain transfer agents may be overcome by further studies of the 

chain transfer mechanism ancl finding an alternative more effective chain transfer 

agent. 

One other problem aJising from the work is that the poly{2,5-[3-dialkyl 

phosphonate]cyclopentylene }vinylene polymers are insoluble in water and obviously 

are no use in the water treatment. It may be possible to overcome this problem by 

increasing the water solubility by preparing random copolymers with a monomer that 

undergoes ROMP to yield a water soluble polymer, such as dicarboxylic acid-, 

dimethoxymethyl- and dihydroxymethyl- substituted oxanorbornenes. It may also be 
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possible to synthesise block copolymers of the two monomers by using a well-defined 

initiator which can tolerate the presence of moisture. One example of an initiator, 

which may possibly be of value in such work is Grubbs' mthenium metallocarbene (see 

section 1.6.2). 

The fire retardancy of the polymers may be enhanced by increasing the amount of 

phosphoms in the polymers or by incorporating the phosphoms atom in the main 

polymer chain, as opposed to having pendant groups such as phosphonate groups. 

Design synthesis and polymerisation of other phosphorus containing monomers 

therefore merits further thought. 

The exact nature of the initiating and propagating species fanned from the 

aqueous initiators, RuC13.3H20, OsC13.3H20 and IrC13.3H20, were not investigated 

and further studies, designed to illuminate the nature of the chain carrying species 

might be useful and help to clarify the reaction mechanism taking place. Part of the 

problem for work in this area is defining what species are present in the ill-defined 

systems currently used in aqueous ROMP. The advances made in ROMP following the 

introduction of well-defined and single metal centre initiators may indicate that the 

primary objective for aqueous ROMP should be the design and synthesis of 

well-defined initiators capable of working in water. 
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Appendix A2: 1 H NMR Spectrum (399.952 MHz) of 1-Hydroxy-1-oxo-3-phospholene. 
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Appendix AS: 1H NMR Spectrum (399.952 MHz) ofl-Neopentoxy-1-oxo-3-phospholene. 
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Appendix A6: 1 H NMR Spectrum (399.952 MHz) of Dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 
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Appendix A7: 1 H NMR Spectrum (399.952 Mhz) of Diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 
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Appendix AS: 1H NMR Spectrum (399.952 MHz) oftrans-Ethene-1,2-bis(dimethylphosphonate). 
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AppendixA9: 1H NMR Spectrum (399.952 MHz) ofexo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.1]hept-2-ene. 
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Appendix All: 1 H NMR Spectrum (399.952 MHz) of exo,endo-5,6-bis( diethylphosphonate)bicyclo[2.2.l]hept-2-ene. 
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13 C NMR Spectra. 
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Appendix B1: 13C NMR Spectrum (100.577 MHz) of 1-Chloro-1-oxo-3-phospholene. 
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Appendix B2: 13C NMR Spectrum (100.577 MHz) of 1-Hydroxy-1-oxo-3-phospholene. 
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Appendix B3: 13C NMR Spectrum (100.577 MHz) of 1-Methoxy-1-oxo-3-phospholene. 
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Appendix B4: 13C NMR Spectrum (100.577 MHz) of 1-Phenoxy-1-oxo-3-phospholene. 
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Appendix BS: 13C NMR Spectrum (100.577 MHz) of 1-Neopentoxy-1-oxo-3-phospholene. 
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Appendix B6: 13C NMR Spectrum (100.577 MHz) ofDimethylbicylo[2.2.1]hept-2-ene-5-phosphonate. 
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Appendix B6a: Expansions of the 13C NMR Spectrum (100.577MHz) of Dimethylbicylo[2.2.1]hept-2-ene-5-phosphonate. 
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Appendix B7: 13C NMR Spectrum (100.577 MHz) ofDiethylbicylo[2.2.l]hept-2-ene-5-phosphonate. 
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Appendix B7a: Expansions of the 13C NMR Spectrum (100.577 MHz) of Diethylbicylo[2.2.1]hept-2-ene-5-phosphonate. 
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Appendix B8: 13C NMR Spectrum (100.577 MHz) oftrans-Ethene-1,2-bis(dimethylphosphonate). 
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Appendix B9: 13C NMR Spectrum (100.577 MHz) of exo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.l]hept-2-ene. 



-00 -

52.6 52.3 ppm 45.7 45.5 45.3 45.1 ppm 

52 so 48 46 44 42 40 38 ppm 

Appendix B9a: Expansions of the 13C NMR Spectrum (100.577 MHz) of exo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.1]hept-2-em. 
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Appendix B10: 13C NMR Spectrum (100.577 MHz) oftrans-Ethene-1,2-bis(diethylphosphonate). 
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Appendix Bll: 13C NMR Spectrum (100.577 MHz) of exo,endo-5,6-bis( diethylphosphollate)bicyclo[2.2.1]hept-2-ene. 
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Appendix Blla: Expansions of the 13C NMR Spectrum (100.577 MHz) of exo,endo-5,6-bis(diethylphosphonate)bicyclo[2.2.1]hept-2-en. 
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Appendix Bl2: 13C NMR Spectrum (125.759 MHz) of Poly{2,5-[3-dimethylphosphonate]-cyclopentylene}-vinylene. 
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Appendix Bl4: 13C NMR Spectrum (100.577 MHz) ofPoly{2,5-[3,4-bis(dimethylphosphonate)]-cyclopentylene}-vinylene. 
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Appendix BJS: 13 C NMR Spectrum (100.577 MHz.) ofPoly{2,5-[3,4-bis(diethylphosphonate)]-cyclopentylene}-vinylene. 
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Appendix C1: 1-Chloro-1 -oxo-3-phospholene. 
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Appendix C2: 1-Hydrory-1-oxo-3-phorpholene. 
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Appendix CJ: 1-M ethoxy-1-oxo-3-phospholene. 
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Appendiz C4: 1-Phenoxy-1-oxo-3-phospholene. 
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Appendix CS: 1-Neopentoxy-1-oxo-3-phospholene. 
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Appendi.x C6: Dimethylbicyclo[2.2.1]hept-2-ene-S-phosphonate. 
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Appendix C7: Diethylbicyclo[2.2.1]hept·2-ene·5·phosphonate. 
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Appendiz C3: trans-Ethene-1 ,2-bis( dimethylphosphonate). 
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Appendix C9: exo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.J]hept-2-ene. 
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Appendix Cl 0: trans-Ethene-1 ,2 -bis( diethylphosphonate ). 
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Appendix Cll: ezo,endo-5,6-bis( diethylphosphonll1e)bicyclo[2.2.1]hqto2-ene. 
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· Appendiz C12: Poly(2,5-[3-dimethylphosphonll1e]-cyclopenqlsne}-Pinylene. 

195 



1%0 • 
Appendix C13: Poly(2,S -[3 -diethylphosphonaJe]-cyclopentylene}-vinylene. 

I l I ' I • 

33 32 3! 30 29 28 27 26 

Appendix C14: Poly(2,S -[3 ,4-bis( dimethylphosphonllle)-cyclopentylenej-Pinylene. 
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Appendix CIS: Poly{2,S-[3,.J-bis(diethylphosphonaJe)·cyclopentylen•J-vinylene. 

196 
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Infra-red Spectra. 
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Appendix D1: 1-Chloro-1-oxo-1-phospholene. 

Appendix D2: 1-Hydrory-1-oxo-3-phospholene. 

- - ·- - ·-
Appendix D3: 1-Methory-1-oxo-3-phospholene. 

!W .£! .a ..... •• 
Appendix D4: 1-Phenory-1-oxo.J-phospholene. 
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Appendix DS: 1-Neopentoxy-1-oxo-3-phospholene. 
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Appendix D6: Dimethylbicyclo[2.2.l]hept·2-ene-5-phosphontJJe. 

Appendix D7: Diethylbicyclo[2.2.I]hept-2-ene-5-phosphonate. 

199 

• 



- - - -
Appendiz DB: trans·Eihene·l ,2-bis(dimelhylphosphonate). 

Appendix D9: exo,endo·5,6·bis(dimethylphosphonate)bicyclo{2.2.l]hept·2-ene. 

- - - - - -
Ap,.ndiz DlO: trans·Ethene·l ,2-bis(dUtlaylphosphonate). . 
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App~~ndiz DJZ: Poly(2,S-{3-dimethylphospholfllltl]-e~IDptlntyt.nel·•inyt.ne. 

App~~ndiz Dl3: Poly(2,S-(3-diethylphospholfllltl]-qc1Dptlntylenel·rinylentl. 
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Appendix DJS: Poly{2,S-[3,4-bil(dimethylphosphonate)-cyclopentylene}-Pinylene. 
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A]J]Jendix E: 
Mass Spectra. 
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The mass spectra of the compounds obtained during this work are recorded 

below. The ions are tabulated h1 the form: 

119 (14%, C5H110P, M-C4H60). 

In this example the ion has a mass of 119, its intensity is 14% of the base peak (B). 

The parent ion is denoted by M and therefore molecular ions in chemical ionisation 

spectra are denoted by either MNH4 +or MH+. 

Appendix E1. 1-Chloro-1-oxo-3 -phospholene. 

Chemical Ionisation (M = C4H6CJOP). 

102 (23%, C4H702P, MH+-CJ). 

Appendix E2. 1-Hydroxy-1-oxo-3 -phospholene. 

Electon Impact (M = C4H70P). 

118 (37%, C4H702P, M): 54 (100%, C4H6, B): 47 (12%, PO, M-C4H70). 

Appendix E3.1-Methoxy-1-oxo-3-phospholene. 

Electon Impact (M = C5H90 2P). 

132 (44%, C5H90 2P, M): 78 (10%, CH30 2P, M-C4H6): 54 (100%, C4H6, B). 

Appendix E4.1-Phenoxy-l-oxo-3-phospholene. 

Electon Impact (M = C10Hu02P). 

194 (76%, C10Hu02P, M): 140 (100%, C6H50 2P, B): 

94 (76%, C6H60, M-C4H60P{ +H+}): 77 (20%, C6H5, M-C4H60 2P): 

54 (11 %, C4H6, M-B): 47 (12%, PO, M-C4H70). 

Appendix E5. 1-Neopentoxy-1-oxo-3 -phospholene. 

Chemical Ionisation (M = C9H170 2P). 

206 (15%, ~H21N02P, MNH4 +): 189 (100%, C9H180 2P, MH+): 

204 



136 (10%, C4H70 2P { +NH4 +}, MNH4 +-C5H11 { +H+}): 

119 (14%, C4H70 2P { +H+}, MH+-C5H11 { +H+}). 

Appendix E6. Dimethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 

Electon Impact (M = yH1s03P). 

202 (12%, yH150 3P, M): 137 (100%, C4H100 3P, B): 

105 (30%, C3H602P, B-CH30-H+): 92 (43%, C7Hs, M-C2H60 3P-H+): 

79 (14%, P03, M-C9H15): 66 (76%, C5H6, M-C4H90 3P). 

Appendix E7. Diethylbicyclo[2.2.1]hept-2-ene-5-phosphonate. 

Electon Impact (M = CuH1903P). 

230 (4%, C11H190 3P, M): 165 (100%, C6H140 3P, B): 

137 (32%, C4H100 3P, M-C7H9): 109 (90%, C2H60 3P, B-2C2H5{ +2H+}): 

92 (20%, C7H8, M-C4H100 3P-H+): 66 (45%, C5H6, M-C6H130 3P). 

AppendixES. trans-Ethene-1 ,2-bis( dimethylphosphonate). 

Electon Impact (M = C6H1406P2). 

244 (2%, C6H140 6P2, M): 150 (17%, C4H80 2P2, M-2CH30 2): 

135 (100%, C4H80 3P, B): 109 (14%, C2H60 3P, M-B): 

93 (35%, C2H602P, M-C4Hs04P): 79 (13%, P03, M-C6H1403P). 

Appendix E9. exo,endo-1 ,2-bis( dimethylphosphonate)bicyclo[2.2.1]hept-2-ene. 

Electon Impact (M = CuH200 6P2). 

310 (10%, C11H200 6P2, M): 244 (100%, C6H140 6P2, B): 

135 (76%, C4H80 3P, B-C2H60 3P): 109 (90%, C2H60 3P, 135-C2H2): 

66 (34%, C5H6, M-B). 
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Appendix E10. trans-Ethene-1 ,2-bis( diethylphosphonate). 

Electon Impact (M = C10H2206P2). 

300 (6%, C10H220 6P2, M): 255 (10%, C8H 170 5P2, M-C2H50): 

163 (100%, C6H1203P, B): 135 (60%, C4Hs03P, B-C2H4). 

Appendix Ell. exo,endo-1 ,2-bis( diethylphosphonate)bicyclo[2.2.1]hept-2-ene. 

Electon Impact (M = C1sH2s06P2) 

366 (11 %, C15H280 6P2, M): 301 (7%, C10H220 6P2, M-C5H5): 

229 (100%, C11H 180 3P, B): 163 (67%, C6H120 3P, 301-C4H100 3P): 

135 (54%, C4H80 3P, 163-C2H4): 66 (39%, C5H6, M-C10H220 6P2). 
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A!JJ?endix F: 
DEPT, COSY and HETCOR 

Spectra. 
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Appendix Fl: DEPT Spectrum of Dimethylbicyclo[2.2.1]hept-2-ene-5phosphonate. 
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Appendix F2: COSY Spectrum of Dimetllylbicyclo[2.2.l]hept-2-ene-5phosphonate. 
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Appendix F3: HETCOR Spectrum of Dimethylbicyclo[2.2.l]hept-2-ene-5phosphonate. 
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Appendix F4: DEPT Spectrum of exo,endo-5,6-bis( dimethylphosphonate)bicyclo[2.2.1]hept-2-ene. 
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Appendix FS: COSY Spectrum of exo,endo-5,6-bis(dimethylphosphonate)bicyclo[2.2.1}hept-2-ene. 
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Aypendix G: 
ABX Spin System Analysis. 
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The ABX Spectrum. 

All NMR spectra were recorded on a Broker AMX 500 NMR spectrometer 

operating at 125.770 MHz for Be NMR and 202.460 MHz for 31P NMR. The 

computer simulations were performed by the Varian NMR Fortran Program 

LAOCOON (LAME). For a thorough discussion of the mathematics, an explanation of 

the ABX spin system and an outline of the standard algorithms used in the computer 

simulations, the reader is directed to a number of publications. 185-189 

A) trans-Ethene-1,2-bis(dimethylphosphonate). 

The Be NMR spectrum of trans-ethene-1,2-bis(dimethylphosphonate) can be 

assigned as an AA'X spin system, an ABX spin system, which occurs in symmetrical 

molecules containing two chemically equivalent nuclei of high natural abundance, such 

as 31P, bound to a nucleus of low natural abundance, for example Be. The resultant 

spectrum of trans-ethene-1,2-bis(dimethylphosphonate) occurs as an ABX spin system 

due to an isotopic effect, where one of the vinylic carbons is a Be carbon and the other 

a 12C carbon (Figure Gl) giving an unsymmetrical molecule. There will also be 

signals arising from the symmetrical molecule where both carbons are Be, but due to 

the low abundance of the Be isotope the signals are very weak and are not observed 

under our measuring conditions. 

(MeOh(O)~ /H 
t2c=Bc 

H/ "'P(O)(OMeh 

Figure Gl: trans-Ethene-1 ,2-bis( dimethylphosphonate). 

The 3Jpp coupling constant can not be obtained from the conventional 31P 

spectrum so observation of the Be satellites in the 31 P spectrum can be used to 

determine its value. The Be satellites comprise two subspectra which are almost 

symmetrical about the main 31P peak. The two subspectra are not actually symmetrical 
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due to the isotope effects. Observation of the spectrum reveals that the Jpp coupling 

constant can be measured at four points (Figure G.2) corresponding to the AB 

spacings. Values for 0+ and 0_ the can also be measured from the spectrum. 

~ain 31 P signal. 

I<J 20+ t>l I<J 20 - t>l 

I I I I 
1~ 16 

ppm 

3Jpp 3Jpp 
I<J 1>1 j<J t>l 

I<J 
3Jpp 

t>l I<J 
3Jpp 

t>l 

Figure G.2: The 13C satellite peaks on the 31P spectrum of 

trans-ethene-1 ,2 -his( dimethylphosphonate ). 

The values calculated from the 31P spectrum (202.460 MHz) are: 

D+ = 64.06Hz, D.= 65.01Hz (or vice versa) 

and 3Jpp = 94.10Hz. 

As we are dealing with an isotopic effect the chemical shifts of the two 

phosphorus nuclei, vA and v8 , are very similar so vA.,. v8 and so 0+.,. 0_. 

The vinylic region of the 13C NMR spectrum comprises six signals (Figure G.3) 

and it has been shown that measurements taken from the spectrum can give a value for 

IJAX + J8xl as well as 0+ and 0_, which confirm the values calculated from the 31P 

spectrum. 
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The values calculated from the Be spectrum are: 

D+= 65.02Hz, D_= 63.99Hz (or vice versa) 

and IJAx+ J8 xl= 181.38Hz. 

I 
IJAX + JBxl -t>l 
210+- O_l 

-{>I I<J-

I I 
ll6 1 5 

ppm 

I _., -t>l ~ 

2(0+ + 0_) 

Figure G.3: The vinylic region of the 13C spectrum of 

trans-ethene-1 ,2-bis( dimethylphosphonate). 

Equations have been derived to calculate the coupling constants 1 Jpc and 2Jpc 

(J AX and JBx) and all the correct chemical shifts in the ABX spin system using the 

information obtained from the Be satellite peaks on the 31 P spectrum and from the 

vinylic region of the Be NMR spectrum. 

The average values of 0+ and D_, taken from the 31 P and the Be NMR spectra, 

were used in the following calculations. 

We know the values of 0+, 0_ and JAB eJpp) and substituting these into the above 

equations results in two simultaneous equations: 
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lvA·v8 + 1/2(JAx- J 8 x)l = 86.84Hz 

lvA·v8 - 1/2(JAx- J 8 x)l = 89.75Hz 

which gives two sets of roots: 

or 

lv A -vsl = 88.29Hz 

lv A -vBI = 1.46 Hz 

and 

and 

IJAx- J 8 xl = 2.91Hz. 

IJ AX - J8 xl = 176.58 Hz. 

but since we are dealing with an isotopic effect v A -v8 is very small and so J AX - J BX > > 

vA-vB and making use of the known value for IJAX + J8 xl. obtained from the 13C 

spectrum, we can calculate the values for J AX and Jsx: 

IJAxl = 178.98Hz and IJ8 xl = 2.40Hz. 

Double resonance experiments have to be used to determine the absolute signs of 

J AX and J8x and the relative sign of JAB· 

The centre of the eight 13C satellite peaks gives a value for 1/z(vA+ v8), this was 

calculated as 3317.39Hz, and since we have calculated that (vA- v8 ) = 1.46Hz, we can 

therefore calculate the corrected shifts of the two phosphorus nuclei v A and v8 • 

vA = 3318.12Hz = 16.389ppm. 

v8 = 3316.66Hz = 16.382ppm. 

Computer simulations have been performed using our calculated values of the 

shifts and coupling constants and the results have been compared to the vinylic region 

of the 13C NMR spectrum (Figure G.4). As can be seen from the results the computer 

simulation fits well with the experimental data. 
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Figure G.4: Comparison of the vinylic region of the 13C NMR spectrum of 

trans-ethene-1,2-bis(dimethylphosphonate) with the computer simulation results. 

The phosphonate methyl signals appear as a triplet, which arises from there being 

no five bond P-C coupling, hence JBx= 0. 

I I 
a b c d e f 

This results in the peaks at c and d coalescing to form the centre peak of the 

triplet and the peaks at a and f disappearing. The peaks at b and e therefore form the 

outer peaks of the triplet with the coupling constant between them being 2JPC (J AX)· 

This value was measured as 5.9Hz. 
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B) trans-Etbene-1,2-bis(dietbylpbosphonate). 

The same calculations can be used to determine the coupling constants 1 Jpc and 

2Jpc (J AX and J8x) and all the correct chemical shifts of trans-ethene-

1 ,2-bis(diethylphosphonate ). 

The values calculated from the satellites on the 31P spectrum and from the vinylic 

region of the 13C NMR spectrum are: 

D+ = 63.63Hz, D_ = 64.70Hz (or vice versa) 

3Jpp = 93.27Hz and 

IJAx+ J8 xl= 180.34Hz. 

The average values of D+ and D_, taken from the 31P and the 13C NMR spectra, 

were used in the calculations. These values can then be substituted in the following 

equations: 

this again results in two simultaneous equations: 

lvA·vo + 1J2(JAx- Jox)l = 86.60Hz 

lvA-vB - 1/2(JAx- Jox)l = 89.63Hz 

which gives the two sets of roots: 

or 

lv A ·vol = 88.11Hz 

lv A ·vol = 1.51 Hz 

and 

and 
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IJAx- J8 xl = 3.03Hz. 

IJAx- Joxl = 176.23 Hz. 



but since we are dealing with an isotopic effect vA-vB is very small and so JAX- Jsx >> 

v A-va and making use of the known value for IJ AX + Jsxl, obtained from the 13C 

spectrum, we can calculate the values for J AX and I ax: 

IJAxl = 178.30Hz and IJsxl = 2.04Hz. 

Double resonance experiments have to be used to determine the absolute signs of 

J AX and Jsx and the relative sign of JAB· 

The centre of the eight 13C satellite peaks gives a value for 1 h( v A+ va), this was 

calculated as 2825.23Hz, and since we have calculated that {vA- va) = 1.57Hz, we can 

therefore calculate the corrected shifts of the two phosphorus nuclei v A and va. 

v A = 2826.02Hz = 13.958ppm. 

va = 2824.45Hz = 13.95lppm. 

The CH2 and CH3 groups on the phosphonate [P(O)(OCH2CH3)i) substituent 

both give rise to triplets as there is no four or five bond P-C coupling. These values 

were measured from the coupling between the two outer peaks of the triplet giving 

values of 5.55Hz and 6.24Hz respectively. 
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AppendixH: 
Chain Transfer Kinetics. 
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Chain Transfer Kinetics.39,184 

In the following discussion (*) indicates the chain initiating/propagating species 

(i.e. metallocarbene for ROMP). 

Propagating Species Formation. 

I 

Initiation. 

R*+M 
k-1 

Propagation 

RM
0
*+M 

kp 

Termination 

RMn* + RMm* _____ k_t ____ _. 

k' t RM * n ----------~ 

R* (A) 

RM* (B) 

RMn+l * (C) 

Dead Polymer (0
8

) 

Dead Polymer (Db) 

- where kr, ki, kP and kt are the rate constants for catalyst dissociation, initiation, 

propagation, bimolecular termination and unimolecular termination respectively and M 

represents the monomer molecule. 

The termination steps are a combination of all termination reactions including 

disproportionation, coupling and any other process which gives a dead polymer. Dead 

polymer refers to cessation of growth from the propagating species. 

The rate at which the monomer disappears is the same as the rate of polymerisation and 

this in tum is equal to the sum of the rates of initiation and propagation. 
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(E) 

The number of monomer molecules reacting in the propagation step is much 

greater than the number in the initiation step, hence we can, to a first approximation, 

equate the rate of polymerisation to the rate of propagation. 

-d[M1/ - R dt- p (F) 

The rate of propagation and hence the rate of polymerisation, is the sum of all the 

propagating steps and therefore can be expressed as:-

(G) 

The kinetic chain length (u) of a propagating species is defined as an average 

number of monomer molecules polymerised for each of the propagating species 

produced and is expressed as the ratio of the rate of propagation to the rate of initiation 

or indeed the rate of termination, since rate of initiation is equal to the rate of 

termination in a steady state approximation, which is assumed here. 

R R 
V=-p-= _P_ 

Ri Rt 
(H) 

The number average degree of polymerisation (X0 ) is the average number of 

monomer molecules in the polymer chain and is defined as the ratio of the molecular 

weight of the polymer (M0 ) to the molecular weight of the monomer (M0 ). 

Xn = Mo (I) 
Mo 

If the propagating species are terminated by coupling X0 is related to the Kinetic 

Chain Length by:-
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(J) 

If the propagating species are terminated by disproportionation or other processes 

leading to an uncoupled dead polymer then:-

(K) 

Chain transfer is a chain breaking reaction, resulting in a decreased propagating 

polymer chain size. 

kct 
MD* + XA --------~ (L) 

-where XA can be monomer, solvent, initiator or chain transfer agent and A is the 

transferred species. 

(M) 

The new propagating species A* can cause further polymerisation:-

ka 
A*+ M --------~AM* (N) 

From equation (K) we can redefine X0 as the ratio of the rate of polymerisation 

to the sum of the rates of all chain breaking and chain terminating reactions. 

RP 
Xn = ------------

Rt + Ret m + Ret z + Ret 1 
' ' ' 

(0) 

-where Rt, Rct,m, Rct.z and Rct,I are the rates of termination, chain transfer to monomer, 

chain transfer to chain transfer agent (z) and chain transfer to initiator reactions 

respectively. 
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Using Rp=kp[RM*][M] from equation (G) and assuming tennination has both 

bimolecular and unimolecular mechanisms, we can write Rt=kt[RM*]2+ kt'[RM*] 

from equations (DJ and (Db) and obtain:-

kp[RM*] [M] 
Xn=----------------------~-------------------------------

kt[RM*] 2 + k;[RM*] + kct,m [M][RM*] + kct,z[RM*][Z] + kct,I[RM*][I] 
(P) 

If we simplify and take the reciprocal of equation (P) we obtain:-

= (Q) 

A Chain Transfer Constant (Cx) of a substance (X) is defined as the ratio of the 

rate constant for chain transfer of a propagating species with the substance (X) to the 

rate constant for propagation, where (X) can be monomer, initiator or chain transfer 

agent 

kct ,x 

kp 

If we then substitute this information into equation (Q) we obtain:-

= 
. ' 

kt[M ] + kt [Z] 
----- + Cm + Cz ---=----=----

kp [M] [M] 

(R) 

(S) 

There is no transfer to monomer in ROMP hence Cm can be ignored and since the 

concentration of the initiator is very low and this process is inherently unlikely the last 

term can be considered negligible. The first term in equation (S) is the value of 1/xn 

when there is no chain transfer agent present. 
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1 

Hence:-

= 

= 
kt[RM*] +kt' 

kp[M] 
(T) 

(U) 

To obtain an expression for 1/Mn we can divide by M0 , the molecular weight of 

the monomer (equation (1)):-

1 1 Cz [Z] 
+----

M 0 M
0

, M 0 [M] 
(V) 

-where 1/Mn' is the value of 1/Mn in the absence of a chain transfer agent. Hence, if we 

define a new Chain Transfer Constant as Cz'= Cz/Mo, we obtain:-

C
' [Z] + -

z [M] 
(W) 1 1 

----
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UNIVERSITY OF DURHAM 
Board of Studies in Chemistry 

Colloquia, Lectures and Seminars given by Invited Speakers. 

October 17. 

October 25. 

November 1. 

November 9. 

November 10. 

November 13. 

November 16. 

November 29. 

November 30. 

December 4. 

December 6. 

December 7. 

December 13 

December 15 

Dr. F. Palmer, (Nottingham University). 
Thunder and Lightning. 

Prof. C. Aoriani, (University of Lausanne, Switzerland). 
Molecular Aggregates - A Bridge between Homogeneous and 
Heterogeneous systems. 

Dr. J.P.S. Badyal, (Durham University). 
Breakthroughs in Heterogeneous Catalysis. 

Prof. N.N. Greenwood, (Leeds University). 
Novel Cluster Geometries in Metalloborane Chemistry. 

Prof. J.E. Bercaw, (California Institute of Technology). 
Synthetic and Mechanistic Approaches to Ziegler-Natta 
Polymerisation of Olefins. 

Dr. J. Becher, (Odense University). 
Synthesis of New Macrocyclic Systems using Heterocyclic 
Building Blocks. 

Dr. D. Parker, (Durham University). 
Macrocycles, Drugs and Rock 'n' Roll. 

Prof. D.J. Cole-Hamilton, (University of St. Andrews). 
New Polymers from Homogeneous Catalysts. 

Dr. M.N. Hughes, (King's College, London). 
A Bug's Eye View of the Periodic Table. 

Dr. D. Graham, (B.P. Research Centre). 
How Proteins Absorb to Interfaces. 

Dr. R.L. Powell, (ICI). 
The Development of CFC Replacements. 

Dr. A. Butler, (University of St. Andrews). 
The Discovery of Penicillin: Facts and Fancies. 

Dr. J. Klinowski, (Cambridge University). 
Solid State NMR Studies of Zeolite Catalysts. 

Prof. R. Huisgen, (UniversiUit Mtinchen). 
Recent Mechanistic Studies of [2+2] Additions. 
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January 24 

January 31. 

February 1. 

February 7. 

February 8. 

February 12. 

February 14. 

February 15. 

February 21. 

February 22. 

February 28. 

March 1. 

March 8. 

March 21. 

March 23. 

July 9. 

Dr. R.N. Perutz, (York University). 
Plotting the Course of C-H Activations with Organometallics. 

Dr. U. Dyer, (Glaxo). 
Synthesis and Confonnation of C-Glycosides. 

Prof. J.H. Holloway, (University of Leicester). 
Noble Gas Chemistry. 

Dr. D.P. Thompson, (Newcastle University). 
The Role of Nitrogen in Extending Silicate Crystal 
Chemistry. 

Rev. R. Lancaster, (Kimbolton Fireworks). 
Fireworks - Principles and Practice. 

Prof. L. Lunazzi, (University of Bologna). 
Application of Dynamic NMR to the Study of Conformational 
Enantiomerism. 

Prof. D. Sutton, (Simon Fraser University, Vancouver B.C.) 
Synthesis and Applications of Dinitrogen and Diazo 
Compounds of Rhenium and Iridium. 

Prof. L. Crombie, (Nottingham University). 
The Chemistry of Cannabis and Khat. 

Dr. C. Bleasdale, (Newcastle University). 
The Mode of Action of Some Anti-tumour Agents. 

Prof. D.T. Clark, (ICI Wilton). 
Spatially Resolved Chemistry (Using Nature's Paradigm in 
the Advanced Materials Arena). 

Dr. R.K. Thomas, (Oxford University). 
Neutron Reflectometry from Surfaces. 

Dr. J.P. Stoddart, (Sheffield University). 
Molecular Lego. 

Dr. A.K. Cheetham, (Oxford University). 
Chemistry of Zeolite Cages. 

Dr. I. Powis, (Nottingham University). 
Spinning Off in a Huff: Photodissociation of Methyl Iodide. 

Prof. J.M. Bowman, (Emory University). 
Fitting Experiment with Theory in Ar-OH. 

Prof. V.E. Platonov, (USSR Academy of Sciences -
Novosibirsk). 
Polyfluoroindanes: Synthesis and Transformation. 
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July 9. 

July 9. 

October 11. 

October 24. 

October 26. 

October 31. 

November 1. 

November6. 

November?. 

November 8. 

November 14. 

November 21. 

November 28. 

November 29. 

December 5. 

December 13. 

Prof. LN. Rozhkov, (USSR Academy of Sciences- Moscow). 
Reactivity in Perfluoroalkyl Bromides. 

Prof. L.S. German, (USSR Academy of Sciences- Moscow). 
New Syntheses in Fluoroaliphatic Chemistry: Recent 
Advances in the Chemistry of Fluorinated Oxiranes. 

Dr. W.A. Macdonald, (ICI, Wilton). 
Materials for the Space Age. 

Dr. M. Bochmann, (University of East Anglia.) 
Synthesis, Reactions and Catalytic Activity of Cationic 
Titanium Alkyls. 

Prof. L. Soulen, (South Western University, Texas). 
Preparation and Reactions of Bicycloalkenes. 

Dr. R. Jackson, (Newcastle University). 
New Synthetic Methods: a.-Amino Acids and Small Rings. 

Dr. N. Logan, (Nottingham University). 
Rocket Propellants. 

Dr. P. Kocovsky, (Uppsala University). 
Stereo-Controlled Reactions Mediated by Transition and 
Non-Transition Metals. 

Dr. D. Gerrard, (British Petroleum). 
Raman Spectroscopy for Industrial Analysis. 

Dr. S.K. Scott, (Leeds University). 
Clocks, Oscillations and Chaos. 

Prof. T. Bell, (SUNY, Stoney Brook, U.S.A.). 
Functional Molecular Architecture and Molecular 
Recognition. 

Prof. J. Pritchard, (Queen Mary & Westfield College, London 
University). 
Copper Surfaces and Catalysts. 

Dr. B.J. Whitaker, (Leeds University). 
Two-Dimensional Velocity Imaging of State-Selected 
Reaction Products. 

Prof. D. Crout, (Warwick University). 
Enzymes in Organic Synthesis. 

Dr. P.G. Pringle, (Bristol University). 
Metal Complexes with Functionalised Phosphines. 

Prof. A. H. Cowley, (University of Texas). 
New Organometallic Routes to Electronic Materials. 
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January 15. 

January 17. 

January 24. 

January 30. 

January 31. 

February 6. 

February 14. 

February 20. 

February 28. 

March 6. 

March 7. 

April24. 

April25. 

June 20. 

July 29. 

October 17. 

Dr. B.J. Alder, (Lawrence Livermore Labs., California. 
Hydrogen in all its Glory. 

Dr. P. San·e, (Nottingham University). 
Comet Chemistry. 

Dr. P.J. Sadler, (Birbeck College, London). 
Design of Inorganic Drugs: Precious Metals, Hypertension 
andHIV. 

Prof. E. Sinn, (Hull University). 
Coupling of Little Electrons in Big Molecules. Implications 
for the Active Sites of (Metalloproteins and other) 
Macromolecules. 

Dr. D. Lacey, (Hull University). 
Liquid Crystals. 

Dr. R. Bushby, (Leeds University). 
Biradicals and Organic Magnets. 

Dr. M.C. Petty, (Durham University). 
Molecular Electronics. 

Prof. B.L. Shaw, (Leeds University). 
Syntheses with Coordinated, Unsaturated Phosphine Ligands. 

Dr. J. Brown, (Oxford University). 
Can Chemistry Provide Catalysts Superior to Enzymes. 

Dr. C.M. Dobson, (Oxford University). 
NMR Studies of Dynamics in Molecular Crystals. 

Dr. J. Markam, (ICI Pharmaceuticals). 
DNA Fingerprinting. 

Prof. R.R. Schrock, (Massachusetts Institute of Technology). 
Metal-Ligand Multiple Bonds and Metathesis Initiators. 

Prof. T. Hudlicky, (Virginia Polytechnic Institute). 
Biocatalysis and Symmetry Based Approaches to the Efficient 
Synthesis of Complex Natural Products. 

Prof. M.S. Brookhart, (University of North Carolina). 
Olefin Polymerisations, Oligomerisations and Dimerisations 
Using Electrophilic Late Transition Metal Catalysts. 

Dr. M.A. Brimble, (Massey University, New Zealand). 
Synthetic Studies Towards the Antibiotic Griseusin-A. 

Dr. J.A. Salthouse, (University of Manchester). 
Son et Lumiere - A Demonstration Lecture. 
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October 31. 

November 6. 

November?. 

November 13. 

November 20. 

November 28. 

December4. 

December 5. 

December 11. 

January 22. 

January 29. 

February 12. 

February 19. 

February 25. 

February 26. 

March 11. 

Dr. R. Keeley, (Metropolitan Police Forensic Science). 
Modem Forensic Science. 

Prof. B.F.G. Johnson, (Edinburgh University). 
Cluster-Surface Analogies. 

Dr. A.R. Butler, (St. Andrews University). 
Traditional Chinese Herbal Drugs: A Different Way of 
Treating Disease. 

Prof. D. Gani, (St. Andrews University). 
The Chemistry of PLP Dependant Enzymes. 

Dr. R. More 0' Ferrall,(University College, Dublin). 
Some Acid-Catalysed Rearrangements in Organic Chemistry. 

Prof. I.M. Ward, (IRC in Polymer Science, Leeds University). 
The SCI. Lecture: The Science and Technology of Orientated 
Polymer. 

Prof. R. Grigg, (Leeds University). 
Palladium Catalysed Cyclisation and Ion Capture Processes. 

Prof. A.L. Smith, (ex-Unilever). 
Soap, Detergents and Black Pudding. 

Dr. W.D. Cooper, (Shell Research). 
Colloid Science, Theory and Practice. 

Dr. K.D.M. Harris, (St. Andrews University). 
Understanding the Properties of Solid Inclusion Compounds. 

Dr. A. Holmes, (Cambridge University). 
Cycloaddition Reactions in the Service of the Synthesis of 
Piperidine and Indolizidine Natural Products. 

Prof. D.E. Fenton, (Sheffield University). 
Polynuclear Complexes of Molecular Clefts as Models for 
Copper Biosites. 

Prof. E.J. Thomas, (Manchester University). 
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