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Abstract 

The re-use of products such as code, specifications, design decisions and documen

tation has been proposed as a method for increasing software productivity and 

reliability. A major problem that has still to be adequately solved is the storage 

and retrieval of re-usable 'components'. Current methods, such as keyword retrieval 

and catalogues, rely on the use of names to describe components or categories. This 

is inadequate for all but a few well established components and categories; in the 

majority of cases names do not convey sufficient information on which to base a 

decision to retrieve. 

One approach to this problem is to describe components using a formal spec

ification. However this is impractical for two reasons; firstly, the limitations of 

theorem proving would severely restrict the complexity of components that could 

be retrieved and secondly the retrieval mechanism would need to have a method 

of retrieving components with 'similar' specifications. 

This thesis proposes the use of formal 'property' models to represent the key 

functionality of components. Retrieval of components can then take place on the 

basis of a property model produced by the library's users. These models only 

describe the key properties of a component, thereby making the task of compar

ing properties feasible. Views are introduced as a method of relating similar, non 

identical property models, and the use of these views facilitates the re-use of com

ponents with similar properties. The language Miramod has been developed for the 

purpose of describing components, and a Miramod compiler and property prover 

which allow Miramod models to be compared for similarity, have been designed 

and implemented. 

These tools have indicated that model based component library retrieval 1s 

feasible at relatively low levels of the programming process, and future work IS 

suggested to extend the method to encompass earlier stages in the development of 

large systems. 
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Chapter 1 

Introduction 

The existing gap between the demand and our ability to produce high quality 

software cost-effectively calls for improvement of the software engineering process. 

The re-use of products from the software engineering processes has been identified 

as a potential method of increasing productivity and reliability of software. This 

stems from the observation that many software projects (development as well as 

maintenance) have strong similarities in the knowledge and methods applied to 

the project as well as in the products of the project[36, 4]. These similarities 

can occur at many levels of granularity, from the coding of small subroutines to 

the complete project level. The most obvious example of re-use is at the level of 

source code, where similar or identical modules may be used by entirely different 

systems. Rather than developing the module twice, once for each project, it should 

be possible to develop it only once and re-use it in subsequent projects. After the 

initial work of developing the module, two advantages are gained by re-using the 

module during subsequent projects; the work of re-specifying and implementing 

the module is saved and the reliability of the module is known from the fact that 

it has already been tested and used. 

There are many possible products that can potentially be re-used. At the lowest 

level, code segments, sub systems and complete systems can be re-used as well as 

modules. At a higher level designs, prototypes, specifications, and requirements 
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can be re-used. Usually the higher the level of product, the greater the potential 

savings to be made; for example, the discovery of a set of requirements that are 

close to the system that is needed might mean that the majority of the system is 

already implemented. To facilitate high levels of re-use there are several difficult 

problems to overcome. 

Composition - Powerful methods for combining components are needed to in

crease the forms of components that can be combined and the ways in which 

they can be combined. 

Extraction - Tools are needed to assist identification of the reusable parts of a 

system and aid their extraction from the system and conversion to a re-usable 

form. 

Formalising Existing experience - Reusability can be increased if candidate 

objects for re-use are encoded according to a formal syntax and semantics. 

For example, design decision are conventionally recorded in natural language 

(if at all), but the use of a suitable syntax and semantics for such decisions 

might enable them to be re-used automatically or semi automatically. 

Generation - Tools capable of applying reusable components such as design deci

sions to new situations must be available. Some such tools already exist (for 

example compilers and fourth generation languages); however, these currently 

work at the later stages of the software engineering process. 

Management and Organisational issues - The non technical problems of soft

ware re-use are possibly the most serious. These include such problems as: 

motivation of staff to design components that are re-usable; the identifica

tion of costs when components are re-used between different projects and 

organisations; and the problems of ownership, particularly if a component 

is developed by one company as part of a system being built for another 

company. 

Component Libraries - Methods of storing large collections of components must 

be available, as well as the tools for locating desired components efficiently. 

Due to the potentially vast number of reusable artifacts available these tools 

must be highly selective in what they retrieve. 
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The work of this thesis focuses on this last problem of storage and retrieval of 

components in a library. In particular, it provides and investigates a new method 

for describing components, so that they may be stored and retrieved effectively. 

1.1 Property Models 

When attempting to retrieve components from a library, the re-user must have 

some way of describing the properties of the components required. Such properties 

can be classified in two main groups: the functional properties which describe what 

a component does, and the environment properties which describe the environment 

of the component (eg. the component's source language). From the point of view 

of a person retrieving components from a library, the most important properties 

of any component are ones which describe its functionality. Unfortunately these 

are just the properties that are most difficult to describe satisfactorily. There are 

essentially two approaches to the problem. One is to use a large set of commonly 

used names that describe functionality; the other is to use a formal language that 

can accurately describe complex functional properties. The name based approach 

has several disadvantages: it is inadequate for describing complex functionalities 

and it hinders re-use of components between application domains because differ

ent names will be used for the same functionality- particularly for larger/ more 

abstract components. Although names are useful for extremely common functions, 

such as 'sort', the majority of component functions do not have a name that would 

be obvious to many of the library's users. The formal language approach overcomes 

these problems, but has disadvantages of its own: Firstly, the property description 

will be a partial or possibly complete formal specification of the component and 

could constitute a large effort to produce. Ideally we would like to re-use the spec

ification rather than having to rebuild it from scratch. Another problem is that 

the formal specification can be too precise, preventing similar but non identical 

components from being retrieved. Finally the task of comparing specifications (to 

decide if a component meets its specification) is difficult to automate and undecid

able in the general case. Hence the idea of using complete formal specifications for 

large components is infeasible. 
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This thesis suggests that a.n alternative to writing a. complete property descrip

tion is to produce a. property model tha.t describes only the essential features of the 

required functionality. In this ca.se, ea.ch component in the library will be described 

by one or more such models, a.nd retrieval takes place if a.ny of these models match 

the one given by the library's user (hereafter referred to a.s the re-user ). This 

means tha.t the effort of producing the description of the required component ca.n 

be greatly reduced. Another ga.in is tha.t components similar to the ones required 

by the user ca.n be retrieved. The problems of comparing specifications (which 

amounts to a. theorem proving ta.sk) is aided by the reduced size of the specifica

tions a.nd the fa.ct tha.t knowledge of how to prove properties of a. particular model 

ca.n be stored along with the model. 

It is likely tha.t the model specified by the re-user a.nd the models stored with 

a. reusable component will differ in parts, particularly if the models a.re a.t different 

levels of abstraction (ie. contain more or less detail). To overcome this problem, 

a. two wa.y check ca.n be performed a.nd appropriate views a.re used to compare 

the model. This two wa.y check means that the component is checked to see if it 

has the required properties, a.nd if not a. check is ma.de to see if the components 

properties a.re a.ll required. If either check succeeds then the component is poten

tially re-usable. This means tha.t if the requirement model is less a.bstra.ct tha.n the 

components model (ie. contains more detail) then retrieval is still possible and is 

probably desirable, a.s the a.ctua.l component will contain fa.r more detail than its 

models. Views are used to provide a. relationship between properties a.t different 

levels of abstraction. For example one model of a.n office might include desks a.s 

well a.s documents; however another model might not recognise the existence of 

desks. Pa.rt of the view between these models might state that removing a. docu

ment from the office in the second model is equivalent to removing the document 

from all desks in the first model. Without taking this view into consideration, it 

might not be possible to show tha.t the first model ha.s the property of being a.ble 

to remove a. document from the office. 
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1.2 Scope of the thesis 

The central aim of the research described in this thesis is to establish the feasibility 

of using property models to describe components so that they may be stored in, 

and retrieved from, component libraries. The work divides into four parts: the 

development of the property model method; the design of a language for writing 

component models; the design and implementation of tools for comparing the prop

erty models; and the assessment of the method through an experimental library 

and retrieval system. 

During development the property model method for component library retrieval 

particular attention has been paid to the following objectives: 

Re-use across application domains; this is important because it allows for a 

much greater level of re-use than is allowed by constraining re-use to take 

place within just one application domain. 

Precise retrieval; keeping the ratio of wanted to unwanted components retrieved 

as high as possible to ensure that the re-user is not swamped with components 

that are of no use. 

Complete recall; keeping the ratio of appropriate components retrieved to ap

propriate components not retrieved as high as possible. 

The scope of this work has been limited to libraries of relatively low level com

ponents. It is not intended to demonstrate that the method can be successfully 

scaled up for large, high level components- such as the requirements of a complete 

system. However this is an issue for future research. 

1.3 Overview of the thesis 

The thesis is organised in the following manner. 
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Chapter 2 gives an overview of the software engineering process and describes 

how re-use fits into this process. 

Chapter 3 provides an overview of current research in the area of software re-use. 

It describes the problems of component library retrieval and some of the existing 

solutions. 

Chapter 4 describes the method of retrieving components by formal property 

models, the language Miramod which is used for writing property models and the 

method of comparing models using views. 

Chapter 5 gives an introduction to theorem proving techniques and then de

scribes the design of the property prover which is used for comparing property 

models. 

Chapter 6 describes the design of a Miramod compiler which produces code in 

a form suitable for the property prover. 

Chapter 7 describes the implementation of the property prover, compiler, and 

model comparison algorithm as well as the results obtained from the use of these 

tools. 

Chapter 8 gives details of the experimental library and retrieval system, along 

with the results obtained from its use, including measures of retrieval, precision 

and completeness. 

Chapter 9 summarises the thesis, discussing the extent to which the property 

model retrieval method meets its stated objectives and suggesting areas for further 

research. 
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Chapter 2 

Software Engineering 

Our current inability to produce correct software on time and within budget has 

frequently been referred to as the software crisis. This crisis has been observed 

and discussed in many reports, and this thesis will not attempt to demonstrate 

its existence, or set out to show that information technology is not achieving its 

potential for the solution of information problems[lO]. 

The goals of reducing or solving the software crisis are central to the subject 

software engineering. Software Engineering can be defined as: the use of sound 

engineering principles, science and mathematics to produce software systems that 

are reliable, function on real machines and are useful to man. 

For the large systems that are at the centre of the software crisis, a large team 

of software engineers is required to complete the project within a realistic time 

scale. With such large teams and/or large systems, it is not feasible to rely on the 

completeness and consistency of the various mental models of the system held by 

members of the team, so a common model based on sound engineering principles, 

science and mathematics must be shared by the project personnel and represented 

in a form that is accessible to them all. 
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2.1 The Software Engineering Process 

One of the major contributions of Software Engineering is to identify important 

phases in the so called life-cycle of a software system, from its 'birth' as a concept 

to its 'death' as it is phased out. The phases, the order in which they are carried 

out and their interrelationships can be seen as a process or method for producing 

software systems. An alternative view is that they are a model of how software is 

produced (A life-cycle model). 

The waterfall approach to software engineering1 involves a well defined sequence 

of phases, each of which must be completed before the next phase is begun. Typi

cally these phases are taken from: 

Feasibility study The definition of a preferred concept for the software product, 

and determination of its feasibility and superiority to alternative concepts 

(frequently called requirements analysis.) This stage might well involve a 

cost /benefit analysis. 

Requirements definition A complete specification of the required functions, in

terfaces, and performance of the software product. The specification should 

be checked with the systems users to ensure that it represents their require

ments. 

Product Design A complete specification of the overall hardware-software ar

chitecture, control structure, and data structure for the product along with 

other necessary components such as draft user's manuals and test plans. 

Detailed Design A complete specification of the control structure, data struc

ture, interface relations, key algorithms, and assumptions of each program 

component. 

Coding A complete set of program components. 

Integration A fully functioning operational hardware-software system, including 

such objectives as program and data conversion, installation, and training. 

1often called the waterfall model of the software life-cycle 
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Maintenance A fully functioning update of the hardware-software system. This 

phase is repeated for each update. 

Phase-out A clean transition of the functions performed by the product to its 

successors (if any). 

At the end of each phase, the products of the phase must be checked against 

the products of earlier phases or checked with the systems users, to try to ensure 

that what has been produced is correct. This activity is referred to as verification 

or validation, where verification is an attempt to prove that the product of a phase 

meets its specification and validation is an attempt to establish the fitness or worth 

of a product for its operational mission. The two processes are characterised by the 

type of information that is being used as a reference for the check: in the case of 

verification, this information is relatively concrete and well defined (it might be the 

requirements specification for example); in the case of validation the information 

is abstract and loosely defined (the validation might take place with respect to the 

users 'concept' of the system.) 

In the event of a verification or validation failure the phase must be re-done 

until it passes the appropriate test. If an error in a phase is not detected by the 

verification and validation at the completion of that phase but is detected during 

some later phase, then it is necessary to back track to the incorrect phase of the 

'waterfall' and then redo the stages from the erroneous phase down. The early 

detection of errors though verification and validation therefore plays a crucial role 

in keeping the cost and completion time of a project to a minimum, since failure to 

detect an error during the early phases can lead to a great deal of wasted effort in 

later phases. As much as possible, iterations of earlier phase products are performed 

in the succeeding phase. 

There are several major disadvantages with the waterfall model. The first is its 

strict sequencing of phases employed. Validation of the requirements is a difficult 

task because it can only be done through interaction with the customer, who will 

usually find it difficult to form an accurate picture of the system that is defined by 

the requirements. In practice this validation can only be done when some or all of 

the system is implemented, by which time a great deal of effort has been put into 

the design and coding of requirements that may not be correct. The strict sequence 
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of phases utilised by the waterfall approach exasperate this problem by insisting 

that the whole system is subjected to each phase before any part of the system can 

enter the next phase of development. Validation of the requirements specification 

is also made difficult because in many cases there is a reverse dependency between 

the implementation of a system and its specification. For example, the system's 

code will be dependent on the requirements (as well as design decisions etc) but 

the requirement for a particular function may alter because of the efficiency with 

which the function can be implemented. Estimates of implementation efficiency 

can be made during the early phases but these are frequently inaccurate. 

The incremental development method includes the same phases as the waterfall 

method but does not insist on the strict ordering of phases. Using the incremental 

development method, crucial parts of the system are implemented first and used to 

validate the specification and design. The rest of the system is built up in suitably 

sized increments until an implementation for the whole system is achieved. 

Another disadvantage with the waterfall approach is that it does not include 

the development and use of scaffolding products. These are extra products that 

are developed to make the main job of software development and verification and 

validation go as smoothly and efficiently as possible. Examples of such products 

are: 

• Dummy software components or stubs that can be used to help validate the 

high level architecture of a system before lower levels are completed. 

• Miniature files or other simulated portions of the future operational environ

ment. 

• Test data generators. 

• Postprocessors. 

• Cross-reference generators. 

• Conversion aids. 

• Standards checkers 

• Requirements and design language processors 
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The requirements definition, design, coding and testing of these products may occur 

at any point of the primary product's life cycle that is appropriate to the particular 

scaffolding product, in many cases preceding the coding of the primary product. 

Although the general principle of the waterfall model is agreed upon, the naming 

and definition of the actual phases differ. For example, the feasibility study is often 

called a requirements analysis, requirements definition is often called specification, 

and testing is often identified as a separate phase rather than being considered 

as part of the verification and validation of the coding phase. For medium to 

small scale projects, fewer phases are separately identified because the verification 

and validation overheads associated with each phase are not so easily justified. In 

practice, the phases and their use will depend on many factors including: size of 

project; the application domain; procedures and practices of the developers; and 

the standards required by customers (users). 

Software engineering methods such as the waterfall process are being increas

ingly used in industry, but they are not universally practiced. Code is often written 

with little or no requirements or design documentation and documentation for users 

and maintenance staff is written as an afterthought. Verification and validation 

methods are either not used or are used only after the code has been produced. 

Maintenance itself is performed directly on code and is made difficult by inadequate 

documentation of the software's function and design. 

2.2 The Generalised Software Engineering Pro

cess and its support 

The flaws in the waterfall process have led to the definition of a more general process 

which can be customised to suit particular application domains, organisations or 

projects. With the generalised approach, all phases are defined in a customised 

order depending on the type of system being produced or maintained. A phase can 

be missed out or repeated and maintenance is no longer seen as a separate phase 

but a repetition of some of the existing phases. With the generalised approach all 

phases are independently defined; each phase has well defined interfaces to other 
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phases; selected phases can be arbitrarily interconnected with other phases that 

have matching interfaces and different phases can take place simultaneously on 

different parts of the system. 

Efforts to support the software engineering process can be classified into two 

general approaches: the technology fix approach involves identifying enabling tech

nologies and developing these; the systems solution concentrates on improving the 

organisation and structure of our knowledge, methods and technologies. The sys

tems solution does not exclude technological innovation, which is necessary to fa

cilitate the improved organisation a.nd structure. 

These alternative approaches are reflected in the different emphasis of research 

and development in major national and international programs. Japan's fifth gen

eration program was designed to overcome the software crisis and give the Japanese 

a lead in some areas of information technology. It identified a number of enabling 

technologies such as: processing power; programming languages; natural language 

interfaces; and machine reasoning. The major efforts of this project have been 

directed towards improving these technologies, and hence the overall approach is 

one of technology fixes. 

The UK based Alvey and European based ESPRIT programs were competitive 

responses to the Japanese fifth generation program. Along with their continuation 

programs lED (UK) and EUREKA (Europe) they have placed more emphasis on 

the systems solution and software engineering. Much of this work has concentrated 

on the concept of support environments for programming, software engineering and 

information technology based projects. This concept gained a prominent position 

in 1980 when Buxton's Stoneman Report[15] for the DoD introduced the Ada Pro

gramming Support Environment (APSE). This concept has since been expanded 

and generalised to give Integrated Project Support Environments (IPSEs) and the 

Information Systems Factory (ISF)[49). 

An IPSE is intended to support the whole of the software engineering process 

by providing an integrated environment of tools that support phases of the process 

as well as the management of users and machine components. In (40) Mair lists 

desirable features of an IPSE as: 
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• Integrated, compatible tools environment 

• Project control and management 

• Configuration control 

• Multi Language 

• Software development support 

• Hardware development support 

• Distributed host/target 

The Alvey program proposed three generations of IPSE: 

1st generation - conventional operating systems , with tool builders allowed 

free use of information storage and user interface facilities; For example 

UNIX. 

2nd generation - kernels as extensions to operating systems, together with stan

dards (called public tool interfaces) to constrain tool builders' design of stored 

information and the user interface; the Stoneman and PCTE architectures 

are examples. 

3rd generation - systems connection architectures , permitting (a) the free 

introduction of existing systems, (b) the design of information stores and user 

interfaces to match requirements. A requirement of 3rd generation IPSEs is 

that they should be knowledge based. 

A further initiative of the Alvey program has been the extension of IPSEs to 

support hardware development as well as software, particularly allowing design 

down to the VLSI level as well as the program level. This has given rise to the 

concept of an Information Systems Factory (ISF). As the concept has matured, 

the definition has altered. The phrase Computer Assistance for the Development 

of Information Systems (CADIS) has been coined to describe the support system 

used by an organisation which develops information systems. An ISF is essentially 
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an organisation that uses a CADIS system (though a more detailed definition is 

given shortly). 

One of the major requirements of a CADIS system is that it should be capa

ble of supporting the methods, practices and procedures of any organisation that 

is 'sufficiently mature'. In particular it should not constrain the organisation to 

adopt a particular life cycle model or particular tool sets. This gives rise to the 

concept of a CADIS architecture or framework into which an organisations existing 

tools and/or applications can be integrated to produce a CADIS virtual machine. 

This virtual machine would then be programmed to support the activities of the 

organisation thus producing the CADIS system that is actually used to develop 

information systems. The definition of an ISF therefore becomes: 

an organisation in which various information systems (tools and 

/ or appllcations) are integrated within a CADIS architecture to 

form a CADIS virtual machine, which is programmed to support 

activities in the organisation. 

(taken from the Information Systems Factory Study final report [49].) 

The programming of the virtual machine for the support of activities is com

monly called process programming and process modelling. A process program is 

a description of the relationships to be maintained between a set of interacting 

human and machine activities. As a result, process programming takes place at a 

higher level than conventional programming since it is concerned with the compo

sition of activities to form methods as opposed to the composition of components 

to form programs. 

2.3 Software Engineering Process Cost Analysis 

Although the systems solution to software engineering provided by IPSEs and 

CADIS architectures may be crucial to the solution of the software crisis, to be 

useful they must be populated by suitable methods and tools. These methods 
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and tools (which constitute the technology solution) are not only important in the 

context of IPSEs and CADIS architectures but are also useful and interesting in 

their own right. 

Since many of the methods and tools of the software engineering process are 

distinguished by the phase of the life-cycle to which they apply, it is useful to 

examine the relative costs of different phases. This gives an indication of the 

potential savings to be made with a particular method or tool in relation to the 

costs of the overall life-cycle. 

The results of estimates and surveys allocating costs to software life cycle phases 

are not easy to compare because their definitions of cost and life cycle phases are 

different. However, table 2.1 attempts to summarise these results in terms of the 

life cycle phases previously defined. 

Phase \ Source [63] [37] 
Feasibility Study 3% 

Requirements Definition 3% 
Product Design 5% 
Detailed Design 46% 

Coding 15% 
Integration 7% 

Maintenance 67% 48% 

Table 2.1: Software Engineering phase costs 

It is clear from the above results that the majority of the cost of software 

originates from the maintenance phase. Coding is the second most costly phase; 

however it is only responsible for a small percentage of the overall cost. 

Due to the lack of published results, there are several important dimensions of 

software cost that are not included in the above surveys. The proportion of cost 

arising from management and organisation of software projects is one example and 

the proportion of costs arising from verification and validation is another. 
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2.4 Cost Reduction 

If substantial cost reduction of the overall software engineering process is to be 

achieved it is clear that it must be based on the reduction of maintenance costs or 

reductions in the cost of several phases. The use of IPSEs and CADIS architectures 

previously described should provide cost reductions to many or all phases of the 

software engineering process. Other approaches to cost reduction are described in 

the remainder of this chapter. 

Firstly approaches to reduction in maintenance costs are covered, since this 

is the phase of the life-cycle in which cost reductions have the largest potential 

impact. The next section discusses specifications, both formal and informal. These 

are used mainly in the requirements phase, however they have a profound effect 

on later phases as errors that are introduced in the requirements phase give rise 

to increased costs in the latter phases. Formal methods also affect several phases 

of the software engineering process, however their main objective is to increase 

the reliability of software and the correspondence between earlier and later phase 

products of the process. Finally software re-use is presented as a major technology 

for decreasing costs in all phases. 

2.5 Software Maintenance 

Maintenance activities can be divided into three groups according to their cause 

[58]: 

adaptive maintenance Performed to adapt software to changes in the hardware, 

software or data environments. Initiated by a change in the users environment 

or the computing environment. 

corrective maintenance Performed to identify and correct software failures, per

formance failures, and implementation failures. Initiated by the discovery of 

a fault. 
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perfective maintenance Performed to enhance functionality, performance, cost

effectiveness, processing efficiency, or maintainability. Initiated by user re

quests. 

Surveys indicating the relative costs of different maintenance activities have 

been carried out, and the results of some of these are summarised in table 2.2. 

metric f:f source adaptive corrective perfective 
personnel hours [37] 18.2% 17.4% 60.3% 
personnel hours [38] 23.6% 21.7% 51.3% 

Table 2.2: Maintenance cost distribution 

In [37] Lientz et.al. published results of a survey of 69 organisations. One 

of the interesting results of this survey is the ranking of problem areas by the 

organisations. 

1. User demands for enhancements and extensions (perfective maintenance) was 

seen as the most serious problem area, the consensus of opinion rating it 

somewhere between a 'minor' problem and a 'somewhat major' problem. 

2. Quality of system documentation was seen as a. minor problem area.. 

3. Competing demands on maintenance personnel time were seen as a minor 

problem area. 

4. Quality of original programs was seen as a minor problem area. 

All other problems were rated less than minor in importance. Of these four prob

lems 2 and 3 are clearly technical issues whereas problems 1 and 3 are management 

orientated problems. Lientz et.al. also carried out statistical tests on the complete 

set of results and concluded that the management areas were seen as significantly 

more problematic than the technical areas. However the actual difference is only 

small (5%). 

In conclusion, these surveys indicate that to reduce software cost the manage

ment and technical problems of perfective maintenance must be tackled, and that 

the problems of adaptive and corrective maintenance are of lesser importance. 
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The following two sections describe methods of reducing costs in the problem 

areas that have been identified. One section covers methods which emphasise 

finding more cost-effective ways of performing the maintenance function. The other 

section describes methods based on designing maintainable systems. A combination 

of approaches is preferable, but the latter is of no value to maintainers of existing 

systems. 

2.5.1 Performing Maintenance 

From the definition of adaptive maintenance, it is clear that adaptive mainte

nance occurs as a result of the user's desire to change the system specification. 

There are three possible approaches to performing adaptive maintenance. The 

first is to modify and add code directly without reference to specification and de

sign representations2
• Although this approach may appear to involve less work it 

eventually leads to higher cost because without the appropriate documentation it 

is difficult to gain sufficient understanding of the code to maintain it successfully 

and avoid side effects to any modifications. It also makes future maintenance work 

more difficult as the design and specification will no longer fully correspond to the 

code. The second approach is to modify all of the products affected by the change, 

in which case verification must be performed to ensure consistency between specifi

cation design and code. The problem with this approach is that code modification 

is a non trivial task, even with the help of appropriate design and specification doc

uments. The third approach is to modify the specification and then regenerate the 

design and code from the modified specification. The choice between the second 

and third approaches depends on the cost of regeneration compared to the cost of 

modification. In some cases regeneration is inexpensive (ie. regeneration of object 

code from source code by a compiler) and in other cases it is very expensive (ie. 

producing code from design). Advances in software production techniques, partic

ularly automated or computer aided implementation and optimisation are liable to 

make regeneration a more viable option. Another approach is to use regeneration 

on parts of the system that are radically altered and modification on parts that 

remain the same or are only slightly different. 

2eg documents and formal notations 
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There are a number of maintenance problems that derive from low quality or 

non existent development phase products. For instance poorly structured code, 

bad or non existent design documentation and poorly verified, badly documented 

or non existent specifications will all tend to increase the cost of any maintenance. 

The best solution to these problems is for the management to insist that these 

items are produced in the development phase and are of a sufficiently high stan

dard. Unfortunately, for the majority of code currently in existence, this has not 

been done and retrospective solutions must be sought. One such solution is to 

totally rebuild the system using modern methods with maintainability as part of 

the new specification. This is an expensive option and can only be justified if the 

cost of future maintenance is likely to be large in comparison to the cost of rebuild

ing. Another solution, called inverse engineering, is to work backwards producing 

design and specification from the code. Work in this area is currently being under

taken at Durham[16]. The problem of maintaining low quality code that is badly 

structured can be solved hy rest.ruct.ming the code and some tools are available to 

help perform this task[17]. The layout of a program is also important if it is to 

be easily understood by a maintainer. Definition and implementation of company 

standards provide a maintainer with a layout that they will recognise and pretty 

printers are commonly available for automatically laying out code in a standard 

fashion. Cross referencers can be used to help a maintainer understand code and 

predict possible side effects of changes by providing information on the location 

and distribution of objects, such as variables and procedures, within a program as 

well as the structure of the program. 

Inability to predict maintenance costs is a serious problem affecting maintenance 

management and decision making. Without the ability to accurately predict the 

cost of continuing to maintain a badly designed product or the cost of rebuilding 

the product, it is impossible to confidently decide on one of the alternatives. 

Another maintenance management problem is that maintenance is seen as a 

non challenging and unskilled activity. As a result the personnel assigned to main

tenance tasks are often the most junior, least skilled and lowest paid of those 

available. Motivation is often poor because they perform most of their work on low 

level objects (code), a large proportion of their effort is dedicated to understanding 

and discovering information rather than creative tasks and there are few career op-
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portunities. Martin and McClure[42] identify several management decisions that 

can help to solve these problems. For example: establishing a separate mainte

nance staff with project leaders, managers etc can improve control, motivation and 

productivity. Another example is the selection of experienced staff for maintenance 

to ensure that the 'best' personnel are contributing to the most problematic and 

costly part of the software engineering process. 

2.5.2 Designing for Maintenance 

An alternative approach to many maintenance problems is to design and implement 

'maintainable' systems. This approach is also important for software re-use, since 

increasing the maintainability of a system is also likely to increase its re-usability. 

Martin and McClure list the following properties of maintainable systems. 

Understandability is defined as the ease with which we can understand the func

tion of a system, how it achieves this function and how it was designed to 

achieve this function. Understandability is important in reducing adaptive, 

perfective and corrective maintenance costs. 

Reliability is defined as the extent to which a program correctly performs its 

functions in a manner intended by the users as interpreted by its designers. A 

reliable system is correct, complete and consistent and also has low corrective 

maintenance costs. 

Testability is defined as the ease with which program correctness can be demon

strated. Although this feature is important in the design phase, its impor

tance is carried through into the maintenance phase as well. It is particularly 

helpful in reducing the cost of corrective maintenance. 

Modifiability is defined as the ease with which a program can be changed. A 

modifiable program is general, flexible and simple. Generality allows a pro

gram to be used for a variety of changing functions without making modifi

cations, while flexibility and small size allow a program to be modified easily 

thus reducing the cost of adaptive and perfective maintenance. 
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Portability is defined as the extent to which a program can be easily and effec

tively operated in a variety of computing environments. Building a highly 

portable system reduces the need for adaptive maintenance. 

Efficiency is defined as the extent to which a program performs its intended 

functions without wasting machine resources such as memory, mass storage 

utilisation, channel capacity, processor capacity and execution time. If a 

program with a high standard of efficiency is produced it is less likely to need 

perfective maintenance requiring greater efficiency. 

Usability is defined as the extent to which a program is convenient, practical and 

easy to use. This is another feature which reduces the possibility of users 

requesting adaptive maintenance. 

Unfortunately some of these features of a. maintainable system are (at least 

superficially) contradictory. For example, efficiency is usually achieved at the ex

pense of modifiability, understandability, portability and reliability. The only way 

of achieving these goals simultaneously is to generate efficient code automatically 

or semi automatically from the high level code. Thus the high level code can be 

used for understanding and modification while the low level code is used for efficient 

implementation. However, in the foreseeable future there will always be a tradeoff 

to be made due to the gap between our ability to formally describe what must be 

done and our ability to automatically implement these descriptions efficiently (7). 

There are several basic methods of improving maintainability: 

Setting explicit software quality objectives and priorities. 

For a maintainable system to be produced, management must explicitly ask 

for the system to have appropriate maintainability. Specific objectives must 

be set and monitored throughout the systems development. 

Use of modularisation. 

Modularisa.tion is a. construction technique that uses a set of conceptually 

and operationally independent pieces to make up a system. Modules improve 

the modifiability of a system by hiding their own implementation from other 

parts of the system so that if the module must be re-implemented due to 
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some perfective or adaptive maintenance, the rest of the system need not be 

affected. Modules can also improve understandability and testability because 

they can be viewed and tested independently from the rest of the system. 

Use of structured techniques. 

Structured techniques define how modules can be interconnected. They vary 

according to whether or not the language is procedural. For a procedural 

language constructs are restricted to concatenation, selection and repetition. 

Generally, abstract constructions are favoured over low level ones (such as 

goto). Variables should also serve only one program purpose each and their 

scope should be apparent and limited. These techniques make a system easier 

to understand and modify. 

Use of appropriate languages. 

Programming languages define the level of abstraction at which a system is 

described and also encourage or discourage the use of modular and structured 

techniques. Abstract languages lead to shorter more concise programs that 

are easier to understand and modify. Increasing the level of abstraction in 

data types also increases the portability of a system. 

Production and storage of development phase products. 

Development phase products such as the design document and specification 

crucially affect the maintainability of the system. The specification is of par

ticular importance for corrective maintenance as it defines how the system 

should behave. A record of the design decisions made is important for both 

perfective and adaptive maintenance. An explicit record of design decisions 

allows those decisions affected by maintenance to be identified and altered ac

cordingly. An important issue is the method of describing and storing design 

decisions. A recent approach is to record the design as a series of transforma

tions (see Section 3.1.2), however the transformations used by current systems 

are not sufficiently abstract or powerful to constitute design decisions. 
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2.6 Specifications 

The aim of a specification is to provide a precise, clear and consistent description of 

the problem that is to be solved, without stating how it should be solved. Although 

specifications may be produced at many stages of the software life cycle, the main 

use of specifications is to record the results of the requirements analysis phase. 

The practice of specifying software before designing and implementing it has 

many advantages. One is that the specification can be verified with the users of 

the system before any effort is wasted on designing and implementing a solution to 

the wrong problem. Another is that a requirements specification also ensures that 

the system's designers and implementors have a specific target to aim at - they 

can assess their work in terms of the requirements they are given. 

The specifications or requirements of a system can be expressed in a formal 

or informal language. Informal languages include natural language, subsets of 

natural language and diagrams (though diagrams may also be formal- for example 

syntax diagrams). They have the disadvantage of allowing the specification to be 

inconsistent and incomplete, however they are more powerful than formal languages 

and can be understood by the system's users as well as the software engineers. 

Formal languages make the detection of inconsistencies and incompleteness easier 

but they are far harder to produce and understand than informal specifications. 

Formal specifications are also harder to validate since the users are unlikely to 

be able to understand them. However they are more suited to the rigorous or 

formal verification of design and code. Some formal specification languages have 

had paraphrasers developed for them [7]. These take the specification and produce 

a stylised natural language description of the system. Though these are often an 

improvement on the formal specification they are still difficult to understand. 

The emphasis on specifications, whether formal or informal, is to describe what 

the system should do rather than how it should be done. As a result specification 

languages are very different from implementation languages which describe how 

tasks should be performed. 

A small and simple example of a specification is provided by the square root 
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function: 

'sqrt' is a function that takes a positive number as an argument and returns 

another positive number which, if squared will produce the value of the original 

argument to 'sqrt'. 

The formal specification of this function can be written: 

sqrt x >= 0 and abs (sqrt(x) 2 - x) < e 

(where 'e' is a small positive number which indicates the minimum acceptable 

accuracy of the result and abs is the function which gives the absolute positive 

value of a number). 

The above specification has the important property that it does not suggest a 

method of calculating the value of the function. 

2. 7 Formal Methods 

Formal methods are methods based entirely on the form of objects rather than 

their intended meaning. Two common uses for formal methods in the software 

engineering process are the production and verification of programs from specifi

cations (32, 41]. In the case of the verification of a program from its specification, 

the formal method could provide a number of steps (which may be automated as 

transformations - see 3.1.2) that are guaranteed to produce true statements about 

the program. The software developer can then apply these steps to the program 

to produce the original specification. If successful, then they have proved that the 

program meets its specification. 

Formal methods can be applied either manually, automatically or semi-auto

matically. With the manual approach, the user must apply each step himself, 

recording the result before continuing with the next step. The semi-automatic 
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approach lets the computer apply the individual steps; however the user must still 

decide the order in which steps must be applied as well as the particular part of the 

problem to which they apply. The automatic approach suggests that all the steps 

from starting point to goal are chosen and applied automatically by the computer. 

Unfortunately, formal methods are too clumsy to be used in large scale devel

opments. Single steps which an experienced programmer or system designer might 

see as obviously correct, can take a large number of formal steps which would be 

too time consuming to specify explicitly. An alternative is to use rigorous methods 

in which every step need not be precisely defined by the method, but the person 

responsible for generating that step should be confident that they could derive it 

from a sequence of formal steps if necessary. Rigorous methods do not guarantee 

success, because it is possible for an 'obviously correct' step to be incorrect. 

Advances in artificial intelligence are making it increasingly possible to au

tomatically generate the formal steps from the rigorous steps, thus guaranteeing 

success (subject to the correctness of the method), without involving the user of 

the method in too many low level steps. 

2.8 Re-use 

One method for achieving the goals of decreased cost and increased quality in initial 

development or maintenance is broadly termed re-use. This involves using any 

products of previous projects in the current project. The word 'products' should 

be taken to mean anything that may be subsequently useful, including complete 

systems, system components, design strategies, specifications, requirements and 

the results of domain analysis. There are two major advantages gained by re-using 

software. One is the decrease in software cost, achieved because the cost of the 

product that is re-used can be spread over the many projects in which it is used. 

The other is the improvement in reliability due to the increased testing performed 

on the re-used products (presumably the re-used products will be tested either 

directly or indirectly each time it is re-used). 
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The most common form of re-use practiced today is human based. Algorithms 

are either stored mentally or in books in an abstract form, so that the programmer 

adapts and instantiates the algorithm according to its current usage. Complete 

programs or sections of code which are actually stored on the development system 

are often re-used in a similar way with the programmer physically copying and 

altering the code. This is one of the motivations behind making the operating 

system sources available on UNIX systems [33]. 
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Chapter 3 

Software Re-use : An Overview 

To survey the current work being done on re-usability it is helpful to draw up a 

framework of different approaches to software re-use (see table 3.1). The framework 

initially divides into two different approaches, namely the building block approach 

and the generator approach. In the building block approach, re-use is achieved 

via the storage and use of passive objects such as procedures, functions, code 

skeletons, programs, specifications, and design or requirements information. In 

the generator approach re-use is automatically or semi-automatically achieved by 

some active agent. This could be a high level language compiler, an applications 

generator or a transformation system. In the generator approach, re-use is less a 

matter of manipulating components than one of executing them[8). An important 

dimension of software re-use not explicitly recognised in this framework is the level 

of abstraction involved. Most of the approaches can be targeted at many different 

levels of abstraction, from code at the low level to requirements specifications and 

designs at a higher level. The majority of the current research into software re-use 

is targeted at relatively low levels. 
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Approaches Research Areas Examples 
Composition and Object oriented programming 

adaptation principles Higher order functions 
Building Abstract data types 
Blocks Storage and Component catalogues 

retrieval Keyword retrieval 
Software function frames [60] 

Language based Compilers 
systems Applications generators 

Generators Draco [48] 
Transformation 

systems Transformational 
implementation [6] 

Table 3.1: A framework for software re-use 

3.1 Generator approach 

The generator approach to re-use is based on active agents which generate the 

desired behaviour or code. The re-use occurs through execution rather than the 

manipulation of the generator, and the re-usable patterns or components are con

tained within the generator itself. A characteristic of generator based re-use is that 

it is hard to identify re-used patterns or components in the generators output since 

they are usually more global and diffuse. Generators can be grouped into language 

based systems, application based systems and transformation systems. Generator 

based methods of re-use differ according to the extent which the user is involved. 

For example a compiler will generate code without any help from the user; however 

a transformation system might ask the user which transformation to apply next. 

In both cases, however the generator itself actively performs the re-use. 

3.1.1 Language based systems 

In language based systems, the emphasis is on the notation used to describe the 

desired behaviour. Included in this category are compilers and interpreters of 

general purpose as well as domain specific languages. Most language based systems 

apply their re-use automatically, either producing code or the desired behaviour 

directly. The re-use achieved by these systems is considerable if measured in terms 
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of the object code generated; however its level of sophistication is relatively low in 

that there is a close correspondence between the language given to the generator 

and the generator's output. General purpose systems achieve only limited re-use 

but cover a wide range of applications. On the other hand, domain specific systems 

provide a much higher level of re-use but are limited in their application. Another 

advantage of domain specific systems is that the language may employ terminology 

and notations specific to the domain, making it easier for experts in the domain 

to achieve re-use . For example the UNIX tool "yacc", which is used to generate 

compilers and parsers, has an input language which is very similar to a notation 

commonly used for describing programming languages: BNF (Backus-Naur Form). 

3.1.2 Transformation Systems 

Before examining the possibilities for re-use provided by transformation systems, 

it is necessary to define in a general way what is meant by a transformation system 

and some of the related terms. The following is an abbreviated version of the 

definitions given by Partsch [50]. 

A program scheme is a representation of a class of related programs and is 

derived from those programs by parameterisation. A transformation is a relation 

between two program schemes. A transformation is said to be valid if a certain 

semantic relation holds between the two program schemes. This relation is usually 

either equivalence, weak equivalence or descendance. Weak equivalence ignores un

defined situations whereas true equivalence does not. A descendant relation occurs 

with nondeterminate program schemes when the possible results of one scheme are 

a subset of the possible results of the other. In this case the relation holds only 

over a particular order of mapping. Transformation rules are representations of 

transformations and are either procedural or related schemes. Conditions are often 

attached to these rules so that they are only valid in certain situations. Transfor

mational programming is a method of producing programs from other programs 

such that a certain semantic relation holds. The relation is usually equivalence, the 

original program some form of specification and the produced program an imple

mentation of the specification. A transformation system is an implemented system 

for supporting transformational programming. 
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It is not intended to provide a complete survey of transformation systems in 

this thesis1
. Instead the features of transformation systems that involve or promote 

re-use in some form are discussed and examples given. 

Transformation systems are usually aimed at either implementation or optimi

sation. Implementation is achieved by applying sequences of transformations to 

produce procedural constructs from specification constructs and data type imple

mentations from abstract data types, in effect removing specificational freedoms. 

Optimisation is usually achieved by rearranging rather than removing language 

constructs. The type and quantity of transformations available vary considerably. 

Some systems use catalogues of transformations [6, 56, 48] while other systems pro

vide small but powerful transformations that can be combined to generate larger 

transformations [20]. In both these cases the information provided by the transfor

mations themselves is being re-used. Further re-usability is achieved by the storage 

of sequences of transformations used t.o implement a specific:at.ion. Tn effect this 

information can constitute the design decisions made to implement a system and 

is therefore potentially re-usable as it stands or in modified form. This opens up 

the possibility that if the original specification is modified or re-used in a different 

environment, the previous design can be replayed to create a new implementation. 

Although this technique sounds promising it is hampered by the fact that the choice 

of transformations represents a very low level of decision making. As a result of 

his early work on 'Transformational Implementation' [6] Balzer stated that: 

"Instead of a concern for maintaining consistency, the equally consuming task 

of directing the low level development has been imposed. While the correctness of 

the program is no longer an issue, keeping track of where one is in a development 

and how to accomplish each step in all its fine detail diverts attention from the 

tradeoff question." 

This not only means that the selection of transformations constitutes a great 

deal of work, but it also narrows the re-usable potential of those decisions because 

they are vulnerable to changes in the specification. 

One solution to this problem that has been proposed is to raise the level at which 

1See [50] for a survey of transformation systems 
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decisions are made by generating many of the choices of transformation automat

ically [23). If this is done the human developer need only guide the development 

by providing high level goals to a problem solver which then finds the appropriate 

subgoals or transformations that will achieve the goal. The high level goals can 

then be made available for re-use, and due to their abstract nature their potential 

is far greater. 

The re-use achieved by the Draco system [48) could be classified both as lan

guage based and as transformation based. Prior to producing software in some 

domain using the Draco system, a domain analysis must be performed and it is 

the products of this analysis that are re-used when producing the software. The 

products of a domain analysis are: 

Domain language The domain language is a language whose objects and oper

ations represent analysis information about the problem domain. Analysis 

information is being re-used every time a new problem is expressed in the 

domain language. 

Parser The parser for a particular domain language has two functions. It acts 

as a verification tool for problems expressed in the domain language and it 

converts instances of the domain language into a tree form which is easily 

manipulated by other parts of the system. 

Pretty-printer This pretty-printer is a de-parser which allows parts of the inter

nal form of the problem description to be converted to the external form for 

interaction with people in the language domain. 

Transformations The domain transformations are source to source transforma

tions within the domain language. They represent the rules of exchange 

between objects and operations of the domain and can be used to make op

timisations at a high level of abstraction. 

Components Each software component provides one or more implementations 

of an object or operation in the domain. These implementations are called 

refinements and may be in terms of the original domain language or some 

new domain language. The components of a domain define the semantics of 

a domain language in terms of other domains which can be used to implement 

programs described in the component's domain language. 
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Procedures Procedures are used to describe domain transformations which are 

algorithmic by nature. 

Once the appropriate domain analysis has been performed, software within that 

domain is specified using the domain language. The Draco system then uses the 

parser to check the specification and the catalogue of transformations to annotate 

the specification with possible transformations which the designer can select. The 

designer also controls the refinement process, repetitively restating the problem 

originally specified in other domains known to Draco by selecting appropriate re

finements of objects and operations. Eventually the level of abstraction of the 

developing program must decrease to an executable language domain. The choice 

of refinements presented to the designer may be reduced because each refinement 

records its implementation decisions explicitly so that refinements that contradict 

any previous implementation decisions can be excluded. The designer also has the 

responsibility of deciding what kind of modular structure is produced from each 

refinement. If the refinement is instantiated 'in line', the refinement is expanded in 

the developing program as a macro (with renamed variables etc). If the refinement 

is instantiated as a 'function' then the appropriate function call is inserted in the 

program and the function definition provided if it is not already present. Alterna

tively a 'partial' instantiation is possible, whereby some parameters are instantiated 

in line and others are passed. By using default refinement tactics provided by the 

domain analysis, software can be developed automatically. It will tend to be highly 

inefficient because of the lack of optimisation and the use of inappropriate imple

mentation decisions, however it can be used as a rapid prototype for validation of 

the original specification. 

The major criticisms of the Draco system are that it is incapable of applying 

re-use across domains, the domain analysis is an extremely costly process and is 

only feasible in domains that are already well understood and it is of little use for 

designing systems in new application domains. 

Both of the transformation systems described above are based on catalogues 

of transformations. The work by Darlington [20], however, is based on four trans

formation rules: definition; instantiation; unfolding; and folding. The system is 

designed to optimise recursion equations in the NPL language. The syntax of the 
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main part of NPL is: 

Primitive functions A primitive function symbol is denoted by a lower case iden

tifier and may have zero or more arguments. 

Variables A variable is written as an upper case identifier. 

Recursive functions A recursive function is denoted by a lower case identifier 

and may have zero or more arguments. 

Expressions An expression is built in the usual way out of primitive function 

symbols, parameter variables and recursive function symbols. 

Left hand expressions A left hand expression is ofthe form f( eb ... , en), where 

n > 0 and e~, ... , en are expressions involving only parameter variables and 

primitive function symbols. 

Right hand expressions A right hand expression is an expression, or a list of 

expressions, qualified by conditions. 

Recursion equations A recursion equation is written E ~ F, which means that 

E is defined as F. 

Thus a NPL program is a list of equations such as: 

append(nil,Y) ~ Y (1) 

append(A :: X,Y) ~ A :: append(X,Y) (2) 

g(X,Y,Z) ~ append(append(X,Y),Z) (3) 

This example uses the NPL list notation, which writes 'nil' for the empty list 

and'::' for the list construction operator. Hence the function 'append' joins two 

lists and the function 'g' joins three lists. The transformation rules operate on the 

equations and produce new equations. They are: 

Definition Introduce a new recursion equation whose left hand expression is not 

an instance of the left hand expression of any previous equation. 
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Instantiation Introduce a substitution instance of an existing equation. For ex

ample 'g(X,Y,Z)' can be instantiated to 'g(nil,X,Y)' and 'g(A::X,Y,Z)'. 

Unfolding If E <¢:: E' and F <¢:: F' are equations and there is some occurrence 

in F' of an instance of E, replace it by the corresponding instance of E' 

obtaining F"; then replace F <¢:: F' with F <¢:: F". 

Folding If E <¢:: E' and F <¢:: F' are equations and there is some occurrence in F' 

of an instance of E', replace it by the corresponding instance of E obtaining 

F"; then replace F <¢:: F' with F <¢:: F". 

With reference to the example NPL program, although the function 'g' is con

veniently defined in terms of the append function, its execution is inefficient as 

it builds up an intermediate list along which iterates. The user can initiate an 

attempt to optimise the function 'g' by supplying the system with instantiations of 

one or more of the functions parameters, for example: g(nil,Y,Z) and g(x :: X,Y,Z). 

Working with one instantiation at a time, the instantiation transformation is used 

to produce a new version of the equation defining g. 

g(nil,Y,Z) 

g(x :: X,Y,Z) 

<¢:: append(append(nil,Y),Z) 

<¢:: append(append(x :: X,Y),Z) 

(3) 

(4) 

For every possible combination of unfoldings in the new equation, an attempt 

is made to find any foldings that meet certain criteria ( eg they do not produce non 

terminating recursions). If such a folding is found the result is presented to the 

user who can either reject the new equation, in which case the search is continued, 

or accept the new equation, optionally allowing the search to continue. Taking the 

first instantiation (3) the only possible unfolding comes from equation (1) giving: 

g(nil,Y,Z) <¢:: append(Y,Z) 

For the second instantiation ( 4) there are two possible unfoldings. The first is: 
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g(x :: X, Y, Z) ¢= append(x :: append(X,Y),Z) 

however there is no acceptable folding possible (the only possible folding is the 

exact opposite of the folding that has just been performed). The second possible 

unfolding is: 

g(x :: X, Y, Z) ¢= x :: a.ppend(append(X,Y),Z) 

This can be folded using equation (3) and the result is: 

g(x :: X, Y, Z) ¢= x :: g(X,Y,Z) 

Providing that these two equations are accepted by the user the transformed 

program becomes: 

append( nil, Y) ¢= y 

append(x :: X,Y) ¢= x :: append(X,Y) 

g(nil,Y,Z) ¢= append(Y ,Z) 

g(x :: X,Y,Z) ¢= X :: g(X,Y,Z) 

The new version of 'g' defined by these equations is more efficient than the 

original definition of 'g' because the first list argument is only traversed once (by 

'g') rather than twice (once for each 'append' in the original definition). 

Many optimisations can only be achieved by the introduction of an appropriate 

auxiliary function definition. In [14] Burstall and Darlington describe the defini

tion of these functions as 'eurekas' and show how they can be generated from the 

equation that is being optimised. Darlington also describes additional logic con-
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structs and transformations on these constructs which can be used to synthesise 

programs from specifications. The two major criticisms of this work are the degree 

of assistance required from the user and the small scale of the problems for which 

it has been shown to work. Some user interaction could be eliminated by storing 

appropriate base cases for data types and using the typing information of NPL 

to provide a choice of appropriate instantiations. For example, some apropriate 

instantiations for lists are: (nil), (A::X), (A::B::X), etc. 

If the problems of scale can be overcome , this work has two important results 

for re-usability . Firstly it is capable of re-using information about programs (in 

the form of transformations) to implement and optimise specifications. Secondly 

it helps to remove the criticism that highly generalised specification and program 

components produce inefficient code, because it is capable of removing these inef

ficiencies. 

3.2 Re-use based on passive objects (Building 

Blocks) 

The passive object approach to re-usability addresses two groups of problems. The 

first concerns the maximisation of re-usable potential with composition, generali

sation and adaptation principles and the second deals with the methods of storage 

and retrieval of appropriate 'building blocks'. For large scale re-use to be achieved 

both problems must be tackled. The ability to find appropriate re-usable objects is 

essential if there are a large number of possible objects to be re-used and the com

plexity of modern software makes it extremely unlikely that appropriate software 

will already exist so the generalisation, combination and adaptation of existing 

components is necessary. These problems can apply to active components (ie. gen

erators) as well as passive ones, though they are more apparent for large numbers of 

small generators (such as transformations) than small numbers of large generators 

(such as compilers). 
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3.2.1 Maximising component re-usability 

Researchers in this area place different emphasis on the alternatives of component 

adaptation and generalisation as well as the problem of component composition. 

Adaptation techniques are based on the view that in many cases, existing compo

nents will not be entirely suitable for the current task but the work in modifying 

the component will be less than the work of re-building it. An alternative approach 

is to attempt to generalise the component to the extent that it can be re-used with

out alteration. Composition principles provide for the construction of the desired 

component from a number of smaller components. Composition principles are usu

ally determined by the form of the objects being composed. Two common levels 

for composition are program level and sub program level. 

At the program level, complete programs must be combined, and composition 

techniques must provide for the transfer of data and control between the programs. 

As with most forms of composition, standardisation of interfaces is important as 

it increases the number of programs that can be successfully combined. Most 

operating systems provide job control languages, which can be used to compose 

tools by joining together complete programs; the 'shell' language available on UNIX 

is an example [33]. The principal mechanism for composition in this language is the 

pipe (represented by a vertical bar 'I') which connects the output of one program to 

the input of another. Reusable programs are then written as filters which perform 

some action on the data passed through it. The success of this method is dependent 

on each program producing its output in a straightforward fashion and the use of 

text as a standard representation. For example, suppose it is necessary to know 

how many times Fred is currently logged on and the following three utilities are 

available: who outputs a line of information (including user name) for each user 

that is currently logged on, grep prints each line of its input that matches a pattern 

given as a command argument and lc counts the number of lines on its standard 

input. The command that will answer our question is: 

who I grep Fred I lc 

At the sub program level construction from components IS a key feature of 
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all modern programming languages. These provide constructs (such as procedure, 

function and module definitions) for isolating logical units of a program which 

can then be re-used throughout the program. The fact that these components 

can be used in place of the basic units of the language, means that they can 

easily be combined to create many different behaviours. Although this is very 

effective at promoting low level re-use it fails at the higher level because there is 

no mechanism for changing lower level details when re-using high level structure. 

A small example is the re-use of a sorting algorithm: one of the many 'low level' 

details that we may wish to change is the method of comparing the elements that 

are being sorted - we might wish to sort on several different keys and to several 

different orders. Ideally we would like a simple method of defining the 'generic' 

sorting component and then combining this with a component which defines an 

ordering over which the sort should take place. A somewhat unsatisfactory solution 

to this problem at the level of COBOL source code is described by R G Lanergan 

and C A Grasso [36). They recognise the need for both re-use by composition from 

unchanged functional modules and instantiation of 'program logic structures' which 

are essentially basic program structures with empty lower levels. They describe the 

re-use practiced at Raytheon's Missile Systems Division, Information Processing 

Systems Organisation. This is based on a library of approximately 3200 COBOL 

modules which is organised into eight categories and a small collection of COBOL 

program logic structures. They report that the results of a classification exercise 

on existing software, developed without program logic structures at Raytheon, 

suggested that the principal program logic structures (edit, update and report) 

where applicable in the following proportions. 

• edit 20% 

• update 20% 

• report 45% 

The use of both the programming logic structures and re-usable functional modules 

was found to give an average of 60% code re-use, but the major gain was found in 

the area of maintenance. The use of logic structures means that the maintenance 

programmer is already familiar with the structure and much of the code of the 

system. The unsatisfactory points in this approach are the level of abstraction 
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at which it is based (COBOL source code), the narrow domain in which the re

use is possible and the informal way in which the program logic structures are 

instantiated and modified. 

Many languages provide forms of these parameterised program structures. For 

example, imperative languages such as Pascal, allow procedures and functions to 

occur as arguments to other procedures and functions. A procedure which takes 

one or more procedures or functions as arguments can be seen as a program logic 

structure, with the parameter providing a slot for lower level details to be filled 

in. Functional programming languages are particularly suited to this form of re

use since higher order functions fit very naturally into the languages framework, 

and functions are often treated in exactly the same way as data. In this context, 

powerful higher order functions and data structures may be created and used to 

combine other functions and data structures - these higher order functions take 

the place of Lanergan's program logic structures. Hughes [30] describes two new 

kinds of 'glue' for combining components that are provided by some functional 

programming languages. The first of these is the use of higher order functions and 

the second is the use of lazy evaluation. 

An example of a commonly used recursive structure is that of folding up a list 

using an operator and an identity element. Using the notation of Bird and Wadler 

[9]: a list with n elements e1 . . en is denoted [e1 , e2 , • • , en], the empty 

list is denoted [] and the list x with the element a added to the front is denoted 

(a: x). Thus if we fold the list [e 1 , e2 , • • , en] with operator EB and identity 

element i the result is e1 EB e2 EB ... EB en EB i. The ability to define higher 

order functions means that we can define a general purpose folding function fold 

as follows (function application is denoted by juxtaposition): 

fold (EB) i [] = i 
fold (EB) i (a:x) = a EB (fold (EB) i x) 

In this definition the braces enclosing the operator are necessary to show that 

the operator is not being applied to any arguments but is simply being passed as 

a parameter (ie. 'fold (EB) i' is not the application of operator EB to arguments 

fold and i, but the application of function fold to the operator EB and identity 
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element i.) 

The function fold is a highly re-usable combinator that can put together many 

binary operators and identity elements to form a family of folding functions: 

sum x = fold (+) 0 x 

'sum' finds the sum of a list of numbers; 

product x = fold (*) 1 x 

'product' finds the product of a list of numbers; 

and x = fold (&) True x 

'and' finds the conjunction of a list of boolean values ('&' denotes the conjunction 

operator); 

concat x = fold (++) [] x 

and finally 'concat' is the list concatenation function which produces a list of el

ements from a list of lists of elements by appending together the inner lists ('++' 

denotes the list append operator). 

The second 'new' type of glue provided by some functional languages is lazy 

evaluation. Given two functional programs 'f' and 'g' where the type of g's output 

is compatible with the type off's input, a new program can be created using the 

function composition operator'.'. This creates a 'pipelined' program which applies 

the second argument and then the first argument in turn: 

(f . g) i = f (g i) 
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In the case of most programming and job control languages, such a composition 

would mean that the whole result of 'g' must be produced before f can begin 

processing. However, using lazy evaluation, 'g' only produces output when asked 

to do so by f, and even then, it only produces as much as is required by 'f'. Also 

the application of function 'g' to the input will terminate as soon as the enclosing 

application of 'f' terminates. This means that g can be defined to produce infinite 

output (as it will be forced to terminate when 'f' terminates), thus allowing loop 

bodies (g) to be separated from termination conditions (f) and both to be re-used 

independently. The data passed between programs this way is not limited to any 

particular data type since the lazy evaluation mechanism includes the use of any 

type, including structured ones. For example 'g' could construct an infinite tree and 

'g' could search the tree for a termination condition. The lazy evaluation performed 

by many functional languages is more general than the UNIX pipe mentioned 

previously, since the UNIX pipe only provides for lists of characters. 

Another important re-usability mechanism provided by many functional lan

guages parameterised (or polymorphic[44]) types. Modern functional languages 

such as Miranda 2 [59] are usually strongly typed - that is each expression and each 

variable has a type that can be deduced by a static analysis of the program text, 

and any inconsistencies in the type structure result in a compile time error mes

sage. The use of strong typing is accepted as an important software engineering 

technique and an essential part of modern programming languages, as it frequently 

leads to logical or typographical errors in source code being detected at compile 

time. Unfortunately, strong typing can act as a major block to component re-use. 

For example, there are many different types of list generated from the many possible 

element types for lists. However, there are also many list processing functions that 

are entirely independent of the element type (the 'head' and 'tail' of a list as well 

as its length are examples of values that can be computed without any information 

about the type of the list elements). Without the possibility of parameterising the 

type 'list' with its element type, we must define new functions for each different 

list type and effectively resort to re-use by modification rather than generalisation. 

Polymorphic types are types with parameters, or "many forms". A language 

which allows modules, procedures or functions to be defined over polymorphic 

2Miranda is a trademark of Research Software Ltd. 
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types allows important generalisations of components that are not provided my 

monomorphically typed languages. To continue the list example, we can have a 

polymorphic type 'list of*' where*, **etc. are used as generic type variables. We 

can then define various functions over this polymorphic type: 'length' might take a 

'list of*' as parameter and return a number denoting the length of the list; 'head' 

might take a 'list of*' and return the'*' which is the first element of the list; 'tail' 

might take a 'list of *' and return the 'list of *' that is the remainder of the list 

with the head removed. Since these functions all have a well defined (polymorphic) 

type, they can be legally declared and re-used without modification. Any particular 

re-use of these components may be a specialisation in which the type variable 

becomes instantiated or a generic re-use in which the type variable remains free 

(in which case the component it is used to construct will be polymorphic). This 

contrasts strongly with monomorphically typed languages such as Pascal, where 

each polymorphic use of the abstract functions would require a modified function 

definition. Although re-use might still be possible using modification techniques or 

pre-processors, these are likely to involve more effort in achieving the re-use and 

will also create larger object code. 

An increasingly popular approach to the construction of software from building 

blocks is the object orientated approach. An object is an entity which consists of a 

state and a set of operations (or functions) which access and modify the state. The 

object oriented approach essentially involves the construction of systems as a set 

of objects which communicate by passing messages. One construction mechanism 

that is of particular importance to software re-use is inheritance. This allows an 

object to 'inherit' the behaviour of other objects and a particular object may be 

inherited by many other objects. Possibilities for re-use can be increased if selected 

parts of an object can be inherited without change while other parts are redefined 

by the inheriting object without changing the inherited object. Such an object can 

be described as the difference between what already exists and what is required. In 

(19] Curry and Ayers describe three construction mechanisms: extension, variation 

and union. Extension allows the addition of state and operations to the object 

and is necessary when the inherited object is correct but insufficient. Variation 

allows the definition of operations to be changed when either the functionality or 

the implementation is not quite that which is required. Union is a form of extension 

achieved by combining the functionality of several inherited objects. 
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The inheritance mechanisms described above are a more powerful version of 

the procedure, function and class mechanisms provided in high level languages. 

Although these are important they do not support re-use at high levels of ab

straction. They allow for the re-use of objects whose top level structure must be 

altered or extended but whose lower levels may remain the same. A mechanism 

is also needed whereby the top level structure remains the same but the lower 

level structures can be replaced by suitable alternatives. Parameterisation is such 

a mechanism and allows instances of parameterised objects to inherit different ob

jects for different purposes, thus allowing the re-use of parameterised objects as 

well as inherited objects. Since the parameters of an object may define types as 

well as functions, this mechanism takes the place of both polymorphism and higher 

order functions used in functional languages. If the techniques of parameterisation 

are sufficiently powerful then parameterised objects should be capable of taking 

the place of the program logic frames previously described. A simple example of a 

parameterised object and its re-use is given by Goguen84 [25]. 

" As an example of parameterised programming, consider a parameterised mod

ule LEX[X] which provides a lexicographic ordering on lists of X's where the param

eter X can be instantiated to any set with a designated ordering relation. Thus, if ID 

is a module that provides identifiers (and in particular, words) with their usual (lex

icographic) ordering, then LEX[ID] provides a lexicographic ordering of sequences 

of words ( and thus, for example , on book titles). Similarly, LEX[LEX[ID]] pro

vides a lexicographic ordering on sequences of phrases (such as might be used in 

sorting a list of book titles), by instantiating the ordering that LEX[X) requires 

with the one that LEX[ID] provides, namely lexicographic ordering. " 

Gougen also describes the use of theories and views to ensure that only suitable 

actual parameters are substituted for formal parameters. A theory is a collection 

of properties of an object which fall short of a full description of the object. It may 

simply be a list of the types and operators expected or may include information 

about the semantics of an object. For instance in the previous example we would 

expect X to have an ordering relation over some sort. If we call the ordering relation 

'<'then a property of the actual parameter should be that for all a, band c where 

a, b and c are members of the sort, a < b and b < c implies a < c. A view describes 

the relationship between a module and a theory. Taking a hypothetical object for 
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the natural numbers then there are at least two views of the object which would 

satisfy the above theory. One view would connect the '<' operation in the theory 

with the usual '<'operation associated with natural numbers, and the other view 

would connect the'<' with the'>' operation on natural numbers. Either view is 

valid when applied to the LEX example; one view would give an ascending ordering, 

the other a descending ordering. 

Another important feature of the object orientated approach is the encapsula

tion or information hiding that can be achieved. Curry and Ayers [19) point out 

that 'Information hiding is a re-usability mechanism since those parts of a system 

which cannot 'see' information that must change can be re-used to (re) build the 

system when that information does change. 

3.2.2 Component Libraries 

The component library approach to software re-usability divides itself into the 

issues of what should be stored and how it should be retrieved. Most of the re-usable 

components currently stored are simply code modules or routines, sometimes with 

some associated documentation. Examples are the standard C libraries provided on 

UNIX systems [33) and the growing libraries of re-usable modules being developed 

by specific enterprises such as the Bank of Montreal [46) and Hartford Insurance 

[18) to meet their own internal needs. This commonly used technique of storing 

low level components without additional information or higher level representations 

[36) produces only limited leverage and a low level of component understandability. 

Matsumoto [43) focuses on these problems and points out two major features which 

enhance re-usability ; understandability and abstractness. For any object to be re

used it must be understandable so that it can be easily retrieved and used or 

modified accordingly. Abstractness enhances the leverage obtained by re-using an 

object as a more abstract object will be associated with more source code. He 

suggests storing components at three levels of abstraction: source code, design and 

requirement. The requirements can then be used as an abstract presentation of the 

module and traceability between the presentation and re-usable program modules 

can be established to simplify re-usability . 
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Wood and Sommerville [60) identify six types of re-usable component as follows. 

Functions These are stand alone components which return the same value irre

speCtive of the environment in which they are invoked and do not affect that 

environment. 

Procedures These can be normal procedures as well as value returning proce

dures. 

Declaration packages These are collections of declarations which define an en

vironment. 

Objects These are components which have both an associated set of operations 

and an in-built state. 

Abstract data types These are components which are, simplistically, templates 

for objects which may be created. 

Sub-systems These are usually collections of components which are devoted to 

some particular task. 

The advent of transformation systems [50) has added two types of component to 

this list. 

• Active components (transformations). 

• Design components, which provide information about design steps used. 

Complete systems and programs are not included in this list, essentially because 

they are not normally used as components. However, re-using systems without 

modification is the most cost effective form of re-use, the only difficult task being 

the location of the most appropriate system. 

There are three important measures associated with component library re

trieval: completeness, recall and precision. In a given retrieval situation (ie. when 

trying to retrieve components suitable for a particular task), completeness is a mea

sure of suitable components retrieved relative to the number of suitable components 
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in the library; recall is the overall number of components retrieved (both suitable 

and unsuitable); and precision is a measure of the number of suitable components 

retrieved relative to the recall. Ideally a retrieval method should produce a high 

level of completeness and precision along with a low (but non zero) level of recall 

(so that there-user is given some components but is not swamped with too many). 

This requirement is often unrealistic because the interests of high levels of com

pleteness and precision will often contradict the requirement for low but non zero 

levels of recall. This stems from the fact that the above definitions assume a com

ponent is either suitable or unsuitable. This is obviously unrealistic in most cases, 

and a better model is achieved using levels of suitability. Ideally the level at which 

a component is accepted as a candidate for retrieval gets higher as the number of 

potentially retrievable components grows, thus keeping the recall reasonably small. 

Two diverse examples might be a request for a component that does not exist in 

the library but is similar to a few components and the request for a component 

that exists in many different forms some of which are more suitable than others. In 

the first case the retrievable sample is small and so a low level suitability is used. 

Thus a system that retrieves a few components that are not highly suitable, may 

still be considered as precise. In the second example, the retrieval sample is large 

and a high level of suitability is used. Thus a system that leaves many suitable 

components unretrieved whilst retrieving a collection of more suitable components 

may still be considered as complete. 

There are a number of existing approaches to component library retrieval. The 

crudest of these relies on an expert's knowledge of where to find appropriate com

ponents. Improvements can be made using keyword matching techniques; however 

these suffer from the problems of excessive generality, over-rigid classification and 

difficulties in describing component semantics using keywords[60]. 

Prieto-Diaz and Freeman [21] describe a faceted classification scheme that pro

vides solutions to the problems of excessive generality and over-rigid classification. 

Each component in the library is described using a term for each of six facets: Func

tion, Objects, Medium, System type, Functional area and Setting. These terms 

are each taken from the set of terms defined for that facet. Table 3.2 gives some 

examples of terms from each facet. 
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Function Objects Medium System type Functional area Setting 
add arguments array assembler accounts payable advertising 
append arrays buffer code generation accounts receivable parts repair 
close backspaces cards code optimisation analysis structural parts store 

Table 3.2: Example terms for each facet. 

To retrieve a component, six terms including zero or more wild card symbols, 

are listed, one for each facet and the system then retrieves the list of matching 

components. Facets are ranked, in the order given above, for relevance; component 

function is the most relevant and component setting is the least. Using this ranking, 

components which are retrieved using wild cards are listed according to relevance. 

Although the use of wild cards provides a crude method of generalising component 

specifications, query expansion provides a more sophisticated approach to looking 

for 'close' matches. Within a facet, each term is related to every other by a measure 

of "conceptual closeness". A request can be expanded by specifying the facet and 

maximum conceptual separation. In this case, any components which match on 

the other facets and lie within the maximum separation specified are listed in 

ascending order of separation. An additional feature of the system described by 

Prieto-Diaz and Freeman is the ability to rank retrieved components according 

to their re-usability, thus helping the user to quickly decide on the most suitable 

component. 

Although the work of Prieto-Diaz and Freeman is an improvement on the 

straightforward keyword and classification techniques it replaces, there is still a 

dependency on names (or 'terms' according to Prieto-Diaz and Freeman) to de

scribe the function of components. Although the 'Objects' facet provides a little 

extra information, this only concerns the objects manipulated by the component 

and not the nature of the manipulation. Also, it is not possible to specify compo

nents that manipulate several different objects. 

Wood and Sommerville [60] attempt to overcome this problem by usmg a 

method for searching libraries based on semantic descriptions of components. Their 

method uses a collection of software function frames which describe 'basic' soft

ware functions by relating them to the objects they manipulate. Some examples of 

functions for which frames might be provided are: compile, search, control, print, 

communicate. Each software function frame has a number of labelled slots that 
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relate it to the objects that perform the function, the objects that are manipulated 

by the function and the objects that are produced by the function. Both the objects 

and function frames may have modifiers describing them attached. A component 

is described by taking a software function frame and filling in one or more of the 

slots. An example given by Wood and Sommerville is based on the UNIX software 

component 'grep' which searches a file for a specified pattern. 

Function: search 

Actor: grep 

Object that is searched for: pattern 

Object that is searched: file 

In this case the slots have been filled by the grep, pattern and file objects, 

however the function and objects do not have any modifiers. A component 'fgrep' 

that searches ordered files using a binary chop could be described by the addition 

of modifiers: 

Function: search Has property: binary chop 

Actor: fgrep 

Object that is searched for: pattern 

Object that is searched: file (has property: ordered) 

Components are described by selecting an appropriate software function frame 

and then filling in as many of the slots as possible. Retrieval is achieved by matching 

the specified function frame with the function frames of components in the library 

and listing any matches found. 

Although this method provides considerable advantages over the key word ap

proach by providing some details of the semantics of components it still relies on 

names to describe the components function. 
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3.3 Deficiencies of current approaches 

The principal deficiency of current approaches to component library retrieval is 

that they all rely on names to describe the basic function of a program. This is 

inadequate because the single most important characteristic of a component (from 

the re-users point of view) is its function and individual names are insufficient to 

describe anything other than a few common functions. 

The assertion that a components function is generally the single most important 

characteristic of a component, is well supported in the literature. The ordering of 

facets used by Prieto-Diaz and Freeman [21) to classify components is arranged so 

that the most important facet appears first - they place the 'function' facet first. 

Wood and Sommerville (60) state that " .. in general, software components perform 

a function and furthermore it is this function which characterises the software com

ponent .. ". Other characteristics of components that can be used for component 

library retrieval are: objects manipulated or returned; environment of component; 

source language and application domain. Whilst a mismatch in one of these char

acteristics may mean that the effort of re-use is too high to be worth while, there 

is still a reasonable chance of re-usability provided the function of a library com

ponent is close to the desired function. However, if the 'source code' characteristic 

matches but the 'function' characteristic does not, the chances of any re-use are 

slight. An interesting point to note is that there is a strong connection between the 

'object' and 'function' characteristics- in many situations the objects manipulated 

form an important part of the components functionality. For this reason, the 'ob

ject' characteristics can often be used as a guide to the components functionality. 

However, it is clear that for a particular group of objects, there are usually many 

functions that could be applied, and the use of 'object' characteristics without any 

additional information about functionality would lead to a high level of imprecision 

in retrieval. 

Having established that, from the point of view of retrieval, the single most 

important characteristic of components is their functionality, the assertion that 

individual names are inadequate for describing functionality must be justified. 

Given that the names used must be ones that describe the same or similar func-
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tionality to different people, the number of appropriate names available is small 

compared to the number of components in a reasonable size of library. It follows 

that the number of different components described by a particular name will be 

large and retrieval precision low. An exception to this might be for highly domain 

specific programs and systems. In this case the terminology of the particular do

main may provide names that describe very specific functions and are commonly 

used within the domain. However, this is precisely the area in which most of the 

re-use currently practiced is taking place. To take full advantage of the re-usable 

potential of components, the names that describe them must not be application 

domain specific. 

For many components there is no obvious name that provides even a good 

abstraction of its function. The only alternatives are to use a name which expresses 

a very general abstraction and therefore covers a very large number of components, 

or to use an obscure name (if a suitable one exists) that is unlikely to be used by 

anyone else. 

As an example, consider the UNIX program 'make' which takes as parameters 

the name of a file, a description of the inter dependencies between a group of files 

and a set of rules describing how to build a file from its dependencies. Each file 

has an associated 'time of last update' which is used to ensure that the file to be 

made is up to date with respect to its dependencies. If this is not the case then 

the given file and any out of date dependencies are re-built according to the given 

rules. 

Some possible names for this components function are: 'make', 'build', 'cre

ate','maintain' and 'update'. The first three of these names could be considered 

as synonyms for the same abstraction. Unfortunately this is an abstraction com

mon to many components: If it is used to retrieve components from the standard 

UNIX library, 3 then 48 out of approximately 1000 components in the library are 

retrieved. This represents a precision ratio of 1 in 48 (since only one of the com

ponents is suitable for re-use). In the context of large libraries (more than 10,000 

components) this precision ratio is clearly unacceptable. 'maintain' and 'update' 

3 This can be done using the unix command 'man -k'; however since this does not cope with 
synonyms it is necessary to use this command once for each synonym 
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represent altogether different abstractions of the components function. 'maintain' 

is somewhat obscure and so is unlikely to be used by there-user and 'update' repre

sents another very general abstraction of component function and gives a precision 

ratio of 1 in 10. 

Another problem with the use of names to describe components functions is the 

fact that as libraries become larger, an increasing number of components must be 

described using the same name, since the name space (number of names) cannot 

grow, without the introduction of domain specific names. As a result, the use of 

names on a library of 1000 components may work reasonably, but extending the 

library to 10000 components reduces performance by a factor of ten. 

Finally, names are likely to prevent re-use occurring across application domains, 

where completely different domain based names are used to describe similar func

tionalities. 

3.4 A new approach to component library re

trieval 

Current methods of component library retrieval suffer from our inability accurately 

to summarise the behaviour of software components. The use of key words is de

pendent on the existence of a commonly agreed word for the components function, 

and works well for components such as 'sort' but fails for more diverse components. 

The use of keywords is also a barrier to re-usability across application domains 

which have different terminology for functions that are similar or identical. Re

trieving components using a classification scheme suffers from similar problems to 

the keyword method of retrieval: It relies on the existence of a commonly agreed 

classification for the component. Also, classification schemes are orientated around 

the component's use, and hence tend to divide components according to applica

tion domains. As a result, finding suitable components from different application 

domains is very difficult. The use of software function frames is an improvement 

on the keyword and classification approaches since it attempts to describe some of 

the properties of the component. However it still relies on names of software nmc-
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tions to a very large extent because it does not provide a mechanism for describing 

complex functions as a combination of simple functions. 

The principal objective of the work described in this thesis is to fill this gap 

in the field by finding and evaluating improved methods of describing components 

and retrieving components from libraries using these descriptions. 

These methods must: 

• Rely on the form of a description rather than the names. 

• Allow the user to describe the component at any level of detail they require. 

It is particularly important that the component can be described in a more 

informative fashion than by simply categorising or naming its function and 

the objects that it manipulates. 

• Provide for the possibility of re-use across application domains. 

• Retrieve components within reasonable time scales. A reasonable time for 

retrieving a component is one which is substantially less than the time it 

would take to obtain the component by another method (including rebuilding 

the component). 

• Be capable of high precision and a high level of completeness. 

The solution proposed involves two main parts. These are firstly a method 

of describing components, a.nd secondly a method of comparing component de

scriptions so that components matching a given description may be retrieved from 

a library. The components are described using formal property models. These 

are abstract descriptions of components, and only include the key properties of 

the component they describe. The are written in a formal language and thus their 

meaning is derived from their form rather than the names they use. It is the formal 

nature of the component models which radically differs from existing approaches 

and provides the possibility of accurate and unambiguous descriptions that can re

trieve components across application domains. The language in which models are 

written is sufficiently powerful to allow the model writer to describe a component 
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at any level of detail. Models can be compared by proving the properties of one 

from the properties of the other or vice versa. A view between the two models 

may be used to assist this proof and allow similar components to be compared 

successfully. 

Each component in the library has one or more models describing it and these 

models are compared with models given by the libraries users. Any models that 

are successfully compared are ranked by suitability and re-usability and a list of 

the highest ranked components is presented to the library user. 
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Figure 3.1: Model Based Retrieval 
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The feasibility of this approach depends on several factors: 

• The availability of a suitable language for writing component models. 

• The effort required to write models of desired components. H this effort starts 

to approach the effort of rebuilding the component from scratch the retrieval 

method is no longer useful. 

• The ability of librarians and component contributors to produce models that 

will be similar to the models requested by library users. 
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e The practicality of defining a 'similarity' relation between models. 

• The practicality of automatically searching libraries for 'similar' models. 

Ideally these factors should be tested in a full scale library ( > 10000 components) 

containing a variety of component types (code, specifications, requirements, design 

etc). To carry out such a test, a suitable library would need to be set up or an 

existing one used. Each component in the library would need to be given one or 

more model(s) to describe it. Obviously such an experiment is beyond the resources 

of the research carried out in this thesis. The alternative approach which has been 

adopted is to investigate the feasibility of the method in a limited context. This 

context involves a small library of components that are all written in the functional 

language Miranda. 

Miranda and its associated library were chosen for the following reasons: 

• A library of Miranda components already existed at Durham. 

• The nature of the language Miranda means that components written in Mi

randa are highly re-usable . Some of the relevant features of Miranda that 

have been introduced earlier in this chapter are: Higher order functions, pa

rameterised types and lazy evaluation. 

• The pure (no side effects) nature of Miranda means that components written 

in the language are more tractable to mathematical reasoning than compo

nents written in languages which permit side effects. 

• Many of the properties of a component can be inferred from the component 

itself thus reducing the effort needed to set up a model based retrieval system 

for the library. 

The remainder of this thesis describes the method of model based component 

library retrieval that has been devised and the subsequent investigation into the 

feasibility of this method. 
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Chapter 4 

Retrieval by formal property 

descriptions 

There are two essential ingredients to any method of component library retrieval. 

The first of these is a method of describing components and the second is a method 

of searching for components using these descriptions. The initial section of this 

chapter deals with the language for describing components and the latter sections 

describe the method for comparing components. 

4.1 Component descriptions 

The primary goal of the component description language is to describe the function 

of a component and the type of objects manipulated by the component without 

relying on the meaning of names contained in the description. This suggests the 

use of a language in which meaning is derived only from the form of the description 

rather than the names used by the description- in other words a formal language. 

A complete functional description of a component could be provided by a full 

formal specification of the component; formal specifications are unsuitable for a 
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number of reasons[60]: 

• They require too much effort to produce. 

• Specifications that are semantically identical but syntactically different are 

very difficult to compare. 

• Defining a 'similarity' relationship between specifications is difficult. 

These reasons for the unsuitability of formal specifications for retrieving compo

nents are worthy of further discussion. Firstly, for the re-use of a component to be 

advantageous, the effort of re-using should be (substantially) less than the effort of 

rebuilding the component. Although the effort of producing a formal specification 

for the component should be less than the effort of building an efficient implemen

tation, it is closely related to the size of the component and forms a substantial 

part of the effort needed to produce the component[27]. It is possible that the 

desired component is itself a specification, in which case a formal specification is 

clearly an unacceptable means of retrieving the component. 

Secondly, the comparison algorithm must take the semantics of the specifica

tion language into account, and must therefore have the capabilities of a theorem 

prover. For substantial proofs, such as the ones required to prove theorems about 

a specification and hence compare specifications, it is essential to divide the overall 

proof into a number of sub proofs (which may in turn need to be divided). Such 

a proof therefore takes on a similar structure to a large program or specification. 

The limitations of current theorem proving technology mean that whilst a theorem 

prover may be capable of proving the sub proofs and also of constructing the over

all proof from the sub proofs, it is not capable of the strategic planning necessary 

to identify the sub proofs and is therefore not capable of completing large and 

complex proofs without human assistance[13]. 

Finally, a retrieval method should be capable of retrieving not just components 

that meet the given requirements precisely, but also ones that meet only some of 

the requirements or are similar in some sense. To use specifications for component 

library retrieval, the notion of 'similarity' between specifications must be precisely 

defined and an algorithm for detecting similarity must be available. 
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The alternative proposed in the research reported by this thesis is to describe 

the component in terms of an abstraction that covers only the most important 

aspects of the component. The description should still be in a formal language, 

but provided the level of abstraction is sufficiently high, it should be small enough to 

produce without a prohibitive effort and the task of proving equality of descriptions 

should become feasible. To emphasise their differences from formal specifications 

and the fact that they are scaled down specifications which only describe the key 

features of a component, the component descriptions are referred to as "models" 

of the component or "property models". 

Although a property model is similar to a specification in that it describes the 

function of a component without necessarily describing a method of computing 

the function, there are several key differences between the two which reflect their 

different objectives: 

• A specification is intended to provide a precise and unambiguous description 

of a component which completely describes its desired behaviour. A property 

model may be incomplete in the sense that it does not describe all of the 

desired behaviour. 

• A property model need only describe the key objects and operations of the 

component it models, whereas a specification should describe all objects and 

operations. 

• A property model can replace groups offunctions or objects with abstractions 

which may consist of fewer functions, or fewer objects or functions with fewer 

arguments. 

• A specification can be arbitrarily large, but a model must always remam 

small, even if a large component is being described. 

• A specification is used to ensure that the component described by the speci

fication fulfils its intended role, and also to provide a representation against 

which the implementation can be verified. A property model is used to de

scribe the functions and operations of a component so that the component 

may be retrieved from a library by comparison of required and stored models. 
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Although property models assist the retrieval of components "similar" to the 

desired component, the ability to compare models for similarity rather than equality 

is important. In addition to the property models, this thesis proposes a similarity 

relation based on the existence of a 'view' between models, over which they can 

be shown as equivalent. Before giving details of this relation, the formal language 

used to describe components is introduced. 

4.2 The Property Model Language "Miramod" 

One of the requirements of a component library retrieval system is its applicability 

to a wide variety of components. This implies that the property model language 

must be capable of describing many types of component. A common method of 

coping with such a variety of components is to describe each in terms of its function 

and the objects manipulated by it [21, 60]. As the objective is not to rely on the 

meaning of names to describe the functions and operations, it is necessary to be 

more precise about what is meant by these terms. A components 'function' may 

either be a pure function in the mathematical sense, or an operation which depends 

upon and/or alters a state. Likewise the objects manipulated by the component 

may be data types or objects which contain a state. It is also possible that the 

component is best described directly as an object or data type, rather than as a 

function or operation. 

The following list gives examples of some common classes of component, and 

their descriptions in terms of functions, operations, data types and objects. 

Firstly some examples of components which are sub programs are listed, along 

with the method of describing these components: 

Functions (pure) can be described by their function and their domain and range 

types. 

Procedures (and value returning procedures) can be described by their operation, 

the state object(s) that they manipulate and their parameter types. 
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Modules (in the sense of component collections) can be described in terms of each 

individual component (in other words as a collection of functions, operations, 

data types and objects). 

Objects (with procedures and a built-in state) can be described as a collection of 

operations on a state. 

Data types (Abstract or concrete) can be described directly as data types. 

Similar methods can be used for describing programs: 

Single function programs (e.g. a compiler) can be described by their function 

and domain and range types. 

Interactive I Multiple operation programs can be described as a collection 

of operations on a state. They can also be described as functions, however 

the 'collection of operations' model often provides a better abstraction. 

Finally, complete systems can also be described: 

Interactive I Multiple operation systems can be described as a collection of 

operations on a state. 

Rather than providing separate notations for functions and operations, it is 

possible to describe operations as functions which take a state as one of their 

parameters and return a state as part of the result. Likewise, objects can be 

described as collections of operations over a state data type. 

The component description language is therefore capable of describing the prop

erties of one or more functions and data types. It is based on extensions to the 

functional programming language Miranda[59] - hence the name "Miramod". Mi

randa has been used as a basis because: 

• The pure functions used by Miranda are easy to reason about since they 

contain no side effects. 
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o The notation is clear and concise, allowing models to be produced with the 

minimum of effort. 

• The notation is based on the standard ASCII character set, and hence stan

dard tools such as text editors, can be used to manipulate the models. 

• The test library is populated by Miranda components and in many cases 

these act as their own models, thus avoiding the need to produce a model for 

every component in the library. 

• The similarity between component and model notation reduces the learning 

necessary for users of the retrieval system 

• Higher order functions lead to a powerful notation and a high degree of re

usability. 

• The principles of strong typing allow a large percentage of errors to be de

tected automatically. 

Although Miranda is used as a basis for the component description language, 

it has several shortcomings from the point of view of describing component models 

(Miranda is essentially a programming language rather than a specification lan

guage). 

• Miranda only provides a notation for defining functions and therefore compo

nents must be described through their definitions. The notation for defining 

functions is restricted so that all defined functions are executable and hence 

many important properties of functions cannot be described directly and 

functions are generally hard to describe. 

• The Miranda notation for algebraic types is unsuitable for describing types 

in general. 

Miramod contains extensions to Miranda that overcome these problems. A 

property statement notation is introduced to allow the properties of components 

to be described more abstractly than they can be described using the Miranda 

definition notation. As a result the user can concentrate on the properties of a 
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component or 'what the component does' rather than how it should be evaluated. 

These property statements are based on Miranda Boolean expressions but provide 

a number of additional constructions and allow universally quantified variables to 

be introduced. The notation for types is also extended to allow more versatile 

algebraic type descriptions. 

The following sections introduce first the notation for describing functions and 

then the notation for describing data types. Finally the built-in types of the lan

guage, which can be used as a basis for component models, are described. No 

previous knowledge of Miranda is assumed. 

4.2.1 Properties of functions 

A function can be described in two ways, firstly in terms of its type and secondly 

it can occur as part of a property statement which describes its properties in terms 

of other functions. 

A simple property statement is based on a (Miranda) Boolean expression, usu

ally containing one or more equalities. For example, to describe the function for 

reversing lists by stating that for all x the result of reversing x twice is x, the 

following model can be written: 

{x} reverse (reverse x) = x 

The notation {x} introduces a property statement and also lists any universally 

quantified variables in the expression. If several variables are used they must 

be separated by at least one white space character. As with Miranda, function 

application is denoted by juxtaposition i.e. 

'f x' denotes the function f applied to one argument. 

'f x y' denotes the function f applied to two arguments. 
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This notation may seem unnatural to those who are familiar with the standard 

mathematical notation which uses structured arguments enclosed in braces and 

separated by commas (for example 'f (x) ' and 'f (x, y) '). It can be justified on two 

accounts. Firstly the reduction in the number of braces appearing in expressions 

prevents them from becoming cluttered and makes them easier to read. Secondly, 

it provides a powerful and elegant method of describing and using higher order 

functions (functions which take functions as parameters or return functions as 

results). For example, if there is a function add which adds two numbers, it can be 

used in three ways: 

1. 'add 1 2' denotes the result of adding 1 to 2. 

2. '(add 1)' denotes the function which "adds 1 to things". 

3. 'add' denotes the function which adds two numbers and can appear as the 

argument to a function as well as in the above contexts. 

For the function application notation to work in a consistent manner, it must be 

considered as a left associative binary operator. The expression 'add x y' is parsed 

as '(add x) y' rather than 'add (x y)' and can be interpreted as "the function 

that 'adds x to things' applied to y". 

A full property statement is made up from a variable list, a sequence of property 

expressions separated by the symbol';;' and an optional where part (which allows 

local definitions to be introduced and is described in section 4.2.1). Each property 

expression may use one or more of the property statements variables and is either 

a Boolean expression (typically an equality = or inequality -=) or a. conditional. A 

conditional property expression has the form 'p 1- q' where p and q are property 

expressions, and means "if p then q" or alternatively "p proves q". For example, 

the function abs can be described using the following model: 

{x} 

x<O 1- abs x = -x ,, 

x>=O 1- abs x = x 
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Sensible use of layout is used to determine the end of the property statement. 

The off-side rule insists that the body of the property statement (everything that 

follows the initial '{') must be to the right of, or in the same column as, the first 

(non space) character of the body. This allows property statements to be continued 

over several lines: 

{x} reverse (reverse x) 

= X 

is legal but 

{x} reverse (reverse x) 

=x 

is not. 

Boolean expressions are written using standard Miranda notation and may in

clude both Boolean and relational operators. The Boolean operators are listed 

below in order of increasing binding power: 

\/ is the associative operator denoting logical disjunction. 

&: is the associative operator denoting logical conjunction. 

- is the prefix operator denoting logical negation. 

The standard relational operators (=, -=, <, >, <= and>=) are defined over all 

non-function types. The = and -= operators have already been used to describe 

equalities and inequalities between expressions. A combination of these operators 

may be written in arbitrary length sequences, for example: 

a < b < c 
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The following property statement describes the properties of the ideaP sqrt 

function: 

{x} x>=O 1- sqrt (xA2) = x) ,, 

x<O 1- sqrt x = undef 

The second line of this example describes the behaviour of the function if it 

is given a negative argument, and could be omitted if this aspect of the functions 

behaviour is not considered crucial. The value undef is an exception condition 

or program error and is a member of all types. In fact there are a family of 

exception conditions produced by the function error which takes an error message 

as parameter. 

Using types to describe functions 

Functions can also be described by their type. The notation is identical to the 

(optional) type declarations of Miranda. 

For example, consider the function reverse from the previous example. Al

though it was not clear from the property statement, the intended type of reverse 

was a function from a list of numbers to a list of numbers. To make this clear, the 

following declaration could be added: 

reverse:: [num] -> [num] 

where 

'identifier : : t1 ' describes the given identifier as an instance of a particular type 

't1 '. In this case the identifier is reverse and the type is [num] -> [num]. 

1 Although this description would be unacceptable in the context of a specification (in general 
it is only possible to calculate an approximation for the square root of a number), it is acceptable 
in the context of component library retrieval since the description of a component does not have 
to be precise in every detail and there is no obligation to prove that a component meets its 
description. 
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As with property statements, intelligent use of layout means that no special 

symbol is needed to terminate the type description. 

'it -> i 2 ' denotes the type of a function which takes an argument of type it and 

returns a result of type i 2 • 

'[it]' denotes the type of a list with elements of type it. 

'num' is the built-in type for numbers. 

The above example demonstrates how the type of a function with only one 

argument is described. In the general case of a function with n arguments, the 

type is denoted: 

where it is the type of the first argument, in is the type of the last argument 

and tr is the result type. The -> operator is right associative, so the following two 

descriptions of the add function mentioned previously are equivalent: 

add:: num -> num -> num 

add:: num -> (num -> num) 

The type notation is therefore consistent with the function application notation 

which allows add to be applied to two numbers and return a number, or to be 

applied to a single number and return a function from number to number. 

It is important to note the distinction between the types '(num->num) ->num' 

and 'num->num->num'. The first takes a function as its only parameter and returns 

a number as its result, whereas the second takes two parameters, both numbers, 

and returns a number as the result. For example the function applyto1 which 

applies functions to the number 1 could be described: 

applyto1:: (num->num) -> num 

{f} 

applyto1 f = f 1 

65 



Polymorphic Types 

The type of a function need not be described completely (for example reverse 

might be described as a function from a list of any type to a list of the same 

type). An incomplete type description can be formed by including one or more 

type variables in the description. In the property model language, as well as in 

Miranda, type variables are denoted as sequences of asterisks(*,**,*** etc). Types 

containing variables are called polymorphic (literally "many form") types[44). 

The type of a function f that takes an unspecified type as argument and returns 

a result of the same type can be described using the following declaration: 

Using two distinct type variables is even less informative: 

f:: * -> ** 

f is now a function from any type to any type (it includes functions of the type * 

-> *). 

A partial ordering over types is defined by the specialisation and generalisation 

relations. The type A is a specialisation of the type B if there is a substitution for 

variables in the type B which gives the type A. If type A is a specialisation of type 

B then type B is a generalisation of type A. The ordering is partial because there 

exists pairs of types A and B such that A is neither a specialisation nor generalisation 

of B. In this case, provided they are not equivalent, types A and B are said to be 

inconsistent types. 

To give some examples: 

'* -> *' is a specialisation of'* -> **'; 

' [ *] -> [*]' is a generalisation of' [num] -> [num] '; 

'* -> * -> *'is inconsistent with '* -> *' and 

'* -> *'is equivalent to'** -> **'· 
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If a type is described using a type declaration, then the declared type must be 

equivalent to the type implied by any uses of the function in property statements. 

So if reverse is declared as a function [num] -> [num] it may only be applied to 

lists of numbers and return lists of numbers. An attempt to apply reverse to a 

number (as opposed to a list of numbers) in a property statement would result in 

a type error. This rule is one of several which ensure that any model is strongly 

typed, and the remainder of these are described in the following section. 

Strong Typing 

As with Miranda, the property model language is strongly typed. This means 

that each expression and subexpression has a type; any inconsistencies in the type 

structure of the model can be detected through a static analysis of the program; and 

type errors cannot occur whilst proving theorems about a correctly typed model. 

The justification for strong typing is that it allows the compiler to detect many 

typographical and logical errors in a model at compile time, thus increasing the 

confidence in models that compile successfully. It is interesting to note that strong 

typing in functional languages can be a far more powerful tool than in imperative 

languages since the fundamental construction (function application) must conform 

to type rules, whereas the fundamental construction of an imperative language 

(statement sequence) does not involve any notion of type. Experience with strongly 

typed functional languages has shown that a high percentage of logical errors as 

well as typographical ones are detected at compile time, which compares favourably 

with imperative language compilers which are good at detecting typographic errors 

but often fail to detect logical errors. 

For a model to be consistently typed, the type of all functions being described 

and all free variables must be the same in each context that they appear2
• 

For example the following model is consistently typed: 

2This restriction is relaxed for functions whose type is explicitly given (see page 72). 
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{x} reverse (reverse x) = x 

but the model 

{x} reverse [1 .. n] = [n,n-1 .. 1];; 

reverse 11 abc11 = 11 cba11 

is not since reverse is applied to a list of numbers in one context and a list of 

characters in another ( [ 1 .. n] is the list of integers from 1 to n inclusive3 and 
11 abc 11 is a shorthand notation of the list of characters ['a' , 'b' , 'c']). 

Type Inference 

A disadvantage of the explicit type declarations previously introduced is that they 

can drastically increase the size of the model and hence the work done in producing 

the model. A useful solution to this problem is provided by type inference. This 

means that the type of a function need not be declared but can be inferred from 

the context(s) in which it occurs. 

To illustrate this point, consider the following example: 

{n} reverse [1 .. n] = [n,n-1 .. 1] 

Since reverse is applied to a list of numbers and its result is equated with a list of 

numbers, it can be inferred that: 

reverse:: [num] -> [num] 

and 

3 This notation should not be confused with notation for subrange types used by languages 
such as Pascal. Miramod uses the notation [1 .. n] to denote a list value, not a list or subrange 
type. 
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n: :num 

As this example demonstrates, the type inference applied to property expressions 

not only infers types for functions, it also infers the types of the free variables. 

This is important not only as a consistency check - it also affects the meaning 

of a property statement since the types of free variables determine the meaning of 

the property statement. 

For example, given a property statement with universally quantified variable x: 

{x} p x 

If the inferred type for xis * (any type), then the property statement means that 

p should hold for any x, regardless of the type of x. If however the inferred type 

for x is num, then the property statement means that p should hold for any number 

x. The first version is a much stronger property statement than the second, since 

the first implies the second but not vice versa. 

As the types of functions and variables are critical to the meaning of property 

statements, it is important that the declared type of a function is the same as its 

inferred type. Hence whenever a model contains type declarations for functions, 

then these are also checked for consistency with occurrences of the function. 

This gives rise to alternative motivations for the inclusion of type declarations. 

Firstly they can be used to make the meaning of property statements clearer and 

provide additional security against logical errors. Secondly they can be used t~ 
specialise the inferred polymorphic type of a function which will in turn weaken 

any property statements including the function. This may sound like an undesirable 

effect; however it is often as easy to ask for too much (a strong property) as it is 

to ask for too little (a weak property). For example the property statement: 

{x} reverse (reverse x) = x 

is too strong, as the inferred type of reverse is * -> * and it therefore describes a 
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function which, when applied to anything twice will return the original thing. This 

is certainly not true of the function that only reverses lists. A function is wanted 

which, when applied to a list twice will return the original list. Simply adding 

the appropriate type definition will produce the required meaning of the property 

statement: 

reverse:: [*] -> [*] 

{x} reverse (reverse x) = x 

An alternative approach to the problems of specialising and clarifying the mean

ing of property statements is to declare the types of the free variables themselves, 

rather than the functions. To facilitate this, type declarations are allowed to appear 

as parts of property statements. In fact the sequence of expressions in a property 

statement can be a sequence of expressions and type declarations. This allows the 

types of the statement's free variables to be declared directly rather than inferred. 

{n} reverse [1 .. n] = [n .. 1];; 

n: :num 

As with all other type declarations, the type declarations in property statements 

are checked for consistency with the inferred type of the identifier they describe. 

The type laws for property: statements can be summarised by saying that for 

all described functions whose type is not given explicitly and for all universally 

quantified variables, the type of the function or variable implied by its context 

must be the same for each context in which the function or variable appears. 

Defined functions 

When describing functions with property statements, it is often useful and some

times essential, to make use of functions and operators that are defined as part of 

Miramod. It is also useful to be able to define auxiliary functions and use them 
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in the property descriptions. In both cases these functions are called defined func

tions to distinguish them from the functions described by the property model (the 

described functions). Defined functions in Miramod play the same role as hidden 

functions in many specification languages [25]. 

In the following example, the defined function ident4 is used to describe the 

functions plus and 'and'. ident takes a binary function and a value as parameters 

and returns true if the value is an identity value for that function (in other words if 

the value appears as the first parameter to the function then the function returns 

the second parameter's value). The functions add which adds numbers and 'and' 

which gives the conjunction of two Boolean values may be described using the 

properties that the identity value for plus is 0 (because O+a=a) and the indentity 

value for 'and' is False (because True & b = b): 

{} ident plus 0;; 

ident and True 

This example illustrates several points. The first is that ident is a higher order 

function because it takes a function as a parameter. The type of ident is written: 

ident:: (*->*->*) -> * -> bool 

Note that the braces are needed to show that ident takes two parameters, the first 

of which is a function, rather than four parameters of the same type. 

The second point brought out by this example is that the type implied by both 

occurrences of ident is a different instantiation of the generic type of ident. In the 

first line * has been instantiated with the type num to give: 

ident:: (num->num->num) -> num -> bool 

4 ident is defined as ident f e = (f e == id) where == is the strong equality operator 
described on page 112 and id is the Miranda identity function. 
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and in the second * has been instantiated with the type bool to give 

ident:: (bool->bool->bool)->bool->bool 

Under the type rules for described types, this would be illegal. The type rules for 

defined types allow them to be used in contexts where the type of the function 

is a specialisation of the generic type. One reason for this apparent inconsistency 

is that the stricter rule is needed so that the type of described functions can be 

inferred, however the type of defined functions can be inferred from their definition, 

so the stricter rule need not be applied to uses of such functions. This weaker rule 

is also used for described functions whose type is given explicitly, since it is only 

neccesary to ensure that the given type is consistent with the contexts in which 

the function appears. 

User defined functions 

As well as providing a number of predefined functions that can be used to help de

scribe other functions, Miramod allows model writers to define their own functions. 

These functions are called user defined functions. Since the notation for user de

fined funetions is Miranda5 , for which there exists several descriptions(9, 59], only 

a brief summary of the notation will be given here. In the following examples, each 

function is given a type description for additional clarity. These type descriptions 

are not compulsory. 

Simple definitions are written as equations, with the function name and formal 

parameters on the left hand side of the = symbol and the value of the function on 

the right: 

square:: num -> num 

square x = x•x 

5The Miranda notation is extended to allow the strong equality operator in expressions (The 
strong equality operator is described on page 112). 
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nor:: bool -> bool -> bool 

nor a b = -ca \/ b) 

Conditional definitions are written by following the function name and formal pa

rameters with a series of alternatives made up from an expression and a Boolean 

"guard". 

max:: * -> * -> * 
max a b = a, a>b 

= b, a<=b 

The value of the function is the first (upper most) expression whose guard evaluates 

to True. The final guard may be replaced by the keyword otherwise, in which 

case the last expression is returned if none of the preceding guards evaluate to true. 

max a b = a, a>b 

= b, otherwise 

Functions may also be defined using pattern matching: 

and:: bool -> bool -> bool 

and True x = x 

and x y = False 

unit_list:: [*] -> bool 

unit_list [a] = True 

unit_list as = False 

Note that patterns may overlap, and in this case the first (upper most) defini

tion that matches the arguments is taken as the definition for those particular 

arguments. Hence the above definitions ensure that if 'and' has True as its first 

argument then the second argument is returned. On the other hand, if True is not 
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the value of the first argument the value False is returned. This means that if 

patterns overlap, the order of the definitions is important. 

The right hand side of a definition may introduce local definitions using a where 

clause. 

area:: nurn -> nurn -> nurn -> nurn 

area a b c = (s-a)*(s-b)*(s-c) 

where 

s = (a+b+c)/2 

A conformal definition, whose left hand sides is a pattern without a preceding 

function identifier, can be used to extract values from a function which returns 

more than one value: 

fib 0 = [0' 1] 

fib (n+1) = [b,a+b] where [a,b] = fib n 

Within a model, function definitions may appear at top level, or as part of a 

property statement. The ordering of top level definitions, type declarations and 

property statements is unconstrained; there is no obligation to define a function 

before it is used. 

To include definitions in a property statement, the list of expressions and type 

declarations must be followed by the keyword where then the definitions. The 

scope of the functions thus defined is the whole of the property statement. 

{} twice reverse = id 

where 

twice f x = f (f x) 

id X = X 
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4.2.2 Describing Types 

The two common approaches to describing data types are the algebraic approach 

and the representation approach6
• In the representation approach, the data type 

is described in terms of an existing (predefined) type - the representation. In 

the algebraic approach, the data type is described in terms of the properties of a 

collection of functions over the type. 

Both approaches describe the syntax and semantics of the type separately. The 

syntax of the type is described by listing the functions which take or return values 

of the type. The type of each listed function is also declared and this information is 

called the signature of the type. Each function in the signature can be classed as a 

constructor or destructor function. The constructor functions return values of the 

type (they construct values of the type). The destructor functions are ones which 

return values of other types. The semantics of the type are described differently 

depending on whether the representation approach or the algebraic approach is 

used. 

Representation based type descriptions 

The syntax of a representation based type description is almost identical to that of 

the Miranda abstract type declaration 7 The type is described in terms of a collection 

of the basic functions by which it is manipulated. Taking the classic example of 

a stack, these functions might be: empty for creating an empty stack, push and 

pop for pushing and popping values onto and off the stack, top for inspecting the 

element at the top of the stack and is_empty to test if the stack is empty. 

6The representation approach is more commonly referred to as the model approach. Here the 
word 'representation' is used to avoid confusion with the concept of a property model. 

7The only difference between the two is the use of the keyword abstype by Miranda and type 
by Miramod, otherwise they are syntactically and semantically identical. The different names 
stem from the different purposes to which they are put. In Miranda the abstype mechanism is 
used to hide the details of a type's representation from the users ofthe type, hence the type is an 
abstraction of the more detailed representation. On the other hand, when describing data types, 
the representation is in many senses more abstract than the type being described; in fact it is a 
model of the type being described. 
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The first part of the type description consists of a declaration of the type's name 

and the signature of the type: 

type stack * 
vith 

empty stack * 
push * -> stack * -> stack * 
pop stack * -> stack * 
top stack * -> * 
is_empty:: stack * -> bool 

The type may be polymorphic, in which case the type name is followed by the 

appropriate number of type variables. The signature of the type is written following 

the reserved word vi th, and consists of a list of type declarations for the functions 

which describe the type. 

The signature should be followed by a declaration of the type being used as a 

representation. In this case, the list type will be used to represent the stack: 

stack * -- [*] 

Finally, property statements can be used to describe the functions of the stack in 

terms of the representation ( : is the list construction operator and [] is the empty 

list): 

{e s} 

empty = [] 

push e s = e:s 

pop (e:s) = s 

top (e:s) = e 

is_empty [] = True 

is_empty (e:s) = False 

' ' 

' ' 

'' 
'' 

'' 

' ' 
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ret_stack [] = empty •• 
ret_stack (e:s) = push e (ret_stack s) 

valid_stack s = True 
•• 

The functions ret_stack and valid_stack are needed for the comparison of 

component models8 and their description is therefore mandatory. ret_stack is a 

retrieval function that converts the representation type to the type being described 

(the described type) and valid_stack is a predicate on the representation type that 

is true for all values that can be expressed by the described type and false otherwise. 

The function ret_stack should be defined for aH s such that valid_stack s 1s 

true. 

Thus every representation type description has two associated functions whose 

names are ret_ and valid_ followed by the name of the type. The retrieval function 

has the type tr -> td where tr is the representation type and td is the described 

type, and the validity predicate has the type tr -> bool. These types are assumed 

for the appropriately named functions and must not be included in the signature 

of the type. 

There is an additional type law associated with representation type descrip

tions. This states that for any function included in the signature of the type, the 

representation type and the described type are considered as equivalent. In any 

other context the two types are distinct. In the stack example, this means that 

expressions such as 

empty = [] 

are correctly typed despite the fact that 

empty: :stack * 

and 

8See chapter 6, section 6.9 
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[] : : [ *] 

This type law provides the motivation for disallowing the functions valid_stack 

and ret_stack from the type's signature- it forces the writer to produce useful 

properties for these functions rather than writing 

{s} ret_stack s = s 

valid_stack empty = True 

Algebraic type descriptions 

J J 

An algebraic type description describes the type in terms of the signature functions 

and their properties rather than a representa.tion. The syntax of a,n algebraic type 

description is identical to that of a representation type description except that 

there the declaration which links the described type to a representation ( d_type 

== r_type) is omitted. 

As an example, the type 'set *'has functions: empty for creating empty sets, 

add1 for adding an element to a set, member for testing set membership and the 

functions union, intersection and d-iff for combining sets. 

type set * 

with 

empty .. set * 

add1 * -> set * -> set * 

member .. * -> set * -> bool 

union, intersect, diff 

:: set*-> set*-> set* 

{a b s t} 

member a empty = False 

member a (add1 a e) = True 

a -= b 1- member a (add1 b e) = member a e 
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member a (union s t) = (member a s \/ member a t) 

member a (intersect s t) = (member a s & member a t) 

member a (diff s t) = (member a s & -member a t) 

Algebraic type shorthand 

'' 
' ' 

The algebraic type notation can be long-winded when used to describe simple type 

structures such as records (product types), type unions (sum types) and combi

nations of the two (sum of product types). To overcome this problem a special 

notation for describing types in terms of shell functions is provided. The shell 

functions are functions which return values of the described type and denote a 

unique value of the type for each combination of argument values. 

A good example is the type tree * which is either a leaf containing a value of 

type * or a node containing two sub trees: 

tree* ::=Leaf* I Node (tree*) (tree*) 

The symbol : : = should be read "has shells" and is followed by a list of shell 

function names with their parameter types. The vertical bar I is used to separate 

shells and any type variables used by the shells must appear as parameters to the 

type being described. 

The equivalent longhand is: 

type tree * 

with 

leaf:: * -> tree * 

node:: tree * -> tree * -> tree * 

{1 r 1' r' e e'} 

leaf e -=node 1 r ;; 

(node 1 r = node 1' r') = (1=1' & r=r') 

79 



(leaf e = leaf e') = (e = e') 

The twoproperties above distinguish leaf and node from other functions which 

return values of the type tree *· The first property expression ensures that each 

shell produces values that are distinct from the other shell, and the second property 

ensures that each combination of argument values produces a unique value in the 

described type. To emphasise the fact that these functions have implicit properties, 

the constructor names of the short-hand version must start with capital letters. 

The notation for short-hand algebraic types is identical to Miranda's algebraic 

type notation, except that Miranda also allows 'laws' to be attached to algebraic 

types. Laws are not allowed in Miramod as they are superceded by the longhand 

algebraic notation. 

A Pascal enumerated type can easily be described using the algebraic type 

shorthand. The elements of the type are represented by shells with no parameters: 

weekdays ::= Mon I Tue I Wed I Thur I Fri I Sat I Sun 

On the other hand, a Pascal record type can be described using a single shell 

function with one or more parameters; for example the type date might be the 

product of the types day, month and year. 

date · ·= Date day month year 

As with the longhand notation, functions over the type may be described using 

property statements. 

Predefined types and functions 

The predefined types and functions provided by Miramod play an important role 

in assisting the description of other types and functions. In fact all of the built-in 
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types may be considered as type descriptions in their own right. The notation used 

is an extension of the Miranda notation for built-in types and functions. 

There are three primitive types, numbers, characters and Boolean, and these 

are denoted num, char and bool respectively. The distinction between real numbers 

and integers is handled internally and all the usual numeric operators are provided. 

Floating point notation (eg 57. 6e-10) can be used to denote constant numeric 

values. Character constants appear between single quotes ( eg 'a') and the usual C 

language conventions apply for unusual characters. The type bool has two values 

True and False and the operators mentioned in section 4.2.1 are available for 

manipulating Boolean values. 

Two compound types, the list and tuple, are available. Although much of the 

notation for lists has already been covered, it is summarised here along with some 

previously unmentioned operators. 

The list type is denoted [a] where a is the element type. The length of a list 

is not fixed, but all the elements must be of the same type. The empty list is [] 

and [a, b, c] is the list containing three elements a, b and c. Several operators are 

provided for manipulating lists: 

: is the list construction operator (e.g. 1 : [2 , 3] = [ 1 , 2, 3]); 

++ provides list concatenation; 

--provides list difference (e.g. [1,1,2,3,4] -- [1,3] = [1,2,4]); 

# is a prefix operator giving the length of a list; 

and ! is the list indexing operator (e.g. [ 1 , 2, 3] ! 0 = 1). 

Tuples are analogous to Pascal records. They have a fixed number of elements, 

and each may be of a different type. The type of a tuple with n elements of 

types tt, t 2 ••• tn is denoted (t1 , t 2 , ••• , tn) and an n-tuple of values et, e2 ••• en is 

denoted (e1,e2, ... ,en). 
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Several additional notations are available for describing lists of numbers: 

[a .. b] list of integers from a to b inclusive 

[a .. ] infinite list of all integers >=a 

[a, b .. c] list of numbers in the arithmetic series a, b ... c 

with largest member not exceeding c (if b-a positive, 

smallest member not less than c if b-a negative). 

[a, b .. ] infinite list of numbers in the series starting at a, 

interval = (b-a) 

List comprehensions are a useful notation for defining lists whose elements sat

isfy some properties. A list comprehension is written: 

[e I ql; q2; • . . ; qn] (where n>=O) 

and denotes the list of all values of the expression e such that the qualifiers q1 

. . qn hold. Qualifiers are Boolean expressions or generators. A generator is an 

expression of the form: 

plist <- list 

where plist is a list of one or more patterns separated by commas. Each pattern 

contains one or more of the variables introduced by the generator (patterns are 

expressions that contain no operators or functions other than user defined shells 

and the built in shells ':' and '+n'), and variables introduced by generators come 

into scope from left to right. 

For example the following is the (infinite) list of Pythagorean triangles: 

Lists of patterns on the left hand side of <- are shorthand for multiple generators 

from the same list, e.g. a,b,c <- [1. .] is shorthand for a<-[1. .] ; b<-[1. .] ; 

c<- [1. . ] . 
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It is sometimes useful to allow universally and existentially quantified variables 

to be introduced as part of a property expression. Miramod does not allow true 

existentially quantified variables and only allows universally quantified variables 

to be introduced at the start of a property statement. In many situations, it 

is possible to use the list comprehension notation and the function.s exists and 

forall to 'fake' universal and existential quantifiers. These functions are defined 

by the following equations: 

exists,forall:: [bool] -> bool 

exists [] = False 

exists (a:x) = a \/ exists x 

forall [] = True 

forall (a:x) = a & forall x 

As an example, consider the description of a function which returns an unspec

ified member of a list: 

{s y} exists [ element s = y I y <- s] 

This expressioncan be read "there exists a y, which is a member of the list s, such 

that 'element s' is equal to y". 

This concludes the description of Miramod. Further details of the language, 

particularly the predefined functions that are available, will be described as and 

when they are used. Having described the language Miramod and its use to for

malise the properties of functions and data types, the remainder of this chapter 

describes how this language can be used as a basis for component library retrieval. 
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4.3 Writing property models 

There are two distinct situations in which property models are written. One is 

when a component is added to the library and the other is when are-user needs to 

retrieve a component from the library. In the former case, the details of the com

ponent's behaviour may be available in the form a specification of the component, 

or they may be inferred from the component itself. Even if a formal specification 

of the component is available, it will generally be too large and complex to be used 

for retrieval purposes, so a small and simple model containing the most important 

aspects of the component must be written. The two main techniques that can be 

used to bridge this gap between the specification and its model are simplification 

and abstraction. Simplification involves removing parts of the component that are 

not essential for the description of the remaining parts of the component. This 

works well for components such as text editors which have many sophisticated op

erations that are built on top of a few basic ones. The sophisticated operations 

can be removed without affecting the remaining operations and without destroying 

the basic capabilities of the component. On the other hand a component such as 

a compiler would be extremely difficult to model satisfactorily using just simpli

fication - a model which described the compilation of just one or two language 

features would not be very informative. In such cases the technique of abstraction 

is more appropriate. In this context abstraction involves replacing several parts of 

the model with a single part, or at least a smaller number of simpler parts that 

collectively describe a similar but simpler behaviour. 

Are-user wanting to search for a component in the library is faced with a similar 

problem, though unless he or she has a very precise idea of what is wanted, the 

gap between the requirements and a reasonable model should be smaller. In this 

situation simplification and abstraction can again be used to help isolate the key 

properties of the required component. 

As an example, suppose that a parser or compiler generator, with the following 

features, is needed: 

• Parsers or compilers can be generated from a grammar and set of compilation 
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rules. 

o The grammar is in BNF (Backus-Naur Form) and is context free. It provides 

a notation for terminals (these are the basic atoms recognised by the grammar 

and are also called 'tokens') and non terminals, arbitrary length sequences, 

arbitrarily large sets of alternatives, optional parts, zero or more repetitions, 

one or more repetitions and fixed numbers of repetitions. 

• The compilation rules are arbitrary pieces of code which can be attached 

to the desired parts of the grammar and have access to the results of sub 

compilations as well as the compilation 'state'. 

• The compiler generator should be capable of producing compilers for se

quences of any type of token specified by the grammar and should be capable 

of producing any type of output specified by the compilation rules. 

• The resulting compiler should return one of a set of 'fail' values specified 

by the grammar and compilation rules if the input does not conform to the 

grammar or the compilation rules detect an illegal input. 

If these features are included in the model, it will be complex. An alternative 

is to produce a simpler version by deciding on a few of the more fundamental (or 

easier to describe) aspects. In this case the ability to decide if an input sequence 

conforms to the grammar might be considered as the most important aspect of the 

component. One argument in favour of this view is that the compilation rules would 

make little sense without a grammar, but a grammar can still function sensibly 

without a set of compilation rules - in effect the component can be described in 

terms of its ability to generate a grammar checker from a grammar. 

Another source of complexity is the description of the grammar. A powerful 

abstraction is to replace the conventional representation of a grammar as a set of 

terminal symbols, a set of non-terminal symbols, a set of grammar rules and a start 

symbol, with an abstract type which has only three constructor functions. These 

are: token which constructs grammars that recognise single token sequences (i.e. 

sequences of length one), then which takes two grammars as parameters and returns 

the grammar that recognises sequences of the first parameter's grammar followed 

by sequences of the second parameter's grammar, and finally alt which takes two 
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grammars as parameters and returns the grammar that recognises sequences of 

either of its parameter's grammars. A very desirable feature of this abstraction is 

that it retains the ability to describe almost any grammar that can be described 

with the more complex set of constructions9 . The only construction that cannot 

be defined in terms of the abstraction is the 'optional' construction. 

A final simplification that can be made is the replacement of the set of 'fail' 

values with a single fail value. 

Calling the component cgen, its type can be described as: 

cgen:: grammar * -> ([•]->bool) 

The first parameter of cgen is the grammar, whose type is parameterised by the 

type of input tokens it describes. The result returned by cgen is a function from 

list of input tokens to a Boolean value which indicates if the input tokens conform 

to the grammar or not. 

An elegant feature that Miramod inherits from Miranda is that the function 

cgen can actually be described and used both as a single parameter function that 

returns a parser or as a two parameter function which takes a grammar and some 

input and returns a Boolean result: 

parser = cgen gram 

result = cgen gram input 

In fact the expression 'cgen gram input' is interpreted as '(cgen gram) input', 

and any application of a function to several arguments is considered as a sequence of 

higher order functions applied to single arguments. As a result the type expressions 

t1 -> t2 -> t3 and 

tl -> ( t2 -> t3 ) 

9 A grammar that allows arbitrary length sequences must be recursively defined - in effect, 
infinite grammars must be allowed. Section 4.6 discusses this in more detail. 
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are equivalent and the type of cgen can be described as 

cgen:: grammar*-> [*]->bool 

As well as describing the behaviour of cgen the signature of grammar must be 

giVen. 

type grammar * 

with 

token (*->bool) -> grammar * 

then, alt:: grammar * -> grammar * -> grammar * 

The constructor token creates a grammar that recognises the sin,gle tokens 

defined by the given function. Using the function digit which is True for all the 

digit characters and False for any other character, the grammar that recognises 

all single digit input sequences can be expressed as 'token digit'. Alternatively 

individual characters can be recognised using the operator section notation 'token 
( =, t,) llO. 

One property that could be used to describe token is that when the parser 

generated by cgen from the grammar token tf is applied to a unit list [ t] then 

the result is 'tf t ': 

cgen (token tf) [t] = tf t 

On its own, this property does not completely describe token (it only provides 

information on the behaviour of 'cgen (token x)' when applied to a unit list). 

This emphasises the point that it is not necessary to provide a complete description 

of the model- in fact the use of incomplete descriptions is a further way in which 

the model may be simplified. 

10 ( = 't') denotes the function that returns True when given the character 't' and returns 
False otherwise. This notation is valid for any binary operator and produces a partially param
eterised version of the operator. 
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The constructor then combines two grammars to produce the grammar which 

recognises sequences of the first grammar followed by sequences of the second. In 

other words, if the grammar x recognises sequence p and the grammar y recognises 

sequence q then the grammar ' (then x y) ' recognises the sequence p++q. 

cgen x p & cgen y q 1- cgen (then x y) (p++q);; 

Finally the constructor al t, which recognises sequences of either of its argument 

grammars, is described in a similar manner to then: 

cgen x p \/ cgen y p 1- cgen (alt x y) p 

Putting these parts together, the complete property model is written: 

cgen:: grammar*-> [*]->bool 

type grammar * 

with 

token (*->bool) -> grammar * 

then, alt:: grammar * -> grammar * -> grammar * 

{tf t X y p q} 

cgen (token tf) [t] = tf t;; 

cgen x p & cgen y q 1- cgen (then x y) (p++q);; 

cgen x p \/ cgen y p 1- cgen (alt x y) p 

Given that the component described by this model is reasonably large and 

complex, the size of the model is very modest. 

The above example is intended as a demonstration of the techniques that can 

be used to reduce the model to a size that is sufficiently small for the purposes of 

component library retrievaP1 . These techniques are: 

uchapter 5 attempts to answer the question of what is sufficiently small. 
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Simplification of the model by the omission of functions and types that are not 

key parts of the component - for example the omission of an optional func

tion from the grammar constructors. 

Abstraction of the model by the replacement of collections of functions, collec

tions of types or even collections of parameters with fewer, more abstract 

functions, types or parameters. An example of abstraction in the compiler 

model is the replacement of a grammar involving terminals, non-terminals, 

rules, sequences and alternatives with the three grammar constructors. 

Weakening of property statements. One collection of property statements IS 

weaker than another if it can be proved from, but cannot prove the other 

collection. The weakening of property statements does not involve the omis

sion or replacement of functions and types, it simply involves saying less 

about them. Given a property statement that gives a precise description 

of the value of a function 1for certain forms of argument, the statement can 

be weakened in two ways. Firstly it can be changed so that it places less 

constraint on the value of the function (in other words it describes a set of 

possible values that could be returned). Alternatively it can be changed so 

that it places no constraint of the value of the function for some forms of ar

gument. In the latter case this might well involve the removal of a complete 

property expression. In the compiler generator example, the properties of 

the model are weakened since they place no constraint on the value returned 

when a parse fails. 

4.4 Comparing property models 

If property models are to be used as a basis for component library retrieval, it is 

essential to have a method of comparing models that can be automated. The result 

of a comparison should be a measure of similarity rather than a straightforward 

'match' or 'no match' answer. Since the models will almost certainly use different 

names for the functions and data types that they describe, two models can only be 

compared through the use of a mapping between the names of the models. 
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4.4.1 Model equivalence 

A good starting point for model comparison is the test for equality. Two models 

are considered as equivalent if there is a one to one mapping between the functions 

and types of each model that maintains the consistency of types and allows the 

conjunction of all the properties in one model to be shown as logically equivalent 

to the conjunction of all the properties in the other model. The mapping is itself a 

logical expression, typically a conjunction of equalities between functions and types 

of each model. 

To introduce some notation for describing model relationships, if M is a model 

or mapping consisting of a conjunction of property expressions then mi is the ith 

property expression in M and M in the context of a logical expression denotes the 

conjunction of all mi in M. A more formal statement of the equivalence relationship 

is that two models A and B are equivalent if there exists a mapping M between models 

such that the conjunction of A and M is logically equivalent to the conjunction of B 

and M: 

equi v A B = 3 M . (A & M) = (B & M) 

One method of testing for this relationship is to use the properties of one model 

and the mapping between models to prove each of the properties in the other 

model and then repeat this process in the other direction. If all the properties 

can be proved in both directions then the models are equivalent. If model A has 

properties a 1 ••• an, and model B has properties b1 •.• bm then the two models are 

equivalent under mapping M if and only if: 

( a1 & · · · & an & M 1- bm ) & 

( b1 & · · · & bm & M 1- a1 ) & 
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( b1 & · · · & bm & M I- an ) 

where expression a I- b is true if b can be proved from a. 

The task of proving the properties of one model by taking the properties of 

the other model and the mapping equalities as axioms requires a theorem prover. 

For the remainder of this chapter, the existence of a suitable theorem prover is 

assumed. Chapter 5 describes the design of an experimental theorem prover which 

has been used to investigate the feasibility of the model approach to component 

library retrieval. 

The equality relationship, as defined above, is unsatisfactory for the matching 

of component models because it provides a binary answer rather than the more 

continuous measure that is required and also because it is far too strict. Since 

the models being compared will have been produced by different people (are-user 

on one hand and a librarian or component author on the other), it is likely that 

they will be at different levels of abstraction and based on different simplifications. 

One improvement on the equality relationship is to relax the requirement that 

properties have to be proved in both directions: if the properties of one model can 

be proved from the properties of the other and the mapping or vice versa then the 

models are C()nsidered to match. This allows the matchi:qg of two similar mo<fels 

where one describes more types and functions in more detail than another. This 

new matching rel~ti9n can be defined as: 

veakequiv A B = 3M . (A &: M I- B) \1 (B &: M I- A) 

Although this method of matching models helps to remove the dependency on 

models which are at the same level of simplification, it does not provide more 

than a binary answer. A further improvement therefore, is to count the number 

of property expressions proved as a percentage of the property statements which 

would need to be proved to demonstrate equality. This percentage can then be 

used as a measure of similarity, 100% indicating equality and 0% indicating no 

similarity. Unfortunately the accuracy of this measure depends heavily on the way 

in which component models are written. Property expressions vary according to 
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their independence from other property expressions in the model and also according 

to the amount of information they provide about the model. For example, consider 

the properties of the reverse function: 

{a x} 

reverse [] = [] I I 

reverse (a:x) = reverse x ++ [a] 

Each of these properties expressions are independent but the second provides 

a great deal more information about reverse than the first since many equalities 

about the reverse of lists can be deduced from the second: 

reverse [a] = reverse [] ++ [a] 

reverse [a. b] = reverse [] ++ [b, a] 

reverse [a,b,c] = reverse [] ++ [c,b,a] 

but no further equalities of the reverse of lists can be deduced from the first property 

expression. Using the measure ofsimilarity introduced above, a model that implied 

the first property expression and not the second would produce the same matching 

value as a model that implied the second and not the first (provided the two models 

where equivalent in all other respects). Two possible methods of improving this 

measure would obe to allow the model writer to provide information on the relative 

importance of property expressions, or to design an algorithm for estimating the 

relative importance. Neither of these alternatives have been investigated as part 

of the current research. 

To continue with the same example, if the previous property statement con

cerning reverse is extended in the following manner: 

{a x} 

reverse [] = [] 
reverse (a:x) = reverse x ++ [a] 

reverse ( []++[] ) = [] 
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then neither the first nor third property expressions are independent, since the 

first is implied by the third and the known properties of ++ and the third is im

plied by the first and the known properties of ++. A consequence of this is that 

any model that implies the first will also imply the third, and the importance 

of what is actually a single property, will be magnified relative to the remaining 

property expressions. Rather than attempting to provide an automated check for 

independence, the experimental retrieval system described in this thesis relies on 

the production of independent properties by the model writer. 

It is important to note that the matching algorithm distinguishes between the 

logical conjunction operator & and the symbol used to separate property expres

sions '; ; '. Each operand of a conjunction is not treated as a separate property 

expression when calculating the match value, therefore the semantics of 'al & •.• 

& an' differ from those of 'al ; ; . . . ; ; an' when matching models. 

4.4.2 Views between models 

Although the mapping between models and the method of computing a match 

value described in the previous section allows models which are derived from dif

ferent simplifications to be successfully compared, it will not successfully compare 

models containing different abstractions for the same component. For example, if 

two compiler generator models are compared and one model describes a grammar 

with an 'optional' constructor whilst the other does not, then a match can still 

be detected, even though it will not be a 100% match. On the other hand, if one 

model includes the compilation rules and the other does not, then no match will 

be found because the grammar rules will also be different (in the model that in

cludes compilation rules, the grammar rules must allow the compilation rules to be 

attached). 

To take this example further, consider the matching of the previously developed 

model for a compiler generator and the compiler generator model in figure 4.1. This 

new model includes compilation rules (the names have been changed so that the 

two models may be easily distinguished): 
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yacc:: * -> (ygrarn ** *) -> [**] -> * 

type ygrarn ** * 
with 

term:: (** -> *) -> ygrarn ** * 
sequen:: crule * -> ygram ** * -> ygram ** * -> ygram ** * 
choice:: ygram ** * -> ygram ** * -> ygram ** * 

crule * -- * -> * -> * 

{fail f t} 
yacc fail (term f) [t] = f t 

{fail f lg rg i a b} 
ok (yleft a) & ok (yright b) 
1-

exists [yacc fail (sequen f lg rg) (a++b) 
= f (yleft 1) (yright r) & 

'' 

l++r = a++b & ok (yleft 1) & ok (yright r) & 
I (l,r)<-splits (a++b)] 

yacc fail (choice lg rg) i 
= if (ok (yleft i)) (yleft i) (yright i) 

where 
yleft = yacc fail lg 
yright = yacc fail rg 
ok = (-=fail) 
splits 1 = [(take n,drop n)ln<-{0 .. #1}] 

To paraphrase the second property expression: For all fail values fail, compilation 
functions f, ygrams 1g and rg and input lists a and b. If 1g successfully compiles a, 
and rg successfully compiles b, then there exists input sequences 1 and r such that: 
1++r=a++b; lg successfully compiles 1; rg successfully compiles r; and the result of 
compiling the input a++b with sequen f 1g rg and fail value fail is the compilation 
function f applied to the result of compiling 1 with 1g and r with rg. 
The expression '(l,r) <- splits (a++b)' is necessary because of the lack of a true 
existential quantifier. As the expression '1 ++r=a++b' appears explicitly the list generator 
can be read as an existential quantifier. 

Figure 4.1: A compiler generator model yacc 
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The type ygram (previously grammar) is a polymorphic type with two type vari

ables, the first for the type of input tokens that will be accepted and the second for 

the type of the output produced by the compiler. The sequen constructor (pre

viously the then constructor) has an additional parameter which is a compilation 

rule (type crule). If the two sub grammars of the sequen function successfully 

compile the input, then the given compilation rule will be applied to the results 

of the sub compilations and the resulting value will be returned. The compilation 

rule is also polymorphically typed, but with only a single variable for the compilers 

output type. It is described directly as a binary function on the output type. yacc 

(previously cgen) is also given an extra parameter, called the 'fail' value, which is 

produced when a grammar or compilation rule fails. 

It is not possible to construct a mappmg between this new model and the 

original model since the types of the grammar constructors and the function yacc 

are different. Despite this, the two models have strong similarities, especially if the 

type variable representing the compiler's result is replaced with the type bool, fail 

is replaced with 'False' and the compilation rule with (&;) 12 . 

This correspondence between the two models can be formalised as a 'view'. A 

view is a collection of property expressions which relate the functions of one model 

to the functions of the other - it provides a view of one model in terms of the 

functions and types of another model. The view of cgen from yacc that has just 

been described could be written: 

cgen = yacc False 

token = term 

then = sequen (&;) 

alt = choice 

Using this view and the properties of the yacc model, it is possible to prove 

the properties of the cgen model. Unfortunately this does not work in the other 

direction. The view actually contains an implicit type equality: 

12 Enclosing an operator in parenthesis without including any arguments converts it to a 
function. 
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grammar * -- ygram * bool 

which means that in conjunction with the properties of yacc only properties in

volving the type 'ygram * bool' rather than the type 'ygram * **' can be proved. 

Since the properties of yacc all involve the type 'ygram * ** ', none can be proved 

from the view and cgen. 

Implicit type equalities such as the one above are referred to as the the type part 

of the view, whereas equalities between expressions are referred to as the function 

part of the view. 

This suggests a matching relation based on the existence of a view between the 

two models, the hypothesis model and the conclusion model, that allows the prop

erties of the conclusion model to be proved from the properties of the hypothesis 

model. To compute a value for the match, the number of properties proved in a 

particular direction can be taken as a percentage of the number of properties to 

be proved in that direction and the higher of the two percentages considered as 

the match value. In the above example this would be 100% for proving cgen from 

yacc but 0% for the other direction, and thus the match value would be 100%. 

Unfortunately the previous definition of a view as a collection of property ex

pressions is too general for the matching relation described above. Any model could 

be proved from any other simply be assuming a sufficiently powerful view. The 

intention of a view is simply to translate between models and taken in isolation it 

should not imply or state any properties of the conclusion model. Such a view is 

referred to as a permissible view. 

Both models and v1ews can be characterised by the functions which satisfy 

them. A view is therefore said to be permissible with respect to a conclusion 

model provided that the functions which satisfy the conclusion model are a proper 

subset of those which satisfy the view (the formal definition of a permissible view 

is given in section 4.5). 

In the general case, the question of view permissibility is undecidable, so instead, 

a number of computationally feasible restrictions are placed on views: Firstly they 
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are restricted to property statements which are equalities between expressions con

taining the functions of one model on one side and the functions of the other model 

on the other side - functions from different models may not appear on the same 

side of the equality. Secondly, although a view which instantiates type variables 

in the hypothesis model is acceptable, one that instantiates type variables in the 

conclusion is unacceptable since this would weaken the conclusion and restrict the 

functions which satisfy it. Despite the fact that these restrictions are not sufficient 

to ensure that a view is permissible, they ensure that any view that is accepted 

will either be permissible with respect to a model or the model will be trivial. 

4.4.3 View synthesis 

Models are compared by proving the properties of one model from the properties 

of the other. If A and B are models and A is being proved from B then B is called 

the hypothesis model and A is called the conclusion model. Before this comparison 

can take place, a view between models which can be used to rewrite the conclusion 

properties in terms of the hypothesis properties must be synthesised. 

This view is initially generated on the basis of the type information contained 

in each model. Functions with 'similar' types are equated in such a way as to 

take into account any difference between their types and ensure that the resulting 

view is correctly typed. The notion of similarity used is based on a collection of 

equalities involving some of the standard Miramod types and the generalisation 

relation between polymorphic types. The equalities used are those suggested by 

Mikael Rittri[52]: 

(x,y) 

(x,(y,z)) 

X-> y- > Z 

x- > (y,z) 

(y, :r) 

((x,y),z) 

(:r,y)- > z 

(x- > y,x- > z) 
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In addition, any n-tuple (n>2) is considered equivalent to a collection of 2-tuples: 

(a,b,c) 

(a,b,c,d) 

(a, ( b, c)) 

(a,(b,(c,d))) 

Each of these equalities has an associated pair of functions which can convert 

between values of the equated types, hence a view can be generated between func

tions whose types are 'similar' using these functions. 

For example, the functions f: :a->b->c and g:: (a,b)->c can be equated with 

the view:: 

f = curry g 

where 

curry h a b = h (a,b) 

The second part of the similarity relation used concerns the situation where 

one type is an instance of another. We say that a type t is a generalisation of 

a type u iff the type expression for u can be obtained from that of t by some 

consistent substitution of type expressions for variables. Since the intention is to 

prove properties of the conclusion model from those of the hypothesis, it is clear 

that hypothesis types may be generalisations of conclusion types but not visa-versa. 

In this case the view between functions f: : t and g: : u where u is a generalisation 

of t is simply f = g. 

Thus we say that a hypothesis type u and a conclusion type t are 'similar' if 

there exists a type v which is equivalent to t under the above equalities, and u is 

a generalisation of t. In this case a view can be generated between the functions 

f : : t and g: : u using the conversion functions corresponding to the rules used to 

equate v and t. 
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Since the types being compared may contain names of described types, the 

type part of the view must be established before the function part. The com

parison algorithm does this by first pairing every conclusion model type with a 

hypothesis model type in as many ways possible. The result of this is a mapping 

from conclusion types to hypothesis types (some of the hypothesis types may have 

no counterpart in the model type). Each mapping is then scored on the basis of 

the number of conclusion functions which have similar hypothesis functions, and 

the most succesfull mapping is then selected as the type part of the view. 

The view between functions is then synthesised in the following manner. First 

of all, an equality is added to the view for any conclusion functions which are 

'similar' to only one function in the hypothesis in only one way (ie. an equality is 

not included if it is one of many between the same pair of functions). The remaining 

functions are not included in the view initially but are marked as free functions of 

the appropriate type. 

During the process of proving the properties of the conclusion model these 

functions may be instantiated with expressions containing only functions of the 

hypothesis model. When this occurs the instantiation is recorded as part of the 

view, where it has the form of an equality between the function and its instantiation. 

Since this instantiation may well be incorrect (i.e. it may prevent other properties 

of the conclusion model from being proved), it must be possible to backtrack and try 

other alternatives. In effect the free functions are existentially quantified variables 

over the whole model (ie "there exists functions ... such that, for all variables ... "). 

Taking the compiler generator example once again, and trying to prove the cgen 

model from the yacc model, the cgen function token matches the type of term 

provided 'grammar * == cgram * bool'. This type equality is acceptable because 

it does not restrict the type of the properties that need to be proved. 

token : : C•->bool) -> grammar * 

term :: (•->**) -> grammar * ** 

Under the same type equality both then and al t have a type that now matches 

choice: 
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then,alt:: grammar * -> grammar * -> grammar * 
choice:: cgram * ** -> cgram * ** -> cgram * ** 

Since it is unlikely that the writer of a model would describe the same function 

twice, giving it different names each time, only one of then or al t should be 

equated with choice. Rather than make a choice at this stage, and potentially 

wasting effort in trying to prove the properties under an incorrect assumption, it is 

better to leave both functions free, in the hope that the attempt to prove properties 

about them will suggest a correct instantiation. cgen should also be left free, since 

its type does not directly match with any of the cgram functions (although it is 

close to yacc). 

Due to the free functions, the order in which properties are proved is important, 

so the properties which contain the fewest free functions should be proved first. In 

the example, this heuristic suggests the property: 

cgen (token x) [y] = x y;; 

Using the view developed so far, token can be rewritten with term. Since cgen is 

free, the first property of the yacc model can be used to rewrite the left hand side 

of this equation, at the same time as recording the instantiation of cgen as 'cgen 

= yacc f' where f is free. The resulting equation is: 

X y = X y 

Hence the first property is proved and the view developed further (although cgen is 

still not completely defined). Of the remaining two properties to be proved, both 

contain only one free function but the third has a marginally simpler structure. 

Using the newly acquired cgen equality in the view, the property can be rewritten 

as: 

yacc f x p \/ yacc f y p 1- yacc f (alt x y) p 
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bearing in mind that f is free. The consequence of this implication can be rewritten 

using the third property of the yacc model and instantiating al t to choice: 

yacc f x p \/ yacc f y p 1-

if ((-=f) (yacc f x p)) (yacc f x p) (yacc f y p) 

Now there are two possible cases, either 'yacc f x p' returns True or it returns 

False. One way of proving the above property is to prove it for both cases (since 

they are mutually exclusive)13 . 

CASE yacc f x p = True 

Substituting True for yacc f x p gives 

True \/ yacc f y p 1- if ((-=f) True) True (yacc f y p) 

which reduces to 

if (-f) True (yacc f y p) 

which follows from 

hence the case is proved if f is instantiated to False. 

CASE yacc f x p = False 

Substituting False for yacc f x p and False for f gives 

False \/ yacc f y p 1- if ((-=False) False) False (yacc f y p) 

which reduces to 

yacc f y p 1- yacc f y p 

proving the second case. 

Thus the third property of the conclusion model cgen is proved. The view is 

now: 

token = term 

cgen = yacc False 

alt = choice 

13This ignores the possibility that the expression could be undefined. Such issues are discussed 
in the following section as well as chapter 5. 
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Two out of three of the property expressions have now been proved. The final 

one however, is the most complex. To start with, now that 'yacc fail' is always 

referred to as 'yacc False' in the properties that need to be proved, the hypothesis 

model could have its properties specialised by replacing fail with False. This 

simplifies the definition of the local function ok to 'ok x = x' and thus the second 

property expression becomes: 

{f lg rg i a b} 

yacc False lg a & yacc False rg b 

1- exists [yacc False (sequen f lg rg) (a++b) 

= f (yleft 1) (yright r) & 
l++r = a++b & ok (yleft 1) & ok (yright r) & 
I (l,r)<-splits (a++b)] 

Now since the list comprehension asserts that for all members of the list 'yacc 

False lg 1' and 'yacc False rg r' are both true, their occurrences in the fol

lowing equation can be replaced with the value True. 

yacc False lg a & yacc False rg b 

1- exists [yacc False (sequen f lg rg) (a++b) = f True True & 

l++r = a++b 

I (l,r) <- splits (a++b)] 

The resulting equality within the list comprehension no longer contains any of 

the existentially quantified variables, so it may be 'floated' outside the scope of 

the (pseudo) existential quantifier. Having done this the remaining exists and 

list comprehension may be removed altogether (H 1- C1 & C2 proves H 1- C1) 

giving the following property of yacc and sequen: 

yacc False lg a & yacc False rg b 

1- yacc False (sequen lg rg) (a++b) = f True True 

The second property of cgen can finally be proved: 
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cgen x p & cgen y q 1- cgen (then x y) (p++q) 

Using the view, this converts to: 

yacc False x p & yacc False y q 1- yacc False (then x y) (p++q) 

One way to prove an implication is to assume the hypothesis and then prove the 

conclusion. In this case, assuming the hypothesis means that the conclusion can 

be rewritten using the conclusion of the yacc property that has just been derived. 

This also involves instantiating the remaining free function with 'sequen f' where 

f is itself free. The resulting expression that must still be proved is: 

f True True 

Since f is free, the equation 

f True True = True 

can simply be assumed as part of the definition for f, hence the last property is 

proved and the completed view of cgen is: 

token = term 

cgen = yacc False 

alt = choice 

then = sequen f 

f True True = True 

This view is permissible because although it has defined a function local to 

the view (f), the equality that describes the function does not involve any cgen 

functions. 
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This example demonstrates the method of synthesising views between func

tions14. Firstly the types of functions are used to create the view between similarly 

typed functions. The remaining functions are left free and the view for these 

functions is discovered by the theorem prover. The theorem prover achieves this 

by attempting the proof of properties about functions for which it already has 

views before the properties of functions for which it has no view. In the case of 

properties not distinguished by this criterion, the proof of the structurally simplest 

theorem is attempted first. During the proof, free functions may be instantiated 

provided the right hand side of the resulting equality does not contain any of the 

functions of the model being viewed (including recursive references to the function 

which is being instantiated). 

4.5 Property Model and View Semantics 

It is beyond the scope of this thesis to provide a full semantics for Miramod and the 

views between models, not least because this would require a semantics for Miranda, 

which has not yet been published. Despite this, it is instructive to investigate 

models for Miramod by considering a more abstract version of the language. 

Abstract Miramod 

The abstract version of Miramod is referred to as 11· In the language /1, property 

models are built from property expressions using the';;' constructor and the empty 

property model E. Each property expression is represented as an n-ary predicate 

over the names of free functions which occur in that property expression. Since a 

view is also a collection of property expressions, we use exactly the same abstraction 

for views as for property models. Our language also contains symbols which can be 

used to talk about property models and views. If a, band v are property models, 

then a&v is a property model obtained by combining the view v with model a, 

a "'-t b is a. sentence which is true iff the properties of b can be derived from those 

14The property prover is not capable of performing this proof directly - the yacc model would 
need to contain appropriate heuristic information before this proof could be performed. 
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of a, Q(v, b) is true iff the view vis permissible with respect to band a> b is true 

iff a 'matches' b. 

Syntax 

The language Jl is described by giving the symbols of the language and the rules 

with which the symbols may be put together to form well formed property expres

sions, well formed property models, and well formed formulas: 

1. A countable set of symbols: 

(a) Function names, written a, b, c, ... , z. 

(b) A countable set of predicate letters: P~ where k and n range over the 

positive integers. 

(c) Operators ; ;, &, "'--+and>. 

(d) Permissibility relation Q. 

(e) The empty property model E. 

(f) The auxiliary symbols: ) and(. 

2. The class of well-formed property expressions consists of: 

(a) P~(Jl!···,Jn) where k and n are positive integers, and ft, ... ,fn are 

function names. 

3. The class of well-formed property models consists of: 

(a) The empty property model E. 

(b) Compound property models p;; ps where p is a well-formed property 

expression and ps is a well formed property model. 

(c) Conjoined property models a&b where a and bare well-formed property 

models. 

4. The class of well-formed formulas ( wffs) consists of: 

(a) Compound formulas (a), a "'--+ b, a > b and Q (a, b) where a and b are 

well-formed property models. 
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A model for the language J.l 

In order to interpret J.l property expressions, property models and formulae, it is 

necessary to fix a model for J.l· This model is centered around the representation of 

property expressions and property models. An assignment of names to continuous 

functions is represented by a set of tuples. In general, a property expression does 

not give a complete description of its free functions, and so there will be more than 

one assignment possible. The model for J.l property expressions is therefore a set 

of assignments. 

Since a complete property model also describes its free functions, the model for 

a property model will also be a set of assignments. 

The language J.l contains predicates, and so the model contains a set of relations 

onto which these predicates can be mapped. 

The model therefore consists of the following parts: 

1. The set lf of objects (names) A,B,C ... Z. 

2. The set of continuous functions (jj. 

3. A countable set of relations R~ on (jj where n and k range over the positive 

integers. 

4. A set of assignments where each assignment is a. set of name / continuous 

function pairs. 

5. The values T and F. 

The free functions of an assignment are the names which appear a.s part of the 

assignment. If a and b are assignments then they are compatible (a ,.0 b) iff a a.nd 

b assign the same continuous functions to their common free functions. 

* b def a "' {::::::} V<n,f>Ea. V<m,g>Eb. n = m -t f = g 
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The Semantic Function 

The values of fl property expressions, property models and formula under the 

semantic function (written [ ]) are now defined recursively: 

• Each function name in p is mapped to the corresponding name in the model: 

[a] A 

[b] B 

[z] Z 

• Each predicate symbol is mapped onto the corresponding relation m the 

model, so for n and k ranging over the positive integers: 

[P~] = R~ 

• The semantic function for fl property expressions can be defined in terms of 

the semantic function for predicate symbols and function names. 

For n and k ranging over the positive integers: 

[P~(ft, ... ,fn)] = { {<[ft],ct>, ... ,<[fn],cn>} I 
<ct, ... ,cn>E[P~]} 

• The empty property model E is simply mapped to a set containing only a 

single empty assignment -it places no restriction on the functions that will 

satisfy it. 

[E] { {}} 
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o When adding a property expression p to a property model ps, each assign

ment from p is combined with each assignment from ps provided they are 

compatible. 

For all I" property expressions p and property models ps: 

[p;; ps] = {p' Ups' I p' E [p] ; ps' E [ps] ; p'; ps'} 

• As with the property model constructor;;, when conjoining property models 

a and b, each assignment from a is combined with each assignment from b 

provided they are compatible. 

For all I" property models a and b: 

[a&b] = {a' U b' I a' E [a] ; b' E [b].; a' ..0 b'} 

• The derives relation a ""'-'t b has to be true iff the properties of b can be derived 

from those of a. If this is the case then each of the assignments in the inter

pretation of a should be stronger than an assignment in the interpretation of 

b. 

[a ""'-'t b] Va' E a . 3b' E b . a 2 b 

• The permissibility relation Q( v, p) ensures that the view is not too powerful 

with respect to the free functions of each property expression in p. It insists 

that the assignments of p are a restricted version of the assignments for p's 

free functions allowed by v. 

[Q(v, E)] 

[ Q ( v, p; ; ps)] 

T 

v ~ p A [Q(v,ps)] 
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* * The restriction relation :) is defined so that v :) p iff the following two con-

ditions hold. Firstly, for every assignment in p there must be a compatible 

assignment in v and secondly there must be an assignment in v which is 

incompatible with or has no free functions in common with any of the assign

ments from p. 

* def * v :) p {:::::::} Vp' E p . 3v' E v . v' ~ p' 1\ 

3v' E v . Vp' E p . ( v' ;,_ p' V v' n p' = {}) 

• The property models a and b match provided there exists a view (which is 

permissible with respect to b) such that the conjunction of the view and a 

is sufficient to derive b. If the language Jl contained variables and existential 

quantification, the semantic function for > could simply be defined in terms 

of'"'--+ and Q: 

[a> b] [3v. Q(v, b) 1\ a&v '"'--+ b] 

However, since existential quantification is not available in JL, the permissibil

ity and derivability conditions must be described directly in the model. This 

results in a fairly complex definition. 

For all positive integers n: 

[a> E] T 

[a> Ptjj ... ;;pn;;E] :Jv.( v :S [pt] 1\ ([a] n v) ~ [pt]/\ 

Each line imposes two conditions on one of the property expressions p1 ••. Pn. 

The first condition is that the view v must be permissible with respect to the 
* property expression ( v :) [pi]). The second is that the property expression 
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must follow from the conjunction of property model a and the view v (([a] n 
v) ~ [pi]). 

4.6 Infinite Structures and the Undefined Value 

It is sometimes necessary to describe the situations in which a function or data type 

does not denote a well-defined value in the normal mathematical sense. For exam

ple, part of the description of the 'divide' function might state that the expression 

'1/0' does not denote a well-defined value. To facilitate this, a special 'undefined' 

value is added to the language. This value is denoted undef and belongs to every 

type. The undefined value can also be used to describe the termination properties 

of a function; an expression that does not terminate when evaluated has no well 

defined value and is therefore equivalent to undef. 

The existence of undef and partial functions (functions that sometimes return 

undef) add considerably to the complexity of Miramod's semantics. For this rea

son Miramod is designed so that property models can be written without paying 

attention to the semantics of undef, and yet partial functions may be described in 

detail if necessary. To this end, the distinction between partial functions (partially 

defined functions) and partially described functions is important. A partial func

tion has some combinations of input values for which the output is the undefined 

value undef; on the other hand a partially described function has combinations of 

input parameters for which the output value has not been described but may be a 

well-defined value. 

4.6.1 The semantics of the undefined value 

If partial functions are to be described in property models, the semantics of undef 

in terms of the predefined functions and types as well as fundamental property 

statement constructors ( 1- and =) are important. One aspect of undef's behaviour 

is the result of applying a function to undef (since undef is a member of any 
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type, any function may be applied to undef). In many languages this behaviour 

is the same for all functions; they all return the undefined value if applied to the 

undefined value (f undef = undef). Functions which exhibit this behaviour are 

called strict functions. By contrast, functions which return a. well-defined value 

when applied to undef are called non-strict functions (f undef =/:- undef). 

Functions described and defined by Miramod are not constrained to be strict. 

For example: 

False & x =False;; 

1 + undef = undef 

The first property expression states that the result of applying & to False and 

anything (including the undefined value) is False, so the function (False &) is 

non-strict whereas the function ( 1 +) is strict. An alternative way of putting this 

is to say that the operator & is non-strict in its second argument provided its first 

argument has the value False and the operator + is strict in its second argument 

when its first argument is 1. 

The strictness of a defined function follows directly from the function definition 

and strictness of any other functions occurring in the definition. If the value of a 

parameter is needed before the function can return even a partial result, then the 

function is strict in that parameter. 

(&) False x = False 

(&) True x = x 

(\/) True x = True 

(\/) False x = x 

(-) True = False 

(-) False = True 

Given the above definitions, it is clear that all three operators are strict in the 
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first parameter as this must be evaluated before deciding which defining equation 

applies. The &: operator is non-strict in the second parameter whenever the first 

parameter has the value False since False is returned regardless of the value of x. 

Likewise the second parameter of \1 is non-strict when the first parameter is True. 

The existence of an undefined value forces the use of two distinct equality 

relations; weak equality and strong equality. These are defined by the following 

truth tables (T represents true or True, F represents false or False, E1 to En 

represent the n > 0 distinct values of the type being compared and ..L represents 

undef): 

Strong Equality Weak Equality 

== Et E2 . . . En j_ = Et E2 ... En j_ 

Et T F . . . F F Et T F ... F j_ 

E2 F T F F E2 F T F j_ 

En F F T F En F T j_ 

j_ F F F T j_ j_ j_ j_ j_ 

The weak equality operator is strict in both arguments, so if either argument is 

undefined then the value undef is returned. Furthermore any attempt to compare 

functions using weak equality results in the undefined value. Due to its executable 

semantics, Miranda allows only weak equality in expressions. This is because the 

equality operator can only be implemented for types which have a canonical repre

sentation. Since Miramod is descriptive rather than executable, the most common 

use of equality is in its denotational (or mathematical) sense: i.e. strong equality. 

Unfortunately it is also desirable to have access to weak equality within property 

expressions. For example, consider the description of a function that compares 

three values for equality: 

eq3:: * -> * -> * -> bool 

{x y z} 

eq3 x y z = (x=y &: y=z) 
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The leftmost equality should be strong since it asserts a property. The right hand 

pair of equalities must not be strong otherwise the function eq3 wou:ld be un

implementable. The difference between these equalities is that the leftmost forms a 

property expression whilst the right hand equalities both form Boolean expressions. 

Generally speaking, equalities which form property expressions should be strong 

equalities since the property expression is either true or false. On the other hand 

equalities which form Boolean values should be weak so that un-implementable 

functions are not accidentally described. 

Since property expressions are either true or false but may not be undef, they 

are given a separate type from Boolean expressions which may be undef. This type 

can be thought of as: 

property ··= T IF 

The shells T and F are hidden and may not appear in property statements (unless 

they are describe as a separate algebraic type). The respective types of strong and 

weak equality and inequality are therefore: 

(=),(-=):: * ->*->property 

(=),(-=):: * -> * -> bool 

When they appear in property expressions the result type of either operator is used 

to determine whether the strong or weak version applies. If there is insufficient 

type information to make this choice then the weak version is used. An alternative 

notation for strong equality and inequality can be used to make their distinction 

from weak equality and inequality clear: 

(==),(-==):: * ->*->property 

The semantics of the 'proves' operator 1- (see fig 4.2) do not involve the unde

fined value since the type property is always well defined and 1- has type: 
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1- T F 
T T F 
F T T 

Figure 4.2: 'proves' truth table 

(1-):: property-> property-> property 

Finally, the syntax of a property expression allows a Boolean expressiOn to 

appear at any point where a property expression is allowed. Since the types are 

different, a coercion from bool to property must take place. This is achieved by 

the function (True==) so in effect the appearance of a Boolean expression b in the 

place of a property expression is shorthand for 'True == b'. 

This raises a potential ambiguity when an equality occurs as a property ex

pression. One interpretation is that the quality is strong and the type property 

is returned. The other interpretation is that the equality is weak and returns a 

Boolean value which is then coerced to a property value. This ambiguity is re

solved by the rule that Boolean expressions occurrmg m the place of property 

statements may not be equalities. 

Using the compiler generator cgen as an example, the property: 

cgen x p & cgen y q 1- cgen (then x y) (p++q) 

is shorthand for: 

(True -- cgen x p & cgen y q) 1- True -- cgen (then x y) (p++q) 

As it stands this property expression describes very little of the partial behaviour 

of cgen. If either 'cgen x p' or 'cgen y q' are undefined then the hypothesis is 

false and nothing can be concluded about cgen (then x y) (p++q). If they are 

both True then the conclusion that cgen (then x y) (p++q) -== undef is valid. 

Information about the strictness of cgen can easily be added to the description: 
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cgen undef g = undef 

cgen g undef = undef 

4.6.2 Infinite and Partial Structures 

The property statements of Miramod can be used to describe infinite structures and 

partial structures as well as functions that will operate on these structures (a partial 

structure is one which is at least partially defined but contains an undefined value). 

For example the infinite list of ones and the partial list containing one element can 

be described: 

{} 

infinite == 1:infinite 

partial == 1:undef 

I J 

Both infinite and partial are distinct from the undefined value: 

infinite-== undef;; 

partial -== undef 

Any attempt completely to evaluate a partial or infinite structure will result 

in the undefined value. So for example: '#infinite == undef' and '(partial = 

partial) == undef' (The # operator gives the length of a list). On the other 

hand, many functions are well-defined even over partial or infinite parameters. 

For example the function hd (which returns the head of the list) applied to either 

partial or infinite returns 1: 

hd infinite == 1 

hd partial == 1 

115 



4.6.3 Property Variables 

Since values which are undefined, partial or infinite are permitted it is important to 

define if the universally quantified variables of a property statement are allowed to 

be undefined, partial or infinite. A property statement whose variables included the 

undefined value as well as partial and infinite values is stronger than an identical 

property statement whose variables do not include these values. In keeping with the 

aim of allowing property models writers to ignore issues of undefined behaviour and 

infinite structures, the default case is to assume that variables are both finite and 

completely defined (unless they have a function type). This means that the weaker 

statement is assumed by default and the probability of a naive property writer 

asking for unintended partial behaviours is reduced. For example, the property 

statement 

{x} 

x:: [*] 

reverse (reverse x) = x 

is interpreted as "for all x: : [ *] such that x is completely defined and finite, ... ", 

and is a correct description of the function that reverses lists. If a variable is 

intended to cover undefined, partial and infinite lists then it should be followed by 

the + symbol. The model: 

{a+ x+} 

reverse (a:x) = reverse x ++ [a] 

is therefore interpreted as "for all x: : [ *] and a: *, ... ". 

The notation of Miramod therefore allows simple models to be written quickly 

and easily without directly involving the writer in the deeper issues of the partial 

behaviour of the model. At the same time the model writer may, if he or she 

chooses, describe the partial behaviour of the model to whatever level of detail 

they require. 
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4.7 Summary 

The language Miramod is motivated by the need for a formal method of describ

ing components. Its similarity to the notation of Miranda is justified by the fact 

that the components Miramod is intended to describe are primarily Miranda com

ponents. Miramod extends Miranda in two key areas. It provides property state

ments for describing rather than defining functions, and it provides a more complete 

notation for describing algebraic types than is provided by Miranda. 

As a method of describing components for the purposes of component library 

retrieval, Miramod meets its objectives in the following ways: 

e It gives a formal description of the component and hence it does not rely on 

names. 

• Its lack of dependency on names provides the possibility of re-use across 

application domains. 

• It allows there-user to describe components at the level of detail they require. 

• It is potentially capable of high precision and high levels of completeness; 

however the achievement of this potential is dependent on the success of the 

theorem prover in comparing models and the ability of the user to make and 

formalise 'good' abstractions for components. 

Miramod has several shortcomings from the point of view of component de

scription. These shortcomings derive from the need to automate the comparison 

of Miramod models. They are: the lack of full (arbitrarily positioned) existential 

and universal quantifiers, the restriction that local functions must be defined and 

not described and the restriction that types described using the abstype notation 

must be given an associated retrieve function and validity function. 

Models may be compared by provmg the properties of one model from the 

properties of the other. This proof is based on a view which consists of a set of 

equalities which relate the functions of one model to the functions of the other 
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model. To allow the matching of models with similar but not identical functions, 

these equalities may consist of an arbitrary expression on either side, but one 

expression must contain only functions of one model and the other expression must 

contain only functions of the other model. 

Finally, this view between models can be discovered using type information to 

equate some functions and also by leaving other functions 'free' so that relationship 

with the other model can be established by the theorem prover. 
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Chapter 5 

The property prover 

The model-based approach to component library retrieval relies on the existence of 

a method for comparing models that can be automated and leads to high precision 

and low loss. This method has been outlined in chapter 4. The current chapter 

describes the method in greater detail as well as describing the design of a prototype 

'property prover' which implements the comparison of property models. 

The property prover is intended as a prototype for investigating model based 

component library retrieval. The principal questions it is intended to help answer 

are: 

• What is the relationship between a model produced by a library user and the 

models of potentially re-usable components? In other words, what is a good 

matching relation to use for component library retrieval? 

• Assuming that a matching relation will be based on views, what views should 

be allowed between similar components? More specifically, what defines a 

view that is too restrictive (i.e. prevents a reasonable match because the 

view is not flexible enough to reconcile the differences between the models) 

and what defines a view that is too general (i.e. allows totally different models 

to match)? 

119 



e How feasible is model based component library retrieval? 

These questions cannot be answered by a theoretical analysis since they are 

highly dependent on human factors as well as technical ones. They rely on un

predictable factors such as the contents of the library, the nature of components 

generally required by the users of the library, the ability of users to write property 

models for components and the ability of the librarians and component contributors 

to write property models for the components in the library. 

The property prover described in this chapter is part of the prototype compo

nent library retrieval system which is intended to answer these questions within 

a limited context (ie Durham Miranda library and the staff and students of the 

Computer Science Group at Durham). The theorem prover has the following ob

jectives: 

1. To compare models and give an indication of their similarity. 

2. To establish a view between models 

3. To check if the properties of one model follow from the properties of another 

model, the view and the axioms of the language. 

5.1 Limitations 

There are a number of theoretical and practical limitations to the property prover. 

Firstly the question of whether or not two models are similar is undecidable in the 

general case. More specifically the question of whether or not a. particular property 

can be proved from a model is undecidable. This follows from the undecidability 

of the halting problem which states that: 

There is no effective procedure (or executable function that always ter

minates) that can take any function definition fd and any input i of 

the correct type and decide whether or not the function will terminate 
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(halt) when applied to that input (in other words prove or disprove 'f 

i == undef' where f is the function defined by fd). 

For two functions to be equivalent they must both produce the same output values 

for corresponding inputs, and must also fail to terminate for the same inputs. Since 

the latter condition is the halting problem, which is undecidable, the question of 

function equivalence must also be undecidable. Not surprisingly the same result 

holds for the question of whether a property can be proved from the properties 

of another model. If the property is in effect a statement of the halting problem 

'f i == undef' then there is no effective procedure for deciding if this property 

holds. This does not mean that such a property can never be proved automatically, 

it simply means that for any algorithm which attempts to decide 'f i == undef' 

there will be combinations off and i for which it will either fail to terminate or 

produce an incorrect result. 

When comparing models for component library retrieval, it is clearly preferable 

to produce an incorrect result (with a resulting loss in precision or completeness of 

retrieval) than for the retrieval system not to produce any result (fail to terminate). 

This contrasts with more conventional applications of theorem provers, such as 

verification in software engineering and proof checkers for mathematicians, where 

the possibility of non termination is acceptable but the possibility of an incorrect 

result is not. 

A property prover that always terminates can do one of three things. It can 

attempt to prove a property and return 'proved' if it succeeds and 'not proved' 

if it does not. Alternatively it can attempt to disprove the property and return 

'disproved' if successful and 'not disproved' otherwise. The third possibility is to 

attempt to prove and disprove the property; if neither is successful then an 'unsuc

cessful' value is returned otherwise a 'proved' or 'disproved' value is returned. In 

terms of measuring the similarity of models the three possible results could each 

correspond to a score which contributes to the overall matching score of the two 

models. Experience of the experimental Miranda library at Durham has indicated 

that is easier and more natural to describe component models in terms of equalities 

than inequalities1 , it follows that trying to prove properties which are usually equal-

1there is also considerable support for this method in the literature [24]) 
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ities, from a model made up of equalities is usually easier than trying to disprove 

properties under the same circumstances. 

If model based component library retrieval is to be feasible, the loss of retrieval 

precision and completeness resulting from this limitation of the property prover 

must be acceptable. The issue is complicated by the fact that there is a tradeoff 

between the maximum time taken to obtain a result and the probability of an 

incorrect result. A 'fast' property prover might be unacceptable on the grounds 

of inadequate precision and completeness whereas a 'slow' property prover might 

be unacceptable on the grounds that it takes too long to search the library. The 

existence of more than one property in the conclusion model helps overcome this 

limitation of the property prover - the effect of an incorrect result is reduced by 

the presence of additional properties (provided these produce correct results) since 

the overall matching value is based on the results of attempting to prove all the 

properties and not just one. 

A second limitation to the property prover is the lack of any formally defined 

semantics for Miramod (or Miranda). This means that there is no formal specifi

cation for the property prover and therefore the property prover itself cannot be 

guaranteed correct. As with the decidability limitations of the property prover, 

this limitation does not greatly affect the property prover's ability to meet its ob

jectives, since these involve detecting similarities rather than proving equivalence. 

5.2 Review of Theorem Proving Techniques 

The central goal of automated theorem proving and automated deduction is to 

make it possible for computers to draw conclusions from sets of facts. The need for 

deduction arises in situations where the problem description is incomplete in the 

sense that some questions cannot be answered by straightforward evaluation. 
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Notation 

In the remainder of the thesis, logical statements that are not part of the notation 

accepted or used by the retrieval system are written using the following more elegant 

mathematical equivalents: 

Miranda 

or Equivalent Meaning 

Miramod 

\I 
1-

Undef 

v 
f

j_ 

logical disjunctions 

proves 

the undefined value 

The symbol ---+ is also used to denote logical implication. 

5.2.1 Resolution Theorem Proving 

One of the most commonly used methods of theorem proving 1s based on the 

resolution rule of inference. This states that if: 

then 

Q v p & 

-Q V R 

P V R 

Since -A V B is equivalent to A ---+ B the resolution rule is in fact a restatement of 

the chain rule of inference, which is written: 

(having replaced Q V P with P V Q and P with - S). 
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The resolution method introduced by J .A.Robinson [54] proves a theorem from a 

set of axioms by applying the resolution rule to the negated theorem and the axioms 

until a contradiction is reached. The axioms and negated theorem are represented 

in clause form which is a conjunction of clauses. Each clause is a disjunction of 

literals where a literal is either an atomic formula (proposition in propositional 

calculus or predicate in predicate calculus) or the negation of an atomic formula. 

(£1,1 V £1,2 ... V L1,n) & 

(£2,1 v ... ) & 

(Lm,1 V Lm,2 · · · V Lm,o) & 

The general resolution rule is used to resolve clauses. It differs from the resolution 

rule given above in that it can resolve any two clauses provided that one clause 

contains the negation of an atomic formula from the other clause. The result is a 

clause containing the literals of both clauses without the matching atom: 

A 1 V .. V An V Q & 

B1 V .. V Bm V -Q 

The general resolution rule is repeatedly applied to two of the clauses to produce 

a new clause - the resolvent. This is then added to the set of clauses and the 

process continued recursively on the new set of clauses. If the empty clause can be 

produced (by resolving A and -A) then the theorem is proved by contradiction. 

For example, supposing the theorem A ---4 D is to be proved from the axioms 

A ---4 (B &; C) and C ---4 D. Firstly, the axioms are put into clause form (each 

clause is numbered so that the resolution process can be described): 

1) -A VB 

2) -A v C 

3) -c v n 
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The theorem to be proved is then negated and converted to clause form, giving the 

two clauses: 

4) A 

5) ~D 

General resolution is now used to produce an empty clause (a contradiction) by 

firstly resolving 2 and 4 to give: 

6) c 

and then resolving 6 and 3 to give: 

7) D 

Finally 7 and 5 are resolved to give the empty clause, and the theorem A ---+ B is 

proved by contradiction. 

The method of resolution theorem proving can be used to prove theorems 

expressed in propositional logic in which the atomic formula are in fact propo

sitions (e.g. "John is a man"). However it also applies to first order predi

cate calculus which allows predicates, functions, variables and quantifiers. For 

example the proposition "John is a man" can be expressed as man( John) and 

the proposition "For all x, if x is a man then x is human" can be expressed as 

Vx.man(x)---+ human(x). Given these two predicate calculus clauses as hypothe

ses the conclusion human(John) can be reached, but in propositional logic "John 

is a human" does not follow from the above propositions since their content is not 

relevant. 

Two extensions to the resolution method introduced above must be made to ap

ply resolution theorem proving to predicate calculus formulae. Firstly the predicate 

calculus must be transformed to clause form, and secondly the resolution rule must 

allow for the unification of the arguments of predicates. The conversion of predicate 
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calculus to clause form is formally straightforward (see [13] for details), the most 

interesting aspect being the replacement of existentially quantified variables with 

skolem constants and functions. For example the formula 3H.husband(Jill, H), 

which states that Jill has a husband, can have the existential quantifier removed 

and the variable H replaced by a unique skolem constant to give husband( Jill, k ). 

The fact that k is a unique constant indicates that Jill's husband exists without 

giving any clue as to who he is. If the existential quantifier occurs within a universal 

quantifier then it must be replaced by a skolem function applied to the universally 

quantified variable. For example, in the formula: 

VX.3Y.married(X) & female(X) --t husband(X, Y) 

which states that for all X there exists a Y such that if X is married and X is 

female then Y is X's husband, the existentially quantified variable Y must be 

replaced by a skolem function applied to the universally quantified variable X. 

VX.married(X) & female(X) --t husband(X,f(X)) 

This ensures that the hypothesis does not insist that all married women have the 

same husband (the skolem constant). 

Once all the existentially quantified variables have been removed (and all uni

versally quantified variables moved to the outermost level of the formula), the 

remaining universal quantifications can be removed since any remaining variables 

must be universally quantified. The resulting formula, in clause form, is: 

~married( X) V Jemale(X) V husband( X ,J(X)) 

The second extension needed for resolution to apply to first order predicate 

calculus is the ability to unify predicate arguments during the application of the 

resolution rule. Continuing with the previous example, it should be possible to 

prove that Jill has a husband from the above clause and the assertion that Jill is 

female and married. In other words the following clauses should lead to a contra

diction: 

126 



1)- married(X) V Jemale(X) V husband(X,J(X)) 

2) 

3) 

married( Jill) 

female( Jill) 

4)- husband(Jill, Y) 

To make any progress with this proof it must be possible to substitute variables 

and values for other variables. For example, clauses 1 and 4 could be resolved if 

Jill was substituted for x· and f( Jill) was substituted for Y. 

These substitutions are achieved by unification of the two predicates begin re

solved. Unification performs two tasks; firstly it decides if predicate arguments are 

comparable, and secondly if they are comparable it gives the appropriate substi

tution. This substitution is then applied to the whole of the resolvent (but not to 

the clauses resolved). In the example this gives: 

5) -married(Jill) V Jemale(Jill) 

Which gives a contradiction when resolved with clause 2 then 3. 

The principal advantages of resolution as a method of automated deduction 

is that it is complete for first order predicate calculus since it can prove all true 

theorems. It is also sound because it can never prove a non theorem true. Another 

advantage is the simplicity achieved because the method is based on a single rule 

of inference - the resolution rule. 

The main disadvantage is that the search space generated by the resolution 

method grows exponentially with the number of clauses used to describe the prob

lem, so that proofs of even moderate complexity cannot be found in reasonable 

time. A further problem is that it does not produce understandable proofs since 

there is no distinction between goals and antecedents. 

There are a number of elaborations to the basic method of resolution theorem 

proving and these are generally aimed at reducing the combinatorial explosion 

of the search space. The set-of-support strategy insists that one parent of each 
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resolvent is from the original negated hypothesis or one of the clauses derived from 

it thus restricting the number of resolutions that are applicable at any one time and 

reducing the search space [61]. Greater reductions in the search space are achieved 

by the Linear-input-form strategy. This insists that one resolvent is always from 

the base set (the original set of clauses). Although this method is more efficient, it 

is not complete since there are some theorems of first order predicate calculus that 

cannot be proved using the method. Another elaboration of resolution theorem 

proving involves the handling of the equality relation [53] which allows theorems 

such as 

(a= b & P(a))---+ P(b) 

to be proved. 

5.2.2 Natural Deduction 

Natural deduction (or non-resolution) theorem provers attempt to mimic the be

haviour of human theorem provers. The method of natural deduction maintains a 

clear distinction between goals (formula that the theorem prover is attempting to 

prove) and the antecedents from which it is attempting to prove the goals. There 

are two modes of theorem proving, forward chaining and backward chaining. In the 

forward chaining mode the rules of deduction are applied to the hypothesis to pro

duce results which may then be used recursively to prove the desired conclusion. In 

the backward chaining mode, the rules of deduction are used to produce subgoals 

which imply the conclusion. These subgoals are then proved recursively. A natural 

deduction theorem prover will use one or both of these modes of operation. 

Unlike resolution theorem provers, a natural deduction theorem prover uses 

many rules of inference. Some examples of rules that might be used are: 

128 



H &: A--+ B 1- H--+ (A--+ B) 

and finally 

B--+ C &: H--+ A 1- H &: (A--+ B) --+ C 

One of the main advantages of natural deduction theorem proving is that be

cause the theorem proving process is easy for humans to follow, it is possible for 

humans to guide the theorem proving process, either interactively or by supplying 

domain dependent heuristics. Some examples of domain dependent heuristics that 

can be used by a natural deduction theorem prover are: 

Rewrite Rules (or reduction rules) These are equalities which can (should) 

be used as substitutions and have an explicit direction in which they should 

be used. For example the rules 

A+ (B +C)= (A+ B)+ C 

and 

A+ (B- C)= (A+ B)- C 

can be used to help normalise arithmetic expressions. There are two desirable 

properties of a set of rewrite rules; one is finite termination and the other is 

unique termination. A set of rewrite rules has the finite termination property 

if there is no infinite sequence of expressions e1 , e2 ••• where ei rewrites to 

ei+l for all i > 0. A set of rewrite rules has the unique termination property 

if for every expression e all irreducible forms of e are identical. There are 

algorithms for deciding the unique termination property of a set of rules that 

are finitely terminating, as well as algorithms for extending sets of rewrite 

rules that fail to meet the unique termination property. 
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Forward chaining Another group of domain dependent heuristics are concerned 

with forward chaining deductions which produce new hypotheses from the 

original set of hypotheses. These heuristics are in the form of demons that 

scan the hypotheses looking for sets of assertions. H they find an appropriate 

set then they make their own assertions based on the ones they have found. 

For example: 

if A C B and C C B are hypotheses and if AU C is 

mentioned somewhere, then assert (A U C) ~ B. 

Decision procedures For certain theorems there are algorithms to decide if a 

sentence is true or false very quickly. For example, sets of linear inequalities 

over the real numbers can be decided by the simplex algorithm. 

Examples and counterexamples Heuristics used by human theorem provers of

ten involve examples and counterexamples. Given a set of axioms T and a 

request to prove H ---+ C then an example is an interpretation of the symbols 

ofT, Hand C that satisfies the axioms T and hypothesis H. 

Supposing A ---+ B is one of the axioms, and a subgoal that the theorem 

prover is currently attempting to prove is B. Rather than trying to prove 

A immediately, a check can be made to see if A is true under the example 

interpretation. H it is true for the example then it is worth trying to prove A 

as a subgoal. H A is false for the example, it must also be false in the general 

case and therefore it is not worth attempting to prove A as a subgoal. 

Another type of inference rule used in natural deduction is induction. This is 

particularly important for dealing with recursively defined objects and is described 

in the following section. 

5.2.3 Proof by Induction 

Supposing some property P(n) is to be proved for all natural numbers n. It is 

sufficient to prove the two properties P(O) and P( n) ---+ P( n + 1 ). For example, 
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if P(n) states that x<n+m) = xn * xm for all x and natural numbers n and m then 

P( n) can be proved in the following manner: 

Prove P(O). 

which establishes the base case. 

Prove P( n) ---+ P( n + 1) by assuming P( n) as the induction hypothesis and 

proving P(n + 1). 

X* X(n+m) 

(from the induction hypothesis) 

which establishes the induction case (or induction step). 

The conclusion that P( i) is true for all integers i is justified by the fact that 

for any finite i, a finite proof for P(i) can be constructed using the proof of P(O) 

above followed by proof of P(n)---+ P(n + 1) initially with n as 0 to establish P(1), 

then with n as 1 to establish P(2) and so on until P(i) is proved. 

The above proof, based on one or more base cases and one or more recursive 

(or inductive) cases, is known as a proof by induction. This particular style of 

induction or induction principle is one of many that are specific to the natural 

numbers. A similar principle exists for induction over lists, the difference being 

that [] replaces 0 and ( e:) replaces ( + 1) (where e is a new universally quantified 

variable). 

Rather than relying on a theorem prover to invent an induction principle for 

every type, a general induction principle for all types can be used to create specific 

inductive proofs tailored to the type and context of the induction variable. 

Such an induction principle is based on the idea of a well founded relation. A 
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well founded relation is one which relates two arguments of the same type according 

to whether or not one is "less" than the other in a specific sense. The crucial 

property of well foundedness comes from the restriction that there must be no 

infinitely decreasing sequences in the set of values over which the relation is defined. 

If R is a well founded relation and R(x, y) is true then xis said to be "R-Iess" than 

y. Thus R is well founded provided there is no infinite sequence 

such that Xi+t is R-Iess then Xi for all i > 0. 

The generalised principle of induction, which states that to prove P( x) it is 

sufficient to prove the base case: 

~Q(x)--+ P(x) 

and the induction step: 

Q(x) &; P(d(x))--+ P(x) 

is only valid provided Q( x) --+ R( d( x ), x) and R is a well founded relation. In other 

words the induction only holds provided d(x) is R-Iess than x when Q(x) is true. 

An informal justification of induction principle is that p can be proved for any 

finite x provided a finite number of applications of the induction step and base case 

lead to the conclusion P(x). This is guaranteed by the condition that provided Q(x) 

is true, d(x) must be R-Iess than x where R is a well founded relation, so there 

can only be a finite number of applications of d to x which remain R-Iess than x. 

When the R-Iess relation no longer holds Q( x) must also be false (the induction is 

only valid provided Q(x)--+ R(d(x),x)) and if ~Q(x) then P(x) (the base case). So 

the conclusion P( x) for all finite x must follow from the validity of the induction 

instance and the proof of the induction cases. 
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An induction scheme similar to the one for natural numbers mentioned above 

can be derived from the generalised induction principle if the functions Q and d 

are given the following values: 

Q(x) (x "I 0) 

d(x) x-1 

g1vmg 

X = 0 ---+ P( X) & 

x "I 0 & P(x -1) ---+ P(x) 

which is a valid induction because the relation R where 

R(x,y) = x < y 

is well founded for the natural numbers and 

p#0---+x-1<x 

The generalised induction principle introduced above can be extended to allow 

an arbitrarily large number of induction variables which are R-Iess according to 

some measure (usually lexicographic ordering). There are also k >= 1 induction 

cases each with one or more induction hypotheses. These further generalisations 

allow inductions on sum of product types, each induction case dealing with one 

of the recursive shells with a hypothesis for each recursive component and a case 

condition ( Q) which recognises the particular shell. 

Due to its close relationship with recursion, induction plays an important role in 

proving theorems about recursive functions. Boyer and Moore[12) argue that any 

proof system which is not capable of inductive arguments must, when attempting 

to prove theorems about recursively defined objects, be doomed to assume what it 

is trying to prove. 

Discovering the appropriate form of induction to use in a given situation is a 

difficult problem. In particular, the theorem prover must decide which variables to 
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base the induction on, what the inductive cases should be and what substitutions 

should be used to create the induction hypotheses. A powerful set of heuristics for 

selecting the best induction scheme to use are employed by the Boyer and Moore 

theorem prover (BMTP)[12] which is described in the following section. 

5.2.4 The Boyer and Moore Theorem Prover {BMTP) 

The BMTP is based on an extendible theory of recursively defined functions and 

data objects. Only provably total functions are admitted to the theory which is not 

strongly typed. The totality of a function is proved using a well founded relation 

over a measure of the arguments to the function which ensures that the arguments 

are 'less' on each recursive call in the definition body the function. This ensures 

that each definition describes only one function and the theory may not be rendered 

inconsistent by the addition of a new function definition. This measure and well 

founded relation also play a key role in the theorem proving process by suggesting 

the form of an inductive argument for conjectures that involve the function. 

BMTP uses recursive functions as an alternative to existential and universal 

quantification. Axioms and theorems are treated as functions which return either 

F if they are false or -F if they are true (since the theory is not strongly typed 

a theorem may have values other than T and F). As theorems are proved by the 

system, they are retained and used in the proof of subsequent theorems. In this 

way proof guidance can be given by providing a sequence of lemmas each of which is 

proved and then used by BMTP in the subsequent proofs. Thus given a theorem to 

prove (what), BMTP attempts to provide the proof (how), but if it is not capable 

of doing this it can be assisted with the appropriate sequence of lemmas to enable 

it to prove the theorem. 

The fundamental objects of BMTP are T and F and the fundamental operators 

are IF, == and -==2
• The behaviours of these are defined by the following axioms 

2 BMTP is described using Miramod notation rather than the original notation employed by 
Boyer and Moore 
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which BMTP assumes. 

Ti:F 

x=y --+ (x == y) = T 

xi:y --+ (x -== y) = F 

x=F --+ (IF X y z) = z 

xi:F --+ (IF X y z) = y 

The logical function are defined as follows: 

-p = IF p F T 

p &: q = IF p (IF q T F) F 

p \/ q = IF p T (IF q T F) 

p 1- q = IF P (IF q T F) T 

BMTP allows recursively (inductively) defined data objects to be added to the 

theory in such a way that consistency with lemmas already proved is guaranteed. 

These data objects are based on shell functions3 and consist of a shell function 

name, an optional bottom object, a recogniser function name and n selector func

tion names where n is the arity of the shell function. The recogniser function 

returns T if its argument is the shell function or bottom object and F otherwise. 

The selector functions each return an argument of the shell. The name of a well 

founded relation for the shell is also given. An example of a shell definition is: 

Add the shell ADD1 of one argument 

with bottom object (ZERO), 

recogniser NUMBERP, 

selector SUB1, 

and well-founded relation SUB1P. 

Given a shell definition, and provided the names used do not clash with existing 

3In this thesis the use of the word 'shell' to describe a class of constructor functions, stems 
from the shell principle of BMTP. 
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names BMTP adds a number of axioms concerning the names defined by the shell. 

These include: 

r (shell Xt .•• Xn), 

r btm, 

(r x 8£ x -== btm) 1- (shell (selt x) ... (seln x)) == x 

where r is the recogniser, shell is the shell function, x1 ... Xn and x are variables, 

btm is the bottom object and sel; is the ith selector. 

Shell objects are finite and mutually exclusive, which means that no two bottom 

objects or shells represent the same object. They are also not exhaustive, which 

means that an object does not have to be one of the currently defined shell objects 

or T or F. This ensures that adding new types does not alter the truth of existing 

theorems. Since the BMTP theory is not strongly typed a function can return 

values of any shell. 

The Boyer and Moore theorem prover is based on the generalised principle 

of induction, or Noetherian lnduction[26] and the majority of its heuristics are 

oriented towards induction proofs. 

To prove a conjecture the system attempts to rewrite it to -F (since the lan

guage is not strongly typed it is quite possible for a conjecture to return a value 

that is neither T or F). The various heuristics (such as using lemmas as rewrite 

rules) are layered; the least risky ones are applied first (the ones that guarantee 

equivalence) and the most risky (induction) applied last. If any phase actually 

alters the theorem being proved then all the preceding phases are re-applied. In

duction is therefore applied to the simplest and most general form of a conjecture. 

Many of the earlier heuristics are orientated towards producing a conjecture that 

is amenable to inductive arguments. 

The heuristics, in the order that they are applied, are: 

Simplification This involves the use of axioms (including definitions and shell 

axioms) and previously proved lemmas to simplify the conjecture. 
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Elimination of undesirable concepts. Lemmas about the equivalence of terms 

can be used to suggest the elimination of certain functions or operations. For 

example operations such as I and - might be traded for operations such as * 
and+. 

Using equalities When the conjecture being proved has an equality as one of its 

hypotheses, the equality is sometimes used to substitute one of its operands 

for the other in the remainder of the conjecture and then removed from the 

conjecture. Two distinct heuristics, uniform substitution and cross fertilisa

tion are used. Uniform substitution performs a substitution for all occur

rences of the term being substituted for, whereas cross fertilisation performs 

only a single substitution. 

Generalisation The generalisation heuristics are designed to help prepare a con

jecture for induction. Conjectures must frequently be generalised before they 

can proved because without generalisation the induction hypothesis may not. 

be sufficiently strong to prove the theorem. Generalisations are achieved by 

replacing terms with variables. To prevent over generalisation to a non the

orem, shell type information about the new variable is often added to the 

hypothesis. 

Elimination of irrelevant terms This stage cleans up irrelevant terms that have 

been generated by the previous simplifications. 

Induction Inductions are formulated from information collected when definitions 

are added to the theory and from information available at the time of in

duction. When a function is defined it must be proved to be total using a 

measure of its arguments and a well founded relation. An induction is only 

valid if when the substitution is applied to a measure of the induction vari

ables the result is 'R-less' than the original measure according to some well 

founded relation 'R'. Thus the same measure and well founded relation used 

to prove termination of the function may be used to suggest an induction 

template for conjectures that involve the function. 

At Induction time all the templates of each recursive definition in the formula 

are retrieved as candidate induction templates. The following heuristics are 

then applied to formulate an induction from these templates: 

1. Templates that do not apply to the current conjecture are thrown out 
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(ie a nonvariable argument appears as an induction variable) and ones 

that do are instantiated with the actual parameters which appear in the 

conjecture. This gives a set of induction schemes. 

2. Subsumed4 induction schemes are removed. 

3. Schemes are merged. Thus if an induction on x is suggested by one 

schema and an induction on y by another then an induction on x andy 

is produced by merging the schemes. 

4. Flawed schemes are discarded. 

5. Scoring functions are used to pick between any remaining schemes. 

Limitations 

The BMTP's limitations lie in two areas: firstly its ability to represent facts and 

theorems in the domain of interest; and secondly its ability to prove theorems 

efficiently. 

One of the main limitations is the fact that the BMTP only allows total func

tions to be defined. This limitation stems from BMTP's insistence that a definition 

is only admitted if it has been proved to terminate and there is no mechanism, other 

than non termination, for describing a functions value for a subset of its possible 

inputs. This does not mean that theorems about potentially non terminating pro

grams or even theorems about the termination of programs cannot be expressed 

and proved. The language used to express the conjectures being proved need not 

be the same as the language in which the program referred to by the conjectures is 

written. In the general case, an appropriate theory of program semantics must be 

applied to the source program to give a formal statement in the BMTP notation 

whose validity implies the desired properties of the program. 

In terms of efficiency, the BMTP suffers from what is known as the referencing 

problem. That is, the more axioms and lemmas that are available to the theorem 

prover, the worse its performance gets. 

4The subsumption relation is described fully in [12], however an intuitive description of the 
relation is that one scheme subsumes another if it covers all the cases and substitutions of the 
other and can therefore be used in place of the other schemes. 
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5.3 The Design of a Property Prover 

The intention of the property prover is not to investigate novel methods of theorem 

proving, but to apply existing methods to the task of component library retrieval. 

Thus the strategy has been to follow an existing method as closely as possible, 

innovating only when the peculiarities of the application make this essential. 

The design of the property prover follows the design of the theorem prover 

described by Boyer and Moore in [12). This choice was made for several reasons. 

Firstly the properties which must be proved are properties of recursive functions 

and inductive data types, and hence the heuristics concerned with induction which 

are central to BMTP are also important to the property prover. Secondly Miramod 

and the BMTP theory (which is based on pure LISP) are very similar. Thirdly 

the proofs and heuristics of BMTP are 'natural' to humans, but resolution based 

proofs are not. To allow the comparison of models that are more than just trivially 

different, it is essential that some domain specific heuristics are available. These 

heuristics can form part of the model in the library and be used to help match 

the library model against the required model. However if these heuristics are to 

be added to the model by librarians or component contributors then the model 

comparison process must be understandable to the librarians. Since the proofs 

followed by resolution theorem provers are highly unnatural to humans, a resolution 

based property prover would provide little opportunity for the addition of heuristics 

to the model. 

Given the decision to follow the BMTP design, an important choice must be 

made between the alternatives of translating the Miramod notation to the BMTP 

theorem or adapting the BMTP heuristics to the Miramod notation. Though the 

underlying semantics of both notations are very similar, Miramod provides a great 

deal more 'syntactic sugar' since one of its primary goals is to allow properties 

to be expressed simply, elegantly and with the minimum of effort. The BMTP 

notation is very sparse by comparison. It is designed for ease of proving theorems 

rather than ease of describing properties. The solution adopted is therefore to 

describe property models using the Miramod notation and compile this to BMTP 

notation for the purposes of comparing models. The design and implementation of 

the compiler is described separately in chapter 6. 
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The compiler and property prover are used in two contexts: one as part of the 

retrieval process, and the other as tools for building and maintaining the component 

library. 

The design of the retrieval system is summarised in figure 5.1. This diagram 

has three main parts: there-user who wishes to retrieve a component, the retrieval 

system which attempts to find appropriate components and the component library 

which stores components. The retrieval system initially receives a request from the 

re-user in the form of a property model (the diagram arrows indicate data flow). 

This property model is then compiled and any errors in the model (including type 

errors) are reported back to the re-user . The compiled model is then used by 

the property prover to compare with the compiled models contained in the library. 

Any models sufficiently similar to the re-users model are collected as part of the 

component selection, a summary of which is presented to the re-user . If this 

selection is large then the components are presented in order, with the most similar 

components first. The re-user may then pick components from the selection and 

view them in greater detail, choosing to remove them from the selection or retrieve 

them as appropriate. 

The compiler and property prover are also used by the librarians and component 

contributors to create models that can be used to identify stored components. This 

process is summarised in figure 5.2. 

Each component has one or more property models associated with it, and these 

models also contain at 'theory' of the model which assists the property prover in 

proving properties of the model (for example the component which appends lists 

might be described by a model whose theory includes the fact that 'append' is 

associative). The compiler is used to produce a compiled version of the model (in

cluding the associated theory) and any errors detected are reported to the librarian 

or component contributor. The model can also be checked to ensure that the the

ory is consistent with the model by attempting to prove the theory from the model 

(for example proving the associativity of 'append' from the models description of 

append). 
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5.3.1 Differences between BMTP and the property prover 

The property prover is based on theorem proving techniques, but diverges from 

conventional theorem proving in several areas. Rather than producing an answer 

'yes' or continuing to attempt a proof indefinitely, the property prover returns a 

result which is intended to be a similarity measure. This measure is guaranteed to 

be returned within a certain time limit, even if it is incorrect (in the sense that it 

indicates its lack of theorem proving ability rather than the similarity of models). 

Due to the differences in the objectives of the two systems, the theory on which 

they are based is not entirely the same: 

e Partial functions are allowed by the property prover but not by BMTP. 

• The property prover admits arbitrary definitions to be added whereas BMTP 

insists that a function is proved total before its definition is added. 

• Arbitrary axioms may be assumed by the property prover but the BMTP only 

allows axioms to be admitted via the shell principle, the definition principle 

or by proving them as lemmas. 

• The property prover allows higher order functions, whereas BMTP insists 

that variables may not appear in the place of function symbols. 

• Function definitions may contain local definitions in the property prover but 

not in the BMTP. 

• In addition to the BMTP values T and F the property prover has special 

values, True, False and Undef as well as a special weak equality operator =. 

• The property prover assumes that all expressions and definitions are strongly 

typed. 

The relaxed theory of the property prover provides two serious problems. Firstly 

since the principle of definition is not used, there is no way to ensure that the 

assumption of definitions does not introduce inconsistencies. Secondly, the principle 

of induction needs additional checks to ensure that it remains sound because a value 
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can be infinite, in which case the induction principle only holds for conjectures that 

are chain complete (see 5.4.11). 

The introduction of inconsistencies cannot be prevented since Miramod allows 

functions and types to be described using property statements which are in effect 

axioms. Despite this it is important to prevent axioms which would render the 

basic theory of the BMTP inconsistent (for example the axiom T=F). 

For this reason functions and properties of T and F are not allowed to be intro

duced as axioms or definitions. Contradictions may still be introduced accidentally, 

for example the axiom True == False introduces a contradiction, but the way 

in which axioms are used by the property prover limits the effects of such contra

diction to the properties of True and False along with functions which involve 

True and False. BMTP will only use these axioms to rewrite 'True == False' to 

T thus ensuring that any equality of expressions which always return either True 

or False will always be provable. However it will not make the inference that 

True == False -+ F and hence T=F which means that everything is provable. 

Although the above example is based on an extremely crude and obvious contra

diction, the introduction of a contradictions can occur in far more subtle ways. 

Any contradiction introduced constitutes an error by the writer of the model, and 

should ideally be detected by the property prover. BMTP achieves this by putting 

the onus on the user to prove that any definitions they add do not contradict any 

previous definitions or axioms. Since the property prover must freely admit def

initions and axioms, it provides no such safeguard, but instead attempts to limit 

the implications of a contradiction so that the model may still retain some useful 

meaning and retrieval may still be possible. 

5.3.2 Property Prover Notation 

The notation used to describe the property prover is essentially a subset of the 

Miramod notation, however there are a number of differences, especially concerning 

the built in values and functions used by the property prover. 

Property statements return the BMTP values 'T' or 'F' which are referred to 
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as BMTP Boolean values. 

There is a special shell called Undef which is produced by the Miramod function 

undef and has the recogniser (Undef==). Undef is a member of every type other 

than the property type which allows only the values T and F. There is also a 

special equality operator, called weak equality and denoted =, which differs from 

the normal BMTP equality == in that it returns one of True, False or Undef rather 

than Tor F. The weak equality operator returns Undef if either of its arguments 

are functions or are only partially defined. 

Miramod types are represented directly as BMTP shell objects (bottom objects 

are not used) one BMTP shell per Miramod shell and the shell function is given 

the same name as its Miramod equivalent. Given a shell function C, the recogniser 

function of each shell is called REC_C and the selector functions are called SEL_C_n, 

where n is the number of the argument selected by the function (the first argument 

is number 1). Shells with no arguments (constants) have a special notation for 

their recogniser function which is written (C==) where Cis the shell name. 

Hence for the Miramod list type there are two recogniser functions ( [] ==) and 

REC-: as well as two selector functions SEL-: -1 and SEL-: -2. The following shell 

definitions are used: 

Add the shell [] of zero arguments. 

Add the shell 

with 

recogniser REC_: 

of two arguments 

selectors SEL_:_1 and SEL : 2 

To make the examples given in this thesis more readable, selector functions are 

usually given meaningful names such as hd for the selector function SEL-: -1 which 

selects the head of a list and tl for the selector function SEL-: -2 which selects the 

tail of a list. 

Functions defined in Miramod that use pattern matching in their parameters, 
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are translated into a form which uses the shell recognisers to select the appropriate 

pattern case and the selector functions extract formal parameters which appear as 

parts of patterns. For example the list append operator ++ can be defined by the 

following equations: 

[]++x = x 

(a:x)++y = a:(x++y) 

Given this definition the translated version is: 

X ++ y 

= IF (x==Undef) Undef 

IF (x== []) y 

((SEL-: -1 x) ((SEL-:-2 x) ++ y) 

5.4 Proving the properties 

The property prover is closely based on the Boyer and Moore Theorem Prover. 

The main differences are that the property prover is capable of proving properties 

of partial functions, whereas the BMTP theory does not admit the definitions of 

partial functions and the property prover relies on domain dependent information 

provided by the component library rather than interactive human assistance to 

help prove properties. Another important difference is that the property prover 

provides a crude measure of similarity rather than a straight 'yes' or 'no' answer. 

A fundamental assumption made by the property prover is that the property 

models contained in the library are not only written so that it is easy to prove their 

properties, but that they include domain specific guidance to the property prover 

on proving properties of that particular model (rather than general heuristics for 

proving properties). The form of this guidance and its use by the theorem prover 

is described in the following sections. Since this assumption is fundamental to the 

property provers ability, there is no attempt to prove the properties of a library 
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model from the properties of a re-user 's model. The re-user cannot be expected 

to provide information on how to prove theorems about their model because this 

is a time consuming and highly specialised task. 

5.4.1 The proof strategy 

The property prover starts with a set of assumptions including the properties and 

definitions of the hypothesis (library) model and a property expression from the 

re-users model which is to be proved (this is referred to as the conjecture). 

The conjecture is initially represented as a single clause containing only the one 

disjunct. 

The property prover has a number of simplification phases which it applies to 

the conjecture in order. Each phase takes a clause as input and returns a set of 

clauses as its output. If the result of a phase is the singleton set of clauses containing 

the input clause unaltered then the clause is given as input to the next phase, if 

the clause is altered by a phase in any way then each member of the resulting set of 

clauses is returned to the first phase. Clauses that manage to pass through all the 

phases unaltered are collected until there are no further clauses to be simplified. 

At this stage one of the collected clauses is selected and an appropriate induction 

scheme constructed. The resulting set of clauses are simplified again from the first 

phase onwards. 

Boyer and Moore describe this with the analogy of a stepped waterfall between 

two pools. The top pool contains the unsimplified clauses and each step of the 

waterfall represents a simplification phase. Clauses trickle down from the top pool 

to the bottom, hopefully evaporating (being simplified to true) on the way down 

but sometimes being altered and returned to the top pool. Eventually the top 

pool and waterfall are both empty. At this stage if there are no clauses left in 

the bottom pool then the property is proved, otherwise a clause is selected, an 

appropriate induction created and the resulting set of clauses are placed in the top 

pool for re-simplification. 
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This proof strategy is exactly the one used by BMTP; however the property 

prover employs an additional heuristic that is concerned with the proof of partial 

properties which concern the behaviour of the model over partial and infinite values. 

Clauses are labelled according to whether or not they are partial (this criterion is 

discussed in section 5.4.2). When a choice of induction candidate is being made, 

non partial clauses are given priority over partial clauses. If the non partial clauses 

are all simplified to true, then the property being proved is given a score to indicate 

that at least its non partial properties can be proved and then an attempt is made 

to prove its partial properties. If a partial clause is simplified to F on the other 

hand, any other partial clauses generated in the proof are immediately assumed 

to be F but the property prover continues attempting to prove the non partial 

properties. 

This heuristic is justified on two accounts. Firstly the partial properties tend 

not to be as good a guide to component similarity as the non partial properties and 

secondly partial properties which survive the simplification stage tend to be harder 

to prove than non partial properties (they are often undecidable). The belief that 

partial properties are not a good guide to component similarity stems from the fact 

that Miramod is designed to allow re-users to write property models without wor

rying about the details of partial behaviour. It is supported by the experience that 

ignoring partial behaviour is a good way of simplifying a model and that accurately 

describing the partial behaviour of a component is difficult. Partial properties can 

often be proved by simplification because the partial behaviour of many functions 

is relatively simple and can be explicitly described as part of the library model. 

For this reason they are allowed to continue through the simplification phase in the 

hope that they will disappear. If they do not yield to simplification then the partial 

behaviour is likely to be complex and difficult if not impossible for the property 

prover to prove, so it is reasonable to leave such proofs aside whilst performing 

more important proofs and return to the partial proofs "if time allows". 

5.4.2 Simplification 

The initial simplification phase involves three main heuristics. 
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e Using 'type' information. 

o Using rewrite axioms. 

• Opening up definitions. 

The word 'type' used above does not refer to the Miramod types as such but 

to the shells of Miramod types. The property prover assumes that the properties 

it is trying to prove are correctly typed and hence that an equality can never be 

false because the two expressions being equated return values of different types. 

The type information used for simplification concerns which subset of the shells of 

a type can be returned by an expression rather than its Miramod type. To make 

this distinction clear, the type information used by the property prover is referred 

to as shell type information. 

The strategy for simplifying clauses is centred around the idea of assuming all 

other literals in the clause false whilst attempting to simplify the current literal 

(Since ( -A I- B ) == A \/ B). 

Each literal in the clause is simplified in turn, so at any time there will be a set 

of literals that have already been simplified and a set that have not. 

Supposing the literal newn has just been simplified, literals new1 to newn and 

oldn+2 to oldm are assumed false whilst oldn+t is simplified. If the result is T then 

the clause is proved and an an empty list of clauses is returned. If the literal 

simplifies to F then it is removed from the clause and the next literal is simplified. 

Otherwise any IF functions in the literal are distributed over two copies of the 

clause each dealing with one of the IF branches: 

{ ... new, ( S (IF c l r)), old ... } 

gtves 

{ ... new, Cc), (Sl), old ... } 

and 
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{ ... new, c, (S r), old ... } 

where S is the schema for a literal and (S t) is the literal obtained by replacing 

the schema variable by term t. 

Both of the resulting clauses are recursively checked for further IF functions 

and split until no further IF's remain. Once an IF free literal is obtained the 

next literal is simplified under the assumption that all the other literals (including 

the two newly generated ones) are false. The lists of clauses returned by the 

simplifications of the two clauses generated are combined to form the result of the 

original simplification. 

This removal of IF expressions from the literals of the conjecture is important 

because it allows the left branch to be simplified under the assumption that the 

condition is true and the right branch to be simplified under the assumption that 

the condition is false. If both of the resulting literals can be simplified to true then 

the clause is proved. 

The method of simplifying clauses is taken directly from BMTP, however it 

provides the motivation for compiling to function definitions which base all 'choices' 

or 'branches' on only a single function, the IF function. Since both the pattern 

matching definitions and guarded definitions are compiled to functions based on 

the IF function, this heuristic allows the property prover to perform case analysis 

on both forms of definition. The compiler frequently generates code of the form 

'IF (x==Undef) y z', which in turn produces clauses containing literals such as 'x 

-==Undef'. These are the partial property clauses which receive special attention 

from the property prover: if they cannot be simplified to true then no attempt 

is made to prove them by induction until all the other clauses have been proved. 

The matching value resulting from an attempt to prove a property is dependent 

on both the proof of both the partial and non partial properties. 
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Using type information 

There are two key processes involved in the use of type information. One is the 

process of assuming that an expression is T or F and the other is the process of 

calculating the set of shells that can be returned by an expression. These sets of 

shell types are referred to as shell type sets. 

The assumption that an expression is true or false occurs in two situations. 

Firstly when a literal of a clause is being simplified, the other literals of the clause 

are all assumed to have the value F. Secondly, during the simplification of an 

expression IF c a b, the branch a is simplified under the assumption that the 

condition is T and the branch b is simplified under the assumption that the condition 

is F. 

Each shell recogniser function has an associated shell type which is denoted by 

underlining the shell name or symbol. For example: 

True 

False 

There are also several special shell types: 

I 

.E 
Undef 

and a special shell type set: 

UNIVERSE 

As an example of assuming an expression true or false, consider the assumption 

that the expression 'T1 == T2' is true. Apart from the obvious assumptions that 
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the shell type set of the expressions 'Tl == T2' and 'T2 == Tl' is {I} it is also 

possible to calculate the type sets of Tl and T2 and assume that both expression 

have a type set which is the intersection of their calculated type sets. If Tl has the 

value Undef and assuming that the typeset of T2 includes the type Undef, then the 

assumption that the typeset of T2 is {Undef} is also valid. 

To compute the type of an expression, the current set of shell type assumptions 

are consulted initially and the corresponding shell type set returned if an assump

tion for the expression is found. Otherwise shells return the set containing only 

their corresponding type; recognisers return {I} if the parameter's type set is the 

set containing only the recognised shell type, {.E} if it does not contain the recog

nised shell type and {I .E} otherwise. A special case is made when calculating the 

type set of an IF expression. In this case the typeset of the condition is computed 

initially and if this yields either true or false then the typeset of the appropriate 

branch of the IF is returned. Otherwise the typeset of the left branch is calcu

lated under the assumption that the condition is true and the typeset of the right 

branch is calculated under the assumption that the condition is false. The type set 

returned for the IF expression is then the union of these two type sets. 

The property prover uses type sets in the same way as the BMTP, but the fact 

that Miramod is strongly typed means that several additional axioms about shell 

type sets are also used. 

These are, for all integers n in the range 1 ... m: 

UNIVERSE- {Cn} = {Undef Ct ... Cn-1 ... Cn+1 ... Cm} - ------

where Ct ... Cm are all the shell types of a Miramod type. The corresponding prop-- -
erties ofT and Fare special because BMTP Booleans cannot have the value Undef: 

UNIVERSE - {I} {E} 

UNIVERSE - {.E} {I} 
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Using rewrite axioms 

BMTP refers to these as lemmas since they must be proved when they are intro

duced. They are referred to as axioms by the property prover since they are simply 

assumed rather than being proved. 

Rewrite axioms are special property statements of the form: 

H 1- L => R 

and are used to simplify expressions of the form L to the equivalent form R provided 

the hypothesis H holds. A simple example is based on the associativity of addition. 

In this case, no hypothesis is needed so the rewrite axiom is written L => R. 

a+(b+c) => (a+b)+c 

Rewrite axioms are the first example of domain specific rules that can be added 

to a model to help prove properties of the model. The presence of a rewrite rule 

does not simply mean that the theorem prover may rewrite the expressions as 

indicated but that it should do so whenever possible. In this way the presence of 

rewrite axioms provides the property prover with heuristic information on how it 

should proceed in its attempt to find a proof. 

There are several situations in which the indiscriminate use of rewrite axioms 

can lead to an infinite sequence of rewrites. One example of this is if the rewrite 

rule is permutative, which means that the left and right hand sides are instances 

of each other. An example is the rewrite rule based on the commutativity of plus 

'a+b => b+a'. Although such a rewrite rule is important since the alternative to 

its use is usually induction, using such a rule indiscriminately would lead to an 

infinite sequence of rewrites. To prevent this the property prover will only apply a 

permutative rewrite rule if the terms moving left are moved into positions previously 

occupied by alphabetically greater terms. In the commutativity of plus example, 

b is moved left and replaces a, so a must be an alphabetically greater term then 
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b. This allows rewrite rules to normalise expressions composed of the same terms. 

For example, using the permutative rewrite rules: 

b+a => a+b (1) 

b+(a+c) => a+(b+c) (2) 

the expression (i+j)+k can be rewritten to the normal form i+(j+k), since the 

term ( i + j) is considered alphabetically greater than k (an arbitrary decision which 

is applied consistently). 

These rewrite rules ensure that any nest of + expressions with the same "bag" 

of arguments can be rewritten to the same term. The rewrite rules for + can be 

extended to allow equivalent terms made up of nests of+ and - expressions over 

the same set of arguments to be rewritten to the same term. The following rewrite 

rules do this by ensuring that all positive terms are placed on the left of a single 

top level '-' operator and all negative terms are placed on the right. 

b+a => a+b 

b+(a+c) => a+(b+c) 

a-(b-c) => (a+c)-b 

(a-b)-c => a-(b+c) 

b+(a-c) => (a+b)-c 

(a-b)+c => (a+c)-b 

Permutative rewrite rules are not the only ones that can potentially lead to an 

infinite sequence of rewrites. Rewrite rules whose hypothesis can be rewritten by 

its own left hand side can lead to an infinite sequence of attempts to justify the 

hypothesis. An example of such a rule is: 

(a+1)<b 1- a<b => T 

An attempt to rewrite a<b would lead to an attempt to rewrite (a+1) <b, (a+2) <b 

and so on. 
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To prevent this from occurring a record is kept of all the hypotheses currently 

being simplified. Prior to the rewriting of a hypothesis, a check is made to ensure 

that none of the conjuncts of the hypothesis is an elaboration5 of a hypothesis that 

is already undergoing simplification. If one of them is, then no attempt is made to 

rewrite the current hypothesis and the rewrite rule is not used. 

The above heuristics are exactly those used by BMTP, however the property 

provers treatment of rewrite rules differs in two respects. One is that rewrite rules 

are treated as axioms in that they do not have to be proved before being accepted 

by the property prover (Although they can be proved if the model writer requires 

them to be). The other is that rewrite rules may be used to rewrite higher order 

functions as well as more conventional terms. In effect a rewrite rule can rewrite a 

function without all of its arguments. An example of such a rule is the associativity 

of the function composition operator '.' (defined by ' . f g x = f (g x) '). 

(f.g).h => f.(g.h) 

As a result of the way in which partial properties are admitted to the property 

prover theory, rewrite rules which apply only to non partial properties can easily 

be written by including hypotheses such as x-==Undef. For example, since the 

operator & is non strict in its second argument, the commutativity of&: only holds 

provided its second argument is not undefined: 

y == undef 1- x &: y => y &: x 

Opening up definitions 

As with rewrite rules, the main difficulty with the use of definitions is to ensure 

that they are not opened up indefinitely. Three heuristics are used to control the 

opening up of definitions, the first simply opens up non-recursive functions, the 

second opens up recursive functions provided a measured subset of their arguments 

5See [12] for details. 
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are explicit values and the third 'tentatively' opens up definitions and rewrites the 

resulting expression to see if the new version is an improvement on the old. 

A measured subset of a functions arguments is any subset for which there exists 

a measure and well founded relation such that for each recursive call of the function 

in its definition body, the measure applied to the parameters of the recursive call is 

less than the measure applied to the formal parameters of the function according 

to some well founded relation. 

An explicit value is a term composed of shells and constants (it contains no 

variables or functions), and so opening up a function which has explicit values in a 

measured subset of its arguments is safe in that it cannot be opened up indefinitely 

(since each time it is opened up the measure must decrease according to a well 

founded relation). 

When a recursive definition is tentatively opened up the actual parameters are 

substituted for the formal parameters in the definition body and the function's 

name is added to a list of functions being opened up before the definition body is 

simplified. During this simplification, no attempt is made to open up any of the 

functions that are already being tentatively opened up. Once the definition body 

has been simplified, a check is made for each recursive instance of the function 

which remains. If there are no such instances or if each instance is "good" then the 

new version of the function application is used to replace the old version, otherwise 

the old version is retained. A recursive instance of the function being expanded 

is "good" in comparison to the original function, provided one of the following 

conditions hold: 

No new terms: There are no new terms in any of the functions arguments. That 

is, if each parameter of the recursive instance is a term that already appears 

in the conjecture being proved then the instance is good. 

More explicit values: There are more arguments to the function which contain 

explicit values. 

Less complex controllers: The symbolic complexity of some measured subset 

of the arguments is smaller. Symbolic complexity is measured as the number 
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of function symbols in the argument (but the symbolic complexity of an IF 

function is the maximum of the symbolic complexities of its two arguments). 

The motivation for the 'no new terms' heuristic is that it has a normalising effect 

on the terms that appear within a conjecture; it encourages terms to be expressed in 

the same way as other terms in the formula. This is particularly relevant to proofs 

by induction because the induction conclusion usually needs to be simplified to a 

form similar to that of the induction hypothesis so that the induction hypothesis 

can be used to prove the conclusion. For example a simple induction step has the 

form: 

P (d x) 1- P x 

If P contains recursive functions with x as their argument then opening up those 

functions in the conclusion will hopefully produce the term (d x) which should be 

retained wherever possible since it appears in the hypothesis instead of x. Opening 

up the same functions in the hypothesis is not desirable since terms of the form (d 

x) will be replaced by (d (d x)) which are less likely to be useful for proving the 

conclusion. 

There are two major differences between BMTP's and the theorem prover's 

treatment of definitions. Firstly the property prover allows local definitions whose 

scope is limited to the body of the definition in which they appear and secondly 

the property prover allows mutually recursive definitions. 

The property prover's treatment of local definitions is straightforward since local 

definitions may only appear as part of a function definition and not at arbitrary 

points in the definition body. The scope of local definitions therefore includes the 

whole of the body of the definition to which they are attached. When opening up 

definitions which contain local definitions the actual parameters are substituted for 

formal parameters in both the definition body and in the local definitions. The 

local definitions are then assigned new names (ones that do not appear else where in 

the conjecture or current axioms and definitions); the new names are substituted 

for all occurrences of the local function names in the definitions body and the 
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local definitions are added to the property provers set of current definitions. If 

an identical definition already exists then the new name of the local definition is 

changed to the existing definition. This means that the theorem prover need not 

waste time proving that two functions with identical definitions but different names 

are indeed identical; a situation which occurs when a function with local definitions 

is opened up more than once for the same set of arguments. 

In dealing with mutually recursive definitions, the concept of a recursion group 

is useful. This is a group of functions in which each definition ultimately depends 

upon the definitions of all the other functions in the group. A function definition 

F immediately depends on definition G if G occurs in the definition body of F. A 

function definition D1 ultimately depends on definition Dn if there is any sequence 

of function definitions 

such that Di immediately depends on Di+t for all 1 :::; i < n. In other words, a 

mutual recursion group is a set of interdependent functions. 

Mutually recursive definitions are opened up using heuristics that are mostly 

the same as normal recursive definitions. In particular, when simplifying the body 

of a tentatively opened up function F, other definitions may also be tentatively 

opened up, including ones in the same recursion group as F, but F itself may not 

be opened up a second time. Also, when looking for the "good" property that no 

new terms are introduced when a function is tentatively expanded, the "no new 

terms" condition must apply to calls of functions in the recursion group as well as 

to direct recursive calls to the function being expanded. 

The main difference between the opening up of mutually recursive and normal 

recursive definitions is an additional heuristic which adds another "good" property 

for the recursive calls of a definition that is being tentatively opened up. 

This heuristic states that if opening up a mutually recursive definition means 

that there are more functions in the recursion group of the opened up function 

that occur at least once in the conjecture then the opened up version should be 
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retained. The motivation for this heuristic is that it helps prepare the conjecture 

for inductions which involve mutual recursion. The proof of many properties which 

involve only a subset of a mutual recursion group frequently relies on other prop

erties associated with the remainder of of the recursion group. These properties 

are usually all interdependent in the same way as the functions are interdependent, 

and hence must all be proved simultaneously. By opening up definitions in the 

recursion group until the whole group appears in the conjecture, the conjecture is 

usually restated in a form that subsumes all the appropriate properties. 

This heuristic can potentially lead to a non terminating sequence of simplifi

cations. This occurs when the opening up of a function definition to introduce 

an additional member of the recursion group, results in another member of the 

recursion group being removed through simplification. To prevent this occurring 

indefinitely, a function definition may only be opened up in this way once, without 

and intervening induction taking place. 

A simplification example 

Different aspects of the example introduced here are used in several parts of this 

chapter to demonstrate the heuristics of the property prover. In fact it makes use 

of the majority of BMTP's heuristics as well as the heuristics that are unique to the 

property prover. 

The example is based on a tree data structure, defined as the algebraic type: 

tree* ··=Node* [tree*] 

To improve readability the tree and list selector functions are replaced by the 

following function names: 

SEL-Node-1 

SEL-Node-2 

SEL-:-1 

SEL-:-2 

== 
== 
== 
== 

tval 

subts 

hd 

tl 
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The functions rtree and rlist are defined over this type; rtree reverses a 

tree and r1ist reverses a list of trees. 

rtree (Node v 1) = Node v (r1ist 1) 

rlist [] = [] 
r1ist (a:x) = r1ist x ++ [rtree a] 

The compiled versions of these functions are: 

rtree a = ifdef a (Node (tva1 a) (r1ist (subts a))) 

rlist x 

= ifdef x 

(IF (x== []) [] 

(r1ist (t1 x) ++ [rtree (hd x)]) 

where ifdef is defined as follows: 

ifdef x e = IF (x==undef) undef e 

The built in definition of the list append operator is: 

a ++ b 

= ifdef a 

(IF (a==[]) b 

(hd a:(t1 a++ b)) 

Finally the conjecture to be proved is: 

rtree (rtree a) == a 
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It is important that before making an induction on this conjecture, an attempt 

is made to rearrange it to include both of the functions in rtree's mutual recursion 

group. Using the additional heuristic specific to the property prover, which allows 

a function to be opened up if this results in a conjecture containing more functions 

from the recursion group, the inner application of rtree is opened up and the 

result simplified to the formula: 

rlist (rlist x ++ [rtree a]) -- a:x 

which is ideally suited to a mutual induction on a and x. 

This initial part of the proof of rtree (rtree a) == a is used here as an 

example of the simplification heuristics. The induction argument produced from 

the above clause and the use of many of the other heuristics to prove this conjecture 

form the basis of examples in the remainder of this chapter. 

Starting with the original conjecture, the inner application of rtree is tenta

tively opened up giving: 

rtree (ifdef a (Node (tval a) (rlist (subts a)))) == a 

The function rlist is then tentatively opened up, however none of the recur

sive calls introduced are 'good' (both functions in the recursion group are already 

present), so the opened up definition is abandoned in favour of the original version. 

The opened up body of (rtree a) can be simplified no further, and is 'better' 

than (rtree a) because it introduces a function in the recursion group of rtree 

that was not previously present in the conjecture. The resulting opened up body is 

therefore kept and the clause split into two cases corresponding to the IF in ifdef. 

These cases are a==Undef and a-==Undef. The actual implementation opens up 

ifdef to 'IF (a==Undef) Undef ... 'and then splits the conjecture. To make the 

proofs clearer, ifdef is never explicitly opened up, but is frequently split into the 

cases a -==Undef and a==Undef. The resulting two clauses are: 

{ a -==Undef, rtree Undef -- a} & 
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{ a-- Undef, rtree (Node (tval a) (rlist (subts a))) --a} 

Rather than writing clauses in the above form, they are written using the 

'proves' operator. For example{A} is written simply as A, {A,B} is written (-A 

1- B) and {A,B,C} is written (-A 8£ -a 1- C). 

Case a==Undef 

a==Undef 1- rtree Undef == a 

Whilst simplifying the conclusion the hypothesis can be assumed true, providing 

additional type set information. The property prover actually achieves this by 

assuming the other literals in a clause false whilst simplifying a literal. Since the 

clause form contains the hypotheses as negated literals, assuming them false is 

equivalent to assuming the hypothesis true. 

In the above example, opening up 'rtree Undef' produces Undef and under 

the assumption of the hypothesis, the resulting conclusion (Undef==a) simplifies 

toT, proving the clause. 

Case a -==Undef 

a-==Undef 

1-
rtree (Node (tval a) (rlist (subts a))) == a 

The outermost rtree application is tentatively opened up and simplified, re

moving the ifdef (since the argument is not Undef). During this simplification, 

the function rtree (which is being opened up) is still considered part of the con

jecture, so any attempt to open up 'rlist (subts a)' fails because it does not 

introduce any functions in the recursion group that were not present before the 

expansion. The opened up and simplified version of rtree is retained because the 

only recursive call is 'better' due to the reduced symbolic complexity (now only 

two functions compared to five previously). 
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a-==Undef 

1-

Node (tval a) (rlist (rlist (subts a))) == a 

When a new attempt to simplify the conjecture is made, the innermost rlist 

is successfully opened up because the other function in the recursion group rtree 

is no longer in the clause. 

a-==Undef 

1-

(Node (tval a) 

(rlist 

(ifdef (subts a) 

== a 

(IF (subts a==[]) [] 

(rlist (tl (subts a)) ++ 

[rtree (hd (subts a))] 

))))) 

The two 'if' conditions are used to split the conjecture into three cases, one for 

(subts a == Undef), the other for (subts a == []) and finally one for REC-: a. 

The following three cases are produced: 

CASE (subts a == Undef) 

a-==Undef &; 

subts a == Undef 

1- Node (tval a) Undef = a 

CASE (subts a == []) 

a-==Undef &; 

subts a == [] 

1- Node (tval a) [] = a 
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CASE Rec-: (subts a) 

a-==Undef 

Rec-: (subts a) 

1-
(Node (tval a) 

(rlist (rlist (tl (subts a)) ++ 

[rtree (hd (subts a))] 

))) 

== a 

All three clauses cannot be simplified further, and are therefore passed on to the 

next heuristic which is the instantiation of the view. Since this conjecture contains 

no free functions, there is no view to instantiate. However the next heuristic, 

elimination of destructors, is particularly relevant to this example. It re-expresses 

clauses in terms of constructors rather than destructors; as well as allowing the first 

two cases above to be simplified to T, it replaces (hd (subts a)) with the new 

variable b, (tl (subts a)) withy, (tval a) with v and a with (Node v (b:y)) 

producing: 

Node v (rlist (rlist y ++ [rtree b])) --Node v (b:y) 

5.4.3 Instantiating the View 

Before attempting to prove any properties the library retrieval system will attempt 

to establish a view between the two models which equates every type described by 

the re-users model with a type in the component's model and every function in 

there-users model with an expression made up from functions in the component's 

model. This view is represented as a rewrite rule of the form: 

f Pt . . . Pn => rhs 
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so that if f appears in the conjecture applied to n or more arguments then an 

attempt is made to rewrite f and the n arguments to its corresponding value in 

the library model ( rhs). The definition of a permissible view ensures that the rule 

does not generate an infinite sequence of rewrites. 

Since this view is established using type information (as described in chapter 4, 

section 4.4.3) there may be re-users model functions which are not included in the 

view. In this case the property prover is given specially marked free functions in 

place of the names of these functions. The property prover then attempts to instan

tiate the free functions using an additional simplification phase which applies the 

normal simplification heuristics described above but also allows the free functions 

'to become instantiated'. This instantiation process is achieved simply by adding 

an appropriate rewrite rule for the free function. This rewrite rule also corresponds 

to the view for that particular function, and so any instantiation is restricted by the 

rule that it must produce a syntactically permissible view for the function that is 

instantiated. A view is guaranteed to be permissible (it is syntactically permissible) 

provided it has the form f p1 ... Pn => rhs and: 

• f is the free function 

• Pt to Pn are either variables or explicit value templates 

• rhs contains no functions from the re-users model and no variables that do 

not occur in at least one of the templates p1 .•. Pn (however, free functions 

other than f are allowed provided they currently have no view). 

• The types of f Pt ... Pn and rhs match. 

• There is no conflicting view for f already in existence. 

Given two views of the same function: 

f pi pn => rhs1 

f q2 qm => rhs2 

the views conflict unless there are a corresponding pair of parameters pi and qi 

which are both explicit value templates and pi -== qi. An explicit value template 
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is a term which contains only constants, shells and variables; it is the property 

prover's equivalent of Miramod patterns. 

The ability to build up the view of a function as a number of non conflicting 

rules means that a view can be based on information obtained at different stages 

of the property proving process. 

Since the property prover language admits higher order functions, a free func

tion applied to zero or more arguments may be matched against any term (even 

if it is not a function application) provided the resulting view is syntactically per

missible. For example 'f a b c' matches the term t provided the view 'f a b c 

=> t' is syntactically permissible. The converse also applies, so f matches 't x y 

z' provided the view 'f == t x y z' is syntactically permissible. 

The view instantiation phase is a repeat of the simplification phase previously 

described except that it allows for the instantiation of free functions at the following 

points: 

• Whilst simplifying strong and weak equalities. 

• Whilst attempting to find rewrite rules applicable to a term which contains 

a free function. 

• Whilst attempting to open up function definitions. 

When these instantiations occur, the current state of the theorem prover is 

recorded as a choice point. After the clause has passed through the new simplifi

cation phase a check is made to see if the resulting clause has been simplified toT. 

If it has, then the choice points are removed and theorem proving continues with 

the newly established part of the view 'fixed'. If on the other hand the clause does 

not simplify to T under the new instantiations then the theorem prover backtracks 

to the most recent choice point and continues as if the instantiation had failed to 

produce a permissible view. The heuristic terminates in one of three ways: when 

it produces the true clause; when there are no more choice points, or when the 

heuristic 'times out' because there are too many possible instantiations. When 

the heuristic produces a true clause then the theorem prover returns to the top 
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of the 'waterfall' to find another clause for simplification. In the other two cases, 

the original clause passed to the heuristic is handed on to the following stage of 

the theorem prover and any views created whilst trying to prove the clause by 

instantiating free functions are removed. The 'time out' from this phase is based 

on the time allowed to prove the current property and the number of clauses re

maining at the top or bottom of the waterfall. The reason for insisting that any 

instantiations result in the current clause being proved true is that this constrains 

any backtracking behaviour to a small section of the theorem proving process. 

The property prover can also backtrack to the most recent instantiation if it 

simplifies a term toT when it is trying to produce For vice versa. Whenever the 

term being simplified is a property statement (with possible values T or F), the 

property prover is either trying to rewrite toT, trying to rewrite to For indifferent. 

For example when simplifying the literal of a clause or the hypothesis of a rewrite 

rule the property prover is attempting to simplify to T, but when simplifying the 

condition of an IF application then the property prover is indifferent. If an in

stantiation occurs whilst attempting to rewrite to x (where x is T or F) and the 

resulting value is (-x) then the theorem prover backtracks, abandoning the most 

recent instantiation involved in rewriting the term. 

Rewriting Equalities 

If the property prover is trying to rewrite the equality 1 == r to T then an attempt 

is made to match 1 and r by instantiating free functions. For example, if 1 is a free 

function and r is a term made up exclusively from component model functions, 

then 1 and r match under the view that 1 => r. If this match is successful then 

the equality is rewritten to T, otherwise 1 and rare rewritten using instantiations. 

If the resulting expressions are definitely unequal then the prover backtracks until 

there are no more choice points in the simplification of 1 and r, or until a non F 

result is produced. The equivalent process is carried out when attempting to prove 

that inequalities are F. 
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Using Rewrite Axioms 

If a free function properly occurs in the term being rewritten (ie the term being 

rewritten contains a free function but is not itself a free function) and is not a free 

function applied to terms which are all variables then an attempt is made to match 

the term against all the current rewrite rule left hand sides. During this match, 

any free functions are allowed to match arbitrary terms provided the resulting view 

is permissible. 

These restrictions are necessary because the intention of the heuristics is to 

instantiate the view according to the form of the conjecture being proved. The 

instantiation of a free function on the basis that it matches the left hand side of a 

rewrite rule and that the resulting view is permissible does not involve the context 

of the free function and therefore does not base the instantiation on the form of 

the conjecture being proved. 

If one of the rewrite rules variables properly occurs in the term matched by 

a free function then a new free function name is created and substituted for the 

variable in the rewritten expression as well as the right hand side of the view. On 

the other hand, if a free function matches a rewrite rule variable then the free 

function is simply substituted for the variable and no addition to the view is made. 

Opening up definitions 

Finally, if the term being rewritten is of the form 'f pl ... pn' where f is a free 

function then f becomes instantiated to d provided d is defined with m parameters 

where m~n: 

d q 1 . . qn = body 

and there is at least one case from the cases of body such that all the conditions in 

the case can be rewritten (without instantiations), toT. 
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The cases of an expression are defined by the following rules: 

1. The cases of an if expression 'IF c a b' are the union of condition c added 

to each of the cases of a and - c added to each of the cases of b. 

2. Any other expression has only one case, which is the empty case. 

The motivation for these restrictions is the same as for the restrictions associated 

with rewrite rules; they ensure that the view is only instantiated if there is an 

indication that the particular instantiation will simplify the resulting clause. 

5.4.4 Eliminating destructors 

The heuristics covered in this section are exactly the same as the corresponding 

heuristics of BMTP and therefore they are only outlined in terms of a few examples. 

The full details can be found in Boyer and Moore's book[12]. 

The motivation for eliminating destructor terms such as (SEL-: -1 s) is that 

it is easier to prove theorems in terms of constructors than it is to prove them in 

terms of destructors. For example if a conjecture contains the terms (SEL-: -1 s), 

(SEL-: -2 s) and s then the conjecture containing the corresponding terms h, t 

and (h: t) is easier to prove since facts such as 'REC- : (h: t)' are immediately 

apparent whereas 'REC-: s' must be explicitly recognised in the hypothesis. The 

same process is used to trade undesirable terms such as (a div b), (a mod b) and 

a for more desirable alternatives such as d, m and d*b+m where m < band b-==0. 

The property prover relies on the existence of elimination lemmas for guidance 

as to which terms are 'undesirable' and how to eliminate them. As well as this, 

there is an elimination lemma associated with every shell, which allows the shells 

selector functions (destructors) to be eliminated in favour of the shell (which is a 

constructor). The list shell ':' is one such example: 

REC-: s 1- (SEL-:-1 s):(SEL-:-2 s) == s 
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Given the above elimination lemma the theorem prover attempts to prove the 

conjecture 'P (SEL-: -1 s) (SEL-: -2 s) s', by splitting it into the following two 

conjectures: 

-REC-: s 1- P (SEL-:-1 s) (SEL-:-2 s) s 

and 

p h t (h:t) 

where hand tare new variables that did not previously occur in the conjecture. 

An example of an elimination lemma that is not introduced automatically by 

the shell principle is: 

b-==0 1- ((a div b)*b + a mod b) == a 

This can be used by the property prover to replace (a di v b) , (a mod b) and a 

with the terms d, m and d*b+m under the hypothesis b-==0. In fact the additional 

hypothesis m<b is also added by the property prover as part of the generalisation 

process described in section 5.4.6. 

Elimination example 

To continue the example of the proof of 'rtree (rtree a) -- a', the simplifica

tion heuristics leave three clauses: 

Case (subts a == Undef) 

a-==Undef & 

subts a == Undef 

1- Node (tval a) Undef = a 

Case (subts a == []) 
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a-==Undef & 

subts a == [] 

1- Node (tval a) [] = a 

Case Rec-: (subts a) 

a-==Undef 

Rec-: (subts a) 

1-
(Node (tval a) 

(rlist (rlist (tl (subts a)) ++ 

[rtree (hd (subts a))] 

))) 

== a 

All three clauses contain the terms (subts a) and (tval a) so although each 

would be treated individually by the property prover, the following discussion ap

plies to all three. 

When the type 'tree *'is introduced, the following elimination lemma is added 

to the set of axioms: 

Rec-Node a 1- Node (tval a) (subts a) = a 

This lemma can be used to replace (tval a) with v, (subts a) with sand a with 

(Node v s), where v and s are two new variables, provided 'REC-Node a' is true. 

This usually means generating two new clauses, one for when 'REC-Node a' is true 

and the other for when it is false (in which case the elimination cannot occur). 

However, all the above clauses have the hypothesis a-==Undef from which the 

typeset of a can be deduced as Node and therefore the possibility that 'REC-Node 

a' is false need not be considered. Also, since the term a-==Undef becomes 'Node 

v s -== Undef', it can be simplified to T and removed from the hypothesis. The 

three resulting clauses are: 
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Case (s == Undef) 

s == Undef 1- Node v Undef = (Node v s) 

which simplifies to T, 

Case (s == []) 

s == [] 1- Node v [] = (Node v s) 

which also simplifies to T, and finally 

Case Rec-: s 

Rec-: s 

1-
(Node v (rlist (rlist (tl s) ++ [rtree (hd s)]))) 

== (Node v s) 

which can be simplified to: 

Rec-: s 

1-

(rlist (rlist (tl s) ++ [rtree (hd s)] )) == s 

Destructor elimination can be applied again, using the list construction elimi

nation lemma: 

Rec-: s 1- (hd s):(tl s) == s 

The substitutions (hd s) for a, tl s for x and s for (a:x) are made; the non elim

ination case is simplified to T and the hypothesis REC-: (a: x) in the elimination 

case is simplified to T, giving: 
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rlist (rlist x ++ [rtree a]) -- a:x 

This clause is now ready for induction on the variables x andy, since it contains 

both functions in the mutual recursion group. 

5.4.5 Using equalities 

This heuristic removes equality hypotheses from the conjecture by substituting one 

side of the equality for the other in the remainder of the conjecture (uniform sub

stitution), or in specific parts of the conjecture (cross fertilisation). The motivation 

of this heuristic is that if the previous simplification steps have failed to prove the 

conjecture then induction will be necessary, the resulting induction hypothesis will 

be drastically weakened by the presence of any equalities. For example, given a 

conjecture of the form 'p 1- q' where pis an equality, the resulting induction step 

will have the form: 

(p' 1- q') 

1- (p 1- q) 

where '(p 1- q)' is the induction hypothesis and p' and q' are the new versions 

of p and q produced by the induction step. To prove this the property prover must 

prove two clauses: 

-p' 1- (p 1- q) & 

q' 1- (p 1- q) 

Since -p' is usually an inequality, it provides an extremely weak basis from which to 

prove (p 1- q) and therefore this situation should be avoided whenever possible. 

Before attempting induction on a clause, the property prover checks the clause 

for any hypotheses which are equalities of the form s==t where t occurs elsewhere 
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in the clause and is not an explicit value. If the current clause is the result of an 

induction step and t also occurs on the right hand side of another equality literal 

in the clause then cross fertilisation of s==t is carried out, otherwise s is uniformly 

substituted for t in the whole clause. When cross fertilising, equality literals have 

s substituted for t in the right hand side only. Other literals have s uniformly 

substituted for t. 

Once the substitutions have taken place, the equality s==t is removed from 

the clause and the new clause is returned to the top pool of the waterfall to be 

re-simplified. This is important as it ensures that only one equality is used and 

thrown away at a time, and since the heuristic is a risky one (it may produce a non 

theorem from a theorem) it is best to attempt to prove the result of the use of one 

equality with the lower risk heuristics before trying the higher risk heuristic again. 

Equality hypotheses can also be used in the other direction, provided the ap

propriate conditions are met. In this case, cross fertilisation takes place on the left 

hand side of equalities rather than the right hand side. 

Cross fertilisation example 

Continuing with the 'rtree (rtree a) == a' example, the induction heuristics 

are applied to the previously produced conjecture, and the result of the induction 

is simplified and the appropriate destructors eliminated. This produces two clauses 

which must both be proved by a further appeal to induction. One of these is: 

rlist (rlist y ++ [rtree b]) == b:y & 
rlist (rlist z ++ [rtree c]) == c:z 

1-
rlist ((rlist y ++ [rtree b]) ++ [Node v (rlist z ++ [rtree c])]) 

==(Node v (c:z)):(b:y) 

There are now two cross fertilisations that can take place, one based on (b: y) and 

the other on ( c : z). Cross fertilisation is chosen because both occur on the right 

hand side of another equality literal. The left hand side of the two hypotheses' 
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equalities are substituted for their corresponding right hand sides in the right hand 

side of the conclusion equality, and the hypotheses are thrown away, giving: 

rlist ((rlist y ++ [rtree b]) ++ 

[Node v (rlist z ++ [rtree c])]) 

-- (Node v (rlist (rlist z ++ [rtree c]))): 

(rlist (rlist y ++ [rtree b])) 

This example provides the motivation for the next heuristic to be applied. The 

terms (rlist y ++ [rtree b]) and (rlist z ++ [rtree c]) have now served 

their purpose and are no longer relevant to the proof other than as 'place hold

ers'. Thus they can be replaced by new variable names, giving a much simplified 

conjecture on which to base the induction which will follow. 

rlist (x ++ [Node v w]) --(Node v (rlist w)): (rlist x) 

5.4.6 Generalisation 

The power of induction as a method of proof lies in the assumption of instances 

of the conjecture to be proved, thus the more general the conjecture to be proved, 

the more general the assumption on which its proof can be based. 

To prove a conjecture by induction, it is often necessary to prove instead a more 

general conjecture from which the truth of the original conjecture follows. For 

the most part, discovering such generalisations is a task that requires creativity; 

in other words it is a task that cannot currently be automated. The property 

prover therefore relies on the library model writer to provide as axioms (or prove as 

lemmas) such generalisations. Despite this there are some common generalisations 

that can be produced automatically. These generalisations replace occurrences 

of terms such as (f pl . . . pn) with a new variable and add any appropriate 

hypotheses that can be derived from (f pl ... pn) but not from the new variable. 
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The generalisation heuristic looks for common subterms of two or more literals 

m clauses which are produced by a previous induction step. Terms which are 

variables, explicit value templates, destructor applications or equalities are not 

generalised. Since a previous cross fertilisation may have resulted in one such 

subterm being moved into the only other literal that contains the subterm, common 

subterms on either side of an equality literal are also accepted. Each occurrence of 

the common subterm is then replaced by a new variable that does not appear in 

the clause before generalisation took place. 

There are many situations in which this heuristic can produce a non theorem 

from a theorem because there are properties that can be derived from the term 

being generalised that are not explicitly mentioned in the hypothesis of the theorem. 

In this case, when the term is replaced by a variable in the generalised theorem, 

these properties are neither part of the hypothesis or derivable from the term 

(which is now a variable), and the theorem may well have become a. non theorem. 

An example of this is the term 'x mod y'. A lemma. that can be proved from the 

definition of mod and can also be used as a. rewrite rule is: 

(x mod y < y) -- (y-==0) 

If 'x mod y' is generalised to a. variable, say v then the fact that ' ( v < y) == 

(y -==0)' is no longer apparent, unless it is explicitly recorded as part of the 

hypothesis. 

To prevent this type of over generalisation occurring, the property prover relies 

on generalisation axioms supplied by the library model writer to provide hypothe

ses concerning the terms being generalised. These generalisation axioms are simply 

property expressions containing one or more sub terms that can be generalised ( un

der the rules given above). For example the following generalisation axiom can be 

used in the generalisation of 'x mod y' as well as 'x mod y < y': 

(x mod y < y) -- (y-==0) 

When the property prover generalises a. term by replacing it with a. new variable, 

it first checks to see if there are any generalisation axioms that contain terms that 
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are the same as the term being generalised under some substitution instance. If 

any are found the substitution s associated with each match between a term and a 

generalisation axiom is applied to the whole generalisation axiom and the resulting 

term is added as a hypothesis to the generalised clause. Once all such hypotheses 

have been added, the new variable is substituted for occurrences of the term being 

generalised and the resulting clause is returned to the top pool of the waterfall. 

This restriction of generalisations using generalisation lemmas to suggest ad

ditional hypotheses is also used by the destructor elimination heuristic described 

previously. 

5.4.7 Eliminating irrelevance 

The final heuristic used before induction is one which eliminates irrelevant literals 

from a clause. This is done for two reasons, firstly it removes terms that would 

otherwise be in contention for the forthcoming induction and would at best simply 

slow down the selection of an appropriate induction whilst in the worst case such 

terms could become the basis of the next induction. Secondly the elimination of 

irrelevant terms allows the property prover to conclude (or at least guess) that a 

property is not true, by eliminating all the literals in a clause. 

To decide which literals to eliminate, all the literals in the clause are partitioned 

into sets of literals which have common variables. If one of two conditions holds 

for a partition then the literals in the partition are removed from the clause. 

1. If a partition contains no recursive functions then it is eliminated. 

2. If a partition contains only a term of the form (f vi ... Vn) or- (f VI ••• Vn) 

where 'vi ... vn' are distinct variables then it is eliminated. 

The motivation for these elimination conditions is as follows: If a partition contains 

no recursive functions then it can add no information to any of the literals in other 

partitions and since it has not been proved by simplification it is probably false 
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(and certainly can never be proved true by the property prover). If a partition 

contains only a term of the form (f v1 ... vn) or - (f v 1 ... vn) then since it has 

not been proved true it is most probably false for some instances of 'v1 ... vn'· 

5.4.8 Induction templates 

The induction heuristics of BMTP (summarised in section 5.2.4) are in two main 

parts, one which occurs at function definition time and the other at the time of 

induction. The current implementation of the property prover does not automate 

the definition time heuristics and relies on the library model writer to supply the 

appropriate information in the form of induction templates. The induction time 

heuristics employed by the property prover are for the most part similar to the 

BMTP heuristics, the major difference being the property provers ability to invent 

appropriate inductions for conjectures which contain mutually recursive functions. 

Before describing the heuristics for inventing inductions appropriate to a par

ticular clause and for choosing between a collection of such functions, the form of 

the induction templates which are provided by the component model writer and 

used by these heuristics is described. Miramod does not provide a syntax for these 

templates since the intention is ultimately to derive them from function definitions 

and induction axioms in the same way as BMTP. Induction axioms are not de

scribed here because the current implementation of the property prover uses the 

ready made induction templates instead. 

Each induction template is associated with a recursive function. It suggests a 

possible induction schema for clauses which contain one or more applications of 

the function to variables that will be used as induction variables. In this thesis, 

induction templates are written in the following manner: 

Function and formals: f x1 ... Xn 

Recursion group: { ... } 

Measured subset: { ... } 

Changeables: { ... } 
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Unchangeables: { ... } 

Case 1: 

Condition: c1 

Substitutions: { <xit,lltl,l >,<Xi1,2,tt,2 > ... } 

{<xi2,llt2,1 >,<xi2,2,t2,2 > ... } 

Case 2: 

The first line of the template gtves the name of the function to which the 

template applies and the names of the formal parameters of the function. The 

second line gives the names of the functions in the same recursion group as the 

template function (including the template function itself). For straightforward 

recursive functions (as opposed to mutually recursive functions) this set contains 

only the template function. The "Measured subset" is a set of formal parameters 

that decrease according to the same measure and well founded relation for every 

substitution in the case analysis, under the assumption that the corresponding case 

condition is true. The changeables are those members of the measured subset that 

are changed by at least one substitution in the case analysis and the unchangeables 

are those members of the measured subset that are not. The significance of the 

changeables and unchangeables is that the induction template only applies to a 

term if all of the changeables are distinct variables and none of them occurs among 

the unchangeables (which need not be variables). 

For example, consider the function (range a b) which produces a list of inte

gers in the range a to b inclusive. The compiled definition of such a function might 

be: 

range a b = ifdef (a<b) 

IF (a<b ==True) (a:range (a+1) b) [] 

A measure over which the recursion can be shown to terminate is (b-a), which in

cludes both variables despite the fact that only one of them changes in the recursive 

call. 
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Finally the case analysis, consisting of one or more cases, is given. Each case 

corresponds to one induction step in the induction suggested by the template, 

and is made up from a condition under which the induction step must be proved 

and a set of one or more substitutions. Each substitution suggests the induction 

hypothesis obtained by applying the substitution to the conjecture being proved, 

and the induction step produced by the case assumes each hypothesis produced by 

a substitution belonging to the case. 

5.4.9 Creating Induction Schemes 

When all the clauses have been simplified as much as possible by the preceding 

heuristics, one of the remaining clauses is picked, an induction scheme is invented 

for it and the resulting clauses are simplified. The 'invention' of an induction 

scheme is achieved in the following stages: 

1. All of the induction templates in the component's model are used in conjunc

tion with the clause to produce a set of plausible induction schemes. 

2. Subsumed induction schemes are removed. 

3. Wherever possible, schemes are merged. 

4. Flawed schemes are discarded. 

5. Scoring functions are used to pick between the remaining schemes. 

For each function application that appears in the clause, the corresponding in

duction templates are retrieved and a check is made to see if the template applies to 

the actual parameters of the function. Firstly the template is instantiated with the 

actual parameters to which the function is applied. Provided all of the changeables 

are distinct variables which do not occur in the unchangeables, the changeables and 

unchangeables fields are replaced with two fields, one for the changing variables and 

the other for the unchanging variables. These are the set of variables that are sub

stituted for, or not substituted for respectively in the induction scheme and include 
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unmeasured as well as measured variables. Finally the instantiated template is then 

added to the list of schemes . 

The list of induction schemes is then shortened by removing any that are 

subsumed6 by other schemes in the list. 

Merging Schemes 

The remaining induction schemes are then checked to see if any can be merged. 

Boyer and Moore use the following example to demonstrate the merging heuristics 

(some of the details have been modified to suit the property prover notation): 

The function lessp is defined as: 

lessp x y == IF (y==O) F 

IF (x==O) T 

lessp (x-1) (y-1) 

and it has two induction templates: 

Function and formals: lessp x y 

Recursion group: lessp 

Measured subset: { x} 

Changeables: { x, y} 

Unchangeables: {} 

Case 1: 

Condition: x-==Undef & x-==0 

Substitutions: { <x,x-1>, <y ,y-1>} 

and 

Function and formals: lessp x y 

Recursion group: lessp 

6 The subsumed relation is described in detail by Boyer and Moore. 
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Measured subset: {y} 

Changeables: {x ,y} 

Unchangeables: {} 

Case 1: 

Condition: y-==Undef 8r. y-==0 

Substitutions: { <x, x-1>, <y, y-1 >} 

Suppose we are trying to prove the transitivity of lessp: 

lessp i j 8r. lessp j k 1- lessp i k 

both induction templates apply to all three occurrences of lessp, giving 

six candidate induction schemes. All six schemes are different either 

because they result from a different function application and therefore 

substitute for different variables or because they are based on a dif

ferent template and therefore have different conditions. Taking as an 

example the scheme which assumes the conjecture with i replaced by 

(i-1) and j replaced by (j-1) along with the condition i -==Undef 8r. 

i -==0. If this scheme is used for the induction then the term (lessp 

i k) will appear in the conclusion and its corresponding term in the 

hypothesis will be (lessp (i-1) k). Unfortunately there is then no 

way of opening up the definitions in the conclusion so that the hypothe

sis term (lessp (i-1) k) is produced since opening up (lessp i k ) 

will produce (lessp (i -1) (k-1)). In effect the induction has thrown 

the lessp terms involving k "out of sync" by not substituting for k as 

well as x and y. 

The answer is to merge all six induction schemes into one: 

Accounts for: {lessp} 

Changing vars: { i, j , k} 

Unchanging vars: {} 

Case 1: 

Condition: i -==Undef 8r. i -==0 8r. 

j-==Undef 8r. j-==0 8r. 

k-==Undef & k-==0 

Substitutions: { <i, i -1>, <j ,j -1>, <k,k-1>} 
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BMTP insists that (among other things): the intersection of the changing vari

ables of the two merged schemes must be non empty and the intersection of the 

changing variables of one scheme with the unchanging variables of the other must 

be empty. 

Flawed Induction Schemes 

An induction scheme is said to be flawed if any of its induction variables are chang

ing or unchanging variables of one of the other schemes that are candidates for 

induction. An induction variable of a scheme S is one of the changeables of any of 

the templates which account for one of the terms accounted for by S. 

The property prover uses this definition of a flawed scheme to remove all such 

schemes from the set of candidates provided there is at least one scheme remaining. 

The reason for this is that since all the remaining schemes have failed to merge, a 

scheme whose induction variables are changing or unchanging variables of another 

scheme must disagree on those variables. For example: 

(a++b)++c == a++(b++c) 

Since the list append operator recursively changes its first argument and leaves the 

other argument fixed, three induction schemes are suggested, each accounting for 

one of the terms a++b, a++(b++c) and b++c. The first two merge giving an induc

tion which replaces a with (tl a) in the conjecture and leaves band c unchanged. 

The third gives an induction which replaces b with (tl b) in the conjecture and 

leaves c unchanged. Using the latter induction would be a heuristic mistake be

cause the term (tl b) occurs as both the first parameter (a changeable) and the 

second parameter (an unchangeable) of the append operator. 

(a ++ tl b) ++ c == a ++ (tl b ++ c) 

1- (a ++ b) ++ c == a++ (b ++ c) 

Since opening up append will not change the value of its second parameter the 
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term a++b in the conclusion cannot be opened up to produce the hypothesis term 

(a ++ tl b) and so the induction is flawed. The merged induction: 

(tl a ++ b) ++ c == tl a ++ (b ++ c) 

1- (a++ b) ++ c == a++ (b ++ c) 

is perfect since the induction variable a does not appear as a changing or un

changing variable in the alternative induction scheme and so must always be opened 

up by ++ in the same way. 

5.4.10 Completing the induction 

If the result of all the above heuristics still leaves a choice of induction schemes, 

the 'best' one is selected according to a scoring function which is based on the 

number of terms to which the schemes applies and the ratio of formals substituted 

for against the number of formal parameters to the template. 

The induction principle is then used to create a set of clauses from the induction 

scheme. If the scheme has n cases with conditions Q;, number of substitutions h; 

and substitutions S;,1 ... Si,h; (where 1 ~ i ~ n): 

Conditions Substitutions 

Q1 St,t, S1,2 ... St,h1 

the resulting set of clauses consists of a base case: 

and the i = l..n induction cases: 

184 



where Cx,y is the result of applying substitution Sx,y to the conjecture C and hi is 

the number of substitutions in case i. 

The logical operators &, \1, - and 1- are then expanded to IF expressions 

which are in turn expanded to clauses before being returned to the 'waterfall' for 

simplification. 

5.4.11 Induction on Partial and Infinite values 

The heuristics for generating and selecting induction schemes described above do 

not specifically recognise the possibility of partial or infinite values. 

Partial values are dealt with implicitly by the case conditions which usually 

exclude the undefined value from the induction cases - thus the truth of the 

conjecture when the induction variables are undefined is proved (or at least set 

aside to be proved with any other partial properties) as part of the base case. 

If one of the induction variables includes infinite values in its quantification, 

then the induction principle may be unsound (may conclude that a non-theorem is 

true) if the conjecture on which the induction is taking place is not chain complete 

for that variable. Consider an induction argument of the form: 

(-Q X 1- 'P x) & 

(Q x & 'P (d x) 1- 'P x) 

If this argument has been proved true then it follows that 'P x holds for all finite 

and partial x since a proof can be constructed for any x using a finite sequence 

of induction and base cases (assuming the measure and well founded relation as

sociated with x and (d x) ). 'P x is proved for partial but finite x because for 

any partial x, Q x is either T or F and so either the base case or the induction 
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case must hold. If x is infinite, P x does not necessarily follow from the proof of 

the induction argument, because the number of steps needed to construct a non 

inductive proof from the induction argument is not necessarily finite. If P x for all 

infinite x follows from P x for all finite and partial x then P x is chain complete. 

An example of a property that is not chain complete is: 

{y+} y -== ones 

where 

ones = l:ones 

which can be 'proved' using the induction: 

(-REC: y 1- y -== ones) & 
(REC: y & tl y -== ones 1- y-==ones) 

but is clearly not true for all y including infinite y. 

The property prover uses a number of syntactic conditions which are sufficient to 

ensure that a conjecture is chain complete with respect to the induction variable( s) 

[51]. If these conditions do not apply, the property prover continues with the 

induction, making a note of the fact that the property is only proved for finite 

cases. This will then be used to reduce the matching score for the model under 

consideration. 

The property prover considers a clause to be chain complete in x provided each 

litteral is one of the following: 

1. An equality litteral between Miranda expressions: a == b. 

2. An equality litteral between litterals a and b where a, -a, b and -b are 

themselves chain complete. 

3. An inequality of the form: a -== Undef or Undef -== a. 
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4. A negated shell recogniser for a shell in which none of the other shells in the 

type have arguments. For example: - (REC-: t) 

5. A litteral in which x does not occur. 

5.5 Summary 

The property prover is based on natural deduction and the Boyer and Moore the

orem prover. Nat ural deduction is used because the proving process must be easy 

for component model writers to follow so that they may incorporate in the library 

model dependent heuristics for proving theorems about the model. The choice of 

BMTP as a basis for the property prover is guided by the need to prove theorems 

about inductively defined data types. 

The property prover stores the conjecture which it is trying to prove in clause 

form so that whilst simplifying one of the literals from which the clause is made 

up, the remaining literals in the clause may be assumed false. Proofs that require 

a non inductive case analysis are therefore achieved by splitting the conjecture into 

a number of clauses each of which represents one of the cases. 

To prove a clause, it is passed through a series of heuristics which are ordered 

so that the lowest risk heuristics are applied first (the 'risk' of a heuristic is that 

it might produce a theorem from a non theorem). If any of these heuristics alter 

the clause then it is returned to the first heuristics, thus ensuring that the lowest 

risk heuristics are always applied whenever possible. The last of the heuristics is 

induction. The induction heuristics are based on the induction templates associ

ated with particular functions. BMTP can automatically derive these templates 

from function definitions (provided the definition conforms to BMTP's principle 

of definition). This part of BMTP is currently not implemented in the property 

prover, which relies on the component model writer to supply appropriate induction 

templates. The most interesting heuristics of BMTP are the ones for producing 

an induction scheme for a particular clause by instantiating appropriate induction 

templates to produce a collection of plausible induction schemes, and then merging 

the schemes where ever possible before selecting the best one. 
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The property prover has several novel differences from BMTP which relate to 

its use as a model comparison tool rather than a theorem proving tool. These 

differences are centred on the following areas: 

• Proving the properties of partial functions (partial properties). 

• Proving the properties of functions defined using mutual recursion. 

• The presence of local definitions in functions. 

• View discovery. 

The proof of partial properties is dealt with by associating a special value called 

Undef with each Miramod type. Since pattern matching definitions treat param

eters with the value Undef as a special case7 the property prover will separate 

the clauses which deal with the Undef cases from the other cases. These clauses 

are called partial clauses (since they represent partial properties) and are distin

guished by the fact that they have at least one literal with an equality of the form 

X==Undef where X is an arbitrary term. When a partial clause is generated by one 

of the property provers heuristics it is added to a collection of partial clauses. The 

property prover makes no attempt to prove any of these by induction until all of the 

non partial clauses have been proved. The result returned by the property prover 

from its attempt to prove a property is a score which is composed of two parts, 

one for the partial properties and the other for the non-partial properties. In effect 

this system ensures that if a property can be proved under the assumption that 

all variables are completely defined and finite and that all functions terminate for 

finite input, then it returns a higher matching score than if it cannot, irrespective 

of the proof of the property without these assumptions. 

Another novel feature of the property prover is its ability to generate views 

for free functions. This is achieved using the BMTP heuristics for rewriting terms 

and simplifying clauses, but with special versions of the heuristics for simplifying 

equalities, applying rewrite rules and opening up definitions. Since the view gener

ation heuristics are risky in the sense that they may prevent properties from being 

7 Although this is not immediately apparent from the Miramod definition of the function, the 
compilation process converts definitions to a form that explicitly states the functions behaviour 
for undefined arguments if this differs from its behaviour for defined arguments. 
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proved by creating the wrong view, they are applied after the normal simplification 

heuristics. Restricted backtracking may occur if the view generated does not help 

to prove the clause in which the view was generated. View synthesis is therefore 

based on the properties the view should help prove rather than just the types of 

the functions that must be related by the view. 
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Chapter 6 

Miramod compilation 

The compilation of Miramod closely follows the accepted methods of compiling 

modern functionallanguages[35]. These involve translation to an intermediate no

tation, enriched lambda calculus, which is then transformed to progressively simpler 

forms of lambda calculus. This final form of lambda calculus (usually supercombi

nators) is then either interpreted or compiled to an appropriate (possibly abstract) 

machine language. 

Since the objective of the Miramod compiler is to produce a property prover 

representation of the model suitable for theorem proving rather than execution, the 

compilation follows the standard methods only as far as the supercombinator form. 

The resulting supercombinators are then used directly by the property prover. 

6.1 The Lambda Calculus 

The Lambda Calculus is syntactically and semantically simple whilst being suffi

cient to express all computable functions. A lambda calculus expression is written 

using function application, denoted by juxtaposition, variables and lambda ab

stractions which are denoted Ax.E where xis a variable and Eisa lambda calculus 
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Figure 6.1: Functional Language Compilation 

expression containing zero or more occurrences of the variable x. 

A lambda abstraction>..:~:.£ denotes the function which takes one argument and 

returns the expression E with the actual parameter substituted for free occurrences 

of x in E. A variable is said to occur free in a lambda calculus expression provided 

there are no enclosing lambda abstractions which name the variable. 

The semantics of lambda. calculus can be summarised with the following three 

laws: 

Alpha conversion: >..x.E g, >..y.E(yfx] 

provided y does not occur free in E. 

Beta conversion: ()..x.E).M g E[M/x] 

Eta conversion: (>..x.F x) ~ F 

provided F is a function and x does not occur free in F. 

The expression E[~M/x] is used to denote the expression formed by substituting .!11 
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for all free occurrences of x in E 1 

Two enrichments to lambda calculus are made so that the original translation 

into lambda calculus is straightforward. One is the letrec construction and the 

other is the pattern matching lambda abstraction. 

A letrec expression is written: 

letrec 

y=B 

in E 

and introduces a variable y which is bound to the value B in E and also in B itself. 

Letrec expressions also allow multiple definitions and hence mutually recursive 

definitions: 

letrec 

y = ... X ••• 

X= ... y ... 

in E 

The second enrichment to lambda calculus is the pattern matching lambda 

abstraction. This allows patterns, which may contain variables, in the place of 

the single variable usually associated with a lambda abstraction. For example the 

function tl which returns the tail of a list, can be written using the pattern match

ing lambda abstraction .A(x : xs ).xs. IT the argument to this lambda abstraction 

does not match then the special value Fail is returned, otherwise the variables 

in the pattern are bound to their corresponding values in the argument and the 

abstraction body is returned with the appropriate substitutions made: 

(.A(x: xs).xs) [] = Fail 

1 For the sake of simplicity, this definition does not mention the fact that if M contains a free 
variable and there is a lambda abstraction in E which uses the same name then the lambda 
abstraction variable must be replaced with a new variable name which does not occur free in E 
or M before M is substituted for x in E. i.e. (Ay.E)[M/x] = AZ.E[zfy][M/x) 
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(A(x: xs).xs)1: 2: 3: (] - 2: 3: (] 

Finally, built in functions such as'*' are allowed in lambda calculus expressions. 

The names (or symbols) used for these functions are the same as for the equivalent 

function or operator in Miramod. 

6.2 Organisation of the Compilation Process 

The compilation of Miramod to the BMTP notation involves the compilation of 

property statements, function definitions and type descriptions. The main com

plexity is in the translation of the property statements and functions which is de

scribed in the following sections. The compilation of type descriptions is detailed 

separately in section 6.9. 

The major features that must be removed during the compilation of property 

statements and definitions are: 

• pattern matching definitions, such as 

and False x = False 

and True x = x 

• guarded definitions 

max a b = a, a>b 

= b, otherwise 

• conformal definitions 

(fst,snd) = ... 

• local definitions ('where x = .. '). 
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e list comprehensions. 

primes = [n I n<-[1 .. ] ; is_prime n] 

• notation specific to the built in types ( eg the operators) 

As well as this the model must be checked for type consistency. 

The compilation process is organised in the following manner. Firstly the model 

is compiled to extended lambda calculus which includes pattern matching lambda 

calculus and local definitions. This involves converting conformal definitions, and 

guarded definitions to lambda calculus form. Pattern matching definitions can 

simply be transformed to the corresponding pattern matching lambda abstractions. 

List comprehensions and the notation for built in types are converted to lambda 

calculus. The pattern matching lambda. abstractions are then compiled to plain 

lambda calculus using BMTP IF expressions. Lambda lifting is then performed 

to convert the definitions to supercombinators of the form 'f p1 •• Pn = body' 

which are equivalent to the definitions permitted by the property prover. At the 

same time as the lambda lifting, dependency analysis is performed so that the 

information about the recursive nature of functions is available to the property 

prover and local definitions are floated to the top level (where possible). 

Finally the resulting functions and property statements are checked for type 

consistency. 

6.3 Translation to Enriched Lambda Calculus 

The translation to enriched lambda calculus involves two translation schemes, one 

for functions and the other for expressions. The notation TD[ d] is used to describe 

the effect of translating a definition d to enriched lambda calculus and the notation 

TE[ e] is used for the translation of expressions. The TD scheme is applied to 

global definitions and the definitions local to property statements, whereas the TE 

scheme is used to translate property statements and is also used by the TD scheme. 
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Figure 6.2: Miramod Compilation Overview 

6.3.1 Expression Translation 

The expression translation scheme is for the most part simple. Much of it concerns 

the translation of the symbols of Miramod into the corresponding BMTP notation. 

For example: 

TE[ a+ b] 

TE[ (a, b)] 

TE[ (a, b, c) ] 

+ TE[ a] TE[b] 

PAIR TE[a] TE[b] 

TRIPLE TE[ a] TE[ b ] TE[ c] 

Rather than introduce a new name for every Miramod operator or function, 

many are simply left unchanged and are distinguished entirely by context. Common 

operators such as + are therefore simply translated from infix to prefix notation. 

The translation of list comprehensions (ZF expressions) is more complex and is 

therefore described separately in section 6.8. 
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6.3.2 Definition Translation 

The translation scheme for definitions must take into account both the pattern 

matching and the guarded equation styles of definition. Given a pattern matching 

definition of the form: 

f Pn ... Ptn = rhst 

f P21 · · · P2n = rhs2 

f Pmt ... Pmn = rhsm 

the compiler produces the following definition: 

f = AVt ... AVn.ft Vt ... Vn 

f2 Vt ... Vn 

undef 

the functions f 1 ... fn are the compiled versions of each of the original pat

tern matching equations. Since each of these must be applied to the functions 

arguments, a lambda abstraction with one new variable for every parameter of the 

function is created (..\v1 ... Avn) and each pattern matching function is applied to 

the new variables. These function applications are joined using the fatbar operator 

(written D which returns its first argument if the pattern match does not fail and 

returns the second argument if it does: 

a ~ b = IF (a -- Fail) b a 

The value Fail is a special value returned when a pattern matching lambda 

abstraction (contained in the functions f 1 ... fn) fails to match its argument. In 

this way, the value of the function becomes the value of the first pattern match 
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that does not return Fail. The final undef is the value returned if none of the 

patterns match. For many definitions the patterns are exhaustive and the compiler 

detects this and removes the final ~ undef. For example: 

and False x = False 

and True x = x 

Is compiled to: 

and = AUAv.and1 u v 

and2 u v 

where a.nd1 and and2 are the compiled versions of the two pattern matching 

definitions. 

Each pattern matching definition is translated to a pattern matching lambda 

abstraction, with one abstraction for each argument. The two pattern match

ing definitions of the function and above are compiled to AFalseAx.False and 

ATrueAx.x respectively, giving the lambda calculus definition of and as: 

and= AUAv.(AFalse Ax.False) u v 

(A True Ax.x) u v 

undef 

The translation scheme TD for a sequence of pattern matching definitions is 

therefore: 

TD[ f Pl,l··Pl,n = rhs1 

f P2,1··P2,n = rhs2 

f Pm,l··Pm,n = rhsm] 

AV1 .. AVn• 

(A TE[p1,1 ]..A TE[pl,n] TR[ rhs1 ])vl··vn 

(ATE[ Pm,l ]..A TE[ Pm,n] TR[ r hsm ])v1 .. vn 

undef 
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This scheme uses the translation TR for the right hand sides of definitions. 

In the simple case this is equivalent to TE but in the general case a series of 

expressions and guards are allowed as well as an optional set of where definitions. 

To compile the definitions containing guards, a built in function 'cond' is used. It 

can be defined in terms of the BMTP IF as follows: 

cond c a b = IF (c==True) a 

IF (c==False) b 

undef 

The distinction between cond and IF is important. The condition of cond is a 

Miramod boolean value which may be True, False or undef, but the condition of 

the property prover IF is a property value and may only be T or F. 

Using cond the right hand side of a definition containing a sequence of guards 

is compiled in the following manner: 

TR[ el,gl 

e2,g2 

en,gn] 

cond TE[ g 1] TE[ el] 

( cond TE[ g2] TE[ e2] 

( cond TE[ gn] TE[ en] 

Fail) ... ) 

The final Fail value is returned if all the guards return false, thus ensuring that 

the next pattern matching definition will be applied. 

If the final guard is the reserved word 'otherwise' then the final cond is simply 

replaced with the last expression. So 

TR[ 

en-1, 9n-1 

en, otherwise] 
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Finally, if a definition contains some local definitions using the where notation, the 

local definitions are themselves translated and the resulting definitions are used to 

form a letrec expression: 

letrec 
TR[rhs where 

TD[ dl] 
dl 

d2 
TD[d2] 

dn] 
TD[dn] 

zn TR[ rhs] 

6.4 Pattern Matching Compilation 

The next phase is the removal of pattern matching lambda abstractions through a 

series of transformations. 

At this point the Miramod compiler departs from the conventional approach of 

functional language compilation. The reason for this is that the objectives of the 

Miramod compiler are different from those of conventional functional language com

pilers. The Miramod compiler must produce function definitions that are suitable 

for proving theorems and are made up from IF expressions, recogniser functions 

and selector functions. On the other hand, conventional functional language com

pilers usually produce a more efficient form[l] by replacing repeated tests for a 

complete pattern with case statements which deal with all the possible values of 

one shell immediately. 

The translation scheme for pattern matching lambda abstractions is named TP 

and as well as having a lambda expression as a parameter it is given a list of the 

pattern matching variables that have already been bound and a list of the variables 

the pattern is applied to. The notation TP( bounds)( args )[ exp] is used for the 

result of translating the pattern matching lambda calculus expression exp, applied 

to parameters args and enclosed by the pattern matching variables bounds. 

Patterns are made up from: 
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e Constants ( eg True, 'a', 10. 5) 

o Variables- which may be repeated within the pattern 

• Shells which have patterns in their argument positions2
• 

The simplest case is a constant pattern, for example 

(.\False.True) x 

which is translated to the expression: 

ifdef x (IF (x==False) True Fail) 

The function ifdef ensures that if the parameter is undefined then the result of 

the pattern match is also undefined: 

ifdef v e = IF (v==Undef) Undef e 

The compiled version of the pattern matching lambda expression will therefore 

return Undef if its argument is Undef, True if its argument is False and Fail 

otherwise. In the general case this translation is performed by the following rule: 

TP(bs)(a: args)[.\k.E] = ifdef a (IF(a == k) TP(bs)(args)[E] 

Fail) 

The translation of a variable pattern is more interesting. H the variable is 

not in the set of variables already bound by the pattern match, then the lambda 

abstraction is left unaltered but the abstraction body (E) is translated with a bound 

variable set which includes the abstraction variable. 

2There are in fact two types of shell, sum shells and product shells, however only the details 
of sum shell translation are given here. 
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TP(bs )(a : args )[ .\v.E] .\v. TP(bs U {v})(args)[E] a if v rt bs 

If the variable is already in the bound set then a check must be made to see 

if the value given to the variable in this part of the pattern is the same as the 

value it has been given previously. For example, a definition of the form 'f y y 

= body' will generate the lambda calculus expression '(.\y .\y. body) u v'. Strictly 

speaking this expression is incorrect, since the two abstractions over the variable 

y are intended to refer to the same variable, however the previously introduced 

semantics of the lambda calculus mean that the outermost lambda abstraction 

could be renamed to any variable that does not occur free in the body (alpha 

conversion). The pattern matching translation takes this into account by keeping 

a record of the variables that have already been encountered in the current pattern 

(the bounds), and generating the appropriate code if a repeated variable is found. 

For the example above, the code generated is '(.\y. cond (u=y) body Fail) v' 

where cond is the conditional function previously introduced. The use of weak 

equality is important since it ensures that the pattern match behaves correctly 

for partial values. In the general case, the translation performed for a lambda 

abstraction over a variable that has already appeared in the pattern is as follows: 

TP(bs)(a: args)[.\v.E] cond (a= v) TP(bs)(args)[E] 

Fail if v E bs 

The next translation rule deals with shell patterns. Taking the expression 

(,\(a:x).body) u 

as an example, the translated code should have the form: 

ifdef u (IF (REC-: u) body' Fail) 

where body 1 is body with (SEL-: -1 u) substituted for free occurrences of a and 

(SEL-: -2 u) substituted for free occurrences of x. This ensures that if the argu

ment is undefined then the value Undef is returned and if the argument is a list 
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construction then body 1 is returned. Otherwise the pattern match fails, returning 

the value Fail. 

The general case is more complex, since the pattern arguments may not be 

simple variables. To cater for this, the translation algorithm generates the ap

propriate conditions and a body 1 that has the argument patterns as a sequence 

of pattern matching lambda abstractions applied to the components of original 

lambda abstraction argument selected using the selector functions: 

(A(C P1 ···Pn).body) U 

gives 

body 1 = (APt···APn·body) (SEL-C-1 u) ... (SEL-C-n ~) 

The new body then has its pattern matching lambda abstractions removed by 

recursively applying the translation to it. The translation scheme for shell patterns 

is therefore: 

TP(bs)(a: args)[A(c PI .. Pn).E] = 

ifdef a IF (REC-c a) 

TP(bs)((SEL-c-1 a): ... (SEL-c-n a): args)[Ap1 ... Apn.E] 

Fail 

The final translation rule ensures that the recursion terminates when the ex

pression being translated is not a lambda abstraction: 

TP(bs)(args)[E] = E args if E is not a lambda abstraction. 

Rather than translating pattern matching lambda abstractions in an entirely 

separate phase from the translation from Miramod to lambda calculus, the TD is 

translation schemes calls on the TP translation scheme to compile pattern matching 

lambda abstractions as they are produced. Hence the TD translation scheme is 

actually: 
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TD[ f Pt,t··Pt,n = rhst 

f P2,1··P2,n = rhs2 

f Pm,t··Pm,n = rhsm] 

AVt .. AVn. 

TP( {} )( Vt .. vn)[ A TE[pt,t ] .. .A TE[Pt,n] TR[ rhst]] 

TP( {} )(vt··vn)[ .A TE[Pm,t ]. . .A TE[Pm,n] TR[ rhsm]] 

Fail 

In this way, the overall translation ensures that the repeated variables in lambda 

abstractions are interpreted as pattern matching lambda abstractions and replaced 

with the correct equality conditions only when they are indeed in the position of 

pattern matching lambda abstractions. 

6.5 Compilation to Supercombinators 

The result of the preceding compilation phases is a set of property expressions 

and function definitions in enriched lambda calculus notation. The main objective 

of this final phase is to replace the lambda abstractions with the simple function 

definition notation used by the property prover. Many of the lambda calculus 

definitions can be translated to the property prover notation very simply. For 

example the function 

max a b = a, a> b 

= b, otherwise 

would be compiled to: 

max = .Aa.Ab.cond (> a b) a b 
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which can be converted to the property prover notation simply by removing the 

lambda abstraction from the right hand side and adding their variables to the left 

hand side of the definition: 

max a b = cond (> a b) a b 

In many cases (particularly compiled list comprehensions) the lambda abstractions 

are not all at the top level. H this is the case, a new function name can be created 

and defined as the inner lambda abstraction. The lambda abstraction can then be 

replaced by this new function. For example the inner lambda abstraction )..a.E in 

f = )..x ... ()..a.E) ... 

can be replaced by fl and the definition of fl as )..a.E added: 

f AX .. .jl... 

jl )..a.E 

These definitions can then be written to the correct form for the property prover 

by removing the lambda abstractions and placing the abstraction variables on the 

left hand side of the definition as formal parameters: 

f X = ... fi ... 

f1 a = E 

Unfortunately this technique does not work if the body of the lambda abstraction 

contains any free variables, since moving the body of the abstraction to another 

definition may remove these variables from the scope in which they were defined. 

For example: 

f = )..x.g ()..y.h x y) 
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In this case the inner lambda abstraction ( >..y .h x y) contains a free occurrence 

of the variable x which prevents it from being extracted as a separate function. 

Ignoring the free occurrence of x would give the following definitions: 

f X= g $y 

$y y = h X y 

which is incorrect because in these definitions the two occurrences of x are unre

lated. 

There is one circumstance in which a free variable is acceptable, and this is when 

the free variable is bound in one of the immediately enclosing lambda abstractions. 

For example x occurs free in the body of the >..y abstraction in 

>..x>..y.( ... x ... y . .. ) 

This is acceptable, because the >..x immediately encloses the >..y and the correspond

ing property prover function can be generated as: 

fxy= ... x ... y ... 

The class of lambda calculus expressions that can easily be converted to the prop

erty prover notation are known as the supercombinators. 

A supercombinator is a lambda calculus expression of the form 

where n >= 0 and E is not a lambda abstraction, contains no free variables 

other than a1 to an and any lambda abstractions contained in E are themselves 

su percombinators. 
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Any supercombinator can be transformed to the property prover notation sim

ply by replacing any occurrences of the supercombinator with a unique function 

name and adding a function definition with the supercombinator variables as formal 

parameters and the supercombinator body with any supercombinators removed as 

the function definition body. 

The Miramod compiler's strategy is therefore to transform all expressions to 

supercombinator form and then convert these definitions to the property prover 

notation. The process of converting lambda abstractions to supercombinators is 

known as 'lambda lifting' and is a standard technique in the compilation of func

tional languages. 

6.5.1 Lambda Lifting 

If a lambda abstraction contains a free variable then the free variable can be bound 

simply by adding a new lambda abstraction for the free variable and applying this 

to the free variable itself. This process is sometimes referred to as 'abstracting a 

free variable'. 

>..y.x y 

is transformed (using the reverse of the beta reduction rule for lambda calculus) 

to: 

(>..x>..y.x y) x 

The lambda abstraction is now a supercombinator. 

The lambda lifting algorithm is as follows: 

1. descend into the constituent parts of the expression, recording as free any 

variables found. 
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2. for each lambda abstraction: 

(a) lambda lift the abstraction body returning a list of the free variables 

found. 

(b) remove the abstraction variables from this list and call the result 'Frees' 

(c) give a unique name to the lambda abstraction 

(d) replace the occurrence of lambda abstraction with the new name applied 

to 'Frees' 

(e) add the new name as a function definition with the original lambda 

abstractions and 'Frees' as parameters and the definition body as the 

lambda lifted abstraction body 

Taking the right hand side of the following function definition as an example: 

f = >-.x.g (>-.y.h y x) 

This expression itself a lambda abstraction, so the first step is to lambda lift the 

abstraction body 

g (>-.y.h y x) 

The function 'g' is defined globally, so it is not recorded as a free variable. The 

remaining part of the expression is another lambda abstraction, so its body is 

compiled. In this case there are two free variables x and y so these are added to 

the free list. Since it contains no lambda abstractions, no change need be made 

to the )..y body and the free list containing x and y is returned. Since y is the 

)..y abstraction variable it is removed from the free list giving 'Frees' as the list 

containing just x. A unique name is now given to the lambda abstraction -say 

$y and the )..y abstraction is replaced with $y applied to the free variable x: 

f = >-.x.g ($y x) 
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$y is then added as a new function definition with the variables x and y as formal 

parameters and the lambda lifted abstraction body as the function definition body: 

$y X y = h y X 

Since both g and $y are defined globally, the Ax abstraction is already a supercom

binator and is therefore converted without the addition of any parameters: 

f $J 
$fx g($yx) 

As this example demonstrates, the lambda lifting process has a tendency to 

create trivial and unnecessary supercombinators. These can be eliminated by re

moving definitions of the form f=$f, renaming the supercombinator $f as f in the 

rest of the model. Another simplification is to perform 7]-reduction on definitions 

of the form: 

f. .. w x =Ex 

where x does not occur free in E 

Applying 7]-reduction removes the extra parameter giving: 

f. .. w = E 

If all of the parameters can be removed using 7]-reduction then the definition can 

be eliminated provided the remaining right hand side of the definition is simply a 

supercombinator name. 
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6.6 Letrec Compilation 

Although local definitions are not part of the BMTP theory, they are permitted in 

the property prover provided they only occur immediately in the body of a function 

definition. In other words a function of the form: 

f Xt .. Xn = letrec 

in E 

is acceptable to the property prover because the letrec is at the top level of the 

definition body. On the other hand, definitions of the form 

f Xt .. Xn = g letre.c 

in E 

are not acceptable because the letrec is not at top level. The reason for this is that 

it means only the heuristics for opening up definitions need cater for the possibility 

of local definitions. When a function definition containing a letrec is opened up, 

the function's actual parameters are substituted for the formal parameters in the 

letrec definitions as well as the letrec body. The variables defined by the letrec 

are assigned unique names and added to the global function definitions, and the 

letrec body is returned as the value of the function. Since the letrecs must be at 

top level in the function body, there is no need for the property prover to search 

for enclosed letrecs before opening up the definition - it can tell immediately if a 

letrec is present or not. 
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6. 7 Type Checking 

An important phase of the compilation process is the check for type consistency 

within the model. Since the type checking algorithm requires dependency informa

tion, it is performed after the lambda lifting and dependency analysis phase. There 

is a strong case for checking types at an early stage of the translation process since 

any errors found can then be reported with reference to the source code in which 

they occur. Rather than having to perform dependency analysis twice, the Mi

ramod compiler records information about the position of definitions and property 

statements in the source code and reports the error in terms of the property or 

function name and line number. 

The definitions of the model are checked first since this process not only checks 

for consistency but also establishes the types of the functions if their type is not 

explicitly declared. The order in which definitions are checked is from the function 

that is least dependent on other functions in the model to the function that is most 

dependent on the other functions in the model. This means that unless a definition 

is mutually recursive the type checking algorithm can depend on the existence of 

information on the type of every function occurring within the definition. 

The type checking algorithm uses two tables which give the types associated 

with particular identifiers. One table, called the fixed table, contains the type infor

mation for identifiers whose type is already known, the other contains information 

about the current type of identifiers for which a type is being inferred and is called 

the unfixed table. The type checking algorithm also has a type which it expects to 

be the type of the current expression. 

There are two main cases that must be dealt with by the type checking algo

rithm, one is when the current expression is a function application and the other is 

when the expression is an identifier. In the latter case, the unfixed table is checked 

initially, and if it contains a type for the identifier the expected type and the un

fixed types are unified; that is they are checked to see if there is a substitution 

for type variables in each of the type expressions that make the two expressions 

equivalent. If this is the case then the substitution is applied to both the unfixed 

table and the currently expected type. If the expected type and the unfixed type 
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will not unify then this constitutes an inconsistency in the type structure of the 

model and a type error is reported. 

If the identifier is not listed in the unfixed table then its type is obtained from 

the fixed table and unified with the expected type. The resulting substitutions are 

only applied to the unfixed table and the currently expected type - not the fixed 

table. This is because the fixed table contains the types of defined functions whose 

definitions have already been checked and the current use of the function can be a 

specialisation of the type inferred for the function from its definition. 

The other main case in type checking is when the expression being checked is 

a function application, for example 'f x'. In this case a new type variable Tx is 

obtained and the type checking algorithm is recursively invoked for f with expected 

type 'Tx -> Te' and for x with expected type Tx where Te is the expected type of 

the expression 'f x'. 

6.8 List Comprehensions 

The translation of list comprehensions relies on a built in function flatmap which 

is defined a.s follows: 

flatmap f [] = [] 
flatmap f (x:xs) = f x ++ flatmap f xs 

Thus flatmap takes a. function and a. list a.s parameters and applies the function to 

each element of the list, concatenating the resulting lists. Note that the function 

f must return a. list. 

Given a list comprehension of the form 

[E lv<-1] 
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where E is an expression (possibly containing v), vis a variable and 1 is a list then 

the corresponding lambda calculus equivalent is 

f1atmap (Av. [E]) 1 

In the general case the list comprehension is made up from an arbitrary number 

of qualifiers on the right of ' I '. So the translation scheme is: 

TE[ [Eiv<-1; Q]] = f1atmap (Av. TE[ [EIQJ ])TE[1] 

The recursive translation ends when there are no further qualifiers left: 

TE[ [EI]] = [E] 

Qualifiers may also be boolean expressions, in which case the following translation 

applies: 

TE[ [E I B; Q] ] = if TE[ B] TE[ [E I Q] ] [] 

where if is defined as: 

if c a b = a, c 

= b, otherwise 

This translation means that if the boolean expression evaluates to true then the 

list comprehension made up from the expression E and the remainder of the quali

fiers Q is returned, otherwise the empty list is returned. If the boolean expression 

is preceded by a generator then the empty list will disappear due to the application 

of flatmap. It is important to note that none of the variables introduced by Q {if 

there are any) can occur in B since the scope of variables introduced as qualifiers 

extends to the qualifiers on the right but not those on the left. 
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There are a number of other forms of qualifiers whose translation is not listed 

here. Details of these can be found in the book by S.L.Peyton Jones [35]. 

6.9 Type Compilation 

As well as compiling property statements and function definitions, the Miramod 

compiler must convert the type descriptions of a model to a corresponding form 

in the property prover notation so that types as well as functions can be checked 

for similarity. Miramod provides three mechanisms for describing types: algebraic 

type descriptions, algebraic type shorthand and representation based types (the 

built in types are automatically made available to the property prover). 

The compilation of Miramod algebraic type descriptions is trivial because the 

constructors and destructors of the type are simply treated as functions without 

definitions by the property prover. All that is required is for the property state

ments associated with the type to be compiled in the same way as other property 

statements are compiled. 

The compilation of algebraic type shorthand and representation based type 

descriptions is more complex and these are described in the following sections. 

6.9.1 Algebraic Type Shorthand 

A shorthand algebraic type description is written: 

t · · = C1 ... I C2 ... I ... I Cn ... 

where tis the type name and Ci are the shell names which are followed by the types 

of their arguments. These shells have a special status, since they can be written on 

the left hand side of pattern matching function definitions. The compiled version 

of such a definition assumes that each shell has a recogniser function and that 
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each argument of a shell has a selector function. It is therefore important that the 

appropriate function definitions for the recogniser functions and selector functions 

are generated for the algebraic type. 

Given a shell C, the recogniser function is named REC-C and the selector func

tions are named SEL-C-n where n is the number of the argument selected by the 

function. These functions are defined as follows: 

REC-C (C p1 .. pn) => T 

REC-C undef => F 

s-==C 1- REC-C (S p1 .. pn) => F 

REC-C x 1- (C (sel-C-1 x) (sel-C-2 x) ... (sel-C-n x)) = x 

and for all n where 1~n~m 

SEL-C-n (C p1 .. pn .. pm) => pn 

The recogniser functions return a property (T or F) rather than a Miramod boolean 

value, hence they return F if their argument is undefined and they can never return 

the undefined value. The semantics of the selection functions applied to the wrong 

argument are not defined because the compiler ensures that any use of a selector 

function only occurs after its argument has been checked with a recogniser function. 

6.9.2 Representation Based Type Descriptions 

When a representation based type description occurs in are-user's model, the prop

erties describing the type will contain functions and values of the representation 

type as well as the described type. To prove these properties in terms of a com

ponent model it is necessary to have some means of mapping there-user's model 

properties into a form in which they can be proved from the component model. 

For algebraic type descriptions this is achieved through the view of the described 
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functions, however for the properties that include values and operators of the rep

resentation type, there must also be a method of mapping representation values 

and functions into component model values and functions. Taking the example of 

a stack type description from chapter 4 (page 76), the properties associated with 

the description are: 

{e s} 

empty = [] • J 

push e s = e:s J J 

pop (e:s) = s J J 

top (e:s) = e J J 

is_empty [] = True J J 

is_empty (e:s) = False J J 

Rather than leaving it to the property prover to try and invent a view from the 

representation to the component model as well as the view from the function of 

the described type to the component model, the compiler insists that the re-user 

supplies an abstraction function with each representation based type description. 

This abstraction function can then be used to convert all the properties to a form 

in which a view of only the signature functions is needed to prove the properties. 

In the above example, the retrieval function given with the model is: 

{e s} 

ret_stack [] = empty J J 

ret_stack (e:s) = push e (ret_stack s) J J 

Using ret_stack, the property of pop in the above example can be converted to: 

pop (ret_stack (e:s)) = ret_stack s 

and hence proved from properties such as 'pop (push k 1) = 1'. 
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The conversion of properties of representation described types is complicated 

by the fact that not every value in the representation need correspond to a value of 

the type it describes. This situation occurs when the constructors of the type never 

produce some of the possible values in the representation. For example a set is of

ten represented as an ordered list - in which case the constructors should never 

produce an out of order list3 . To cater for this possibility a re-user is expected to 

supply a validity function as well as an abstraction function. The validity function 

gives a boolean result depending on whether or not a representation value has an 

equivalent value in the described type (in other words it is true for a value if that 

value can be created by the constructors of the described type). The converted 

properties are then given an additional hypothesis for each retrieval function ap

plication they contain. This hypothesis uses the validity function for the type to 

ensure that the property only need hold for values that can be created from the 

constructors of the described type. Given the validity function valid_stack the 

pop property from the example is therefore converted to: 

valid_stack s & valid_stack (e:s) 

1- pop (ret_stack (e:s)) = ret_stack s 

To perform this translation, the described and representation types are consid

ered as distinct types, and the retrieval function is used as a coercion function at any 

points in the property where an expression which gives values of the representation 

type appears in a position where a value of the described type is expected. There

sulting expression is correctly typed even when considering the representation and 

implementation types as distinct. A coercion function is one that converts from 

values of one data type to values of another, in this case between representation 

and implementation types[28]. 

Deciding where these coercions are needed in a given property expression is 

not entirely straightforward since the types of some of the functions or variables in 

the statement may not be explicitly mentioned. This results in a situation where a 

variable or function must have both the representation type and the implementation 

type at different points in the expression and it is therefore unclear what the type 

3 In the context of data type specifications this situation is referred to as implementation 
bias[32]. 
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of the function or expression should be considered as when adding coercions. Since 

the only coercion available is from representation to described type, all expressions 

that are expected to be of both types are assumed to be of the representation type 

and are coerced to the described types in all the contexts where a described type 

is expected. Taking the property expression for pop as an example: 

pop (e:s) = s 

the variable s appears on the left hand side in the context of a list. On the right 

hand side its context is as a stack (since the opposite side of the equality returns 

a stack). The type of s is therefore taken as a list, and the occurrence of son the 

right hand side is coerced to a stack. If the alternative choice of taking s as a stack 

is made, then the resulting property statement is badly typed in the component 

model and the property cannot be proved. 

6.10 Summary 

The aim of the Miramod compiler is to establish the correctness of a model with 

respect to the language syntax and type laws, and to translate the Miramod no

tation to a notation that is acceptable to the property prover. It achieves this 

using for the most part conventional functional language compilation techniques: 

translating Miramod first to enriched lambda calculus, then translating enriched 

lambda abstractions to normal lambda abstraction and finally performing lambda 

lifting to produce supercombinators. 

The major difference between Miramod compilation and conventional compi

lation to supercombinators is in the translation of pattern matching, where the 

property prover translates pattern matching lambda abstractions to a form based 

on the property prover's IF expressions rather than to a form that can be efficiently 

executed. 
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Chapter 7 

Implementation 

This chapter describes the current state of the retrieval system's implementation. 

The main components of the system are the property prover, Miramod compiler, 

and model comparison algorithms. 

In the remainder of this chapter, all timings given are in real time, and represent 

typical values when running the software as the only user of a Sun 3/50 workstation. 

7.1 Miramod Compiler 

The compiler has been written using the Unix tools 'lex' [34] and 'yacc'[31] as 

well as the logic programming language Prolog. It consists of a total of around 

3,000 lines of source code. The initial lexical analysis and parsing is handled by 

lex and yacc, which produce output in the form of Prolog clauses. These clauses 

are then translated by Prolog, first to lambda calculus then into supercombinator 

form. Finally dependency analysis is performed to establish the recursion groups 

of recursive functions and prepare for the final phase, which is type checking. 

The choice of Prolog to implement the main transformations performed by the 
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compiler has been justified by the transparent nature of much of the code. The im

plementation of many of the translations corresponds closely to the transformation 

schemes detailed in chapter 6. 

Compilation times are typically in the order of two or three seconds for small 

models (approximately 20 lines of code), but these deteriorate for large 'models' 

- the Miranda standard environment, which is 700 lines, takes four minutes to 

compile. This performance is acceptable since the models should always be small 

so that they can be matched by the property prover. During a particular retrieval, 

the compiler need only be used to compile there-user's model, since the compiled 

versions of the component models are stored along with the source. 

7.2 Property Prover 

The property prover is implemented in Prolog and consists of approximately 5,000 

lines of source code. The language Prolog was chosen as a compromise between 

the need to produce a prototype property prover as quickly as possible whilst at 

the same time making it reasonably efficient. 

The obvious alternative of using Miranda to implement the property prover 

was rejected because of the current version's inability to perform list indexing 

operations in constant time. Indexing operations are fundamental to the efficiency 

of the property prover because they form the bases of lookup tables for many 

crucial items such as function definitions, constructor type information, rewrite 

rules generalisation and elimination axioms, and induction templates. 

Prolog is itself a crude theorem prover based on the resolution of a special 

class of clauses called Horn clauses. It is frequently criticised for its depth first 

search strategy, but in the property prover implementation this is generally used 

as the underlying mechanism for executing the property provers searching heuris

tics. Prolog's search strategy is used for the synthesis of views (instantiating free 

functions), however in this case the backtracking behaviour is tightly constrained 

by the implementation. Another criticism of Prolog is its lack of an 'occurs check' 
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in its unification algorithm. This means that goals such as 'X = cons (X, Y)' suc

ceed despite the fact that X properly occurs in cons (X, Y). For the vast majority of 

unifications in the theorem prover this is not a problem, but in the few cases where 

a variable may potentially occur within the term with which it is being unified an 

additional predicate which performs an occurs check is used rather than the con

ventional unification algorithm. The fact that this additional unification predicate 

can be written in a few lines of Prolog is an indication of the expressive power of 

Prolog. 

The property prover makes maximum use of the hashed lookup provided by 

Prolog. In particular the version of Prolog used implements hashing on the first 

parameter of a predicate as well as the predicate name. This means that if there are 

many facts associated with a particular predicate, for example the predicate used 

to store function definitions, each can be accessed in constant time provided the 

top level function symbol (functor in Prolog terminology) is different for each fact 

(and the hash table is not full). To take maximum advantage of this, the represen

tations of facts such as function definitions are arranged so that the first parameter 

of the fact will have a different symbol wherever possible, and any attempts to 

look up such facts can specify a constant symbol (as opposed to a variable) in 

the first argument position. In the case of function definitions, the first argument 

is always the function name. An alternative representation which used the first 

argument to store a list of the function name and formal parameters would pro

duce a linear lookup time because each definition would have the list construction 

function symbol as its first top level function symbol, and therefore the hash value 

for all definitions would be the same. The same technique is used to implement 

constant order lookup for constructor type set information, the current terms in 

the conjecture, rewrite rules, elimination and generalisation axioms and induction 

templates. 

7.3 Model Comparison 

The model comparison algorithm attempts to pair each type described in the re

user's model against a type in the component model. To do this it uses the type 
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signature as guidance. Having selected a mapping of the re-user's model types 

onto component model types, a view from the re-user's model functions to the 

component model functions is established. Any functions for which a view cannot 

be established are marked as free functions. 

The property which contains the fewest free functions is then selected and given 

to the theorem prover which returns two results, one for the proof of the property 

when ignoring partial and undefined values and the other for the proof that takes 

these into account. Both results are then scored and the scores summed to give 

the matching score for that particular property. 

A score for each property is established in this way, properties with the fewest 

free functions first, and the resulting scores are summed and divided by the number 

of property expressions to give the overall score for the match between components. 

The proofs are performed in this order to try and ensure that the best possible 

view between models is the one synthesised. The best view is likely to be achieved 

by ensuring that for each property proved, the number of free functions for which 

a view is synthesised during the proof of that property is as small as possible. 

The ideal case is achieved when each property with more than one free variable 

synthesises the view for only one of its free variables. During the proof of subsequent 

properties, the variable is no longer free. 

Both parts of the result returned by the property prover have one of three 

values: 'T' if the property was proved, 'F' if the attempted proof resulted a clause 

of the form {F} being generated, and finally '?' if the attempted proof failed to 

produce any answer (ie. timed out or produced a clause for which no induction 

could be constructed). 

These values are scored by the following table which attempts to reflect the 

relative importance of total and partial properties as well as the relative importance 

of 'T', 'F' or '?' in determining the similarity of models. The current values are 

based on the limited experience gained in matching models from the Miranda 

library. 
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Total properties 

Partial properties 

T ? F 

80 20 0 

20 5 0 

So for example, if a model has only one property, and this is proved for total 

values but is disproved for partial values, then the matching score returned is 80. 

7.3.1 Efficiency 

The efficiency of the matching algorithm is crucial to the feasibility of model 

based component library retrieval. Unfortunately neither the maximum accept

able matching time or the time taken to match components is constant. 

The property prover's performance is highly dependent on the relationship be

tween the property being proved and the properties of the library model, in partic

ular the heuristics supplied with the components model. For a property that just 

requires simplification, the property prover typically takes less than a second to 

complete the proof. For example, the proof of all three compiler properties given 

in chapter 4 requires only two seconds since none of them involve induction. 

Proofs that require induction tend to take longer, and there is frequently a 

close relationship between the number of inductions required and the time taken 

to complete the proof. For example the proof of the property 'reverse (reverse 

x) = x', assuming only the definition of reverse and ++ (which is used in the 

definition of reverse) and the induction templates for reverse and ++,uses two 

inductions and requires 8.5 seconds to complete. This time would be shortened 

considerably if the library model contained more information on proving theorems 

about reverse, for example the rewrite axiom: 

{y x+} 

reverse ( y ++ [x] ) => x:y 

or even 
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{x} reverse (reverse x) => x 

If a property is not provable from the component model then one of three 

situations occurs: The theorem prover may produces a clause in which each literal 

is irrelevant, and the result 'F' is assumed. This occurs when the property is not 

true for base cases and is common when attempting to prove properties of arbitrary 

models from the library. Alternatively, the property is simplified to a state where 

no more simplifications can take place and no appropriate induction schemes can be 

found. This usually takes place immediately (ie without any inductions occurring) 

or does not occur at all because inductions schemes can be applied ad infinitum 

without ever simplifying the resulting clauses to T. This case is relatively rare - if 

any recursive functions are contained in the simplified clause, there should be an 

appropriate induction template. The third alternative is that the attempted proof 

terminates because the time allocated for the proof expires (ie the proof times out). 

The timeout value is essentially what determines the matching time for models 

where the required property is true in the base cases but not in the inductive ones. 

Since the majority of property proofs should fail (most of the components in the 

library will not be suitable unless an extremely general model is given), choosing a 

timeout value is crucial; if it is too long then the retrieval time will be unacceptable, 

if it too short then the retrieval completenes will be low because insufficient time 

was available for the proof of properties. 

The current implementation indicates that a retrieval time of around ten sec

onds per property is the minimum required to allow for matching on the basis of 

anything other than trivially similar properties or type information alone. Given a 

re-user's model with three properties and a timeout value of ten seconds the time 

taken in matching one model is at most thirty seconds, allowing 120 comparisons 

per hour. This figure must be considered in relation to the percentage of properties 

which can be rejected immediately on the basis that no view between the models 

can be established. 

In the retrieval experiments described in chapter 8 on average a view can be 

synthesised for only 1.6% of the models in the library. If this figure is correct 

for full scale component libraries, the property prover need only be applied to the 
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1.6% of the library models for which a view can be found. Since the initial view 

discovery (as opposed to synthesis) is based on the comparison of known types, it 

is extremely efficient relative to the property prover and therefore can be used as 

an initial filter for appropriate models. 

Assuming this figure of 1.6%, a library of 10,000 components could be searched, 

on the basis of non trivial model comparisons, in at most three hours, and since the 

majority of models fail on base cases the actual time should be a great deal less. 

Whether or not these retrieval times are acceptable depends on the circumstances 

of the re-user as well as the computing resources available. If a large amount of 

work is saved by re-using a retrieved component, then long retrieval times may be 

acceptable. On the other hand, for smaller components a greater retrieval loss may 

be acceptable and therefore a faster retrieval time can be achieved by reducing the 

time allowed to prove each property. 
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Chapter 8 

Experimental library and 

Retrieval System 

To investigate the levels of precision and completeness that can be achieved through 

model based retrieval, an experimental library and retrieval system have been set 

up. This chapter describes the experimental library and retrieval system and the 

results obtained from their use. 

8.1 Library 

The experimental library consists of two main parts, the components themselves 

and the models used to describe and retrieve the components. These parts are 

described separately in the following sections. 
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8.1.1 Components 

The experimental library consists of approximately 600 Miranda components (types 

and functions), each with one or more models. Coherent sets of types and functions 

are held in scripts (modules), so that only one '%include' statement is needed to 

bring the whole set into scope. The size of components varies greatly, and although 

some larger components do exist, the majority are small, consisting of only a few 

lines of code. Examples of the larger components are: a parser generator which 

provides a type for constructing parsers; components for manipulating abstract 

expressions including substitutions, unification, and term re-writing; and a type 

for writing interactive programs. 

Examples of small components are functions such as 'perms' which gives the 

permutations of a list and the type 'exception' which provides for simple excep

tion handling. In the latter case, it is interesting to note that although the basic 

component itself is straightforward, there are many useful functions associated with 

the type (currently 15). 

The small size of many of these components means that the effort of retrieving 

them may be greater than the effort of rewriting them. Nevertheless, it is often 

still beneficial to retrieve rather than rebuild because this means that the same 

function (with the same name) will be used by all users of the library, and hence 

the code involving such reused functions will be more readily understood by a larger 

collection of people. 

This is particularly important in the case of the standard environment functions. 

A script written using unfamiliar functions instead of the standard environment 

functions is a great deal harder to understand than one which uses the standard 

functions. For this reason the library also contains components which are part 

of the standard Miranda and Miramod environments. This allows users who are 

not completely familiar with these environments to retrieve and use the standard 

functions rather than building their own. 
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8.1.2 Models 

The models for components are stored separately from the components themselves. 

Each model consists of the Miramod description along with the name of the com

ponent it models and the name of the script which contains the component. If a 

successful match is made, this information can then be used to locate the compo

nent itself. 

Although models may consist purely of property statements and definitions, the 

majority contain additional information in the form of heuristics for the theorem 

prover. The syntax of Miramod is extended for library models, so that this infor

mation can be presented as part of the Miramod description of the components. 

Each piece of heuristic information is stored as a property expression, using the 

additional property expression notation described below. 

Rewrite Rules are used to indicate that expressions of one form should always 

be replaced by expressions of another form (with appropriate substitutions 

made) provided that the hypothesis can be established. They are written: 

H 1- L => R 

where H is the hypothesis expression, L is the expression to be replaced and 

R is the replacing expression. If no hypothesis is necessary then the rewrite 

rule may be written: 

L => R 

Induction Lemmas state that one expression (a) is smaller than another (b) ac

cording to the given measure (m), provided the hypothesis can be established. 

H 1-m a« m b 

The hypothesis can be omitted from induction lemmas giving the following 

form: 

m a << m b 
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Elimination Lemmas suggest that a collection of destructor terms should be 

replaced by the corresponding constructor term. 

H 1- L == vj (elim) 

The expression L must contain at least one destructor term of the form (d 

v1 ... vn) where v1 ... vn are variables and one of them is in fact vj. Again 

the hypothesis may be omitted. 

Since many elimination lemmas have corresponding rewrite rules, they may 

be written with => appearing instead of==, in which case they are interpreted 

as both an elimination lemma and a rewrite rule. 

Generalisation Lemmas are property expressions which should be added as a 

hypothesis to the conjecture being proved whenever one of their proper sub

terms is generalised. 

A (gen) 

The symbols (elim) and (gen) can also serve as property expression separators, 

and so they do not need to be followed by ; ; . 

These extensions do not apply to the models written by a reuser, smce no 

attempt is made to prove anything from the reusers model. 

8.2 Retrieval System 

To retrieve a component the reuser must supply a model for the component written 

in Miramod. The retrieval system then selects candidate models from the library by 

comparing the types of the reusers model with the types of the library models. This 

comparison is similar to that performed during the initial view synthesis (page 97) 

and is based on the same definition of 'similar' types. Each possible mapping of 

users model types to library model types is scored on the basis of the number of 

users model functions which are similar to one or more functions from the library 
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model and the highest of these is taken as the score for that particular library 

model. This process is performed for every model in the library, and the models 

which score 50% or more are then selected for comparison by the property prover. 

8.3 Retrieval Experiments 

The aim of these experiments is to establish the levels of precision and complete

ness that can be obtained using model based retrieval. This has been done by 

formulating retrieval requests for components that are known to be in the library 

and then analysing the results to obtain estimates of precision and completeness. 

One of the major difficulties in obtaining these estimates is that both precision 

and completeness are based on the notion of the suitability of a component for 

a particular task. Should components which could be used for the required task 

with slight, minor or major modifications be judged as suitable? Also if a retrieved 

component could be combined with other components to achieve the desired result, 

is this component suitable? 

Since the components in the experimental library are generally small, the effort 

of modifying them would often be greater than that of building a new compo

nent from scratch, so we only consider components that can be reused without 

modification as suitable. On the other hand, since one of the main advantages of 

functional components is that they can easily be combined, we consider as suitable 

any components which could perform the required task when combined with other 

relatively trivial functions. 

For each retrieval request, we therefore use these guidelines to judge which of 

the retrieved components should have been retrieved and which should not have 

been retrieved, thus obtaining a measure of precision. We then use our knowledge 

of the components in the library to identify the number of suitable components 

that where not retrieved and thereby obtain a measure of completeness. 

These experiments are based on several important assumptions. Firstly, we 
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have assumed that we are interested in assessing the retrieval method itself, rather 

than the ability of the library to supply the components we require. As a result 

all retrieval requests are based on components actually contained in the library. 

Secondly, the performance of model based retrieval is critically dependent on the 

time allowed for proofs of properties and the adequacy of the heuristics contained 

in the library model. As our principal aim is to investigate the potential of the 

method, we have assumed that the necessary heuristics are present in the model 

and that the property prover is given sufficient time to make the proof. 

The significance of the results obtained is limited by the fact that both the 

library models and the re-user's models are written by the same person, and so do 

not reflect the ability of a reuser to produce models similar to those in the library. 

One further limitation of the experiments is that all our retrieval requests are for 

functions rather than types. This is due to the fact that the current experimental 

library contains only a small number of types which are easily distinguished by 

their level of polymorphism and signatures. 

8.4 Case Studies 

Before examining the results obtained from many retrieval requests, a few spe

cific cases are described. Some of these are included to demonstrate extremes of 

performance rather than average performance. 

8.4.1 The function 'reverse' 

Since various models for the reverse function have already been presented, the 

results of using these models on the component library are presented here. The 

first model states that reverse is its own inverse, and that it acts on polymorphic 

lists. 

{x} reverse (reverse x) -- x;; 
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This model for reverse recalls two components, both reverse itself and the func

tion id x = x, which is definitely not what we required. The precision is therefore 

50%. In this case, the majority of components from the library are rejected because 

their types are not similar, and only ten components are checked by the property 

prover. If retrieval of reverse was performed on the basis of type alone, a precision 

of only 10% would have been achieved. 

It is tempting to conclude that reverse is the only suitable function, since no 

other function has the same type and behaviour; however the function 'foldl', 

though not exactly what is needed, can be used to generate a reverse function 

by instantiating its first two parameters: (foldl (converse(:)) []). Two fac

tors prevent the retrieval of foldl. The first is the definition of similar types we 

employ-'[*]->[*]' is not similar to'(*->**->*)->*-> [ **] -> [ * ]' and secondly 

the view synthesis heuristics are not powerful enough to discover the appropriate 

instantiations for foldl's arguments1
. 

Runciman and Toyn [55] describe a relation between types which accounts for 

the intuition that h- > t 2 is a generalisation of t 2 because it can be used to create 

t2 values. Unfortunately this cannot be used directly to extend the generalisation 

relation used here without creating a pre-order rather than a partial-order (consider 

the types of apply and id where 'apply f x = f x' and 'id x = x'). 

The view synthesis heuristics cannot discover the appropriate view for reverse 

in terms of foldl, because they rely on being able to prove the property true as a di

rect result ofthe synthesised view, without any further induction phases. Assuming 

that the model for foldl does not contain rewrite rules for 'foldl (converse ( :) ) 

[] ', two induction steps would be necessary to prove the property, and hence the 

desired view would be rejected. 

1 In general, a view between functions with non similar types may be created provided that the 
functions belong to a type description. If they are simply described functions with non similar 
types, then in the current implementation, no attempt will be made to synthesise a view between 
them. 
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Although we have successfully found a suitable function, it is clear that we have 

missed a component that would have been useful if reverse was not present in the 

library. The recall figure for this example is therefore 50%. 

An alternative model for reverse is: 

{n} reverse [1 .. n] -- [n,n-1 .. 1] 

This stands the risk of retrieving functions that only behave correctly when 

their arguments have the form [1 .. n], for example a function: 

last2first 1 = [last l,last 1-1 .. hd 1] 

would be sufficient to prove the above property. 

In the experimental library there are no such functions, and since id [1 .. n] 

-== [n,n-1 .. 1], only reverse is retrieved, giving a recall of 1, 100% precision 

and 50% completeness. 

It is interesting to note that the more specialised type inferred for reverse in 

the second model ( [num] -> [num]) gives a larger number of candidate models which 

have a similar type - in this case 22 of them. These are made up from twelve 

components of type [num] -> [num], and the ten components similar to the type 

[ *] - > [ *] . The precision that would be achieved through the retrieval of all simi

larly typed functions is therefore less than 5%. 

8.4.2 The function 'interleave' 

In the previous cases, the proof of the models properties ensures a much greater 

precision than retrieval based on similar types alone. The model for interleave 

provides an example in which the proof of the property does not have such a 
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dramatic effect on precision. The expression interleave x xs denotes the list of 

all ways of inserting x into the list xs. 

{a as xs ys} xs++ys=as 1- member (interleave a as) (xs++[a]++ys) 

This model retrieves only the function interleave and this is the only suitable 

function, so the recall is 1, precision 100% and completeness 100%. The only 

similarly typed component is undef : : * and hence the type based precision would 

be 50%. 

8.4.3 The function 'justline' 

Each of the previous examples have produced high levels of precision. The retrieval 

of a line justification function provides an example in which only a low level of 

precision is achieved. justline extends a list of characters to a given length by 

adding spaces alongside existing spaces in the line as evenly as possible. Three 

obvious properties that we could describe are: the length of the result list, the 

fact that the result list may only contain additional spaces and the distribution of 

the additional elements within the list. The last of these properties is by far the 

hardest to describe, and so to keep our model simple, we include only the first two 

properties: 

{n cs} #cs<=n 1- #justline n cs == n ;; 

is_each (justline n cs--cs) (= 1 1
) 

Unfortunately these properties are also true of several other justification func

tions in the library, including the left, centered and right justification functions 

along with their truncating counterparts (which always produce lists of length n). 

The total number of retrieved components is eight, only one of which is suitable, 

therefore the precision is 12.5%, the completeness 100% and the similar type pre

cision is 5%. 
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8.4.4 The selector function 'fst4' 

Imprecise retrieval not only stems from the use of a property which is true of many 

library components; in the case of simple components it can also be a result of our 

view synthesis being too flexible. This is especially true of the collection of tuple 

selector functions contained in the experimental library. An example of these is 

the function fst4 which selects the first element from a 4-tuple. 

>{a b c d} fst4 (a,b,c,d) == a 

Since the view synthesis allows re-ordering of tuple elements, this model re

trieves four components (the four selector functions). In all but one case, the view 

which gives the correct behaviour of the component is as complex as the compo

nent itself, and hence only one component is actually suitable. The vast majority 

of components in the library are considerably more complex than the views which 

we can generate and so this example of imprecise retrieval is completely atypical. 

It might also be possible to improve precision in cases such as these by including 

some form of viewing restriction in such simple library models. 

Another point raised by this example is the large number of functions which 

have similar types to the tuple selector functions. Due to the type equivalence of 

curried and uncurried functions, the tuple selectors of the appropriate arity match 

any function which returns one of its argument types. 

8.5 Results 

The above examples demonstrate some of the extremes of retrieval rather than 

typical cases. A more balanced view of the performance of model based retrieval 

can be obtained from the retrieval results of 30 requests for components in the 

library. The recall, precision and completeness results for these components are 
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summarised in figures 8.1, 8.2 and 8.:3 (Appendix C contains specific examples of 

these requests). 

Figure 8.1 shows the distribution of retrieval requests between various levels 

of precision, the majority of requests resulting in 100% precision and the mean 

precision being 79%. 

20 

10 

0 

Retrieval requests giving precision P 

100 50 33 
p (%) 

25 20 
Mean =79% 

Figure 8.1: Retrieval requests against level of precision 

Figure 8.2 shows the distribution of retrieval requests between various levels of 

completeness. Again the majority of requests achieve 100% with five requests only 

retrieving one out of two possible components and one request retrieving one out 

of three. The mean completeness is 89%. 

The distribution of retrieval requests between recall sizes given in figure 8.3 is 

directly related to the distribution for precision. This is because all the retrieval 

requests only produced one suitable component. The mean number of components 

recalled is 1.6. 

It is interesting to compare this figure with level of recall that would be ob

tained if a.ll components with similar types were retrieved. Rather than using the 

limited set of 30 retrieval requests, the level of recall has been established for re

quests based on the type of each component in the library. Figure 8.4 summarises 

this information and makes it clear that some components have large numbers of 
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Figure 8.2: Retrieval requests against level of completeness 

similarly typed components. The mean figure is 11, which would give a recall of 

11 in the case of retrieval based on similar types alone. 

These figures demonstrate that the method of model based retrieval can produce 

high levels of precision and completeness, even when important properties of the 

model are not described. However, there are several factors that suggest that 

these figures might be lower in practice. Firstly, the experimental models have 

been formulated by a person who is already well aware of the library's contents. 

This means that the experimental requests have tended to correspond closely to 

components in the library, whereas in a more realistic situation the correspondence 

may not be as close. It has also been assumed that the library models contain 

sufficient heuristic information to prove the requested properties and that sufficient 

time is allowed for the property prover to perform the proof. 
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Figure 8.3: Retrieval requests against size of recall 
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Chapter 9 

Conclusions 

9.1 Summary of Thesis 

This thesis has investigated some of the problems of component libraries and com

ponent library retrieval in particular. It has identified the use of names to describe 

the function of components as a major deficiency of current approaches to com

ponent library retrieval. In particular, limiting the possibility of re-use across 

application domains and leading to low retrieval precision. 

A new method of component library retrieval, which uses formal property mod

els rather than names to describe the function of components, has been suggested 

and developed. This method uses small 'models' to describe only the key functions 

of components. 

The functional programming language Miranda has been extended to provide a 

notation suitable for describing components. This language is called Miramod. The 

most important extension provided by Miramod is the ability to describe functions 

implicitly using equalities as well as explicitly using definitions. 

A crucial part of this new method is the comparison of component models. 
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Models can be compared not just for equivalence but for their similarity to one 

another. The ability to conclude that two models are 'similar' in some sense is cru

cial to the method, not only because it should be capable of retrieving components 

that are similar to the desired component but also because two similar models may 

be used to describe the same component. 

Models can be compared using views. These relate the types and functions of 

one model to the types and functions of another. Given a view between models it is 

possible to compare them by attempting to prove the properties of one model from 

the properties of another. This comparison involves two processes: discovering an 

appropriate view between models and then proving the properties of one model 

from another. 

Two approaches to view discovery have been investigated. One uses type infor

mation to relate similarly typed functions to one another. This method is crude but 

relatively simple and efficient to implement. The other more interesting approach is 

to create the view as the properties of the model are proved. This process is called 

view synthesis, and is capable of creating more complex views than a method based 

on types alone since it can use information available during the theorem proving 

process to decide on views that will assist the proof of properties. 

The design of a prototype property prover based on work by Boyer and Moore 

IS described. Particular detail is given to the heuristics which are not part of 

Boyer and Moore's theorem prover and are related to the task of model compari

son rather than theorem proving. The property prover does not work directly on 

Miramod models but relies on a compiler to convert the Miramod notation into 

a few basic constructs. This compiler follows conventional compilation techniques 

for functional languages closely, however there are some parts of the design that 

are specifically aimed at producing component descriptions suitable for theorem 

proving rather than execution. 
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9.2 Critical Assessment 

The model based approach to component library retrieval meets its principal objec

tive of not relying on names to describe the function of components. The matching 

process on which retrieval is based treats the names used within models simply as 

place holders and does not interpret the model in any way other than by its form. 

A surprising result of the research is the scale down in size of a component 

description that can be achieved by using a model which only includes the key 

properties or functions of the component. If they are well chosen, these key prop

erties can provide a very informative description of the component. Given the 

limitations of the property prover (particularly in terms of the limited complexity 

of the proofs that it can achieve) the use of small models as component descriptions 

is essential. 

The prototype Miramod compiler and property prover have demonstrated that 

models can be automatically compared provided: 

• Sufficient information is provided by the library model on how to prove prop

erties about itself. 

• The models are at similar levels of abstraction, so that the view between 

models is not over complex. 

e The size of the models is sufficiently small. 

To a limited extent the views between models can be synthesised by the prop

erty prover as well as being generated on the basis of type information. Although 

the definition of a syntactically permissible view given in this thesis and the method 

of view synthesis allow components with similar but not identical functions to be 

compared, both need to be extended to allow larger discrepancies between compo

nents. 

The experimental library and retrieval system have demonstrated a high degree 

of precission, improving on type based retrieval by an order of magnitude. These 
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experiments have indicated that the definition of similar type used is not sufficiently 

flexible to retrieve some components. It is clear that added flexibility in the type 

similarity relation would reduce precission of retrieval on the basis of type alone, 

thus increasing the need for property statements to achieve precise retrieval. 

A number of shortcomings have come to light during the course of this project, 

both in the method and its implementation. 

The efficiency with which components can be matched is a major problem. The 

maximum acceptable time for retrieval is dependent on the size of the component 

being retrieved and the potential savings made by retrieving a component. For 

this reason a model based retrieval system must allow the user to control the maxi

mum retrieval time. If a large component, whose re-use would produce substantial 

savings, is required then a retrieval time in the order of several hours might be 

acceptable, but for a small component retrieval times should be in the order of 

minutes or seconds rather than hours. 

Automated theorem proving is a well researched problem, and yet it is only 

through the storage of domain specific theorem proving knowledge along with com

ponent models that the model comparison is feasible. A considerable amount of 

expertise and effort are needed to add the appropriate theorem proving guidance 

into component models. This effort is essentially directed at developing a theory 

for the component and then identifying suitable elements of this theory as heuristic 

theorems suitable for guiding the theorem proving process. Thus a 'librarian' needs 

considerable mathematical skill as well as an understanding of formal methods and 

the property proving process. 

The method also relies on a certain amount of user expertise. In particular a re

user must be capable of writing small formal specifications, and also of producing 

suitable abstractions for the components they require. In the present implementa

tion, the models must be written in Miramod, although in principle other languages 

could be used provided they can be compiled to the property prover notation. It 

can be argued that both forms of expertise are required of a software engineer in 

many parts of the software engineering process, and therefore the need for these 

skills to retrieve components is not a disadvantage. 
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A further criticism of the work is that it does not cater for components in 

which timing considerations are among the key properties of the component. It is 

therefore unsuitable for libraries of real time and embedded system components. 

9.3 Future Directions of Research 

The experiments described in this thesis have been based on property models writ

ten by the author. Further experiments, based on a collection of re-users, would 

help to determine the ability of re-users in general to produce abstract property 

models that are similar to models in the library as well as the ability of librarians 

to produce suitable models and theories for the components in the library. 

An important area for further research is an investigation into the feasibility of 

model based component library retrieval in the context of larger libraries, larger 

components and more diverse component types. 

One interesting possibility which demands further investigation is the use of 

property models in other parts of the software engineering process. An obvious 

application of high level models is in software maintenance, where property models 

of system components could be used during the maintenance of the system to 

help understand the role of the component and also to help maintainers isolate 

components of interest. In this context a view between the component and its 

model over which the component implies the properties of the model might also be 

useful as a method of explicitly relating the component to the model. 

Finally, the role of component library retrieval within the IPSE and ISF frame

works needs to be investigated. Should component library retrieval be seen as 

just another tool or method to be integrated within the support environment / 

factory or does the fundamental nature of the need to store and retrieve objects 

used and created within the environment mean that a retrieval system also plays 

a fundamental role? 

242 



Appendix A 

Glossary 

backward chaining Backward chaining is a method of proving a conjecture that 

starts from the conjecture and works 'back' towards the axioms from which 

the proof is to be made. The rules of inference are used to derive sub-goals, 

the proof of which is sufficient to prove the original conjecture. See also 

forward chaining. 

base case The base case is the part of an induction scheme which must be proved 

without assuming an instance of the conjecture true. 

chain complete An assertion P is said to be chain complete if whenever 

is an infinite sequence (or chain) with limit ys, and 

P(ys0 ), P(ys1), P(ys2), ... 

are all true, then P(ys) is true also. 

changeables The changeables are the formal parameters of an induction template 

that are in the measured subset and are changed by at least one substitution 

in the case analysis. 

changing variables The changing variables of an induction scheme are those vari

ables changed by at least one substitution in the case analysis. The changing 

variables include both measured and unmeasured variables. 
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clause A clause consists of a set of literals, and is true if and only if one or more 

of the literals is true. 

clause form A standard form in which logical formulae can be expressed consist

ing of a set of clauses which are all true if and only if the formula which the 

clauses represent is true. 

coercion The conversion of values of one type to corresponding values of another 

type is referred to as coercion. 

complete A proof method is complete provided all true theorems are provable. 

completeness In the context of component library retrieval, completeness is a 

measure of suitable components retrieved relative to the number of suitable 

components in the library. 

constructor A function is a constructor of a type if it returns a value of the type. 

conformal definition A conformal definition is one which defines the value of a 

pattern rather than the value of a function. The pattern contains identifiers 

whose values are defined as the corresponding part of the pattern produced 

by the definition body. 

defined functions Functions that appear on the left hand side of a definition are 

called defined functions. 

described functions The described functions of a Miramod model are those in

cluded in property statements but not defined (ie do not appear in the left 

hand side of a function definition). 

described type In a Miramod model, a described type is either an algebraic type, 

and algebraic shorthand type or a representation based type. The only other 

types recognised by Miramod are the built in types. 

destructor A function is a destructor of a type if it takes a value of the type but 

does not return a value of the type. 

explicit value A term is an explicit value provided it is one ofT, F, Undef, or a 

shell function applied to explicit values. 

explicit value templates A term is an explicit value template if it is an explicit 

value, or an explicit value which contains one or more variables. 

244 



fat bar The fat bar operator is an operator used during the compilation of Miramod. 

It is written ~ and defined as a ~b = IF (a ==Fail) a b. 

final interpretation In the final interpretation of a set of equalities, two values 

are considered equivalent unless they can be proved unequal. 

forward chaining Forward chaining is a method of proving a conjecture that 

starts with the axioms from which the proof is to be made and works 'for

wards' towards the conjecture. The rules of inference are used to derive new 

theorems from axioms and theorems that have already been established. See 

also backward chaining. 

free functions When comparing property models, free functions are the functions 

for which there is currently no view. 

free variables In an expression, the free variables are the ones not bound by a 

local definition or lambda abstraction which occurs within the expression 

itself. 

generalisation The type A is a generalisation of the type B if there is a substitution 

for variables in the type A which gives the type B. 

higher order functions Higher order functions take functions as parameters and 

J or return functions as results. 

inconsistent types If type A is neither a generalisation or specialisation of B then 

A and B are inconsistent types. 

induction case An induction case is a part of an induction scheme which assumes 

one or more substitution instances of the conjecture being proved whilst at

tempting to prove the conjecture. 

induction step See induction case. 

initial interpretation In the initial interpretation of a set of equalities, two values 

are considered unequal unless they can be proved equal. 

literal A literal is either an atomic formula or the negation of an atomic formula. 

The definition of atomic formula depends on the context of a literal. In 

propositional calculus the formulae are propositions. In predicate calculus 

the atomic formulae are predicates. In a property prover or BMTP clause 

the atomic formulae are terms. 
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measured subset A measured subset of a functions arguments is any subset for 

which there exists a measure and well founded relation such that for each 

recursive call of the function in its definition body, the measure applied to 

the parameters of the recursive call is less than the measure applied to the 

formal parameters of the function according to some well founded relation. A 

measured subset of the variables in an induction scheme is similarly defined 

accept that the measure must decrease for each substitution in the scheme. 

non-strict A function is non-strict if its value is not always undefined for argu

ments that are undefined ( eg if f Undef ==undef then f is non-strict). 

off-side rule The off-side rule is used by Miramod as an alternative to explicit 

statement terminators or separators. It applies to a variety of language con

structs and states that the tokens from which the construct is composed must 

not appear to the left of (or above) the first token in the construct. 

partial functions A partial function is a function which has no defined value for 

some argument values. 

partial properties Partial properties are property expressions which describe the 

properties of functions over undefined values. 

partial structures Partial structures are explicit values which contain the unde

fined value. 

permutative Two expressions are permutative if each is an instance of the other. 

precision In the context of component library retrieval, precision is a measure of 

the number of suitable components retrieved relative to the recall 

pretty printer A pretty printer is a tool used to re-format code according to 

standard layout convention. 

properly occurs X properly occurs in Y if X occurs in Y but is not equal toY. 

property expressions An expression which denotes a value T or F and occurs 

within a property statement. A property expression always denotes a value 

(ie it cannot be undefined). 

property statement A construct provided by Miramod for describing the prop

erties of functions. It consists of a list of variables enclosed in curly braces, 
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followed by a list of property expressions separated by the symbol ; ; and 

optionally ended by the key-word with and a list of local definitions. 

recall In the context of component library retrieval, recall is the overall number 

of components retrieved (both suitable and unsuitable). 

recursion group This is a group of functions in which each definition ultimately 

depends upon the definitions of all the other functions in the group. 

resolution A rule of inference or method of theorem proving based on the rule of 

inference, which is: 

Q V P& 

-Q V R 

proves 

P V R 

resolvent The resolvent is the clause produced by an application of the resolution 

rule of inference. 

retrieval function A retrieve function is a function which converts values of a 

representation type to values of the type which is described using the repre

sentation. 

re-use In the context of this thesis re-use means the use of the same software 

engineering knowledge, methods or products in more than one project or 

organisation. 

re-user A person who attempts to perform some re-use- in particular the user 

of a component library retrieval system. 

shell A function which constructs a unique value for each combination of argument 

values. It is distinguished by the property that if two expressions are made 

up from different shells, they can never denote equivalent values. ie if S#T 

then 

All shell functions are constructors. 
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shell type sets A shell type set for a property prover expression is a set of shell 

types whose union includes the expression. In other words, it is a set of 

possible shells returned by the property prover expression. These type sets 

play a fundamental role in many of the property prover's heuristics. 

shell type The class of expressions whose normal forms are based on the same 

shell (ie the class of expressions whose normal form is (S ... ) where S is 

the shell name). The shell type associated with a particular constructor is 

denoted by underlining the constructor name. 

signature The signature of a type describes its syntax. It consists of a set of 

functions over the type and the respective types of each of these functions. 

software engineering The use of sound enginering principles, science and math

ematics to economically produce software systems that are reliable, function 

on real machines and are useful to man. 

sound A rule of inference, decision procedure or theorem prover is sound provided 

that it can never prove a non theorem true. 

specialisation The type A is a specialisation of the type B if there is a substitution 

s for variables in the type B which gives the type A. 

strict A function is strict if its value is undefined whenever any of its arguments 

are undefined. 

strong equality Strong equality returns a value which is either true or false but 

never undefined. If only one of its arguments is undefined then strong equality 

is false but if both arguments are undefined then strong equality is true. 

supercombinators A supercombinator is a lambda calculus expression of the 

form 

where n >= 0 and E is not a lambda abstraction, contains no free variables 

other than a1 to an and any lambda abstraction contained in E are themselves 

supercombinators. 

unchangeables The unchangeables associated with an induction template are 

those variables that are not changed by any substitutions in the case analysis. 
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unchanging variables The unchanging variables of an induction scheme are those 

variables which occur in arguments to the term on which the induction scheme 

is based and are changed by no substitution in the case analysis. This includes 

both measured and unmeasured variables. 

unification Unification is the process of checking that two terms are the same 

under some substitution instance and also of discovering the minimal substi

tution for which they are the same. 

validation Validation is the process of attempting to establish the fitness or worth 

of a product for its original mission. Typically validation is carried out on a 

set of requirements to ensure that they represent a true picture of what the 

users of a system have requested and need. 

verification Verification is the process of attempting to prove that the product 

of a phase meets its specification. Typically the code of a system is verified 

with respect to the specification of the system. 

weak equality Weak equality is an executable equality operator. Its value is 

undefined if either of the terms being comparing are undefined. 

well founded relation A well founded relation is one which relates two argu

ments of the same type according to whether or not one is "less" than the 

other in a specific sense. The crucial property of well foundedness comes 

from the restriction that there must be no infinite sequences which decrease 

according to the well founded relation. 
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Appendix B 

Standard Functions 

A number of standard functions are available when writing Miramod descriptions. 

These include all the functions from the Miranda standard environment and a 

collection of additional functions. The first section of this appendix gives the defi

nitions of the Miranda standard envirionment functions used in this thesis and the 

second section gives the definition of additional functions which are made available 

in Miramod. 

B.l Miranda standard environment 

>I I Some functions from the Miranda Standard Environment 

'and' gives the logical conjunction of a list of truth values. 

>and = foldr (&) True 

'con cat' is the function for concatenating lists. 
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>concat = foldr (++) [] 

'converse' reverses the arguments of a function. 

>converse f x y = f y x 

'filter p as' gives the list of elements of 'as' for which the predicate 'p' is true. 

>filter p [] = [] 
>filter p (a:as) = a:filter p as, p a 

> = filter p as, otherwise 

'foldl' converts a list into some other value by placing a given binary operator 

(function) between elements of the list in a left associative fashion. 

foldl o i [x,y,z] == ((i $ox) $o y) $o z 

>foldl o i [] = i 
>foldl o i (a:as) = foldl o (i $o a) as 

'foldr' converts a list into some other value by placing a given binary operator 

(function) between elements of the list in a right associative fashion. 

foldr o i [x,y,z] == x $o (y $o (z $o i)) 

>foldr o i [] = i 
>foldr o i (a:as) = a $o (foldr o i as) 

'id' is the identity function. 
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>id X = X 

'iterate f x' gives the infinite list [x, f x, f (f x), ... ] 

>iterate f x = x: iterate f (f x) 

'last' returns the last element of a list. 

>last x = x!(#x-1) 

'limit' takes elements from the front of a list until it finds two consecutive 

elements that are equal. 

> limit (a:b:x) = a, a=b 

> =limit (b:x), otherwise 

'map' applies a function to every element in a list. 

>map f [] = [] 

>map f (a:as) = f a:map f as 

'member' tests for list membership. 

>member as a = or (map (=a) as) 

'or' returns the disjunction of a list of boolean values. 

>or = foldr (\/) False 
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'undef' gives the undefined value. 

>undef = error "undefined" 

B.2 Miramod standard environment 

>I I Standard functions available in Miramod (in addition to the Miranda 

>I I standard environment). 

'alternate' joins two lists together putting elements from one list between ele

ments from the other. 

>alternate [] ys = ys 

>alternate xs [] = xs 

>alternate (x:xs) (y:ys) = x:y:alternate xs ys 

'exists' is true if any elements of the given list are true. 

>exists = or 

'forall' is true if all elements of the given list are true. 

>forall = and 

'is_any' is true if the given predicate is true for at least one element of the given 

list: 

>is_any 1 p = or (map p 1) 
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'is_each' is true if the given predicate is true for all elements of the given list 

(see 'is_any'). 

>is-each 1 p = and (map p 1) 

'subseqs' returns a list of all subsequences of the given list. It is defined so that 

any finite subsequence contained in a finite initial segment will be produced in a 

finite time. 

>subseqs [] = [ []] 

>subseqs (x:xs) = []:alternate (tl sxs) (map (x:) sxs) 

> 

> 

where 

sxs=subseqs xs 
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Appendix C 

Example Models 

This appendix contains a number of example models. The first section contains 

property models for substantial software components from either the Durham Mi

randa library or the standard Unix toolset. Several of them make use of functions 

from the Miramod standard environment (see appendix B). Since these models are 

either based on type descriptions or are models of components not in the experi

mental library, no retrieval statistics are presented with the models. 

The second section contains examples of models used to retrieve components 

from the experimental library, as well as their associated retrieval statistics. 

C.l Models for substantial software components 

C.l.l Make: Maintain and update a context 

Two models for make are given here, the first is the simplest, since it concentrates 

on describing make's ability to check that the current context is consistent (up to 

date). 
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>up2date:: context -> rules -> bool 

>type context 

>with 

> newobj:: object-> context-> context 

> incontext:: object -> context -> bool 

> after:: object-> context-> object-> bool 

> emptycontext:: context 

>{incontext: o o 1 c} 

> incontext o emptycontext =False;; 

> incontext o (newobj o c)= True;; 

> o-=o 1 1- incontext o (newobj o 1 c) = incontext o c 

>{after: o o 1 c p} 

> after o emptycontext o 1 =False;; 

> after o (newobj o 1 c) o 1 =False;; 

> o-=o 1 1- after o (newobj o c) o 1 = incontext c o 1
;; 

> o-=p 1- after o (newobj p c) o 1 = after o c o 1 

>type rules 

>with 

> norules:: rules 

> addrule:: object-> [object]-> rules ->rules 

>{up2date: o ds rs c} 

> up2date norules c =True;; 

> up2date (addrule o ds rs) c = is_each ds (after o c) & up2date rs c 
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The second model for make is more complex, because it describes make's ability 

to update a context so that it becomes consistent. 

>make:: context -> rules -> context 

>type context 

>with 

> addobj:: name-> object-> context-> context 

> validname:: name -> context -> bool 

> getobj:: name-> context-> object 

> newcontext:: context 

>type rules 

>with 

> norules:: 

> addrule:: 

> getname:: 

> getdeps:: 

> getmkfn:: 

rules 

name -> 

rules -> 

rules -> 

rules -> 

> rule-exists:: name 

> rest_rules: : rules 

>{context: n m o c} 

[name] -> ([object]->object) 

name 

[name] 

([object]->object) 

-> rules -> bool 

-> rules 

> getobj n (addobj n o c) = o·. , , 
> n-==m 1- getobj n (addobj m o c)= getobj n c;; 

> validname n newcontext =False;; 

> validname n (addobj no c) =True;; 

-> rules ->rules 

> n-==m 1- validname n (addobj m o c) = validname n c 
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>{rules: n ds f rs m} 

> getname (addrule n ds f rs) -- n;; 

> 
> 

> 

getdeps (addrule n ds f rs) == ds;; 

getmkfn (addrule n ds f rs) -- f•. •• 
rule_exists n norules -- False;; 

> rule_exists n (addrule n ds f rs) == True;; 

> n-=m 1- rule_exists n (addrule m ds f rs) == rule_exists n rs 

>{make: rs c} 

> undef -== #limit (iterate (applyrules rs) c) 

> 1- make rs c == last (limit (iterate (applyrules rs) c)) 

> where 

> applyrules rs c 

> = c, norules = rs \/ -validname (getname rs) c \1 

> -is-each (getdeps rs) (converse validname c) 

> = (applyrules (rest_rules rs) . 

> addobj (getname rs) . 

> getmkfn rs (map (getobj c) (getdeps rs)) 

> ) c, 

> otherwise 

C.1.2 Grep: Search for patterns 

The UNIX utility grep searches for lines which match a given pattern. The following 

model describes both the basic operators for forming patterns and the behavior of 

grep when given a pattern. 

>grep:: pattern -> [[char]] -> [[char]] 
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>type pattern 

>with 

> constpat:: char-> pattern 

> appendpat:: pattern-> pattern-> pattern 

> al tpat:: pattern -> pattern -> pattern 

> wildcard::pattern 

> match:: pattern-> [char] -> bool 

>{match: c c 1 a b s} 

> match (constpat c) [c] ==True;; 

> c -= c 1 1- match (constpat c) [c 1
] ==False;; 

> match (altpat a b) s ==match as\/ match b s;; 

> match (appendpat a b) s 

> ==or [match a (taken s) & match b (drop n s)ln<-[0 .. #s-1]];; 

> match wildcard [c] == True 

>{grep: pat ls} 

> grep pat ls -- filter (is_any (match pat) . subseqs) ls 

C.1.3 Diff: List the differences between two files 

An extremely simple model for cliff might be based on the fact that its output can 

be used to reconstruct one of the compared files from the other. 

>{f g} 

> edit (diff f g) f = g;; 

Unforutunately this model is too simple; it is satisfied by trivial functions such 

as: 
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diff f g = g 

edit g f = g 

The important point that our model has missed is that we want the result of 

cliff to be minimal in some sense. To capture this, we must describe some of the 

properties of the result of cliff. 

>type edcom, com 

>with 

> mked:: com -> num -> num -> [line] -> edcom 

> edit:: [edcom] -> [line] -> [line] 

> size:: [edcom] -> num 

>{c a b ls ecs} 

> size [] == 0; ; 

> size (mked c a b ls:ecs) -- 1+#ls+size ecs 

>{e f g} 

> edit (diff f g) f == g;; 

> edit e f == g 1- size e <= size (diff f g) 

C.1.4 Lex: Build lexical analysers 

The following model of lex considers a lex program as a list of pattern/result pairs. 

Each pattern can be matched against an input sequence to produce a matching 

initial segment of the sequence and the corresponding result can be used in con

junction with the initial segment to produce an appropriate output token. As it 

processes a list of input tokens, lex will always pick the pattern which matches the 

largest input sequence. 
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>type pattern,in,out 

>.!l..il.h 
> lex:: [(pattern,res)] -> [in] -> [out] 

> match:: pattern-> [in] -> [in] 

> resout:: res-> [in] ->out 

>{rules i i' p r} 

> lex rules [] == [] ; ; 

> (i' ,r) --largest fst_less [(match p i,r)l(p,r)<-rules] && 

> i -= [] 

> 1- lex rules i -- resout r i':lex rules (i--i') 

> 
>fst_less (a,b) (c,d) = a<d 

>largest 1 [a] = a 

>largest 1 (a:b:c) = largest 1 (b:c), a $1 b 

> = largest 1 (a:c), otherwise 

> 

C.1.5 Join: The relational database operator 

The following model is for the UNIX join program, and so the hypothesis that the 

two input lists are already ordered is included. 

>{a b as bs n} 

> ordered as & ordered bs 

> 1- join n as bs == [a++bla<-as;b<-bs; #a>n & #b>n & a!n=b!n] 
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>ordered [] = True 

>ordered [a] = True 

>ordered (a:b:x) = a<b & ordered (b:x) 

C.1.6 Unify: Find a unifying substitution for two expres-
0 s1ons 

The model for the unfication function involves two functions for testing the results 

of a unification ( ok and val), as well as a function for performing substitutions. The 

first property indicates when a unification must succeed, and the second property 

ensures that the resulting substitution produces two identical expressions. 

>type expr, sub, sub_res 

>with 

> unify:: sub-> expr -> expr -> sub_res 

> ok:: sub_res -> bool 

> val:: sub_res ->sub 

> apply-sub:: sub -> expr -> expr 

>{s s' a b} 

> applysubs s' (applysubs s a) = applysubs s' (applysubs s b) 

> 1- ok (unify sa b);; 

> ok (unify s a b) == 
> applysubs (val (unify s a b)) a = applysubs (val (unify s a b)) b 

262 



C.1.7 Awk: Report generator 

The model for awk considers an awk program as a list of pattern/action rules. For 

each input line and each pattern that matches the line, awk applies the correspond

ing action to produce its output. 

>type tuple, newtuple, pat, act 

>with 

> awk:: [tuple] -> [(pat,act)] -> [newtuple] 

> match:: pat-> tuple-> bool 

> act:: action-> tuple-> [newtuple] 

>{prog t ts} 

> awk [] prog == [];; 

> awk (t:ts) prog == concat [act a tl(p,a)<-prog; match p t] ++ 

> awk ts prog 

C.l.S Diag: Cartesian diagonalisaton of lists 

Given two lists, diag1 produces a list of all pairs consisting of an element from the 

first list and an element from the second. The important property of diag is that 

it does this in such a way that even if both lists are infinite, all pairs made up 

from finite initial segments of the lists will be produced with only a finite amount 

of work. The use of + to extend the quantification of the lists is therefore essential 

to capture the desired properties of diag. 

The use of a double ampersand ( && ) in the first property is crucial, since it 

ensures that we do not distinguish between False and Undef results to the mem

bership test. The second and third properties give connditions under which False 

must be returned. 

1This example was suggested by John Hughes. 
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>diag:: [*]->[**]->[(*,**)] 

>{diag: a as+ b bs+ fas} 

> member as a && member bs b ==member (diag as bs) (a,b);; 

> -member as a 1- -member (diag as bs) (a,b);; 

> -member bs b 1- -member (diag fas bs) (a,b) 

C.2 Models for retrieval from the experimental 

library 

C.2.1 dropwhile 

dropwhile is a function for droping initial segments which meet a predicate from 

lists. 

>{f x} -f (hd (dropwhile f x)) \/ dropwhile f x = [] 

Precision 50%, completeness 100%, recall 1. 

C.2.2 filter 

filter keeps only those elements of a list that meet the given predicate. 

{f x} is_each (filter f x) f 

This is a property of the function takewhile as well as of filter, so the precision 

is 50%, completeness 100% and recall 2. 
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C.2.3 drop 

drop removes the first n elements from a list. 

{s n} (#s>=n) 1- #drop n s -- #s-n 

Precision 100%, completeness 100%, recalll. 

C.2.4 lastn 

lastn takes the last n elements from a list. 

{n 1 a b} l=a++b & #b=n 1- last n 1 = b 

Precision 100%, completeness 100%, recall 1. 

C.2.5 betweenlists 

betweenlists returns the first list which lies between the two given lists. 

>{a b 1} between_lists a b 1 -= [] 

> 1- member (subseqs 1) (a++between_lists a b l++b) 

Precision 100%, completeness 100%, recall 1. 
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C.2.6 parts 

parts returns the list of all ways of partitioning into a list of sublists. 

>{xs} is-each (=xs) (map concat (parts xs)) 

Precision 100%, completeness 100%, recall!. 

C.2. 7 before 

before returns the initial part of the given list, up to the given element. 

>{x xs} -member (before x xs) x 

Precision 50%, completeness 100%, recall 2. 
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Appendix D 

Miramod Grammar 

This appendix gives the context free grammar for the extensions to Miranda which 

constitute Miramod. These are defined in terms of non terminals from the grammar 

for Miranda found in the Miranda manual[45]. 

D.l Conventions 

The conventions used are similar to those used in the Miranda manual: 

Non terminals are represented by lower case words and in the case of non 

terminals from the Miranda grammar these are in italics. Non terminals defined 

here replace any definition of the same non terminal in the Miranda grammar. 

Terminals are in bold font. 

The production symbol is written ':=' and alternative productions are written 

on separate lines. 

For any non-terminal x, 

x* means any number of occurrences of x, 
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x? means x is optional, 

x-list means one or more x's separated by commas 

x(;) means that all the tokens of x must lie below or to the right of the 

first, and if the token succeding x is to the right of x then it must 

be a semicolon (this is the off-side rule, see page 62). 

D.2 Miramod grammar 

script:= decl* 

decl:= def 

tdef 

spec 

pstatement 

pstatement:= { pstatemain (;) 

pstatemain:= pvar* } pexprs whdefs? 

pvar:= quantvar 

quantvar-list :: type (;) 

quantvar:= identifier 

identifier + 

pexprs:= pexpr 

pexpr (gen) 

pexpr ( elim) 
var-list :: type (;) 

pexpr ; ; pexprs 

pexpr (gen) pexprs 

pexpr ( elim) pexprs 
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var-list :: type (;) pexprs 

pexpr:= ( pexpr ) 

pexpr 1- pexpr 

pexpr == pexpr 

pexpr - == pexpr 

pexpr => pexpr 

pexpr &;&; pexpr 

pexpr < < pexpr 

exp 
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Appendix E 

The proof of 'rtree' 

The example is based on a tree data structure, defined as the algebraic type: 

tree * · ·= Node * [(tree *)] 

To improve readability the tree and list selector functions are replaced by the 

following function names: 

SEL-Node-1 

SEL-Node-2 

SEL-:-1 

SEL-:-2 

== 
== 
== 
--

tva1 

subts 

hd 

t1 

The functions rtree and rlist are defined over this type; rtree reverses a 

tree and r1ist reverses a list of trees. 

rtree (Node v 1) = Node v (r1ist 1) 

r1ist [] = [] 
r1ist (a:x) = r1ist x ++ [rtree a] 
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The compiled versions of these functions are: 

rtree a = ifdef a (Node v (rlist 1)) 

rlist x 

= ifdef x 

(IF (x== []) [] 

(rlist (tl x) ++ [rtree (hd x)]) 

The built in definition of the list append operator is: 

a ++ b 

= ifdef a 

(IF (a==[]) b 

(hd a: (tl a ++ b)) 

The following induction templates are supplied for the three functions: 

Applications: rtree a, rlist x 

Measured subset: {a, x} 

Changables: {a, x} 

Unchangables: {} 

Casel: 

Condition: REC-: x \/REC-Node 

Substitutions:{ <a, hd x>, <x, tl x>} 

{<a, hd (subts a)>, <x, tl (subts a)>} 

This induction template is justified by the measure: count (a:x) where count 

is defined by: 

count Undef = 0 
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count [] = 1 

count (a:x) = 1+count a + count x 

count (Node v 1) = 1+count 1 

Since: 

Rec-: x \/ Rec-Node a 

1-
count (hd x: t1 x) < count (a:x) & 

count (hd (subts a):t1 (subts a)) <count (a:x) 

There is also an induction template associated with the list append operator: 

Applications: a++b 

Measured subset: {a} 

Changables: {a} 

U nchangables: {} 

Casel: 

E.l 

Condition: REC- : a 

Substitutions:{ <a, t1 a>} 

Proof outline 

The aim is to prove the property: 

{a} rtree (rtree a ) = a 

from the above definitions and induction templates. 

An outline of the proof is given initially. This gives the main steps involved in 

the proof but ignores intermediate simplifications and the proof of bases cases. 
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Initially the function definitions are opened up to try and introduce more than 

one function from the recursion group. 

Rec-Node a & 

REC-: subts a 

-> a== rlist (rlist (tl (subts a)) ++ [rtree (hd (subts a))]) 

Eliminating the destructors subts, hd, and tl gives: 

rlist (rlist x ++ [rtree a]) -- a:x 

The conjecture is now in a suitable form for induction on the mutually recursive 

functions since both appear in the conjecture. lnfact, the induction template for 

rlist and rtree is the only one applicable since the++ operator has a term in the 

position of a changable variable. The resulting induction step is: 

1-

REC-Node a\/ REC-: x & 

rlist (rlist (tl x) ++ [rtree (hd x)]) == (hd x):(tl x) & 
rlist (rlist (tl (subts a)) ++ [rtree (hd (subts a))]) 

== (hd (subts a)):(tl (subts a)) 

rlist (rlist x ++ [rtree a]) -- a:x 

Opening up (rlist x) and (rtree a) in the conclusion gives nine cases, the 

first eight of which simplify trivially. The final case (after elimination of destructor 

terms) is: 

rlist (rlist x ++ [rtree a]) == a:x & 

rlist (rlist y ++ [rtree b]) -- b:y 

-> rlist ((rlist x ++ [rtree a]) ++ [Node v (rlist y++[rtree b])]) 

==Node v (b:y):a:x 

The equality hypotheses are then used to cross fertilise, giving: 
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rlist ((rlist x++[rtree a])++[Node v (rlist y++[rtree b])]) 

==Node v (rlist (rlist y++[rtree b])):rlist (rlist x++[rtree a]) 

The terms (rlist x++ [rtree a]) and (rlist y ++ [rtree b]) are then 

generalised giving: 

rlist (x ++ [Node v y]) ==Node v (rlist y):rlist x 

Both of the induction hypotheses have been used up and the conjecture is now 

ready for another induction. Only one induction scheme for++ which inducts on x 

is now possible (the mutually recursive scheme does not apply because the function 

rtree does not appear in the conjecture). The induction step is therefore: 

REC-: x & 

rlist (tl x ++ [Node v y]) == Node v (rlist y) :rlist (tl x) 

-> rlist (x ++ [Node v y]) ==Node v (rlist y):rlist x 

This simplifies, with the elimination of the destructor term (tl x) to: 

rlist (x ++ [Node v y]) ==Node v (rlist y):rlist x 

->Node v (rlist y):(rlist x ++ [rtree x]) 

== rlist (x ++ [Node v y]) ++ [rtree x] 

Finally, using the equality hypothesis to cross fertilise, the clause can be sim

plified to: 

true 

Hence the conjecture has been proved for defined values. 
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E.2 The complete proof 

The property to be proved is: 

b -- rtree (rtree b) 

which simplifies, opening up (rtree b), to: 

1 

$Undef == b 

-> b == rtree $Undef 

and 

2 

$Undef -== b 

-> b == rtree (Node (tval b) (rlist (subts b))) 

Clause 1 simplifies to: 

true 

Clause 2 simplifies , opening up (rtree (Node ... ) ) to: 

$Undef -== b 

-> b == Node (tval b) (rlist (rlist (subts b))) 

which simplifies, opening up (rlist (subts b)), to: 
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2.1 

REC..Node b & 

$Undef == subts b 

-> b == Node (tval b) $Undef 

2.2 

and 

REC_Node b & 

$Undef -== subts b & 
[] == subts b 

-> b == Node (tval b) [] 

and 

2.3 

REC_Node b & 

$Undef -== subts b & 
[] -== subts b 

-> b == Node (tval b) (rlist (rlist (tl (subts b)) ++ 

[rtree (hd (subts b))])) 

Clause 2.1 simplifies to: 

REC_Node b & 

$Undef == subts b 

-> b == Node (tval b) $Undef 

Eliminating destructors gives: 

REC..Node (Node B C) & 
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$Undef == C 

-> Node B C == Node B $Undef 

which simplifies to: 

true 

Clause 2.2 simplifies to: 

RECJlode b &: 

[] == subts b 

-> b == Node (tval b) [] 

Eliminating destructors gives: 

REC-Node (Node D E) &: 

[] == E 

-> Node D E == Node D [] 

which simplifies to: 

true 

Elimination of destructors from 2.3 gives: 

REC_Node (Node F G) &: 

$Undef --- G &: 

[] -== G 

-> Node F G ==Node F (rlist (rlist (tl G)++[rtree (hd G)])) 
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which simplifies to: 

$Undef -== G & 
[] -== G 

-> G == rlist (rlist (tl G)++[rtree (hd G)]) 

Eliminating destructors gives: 

$Undef --- D:E & 

[] -== D :E 

-> D:E == rlist (rlist E++[rtree D]) 

This cannot be simplified further and must by proved by induction. We will 

induct according to the following scheme: 

Accounts for: rtree D, rlist E 

Score: 1 

Changing and Unchanging: [D,E] [] 

Cases: 

Hypothesis: [REC-Node D \/ REC-: E] 

[hd E/D, tl E/E] 

[hd (subts D)/D,tl (subts D)/E] 

Giving the clauses: 

2.3.1 

- REC-Node D \/ REC-: E 

-> rlist (rlist E++[rtree D]) -- D:E 

and 
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2.3.2 

REC-Node D \/ REC-: E & 
rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E & 

rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

== hd (subts D):tl (subts D) 

-> rlist (rlist E++[rtree D]) == D:E 

Clause 2.3.1 simplifies, opening up (rtree D), to: 

2.3.1.1 

- REC-Node D & 
- REC-: E & 

$Undef == E 

-> rlist $Undef -- D:E 

and 

2.3.1.2 

- REC-Node D & 

- REC-: E & 

$Undef -== E 

-> rlist ([$Undef]) -- D:E 

Clause 2.3.1.1 simplifies to: 

- REC-Node D 

-> $Undef -== E 

This is evidently false (both litterals are "irelevant") therefore the 

conjecture is not true for undefined values. 

Clause 2.3.1.2 simplifies to: 
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true 

Clause 2.3.2 simplifies, opening up (rtree D), to: 

2.3.2.1 

REC-Node D &; 

rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E &; 

rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

== hd (subts D):tl (subts D)&; 

$Undef -- E &; 

$Undef == subts D 

-> rlist ($Undef++[Node (tval D) $Undef]) -- D:E 

and 

2.3.2.2 

REC-Node D &: 

rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E &; 

rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

== hd (subts D):tl (subts D)&; 

$Undef == E &; 

$Undef -== subts D &; 

[] == subts D 

-> rlist ($Undef++[Node (tval D) []]) -- D:E 

and 

2.3.2.3 

REC-Node D &; 

rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E &; 

rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

== hd (subts D):tl (subts D)&; 
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$Undef == E & 

$Undef -== subts D & 
[] -== subts D 

-> rlist ($Undef++[Node (tval D) (rlist (tl (subts D))++ 

[rtree (hd (subts D))])]) 

-- D:E 

and 

2.3.2.4 

REC-Node D & 

rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E & 
rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

== hd (subts D):tl (subts D) & 

$Undef -== E & 

[] == E & 

$Undef == subts D 

-> rlist ([]++[Node (tval D) $Undef]) == D:E 

and 

2.3.2.5 

REC-Node D & 

rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E & 

rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

== hd (subts D):tl (subts D) & 
$Undef -== E & 

[] == E & 

$Undef -== subts D & 

[] == subts D 

-> rlist ([]++[Node (tval D) []]) == D:E 

and 
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2.3.2.6 

REC-Node D & 

rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E & 
rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

-- hd (subts D):tl (subts D) & 

$Undef -== E & 
[] == E & 

$Undef -== subts D & 
[] -== subts D 

-> rlist ([]++[Node (tval D) (rlist (tl (subts D)) ++ 

[rtree (hd (subts D))])]) 

-- D:E 

and 

2.3.2.7 

REC-Node D & 

rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E & 

rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

== hd (subts D):tl (subts D) & 
$Undef -== E & 
[] -== E & 

$Undef == subts D 

-> rlist ((rlist (tl E)++[rtree (hd E)])++[Node (tval D) $Undef]) 

== D:E 

and 

2.3.2.8 

REC-Node D & 
rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E & 

rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

== hd (subts D):tl (subts D) & 
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$Undef -== E & 
[] -== E & 

$Undef -== subts D & 
[] == subts D 

-> rlist ((rlist (tl E)++[rtree (hd E)])++[Node (tval D) []]) 

-- D:E 

and 

2.3.2.9 

REC-Node D & 

rlist (rlist (tl E)++[rtree (hd E)]) == hd E:tl E & 
rlist (rlist (tl (subts D))++[rtree (hd (subts D))]) 

~~ hd (subts D):tl (subts D) & 

$Undef -== E & 

[] -== E & 

$Undef -== subts D & 
[] -== subts D 

-> rlist ((rlist (tl E)++[rtree (hd E)]) ++ 

[Node (tval D) (rlist (tl (subts D))++[rtree (hd (subts D))])]) 

-- D:E 

Clause 2.3.2.1 simplifies to: 

true 

Clause 2.3.2.2 simplifies to: 

true 

Clause 2.3.2.3 simplifies to: 
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true 

Clause 2.3.2.4 simplifies to: 

true 

Clause 2.3.2.5 simplifies to: 

true 

Clause 2.3.2.6 simplifies to: 

true 

Clause 2.3.2.7 simplifies to: 

true 

Clause 2.3.2.8 simplifies to: 

true 

Elimination of destructors from 2.3.2.9 gives: 

REC-Node (Node F G) & 

rlist (rlist (tl E)++[rtree (hd E)]) -- hd E:tl E & 

rlist (rlist (tl G)++[rtree (hd G)]) -- hd G:tl G & 

$Undef -== E & 
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[] -== E & 

$Undef --- G & 

[] -== G 

-> rlist ((rlist (tl E)++[rtree (hd E)]) ++ 

([Node F (rlist (tl G)++[rtree (hd G)])]) 

-- Node F G:E 

Eliminating destructors gives: 

rlist (++ rlist (tl E)++[rtree (hd E)]) -- hd E:tl E & 
rlist (rlist I++[rtree H]) == H:I & 
$Undef -== E & 
[] -== E & 

$Undef --- H:I & 
[] -== H: I 

-> rlist ((rlist (tl E)++[rtree (hd E)])++ 

[Node F (rlist I++[rtree H])]) 

--Node F (H:I):E 

Eliminating destructors gives: 

rlist (rlist BA++[rtree J]) == J:BA & 

rlist (rlist I++[rtree H]) == H:I & 

$Undef -== J:BA & 
[] -== J :BA 

-> rlist ((rlist BA++[rtree J])++[Node F (rlist I++[rtree H])]) 

==Node F (H:I):J:BA 

Using the equality hypotheses produces: 

rlist (rlist I++[rtree H]) == H:I 

-> rlist ((rlist BA++[rtree J])++([Node F (rlist I++[rtree H])])) 

==Node F (H:I):rlist (rlist BA++[rtree J]) 
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Using the equality hypotheses produces: 

rlist ((rlist BA++[rtree J])++[Node F (rlist I++[rtree H])]) 

==Node F (rlist (rlist I++[rtree H])):rlist (rlist BA++[rtree J]) 

The clauses resulting from generalisation are: 

rlist (BC++[Node F BB]) ==Node F (rlist BB):rlist BC 

This clause cannot be simplified further and must by proved by induction. We 

will induct according to the following scheme: 

Accounts for: rlist BC, BC++[Node F BB] 

Score: 2.0 

Changing and Unchanging: [BC] [] 

Cases: 

Hypothesis: [REC-: BC] 

[tl BC/BC] 

Giving the clauses: 

2.3.2.9.1 

- REC-: BC 

-> rlist (BC++[Node F BB]) ==Node F (rlist BB):rlist BC 

and 

2.3.2.9.2 

REC-: BC 8c 

rlist (tl BC++[Node F BB]) ==Node F (rlist BB):rlist (tl BC) 

-> rlist (BC++[Node F BB]) ==Node F (rlist BB):rlist BC 
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Clause 2.3.2.9.1 simplifies, opening up (rlist BC), to: 

2.3.2.9.1.1 

- REC-: BC & 

$Undef == BC 

-> rlist $Undef --Node F (rlist BB):$Undef 

and 

2.3.2.9.1.2 

- REC-: BC & 

$Undef -== BC 

-> rlist ([Node F BB]) -- [Node F (rlist BB)] 

Clause 2.3.2.9.1.1 simplifies to: 

$Undef -== BC 

(we have already assumed that the conjecture is false in the undefined case, so 

this clause is ignored.) 

Clause 2.3.2.9.1.2 simplifies, opening up (rlist ([Node F BB])), to: 

true 

Clause 2.3.2.9.2 simplifies, opening up ( ++ BC ([Node F BB])), to: 

REC-: BC 8/; 

rlist (tl BC++[Node F BB]) ==Node F (rlist BB):rlist (tl BC) 

-> Node F (rlist BB):rlist BC 

== rlist (tl BC++[Node F BB]))++[rtree (hd BC)] 
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Eliminating destructors gives: 

REC- : (H: I) & 

rlist (!++[Node F BB]) ==Node F (rlist BB):rlist I 

->Node F (rlist BB):rlist (H:I) == rlist (!++[Node F BB])++[rtree H] 

which simplifies, opening up (rlist (H: I)), to: 

rlist (!++[Node F BB]) ==Node F (rlist BB):rlist I 

->Node F (rlist BB):(rlist I++[rtree H]) 

== rlist (!++[Node F BB])++[rtree H] 

Using the equality hypotheses produces: 

Node F (rlist BB):(rlist I++[rtree H]) 

--(Node F (rlist BB):rlist I)++[rtree H] 

which simplifies, opening up ((Node F (rlist BB) : rlist I)++ [rtree H]), 

to: 

true 
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