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ABSTRACT 

The aim of this study was to investigate the molecular mechanism of Cd-tolerance in the 
cyanobacterium Synechococcus PCC 6301 and to establish whether the prokaryotic 
metallothionein (MT) locus, smt, is involved. 

Cd-tolerant cell lines of Synechococcus PCC 6301 were developed by step-wise selection, of a 
culture that had undergone prolonged maintenance in liquid medium. The Cd-tolerant cell lines 
A0.8, A1.3 and A1.7 (tolerant to 0.8, 1.3, 1.7 11M Cd, respectively) were phenotypically different 
to the non-selected line AO. Genomic DNA from AO and the Cd-tolerant lines A0.8, A1.3 and 
AI. 7 was analysed by Southern hybridisation. A ca. 4-fold increase in hybridisation to 
radio labelled smtA (prokaryotic metallothionein gene), relative to AO, was observed in genomic 
DNA from A1.7. Equivalent amounts ofDNA were loaded onto each track, and no difference in 
hybridisation to a control gene, psaE (photosystem I gene), was observed. Indeed, the 
hybridisation of DNA from AI. 7 to psaE was slightly less than that observed in AO. Genomic 
DNA isolated from AO, A0.8, AI.3 and AI. 7 was also analysed after 2, 4, 7 and I2 subcultures in 
the presence of the respective Cd concentrations. An increase in hybridisation to smtA, relative to 
AO, was observed in DNA from all Cd-tolerant cell lines. Additionally, unique additional 
restriction fragments, both larger and smaller than that in AO, were observed in DNA from A1.3 
and A1.7. A similar restriction pattern was observed in 3 independent restrictions ofDNA from 
AI.3 after 2 subcultures. 

Cd-tolerant cell lines were also developed from a 'clonal' culture of Synechococcus PCC 630 I. 
An increase in tolerance was marked by an increase in growth lag, which reduced upon subsequent 
maintenance of the Cd-tolerant line in the presence ofCd. Genomic DNA from the non-selected 
line CO and Cd-tolerant lines CI.4, C1.8, C2.6 and C3.2 (tolerant to 1.4, 1.8, 2.6, 3.2 J.lM Cd, 
respectively) were analysed after I, 2, 3, 4 and 5 subcultures. In all the Cd-tolerant lines, an 
increase in hybridisation to smtA, and additional larger (ca. II kb) and smaller (ca. 5.45 kb) 
restriction fragments, relative to CO (ca. 5.8 kb), were observed. However, amplification and 
rearrangement in DNA from C1.4 were evident only after 2 subcultures. Additionally, restriction 
fragment equivalent in size to that observed in CO was lost in C1.8, C2.6 and C3.2, and the 
presence of Cd did not affect DNA restriction with Sal! under in vitro and short term in vivo 
conditions .. 

The rearrangement in Cd-tolerant line C3.2 was observed on a minimal Hindiii-Sali fragment 
(ca. 350 bp smaller than that in CO) and isolated from size-fractionated genomic libraries. The 
alteration was mapped by PCR to a 600 bp region in the 5' flank of smtA. Nucleotide sequence 
analysis of the clones identified a deletion of352 bp within a region of360 bp encoding the C­
terminal end of smtB (repressor of smtA transcription), rendering it non-functional. 

Increased basal level of smtA expression ( derepressed expression) and indications for complete 
loss of the excised fragment were observed in Cd-tolerant line C3.2. Rearrangement was detected 
in DNA from C3.2 even after maintenance 'in the absence ofCd for 3 subcultures. The clone bank 
pPLAN Bal-Ba7 and pPLAN B2 (carrying Bamm restriction fragments of Synechococcus PCC 
7942 plasmids) were used to study the plasmid/chromosomal localisation of smtA. Weak 
hybridisation of pPLAN Ba2 to smtA was observed, but further Southern analysis of plasmid and 
genomic DNA suggested chromosomal localisation of smtA. PCR and Southern hybridisation 
were used to detect homologues of smtA in other cyanobacterial strains. Putative homologues 
were identified in Synechococcus PCC 7942, Synechococcus D562, Oscillatoria D814 and 
Synechocystis D840 (= PCC 6803) by heterologous probing. However, no hybridisation to smtA 
was observed in DNA isolated from Calothrix D 184 and Microchaete D578. 

Gupta, A., Whitton, B.A., Morby, A.P., Huckle, J.W. and Robinson, N.J. (I992) Proceedings of 
the Royal Society London Series B 248: 273-281. 

Gupta, A., Morby, A.P., Turner, J.S., Whitton, B.A. and Robinson, N.J. (I993) Molecular 
Microbiology 7: In Press. 
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Chapter 1 

GENERAL INTRODUCTION 

Anthropogenic mobilisation of toxic trace metals into the biosphere, and the 

consequent adaptation of certain organisms to supra-optimal concentrations of these 

metals, has been extensively documented (original references cited in Antonovics et al., 

1971; Bradshaw, 1984). Cyanobacteria have been isolated from metal-polluted sites, and 

some of these isolates tolerate higher concentrations of metal in subsequent culture than 

do cyanobacterial strains isolated from environments not enriched with metal (Shehata & 

Whitton, 1981 ). Cyanobacteria have also been selected in the laboratory for increased 

tolerance to a number of different metals. However, the mechanisms of metal tolerance in 

metal-adapted cyanobacteria have not been fully described, and no genes which confer 

metal tolerance have been identified in cyanobacteria. Additionally, amplification and 

rearrangement of metallothionein genes has been observed in a wide range of eukaryotic 

cell lines selected for Cd tolerance (Robinson & Jackson, 1986; Section 1.631 ). 

1.1 Occurrence and distribution of metals 

Elevated levels of metal and metalloid compounds such as As, Cd, Co, Cr, Cu, Ni, Ph, 

Se and Zn often occur naturally in soils overlying ore bodies and mineralisations. They 

also occur in the wastes from metal extraction industries and in surface soils and lake 

sediments around base-metal smelters (Schultz & Hutchinson, 1991). Metal-contaminated 

wastes are often mixed with municipal wastes prior to treatment. This could result in high 

levels of metals in the output from some waste water treatment plants, and potentially 

dangerous levels oftoxic metals in agricultural land surrounding industrial areas (Adriano, 

1986). 

1.2 Essential and toxic metals 

Metals can be organised into two groups: essential (bulk and trace) and toxic (non­

essential) metals. Essential bulk metals (s-block elements, Na and K, Mg and Ca, groups 
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lA and IIA, respectively) are present in relatively high concentrations in biological systems, 

for example making up 99% of all metal ions found in man (Hughes, 1981; Hughes & 

Poole, 1989). They are distributed selectively, with K and Mg concentrated inside the cell 

and Na and Ca outside the cell. Among various functions, these ions form cross­

membrane chemiosmotic gradients, and in the generation of trigger and activation 

mechanisms such as the transmission of nerve impulses, muscle contraction and hormone 

secretion. These metals are found as cofactors to many enzymes, and are often important 

structurally in hard tissues and in the stabilisation of large polymerised complexes. 

The essential trace (or ultra-trace) metals are vital for most living systems and are 

present often at extremely low concentrations. This group includes the 3d group of 

transition metals (Co, Cr, Cu, Fe, Mn, Ni, V, Zn and the second row transition metal Mo). 

The d-block elements form complexes much more strongly than do the lA and IIA cations. 

Two ofthe more abundant oftrace metals, Fe and Cu, have several well-characterised 

functions, such as the transfer of respiratory gases (Fe in haemoglobin; Cu in 

haemocyanin), and roles in redox reactions (Co is also involved and also to a lesser extent 

Cr). Cu and Zn are found as cofactors to a wide variety of enzymes. Zn is found as a 

cofactor to representatives of all six classes of enzyme (IUP AC classification), and is 

known to play a role in: gene expression, structural stabilisation of proteins and nucleic 

acids, maintenance of the integrity of sub cellular organelles, participation in transport 

processes (Lee et al., 1991; Vallee & Auld, 1990). 

The essential elements may also exert toxic effects if their concentrations are raised to 

supra-optimal levels. The toxic metals (Cd, Hg, Pb, Sn, Tl, As) do not have defined 

biological functions, and are toxic at very low concentrations. However, Cd and Pb, 

amongst the toxic metals, have been suggested to play some role in cell metabolism 

(Schwartz, 1977; Price & Morel, 1990). Therefore, the categories of essential and toxic 

metals may change. 
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1.3 Basis of toxicity of metal ions 

In addition to the chemical properties of an element the toxic effects of a metal would 

depend upon (Stokes, 1983; Collins & Stotzky, 1989): 

a) Activity of the metal determined by the form of the metal (its chemical speciation), 

which affects its mobility and ability to bind to cell surfaces; 

b) pH of the environment: different hydroxylated species of toxic metals are formed at 

different pH values (concentration ofH+ changes) and thus there is an effect on their 

competition for ionogenic sites on the cell surface (charge of ionogenic groups is also 

affected by pH); 

c) Influence of other ions (cations and anions) and other trace metals and nutrients on 

metal uptake: trace metals form co-ordination complexes with inorganic anions (e.g. 0~, 

Cr) and thus undergo a change in their chemical speciation. The presence of other 

inorganic cations (e.g. Ca2+, H+) results in a state of competition with the cationic forms 

of the toxic metals for anionic sites on the cell surface. The presence of chelators (natural 

- EDTA; or synthetic- humic and fulvic acids) also affects the toxicity of metals. 

The toxicity of metals can be due to (Ochiai, 1987): 

a) Liganding to, and thereby affecting the function of, biologically important molecules. 

b) Participation in oxidation and reduction reactions, causing interference with cellular 

metabolism. 

1.4 Metal-binding sites (groups) of biological molecules 

For the purpose ofliganding, different metal ions prefer different groupings (Hughes, 

1981): 

0 0/N/S N/S 

Na, AI V,Pb Co,Hg 
K Cr, Ga Ni 
Mg Mn, Tl Cu 
Ca Fe, Cd Zn 

Mo 
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These preferences for certain ligand environments provide an immediate distinction 

between the behaviour of individual metals that must be incorporated into the design of 

selective sites. Metal binding sites must have the following characteristics: (a) a region 

with a high concentration of metal-liganding atoms (0, N or S), (b) a sufficient number of 

such atoms to stabilise the metal (2 to 8 depending on the metal ion), and (c) these must be 

arranged in the correct three-dimensional configuration to allow space for the metal ion 

(reviewed by Hughes & Poole, 1989). Furthermore, in biological systems metal-binding 

molecules must have the correct affinity for the ion such that it is not stripped from the 

binding site by other molecules, but conversely in some instances may be released for 

donation to other ligands. The ability of metallothionein (metal-binding protein, Section 

1.6) to donate Zn, or ofthionein to remove Zn from other Zn proteins is constrained by 

thermodynamic and kinetic considerations (Zeng eta/., 1991 b). The rates at which the 

clusters (thiolate clusters) transfer metals upon exposure to chelating agents and exchange 

metals among metallothionein isoforms are much higher than expected on the basis of Zn 

mercaptide chemistry. This kinetic lability of Zn thiolate clusters in conjunction with their 

thermodynamic stability has been proposed to allow the thionein/metallothionein couple to 

have a responsive dynamic metabolic role (Zeng eta/., 1991b). Binding of metal ions with 

varying affinities is therefore achieved with ligands that have evolved specific 

configurations. 

Bacteria carry out transformations (including oxidation, reduction, methylation and 

demethylation) of metal ions, and these transformations are sometimes by-products of 

normal metabolism conferring no known advantage upon the participating organism 

(Silver & Misra, 1983). The tolerance mechanisms in prokaryotes can be broadly 

categorised into four groups: 

1) Exclusion or reduced influx (e.g. Ag resistance by extracellular complexation), 

2) Enhanced metal ion effiux (e.g. Cd resistance, Section 1.51, Arsenate resistance), 

3) Intracellular detoxification (e.g. Hg resistance: enzymatic detoxification ofmercurials 

into volatile species), and 

4) Internal sequestration (e.g. internal sequestration by metallothioneins, Section 1.6) 
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Moreover, internal metal ion sequestration by metallothioneins is not well documented 

in prokaryotes, although a number of studies have suggested that MTs 'may' occur in 

diverse microbes. 

1.5 Resistance towards Zn, Cu and Cd 

1.51 Resistance mechanisms in non-cyanobacterial prokaryotes 

Zn is an essential trace metal, but at supra-optimal concentrations is toxic to micro­

organisms. Zn-transport other than by a broad-specificity Mg transport system has not 

been properly demonstrated in bacteria (Silver & Walderhaug, 1992). However, resistance 

to Zn has been demonstrated in various studies. Resistance to Co, Zn and Cd in 

Alcaligenes eutrophus CH34 is conferred by the plasmid pMOL30 (Mergeay et al., 1985). 

This resistance results from inducible, energy-dependent cation effiux (Nies & Silver, 

1989) encoded by the czc determinant which has been cloned and sequenced (Nies et al., 

1987; 1989). The products of czc genes may function as a main pump protein (CzcA), a 

cation funnel (CzcB), a modulator of substrate specificity (CzcC), and a protein involved 

in regulation of czc (CzcD) (Dressler eta!., 1991). Subsequently, it has been shown that 

an additional component, czcR, is required for the full expression of the czc determinant 

(Nies, 1992). The czcR is oriented in the opposite direction compared to the genes 

czcCBAD. The CzcR protein contains three potential metal-binding sites and is thought to 

be a DNA-associated protein. The czcR gene product is essential for full expression of czc 

and is postulated to act as an activator of czc transcription. Furthermore, CzcR and CzcD 

have been suggested to form a two-component regulatory system (Nies, 1992). 

Cu is toxic in excess due to its capacity to catalyse adverse redox reactions, such as 

hydroxyl radical generation. Cu can also prevent adequate functioning of proteins by 

direct binding of the metal to amino acid side chains (especially histidine and cysteine) 

(cited in Brown et al., 1991). Cu-resistant bacteria have been isolated from many sources, 

but only Cu-resistant Escherichia coli, Pseudomonas syringae and Xanthomonas 

campestris have been characterised further. In the Cu-resistance determinant from 
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Pseudomonas syringae the first two (copA and copE) genes are needed for partial Cu­

resistance, but the second two ( copC and cop D) are also needed for full resistance 

(Mellano & Cooksey, 1988a). Cooksey (1990) and Cha & Cooksey (1991) proposed a 

mechanism of resistance involving peri plasmic binding and extracellular sequestration of 

the Cu cations, decreasing free concentrations, and protecting the cellular cytoplasm from 

exposure to toxic levels. The Cop system is specifically induced by Cu and not by other 

divalent cations (Ca, Mn, Fe, Zn, Cd, Hg, Pb) (Mellano & Cooksey, 1988b). The plasmid 

determinant of Cu-resistance from Xanthomonas campestris has genes similar in number 

and characteristics to those in Pseudomonas syringae system (Bender et a/., 1990; cited in 

Silver & Walderhaug, 1992). 

Cu-resistant mutants of E. coli were characterised and mapped to seven 

complementation groups, cutA-cutF (copper uptake and transport) and cutR (regulation) 

(cited in Brown et al., 1991). Under normal physiological conditions, Cu transport and 

equilibrium are mediated by the CutA and CutB (influx proteins), followed by intracellular 

Cu-binding proteins (CutE and CutF) and by the CutC and CutD (efllux) proteins. CutA­

CutF are products of structural genes localised on the chromosome and responsible for Cu 

metabolism in the cell, and CutR is the protein regulating their expression. A plasmid­

borne Cu-resistance determinant, different from that of Pseudomonas and Xanthomonas, 

was identified in isolates of E. coli. Both plasmid and chromosomal gene products interact 

in Cu transport, intracellular binding and efllux (Rouch et al., 1989a; Brown et al., 1992). 

The plasmid-determined Cu resistance has been ascribed to the pea (plasmid-borne copper 

resistance) determinant. This resistance determinant, pea, contains at least four genes, 

pcoARBC, that are required for Cu-resistance (Rouch et al., 1985; 1989a). The PcoA and 

PcoB plasmid-encoded proteins function in Cu efllux, PcoC is involved in intracellular Cu­

binding, and peaR determines a trans-acting regulatory factor. Furthermore, products 

CutA (uptake) and CutD (efllux) required for normal Cu metabolism are also required for 

resistance to Cu (Rouch et al., 1989a; 1989b; 1992). 

Cd accumulation occurs via the chromosomally determined Mn transport system in 

sensitive cells of Staphylococcus aureus (Weiss et al., 1978). Rather than a direct 
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blocking of Cd-uptake, an energy-dependent efflux system functions in resistant cells 

(Tynecka et al., 1981). Two systems which confer Cd-resistance by efflux have been 

characterised: czc (for resistance to Cd, Zn and Co, described above) and the plasmid­

encoded cad operon of S. aureus plasmid pl258, which contains two open reading frames 

(Novick & Roth, 1968; Novick et al., 1979; Nucifora et al., 1989). The first, cadA, 

encodes a membrane protein 727 amino acids in length, and the second, cadC, encodes a 

soluble protein 122 amino acids in length. The CadA polypeptide sequence has strong 

homology to the E1-E2 class of ATPases, found in membranes of animal cells, plants, 

lower eukaryotes and bacteria (Nucifora eta/., 1989; Silver eta/., 1989). The current 

model for CadA membrane ATPase is based on the better studied members of this class, 

the Ca2+ ATPase of animal sarcoplasmic reticulum and the Na+/K+ ATPase of animal cell 

plasma membranes (Silver et al., 1989). The polypeptide sequence contains a series of 

recognisable motifs and key conserved residues, such as recognition sites for Cd, hairpin 

structures considered to be involved in Cd cation translocation, and ATP binding sites etc. 

(Silver & Walderhaug, 1992). 

The CadC polypeptide is unrelated to other sequences, but has weak homology to 

ArsR sequences (regulator of the ars system: arsenate-arsenite-antimony resistance 

determinant) and to CadX, an undefined open reading frame in the sequence of an 

unrelated Cd2+ resistance system, CadB. 

Strains of Staphylococcus aureus harbouring the CadA resistance system also have at­

least two alternative Cd-resistance systems. The cadB determinant present on plasmid 

pll147, but not on plasmid pl258 (Novick & Roth, 1968; Smith & Novick, 1972; Novick 

et al., 1979) confers resistance to Cd and Zn and does not involve cation efflux. However, 

cadB is associated with enhanced Cd-binding to the cell (Perry & Silver, 1982). The cadB 

determinant contains two open reading frames, cadB and cad.X (cited in Silver & 

Walderhaug, 1992). The amino acid translation sequence of cad.Xhas similarity to CadC 

ofthe cadA ATPase system and to ArsR regulatory protein of the As-resistance 

determinant. Witte et al. (1986) reported a chromosomal system ofCd resistance not 

related to the cadA system, in a special group of methicillin-resistantS. aureus strains, 
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which also exhibited chromosomally determined resistance to methicillin and mercury salts. 

Furthermore, Cd resistance in these strains is not associated with Zn resistance, but is 

associated with a cation efflux mechanism. 

Other mechanisms of Cd-resistance have been reported in bacterial species. Surowitz 

eta!. (1984) suggested reduced Cd accumulation as a Cd resistance mechanism in Bacillus 

subtilis. Whilst, Aiking eta!. (1982; 1984) for Klebsiella aerogenes, and Macaskie & 

Dean (1984) and Macaskie eta!. (1987) for Citrobacter sp. have demonstrated that 

resistance towards Cd involves precipitation of Cd as sulphide or phosphate. The 

reduction of lag period induced in E. coli by Cd, with repeated sub-culturing, has been 

suggested to involve the repair ofCd-induced DNA single strand breaks (Mitra eta!., 

1975). In addition, E. coli is also suggested to possess Cd-binding proteins (Mitra, 1984; 

Khazaeli & Mitra, 1981 ). 

1.52 Resistance in cyanobacteria 

Contamination of rivers and estuaries with Pb, Hg, Cd, Zn and Cu has been 

documented in numerous surveys (Say & Whitton, 1981; Forstner, 1983). Algae have 

been used as biological indicators to monitor toxic trace metal pollution in aquatic 

environments (Phillips, 1977; Whitton, 1984) and in a limited number of cases they have 

been applied to the purification ofwater contaminated with metals (Kessler, 1986). 

Eukaryotic algae and cyanobacteria are often abundant, with cyanobacteria being the 

dominant form, in Zn-enriched waters ofhigh pH (Whitton, 1980). Strains isolated from 

such sites are highly resistant to Zn (Shehata & Whitton, 1982). Various effects of metal 

toxicity have been documented in metal-tolerant strains isolated from metal polluted sites 

and developed in the laboratory. A brief introduction to the literature on effects of metals 

on metabolic processes in cyanobacteria is presented. 

Zn-uptake in Anacystis nidulans (= Synechococcus PCC 6301) is concentration 

dependent and increases with time during growth (Shehata & Whitton, 1982). Upon 

exposure of wild-type and Cd-tolerant A. nidulans to Cd, a four fold higher uptake rate 

and concentration of Cd is shown in the wild-type than the Cd-tolerant culture. Similarly, 
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metal ions of Cd and Cu have a growth inhibitory effect on Anabaena PCC 7120 (Laube et 

a!., 1980), and some concentrations of Cu lysed Anabaena PCC 7120 cells at early, but 

not late, stages of growth. The exposure of Anacystis nidulans IU 625 to Cd resulted in 

inhibition of both NH4 and PO 4 uptake, where NH4 uptake was more sensitive to Cd than 

P04 uptake (Singh & Yadava, 1984). 

Significant inhibition of various metabolic processes (for e.g. growth, nutrient uptake, 

photosynthesis, ATP content, nitrate reductase, glutamine synthetase and urease activities) 

following metal supplementation have been extensively documented (reviewed by Whitton, 

1980; Rai et al., 1981; Vymazal eta!., 1985; Reed & Gadd, 1990). Cd exposure induces 

an increase in filament length, heterocyst frequency, and loss of cellular contents from 

filament apical cells, suggesting that metal toxicity resulted from transport of Cd into the 

cell rather than being bound at the cell surface. In exponentially growing wild-type 

cultures of A. nidulans (Synechococcus PCC 6301) separation of cells occurred soon after 

division, but in old cultures chains of two or four cells were frequent (Shehata & Whitton, 

1982). Tolerant strains exhibited an increased average length ofthe rods, and at sub­

inhibitory levels of Zn, filaments were produced. However, under partially inhibitory 

levels of Cu, the wild-type, and Cu and Zn-tolerant strains formed sub-spherical units, in 

contrast to normal rod shapes, and formed the bulk of the population (Whitton & Shehata, 

1982). Similarly, Chintamani & Mohanty (1989) observed elongation and adherence of 

cells after division in Synechococcus PCC 6301 grown under elevated levels of Zn. In 

addition to the various morphological changes, an increase in the carotenoid/chlorophyll 

ratio was observed in cultures treated with Zn. Chi a, phycocyanin and total protein 

contents (per ml of culture) of Synechococcus PCC 6301 were less in metal-treated 

cultures, but on a per cell basis Chi a and total protein contents were higher in treated 

samples (Chintamani & Mohanty, 1989). 

Polyphosphate bodies, implicated in sequestration of Cd, Co, Cu, Hg, Ni, Pb and Zn 

(Jensen et al., 1982a), were enlarged after Cd exposure, whilst exposure to Co reduced 

the number of polyhedral bodies. However, in cultures of Chiarella saccharophila, a 

lower eukaryotic alga, exposed to low concentrations, Zn was present only in 
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polyphosphate body cell sectors, and not in any cell sectors away from the polyphosphate 

bodies (Jensen eta!., 1982b). Furthermore, it has been demonstrated that the Cd adsorbed 

on cell surface and transported into the cells, decreases with decrease in pH (Skowronski, 

1986). The amount of Cd available to cells is limited at alkaline pH due to Cd sorption by 

hydrolysis ofthe micro nutrients (constituents ofthe medium), and formation of 

precipitates, mainly metal hydroxides (Skowronski et al., 1988; 1991). Zn-toxicity 

decreased with a fall in pH for Zn- sensitive and tolerant populations (Say & Whitton, 

1977). Additionally, increase in levels ofMg, Ca and P04 were effective in reducing Zn­

toxicity with Zn-tolerant populations than with Zn-sensitive ones. Ca had a 

proportionately greater effect in reducing Cd-toxicity than Zn-toxicity (Say & Whitton, 

1977; Shehata & Whitton, 1982). Co, Ni, Cu and Pb individually had an additive rather 

than synergistic effect leading to increased Zn toxicity. PO 4 starved cells of A. nidulans 

were slightly more sensitive than PO 4 rich cells at low environmental levels of inorganic 

PO 4, but less sensitive at higher environmental levels. Reduction in toxicity was less 

affected when PO 4 was added after exposure of cells to Zn (Shehata & Whitton, 1982). 

Furthermore, organic phosphates supported growth, but were less effective at reducing 

Zn-toxicity. 

No detectable Zn uptake was observed in cells of Anabaena variabilis grown under 

phosphorus-starved conditions and exposed to Zn, but was detected when Zn was part of 

the complete culture medium or in cells grown in complete medium for 4 h post P­

starvation and then Zn was added. Under different P-starvation conditions and exposed to 

Cu, cells contained S, suggesting release of S from other cellular constituents, such as 

protein, and is sequestered in the polyphosphate bodies, coupled with some loss ofK 

(Jensen eta!., 1982a; 1986). Additionally, it has been demonstrated that more Cu binds 

under anaerobic conditions, and this extra uptake was associated with, but not 

stoichiometrically related to, an increased loss of K by the cells, suggesting that the release 

ofK is due to a graded response of a barrier, normally oflow permeability, to increasing 

amounts of bound Cu. However, exposure of A. jlos-aquae to Cd caused a loss ofMg 
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and Ca from the polyphosphate bodies (Rachlin et al., 1984) resulting in ionic changes in 

the elemental composition of these cellular inclusions. 

Cd has an acute sea surface depletion and exhibits best correlation with a major algal 

nutrient (P) (Boyle eta/., 1976; Bruland et al., 1978). In sea water with low Zn 

concentrations, Cd substitutes for Zn in certain macromolecules of the marine diatom 

Thalassiosira weissflogii (Price & Morel, 1990). The growth-promoting properties of Cd 

are only evident in the absence of Zn from the medium, the distribution of Cd and Zn 

among the soluble cellular constituents is remarkably similar (suggesting a metal 

substitution in the same protein rather than an enzyme substitution), and the quantity of Cd 

per cell decreases in the presence of Zn and increases in the absence of Zn. 

Tolerant strains of Anacystis nidulans exhibited an increase in growth lag when 

cultured in medium supplemented with Zn after maintenance for 20 subcultures in the 

absence of Zn, but original resistance was regained by the second subculture in the 

presence of Zn (Whitton & Shehata, 1982). Repeated culturing of cyanobacterial isolates 

in the absence of Cu results in loss of tolerance for most species within a few subcultures; 

however, original tolerance recovered following one subculture in medium containing an 

intermediate level of Cu (Takamura eta/., 1989; 1990). Strains of A. nidulans tolerant to 

Co, Ni, Cu, Zn and Cd also partial tolerance to another metal (Shehata & Whitton, 1982). 

However, in freshwater algal isolates from metal-polluted sites, Cu-tolerant strains also 

exhibited co-tolerance to Cd and Zn, and vice versa, though strains showing specific 

resistance to Zn or to Cd were also obtained (Takamura eta/., 1989). A Cd-resistant 

strain of Nostoc calcicola developed by step-wise adaptation exhibited cross-resistance to 

the antibiotics, neomycin and chloramphenicol, but not to streptomycin, and also tolerated 

elevated levels of other metals like Zn and Hg (Singh & Pandey, 1982). 

Different studies, as introduced above, have shown various effects of metal exposure 

on metabolic processes in cyanobacteria. Additionally, different mechanisms for metal 

tolerance in cyanobacteria have been postulated. 

Extracellular polysaccharides have been suggested to act as natural metal chelators 

and reduce metal toxicity (Cri~t et qJ., 1981 ). Purified sheath fractions of Calothrix 
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parietina and C. scopulorum were similar in chemical composition, and bound metals 

(upto atleast 0. 7% of sheath dry weight) with the effectiveness 

Fe>Zn>Cu>Ni>Mn>Mo>Co, and Ni, Cu, Zn and Fe were highly enriched relative to their 

concentration in the medium (Weckesser et al., 1988). Additionally, Manzini eta/. (1984) 

observed that alginates extracted from seaweeds and bacteria exhibit Cu binding ability, as 

does pectate, a polymer of B-D-galacturonic acid found in plant tissue. 

Oxygenic photosynthesis in wild-type Nostoc calcicola is extremely sensitive to Cu 

(Verma & Singh, 1991). However, a Cu-resistant mutant grew at high concentrations of 

Cu due to mutational acquisition of an energy-dependent efficient Cu-effiux system, which 

rendered Cu-inhibited oxygenic photosynthesis fully reversible. The efficiency of the Cu­

etllux system in the wild-type was negligible, but in the resistant strain the rate of Cu­

effiux was rapid during the first 5 min and gradually declined with time, resulting in 

reduction of the intracellular Cu pool. 

Cu complexation by organic ligands influences the toxicity of Cu in natural waters 

(Sunda & Lewis, 1978). Fe limitation increases the extracellular concentration ofCu­

complexing agents in cultures of Anabaenaflos-aquae and A. cylindrica, and the Fe-algal 

exudate complex is more stable than the Cu-complex, suggesting that the strong Cu­

complexing agents released by filamentous cyanobacteria are siderophores (McKnight & 

Morel, 1979; 1980). However, siderophore excretion is not suggested to be a mechanism 

by which cyanobacteria overcome the toxic effects of Cu. Murphy et al. (1976) suggested 

that eukaryotic algae cannot assimilate Fe from the Fe-hydroxamate siderophore complex 

and cyanobacteria monopolize low Fe concentrations by excretion of hydroxamate 

siderophores. Furthermore, the biological uptake ofFe by Fe-limited Anabaena 

populations was blocked by addition ofCu (Murphy & Lean, 1975). 

Although, different mechanisms of metal tolerance have been suggested in different 

organisms, no molecular mechanism for metal tolerance has been identified in 

cyanobacteria. 
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1.6 Metallothionein 

The passage of metals through cells and organisms is linked to their association with 

specific metal-binding macromolecules (cited in Kagi & Schaffer, 1988). The mode of 

metal-binding in metalloproteins varies widely yielding structures of divergent chemical 

and biological specificity (Kagi & Schaffer, 1988). One such super family of metal-binding 

macromolecules are the metallothioneins (MTs). 

MT was discovered by Margoshes and Vallee (1957) in an attempt to identify a tissue 

component responsible for the natural accumulation of Cd in mammalian kidney. Since 

this initial description, MTs have been isolated from a wide range of sources, both 

eukaryotic and a prokaryote. MTs are thus considered to be ubiquitous and are 

characterised by low molecular weight, high cysteine content (thus a high content of 

sulphur), unique amino acid sequence (characteristic distribution of cysteinyl residues such 

as Cys-X-Cys), selective capacity to bind and be induced by heavy metal ions (such as Zn, 

Cd and Cu), and low in aromatic amino acids (Kagi & Vallee, 1960; Kagi & Vallee, 1961; 

Karin, 1985). Extensive biochemical and genetic analyses has since been conducted and 

several reviews provide an extensive documentation of the various studies involving the 

MT system (Karin, 1985; Hamer, 1986; Robinson & Jackson, 1986; Palmiter, 1987; Kagi 

& Schaffer, 1988; Kagi, 1991; Vallee, 1991). A summary of the various characteristics 

and information available on the MT system is presented. 

1.61 Classification and occurrence of MTs 

Historically, the term 'metallothionein' was used to designate Cd-, Zn-, and Cu­

containing sulphur rich protein from equine renal cortex. The conspicuous features of 

MTs have prompted a variety of similar metal-thiolate polypeptides to be included under 

the generic term 'metallothionein'. Therefore, "Polypeptides resembling equine renal 

metallothionein in several of their features can be designated as metallothionein" (Kojima, 

1991). 
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MTs have been divided into three classes (Kagi & Kojima, 1987) on the basis oftheir 

structural characteristics: Class I MTs are defined as polypeptides with locations of 

cysteine closely related to those in equine renal MT (such as Neurospora and Agaricus 

MTs), Class II MTs being the polypeptides with locations of cysteine only distantly related 

to those in equine renal MT (such as Saccharomyces and Synechococcus MT). The class 

III MTs are the atypical, nontranslationally synthesised metal-thiolate polypeptides, such as 

phytochelatins. Additionally, all the class I MTs isolated from vertebrates can be sub­

divided into isoforms MT-I and MT-II (based on their ionic charge differences), each 

isoform potentially comprising several isoproteins. 

Most studies in animal MT systems have focused on liver and kidney, the primary sites 

of heavy metal accumulation, but MT is also detectable in other organs and in various 

cultured cell types (cited in Hamer, 1986). MT is usually detected by virtue of its high 

metal content (usually Cd, Zn, Cu). However, the composition of the MT would vary 

from one organism/tissue to the other, and would depend upon the history of metal 

exposure. For example, exclusively Zn containing MT has been isolated from human liver, 

whilst Cd and Cu are normally components of those isolated from the kidneys. Mehra et 

al. (1988) isolated an exclusive Cu-thionein from the lower eukaryote Candida glabrata. 

Similarly, MTs have also been isolated from lower eukaryotes, for e.g. Saccharomyces 

cerevisiae (Karin et al., 1984), and Neurospora crassa (Lerch, 1980). MT-like proteins 

have also been reported in a few eukaryotic algae (cited in Robinson, 1989; Section 1. 7), 

and various prokaryotes have also been suggested to produce MT-like proteins (cited in 

Silver & Misra, 1988). One such protein from a cyanobacterium was purified to 

homogeneity and characterised (Olafson eta!., 1988). The corresponding gene has 

subsequently been isolated and characterised from the cyanobacterium Synechococcus 

PCC 7942 (Section 1. 7). Furthermore, in higher plants, genes capable of encoding 

proteins with homology to class I MTs have been described, but their putative products 

remain to be identified in planta (deMiranda et al., 1990; Evans et al., 1990). 
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1.62 Structure and metal binding characteristics of MTs 

Most research concerning the structure ofMT relates to the mammalian MT, and 

serves as model for MTs in other systems. The mammalian MT is a 61- or 62-amino-acid 

peptide ofwhich 20 are cysteine residues. From the 14 mammalian MT molecules for 

which protein or DNA data is available, the consensus sequence derived is as follows: 

MDPNCSCATGGSCTCAGSCKCKECKCTSCKKSCCSCCPVGCAKCAQGCVCKGASDKCSCCA 

Beta domain Alpha domain 

(Invariant cysteine residues are shown in bold type, reproduced from Hamer (1986) which 
includes original references). 

The metals in MT are contained in two distinct, polynuclear clusters. The A cluster 

contains 11 cysteines and is contained within the carboxy-terminal a domain, whilst the B 

cluster contains nine cysteines, and is contained in the amino-terminal 13 domain. 2D NMR 

spectroscopic measurements have proved beneficial in providing data for the spatial 

structure of mammalian MT and the organisation ofmetal-thiolate clusters (Braun eta!., 

1986; Arseniev et al., 1988; Schultze et al., 1988). Comparison oflow energy bands in 

the far UV absorption spectra ofMT with those of tetrahedral halide complexes, suggests 

a tetrahedral co-ordination of metal ions in MT (Vasak et a!., 1981 ). These results were 

further confirmed by studies involving various spectral techniques, such as, EXAFS 

(Hasnain et al., 1987) and PAC (Vasak & Bauer, 1982). Metals are associated with MT 

exclusively through thiolate bonds to all 20 cysteine residues. The metals can be removed 

by exposure to low pH and the resulting apothionein can be reconstituted with 7 atoms of 

Cd or Zn, the a domain binding 4 and the 13 domain binding 3 divalent metal ions. In the 

rat Cd-, Zn-MT-11, the A cluster contains four Cd atoms ofwhich two are bonded by three 

bridging and one terminal sulphur, and the other two by two bridging and two terminal 

sulphurs. The B cluster contains one Cd and two Zn atoms, all of which are bonded by 

two bridging and two terminal sulphurs (cited in Hamer, 1986). 

In addition to binding Zn and Cd, mammalian MTs are also known to bind Cu in vivo. 

Cu binds in the + 1 rather than the +2 valence state, and EXAFS measurements for the 
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binding stoichiometry suggests that 12 Cu ions may each be co-ordinated to three 

cysteines in a triangular structure, rather than tetrahedral, and alters the folding and tertiary 

structure of the protein (Winge, 1987; Hamer, 1986). The a and f3 domains ofMTs can 

be separated by digestion of the linking amino-acids using subtilisin, and each domain 

binds metal ions in the same way as the complete molecule, using in vitro substituted MT, 

were able to demonstrate the relative binding affinities for metal-MT complexes were 

shown to be in the order: Hg(II)>Cu(I)>Cd(II)>Zn(II)>Ni(II),Co(II) (Winge & Miklossy, 

1982; Nielson & Winge, 1983; Nielson eta!., 1985). 

Cu-MTs isolated from Neurospora crassa (Beltrami & Lerch, 1983) and from 

Agaricus bisporus (Munger & Lerch, 1985) have been designated as class I MTs, and their 

cysteine residues align perfectly with those of theN-terminal region of mammalian MTs. 

However, MT-like proteins isolated from other lower eukaryotes (i.e. the Cu-MTs of 

Saccharomyces cerevisiae and of Candida glabrata), and the Cd/Zn MT isolated from the 

cyanobacterium Synechococcus PCC 7942, do not align with vertebrate MTs (thus 

classified as class II MTs), and generally show little sequence similarity to one another. 

Nevertheless, these proteins do contain the Cys-Cys, Cys-X-Cys and Cys-X-X-Cys motifs 

which are characteristic ofMTs. 

1.63 Proposed functions of MTs 

Much of the interest in MTs has focused on the regulation of transcription of the 

genes that encode them, and the biological roles ofMTs. Kagi & Vallee (1960), in one of 

their first papers on MT, speculated that MTs might play an important role in " .... catalysis, 

storage, immune phenomena, or detoxification .... ". The conservation of the structure of 

MTs, its ubiquitous nature, and its ability to both bind and be induced by metal ions, 

strongly suggests that MTs must play a major role in some fundamental metal-related 

biological process (Hamer, 1986). Defining this role has proven difficult. However, it is 

important to emphasise that the structurally distinct MTs occurring in different organisms 

may have different roles. 
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1.631 Role in metal detoxification 

The protective effects of MT have been studied extensively both in animal and cell 

culture systems, but detoxification of metal ions is not universally accepted as the primary 

function ofMT (Karin, 1985). Several studies suggest its involvement as a major 

component in detoxification of metal ions. Mammalian MT synthesis is induced by a range 

of metal ions (Ag, Au, Bi, Cd, Cu, Hg, Pb, Pt, and Zn), and the protein is found to be in 

association with the metal that induces its synthesis (Webb, 1987). The 

association/involvement ofMT molecules in the induction by Cd and subsequent high­

affinity sequestration of the metal ion by the induced protein is well documented (Kagi & 

Kojima, 1987; Webb, 1987). 

Mammalian cell lines in culture, that fail to produce the MT protein exhibit decreased 

tolerance to Cd (Compere & Palmiter, 1981; Crawford et al., 1985). These cell lines, 

apart from their loss of capacity to produce MT due to gene hypermethylation, were 

normal in all other respects. Similarly, in the yeast Saccharomyces cerevisiae cells, CUP 1 

sequences (gene coding for the Cu-MT) were replaced by a heterologous marker gene 

(Hamer eta!., 1985). These recombinant strains were hypersensitive to Cu, but were 

normal in all other aspects of cellular metabolism, such as doubling time, mating, 

diplophase growth, sporulation and germination. Additionally, transfection of CUP 1-

deleted cells with plasmids containing the CUP 1 gene or a heterologous monkey MT-1 

gene under control of CUP 1 regulatory sequences, provides protection to the cells from 

Cu toxicity (Thiele et al., 1985). 

A wide variety of cultured cells have been selected for Cd resistance by continuous 

exposure of the cells to step-wise increase in Cd in the medium. During selection, the 

levels ofMT mRNA greatly exceeds the maximum that can be induced in the unselected 

cells (Durnam & Palmiter, 1987). Although a number of mechanisms could attribute for 

increased MT mRNA production, it has almost invariably been associated with MT gene 

amplification (Beach & Palmiter, 1981; Gick & McCarty, 1982; Hayashi eta!., 1983; 

Durnam & Palmiter, 1987; review by Palmiter, 1987). Similarly, increased resistance to 
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Cu ions, resulted from amplification of the CUP 1 gene in Saccharomyces cerevisiae 

(Karin et al., 1984). In Candida glabrata cells selected for Cu resistance, there is stable 

chromosomal amplification ofMT-II gene to around 30 copies (Mehra et al., 1990). The 

increased resistance is due to much greater MT synthetic capacity and metal resistance 

declines with the loss of the extra genes. 

Depending on the cell type, Cd resistance can be completely stable in the absence of 

selection or decay with a half-life of ca. a week (Beach & Palmiter, 1981; Mayo & 

Palmiter, 1982). These extra copies ifthey have an origin of replication, may persist as 

extra-chromosomal elements; alternatively, they may integrate into the chromosome 

(Schimke, 1984). The amplification units in mammalian cells have not been precisely 

identified, but are very large, and thus the closely linked MT genes are invariably linked 

together. The mechanism ofMT amplification is unknown but probably results from 

aberrant replication ofthe MT locus during the cell cycle (cited in Palmiter, 1987). The 

observation ofMT gene amplification to be associated with Cd resistance argues strongly 

that MT plays an important role in metal detoxification. Additionally, cell lines that over­

produce MT accumulate larger quantities of Zn and Cu then do normal cells. This 

hypothesis is further supported by the fact that Cd resistance can be conferred in cells by 

transfer ofMT genes on a self-replicating plasmid. Cell lines containing high copy number 

ofBPV-MT (Bovine papilloma virus-MT) recombinants have been shown to be highly 

resistant to Cd due to MT over-production (Karin et al., 1983). Furthermore, in cell 

cultures of Datura innoxia selected for resistance to various concentrations of CdC12, 

addition of Cd and Cu results in the rapid synthesis and accumulation of sulphur -rich, 

metal-binding polypeptides (Jackson et al., 1987). Additionally, in Cd-resistant cultures a 

direct correlation between the amount of Cd incorporated and the degree of Cd tolerance, 

and a correlation between the maximum amount of metal-binding polypeptide synthesised 

and the level of resistance to different concentrations of metal ions has been demonstrated. 

Similarly, non-protein cysteine-rich polypeptides have been shown to accumulate in high 

amounts when Cd-resistant tomato cells, selected for tolerance to elevated concentrations 

ofCd, are grown in the presence ofCd (Steffens et al., 1986). The importance ofMT 
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gene amplification and other studies relating to MT gene amplification are further 

illustrated in detail in Chapter 8. 

1.632 Alternative functions of MTs 

The role ofMTs in metal detoxification is well documented, but MTs seem likely to 

be involved in processes other than protection against heavy metals. MTs isolated from 

liver and kidney contain a high concentration of Zn and Cu, and may serve as a major 

storage form for these metals. Additionally, MTs are expressed in an inducible manner in 

essentially every tissue (Searle et al., 1984). These observations are suggestive ofboth 

extracellular (homeostatic) and intracellular control of Zn and Cu metabolism. 

Furthermore, the intracellular level ofZn regulates the turn-over rate ofMTs; when Zn is 

in short supply, MTs are rapidly degraded (Karin et al., 1981). However, Hamer (1986) 

has summarised that the sole function of Cu-MT of Saccharomyces cerevisiae is to 

maintain a low level of free intracellular Cu concentration. 

Many biological processes involve the use of Zn-requiring enzymes, and as a major 

Zn-binding protein MTs could potentially modulate these processes either directly, by 

interaction with inactive apoenzymes, or indirectly by regulating the intracellular Zn. Zn­

requiring apoenzymes were reactivated by the transfer of Zn from MTs to the apoenzymes 

(Udom & Brady, 1980). Zeng et al. (1991a; 1991b) were able to inhibit DNA binding of 

the Zn-dependent transcription factors Sp 1 and TFIIIA in vitro by the addition of apo-MT, 

thus abolishing transcription activation in an in vitro assay. Therefore, it was postulated 

that under in vivo conditions, similar activity could provide a mechanism of control for a 

large subset of genes requiring Zn-dependent transcription factors. Different variants of 

MT could therefore carry Zn to different intracellular compartments, thus modulating the 

metabolic and proliferative status by alterations in the intracellular distribution pattern of 

Zn (Karin, 1985). Recent studies have examined the temporal and spatial expression of 

MT genes. Animal MT expression varies widely in different tissue types and is dependent 

also on the stage of development of the organism, raising additional possibilities of the 

involvement of MT in the cc>ntrol of cellular growth. Kern et a!. ( 1981) have 
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demonstrated a programmed mode ofMT gene regulation in rat foetal development. 

Changes in the sub-cellular localisation ofMT in cultured hepatocytes have recently been 

demonstrated (Tsujikawa et al., 1991). The localisation ofMT shifts from the cytoplasm 

to the nucleus in the early S-phase. The functional human MT gene cluster is split in 

leukemic cells of patients (Lebeau et al., 1985). One half of the gene cluster, normally 

present on the long arm of chromosome 16 is translocated to the short arm of the same 

chromosome. Additionally, the breakpoint always occurs in the middle of the MT gene 

cluster. This led to the suggestion that a resident cellular oncogene on the short arm of the 

chromosome is activated by enhancer elements associated with the MT (Karin et al., 

1984). 

Inducers ofMT biosynthesis are known to include factors other than heavy metals 

(e.g. UV, X-ray irradiation, infection, administration of substances as diverse as 

chloroform and glucocorticoids), suggesting possible role ofMTs in cellular adaptation 

mechanisms. Interferon and Interleukin 1, activate macro phages and neutrophils, which 

release active oxygen species. These are extremely cytotoxic and can cause severe tissue 

damage in the host in the absence of protective measure (such as superoxide dismutase). 

Zn and Cd-MTs scavenge free hydroxyl ions (but not superoxide radicals unlike 

superoxide dismutase ), suggesting a direct participation in the detoxification of this 

reactive species (Thornalley & Vasak, 1985). Additionally, MT over-expressing mutants 

of cultured mammalian cells are resistant to X-ray damage, suggesting role ofMT in 

protection of cells against ionizing radiation (Bakka & Webb, 1981; Karin, 1985), possibly 

by scavenging free radicals or as sources of Zn for DNA repair enzymes that are activated 

after irradiation. 

1. 7 Metal-binding proteins in algae and cyanobacteria 

Two main Cu binding molecules contributing to metal detoxification and regulation, 

were reported in Euglena gracilis (Piccinni eta/., 1985). These two molecules were 

different in chain weight (6932 and 3590), and amino acid composition, but had a 

relatively high percentage of cysteine (13 and 20%, respectively). Peptide no. 1 also had a 
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high content of aspartic acid. A family of arginine- and asparagine-rich polypeptides are 

synthesised in Zn deprived Euglena cells (Vallee & Falchuk, 1981), and also, in Euglena a 

reduction in Zn content is induced upon Cu treatment (Albergoni et al., 1980). It is noted 

that cyanophycin is a polymer of aspartic acid and arginine, and in cyanobacteria is 

produced in quantity in response toNi or Cu exposure (Wood, 1983). Similarly, two Cd­

binding proteins Cd-BP-I and Cd-BP-II are produced in Cd-exposed cells of E. gracilis 

(Gingrich et al., 1984; 1986), and these cells also have a large pool of very low molecular 

weight Zn species. The following properties of the Cd-BP-I and Cd-BP-II have been 

demonstrated: lower Mr values and more negatively charged than MTs, lack of cross­

reactivity to mammalian MT antibodies, low Zn content (despite high levels in growth 

medium) and a high content of sulphide ions (Weber et al., 1988). The presence of 

sulphide ions in high concentrations suggested its relation to the sulphide containing 

peptides of Schizosaccharomyces pombe and similar plant peptides, known commonly as 

phytochelatins, cadystins or metallochelatins (Robinson et al., 1987; Shaw III et al., 

1988). 

Cu-tolerance in Scenedesmus acutiformis, involves binding of Cu to proteins which 

were similar in size to those identified in mammalian systems and yeast (Stokes et al., 

1977). Similarly, inS. quadricauda, Reddy & Prasad (1989) identified a protein of 

approximately 8 kDa only in cells exposed to Cd, and suggested it to be similar to that in 

Dunaliela (1 0 kDa) (Heuillet eta!., 1988). A Cd binding protein from Chiarella 

ellipsoidea was characterised and from its amino acid composition suggested its similarity 

to phytochelatins (Nagano et al., 1984). Similarly, Gekeler eta!. (1988) examined 

organisms from six classes ofPhycophyta and concluded that Cd-binding proteins similar 

to phytochelatins (class III MTs) are ubiquitous in the division of algae, and that algae 

sequester heavy metals by an identical mechanism as higher plants, namely via 

complexation to phytochelatins. 

A Cd- and Zn-binding material was detected in A. nidulans (Maclean eta/., 1972). 

Subsequently, Olafson eta!. (1979a) reported the isolation of a Cd-inducible metal-binding 

protein from Cd-exposed cells of a marine cyanobacterium Synechococcus sp. strain 
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RRIMP NI. Subsequently, this protein was purified to homogenity from Synechococcus 

TX-20 and characterised. Amino acid analysis suggested a high cysteine content (lower 

than that reported for eukaryotic metallothioneins), but was consistent with the metal 

content analysis. Furthermore, a single methionine, and elevated levels of lysine and serine 

were observed. Various chemical and structural characteristics of the prokaryotic MT 

from Synechococcus TX-20 revealed superficial features similar to eukaryotic MTs 

(Olafson, 1986; Olafson et al., 1988). 

TSTTLVKCACEPCLCNVDPSKAJDRNGLYYCCEACADGHTGGSKGCGHTGCNC 

Amino acid sequence of the prokaryotic MT from Synechococcus sp. (Reproduced from 
Olafson eta/., 1988) 

The prokaryotic MT molecule complexes Cd, Zn and Cu, but its synthesis is induced 

only by Cd and Zn, with induction controlled at the level of transcription (Olafson eta/., 

1980), a phenomenon previously described in the crustacean Scylla serrata (Olafson eta/., 

1979b ). Although the prokaryotic MT has a high content of cysteine residues and 

characteristic clusters ofCys-X-Cys, Cys-X-X-Cys and Cys-Cys sequences, primary 

structural analysis did not show any relationship to MTs from higher organisms. The 

conservation of certain characteristic features, despite a lack of sequence similarity 

suggested that cyanobacterial MT may have a convergent evolutionary relationship with 

eukaryotic MTs (Olafson et al., 1988). Moreover, the Synechococcus MT showed 

similarity to Saccharomyces MT in having a high hydrophobicity, where Saccharomyces 

MT has 5 hydrophobic residues, whilst the Synechococcus MT has 8 residues, making it 

the most hydrophobic MT to be described. However, unlike the yeast MT, the 

hydrophobic residues in Synechococcus MT are distributed throughout the first half of the 

molecule with a pair of adjacent tyrosine residues situated in the middle of the protein. 

Additionally, the prokaryotic MT lacks the adjacency of hydroxylated and basic residues 

with cysteine residues. Secondary-structure analysis shows similarity to eukaryotic MTs in 

the metal-thiolate complex region. The cyanobacterial MT did not exhibit the presence of 

any helical structures, but indicated that ca. 61% of the molecule was in 13-pleated sheet, 

with 29% in the form of 13-turns, accounting for the reduced ellipticity in the 200 nm 
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region as compared to the mammalian protein. The metal-thiolate cluster of the 

prokaryotic MT might be similar to the eukaryotic proteins, but in a single domain 

(Olafson et al., 1988). 

Since the isolation and characterisation of the first prokaryotic MT protein from 

Synechococcus TX-20 (Olafson et al., 1988), and immediately prior to and during the 

course of this study, the corresponding gene encoding the MT has been isolated and 

characterised from Synechococcus PCC 6301 and PCC 7942 (Robinson et al., 1990; 

Huckle eta/., in press). The structural gene, designated smtA, encodes a protein of 56 

amino acids, similar to that purified from Synechococcus TX-20 by Olafson et al. (1988) 

with two modifications. Two additional amino acids, histidine and glycine, are present at 

the C-terminus and serine substitutes for cysteine32 (serine33 in SmtA sequence), altering 

a cysteine-cysteine pair to cysteine-serine. The structural features within the smt 

operator/promoter region include a 7-2-7 hyphenated inverted repeat and a 6-2-6 

hyphenated direct repeat. Furthermore, a second divergent open reading frame upstream 

of the smt region was identified and designated smtB. The deduced SmtB polypeptide 

contains 122 amino acids. Sequence similarity exists between SmtB and ArsR (protein 

regulating the transcription of E. coli and Staphylococcus aureus ars operons, which code 

for the arsenic, arsenate and antimonite effiux systems), and SmtB and CadC (encoded by 

cadC and encodes an ATP-dependent Cd(II) effiux system inS. aureus). The gene 

structure, similarity to a known transcriptional regulator and the presence of a DNA­

binding motif are suggestive of a putative role for SmtB as a regulator of smtA 

transcription (also Section 8.3). 

Transcript abundance of smtA has been shown to increase following exposure to Cd, 

Co, Cr, Cu, Hg, Ni, Pb and Zn, in contrast to the induction of yeast MT gene CUP 1, 

which is induced only by Cu and Ag (Huckle et al., in press). Additionally, exposure to 

Cd was shown to have no effect on transcript stability of smtA. Shi et al. (1992) have 

shown a higher affinity of the cyanobacterial MT for Zn (lower pH of half displacement), 

than that estimated for equine renal MT. These observations have led to the suggestion of 

a role for SmtA in Zn homoeostasis (Huckle et a/., in press), consistent with the 
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observations that the cyanobacterial MT in vivo in Synechococcus TX-20 (= PCC 6301) is 

induced by, and associated with, Zn (Olafson eta!., 1988). 

Olafson eta!. (1980) observed that Synechococcus sp. (Section 1.8) cells previously 

cultured in Cd, exhibited tolerance when recultured in the same medium, with no marked 

growth lag and increased MT synthesis. Furthermore, the Cd-exposed cells exhibited a 

marked growth lag as compared to cells grown in the absence of Cd, and onset of growth 

was coincident with increase in MT. However, MT levels reduced to near basal values 

following repeated subculture in Cd-free media, and suggested the phenomenon to be due 

to repression ofMT synthesis in the absence of metal (Olafson, 1986). These cells on re­

transfer to Cd-supplemented medium grew with no observable lag phase, whilst the wild 

type cells grew with the usual growth lag in Cd-supplemented medium. Furthermore, 

acquisition of Cd resistance in Synechococcus was thought unlikely to be related to a 

chromosomal mutation event, since the frequency for a chromosomal mutation would be 

very high. The phenomenon of metal resistance has thus been speculated to involve the 

amplification of an extrachromosomal gene (Olafson, 1986). Although cyanobacteria are 

reported to have plasmids (Lau & Doolittle, 1979; Laudenbach eta!., 1983), no plasmid­

encoded functions have so far been demonstrated (Ciferri eta!., 1989). Synechococcus 

PCC 6301 is known to contain two plasmids of ca. 8. 0 kb and 48.5 kb, which could 

potentially harbour the smtA gene. At an intermediate stage of this study, another 

researcher in the laboratory analysed total DNA isolated from R2-PIM8, a small plasmid 

cured (R2-SPc) derivative of Synechococcus PCC 7942, and showed that this strain 

contains smtA (Turner et al., 1992), indicating smtA to be either chromosomal or present 

on the 48.5 kb plasmid. Furthermore, it was also found that the sizes of San, Hindlll and 

BamHI restriction fragments containing the smtA gene in DNA isolated from 

Synechococcus PCC 6301 (Robinson eta!., 1990) do not correspond to the known sizes 

of San, Hindlll and BamHI restriction fragments of the 48.5 kb plasmid (Laudenbach et 

a!., 1983). 
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1.8 A note about taxonomic designations 

In view of the uncertain state of cyanobacterial taxonomy, this brief note outlines the 

taxonomic designations used in this thesis. In the literature, different taxonomic names 

have been appended to the same strain by different authors: Synechococcus PCC 6301 

(Synechococcus leopoliensis, Anacystis nidulans, Anacystis nidulans TX-20, Anacystis 

nidulans UTEX 625, Anacystis nidulans UTEX 1550); Synechococcus PCC 7942 

(Anacystis nidulans R2). Strains designate alternative names to Synechococcus PCC 

6301, all originated from the single isolate ofKratz and Myers (1955b) and are therefore 

identical. The name Agmenellum quadruplicatum implies membership of a different genus 

for a strain which has been described as similar in most respects to Synechococcus PCC 

6301 (Rippka eta!., 1979). Similarly, strains PCC 6301 and PCC 7942 have been 

designated the binomial Anacystis nidulans and are suggested to belong to one and the 

same species (Golden eta!., 1989; Wilmette & Starn, 1984). However, PCC 7942 has a 

higher transformation efficiency than PCC 63 01, and is thus the organism of choice for 

genetic manipulations. 

Aims 

The main aim of this research was to identify a molecular mechanism of metal 

tolerance in cyanobacteria. Laboratory strain of Synechococcus PCC 6301 was initially to 

be used as a model system. It was planned to develop Cd-tolerant cell lines of 

Synechococcus PCC 6301 by step-wise adaptation to increasing concentrations ofCd, and 

to investigate the role of the prokaryotic metallothionein gene, smtA, in acquisition ofCd 

tolerance. It was also planned to look for evidence of smtA homologues in axenic 

cyanobacterial strains isolated from metal-polluted sites, and to investigate whether similar 

mechanisms of metal tolerance operate in isolates from metal-polluted sites. 

This study was made possible by the isolation of the first prokaryotic metallothionein 

gene, smtA, by another researcher in the laboratory. Further characterisation of the smt 

locus, whilst this study was in progress, has affected the plan of this research and has 
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helped in designing future experiments, and interpreting results at different stages. The 

information obtained from this research may identifY a molecular mechanism of Cd­

tolerance which could operate in cyanobacteria selected for growth in metal polluted 

environments. 
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Chapter 2 

GENERAL MATERIALS AND METHODS 

2.1 Materials 

2.11 Cyanobacterial cultures and growth media 

Cyanobacterial strains were obtained from the Durham University Culture Collection. 

The cultures of Synechococcus D33, Synechococcus D839 and Synechocystis D840 had 

originally been obtained from sources other than the Pasteur Culture Collection. 

However, these strains are believed to have originated from similar sources as the cultures 

held in the Pasteur Culture Collection. For simplicity, in this thesis, Synechococcus D33 

(= PCC 6301), Synechococcus D839 (= PCC 7942) and Synechocystis D840 (= PCC 

6803) are referred to by their Pasteur Culture Collection designation (also Section 1.8). 

Cyanobacteria strains were cultivated in AC medium and MJH medium. The AC 

medium (ACM) was that ofKratz and Myers (1955a), modified according to Shehata and 

Whitton (1982). The mineral composition was as given in Table 2.1. MJH medium was 

as given in Table 2.2. Trace elements for both AC and MJH medium were the BG-11 

formula ofRippka et al. (1979) (Table 2.3). Buffering capacity was provided by 2.5 mM 

(0.6 g r 1) HEPES with the pH adjusted to 7.6 using 1.0 M NaOH. Cyanobacterial strains 

were cultivated under constant light (100 11mol photon m-2 s- 1 PAR) at 32°C, the light 

source being cool white fluorescent tubes. Cyanobacterial strains were cultured in 100 ml 

Erlenmeyer conical flasks fitted with silicone-rubber bungs to facilitate gaseous exchange. 

Larger quantities of cultures were grown in 2 L Erlenmeyer conical flasks, and constantly 

aerated by bubbling sterile aeration. 
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Strain Medium Country Details of site 
used of origin 

Synechococcus ACM 
sp. D33 
(= PCC 6301) 

Synechococcus ACM 
sp. D839 
(= PCC 7942) 

Synechocystis ACM 
sp. D840 
(= PCC 6803) 

Synechococcus ACM U.S.A Elvins Tailings Dam, Missouri 
sp. D562 +2mg Environment: Zn, 8 mg 1-1, 

1-1 Cd Growth temperature: 25°C 
Initially grown in AC medium + 
Zn, 5 mg 1-1 + P04 EDTA 
Isolated by: F.H.A. Shehata in 
1979 (Whitton et a/., 1981) 

Microchaete Mffi U.S.A Elvins Tailings Dam, Missouri 
sp. D578 + 0.25 mg Tolerates Zn, 20+ mg 1-1 

1-1 Cd Growth temperature: 25°C 
Initially grown in Chu 1 OE 
medium+ Zn, 5 mg 1-1 
(Whitton et at., 1981) 
Isolated by: J.W. Simon in 1979 

Calothrix Mffi England Laboratory Zn tank 
parietina + 0.25 mg Tolerates Zn, 9 mg 1-1 
D184 1-1 Cd Growth temperature: 25°C 

Initially grown in AD medium + 
P, 1 mg 1-1 +Fe, 0.4 mg 1-1 
Isolated by: V.P. Singh in 1972 

Oscillatoria Mffi England Gillgill Burn, Tyne Basin 
sp. D813 + 0.25 mg Pseudanabaena-like morphology 

1-1 Cd Growth temperature: 25°C 
Growth medium: Mffi + Cd, 0.25 
mg 1-1, Isolated by: M.J. 
Hutchinson in 1988 

Oscillatoria Mffi England Gillgill Burn, Tyne Basin 
sp. D814 + 0.25 mg Growth temperature: 25°C 

1-1 Cd Growth medium: Mffi + Cd, 0.25 
mg 1-1, Isolated by: M.J. 
Hutchinson in 1988 

2.12 E. coli strains and growth medium 

The E. coli (Kl2) strains used were JMIOl: [supE, (lac-proAB), {F'traD36, proAB, 

laclqZ MIS}, (rk+· mk+), mcrA(+)], and ·~ure': mcrA, (mcrBC-hsdRMS-mrr)J71, 
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sup£44, thi-1, lambda-gyrA96, re/AJ, lac, recB, recJ, sbcC, umuC::Tn5 (kanr), uvrC, [F', 

proAB, lacqZM15, TnlO, (tetr)]. JM101 was obtained from Northumbria Biologicals 

Ltd, Cramlington, Co. Durham, and 'Sure' was obtained from Stratagene Ltd, Cambridge, 

UK. E. coli strains were grown in Luria-Beltrami (LB) medium (Sambrook eta/., 1989). 

2.13 Plasmids 

The following commercially used plasmids were used: pUC19 and pGEM4z. pUC19 

was obtained from Boehringer Mannheim, Lewes, UK, and pGEM4z was obtained from 

Promega Ltd, Enterprise Rd., Southampton, UK. Other plasmids used during the course 

ofthis research were plliNR11 (Robinson eta/., 1990; 144 bp PCR fragment 

corresponding to the smtA coding region, in pUC19), plliNR49 (Huckle eta/., in press; 

1.8 kb Hindiii-Sall fragment containing the smt locus, in pGEM4Z), plliNR61 (Gupta et 

a/., 1992; 215 bp PCR fragment corresponding to the coding region of psaE, photosystem 

I gene from Synechocystis PCC 6803: reported by Chitnis eta/., 1989). A clone bank 

representing the pANL (large 48.5 kb plasmid of Anacystis nidulans R2) genome and the 

small plasmid (ca. 8.0 kb), constructed in pDPL13 (Gendel eta/., 1983) was obtained by 

the courtesy ofDr. D.E. Laudenbach. The plasmid bank pPLAN Ba1-Ba7 contain the 

11. 7, 10.6, 9.0, 6.2, 4. 7, 3. 7 and 2.25 kb BamHI fragments of the pANL plasmid, 

respectively. Plasmid pPLAN B2 contains the entire ca. 8.0 kb plasmid (Laudenbach et 

a/., 1983; 1985). The plasmids pPLAN Ba1-Ba7 and pPLAN B2 were transformed into 

transformation competent 'SURE' cells, and transformants checked by endonuclease 

restriction. 

2.14 Chemicals, reagents and other consumables 

General laboratory chemicals were obtained from Sigma Chemical Co., Poole, Dorset, 

and BDH (NELS), Newton Aycliffe, Co. Durham. Other chemicals and reagents are as 

below: 

Taq polymerase; Perkin-Elmer/Cetus, ILS Ltd, Newbury St., London, UK. 

Deoxynucleotide triphosphates; Boehringer Mannheim UK, Lewes, Sussex, UK. 
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Radiochemicals, hybridisation membranes ('Hybond N' and 'Hybond N+'); Amersham 

International Ltd, Bucks., UK 

Nitrocellulose filter discs BA85 (0.45 11M); Schleicher and Schluell, Dassel, FRG. 

3MM chromatography paper; Whatman Ltd, Maidstone, Kent, UK. 

Electrophoresis grade agarose; GIBCO-BRL Ltd, Paisley, Scotland. 

Bacto-Agar; Difco, Detroit, Michigan. 

Yeast extract, Trypticase peptone; Beckton Dickinson, F-38240, Maylan, France. 

Fuji RX X-ray film; Fuji Photo Film Co. Ltd, Japan. 

Phenol (re-distilled); International Biotechnologies Inc., Newhaven, Connecticut. 

Scintillation fluid (Ecoscint A); National Diagnostics, Mannville, New Jersey. 

Restriction enzymes. DNA modification enzymes, IPTG, Xgal; Northumbria Biologicals 

Ltd, Cramlington, Co. Durham, UK, and New England Biolabs, Inc., Bishop's Stortford, 

Herts., UK. 

Other commercially supplied consumables and equipment are acknowledged at the first 

reference to use. 

The water used in growth media and for work with DNA and RNA was double­

deionised (MilliQ- 17-18 MO cm-1 resistivity; Millipore, Watford, UK.). Water used for 

RNA manipulations was further treated for denaturation ofRNAses by addition of 

diethylpyrocarbonate (0.1% v/v), incubation at 25°C for 16 h, followed by autoclaving (15 

psi, 20 min). 

Glassware used for cyanobacterial culture, preparation and storage of metal stock 

solutions, and experiments involving use of metals was soaked in 4% Nitric acid (v/v in 

distilled water), 2 h, rinsed thoroughly with distilled water and dried before use. 
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2.2 Buffers and metal solutions 

2.21 Buffers 

Restriction enzyme and DNA modification enzyme reaction buffers were supplied 

with the enzymes. Those buffers not described in individual protocols were as described 

by Sambrook et al. (1989). 

2.22 Metal solutions. 

Metals were used as the following salts: 

CdC12; ZnC12; CuC12.2H20. Stock solutions were prepared in MilliQ water, and 

autoclaved (15 psi, 20 min) prior to use. 

2.3 Methods 

2.31 Growth and cell counts 

Growth of cyanobacteria was monitored by measuring absorbance at 540 nm, using a 

Titretek micro-titre plate reader (Flow Laboratories). Cell counts for a measure of cell 

density mr1 was calculated using a Improved Neubauer haemacytometer (depth 0.1 mm). 

2.32 General molecular biology methods 

Those methods not described in detail in this section or in the separate methods 

sections for each chapter were performed as described by Sambrook et al. (1989). 

2.321 Preparation of nucleic acids from cyanobacteria 

2.321a Preparation of total nucleic acids (non-CsCI method) 

This method was used for preparation of genomic DNA (extracted as total nucleic 

acid) from cell lines AO, A0.8, Al.3 and Al.7 (described in Section 4.3). This method has 
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previously been described for the isolation of nucleic acids from plant cell cultures 

(Robinson et al., 1988), but excluding CsCl gradients. 

a) Cyanobacterial cells (1000 ml culture) were harvested by centrifugation (8000 x g, 10 

min). 

b) Cells were resuspended in 1.0 ml DNA extraction buffer (1.4 MNaCl, 100 mM Tris.Cl 

pH 8.0, 20 mM Na2EDTA), pipetted dropwise into liquid nitrogen and ground to a fine 

powder, using a pestle and mortar pre-cooled with liquid nitrogen. 

c) The powder was transferred to sterile Corex tube with a sterile spatula. To the fine 

powder was added 100 fll B-mercaptoethanol and boiling DNA extraction buffer (same 

volume as the packed cell volume). 

d) Before the sample thaws, an equal volume ofPCA (1 :4:5 DNA extraction buffer: 

Equilibrated phenol: chloroform/Isoamyl alcohol- 24:1 v/v) was added, mixed well by 

inversion and allowed to thaw. 

e) The sample was subjected to centrifugation at 5,000 x g, 5 min (Beckman JA-20 rotor), 

room temperature, and the upper aqueous phase collected. 

f) PCA extraction followed by chloroform/isoamyl alcohol extraction was repeated till a 

clear interface was obtained. 

g) The total nucleic acids were precipitated after the last extraction by adding 115 volume 

Ammonium acetate (5 M) and 2.5 volumes of -20°C 100% ethanol, then stored overnight 

at -20°C. 

h) The nucleic acids were pelleted by centrifugation, 10000 x g, 20 min, washed twice with 

70% ethanol (in water), partially dried in a vacuum, and resuspended in sterile MilliQ 

water. 

2.321b Preparation of genomic DNA from cyanobacteria (CsCI method). 

This method was used for isolation of genomic DNA from cell lines CO, C 1. 4, C 1. 8, 

C2.6 and C3.2 (described in Section 5.3). Steps a-e (described above) were essentially the 

same as described in Section 2.32la, followed by: 
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f) To every 4.0 ml ofthe supernatant was added 4.3 g ofCsCl, and gently mixed till all the 

CsCl goes into solution. 

g) To the above solution was added 0.25 ml ethidium-bromide stock (10 mg mr 1). 

h) The solution was placed in 1/2 x 2 inch Beckman quick seal centrifuge tubes and the 

tubes sealed. 

i) The tubes were placed in VTi65 rotor and centrifuged (Sorvall OTD65B) at 50000 x g, 

15°C for at least 12 h. 

j) After termination of spin the tubes were visualised under ultra-violet lamp, and the top 

band corresponding to genomic DNA was eluted by the method described in Sambrook et 

al. (1989). 

k) Ethidium-bromide from the eluted solution was removed by several extraction's with 

equal volumes of isoamyl alcohol (saturated with water and CsCl), the upper layer being 

that of isoamyl alcohol. 

I) Salts were removed from the solution containing genomic DNA and CsCl by dialysis 

against large volumes ofTE buffer (10 mM Tris.Cl, 1 mM EDTA, pH 8.0) at 4°C for 

atleast 16 h, with continuous stirring. 

m) Genomic DNA was precipitated by adding 1/5 volume of ammonium acetate (5 M) and 

2. 5 volumes of -20°C 100% ethanol, mixed well by inversion, and left overnight at -20°C. 

n) The nucleic acid was pelleted by centrifugation (10000 x g, 20 min, 4°C, Beckman JA-

20 rotor), washed with 70% ethanol, partially dried under vacuum and resuspended in 

sterile MilliQ water. 

2.321c Preparation of RNA from cyanobacteria 

The RNA from cyanobacteria was isolated as total nucleic acids using essentially the 

same method as described by Dzelzkalns et al. (1988). 

a) Cyanobacterial cells were harvested (50-100 ml culture), 8000 x g, 10 min, 4°C. 

b) Cells were resuspended in small volume ofTE buffer (pH 8.0), pipetted dropwise into 

liquid nitrogen and ground to a fine powder using a sterile precooled (with liquid nitrogen) 

pestle and mortar. 
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c) Ground cells were transferred to sterile Co rex tubes, equal volume of prewarmed 

(37°C) lysis buffer (50 mM Tris.CI, 100 mM NaCI, 20 mM EDT A, 2% w/v SDS, 60 mM 

13-mercaptoethanol, 10 ~g mr1 Proteinase K, pH 8.0) added, mixed well and incubated at 

37°C, 30 min. 

d) The solution was passed several times through a 19 gauge needle if found to be very 

viscous. 

e) The solution was extracted with phenol/chloroform (5: 1, lysis buffer saturated) until a 

clear interface was obtained, aqueous layer collected and adjusted to 0.5 M ammonium 

acetate. 

f) RNA was precipitated by adding 2.5 volumes -20°C 100% ethanol, and incubated at-

20°C 2 h (or -70°C 30 min). 

g) Nucleic acids were pelleted by centrifugation at 12000 x g, 30 min, pellet washed with 

70% ethanol, partially dried under vacuum and resuspended in small volume of sterile 

MilliQ water (1 0-20 ~1). Store at -20°C. 

The integrity of the RNA was checked, and approximate quantity estimated by 

electrophoresis on a 1% agarose mini-gel. Prior to separation of RNA by a denaturing 

formaldehyde-agarose gel electrophoresis (Section 2.328), the RNA sample was mixed in 

a solution containing 50% formamide, IX MOPS (final concentrations), incubated at 70°C 

for 10 min, then chilled on ice. 

2.322 Plasmid mini-preparations from E. coli by alkaline lysis 

(modified from Birboim and Doly, 1979) 

a) E. coli cultures (5 ml) were grown in LB broth for 16 hat 37°C, with appropriate 

selection, dependent on the plasmid concerned. 

b) An aliquot ( 1. 5 ml) was removed to an Eppendorf microfuge tube, cells harvested by 

centrifugation (12000 x g, 1 min), and the supernatant removed. 

c) The cells were resuspended in 100 ~1 of ice cold buffer (50 mM glucose, 25 mM Tris.Cl 

(pH 8.0), 10 mM EDTA and incubated at room temperature for 5 min. 
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d) 200 f..ll of alkaline SDS solution (0.2 N NaOH, 1% SDS) was added, the contents mixed 

by inversion and incubated on ice for 10 min. 

e) The solution was mixed and 150 f..ll ofhigh salt solution (3M sodium acetate, pH 4.8) 

added, the contents mixed thoroughly by inversion and placed on ice for a further 10 min. 

t) After microcentrifugation (12000 x g, 5 min), the supernatant was removed to a fresh 

tube, RNAse A was added to a final concentration of20 f..lg mr1, and incubated at 37°C 

for 30 min. 

g) An equal volume of phenol chloroform ( 1: I v/v) was added, the contents mixed, 

centrifuged at 12000 x g, 5 min., and the aqueous phase transferred to a fresh tube. 

h) 2.5 volumes of -20°C 100% ethanol was added and incubated at -70°C for 30 min. 

i) The plasmid DNA was recovered by microcentrifugation (12000 x g, 30 min), the pellet 

washed with 70% ethanol (twice) and partially dried under vacuum. 

j) Plasmid DNA was resuspended in 16 f..ll of water, 4 f..ll of 4 M NaCl and 20 f..ll of 13% 

polyethylene glycol added, and incubated on ice for 30 min. 

k) The purified plasmid DNA was pelleted by centrifugation, washed with 70% ethanol, 

partially dried under vacuum and finally resuspended in 20 f..ll of sterile MilliQ water. 

2.323 Plasmid maxi-preparations from E. coli 

Large-scale preparations ofplasmid DNA was essentially a scale-up of steps (a-i) 

described in Section 2.322. 500 ml of E. coli culture grown under appropriate selection 

was harvested (by centrifugation at 4000 x g; Beckman centrifuge). Centrifugation in the 

steps to follow was performed using 30 ml glass Corex tubes (10000 x g; Beckman JA-20 

rotor). The following steps were incorporated (after step i of Section 2.322) when DNA 

of greater purity was required. 

a) The dried pellet was resuspended in 8 ml ofTE buffer (pH 8.0), and 8.6 g ofCsCl 

added, followed by 0.45 ml ofethidium bromide solution (10 mg mr\ 

b) The solution was placed in two 112 x 2 inch quick-seal centrifuge tubes (ca. 5 mi 

capacity), and the tubes heat sealed. 
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c) Centrifugation was performed at 50000 x g, 15°C for 16 h using a Sorvall OTD65B 

ultracentrifuge. 

d) Plasmid bands were visualised under UV lamp, and the plasmid band (lower) eluted by 

the procedure described in Sambrook et al. (1989). 

e) Ethidium bromide was removed by several extraction's with isoamyl alcohol (saturated 

with CsCl and water), and the salts removed by dialysis against TE buffer (pH 8.0) at 4°C. 

f) Plasmid DNA was precipitated using 2. 5 volumes of 100% ethanol, washed with 70% 

ethanol, partially dried under vacuum and resuspended in sterile MilliQ water. 

2.324 Preparation and transformation of competent E. coli cells 

The method used for the preparation of frozen transformation competent E. coli cells 

was as described by Alexander et al. (1984). Transformation of E. coli competent cells 

was performed as follows: 

a) An aliquot of competent cells (200 Jll) was thawed on ice. Plasmid DNA (1-1 0 

ng)/ligation reaction was diluted to 100 Jll in TE buffer (pH 8.0) and mixed with 

competent cells. 

b) The tube was incubated on ice for 30 min., followed by heat shock for 5 min at 37°C. 

c) The transformation reaction was diluted to 2 ml with 2 XL broth, prewarmed to 3 7°C, 

and incubated for 2 hat 37°C (under shaking conditions). 

d) Aliquots of transformed cells were then plated onto LB agar containing the desired 

selective agent. 

2.325 Agarose gel electrophoresis of DNA and isolation of DNA restriction fragments 
from agarose gels 

Agarose gel electrophoresis of DNA was performed as described by Sambrook et al. 

(1989). Generally 0.7% agarose gels were used, but varying concentrations upto a 

maximum of 2% were used depending on the size of fragment to be separated. Maxi and 

mini gels were cast using TBE buffer (0.089 M Tris-borate, 0.002 M EDTA). DNA was 

loaded into wells of the gel after addition of loading dye (0.25% w/v each of bromophenol 
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blue and xylene cyanol, 15% w/v Ficoll 400). Generally the size markers used were 

lambda phage DNA restricted with Pstl, or DNA kilobase marker (GIBCO-BRL, Life 

Technologies Ltd., Renfrewshire, UK.). 

Restriction fragments were isolated from agarose gels by either ofthe methods 

described below: 

a) Electroelution. 

Gel slice containing the restriction fragment of interest was cut from the gel using a 

clean scalpel blade, and DNA eluted from the agarose block by electroelution (Sambrook 

et al., 1989). 

b) Silica fines method. 

Gel slice containing the DNA was placed in an Eppendorftube and 1 ml of sodium 

iodide solution (6.05 M sodium iodide, 0.11 M sodium sulphite; filter sterilised and 

saturated with sodium sulphite) added. The tube was placed at 65°C until the gel block 

melts. 10 Ill of silica fines (quantity depending on amount ofDNA present) were added 

(silica fines were a courtesy ofDr. R.G. Alexander. Now available as 'Finebind': 

Amersham International Ltd, Bucks., UK.). The solution was mixed and incubated at 

room temp for 20 min., fines pelleted by centrifugation at 12000 x g for 15 s, washed with 

70% ethanol and resuspended in 50 Ill TE buffer (pH 8.0). The DNA was eluted at 37°C 

for 30 min. with intermittent mixing by inversion. The fines were pelleted at 12000 x g for 

15 s, and the supernatant collected. 

The DNA eluted from either of the two procedures was purified by phenol extraction 

and precipitated using 2.5 volumes of 100% ethanol in a final concentration of 1 mM 

ammonium acetate. For DNA less than 1 kb in size, 1 mM glycogen was added to assist 

precipitation. The precipitated DNA was washed with 70% ethanol, dried under vacuum 

and resuspended in sterile MilliQ water. 
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2.326 Manipulations of DNA fragments 

General methods employed for manipulations ofDNA fragments (restriction, ligation, 

and in situ screening for recombinant clones) were as described by Sambrook et al. 

(1989). 

2.327 Radioactive labelling of DNA fragments 

Double-stranded DNA fragments were labelled by random priming using (a-

32P)dCTP with Klenow polymerase. The protocol used was the same as described by 

Feinberg and Vogelstein (1983). Following the labelling reaction (16 h, room temp), 

unincorporated radioactivity was separated from the labelled DNA fragments by Sephadex 

G-50 gel permeation chromatography columns (10 rnl volume). 

2.328 Formaldehyde-agarose gel electrophoresis of RNA 

Electrophoresis ofRNA was done by preparation ofFormaldehyde-agarose gels and 

electrophoresis as described by Sambrook et al. (1989). Ribosomal RNA bands were used 

as size markers for these gels. The rRNA bands produced by the electrophoresis ofRNA 

extracted from Synechococcus and their sizes are indicated where gels are presented. 

2.329 Southern and northern blotting 

DNA and RNA was transferred to nylon hybridisation membranes (Hybond-N) 

essentially as described by Sambrook et al. (1989). DNA was denatured prior to transfer 

by soaking the gel in an excess of denaturing solution (0.5 N NaOH, 1.5 M NaCl) for 1 h, 

followed by neutralisation of the gel by soaking in an excess of neutralisation solution ( 1. 5 

M NaCl, 0.5 M Tris; pH 7.5) for 1 h. RNA gels were soaked in distilled water to remove 

formaldehyde prior to transfer. Gels were blotted for 16 h using 1 OX SSC (0.15 M NaCl, 

0.015 M sodium citrate; pH 7.0), after which complete transfer of nucleic acids had 

occurred. DNA was fixed to the membrane by baking, whereas RNA was fixed with UV 
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illumination, followed by baking, under vacuum at 80°e for 1 h prior to hybridisation to 

radioactive probes. 

Alternatively, DNA was transferred to nylon hybridisation membranes (Hybond-N+) 

by blotting for 16 h using 0.4 N NaOH as the transfer buffer. The protocol does not 

require denaturation and neutralisation of gel prior to transfer, and no fixation step is 

required prior to hybridisation. 

2.3210 Hybridisation of radioactive DNA probes to filter-immobilised nucleic acids 

All hybridisation reactions were carried out in heat sealed polyethylene bags contained 

in plastic boxes, and placed in temperature controlled water baths. Northern blots were 

hybridised to radioactive probes at 42°e, whilst Southern blots were hybridised at 65°e, 

and hybridisation's continued for 16 h. In both cases, filters were prehybridised for 1 h 

prior to addition of probe. The solutions used for prehybridisation and hybridisation of 

Southern and northern blots were as described by Sambrook eta/. (1989). After 

hybridisation, the filters were washed using 2X SSe, 0.1% SDS (10 min, room temp.), 

followed by washing with IX SSe, 0.1% SDS (10 (RNA)/20 (DNA) min, 42/65°e). The 

filters were then sealed in polyethylene bags, placed on 3MM paper, oriented using several 

spots of radioactive ink, and exposed to X-ray film. After film development, the filter 

could be washed to a higher stringency, or completely stripped of radioactivity by pouring 

boiling 0.1% SDS onto the filter and allowing it to cool to room temperature (2X). The 

filter could then be re-probed as desired. 

2.3211 Quantification of genomic and plasmid DNA 

DNA concentrations for routine manipulations were estimated by measurement of 

absorbance at 260 nm. However, DNA concentration in samples of genomic DNA and 

plasmid (pJHNRll) to be used for gene copy number reconstructions was estimated 

accurately by the Fluorometric Diaminobenzoic acid (DABA) method of Thomas and 

Farquhar (1978). Aliquots (1-5 J..ll) of standard DNA (Lambda) concentrations and the 

unknown sample.swere taken in Eppendorftubes and dried under vacuum. DABA was 

48 



then dissolved at 400 mg mr1 in H2o immediately prior to use. 20 fll ofDABA was 

added to each tube containing DNA samples, mixed well and incubated at 60°C, 30 min. 

Samples were quickly cooled on ice and diluted with 1 ml, 1 M HCI. Fluorescence was 

read at an excitation wavelength of 405 nm and emission wavelength of 505 nrn. 

Concentration of DNA in unknown samples was calculated from the standard calibration 

curve. 

2.3212 Estimation of gene copy equivalents 

Gene copy equivalents were calculated from first principles as follows: 

1 mole of single copy gene is contained in the gram equivalent weight of the haploid 

genome. (Genome size of Synechococcus PCC 6301 = 3.212 x 106 bp, Herdman et al., 

1979.) 

1 mole= 3.212 x 106 x 625 g, where Mol. wt. of 1 bp = 625 

6 x 1023 sequences= 3.212 x 106 x 625 g, where 6 x 1023 is the Avogadro No. 

3.212 x 106x 625 
1 sequence = ~-----

6 X 1023 

Therefore, in 10 flg of genomic DNA there are 

6 X 1023 X 10 X 10-6 

sequences 
3.212 X 106 X 625 

Now, vector (pUC19) +insert (smtA) = 2686 + 144 = 2830 bp 

Therefore, 

2830 X 625 
1 sequence = grams 

6 X 1023 

6x1023x10x10~ 2830x625 
sequences = x 

3.212x106x625 6x1023 

6xl023x10xl06 

grams 
3.212x106x625 
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2830x10x10-6 

3.212x106 
grams 

= 8.8107 X 10-9 grams 

= 8.8107 ng 

Therefore, 10 J..lg of genomic DNA would contain 2. 988 x 109 copies of the genome, 

and an equivalent number of copies of smtA would be contained in 8.81 ng ofpJHNRll 

DNA. 

2.3213 Use of polymerase chain reaction (PCR) for in vitro amplification of DNA 

PCR reactions for in vitro amplification of smtA and psaE (to be primarily used for 

preparation of radioactive probes) were carried out essentially as described by Saiki eta/. 

(1988) with minor modifications as described by Fordham-Skelton eta/. (1990). Reaction 

conditions were as follows: 200 J..lM each of dATP, dTTP, dCTP and dGTP, 50 mM KCl, 

10 mM Tris.Cl (pH 8.3), 1.5 mM MgC12), 0.01% gelatin, in a final reaction volume of 50 

J..ll. Primers used in amplification reactions were as described by Robinson eta/. (1990) 

and Gupta eta/. (1992). Taq polymerase was added to the reaction last, contents mixed 

and overlaid with mineral oil. Reactions were carried out using a Hybaid intelligent 

heating block. Reactions were subjected to 28 cycles of the following series of 

temperatures and times: denaturation 92°C for 1.5 min, annealing 55°C for 1.5 min, 

extension 72°C for 1.5 min. Amplified DNA samples were stored at -20°C prior to further 

analysis. Any deviations from these reaction conditions are stated for individual reactions. 

2.3214 Automated DNA sequence analysis 

Direct sequencing of plasmid clones was performed by the dideoxy-sequencing 

method of Sanger eta/. (1977), using fluorescent dye-linked universal M13 primers. 

Sequences were analysed using an applied Biosystems 370A DNA sequencer. Plasmids 

were sequenced in both directions using forward and reverse primers. Reactions were 

prepared according to protocols described by the manufacturer (Model370A DNA 

sequencing system, User's manual version 1.3A, October 1988). 
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2.3215 Synthesis of oligonucleotides 

Oligonucleotides were synthesised by using an Applied Biosystems 381A DNA 

synthesiser operated with a standard synthesis programme. After cleavage and 

deprotection the oligonucleotides were dried under vacuum, twice resuspended in water 

and vacuum dried. Oligonucleotides were stored at -20°C either dry or as aqueous 

solutions and were used without further purification. 
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TABLE 2.1: Mineral salt composition of modified AC medium. 

Compound/ Molecular/ stoc_~ cone. medi~r cone. total :\ement cone. 
element atomic wt. (g I ) (mg I ) (mM) (mg I ) (mM) 

CaCI2.2H20 147.020 19.86 19.86 0.135 

Ca 40.080 5.414 5.414 0.135 

Cl 35.453 9.578 24.072 0.679 

NaCl 58.440 46.000 23.000 0.394 

Na 22.989 9.048 

Cl 35.453 13.953 

KN03 101.110 100.000 500.000 4.945 

K 39.098 193.344 

N 14.007 69.266 69.266 4.945 

MgS04.7H20 246.47 50.000 250.000 1.014 

Mg 24.305 24.653 24.653 1.014 

s 32.060 32.519 32.559 1.015 

K2HP04.3H20 228.230 13.103 13.103 0.057 

K 39.098 4.489 197.834 5.060 

p 30.974 1.778 1.778 0.057 

Na2EDTA 372.240 1.667 1.667 0.005 

Na 22.989 0.206 28.800 1.253 

EDTA 326.262 1.461 1.461 0.005 

FeCI3.6H20 270.300 1.210 1.210 0.005 

Fe 55.847 0.250 0.250 0.005 

Cl 35.453 0.476 

Buffering NaOH 40.000 40.000 34.000 0.850 

Na 22.989 19.541 
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TABLE 2.2: Mineral salt composition ofMn-I medium. 

Compound/ Molecular/ stoc_~ cone. medi~r cone. total :\ement cone. 
element atomicwt. (g 1 ) (mg 1 ) (mM) (mg 1 ) (mM) 

Ca(N03)2 236.150 117.840 117.840 0.499 

Ca 40.080 20.000 20.000 0.499 

N 14.007 13.978 26.987 1.926 

NaCl 58.440 15.960 15.960 0.273 

Na 22.989 6.278 

Cl 35.453 9.682 

MgS04.7H20 246.47 101.410 101.410 0.411 

Mg 24.305 10.000 10.000 0.411 

s 32.060 13.192 13.192 0.411 

KN03 101.110 93.910 93.910 0.928 

K 39.098 36.310 

N 14.007 13.009 

KH2P04 136.090 7.820 7.820 0.057 

K 39.098 2.246 38.556 0.986 

p 30.974 1.778 1.778 0.057 

Na2EDTA 372.240 13.350 3.337 0.008 

Na 22.989 0.412 26.231 1.141 

EDTA 326.262 2.924 2.924 0.008 

FeC13.6H20 270.300 9.700 2.425 0.008 

Fe 55.847 0.501 0.501 0.008 

Cl 35.453 0.954 10.636 0.300 

Buffering NaOH 40.000 40.000 34.000 0.850 

Na 22.989 19.541 
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TABLE 2.3: Mineral salt composition ofmicroelements for modified AC and MJH 
medium. 

Compound/ Molecular/ stoc_, cone. medi~~ cone. total element cone. 
element atomic wt. (g I ) (mg I ) (mM) (mg r 1) (mM) 

CoS04.7H20 281.100 0.042 0.0420 0.0002 

Co 58.933 0.0088 0.0088 0.0002 

s 32.060 0.0048 

CuS04.sH20 249.680 0.079 0.0790 0.0003 

Cu 63.546 0.0201 0.0201 0.0003 

s 32.060 0.0101 

H3B03 61.830 2.86 2.8600 0.463 

B 10.810 0.5000 0.5000 0.0463 

MnCI
2

.4H
2

0 197.920 1.810 1.8100 0.0091 

Mn 54.938 0.5024 0.5024 0.0091 

CI 35.453 0.6484 0.6484 0.0182 

Na2Mo04 241.950 0.390 0.3900 0.0016 

Na 22.989 0.0741 0.0741 0.0032 

Mo 95.940 0.1546 0.1546 0.0016 

ZnS04.7H20 287.550 0.222 0.2220 0.0008 

Zn 65.380 0.0505 0.0505 0.0008 

s 32.060 0.0248 0.0397 0.0012 
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3.1 Introduction 

Chapter 3 

LOCALISATION OF smtA 

It has previously been proposed that the rapid development of Cd-tolerance in 

Synechococcus TX-20 may involve the amplification of an MT gene located 

extrachromosomally (Section 1. 7), since Synechococcus sp. is known to have plasmids 

(Section 1.7). However, amplification ofMT genes (initially chromosomal), associated 

with metal tolerance, has also been described in metal-tolerant eukaryotic cell lines 

(Section 1.631 ). An understanding of chromosomal or extrachromosomal localisation of 

smtA is clearly important. The work presented below was performed to establish smtA 

localisation. 

3.2 Results 

3.21 Analysis of genomic DNA, pPLAN Ba1-Ba7 and pPLAN B2 

Restriction ofplasmids pPLAN Ba1-Ba7 and pPLAN B2 with BamHI released the 

various BamHI fragments of the 48.5 kb plasmid and the small (ca. 8.0 kb) plasmid, from 

the vector pDPL13 (Fig. 3.1A). Genomic DNA isolated from Synechococcus PCC 6301 

was restricted with BamHI and used as a control. 

The restricted DNA was analysed by Southern hybridisation to radiolabelled Hindiii­

Sall fragment isolated from pJHNR49. Hybridisation to the smt locus was observed in 

BamHI restricted genomic DNA from Synechococcus PCC 6301, but no hybridisation was 

detected to any of the Bam HI restriction fragments of the 48.5 kb or the ca. 8.0 kb 

plasmid (Fig. 3.1B). 

The filter was stripped of radioactivity and re-hybridised to a radiolabelled PCR 

amplification product (144 bp) corresponding to the coding region of smtA. This 

identified hybridisation of smtA to the genomic DNA. Additionally, weak hybridisation 

was observed only to the 10.6 kb BamHI fragment released from pPLAN Ba2 (Fig. 3.1C). 

55 



However, the size of pPLAN Ba2 does not correspond to the size of the hybridising 

fragment in genomic DNA 

3.22 Analysis of pPLAN Ba2 and genomic clone 

Restriction endonuclease Pstl restricts within the coding region and upstream of smtA, 

releasing a fragment of213 bp. smt clone pJHNR49 and pPLAN Ba2 were restricted with 

Pstl and fragments separated on an agarose gel (Fig. 3 .2A). Low molecular weight 

(corresponding to 213 bp and smaller) products and a single high molecular weight 

product (corresponding to the vector plus the rest of the smt locus) was observed in 

pJHNR49, whilst, large numbers of low and high molecular weight products were 

observed with pPLAN Ba2 (Fig. 3 .2A). However, the low molecular weight products of 

pPLAN Ba2 did not exactly correspond in size to the 213 bp fragment ofpJHNR49. 

The Pstl restricted DNA from pJHNR49 and pPLAN Ba2 was hybridised to 

radiolabelled 144 bp smtA fragment (Fig. 3.2B). Strong hybridisation was observed to the 

213 bp restriction fragment of pJHNR49 and weak hybridisation to the high molecular 

weight fragment (vector plus the remaining smt locus). In pPLAN Ba2 only weak 

hybridisation was observed to two restriction fragments of ca. 2.0 and 10.0 kb. Moreover, 

no hybridisation was observed to any of the low molecular weight (ca. 200 bp) restriction 

products (Fig. 3.2B). 

3.23 Genomic DNA analysis 

Genomic DNA isolated from Synechococcus PCC 6301 was restricted with Hindiii­

Sall, separated on agarose gels (Fig. 3.2C) and hybridised to radiolabelled 2.0 kb Pstl 

fragment ofpPLAN Ba2 (identified by hybridisation to smtA; Section 3.22). The 2.0 kb 

Pstl fragment identified its homologue in the form of two hybridising fragments of ca. 1. 8 

and 6.0 kb (Fig. 3.2D). Re-hybridisation of the filter with radiolabelled 144 bp smtA 

fragment revealed only a single hybridising fragment of 1. 8 kb (Fig. 3 .2E). The second 

fragment of ca. 6.0 kb observed upon hybridisation to the 2.0 kb Pstl fragment ofpPLAN 

Ba2 was not detected when hybridised to smtA. 
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3.3 Summary 

The observations can be summarised as follows: 

1) No hybridisation of BamHI fragments from pPLAN Ba1-Ba7 and pPLAN B2 to 

radiolabelled Hindlii-Sa!I fragment released from pJHNR49 was observed. 

2) Weak hybridisation ofpPLAN Ba2 was observed to radiolabelled 144 bp smtA 

amplification product. 

3) The restriction fragment in pPLAN Ba2 hybridising to smtA does not correspond in size 

to that observed in the genomic DNA from Synechococcus PCC 6301. 

4) Restriction of pPLAN Ba2 with Pstl did not release any fragment corresponding to that 

in pJHNR49 (213 bp). 

5) Pstl restricted pJHNR49 showed strong hybridisation of the 213 bp fragment to smtA, 

whilst weak hybridisation to two different larger restriction fragments was observed in 

pPLANBa2. 

6) The sizes of the hybridising fragments in Pstl restricted pPLAN Ba2 and pJHNR49 did 

not correspond. 

7) Hybridisation of Hindiii-Sali restricted genomic DNA from Synechococcus PCC 6301 

to radiolabelled 2. 0 kb Psti fragment from pPLAN Ba2 identified two restriction fragments 

of ca. 1.8 and 6.0 kb. 

8) Hybridisation of Hindiii-Sali restricted genomic DNA from Synechococcus PCC 6301 

to smtA always identifies only a single restriction fragment of 1.8 kb. 

It is concluded that certain sequences with weak homology to smtA are present in 

pPLAN Ba2. However, a lack of correlation in restriction fragment lengths and difference 

in hybridisation intensities between smtA and pPLAN Ba2 suggests that the prokaryotic 

metallothionein locus, smt, in Synechococcus PCC 6301 is localised on the chromosome. 

57 



Figure 3.1. Localisation of smtA. Genomic DNA isolated from: lane 1, Synechococcus 

PCC 6301; and plasmid DNA isolated from: lane 2, pPLAN Ba1; lane 3, pPLAN Ba2; lane 

4, pPLAN Ba3; lane 5, pPLAN Ba4; lane 6, pPLAN BaS; lane 7, pPLAN Ba6; lane 8, 

pPLAN Ba7 and lane 9, pPLAN B2; was restricted with BamHI. Panel A: visualisation of 

ethidium bromide stained DNA, panel B: hybridisation to Hindiii-Sall fragment carrying 

the smt locus, and panel C: hybridisation to smtA. 
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Figure 3.2. Localisation of smtA. Plasmid DNA isolated from: lane 1, pPLAN Ba2; lane 

2, pJHNR49 and lane 3, pPLAN Ba2; was restricted with Pstl and separated on agarose 

gel. Panel A: visualisation of ethidium bromide stained DNA, and panel B: hybridisation to 

smtA. 

Genomic DNA isolated from Synechococcus PCC 6301 (panel C) was hybridised to panel 

D: 2.0 kb Pstl fragment from pPLAN Ba2, and panel E: hybridisation to smtA. 
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Chapter 4 

STEP-WISE SELECTION OF Synechococcus PCC 6301 CELLS TO INCREASED 
Cd-TOLERANCE 

4.1 Introduction 

Metal-tolerant cell lines of cyanobacteria and different eukaryotic organisms have 

previously been developed in the laboratory by step-wise selection (Sections 1. 52, 1.631 ), 

but genes involved in the acquisition oftolerance have previously not been identified in 

cyanobacteria. 

4.2 Materials and Methods 

4.21 Step-wise selection of Cd-tolerant cell lines 

A culture of Synechococcus PCC 6301 that had undergone prolonged maintenance in 

liquid medium was used for step-wise selection. Synechococcus PCC 6301 cell lines were 

developed for tolerance to supra-optimal concentrations of Cd by repeated sub-culturing in 

liquid medium containing a range of Cd concentrations. Cells that grew in the highest 

concentration of Cd were used as inocula for further subculture. 100 J.ll of a culture (cell 

density of culture: Ca. 1 X 106 - 5x 106 cells mr 1) WaS inoculated into 1 0 ml of fresh 

medium. The most tolerant cell line obtained after each step of selection was maintained in 

liquid media supplemented with the respective Cd concentration. 

4.3 Results 

Step-wise selection of a Synechococcus PCC 6301 culture (AO) resulted in cell lines 

tolerant to 0.8 J.!M Cd (A0.8), 1.3 J.!M Cd (A1.3) and 1. 7 J.!M Cd (AI. 7), whilst, initial 

tolerance in non-selected cell line AO was only at 0.4 J.!M Cd. Cd-tolerant cell lines were 

maintained in the respective Cd concentrations and analysed as follows. 
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4.31 Growth of non-selected (AO) and Cd-tolerant lines (AO.S, A1.3 and Al. 7) in Cd­
containing media 

A linear relationship between increase in absorbance (540 nm) and cell density of a 

culture of Synechococcus PCC 6301 was obtained. Growth (increase in cell density) of 

AO and the three Cd-tolerant lines (A0.8, A1.3 and A1.7) was monitored (absorbance at 

540 nm) in media supplemented with different concentrations ofCd (0 ~M, 0.8 ~M, 1.3 

JlM, 1. 7 J.1M) (Fig. 4.1 ). The inoculum density was 1 X 1 o6 cells mr 1. 

The growth of AO was partially inhibited in media containing 1.3 11M Cd (Fig. 4.1 C), 

but was totally inhibited in the presence of 1. 7 11M Cd (Fig. 4.1D). The growth of A0.8 

was also partly inhibited at 1. 7 ~M Cd. However, no significant difference in growth, 

relative to A0.8 and AO was observed for A1.3 and A1.7, in media supplemented with 1.7 

11M Cd (Fig. 4.1D). The four lines grew equally well in non-supplemented media. 

4.32 Analysis of genomic DNA isolated from non-selected (AO) and Cd-tolerant cell 
lines AO.S, A1.3 and Al. 7 

Ten micrograms of genomic DNA isolated from AO, A0.8, Al.3 and Al. 7 was 

restricted with Sal!. Standard amounts of plasmid DNA (pJHNRll ), corresponding to 1-

6 and 8 gene copy number equivalents, was restricted with EcoRI. The restricted DNA 

was separated on agarose gel, visualised and transferred to nylon membrane for 

hybridisation. 

An increase in hybridisation to smtA was observed in genomic DNA isolated from 

A1.7. The increase in hybridisation was ca. four-fold in A1.7, relative to that for AO, as 

judged from gene copy number reconstruction's (Fig. 4.2A). However, ethidium-bromide 

stained gel shows that equivalent amounts of genomic DNA from the four lines was loaded 

on the gel (Fig. 4.2C). 

The filter was stripped of radioactivity and re-hybridised to a radio labelled fragment of 

thepsaE gene (released from clone pJHNR61) (Fig. 4.2B). No increase in hybridisation of 

psaE to A 1. 7, relative to AO, was observed; indeed, a slight decrease in hybridisation to 

DNA isolated from Al. 7 was evident. 
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4.33 Analysis of genomic DNA from AO, AO.S, A1.3 and A1.7 after subsequent 
maintenance 

Genomic DNA isolated from the non-selected AO and Cd-tolerant lines A0.8, A1.3 

and A1. 7 was further analysed by Southern hybridisation after 2, 4, 7 and 12 subcultures in 

liquid media supplemented with the respective Cd concentrations (Fig. 4.3). Genomic 

DNA was first hybridised to radiolabelled smtA, followed by hybridisation to psaE. All 

Southern blots were done with gene copy number reconstruction's but data has only been 

shown in Fig. 4. 1. 

smtA hybridisation of genomic DNA isolated after two subcultures shows increased 

hybridisation of smtA, relative to AO, to the DNA from Cd-tolerant cell lines A1.3 and 

A1. 7 (Fig. 4.3A, panel 2). In addition, unique restriction fragments both larger and smaller 

than that detected in AO were observed in DNA from Al.3. Moreover, only larger unique 

restriction fragments in addition to that observed in AO, were observed in DNA from Cd-

tolerant line Al.7 (Fig. 4.3A, panel2). 

After 4 and 12 subcultures, an increased hybridisation of smtA, relative to that 

observed in AO, was observed in the DNA isolated from all the Cd-tolerant cell lines (Fig. 

4.3A, panels 4, 12). Additionally, unique larger and smaller restriction fragments to that 

observed in AO, were repeatedly detected in DNA from the Cd-tolerant lines. The pattern 

of additional unique restriction fragments was similar to that observed for DNA isolated 

after two subcultures. However, in DNA isolated after seven subcultures a similar 

restriction pattern to AO also occurs in all the Cd-tolerant lines (Fig. 4.3A, panel 7). 

Nevertheless, prolonged exposure to x-ray sensitive film reveals both larger and smaller 

additional smtA restriction fragments in the tolerant lines, although these fragments were 

relatively less abundant. 

No evidence of any rearrangement was observed for DNA isolated from AO at any 

stage ofDNA isolation, when hybridised to smtA. Southern blots of genomic DNA 

isolated from the four lines after two, four, seven and twelve subcultures, were re-

hybridised to the control gene, psaE (Fig. 4.3B). Furthermore, no indication of any 
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rearrangement was observed for DNA isolated from any of the lines (AO, A0.8, Al.3, 

A1.7), at any stage of sub-culturing, when probed withpsaE. In some Southern blots 

slight variation in psaE hybridisation (between DNA isolated from AO and that from Cd­

tolerant lines) was observed (e.g. Fig. 4.3B, panel4). This slight difference coincides with 

slight differences in the amount of genomic DNA loaded onto gels. Additionally, the 

magnitude of difference in psaE hybridisation was much less than that observed for smtA 

hybridisation. 

4.34 Analysis of genomic DNA isolated from A1.3 

The appearance of unique larger and smaller smtA restriction fragments could 

potentially be an effect generated from anomalous, and possibly incomplete, restriction. 

To substantiate whether or not the appearance of additional restriction fragments in A1.3 

were reproducible, genomic DNA isolated from Al.3 after two subcultures was 

independently restricted three times with San restriction endonuclease (Fig. 4.4A, B & C). 

A similar banding pattern of larger and smaller smtA restriction fragments to that observed 

previously (Fig. 4.3A, panel2), was obtained in the three restrictions. 

4.4 Summary 

The results can be summarised as follows: 

1) Cd-tolerant cell lines (A0.8, Al.3, A1.7) of Synechococcus PCC 6301 were developed 

by step-wise selection to increasing concentrations of Cd. 

2) The Cd-tolerant cell lines were phenotypically distinct from the non-selected cell line 

AO. 

3) An increase in hybridisation to smtA was observed in San restricted genomic DNA 

isolated from Cd-tolerant cell line Al.7. Gene copy number reconstruction's suggested an 

increase of ca. four-fold. 

4) Hybridisation to a control gene, psaE, suggested a slightly less abundance, relative to 

that in AO, in genomic DNA isolated from Al.7. 

65 



5) Genomic DNA isolated from the Cd-tolerant cell lines and the non-selected cell line was 

analysed after 2, 4, 7 and 12 subcultures. 

6) An increase in hybridisation, relative to that in AO, was observed in all the Cd-tolerant 

cell lines. 

7) Additional unique larger and smaller restriction fragments, relative to that in AO, were 

repeatedly observed in A1.3 and A1.7. 

8) After 7 subcultures, a similar restriction pattern to AO was observed in DNA from all 

the Cd-tolerant cell lines, but prolonged exposure reveal additional restriction fragments in 

both A1.3 and AI. 7. 

9) Hybridisation to a control gene, psaE, did not suggest any increase in hybridisation or 

appearance of unique restriction fragments. No unique restriction fragments were 

observed in AO during selection or subsequent maintenance. 

1 0) A similar pattern of restriction fragments was observed in three independent Sall 

restrictions ofDNA from A1.3 after 2 subcultures. 

From the results described above, it was concluded that step-wise selection Cd­

tolerant cell lines of Synechococcus PCC 6301 are phenotypically different from the non­

selected line. Furthermore, an increase in hybridisation intensity to smtA and unique 

additional restriction fragments was observed in Cd-tolerant lines. An equivalent response 

of increase in hybridisation and additional unique restriction fragments was not observed 

when hybridised to another gene, psaE. This suggests that in step-wise selected Cd­

tolerant cell lines of Synechococcus PCC 6301 there is amplification and rearrangement of 

the smt locus. 
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Figure 4.1. Growth of non-selected AO (o-o) and Cd-tolerant lines(~-~ A0.8; •- •, Al.3 

and •-• AI. 7) in different concentrations of Cd. Panel A: growth in 0 f..lM Cd, panel B: 

growth in 0.8 f..lM Cd, panel C: growth in 1.3 f..lM Cd, and panel D: growth in 1.7 f..lM Cd. 
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Figure 4.2. Analysis of genomic DNA isolated from AO and Cd-tolerant lines. Panel A: 

hybridisation to smtA, panel B: hybridisation to psaE, and panel C: visualisation of 

ethidium bromide stained DNA. Sall restricted genomic DNA was isolated from: lane 1, 

AO; lane 2, A0.8; lane 3, A1.3 and lane 4, A1. 7. Lanes 5-11 contain standard amounts of 

plasmid (pJHNR11) DNA, equivalent to 1, 2, 3, 4, 5, 6 and 8 gene copies, respectively. 

Panel B: shows two bands: upper band corresponding to smtA, and the lower band 

corresponding to psaE. 
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Figure 4.3. Analysis of genomic DNA isolated from AO and Cd-tolerant lines (A0.8, Al.3 

and A1.7) after 2, 4, 7 and 12 subcultures. Equivalent amounts ofDNA isolated from: 

lane 1, AO; and Cd-tolerant lines- lane 2, A0.8; lane 3, Al.3 and lane 4, Al.7; was 

restricted with Sall. Panel A: hybridisation to smtA, panel B: hybridisation to psaE. 
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Figure 4.4. Three independent restrictions of genomic DNA isolated from Cd-tolerant line 

Al.3 after 2 subcultures and hybridisation to smtA. 

73 



kb 

6·1 

1 

kb .-'-_Origin 
kb 

3 



Chapter 5 

STEP-WISE SELECTION OF Cd-TOLERANT CELL LINES FROM A CLONAL 
Syneclwcoccus PCC 6301 CULTURE 

5.1 Introduction 

The results described in Chapter 4 provide evidence for amplification and 

rearrangement of the smt locus in Cd-tolerant cell lines of Synechococcus PCC 6301. This 

may possibly be due to positive selection of mutants from a genetically diverse culture. It 

was thus thought necessary to repeat selection of Cd-tolerant cell lines from a culture of 

Synechococcus PCC 6301 to minimise initial genetic variability. 

5.2 Materials and Methods 

5.21 Step-wise selection of Cd-tolerant cell lines 

A culture of Synechococcus PCC 6301 generated from a single plated colony (to 

minimise initial genetic variability) was step-wise adapted for selection of Cd-tolerant cell 

lines. The re-selection protocol was essentially the same as described in Section 4.21. The 

inoculum and harvesting cell densities for cultures were 2 x 1 o5 and 2 x 1 o8 cells mr 1, 

respectively, throughout selection and subsequent maintenance of non-selected and Cd-

tolerant cell lines. 

5.3 Results 

Upon step-wise selection of a clonal culture of Synechococcus PCC 6301 (CO), four 

lines tolerant to 1.4 (C1.4), 1.8 (C1.8), 2.6 (C2.6) and 3.2 (C3.2) f.!M Cd were obtained. 

Coincident with the development of tolerance to increasing Cd concentrations, an increase 

in growth lag was observed. This increased growth lag decreased upon subsequent 

maintenance of Cd-tolerant lines in medium supplemented with the respective Cd 

concentration. Figure 5.1 shows the step-wise selection ofCd-tolerant lines and 

subsequent maintenance of C3 .2, the line tolerant to the highest concentration of Cd. The 
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non-selected line (CO) and the four Cd-tolerant lines (C1.4, Cl.8, C2.6 and C3.2) were 

maintained in the respective Cd concentrations and analysed as follows. 

5.31 Analysis of genomic DNA 

Ten micrograms of genomic DNA, from each of the non-selected (CO) and Cd­

tolerant cell lines (C1.4, Cl.8, C2.6 and C3.2) after one, two, three and four subcultures, 

was restricted with San and analysed by hybridisation to radiolabelled smtA. All Southern 

blots were performed with gene copy number reconstruction's, although data have not 

been shown in figures. 

After the first subculture, an increase in smtA hybridisation, relative to CO, was 

observed in DNA isolated from C1.8, C2.6 and C3.2 (Fig. 5.2A, panel1). Additionally, 

unique larger and smaller smtA restriction fragments (ca. 11.0 and 5.45 kb), to that 

observed in CO (5.8 kb), were observed in DNA isolated from Cl.8, C2.6 and C3.2. No 

San smtA restriction fragments equivalent to that observed in DNA isolated from CO (5.8 

kb) were observed in DNA isolated from Cl.8, C2.6 and C3.2. After one subculture, 

DNA isolated from C 1.4 exhibited a restriction pattern similar to CO. No additional smtA 

restriction fragments and no increase in hybridisation to smtA was observed for this line 

(Fig. 5.2A, panel 1). 

After two, three and four subcultures, unique larger and smaller restriction fragments 

(ca. 11.0 and 5.45 kb) were observed in DNA isolated from all the Cd-tolerant lines (Fig. 

5.2A, panels 2, 3, 4). However, in DNA isolated from the Cd-tolerant lines, no San smtA 

restriction fragments, equivalent to that observed in CO (5.8 kb) were observed. 

Furthermore, an increase in smtA hybridisation to DNA from all the Cd-tolerant lines, 

relative to that in DNA from CO, was also observed (Fig. 5.2A, panels 2, 3, 4). 

The Southern blots corresponding to DNA isolated after one, two, three and four 

subcultures were stripped of radioactivity and re-hybridised to radiolabelled fragment of 

the control gene,psaE (Fig. 5.2B). No evidence ofrearrangement in the non-selected line 

or any of the Cd-tolerant lines was observed during any stage of DNA isolation or 

subsequent maintenance of these lines. Slight differences in hybridisation of psaE to CO 
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and DNA from Cd-tolerant cell lines was observed (e.g. Fig. 5.2B, panels 1, 3). These 

slight differences correlated with slight differences in the amount ofDNA loaded. Also, 

the difference in magnitude of psaE hybridisation between CO and DNA from Cd-tolerant 

lines was much less to that observed for smtA. 

No evidence of rearrangement was ever observed at any stage in DNA isolated from 

the non-selected line CO. 

5.32 Effect of Cd on restriction of genomic DNA with San 

Genomic DNA preparations from Cd-tolerant lines of Synechococcus PCC 6301 

maintained in the presence of the respective Cd concentration, may contain minute 

quantities of Cd which might affect restriction with Sali. Alternatively, Cd might interact 

with DNA in cultures exposed to Cd, for e.g. by modification of endonuclease recognition 

site, and thus affect the end result of restriction with Sali. An effect on restriction with 

San could generate artefacts which might be interpreted as gene rearrangements. 

Therefore, in vitro and short term (2 h) in vivo effects of Cd on restriction, were 

investigated. 

5.321 In vitro effects of Cd 

Genomic DNA isolated from a Cd-free culture of Synechococcus PCC 6301 (CO) was 

restricted with Sal! restriction endonuclease. Prior to incubation, different Cd­

concentrations ranging from 1 o-1 11M to 1 o-1 0 11M were added to the restriction 

reactions. A control reaction with no added Cd was also performed. Subsequently, the 

San restricted genomic DNA was analysed by Southern hybridisation to radiolabelled 

smtA and psaE (Fig. 5.3A). The presence ofCd had no influence on restriction with Sal!, 

since similar hybridisation of smtA or psaE to DNA, restricted in either the presence or 

absence of added Cd, was observed. 
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5.322 Short term in vivo effects of Cd 

To study the short term (2 h) in vivo effects of Cd on restriction with Sa!I, a culture 

of CO was grown to mid-log phase, and divided into two portions. To one portion, 3.2 

~M Cd was added and incubated for 2 h, whereas, the second portion was incubated for 2 

h without the addition of Cd. Genomic DNA was isolated from the Cd exposed and 

unexposed culture after 2 h of incubation. Ten micrograms of genomic DNA was 

restricted with Sa!I and analysed by Southern hybridisation to radiolabelled smtA (Fig. 

5.3B). There was no evidence for any effect of short term (2 h) Cd exposure, on 

restriction with Sa!I, since there was no difference in hybridisation of smtA to DNA from 

cultures with or without exposure to Cd. 

5.33 Analysis of genomic DNA after subsequent subculture 

After five subcultures, genomic DNA from CO and the four Cd-tolerant cell lines, was 

analysed by hybridisation to smtA. As observed previously (Fig. 5.2A), again unique 

larger and smaller smtA restriction fragments (ca. 11.0 and 5.45 kb) were evident in DNA 

isolated from Cd-tolerant cell lines (Fig. 5.4A). Additionally, an increase in smtA 

hybridisation, relative to CO, was also observed to the different smtA restriction fragments 

in DNA isolated from Cd-tolerant cell lines. The smaller smtA restriction fragments in 

DNA from all the Cd-tolerant were always ca. 350 bp smaller, compared to that observed 

in DNA from CO (5.8 kb). Fragment equivalent to the smtA restriction fragment observed 

in CO was not apparent in DNA from any of the Cd-tolerant lines. 

5.34 Analysis of genomic DNA isolated from CO and C3.2 

Genomic DNA isolated after five subcultures was used to further characterise the 

observed rearrangement in Cd-tolerant cell line C3.2. Ten micrograms ofDNA from CO 

and C3.2 was restricted with Hindlll and hybridised to radiolabelled smtA (Fig. 5.4B). An 

increase in hybridisation of smtA to DNA from C3.2 was observed. Only a single Hindiii 

smtA restriction fragment was observed in C3.2, in contrast to two smtA restriction 
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fragments observed upon restriction with San. However, the hybridising smtA restriction 

fragments in C3.2 was again ca. 350 bp smaller (ca. 2.45 kb), as compared to that in DNA 

isolated from CO (2.8 kb). 

Since San has a recognition site within the Hindlll sites flanking the smt locus, it was 

used in conjunction with Hindlll to obtain a smaller restriction fragment carrying the 

observed rearrangement. Ten micrograms of genomic DNA from CO and C3.2 was 

restricted with San followed by Hindiii and hybridised to radiolabelled smtA (Fig. 5.4C). 

A single smtA restriction fragment was again observed in DNA isolated from C3.2. The 

smtA restriction fragment in C3.2 was consistently ca. 350 bp smaller (ca. 1.45 kb), in 

comparison to that observed in DNA isolated from CO (1.8 kb) (Fig. 5.4C). 

5.4 Summary 

The results can be summarised as follows: 

1) Cd-tolerant cell lines (C1.4, C1.8, C2.6, C3.2) ofSynechococcusPCC 6301 were 

developed by step-wise selection of a culture developed from a single plated colony. 

2) Coincident with increase in hybridisation, an increase in growth lag was observed. The 

growth lag decreased upon subsequent maintenance of Cd-tolerant cell lines in the 

respective Cd concentration. 

3) An increase in hybridisation to smtA, relative to that in CO, was observed in San 

restricted C1.8, C2.6 and C3.2 DNA after 1 subculture in the presence ofCd. In C1.4, 

increase in hybridisation was observed only after 2 subcultures. 

4) Unique smtA restriction fragments, both larger and smaller to that in CO, were observed 

in all Cd-tolerant lines after 1 subculture, except C 1. 4 where additional restriction 

fragments were apparent only after 2 subcultures. 

5) In C1.8, C2.6 and C3.2, restriction fragments corresponding to that observed in CO (ca. 

5.8 kb) were absent. Indeed, the smaller restriction fragment in Cd-tolerant lines was ca. 

350 bp smaller than that in CO. 
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6) No increase in hybridisation intensity or the appearance of unique restriction fragments 

was apparent on hybridisation of genomic DNA from CO, C1.4, C1.8, C2.6 and C3.2 to 

the control gene, psaE. 

7) Increase in hybridisation or additional restriction fragments was never detected in CO 

during selection or subsequent maintenance. 

8) The presence of Cd did not affect restriction of genomic DNA with San, under in vitro 

or short term (2 h) in vivo conditions. 

9) The apparent rearrangement was obtained as a single hybridising fragment on Hindiii­

San restriction of genomic DNA from C3.2. The hybridising fragment was ca. 350 bp 

smaller than that observed in CO. 

These observations suggest that the initial growth lag in Cd-tolerant cell lines selected 

by step-wise selection decreases following subsequent maintenance in media supplemented 

with Cd. In Cd-tolerant cell lines an increase in hybridisation, suggestive of amplification, 

and unique restriction fragments were observed. However, only a single restriction 

fragment, ca. 350 bp smaller than that in CO, was observed in the Cd-tolerant line C3.2. 

After 5 subcultures in the presence of Cd no restriction fragment, equivalent in size to that 

in CO, was observed in any of the Cd-tolerant lines. There was no evidence of 

amplification or rearrangement of another gene, psaE, in Cd-tolerant lines. Furthermore, 

there was no effect of Cd on restriction of genomic DNA under in vitro or short-term in 

vivo conditions. Therefore, it can be concluded that in step-wise selected Cd-tolerant cell 

lines of Synechococcus PCC 6301 there is specific amplification of smtA and 

rearrangement of the smt locus. 
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Figure 5.1. Step-wise selection of a "clonal" culture of Synechococcus PCC 6301, CO, and 

subsequent maintenance ofthe Cd-tolerant line C3.2. Each bar represents the maximum 

concentration of Cd at which growth was observed after subculture from previous Cd­

concentration. After 4 subcultures, the maintenance ofCd-tolerant line C3.2 is presented. 

Numbers over each bar represent the number of days taken for the culture growing in the 

respective Cd concentration to reach a final cell density of 2 x 108 cells mr 1, after 

subculture. 
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Figure 5.2. Analysis of genomic DNA isolated from CO and Cd-tolerant lines (C1.4, C1.8, 

C2.6 and C3.2) after 1, 2, 3 and 4 subcultures. Equivalent amounts of genomic DNA 

isolated from: lane 1, CO; and Cd-tolerant lines -lane 2, C1.4; lane 3, C1.8; lane 4, C2.6 

and lane 5, C3.2; was restricted with Sa!I. Panel A: hybridisation to smtA, panel B: 

hybridisation to psaE. 
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Figure 5.3. Analysis of in vitro and in vivo effects of Cd on restriction of genomic DNA 

with Sali. Panel A: In vitro effects of Cd on restriction: hybridisation with smtA and psaE 

after Sall restriction of genomic DNA in the presence of different Cd concentrations - lane 

1, 0 J.1M; lane 2, 10-10 J.1M; lane 3, 10-9 J.1M; lane 4, 10-8 J.1M; lane 5, w-7 J.1M; lane 6, 

10-6 J.1M; lane 7, 10-5 J.1M; lane 8, 10-4 J.1M; lane 9, 10-3 J.1M; lane 10, 10-2 J.1M; lane 11, 

1 o-1 J..lM. Panel B: Short-term in vivo effects of Cd on restriction: hybridisation with smtA 

after Sall restriction of genomic DNA isolated from non-exposed (lane 1) and 3.2 J..lM Cd 

exposed (2 h) culture (lane 2). 
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Figure 5.4. Analysis of Sall restricted genomic DNA isolated from: Panel A: lane 1, non­

selected line CO; and Cd-tolerant lines: lane 2, C1.4; lane 3, C1.8; lane 4, C2.6 and lane 5, 

C3.2, after 5 subcultures in presence of the respective Cd concentrations. Panel B: 

Hindlll, and panel C: Hindiii-Sall restricted genomic DNA from: lane 1, CO and lane 2, 

C3.2. 
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6.1 Introduction 

Chapter 6 

CHARACTERISATION OF REARRANGEMENT 

The prokaryotic metallothionein gene, smtA, of Synechococcus PCC 7942 was 

isolated by Huckle eta!. (in press) from a size-fractionated genomic library and its 

sequence determined at an intermediate stage of the research presented here. The 

sequence contains a divergently transcribed open reading frame upstream of smtA, and has 

been designated smtB. smtB encodes a protein of 122 amino acids and has similarity to 

certain known regulators (Section 1. 7). The data presented so far (Chapters 4, 5) have 

provided evidence for amplification of the prokaryotic metallothionein gene, smtA, and 

rearrangement of the smt locus. The smaller and larger restriction fragments observed 

could be attributed either to deletion in the flanking regions of smtA, integration of smtA 

into another region of the chromosome or point mutations leading to loss, or acquisition of 

novel restriction sites. The observed rearrangement (resulting in restriction fragments 

smaller by ca. 350 bp in Cd-tolerant line C3.2) has subsequently been observed on a small 

Hindiii-Sa!I restriction fragment of ca. 1.45 kb (Section 5.34). Characterisation ofthe 

observed rearrangement may provide further insight into its relationship to Cd-tolerance. 

6.2 Materials and methods 

6.21 Cloning of the altered smt locus from Cd-tolerant cell line C3.2 

A size-fractionated genomic DNA library from the Cd-tolerant cell line C3.2, was 

screened for transformants containing the smt locus. Ten micrograms of genomic DNA 

isolated from C3.2 was restricted with Sa!I, and separated (two tracks) on an agarose gel. 

One track was cut from the gel, DNA transferred to Nylon+ membrane and hybridised, to 

identify smtA restriction fragments. Equivalent sized DNA (corresponding to the two 

restriction fragments) was recovered separately from the duplicate track. The recovered 

DNA was restricted with Hindlll, ligated to Sa!I-Hindlll restricted plasmid pGEM4Z, and 
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used to transform E. coli JM1 01 competent cells. Transformants containing the plasmids 

were detected by colony hybridisation techniques and DNA recovered by alkaline lysis 

(Section 2.322). Plasmid sequencing was performed as described in Section 2.3214. 

6.22 Localisation of the altered region by PCR 

The altered region in the smt locus was localised by analysing the sequences flanking 

the smtA gene(s) in the two plasmid (corresponding to the DNA from the two Sall 

fragments in C3.2). Universal M13- forward and reverse primers were used in conjunction 

with smtA N-terminal primer 

(primer N, 5'GGCGGATCCCCATGACCTCAACAACCTTGGTC 3'), 

directing synthesis from the 5' end of smtA into the 3' region, and C-terminal primer 

(primer C, 5'GGCGAATTCACTACAGTCGCAGCCGGTGTGGCC 3'), 

directing synthesis from the 3' end of smtA into the 5' region (Robinson et a!., 1990). The 

reactions were subjected to 20 cycles of the following series of temperatures and times: 

denaturation 94°C for 1 min, annealing 55°C for 1 min, extension 72°C for 5 min, followed 

by 1 cycle ofthe following: denaturation 94°C for 1 min, annealing 55°C for 1 min, 

extension 72°C for 9 min (using a Hybaid Intelligent Heating block). 

6.3 Results 

6.31 Production of size-fractionated genomic library 

Genomic DNA from the two Sall restriction fragments was isolated, restricted, ligated 

to pGEM4Z and used to transform E. coli JM101 cells (Section 6.21). The transformants 

containing plasmids pAGNR12a (for the ca. 5.4 kb fragment) and pAGNR13a (for the ca. 

11.0 kb fragment) were selected by in situ hybridisation. The plasmids were recovered by 

alkaline lysis and analysed as given in Sections 6.32 and 6.33. 
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6.32 Localisation of rearrangement 

6.321 Localisation of rearrangement using PCR 

The plasmid DNA recovered from pAGNR12a, pAGNR13a and pJHNR49 was 

analysed for sequences flanking the smtA gene(s), by PCR. In vitro amplification products 

would only be obtained when using M13-forward primer in conjunction with the 5' primer 

of smtA, and M13-reverse primer with the 3' primer of smtA. This would facilitate the 

localisation of the altered region within the flanking regions of smtA, since an alteration in 

either of the flanking sequences would give a different banding pattern. 

Analysis of the PCR products using sets of primers mentioned above, showed that in 

comparison to products generated from pJHNR49 (used as control), both pAGNR12a and 

pAGNR13a gave identical molecular weight products with M13-forward primer and 

primer N (5' smtA primer) (Fig. 6.1). However, both pAGNR12a and pAGNR13a gave 

lower molecular weight products when amplified using M13-reverse primer and primer C 

(3' smtA primer) (Fig. 6.1). The amplification products in the two plasmids (pAGNR12a 

and pAGNR13a) were however identical in size. The rearrangement was thus localised to 

a 600 bp region in the 5' flanking region of smtA, between the Hindiii site and the primer 

N binding site in smtA, in both pAGNR12a and pAGNR13a. 

6.322 Localisation of rearrangement by restriction mapping 

The presence or absence of certain restriction endonuclease recognition sites, was 

used to identify the region of rearrangement. The plasmids from pJHNR49, pAGNR12a 

and pAGNR13a were restricted with Hindiii-Sali, Pstl, Sacl and Ace I (Fig. 6.2). 

Restriction of the plasmids with Hindiii-Sali released the entire cloned fragment. The 

cloned fragment in pAGNR12a and pAGNR13a was observed to be ca. 350 bp smaller 

than the fragment released from pJHNR49 (Fig. 6.2B). Pstl has a recognition site within 

the smtA coding region and another site upstream of smtA, thus releasing a fragment of 

213 bp. Upon restriction with Pstl, the sizes of released fragments was similar, but the 
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remaining plasmid from pAGNR12a and pAGNR13a was smaller than pJHNR49, 

suggesting rearrangement within the ca. 500 bp region between the Hindlll and Pstl sites 

(Fig. 6.2B). 

The Sac! restriction site is unique at position 337 within the Hindiii-Sali cloned 

fragment, but an additional site is present in the vector. A fragment from pJHNR49 is 

released upon restriction with Sac!, whilst a linear DNA (no release of fragment) is 

observed on restriction ofpAGNR12a and pAGNR13a (Fig. 6.2A, B). Similarly, Ace! has 

two recognition sites at positions 220 and 1776. A lack of fragment release from 

pAGNR12a and pAGNR13a, contrary to pJHNR49, was also observed upon restriction 

with Ace! (Fig. 6.2A, B). The high molecular weight products observed in DNA from 

pAGNR12a and pAGNR13a restricted with Ace! are possibly anomalous incomplete 

restriction products. The Sac! and Ace! recognition sites at positions 337 and 220 lie 

within the coding region of smtB. Loss of these recognition sites in both clones suggests 

that the observed rearrangement involves smtB and flanks the two restriction endonuclease 

recognition sites. 

6.33 Nucleotide sequence analysis 

The nucleotide sequence presented in Fig. 6. 3 is the first 660 bp from the Hindlll site 

of the Hindiii-Sali fragment from pJHNR49: the smt locus from Synechococcus PCC 

7942 (Huckle et al., in press). The nucleotide sequence of the 5' flanking region of 

pAGNR12a and pAGNR13a was determined, and found to be identical in both clones. 

However, a fragment of352 bp was missing from within a 360 bp region between 

nucleotides 100-459 inclusive (positions marked in Fig. 6.3). The smtA 3' flanking 

sequence and the sequence flanking the excised fragment from the two clones, pAGNR12a 

and pAGNR13a, was identical to that determined for the Synechococcus PCC 7942 smt 

locus (Huckle et al., in press). A deletion within this region causes a disruption within the 

smtB coding region, retaining the first 20 of the 122 codons and leaving the putative 

terminator intact. 
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6.34 Genomic DNA analysis 

The results described above have demonstrated a deletion within smtB. Genomic 

DNA isolated from AO, A0.8, Al.3 and Al.7 after 1, 2, 4, 7 and 12 subcultures, and CO, 

C1.4, Cl.8, C2.6 and C3.2 after 1, 2, 3, 4 and 5 subcultures was checked for the presence 

or absence ofthe excised element. Southern blots of genomic DNA previously hybridised 

to smtA and psaE were stripped of radioactivity and re-hybridised to a radio labelled 187 

bp Acci-Nhel fragment released from pJHNR49 (Fig. 6.4). 

Hybridisation to genomic DNA isolated from AO, A0.8, Al.3 and Al.7, and on 

comparison with the observations for smtA probing (Fig. 4.2, 4.3), the excised element is 

evidently present in all the restriction fragments observed in DNA isolated from the Cd­

tolerant cell lines (Fig. 6.4A-E). However, upon hybridisation to DNA isolated from lines 

CO, C1.4, C1.8, C2.6 and C3.2, weak hybridisation signals were observed in DNA isolated 

C1.8, C2.6 and C3.2 after 1, 2, 3, 4 and 5 subcultures (Fig. 6.4F-J). In DNA isolated from 

C1.4, the line tolerant to the lowest concentration ofCd, strong hybridisation signals were 

observed. After the first subculture strong hybridisation was observed in Cl.4 to a 

restriction fragment which was the same size as that observed in DNA from CO (Fig. 

6.4F). DNA isolated after 2 subcultures showed very strong hybridisation to a restriction 

fragment of ca. 11 kb (Fig. 6.4G). In DNA isolated after subsequent subcultures, 

restriction fragments oflower molecular weight were more apparent (Fig. 6.4H-J). These 

results suggest that in the DNA isolated from the Cd-tolerant line C1.4, copies ofthe 

excised element are still retained, whilst, in DNA isolated from Cl.8, C2.6 and C3.2, 

copies of the excised element are not retained. The weak hybridisation observed in these 

lines is probably background hybridisation due to the presence of inverted 

repeats/palindromic sequences. 

To investigate the possibility that the background hybridisation was not due to 

presence of a single copy of the excised element, the DNA fragment used to probe 

Southern blots, was used to hybridise Hindiii-Sall fragments released from pAGNR12a, 

pAGNR13a and pJHNR49. Extremely weak hybridisation signals were again observed in 

pAGNR12a and pAGNR13a (Fig. 6.5), whilst strong hybridisation is observed in 
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plliNR49 (Fig. 6.5), suggesting that the background hybridisation is indeed due to 

hybridisation to elements other than the excised element, since sequencing of plasmid 

DNA from pAGNR12a and pAGNR13a has demonstrated the excision of the 352 bp 

fragment (Section 6.33). 

6.35 Analysis of genomic DNA from CO and C3.2 

The weak hybridisation observed to a radio labelled fragment of the excised element, 

does not unequivocally rule out the possibility of the presence of a single copy of the 

excised element. It is therefore possible that reversion ofthe observed excision might be 

observed upon growth of the Cd-tolerant cell line C3.2 in media with no added Cd. Cd­

tolerant cell line C3.2 and non-selected line CO were grown in media containing no added 

Cd. Genomic DNA was isolated and analysed after one and three subcultures in the 

absence ofCd (Fig. 6.6). 

Genomic DNA isolated from the two lines (CO and C3.2) was restricted with Sail and 

Hindlll-Sall restriction endonucleases, and hybridised to radiolabelled smtA. In DNA 

isolated from C3.2 after the first subculture, two restriction fragments (larger and smaller 

than CO) were observed on Sail restriction (Fig. 6.6A), and again only a single but smaller, 

than that in CO, was observed on restriction with Hindlll-Sall (Fig. 6.6B). Additionally, 

isolation of genomic DNA from C3 .2 after three subcultures, showed a similar pattern of 

restriction. Both larger and smaller restriction fragments, relative to CO, were obtained on 

Sail restriction (Fig. 6.6C). Hindlll restriction yielded a single restriction fragment which 

was again ca. 350 bp smaller than the fragment observed in CO (Fig. 6.6D). 
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6.36 Analysis of total RNA isolated from CO and C3.2 

6.361 Expression of smtA following growth in the presence, absence, and following 
exposure to Cd 

Total RNA was isolated from the non-selected line CO, and C3.2 growing in the 

presence of3.2 f.!M Cd and after one subculture in the absence ofCd, and analysed by 

hybridisation to radio labelled smtA. 

In RNA isolated from CO, no hybridisation to smtA was detectable, but in RNA 

isolated from C3 .2 a strong hybridisation signal was observed (Fig. 6. 7B). The 

hybridisation intensity in RNA isolated from C3.2 after growth in the absence ofCd was 

slightly less than in RNA isolated from C3 .2 growing in the presence of supplemented Cd. 

However, rRNA bands in ethidium-bromide stained gel (Fig. 6. 7 A) suggest that similar 

amounts ofRNA from CO and C3.2 grown in the presence ofCd, but slightly less RNA 

from C3.2 grown in the absence ofCd, was present (Fig. 6.7A). 

Total RNA was also extracted from CO and Cd-tolerant cell line C3.2, grown in Cd­

free medium, after three and five subcultures. The cultures of CO and C3 .2 after 5 

subcultures in the absence ofCd were exposed to 1.4 f.!M Cd for 2 h. Total RNA was 

extracted from CO and C3.2 after 2 h exposure. An aliquot of the culture following 2 h 

exposure to Cd, was washed and transferred to fresh media containing no added Cd. Total 

RNA was extracted after one and two subcultures in the absence ofCd following 

exposure. Isolated RNA was analysed by hybridisation to radiolabelled smtA (Fig. 6.8). 

Hybridisation to smtA was not detectable in RNA isolated from CO after three and five 

subcultures in the absence of Cd, but strong hybridisation was observed in RNA isolated 

from C3.2 after three and five subcultures in the absence ofCd (Fig. 6.8B). Upon 

exposure to 1.4 f.!M Cd for 2 h, an increase in transcript abundance was detectable in RNA 

isolated from CO, and a greater increase, relative to that of CO, was observed in RNA 

isolated from C3 .2 (Fig. 6.8B). Upon return of cell lines to conditions of growth with no 

added Cd, transcript was not detectable in RNA isolated from CO immediately after the 
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first subculture, whilst transcript was detectable in C3.2 even after the second subculture 

(Fig. 6.8B). However, the transcript abundance in RNA isolated from C3.2 after the first 

and second subculture following exposure to Cd for 2 h, was less than that observed prior 

to Cd exposure. This effect could be attributable to slightly less amount ofRNA present 

(Fig. 6.8A). 

Visualisation ofrRNA bands in ethidium-bromide bromide stained gel (Fig. 6.8A) 

suggests that similar amounts ofRNA was loaded for CO and C3.2 after third and fifth 

subculture and following exposure to Cd. However, slightly less RNA from the two lines 

isolated after the first and second subculture following exposure to Cd, was present (Fig. 

6.8A). 

6.37 Study on tolerance of C3.2 to other metals 

The capacity of cell line C3.2 (initially selected for tolerance to elevated 

concentrations of Cd) for co-tolerance to other metals and increased tolerance to Cd was 

investigated. Cell line C3 .2 and CO was inoculated at an initial cell density of 1 x 106 cells 

mr 1, into different concentrations of Cd, Zn and Cu. Cd concentrations were in the range 

of 0. 5 to 1 0 )lM, whilst that for Zn and Cu were in the range of 2 to 20 )lM. 

On incubation for 14 days increased tolerance to Cd and also capacity to tolerate 

elevated concentrations of Zn and Cu, relative to the non-selected cell line CO, was 

observed in the Cd-tolerant cell line C3.2. 

co 
C3.2 

3.5 

6.5 

After 14 d incubation 
Zn Cu 
()lM) ()lM) 

2.5 

6.0 

<2.0 

2.0 

The results provide preliminary evidence that the mechanism of Cd tolerance may also 

be involved in conferring tolerance to elevated concentrations of Zn and Cu. 
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6.4 Summary 

The results presented in this chapter can be summarised as follows: 

1) An apparent rearrangement of the smt locus was isolated on a Hindlll -Sall fragment 

from size-fractionated libraries, and designated pAGNR12a (for the ca. 5.4 kb fragment) 

and pAGNR13a (for the ca. 11.0 kb fragment). 

2) The altered region in pAGNR12a and pAGNR13a was localised by PCR and restriction 

mapping to a 600 bp region in the 5' flank of smtA. 

3) Nucleotide sequence from pAGNR12a and pAGNR13a was identical and demonstrated 

a loss of352 bp from within a region of360 bp between nucleotides 100 and 459 

inclusive. The smtA 3' flanking sequence and the sequence flanking the excised fragment 

from the two clones, pAGNR12a and pAGNR13a was identical to that determined for the 

Synechococcus PCC 7942 smt locus. 

4) The excised element encoded the C terminal end of smtB. The excision disrupts smtB, 

but retains the first 20 of the 122 codons and leaves the putative terminator intact. 

5) Strong hybridisation of genomic DNA to the excised fragment was observed in all the 

Cd-tolerant cell lines except lines C1.8, C2.6 and C3.2 where very weak hybridisation was 

apparent. 

6) Weak hybridisation of the excised fragment was also observed to DNA from 

pAGNR12a and pAGNR13a, where nucleotide sequence has shown absence of the 

fragment. 

7) An elevated basal level of smtA transcripts was observed in C3.2 grown in the absence 

ofCd. 

8) Greater increase in smtA transcript abundance was observed in C3.2 following exposure 

to Cd, as compared to CO. The smtA transcript abundance rapidly reduced to near basal 

values in CO following growth in absence of Cd, whilst a high basal level was observed in 

C3.2. 

9) A rearranged pattern of restriction fragments was observed in C3.2 following growth in 

the absence of Cd. 
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10) An increased tolerance to Cd, Cu and Zn, relative to CO, was observed in C3.2. 

In conclusion, by using PCR and restriction mapping it was possible to identify the 

region of alteration within the smt locus. Nucleotide sequence analysis of the genomic 

clones pAGNR12a and pAGNR13a further suggests that the prokaryotic MT locus, smt, is 

identical in the two rearranged fragments observed after restriction of genomic DNA from 

C3.2 with Sall restriction endonuclease. However, comparison ofthe nucleotide sequence 

ofpAGNR12a and pAGNR13a with that from pJHNR49 shows a deletion of352 bp in the 

5' flanking region of smtA. The excised fragment encodes the C-terminal of smtB 

(subsequently shown to be a regulator of smtA; Huckle et al., In press). It can therefore 

be concluded that the deletion disrupts smtB, retaining the first 20 codons and the putative 

terminator intact. The disruption of smtB facilitates derepressed expression of smtA, and 

an increased basal level of smtA transcripts is observed. 
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Figure 6.1. Localisation of the altered region by PCR. Gel photograph ofPCR products 

using: lanes 1-3, M13-reverse primer and primer C; lanes 4-6, Ml3-forward primer and 

primer N. The template was plasmid DNA isolated from: lanes 1 and 4, clone pAGNR12a 

from Cd-tolerant line C3.2; lanes 2 and 5, clone pJHNR49; lanes 3 and 6, clone 

pAGNR13a from Cd-tolerant line C3.2. 
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Figure 6.2. Localisation of the altered region by restriction mapping. Panel A: 

visualisation of plasmid DNA isolated from: lanes 1, 4, 7 and 10, clone pAGNR12a from 

Cd-tolerant line C3.2; lanes 2,5,8 and 11, clone pffiNR49 and lanes 3, 6, 9 and 12, clone 

pAGNR13a from Cd-tolerant line C3.2; was restricted with: lanes 1-3, Hindiii-Sall; lanes 

4-6, Pstl; lanes 7-9, Sacl and lanes 10-12, Accl. Panel B: hybridisation to smtA. 
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Figure 6.3. Nucleotide sequence of part of the smt locus from non-selected 

Synechococcus PCC 7942 (reproduced from Huckle et al., in press) and Cd-tolerant cell 

line C3.2 (denoted by C3.2). The sequence from C3.2 has been aligned against the 

sequence from Synechococcus PCC 7942. In the nucleotide sequence of the Cd-tolerant 

cell line C3.2, 352 nucleotides from within a 360 bp region between nucleotides 100-149 

inclusive, are missing. The left and right borders of excision are marked by double 

underline. Other features of interest are marked and labelled. 
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AAGCTTTACTACAACGAGCGCCGCTATCTACAGCAACTCGATCAAGAACGCTGCCTGAAT C3.2 
AAGCTTTACTACAACGAGCGCCGCTATCTACAGCAACTCGATCAAGAACGCTGCCTGAAT 60 

CCCCAAGCATTCTTGGGCATGACAGAGCACGATGCTACTGCGATCGC C3.2 
CCCCAAGCATTCTTGGGCATGACAGAGCACGATGCTACTGCGATCGCCCCGACCACTCCC 120 
Putative terminator Left border of deletion 

CAGCCGATTTCTGCCTAAGGTGCATCTCTAGCGACACTCTTGTAAGTGATCGAGGGCGTT 180 
AMB R C E Q L H D L A N 

TTGATAAAGCGCCACAATGTGATGATCCTGTAGCTGGTAGTAGACATGCCGCCCTTGCTT 240 
Q Y L A V I H H D Q L Q Y Y V H R G Q K 

GCGATAGCTCACCAGCCGCAGATTACGGAGCGATCGCAATTGGTGAGACACCGCCGATTC 300 
R Y S V L R L N R L S R L Q H S V A S E 

GGAAACACCAATTGCCTGGGCCAAATCCCCAACACAGAGCTCCGATCGCGCTAACAGGGA 360 
S V G I A Q A L D G V C L E S R A L L S 

CAGCAACCGCAGTCGATTTGGATCGGCCAGCACTGCAAAAAATTCGGCTAGCGATTGGGC 420 
L L R L R N P D A L V A F F E A L S Q A 

CGCATGAGTCCCTTGGCAGAC C3.2 
AACTTCGGGTGCGATCGCTTGAAGCTCCGAGGCGATCGCCGCATGAGTCCCTTGGCAGAC 480 

V E P A I A Q L E S A I A A H T G Q C V 
Right border of deletion 

smtB Transcript start I 
TACCGTCTCTCCGTCCTGCAGCACTGGTTTTGTCATGAGCCAATCACGGTTTGTCCACCC C3.2 
TACCGTCTCTCCGTCCTGCAGCACTGGTTTTGTCATGAGCCAATCACGGTTTGTCCACCC 540 

V T E G D Q L V P K T M S.D. 

ACCATACCTGAATCAAGATTCAGATGTTAGGCTAAACACATGAACAGTTATTCAGATATT C3.2 
ACCATACCTGAATCAAGATTCAGATGTTAGGCTAAACACATGAACAGTTATTCAGATATT 600 

-10 -10 I smtA Transcript start 

S.D. M T S T T L V K C A C E P C L 
CAAAGGAGTTGCTGTCATGACCTCAACAACGTTGGTCAAATGCGCTTGTGAGCCCTGTCT C3.2 
CAAAGGAGTTGCTGTCATGACCTCAACAACGTTGGTCAAATGCGCTTGTGAGCCCTGTCT 660 



Figure 6.4. Analysis of genomic DNA isolated from Panels A-E: non-selected line AO and 

Cd-tolerant line A0.8-Al.7 after 1, 2, 4, 7 and 12 sub-cultures, and panels F-J: non­

selected line CO and Cd-tolerant lines Cl.4, Cl.8, C2.6 and C3.2 after 1, 2, 3, 4 and 5 sub­

cultures. Equivalent amounts of genomic DNA transferred to nylon membranes (from 

figures 4, 5, 8 and lOA) were stripped of previous radioactivity and hybridised to 187 bp 

Acci-Nhel fragment (corresponding to the excised element in C3.2) released from 

pJHNR49. 
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Figure 6.5. Analysis of plasmid DNA isolated from: lane 1, pAGNR12a; lane 2, 

plliNR49; lane 3, pAGNR13a. Panel A: visualisation of ethidium-bromide stained DNA 

restriction fragments from plasmid DNA restricted with Hindiii-Sall. Panel B: 

hybridisation to 187 bp Acci-Nhel fragment (corresponding to the excised element in 

C3.2) released from plliNR49. 

107 



kb 

3.0-

2.0-
1.6-

1.0-

1 2 3 



Figure 6.6. Analysis of genomic DNA isolated from non-selected line CO and Cd-tolerant 

line C3 .2 after: Panels A and B, 1; and panels C and D, 3 subcultures in absence of Cd. 

Lanes 1 and 2 show visualisation of ethidium-bromide stained genomic DNA isolated 

from: lane 1, CO; and lane 2, C3 .2. Lanes 3 and 4 show Southern hybridisation of genomic 

DNA isolated from: lane 3, CO; and lane 4, C3.2, and restricted with: panels A and C: Sall; 

Panels Band D: Hindiii-Sall. 
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Figure 6.7. Northern blot analysis ofRNA isolated from: lane 1, non-selected line CO; lane 

2, Cd-tolerant line C3.2 growing in the presence ofCd; lane 3, Cd-tolerant line C3.2 

grown for 1 subculture in the absence ofCd. Equivalent amounts ofRNA were loaded 

onto each track as visualised by ethidium-bromide stained rRN A bands (panel A), and 

hybridised to smtA (panel B). 
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Figure 6.8. Northern blot analysis oftotal RNA isolated from: lanes 1 and 3, non-selected 

line CO; lanes 2 and 4, Cd-tolerant line C3.2 grown in the absence ofCd for 3 and 5 

subcultures, respectively; lane 5, CO exposed to 1.4 f.1M Cd for 2 h; lane 6, C3 .2 exposed 

to 1.4 f.1M Cd for 2 h; lanes 7 and 9, CO grown in absence ofCd following exposure, for 1 

and 2 subcultures, respectively; lanes 8 and 10, C3 .2 grown in the absence of Cd following 

exposure, for 1 and 2 subcultures, respectively. Equivalent amounts ofRNA was loaded 

onto each track as visualised by ethidium-bromide stained rRNA bands (panel A), and 

hybridised to smtA (panel B). 
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7.1 Introduction 

Chapter 7 

IDENTIFICATION OF HOMOLOGUES 

Metallothioneins have been isolated and characterised from a wide range of 

eukaryotes, and are often considered to be ubiquitous. Following the isolation and 

characterisation of the metallothionein locus, smt, from Synechococcus PCC 7942 

(Robinson et al., 1990; Huckle et al., in press) (Section 1. 7), during an intermediate stage 

of this research, it was possible to investigate other cyanobacterial strains for the presence 

of homologous systems. The results presented below deal with the attempts to identify 

homologues of smtA in other cyanobacteria, in particular, isolates from metal polluted 

environments. 

7.2 Results 

In vitro amplification ofDNA using primers corresponding to the coding region of 

smtA, was attempted as a diagnostic tool for identification of smtA homologues in other 

cyanobacteria. Repeatedly, cross contamination of test DNA with the positive control 

(smtA), despite attempts to eliminate contamination (for e.g. by UV irradiation), negated 

the attempts to use PCR as a diagnostic tool for identification ofhomologues. However, 

by PCR, a homologue of smtA from Synechococcus PCC 6301 was identified in a closely 

related Synechococcus PCC 7942 (Fig. 7.1A). The PCR amplification product from 

Synechococcus PCC 7942 was the same size (144 bp) as that from Synechococcus PCC 

6301. The identification of a homologue of Synechococcus PCC 6301 smtA in 

Synechococcus PCC 7942 was further analysed by Southern hybridisation of Sali 

restricted genomic DNA from the two organisms, to radiolabelled smtA. The Sali smtA 

restriction fragment from Synechococcus PCC 7942 was identical in size to that from 

Synechococcus PCC 6301 (Fig. 7.1B). 
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7.21 Screening of other cyanobacteria for homologues of smtA 

Genomic DNA isolated from different cyanobacterial strains, isolated from different 

environmental conditions, was screened for homologues of smtA. Genomic DNA was 

isolated from Synechococcus D562, Synechocystis PCC 6803, Oscil/atoria D813, 

Oscil/atoria D814, Microchaete D578 and Calothrix D184 (all axenic except D813). 

Genomic DNA from Synechococcus PCC 6301 was used as a control. 

Southern hybridisation of genomic DNA restricted with EcoRI, to radiolabelled 144 

bp fragment of smtA did not yield any evidence for the presence ofhomologues in any of 

the strains tested. Therefore, the blot was stripped of radioactivity and re-hybridised to 

radiolabelled 1.8 kb Hindiii-Sali fragment carrying the entire smt locus (released from 

clone pJHNR49). Following hybridisation, the Southern blots were washed at a very low 

stringency (2X SSC, 0.1% SDS, room temperature, 5 min), to remove excess 

radi cacti vi ty. 

A very strong hybridisation signal was observed in the control DNA from 

Synechococcus PCC 63 01. Additionally, weak hybridisation signals were also observed in 

genomic DNA isolated from D562, PCC 6803, D813 and a relatively stronger signal in 

D814 (Fig. 7.2B). However, no evidence of any hybridisation was observed in DNA 

isolated from D184 and D578. 

7.22 Analysis of homologues of smtA in other cyanobacterial strains 

Genomic DNA isolated from D562, D814 and PCC 6803 (selected from amongst the 

identified homologues because of the axenic nature of their culture) was further analysed 

by using different restriction endonucleases. 

DNA isolated from D562, D814, PCC 6803 and Synechococcus PCC 6301 was 

restricted with EcoRI, followed by Hindiii. Hybridisation of restricted DNA to 

radiolabelled 1.8 kb smt fragment identified a 2.8 kb smtA fragment in Synechococcus PCC 

6301 (Fig. 7.3B). Two restriction fragments (ca. 1.8 kb and 1.0 kb) were observed in 

DNA from D562, whilst only a single hybridising fragment, same size as the low molecular 

116 



weight fragment in D562, was observed in D814 and PCC 6803. The intensity of 

hybridisation signals in D814 and PCC 6803 was very weak, even in comparison to the 

signal observed in D562 (Fig. 7.3B). 

Restriction of genomic DNA from the four strains with Sall, followed by Hindiii, and 

subsequent hybridisation revealed a restriction fragment in D562 which was the same size 

as observed in PCC 6301 (1.8 kb) (Fig. 7.3B). Additionally, a weakly hybridising second 

fragment of ca. 1.0 kb was also observed in D562. Single restriction fragments, similar in 

size to the low molecular weight (ca. 1.0 kb) fragment ofD562, were also observed in 

DNA from D814 and PCC 6803 (Fig. 7.3B). 

Genomic DNA isolated from the four strains was also analysed by restriction with 

single endonuclease (Sall, Hindiii) restrictions, followed by Southern hybridisation. In 

DNA restricted with Sall, again two restriction fragments were observed. The higher 

molecular weight fragment was more abundant than the low molecular fragment (Fig. 

7.4B). However, the size of the fragments was smaller than that observed in PCC 6301. 

Only single restriction fragments were observed in DNA from D814 and PCC 6803. 

These fragments were again similar in size to the lower molecular weight fragment 

observed in D562. 

Hindiii restriction ofDNA and subsequent hybridisation identified a fragment of2.8 

kb in DNA from PCC 6301. However, in DNA from D562, two fragments were 

identified. The higher molecular weight fragment was more abundant and significantly 

larger than that observed in PCC 6301. The lower molecular weight and less abundant 

fragment was smaller than the fragment observed in PCC 6301 (Fig. 7.4B). In DNA 

isolated from D814, two fragments were detected. The higher molecular weight fragment 

ofD814 was the same size as the lower molecular weight fragment observed in D562. 

However, the lower fragment was significantly smaller. A single fragment of the same size 

as those observed in D562 and D814 was also observed in DNA from PCC 6803 (Fig. 

7.4B). 
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7.3 Summary 

The results can be summarised as follows: 

1) A homologue of smtA from Synechococcus PCC 63 01 was identified by PCR in 

Synechococcus PCC 7942. 

2) The homologue in PCC 7942 was also identified by Southern hybridisation of genomic 

DNA on a restriction fragment which was the same size as that in Synechococcus PCC 

6301. 

3) No hybridisation of smtA was detected in genomic DNA from Synechococcus D562, 

Synechocystis PCC 6803, Oscillatoria D813, Oscillatoria D814, Microchaete D578 and 

Calothrix D 184. 

4) Weak hybridisation to smtA Hindiii-Sall fragment was observed only in genomic DNA 

from D562, D813, D814 and PCC 6803. 

5) Hybridisation of genomic DNA from D562, D814 and PCC 6803 after restriction with 

different endonucleases showed relatively strong hybridisation to a fragment only in D562, 

in addition to a weakly hybridising fragment. 

6) Restriction fragments hybridised very weakly to smt in genomic DNA from D814 and 

PCC 6803. 

7) The sizes of fragments from D562, D814 and PCC 6803 exhibiting weak hybridisation 

to smt were similar in size. 

It can be concluded that a homologue of smtA from Synechococcus PCC 6301 was 

detected in Synechococcus PCC 7942 by PCR and Southern hybridisation of genomic 

DNA This gene was subsequently cloned from Synechococcus PCC 7942 (Huckle eta/., 

in press). Additionally, sequences showing homology to the 1.8 kb fragment carrying the 

smt locus were identified in several other cyanobacterial isolates by Southern hybridisation 

to genomic DNA However, the fragments remain to be cloned and therefore their 

identities are unknown at this time. No homologous sequences were identified in genomic 

DNA isolated from Dl84 and D578. 
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Figure 7.1. Identification of smtA homologue in Synechococcus PCC 7942. Lanes 1 and 

2 are visualisation ofPCR amplified smtA fragments on an agarose gel using template 

DNA from: lane 1, Synechococcus PCC 6301; lane 2, Synechococcus PCC 7942. Lanes 3 

and 4 are a Southern blot of Sali restricted genomic DNA isolated from: lane 3, 

Synechococcus PCC 6301; lane 4, Synechococcus PCC 7942 and hybridised to smtA. 
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Figure 7.2. Identification of smtA homologues in different cyanobacterial strains. Panel A: 

visualisation of EcoRI restricted genomic DNA Panel B: Southern hybridisation of 

genomic DNA isolated from: lanes 1 (100 J.lg) and 2 (10 J.lg), Synechococcus D562; lane 

3, Synechocystis PCC 6803; lane 4 (100 J.lg) and 5 (10 J.lg), Oscillatoria D813; lane 7, 

Oscillatoria D814; lane 8, Microchaete D578; lane 9, Calothrix parietina D184; to 1.8 kb 

Hindiii-Sall fragment carrying the smt locus. 
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Figure 7.3. Restriction analysis of smtA homologues identified in different cyanobacterial 

strains. Ten f..lg of genomic DNA isolated from: lanes 1 and 8, Synechococcus PCC 6301; 

lanes 2 and 7, Synechococcus D562; lanes 3 and 6, Oscillatoria D814; lanes 4 and 5, 

Synechocystis PCC 6803; was restricted with: lanes 1 to 4, EcoRI-Hindlll; lanes 5 to 8, 

Hindiii-Sall. Panel A shows the visualisation of ethidium-bromide stained genomic DNA, 

and panel B shows hybridisation to 1. 8 kb Hindiii -Sa !I fragment of the smt locus. 
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Figure 7.4. Restriction analysis of smtA homologues identified in different cyanobacterial 

strains. Ten f..lg of genomic DNA isolated from: lanes 1 and 8, Synechococcus PCC 6301; 

lanes 2 and 7, Synechococcus D562; lanes 3 and 6, Oscillatoria D814; lanes 4 and 5, 

Synechocystis PCC 6803; was restricted with: lanes 1 to 4, Sall; lanes 5 to 8, Hindlll. 

Panel A shows the visualisation of ethidium-bromide stained genomic DNA, and panel B 

shows hybridisation to 1.8 kb Hindiii-Sa!I fragment of the smt locus. 

125 



A 

8 

Origin 
kb 

6.0 

2.8 

-Origin 
kb 

- 6.0 

2.8 



Chapter 8 

DISCUSSION 

The main aim of this research was to identify a molecular mechanism of metal 

tolerance in cyanobacteria. Cd-tolerant cell lines of Synechococcus PCC 6301 developed 

by step-wise adaptation were aimed to be used to examine the role of the prokaryotic 

metallothionein locus, smt, in the acquisition of Cd tolerance in cell lines of Synechococcus 

PCC 6301. The results presented and summarised in previous chapters have provided 

evidence for amplification of smtA and rearrangement of the smt locus in step-wise 

selected Cd-tolerant cell lines of Synechococcus PCC 6301. Additionally, putative 

homologues of smtA have been identified in cyanobacterial strains isolated from metal­

polluted sites. The demonstration of amplification and characterisation of rearrangement 

has suggested a role for the prokaryotic metallothionein gene, smtA, in Cd-tolerance of 

step-wise selected Cd-tolerant cell lines. Similarly, the identification of putative smtA 

homologues indicates that analogous mechanisms of metal tolerance might operate in 

different cyanobacterial strains. 

8.1 Localisation of smtA 

In metal-tolerant cultured eukaryotic cell lines, amplification ofMT genes (initially 

chromosomal) have been demonstrated (Sections 1.631, 8.2), and in Synechococcus TX-

20 (Section 1.8) Cd tolerance was postulated to involve the amplification ofMT gene 

localised on the plasmid (Section 1. 7). Additionally, as summarised in Chapters 4 and 5, 

amplification of smtA and rearrangement of the smt locus has been observed. Therefore, 

an understanding of the chromosomal or extrachromosomal localisation of smtA in 

Synechococcus PCC 6301 was considered essential, since amplification of smtA would be 

easily explained if smtA were to be localised on an extrachromosomal element. However, 

the potential presence of smtA on the small plasmid of Synechococcus has been eliminated 

by the hybridisation of smtA to DNA isolated from a small plasmid cured strain (Turner et 

al., 1992). Similarly, the lack of correlation between the sizes of BamHI, Sall and Hindiii 

restriction fragments of genomic DNA from Synechococcus PCC 6301 and the 48.5 kb 
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plasmid suggest against the extrachromosomal localisation of smtA. However, from 

Southern hybridisation there is an indication that weak homology exists between smtA and 

sequences within the 10.6 kb BamHI fragment of the 48.5 kb plasmid (pPLAN Ba2). The 

weak hybridisation ofpPLAN Ba2 to smtA (Fig. 3.2B), and a lack of correlation between 

the fragment sizes ofpJHNR49 and pPLAN Ba2 strongly suggests that smtA is not present 

on the 48.5 kb plasmid, but is chromosomally localised. The extent of homology in 

pPLAN Ba2 can only be determined after complete DNA sequence analysis of the region 

exhibiting homology. 

Although it is suggested that plasmids in cyanobacteria have functions comparable to 

those of analogous elements found in bacteria, such as resistance to heavy metals and 

antibiotics, sexuality etc., no plasmid-encoded functions have so far been identified in 

cyanobacteria (Ciferri et al., 1989, also Section I. 7). Naturally occurring plasmids from 

cyanobacteria appear to be phenotypically cryptic (Kuhlemeier et al., 1981 ), but plasmids 

in cyanobacteria have been speculated to play a role in lateral gene transfer (Cifferri et al., 

1989; Saunders, 1992). Furthermore, Van der Plas eta!. ( 1992) have recently obtained 

complete nucleotide sequence ofpUH24, the small plasmid (7.835 kb) of Synechococcus 

PCC 7942. From nucleotide sequence analysis and from the distribution of translation 

start and stop codons, they have identified 36 open reading frames that could potentially 

encode polypeptides of 50 or more amino acids, but suggest that only eight of these open 

reading frames are actual coding sequences. Additionally, a region putatively involved in 

the segregational stability of the plasmid has been identified and designated as pmaA and 

pmaB. Similarly, a region occupied by two overlapping genes (repA and repB) and 

thought to encode essential replication proteins has also been identified (Van der Plas et 

al., 1992). However, the data described in Section 8.5 and the nucleotide sequence of 

pUH24 would help in understanding the functional significance of cyanobacterial plasmids 

and their potential role in cellular adaptation. 
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8.2 Amplification in step-wise selected Synechococcus PCC 6301 

An increase in hybridisation intensity, relative to that in the non-selected line AO, was 

observed in the Cd-tolerant cell line and has been summarised in Chapters 4 (Section 4.4) 

and 5 (Section 5.4). To obtain quantitative data on amplification (i.e. increase in gene 

copy number), the smtA hybridisation of Sall restricted genomic DNA isolated from non­

selected line AO and Cd-tolerant lines (A0.8, A1.3, A1.7) was compared to standard 

amounts of plasmid DNA containing smtA (calculated from gene copy number equivalents: 

Section 2.3212). Additionally, the hybridisation intensity ofDNA isolated from AO (Fig. 

4.2A) and observations summarised in Chapter 3 (Section 3.3) suggest that smtA occurs at 

a low copy number (probably one) on the cyanobacterial chromosome. 

Cell lines of Synechococcus PCC 6301 selected to elevated concentrations ofCd by 

step-wise selection, exhibited increased tolerance to Cd and were phenotypically distinct 

from the non-selected cell line AO (Fig. 4.1 ). Additionally, in cell lines selected from a 

culture of Synechococcus PCC 63 01, amplification (increase in the 'relative' amount of a 

gene or DNA sequence within a cell) was observed in Cd-tolerant cell line Al.7 (Fig. 

4.2A). Subsequently, amplification and additional restriction fragments, suggestive of 

rearrangement, were also observed in other Cd-tolerant cell lines (Fig. 4.3A). However, 

no evidence of amplification or generation of additional restriction fragments was ever 

observed in the non-selected cell line AO. Three independent restrictions of genomic DNA 

isolated from C 1.3 after 2 subcultures showed a similar pattern of restriction, suggesting 

that the additional restriction fragments observed in Cd-tolerant cell lines are genuine and 

not artefacts due to anomalous restriction by Sall endonuclease. 

Cd-tolerant cell lines of Synechococcus PCC 6301 were re-selected from a culture 

developed from a single plated colony (clonal culture). This repetition was necessary since 

the Cd-tolerant cell lines selected initially (cell lines A0.8, A1.3, AI. 7) could result from 

selection of particular variants from the genetic diversity occurring within the culture of 

Synechococcus PCC 6301 after prolonged maintenance in liquid medium. 
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Genomic DNA isolated from the new set of non-selected (CO) and Cd-tolerant cell 

lines (C1.4, C1.8, C2.6, C3.2) was analysed by hybridisation to radiolabelled smtA (Fig. 

5.2). Amplification of smtA, relative to CO, was again observed in Cd-tolerant cell lines. 

Additionally, smaller and larger restriction fragments were also observed in Cd-tolerant 

lines. There was no evidence of any amplification or rearrangement in DNA isolated from 

CO during any stage of selection or subsequent maintenance. 

The apparently unique restriction fragments might result from some effect of Cd on 

restriction, since Cd-tolerant lines are maintained in the presence of Cd. However, 

addition of Cd in vitro did not directly affect restriction of genomic DNA with Sali 

restriction endonuclease (Fig. 5.3A), considering that no unique restriction fragments were 

observed. In addition, there were no apparent rapid indirect effects of Cd under in vivo 

conditions (e.g. modification of restriction endonuclease recognition sites), following 

exposure of cells to Cd for 2 h (Fig. 5.3B), since the restriction pattern and smtA 

hybridisation intensities in genomic DNA from Cd-exposed and non-exposed cells was 

similar. Moreover, in DNA isolated from C 1.4, after one subculture in the presence of Cd, 

no unique smtA restriction fragments were detectable (Fig. 5.2A, panel 1). Additional 

restriction fragments were detectable in DNA isolated from the same line (C1.4) after two, 

three and four subcultures. Similarly, in DNA from A1.3 unique restriction fragments 

were only detectable after the second subculture, and three independent restriction 

reactions of genomic DNA from A1.3 revealed a similar restriction pattern (Fig. 4.4). The 

additional unique larger and smaller smtA restriction fragments observed in genomic DNA 

isolated from Cd-tolerant cell lines (A0.8, A1.3, A1.7, C1.4, C1.8, C2.6, C3.2) are 

therefore ascribed to rearrangements within the smt locus. 

Hybridisation ofDNA isolated from the non-selected and Cd-tolerant lines to a 

control gene, psaE, did not show any unequivocal evidence for amplification of the psaE 

gene (Fig. 4.2B, 4.3B, 5.2B). Furthermore, by contrast to smtA, no evidence of unique 

restriction fragments (larger or smaller) of psaE, either during selection or subsequent 

maintenance of these lines, were observed. However, it is noted that hybridisation ofpsaE 

to DNA from all lines, inchJding AO/CO, identifies two restriction fragments, the larger 
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fragment being more apparent upon prolonged exposure to X-ray sensitive film (e.g. Fig. 

4.3B, panels 2, 4). In some blots hybridised to psaE, additional restriction fragments 

corresponding to smtA were also observed, since the blots were first hybridised to smtA 

and then washed before hybridisation to psaE (Fig. 4.3B, panel 7; 5.2B, panel4). 

Additionally, in some blots slight variability in psaE hybridisation was observed. Upon 

visualisation of the corresponding ethidium-bromide stained genomic DNA, these small 

changes in psaE hybridisation were found to correlate with slight variations in the amounts 

of genomic DNA loaded on the agarose gel. Moreover, the magnitude of variation in 

hybridisation to psaE was much less than that observed for increases in hybridisation of 

smtA to DNA isolated from Cd-tolerant lines (Fig. 4.3B, panel4; 5.2B, panels 1, 3). The 

variations in smtA hybridisation did not correlate with variations in loading of genomic 

DNA. For example, in DNA isolated from AI. 7 (Fig. 4.2A) an increase in hybridisation to 

smtA is observed, but a slight decrease in psaE hybridisation is evident. The data 

presented clearly suggest that unlike smtA, there is no amplification or rearrangement of 

the psaE gene in genomic DNA isolated from any of the cell lines, during any stage of 

selection or subsequent maintenance. 

The rearrangement in C3.2 has been further characterised. In all the Cd-tolerant cell 

lines (Cl.4, Cl.8, C2.6, C3.2) two restriction fragments of ca. 5.4 and 11.0 kb are 

apparent on restriction with Sali (Fig. 5.2A). However, only a single restriction fragment 

is obtained on restriction ofDNA from C3.2 with Hindiii and Hindiii-Sali. The single 

hybridising fragments were consistently ca. 350 bp smaller in C3.2 than in CO. This 

indicates rearrangement within the previously isolated and characterised 1.8 kb Hindiii­

Sali fragment corresponding to the smt region from Synechococcus PCC 7942 (Huckle et 

al., in press). The variation in sizes of restriction fragments from those observed in CO can 

be attributed either to deletion in the flanking regions of smtA or integration of smtA into 

another region of the chromosome. 

Exposure of a culture growing in the absence of Cd resulted in a growth lag, and 

resumption of growth occurred coincident with an increase in cellular levels ofMT 

(Olafson, 1986). Furthermore, transfer of these Cd-resistant cells to media containing no 
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added Cd, resulted in reduction of MT to near basal values. However, these cells grew 

immediately without the predicted growth lag upon re-transfer to Cd-containing media 

(Olafson, 1986). The rapid increase in Cd tolerance was proposed to be due to the 

amplification of an extrachromosomal MT gene. Furthermore, the results described in 

Chapter 3 suggest that smtA is localised on the chromosome rather than the ca. 8.0 kb or 

48.5 kb plasmids of Synechococcus PCC 6301. The results in Chapters 4, 5 and 6 have 

established that in Synechococcus PCC 6301 development of tolerance to Cd (in lines 

A0.8, Al.3, Al.7, C1.4, Cl.8, C2.6, C3.2) is associated with the amplification of a 

chromosomally localised metallothionein gene, smtA, and rearrangement of the smt locus. 

The amplification ofMT gene, smtA, in Cd-tolerant cell lines of Synechococcus PCC 

6301 may be analogous to the observed amplification ofMT genes in metal-tolerant 

eukaryotic cell lines. Stable Cd-resistant lines of cultured eukaryotic cells have been 

selected by continuous exposure of cells to step-wise increases in Cd concentrations 

(Durnam & Palmiter, 1987). During selection, the levels ofMT mRNA greatly exceeds 

the maximum that can be induced in unselected cells (Durnam & Palmiter, 1987). 

Although a number of mechanisms could account for increases in MT mRNA production, 

the increase has invariably been associated with MT gene amplification (reviewed by 

Hamer, 1986; Palmiter, 1987). Some examples of observed MT gene amplification in 

eukaryotic cell lines are discussed. 

In optimally induced, Cd-resistant mouse Friend leukaemia cells, a 14-fold more MT-1 

mRNA, 6-fold higher rate ofMT -1 gene transcription and 6-fold more MT -1 genes, than 

non-resistant cells, was observed (Beach & Palmiter, 1981 ). The increase in the relative 

rate ofMT -1 gene transcription in Cd-resistant cells correlated with the relative 

amplification ofMT-1 genes. The largest amplified MT-1 DNA fragment was 55 kb and 

thus included the closely linked MT -II gene (Searle eta!., 1984). Similarly, in Cu-resistant 

hepatoma cells, increased steady state mRNA levels for MT -1 (11-fold) and MT -2 (15-

fold) genes was observed. Additionally, Cu-resistant hepatoma cells maintained in normal 

concentrations of Cu for prolonged periods showed an increase in MT -1 (8-fold) and MT-

2 (10-fold) mRNA, l~veJs. The increased levels ofmetallothionein in Cd-resistant lines 
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involved a stable amplification ofMT genes (Czaja et al., 1991). MT gene amplification 

has also been studied in Chinese hamster ovary (CHO) cells. The Cd resistance in Cd­

resistant variants ofCHO cells was ascribed to the specific amplification ofMT-I gene 

(Gick & McCarty, 1982; Hayashi et al., 1983). Subsequently, Crawford et al. (1985) have 

shown chromosomal localisation ofthe MT-I and MT-11 genes. Furthermore, in the lines 

resistant to high Cd-concentrations, 3- to 60-fold amplification ofboth the MT-I and MT-

11 genes, increased accumulation ofMT-I and MT-11 mRNA and polypeptides was 

demonstrated (Gick & McCarty, 1982; Crawford et al., 1985). The stable Cd resistance 

correlated with the co-ordinate amplification and expression ofboth MT-I and MT-11 

genes in CHO Cd-resistant variants (Crawford et al., 1985). 

In addition to higher eukaryotes, MT gene systems have also been explored in metal­

resistant lines of lower eukaryotes. Copper resistance in the yeast Saccharomyces 

cerevisiae is controlled by the CUP 1locus located on the chromosome. An increase in the 

copy number of the Cu-MT, CUP 1, from S. cerevisiae, was observed (Fogel & Welch, 

1982; Karin et al., 1984). Cu-sensitive strains (cup1s) contain a single copy ofthe CUP1 

locus, whereas Cu-resistant strains (CUP 1r) contain 10 or more tandemly iterated copies 

of CUP 1. The presence of different copy numbers of the CUP 1 locus have differential 

effects on Cu resistance (Jeyaprakash et al., 1991 ). The CUP 1 gene amplification and 

increased mRNA transcription enables synthesis of sufficient gene product to generate 

resistance to Cd and Cu. Recent studies have shown that the transcription of CUP 1 gene 

in a Cd-resistant strain of Saccharomyces cerevisiae 301N was constitutive (occurs in the 

absence of added metal ions), and the rate of transcription is further increased by exposure 

to Cd or Cu ions (Tohoyama et al., 1992). In Candida glabrata MT constitute a 

multigene family, and two genes MT -1 and MT -II have been characterised (Mehra et al., 

1990). In C. glabrata strains selected for increased Cu resistance, the MT -I gene is 

present as a single copy, but stable chromosomal amplification (>30 copies) of the MT-11 

gene is exhibited. The amplified copies of the MT-11 gene were arranged tandemly and 

there is increased accumulation of the MT-11 mRNA than MT-1 mRNA, and a higher 

concentration ofMT-11 protein than MT-I protein (Mehra et al., 1988; 1990). Despite the 
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wide-spread occurrence of amplification in MT gene systems, the possible mechanisms of 

MT gene amplification are not clear and several postulations have been reviewed by 

Harner (1986). 

8.3 Characterisation of rearrangement in Synechococcus PCC 6301 

In addition to amplification of the smtA gene in Cd-tolerant lines of Synechococcus 

PCC 6301 developed by step-wise selection, unique restriction fragments were also 

observed. Previously, a 1.8 kb Hindiii-Sa!I fragment carrying the smt locus, which 

includes the smtA gene and a divergently transcribed smtB gene, has been isolated and 

characterised from a Synechococcus PCC 7942 genomic library (pJHNR49: Huckle et al., 

in press). During this study, the Hindiii-Sa!I fragment, carrying the smt locus, has been 

isolated from a size-fractionated genomic library ofC3.2, a cell line of Synechococcus 

PCC 6301, tolerant to 3.2 11M Cd (pAGNR12a, pAGNR13a). Southern analysis of Sa!I 

restricted genomic DNA from C3 .2 had shown larger and smaller restriction fragments, 

relative to CO, and no fragment corresponding to the size observed in CO was detectable in 

C3.2. The observed rearrangement was identified on a minimal Hindiii-Sall fragment, and 

only a single restriction fragment was detected in genomic DNA from C3.2 (Fig. 5.4C). 

The single hybridising fragment in C3. 2 (ca. 1. 45 kb) was ca. 3 50 bp smaller than that 

observed in CO (1.8 kb). This suggested a rearrangement within the smt locus. 

The rearrangement was localised by restriction mapping and PCR to the 5' region of 

smtA and involving smtB. The nucleotide sequence ofDNA from pAGNR12a and 

pAGNR13a was identical. On comparison to nucleotide sequence from pJHNR49, a 

deletion within the smtB coding region, in DNA from pAGNR12a and pAGNR13a was 

identified. The deleted sequence was 352 bp within a total length of 360 bp. The excised 

sequence encoded the C-terrninus of SrntB, thus retaining the first 20 amino acids and the 

putative terminator intact (Fig. 6.3). The functional deletion of smtB in Cd-tolerant cells 

argues against a direct function ofthis gene in the management ofsupraoptirnal 

concentrations of Cd, but is consistent with the proposal that SmtB might act as a 

repressor of smtA transcription. The deduced polypeptide product of the smtB gene has 
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similarity to a known transcriptional repressor, ArsR, and recently smtB has been shown to 

be a trans-acting transcriptional repressor of smtA (Huckle et al., In press). Furthermore, 

SmtB has recently been shown to be required for the formation of a Zn-responsive 

complex with the smt operator-promoter, and from the predicted structure of SmtB it has 

been proposed that there is a direct SmtB-DNA interaction exerting metal-ion inducible 

negative control (Morby et al., 1992). 

The deletion of a fragment encoding the C-terminal end of smtB may be considered 

analogous to a terminal differentiation event. This event could have possibly arisen from 

extreme culture conditions. However, in mutant cell lines devoid of smtB an increased 

basal level of smtA is achieved, and the transcription is metal independent (Huckle et al., in 

press). Therefore, the functional deletion of smtB may be of advantage to cells cultured 

under conditions of elevated metal concentrations. Furthermore, the deletion within smtB 

may also be considered analogous to the deletion of an 11 kb (xisA) fragment from within 

a 55 kb region of the nif operon in Anabaena PCC 7120. The terminal differentiation 

event involving the excision of xi sA gene contained on a 11 kb fragment from within the 

nif operon in Anabaena PCC 7120 provides a positive advantage to the cell and facilitates 

the synthesis of nitrogenase (reviewed by Haselkorn, 1989). However, no similarity was 

found between the excision points within the nif operon and the excision points within the 

smt locus. 

Southern hybridisation of genomic DNA isolated from cell line C3 .2 to radio labelled 

DNA corresponding to the excised element suggested that all copies ofthe deleted element 

are lost from the cell (Fig. 6.4, panels F-J). Additionally, evidence suggesting that the 

event of amplification precedes the event of deletion is also obtained. This is judged from 

the hybridisation observed in the cell line C 1.4 after 2, 3, 4 and 5 subcultures. An increase 

in hybridisation is observed, followed by loss of fragment in the region of 5.8 kb, but 

detectable in the region of 11.0 kb, and subsequent regeneration of fragment in the 5.45 kb 

region, which is predominant with smtA hybridisation but not when hybridised to the 

excised element (Fig. 6.4, panels F-J). 
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Cd-tolerant line C3.2, maintained in 3.2 11M Cd, was re-transferred to media 

containing no added Cd. Hybridisation of genomic DNA isolated from C3.2 growing in 

conditions of no added Cd for 1 and 3 subcultures, to radio labelled smtA suggests that 

stable amplification of the smt locus and functional deletion of the smtB gene is achieved in 

the Cd-tolerant cell line C3.2, since amplification of smtA and rearrangement of the smt 

locus were observed in C3.2 even after three subcultures in the absence ofCd. 

The functional deletion of smtB would provide a state of de-repressed smtA 

expression which may be beneficial for cells continuously exposed to Cd. Total RNA 

isolated from CO, and C3.2 growing in the presence ofCd and in the absence ofCd for 1, 

3 and 5 subcultures, and hybridised to radiolabelled smtA, suggested that whilst no 

transcript is detectable in the non-selected cells CO, an elevated level ofbasal smtA 

expression is observed in C3.2 (Fig. 6. 7, 6.8). Furthermore, CO cells and C3.2 cells grown 

for 5 subcultures in the absence of Cd were exposed for 2 h to 1. 4 11M Cd, and transferred 

to fresh media with no added Cd for 1 and 2 subcultures. Northern blot analysis ofRNA 

isolated from these cells showed that smtA transcript abundance increased in CO and C3.2, 

the transcript abundance in CO being less than that in C3.2 (Fig. 6.8). Furthermore, the 

decay of smtA transcripts in CO was rapid as compared to that in C3 .2. No transcripts 

were detected in CO after 1 subculture, whilst a high level of transcript abundance was 

detectable in C3.2 even after 2 subcultures in the absence of added Cd (Fig. 6.8) following 

exposure to 1.4 11M Cd for 2 h. Increased basal expression (ca. 20-fold) from an smtA 

operator-promoter has recently been reported in cells devoid of smtB (Huckle et al., in 

press). The level ofbasal expression in these cells (smtB devoid) was ca. 4-fold greater 

than maximal expression observed in metal-induced cells which contain smtB (Huckle et 

al., in press). The increase in levels ofmRNA following amplification may be analogous 

to that observed in eukaryotic cell lines, but the true impact ofthe observed smtB deletion 

on metal tolerance remains to be investigated. However, the results discussed above have 

established a role for the prokaryotic metallothionein gene, smtA, in the acquisition of Cd 

tolerance in Cd-tolerant cell lines of Synechococcus PCC 6301 selected by step-wise 

adaptation. 
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8.4 Homologues of smtA 

The first prokaryotic metallothionein was characterised from the cyanobacterium 

Synechococcus TX-20 (Olafson, 1986), whilst similar proteins have been proposed in 

other cyanobacteria (Section 1. 7). Results obtained during this study have provided 

evidence for the presence of homologues of smtA in different strains of cyanobacteria, 

isolated from metal polluted environments. However, these putative homologues remain 

to be cloned and characterised. Recently, the DNA sequence for a MT gene has been 

described for S. vulcanus, and has been designated mtnA (Data currently available in the 

database: Accession No. X53839). This MT gene, has ca. 50% identity to smtA at the 

level ofDNA and protein (A.P. Morby, personal communication). The identification of 

mtnA, and putative smtA homologues in cyanobacterial strains isolated from metal-polluted 

sites suggests that systems analogous to smtA might operate in a wide range of 

cyanobacterial species. This is of particular significance since metallothioneins are known 

to be involved in metal metabolism (Section 1.6) and as observed in Cd-tolerant cell lines 

of Synechococcus PCC 6301, smtA is also involved as a mechanism of metal tolerance. It 

would be of interest to look at cyanobacterial strains isolated from metal-polluted sites for 

similar rearrangements as observed in the smt locus during this research,. However, 

characterisation of such rearrangements would be difficult in view of the lack of a proper 

control. Additionally, it would be relatively difficult to establish whether such 

rearrangements, if any, occurred in the original environment or during subsequent culture 

in the laboratory. Furthermore, conditions where an organism can be isolated from a 

metal-polluted site and site upstream of the metal-polluted site would be most suited. 

In view of the results described in previous chapters and as discussed above, it is 

proposed that increased internal metal ion sequestration by the SmtA protein promotes Cd 

tolerance in Cd-tolerant cells of Synechococcus PCC 6301. Cyanobacteria have been 

isolated from a wide range of environmental conditions, and are often the predominant 

forms in metal polluted waters. Different effects of Cd-toxicity have been demonstrated in 
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cyanobacterial strains isolated from non-metal and metal polluted waters, but no genes 

involved in metal tolerance have previously been identified (Section 1. 52). 

Cyanobacterial isolates, from metal polluted environments, show increased tolerance 

to the polluting metal and other metals (Section 1.52). It is worth noting at this stage that 

under natural conditions various factors could affect the toxicity of metals (Sections 1.3, 

1. 4 ). However, return of isolates to non-metal supplemented conditions results in a loss of 

tolerance, which is regained by subsequent sub-culturing in intermittent concentrations of 

the metal. These observations may be attributable to analogous systems (such as 

amplification and/or rearrangement) as described during this research, and could suggest a 

state of continuous genome flux within the organism in the natural environment. 

8.5 Nucleotide sequence and database analysis: Implications for genome plasticity 
and adaptation of cyanobacteria to environmental change 

Subsequent to the experimental work described in this thesis, analysis of the 

nucleotide sequence from pAGNR12a and pAGNR13a (by A.P. Morby & N.J. Robinson) 

revealed that a twelve nucleotide inverted repeat, in which 11 of 12 bases are identical (5'-

GCGATCGCC[C/T]CG-3') at positions 100-111 and 459-448, inclusive, traverses the 

borders of the excised fragment. A palindrome 5'-GCGATCGC-3' lies within the inverted 

repeat and flanks the borders of the excision termini (Fig. 8.1). Additionally, this 

palindrome is highly abundant in the smt locus (occurring seven times within the 1326 

nucleotides) and has thus been designated HIP 1 for highly iterated palindrome. 

A search of the GenBank (version 70.0) database (by A.P. Morby & N.J. Robinson) 

for sequences identical to HIP1 in other prokaryotes, and calculation of the total number 

of nucleotides of sequence represented in the database for different organisms, has allowed 

frequencies ofHIP1 occurrence to be calculated. The frequency of multiple HIP1 

occurrence in the sequence entries of Synechococcus and other cyanobacterial genera is 

greater than that seen for other prokaryotes (Figs. 8.2, 8.3). Of the 12 genera with the 

greatest HIPl frequency, 10 are cyanobacteria, and the other two are Thermoactinomyces 

and Ach,~(mwbacter, following which is a marked reduction in the frequency of HIP I 
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occurrence. The highest frequency ofHIP1 iteration is in Synechococcus (15.1 x 10-4 

HIP1/nucleotide), whilst, E. coli, Bordetella, Bacillus and Paracoccus have the lowest 

values (0.3 x 10-4 HIPl/nucleotide). The frequency ofHIP1 iteration in the small plasmid 

pUH24 (7.835 kb) of Synechococcus PCC 7942 was calculated from the total nucleotide 

sequence (Van der Plas et al., 1992). The frequency was calculated to be once every 43 5 

nucleotides. The accuracy by which the frequency ofHIP1 can be used to reflect the 

genome of the organism clearly will depend on the extent to which the sequences present 

in the database are representative of the remaining genome. Since the nucleotide 

information for some genera in the database is very low, the calculated HIP 1 frequency 

may not be a true reflection of the entire genome. If a minimum threshold for sequence 

information is established at 10,000 nucleotides, ofthe 12 genera with the greatest HIP1 

frequencies, Achromobacter, Plectonema, Pseudanabaena, Spirulina and 

Thermoactinomyces would be eliminated. The resulting seven genera with the highest 

HIP 1 frequencies are all representatives of cyanobacteria, followed by a marked decline in 

the HIP 1 frequencies. Certain genera, for example Mycoplasma, has a database 

representation of ca. 75 kb containing no HIP1 sites. However, the representation of75 

kb might not be sufficient to predict a deviation from the expected frequency (from its 

G+C content, which ranges from 23-40%). 

The HIP1 sequence is high in G+C content (75%) and its occurrence might therefore 

be expected to be affected by the G+C content of the organism. Figure 8.4 shows the 

HIP 1 frequencies, estimated from database analyses and also calculated from genomic 

G+C contents, for individual organisms (with> 10 kb of sequence entry) within the genera, 

with the highest (Synechococcus) and lowest (E. coli) calculated HIP1 frequencies. The 

observed HIP 1 frequencies (from database analysis) for Synechococcus PCC 63 01 (55. 1% 

G+C), PCC 7942 (55.2% G+C) and PCC 7002 (49.1% G+C) were calculated to be one 

HIPI sequence for every 555, 851 and 944 nucleotides, respectively. Moreover, from first 

principles the HIPI frequency was calculated to be one HIP1 sequence for every 45,703 

(PCC 6301), 45,368 (PCC 7942) and 71,113 (PCC 7002) nucleotides. However, the 

observed frequency for E. coli (51.7% G+C) was one HIPl sequence for every 30,835 
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nucleotides, whilst the expected frequency was calculated to be once every 58,715 

nucleotides. This suggests that the estimated (from database analysis) HIP1 frequencies 

are not a direct function of chromosomal G+C content (Fig. 8.4). 

8.51 Characteristics of HIPl 

Database analysis has shown that HIP 1 is especially frequent in cyanobacterial 

genomes. In sequence entries of Synechococcus HIP 1 is present both within the coding 

region and in intergenic regions. HIP 1 sequences occurring within the protein coding 

regions are found in all three possible reading frames; 5'-GCG ATC GC-3' (Ala-Ile-Ala), 

5'-GC GAT CGC-3' (Xaa-Asp-Arg) and 5'-G CGA TCG C-3' (Xaa-Arg-Ser-Xaa). The 

central motif(5'-GATC-3') ofHIP1 is a Dam methylase recognition site, and the central6 

bp of the HIP1 sequence also represent the recognition site for Pvul restriction 

endonuclease. The HIP1 sequences present in the smtB gene can be considered as short 

homologous direct repeats. 

Repeat sequences have been identified in a wide range of organisms. The first of such 

repetitive sequences were initially identified in E. coli and Salmonella typhimurium and are 

described as REP (Repetitive Extragenic Palindromic) or PU (Palindromic unit) sequences 

(Higgins eta/., 1982; Gilson eta/., 1984). The REP sequence structure consists of a 38 

bp concensus sequence which is a palindrome and can form a stable stem-loop structure 

with a 5 bp variable loop in the central region of the concensus (Stern eta/., 1984). 

G G C G C C 
GCC GATG.CG CG ..... CG CTTATC GGCCTAC 

T A T A T A 

Concensus REP sequence (reproduced from Stern eta/., 1984). 

The REP sequences can occur singly or in tandem (up to four copies); the tandem 

copies are always inverted with respect to each other. Between 500 and 1000 copies of 

the REP sequence are found on the chromosomes of E. coli and Salmonella typhimurium, 

thus occupying about 1% of the genome (Stern eta/., 1984; Higgins eta/., 1988). 

Extrapolation of the HJPI frequency values observed in Synechococcus database sequence 
., .. • 
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entries suggest an overall occurrence of ca. 4500 HIPl sequences per genome, which 

would represent about 1% of the Synechococcus genome. During database analysis no 

evidence has so far been obtained for the tandem occurrence ofHIP1 in bacterial genomes. 

In contrast to HIP 1 sequences, no example of the REP sequence has been found 

within the coding sequence for a protein. In sequences identified so far, they are present in 

extragenic, non-translated regions, either between two genes that are co-transcribed as 

part of a single operon or, alternatively, within the 3' untranslated region at the end of an 

operon (reviewed by Higgins eta/., 1988). Recently it has been reported that clusters of 

REP sequence on the E. coli chromosome could also contain other repeated elements in 

specific arrangements. These elements were termed as BIME (Bacterial Interspersed 

Mosaic Element: Gilson et al., 1991)(reviewed by Lupski & Weinstock, 1992). The 

BIME structures are always found in extragenic locations and the E. coli chromosome is 

estimated to have about 500 BIME structures. 

Another group of interspersed repetitive DNA sequences identified in E. coli, 

Salmonella typhimurium and other enterobacteriaceae were designated as IRU (Intergenic 

Repeat Unit: Sharples & Lloyd, 1990) or ERIC (Enterobacterial Repetitive Intergenic 

Concensus: Hulton et al., 1991). The ERIC or IRU sequences are approximately 126 bp 

in length and are located in non-coding transcribed regions of the chromosome, and 

includes a conserved inverted repeat. Recently, three distinct families of repeated 

sequences have been identified in the cyanobacterium Calothrix PCC 7601 (Mazel et al., 

1990). These repeated sequences are present at a level of about 100 copies per Calothrix 

genome, consist oftandemly amplified heptanucleotides and were thus named STRR 

(Short Tandemly Repeated Repetitive) sequences. The concensus sequences for the three 

STRR sequences are quite distinct from each other and are as follows: 

STRR1 CCCCA(A/G)T 

STRR2 TT(G/T)GTCA 

STRR3 CAACAGT 

Furthermore, the heptanucleotide sequences of STRR are not particularly abundant 

but, when found, a,r~ often amplified. Additionally, a heptanucleotide sequence 

141 



(CGATCGC; which is also identical to the last 7 nucleotides ofHIP1) was mentioned to 

be amongst the most abundant heptanucleotide sequences, was not a component of STRR 

and was never found to be tandemly amplified. The STRR sequences were absent from E. 

coli and Bacillus subtilis, whilst in the 24 cyanobacterial strains tested, they were present 

only in filamentous heterocystous forms (Mazel et al., 1990). 

8.52 Functions and uses of repeat sequences 

Various functions ofREP and other repeat sequences have been widely reviewed 

(Higgins et al., 1988; Lupski & Weinstock, 1992). REP sequences present at the 3' end of 

a gene or operon have been shown to function as mRNA stability determinants. Specific 

mRNA species extending from the promoter to the REP sequence are detected, and the 

accumulation of mRNA upstream from REP sequence is due to an increase in the mRNA 

half-life (Newbury eta!., 1987); however, studies have shown that REP sequences are not 

normally signals for transcription termination (Stern et al., 1984). In addition to mRNA 

stability, REP sequences are also implicated in differential expression within polycistronic 

operons. Despite the above mentioned functions, it has been suggested that this is unlikely 

to be the primary reason for the high degree of sequence conservation between REP 

sequences. It has also been proposed that REP sequences may play a role in the 

organisation of the prokaryotic chromosome. Recombination has been known to occur 

between REP sequences and REP is involved in the formation of chromosomal 

rearrangements such as duplications (Shyamala et al., 1990). REP has also been shown to 

bind DNA gyrase (Yang & Ames, 1988), DNA polymerase I (Gilson et al., 1990). In 

Haemophilus injluenzae, cellular uptake of DNA depends on the presence of a repetitive 

11 bp sequence which occurs on average once every 4 kb (Sisco & Smith, 1979). In the 

case ofERIC sequences, their chromosomal locations differ in different species. No 

evidence has so far been obtained in support of a classic transposition mechanism for 

dispersion of these repetitive sequences (Lupski & Weinstock, 1992). 

Recent studi~~ suggest that STRR sequences are not involved in regulation of gene 

expression in the hete.rocyst, despite their presence specifically in heterocystous strains of 
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cyanobacteria (Mazel et al., 1990). By analogy to REP and ERIC sequences, it has been 

suggested that STRR might be the target sites for specific DNA-binding proteins 

responsible for chromosome condensation and/or their possible involvement in the control 

of chromosome distribution, or of chromosome replication during heterocyst 

differentiation (Mazel et al., 1990). This may be of particular relevance since heterocysts 

differ from vegetative cells, in the expression of some genes, in the physical organisation of 

the genome and in the condensation state ofthe chromosome (Wolk, 1982). 

The HIP 1 sequence is distinct from previously reported repetitive sequences such as 

REP, ERIC and STRR in its small size, perfect palindromic structure, distribution and 

projected frequency of iteration (ca. 4-fold greater than REP and ca. 1 00-fold greater than 

STRR). Unlike REP, ERIC and STRR, HIP1 would allow for intra-genic rearrangements 

(as observed within smtB), and also inter-genic rearrangements. Additionally, it could 

facilitate recombination between functional protein domains and/or the deletion and 

amplification of individual genes. 

The precise function of repetitive sequences, how they have dispersed throughout the 

genomes, and how their high degree of sequence similarity is maintained, is not known. 

However, the presence and widespread distribution of repetitive sequences strongly 

suggests that they are important to the structure and evolution of genomes. High 

representation ofHIP1 in the small plasmid of Synechococcus (once every 435 

nucleotides ), and high representation of this motif in the genomes of a number of 

cyanobacteria suggests the possibility of a widespread role for HIP1 in genome plasticity 

and cellular adaptation in these organisms. 

Recently, synthetic oligonucleotides corresponding to REP and ERIC sequences with 

the base inosine placed at the non-conserved positions have been used as primers in PCR 

using prokaryotic genomic DNA as template. This technique is known as rep-PCR and 

reveal a specific pattern of genomic DNA fingerprint, which appears to be species and 

strain specific (Versalovic eta/., 1991 ). This may have multiple applications in 

epidemiological studies of micro-organisms as well as for quality control of micro­

organisms used in medical, agricultural and industrial applications. Additionally, rep-PCR 
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may be useful for mapping of insertion sequences, such as mutations caused by transposon 

insertions. Furthermore, because of the presence of STRR sequences in a large number of 

cyanobacterial strains, they constitute a powerful tool for taxonomic studies. Indeed, the 

use of STRR sequences as probes for hybridisation of DNA, would facilitate researchers to 

determine whether different isolates are members of the same genus or even the same 

species. In addition they may also be important in monitoring putative DNA 

rearrangement events occurring during the differentiation process of hormogonia, akinetes 

or heterocysts. Analogous to the usefulness ofSTRR sequences, HIPI may provide a 

more efficient tool than STRR for similar purposes, due to a more diverse distribution and 

a high frequency of iteration. Use ofHIPl in a similar manner as REP and ERIC for PCR 

may facilitate the development of new taxonomic positions for organisms, based on their 

genetic make-up, since the distribution ofHIPl has been observed to be independent of 

the G+C content of an organism. 

In conclusion, acquisition ofCd-tolerance in Synechococcus PCC 6301 has been 

shown to involve amplification of the prokaryotic metallothionein gene, smtA. 

Additionally, loss of smtB has been observed in Cd-tolerant cell lines selected by step-wise 

adaptation. This represents the first characterisation of a molecular mechanism for metal­

tolerance in cyanobacteria. The loss of a functional smtB provides enhanced expression of 

smtA and suggests increased internal metal ion sequestration in Cd-tolerant cell lines. 

However, the possibility that the SmtA protein has a more dynamic role in metal tolerance, 

possibly via enhanced metal efflux, has not yet been tested. Since, metal-tolerant 

cyanobacteria have been isolated from metal-polluted environments and putative 

homologues of smtA have been identified in several strains of cyanobacteria, it is 

postulated that similar systems of metal tolerance might operate in cyanobacteria selected 

for metal tolerance in metal polluted sites. Furthermore, deletion within the smt locus is 

bordered by a palindromic sequence HIP 1. The high frequency of HIP 1 iteration in 

cyanobacteria suggests more general role for this palindrome (not merely at the smt locus) 

in genome plasticity and hence adaptation of cyanobacteria to environmental change. It 
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will be of interest to look for evidence ofHIPl mediated rearrangements in other 

cyanobacterial genes following adaptation to other environmental changes. 
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Figure 8.1. Representation of the smt locus. A 1326 bp Hindiii-Nael fragment containing 

the smt locus from non-selected cells is represented, showing the smtA and smtB genes. 

Vertical lines represent HIP 1 sequences. The expanded region shows the sequences 

traversing the deletion end-points, the HIP1 sequences are in bold. The horizontal arrow 

delineate an inverted repeat which includes, and extends beyond, the two HIP 1 sites. 
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Figure 8.2. Multiple HIPI sequences per database entry per genera in GenBank 70.0. The 

number of sequence entries for each genera containing 3 or more HIP 1 sequences is shown 

and E. coli is shown for reference. "n" represents the number of HIP I sequences within a 

given entry. 
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Figure 8.3. Estimated frequency offfiPl in the genomes of different genera in the DNA 

sequence databank. The frequency ofiDPl per nucleotide of sequence information for a 

given genera represented in the databank, is shown for all genera for which the estimated 

value exceeds zero. 

150 



&cherichia 
BordeJella 

Bacillus 
Para:xx:ws 

Vibrio 
l.octobacillus 

Salmonella 
Pseudomonas 

Saccharopolyspora 
Klebsiella 

Co~bacterium 
Bacteroides 

Xanthomonas 
Rlwdosvirillum 

Erwinia 
Mycobacterium 

Methonothrix 
Cellulomonas 
Rlwdobacter 

Flavobacterium 
Agrobacterium ,__ __ 

Rhizobium -c::::== 
Azotobacter <==== 
AlcalikeneS 

Streptomyces 
SeJTatia 

Ha!IJbacterium 
Aero monas 

Methvlosinus 
. Brucella 

Cau!IJbacter 
Bradvrhizobium 

Propionobacterium 
Helicobacter 
Anaplasma 

Spirulina 
Thermoactinomyces 

Proch!IJrolhrix 
Svnechocvstis 

Achromobacter 
Anabaena 

Masligocladus 
Nostoc 

Plectonema 
Fremyella 

Pseudanabaena 
Syneclwcoccus 

Genera 

HIPllnucleotide/genera (xle4) 

co 0 1\) 



Figure 8.4. The estimated frequency ofHIPl (open columns) in the genomes of individual 

species in the genera estimated to have the highest (Synechococcus) or lowest 

(Escherichia) HIPl frequencies. The organisms are listed in order of increasing G+C 

content. Anticipated HIPl frequencies predicted from the G+C content (closed columns) 

are shown for comparison. 
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Chapter 9 

SUMMARY 

To investigate the role of smtA in Cd tolerance, and to establish an analogy to the 

functional roles ofMT systems in eukaryotic cell lines, two sets ofCd-tolerant 

Synechococcus PCC 6301 cell lines were developed by step-wise selection to increasing 

Cd concentrations. The various results described in the previous chapters and the 

conclusions derived from them can be summarised as follows: 

1) No hybridisation ofDNA from pPLAN Ba1-Ba7 and pPLAN B2 was observed to the 

Hindiii-Sall fragment carrying the smt locus. Weak hybridisation of the smtA gene is 

observed to DNA from pPLAN Ba2. Sizes of the hybridising fragments in pPLAN Ba2 

and the control do not correspond. Therefore, smtA, can be assigned to be located on the 

chromosome. The weak homology would be clarified only after nucleotide sequence 

analysis ofthe region of homology. 

2) Cd-tolerant cell lines of Synechococcus PCC 6301 were developed by step-wise 

selection to increasing Cd concentrations. A culture of Synechococcus PCC 6301 that had 

undergone prolonged maintenance in liquid medium was used for step-wise selection. The 

Cd-tolerant cell lines showed phenotypic differences to the non-selected cell line. 

3) Genomic DNA from Cd-tolerant cell lines and the non-selected cell line was analysed 

after maintenance in the respective Cd concentrations. An increase in hybridisation, and 

additional unique restriction fragments, relative to the non-selected line, were observed in 

genomic DNA from all the Cd-tolerant lines. No evidence for increase in hybridisation or 

appearance of unique restriction fragments was evident in genomic DNA from Cd-tolerant 

lines and non-selected line hybridised to a control gene, psaE. A similar pattern of 

restriction fragments was observed in three independent San restrictions of genomic DNA 

isolated from Cd-tolerant line A1.3 after 2 subcultures. 

4) Cd-tolerant cell lines of Synechococcus PCC 6301 were re-selected using a culture 

developed from a single plated colony. An increase in growth lag coincident with increase 

in tolerance was observed .. The growth lag decreased following subsequent maintenance 

of Cd-tolerant cell lines in the presenq~ of the respective Cd concentration. 
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5) Genomic DNA isolated from the Cd-tolerant cell lines and the non-selected cell line was 

analysed after 1, 2, 3, 4 and 5 subcultures in the presence of the respective Cd 

concentrations. An increase in hybridisation to smtA, and unique restriction fragments 

were observed in genomic DNA from all the Cd-tolerant cell lines after 1 subculture, 

except C 1. 4 where increase in hybridisation and additional restriction fragments were 

observed only after 2 subcultures. 

6) No evidence for increase in hybridisation or appearance ofunique restriction fragments 

was evident in genomic DNA from Cd-tolerant lines and non-selected line hybridised to a 

control gene, psaE. No evidence for any additional restriction fragments was observed in 

genomic DNA from the non-selected lines during selection or subsequent maintenance. 

The additional restriction fragments in Cd-tolerant cell lines were both larger and smaller, 

and the smaller restriction fragment in Cd-tolerant lines was ca. 350 bp smaller than that in 

the non-selected line. Restriction fragment equivalent in size to that in the non-selected 

line, was not apparent in DNA from the Cd-tolerant lines C1.8, C2.6 and C3.2. 

7) The presence of Cd did not affect the restriction of genomic DNA with Sail, under in 

vitro or short-term (2 h) in vivo conditions. 

8) The apparent rearrangement was obtained on a Hindiii-Sall restriction as a single 

fragment. The single restriction fragment was ca. 3 50 bp smaller than that in DNA from 

the non-selected line. The rearrangement was isolated from size-fractionated genomic 

libraries. The rearrangement was localised to a 600 bp region in the 5' flank of smtA by 

PCR and restriction mapping. 

9) Nucleotide sequence analysis demonstrated a loss of352 bp from within a region of360 

bp between nucleotide positions 100-459 inclusive. The excised fragment encodes the C 

terminal end of the smtB gene, but retains the first 20 amino acids and the putative 

terminator intact. 

10) The borders ofthe excised fragment are traversed by an octanucleotide palindromic 

sequence, 5'GCGATCGC 3'. 

11) Southern hybridisation ofDNA from the non-selected and Cd-tolerant cell lines 

suggests that all copies of the excised DNA fragment are almost certainly lost from the cell 
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in cell lines C1.8, C2.6 and C3.2. A rearranged pattern of restriction fragments is 

observed in C3 .2 even after maintenance in absence of Cd for 3 subcultures. 

12) An elevated basal level of smtA transcription was observed in C3.2 following 

maintenance in the absence of Cd. A greater increase in smtA transcript abundance, 

relative to the non-selected line, was observed in C3.2 following exposure to Cd after 

maintenance in the absence ofCd. Return ofthe non-selected line and Cd-tolerant line 

C3.2 following exposure to Cd, to medium containing no added Cd suggests a rapid 

degradation of the smtA transcript in the non-selected line (within one subculture). Whilst, 

in C3 .2 an elevated basal expression was observed even after 3 subcultures. 

The various results presented in previous chapters suggest that in Cd-tolerant lines of 

Synechococcus PCC 6301, developed by step-wise adaptation to increasing concentrations 

of Cd, increased internal metal ion sequestration by the SmtA protein promotes Cd 

tolerance. Derepressed expression of smtA in C3.2 may be beneficial for such cells 

continuously exposed to supra-optimal concentrations of Cd. Increase in smtA copy 

number may further enhance expression and facilitate Cd tolerance. Additionally, the 

identification of putative homologues of smtA in a number of cyanobacterial strains 

suggests that systems analogous to smt might operate in different cyanobacteria. 
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SUMMARY 

Metal-tolerant cyanobacteria have been isolated from metal-polluted aquatic environments and also 
selected in culture, but no genes which confer metal tolerance have been described. To investigate the 
possibility that amplification of a prokaryotic metallothionein gene (smtA), or rearrangement of the smt 
locus, could be involved in the development of Cd tolerance in Synechococcus PCC 630 l, Cd-tolerant lines 
were selected by stepwise adaptation of a Synechococcus culture. An increase in smtA gene copy number and 
the appearance of unique additional smtA restriction fragments (both larger and smaller) were detected 
in these tolerant lines (tolerant to 0.8 J.lM Cd, 1.3 J.lM Cd and 1.7 J.lM Cd). Stepwise adaptation was 
repeated by using a culture of Synechococcus PCC 6301 inoculated from a single plated colony to obtain four 
new lines (tolerant to 1.4 f.lM Cd, 1.8 J.lM Cd, 2.6 J.lM Cd and 3.2 J.lM Cd). Amplification of the smtA gene 
and development of unique smtA restriction fragments (larger and smaller) were once again detected in 
these tolerant lines. Amplification and rearrangement of the smt locus were only detected in the seven Cd­
tolerant lines, with no evidence of amplification or rearrangement in the non-tolerant lines from which 
they were derived. As a control, another gene, psaE, was also monitored in these cell lines. There was no 
evidence of amplification or rearrangement of psaE in the non-tolerant or any of the Cd-tolerant lines. 

I. INTRODUCTION 

Anthropogenic mobilization of toxic trace metals into 
the biosphere, and the consequent adaptation of 
certain organisms to supra-optimal concentrations of 
these metals, has been extensively documented (see 
citations in Antonovics et al. ( 1971); Bradshaw ( 1984) ). 
At moist sites combining high concentrations of metal 
with high pH, cyanobacteria are often the dominant 
microorganisms. Some cyanobacterial isolates from 
metal-polluted sites tolerate considerably higher con­
centrations of metal in subsequent culture than do 
cyanobacterial strains isolated from environments not 
enriched with metal (Shehata & Whitton 1981). 
Cyanobacteria have also been selected in the lab­
oratory for increased tolerance to a number of different 
metals by using stepwise adaptation. However, the 
mechanisms of metal tolerance in metal-adapted 
cyanobacteria have not been fully described, and no 
genes which confer metal tolerance have been identi­
fied in cyanobacteria. 

Several studies have shown that diverse mechanisms 
of tolerance to different metals operate in cyanobacteria 
(for examples see Fernandez-Pinas et al. 1991; Jardim 
& Pearson 1984; Verma & Singh 1991). It has been 
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proposed that metal tolerance in cyanobacteria re­
ferred to as Anacystis nidulans and Synechococcus TX-20 
(Anacystis nidulans, Synechococcus PCC 630 I, Anacystis 
nidulans TX-20 and Synechococcus PCC 7942 are all 
suggested to belong to the same species) could involve 
intracellular binding of CdjZn to ligands similar to 
eukaryotic metallothioneins (MTs) (Maclean et al. 
1972; Olafson et al. 1980). 

MTs (class I and class II) have been isolated and 
characterized from such a wide range of eukaryotes 
that they are often considered to be ubiquitous (for 
reviews see Hamer 1986; Kagi & Schaffer 1988). In 
eukaryotes, MTs are known to be involved in cellular 
responses to elevated concentrations of certain metal 
ions. MTs bind specific metal ions, and rapid induction 
of MT in response to elevated concentrations of these 
metals is thought to confer tolerance. Additionally, 
animal MT genes respond to a variety of endogenous 
factors, suggesting an undefined role in cellular 
regulation (Kagi & Schaffer 1988; Zeng et al. 1991). 

Olafson (1984, 1986) and Olafson et al. (1988) 
purified and chemically characterized an MT-like 
cyanobacterial protein, reporting its amino acid se­
quence. This protein is the first (characterized) 
prokaryotic MT (see citations in Kagi & Schaffer 
(1988)). Based upon the known amino acid sequence, 
degenerate inosine-containing oligonucleotides were 
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designed and used to amplify part of the corresponding 
MT gene in the polymerase chain reaction (PeR) 
(Robinson et al. 1990). Subsequently, the gene has 
been isolated from a size-fractionated genomic DNA 
library. The nucleotide sequence was determined and 
the gene designated smtA Q. W. Huckle, unpublished 
data). 

Exposure of a Synechococcus culture to highly elevated 
concentrations of Cd resulted in a prolonged lag. 
Subsequent resumption of growth coincided with an 
increase in cellular MT (Olafson 1984; Olafson 1986). 
On transfer of these cells to fresh medium in the 
absence of Cd, MT reduced to near-basal levels. 
However, no lag was observed upon re-transfer of these 
cells into Cd-containing medium, whereas non-tolerant 
cells grew only after a lag. This apparent acquisition of 
Cd tolerance was thought unlikely to be related to a 
chromosomal mutation because it would require a 
mutation frequency considered to be unreasonably 
high (Olafson 1984, 1986). It was proposed that metal 
tolerance may result from the amplification of an 
extrachromosomal MT gene (Olafson et al. 1980; 
Olafson 1986). This strain of Synechococcus has two 
plasmids of ca. 8.0 kilobase pairs (kb) and 48.5 kb 
(Laudenbach et al. 1983), which could potentially 
harbour the MT gene, although no plasmid-encoded 
functions have previously been identified in cyano­
bacteria (Ciferri et al. 1989). Analysis of DNA isolated 
from R2-PIM8, a derivative of Synechococcus PCC 7942 
cured of the small plasmid (R2-SPc) (van der Plas et al. 
1990), confirms that this strain contains the smtA gene 
Q. S. Turner, personal communication). Therefore, 
smtA must be either chromosomal or located on the 
48.5 kb plasmid. However, the sizes of Sall, Hindlll 
and BamHI restriction fragments containing the smtA 
gene in DNA isolated from Synechococcus PCC 630 l 
(Robinson et al. 1990) do not correspond to the known 
sizes of SalT, Hindlll and BamHI restriction fragments 
of DNA isolated from the 48.5 kb plasmid (Lauden­
bach et al. 1983). It is therefore assumed that smtA is 
chromosomal. In eukaryotes, however, amplification 
ofMT genes (initially chromosomal) has been observed 
in metal-tolerant cell lines (Beach & Palmiter 1981 ; 
Crawford et al. 1985). 

To investigate the possible involvement of amplifi­
cation of the prokaryotic MT gene, smtA, or rearrange­
ment of the smt locus in Cd tolerance, we report here: 
(i) the selection of two different sets ofCd-tolerant lines 
of Synechococcus PCC 6301; and (ii) the analysis of smtA, 
and also another gene psaE, in a series of Southern blots 
of restricted DNA isolated from both non-tolerant 
Synedwcoccus PCC 630 l and these selected lines. 

2. MATERIALS AND METHODS 

(a) A1 aterials and cyanobacterial culture 

Syneclwcoccus PCC 6301 and Syneclwcystis PCC 6803 were 
cultured as described previously (Robinson el al. 1990). 
Absorbance at .540 nm was used as an indirect estimate of 
cell density. Restriction enzymes were supplied by 
North umbria Biologicals Ltd, Cramlington, U.K.; Taq 
polymerase was supplied by Stratagene, Cambridge, U.K. or 
Perkin-Elmer/Cetus. [et- 32 P)dCTP (14.8 TBq mmol-1

) and 
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nylon (Hybond N and Hybond N +) filters were from 
Amersham International, Aylesbury, U.K. 

(b) Stepwise adaptation 

Cd-tolerant lines of Synechococcus PCC 6301 were developed 
by repeated subculturing in liquid medium containing a 
range of Cd concentrations. Cells which grew in the highest 
concentration of Cd were used as inocula for further 
subculture. The most tolerant lines obtained after each step 
of selection were also maintained in media supplemented 
with the respective Cd concentrations. Two different sets of 
Cd-tolerant lines of Synechococcus PCC 6301 were selected: (i) 
a culture (AO) that had been maintained for a prolonged 
period in liquid medium was adapted to 0.8 I!M Cd (A0.8), 
1.3 !lM Cd (A1.3) and 1.7 I!M Cd (A\.7); and (ii) a culture 
(CO) inoculated from a single plated colony (to minimize 
initial genetic variability) was adapted to 1.4~-tM Cd (C1.4), 
1.8~-tM Cd (Cl.8), 2.6~-tM Cd (C2.6) and 3.2 I!M Cd (C3.2). 
The inoculum and harvesting densities were 2 x 105 cells 
ml-1 and 2 x 108 cells ml-I, respectively, throughout selection 
and subsequent maintenance of lines CO, Cl.4, Cl.8, C2.6 
and C3.2. 

(c) Isolation and quantification of DNA 

Genomic DNA was isolated as described previously 
(Robinson et al. 1990). DNA concentration was determined 
by the Fluorometric Diaminobenzoic acid (DABA) assay of 
Thomas & Farquhar (1978). To estimate the number of 
copies of the smtA gene in DNA (10 l!g) isolated from 
Syneclwcoccus PCC 630 I, standard amounts (multi pies of 
8.81 ng) of pjHNRll (plasmid pUCl9 containing 144 base 
pairs (b.p.) of the smtA coding region) DNA were also 
analysed. It was assumed that the genome size of Synechococcus 
PCC 6301 is 3.212 x 106 b.p. (Herdman et al. 1979). There­
fore, 10 l!g of genomic DNA would contain 2.988 x 109 copies 
of the genome, and an equivalent number of copies of smtA 
will be contained in 8.81 ng of pjHNR II DNA. 

(d) Amplification and cloning of a fragment of the psaE 
gene from Synechocystis PCC 6803 

The psaE gene (a photosystem I gene) was used as a 
control probe for subsequent Southern analyses. Oligonucleo­
tides suitable for in vitro amplification of psaE from Synecho­
cystis PCC 6803 were synthesized based upon the nucleotide 
sequence reported by Chitnis et al. (1989); N-terminal 
primer, .5'CCA TGG CCT TAA ATC GTG GTG ACA AA 
3'; C-terminal primer, 5' AAG CTT TGC CGC CGC TTG 
CAC CAA TTC C 3' (underlined sequence represents 
restriction endonuclease recognition sites included in the 
primers). PCR was done as described previously (Robinson et 
al. 1990). Reaction products were analysed by electrophoresis 
on a 2% agarose gel, and a 21.5 b. p. fragment of psaE was 
recovered, cloned and sequenced. Plasmid sequencing using 
M 13 forward and reverse primers was done by the dideoxy­
sequcncing method of Sanger et al. (1977), as described 
previously (Robinson et al. 1990). The nucleotide sequence of 
the cloned (in pjHNR61) fragment corresponded to the 
known nucleotide sequence (data not shown). The cloned 
fragment of psaE was then used to prepare radiolabelled 
probes suitable for the detection of a homologous gene in 
Synechococcus PCC 630 I . 

(e) Production of [32 P] -labelled probes 

PCR products and also cloned fragments of smtA and psaE 
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Figure l. Growth of non-tolerant AO (0) and Cd-tolcrant lines (A0.8 (.6), Al.3 (.~),and Al.7 (e)) in different 
concentrations of Cd. Growth in (a) 0 !!M Cd, (b) 0.8 !!M Cd, (c) 1.3 !!M Cd, and (d) 1.7 !!M Cd. 

(in pjHNRll and p.JHNR61, respectively) released from 
vector by restriction (Sali and EcoRI; EcoRI and BamHI, 
respectively) were electroeluted (Sambrook et al. 1989) from 
agarose gel slices and DNA recovered by binding to silica 
fines (Robinson et al. 1990). Recovered DNA was radio­
labelled with [e<-32 P]dCTP, according to the procedure of 
Feinberg & Vogelstcin (1983). 

(f) Restriction and analysis of DNA 

Genomic DNA (10 !!g) was digested with Sali, usmg 
incubation conditions recommended by the manufacturers. 
Digested genomic DNA and portions (equivalent to one, two, 
three, four, five, six and eight gene copies) of digested 
(EcoRI) plasmid pjHNRll were separated by agarose gel 
electrophoresis, transferred to Nylon (Hybond N) filters 
(Sambrook et al. 1989) and hybridized with a [32 PJ-labelled 
144 b.p. fragment of the smtA gene. For lines CO, Cl.4, Cl.8, 
C2.6 and C3.2, restriction fragments were separated on a 
0.7% agarosc gel and transferred to Nylon (Hybond N +) 
mcm brane by alkali transfer (man ufacturcr's protocol). 
Standard prchybridization and hybridization conditions 
were used and the filters washed to a final stringency of 
1.0 X sse (I X sse is 0.15 M NaCI, 15 111M sodium citrate, 
pH 7 .0) at 65 °C for 15 min and exposed at -80 °C to 
X-ray film (Ft\ii RX). 
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3. RESULTS 

(a) Growth of non-tolerant AO and Cd-tolerant lines AO.B, 
A1.3 and Al.l in Cd-containing media 

Growth of AO and the three tolerant lines was 
monitored in four different concentrations ofCd (0 JlM, 
0.8 JlM, 1.3 JlM, 1.7 JlM) by measuring absorbance at 
540 nm (figure I). Growth of AO was totally inhibited, 
and line A0.8 was partly inhibited, in media containing 
1.7 JlM Cd. 

(b) Analysis of genomic DNA isolated from non-tolerant 
AO and Cd-tolerant lines AO.B, A1.3 and Al.l 

A ca. four-fold increase in [32 P]-labelled smtA 
hybridization, relative to Sall digested DNA from AO, 
was observed in Sall digested genomic DNA from line 
Al.7 (figure 2a). However, ethidium bromide staining 
of the agarose gel before Southern blotting showed that 
equivalent amounts of DNA from each of the four lines 
was present (figure 2c). The filter was subsequently 
probed with a [32 P]-labelled fragment of the psaE gene 
(figure 2b). Relative to DNA from AO, there was no 
increase in psaE hybridization in line A I. 7; indeed, 
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Figure 2. Analysis of genom ic DNA isolated from AO and Cd-tolerant lines. (a) H ybridization to smtA. (b) 
Hybridization to psaE. (c) Visualization of ethidium bromide-stained DNA. Sail restricted genomic DNA was isolated 
from: lane I, AO ; lane 2, AO.B ; lane 3, Al.3; and lane 4, Al.7. Lanes 5- 11 contain standard amounts of plasmid 
pJHNRII DNA, equivalent to one, two, three, four, five six and eight gene copies, respectively. Two bands in (b) : 
upper band corresponds to smtA; lower band corresponds to psaE. 

slightly less hybridization was observed to DNA from 
this most tolerant line. 

DNA isolated from AO and the tolerant lines was 
further analysed after two, four, seven and 12 sub­
cultures (figure 3) . Increased hybridization of smtA , 
relative to AO, was repeatedly detected in the tolerant 
lines. Additionally, unique smtA restriction fragments, 
both larger and smaller than that detected in the line 
AO, were observed in DNA isolated from lines A 1.3 and 
Al.7. After seven subcultures (figure 3), a similar 
restriction pattern to AO occurred in DNA isolated 
from the tolerant lines. However, prolonged exposure 
revealed larger and smaller smtA restriction fragments 
in the tolerant lines, a lthough these fragments were 
relatively less abundant (data not shown) . No evidence 
of rearrangement was observed in DNA from AO when 
probed with smtA, or in any of the lines when probed 
with the control gene psaE. All Southern blots were 
done with gene copy number reconstructions (data 
only shown in figure 2) . 

To confirm whether or not the appearance of unique 
restriction fragments was rep rod uci ble (not merely 
caused by anomalous, possibly incomplete, restriction ), 
DNA isolated from tolerant line A0.8 after two 
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subcultures in 0.8 jlM Cd was independently restricted 
three times with Sall. A similar banding pattern of 
larger and smaller Sall smtA restriction fragments was 
obtained in all three restrictions (data not shown). 

(c) Res election of Synechococcus PCC 6301 (cell line CO) 
for Cd tolerance and analysis of genomic DNA isolated from 
non-tolerant CO and Cd-tolerant lines CJ.4 , Cl.8, C2.6 and 
C3.2 

A culture inoculated from a single plated colony was 
reselected, independent of the first adaptation protocol, 
for Cd tolerance. Rapid development of Cd tolerance 
was achieved. Coincident with adaptation to increasing 
Cd concentrations, an increase in lag before growth 
was observed. This lag decreased upon subsequent 
maintenance of Cd-tolerant lines in media supple­
mented with the respective Cd concentration (data not 
shown) . 

DNA isolated from CO and tolerant lines Cl.4, Cl.8, 
C2.6 and C3.2 was analysed by Southern hybridization 
to a [32 PJ-labelled fragment of the smtA gene, after one, 
two, three and four subcultures in media supplemented 
with the respective Cd concentration (figure 4) . After 
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Figure 3. Analysis of genomic DNA isolated from AO and Cd-tolerant lines (A0.8, Al.3 and Al.7) after two, four, 
seven and twelve subcultures. (a) Hybridization to smtA. (b) H ybridization to psaE. Equivalent amounts of D A 
isolated from: lane I, AO ; and tolerant lines, lane 2, A0.8 ; lane 3, A1.3; and lane 4, A1.7; was restricted with Sail. 
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Figure 4. Analysis of genomic DNA isolated from CO and Cd-tolerant lines (Cl.4, Cl.8, C2.6 and C3.2) after one, 
two, three and four subcultures. (a) H ybridization to smtA . (b) Hybridization to psaE. DNA isolated from : lane 1, CO; 
and tolerant lines, lane 2, Cl.4 ; lane 3, Cl.8 ; lane 4, C2.6; and lane 5, C3.2; was restricted with Sall. 
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the first subculture, unique larger and slightly smaller 
smtA restriction fragments were obtained in the DNA 
isolated from lines Cl.8, C2.6 and C3.2. No Sall smtA 
fragments equivalent to that observed in CO (5.8 kb) 
were detected in these three Cd-tolerant lines. The 
hybridization intensities of the two bands, relative to 
CO, in these lines (Cl.8, C2.6 and C3.2) also suggests 
an increase in smtA gene copy number per unit DNA. 
No unique smtA restriction fragments were observed in 
the DNA isolated from line C 1.4 at this time. After two, 
three and four subcultures, unique larger and smaller 
sml/1 restriction fi·agments were obtained in DNA 
isolated from all of the tolerant lines. Furthermore, no 
Sal! smtA fi·agment equivalent to CO (5.8 kb) was 
present in any of these tolerant lines. As a control, the 
blots were subsequently hybridized with a (32 PJ­
Iabelled fragment of the psaE gene. No evidence of 
rearrangement was observed for psaE in any of the 
lines. All Southern blots were done with gene copy 
number reconstructions (data not shown). Further 
analysis of genomic DNA from CO and tolerant lines 
after subsequent (after the fourth) subculture has 
generated similar results (data not shown). 

(d) Effect of Cd on digestion of genomic DNA with Sal! 
restriction endonuclease 

There was concern that minute quantities of Cd 
which might be present in DNA isolated from Cd­
exposed, Cd-tolerant lines could affect restriction of 
genomic DNA with Sall restriction endonuclease 
causing artefacts that might have been misinterpreted 
as gene rearrangements. Genomic DNA (10 ~g) iso­
lated fi·om CO was restricted with Sali in the presence 
of a range of Cd concentrations from 10-10 ~M to 
10-1 ~M. Furthermore, to investigate any potential 
short-term (2 h) in vivo effects (e.g. modification of 
restriction endonuclease recognition sites), a culture of 
CO grown to mid-log phase was divided into two 
portions. To one portion, 3.2 ~M Cd was added and 
incubated for 2 h, whereas the second portion was 
incubated for 2 h without the addition of Cd. 
Subsequent Southern analysis of Sall-digested DNA 
showed no differences in (32 PJ-labelled smtA hybrid­
ization between the DNA from CO cells restricted in 
either the presence or absence of added Cd, or grown 
in either the absence or presence ofCd for 2 h (data not 
shown). 

4. DISCUSSION 

A comparison of Cl 2 PJ-labelled smtA hybridization 
with Sall-digested DNA from Syneclzococcus PCC 6301 
line AO with standard amounts of plasmid DNA 
containing the smtA gene is consistent with smtA 
occurring at a low copy number (probably one) on the 
cyanobacterial chromosome (figure 2). 

Cell lines selected by stepwise adaptation to in­
creasing concentrations of Cd were phenotypically 
distinct, displaying enhanced Cd tolerance when 
compared with AO (figure 1). In Cd-tolerant lines 
obtained from the two independent sets of stepwise 
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adaptation, amplification (increase in gene copy 
number per unit DNA) and apparent unique smtA 
restriction fragments were observed (figures 2, 3 and 
4). There was concern that these apparent unique 
fragments could possibly be caused by some effect of 
Cd on restriction. The addition of Cd in vitro did not 
directly affect Sall restriction endonuclease activity, 
and no rapid indirect effect of Cd in vivo (e.g. 
modification of restriction endonuclease recognition 
sites) was apparent after exposure of cells to Cd for 2 h. 
Moreover, DNA isolated from line Cl.4 after one 
subculture (figure 4a, panel 1), did not show unique 
smtA restriction fragments despite being cultured in the 
presence of Cd, although unique restriction fragments 
were subsequently detected in DNA isolated from the 
same line after two, three and four subcultures. The 
unique smtA restriction fragments in DNA isolated 
from Cd-tolerant lines (A0.8, Al.3, Al.7, Cl.4, Cl.8, 
C2.6 and C3.2) are therefore ascribed to rearrangement 
of the smt locus. These smaller and larger restriction 
fragments may be attributed either to deletion in the 
flanking regions of smtA or integration of smtA into 
another region of the chromosome. There was no 
evidence of rearrangement or amplification of smtA in 
the non-tolerant lines AO/CO. 

By contrast to smtA, hybridization of DNA from lines 
AO/CO and Cd-tolerant lines to another gene, psaE, 
showed no evidence of unique restriction fragments, 
either during selection or the subsequent maintenance 
of these lines. It is noted that psaE hybridization to 
genomic DNA isolated from all lines, including AO/CO, 
identifies two restriction fragments, the larger fragment 
being more apparent upon prolonged exposure to X­
ray-sensitive film (e.g. figure 3 b, panel 2). Additionally, 
some blots show residual smtA hybridization because 
the blots were first hybridized with smtA and then 
washed before jJsaE hybridization (figure 3 b, panel 7; 
figure 4b, panel 4). It is concluded that, unlike smt, 
there is no rearrangement of psaE in the Cd-tolerant 
lines. Continuing studies have identified specific 
changes in the nucleotide sequences flanking the smtA 
gene which give rise to the unique restriction fragments 
observed in the Cd-tolerant lines, thus confirming 
rearrangement of DNA at the smt locus. 

Whereas smtA hybridization increased in some Cd­
tolerant lines, there was no unequivocal evidence of 
amplification of the jJsaE gene (e.g. figure 2 b). In some 
blots it was noted that there was some variability in 
jJsaE hybridization. Upon visualization of the corre­
sponding ethidium bromide-stained genomic DNA 
(data not shown), these apparent small changes inpsaE 
hybridization were found to correlate with slight 
variation in the amounts of DNA loaded on the 
agarose gel. The magnitude of variation in psaE 
hybridization was less than that observed for increases 
in smtA hybridization to DNA isolated from Cd­
tolerant lines (figure 3b, panel 4; figure 4b, panels I 
and 3), and the variation in smtA hybridization did not 
correlate with variations in DNA loading (see figure 2, 
for example). 

Olafson ( 1986) observed rapid development of Cd 
tolerance in a Syneclzococcus culture and a coincident 
increase in MT levels in Cd-tolerant cells. He proposed 
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that such rapid development of Cd tolerance may be 
associated with the amplification of an extrachromo­
somal MT gene. The prokaryotic MT gene, smtA, is 
now thought to be located on the chromosome. 
However, data presented here confirm amplification of 
smUl and rearrangement of the smt locus in Cd-tolerant 
lines, raising additional questions concerning the 
swiftness of adaptation. In the first set of stepwise 
adaptation, the development of'Cd-tolerant lines could 
result from selection of particular variants from the 
genetic diversity occurring within the culture after 
prolonged maintenance in liquid medium. However, 
rapid adaptation was also observed upon stepwise 
adaptation of a culture generated from a single plated 
colony to minimize initial genetic variability. The 
molecular basis for such an apparent rapid ampli­
fication and rearrangement of a chromosomally located 
~1T gene remains to be investigated. Greater fre­
quencies of homologous recombination in prokaryotes 
than higher eukaryotes may be important. 

These studies have established that, in Synechococcus 
PCC 6301, development of tolerance to Cd (in lines 
A0.8, Al.3, Al.7, Cl.4, C1.8, C2.6 and C3.2) is 
associated with the amplification ofsmtA and rearrange­
ment of the smt locus. Amplification of smtA may be 
analogous to the observed amplification of MT genes 
( initially chromosomal) in Cd-toleran t cui tured eukary­
otic cell lines (Beach & Palmiter 1981). For example, 
chinese hamster ovary ( CHO) cell lines tolerant to 
successively higher Cd concentrations had threefold to 
60-fold coordinate amplification of MT -I and MT-II 
genes, and accumulated increased levels of both MT- I 
and MT-Il mRNA and polypeptides (Crawford et al. 
1985). 

It is proposed that increased in tern a! metal ion 
sequestration by the smtA protein facilitates increased 
Cd tolerance in these stepwise-adapted Synechococcus 
PCC 630 I cell lines. It will be of interest to investigate 
whether similar phenomena of amplification and 
rearrangement of homologous genes occur in metal­
tolerant cyanobacteria selected in metal-polluted natu­
ral environments. 
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Deletion within the metallothionein locus of cadmium­
tolerant Synechococcus PCC 6301 involving a highly 
iterated palindrome (HIP1) 
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Durham, South Road, Durham DH1 3LE, UK. 

Summary 

Genomic rearrangements involving amplification of 
metallothionein (MT) genes have been reported in 
metal-tolerant eukaryotes. Similarly, we have recently 
observed amplification and rearrangement of a pro­
karyotic MT locus, smt, in cells of Synechococcus 
PCC 6301 selected for Cd tolerance. Following the 
characterization of this locus, the altered smt region 
has now been isolated from a Cd-tolerant cell line, 
C3.2, and its nucleotide sequence determined. This 
has Identified a deletion within smtB, which encodes 
a trims-acting repressor of smt transcription. Two 
identical palindromic octanucleotides (5'-GCGATC­
GC-3') traverse both borders of the excised element. 
This palindromic sequence is highly represented in 
the smt locus {7 occurrences in 1326 nucleotides) 
and analysis of the GenBank!EMBUDDBJ DNA Nucle­
otide Sequence Data Libraries reveals that this is a 
highly iterated palindrome (HIP1) in other known 
sequences from Synechococcus species (estimated 
to occur at an average frequency of once every c. 664 
bp). HIP1 is also abundant in the genomes of other 
cyanobacteria. The functional significance of smtB 
:ieletlon and the possible role of HIP1 in genome plas­
ticity and adaptation In cyanobacteria are discussed. 

ntroduction 

!1, transient increase in the metal tolerance of eukaryotic 
:ells can be induced by prior treatment with sub-lethal 
:oncentrations of certain metal ions. This tolerance coin­
:ides with increased cellular metal-binding capacity due 
o transcriptional induction of metallothionein (MT) genes. 
~ more stable tolerance can be selected by exposure of 
:ell cultures to step-wise increases in metal ion concan-

~eceived 22 July, 1992; revised and accepted 14 September, 1992. •For 
:orrespondence. Tel. (091) 3743459; Fax (091) 3743741. 

!rations. This tolerance is associated with an increase in 
MT gene copy number and a corresponding increase in 
MT mRNA and MT protein (Palmiter, 1987). Cu-resistant 
strains of Saccharomyces cerevisiae contain 1 0 or more 
tandemly amplified copies of a 2 kb genomic fragment 
carrying the CUP1 gene, which encodes a Cu-binding 
protein, and an open reading frame (ORF) of unknown 
function. Strains containing only one copy of the amplifi­
able unit of DNA are relatively Cu-sensitive (Fogel and 
Welch, 1982; Karin et at., 1984). Similarly, animal cell 
lines selected for Cd-resistance show amplification of MT 
genes and a corresponding increase in MT mRNA and 
polypeptides (Beach and Palmiter, 1981; Crawford et at., 
1985). 

A gene corresponding to a previously reported 
cyanobacterial class-11 MT (Olafson, 1984) has been iso­
lated from Synechococcus PCC 7942 and designated 
smtA (Huckle et at., 1992, accompanying paper). The MT 
locus also contains a divergently transcribed gene, smtB, 
which encodes a trans-acting repressor of transcription 
from the smtA operator-promoter (Huckle et at., 1992, 
accompanying paper). Olafson (1986) observed a rapid 
adaptation to Cd tolerance in Synechococcus TX-20 (= 
PCC 6301) which coincided with an increase in cellular 
MT. This apparent acquisition of Cd tolerance was 
thought unlikely to be related to a chromosomal mutation 
since it would require a mutation frequency considered to 
be unreasonably high. It was therefore proposed that 
metal tolerance in these cells may be due to the amplifica­
tion of an extrachromosomal gene (Olafson, 1984; 1986). 
Following the isolation of smtA, we have recently reported 
amplification (c. fourfold) and rearrangement of the smt 
locus in Synechococcus PCC 6301 cultures (PCC 6301 
and PCC 7942 are considered to be of the same species: 
Wilmette and Slam, 1984) selected for elevated tolerance 
to Cd (Gupta et at., 1992). However, the smtA gene has 
been assigned to the chromosome (our unpublished 
observations), thereby raising additional questions con­
cerning the swiftness of adaptation. 

In order to characterize rearrangement of the smt locus 
occurring in a Cd-tolerant Synechococcus PCC 6301 cell 
line, C3.2, this paper reports the mapping, cloning and 
sequencing of the modified region followed by detailed 
analysis of an observed deletion within smtB. 

., 
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Fig. 1. Amplification and rearrangement of the smt locus. 
A. Ten micrograms of Sail-digested DNA from : non-selected Synechococcus PCC 6301 cells (lane 1) and cell lines tolerant to 1.4, 1.8, 2.6 and 3.2 ~M Cd 
respectively (lanes 2-5). Hindiii · (B) and Hindiii-Sa/1- (C) digested DNA from: a non-selected cell line (lane 1) and Cd-tolerant cell line C3.2 (lane 2). 

Results 

Mapping rearrangement of smt in Cd-tolerant cells 

To identify a minimal fragment containing a previously 
observed rearrangement of the smt locus (Gupta et a/., 
1992), Sail-digested DNA from non-selected Syne­
chococcus PCC 6301 (CO) and cell lines tolerant to, and 
maintained in, 1.4, 1.8, 2.6 and 3.2 11M Cd was probed 
with smtA. In all of these tolerant cells, two hybridizing 
fragments of c. 5.4 and 11 kb were apparent (Fig. 1 A). In 
Hindlll- and Hindiii-Safl-digested DNA from cell line 
C3.2, tolerant to 3.2 11M Cd, and also from (CO), single 
hybridizing fragments were detected but these were con­
sistently c. 350 bp smaller in C3.2 than CO. This indicated 
rearrangement within the previously isolated and 
sequenced 1.8 kb smt region (Fig. 1, B and C). 

Isolation of the altered smt focus and focalization of the 

modified region by PCR 

Two Hindiii-Safl genomic libraries of C3.2, derived from 
Sail-digested genomic DNA of c. 5.4 and 11 kb, were 
screened for smtA. The Hindiii-Safl smt fragment was 
identical in size, c. 1.45 kb, when isolated from either the 
5.4 or the 11 kb Sail digested DNA. The clones were des­
ignated pAGNR12a (from the 5.4 kb Sail fragment) and 
pAGNR13a (from the 11 kb Sail fragment). 

The altered region within the smt locus was localized by 

the polymerase chain reaction (PCR) with reactions per­
formed using template DNA isolated from Hindiii-Safl 
genomic clone pJHNR49 of non-selected Synechococcus 
PCC 7942 (Huckle et at., 1992, accompanying paper), 
pAGNR12a and pAGNR13a. M13 forward and reverse 
primers were used in conjunction with primers directing 
synthesis from the 3'-end of smtA into the 5' region 
(primer C) and from the 5'-end of smtA into the 3' reg ion 
(primer N). Analysis of the PCR products (Fig. 2) showed 
that in comparison with products generated from 
pJHNR49 template DNA, both pAGNR12a and 
pAGNR13a gave lower molecular-weight products when 
generated with M13 reverse primer and smtA primer C, 
but identical molecular-weight products with M13 forward 
primer and primer N. The rearrangement was thus map­
ped to a 600 bp region in the 5' flank of smtA between the 
Hindlll site and the primer N binding site in smtA in both 
pAGNR12a and pAGNR13a. 

Nucleotide sequence analysis 

The nucleotide sequence of the 5' smtA flanking region of 
pAGNR12a and pAGNR13a was determined and was 
identical in both. A fragment of 352 bp was missing from 
within a 360 bp region between nucleotides 1 OD-459 
(numbering refers to the complete sequence given by 
Huckle et a/., 1992, accompanying paper) inclusive 
(Fig. 3), while the remaining sequence was identical to 
that determined for the Synechococcus PCC 7942 smt 
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Fig. 2. Localization of the altered region by PCR. Gel photograph of PCR 
products using: M13-reverse primer and primer C (lanes 1-3); M13-for· 
ward primer (lanes <Hl), and primer N. The template was plasmid DNA 
from: Cd-tolerant cell line clone pAGNR12a (lanes 1 and 4) ; non-selected 
cell line clone pJHNR49 (lanes 2 and 5); and Cd·tolerant cell line clone 
pAGNR13a (lanes 3 and 6). 

locus (Huckle eta/., 1992, accompanying paper). A dele­
tion at this point disrupts the smtB coding region, but · 
leaves the putative terminator intact. 

Analysis of the borders of the excised fragment identi­
fied inverted repeat structures with 11 out of 12 
nucleotides being identical (5'-GCGATCGCC[Cff]CG-3') 
at nucleotides 100-111 and 459-448 (numbering refers 
to the complete sequence given by Huckle et a/., 1992, 
accompanying paper) inclusive (Fig. 4) . Within these 
inverted repeats is a palindromic sequence (5'· 
GCGATCGC-3'), the central motif of which is a Dam 
methylase recognition site (5'-GATC-3'). The palindromic 
sequence is highly represented in the smt locus, occur­
ring seven times within 1.3 kb (Fig. 4) and has been des­
ignated HIP1 (for highly iterated Qalindromic sequence). 
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a ol <. 
Databank library I n 7" l.S 

More GenBank/EMBUDDBJ DNA Nucleotide Sequence 
Data Library entries containing multiple HIP1 sequences 
were identified in Synechococcus than in any other 
prokaryotic genera, or group (data not shown). HIP1 was 
also prevalent in several other genera (or groups) of 
cyanobacteria. 

Figure 5A shows the HIP1 frequencies for all genera 
(or groups) for which >10 kb of sequence is recorded in 
the data libraries and for which the estimated frequency is 
>0. Achromobacter, Cellulomonas, Methylosinus, Plec­
tonema, Propionibacterium, Pseudanabaena, Spirulina 
and Thermoactinomyces have estimated HIP1 values of 
>0, but <1 0 kb of known sequence. The value shown on 
the graph equates to one HIP1 for every 664 bp in Syne­
chococcus, which may be compared with one for every c. 
31 kb in Escherichia. Extrapolation of the estimated HIP1 
frequency in Synechococcus suggests c. 4500 HIP1 
sequences per genome representing c. 1% of a Syne­

chococcus genome. 
HIP1 frequencies, estimated from data library analyses 

and also predicted from genomic G+C contents, are 
shown for the individual organisms (with > 1 0 kb of known 
sequence) within the genera (or groups) with the highest 
(Synechococcus) or lowest (Escherichia) calculated HIP1 
frequencies (Fig. 58). The estimated HIP1 frequencies 
are not a direct function of chromosomal G+C content. 

The frequency of HIP1 occurrence in the small plasmig 
pUH24 (7.835 kb) of Synechococcus PCC 7942 was cal­
culated from the total nucleotide sequence (Van der Plas 
et at., 1992) to be once every 435 bp. This raises interest­
ing possibilities with respect to lateral gene transfer in 
cyanobacteria. 

Discussion 

We report the functional deletion of smtB in a Cd-tolerant 
cell line, C3.2, of Synechococcus PCC 6301 . Increased 
(c. 20-fold) basal expression from an smtA operator-pro­
moter has previously been reported in cells devoid of 
smtB (Huckle et at., 1992, accompanying paper). The 

AAGCTTTACTACAACGAGCGCCGCTATCTACAGCAACTCGATCAAGAACGCTGCCTGAAT 60 Fig. 3. Nucleotide sequence of part of the smt 
locus in Cd-tolerant cell line C3.2. 352 nucleotides 
from within a 360 bp region between nucleotides CCCCAAGCATTCTTGGGCATGACAGAGCACGATGCTACTGCGATCGCCGCATGAGTCCCT 120 

TGGCAGACTACCGTCTCTCCGTCCTGCAGCACTGGTTTTGTCATGAGCCAATCACGGTTT 180 

GTCCACCCACCATACCTGAATCAAGATICAGATG~AAACACATGAACAGTTATT 240 
Inverted repeat -10 I 

smtA transcript start 

S.D M T S T T L V K C A C E 
CAGATATTCAAAGGAGTTGCTGTCATGACCTCAACAACGTTGGTCAAATGCGCTTGTGAG 300 

1 00-459 inclusive, for the smrlocus in non­
selected cells (reported by Huckle eta/., 1992, 
accompanying paper), are missing in this 
sequence from Cd·tolerant cell line C3.2. The 
regenerated HIP1 sequence formed after excision 
is underlined. Other features of interest are 
marked and labelled. These sequence data will 
appearJn.the.EMBUGenBank/ODBJ Nucleotide 
Se~es under the accession 
11umber 00000. 

X'ctS8S 
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1 kb 

smtA 
V/1/ll//1////A 

smtB 

GCTACTGCGATCGCCCCGAC 

AGGCTCCGCT AGCGGCGTAC 

f Cd selection 

GCTACTGCGATCGCCGCATG 

~ 
Fig. 4. Representation of the smllocus. A 1326 bp Hindiii-Nael fragment 
containing the smtlocus from non-selected cells is represented, showing 

the smtA and smtB genes. Vertical lines represent HIP1 sequences. The 
expanded region shows the sequences traversing the deletion end­
points, the HIP1 sequences are in bold. The horizontal arrows delineate 
an inverted repeat which includes, and extends beyond, the two HIP1 
sites. 

level of basal expression in these cells was c. fourfold 
greater than maximal expression observed in metal­
induced cells which contain smtB (Huckle et at., 1992, 
accompanying paper). Equivalent derepressed expres-

Noo-cyanob&cteria Cyanobacteria 

Genus (or "group'') 

A 

sian of smtA in C3.2 may be beneficial for such continu­
ously metal-challenged cells. The increase in smtA copy 
number detected in C3.2 r,nay further enhance expres• 
sian. 

Illegitimate recombination involving HIP1 sites could be 
explained by (i) replication slippage (copy-choice), (ii) 
DNA-breakage/reunion (nuclease/ligase activity) or (iii) a 
combination of replication and DNA-breakage. Within 
cyanobacteria, precise excision events associated with 
the terminal differentiation of an Anabaena PCC 7120 cell 
into a nitrogen-fixing heterocyst provides a well-docu­
mented example of protein-mediated (XisA) DNA-break­
age-reunion between short defined regions (for a review, 
see Haselkorn, 1989). It is now necessary to define Cd 
exposure as either selective and/or stimulatory of smtB 
deletion. 

Several genera (or groups) of cyanobacteria (and 
Prochtorothrix) contain HIP1 at a higher estimated fre­
quency than other prokaryotes (Fig. 5). This may have 
significance for cyanobacterial taxonomy. In Synechococ­

cus sp. sequence entries, HIP1 sequences are both intra­
and intergenic. HIP1 sequences occurring within protein 
coding regions are found in all three possible reading 
frames; 5'-GCG ATC GC-3' (Aia-II~Aia), 5'-GC GAT CGC-
3' (Xaa-Asp--Arg) and 5'-G CGA TCG C-3' (Xaa-Arg-Ser­
Xaa). Previously described prokaryotic repetitive DNA 
sequences have not been found within protein coding 
regions and their greater size would restrict this. Known 
repetitive sequences include the c. 40 bp REP (repetitive 
extragenic palindromic) sequence (Higgins et at., 1982; 

B Organism 

Fig. 5. A. Estimated frequency of HIP1 in the 
genomes of different genera (or groups) in the 
DNA sequence databank. The frequency of HIP1 
per nucleotide of sequence information for a given 
genus (or group) represented in the databank, is 
shown for all genera (or groups) for which there is 
at least 1 0 kb of recorded sequence and tor which 
the estimated value exceeds zero. 
B. The estimated frequency of HIP1 (open 
columns) in the genomes of individual species 
(with> 10 kb of known sequence) in the genera 
(or groups) estimated to have the highest (Syne­
chococcus) or lowest (Escherichia) HIP1 lrequen· 
cies. The organisms are listed in order of increas­
ing G+C content. Anticipated HIP1 frequencies 
predicted from lhe G+C content (closed columns) 
are shown for comparison. 



Stern eta/., 1984) also called a PU (palindromic unit) 
(Gilson et a/., 1984; 1987) which is part of a larger ele­

ment (BIME) (Gilson eta!., 1991 ); the c. 126 bp ERIC/IRU 

(enterobacterial repetitive intergenic consensus/inter­

genic repeat units) (Sharples and Lloyd, 1990; Hulton et 
a/., 1991 ); and STAR (short tandemly repeated repetitive) 

elements (Mazel eta/., 1990). In addition to known roles 

for REP/PU sequences in mANA stability and gene 

expression, other functions have been suggested, includ­

ing a possible involvement in chromosomal rearrange­

ment (Stern et a!., 1984; for reviews see Higgins et a!., 
1988; Lupski and Weinstock, 1992). REP/PU has been 

identified at the junction of tandem duplications (Shya­

mala eta/., 1990). 

Repetitive genomic DNA has been reported in the hete­

rocystous cyanobacterial strains Anabaena, Calothrix 
(Fremyella), Nostoc and Fischerella. The structure of the 

repeat is similar in all cases and consists of tandemly 

repeated heptanucleotide sequences which are clustered 

in intergenic regions (Aiam et a/., 1986; Kallas et a/., 

1988; McCarn et a/., 1988; Lang and Haselkorn, 1989; 

Mulligan and Haselkorn, 1989; Maze! eta/., 1990). Maze! 

et a/. (1990) reported the presence of three classes of 

STAR sequences in the Calothrix (Fremyella) genome, all 

present at approximately 1 00 copies per genome. In addi­

tion, a h!ghly iterated heptameric sequence detected in 
Calothrix ( Fremyella) DNA by Maze! eta/. ( 1990) is identi­

cal to the last seven nucleotides of HIP1. 

The HIP1 sequence is distinct from previously reported, 
prokaryotic repetitive sequences such as REP/PU(BIME), 

ERIC/IRU and STAR in its small size its perfect palin­

dromic structure; its phylogenetic distribution; its localiz­
sation (also in protein coding regions); and its projected 

frequency of iteration (which is c. fourfold greater than 

REP/PU and 1 00-fold greater than STAR). The distribu­

tion of HIP1 could allow intragenic rearrangements, as 

observed here within smtB, and intergenic rearrange­

ments. This may facilitate recombination between func­

tional protein domains and/or the deletion and amplifica­

tion of individual genes. 

The deletion of a DNA fragment bordered by HIP1 

sequences provides an example of its involvement in 

gene rearrangement. The over-representation of this 

motif in the genomes of a number of cyanobacteria sug­
gests a widespread role for HIP1 in genome plasticity and 

cellular adaptation in these organisms. 

Experimental procedures 

Materials and cyanobacterial culture 

Cultures of Synechococcus PCC 6301 tolerant to 1.4 11M 
(C1.4), 1.8 11M (C1.8), 2.6 11M (C2.6) and 3.2 11M (C3.2) Cd 
were selected by step-wise adaptation and cultured as previ­
ously described (Robinson et a!., 1990; Gupta et a/., 1992). 
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Cultures were grown to mid-log phase in the presence of spec­
ified concentrations of added Cd before transfer to fresh media 
or isolation of genomic DNA. Restriction enzymes were sup­
plied by Northumbria Biologicals Limited and Taq polymerase 
was supplied by Stratagene or Perkin-Elmer/Cetus. [a-32P)­
dCTP (14.8 TBq mmor\ nylon (Hybond N+) filters and Fine­
bind DNA binding matrix were obtained from Amersham Inter­
national. 

Southern analysis, and cloning of the smtlocus from Cd­

tolerant cell line C3.2 

Genomic DNA from non-selected and Cd-tolerant lines was 
analysed by Southern hybridization to smtA probe. The prob"e 
was prepared according to the procedure of Feinberg and 
Vogelstein (1983) using a fragment of the smtA gene released 
from pJHNR11 (Gupta eta!., 1992). To produce a size-fraction­
ated genomic library, 10 11g of genomic DNA isolated from C3.2 
was restricted with Sail, and separated (two tracks) on a 0.7% 
agarose gel to allow identification of fragments hybridizing to 
smtA probe, and also for recovery of equivalently sized DNA 
(from the duplicate track). Recovered DNA was restricted with 
Hindlil, ligated to Sa/1-Hindlll-restricted pGEM4Z (Promega) 
and used to transform Escherichia coli JM1 01 competent cells, 
prepared by the method of Alexander et al. (1984). Transfor­
mants containing the plasmids pAGNR12a and pAGNR13a 
were detected by standard colony hybridization techniques and 
DNA recovered by the standard alkaline-lysis protocol (Sam­
brook et a/., 1989). Sequences flanking the smtA gene(s) in 
pAGNR12a and pAGNR13a were also analysed by PCR using 
universal M13-forward and reverse primers, and smtA N-termi­
nal and C-terminal primers as described by Robinson et a/. 
(1990) (primer C, 5'-GGCGGATCCCCATGACCTCAACAAC­
CTIGGTC-3' and primer N, 5'-GGCGAATICACTACAGTC­
GCAGCCGGTGTGGCC-3'). Plasmid sequencing was per­
formed by the dideoxy-sequencing method of Sanger et a/. 
( 1977) and reaction products analysed using an Applied 
Biosystems 370A DNA sequencer. 

Computer analysis 

All computer sequence analysis was performed on the SERC 
Daresbury facility DLVH using the UWGCG (Devereux eta/., 
1984) and PIA programs. The number of HIP1 sequences per 
sequence entry was determined (in June 1992) by searching 
the bacterial entries within the 'GenBank' (version of the 
combined GenBank!EMBUDDBJ Nucleotide Sequence Data 
Libraries) DNA sequence databank (Release 70.0) using the 
MATCH program within the PIR/NAO package. The computer 
output was analysed to sum the total number of HIP1 sites in 
each genus (or group) and to identify entries containing multi­
ple HIP1 sequences. Individual genera (or groups) were ini­
tially defined by the first name recorded in the databank under 
organism designation. It is noted that certain classifications, 
including Synechococcus and Synechocystis, have bee~ 
described as groups and not genera (Waterbury and Rippka, 
1989). Overlapping sequence entries within the databank for 
Synechococcus were subsequently eliminated, but this was 
not done for other genera (or groups). Databank entries under 
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the name Anacystis nidulans were pooled under Synechococ­
cus. Similarly, Fremyel/a is used to denote the sequence 
entries of Calothrix and Fremyella, since Fremyella is most 
prevalent in the databank. 

In order to estimate HIP1 frequencies, nucleotide counts 
were performed for all genera (or groups) containing HIP1 
sites, defined by the previous search (bacteria not defined in 
the previous search have estimated HIP1 frequencies of zero), 
using the STRINGSEARCH program to list the size of all 
sequence entries for each genus. A program written and 
devised by Dr J. Parkhill (Dept of Biological Sciences, Univer­
sity of Birmingham, UK) was then used to sum the individual 
values for entry size to obtain an estimate of the total number of 
nucleotides in the databank for each genus (or group). Classifi­
cations containing less than 1 0 kb of sequence were elimi­
nated. 
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