## Durham E-Theses

# Cross-hole seismic reflection surveying in coal measures 

Findlay, Michael John

## How to cite:

Findlay, Michael John (1991) Cross-hole seismic reflection surveying in coal measures, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6163/

## Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

# Cross-hole Seismic Reflection Surveying in Coal Measures 

by

Michael John Findlay

# A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy 

## Department of Geological Sciences <br> The University of Durham <br> 1991

The copyright of this thesis rests with the author.
No quotation from it should be published without his prior written consent and information derived
from it should be acknowledged.


The research in this thesis has been carried out at the Department of Geological Sciences of the University of Durham between October 1987 and September 1990. It is the original work of the Author unless stated otherwise. None of this work has been submitted for any other degree.

The copywright of this thesis rests with the Author. No quotation from it may be published without his prior written consent, and information derived from it should be acknowledged.

## Acknowledgements

There are a number of people whom I would like to mention for their contributions either directly or indirectly towards the work of this thesis.

Above all, I would like to thank Dr Neil Goulty for his supervision and encouragement throughout my research work.

I would also like to thank Ed Kragh for his comradeship and useful suggestions.

My thanks go to the other members of the borehole seismic research group who helped in fieldwork, i.e. Stefan Thatcher and Miles Leggett and also to the many British Coal Opencast geologists and drilling crews who were most helpful in providing access to boreholes and borehole logs.

I am grateful to the Department of Education for Northern Ireland for funding me.

Finally, I would like to thank my patient wife, Anita, for her encouragement over the past three years and especially so whilst this thesis was being written.


#### Abstract

This thesis is concerned with the development of the cross-hole seismic reflection surveying method with particular application to the shallow Coal Measures strata found in opencast coal mining prospects in the U.K.

A field acquisition technique developed for shallow boreholes utilising explosive sources and hydrophone receivers is described. Data have been acquired from several test sites in northern England.

Data-processing techniques including wavefield separation and waveshaping deconvolution have been developed for cross-hole data and the theories behind these techniques are discussed.

Methods of imaging cross-hole reflection data including the 'VSP-CDP' transformation and Generalised Kirchhoff migration are applied to computergenerated synthetic data and to real data in order to yield a depth section of the seismic reflectivity between the boreholes.

Finally, the data-processing and imaging techniques developed are applied to real data acquired at British Coal Opencast exploration sites in northern England between 1987 and 1990.


## Table of Contents

Chapter I
Introduction ..... 1
1.1 Synopsis ..... 1
1.2 Opencast coal mining in the U.K ..... 1
1.3 Opencast coal exploration ..... 2
1.4 Seismic exploration for coal. ..... 4
Chapter II
The cross-hole seismic reflection method ..... 6
2.1 Borehole seismic techniques ..... 6
2.2 Cross-hole seismic techniques ..... 7
2.3 Cross-hole seismic data acquisition ..... 8
2.3.1 The source ..... 8
2.3.2 The receivers ..... 9
2.3.3 Recording equipment ..... 10
2.3.4 Field equipment set-up ..... 11
2.4 Data acquisition problems ..... 12
2.4.1 Timing errors ..... 12
2.4.2 Noise ..... 12
2.4.3 Borehole blockages ..... 13
2.5 Uphole shots and verticality ..... 14
2.5.1 Uphole velocity estimates ..... 14
2.5.2 Borehole verticality ..... 15
Chapter III
Data processing ..... 16
3.1 Introduction ..... 16
3.2 Editing ..... 16
3.2.1 Shot-matching deconvolution ..... 17
3.2.2 First break estimation and direct arrival suppression ..... 18
3.3 Wavefield separation ..... 19
3.3.1 The Nyquist frequencies and aliasing ..... 21
3.3.2 Two-dimensional filter application ..... 21
3.3.3 Filter design ..... 22
3.3.4 Tube waves and spatial aliasing ..... 23
3.3.5 Examples of wavefield separation in the f-k domain ..... 25
3.4 Waveshaping deconvolution ..... 27
3.5 Velocity field estimation ..... 28
3.6 The reflection point mapping scheme or VSP-CDP transform ..... 29
3.7 Velocity analysis using the VSP-CDP transform ..... 32
Chapter IV
Migration of cross-hole reflection data ..... 37
4.1 Introduction ..... 37
4.2 Finite-difference migration ..... 38
4.3 Implementation of the finite-difference migration algorithm ..... 39
4.3.1 The finite-difference approximation ..... 40
4.3.2 Boundary conditions: ..... 42
4.3.3 Grid dispersion ..... 44
4.3.4 Modelling seismic data with EXTRAP ..... 45
4.3.5 Migrating seismic data with EXTRAPREV ..... 46
4.4 Kirchhoff migration ..... 46
4.4.1 Diffraction stack migration. ..... 46
4.4.2 The Kirchhoff operator ..... 47
4.4.3 The Generalised Kirchhoff operator ..... 49
4.5 Comparison of finite-difference and Kirchhoff migration ..... 50
4.5.1 Point diffractor model ..... 50
4.5.2 Horizontal reflecting interface model ..... 51
Chapter V
Results from cross-hole surveys in Coal Measures strata ..... 54
5.1 Introduction ..... 54
5.2 Tinsley Park ..... 54
5.3 Lowther South, West Yorkshire ..... 57
5.3.1 Survey B, illustrating the combination of up- and down- going sections ..... 58
5.3.2 Survey C; between boreholes II and III ..... 60
5.3.3 Survey D; wider-spaced cross-hole reflection survey ..... 61
5.3.4 Survey E; cross-hole survey through major fault zone ..... 63
5.4 Lostrigg, Cumbria ..... 66
5.4.1 Survey F; old mineworkings ..... 66
Chapter VI
A comparison of different migration operators for cross-hole seismic data ..... 68
6.1 Introduction ..... 68
6.2 Migration operators ..... 68
6.2.1 Suitability of impulse response functions for cross-hole data ..... 70
Chapter VII
Conclusions and suggestions for future wörk ..... 72
References ..... 75
Appendix A Computer software ..... I
Appendix A. 1 Data processing software ..... II
Appendix A. 2 The reflection point loci program REFLOC ..... III
Appendix A. 3 The VSP-CDP transform program XHRMAP ..... IV
Appendix A. 4 The raytracing program TRACER .....  V
Appendix A. 5 The raytracing subroutine RAYTRA ..... VI
Appendix A. 6 The finite-difference migration program EXTRAPREV ..... VII
Appendix A. 7 The forward modelling program EXTRAP ..... VIII
Appendix A. 8 The migration program KIRCHMIG ..... IX

## Chapter I

## Introduction

### 1.1 Synopsis

The purpose of this research work has been to develop the cross-hole reflection surveying method, and to consider its feasibility as an exploration technique for opencast coal prospects. The remainder of this chapter is concerned with opencast coal exploration in the U.K. in order to put the development of the cross-hole method into context. Chapter II deals with the acquisition of cross-hole seismic survey data and the problems associated with it. Chapter III is an overview of the data processing which is required for these surveys and chapter IV concentrates on the migration methods which may be used to image the data. Some trial surveys which were conducted at opencast prospects in the north of England are discussed in chapter V, and a comparison of different cross-hole migration operators is included in chapter VI. Conclusions of this work are drawn in chapter VII.

### 1.2 Opencast coal mining in the U.K.

In the modern era, opencast coal mining in the U.K. began in 1942, when it was introduced as a wartime measure to extract shallow coal reserves from the top few metres of the ground. Modern mines are now much deeper; a typical working site may be 100 m deep. Pits are much smaller than in other parts of the world, simply because of the high population density in the U.K. Site boundaries are restricted by
population centres and the communication networks between them as well as by natural boundaries.

Current estimates of shallow coal reserves in the U.K. suggest that there are around 300 million tonnes of coal which could be extracted by opencast mining. Although the total annual output ( $\sim 15$ Mtonnes) from opencast mines is less than $20 \%$ of the total U.K. production, opencast coal is more economical to produce and is often of an higher quality than deep-mined coal. Deep-mined coal often has opencast coal blended with it to improve its calorific value and bring it up to the required standard for a marketable product.

The responsibility for opencast coal developments lies with British Coal Opencast (BCO), which is a subsidiary of the British Coal Corporation. BCO provides a detailed specification of a prospect to civil engineering companies who tender for the contract to mine the site. BCO also uses the specification in applying for planning permission. As part of theit contract, the civil engineering companies must restore the pit area when the mining operation has been concluded.

### 1.3 Opencast coal exploration

Initial site assessments are based upon the currently available geological knowledge of the area. Additional information is also provided by the plans of old mineworkings (although these are usually too unreliable to help in site reserve estimates) as well as the data obtained from any nearby opencast sites. Once there is sufficient evidence to show that a proposed site may be profitable, the exploration stage begins.

BCO's present exploration strategy involves the drilling of a dense grid of shallow (typically with total depths less than 100 m ) boreholes. The boreholes have 14 cm diameter steel casing from the surface down to rock head (typically 5-10 metres of casing), but below this depth they are left uncased. This drilling programme is a massive exploration effort with a total metreage of around $750,000 \mathrm{~m}$ drilled each year. These are drilled using an air-flush system in which compressed air forces rock chippings from the drill bit to the surface, where they are logged by the driller. All the boreholes are subsequently geophysically logged by using natural gamma and density tools. The density $\log$ gives excellent responses to coal seams, whilst the natural gamma log identifies dirt bands and is used in correlations between boreholes. Approximately $20 \%$ of the boreholes are also cored. An ideal drilling strategy is initially to drill holes on a grid pattern with 120 m spacing. This would then be reduced to 60 m and then to 30 m , or even less, in areas of particular interest where faulting or old mineworkings are believed to exist. However, permit difficulties and time limitations often dictate that the initial reconnaissance stage is omitted, and in some parts of the country only a single phase of drilling on, say, 50 m centres is carried out. The interpreted logs from the boreholes are used to determine the overburden lithologies as well as the location and thicknesses of coal seams and the presence of fault zones which may lead to problems in the excavation of coal.

It is very important that BCO can provide as accurate an estimate as possible of the rippable coal reserves, since it will incur contractual penalties if the excavating civil engineering contractor finds less readily extractable coal in the site than was predicted, and also because any profits from excess coal reserves will chiefly benefit the contractor. The site must also be shown to be of primary economic importance to the appropriate planning authorities.

To date the drilling programme has proven to be an effective exploration strategy, but information coverage is disrupted where physical obstructions such as buildings and rivers are located. These gaps in the data might be filled by geophysical techniques which can provide information on the strata between the boreholes. It is barely possible to detect faults with throws of 2 m or less from borehole levels, even if the boreholes were drilled only 2 m apart. There is, therefore, great potential for a geophysical technique which can detect such small faults in critical areas such as site boundaries. In addition, suitable geophysical surveys combined with a 60 m borehole spacing, might allow old workings and faults to be determined more accurately than would be possible by drilling boreholes with 30 m separations. This could potentially eliminate the need for $-75 \%$ of the boreholes in these areas.

The pillar and stall type of old mineworkings are particularly prevalent in areas suitable for opencast mining because, naturally enough, the earliest old mineworkings were frequently located near outcrops. As many as five or six sets of old mineworkings may be present in different seams on the same site. Indeed, the greater part of the coal in an economically viable prospect may be in the form of pillars in the old mineworkings which were left behind to prevent collapse.

### 1.4 Seismic exploration for coal

Surface seismic reflection surveys have been used as an exploration tool for deep mines for almost twenty years. In these surveys target depths are of the order of hundreds of metres, and poor imaging is obtained in the upper 100 m of the sections (see e.g. Ziolkowski, 1979). The surface reflection method has been applied
specifically to opencast targets by Brabham (1986), but the results were poor with long wavelength ( $\sim 20 \mathrm{~m}$ ) reflections being recorded, the higher frequencies having been absorbed by the weathered surface layers. A great problem for shallow seismic reflection surveys is interference from refracted waves and ground roll; this is very dependent on the shallow geology (Bredewout and Goulty, 1986).

In-seam seismic methods have also been used successfully in deep mines (Buchanan, 1983; Jackson, 1985). Deep mine hole-to-hole seam wave transmission experiments were carried out by Jackson et al. (1989), who observed arrivals with the dispersive character which one would expect for a low-velocity SH channel wave between holes where the seam was continuous. When old mineworkings or faulting exist between the boreholes, no such wave should be detected. The method has been applied to shallow Coal Measures strata (Goulty et al., 1990), but without success because of the strong attenuation of high-frequency shear waves in shallow strata. Vertical seismic profiling (VSP) methods have been applied to deeper coal seams by Suprajitno and Greenhalgh (1985) and Jackson et al. (1989) and to shallow Coal Measures strata by Kragh (1990).

It is hoped that cross-hole seismic reflection surveys may be used in conjunction with VSPs and borehole logs to provide a flexible, high-resolution tool for opencast coal exploration. In particular, they could fill in information where boreholes cannot be drilled and accurately determine the location of small faults and old mineworkings.

## Chapter II

## The cross-hole seismic reflection method

### 2.1 Borehole seismic techniques

The check shot survey is a long-established borehole seismic technique in the oil exploration industry which is used to calibrate velocity measurements obtained from borehole sonic logs. A natural progression from' this was the vertical seismic profile (VSP). The VSP involves repeatedly firing rig-source shots while a geophone is located at successive depth levels in the borehole; see Balch et al. (1982) for a review. The seismic data recorded can then be processed to obtain a vertical profile of the seismic reflection response of the strata at the borehole. VSPs are useful for correlating conventional surface seismic reflection sections with well-log information.

Further developments in VSP data acquisition include offset VSPs, where the source is fired at a constant offset from the rig (see e.g. Dillon and Thomson, 1984) and walkaway VSPs, where the source is fired at several different offsets while the geophone position is kept constant (see e.g. Kohler and Koenig, 1986). These illuminate the geological structure over narrow cross-sections through the borehole in the azimuthal direction of the source locations. The most general case of such profiles utilises multiple geophone positions and source offsets in the same survey.

When the source is fired within the borehole and surface receivers are used the survey is known as a hole-to-surface seismic profile (Kragh, 1990), a simpler terminology for what has also become known as the inverse multi-offset VSP
(IMOVSP) (e.g. Jackson et al., 1989). These types of survey provide increased resolution of seismic reflectors compared with conventional surface seismic surveys because the acoustic signal only passes through the near-surface layer once, whereas two passes are needed for surface seismic reflection surveys. Thus the higher temporal frequencies in the signal are less attenuated by near-surface effects.

### 2.2 Cross-hole seismic techniques

Cross-hole seismic methods involve firing shots in one borehole and recording the transmitted and scattered wavefields on receivers positioned in a neighbouring borehole. By positioning both sources and receivers in the sub-surface, the frequency content of the data is higher than that of VSPs. The first applications of this recording geometry were in velocity surveys where the travel times of direct arrivals are used by tomographic inversion algorithms to generate a tomogram or slice of the velocity field between the boreholes (see e.g. Worthington, 1984; Dines and Lytle, 1979). The uses of this technique are principally in locating local velocity anomalies caused by intrusions and voids (e.g. Cottin et al., 1986; Bishop and Styles, 1990), and also in monitoring the changes in a velocity anomaly with time which may occur during fluid-injection enhanced oil recovery projects (Macrides et al., 1988 and Justice et al., 1989). Kragh (1990) applied the technique in trying to locate shallow old mineworkings in Coal Measures strata by looking for velocity anomalies in the collapsed zones immediately above the old mineworkings, but concluded that any such velocity anomalies were too small to be detectable by this method.

The basic type of tomographic survey uses only the direct arrival traveltime data. Obviously additional information is also present in the later scattered arrivals. Techniques to utilise scattered arrivals have been developed by Devaney (1984) and Pratt and Worthington (1988), amongst others. The diffraction tomography method may be applied to cross-hole data to provide velocity and attenuation tomograms. An alternative to this approach is to consider a cross-hole reflection survey as being composed of several offset VSPs where the sources and receivers are all below ground level. Data processing of the survey is then similar to, but more complicated than, processing a set of offset VSPs. This processing route has previously been applied to synthetic data by Hu et al. (1988) and to ultrasonic scale-model data by Zhu and McMechan (1988) and Balch et al. (1990). This is the processing method which has been adopted in this work.

### 2.3 Cross-hole seismic data acquisition

As in any type of seismic survey, the choice and deployment of acquisition equipment should be considered carefully. Of particular importance are the types of source and receiver and the recording device used.

### 2.3.1 The source

An explosive source was used in all the trial surveys of Chapter V. The explosive charge used consisted of an electrical (no. 8 type) detonator which was sometimes boosted by 25 g of dynamite. The dynamite was used to improve the
signal-to-noise ratio in surveys where high background noise levels were observed, but it was generally avoided in order to minimise the risk of damage to the borehole walls. There was no noticeable change in the frequency content of data recorded using a dynamite source compared with that of data recorded using a detonator alone, suggesting that the charge scaling law proposed by Ziolkowski et al. (1980) does not hold for small-sized charges fired in boreholes.

The charge is positioned at the end of a 4 cm diameter hollow steel tube which is 40 cm long. The purpose of the tubing is to provide to provide sufficient weight to allow the source to be lowered and raised easily in the borehole and also to prevent the explosion from damaging the firing or triggering leads with which the source is connected to the surface. This source was found to give an adequate frequency range for the purposes of the trial surveys and also gave good shot repeatability.

### 2.3.2 The receivers

It was decided that, for reasons of practicality and speed, a string of receivers would be needed. The simplicity of utilising a ready-built hydrophone string greatly outweighed the complexity of constructing a string of (three-component) geophones. Hydrophones in a vertical fluid-filled borehole may be expected to detect SV body waves as well as P waves, but not SH waves (Schoenberg, 1986). However, the practical difficulties of accurately recording rock particle motion by a borehole geophone were recently demonstrated by Beattie (1990). She found that the geophone was much more sensitive to tube waves; a surprising result but explained by the effect of the pressure in the fluid due to the tube waves acting on the top and bottom of the geophone housing.

Two 12-channel hydrophone strings were used; the first (used in survey A of chapter $V$ ) had hydrophone spaced at 4 m intervals and the second (used in the remainder of the trial surveys) had a 2 m hydrophone spacing. The hydrophones were streamlined by enclosing each one in heat-shrink plastic to prevent snagging on the borehole wall. A weight is fastened to the bottom end of the string to facilitate lowering in the borehole. The 4 m -spacing string was supported by a steel cable fed past each hydrophone and attached to the weight at the bottom. In the 2 m -spacing prototype a nylon rope was used instead in order to reduce the overall weight of the string and make it easier to handle.

### 2.3.3 Recording equipment

Two recording devices were used in the field trials. The first was an EG\&G Geometrics Nimbus 12 -channel 10 bit enhancement seismograph with a dynamic range of 66 dB . This was used in survey $A$ of chapter $V$. In the remainder of the surveys an EG\&G Geometrics ES-2401 24-channel enhancement seismograph was used. This equipment was a significant improvement on the earlier model with a much greater dynamic range and the additional benefit of storing data in SEG-DOS format on floppy disks instead of the tape reels (SEG-D format) used by the Nimbus. The advantage of 24 -channel recording allowed the simultaneous acquisition of crosshole and hole-to-surface surveys, with 12 channels allocated to the downhole hydrophones and the other 12 to a surface geophone spread. This led to a greatly improved rate of data acquisition, and reduced the risk of losing a survey due to explosive damage instigating collapses in the borehole wall.

### 2.3.4 Field equipment set-up

The typical equipment arrangement used in the field trials of chapter V is illustrated schematically in figure 2.1. The string of hydrophones is lowered into borehole B and the source is positioned in hole A. Shots are repeated at the same depth levels for different positions of the hydrophone string in order to extend the coverage of the receiver array. One hydrophone position is kept in common between the repeated shots to allow amplitude scaling and repeated shot deconvolution to be carried out (see section 3.2.1). In the trial surveys, the hydrophone string remained fixed while shots were fired successively at depth intervals of 2 m (to make the coverage of reflectors between the boreholes as uniform as possible). The hydrophone string was then moved to a new position and the shot sequence was repeated.

A sampling interval of $200 \mu$ s was used in all the trials and a data length of 1024 samples ( 204.8 ms ) was recorded.

The deepest shot and receiver locations were usually limited by collapses in the boreholes, rather than the total depth actually drilled, and the shallowest shot and receiver positions were restricted by the level of the water table in each borehole. A hydrophone will simply not respond if it is not submerged, and there is insufficient coupling of the source energy to the surrounding rock unless the shot is also submerged. Shots fired $1-2 \mathrm{~m}$ below the water table resulted in a noticeably lower frequency content in the recorded data; the dominant frequencies being approximately half those of the deeper shots. This was presumably due to an insufficient confining hydrostatic pressure to restrict the expansion of the exploding gas bubble.


Figure 2.1 Typical cross-hole survey field set-up.

### 2.4 Data acquisition problems

Three distinct types of problem were encountered during data acquisition: timing errors, noise and borehole blockages.

### 2.4.1 Timing errors

Initial trials with the acquisition system used a Huntex shot box to fire the detonator and simultaneously send a trigger signal to the seismograph, but this was found to be insufficiently accurate, resulting in random timing errors of up to 1 ms in the recorded data. As an alternative to this, some wire was wrapped around the detonator and connected to a trigger lead above the steel tube of the source tool. The trigger lead ran up the borehole and was fed into the trigger input of the seismograph via a differentiating capacitor. The firing pulse was provided by a 12 V car battery. When the detonator exploded, the wire around the detonator was broken causing a resistive change at the trigger input. This method was found to give very accurate timing breaks. Timing errors could be checked by inspecting the first break time of the common hydrophone channel between repeated shots. Occasionally random timing errors would still occur, and these were attributed to electrical pick-up between the firing and triggering lines.

### 2.4.2 Noise

There were two different categories of noise: shot-generated noise and background noise. The shot-generated noise consisted of tube-wave arrivals (equivalent to surface waves in conventional seismic surveys) which are low-velocity
events travelling along the borehole wall. These are discussed in section 3.3.4. No suitable acquisition technique could be used to suppress these arrivals.

Background noise was both man-made and natural, including drilling-rig vibrations (because acquisition took place on active exploration sites), and factorygenerated noise at one site. Water dripping into the boreholes from above the water table caused noise events on shallow receivers and low-frequency ( $\sim 10 \mathrm{~Hz}$ ) pipe resonances were detected in some surveys. Pipe resonances could be removed by the use of high-pass filters, but the presence of drilling crews frequently led to long delays between successive shots, until a lull in drilling operations took place.

### 2.4.3 Borehole blockages

Borehole blockages were the most serious problem encountered in data acquisition, and led to several trial surveys being abandoned. After drilling was finished, the borehole would gradually fill with mud and debris which fell from the borehole walls. This obviously reduced the maximum source and receiver depths as time passed. It was therefore essential for surface casing to be left in the boreholes so that the soft near-surface drift material would not simply fall down the boreholes. Ideally, surveys would also be carried out as soon as possible after the boreholes were drilled and logged.

Unfortunately, where old mineworkings and faulting occur in the boreholes (i.e. those areas of particular interest), the borehole walls are particularly susceptible to collapse. It was frequently the case that a borehole would be blocked just above the level of old mineworkings. Surveys in available boreholes where not attempted
when the borehole walls were thought to be particularly unstable for fear of losing the hydrophone string.

### 2.5 Uphole shots and verticality

Two further sets of measurements were required to complete each survey: velocity readings within the boreholes and verticality readings. Unfortunately, in some cases these additional data were unobtainable due to borehole collapses.

### 2.5.1 Uphole velocity estimates

Interval velocity estimates are made in each borehole by firing a shot 2 m below the hydrophone string. In this way approximate values of the vertical velocity field can be obtained. A sampling interval of $100 \mu$ s is used and worst errors, $\Delta v$, in the interval velocities, $v$, can be estimated using the following equation (Stewart, 1984):

$$
\begin{equation*}
\Delta v=2 v \frac{\delta t}{\Delta t} \tag{2.1}
\end{equation*}
$$

where $\Delta t$ is the travel time between two receiver positions, and $\delta t$ is the timing error. To avoid the risk of losing the hydrophone string, it was sometimes necessary to estimate the interval velocities by recording the traveltimes to a surface geophone
from several shot positions, but this resulted in less accurate first break picks and thus greater errors in the interval velocity field estimates.

### 2.5.2 Borehole verticality

The deviation of the borehole from the vertical and the azimuth of this deviation were measured by using a pendulum-type inclinometer. This tool could be run down the borehole within its own casing in two perpendicular directions, but had a depth limit of 60 m . The dip readings were converted to borehole displacements using the program of Howson and Sides (1986). On the whole, borehole deviations were slight, particularly at shallow depths, and were rarely more than 3.0 metres at the bottom source and receiver depths. Neighbouring boreholes usually deviated in a similar manner.

## Chapter III

## Data processing

### 3.1 Introduction

The close resemblance of cross-hole seismic reflection common shot gathers to offset vertical seismic profiles (OVSPs) provides an obvious route for processing these surveys. Essentially, each common shot gather may be thought of as an individual OVSP, but with the additional complication of having some receiver positions at shallower depths than the level of the source. A typical data processing scheme for cross-hole data is shown in figure 3.1. The processing consists of several distinct stages: editing, wavefield separation, deconvolution, velocity field estimation and imaging. These are discussed below.

### 3.2 Editing

Following data acquisition, the field data are transferred from DOS-format floppy disks to the University of Durham Amdahl 470/V8 mainframe computer. Data from combined hole-to-surface and cross-hole surveys (see section 2.3.3) are then separated using utility software, and the cross-hole data are then sorted into common shot gathers.


Figure 3.1 Outline of cross-hole reflection data-processing scheme.

### 3.2.1 Shot-matching deconvolution

Usually each common shot gather comprises two (or more) positions of the hydrophone string with at least one hydrophone position kept in common between adjacent string positions for the repeated shots. This is used as a precautionary measure to ensure that there are no time break errors in the survey and also to check for the repeatability of the source waveform. In cases where the common shot traces do not correspond, a waveshaping Wiener filter may be designed and applied to one set of hydrophone positions so that a match will occur on the common trace. An example of such a deconvolution is shown in figures 3.2-3.5.

Figure 3.2 shows the raw recorded data for a particular common shot gather. In this case, data were recorded by firing a shot whilst the hydrophones were at depths $(12-34 \mathrm{~m})$ and then moving the hydrophones so that they lay at depths $(34-56 \mathrm{~m})$ and firing a second shot at the same depth. .Thus channels 12 and 13 correspond to the common channel for this common shot gather. There is a noticeable mismatch in the character of these traces and so a deconvolution operator was designed along the following lines. Firstly, a suitable time window (including the first arrivals and any dominant reflections) was chosen for the two traces and the segments of data within the window were tapered. A least-error-energy Wiener waveshaping filter was then calculated which, when convolved with the window from trace 13 , would result in an output which approximated the window from trace 12 . Figure 3.3 illustrates the windowed data, the deconvolution operator, and the filter output as time series. The respective amplitude spectra are plotted in figure 3.4. Figure 3.5 is a plot of the common shot gather following the application of the same waveshaping filter to traces 13-24.

## Travel Time (milliseconds)



Figure 3.2 Unprocessed common shot gather. Channels 12 and 13 are repeat shot common receivers.

Time (milliseconds)


Figure 3.3 Repeat shot deconvolution: a) input signal, b) desired output signal, c) filter, d)lagged desired output signal, e) convolution of input signal and filter.


Figure 3.4 Repeat shot deconvolution - amplitude spectra: a) input signal, b) desired output, c) filter, d) filtered input.


Figure 3.5 Common shot gather after repeat shot deconvolution

After this preliminary deconvolution, an amplitude scaling factor is applied to equalise the shot energies for the two hydrophone positions. This is taken to be the ratio of the rms amplitudes of the common receiver traces.

### 3.2.2 First break estimation and direct arrival suppression

In order to mute out the large-amplitude direct arrivals, it is first necessary to estimate the direct arrival times at each hydrophone position. An automatic firstbreak picking program was found to give good results for cross-hole data provided the signal-to-noise ratio was sufficiently high (as is usually the case with cross-hole data). First breaks are picked on a statistical basis, by simply locating the time sample where the recorded signal amplitude rises sufficiently above the rms amplitude of the background noise. In addition, it was found to be necessary to check all first-break times manually to avoid the inclusion of "head wave" arrival picks.

Once direct arrival times have been picked from the data, it is a simple matter to mute the direct arrival energy by specifying a window for a cosine taper on each trace. Some reflected energy is undoubtedly lost by removing the direct arrivals in this way. Unfortunately this means that reflector coverage will be lost near the receiver borehole, but this method was found to be the most suitable for the field datasets discussed in chapter V .

An alternative scheme for direct arrival removal has been proposed by Pratt and Goulty (1991) who applied it to ultrasonic model data. This removes the direct arrival waveform of a particular trace by aligning the first breaks of those traces which correspond to nearest neighbour sources and receivers. These trace are then averaged to provide an estimate of the direct arrival waveform which may then be
subtracted from the original trace to yield the scattered wavefield. This method was found to be unsuitable for the cross-hole datasets discussed later, because the direct arrival waveform was not sufficiently consistent between adjacent traces. This is probably due to peg-leg multiples which will be present in data acquired from the real earth with its small-scale layering, as opposed to that acquired from an ultrasonic modelling system where the model consists of relatively few homogeneous layers.

Direct arrival muting may be carried out either before or after wavefield separation. Inclusion of the direct arrivals in the wavefield separation can lead to ringing problems when frequency-wavenumber filters are applied to the data (see section 3.3), but on traces where the direct arrivals are downgoing and the interesting reflections are upgoing, it is preferable to mute after separation in order to preserve as much of the scattered wavefield as possible. This is the final stage of the editing procedure, and the processing sequence then continues with the application of wavefield separation filters.

### 3.3 Wavefield separation

The scattered wavefield recorded for each common shot gather may be classified as consisting of upgoing and downgoing components. These refer to waves which travel upwards or downwards, respectively, across the receiver array. The upgoing and downgoing scattered energies must be imaged independently because of the net cancellation effect which would result in combining their respective reflectivity amplitudes.

Clearly, for a particular reflecting interface, the signals which are recorded from shots above the interface on receivers above the interface (i.e. upgoing reflection events) will be of opposite polarity to those which are recorded from shots below the interface on receivers also below the interface (i.e. downgoing reflected events). Since the apparent velocities of these upgoing and downgoing events are of opposite $\operatorname{sign}\left(\frac{\mathrm{d} z}{\mathrm{~d} t}>0\right.$ for downgoing events; $\frac{\mathrm{d} z}{\mathrm{~d} t}<0$ for upgoing events) these events are readily separable by means of velocity filters.

For zero-offset VSP surveys, separation may be carried out by median filters which rely upon the linear moveout of reflection events (Hardage, 1983). When the source is offset from the receiver array, however, this moveout is non-linear and so it is necessary to apply filters which can selectively pass or reject arrivals with a range of apparent velocities. One such filter type is the pie-slice filter (Embree et al., 1963); which is applied to data which have undergone a two-dimensional Fourier transform into the frequency-wavenumber $(f-k)$ domain.

The two-dimensional Fourier transform is implemented on digitally recorded data by means of the Fast Fourier Transform or FFT (Cooley and Tukey, 1965). This algorithm requires that the data consist of $2^{\mathrm{n}}$ samples ( n being an integer) and assumes that the data have a periodicity equal to this sample size. To carry out a twodimensional transform on a common shot gather the algorithm may be applied first in the time direction on all traces, and then in the spatial (depth or $z$ ) direction at all frequencies, although the sequence of these operations is immaterial.

In dealing with digitally sampled data, there are some important factors to be considered which do not occur with analogue data. In particular, in discrete Fourier space, there may be problems due to the data being undersampled and thus not uniquely defined.

### 3.3.1 The Nyquist frequencies and aliasing

If the recorded data have a time sampling interval $\Delta t$ and the receivers are regularly spaced at intervals of $\Delta z$, then the temporal and spatial Nyquist frequencies are respectively defined as:

$$
\begin{equation*}
f_{\mathrm{NYQ}}=\frac{1}{2 \Delta t} ; k_{\mathrm{NYQ}}=\frac{1}{2 \Delta z} \tag{3.1}
\end{equation*}
$$

Only if all $(f, k)$ components in the recorded data lie within the range governed by the positive and negative Nyquist values will the data be completely determined by the recorded samples. If $(f, k)$ components outside the Nyquist range are present then they will be aliased when they are recorded. This means that they will wrap around in the discrete Fourier space because of the periodic nature of the transform and contaminate the unaliased $(f, k)$ components. March and Bailey (1983) give an informative account of the $f-k$ transform.

### 3.3.2 Two-dimensional filter application

Filter application in the $f-k$ domain involves complex number multiplications of each component in $f-k$ space with the corresponding component of the filter. This operation is equivalent to a convolution in the $z-t$ domain of the original data with the impulse response of the filter.

One characteristic of the Fourier transform is that discontinuities or steep slopes which are present in a function in one domain lead to the Gibb's phenomenon, also known as ringing, in the transformed data. With cross-hole seismic data it is
common to find that the data taper smoothly towards zero amplitude in the temporal direction but, because of the restriction imposed by the finite recording aperture of the receiver array, there are sharp discontinuities at the edges of the data in the spatial direction. Normally these would result in ringing in the wavenumber domain. It is thus necessary to apply a taper across the edge traces in the spatial direction, and a simple cosine taper over four traces is found to be adequate for this purpose.

Another problem with the discrete Fourier transform is that the data, although recorded over a finite range of times and depths, are assumed to be periodic outside the recorded ranges. Hence, a multiplication in the $f-k$ domain is equivalent to a cyclic convolution, and not a transient convolution. Convolution in the time domain results in an output which has a length equal to the length of the data plus the length of the filter. When the filter is applied in the $f$ - $k$ domain, the extra output length will become wrapped around "noise" on the outer traces after the reverse transform is applied. This filter leakage can be avoided if the data are padded out with blank traces before applying the FFT. The total number of traces is made up to the next power of two, since the FFT algorithm requires that the number of samples to be processed is a power of two.

### 3.3.3 Filter design

In the case of pie-slice filters which are applied to common shot gathers of cross-hole seismic data, it is usually necessary to design the $f$ - $k$ filter with steep slopes in order to separate the upgoing and downgoing events, whilst rejecting as little of the appropriate P -wave reflection energy as possible. In order to accomplish this, while at the same time keeping the ringing effects induced by the steep slopes to a

-

Figure 3.6 Two-dimensional f-k filter implementation
minimum, the edges of the velocity filters are selected so that they lie along low amplitude channels in the data; an approach advocated by Christie et al. (1983) and similar to the contour-slice filtering proposed by Suprajitno and Greenhalgh (1985). Filter edges are tapered by a smooth cosine taper which runs perpendicular to the bisector of two lines in $f-k$ space which determine the tapering region (figure 3.6).

Other considerations of filter design include the rejection of events other than P-wave reflections. Although the hydrophone receivers used in the cross-hole surveys discussed later are pressure sensitive devices, they will also record SV energy when they are located in a borehole (Schoenberg, 1986). The apparent velocity of SV arrivals ranges from infinity (wavefronts parallel to the borehole axis) down to the SV wave velocity in the rock medium (raypaths parallel to the borehole axis). Thus direct wave SV arrivals are difficult to filter out but SV arrivals with apparent velocities less than the P -wave velocity in the rock may be readily removed. Generally, it would only be mode-converted $\mathrm{P} \longrightarrow \mathrm{SV}$ reflections which would arrive within the time window of interest in the surveys reported here.

### 3.3.4 Tube waves and spatial aliasing

Another type of coherent noise event, which is more significant in borehole seismic data, is the tube wave. The tube waves, which have been observed in the boreholes discussed in chapter V, typically have a larger amplitude and lower frequency than body waves and can be thought of as a type of surface wave (the Stoneley wave) which travels along the interface between the borehole wall and the borehole fluid with an elliptical particle motion. These waves sometimes emanate from the top (or water table) and bottom of the receiver borehole, and frequently


Figure 3.7 Tube waves example: upgoing and downgoing tube wave events are indicated by TU and TD respectively.


Figure 3.8 Tube wave amplitude spectrum. Contour levels are at 6,18 and 30 dB below peak amplitude.
originate at seam level depths in shallow Coal Measures strata. One such tube wave is shown in figure 3.7 with its $f-k$ spectrum in figure 3.8.

Examination of the moveout per trace of the tube wave arrival in figure 3.7 reveals that this is greater than half the dominant period of the arrival and so it is spatially aliased. An event with an apparent velocity $V_{\text {APP }}$ will be spatially aliased for temporal frequencies greater than $f_{\text {ALLAS }}=V_{\text {APP }} / k_{\text {NYQ }}$. A spatially aliased event wraps round in the $f-k$ domain (see figure 3.8) due to the periodicity of the discrete Fourier transform. Therefore, in order to remove spatially aliased noise from the data, it is necessary to apply a rejection filter which itself will wrap around in the $f-k$ domain. Unfortunately, this type of filter will also remove reflected P-wave energy from the quadrant in $f-k$ space into which it wraps round, thus reducing the information content of the data. In most cases where this was done it did not have a severe effect on the data.

An alternative method of removing low velocity spatially aliased noise is to apply a linear moveout to the data before applying the two dimensional FFT and thereby alter the moveouts of all events so that the spatially aliased events are no longer aliased and can be removed with ease in $f-k$ space. The artificial moveout is then removed following a transformation back to the $z-t$ domain. This method can lead to events, which were not previously aliased, becoming aliased, and so the method is highly data-dependent and must be applied with care. In most cross-hole surveys where tube waves occurred they were both upgoing and downgoing which meant that this method could not be applied (de-aliasing of one tube wave type would mean even more severe aliasing of the other).


Figure3.9 A common shot gather from survey $A$ of chapter $V$.

The data processing software (Appendix A.1) allows for several different filter design options, including the wrap around type of filter and trapezoidal-shaped filters as well as pie slice filters. All filters can be specified as pass or reject types.

### 3.3.5 Examples of wavefield separation in the f-k domain

A common shot gather from one particular survey (survey A in Chapter V) is illustrated in figure 3.9. In this case the shot was positioned at a depth of 30 m and the hydrophones were positioned at 2 m intervals over a depth range of $22-66 \mathrm{~m}$. The receiver borehole was at an offset of 56 m from the source. The data consist of both upgoing and downgoing reflections with direct arrivals also being present.

The data were transformed into $f-k$ space to yield the amplitude spectrum of figure 3.10. This spectrum is plotted on a dB scale with the 6 dB contour representing component amplitudes which are half the maximum amplitude. The principal features of this spectrum include: large direct arrival amplitudes around the $k=0$ axis and to the left of it; upgoing scattered arrivals to the right of this axis; and downgoing arrivals to the left of this axis. A pie slice filter designed to pass only the upgoing energy is specified by the lines OA and OB . This filter will pass all upgoing arrivals which travel with an apparent velocity of between $2000 \mathrm{~m} / \mathrm{s}$ and $8000 \mathrm{~m} / \mathrm{s}$ across the receiver array. Following application of the filter, the data were transformed back into z-t space (figure 3.11). The filter has successfully removed downgoing energy and enhanced the appearance of the upgoing reflected energy. Some of the direct arrival energy (on the upper traces) is also upgoing and so remains after the filter has been applied, but this may be removed by the application of a mute.


Figure $3.10 \mathrm{f}-\mathrm{k}$ amplitude spectrum of the common shot gather shown in figure 3.9. Edges of a filler to extract the upgoing wavefield are indicated by the lines OA and OB.


Figure 3.11 Upgoing wavefield after the application of a wavefield separation filter to the data of figure 3.9.


Figure 3.12 Common shot gather from survey B of chapter V.


Figure 3.13 f-k amplitude spectrum of the common shot gather shown in figure 3.12. Edges of a filter to extract the downgoing wavefield are indicated by the lines OA and OB.


Figure 3.14 Downgoing wavefield after the application of a wavefield separation filter to the data of figure 3.12 .

## Travel Time (milliseconds)



Figure 3.15 A common shot gather with tube waves indicated by TU (upgoing tube wave) and TD (downgoing tube wave).

Figure 3.12 is another common shot gather acquired on survey $B$ of chapter $V$. In this case the shot depth is 48 m and the receiver borehole offset is 40.9 m , with 23 hydrophone positions covering a depth range of $16-60 \mathrm{~m}$. The two-dimensional amplitude spectrum is shown in figure 3.13. Again a filter has been defined by the lines OA and OB , in this case to pass velocities of between 1600 and $10000 \mathrm{~m} / \mathrm{s}$ in the downgoing wavefield. Figure 3.14 shows the filtered common shot gather in z-t space. The downgoing reflected arrivals are now apparent, and the remaining direct arrival energy can again be muted out.

An example of a low-frequency high-amplitude tube wave with an apparent velocity of $1100 \mathrm{~m} / \mathrm{s}$ is presented in figure 3.15. The events (both upgoing and downgoing) originate from a depth of 44 m which corresponds to a coal seam in the receiver borehole. The shot was fired at the seam level depth. Presumably energy from P-wave first arrivals has been focused as "diving rays" by the low velocity of the coal relative to its surrounding bedrock. This would result in a large amplitude arrival at the receiver borehole which has in some way triggered off a tube wave, perhaps because the receiver borehole is caved at the seam level. The wave is obviously spatially aliased (i.e. undersampled by the receiver array) with the moveout per trace being greater than half the dominant period of the wave.

When the data are transformed into the $f-k$ domain the amplitude spectrum (figure 3.16a) also shows the aliasing effect. The dominant downgoing tube wave wraps around in the $k$-direction from $-k_{\mathrm{NYQ}}$ to $+k_{\mathrm{NYQ}}$. In order to remove the tube wave noise from the data, it is necessary to apply a reject filter with parallel edges so that as much of the P -wave arrival energy is preserved as possible. The filter used is indicated by the lines $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}$ and GH . On returning to $z-t$ space (see figure 3.16 b ), we can see that the downward-travelling aliased event has been suppressed,


Figure 3.16a f-k amplitude spectrum of the data shown in figure 3.15. Filter edges for the removal of the downgoing tube wave are marked by $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}, \mathrm{GH}$.

Travel Time (milliseconds)


Figure 3.16bCommon shot gather after the application of a reject filter to remove the downgoing tube wave.
although this has been at the expense of some of the reflected arrival information in the data. Ringing has also been introduced into the traces because of the sharp filter edges required to remove the tube wave.

### 3.4 Waveshaping deconvolution

In order to enhance the higher frequencies present in the data before they are imaged, a band pass filter may be applied which can suppress the low frequency (in this case below 200 Hz ) components. In addition, there are advantages in changing the phase of the source wavelet in the data. The recorded seismograms may be thought of as convolutions of a real (causal) source function with the reflectivity response of the earth. As such, the onset of each arrival corresponds to the traveltime along the reflected raypath. It is preferable to produce a section in which the central peak of the arrival waveform corresponds to this traveltime. Such a waveform may be thought of as a band-limited spike with zero phase.

A least-squares energy Wiener waveshaping filter (see e.g. Robinson and Treitel, 1985) may be calculated to shape an estimate of the source wavelet into a zero-phase wavelet with a modified amplitude spectrum. This filter may then be convolved with the data to yield a zero-phase section. For the purposes of this deconvolution, the upgoing and downgoing wavefields in each common shot gather are processed separately because of possible directivity effects in the source signature. An estimate of the source waveform is obtained by assuming that the source function is a minimum phase wavelet and then applying a spectral factorisation (Claerbout, 1976) to a window of each trace in the common shot gather. The estimate of the

Travel Time (milliseconds)


Figure 3.17 Waveshaping deconvolution: Upgoing wavefield common shot gather. Arrows indicate direct arrival picks.

Time (millisecs)


Figure 3.18a Waveshaping deconvolution: a) input wavelet, b) desired output zero-phase wavelet, c) waveshaping filter, d) lagged desired output, e) convolution of input wavelet and filter.


Figure 3.18b Waveshaping deconvolution amplitude specira: a) input, b) desired output, c) filter, d) filtered input.

Travel Time (millisecs)


Figure 3.19 Common shot gather of figure 3.17 following waveshaping deconvolution.
waveform is then assumed to be an average of the estimates from each trace. Figures 3.17-3.19 illustrate the application of this method to the upgoing wavefield in a common shot gather.

Figure 3.17 is a plot of the upgoing wavefield after direct arrival suppression. Figure 3.18a consists of four waveforms. The first is the estimate of the source function obtained in the manner described above. The second is the desired output, a zero-phase Butterworth wavelet, and the third is the calculated filter coefficients. The bottom trace is a convolution of the filter with the input wavelet. The respective amplitude spectra of these traces are plotted in figure 3.18 b . Figure 3.19 is the same common shot gather after the application of the designed waveshaping filter to all the traces. A comparison with figure 3.17 shows that the lower frequencies have been suppressed, and that zero crossings in figure 3.17 now correspond to peaks in figure 3.19.

### 3.5 Velocity field estimation

The direct arrival times, which are picked in the editing stage, can be used as the input to a Simultaneous Iterative Reconstruction Tomography (SIRT) velocity inversion program, written by Dyer (1988) and developed by Wye (1986), Findlay (1987) and Kragh (1990). Other P-wave velocity estimates can be obtained from uphole shots and by inspection of the near horizontal raypath traveltimes.

The results of tomographic inversion of the direct arrival times were disappointing with significant artifacts appearing in the final image at the corners. The pitfalls of using a tomographic inversion method on the cross-hole survey
geometries which are available from shallow opencast exploration boreholes in the U.K. are discussed by Kragh (1990). Essentially, poor discrimination between headwave and direct arrival types and the lack of vertical raypaths provided by crosshole surveys results in poor imaging conditions. Figure 3.20 is typical of the types of tomographic inversion obtained from cross-hole surveys in shallow Coal Measures strata. It was found to be more useful to estimate the inter-hole velocity fields by using uphole shots and by inspection of the near-horizontal raypath travel times. Velocity models were assumed to have no lateral velocity variations between the boreholes (other than some overall dip) because of the evenly bedded nature of the strata, which is typical of Coal Measures sequences, and also because no data were available to justify including lateral variations.

### 3.6 The reflection point mapping scheme or VSP-CDP transform

In the general case of the cross-hole survey method, sources and receivers are located at different depths. Therefore, the image points of reflected arrivals in a time section (common shot gather) do not correspond to the simple common depth point (CDP) case used in surface seismic imaging (see figure 3.21). Instead of the vertical CDP locus, the locus of possible image points follows a curved path defined by the source and receiver positions and the velocity field between the boreholes. This locus has been applied by Dillon and Thomson (1984) to offset VSP data. It has been termed the 'VSP-CDP transform' as it provides a processing route which converts the data from VSP coordinates (depth of borehole receiver, or source, and traveltime) into the familiar coordinates of surface seismic sections (lateral position and depth or



Figure 3.21 A comparison of the common midpoint of surface seismics and the reflection point locus of the cross-hole reflection method.

$\zeta$

Figure 3.22 Reflection point geometry assuming a uniform velocity field.
vertical traveltime). The method involves considering each source and receiver pair independently. It is a single-channel process, not a true migration method, and therefore will not collapse Fresnel zones. The locus may be calculated by raytracing reflection raypaths between the source and the receiver over a range of take-off angles. This simultaneously provides the reflected ray traveltime, $T_{\mathrm{r}}$ for each point calculated on the locus. If a constant, isotropic velocity field and vertical boreholes are assumed (figure 3.22), then this traveltime is given by

$$
\begin{equation*}
V T_{\mathrm{r}}=\sqrt{A^{2}+D^{2}} \tag{3.2}
\end{equation*}
$$

where $V$ is the constant velocity,
$D$ is the borehole separation,
and $\quad A$ is the total vertical distance travelled by the raypath.
The next processing stage is to distribute the appropriate trace for this sourcereceiver combination along the locus, by putting the signal amplitude recorded at a particular time $T_{\text {rec }}$ at the point on the locus which has the corresponding reflection time $T_{\mathrm{r}}=T_{\text {rec }}$. Interpolation is carried out to ensure that the data are not undersampled in the imaging space. The mapping can then be applied to all the traces in a common shot gather, and to all the common shot gathers in a survey.

Two programs are used to apply the VSP-CDP transform. REFLOC (Appendix A.2) calculates the reflection point loci from the given parameters of the source and receiver locations and the velocity model. The program allows velocity models which consist of plane parallel layers to be specified. It has been further modified by Kragh (1990) so that the layers may exhibit the elliptical approximation to transversely isotropic media. Raytracing is carried out by shooting a ray from the source towards the receiver borehole, and shooting a ray with the same ray parameter


Figure 3.23 Reflection point loci for a common-shot gather assuming a uniform velocity field with recording at 24 receiver positions. The source is located in the left borehole at a depth of 30 m and there are 24 receivers at 2 m depth intervals ranging from 20 m to 66 m in the right borehole.


Figure 3.24 The upgoing wavefield of a common shot gather from survey A of chapter V .


Figure 3.25 Upgoing wavefield of figure 3.24 mapped into a depth section using the VSP-CDP transformation.


Figure 3.26 Depth section of figure 3.25 following binning on to a discrete grid.
(i.e. $\sin \theta / V$ where $\theta$ is the angle between the ray and the vertical, always taken as positive) from the receiver towards the source borehole. The point where these rays intersect will lie on the reflection point locus.

The program XHRMAP (Appendix A.3) is a menu-driven program which distributes the reflection data on to the loci and samples the mapped section on to a regular grid. The sampling is done by spreading each amplitude on each locus into its four nearest grid points with a weighting factor proportional to (1-x $x_{\mathrm{i}}$ ) where $x_{\mathrm{i}}$ is the normalised distance of the locus point from grid point i. With the data for all the common shot gathers binned on to a regular grid, the separate sections may be stacked together, with a normalisation factor which depends on the number traces contributing at a grid point. Other program options include the ability to mute out data contributions which correspond to near-horizontal raypaths, where a relatively small error in the velocity field would lead to a significant positioning error in the locus, and the option of previewing CDP gathers (i.e. the contributions of each shot to the stack at a particular offset).

Examples of real data undergoing the VSP-CDP transform are illustrated in figures 3.23-3.26. The data form part of survey A in chapter V. Figure 3.23 illustrates the field arrangement. The source was located at a depth of 30 m and 23 receivers were positioned at 2 m intervals between 22 m and 66 m depth at an offset of 56 m . The upgoing wavefield of the common shot gather is shown in figure 3.24 . This has been mapped on to reflection point loci in figure 3.25 and then resampled on to a regular grid in figure 3.26 .

The reflection point mapping technique also gives an indication of the type of subsurface coverage we might expect from a cross-hole reflection survey. Figure 3.27 is a plot of all the (upgoing) reflection loci for a survey in which the boreholes


Figure 3.27 Reflection point coverage for an acquisition geometry with sources located in the left borehole and receivers in the right borehole. A uniform velocity field has been assumed. Source and receiver positions are illustrated at 4m spacings for clarity.
separation is 50 m , and 13 sources and receivers are positioned at 4 m intervals in the boreholes. This emphasises the funnel-shaped nature of the reflection point coverage obtained from cross-hole surveys, with no coverage at all immediately below the bottom source and the bottom receiver. The low density of reflection points near the boreholes means that the number of contributions to the stack is lower there and consequently the image quality will be poorer. Furthermore, muting direct arrivals will remove the corresponding earliest segment of each reflection point locus.

### 3.7 Velocity analysis using the VSP-CDP transform

Prior to stacking, the reflection point mapping technique may also be used as a velocity analysis tool by inspecting CDP gathers (i.e. stack contributions from each source position for a particular offset). It is not feasible to carry out a precise velocity analysis on real data in a single pass, due to the inability to perform a layer-stripping analysis when the source and receiver arrays are parallel to the direction of major velocity variations. Nevertheless, an estimate of velocity field corrections may be made by examining the moveout of reflections in CDP-space.

Let us assume that the velocity field $V$ is constant between the boreholes. For any particular source and receiver combination (see figure 3.22), the reflection point travel time is given by equation (3.2)

$$
\begin{equation*}
\text { i.e. } \quad V^{2} T_{r}^{2}=A^{2}+D^{2} \tag{3.2}
\end{equation*}
$$

Let $Z_{\mathrm{s}}$ be the vertical separation of the source and the reflector,


Figure 3.28 The parameters used in velocity analysis calculations.
$Z_{r}$ be the vertical separation of the receiver and the reflector,
$X_{\mathrm{S}}$ be the offset of the reflection point from the source,
and $\theta$ be the angle which the raypath makes to the vertical.
Therefore,

$$
\begin{equation*}
\frac{X_{\mathrm{S}}}{\mathrm{Z}_{\mathrm{s}}}=\frac{D}{A}=\tan \theta \tag{3.3}
\end{equation*}
$$

To estimate the vertical positioning error $\Delta z$ which would be caused by an error $\Delta v$ in the velocity field, equation (3.2) may be differentiated with respect to $V$, with $T_{\mathrm{r}}$ and $D$ held constant.

$$
V T_{\mathrm{r}}^{2}=A \frac{\mathrm{~d} A}{\mathrm{~d} V}
$$

but from (3.2)

$$
V T_{\mathrm{r}}^{2}=\frac{A^{2}+D^{2}}{V}
$$

therefore

$$
\begin{equation*}
A \frac{\mathrm{~d} A}{\mathrm{~d} V}=\frac{A^{2}+D^{2}}{V} \tag{3.4}
\end{equation*}
$$

Now $\Delta A=2 \Delta z$, so we may rewrite the above expression as an approximation for small, but finite, $\Delta v$

$$
\begin{equation*}
\Delta z \cong \frac{1}{2} \frac{A^{2}+D^{2}}{A} \frac{\Delta v}{V_{0}} \tag{3.5}
\end{equation*}
$$



Figure 3.29 The vertical positioning error $(\Delta z)$ as a function of the ray angle to the vertical.

Substituting for $A$ from (3.3)

$$
\begin{equation*}
\Delta z \cong \frac{1}{2} D(\tan \theta+\cot \theta) \frac{\Delta v}{V_{0}} \cong \frac{D}{\sin 2 \theta} \frac{\Delta v}{V_{0}} \tag{3.6}
\end{equation*}
$$

Thus, the vertical positioning error $\Delta z$ is positive for $\Delta v>0$ and negative for $\Delta v<0$ and the dependence on raypath angle is shown in figure 3.29. For a given velocity error, the positioning error is a minimum when the raypath makes an angle of $45^{\circ}$ to the vertical and increases as this angle deviates from $45^{\circ}$. If the velocity values are too large then one would expect to see the reflector depth increase as the source depth approaches that of the reflector; if the velocity values are too small the reflector depth will decrease as the source approaches the reflector depth. This therefore provides a trial-and-error method of improving the velocity field estimate by firstly applying the VSP-CDP transform, inspecting the CDP gathers, modifying the velocity field and then re-applying the VSP-CDP transform with the new velocity field.

Great care is needed in this process, because the shots and receivers are at different depths. The raypaths for contributions to the stack at a particular image point will thus be subject to different corrections when the layer velocities are modified. A change in a particular layer velocity will (in the case of upgoing reflections) affect only those CDP contributions from shots and receivers which are above or within the layer.

It is also useful to appreciate the lateral positioning error $\Delta x$ which arises from a velocity field error.

$$
X_{\mathrm{s}}=Z_{\mathrm{s}} \tan \theta=Z_{\mathrm{s}} \frac{D}{A}
$$

Differentiating with respect to $V$,

$$
\begin{equation*}
\frac{\mathrm{d} X_{\mathrm{s}}}{\mathrm{~d} V}=\frac{D}{A} \frac{\mathrm{~d} Z_{\mathrm{s}}}{\mathrm{~d} V}-Z \mathrm{~s} \frac{D}{A^{2}} \frac{\mathrm{~d} A}{\mathrm{~d} V} \tag{3.7}
\end{equation*}
$$

Applying $\quad 2 \mathrm{~d} Z_{\mathrm{s}}=\mathrm{d} A$ and $Z_{\mathrm{s}}=\frac{A X_{\mathrm{S}}}{D}$

$$
\begin{aligned}
\frac{\mathrm{d} X_{\mathrm{s}}}{\mathrm{~d} V} & =\frac{1}{A}\left(\frac{D}{2}-X_{\mathrm{s}}\right) \frac{\mathrm{d} A}{\mathrm{~d} V} \\
& =\left(\frac{D}{2}-X_{\mathrm{s}}\right) \frac{A^{2}+D^{2}}{A^{2} V} \quad \text { using (3.4). }
\end{aligned}
$$

For small, but finite $\Delta v$ we may write this as the following approximation using (3.3).

$$
\begin{equation*}
\Delta x \cong \frac{D}{2}\left(1-2 \frac{X_{\mathrm{s}}}{D}\right) \frac{\Delta v}{\nu_{0}} \sec ^{2} \theta \tag{3.8}
\end{equation*}
$$

Thus $\Delta x$ is zero at $X_{\mathrm{s}}=\frac{1}{2} D$ (i.e. no lateral moveout at the midpoint of the boreholes) and increases to $\frac{1}{2} \frac{D}{V} \sec ^{2} \theta$ (see figure 3.30 ) at the boreholes. One would thus expect that the image quality will be much better towards the centre of a cross-


Figure 3.30 The lateral positioning error $(\Delta x)$ as a function of raypath angle to the vertical.
hole reflection survey than it is nearer the boreholes, because of the increased number of stack contributions as well as the lower sensitivity of these areas to lateral positioning errors.

Once a sufficiently accurate velocity model has been obtained through the combination of experimental measurements and velocity analysis via the VSP-CDP transform, the imaging of the data can be carried out by applying migration techniques. These are discussed in chapter IV.

## Chapter IV

## Migration of cross-hole reflection data

### 4.1 Introduction

The migration of seismic data is the means whereby reflection events are relocated to their true subsurface positions and diffraction events are collapsed towards a point. Surface seismic data are generally migrated post-stack. The stacked data are assumed to be the equivalent of a zero-offset (i.e. coincident sources and receivers) section. Data will not be migrated correctly when normal moveout corrections result in a section which is not truly zero-offset, such as when conflicting reflector dips are present at the same traveltime. To get around NMO problems prestack migration may be used, but this is an expensive processing procedure because the data-volume is many times greater before stacking than it is after stacking. With cross-hole seismic surveys the data-volume is relatively small and so pre-stack migration methods can be more readily applied.

Two different two-dimensional migration schemes have been implemented in this work: a finite-difference method and a Kirchhoff integral method. Both algorithms were implemented specifically for cross-hole recording geometries, but with subsurface sources and receivers being the most general case, the programs will also migrate VSP and surface seismic profile data.

### 4.2 Finite-difference migration

A finite-difference modelling scheme for OVSP data has been developed in the ( $x, z, t$ ) domain by McMechan (1985). Migration schemes based on this method have been applied to real OVSP data by Chang and McMechan (1986) and to synthetic and scale-model cross-hole data by Hu et al. (1988). In these cases the data were migrated pre-stack in common shot gathers and an acoustic migration scheme was used. Sun and McMechan (1986) have applied an elastic finite-difference algorithm to image synthetic OVSPs and Zhu and McMechan (1988) have migrated both acoustic synthetic and scale-model cross-hole data after stacking by assuming that the sources and receivers could be combined and treated as vertical planes lying perpendicular to the plane of the boreholes.

The algorithm applied here takes the upgoing or downgoing reflection energy from each common shot gather and drives a two-dimensional wavefield on a regular grid by using the traces as boundary conditions to solve the two-dimensional acoustic wave equation. By repeatedly stepping backwards in time, the wavefield $P(x, z, t)$ between the boreholes can be found for all image points at all relevant times. The relevant time at each image point is selected according to the imaging condition as defined by Claerbout (1971). Reflectors exist at points in the subsurface where the first arrival of the source-emitted wave is time-coincident with a scattered wave. Thus the time sample of interest at a particular image point ( $x_{\mathrm{i}}, z_{\mathrm{i}}$ ) corresponds to the excitation time $T_{\mathrm{S}}$ of the point by a direct arrival wave emitted from the source position. The excitation time may be obtained by raytracing through a velocity model between the source position and the image point. When the wavefield is backpropagated in time, it is a simple matter to extract the appropriate amplitude of the wavefield $P\left(x_{\mathrm{i}}, z_{\mathrm{i}}, T_{\mathrm{S}}\right)$ and to store it in an array which represents the imaged data.

This technique is known as reverse-time finite-difference migration with the excitation-time imaging condition.

### 4.3 Implementation of the finite-difference migration algorithm

The migration method involves two separate stages. Firstly rays are traced from the source to each imaging point in order to obtain the excitation time of the image points. The excitation times are then used as input parameters to the finitedifference migration program which back-propagates the recorded wavefield.

Two raytracing algorithms have been used. The first is the program TRACER (listed in Appendix A.4) which uses the ray-equation method of Lee and Stewart (1981) and which allows lateral velocity variations to be taken into account. This method was found to be too computationally expensive and so a faster two-point iterative algorithm was also developed (subroutine RAYTRA in Appendix A.5). RAYTRA ignores lateral velocity variations, but does allow transversely isotropic media to be modelled by means of an elliptical velocity approximation (Levin, 1978). The RAYTRA program was used in preference to TRACER because of its speed, particularly because lateral velocity variations between boreholes in a cross-hole survey could not be determined with sufficient confidence to justify using a laterally variant velocity structure.

The excitation time for image reconstruction is obtained by raytracing from the source location to each point in the image space. The traveltimes along the appropriate raypaths are stored in a data file for future reference by the imaging algorithm. The reverse-time wavefield extrapolation program EXTRAPREV is listed
in Appendix A.6. A similar program EXTRAP is listed in Appendix A.7. EXTRAP is a forward modelling program which allows wavefields to be propagated from a source point with a given time-dependent signature and allows the wavefield at particular receiver positions to be recorded, thus generating synthetic seismograms.

The EXTRAP programs use an algorithm which carries out a second order finite-difference formulation of the acoustic wave equation. This is a twodimensional (2-D) modelling algorithm which allows sources and receivers to be positioned at any subsurface (or surface) location in a 2-D velocity field. The finitedifference algorithm corresponds to that of McMechan (1985) which was written for offset VSPs, but with the additional provision of a variety of absorbing boundary conditions as discussed by Renaut and Petersen (1989). The programs allow the user to specify a laterally variant isotropic velocity field sampled on a rectangular grid and then the pressure response of the medium to a change in pressure with time (such as from a point source or from boundary conditions provided by a receiver array) is obtained by solving the acoustic wave equation in the time domain.

### 4.3.1 The finite-difference approximation

The 2-D acoustic wave equation is (Claerbout, 1976)

$$
\begin{equation*}
\frac{\partial^{2} P}{\partial x^{2}}+\frac{\partial^{2} P}{\partial z^{2}}=V^{2}(x, z) \frac{\partial^{2} P}{\partial t^{2}} \tag{4.1}
\end{equation*}
$$

where $P$ is the acoustic response and $V$ is the velocity of acoustic waves in the medium. The solution of equation (4.1) is achieved by a second order finitedifference approximation with discretisation in time and space. A fourth order
approximation (Alford et al., 1974) was tried but resulted in no noticeable improvement in imaging results. Three wavefields are involved at any particular time step $t_{\mathrm{i}}$. These are

$$
P\left(x, z, t_{\mathrm{i}}\right) \quad \text { the wavefield at time } t_{\mathrm{i}} ;
$$

$P\left(x, z, t_{\mathrm{i}-1}\right)$ the wavefield at time $t_{\mathrm{i}-1}$, the previous step; and
$P\left(x, z, t_{\mathrm{i}-2}\right) \quad$ the wavefield at time $t_{\mathrm{i}-2}$.

The acoustic response at any particular grid point ( $x_{\mathrm{k}}, z_{\mathrm{j}}$ ) may be defined as $P\left(x_{\mathrm{k}}, z_{\mathrm{j}}, t_{\mathrm{i}}\right)$ where $\left(x_{\mathrm{k}}, z_{\mathrm{j}}\right)$ is the intersection of the $\mathrm{j}^{\text {th }}$ horizontal grid line with the $\mathrm{k}^{\text {th }}$ vertical grid line.

The finite difference approximations to partial differentiations with respect to $x$ are given by

$$
\begin{align*}
& \frac{\partial P}{\partial x} \cong \frac{P_{k+1}-P_{k}}{\Delta x}  \tag{4.2}\\
& \frac{\partial^{2} P}{\partial x^{2}} \cong \frac{P_{k+1}-2 P_{k}+P_{k-1}}{\Delta x^{2}} \tag{4.3}
\end{align*}
$$

where $\Delta x$ is the grid spacing in the $x$-direction. Thus equation (4.1) may be approximated by equations like (4.3) and rearranged to give a value of $P\left(x_{\mathrm{k}}, z_{\mathrm{j}}, t_{\mathrm{i}}\right)$ which depends solely on the values of $P\left(x_{\mathrm{k}}, z_{\mathrm{j}}\right)$ calculated at times $t_{\mathrm{i}-1}$ and $t_{\mathrm{i}-2}$.

$$
\begin{gather*}
P\left(x_{\mathrm{k}}, z_{\mathrm{i}}, t_{\mathrm{i}}\right)=2\left(1-2 A^{2}\right) P\left(x_{\mathrm{k}}, z_{\mathrm{j}}, t_{\mathrm{i}-1}\right)-P\left(x_{\mathrm{k}}, z_{\mathrm{i}}, t_{\mathrm{i}-2}\right)+ \\
A^{2}\left[P\left(x_{\mathrm{k}+1}, z_{\mathrm{j}}, t_{\mathrm{i}-1}\right)+P\left(x_{\mathrm{k}-1}, z_{\mathrm{j}}, t_{\mathrm{i}-1}\right)+P\left(x_{\mathrm{k}}, z_{\mathrm{j}+1}, t_{\mathrm{i}-1}\right)+\right. \\
\left.P\left(x_{\mathrm{k}}, z_{\mathrm{j}-1}, t_{\mathrm{i}-1}\right)\right] \tag{4.4}
\end{gather*}
$$

where $A=V\left(x_{\mathrm{k}}, z_{\mathrm{j}}\right) \Delta t / h, \Delta t$ is the time step $\left(\Delta t=t_{\mathrm{i}}-t_{\mathrm{i}-1}\right)$ and $h$ is the distance between both horizontal and vertical grid lines. This algorithm has been shown to be stable (Mitchell, 1969) provided that the following condition is met.

$$
\begin{equation*}
\Delta t<\frac{h}{\sqrt{2} V} . \tag{4.5}
\end{equation*}
$$

### 4.3.2 Boundary conditions

A computational problem occurs at the edges of the finite-difference grid. If values of zero are used to define the acoustic response at the edges of the grid then a free surface boundary condition (zero pressure) has been created and outgoing wavefields will be reflected back into the grid. Methods of avoiding this problem include enlarging the grid size, a computationally expensive choice, or applying absorbing boundary conditions (Clayton and Engquist, 1977) at the edges of the grid. Absorbing boundary conditions are essentially a finite-difference approximation to the one-way or paraxial wave equation (Claerbout, 1976). A dispersion relation which
restricts the range of propagating rays to a cone around the $z$-axis is (Clayton and Engquist, 1977)

$$
\frac{V k_{z}}{\omega}=1-\frac{1}{2}\left(\frac{V k_{x}}{\omega}\right)^{2}+\mathrm{O}\left(\left|\frac{V k_{x}}{\omega}\right|^{4}\right)
$$

which translates to the following differential form.

$$
\begin{equation*}
\frac{\partial^{2} P}{\partial z z^{2} t}+\frac{1}{V} \frac{\partial^{2} P}{\partial t^{2}}-\frac{V}{2} \frac{\partial^{2} P}{\partial x^{2}}=0 \tag{4.6}
\end{equation*}
$$

The above equation is an approximation which would allow a wave to propagate in the positive $z$ direction only. Renaut and Petersen (1989) have derived several different finite-difference approximations similar to (4.6) as follows :

$$
\begin{equation*}
\frac{\partial^{2} P}{\partial z^{\check{ }} t}+\frac{p_{0}}{V} \frac{\partial^{2} P}{\partial t^{2}}+V p_{1} \frac{\partial^{2} P}{\partial x^{2}}=0 \tag{4.7}
\end{equation*}
$$

where $p_{0}$ and $p_{1}$ are defined according to Table 4.1.

| Approximation | Pade | $\mathbf{L}^{2}$ | Chebychev-Pade |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{p}_{0}$ | 1.000 | $21 \pi / 64$ | $10 / 3 \pi$ |
| $\boldsymbol{p}_{1}$ | -0.5 | $-15 \pi / 64$ | $-8 / 3 \pi$ |

Table 4.1 Finite difference approximations

The program EXTRAP permits selective use of these boundary conditions and also allows the option of free-surface boundaries. The $p_{0}$ and $p_{1}$ parameters may be chosen as appropriate to the survey geometry. Generally, the $L^{2}$ approximation, which yields a least squares reflected amplitude over all incident angles, seemed to provide the best absorption for cross-hole data where waves may be striking the boundary at a wide range of incident angles.

### 4.3.3 Grid dispersion

One problem associated with the finite-difference approximation is that of grid dispersion (Alford et al., 1974). This manifests itself in the dispersion of the source waveform as it propagates through the discrete-model medium, with lower frequencies travelling faster than higher frequencies, the pulse becomes delayed, broadened and develops a ringing tail. The effect arises because of the discrete approximation to the differential wave equation by equation (4.4). Grid dispersion effects can be reduced by decreasing the grid spacing parameter $h$ but, as well as increasing the data volume, this necessitates a reduction in the size of the time step $\Delta t$ in order that the stability equation (4.5) remains satisfied. Reduction of the grid
spacing by a factor of two thus results in a four-fold increase in the data volume and an eight-fold increase in the computational time. Alford et al. (1974) have shown that dispersive effects are not significant for wavelengths greater than about 10 times the grid spacing, and this provides a useful benchmark in determining the optimal values of $\Delta t$ and $h$ to use for a given source function.

### 4.3.4 Modelling seismic data with EXTRAP

Two cross-hole synthetic datasets were constructed using the EXTRAP finitedifference algorithm in order to test the Kirchhoff and reverse-time wavefield extrapolation finite-difference migration methods. These models are fully discussed in section 4.5. The required input parameters are:

Source function specification
Grid size
Temporal sampling interval
Source location
Receiver locations
Two-dimensional velocity model of medium

Program output allows the pressure response of the medium to be viewed at any given time, as well as the generation of synthetic seismograms. These implementations of the finite-difference algorithm are for the acoustic (scalar) wave equation. It is hoped that future development work may be carried out to enhance this modelling method in order to include anisotropy and elastic wave propagation.

### 4.3.5 Migrating seismic data with EXTRAPREV

EXTRAPREV functions in a similar manner to EXTRAP, but instead of providing a source function to the algorithm, the data recorded at the receiver positions is time-reversed and then input to the finite-difference wavefield at all receiver grid points simultaneously at the appropriate time samples. The drawback of this approach is that it is necessary to match the receiver spacing to the grid size and so a certain amount of spatial interpolation is necessary to achieve this (since a relatively small grid spacing may be necessary in order to avoid grid dispersion effects). Reduction of the grid spacing may also force an interpolation in time in order that the stability requirement (4.5) is met. This results in a substantial increase in computing time. Examples of this migration on synthetic model data are discussed in section 4.5.

### 4.4 Kirchhoff migration

A Kirchhoff migration technique was also developed. This is an extension of the diffraction stack migration approach which is readily understood from geometrical considerations.

### 4.4.1 Diffraction stack migration

The diffraction stack migration method was one of the first migration types to be applied to seismic data. It follows simple ray and wavefront theory. In the case of


Figure 4.1 Locus of possible reflector locations for an impulsive arrival at time $T$ for a particular source and receiver combination.
zero-offset (or post-stack) surface seismic data, diffraction stack migration is implemented by summing along hyperbolic trajectories and placing the results at the apices of the hyperbolas. For cross-hole data, however, the summation operator is more complicated.

Consider a particular source-receiver combination with a single impulsive arrival recorded at time $T_{\mathrm{S}}$ and assume that the velocity of the medium is uniform and isotropic. The locus of possible reflection points for a particular traveltime must be the ellipse in image space as shown in figure 4.1 with the source and the receiver at the focal points. Migration may be accomplished by distributing the recorded amplitudes along the appropriate ellipses for each trace in a common shot gather. Constructive imaging takes place where ellipses intersect at a diffracting point.

Alternatively, each imaging point may be considered in turn. Raytracing from the source position to the point and from the receiver position to the point provides a total traveltime for scattering from the image point with the particular source-receiver combination. The amplitude corresponding to this traveltime is then summed into the imaging array together with similar contributions from other source-receiver pairings. This is the migration procedure utilised in this work.

### 4.4.2 The Kirchhoff operator

Kirchhoff wave equation migration is an extension of the diffraction stack imaging concept based upon Kirchhoff's integral (see French, 1975 and Schneider, 1978).


Figure 4.2 Scattering angles and raypath lengths for equation 4.8.

If we consider a wave incident on a scattering interface, then the wavefield $U(\mathbf{r}, \mathbf{s}, t)$ recorded at $\mathbf{r}$ as a result of an impulsive source at $\mathbf{s}$ being scattered from the interface $S_{x}$ is given by (Dillon, 1990 equation (1)):

$$
\begin{equation*}
U(\mathbf{r}, \mathbf{S}, t)=\int_{\mathrm{S}_{\mathrm{x}}} \mathrm{dS}_{\mathrm{x}} \frac{C\left(\mathbf{x}, \phi_{\mathrm{S}}\right)}{4 \pi V} \frac{\cos \left(\phi_{\mathrm{S}}\right)+\cos \left(\phi_{\mathrm{r}}\right)}{R_{\mathrm{S}} R_{\mathrm{r}}} \delta^{\prime}\left[t-\frac{R_{\mathrm{S}+R_{\mathrm{r}}}^{V}}{V}\right) \tag{4.8}
\end{equation*}
$$

The scattering angles $\phi_{\mathrm{S}}$ and $\phi_{\mathrm{r}}$ and raypath lengths $R_{\mathrm{S}}$ and $R_{\mathrm{r}}$ are illustrated in figure 4.2. The reflectivity $C\left(\mathbf{x}, \phi_{S}\right)$ is angle-dependent. Equation (4.8) is the threedimensional response recorded at a receiver. If one'assumes that the geological structure is invariant perpendicular to the plane of the survey, then by integrating along one direction, the equivalent $2 \frac{1}{2} \mathrm{D}$ formula is obtained. Dillon (1990) has derived a $2 \frac{1}{2}$ D migration integral which yields the reflectivity $C(\underline{\mathbf{x}})$.

$$
\begin{equation*}
\mathrm{C}(\underline{\mathbf{x}})=\frac{1}{\pi} \int \mathrm{dL}_{\mathrm{r}} \sqrt{\frac{R_{\mathrm{S}}\left(R_{\mathrm{S}}+R_{\mathrm{r}}\right)}{2 V R_{\mathrm{r}}}} \cos \left(\theta_{\mathrm{r}}\right) M\left(\underline{\mathbf{r}}, \frac{R_{\mathrm{S}}+R_{\mathrm{r}}}{V}\right) \tag{4.9}
\end{equation*}
$$

where $M(\mathbf{r}, T)$ is the source wavefield $U(\mathbf{r}, T)$ following the application of a Newman half-differential filter. This filter has a spectrum with a $\frac{\pi}{4}$ phase shift and a high frequency amplitude boost of $f^{\prime 2}$ and is implemented in the frequency domain. Equation (4.9) may be approximated by a summation over the receiver array $L_{r}$.

$$
\begin{equation*}
\mathrm{C}(\mathbf{x})=\sum \Delta \mathrm{L}_{\mathrm{r}} \sqrt{\frac{R_{\mathrm{S}}}{R_{\mathrm{r}}}} \cos \left(\theta_{\mathrm{r}}\right) \sqrt{R_{\mathrm{S}}+R_{\mathrm{r}}} M\left(\underline{\underline{r}}, \frac{R_{\mathrm{S}}+R_{\mathrm{r}}}{V}\right) \tag{4.10}
\end{equation*}
$$

Equation (4.10) is similar to a diffraction stack with the amplitude and phase corrections of the Newman filter and a wavefront spreading correction term being incorporated. Clearly this expression is inadequate for cross-hole geometries where we should obtain similar reflectivity responses across the survey. In equation (4.10) the reflectivity will be larger where $R_{\mathrm{S}}>R_{\mathrm{r}}$ (i.e. nearer the receiver borehole) and an expression which is symmetrical with respect to an exchange of source and receiver arrays would be preferable.

### 4.4.3 The Generalised Kirchhoff operator

Dillon (1990) derived a Generalised Kirchhoff (GK) migration integral which is reciprocal with respect to sources and receivers and which is closely related to the Generalised Radon Transform (GRT) migration integral proposed by Miller et al. (1987). The 2-D form of the GK summation operator is given by

$$
\begin{gather*}
\mathrm{C}(\underline{\mathrm{x}})=\sum_{\mathrm{L}_{\mathrm{r}} \mathrm{~L}_{\mathrm{S}}}\left(\Delta \mathrm{~L}_{\mathrm{r}} \sqrt{\frac{R_{\mathrm{S}}}{R_{\mathrm{r}}}} \cos \left(\theta_{\mathrm{r}}\right)+\Delta \mathrm{L}_{\mathrm{S}} \sqrt{\frac{R_{\mathrm{r}}}{R_{\mathrm{S}}}} \cos \left(\theta_{\mathrm{S}}\right)\right) \times \\
\sqrt{R_{\mathrm{S}}+R_{\mathrm{r}}} M\left(\underline{\mathrm{r}}, \frac{R_{\mathrm{S}}+R_{\mathrm{r}}}{V}\right)
\end{gather*}
$$



Figure 4.3 Model used to acquire synthetic dataset of point scatterer.

There is an additional small error term to the above equation which is proportional to $\left(\cos \left(\phi_{S}\right)-\cos \left(\phi_{\mathrm{r}}\right)\right)$ (Dillon, 1990), $\phi_{\mathrm{S}}$ and $\phi_{\mathrm{r}}$ being the scattering angles defined in figure 4.2.

The program KIRCHMIG in appendix A. 8 was written to carry out diffraction stack, Kirchhoff summation and Generalised Kirchhoff summation of cross-hole data with a variety of options being variable. Amongst these is the migration aperture by which the summation locus (equivalent to a hyperbola in surface seismic migration) is spatially restricted to realistic geological dips. A very small aperture is equivalent to specular reflections and corresponds to the reflection point mapping technique (Dillon, 1988, Van der Poel and Cassell, 1989). C̣omparisons of the impulse responses of different migration operators are included in chapter VI.

### 4.5 Comparison of finite-difference and Kirchhoff migration

Synthetic datasets were created by forward modelling using the EXTRAP finite-difference method. Models of point diffractors and planar reflectors were used to study the effectiveness of the two migration techniques. In these models, no allowance for density variations was made; the only variable parameter being the structure of the velocity field.

### 4.5.1 Point diffractor model

The following model (see figure 4.3) was used to simulate a point diffractor. A velocity of $2500 \mathrm{~m} / \mathrm{s}$ was used. The grid size $h$ was 0.5 m , and a time step $\Delta t$ of 0.1


Figure 4.4 Source wavelet used in synthetic seismogram modelling.
2





듬


Figure 4.6 Synthetic seismogram produced for diffraction event.

ms was used. Thus the stability relation of equation (4.5) was satisfied. A Butterworth zero-phase source wavelet was used (figure 4.4) with a bandwidth of $150-500 \mathrm{~Hz}$. The bandwidth was chosen to minimise the problem of grid dispersion which would occur for wavelengths greater than $10 h=5 \mathrm{~m}$. A square diffractor of size $2 \mathrm{~m} \times 2 \mathrm{~m}$ and velocity $1000 \mathrm{~m} / \mathrm{s}$ was positioned at the coordinates $(35,60)$. The source was positioned at coordinates $(10,10)$ and 24 receivers were positioned at 2 m intervals, ranging in depth from 10 m to 56 m , at an offset of 50 m from the source. The zero time of the data was set to coincide with the central peak of the source wavelet. The model was run using the $L^{2}$ absorbing boundary conditions discussed in §4.3.2. These were applied to all sides (i.e. no free surface reflections were allowed at the top of the model). Figure 4.5 illustrates the progression of the source pulse through the medium at times of $10,20,30$ and 40 ms . Signal amplitudes have been scaled by taking the square root and retaining the polarity of the signal to enhance the diffracted energy in the diagrams. The circle of energy diffracted from the diffractor point location can be seen clearly in figures 4.5 c and d . Data were calculated up to a time of 40 ms . The data "recorded" at the receiver positions are illustrated in figure 4.6. These data were then processed to remove the direct arrival. Since the data have been created by a 2-D modelling algorithm, no amplitude recovery is necessary in the preprocessing stage. The data were migrated by the finite-difference method resulting in the image of figure 4.7. This image is quite disappointing, with significant "smiles" around the diffraction point. The tilt of the migration smearing in this case is characteristic of the geometry of this survey.

Generalised Kirchhoff migration of the same data results in the image shown in figure 4.8. In this case, a full aperture (i.e. allowing all possible structural dips)



Figure 4.9 Model used to generate synthetic data for cross-bole reflectir



Figure 4.11 Synthetic seismogram produced for reflection event.


Figure 4.12 Finite-difference migrated image of the reflection event.
was used and the Newman filter was also applied. Again, smiling of the data is apparent and the image is similar to that in figure 4.7.

### 4.5.2 Horizontal reflecting interface model

Another synthetic dataset was modelled using the EXTRAP program. This time the reflectivity of a horizontal reflector was considered. A two-layer model was used (figure 4.9). The top layer of velocity $2400 \mathrm{~m} / \mathrm{s}$ was 50 m thick and the bottom layer was assigned a velocity of $3000 \mathrm{~m} / \mathrm{s}$. The source (again a Butterworth wavelet with a bandwidth of $150-500 \mathrm{~Hz}$ ) was positioned at coordinates $(10,20)$ and a vertical line of receivers were positioned at 2 m intervals at depths from 10 m to 56 m at an offset of 50 m from the source position. $\mathrm{L}^{2}$ absorbing boundary conditions were applied on all sides of the model. The propagation of the source pulse has been plotted at times of $10,20,30$ and 40 ms in figure 4.10 , and the resultant seismogram following the application of an amplitude recovery ramp, linearly dependent on time, is shown in figure 4.11. The direct arrival and the primary reflected arrival are clearly visible.

Finite difference migration of the data following direct arrival suppression resulted in the image of figure 4.12. Substantial trailing "smiles" are apparent beyond the area of illumination of the reflecting interface. Generalised Kirchhoff migration of the same synthetic data with a full imaging aperture (i.e. allowing all possible reflector dips to be imaged) led to a very similar image (figure 4.13). Subsequently, the migration aperture was reduced to allow geological dips of less than $22.5^{\circ}$ and the data re-migrated (figure 4.14). This image is sharper defining the zone of illumination more clearly. The Generalised Kirchhoff approach is preferable to the


Figure 4.13 Generalised Kirchhoff (full aperture) migrated image of the reflection event.


Figure 4.14 Generalised Kirchhoff ( $22.5^{\circ}$ dip aperture) migrated image of the reflection event.
finite-difference approach in this case, because it is faster and also because of the extra control of image quality available during the migration process by the use of an imaging aperture.

## Chapter V

# Results from cross-hole surveys in Coal Measures strata 

### 5.1 Introduction

Trial cross-hole surveys were carried out at three British Coal Opencast exploration sites in the North of England. These were Tinsley Park in South Yorkshire, Lowther South in West Yorkshire and Lostrigg in Cumbria.

### 5.2 Tinsley Park

Test survey A was carried out at Tinsley Park in 1988 in order to assess the feasibility of the acquisition technique. Preliminary tests had been carried out with sources and receivers positioned at depth intervals of 4 m corresponding to those used in earlier cross-hole tomographic work (Findlay, 1987 and Kragh, 1990), but this resulted in spatial aliasing of the data, prohibiting the use of wavefield separation techniques. The survey presented in this section utilised 2 m source and receiver intervals.


Figure 5.1 Logged coal seams and source and receiver positions for the boreholes used in survey $A$.

Figure 5.1 shows the interpreted stratigraphic logs and shot and receiver locations for survey A. The water table was at a depth of 22 m and the boreholes were blocked at depths of 65 m (source hole) and 66 m (receiver hole). Repeated shots were fired at depths ranging from 22 m to 64 m and the hydrophone depths ranged from 22 m to 66 m . Seismic detonators were used as sources. The principal coal seams logged are listed in Table 5.1.

| Seam | Depth to base (metres) | Thickness (metres) |
| :---: | :---: | :---: |
| Meltonfield | 41.85 | 1.55 |
| Two Foot | 57.00 | 0.90 |
| Winter | 64.70 | 0.80 |
| Low Winter | 70.30 | 0.15 |
| Kilnhurst | 76.20 | 0.20 |
| Top Beamshaw | 83.35 | 0.45 |

Table 5.1 Principal coal seams in stratigraphic logs from survey A at Tinsley Park

Of these seams, the Winter seam is known to have been worked with virtually total extraction and the remaining seams are believed to be solid near these boreholes.

The data from this survey were processed and imaged by means of the VSPCDP transform. A simple velocity field (see table 5.2), derived from a combination of cross-hole tomography and uphole shots, was used to map the data in to a depth section.

| Depth range <br> (metres) | Interval Velocity <br> (metres/sec) |
| :---: | :---: |
| $0-21$ | 2100 |
| $21-25$ | 2850 |
| $25-40$ | 2950 |
| $40-43$ | 2300 |
| $43-55$ | 3250 |
| $55-57$ | 2450 |
| $57-64$ | 2800 |
| $64-66$ | 2400 |
| $>66$ | 3000 |
|  |  |

Table 5.2 VSP-CDP velocity field used for survey A

In the data processing stage the zero-phase waveshaping deconvolution was omitted and so reflection depths will correspond to the first break of a wavelet rather than to a peak or a trough. The depth section for the upgoing wavefield is presented in figure 5.2. An AGC of length 25 m has been applied vertically down the section to compensate for variations in signal amplitude. The horizontal trace separation is 2 m and the vertical sampling interval is 0.25 m . Normal SEG polarity of reflection amplitudes (i.e. white amplitudes are compressive and black amplitudes are dilatational) has been used in this display and all subsequent sections. Clear reflections are observed from the two shallowest and thickest seams (the Meltonfield


Figure 5.2 Depth section produced by VSP-CDP transiorm of upgoing reflections for survey A.
and the Two Foot). The reflection event seen at a depth of around 65 metres from the worked Winter seam is disrupted probably as a result of collapses in the roof of the seam and the irregular nature of the room and pillar mineworkings. Signal penetration was poor below this seam and no shots or receivers were located below the seam depth because of borehole blockages. As a result the quality of the image below the Winter seam is poor. The seams are also thinner in this area and one would expect that the reflection response from these seams would be weaker as well. The vertical resolution in the data is indicated by the wavelength of the reflections from the seams. In this case, the wavelengths are around 4 m and one would therefore expect to be able to resolve reflector discontinuities, caused by faulting or old mineworkings on a scale of 2 m or even better. The strength of the reflections from targeted coal seams in this initial survey was very encouraging for the development of this technique.

### 5.3 Lowther South, West Yorkshire

Four cross-hole surveys were acquired at the Lowther South exploration site in West Yorkshire in the autumn of 1989. The first three surveys were acquired using three collinear boreholes (I, II and III) near to, but not within, a major fault zone known as the Methley-Saville fault. The line of the boreholes was selected to be perpendicular to the strike of the fault. The fourth survey was acquired between two boreholes (IV and V) located within the fault zone and lying approximately collinear


Figure 5.3 Interpreted stratigraphic $\log$ for the collinear boreholes I, II and III at Lowther South, West Yorkshire. Principal seams and their thicknesses are depicted.
to the first three boreholes. The interpreted stratigraphic logs for the three collinear boreholes are shown in figure 5.3. The principal seams are listed in Table 5.3.

| Seam | Depth to base (metres) | Thickness (metres) |
| :---: | :---: | :---: |
| Kents Thick | 21.4 | 1.3 |
| 1AY | 25.5 | 0.2 |
| Barnsley Top Softs | 51.0 | 1.1 |
| Dunsil | $80.2 / 84.5^{*}$ | 0.7 |
| *Seam is shallower in | borehole I than in boreholes II | and III |
|  |  |  |

Table 5.3 Principal seams in boreholes I,II and III

The logs indicate that the strata lie horizontally between these boreholes with the exception of a small fault which must cut the Dunsil seam between boreholes I and II. The seams are solid apart from the Barnsley Top Softs which is known to have been extensively worked in the area. The water table intersected these boreholes at a depth of 8 m and the boreholes were blocked at depths of $62 \mathrm{~m}, 57 \mathrm{~m}$ and 52 m , respectively.

### 5.3.1 Survey B, illustrating the combination of up- and down- going sections

Shots were fired from 27 depth levels at 2 m intervals ranging from 10 m to 62 m in borehole I and the data were recorded at 23 hydrophone depth levels at 2 m intervals ranging from 16 m to 60 m in borehole II (see figure 5.4). The borehole


Figure 5.4 Shot and receiver positions for survey B.


Figure 5.5a Upgoing Generalised Kirchhoff migrated section (22.5 dip aperture) for survey $B$.


Figure 5.5b Downgoing Generalised Kirchhoff migrated section (22.5 ${ }^{\circ}$ dip aperture) for survey B.


Figure 5.5c Combined upgoing and downgoing Generalised Kirchhoff migrated section for survey B. Sections are merged between 40 m and 50 m depth using cosine tapers.
separation was 40.9 m at the surface. Both boreholes were blocked at a depth of around 62 m . The data were processed as described in chapter III and imaged by means of the G-K migration algorithm. A migration dip aperture of $+/-22.5^{\circ}$ was used. The migration velocity field is described in table 5.4.

| Depth range <br> (metres) | Migration interval <br> velocity (metres/sec) |
| :---: | :---: |
| $0-10$ | 1200 |
| $10-22$ | 2250 |
| $22-54$ | 2600 |
| $54-100$ | 2700 |

Table 5.4 Migration velocity field used for survey B

The depth sections are presented in figure 5.5 . Figure 5.5 a is the depth section imaged from the upgoing reflections and figure 5.5 b is the depth section imaged from the downgoing reflections. Figure 5.5 c is the depth section of the combined up- and down- going sections produced by melding the two sections together over a depth range of $40-50 \mathrm{~m}$. An AGC of length 25 metres has been applied vertically to balance up the amplitudes at all depths. Several clear reflectors are apparent corresponding to the coal seams at depths of $8 \mathrm{~m}, 20 \mathrm{~m}, 25 \mathrm{~m}$ and 50 m . The seams at 20 m and 25 m have a flat, continuous character as might be inferred from the stratigraphic logs. The Barnsley Top Softs seam at 50 m depth has been worked right across the section, but still shows a strong, coherent reflection. The presence of a fault intersecting borehole


Figure 5.6 Shot and receiver locations for survey $C$.
$B$ at a depth of between 50 m and 80 m might be expected from interpretation of the borehole logs. Unfortunately, the fault is not apparent on the cross-hole survey either because it is located too close to the borehole where reflector coverage is very poor, or else because of the lack of penetration of the signal through the old mineworkings at 50 m depth. The Dunsil seam (log depth 85 m ) may have been imaged closer to 90 m due to errors in the velocity field below the bottom source and receiver depths. Image quality is poor in those regions of the image where specular reflection raypath coverage is of a low density. These regions are in the vicinity of the boreholes and in the areas near the boreholes above the top source and receiver positions and below the bottom source and receiver positions.

### 5.3.2 Survey C; between boreholes II and III

In this survey a total of 22 shot positions were used in borehole III at 2 m depth intervals ranging from a depth of 10 m to a depth of 51.9 m (see figure 5.6). Electrical detonators were used as an explosive source. Hydrophone locations were at 2 m depth intervals ranging from a depth of 12 m to a depth of 56 m in borehole II. The borehole separation was 37.1 m at the surface. The data were processed as described in chapter III and imaged by means of the G-K migration algorithm with a migration dip aperture of $+/-22.5^{\circ}$ The isotropic velocity model used to migrate the data is described in table 5.5.


Figure 5.7 Depth section produced by combining Generalised Kirchhoff migrated sections of the upgoing and downgoing reflections for survey $C$.

| Depth range <br> (metres) | Migration interval <br> velocity (metres/sec) |
| :---: | :---: |
| $0-10$ | 1200 |
| $10-22$ | 2400 |
| $22-40$ | 2600 |
| $40-100$ | 2700 |
|  |  |

Table 5.5 Migration velocity field used for survey $C$

The depth migrated section produced by combining the sections produced from the upgoing and downgoing wavefields from this survey are shown in figure 5.7. Again an AGC of length 25 metres has been applied in the vertical direction. The section is very similar to that produced for survey B (figure 5.5 c ) with clear reflections from the principal coal seams. The seams appear to be of a flat and continuous nature.

### 5.3.3 Survey D; wider-spaced cross-hole reflection survey

A further survey was acquired between boreholes I and III (at a separation of 78.0 m ) for comparison purposes with surveys $B$ and $C$ and also in the expectation of imaging the strata near borehole II, where the image quality is very poor for surveys B and C. When the fieldwork was carried out it was found that borehole I had collapsed still further since survey B and was blocked at a depth of 52 m . The borehole collapse was probably aggravated by the detonation of the source charges for survey B in this borehole. A larger charge size ( 25 g of dynamite) was used to improve the signal-to-noise ratio because of the greater borehole spacing in this

survey. The data were processed as discussed in chapter III and the imaging was once more carried out by means of the Generalised Kirchhoff method with a dip aperture of $+/-22.5^{\circ}$. The interval velocities used in the migration are listed in table 5.6.

| Depth range <br> (metres) | Migration interval <br> velocity (metres/sec) |
| :---: | :---: |
| $0-10$ | 1200 |
| $10-22$ | 2400 |
| $22-50$ | 2700 |
| $50-54$ | 2500 |
| $54-100$ | 2800 |

Table 5.6 Migration velocity field used for survey D

The combined upgoing and downgoing reflection sections are presented in figure 5.9. An AGC of length 25 metres has been applied to balance out the variations in signal amplitude down the section. The section possesses some similarities to the previous two surveys. In particular, the reflection from the old mineworkings at around 50 m depth has a comparable character. The reflections from the shallower seams whose true depth is around 20 m have been imaged shallower, presumably because the velocity field was too large for the migration of the downgoing wavefield. The quality of this image is generally much poorer than that obtained in surveys B and C . This illustrates that there is a maximum limit to the borehole spacing which can be used successfully for a given range of depths of the source and receiver positions.


Figure 5.9 Depth section produced by combining Generalised Kirchhoff migrated sections of the upgoing and downgoing reflections for survey $D$.

The deterioration in the image quality is a consequence of the reflection raypaths becoming more horizontal as the borehole separation increases. This results in a problem in that a very accurate velocity model specification is needed to reduce positioning (and hence stack contribution) errors to an acceptable level (see section 3.7). The processing of shallow dipping reflections is also made more difficult because of the problems in separating the reflected energy from the direct arrivals when the travel times and moveouts are very similar.

### 5.3.4 Survey E; cross-hole survey through major fault zone

Another survey was carried out at the Lowther South exploration site between boreholes IV and V in a field adjacent to boreholes I, II and III. The boreholes were 32.0 m apart, located in the zone of the Methley-Saville fault and the line of the boreholes was approximately perpendicular to the strike of the fault. The principal seam depths taken from the stratigraphic logs are indicated in table 5.7.

| Seam | Hole IV <br> Depth to base <br> (metres) | Hole V <br> Depth to base <br> (metres) | Thickness <br> (metres)IV/V |
| :---: | :---: | :---: | :---: |
| Kents Thick | 13.4 | 22.36 | $1.4 / 2.4$ |
| 1AY | ABSENT | 27.84 | $-/ 0.2$ |
| Barnsley Top Softs | 28.46 | 53.32 | $0.86 / 1.2$ |
| Dunsil | 59.26 | 84.11 | $0.7 / 0.5$ |
|  |  |  |  |

Table 5.7 Principal seams in boreholes IV and V

Shots were fired in borehole IV at 21 locations at 2 m intervals in the depth range $10-50 \mathrm{~m}$. Electrical detonators were used as a source. 23 hydrophone positions were used in borehole V at depths between 9.79 m and 53.79 m . The shot and receiver locations and summary stratigraphic logs are depicted in figure 5.10.

The data were processed as described in chapter III and imaged by means of the G-K migration method with a migration dip aperture of $+/-22.5^{\circ}$. The migration interval velocities are described in table 5.8.


Figure 5.10 Shot and receiver locations for survey E.

| Depth range <br> (metres) | Migration interval <br> velocity (metres/sec) |
| :---: | :---: |
| $0-10$ | 1200 |
| $10-20$ | 2200 |
| $20-24$ | 2250 |
| $24-40$ | 2330 |
| $40-46$ | 2210 |
| $46-90$ | 2400 |
|  |  |

Table 5.8 Migration velocity field used for survey $\mathbf{E}$

The combination of the migrations of the upgoing and downgoing wavefields is presented in figure 5.11. The quality of the section is good with clear reflections from the coal seams on the downthrown (right) side of the fault and from the Dunsil seam (around 60 m ) on the upthrown side. Errors in seam depths are a result of inaccuracies in the migration velocity model.

Interpretation of the borehole logs suggested that the fault intersects borehole IV between the Kents Thick and Barnsley Top Softs seams. It was not known whether the difference in levels of the Kents Thick seam ( -.7 metres) between the two boreholes was due to dipping strata or a small fault. The cross-hole seismic survey removes this ambiguity since the reflection from the Kents Thick seam is nearhorizontal across the section. Therefore a small fault with a throw of 7 metres must intersect the Kents thick seam close to borehole IV where the image quality of the seismic section is poor. The location of the larger fault is clearly defined by the


Figure 5.11 Migrated depth section with cometned upgoing and downgoing reflections for survey $E$ acquired at Lowner Souh.
truncations of reflections from the Barnsley Top Softs seam to the right and from the Dunsil seam to the left at the fault zone.

### 5.4 Lostrigg, Cumbria

The results of a further survey acquired at a British Coal opencast exploration site at Lostrigg in Cumbria are presented.

### 5.4.1 Survey F; old mineworkings

The target of this survey was the edge of a longwall panel in the Sixquarters seam. The boreholes (A and B) used were separated by 48.4 m at the surface. The principal coal seams logged for the two boreholes are listed in table 5.9. The Sixquarters seam was worked in borehole A, but solid in borehole B. It was thought that the extent of the old mineworkings might be delimited by a small fault.


Figure 5.12 Shot and receiver locations and principal coal seams for survey F.

| Seam | Hole A <br> Depth to base <br> (metres) | Hole B <br> Depth to base <br> (metres) | Thickness <br> (metres)A/B |
| :---: | :---: | :---: | :---: |
| Yard | 21.20 | 12.68 | $1.0 / 0.3$ |
| Lower Yard | 21.42 | 20.87 | $0.1 / 0.2$ |
| Top Half Yard | 34.41 | 33.40 | $0.2 / 0.2$ |
| Btm Half Yard | 36.26 | absent | $0.2 /--$ |
| Little Main | 48.21 | 48.06 | $0.6 / 0.6$ |
| Eighteen Inch | 52.99 | 51.33 | $0.2 / 0.2$ |
| Lickbank | 58.58 | 57.99 | $0.4 / 0.4$ |
| Sixquarters | 68.12 | 67.75 | $0.3 * / 0.5$ |
| $*$ Seam worked | with some coal present |  |  |

Table 5.9 Principal seams in boreholes A and B

There were several acquisition problems with this survey. Both boreholes were blocked at the level of the Sixquarters seam and the water tables were at quite different levels in the two boreholes ( 35 m in borehole A and 19 m in borehole B ). There were also large amounts of tube wave noise generated on most of the shot records and this was difficult to remove successfully.

Altogether 16 shot positions were used in the survey at 2 m depth intervals in borehole A ranging from $36 \mathrm{~m}-66 \mathrm{~m}$. The hydrophones were positioned at 23 positions at 2 m intervals in borehole $B$ ranging from $22.7 \mathrm{~m}-66.7 \mathrm{~m}$. The shot positions and principal coal seams are shown in figure 5.12. The data were imaged using the G-K


Figure 5.13 Depth section of survey F produced by Generalised Kirchhoff migration of the upgoing reflections.
migration method with a dip aperture of $+/-25^{\circ}$. The migration velocity field is shown in table 5.10.

| Depth range | Migration interval |
| :---: | :---: |
| (metres) | velocity (metres/sec) |
| $0-20$ | 1580 |
| $20-36$ | 2470 |
| $36-80$ | 3000 |
|  |  |

Table 5.10 Migration velocity field used for survey F

The migrated upgoing wavefield is shown in figure 5.13. The results are disappointing, but not surprising given the problems of reduced shot position coverage, probable significant lateral velocity variations produced by the variation in the water table, and the tube wave noise. A strong reflection is visible from the Lickbank seam, but the quality of the section is too poor to determine whether the old mineworkings were indeed terminated by a small fault.

## Chapter VI

## A comparison of different migration operators for cross-hole seismic data

### 6.1 Introduction

A comparison of the effectiveness of different migration techniques for crosshole data is discussed in this chapter. The migration operators of a variety of techniques were considered: Finite difference migration in the $(x, z, t)$ domain, diffraction stack summation, Kirchhoff migration, Generalised Kirchhoff (GK) Migration and Generalised Radon Transform (GRT) migration.

### 6.2 Migration operators

The migration operators for the various techniques are presented in figures 6.1-6.5. The operators were calculated assuming a single source-receiver pairing in a homogeneous, isotropic medium. The source and receiver were both located at a depth of 20 metres with an offset of 40 metres. The velocity field was assumed to be $3000 \mathrm{~m} / \mathrm{s}$ and a band-limited spike with a travel time of 20 ms was used as input to a single trace migration operation. In all cases a regular grid with sampling at 0.5 m intervals in the $x$ and $z$ directions was employed and the source and receiver were assumed to be elements in vertical source and receiver arrays.


Figure 6.1 Finite-difference migration operator in a homogeneous, isolropic velocity field.

Distance (metres)


Figure 6.2 Diffraction stack migration operator in a homogeneous, isotropic velocity field.


Figure 6.3 Kirchhoff migration operator in a homogeneous, isotropic velocity field.

The finite difference migration is shown in figure 6.1. Absorbing boundary conditions were used at the grid edges. The impulse response is an ellipse with the source and receiver at the focal points and is symmetrical with respect to the source and receiver. This ellipse may be thought of as the locus of possible locations for a diffracting point to produce an arrival corresponding to the input spike at 20 ms . Reverberations within the ellipse are caused by grid dispersion effects (see chapter IV). The finite difference method does not implicitly differentiate between upgoing and downgoing events and so a complete ellipse has been generated.

The result of diffraction stack migration (i.e. without an amplitude and phase correction) is shown in figure 6.2. Again, the impulse response is an ellipse (in this case a half-ellipse as only upgoing wavefields have been considered by the operator) and it is also symmetrical with respect to exchange of the source and receiver. There are fewer reverberations than were obtained by the finite-difference method, although the wavelet of the ellipse is less smooth.

The Kirchhoff migration operator is shown in figure 6.3. In this case the Newman phase and amplitude correction has been applied, but the ellipse is not symmetrical to the exchange of source and receiver positions because of a term proportional to $\sqrt{\frac{R_{S}}{R_{r}}}$ (see equation 4.10 of chapter IV) which magnifies the reflectivity near the receiver position.

The Generalised Kirchhoff migration operator is shown in figure 6.4. This operator is similar to the Kirchhoff operator but is symmetrical to the exchange of source and receiver positions because it contains the term $\sqrt{\frac{R_{S}}{R_{r}}}$ for integration over the receiver array as well as the term $\sqrt{\frac{R_{r}}{R_{S}}}$ for integration over the source array


Figure 6.4 Generalised Kirchhoff migration operator in a homogeneous, isotropic velocity field.


Figure 6.5 Generalised Radon Transform migration operator in a homogeneous, isotropic velocity field.
(see equation 4.11 of chapter IV). The high amplitudes to the left of the source and to the right of the receiver may be removed by a migration dip aperture taper in areas where the geology is known to be reasonably horizontal.

The Generalised Radon Transform (GRT) migration operator (Miller et al., 1987) is shown in figure 6.5. The integral is similar to that of the G-K operator but includes an additional term which depends on the scattering angle $\phi$ between the source and receiver raypaths at the scattering point. The term is proportional to $\cos ^{2} \frac{\phi}{2}$ which results in an almost constant amplitude in the part of the ellipse which lies between the source and the receiver. Again there are high reflectivities for the steeply dipping events beyond the source and receiver positions.'

### 6.2.1 Suitability of impulse response functions for cross-hole data

Clearly the Kirchhoff migration method is unsuitable for the migration of cross-hole data due to the large variations in reflectivity produced between the source and receiver boreholes. The finite difference method is very slow and results in reverberations caused by grid dispersion effects. The diffraction stack operator does not include the theoretically correct amplitude and phase corrections provided by Kirchhoff migration. There is little to choose between the G-K and GRT migration operators. Both produce near-uniform reflectivities in the region of interest between the source and the receiver. In this work the G-K migration operator was used along with suitable controls for the dip aperture to enhance reflections from shallow-dipping strata.

## Chapter VII

## Conclusions and suggestions for future work

A field method for acquiring cross-hole seismic reflection data in shallow strata has been developed. The technique as it stands allows two or three cross-hole surveys to be acquired by a field crew of two or three personnel in one day. Further improvements in acquisition rates may be obtained by the use of a borehole sparker or piezoelectric source instead of a dynamite source.

Cross-hole direct arrival data may be processed using tomographic imaging software as a supplement to the cross-hole reflection method. The velocity field obtained by a tomographic survey, whilst not being successful at imaging faults or old mineworkings between boreholes (Kragh, 1990), is useful in providing a starting model for migration of the cross-hole seismic reflection data.

The cross-hole reflection method provides high-resolution seismic reflection sections of shallow Coal Measures strata. The processing of several trial surveys acquired at British Coal Opencast's exploration sites in the north of England has shown that wavelengths less than 4 m are typical for these surveys with recorded reflection data frequencies lying in the bandwidth $100-500 \mathrm{~Hz}$. The most pronounced reflections come from the coal seams.

It is envisaged that, for a practical exploration technique, the cross-hole reflection method should be used in conjunction with hole-to-surface surveys (Kragh, 1990). The zones of reflector coverage of the two types of survey are complementary (see figure 7.1). The cross-hole method provides better imaging in the region

## Surface geophones



Figure 7.1 Zones of coverage of cross-hole and hole-to-surface reflection surveys with the shallowest source and down-hole receivers located near the water table.
between the boreholes, but the image quality deteriorates towards the boreholes. The hole-to-surface method provides lower resolution sections (wavelengths are around double that of the cross-hole method) but better imaging near the boreholes. The cross-hole image quality nearer the boreholes should be improved by the inclusion of a near-field correction term to the Kirchhoff integral (Dillon, 1988).

Possible uses of the cross-hole reflection method include the detailed imaging of regions of particular interest such as small-scale faulting at reservoir depths where borehole logging, conventional seismic and VSP methods cannot provide sufficient resolution. It should also be possible to acquire data from surveys beneath obstructions such as buildings, roads and water courses where surface sources and receivers cannot be used.

In addition to imaging "conventional" upgoing reflections, the cross-hole method also gives reflector coverage above the top source and receiver positions. An important characteristic of the cross-hole method is that the frequency content of the data is not effected by the depth of the region of interest as is the case with surface surveys and VSPs, but rather by the separation of the boreholes and therefore we might expect images of deeper strata to be every bit as good as those of the shallow strata included in this work. In fact the greater compaction of rocks at depth should result in better quality data.

Further important development work could include the use of elastic imaging by means of a downhole three-component geophone string. The 24 -channel seismograph in use at Durham University would allow a string of eight such geophone units to be employed. This would necessitate further software development in order to implement elastic wave Generalised Kirchhoff migration. The consequential increase in computing costs would be offset by an improvement in imaging,
particularly as tube wave arrivals and other noise events should be more easily suppressed. Beattie's (1990) comparative study showed that tube waves are a bigger problem for geophones than for hydrophones. However, this might be overcome by modifying the geophone design. Also, with a string of downhole geophones, the top and bottom geophones might act as baffles, thus reducing the amplitudes of tube waves on the other geophones.

Borehole blockages restrict the coverage of sources and receivers, especially in those areas of particular interest where small faults and old mineworkings exist. This problem may best be solved by the use of a plastic casing along the full length of the borehole. Plastic is most suitable for ease of use and because the casing must be expendable since there is a high probability that the casing will become stuck in the borehole. However, it is also essential that the tubing is of sufficient strength to withstand borehole collapses and explosions from small seismic sources and also flexible enough to follow the curvature of the borehole.

The restriction in source and receiver coverage imposed by the depth of the water table might be removed by the development of a borehole "packer" which could block the borehole at a shallow depth and allow water to be poured in to fill the borehole.

Finally, more test surveys will be needed to evaluate the above suggestions and, in particular to obtain images of old mineworkings and small faults.

## References

Alford R.M., Kelly K.R., and Boore D.M. "Accuracy of finite-difference modeling of the acoustic wave equation." Geophysics 39,834-842, 1974.

Balch A.H., Lee M.W., Miller J.J. and Ryder R.T. "The use of vertical seismic profiles in seismic investigations of the earth." Geophysics 47, 906-918, 1982.

Balch A.H., Chang H., Hofland G. and Ranzinger K. "The use of forward and backscattered P-, S- and converted waves in cross-borehole imaging." Presented at the 52nd Annual Meeting of the EAEG, Copenhagen, 1990.

Beattie K.E. "A comparison of receiver types in crosshole seismics." M.Sc. thesis, University of Durham, 1990.

Bishop I. and Styles P. "Seismic tomographic imaging of a buried concrete target." Geophysical Prospecting 38, pp169-188, 1990.

Brabham P.J. "The application of seismic surveys to the evaluation of shallow coal deposits." Ph.D. Thesis, University of Durham, 1986.

Bredewout J.W. and Goulty N.R. "Some shallow seismic reflections." First Break 4(12) pp15-23, 1986.

Buchanan D.J. "In-seam seismology: A method for detecting faults in coal seams." Developments in Geophysical Exploration Methods-5 Chapter 1, Editor A.A. Fitch, Applied Science Publishers,pp 1-34, 1983.

Chang and McMechan, "Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition." Geophysics 51, pp67-84, 1986.

Christie P.A.F., Hughes V.J. and Kennett B.L.N. "Velocity filtering of seismic reflection data." First Break 1(3) pp9-21, 1983.

Claerbout J.F. "Towards a unified theory of reflector mapping." Geophysics 36 pp467-481, 1971

Claerbout J.F. "Fundamentals of Geophysical Data Processing: with Applications to Petroleum Prospecting." McGraw-Hill, 1976.

Clayton R. and Engquist B. "Absorbing boundary conditions for acoustic and elastic wave equations." Bulletin of the Seismological Society of America, 67, 1529-1540, 1977.

Cooley J.W. and Tukey J.W. "An algorithm for the macine calculation of complex Fourier series." Maths computations 19, pp297-301, 1965.

Cottin J.-F., Deletie P., Jacquet-Francillon H., Lakshmanan J., Lemoine Y., Sanchez M. "Curved ray seismic tomography: application to the Grand Etang Dam (Reunion Island)." First Break 4(7), 25-30, 1986.

Devaney A.J. "Geophysical diffraction tomography." IEEE Transactions on Geoscience and Remote Sensing GE-22, 3-13, 1984.

Dillon P.B. "Vertical seismic profile migration using the Kirchhoff integral." Geophysics 53, 786-799, 1988.

Dillon P.B. "A comparison between Kirchhoff and GRT migration on VSP data." Geophysical prospecting 38, 757-777, 1990.

Dillon P.B. and Thomson R.C. "Offset source VSP surveys and their image reconstruction." Geophysical Prospecting 32, 790-811, 1984.

Dines K.A. and Lytle R.J. "Computerised Geophysical Tomography." Proceedings of the IEEE 67,7, July 1979.

Dyer B.C. "Seismic reflection and transmission tomography." Ph.D. dissertation, University of London, 1988

Embree P., Burg J.P. and Backus M.M. "Wide-band velocity filtering - The pie-slice process." Geophysics 28 ,948-974, 1963.

Findlay M.J. "A curved ray iterative technique for tomographic inversion of crossborehole data." M.Sc. Thesis, University of Durham, 1987.

French W.S. "Computer migration of oblique seismic reflection profiles." Geophysics 40, 961-980, 1975.

Goulty N.R., Thatcher J.S., Findlay M.J., Kragh J.E. and Jackson P.D. "Experimental investigation of crosshole seismic techniques for shallow coal exploration." Quarterly Journal of Engineering Geology 23, 217-228, 1990.

Hardage B.A. "Vertical Seismic Profiling part A: Principles." Geophysical Press, 1983.

Howson M. and Sides E.J. "Borehole desurvey calculation." Computers and Geosciences 12 ,97-104, 1986.

Hu L.-Z., McMechan G.A. and Harris J.M. "Acoustic prestack migration of crosshole data." Geophysics 53, 1015-1023, 1988.

Jackson P. "Horizontal seismic in coal seams: its use in the UK coal industry." First Break 3(11), 15-24, 1985.

Jackson P.J., Onions K.R. and Westerman A.J. "Use of inverted VSP to enhance the exploration value of boreholes." First Break 7, 233-246, 1989.

Justice J.H., Vassilou A.A., Singh S., Logel J.D., Hansen P.A., Hall B.R., Hutt P.R. and Solanki J.J. "Acoustic tomography for monitoring enhanced oil recovery." The Leading Edge 8(2), 12-19, 1989.

Kohler K. and Koenig M. "Reconstruction of reflecting structures from vertical seismic profiles with a moving source." Geophysics 51, 1923-1938, 1986.

Kragh J.E. "Borehole seismic methods for opencast coal exploration." Ph.D. Thesis, University of Durham, 1990.

Lee W.H.K and Stewart S.W. Principles and applications of microearthquake networks. Pub. Academic Press Inc., 1981.

Levin F.K. "The reflection, refraction, and diffraction of waves in media with an elliptical velocity dependence." Geophysics 43, 528-537, 1978.

McMechan G.A. "Synthetic finite-offset vertical seismic profiles for laterally varying media." Geophysics 50, 627-636, 1985.

Macrides C.G., Kanasewich E.R. and Bharatha S. "Multiborehole seismic imaging in steam injection heavy oil recovery projects." Geophysics 53, 65-75, 1988.

March D.W. and Bailey A.D. "A review of the two-dimensional transform and its use in signal processing." First Break 1(1), 9-21, 1983.

Miller D., Oristaglio M., and Beylkin G. "A new slant on seismic imaging: migration and integral geometry." Geophysics 52, 943-964, 1987.

Mitchell A.R. Computational methods in partial differential equations. Pub. John Wiley and Sons, Inc., 1969.

Pratt R.G. and Goulty N.R. "Combining wave equation imaging with traveltime tomography to form high resolution images from crosshole data." Geophysics 56, 208-224, 1991.

Pratt R.G. and Worthington M.H. "The application of diffraction tomography to cross-hole seismic data." Geophysics 53, 1284-1294, 1988.

Renaut R.A. and Petersen J. "Stability of wide-angle absorbing boundary conditions for the wave equation." Geophysics 54, 1153-1163, 1989.

Robinson E.A.and Treitel S., Geophysical Signal Analysis, Prentice-Hall, New Jersey, 1985.

Schneider W.A. "Integral formulation for migration in two and three dimensions." Geophysics 43(1), 49-76, 1978.

Schoenberg M. "Fluid and solid motion in the neighbourhood of a fluid-filled borehole due to the passage of a low-frequency elastic plane wave." Geophysics 51, 1191-1205, 1986.

Stewart R.R. "VSP interval velocities from traveltime inversion." Geophysical Prospecting 32, 608-628, 1984.

Sun R. and McMechan G.A. "Pre-stack reverse-time migration for elastic waves with application to synthetic offset vertical seismic profiles" Proc. IEEE, 74, 457-465, 1986.

Suprajitno M. and Greenhalgh S.A. "Separation of upgoing and downgoing waves in vertical seismic profiling by contour slice filtering." Geophysics 50, 950-962, 1985.

Van der Poel N.J. and Cassell B.R. "Borehole seismic surveys for fault delineation in the Dutch North Sea." Geophysics, 54, 1091-1100, 1989.

Worthington M.H. "An introduction to geophysical tomography." First Break 2(II), 20-25, 1984.

Wye R. "An investigation into the accuracy of algebraic reconstruction techniques for tomographic inversion." M.Sc. Thesis, University of Durham, 1986.

Zhu X. and McMechan G.A. "Acoustic modeling and migration of stacked cross-hole data" Geophysics 53, 492-500, 1988.

Ziolkowski A.M. "Seismic profiling for coal on land." in Developments in Geophysical Exploration Methods edited by A.A.Fitch vol.1, Applied Science Publishers Ltd., London, 1979.

Ziolkowski A.M., Lerwill W.E., March D.W. and Peardon L.G. "Wavelet deconvolution using a source scaling law." Geophysical Prospecting 28, 872-901, 1980.

## Appendix A

## Computer software

A number of computer programs were written during the course of this research. These include software for data-processing, migration and plotting.

The programs are all written in IBM-Fortran77 to run on the University of Durham Amdahl 470/V8 mainframe computer. Program listings are included in the following pages of this appendix. External subroutines used include the Culham Laboratory GHOST*80 graphical subroutine library as well as a library of time series analysis subroutines (TSAR4_L in user-identifier GLK4) taken from a variety of different sources. Michigan Terminal System (MTS) routines are used for handling data stored on magnetic tape.


## Appendix A. 1 <br> Data processing software

The data processing program is menu driven with a main menu providing access to a series of submenus which carry out operations such as data input/output, data plotting, Fourier transforms, filtering, 2D Fourier transforms, waveshaping deconvolution, first break picking and direct arrival muting. Data may be plotted interactively on screen or sent to plotfiles.
(ZdWYSN 'UWYSN) ZYGMOd TTHD

○○○

|  | (IANSWR . EQ. 2) CALL WRFILA (NSAMR, NCHR, RADAT, NFIRST, OPFORM, |
| :---: | :---: |
| 1 | ORDISC, NSHOT, LEN, LOCATE, DATE, DEVICE, SORTYP, SORLOC, |
| 2 | RECTYP, RECLOC, COMSHT, FILREC, SORPOS, NRECS, RECDEP, |
| 3 | DBGAIN, GCMSCL, NCR, NPROCS, IDPROC, DT, :OPCHN, PROC) |
| IF | (IANSWR .EQ. 3) WRITE ( $6, *$ )'NSAMR, NCHANS $=\prime$, NSAMR, NRECS |
| F | (IANSWR .EQ. 3) CALL MENPL2 (NSAMR, NRECS, R4DAT, NFIRST, |
| 1 | TITOEF, CHNSPL, POLART, VARARE, NPLFST, NPLLST, IOPT, SORPOS, |
| 2 | RECDEP, NCR, DT, LOCATE, DATE, DEVICE, SORTYP, SORLOC, |
| 3 | RECTYP, RECLOC, COMSHT, FILREC, NSHOT, NPROCS, IDPROC, TITLE, |
| 4 | XLB, YLB, SCAL, PROC) |
| F | (IANSWR .EQ. 4) CALL MENUD (NSAMR, NCHR, R4DAT, NTRACE, DT, |
| 1 | NSHOT) |
| IF | (IANSWR .EQ. 5) CALL MENUE (NSAMR, NCHR, R4DAT, DT, FLOWCT, |
| 1 | fhicut, floofr, fhiore, dblow, dbhigh, filtap, blhyas, |
| 2 | LENFIL, NPROCS, IDPROC) |
| IF | (IANSWR .EQ. 6) CALL MENUF (NSAMR, NCHR, RADAT, DZ, DT, NCR) |
| IF | (IANSWR .EQ . 7) CALL GNCOMP (NSAMR, NCHR, R4DAT, NFIRST, DBGAIN, |
| 1 | GCMSCL, RECDEP, NCR, IDPROC, NPROCS) |
| F | (IANSWR .EQ. 17) CALL GRAINT (NSAMR, NRECS, NSHOT) |
| If | (IANSWR .EQ. 8) CALI WVSHAP (NSAMR, NCHR, R4DAT, NFIRST, NCR, |
| 1 | DT) |
| IF | (IANSWR .EQ. 9) CALL MENUIO(NSAMR, NCHR, NRECS, NSHOT, LEN, |
| 1 | NFILES, NFILE, IPDISC, IPSOUR, INPOPT, OPDISC, OPFORM, |
| 2 | INPCHN) |
| IF | (IANSWR . EQ. 10) CALL MENUDS (NCHR, SORPOS, RECDEP, NCR, DT, |
| 1 | LOCATE, DATE, DEVICE, SORTYP, SORLOC, RECTYP, RECLOC, COMSHT, |
| 2 | FILREC, TITLE, XLB, YLB) |
| If | (IANSWR .EQ. 11) CALL PROCES (NPROCS, PROC) |
| If | (IANSWR .EQ. 12) CALL OPFIRS (NCHR, NFIRST, RECDEF, LEN, IPDISC) |
| IF | (IANSWR . EQ. O) CALL EXIT | 3 MRITE $(6, *)$ y 'spoydn (00y

IF IFRANSWR



Output first break times

> Adjust display parameters
Adjust processing record Interactively interpolate sat
Apply wavelet shaping filter
Adjust I/O parameters First breaks, ramps, AGC, tapers etc F-K transform traces FFT traces and plot spectra
Apply filters to traces Read data from file(s)
Write contents of R4DAT to file
Plot contents of R4DAT
(PRESS 0 TO EXIT)







Character*20 locate, date, device, sortyp, sorloc, rectyp, recloc,


○○○○




 READ $(5, *)$ IRESP
D $230 \mathrm{JJ}=1$ ，NCHR READ（ $5, *$ ）IRESP READ（ $5, *$ ）MM $\quad$（
 $\operatorname{IDPROC}(1$, NPROCS $)=8$
IDPROC（2，NPROCS $)=$ LENFIL
 $\underset{\text { IDDPROC（5，NPROCS })=\operatorname{NINT}(D B H I G H)}{\substack{\text { IF }}}$

 $\operatorname{IDPROC}(5, \mathrm{NPROCS})=\operatorname{NINT}$（FHIOFF）
ELSE


 NPROCS $=$ NPROCS +1 ， CONTINUE
CONTINUE
 END IF ${ }^{\text {FNYQ }}$

CLSE CALL bPSDBS（DUM，nSAMP2，CX，flowct，fhicut，dblow，dbhigh， CALL BRSCOS（DUM，NSAMP2，CX，FLOWCT，FHICUT，FLOOFF，FHIOFE，
FNYQ） CONTINUE
WRITE（ 6,
 $\begin{aligned} D 0150 I & =1, \operatorname{NSAMR} \\ \text { DUM（I）} & =\operatorname{RADAT}(I, J)\end{aligned}$
 DOUBLE PRECISION AMPSPC（N5，N1），TEMP，CHTS（8），DBCHTS（8），XM
DOUBLE PRECISTON HF，ZBASE，ZMIN，ZMAX，RWS（N3）


咢界 CONTINUE
CALL FORK（NSAMR，CX，
DO 260 $I=1$, NSAMR
RADATII， 1 ）$=$ REAL（CX（I））
CNTINUE
CONTINUE
END IF
IF（IANSWR ．NE．O）GO TO 10
RETURN N
$\begin{array}{llll}\text { N० } & \text { N } & \text { N N N }\end{array}$
 CALL zero（NSAMR，RADAT（1，JJ）） CALL PDECON（NSAMP2，DUM1，M，LF，R，G，A，F，RFC ELSE
$M-$ MM
END IF
TF M $M$ ．GT CALL ACF
M $=$ I22C
ELSE IF（MM
CALL ACF（DUM1，
O

SWAP AROUND TWO UPPER QUADRANTS
DO $150 \mathrm{~J}=1, \mathrm{~N} 2 / 2-1$



 READ ( 5,120 ) ANS
FORMAT (A1)
NCEN $=$ NSAMR $/ 2$

ㅇ․ ㅇ
「


FNYQ $=.5 E 6 / D T$
KNYQ $=.5 /$ DZ
PRTNT $\quad$ KNYQ $=$
ISAMP $=$ NINT (FNYQ
$\mathrm{NCHTS}=4$
$\mathrm{NCHTDB}=5$
$\mathrm{NF}=\mathrm{N} 1$
DBCHTS (4) $=20.0$
DBCHTS (5) $=40.0$
NCHTS $=4$
NCHTDB $=5$
DBCHTS (2) $=3.0$
DECHT (3) $=6.0$
DBCHTS (4) $=20.0$
CRTS (4) $=150.0$
DBCHTS () $=0.01$
DBCHTS (2) $=3.0$
CHTS (1) $=20.0$
CHTS ( $)=50.0$
CHTS 3 = $=100.0$
CHTS (4) $=150.0$

N


N~N

CP(II, J) $=\operatorname{CP}(I I, J+1)$
CONTNUE
CONTINUE

 FORMAT (4 (I4, 1X, F7.3,1X,F7.3))

 END IF
SIGNA $=-1.0$
SIGNB $=-1.0$
NZERO $=$ N2 2 N4 * 2
CALL ZERO (NZERO, CP(1,1)) CALL 2ERO (NCP, R4DAT
R4DAT $(512,12)=1.0$
END IF
SIGNA $=-1.0$ $\operatorname{CCP}=\operatorname{NSAM} * \operatorname{NCHR}$
$\operatorname{CALL} \operatorname{ERE}(\operatorname{NCP}, \operatorname{RADAT}(1,1))$
RADAT $(512,12)=1.0$ (ANSWER .EQ. ' $Y$ ' . OR. ANSWER .EQ. ' $y$ ') THEN
NCP $=$ NSAM ${ }^{*}$ NCHR FORMAT (A1)
$\operatorname{WRItE}(6, *)$ 'response of filter required ?'
READ $(5,160)$ ANSWER CLSNTINUE
$\mathrm{CP}(\mathrm{I}, \mathrm{KCEN}+\mathrm{J})=\mathrm{CP}(\mathrm{I}, \mathrm{K}$
$\mathrm{CP}(\mathrm{I}, \mathrm{KCEN}-\mathrm{J})=\mathrm{CTEMP}$
CONTIUE
CNTINUE DO $140 \mathrm{I}=\mathrm{NCEN}+1$, NSAMR

$c^{\left.300 \quad \begin{array}{c}\text { AMPSPC(J, } \\ \text { Continue }\end{array}\right)=\operatorname{DBLE}(\operatorname{CABS}(\mathrm{CP}(\mathrm{I}, \mathrm{J})))}$ LSE TF (IANSWR. EQ. 2) THEN
DO $300 \mathrm{~J}=1$, N2
DO $300 \mathrm{I}=1$, NF
AMPSPC (J, I) $=$ DBLE (CABS
N~N annilnoo
annilnoo
CO $290 \mathrm{I}=\mathrm{N} 2 / 2+1, \mathrm{~N} 2$
$\mathrm{DO} 280 \mathrm{~J}=1, \mathrm{NF}$
$\mathrm{CP}(\mathrm{J}, \mathrm{I})=\mathrm{CP}(\mathrm{J}, \mathrm{I}) * \mathrm{~F}$
$\begin{array}{ll}N \\ \text { Na } \\ 0 & 0 \\ 0\end{array}$

| $n \cap \Omega$ | $N N$ |
| :--- | :--- |
| 0 |  |
| 0 |  |
| 0 |  |

$\mathrm{DO} 240 \mathrm{~J}=1, \mathrm{NF}$
$\mathrm{FILSPC}(\mathrm{J}, \mathrm{I})$
$=1.0-\operatorname{FILSPC}(\mathrm{J}, \mathrm{I})$

# $+1$ 

(20) $=$ REAL(CP(I,J))

$$
\begin{aligned}
& \text { PRINT } * \text {, 'SELECT MAX FREQY FOR PLOT } \\
& \text { READ }(5, *) \text { FMAX }
\end{aligned}
$$

$$
\begin{aligned}
& \text { READ (5, } 160 \text { ) ANS } \\
& \text { CALL PIE (NK, NF, FILSPC, DK, DF, ANS) } \\
& \text { IF (ANS EQ. 'R') THEN } \\
& \text { DD } 250 \mathrm{I}=1, \text { N }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ELSE IF (IANSWR .EQ. } 5 \text {. OR. IANSWR .EQ. } 7 \text {. OR. IANSWR .EQ. 9) } \\
& { }^{\text {THEN }} \\
& \text { PRINT } * \text {, SELECT MAX FREQY FOR PLOT, }
\end{aligned}
$$

$\begin{aligned} & 240 \text { CONTINUE } \\ & 250 \text { END IF }\end{aligned}$
$\underset{\text { CND IF }}{\substack{\text { CONTINE } \\ \text { Ent }}}$








 N $\stackrel{\rightharpoonup}{\circ}$ DTMENSION RECDEE (NCHR), $\operatorname{IDPROC}(5, N C H R), \operatorname{NCR}(2)$
REAL TEMP (NSS1)
CHARACTER ANS

# N <br> Apply mute to channels (Cos taper) FORMAT (/' 11 PRINT* 

 100 FORMAT (/, 9

 CHARACTER ANS
INTEER KILID (NS2)
WRITE $(6, *) \cdot$ NSAMR, NC Apply / Enter channel gains
Enter first break samples Correct trace misalignment Remove spike / D.C. from data GAIN COMPENSATION MENU
$=\prime$, nsamp, nchr
gain compensation
FORMAT $(/, 10$
WRITE $(6,120)$
FORMAT $(/, 11$

FORMAT $(/, 4$
WRITE $(6,60)$
FORMAT $(/, 5$

FORMAT $(/ 12$
WRITE $(6,40)$
FORMAT $(/, 1$
WRITE $(6,30)$
PRINT *,
WRITE $(6,20)$
 Remove common trace Apply tapers to data spatially Apply AGC or $T$-squared ramp t Kill / Mute traces әpnatidue yead axm əoext yoea əธfteuxion
nergy
WRITE $(6,70)$
FORMAT $(/, 6$
WRITE $(6,80)$

| กัo | \% |  |
| :---: | :---: | :---: |

응
닝

| IF (ANS .EQ. 'R' . OR. ANS .EQ. 'r') THEN DO $280 \mathrm{~J}=1$, NCHR |  | $400 \underset{\text { CND IF }}{\text { Continue }}$ |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | R4DAT (I,J) $=\operatorname{R4DAT}(\mathrm{I}, \mathrm{J}) *(\mathrm{I}-1) * * 2 / 10000$ | 1 | WRITE ( $6, *$ ) Length of taper to be applied in traces' // |
| 270 | continue |  | ' (affects L-1 traces) :' |
| 280 | continue | READ ( 5 , *) LTAPER |  |
|  | WRITE ( $6, *$ )'Taper (Y/N) | WRITE $(6, *)$ enter first and last traces with significant data:'READ $(5, \star)$ NTRACO, NTRAC1 |  |
|  | READ ( 5,490$)$ ans |  |  |
|  | If (ANS .EQ. 'Y' .OR. AnS . EQ. ' $Y$ ') THEN | READPI $=3.1415926535$ |  |
|  | WRITE ( $6, *$ ) Enter length of taper in samples : | WRITE ( $6, *$ )'Apply / Remove Taper (A/R):' |  |
|  | read ( $5, *$ ) Lentap | READ $(5,490)$ ANS |  |
|  | ntapo = nSAmR - lentap |  |  |
|  | DO $300 \mathrm{~J}=1$, NCHR |  |  |
|  | Do $290 \mathrm{I}=$ NTAPO, NSAMR | FAC $=0.5 *(1.0-\cos (\mathrm{THETA})$ ) |  |
|  | TAP $=1.0-\mathrm{REAL}(\mathrm{I}-\mathrm{NTAPO}) / \mathrm{REAL}(\mathrm{LENTAP})$ | $\text { NTRO }=\text { NTRACO }-1+J$ |  |
|  | IF (I .GT. NTAPO + LENTAP) TAP $=0.0$ |  |  |
|  | $\operatorname{RadAT}(I, J)=\operatorname{RADAT}(I, J) * T A P$ |  |  |
| 290 | continue | IF (NTRO .LE. O . OR. NTR1 .GT. NCHR) GO TO 420 |  |
| 300 | continue |  |  |
|  | End if | $\operatorname{R4DAT}(\mathrm{I}, \mathrm{NTRO})=\operatorname{R4DAT}(\mathrm{I}, \mathrm{NTRO}) * \operatorname{FAC}$ |  |
|  | else if (ans .eq. 'd' or. ans .eq. 'd') then |  |  |
|  | WRITE ( $6, *$ ) ${ }^{\text {enter }}$ SPIKE ( 1 ), $\operatorname{FLAT}(2), \mathrm{T}-\mathrm{RAMP}(3), \mathrm{T} 1 / 2-\mathrm{RAMP}(4)$ ) | 410 continue |  |
|  | WRITE ( $6, *$ )' $\mathrm{T}-.5 \mathrm{SAMP}(5)$ ' | 420 Continue ELSE if (TOPT EQ. 6) Then |  |
|  | fead ( $5, *$ ) TOP |  |  |
|  | IF (IOP .EQ. 1) THEN | WRITE $(6, *)$ 'Enter no. of channel to be removed :' READ (5,*) NCHNLO |  |
|  | DO $310 \mathrm{~J}=1$, NCHR |  |  |
|  | Call zero (nsamr, radat (1,J)) | DO $440 \mathrm{~J}=$ NCHNLO, $\mathrm{NCHR}-1$ |  |
|  | RADAT (NSMMR/2 $+1, \mathrm{~J})=1.0$ | NFIRST(J) $=\operatorname{NFIRST}(\mathrm{J}+1)$ |  |
| 310 | continue | $\operatorname{RECDEP}(\mathrm{J})=\operatorname{RECDEP}(\mathrm{J}+1)$ |  |
|  | else if (iop .eq. 2) then | DO $430 \mathrm{I}=1$, NSAMR |  |
|  | DO $330 \mathrm{~J}=1$, NCHR | $\operatorname{R4DAT}(\mathrm{I}, \mathrm{J})=\operatorname{R4DAT}(\mathrm{I}, \mathrm{J}+1)$ |  |
|  | DO $320 \mathrm{I}=1$, NSAMR | 430 | continue |
|  | $\operatorname{RadAT}(\mathrm{I}, \mathrm{J})=1.0$ | 440 Continue |  |
| 320 | continue | CALL 2 ERO (NSAMR, R4DAT (1,NCHR)) |  |
| 330 | Continue | NFIRST(NCHR) $=0$ |  |
|  | ELSE If (IOP .EQ. 3) Then | $\operatorname{RECDEP}(\operatorname{NCHR})=\operatorname{RECDEP}(2)-\operatorname{RECDEP}(1)+\operatorname{RECDEP}(\mathrm{NCHR}-1)$ |  |
|  | DO $350 \mathrm{~J}=1$, NCHR | ELSE IF (IOPT .EQ. 7) THEN WRITE (6,*)'Remove Spike or D.C. (S/D) ?' |  |
|  | DO $340 \mathrm{I}=1$, NSAMR |  |  |
|  | $\operatorname{R4DAT}(\mathrm{I}, \mathrm{J})=\operatorname{ReAL}(\mathrm{I}-1)$ | WRAD ( 5,490$)$ ANS |  |
| 340 | continue | IF (ANS .EQ. 'S' .OR. ANS .EQ. 's' .OR. ANS .EQ. 'm') |  |
| 350 | Continue |  |  |
|  | ELSE IF (TOP .EQ. 4) THEN | READ $(5, *)$ NTRSPK |  |
|  | DO $370 \mathrm{~J}=1$, NCHR |  |  |
|  | DO $360 \mathrm{I}=1$, NSAMR | WRITE (6,*)'ENTER SAMPLE RANGE :'READ ( $5, *$ ) NSMSPK, LSMSPK |  |
|  | R4DAT(I, J) $=\operatorname{SQRT}(\operatorname{REAL}(\mathrm{I}-1))$ |  |  |
| 360 | continue | DO $450 \mathrm{I}=$ NSMSPK, LSMSPK |  |
| 370 | continue | IF (ANS . EQ. ' $\mathrm{M}^{\prime}$ ) THEN |  |
|  | Else if (IOP .EQ. 5) then | ALPHA $=0.0$ |  |
|  | DO 390 J = 1, NCHR | else |  |
|  | DO $380 \mathrm{I}=1, \operatorname{NSAMR}$ R4DAT (I, J) $=1 . / \operatorname{SQRT}(\operatorname{REAL}(I))$ | ALPHA $=.5$ * (R4DAT (I - 1,NTRSPK) + R4DAT(I + 1,NTRSPK)) |  |
| 380 | continue | $\operatorname{RADAT}(\mathrm{I}, \mathrm{NTRSPK})=$ aLPha |  |
| 390 | continue | 450 | COntinue |
|  | End if | ElSE |  |
|  | Else | DO $480 \mathrm{~J}=1$, NCHR |  |
|  | WRITE ( $6, *$ ) 'Enter length of AGC window in samples :' | $D C=0.0$ |  |
|  | READ ( $5, *$ ) LENAGC | DO 460 I $=1$, NSAMR |  |
|  | IDPROC (2, NPROCS $)=$ LENAGC |  |  |
|  | DO $400 \mathrm{~J}=1, \mathrm{NCHR}$ CALL AGC (NSAMR, $1, \operatorname{RADAT}(1, \mathrm{~J})$, LENAGC) | 46 | continue |



 DO $780 \mathrm{~J}=\mathrm{NGOO}, \mathrm{NGO1}$ READ ( $5, *$ ) NGOO, NGO1

 CONTINUE
ELSE DO $720 I=1$, NTAPO
RADAT $(I, J)=0.0$
CONTINUE
CONTINUE $\begin{gathered}\operatorname{RADAT}(I, J) \\ \operatorname{CONTINUE}\end{gathered}=\operatorname{RADAT}(\mathrm{I}, \mathrm{J}) * \mathrm{FAC}$ $\mathrm{FAC}=0.5 *(1.0-\cos (\mathrm{FAC}))$
$\mathrm{RADAT}(\mathrm{I}, \mathrm{J})=\operatorname{RADAT}(\mathrm{I}, \mathrm{J}) * \mathrm{FAC}$ $\mathrm{FAC}=\operatorname{REAL}(\mathrm{I}-\mathrm{NTAPO}) / \mathrm{REAL}($ NTAP1 - NTAPO $)$
FAC $=$ FAC $* 3.1415926535$ DC $710 \mathrm{I}=$ NTAPO +1 , NTAP1 -1 GO TO 700
END TF WRITE $(6, *)$, CHANNEL
WRITE $(6, *)$ ' ERROR NTAPO, NTAP1 $=\prime, ~ N T A P O, ~ N T A P 1 ~$ IF (NTAP1 - 1, GT. NSAMR .OR. NTAPO .LT. 1) THEN NTAPO $=$ NFTRST $(\mathrm{J})+$ NTAPOO
NTAP1 $=$ NTAP10 + NTAPO READ $(5, *)$ NTAPOD
DO $730 \mathrm{~J}=1$, NCHR READ ( $5, *$ ) NTAPOO IF (NTAP10. © ER.
WRITE $(6, *)$ Enter start of cosine taper ( $0=1$ st break): READ $(5, *)$ NTAPIO
 READ $(5, *)$ IOANS
IF (IOANS. EQ. END IF (IOPT . EQ. 11 ) THEN
WRITE ( $6, \star$ ) NFIRST
WRITE $(6, *)$ 'APPLY SAME MU CONTINUE
END IF
ELSE IF (IOPT WRITE $(6, *)$ Enter 1st
READ $(5, *) \operatorname{NFIRST}(I)$ IF (DTFO GT. SSDS*RMERR) THEN
NFIRST(J) $=1$
GO TO 680
END IF
CONTINUE
CONTINE
ELSE
D $690 \mathrm{I}=1$, NCHR
WRITE $(6, \star)$ Enter 1 st break SAMPL Deviations from mean value to that sample Criterion that 1 st difference is greater than NSSDS Standard
 CONTINUE
RMERR $=$ RMERR / REAL (I -1$)$ RMERR $=$ RMERR $+\operatorname{DTE} * * 2$
CONTINUE

|  | $\begin{aligned} & \text { IF (NTAP1 }-1, \text { GT. NSAMR . OR. NTAPO . LT. } 1) \text { THEN } \\ & \text { WRTTE }(6, *) \text { ERROR NTAPO, NTAP1 }=\prime \text {, NTAPO, NTAP1 } \\ & \text { GO TO } 780 \end{aligned}$ |
| :---: | :---: |
| 750 | END if |
|  | DO $760 \mathrm{I}=$ NTAPO +1 , NTAP1 - 1 |
|  | FAC $=$ REAL (I - NTAPO) / real (NTAP1 - ntapo) |
|  | $\mathrm{FAC}=\mathrm{FAC} * 3.14159265$ |
|  | $\mathrm{FAC}=0.5$ * (1.0- $\cos (\mathrm{FAC})$ ) |
|  | $\mathrm{R4DAT}(\mathrm{I}, \mathrm{J})=\mathrm{R4DAT}(\mathrm{I}, \mathrm{J}) *$ FAC |
| 760 | continue |
|  | DO $770 \mathrm{I}=1$, NTAPO |
|  | $\mathrm{R4DAT}(\mathrm{I}, \mathrm{J})=0.0$ |
| 770 | continue |
| 780 | continue |
|  | end if |
|  | $\underset{\text { RETURN }}{\operatorname{ELSE}}$ IF (IOPT.EQ. O) THEN |
|  | end if |
|  | GO TO 10 |
|  | End |
| c |  |
|  | SUbroutine rmserr (nsamr, x, rms) |
|  | REAL X (NSAMR) |
|  | RMS $=0.0$ |
|  | DO $10 \mathrm{I}=1$, NSAMR |
|  | RMS $=$ RMS + $\mathrm{X}(\mathrm{I})$ ** 2 |
| 10 | continue |
|  | RMS = RMS / NSAMR |
|  | RMS $=$ SQRT (RMS) |
|  | RETURN |
|  | End |
| c |  |
|  | SUBROUTINE MAXAMP (NSAMR, X , ampmax, indamp) |
|  | REAL X ( NSAMR ) |
| AMPMAX $=0.0$ |  |
| DO $10 \mathrm{I}=1$, NSAMR |  |
|  | IF ( $\operatorname{ABS}(\mathrm{X}(\mathrm{I})$ ) .GT. AMPMAX) then |
| $\operatorname{AMPMAX}=\mathrm{ABS}(\mathrm{X}(\mathrm{I}))$ |  |
| Indamp $=\mathrm{I}$ |  |
| end if |  |
| 10 continue |  |
| Return |  |
|  | END |
| c ${ }^{\text {c }}$ |  |
| C. Subroutine to carry out simple 2D Fourier transform (Claerbout) c |  |
| SUbROUTINE $\operatorname{FT2d}(\mathrm{N} 1, \mathrm{~N} 2, \mathrm{CP}, \mathrm{SIGNA}, \mathrm{SIGNB}, \mathrm{CW})$INTEGER $1, \mathrm{~N} 2$ |  |
|  |  |
| COMPLEX CP(N1,N2), Cw(N2) |  |
| real signa, signb |  |
| DO $10 \mathrm{I}=1$, N 2 |  |
|  | CALL Fork (N1, CP(1, I), SIGNa) |
| 10 continue |  |
| DO $40 \mathrm{~J}=1, \mathrm{~N} 1$ |  |
| DO $20 \mathrm{k}=1$, N 2 |  |
| 20 | $\mathrm{CW}(\mathrm{K})=\mathrm{CP}(\mathrm{J}, \mathrm{K})$ |
|  | continue |
|  | CALL FORK (N2, CW, SIGNB) |
|  | DO $30 \mathrm{~L}=1$, 22 |







 ELSE IF (I .LE. IHIOFE) THEN
CX $(I)=C X(I) * 0.5 *(1.0+\operatorname{COS}((I-$ IHICUT $) * P I /(I H I O F F-$ HL (むกOIHI 'at' I) aI asta
 IF (I .LE. LOOFF) THEN
CX(I) $=0.0$ CALL FORK (NSAMR, CX, -1.0)
LL $=$ NSAMR $/ 2+1$
DC $20 I=1, L L$ $\begin{aligned} & \\ &\left(0^{\circ} 0^{\prime}(I) X\right) \times T \text { UWD }=\text { (I) XD }\end{aligned}$ IHIOFF $=$ INT (FHIOFF*SAMHZ $)+1$
DO $10 I=1$, NSAMR
CX(I) $=\operatorname{CMPLX}(X(I), 0.0)$ LOOFF $=$ INT (FLOOFF*SAMHZ) +1
IHICUT $=$ INT (FHICUT*SAMHZ $)+1$
IHIOFF $=$ INT $($ FHIOFF $\star$ SAMHZ $)+1$
 COMPLEX CX (NSAMR)
PI $=3.1415926535$ REAL X(NSAMR)
COMPLEX CX (NSAMR) SUBROUTINE BPSCOS (X, NSAMR, CX, FLOWCT, FHICUT, FLOOFF, FHIOFF, . SUBROUTINE TO BANDPASS FILTER DATA USING COSINE TAPER ang
Nynlzy
gnNimnos ob DO $40 \mathrm{I}=1$, NSAMR
$\mathrm{X}(\mathrm{I})=\operatorname{REAL}(\mathrm{CX}(\mathrm{I}))$
CONTINUE CALL FORK(NSAMR, CX, +1.0)
DO $40 I=1$, NSAMR CX(I) $=$ CONJG (CX (NSAMR - I + 2))
CONTINUE CONTINUE
DO 30 I
CX $\operatorname{CX}(I)$
20 CONTINUE ALPHA $=10.0 \mathrm{DO}$ ** ALPHA
END IF
 ALPHA = $10.0 \mathrm{OEO} \star \star$ ALPHA
ELSE IF (F.LT. FOHIGH) THEN
ALPHA $=1.0 \mathrm{E} 0$
ELSE
 ALPHA $=0.0$
ELSE IF (F.LT. $F=((I-1) \star D F)$
IF (F LT. $1 \mathrm{E}-2)$ $\mathrm{LL}=$ NSAMR $/ 2+1$
$\mathrm{DF}=2.0 *$ FNYQ $/$ NSAMR
$\mathrm{DO} 20 \mathrm{I}=1, \mathrm{LL}$



$$
\begin{array}{r}
\left(*^{\prime} 9\right) \text { GLIUM OE } \\
\text { SNOILdO LOTd YOA nN'SW }
\end{array}
$$



| IF (ANS .EQ. ' Y ' . OR. ANS . EQ. ' $\mathrm{y}^{\prime}$ ) THEN |  | ACCESSa'direct', RECL-LEN) |
| :---: | :---: | :---: |
| REWIND (0) | c |  |
| READ ( 0,130 ) B, INPOPT, IPDISC, OPDISC, OPFORM, IPSOUR | c | OUTPUT PROCESSING And display parameters |
| 130 FORMAT (A20, 8 (/A20)/A3/A16/A16/A6/A4) | c |  |
|  |  | WRITE (2,REC=IDCODE) A, SORPOS, NRECS, RECDEP, DBGAIN, GCMSCL, 1 NFIRST, NCR, NPROCS, IDPROC, DT, PROC |
| WRITE (6,*) B | c |  |
| WRITE (6,*) A | c | WRIte seismogram records |
| NRECS $=$ NCHR | c |  |
| READ (0,140) NA, NA, NA, NA, NA, NA, NCR(1), NCR (2), SA, |  | D $10 \mathrm{~J}=1$, NRECS |
| TOPREC, RECSEP, SA |  | NREC $=$ IDCODE + J |
| 140 FORMAT (I4/I2/I1/I3/I3/I2/I2/I2/F6.2/F6.2/F6.2/F6.2) |  | WRITE ( $2, \mathrm{REC}=\mathrm{NREC}$ ) (R4DAT (I, J) , I=1, NSAMR) |
| $\operatorname{RECDEP}(1)=$ TOPREC |  | 10 continue |
| DO $150 \mathrm{I}=2$, NRECS |  | else |
| IF (I . EQ. NCR (2)) THEN |  | WRITE ( $6, *$ )'seg-y OUtput to tape attached to unit 19 : |
| $\operatorname{RECDEP}(\mathrm{I})=\operatorname{RECDEP}(\mathrm{I}-1)$ |  | IOPCHN $=19$ |
| ElSE |  | CALL SEGYwR (Radat, nrecs, nsamr, NSHOT, TOPCHN) |
| $\operatorname{RECDEP}(\mathrm{I})=\operatorname{RECDEP}(\mathrm{I}-1)+\mathrm{RECSEP}$ |  | END If |
| END If |  | close (2) |
| 150 continue |  | RETURN |
| END IF |  | End |
| c | c |  |
| C Check for saturation -- code removed |  | ARRAY Plotting subroutine for seismic data |
| c 60 T0 170 |  | Plenty of interactive options included to obtain required scaled data. |
| GO TO 170 |  | Can apply AGC etc to plot without affecting original data |
|  |  | Allows manual (interactive) first break picking/confirmation. |
| c read in segy tape |  |  |
|  |  | SUBROUTINE MENPLI (NSAMR, NCHANS, R4DAT, NFIRST, TITOFF, ChNSPL, |
| 160 Continue |  | POLART, VARARE, NPLFST, NPLIST, IOPT, SORPOS, RECDEE, |
| INPCHN $=1$ |  | nCR, dt, locate, date, device, Sortyp, sorloc, rectyp, |
| CALL SEGYRD (RADAT, NRECS, NSAMR, NSHOT, INPCHN) 170 RETURN |  | recloc, COMSht, filrec, nshot, nProcs, idproc) |
| 170 RETURN | c |  |
| END |  | Subroutine for graphics output of array R4DAT |
| c ${ }^{\text {c }}$ | c |  |
| C Subroutine to write out data to disc file |  | PARAMETER (NS1=2048, NS2=60) |
| C SUBROUTINE WRFILA (NSAMR, NCHR, R4DAT, NFIRST, OPFORM, OPDISC, |  | CHARACTER*20 LOCATE, DATE, DEVICE, SORTYP, SORLOC, RECTYP, RECLOC, |
| NSHOT, LEN, A1, A2, A3, A4, A5, A6, A7, A8, A9, SORPOS, |  | CHARACTER*20 FILREC |
| NRECS, RECDEP, DBGAIN, GCMSCL, NCR, NPROCS, IDPROC, DT, |  | CHARACTER TITLE*20, STR1*3, FLAGBR*3, COMENT*40, ANS*1 |
| IOPCHN, PROC) |  | CHARACTER*4 RES (5) |
| DIMENSION R4DAT (NSAMR, NCHR), NEIRST (NCHR), RECDEP (NCHR), A (9) |  | CHARACTER VARARE*3, TITOFF*3, CHNSPL*26, POLART*7, NONE*4, STRING* |
| DIMENSION DBGAIN(NCHR), GCMSCL(NCHR), NCR(2), $\operatorname{IDPROC}(5, \mathrm{NCHR})$ |  | 110 |
| CHARACTER OPDISC*17, OPFORM*6, A $* 20$ |  | - real recdep (nchans) |
| Character* 20 A1, A2, A3, A4, A5, A6, A7, A8, A9 |  | REAL A(NS1), B(NS1), RDAT (NS1, NS2), R4DAT (NSAMR, NCHANS) |
| CHARACTER*25 PROC (20) |  | INTEGER NFIRST (NCHANS) , NCR (2), IDPROC (5, NCHANS) |
| $\mathrm{A}(1)=\mathrm{A} 1$ |  | Call time (6, 0, res) |
| $\mathrm{A}(2)=\mathrm{A} 2$ |  | tItle $=$ ' x -hole Reflection' |
| $\mathrm{A}(3)=\mathrm{A} 3$ |  | FLAGBR $={ }^{\prime}$ OFF' |
| $\mathrm{A}(4)=\mathrm{A}^{4}$ |  | COMENT $=1$, |
| $\mathrm{A}(5)=\mathrm{A} 5$ | c |  |
| $\mathrm{A}(6)=\mathrm{A} 6$ |  | SET UP DUMMY PLOT ARRAY RDAT (NSAMR, NCHANS) |
| $\mathrm{A}(7)=\mathrm{A} 7$ | c |  |
| $\mathrm{A}(8)=\mathrm{A} 8$ |  | 10 DO $20 \mathrm{~J}=1$, NCHANS |
| $\mathrm{A}(9)=\mathrm{A} 9$ |  | DO $20 \mathrm{I}=1$, NSAMR |
| NRECS $=$ NCHR |  | $\operatorname{RDAT}(I, J)=\operatorname{R4DAT}(\mathrm{I}, \mathrm{J})$ |
| If (OPFORM .EQ. SEQUEN') THEN |  | 20 continue |
| PRINT *, 'option not available yet' | c |  |
| ElSE If (OPFORM.EQ. 'direct') Then |  | MENU FOR PLOT OPTİNS |
| IDCODE $=($ NSHOT -1$) *$ (NRECS +1$)+1$ | c |  |
| OPEN (2,FILE=OPDISC, STATUS=' UNKNOWN', FORM=' UNFORMATTED', |  | 30 WRITE (6,*) |


(20TOTy) Sosaxi tteo



 CALL TYPECS (SORLOC)





 CALL CSPACE $(0.73,1.00,0.49,0.77)$
CALI CTRMAG (14)





 Initialise the plotting format $0 . \tau+($ zצHON $)$ T甘Jy $=$ yHON甘 (LISTAN) TVGA $=20$
 units : DT in microsecs
NCHR $2=$ NCHANS OF 5 is a string NCR1, NCR2=NCR(1),NCR(2),A \& B ARE ARRAYS OF LEN 1024 TIMES IS ARRA LX=NSAMR, LY=NCHR2, X=R4DAT,NFILE=NFILE (1), NFILE2=NFILE (2), NSH=IDSH,NR

$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\circ}$
范
 CALL CRLNFD CALL TYPECS（＇True amplitude







 END （（sooydn＇z）SO甘daI）INEdAL TT甘S



ํ 풍


$$
\begin{aligned}
& \begin{array}{l}
\text { IF } \\
\text { MAT } \\
\text { (IA } \\
\text { WR } \\
\text { RE } \\
\text { IF }
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { ana } \\ & \text { asta }\end{aligned}$
$\begin{gathered}\text { CONTINUE } \\ \text { CONTINUE } \\ \text { CALL CTRMAG(10) } \\ \text { CALL GREND } \\ \text { GO TO 10 } \\ \text { END IF } \\ \text { IF (IANSWR .EQ. 7) TH } \\ \text { IF (FLAGBR .EQ. }\end{gathered}$
N
230
END
 READ $(5, \star)$ NSAMO, NSAM1
WRITE $(6,230)$ ( $(I, \operatorname{RADAT}(I$, IDCHAN $)), I=$ NSAMO, NSAM1) READ $(5, *)$ IDCHAN
WRITE $(6, *)$ 'Range of samples to be printed :' N
: proutcid aq of touneyr asta

N~N CALL JOIN(A(I), B(I))
CONTINUE CALL $\operatorname{POSITN}(A(I), D E P)$
$C A L L \operatorname{JOIN}(A(I), B(I))$

$$
\begin{aligned}
& \text { CONTINUE } \\
& \text { IF VARARE .EQ. 'OFF') GO TO } 200 \\
& \text { DO } 200 \text { I }=\text { NPLFST, NPLLST }
\end{aligned}
$$

IF (I .EQ. NFIRST(J)) CALL PLOTNC(A(I), ARROWD,
CONTINUE
 IF (FLAGBR .EQ.

CALL PTJOIN(A, B, NPLFST, NPLLST,
IF (FLAGBR .EQ. 'OFF') GO TO 190

| 270 CONTINUE <br> 280 CONTINUE | $70 \quad \underset{\operatorname{CONTINUE}}{\operatorname{DGDAT}(I, J)}=0.0$ |
| :---: | :---: |
| END IF | 80 Continue |
| else |  |
| WRITE ( $6, *$ )' Length of AGC to be applied :' | ln $=$ nalign - 5 |
| READ ( $5, *$ ) LENAGC |  |
| CALI AGC (NSAMR, NCHANS, RDAT, LENAGC) | c MUTE before first arrivals |
| END tF | c |
| END If | DO $90 \mathrm{~J}=1$, NRECS |
| If (tanswr .ne. 0) 60 to 30 | CALL 2 ERO(LN, DGDAT(1,J)) |
| RETURN | 90 continue |
| END | print *, 'traces aligned ... plot ( $\mathrm{Y} / \mathrm{N}$ ) ? ${ }^{\text {a }}$ |
|  | read ( 5,10 ) ans |
| Subroutine to median filter seismic data | IF (ANS .EQ. 'Y' . OR. ANS .EQ. ' $\mathrm{Y}^{\prime}$ ) THEN |
| Really only useful for zero-offset Vsp | CALL MENPL1 (NSAMR, NRECS, DGDAT, NFTRST) |
| SUbroutine medfil (nsamr, nchr, radat, nfirst, lenfil) | c END IF |
| PARAMETER ( $\mathrm{NS} 1=60$, $\mathrm{NS} 2=1024, \mathrm{NS} 3=60$ ) | C Apply median filter across traces |
| dimension radat (NSAMR, NCHR), NEIRST (NCHR) |  |
| REAL X (NS1) , Y (NS1), DGDAT (NS2, NS 3), UGDAT (NS2, NS 3 ) | 100 PRINT *, 'applytng median filter ....' |
| CHARACTER*1 ANS | DO $140 \mathrm{I}=\mathrm{LN}+1$, NSAMR |
| NRECS $=$ NCHR | Do $110 \mathrm{~J}=1-\mathrm{LENFIL} / 2$, nrecs + Lenfil / 2 |
|  | C Pad with zeros |
| Shift the traces : FIRST breaks at nalign samples | IF (J .LT. 1 . OR. J .GT. NRECS) THEN $X(J+$ LENFIL/2 $)=0.0$ |
|  | Else |
| 10 Format (Al) | $\mathrm{X}(\mathrm{J}+\mathrm{LENFIL} / 2)=\operatorname{dgdat}(\mathrm{I}, \mathrm{J})$ |
| LENDU $=$ NS2 * NS3 | end if |
| CALL $\mathrm{zeRO}(\mathrm{LENDU}, \mathrm{UGDAT}(1,1)$ ) | 110 Continue |
| PRINT *, 'REMOVE COMMON TRACE (Y/N) ?' | DO $130 \mathrm{~J}=1$, NRECS |
| READ $(5,10)$ ANS | DO $120 \mathrm{LL}=1,48$ |
| IF (ANS. EQ. ' $\mathrm{Y}^{\prime}$. OR. ANS . EQ. ' Y ') THEN | $Y(\mathrm{LL})=\mathrm{X}(\mathrm{LL})$ |
| WRITE ( $6, *$ ) Enter no. of trace to be removed :' | 120 continue |
| READ ( $5, *$ ) NDEAD | CALL MDIAN1 (Y (J), Lenfil, $\operatorname{dgdat}(\mathrm{I}, \mathrm{J})$ ) |
| DO $30 \mathrm{~J}=$ NDEAD, NRECS -1 | 130 continue |
| $\underset{\operatorname{NFIRST}}{ }(\mathrm{J})=\operatorname{NFIRST(J)}+1)$ | 140 continue |
| DO $20 \mathrm{I}=1$, NSAMR | c |
| $\xrightarrow[\text { R4DAT }]{\text { (I, J }}$ ) $=\operatorname{R4DAT}(I, J+1)$ | $c$ display |
| 20 Continue |  |
| 30 Continue | print *, 'traces still aligned ... plot (y/n)? ' |
| CALL LERO(NSAMR, R4DAT (1, NRECS) | READ $(5,10)$ ans |
| NEIRST (NRECS) $=100$ | If (ANS .EQ. 'Y' . OR. Ans .eq. ' $\mathrm{Y}^{\prime}$ ) then |
| END TF | CALL MENPL1 (NSAMR, NRECS, DGDAT, NFIRST) |
| DO $50 \mathrm{~J}=1$, NRECS | END IF |
| DO $40 \mathrm{I}=1, \mathrm{NSAMR}$ DGDAT $(\mathrm{I}, \mathrm{J})=\mathrm{RADAT}(\mathrm{I}, \mathrm{J})$ | PRINT ${ }^{\text {a }}$, ${ }^{\text {RE-APPLY }}$ MEDIAN FILTER (Y/N)?' |
| - $\quad \operatorname{dgdat}(\mathrm{I}, \mathrm{J})=\operatorname{R4DAT}(\mathrm{I}, \mathrm{J})$ | READ ( 5,10 ) ANS |
| 40 CONTINUE | IF (ANS .EQ. ' $\mathrm{Y}^{\prime}$. OR. ANS . EQ. ' $\mathrm{y}^{\prime}$ ) GO TO 100 |
| 50 Continue | $c \quad \operatorname{WRITE}(7,129)($ (I, DGDAT (I, J), $\mathrm{I}=1, \mathrm{NSAMR}), \mathrm{J}=1, \mathrm{NRECS})$ |
| If (Nfirst (1) . EQ. 0) then | c 129 FORMAT (5 (I4, 1X, F5.2,2X) ) |
| PRINT ${ }^{*}$, 'INPUT FIRST BREAK SAMPLES :' | c |
| READ ( $5, *$ ) NFIRST | c Shift back the traces |
| end if | $c$ c |
| print *, 'aligning traces...' | PRINT *, 'shifting back traces ...' |
| NALIGN $=50$ | DO $170 \mathrm{~J}=1$, NRECS |
| DO $80 \mathrm{~J}=1$, NRECS | WRITE (7,*) NFIRST |
| NDT $=$ NFIRST(J) - NALIGN | ndt $=$ NFIRST(J) - nalign |
| DO $60 \mathrm{I}=1, \mathrm{NSAMR}-\mathrm{NDT}$ | WRITE (7,*) NDT |
|  | Do $150 \mathrm{I}=$ NSAMR, NALIGN, -1 |
| DO $70 \mathrm{I}=$ NSAMR - NDT +1 , NSAMR | 150 Continue |


| $\begin{gathered} \text { DO } 160 I=1, \text { NALIGN - } 1 \\ \operatorname{DGDAT}(I, J)=0.0 \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| 160 | continue |  |
| 170 | continue |  |
| c |  |  |
| PRINT *, 'traces Shifted back ... PLOT (Y/N)?' |  |  |
| READ $(5,10)$ ANS |  |  |
| CALL MENPLI (NSAMR, NRECS, DGDAT, NFIRST) |  |  |
|  |  |  |
| END IF |  |  |
| PRINT *, 'display upgoing waverield (y/n)?' |  |  |
| READ $(5,10)$ ANS |  |  |
| IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'Y') THENDO $190 \mathrm{~J}=1$, NRECS |  |  |
|  |  |  |
| DO $180 \mathrm{I}=1$, NSAMR |  |  |
| $\operatorname{UGDAT}(\mathrm{I}, \mathrm{J})=\operatorname{R4DAT}(\mathrm{I}, \mathrm{J})-\operatorname{DGDAT}(\mathrm{I}, \mathrm{J})$ |  |  |
| 180 CONTINUE |  |  |
| 190 Continue |  |  |
| END If <br> CALL MENPLI (NSAMR, NRECS, UGDAT, NFIRST) |  |  |
|  |  |  |
| PRINT *, 'COPY WAVEFIELD TO R4DAT (Up/Down/No) ?' |  |  |
| READ $(5,10)$ ANS |  |  |
| If (ANS . EQ. 'U' . OR. ANS .EQ. 'u') THEN |  |  |
| DO $210 \mathrm{~J}=1$, NRECS |  |  |
| DO 200 I $=1$, NSAMR$\operatorname{RADAT}(I, J)=\operatorname{UGDAT}(\mathrm{I}, \mathrm{J})$ |  |  |
|  |  |  |
| 200 Continue |  |  |
| 210 CONTINUE |  |  |
| ELSE IF (ANS .EQ. 'd' . OR. ANS .EQ. 'd') THEN |  |  |
| DO $230 \mathrm{~J}=1$, NRECS |  |  |
| Do $\operatorname{RADAT}(\mathrm{I}, \mathrm{J})=\operatorname{DGDAT}(\mathrm{I}, \mathrm{J})$ |  |  |
|  |  |  |
| 220 CONTINUE |  |  |
| 230 CONTINUE |  |  |
| END IF |  |  |
| RETURN |  |  |
| END |  |  |
| c |  |  |
| C. Subroutine to obtain median value of array $\mathrm{X}(\mathrm{N})$ (XMED) |  |  |
| $c$ The array X is left sorted on exiting |  |  |
| c SOURCE : Numerical recipes |  |  |
| c |  |  |
| SUBROUTINE MDIAN1 ( $\mathrm{X}, \mathrm{N}, \mathrm{XMED}$ ) |  |  |
| DIMENSION X(N) |  |  |
| CALL PIKSRT ( $\mathrm{N}, \mathrm{X}$ ) |  |  |
| $\mathrm{N} 2=\mathrm{N} / 2$ |  |  |
| IF ( $2 *$ N 2 . EQ. N) THEN |  |  |
|  | XMED $=0.5$ * (X(N2) $+\mathrm{X}(\mathrm{N} 2+1))$ |  |
| ELSE |  |  |
| XMED $=\mathrm{X}(\mathrm{N} 2+1)$ |  |  |
| END If |  |  |
| RETURN |  |  |
| END |  |  |
| c |  |  |
| SUBROUTINE PIKSRT (N, ARR) |  |  |
| c |  |  |
| C SOURCE : Numerical recipes |  |  |
| c |  |  |
| DIMENSION ARR(N) |  |  |
|  | DO $30 \mathrm{~J}=2, \mathrm{~N}$ |  |



annimoo ana

 (NN甘HON'I) LYOp $=(I)$ JWNIL END IF $\quad 340 \quad I=I W 1, ~ I W 2$



CALL 2ERO (NSAMS, TEMP)
IF (IREP .NE. 1) THEN END READ $(5, *)$ NAV
DO $360 \mathrm{~J}=1$, NAV L ZERO (NSAMS, TEMP2
(IREP . NE. 1) THEN
WRITE (6,*) Avera
READ $(5, *)$ NAV
 READ $(5, *)$ NCHANN READ $(5, *)$ NA
WRITE $(6, *)$ ENTER FIRST CHANNEL : $\operatorname{REALTE}(6, \star)$ ENTER NUMBER OF CHANNELS :'
$\operatorname{READ}(5, \star)$ NAV WREP ( $6, * *)$ ENTER
READ $(5, \star)$ IW1, IW2 READ ( $5, *$ ) IREP

 TF (ABS (BMIN). GT. BMAX) SCALE $=$ ABS (BMIN)
SCALE $\operatorname{SCALE} * 2$
CALL PSPAE $0.05,0.95,0.05,0.95)$ (II 'NIWE 'ZLLInG 'SWYSN) NSNIW TTYO (II XXWE CLINQ SNYSN) NSXYW TTYO
 CONTINUE
CALL NORMAN(NSAMS, BUTT2) DO 330 I $=$ NTAP3 $+1+$ NSAMS $/ 2$, NSAMS
 BUTT2 (I - NTAPO + NSAMS $/ 2+1)=$ BUTT2(I)
CONTINUE
(aW3L 'ISN) N甘W\&on TTYD
(0) 'TSN) NYW甘ON TTY





 CALL FORK（NSAMS，CXB，-1.0$)$
DO 660 J $=1$, NSAMS $0.0=$ BNNIINOD $\begin{aligned} & \text { CONTINUE } \\ & \text { DO } 650 \text { J }=\text { NSAMR } \\ & \operatorname{CXB}(J)=0.0\end{aligned}$


 zonisnos

$$
\begin{aligned}
& \text { READ }(5, *) \text { TOPT } \\
& \text { IF (IOPT.EQ. } 1 \text { ) THEN }
\end{aligned}
$$ READ $(5, *)$ NAPPLY

DO $630 \mathrm{I}=1$, NAPPLY



$$
\begin{aligned}
& \text { READ ( } 5, * \text { ) IREPL } \\
& \text { IF (IREPL.EQ. 1) THEN }
\end{aligned}
$$

SWYSN＇ $1+$ dOOYTN $=$ f089OO

# Appendix A. 2 <br> <br> The reflection point loci program <br> <br> The reflection point loci program <br> REFLOC 

The program REFLOC takes a given model with layer velocities and source and receiver coordinates and calculates the locus of reflection points for each source and receiver pairing. The loci are output to a file which is attached as unit 7 at run-time and these loci are then used by the VSP-CDP mapping program XHRMAP in Appendix A. 3.

WRITE $(6, \star)$ ' MAXIMUM NO. OF LAYERS $=30$ : PLEASE MODIFY UNIT 1'
STOP READ ( $1, \star$ ) NLAMAX
IF (NLAMAX . GT. 30 ) THEN $\operatorname{READ}(1, \star)$ NLOCI
PRINT *, Enter TOTAL no of loci to be calulated READ $(1,10)$ GATHER PRINT *, 'Enter $R$ for common receiver gathers or $S$ for common shot READ (1,10) HSTYPE
10 FORMAT (A1)

PRINT *, 'Enter $F$ for full two sided survey else single sided'
read in the survey type.... F=full two sided..... else single
sided parameterise the velocity structure layer i ; thickness THICK(i),
; velocity V(i)
reached to unit 1 output goes to unit 7 gurvey type.... F=full two sided..... else single KOUNT $=1$ $P I=A \operatorname{COS}(-1$.
$P I 2=P I / 2.0$

CHARACTER MODE*1, HSTYPE*1, WAVFLD*1, GATHER*1 REAL XINTR(31), XINTS (31), $\operatorname{THICK}(30), \mathrm{VV}(30), \mathrm{VH}(30), \operatorname{THET}(31)$
REAL DEPTH (31),
LOGIME (31) REAL, XS, 2S, XR(24), $2 R(24), X(52000), 2(52000), T(52000)$,
1 DIST(31)

PROGRAM REFLOC
REAL, $X S, 2 S, X R(24), \therefore 2 R(24), X(52000), 2(52000), T(52000)$,


C Modified to include anisotropy in raytracing by Ed Kragh 1989
Program output used by XHRMAP program
N.B. May be necessary to play around with DTHETA (step angle)
MAXSN, MINSN, ZERO from REAL*4 TSAR4_1 Lib
Routines from *ghost 80
Subroutines called : MAXSN,MINSN, ZERO from REAL*4 TSARA_1 Lib ray parameter from the receiver. The intersection of the 2 raypaths
yields the reflector locus. initial ray parameters from the source and repeating with the sam
at XR(i), ZR(i); Locus for each source/receiver pair will be
contained in the arrays $x(i), Z(i)$ : output to disc for later
interpolation. Program to find loci of reflection points for a plane parallel
homogeneous layered model with source at position Xs, zS ; receiver

READ ( $1, \star$ ) $\mathrm{XS}, \mathrm{zS}$ IOHSZ LOHSX dəचug, * सNIY

․․ READ (1,*) XR(I), $2 R(I)$
CONTINUE
END IF PRINT *, 'Enter XSHOT ZSHOT for every shot'
DO $50 I=1$, NRECS PRINT *, 'Enter the no of downhole shots'
READ (1, *) NRECS IF (KOUNT. EQ. 2) $\mathrm{XS}=-\mathrm{XS}$
$\mathrm{XSPLOT}=\mathrm{XS}$ RRAD (1, *) XS, ZS
IF (KOUNT .EQ. 2) XS $=-\mathrm{XS}$ PRINT *, 'If processing a full survey do the -ve half first
PRINT *, 'Enter XREC ZREC' PRINT *, 'Borehole is at $x=0$-ve is to the right' If a full survey is being processed do the -ve half first Read in source and receiver positions
The borehole is at $x=0$ and -ve values are to the left.

40 continue

## READ (1,*) MAXLOF, NLP10, NLP100

Read in max number of takeoff angle spreads \& NUMBERS FOR
INCREASE IN DTHETA Read in stepping angle for raysearch
READ (1,*) DTHETA Wavfld is not used in this version of refloci
Read in display node (Full scale/ Optimal fill)
READ ( 1,10 ) MODE READ $(1,10)$ WAVFLD PHI $=$ PHII READ ( $1, *$ ) PHIl
PHI $\quad$ angle of dip +ve for dip UP from borehole to RIGHT
IF (GATHER .EQ. ' $s^{\prime}$. OR. GATHER .EQ. 's') PHII =-PHII 30 CONTINUE $\begin{aligned} & \text { READ ( } 1, * \text { ) ANISO } \\ & \text { DO } 30 I=1, ~ N L A M A X \\ & V H(I)=V V(I)+V\end{aligned}$ 20 CONTINUE $\quad$ DEPMAX $=$ DEPTH (NLAMAX +1 ) DERTH (I +1$)=\operatorname{DEPTH}(I)+$ THICK (I)
20 CONTINUE DEPTH(1) $=0.0$
DO $20 I=1$, NLAMAX




| $\mathrm{VO}=\mathrm{VH}$ (NLAYER)$\mathrm{VOO}=\mathrm{V}$ (NLAYER) |  |
| :---: | :---: |
|  |  |
| if (theta .lt. 0.0) then $\mathrm{V} 1=\mathrm{VH}(\mathrm{NLAYER}-1)$ |  |
| $\underset{\mathrm{VLSE}}{\text { ELS }}=\mathrm{Vh}($ NLAYER +1$)$ |  |
|  |  |
| END If |  |
| c | IF (VO .GE. V1) GO TO 240 |
|  | No crit rays |
|  | TEM $=$ VOO ** 2 * (V1**2 - V0**2) / vo ** 4 |
|  | $\operatorname{CRIT}=\operatorname{ATAN}(\operatorname{SQRT}(1 . / T E M)$ ) |
|  | CRIT $=$ PI2 - CRIT |
| c | IF (ABS (Theta) . LT. CRIT) THEN |
|  | Print*, 'SUPERCRITICAL AT LAYER ', NLAYER |
|  | IF ( (2PO-2R(J))*SIGN(1.0, THETA) .GT. O.0) THEN |
|  | GO TO 250 |
|  | ELSE |
|  | GO TO 320 |
|  |  |  |
|  |  |  |
|  | ***** apply sneli's law, update layer no. \& Restart raytrace |
|  | ELSE |
| 240 | NLAYER $=$ NLAYER + $\operatorname{NINT}(\operatorname{SIGN}(1.0$, THETA $)$ ) |
|  | TEMA $=$ VH (NLAYER) $* * 4 * \mathrm{VV}(\mathrm{NLAYER}-1) * * 2$ |
|  | TEMB $=\mathrm{VV}$ (NLAYER) ** 2 |
|  | TEMC $=\mathrm{VH}($ NLAYER - 1$) * * 4 /($ TAN (PI2 - ABS (THETA) $) * * 2)$ |
|  | TEMD $=\mathrm{VH}(\mathrm{NLAYER}-1) * * 2-\mathrm{VH}(\mathrm{NLAYER}) * * 2$ |
|  | TEMDD $=$ VV(NLAYER - 1) ** 2 |
|  | TEME $=$ TEMB * (TEMC + TEMDD*TEMD) |
|  | THETA2 $=\operatorname{ATAN}(\mathrm{SQRT}($ TEMA/TEME) $)$ |
|  |  |
|  | THETA $=$ THETA2 |
|  | GO TO 230 |
|  | End if |
|  |  |
| c Code for tracing from receiver |  |
|  |  |  |  |
| 250 |  |
|  | if (layrec .lt. laysor) then |
|  | $\mathrm{vO}=\mathrm{vH}(\mathrm{LAYREC})$ |
|  | $\mathrm{v} 00 \mathrm{~V}=\mathrm{v}$ (LAYREC) |
|  | $\mathrm{V} 1=\mathrm{VH}(\mathrm{LAYSOR})$ |
|  | IF (Vo .GE. V1) Go ro 260 |
|  | No fay will reach sor layer |
|  | TEM $=$ VOO ** $2 *(\mathrm{~V} 1 * * 2-\mathrm{V} 0 * * 2) / \mathrm{VO}$ ** 4 |
|  | CRIT $=$ ATAN (SQRT (1./TEM) ) |
|  | CRIT $=$ Pi2 - CRIT |
| $\begin{gathered} c_{26 *}^{* *} \end{gathered}$ | *** SUPERCRITICAL $==\Rightarrow$ STOP this ray \& try next one |
|  | TEMA $=$ VH(LAYSOR) ** $4 * \mathrm{VV}$ (LAYREC) $* * 2$ |
|  | TEMB $=\mathrm{VV}$ (LAYSOR) ${ }^{\text {** }} 2$ |
|  |  |
|  | TEMC $=(1.0 /$ TEMC $) *$ TEMA $/$ TEMB |
|  | TEMD $=\mathrm{VH}(\mathrm{LAYREC}) ~ * * 2-\mathrm{VH}(\mathrm{LAYSOR})$ ** 2 |
|  | TEMDD $=\mathrm{VU}$ (LAYREC) ${ }^{* *} 2$ |
|  | TEME $=$ TEMC - TEMDD * TEMD |
|  | TEME $=$ TEME / (VH(LAYREC)**4) |
|  | If (TEme .LT. 0.0) GO TO 320 |
|  | THETA $=\operatorname{ATAN}(\operatorname{SQRT}(1.0 /$ TEME) $)$ |
|  | THETA $=($ PI2 $-\mathrm{ABS}($ THETA $))$ |








(va゙ん) sat 3

C Now map $X, Z$ coordinates back to dipping space
C apply rotational transformation of minus PHI to sourcesreceiver posns
C
330 PHI $=-$ PHI

| 310 | continue |
| :---: | :---: |
|  | END IF |
|  | LOOP $=$ LOOP +1 |
| c' |  |
| C Next | ray |
| C |  |
| 320 | CONTINUE |
|  | DTHETA = DTHETO |
|  | IF (LOOP .LE. 1) GO |
| c |  |


| 0 |
| :--- |
| 0 |
| 0 |
| 0 |

$1,1,-1$


吕

|  | DO $340 \mathrm{~K}=1$, LOOP -1. |
| :---: | :---: |
|  | $\operatorname{DISTP}=\operatorname{SQRT}(X(K) * * 2+2(K) * * 2)$ |
|  | IF ( X (K) . EQ. O.0) THEN |
|  | ALPHA $=$ PI2 |
|  | else |
|  | ALPHA $=2(\mathrm{~K}) / \mathrm{X}(\mathrm{K})$ |
|  | ALPHA $=$ ATAN (ALPHA) |
|  | END If |
| c | First reset the x position before the rotation |
| c | The $\times$ position was shifted if after the rotation the |
| c | source had -ve x value |
|  | if (reset .lt. 0.0) then |
|  | $\mathrm{X}(\mathrm{K})=\mathrm{X}(\mathrm{K})+$ RESET |
|  | END If |
|  | DZP $=$ DISTP * (SIN(ALPHA) - SIN(ALPHA - PHI) ) |
|  | DXP = DISTP * ( $\operatorname{COS}$ (ALPHA - Phi $)-\operatorname{COS}($ ALPHA $))$ |
|  | $\mathrm{X}(\mathrm{K})=\mathrm{X}(\mathrm{K})+\mathrm{DXP}+\mathrm{XSHIFT}$ |
|  | $\mathrm{z}(\mathrm{K})=\mathrm{z}(\mathrm{K})-\mathrm{DZP}+2 \mathrm{SHIFT}$ |
|  | IF (GATHER .EQ. ' $\mathrm{s}^{\prime}$. OR. GATHER .EQ. ' $\mathrm{s}^{\prime}$ ) $\mathrm{X}(\mathrm{K})=-\mathrm{X}(\mathrm{K})$ IF (KOUNT .EQ. 2) $X(K)=-X(K)$ |
| 340 | continue |
|  | $\mathrm{PHI}=-\mathrm{PHI}$ |
|  | CALL PTJOIN(X, 2, 1, LOOP - 1, 1) |
|  | WRITE (7,*) (LOOP - 1) |
|  | DO $350 \mathrm{~m}=1$, LOOP - 1 |
|  | WRITE (7,*) $\mathrm{T}(\mathrm{M}),-\mathrm{X}(\mathrm{M}), \mathrm{z}(\mathrm{M})$ |
| 350 | CONTINUE $\quad$ : |
| 360 | continue |
| 370 | continue |
|  | if (kount .eq. 1) then |
|  | IF (HSTYPE .EQ. ' $\mathrm{F}^{\prime}$. OR. HSTYPE . EQ. ' $f$ ') THEN |
|  | KOUNT $=2$ |
|  | $\mathrm{PHI}=-\mathrm{PHI1}$ |
|  | GO T0 40 |
|  | END If |
|  | END IF |
|  | Call grend |
|  | END |

## Appendix A. 3 <br> The VSP-CDP transform program <br> XHRMAP

The program XHRMAP takes upgoing or downgoing reflection data and transforms it on to reflection point loci calculated by the program REFLOC. Mapped data are subsequently binned on to a rectangular grid and then plotted.
WRITTEN BY M J FINDLAY 1988
 source/receiver
Option allows
file MUST first run REFLOCI to calculate reflection locus for Program to map XHR reflection data to correct CDP position
DO $80 \mathrm{~J}=1$, NRECS


WRITE $(6, *) \cdot$ Enter source offset:'
$\operatorname{READ}(5, *)$ XOFF


CONTINUE
RMS $=$ RMS $/$ REAL（N1）
RMS $=\operatorname{SRRT}$（RMS）
$240^{1}$ TWFA TTEO TTRMS $=$ SQRT（TTRMS／NRECS $)$
WRITE $(4, *)$ RMS TTERROR $=$, TTRMS

REFMAX $=0.0$
WRITE $(6, *) \cdot$ NTRCEX，NDIMZ． IF（XOFF．EQ．O．O）THEN
WRITE $(6, *)^{\prime}$ True scale plot（Y／N）？＇
$\quad \operatorname{READ}(5,100)$ ANSWR
WRITE $(6, *)^{\prime}$ Enter source offset ：＇
$\quad \operatorname{READ}(5, *)$ XOFF
$\quad$ WRITE $(6, *)^{\prime}$ Enter Maximum depth to be
$\quad \operatorname{READ}(5, \star)$ DMAX （XOFE ．EQ．O．0）THEN
WRITE $(6, *)^{\prime}$ True scale plot（Y／N）？＇
READ $(5,100)$ ANSWR
WRITE $(6, *)^{\prime}$ Enter source offset ：＇
READ $(5, *)$ XOFF
WRITE $(6, *)^{\prime}$ Enter Maximum depth to be
READ $(5, *)$ DMAX WRITE $(6, *)$ ，ENTER
READ $(5, *)$ AMPSCL
WRITE $(6, *)$ Enter READ $(5, \star)$ DELTAZ
WRITE $(6, *)$ Enter $\operatorname{READ}(5, *)$ DELTAD
$\operatorname{NTRCEX}=$ INT（XOFE／DELTAD）+1
WRITE $(6, *)$ NTRCEX
$\operatorname{IF}$

 $\underset{\text { PEAKMX }}{\text { IF }}$ рЕакМX vertical sampling in metres ：＇ $\begin{aligned} \text { PEAKMX } & =0.0 \\ \text { DO } 250 & =1, N 2 \\ \text { RMS } & =0.0\end{aligned}$ $\mathrm{NZO}=\operatorname{INT}(Z 0 / D E L T A Z)+1$
$\mathrm{NZI}=\operatorname{INT}(Z 1 / D E L T A Z)+1$ RITE（ $6, *$ ）＇Enter depth range for RMS calculation ： EQ．1）THEN
IF（ABS（REFL（J，I））．GT．PEAK）PEAK＝ABS（REFL（J，I）
PEAK $=0.0$
DO $240 \mathrm{~J}=\mathrm{NZO}, \mathrm{NZI}$
RMS $=$ RMS $+\operatorname{REFL}(J, I)$

N2


# NDIMZ $=$ INT（DMAX／DELTAZ $)+1$ WRITE $(6, *)$＇NDIMZ $=1$, NDIMZ 

CALL PSPACE（POX，P1X，0．1，0．9）
CALL MAP（0．0，XOFF，DMAX， 0.0 ）
CALL BORDER
 IF（ANSWR ．EQ．＇Y＇．OR．ANS ．EQ．＇Y＇）THEN
DPX $=X O F F / D M A X$
$P 1 X=P O X+0.8 * D P X$ P1X $=0.9$

 NREFL $=N 1 * N 2$
CALL MAXSN（NREFL，
CALL MINSN（NREFL，
REFL $(1,1), 1), ~ R E F M A X, ~ I N D) ~$ $\quad$ RNORM（I）$=$ PEAK
CONTINUE
END IF
NREFL $=$ N1＊N2 DO $270 I=1$, N2
RNORM $(I)=$ PEAK
CONTINUE CALL MINSN（N12，REFL（1，1），PEAKO，IND）
IF（ABS（PEAK0）．GT．PEAK）PEAK $=$ ABS（PEAKO） CALL MAXSN（N12，REFL $(1,1)$, PEAK，IND）
CALL MINSN（N12，REFL $(1,1)$, PEAK0，IND） RNORM（I）$=$ PEAK
CLSENTINUE
ELSE CONTINUE
PEAKMX＝PEAKMX／1．4
SE IF IVALL ．EQ．2）THEN
DO 260 I $=1$, N2
CALL MAXSN（N1，REFI
CALL MINSN（N1，REF
IF（ABS（REAKO）．GT
RNORM（I）＝PEAK
CONTINUE $\underset{\operatorname{RNORM}(I)}{\operatorname{ELSE}}=1.0$ IF（RMS．GT．O．0）PEAK＝PEAK／RMS
IF（PEAK．GT．PEAKMX）PEAKMX $=$ PEAK
IF（RMS．GT． 0.0$)$ THEN
RNORM（I）$=$ RMS

|  |  |  |  | ```zษLTGO (*'5) व甘G%``````NGH4 (B `OJ` SNEI) aI ISTI (f'I)L#CVG = (f'I)TAG% ZWION 'I = I OZv Oa GONILNOS OZQ``````dI aNG NGHL (\tau 'OG• LTIJN) GI LTISN (*'S) GVGM , iN=0 X=[ sevexf xə\supsetneq[T\.(*'9) gilym II aNa (ZYLTEQ 'LYGby 'Ob 'bZOL)Ta&NOS ITHO NOHL (T 'OE' LOTdN) II LOTdN (*'与) वษT% ،2N=0 X={ exzoads zotd.(**9) đ\|IGM GONILNOS GnNIINOS``````ZWION 'I = I OOb OO XZOHLN 'T = & OTD OD (LYGDY 'OSN) OYGZ TTYS Ob * bZOT = JSN z*LTaC (*'g) avey``````OT%``` |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |




# Appendix A. 4 <br> <br> The raytracing program 

 <br> <br> The raytracing program}

## TRACER

The program TRACER carries out two-point raytracing within a velocity model defined at points on a rectangular grid. The algorithm presented by Chang and McMechan (1986) is used. The program traces rays from each source point to each each grid point and then from each receiver point to each grid point, thus providing an image time for all the grid points for each combination of source and receiver positions. The image times can then be used by the reverse-time finite difference migration program.

| program to raytrace through 2-d velocity model to obtain image times for reverse time migration. |
| :---: |
| program tracel |
| Algorithm from Chang \& McMechan (source Lee 6 Stewart) |
| At any point along ray there exist 4 quantities : $x, d x / d s, z, d z / d s$ |
| $x$ \& z are spatial coordinates ds is along ray. |
| These 4 quantities are the initial conditions required to extend the ray by one additional step. |
| Let $\mathrm{U}=1 / \mathrm{V}$ be the slowness; velocity $\mathrm{V}(\mathrm{x}, \mathrm{z})$ |
| Define $U_{x}=\mathrm{dU} / \mathrm{dx} \quad \mathrm{Uz}^{2}=\mathrm{du} / \mathrm{dz}$ |
| Rewrite ray equation as: $\mathrm{dwl}^{\text {/ }} \mathrm{ds}=\mathrm{w} 2$ |
| $\mathrm{dW} 2 / \mathrm{ds}=\mathrm{V}^{*}\left(\mathrm{Ux}_{\mathrm{x}}-\mathrm{G} * \mathrm{~W} 2\right)$ |
|  |
| $\mathrm{W} 1=\mathrm{x}, \mathrm{W} 2=\mathrm{dx} / \mathrm{dss}, \mathrm{W} 3=\mathrm{z}, \mathrm{W} 4=\mathrm{dz} / \mathrm{ds}, \mathrm{G}=\mathrm{Ux} * \mathrm{~W} 2+\mathrm{Uz} * \mathrm{~W} 4$ |
| Solve for w1, $22, \mathrm{w} 3$, W 4 by 4 th order Runge-Kutta algorithm |
| Travel time for a ray is calculated by |
| SIgMA ( ds |
| 1 ( ----) where Vi is the average velocity on the ith |
| ( $\mathrm{vi}^{\text {: ) }}$ ( segment |
| PARAMETER ( $\mathrm{N} 1=64, \mathrm{~N} 2=90, \mathrm{~N} 3=128, \mathrm{~N} 4=180, \mathrm{NVAR}=4, \mathrm{PI}=3.1415926535$ ) |
| DOUBLE PRECISION $T$, Y(4), X, H, W(4,7), X0, z0, XOMIN, XOMAX |
| DOUBLE PRECISION ZOMIN, ZOMAX, V (N1,N2), v0, UXO, UZO |
| DOUBLE PRECTSION HO, xS (24), $2 \mathrm{~S}(24)$, SMOTH1, SMOTH2 |
| DOUBLE PRECISION XVAL (50000), $\operatorname{zVAL}(50000)$, TVAL (50000) |
| double precision lambda (104), MU(104), FF (N3*N4), w1 (50000) |
| DOUBLE PRECISION SIGMA, CO(5000), CT(5000), FVAL (50000) |
| DOUBLE PRECTSION XVALO (N3*N4), ZVALO (N3*N4) |
| double prectsion xpt (1), zpt (1), Val 1 ) |
| DOUBLE PRECISION XAXIS (N3), ZAXIS (N4), WRK(250000), SMOOTH |
| REAL XCOORD (10000), $\mathrm{zCOORD}(10000), \mathrm{FF} 1$ (N3, N4), CLEVL (15) |
| INTEGER IW2, ADRES (N3*N4) , PX, PZ |
| INTEGER VPOINT (51000), IWRK (50000) |
| CHARACTER*1 START |
| external fin |
| COMmon /data/ vo, uxo, uzo |
| IW2 $=6$ |
| WRITE ( $6, *$ ) 'NUMBER OF SOURCES :' |
| READ ( $5, *$ ) NSOURC |
| DO 10 NS = 1, NSOURC |
| WRITE ( $6, *$ ) 'enter Source POSITION ( $\mathrm{x}, \mathrm{z}$ ) in metres :' |
| READ ( $5, *$ ) $\mathrm{xS}(\mathrm{NS}), \mathrm{zS}(\mathrm{NS})$ |
| 0 continue |
| WRITE (6,*)'******* SOURCE :', xS (1), zS (1), , *****' |
| WRITE (6,*)'ENTER XMIN, XMAX , zMIN, zMAX :' |
| READ ( $5, *$ ) XMIN, XMAX, zMIN, zMAX |
| WRITE ( $6, *$ ) 'Enter velocity grid spacing in metres:' |
| $\operatorname{READ}(5, *)$ H0 |
| WRITE ( $6, *$ ) ${ }^{\text {eNTER }}$ image time grid spacing in metres:' |
| READ ( $5, *$ ) HOTM |

 eozdcf-nag gives least square bicubic spline fit to surface TIUSI ', = IIVAI, (*'g) GLIEM






 WRITE $(6, \star)$ ' ENTER VELOCITY OF MEDIUM ', NL, ' (metres / s
$\operatorname{READ}(5, \star) \mathrm{VL}$ CALL ZERO (40, LAMBDA)
DO $30 \mathrm{NL}=1$, NLAYER
 NANG $=$ NANG + NRAYFN
 WRITE ( $6, \star$ )'Enter stepping interval increase (times) :'
READ $(5, \star)$ ANGFAC IF (ABS (FINANG) .LT. PI/2.) THEN DANG $=$ PI $/$ REAL (NANG)
WRITE $(6, \star)$ 'Enter fine stepping angle (radians) :'
READ $(5, \star)$ FINANG READ $(5, *)$ H
WRITE $(6, *)$ 'ENTER NUMBER OF RAYS TO BE TRACED :'
READ $(5, *)$ NANG WRITE $(6, \star)$ ) ENTER RAY STEP LENGTH IN METRES :'
READ $(5, *) \mathrm{H}$ STOP
END IF
WRITE $(6$
WRITE $(6, *)$, $\begin{gathered}\text { *** WARNING --- ARRAYS TOO SMALL } * * * ~\end{gathered}$ NZIM $=$ INT ((ZMAX - ZMIN)/HOIM)
IF (NX .GT. N1 .OR. NZ.GT. N2) NXIM $\operatorname{a}$ INT ((XMAX - XMI)/HOI
N2 INT ( $(Z M A X ~-~ Z M I N) / H O) ~$ NX $=$ INT ( (XMAX - XMIN)/HO)
NXIM - INT ((XMAX - XMIN)/HOIM) READ (5, *) SMOTH1, SMOTH2 READ (5,*) DT
DT = DT * $1 . E-3$
WRITE $(6, *)$ 'Ent WRITE WRITE (6,*)'Ent )'Enter DT in millisecs for SMOOTH estimation
 NOW BEGIN RAYTRACING FROM SOURCE
SCA $=(Z M A X-$ ZMIN $) /(X M A X-X M E N$
$I F(S C A . L T .1 .0)$ THEN WRITE $(6, *)$ 'IFAIL $=\prime$, IFAIL
NOW BEGIN RAYTRACING FROM SOURCE WRITE (12,*) I, LAMBDA(I), MU(I)
0 CONTINUE
IFAIL $=0$

 CALL EO2DCF (START, NX, XAXIS, NZ, ZAXIS, FVAL, SMOOTH, NXEST,
NZEST, NKNOTX, LAMBDA, NKNOTZ, MU, CO, SIGMA, WRK, LWRK, $(6, \star$ ) 'NX, NZ, NXEST, NZEST, LWRK, LIWRK', NX, NZ, NXEST, NZEST,
LWRK, LIWRK
EO2DCF (START, NX, XAXIS, NZ, ZAXIS, FVAL, SMOOTH, NXEST, XAXIS (IX)
60 CONTINUE

DO 60 IX $=1, N X$ $\begin{aligned} & \text { ZAXIS (IZ) } \\ & 50 \text { CONTINUE }\end{aligned}=\operatorname{REAL}(I Z) *$ HO

CONTINUE
DO 50 IZ $=1$, N 2
ICOUNT $=$ ICOUNT +1
FVAL $(I C O U N T)=V(I X, I Z)$
ICOUNT $=0$
DO 40 IX $=1, N X$
DO $40 I Z=1, N Z$
ARRAY FVAL SHOULD CONTAIN VALUES S.T. $F(N Z \star(Q-1)+R)$
contains grid point $(X(Q), Z(R))$ NKNOTX $=8$
NKNOTZ $=8$. IFAIL $=0$
START $={ }^{\prime} C^{\prime}$
NKNOTX $=8$ LIWRK $=$ LIWRK * 2
IFAIL $=0$
START $=$ ' C,

LIWRK $=3+N X+N Z+N X E S T+N Z E S T$
 SMOOTH $=$ SMOTH1
NXEST $=50$

EVAL(ICONTO) IS GRID POINT VALUE
CO (NC) COEFFICIENTS OF FIT CO((PY-4) * (I-1) + J) IS C(I,J)
SMOOTH SmOothing factor for spline accuracy (ISAL

CALL EO2DBF(N, NKNOTX, NKNOTZ, XPT, ZPT, VAL, LAMBDA, MU,
VPOINT, NPOINT, CO, NC, IFAIL)
UZO $=$ VAL (1)
IFAIL $=0$ CALL EO2dbe (n, nKnotx, nknotz, xpt, zpt, val, lambda, mu, $N=1$
CALL EO2ZAF (NKNOTX, NKNOTZ, LAMBDA, MU, N, XPT, $\quad$ 2PT, VPOINT,
NPOTNT, ADRES, NADRES, IFATL)
IFAIL $=0$
$N=1$ $\operatorname{ZPT}(1)=\mathrm{MU}(4)$
$\mathrm{DELTAZ}=\mathrm{HO} / 5$.
END IF $\operatorname{TF}(\operatorname{ZPT}(1) . \operatorname{LT} . \operatorname{MU}(4)) \operatorname{THEN}$
$\operatorname{ZPT}(1)=\operatorname{MU}(4)$ $\operatorname{ZPT}(1)=Y(3)-$ HO $/ 5$.
DELTAZ $=$ HO $* 2 . / 5$.
 VXO $=($ VAL (1) - UXO) / (DELTAX)
UXO $=-$ VXO $/$ VO ** 2
IFAIL $=0$ VPOINT, NPOINT, CO, NC, IFATL)
VX0 $=($ VAL (1) $-U \times 0) /$ (DELTAK)
CALL EO2DBF ( N , NKNOTX, NKNOTZ, XPT, ZPT, VAL, LAMBDA, MU, CALL EO2ZAF (NKNOTX, NKNOTZ, LAMBDA, MU, N, XPT, ZPT, VPOINT,
NPOINT, ADRES, NADRES, IFALL)
IFALL $=0$
$\mathrm{~N}=1$ $\operatorname{XPT}(1)=$ LAMBDA (NKNOTX -3$)$
DELTAX $=$ HO $/ 5$.
END TF
$\mathrm{N}=1$
 $\operatorname{XPT}(1)=\operatorname{XPT}(1)+\operatorname{DELTAX}$
$\operatorname{IF}(\operatorname{XPT}(1) \quad$ GT. LAMBDA(NKNOTX - 3$)$ THEN UPOINT, NPOINT, CO, NC, IFAIL)
TFAIL $=0$
CALL EO2DBE (N, NKNOTX, NKNOTZ, XPT, ZPT, VAL, LAMBDA, MU,
VFOINT, NPOINT, CO, NC, IFAIL) CALL EO2ZAF (NKNOTX, NKNOT2, LAMBDA, MU, N, XPT, 2PT, VPOINT,
NPOTNT, ADRES, NADRES, IFAIL)
IFAIL $=0$ $\operatorname{XPT}(1)=$ LAMBDA (4)
DELTAX $=\mathrm{HO} / 5$.
END IF $\operatorname{IF}(\operatorname{XPT}(1)$. LT. LAMBDA (4)) THEN $\operatorname{XPT}(1)=\operatorname{XPT}(1)-\mathrm{H} 0 / 5$.
DELTAX $=$ HO ${ }^{*} .4$ WRITE ( $6, *$ )'XPT, $2 \mathrm{PT}=$ ', XPT, 2 PPT
END IF
IEAIL $=0$ if (VO .lt. 1.0) then $\mathrm{VO}=\operatorname{VPOINT}, \mathrm{NPOINT}, \mathrm{CO}, \mathrm{NC}$, IFAIL) CALL EO2DBF (N, NKNOTX, NKNOTZ, XPT, NPOINT, ADRES, NADRES, IFATL)
IFALL $=0$

 $=$ MU (nKNOTZ -3$)$
$\mathrm{N}, \mathrm{XPT}, \mathrm{ZPT}$, VPOINT


## Appendix A. 5

## The raytracing subroutine

## RAYTRA

The subroutine RAYTRA is another two-point raytracing program. It uses a simple, laterally invariant velocity model, resulting in very fast raytracing. The subroutine is called from the Kirchhoff migration program in appendix A. 8 and returns the travel time between any two points in the velocity model.

 3SIA




 CId $=0$ OVLGHL

## IF (THETAP .LT. 2.*PI) THEN THETAO $=$ THETAP

 ) GRNIINOD OS IF 2 ZSTART = 2START - DZGRID / 100 THEN
(ZEND
$\begin{aligned} & \text { ELSE } \\ & \text { ZSTART }=\text { ZSTART }+ \text { D2GRID / } 100 . \\ & \text { LAYIMG }=\text { LAYIMG }+1 \\ & \text { END IF }\end{aligned}$
END $\begin{aligned} & \text { END IF } \\ & \text { IF }\end{aligned}$

> END IF IF (ABS (DEPTH (LAYSOR + 1) - ZEND) .LT. DZGRID/100.) THEN IF (ZEND . LT. 2START) THEN ZEND $=$ ZEND + DZGRID $/ 100$. ELSE ZEND $=$ ZEND + DZGRID / 100. LAYSOR $=$ LAYSOR +1



TAUO $=$ travel time
NLAMAX = total no. of layers there are (NLAMAX +1 ) depths
DZGRID $=$ Vertical grid size used by migration algorithm
MAXLOP = Maximum no. of searches for raypath
TAUQ $=$ travel time
NLAMAX $=$ total no. of layers there are (NLAMAX +1 ) depths
DZGRID $=$ Vertical grid size used by migration algorithm
MAXLOP $=$ Maximum no. of searches for raypath THETAO $=$ takeoff angle
THETAL $=$ Raypath angle at (XEND, 2END)
TAUO $=$ travel time

LAYIMG $=$ layer of starting point
THETAO $=$ takeoff angle ( $-\mathrm{pi} / 2-->$ 3pi/2) 0.0 ohorizontal to right
DEPTH(layer top), VV(layer), VH (layer)
Variables: ACC defines raytracing accuracy in metres
LAYIMG a layer of starting point
SUBROUTINE TO RAYTRACE FROM POINT (XSTART, ZSTART) TO (XEND, ZEND)
IN 2-DIMENSIONAL VELOCITY FIELD DEFINED BY :
SUBROUTINE TO RAYTRACE FROM POINT (XSTART, ZSTART) TO (XEND, ZEND)

DEPTH (layer top), VV(layer), Vh (layer)


SUBROUTINE RAYTRA (NLAMAX, NDEPTH, DEPTH, VH, VV, XSTART, ZSTART,
1 XEND, ZEND, DZGRID, ACC, MAXLOR, THETAP, THETAO, TAUO,
$2 \quad$ THETAL, NRAY)
REAL DEPTH (NDEPTH), VH (NLAMAX), VV (NLAMAX), XINTS (31), DIST(31)
REAL TIME(31), THET(31)
DOUBLE PRECISION TEMA, TEMB, TEMC, TEMCC, TEMD, TEME, TEMDD $\mathrm{PI}=3.1415926535$

$$
\text { Written by M J Findlay } 1990
$$

No lateral velocity variation
Written by M J Findlay 1990
CHECK FOR ZERO - LENGTH RAYPATH
IF (XSTART .EQ. XEND . AND. 2START .EQ. 2END) THEN

$$
\begin{aligned}
& \text { TAUO }=0.0 \\
& \text { GO TO } 150 \\
& \text { END IF }
\end{aligned}
$$

DETERMINE TMAGE POINT LAYER
a
END IF
THETA $=$ THETAO
GO TO 150
END IF
2INTB $=1 E 9$
2INTT $=-1 E 9$
DTHETA $=0.05$
TAUO $=0.0$
 TAUO $=$ TAUO + TO
CONTINUE
TAUO $=$ DO $/$ VV(LAYIMG)
DO 70 NL $=$ LAYIMG -1, LAYSOR $+1,-1$

c GO BACK to main prog
set thetal to final ray angle at XEND, ZEND c start raytracing to receivers
150 Confinue C NEXT RAY TO THIS SOURCE $130 \quad$ CONTINUE ELSE
Theta2 $=$ THETA2 - PI2
END
THETA $=$ THETA2 ELSE IF (THETA. GT. 0.0 ) THEN
THETA2 $=$ PI2 - THETA2 THETA2 $=3 *$ PI2 - THETA2
ELSE IF (THETA. GT. PI $/ 2$ ) THEN
THETA2 $=$ PI2 + THETA2
 $N+$

> ARPLY SNELL'S LAW
120 c else ThETAO = THETAO - DTHETA

## Appendix A. 6

## The finite-difference migration program EXTRAPREV

The program EXTRAPREV carries out finite-difference migration in the ( $x, z, t$ ) domain. A file of imaging times generated for each grid point by raytracing is attached to unit 11 at run time. The wavefield may be plotted at particular time steps as it regresses from the receivers, and the final migrated section is plotted.


 YอIHLN + HLagai $=$ HLagais

 WRITE $(6, *)$ 'ENTER THICKNESS OF LAYER ', NL, ' (metres)
READ $(5, *)$ THICK




 Continue CALL FORK (LXOO CX, ${ }^{-1.0)}$
DO 240 II $=$ LXO $/ 2^{2}+2$, LX1 $\begin{gathered}\text { CXIII } \\ \text { CONTINUE }\end{gathered}=$ CMPLX (RAMPO*FAC)
 DO 230 II CX(II) $=$ CMPLX (TRACES (II, JJ) , 0.0 ) RALL ZERO TRACES (NSAMPT, JJ)
 CALL POWER2 (NSAMFT, LX0) IF (NPONER ERE. 0$)$ G0 TO 280
NSAMFT $=$ NSTART READ $(6, \star)$ 'INTERPOLATE TEMPORALLY (ENTER POWER OF 2 ):'
WRITE $(5, \star)$ NPOWER
READ
RNP $=$ REAL ( $2 \star \star$ NPOWER) WRITE $(6, *)$ 'Enter first time sample to start from :'
READ $(5, *)$ NSTART
WRITE $(6, *)$ 'INTERPOLATE TEMPORALLY (ENTER POWER OF 2 ): 210 FORMAT ( 5 (I $13,2 \mathrm{X}, \mathrm{I} 3,1 \mathrm{IX}, \mathrm{I} 3,4 \mathrm{XX})$ ) (II), II=1, NSOR) (II) SXI $=$ XVWSXI (XYWSXI •LO' (II) SXI) SI (H/(II) SYOOZ) LNIN $=(\mathrm{II})$ SZI
(H/(II) S\&OOX)UNIN $=(I I) S X I$ DO 200 II = WRITE $(6, *) \prime$ NSOR $=', ~ N S O R ~$
IXSMAX $=0$ 190 FORMAT (A17) HSOR $=2 * *$ NPOWER * NSOR - $(2 *$ NPONER -1$)$ $\operatorname{XCORS}(I I)=\operatorname{XPRIME}(I I)$
$\operatorname{zCORS}(I I)=$ ZPRIME(II) DO 170 IR $=1$, NFNAL $\underset{\text { CONTINUE }}{\operatorname{ZPRTME}(I I)}=\mathrm{C}(\mathrm{N} 2)$ $\operatorname{CALL} \operatorname{E01AAF}(\mathrm{X}, \mathrm{z1}, \mathrm{c}, \mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 0, \mathrm{XEVAL})$
ZPRIME (II) $=\mathrm{C}(\mathrm{N} 2)$ $\begin{aligned} \text { PPRIME (II) } & =C(\text { N NSOR } \\ \text { DO } 150 \text { III } & =1, \\ X(I I I) & =\text { DBLE(III) }\end{aligned}$ $\operatorname{CALL} \operatorname{EO1AAF}(\mathrm{X}, \mathrm{X} 1, c, N 1, \mathrm{~N} 2, \mathrm{~N} 0, \mathrm{XEVAL})$
$\mathrm{XPRIME}(I I)=\mathrm{C}(\mathrm{N} 2)$ $\begin{aligned} & \text { CONTINUE } \\ & \text { XEVAL }\end{aligned}=\mathrm{x}(1)+$ DBLE $(D X I N T L *(I I-1))$ $\stackrel{\rightharpoonup}{\circ}$

○○ 0 NOW DO INTERPOLATION OF COORDINATE VALUES
DXINTF $=1.0$
DXINTL $=$ DXINTF $/$ (RNP) DXINTL $=$ DXINTF $/$ (RNP)
NFINAL $=$ NSOR $* 2 * *$ NPOWER $-(2 \star$ NPOWER -1$)$ CONTINUE
continue

DO 120 II $=1$, NSAMIT - 1
TRACES (JJ, II) $=\operatorname{REAL}(C X(I I)) * \operatorname{SQRT}(R N P)$ DO 110 II $=\operatorname{LX1,} \operatorname{LXI} / 2+2,-1$
CX(II) $=$ CONJG(CX(LX1 $+2-\mathrm{II}))$
CONTINUE
CALL FORK (LX1, CX, 1.0$)$
DO 120 II $=1$, NSAMIT $\begin{aligned} 110 \text { II } & =\operatorname{LX1}, \operatorname{LXI} / 2+2,-1 \\ \mathrm{CX}(\mathrm{II}) & =\operatorname{CONJG}(\mathrm{CX}(\mathrm{LX} 1+2-\mathrm{II}))\end{aligned}$


 $\begin{aligned} \text { XWWZI } & =Z I \\ I & =X I\end{aligned}$


 $\left(Z I^{\prime} X I\right) \Lambda=H S H G \Lambda$
$X V W Z I=Z I$

 $I X=1$
IZ $=I 2 M A X-1$
VDASH $=V(I X, I Z)$ lower left hand corner $\mathrm{U}(\mathrm{IX}, \mathrm{IL}, \mathrm{ITO})=($ TERM + TERM2 $) /(2 . / \mathrm{H}+\operatorname{SQRT}(2) /.($ VDASH*DT $))$
 IX $=$ IXMAX
IZ $=1$
DDASH $=V(I X$
$\mathrm{U}(\mathrm{IX}, \mathrm{IZ}$, TTO $)=($ TERM1 + TERM2 $) /(2 . / \mathrm{H}+\operatorname{SQRT}(2) /.($ VDASH*DT) $)$
 $\begin{aligned} & \text { II } \Lambda=H S U C \Lambda \\ & z=Z I \\ & X X W X I=X I\end{aligned}$ $\mathrm{XZWXI}=\mathrm{XI}$

 $(Z I \times X I) \Lambda=H S Y Z \Lambda$
$\tau=X I$
$I-X V N X I=X I$


$\begin{aligned} & \text { XWWXI＇} \tau=I \text { OEG OQ } \\ & 0.0=X \forall W d W Y\end{aligned}$

$\begin{array}{lll}\text { N } & \text { N } & \text { N } \\ 0 & \text { n } & 0 \\ 0 & 0 & 0\end{array}$
 CALL PTJOIN（RPLOT，z，1，IZMAX，1）
CONTINE
CALI FRAME
NPLOT $=$ NPLOT +1 （I＇x甘WZI＇I＇ 2 ‘LOTad）NIORLa TTV
 ZMAX $=($（REAL（IZMA $M A+1) *$.
RATIO $=$ XMAX $/$ ZMAX CALL PLOTNI $(0.7,0.3, \operatorname{NSCALE})$
XMAX $=($ REAL $($ IXMAX $)+1) *$. CALL PCSCEN $10.5,0.4$, SCALE＇）
NSCALE $=$ NINT（2000／AMPMAX）
CALL PLOTNI（ $0.7,0.3$, NSCALE） CALL PCSCEN $(0.5,0.7$, Index＇）
CALL PLOTNI $0.7,0.6$, IT $)$
CALL PCSCEN $(0.5$,
O． $\begin{array}{lll}\text { CALL PCSCEN }(0.5, & 0.8, & \text {＇Time＇）} \\ \text { CALL PCSCEN }(0.5, & 0.7, \text { Index＇）}\end{array}$ CALL DEFPEN
CALL PSPACE $(0.91,0.99,0.65,0.90)$
CALL MAP（ $0.0,1.0,0.0,1.0)$
CALL BORDER IF（AMPMAX ．EQ． 0.0 ）AMPMAX $=1.0$ Continue


[^0]


# Appendix A. 7 <br> The forward modelling program EXTRAP 

The program EXTRAP is a forward modelling finite-difference program which generates synthetic seismograms for a given velocity model and source and receiver geometry. A tapered zero-phase wavelet is used as the source function and the wavefield may be plotted as it expands in time. The final seismograms recorded at the receiver positions are also plotted.

C HIGH CUT WRITE $(6, \star)$ 'Enter low-cut, slope, high-cut, slope
READ $(5, \star)$ BUT1, BUT2, BUT3, BUT4 WRITE $(6, *)$ 'ENTER SOURCE POSN $(x, z)$ GRIDPOINT NOMBERS'
READ $(5, \star)$ IXO, IZO
WRITE $(6, *)$ 'SOURCE IS ZERO PHASE BUTTERWORTH FNCTN
WRITE $(6, *)$ 'Enter low-cut, slope, high-cut, slope. $\mathrm{NF}=\mathrm{NT} / 2$
$\mathrm{DF}=\mathrm{FNYQ}$
$\mathrm{WRITE}(6, *)$

 READ $(5$,
WRITE $(6)$ WRITE $(6, \star)$ 'ENTER GRID POINT SPACING (METRES):'
READ $(5, \star) \mathrm{H}$
WRITE $(6, \star)$ ENTER MAXIMUM GRID VALUES IN $X \& z(<128):$, C THIS ZEROS ARRAY $U(X, Z, T=0,1,2)$ $\left.\begin{array}{l}\text { NSAMT }=\text { NSAMS } \\ \text { CALL } 2 E R O(N S A M T, ~\end{array}(1,1,1)\right)$ NSAMS $=128 *{ }^{128}$
NSAMT $=$ NSAMS $* 6$ CHARACTER*10 OPFILE, IPFILE, IFNAM1, IFNAM2
ITO $=3$ INTEGER NMOV(20), IXR(40), IZR(40)
CHARACTER*10 OPFILE, IPFILE, IFNAM1 REAL BUT1, BUT2, BUT3, BUT4, Vinl(5), WIDTH(5)
COMPLEX CBUTT(1024) REAL SEIS $(1024,40), \operatorname{TT}(1024)$, AMPMAX, XMAX, ZMAX, AMPSCL, RREC
REAL UR4 $(128,128), \operatorname{RPLOT}(1024), \mathrm{Z}(128), \operatorname{BUTT}(1024), \operatorname{BUTT} 2(1024)$
1 RNL, TMAX DOUBLE PRECISION $\mathrm{U}(128,128,3)$, TERM1, TERM2, TERM3, A,
1 SORSIG(1024), V(128,128)
REAL SEIS $(1024,40), \operatorname{TT}(1024)$, AMPMAX, XMAX, ZMAX, AMPSCL, RREC

SOURCE FUNCTION IS zERO-phase butterworth wavelet $\begin{array}{ll}(21 \mathrm{PI} / 64,-15 \mathrm{PI} / 64) & \text { L2 } \\ (10 / 3 \mathrm{PI},-8 / 3 P \mathrm{I}) & \text { CHEBYCHEV-PADE }\end{array}$ $(1,-.5)$
$(3 \mathrm{G}-2 \mathrm{G} \star * 3,-2 \mathrm{G}) \mathrm{G}=\mathrm{SIN}(\mathrm{PI} / 8)$
$(21 \mathrm{PI} / 64,-15 \mathrm{PI} / 64)$ VALUES OF PO \& P2 (RENAUT\&PETERSEN GEOPHYSICS 1989)
$(1,-5)$
PADE ABSORBING BOUNDARY CONDITIONS
VALUES OF PO \& P2 (RENAUT\&PETE IMPLICIT DOUBLE PRECISION (A - H, O-z)
PARAMETER (PI $=3.14159265358$, POLO $=1.0$, POL $2=-.5$ ) WRITTEN BY M.J. FINDLLAY
PROGRAM EXTRAP
IMPIICIT DOUBLE PRECISION WRITTEN BY M.J. FINDLAY 1989 TO ACOUSTIC WAVE EQUATION
SYNTHETIC SEISMOGRAM GENERATION SUPPORTED
ALGORITHM TAKEN FROM MCMECHAN (GEOPHYSICS V50 P627-636) PROGRAM TO CARRY OUT WAVEFIELD EXTRAPOLATION BY FINITE DIFFERENCE APPROXN


 $0.0=$ (I) Jinngo DO $70 \mathrm{I}=$ NTAPO +2 , NT - NTAPO - 1 $\begin{aligned} \operatorname{CBUTT}(I+1) & =\operatorname{CBUTT}(I+1) \star \text { FACTOR } \\ 60 \operatorname{CONTINUE}(N T-I) & =\operatorname{CBUTT}(N T-I) \star \text { FACTOR }\end{aligned}$
 DO $60 I=$ NTAP1, NTAPO

 c APPLY TAPER CALL FORK(NT, CBUTT, 1.) $\operatorname{CBUTT}(I)$
$50 \operatorname{CONTINUE}$ $\operatorname{CMPLX}(\operatorname{BUTT}(I), 0.0$ ISAM $=$ ISAM +1
40 CONTINUE
DO $50 \mathrm{I}=1, \mathrm{NT}$
 RANSFORM TO TIME DOMAIN
ISAM $=2$
DO $40 I=N T, N T / 2+$ 20 CONTINUE
 BUTT2 $(1)=0.0$
DO $20 \mathrm{~J}=2, \mathrm{NT} / 2+1$
 $\left.\left(0^{\circ} \mathrm{T}-((1 \cdot O T / Z L \cap G) * * \cdot O T) * \cdot z\right)\right)$ OTSOT* $=$ TN甘 10 CONTINUE
LOW CUT
$\mathrm{RFR}=\mathrm{DF} * \operatorname{REAL}(\mathrm{~J}-1)$
$\operatorname{TEM}=1 . /(1 .+(\operatorname{RFR} / \mathrm{BUT} 3) \star *(2 . * \mathrm{RNL})))$
$\operatorname{BUTT}(\mathrm{J})=\operatorname{SRRT}(\mathrm{TEM})$

$\stackrel{\omega}{\stackrel{\omega}{\circ}}$

ALPHA $=$ TERM1 $+A * * 2 *(16 \star$ TERM2 - TERM3 $) / 12$. TERM3 $=$ TERM3 $+U(I X, I 2-2$, ITO -1$)$ TERM $3=U(I X+2, I Z, I T O-1)+U(I X, I Z+2, I T O$
$1)+U(I X-2, I Z, I T O-1)$
IF (IZ.GT. 2) THEN IF (IZ .GT. 1) TERM2 $=$ TERM2 $+U(I X, I Z-1$, ITO
1)
TERM $3=U(I X+2$ IZ TERM1 $=\left(2 .-5, \star A^{\star \star} 2\right) \star \mathrm{U}(\mathrm{IX}, \mathrm{IZ}, \mathrm{ITO}-1)$
TERM2 $=\mathrm{U}(\mathrm{IX}+1, I Z, I T 0-1)+\mathrm{U}(\mathrm{IX}, \mathrm{IZ}+1, \mathrm{ITO}$
$1)+\mathrm{U}(\mathrm{IX}-1, I Z, I T 0-1)$ TERM3 $=$ TERM3 $*$ A ** 2
U(IX, IZ, ITO $)=$ TERM1 - TERM2 + TERM 3
ELSE
 000

UINIT $=($ TERM $1+$ TERM2 + TERM 3$) /(A+$ POLO
U(IX,IZ,ITO) $=$ UINIT $-U(I X, I Z-1, I T O-2)$
CONTINUE

○○


TERM2 $=U(I X, I Z, I T 0-2)$
TERM $3=U(I X+1, I Z, I T 0-1)+U(I X-1, I Z, I T O-$
$1)+U(I X, I Z+1, I T O-1)$ TERM1 $=2 \star(1-2 \star A \star \star 2) \star U(I X, I Z, I T O-1)$
TERM2 $=U(I X, I Z, I T 0-2)$ NORD .EQ. 2 .OR. IX .EQ. 2 .OR. IZ .LE. 1 .OR.
IX .EQ. IXMAX - 1 .OR. IZ .EQ. IZMAX -11
THEN
$70 I X=2, I X M A X-1$
$A=(V(I X, I Z) \star D T / H)$
$I F$ (NORD.EQ. $2 . O R$.
DO

-

REE SURFACE BY MAKING $U(I X, z=0)=0.0$ ????
1
2
保
$A=(V(I X O, I Z O) * D T / H)$
$I F(D T . G E E . H /(S Q R T(2) * V.(I X O, I Z O)))$ THEN


 $\Lambda=H S \forall Q \Lambda$
$Z=Z I$
$X W W X I=X I$

 $\left(Z I{ }^{\prime} X I\right) \Lambda=H S 甘 O A$
$\tau=Z I$ $I X=I X M A X-1$
$I Z=1$ TERM2 $=(U(I X, I Z, I T O-1)) * \operatorname{SQRT}(2) /.(V D A S H * D T)$
$U(I X, I Z, I T 0)=(T E R M 1+\operatorname{TERM} 2) /(2 . / \mathrm{H}+\operatorname{SQRT}(2) /.($ VDASH＊DT）$)$
UPPER RIGHT HAND CORNER
 VDASH $=V(I X, I Z)$
VIZ $I X=I X M A X$
$I Z=I Z M A X$
 TERM1 $=(U(I X, I 2-1$, TTO $)+U(I X-1, I 2$, ITO $) / H$
TERM2 $=(U(I X, I Z$, ITO -1$)) * \operatorname{SQRT}(2) /.($ VDASH＊DT $)$ $I Z=\operatorname{IZMAX}-1$
vDASH $=V(I X, I Z)$ $I X=$ IXMAX
$I Z=I Z M A X-$

 $\mathrm{IZ}=\mathrm{IZMAX}$
VDASH $=\mathrm{V}(\mathrm{IX}, \mathrm{I} 2)$ $I X=$ IXMAX -1
IZ $=I Z M A X$
VDASH $=V(I X, I$ LOWER RIGHT HAND CORNER
のロのロ
> $\underset{\text { CONTINUE }}{\text { U（IX，I2，ITO）}}=0.0$ $\mathrm{U}(\mathrm{IX}, \mathrm{IZ}, \mathrm{ITO})=\mathrm{UINIT}-\mathrm{U}(\mathrm{IX}-1, I Z, \mathrm{IT} 0-2)$
$\mathrm{IF}(\mathrm{ABS}(\mathrm{U}(\mathrm{IX}, \mathrm{IZ}, \mathrm{ITO})) * \mathrm{TMEIT}$ ．LT．A0＊TREF／CUTO） UINIT $=($ TERM1 + TERM2 + TERM 3$) /($ POLO $0+$ A） IX -1, I2 +1, TTO $+U($ IX -1, IZ -1, ITO $)$
TERM $=-$ TERM $3 * A * * *$ POL2 TERM2 $=U(I X-1, I Z$, ITO $)+U(I X, I Z, I T O-2)$
TERM2 $=$ TEM2 $*(A-$ POLO $+2 *$ POL $2 * A * * 2)$
TERM $=U(I X, I Z+1$, ITO -2$)+U(I X, I Z-1$, ITO IX $=$ IXMAX
$A=V(I X I Z) * D T / H$
TERM1 $=U(I X, I Z, I T O-1)+U(I X-1, I 2, I T O-1)$
TERM1 $=$ TERM1 $* 2.0 *$ POOO
TERM2 $=U(I X-1, I 2$, ITO $+U(I X, I 2, I T O-2)$ IX $=\operatorname{IXMAX}$
$A=V(I X, I Z) * D T / H$
TERM1 $=U(I X, I Z, I T O-1)+U(I X-1, I 2, I T O-1)$

now make bottom corners absorbing too
$\square$
$320^{1}$

1


# Appendix A. 8 <br> The migration program <br> <br> KIRCHMIG 

 <br> <br> KIRCHMIG}

The program KIRCHMIG carries out Kirchhoff-type migrations by raytracing from each image point to each source and receiver using the subroutine RAYTRA (appendix A.5). The image time calculated for each source receiver pairing is then used to extract the contribution to the image from the appropriate sample in the seismic data. The migrated image is then output to a file for later viewing. The program include several processing options such as the choice of migration operator and the range of reflector dips allowed.

| $\begin{aligned} & \text { C . Program to do Kirchhoff migration using RAYTRA anisotropic } \\ & \text { C. } \end{aligned}$ |  |  | WRITE (6,*)'ENTER RAYTRACING ACCURACY IN METRES :' READ (5,*) ACC |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| c |  | WRITE $(6, *)$ 'Enter no. of angles to try for each raypath :' READ (5,*) MAXLOP |  |
| c | Allows general sourcesreceiver positions |  |  |  |
| C | Options of different diffraction stacks: Diffraction stack, | WRITE ( $6, *$ )'ENTER GRID POINT SPACINGS ( $\mathrm{DX}, \mathrm{DZ}$ ) : ${ }^{\prime}$ |  |
| c | Kirchhoff, | READ ( $5, *$ ) DXGRID, DZGRID |  |
| c | GRT | WRITE ( $6, *$ )'ENTER MINIMUM AND MAXIMUM X -VALUES :'READ $(5, *)$ XMIN, XMAX |  |
| c | Selective raypath muting for shallow-dipping rays, and geological |  |  |  |
| C | dip range | READ (5,*) XIMO, XIM1, ZIMO, ZIM1 |  |
| c |  |  |  |  |
| c | Needs subroutine RAYTRA for raytracing | $N X=\operatorname{INT}(($ XMAX - XMIN) /DXGRID) +1 |  |
| c | subroutine library TSAR4_L (Time series analysis -- Robinson, |  | N2 = INT (DEPTH (NDEPTH)/D2GRID) - 1 |
| C | Claerbout et al.) | C |  |
| c |  | C SET UP SOURCE AND RECEIVER COORDINATES |  |
| c |  |  |  |
|  | PROGRAM KIRCH |  |  |  |
| c |  | READ ( $5, *$ ) NSOR |  |
| c | DEPTH (ilay) = depth to top of layer ilay | DO $30 \mathrm{~J}=1$, NSOR |  |
| C | $\mathrm{VH}(\mathrm{ilay})=$ horizontal velocity in layer ilay |  |  |
|  | $\mathrm{VV}(11 \mathrm{ay})=$ vertical velocity in layer ilay |  |  |  |
| c | (XSOR(isor), 2 SOR(isor) ) = coordinates of source isor | 30 CONTINUE |  |
| c | (XREC (irec), 2 REC (irec)) = coordinates of receiver irec | WRITE ( $6, *$ ) Enter no. of receiver positions : |  |
| c | CSG(itime, irec,isor) = recorded data | READ ( $5, *$ ) NREC |  |
| c | IMAGE (idepth, ioffset) = IMAGED reflectivity at (idepth, ioffset) | DO $40 \mathrm{~J}=1$, NREC |  |
| c |  | WRITE ( $6, *$ ) ${ }^{\text {enter }}$ COORDINATES OF RECEIVER ', J, ' :' |  |
| c |  | $40 \underset{\operatorname{READ}}{ }(5, *) \operatorname{XREC}(J), \operatorname{ZREC}(J)$ |  |
| C | VERSION 4.0 WITH FASTER RAYtRacing code |  |  |  |
| c |  | DSG $=\operatorname{SQRT}((2 \operatorname{REC}(2)-2 \operatorname{REC}(1)) * * 2+(\operatorname{XREC}(2)-\operatorname{XREC}(1)) * * 2)$ |  |
|  | PARAMETER ( $\mathrm{NSM}=512, \mathrm{NSOR1}=27, \mathrm{NREC} 1=24$, $\mathrm{NTMAGZ}=200$, $\mathrm{NIMAGX}=128$ ) | IF (NREC .EQ. 1) DSG $=1.0$ |  |
|  | REAL DEPTH (31), VH(31), VV(31), XSOR(100), 2SOR(100) | DSS $=\operatorname{SQRT}((2 S O R(2)-2 \operatorname{SOR}(1)) * * 2+(\operatorname{XREC}(2)-\operatorname{XREC}(1)) * * 2)$ |  |
|  | REAL XREC (NREC1), $2 R E C$ (NREC1), CSG (NSM, NREC1, NSOR1) | IF (NSOR . EQ. 1) DSS = 1.0 |  |
|  | REAL IMAGE (NIMAGZ, NIMAGX) | WRITE ( $6, *$ )'Apply Newman amplitude-phase correction ( $1=\mathbf{Y}$ ) ?' |  |
|  | REAL TAUS (NSOR1), TAUR(NREC1), ANGS (NSOR1), ANGG(NREC1), | READ ( $5, *$ ) NEWMAN |  |
|  | 1 ANGO (NSORI) | WRITE ( $6, *$ ) Enter aperture,taper, raymute, apemute in degrees : READ (5,*) APRANG, APRTAP, THETMU, APRMUT |  |
|  | REAL ANG1 (NREC1) |  |  |  |
|  | COMPLEX CX (NSM), C0, C1 | C APRMUT is also used as stacking angle cut-off |  |
|  | CHARACTER* 17 FNAME | APRANG $=.5 *$ APRANG * PI / 180.APRTAP $=$ APRTAP ${ }^{\text {a }}$ PI $/ 180$. |  |
|  | CHARACTER* 1 A (256) |  |  |  |
|  | $\mathrm{PI}=3.1415926535$ | THETMU $=$ THETMU * PI / 180. |  |
|  | PI2 $=$ PI / 2. | APRMUT $=.5$ * APRMUT * PI / 180. <br> WRITE ( $6, *$ )'ENTER Migration type $1=$ Kir stack, $2=K 1 r$ int, $3=6 K, 4=G R T$, |  |
|  | DO $10 \mathrm{I}=1,256$ |  |  |  |
|  |  | $15=C D P$ gath' |  |
|  | 10 Continue | $\operatorname{READ}(5, *)$ IMIGTY |  |
|  | NIMAGE $=$ NIMAGZ * NIMAGX | IF (IMIGTY . EQ. 5) NX $=1$ |  |
|  | CALL $2 E R O$ (NIMAGE, IMAGE) | WRITE ( $6, *$ ) ${ }^{\text {ENTER }}$ stacking cutoff :' |  |
| c |  | READ ( $5, \star$ ) STKOFF |  |
| C | SET UP VELOCITY MODEL |  | WRITE ( $6, *$ ) ENTER DIPS OF SOURCE AND RECEIVER ARRAYS IN DEGREES :' <br> READ (5,*) DIPS, DIPR |
| C |  |  |  |
|  | WRITE ( $6, \star$ )'ENTER NO. OF LAYERS :' | DIPS $=$ DIPS * PI / 180. |  |
|  | $\operatorname{READ}(5, *)$ NLAMAX |  | DIPR $=$ DIPR * PI / 180. |
|  | NDEPTH $=$ NLAMAX +1 | C DIPR D DIPR* PI/180. |  |
|  | DEPTH (1) $=0.0$ | c read in data file |  |
|  | DO $20 \mathrm{~J}=1$, NLAMAX | c READ IN DATA FILE |  |
|  | WRITE (6,*)'Enter VH, VV, Thickness(S.I.) for layer ', J | WRITE ( $6, *$ )'Enter name of datafile to migrate : READ $(5,50)$ FNAME |  |
|  | READ ( $5, \star$ ) VH(J), VV(J), THICK |  |  |  |
|  | DEPTH $(J+1)=$ THICK $+\operatorname{DEPTH}(J)$ | 50 FORMAT (A17) |  |
|  | 20 continue | WRITE ( $6, *$ ) UP (1) or DOWN (0) -going wavefield :' |  |
| C |  | $\operatorname{READ}(5, *)$ IUP |  |
| c | SET UP RAYtRACING PARAMETERS | IF (FNAME .EQ. 'DUMMY') THEN |  |
| c |  | C |  |


|  |
| :---: |

 | 100 | CONTINUE |
| :--- | :---: |
| CONTINUE |  |
| C |  |

RMS

| 8090 | Continue |
| :---: | :---: |
|  | COntinue |
|  | $\mathrm{RMS}=\mathrm{SQRT}(\mathrm{RMS} / \mathrm{REAL}(\mathrm{NSAM} 0 *$ NREC) $)$ |
| CC |  |
| C N | RMS ENERGIES OF CSG |
| CC |  |

$\begin{array}{lr}C & \\ C & \text { CORRECT DATA FROM 3-D TO } 2 \mathrm{D} \\ \mathrm{C} & \text { DO } 80 \mathrm{I}=1, \mathrm{~N}\end{array}$
 $160 \mathrm{~J}=1$, NSOR
WRITE $(6, *) \cdot \operatorname{READING}$ SHOT
JREC $=($ NREC +1$) \star(\mathrm{J}-$
RMS $=0.0$
 NIMAG $=$ INT $($ TIMAG/DT $)+1$
$\mathrm{D} 1=\operatorname{SQRT}((\operatorname{XREC}(J)-\operatorname{XDIF}) \star \star 2+(\operatorname{ZREC}(J)-\operatorname{ZDIF}) \star \star 2)$
$\mathrm{T} 1=\mathrm{D} 1 / \mathrm{VV}(1)$
$\mathrm{TIMAG}=\mathrm{T} 0+\mathrm{T} 1$
CALL 2ERO (K24, $\operatorname{CSG}(1,1, K))$
DO $60 \mathrm{~J}=1, \operatorname{NREC}$

> WRITE $(6, *)$ 'Enter coor READ $(5, *)$ XDIF, 2DIF DO $70 \mathrm{~K}=1$, NSOR DO $=$ SQRT ( $(X S O R(K)$
c INVERSE IMPULSE RESPONSE

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |



0

IF (NMUTE .EQ. 0) $\operatorname{IMAGE}(J J, I I)=0$

c REVERSES SIGN OF CONTRIBUTION FROM DGW
c
c
c




(IMIETY. EQ. 5) THEN
THETAS $=0.0$
THETAG $=0.0$

IF (TAU1 EQ. 0.0 . OR. TAVO .EQ. 0.0 )
$c$
$c$ KIRCHOFF INTEGRAL - THETAL IS FINAL (RECEIVER) RAY ANGLE
WRITE $(6, *)$ FOUND RAYS $=$, IFOUND
PERCL $=100, *$ REAL(LOST) $;$ REAL(LOST + IFOUND)
WRITE $(6, *) ;$ PERCENT LOST $<$, PERCL
CLOSE (11)
END
IDCODE $=(I S H O T-1) *(N X+1)+1$,
OPEN (11,FILE=FNAME, STATUS=' UNKNOWN', ACCESS='DIRECT', FORM $=$
LEN $=(N 2+2) * 4$
WRITE $(6, *)$ Enter I.D. Of image to save :'
READ $(5, *)$ ISHOT
220 CONTINUE

I + ( $\mathfrak{L}+\mathrm{XN}$ ) * ( $\mathfrak{\tau}$ - LOHSI) READ $(5,50)$ FNAME
LEN $=($ N $2+2) * 4$
WRITE ( 6 ,
$(6, *)$ 'FOUND RAYS $=$ ', IFOUND
$=$, LEN, NX, N2 'Enter name of output file for image :'
c NEXT GRID DEPTH
C MUTES point if No, contributions from narrow aperture


[^0]:    

