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Abstract 

Research and industrial concern has been expressed about the behaviour of mu-

drocks when used in engineering structures. In particular the loss of strength 

in shale fills caused by chemical weathering processes and by progressive failure 

arising from overstressing and brittleness is an important consideration in design. 

A literature review into use of the term 'brittleness' to describe this loss of shear 

strength has revealed infrequent references, but those that were found refer to a 

wide scope of failures including liqufaction events and long term slope stability 

problems. The use of large size shear box equipment has been reviewed as an 

appropriate method of testing the brittleness of shale fills in the laboratory. 

A range of materials, from fresh shale to shales retrieved from dams of different 

ages in the north east of England, has been collected for shear strength testing 

and for chemical and mineralogical examination to determine the condition of the 

fill. 

Research has concentrated on such rocks as it was possible to obtain. Although 

the samples have not exhibited wide Hthological and geotechnical variations the 

work has highlighted several significant features including the need for resolving 

appropriate methods of testing. The results of the work were generally in accor

dance with earlier research on Carboniferous rocks by suggesting similar material 

trends in, on the one hand, Namurian shale dams and associated spoil heaps and, 

on the other hand, colliery spoil heaps of Westphalian shale as had been previously 

observed. 
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Chapter 1. I N T R O D U C T I O N 

1.1 Failures in Shale Fi l l Structures 

1.1.1 Carsington Dam. 

The collapse of Carsington Dam in June 1984 generated a great deal of interest in 

the mechanisms of shear failure in earth fill dams and embankments. In the final 

report to the Department of the Environment in June 1986 it was concluded that 

the eventual collapse was through progressive failure caused by unusual geometry 

of the cross-section and by the brittleness of foundation and fill materials (Coxon, 

1986). The location of Carsington Dam is shown on Figure 1.1, with the positions 

of other sites mentioned in the forthcoming chapters. 

Figure 1.2 shows the general geology in the area of Carsington Dam. The bedrock 

comprises Upper Carboniferous mudrocks which were found to be glacially brec-

ciated, crumpled and weathered to a depth of several metres. This upper layer of 

weathered mudstone plus the head (that is solifluction deposits) which together 

became known as the 'Yellow Clay' contained many shear surfaces, some up to 

several metres in length. Prior to construction, alluvial deposits along with top 

and sub-soil were removed so that the dam was founded either directly on the 

weathered mudstone as in the valley floor in the area of chainage 850m * , or else

where on the Yellow Clay, for example, at chainage 725m. Local materials were 

used in the construction of the dam which began in July 1982. The rolled central 

* The distances along the dam from the north end are measured in metres and 

referred to as chainage. 
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core with its boot-shaped upstream extension was constructed from weathered 

clay as shown in the cross sections in Figure 1.3, and the shoulders from blocky 

and brecciated mudstones compacted at their optimum moisture content with the 

finer grained material being used for the inner Zone I , and coarser material for 

the outer parts of the shoulders that is: Zone I I . 

On 4 June 1984, when the dam was one metre short of its intended final height, a 

crack became visible along part of the crest near chainage 725m. Horizontal survey 

peg measurements indicated a horizontal rate of displacement of 25 to 30 mm per 

day as a slip started on the upstream bank. Until that time piezometers and 

vertical settlement gauges had shown nothing untoward, although some concern 

had been expressed about a possible lack of strength in the Yellow Clay. The 

first movement followed a weekend of heavy rain during which no fill had been 

placed. On subsequent days observation of survey pegs indicated higher rates and 

a wider extent of horizontal movement as the slip spread to the valley area. The 

movement was finally arrested by 7th June following construction of an emergency 

berm at the base of the upstream slope. 

Early observations in the area where first movement had occurred showed the 

position of the slip surface running through the core and boot, then through the 

Yellow Clay and thrust over the small rock fill toe. In the flood plain area at 

chainage 850m, where the Yellow Clay was absent, the slip passed through the 

Zone I I fill. The dam itself was left with a near vertical backscarp approximately 

10m deep at the crest and large blocks of the upstream face back rotated as thrust 

- graben features formed in the tension zone above the failure plane (Coxon, 1986). 

Figure 1.3 shows the cross section at two points (chainage 725 and 850m), before 

and after the failure. 

Following a two year enquiry, an out of court settlement of X3.25M was made 

although had the case gone to court it was expected that the owners, Severn Trent 

Water Authority, would have claimed in the region of i^50M from the designers 

(New Civil Engineer, 12 May 1988). In the meantime, the completion of the dam 

has been delayed by eight years (New Civil Engineer, 21 May 1992), and the total 



cost has nearly tripled as the dam has had to be redesigned with flatter slopes 

and double the volume of material (New Civil Engineer, 5 January 1989). 

No loss of life resulted directly from the Carsington failure, which although pro

gressive in origin was essentially rotational in style. As Bishop (1973) pointed 

out, rotational slips may damage property and services but, unlike flowslides, 

rarely cause loss of life. Problems did arise on the failed dam due to the presence 

of sulphuric acid generated during pyrite oxidation. This reacted with limestone 

drainage blankets to produce carbon dioxide which caused the death of men work

ing in trial pits. The acid has also polluted run-off from the dam to such an extent 

that ponds are required to neutrahze run-off before it can be allowed back into 

the local drainage system. 

1.1.2 Aberfan 

Eighteen years earlier, events at Aberfan in South Wales were to have a profound 

effect on both waste tip design and on Engineering Geology as a whole. CoUiery 

spoil tips adjacent to the village had been formed by loose tipping of discard 

from cranes or Maclane tippers, and had been subject to minor slides on previous 

occasions, November 1944 and October/November 1963. On the morning of 21 

October 1966, workers arrived to find a significant settlement in the crest of the 

tip, which was followed a couple of hours later by observed movement at the toe. 

Coarse discard from the the tip flowed down a 12.5° slope at an estimated 16 — 

32kmh~^ (Taylor, 1985) engulfing the village school and several houses and killing 

144 people. The flowslide travelled a distance of about 600m before coming to rest 

and excavations later revealed a depth of 10m at the toe. A layer of impervious 

boulder clay and head deposits effectively sealed the underlying fissured sandstone 

and thus gave rise to substantial artesian pressures. A small rotational slip at the 

base of the tip, thought to be an adjustment in response to heavy rain, caused 

the boulder clay to rupture and allowed water to flow from the sandstone. This 

water flowed into the loose tip material and was able to carry the debris in the 

manner described earlier. A ruptured water main exacerbated the situation, and 



the abundance of water gave the flow the appearance of a mudflow in places. 

Alleviation of the high porewater pressures caused a reductipn of an estimated 

18 X 10^ gallons of water in the sandstone. Investigations revealed a well defined 

shear plane with an angle of friction approaching its residual value. Adjacent 

material, both above and below the shear plane was relatively undegraded (Bishop, 

1973). 

1.2 Summary and Ideas for Research 

Initially, the events at Aberfan and Carsington appear to have httle similarity 

other than that they are both forms of downslope mass movement. Aberfan 

caused loss of life although Carsington did not, and its very nature meant that 

it was unlikely to. These two cases illustrate the principal differences between 

flowslides and rotational sHps - speed and extent of material movement. However, 

the mechanism behind the two types of slide may have some similarities. These 

are discussed later, in Chapter 5, with respect to brittleness. 

Shear failure in water-retaining structures appears to be a relatively rare oc

curence, especially whilst the dam is in service, but when it does happen, can 

cause great inconvenience and financial cost. There are many well-documented 

examples of shear failure in tips of various degrees of magnitude. Since such struc

tures are widespread, and commonly near or upstream of populated areas, safety 

is of paramount importance, with this becoming more important as the sizes of 

structures and therefore their potential to do damage, increases throughout time. 

Mistakes in the past have influenced present design criteria - hydraulically placed 

puddle clay cores and cut-offs which are particularly prone to internal erosion are 

no longer used. 

Questions do arise however, about the type of material employed. 'Problem' 

shales have been discussed in the literature, particularly with respect to foundation 

engineering and land stability. It is essential to identify such materials at an early 

stage of design of earth fill dams. 



1.3 Outline of Project 

1.3.1 Reasons for Project Work 

I t is clear from the literature that a knowledge of the behaviour of shale fills is 

essential if they are to be used in construction. In particular, the relationship 

between the degree of weathering, the condition of the fill, shear strength of the 

material and the original geology may be critical, especially when viewed in con

nection with progressive failure. 

Previous research at Durham had highlighted several curious aspects of mudrock 

behaviour which are outhned below: 

1. Large shear box testing, albeit Hmited, suggested that the brit-

tleness (drop in strength) of certain marine shales was both greater 

and more rapidly developed than that in non-marine mudrocks. Under 

identical test conditions, Fytis (1986) for example, found that Namurian 

shales from the Carsington site exhibited a higher Brittleness Index * 

than a fresh Kimmeridge Clay, Fresh Coal Measures Shale and weath

ered Kimmeridge Clay, respectively. This implies that weathering may 

have a significant effect on the probability of failure, and that geological 

age is not important. 

2. The terms Brittleness and Brittleness Index appear to have been 

used somewhat loosely and it was felt that a review of their use in the 

literature would be an aid to producing a clear, workable definition. 

It would then be interesting to determine whether it would be useful 

* Brittleness Index is the difference between peak and residual shear strengths 

expressed as a percentage of the peak strength (Bishop, 1967) 



to measure this parameter in fill materials. An example of a situation 

where quantitative estimates of brittleness are essential is in finite ele

ment analysis where the failure of each individual soil element must be 

modelled. 

3. Further Large Shear Box Tests on a remoulded sample of fill 

from Carsington Dam, originally dug from near the dam's surface and 

remoulded at natural moisture content yielded peak shear strength pa

rameters of Cp = 0, 0 p = 22° and residual parameters of Cp = 0, 

(f>p = 16.5 — 17°. However, Skempton and Coats (1985) quote peak 

values of (j)p = 28° in freshly compacted shale and (j)p = 25° for shale in 

the dam. This drop of 3° was thought to be an indication that addi

tional processes were acting on the outer zones of the embankment which 

had the overall eff"ect of reducing shear strength. The Durham sample 

reached a residual strength after a smaller than expected displacement. 

This was attributed to weathering and degradation of the sample dur

ing placement and exposure. Considerable amounts of sulphate were 

observed on the shear plane after only 48 hours exposure in the labora

tory at 20°C, which demonstrates the rapid nature of these weathering 

processes (Taylor, in Coxon 1986). These results are summarized in 

Figure 1.4. 

I t was suggested (Taylor, 1986 personal communication) that there are two possi

ble routes of reducing a material's shear strength to a critical state (not necessarily 

critical state in a soil mechanics sense). Firstly by physical and chemical weath

ering, and secondly by overstressing, for example, within an embankment zone. 

These processes may act singly or in unison. There are indications that marine and 

non-marine mudrocks may show different patterns of behaviour in both respects. 

1.3.2 Materials and Testing 

Originally, it was intended to explore these physical and chemical processes in 

G 



marine and non-marine mudrocks using a combination of fresh borrow pit material 

and fill from embankments of different ages. The search for appropriate sites was 

somewhat problematic. This is outlined in Chapter 3 where the sites are described 

in more detail. 

The work began with two 'standard' materials in order to study the process of 

shear strength reduction during testing. Samples were collected from an embank

ment under construction, a scale model of a dam built as part of a project in 

Engineering Geology some years previously, from five earth fill dams with ages 

between 25 and 118 years and two uncompacted spoil heaps. These were sub

jected to the following tests: 

1. Physical characteristics (particle size analysis, Atterberg limits, specific gravity, 

durability) 

2. Mineralogical and chemical composition. 

3. Shear strength characteristics, primarily using shear boxes, but with subsidiary 

triaxial and ring shear testing. 

I t was hoped to build up a picture which would demonstrate the condition of 

the fill in older earth fill dams and to show whether degradation had caused any 

significant loss in strength. 

1.3.3 Structure of Thesis 

Chapter 3 presents a general summary of the relevant cispects of shale petrology, 

and includes a discussion on the controversy surrounding the definitions of the 

terms shale and mudrock. Geological and physical testing are described in Chapter 

4, with the implications of weathering. The definition, use and significance of the 

Brittleness Index is examined in Chapter 5 and the shear strength results presented 

in Chapter 6 along with a discussion of the problems of shear box testing. The 

results are integrated and discussed as a whole in Chapter 7. 
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Chapter 2. MAN M A D E E A R T H AND R O C K F I L L S T R U C T U R E S 

2.1 General 

Man made fill structures are widespread and can be divided into two categories -

those which function purely as storage tips for waste materials, and those which 

are designed as engineering structures to fulfil a specific purpose. The latter may 

or may not be water retaining in character. The two are briefly described below. 

2.1.1 Spoil Heaps, Waste Tips and Mine Tailings 

Bishop (1973) gives figures for the waste produced per annum in the U.K. These 

are shown in Table 2.1 below. 

Source Amount 

(miUion tonnes) 

Coal Mining Waste (10% is taiUngs) 60 

China Clay 21.5 

Slate Quarrying 1.4 

P.F.A. (60% is utilised) 10 

Industrial Waste (eg blast furnace slag) 11 

Domestic Waste 14 

120 

Table 2.1 U.K. Waste production per annum 
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The design of tips has been radically altered following the Aberfan disaster. Leg

islation was introduced in the Mines and Quarries (Tips) Act 1969 which required 

adequate design and inspection of such structures. British Coal, for example, 

has abandoned its custom of loose tipping and the current practice is to com

pact coarse discard into stable horizontal layers by the use of heavy earth moving 

equipment (N.C.B. Technical Handbook, 1970). This has the added advantage 

of reducing the risk of spontaneous combustion which can be a problem in loose 

spoil with a high air voids ratio. 

At the time of writing, however, reports in the national press described several 

tips which had recently moved or were potentially unstable. Wheal Remfrey 

near St.Dennis (Sunday Times, 25 February 1990), Penrose near St.Austell and 

Fraddon Down (New Civil Engineer, 1990), all belonging to English China Clay 

in Cornwall slipped following periods of intense storms, while Cilfynydd in South 

Wales (The Times 21 February 1990 and the Sunday Times 25 February 1990) 

was being pumped in an attempt to relieve high porewater pressures. Despite this 

work, local residents were worried that there could be a repetition of the Aberfan 

disaster. 

Bishop (1973) summarized several cases of tip instability and concluded that the 

modes of failure were determined by the behaviour of in situ foundation strata 

and the properties of the tipped material. In many cases small rotational sUdes 

were responsible for triggering disasterous flowslides, the common factor in each 

case being the loosely tipped material. 

2.1.2 Embankments and Earth fill dams 

Engineered earth fill structures perform a variety of functions, for example, road 

and railway embankments, tailings dams and water- retaining dams; Other struc

tures include dykes and levees. Construction material may derive from a variety 

of sources although these are usually local and the digging of borrow pits in an 

area of excavation so that cut-and-fill methods are used is common. Waste mate-
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rial such as minestone or slag may be brought in where excess fill is required, but 

transport costs generally preclude derivation from distant sources. 

Earth and Rock fill Dams 

The earliest dams built by man were from earth or rock, and many of those still 

standing are centuries old. Sowers and Sally (1962) describe examples from the 

Middle East, India and Sri Lanka which are over two thousand years old. Natural 

deposits can also retain water - both landshdes and glacial morraines are known 

to form natural dams. These may not always be stable, as illustrated in the 

following example given by Sowers and Sally (op cit). A rockfall south of Nanga 

Parbat temporarily dammed the River Indus forming a 275m deep lake in 1840. 

This burst only 6 months later causing widespread death and destruction in the 

valley below. 

The advantages and disadvantages of building earth fill dams are straightforward. 

The raw materials can be found locally and are easily handled by both ancient and 

modern construction methods. The resulting structures are suitable for weaker 

foundations, ideal for low flat valleys and the costs are generally lower than for 

corresponding concrete dams. At Winscar in South Yorkshire (shown on Figure 

1.1) for example, the cost of building a rock-fill dam was found to be 70% of 

the cost of a gravity dam and 88% of the cost of a buttress dam to perform the 

same function (Collins and Humphries, 1974). Factors which are disadvantageous 

to this method of constuction may also be sources of potential danger. Local 

material is not always suitable as a fill and quality control during construction is 

more difficult than with a man made material. The spillway cannot be constructed 

from fill and therefore a separate concrete or masonry structure must be built. 

Once completed, earth fill dams tend to require greater maintenance than do 

concrete types. 

Fill may be placed either hydrauhcally, where earth in suspension is pumped to 

site and allowed to settle out, or mechanically, in layers, with compaction. The 

former method, although popular in the early part of this century is not now 
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used following several major failures, notably that at Fort Peck dam in the USA. 

The placement moisture content which is a critical factor in producing optimum 

density of a fill cannot be controlled in hydraulic fills. Rock can be blasted in situ 

then placed and compacted as required. In distinguishing rock fills from earth 

fills, Sowers and Sally (1962) define rock fills as those containing boulders 'larger 

than a man can l i f t ' . 

Tailings dams are generally constructed from earth fill, but unhke other water 

retaining dams are not included in the World Register of Dams produced by the 

International Commission on Large Dams (ICOLD ). In 1982, ICOLD published 

a separate Register of Mine and Industrial Tailings Dams but this is by no means 

complete - the British entry numbers only seven, although British Coal own at 

least 400 lagoons bounded by shale fill dams in which fine slurry and tailings 

can settle (Penman, 1985). Other owners include English China Clay who buUd 

sand and granite fill dams to allow mica residue taihngs to settle. The Central 

Electricity Generating Board (CEGB) owns several pulverised fly ash (pfa) lagoons 

which are designed and built according to the 1930 Reservoirs Act (see Section 2.2) 

so are included in the ICOLD Register of Dams. These are again constructed from 

local materials often with conditioned pfa and furnace bottom ash incorporated 

into the fill. 

2.2 British Earth FiU Dams 

The majority of dams in the British Isles are earth fill and most commonly service 

the public and industrial water supply. Figure 2.1 shows the distribution of dams, 

by type, in Britain. LTnsurprisingly, the concrete dams tend to be encountered 

in highland areas where hard basement rock and steeper narrow valleys occur. 

Despite the greater number of earth fill dams, Walters (1962) estimates 200 - 300 

in the Pennines area alone, a higher proportion of Britain's water is contained 

by concrete dams. The British entry in the World Register lists 404 earth fill 

and 131 concrete dams built in the period 1797 - 1986, but the total collective 

capacities of these reservoirs are around 2, 000 million and 4, 000 million cubic 
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metres, respectively. Average dimensions for the two types are shown in Table 2.2 

which highlights some of the typical differences. 

Earth fill dams (N=404) 

X Dimensions 

Height 26.02 30.68 m 

Crest Length 555.59 794.50 m 

Volume of Dam 548.51 1246.18 xlO^m^ 

Reservoir Capacity 5154.11 15143.37 xlO^m^ 

Reservoir Area 626.47 1787.32 xlO^m^ 

Concrete dams (N=131) 

X Dimensions 

Height 32.61 14.90 m 

Crest Length 282.12 215.36 m 

Volume of Dam 166.35 501.75 

Reservoir Capacity 32327.23 72249.31 xlO^m^ 

Reservoir Area 2498.49 4532.66 xlO^m^ 

Table 2.2: Mean (x) and Standard Deviations (a^) values of dimensions of British 

Earth Fill and Concrete Dams. Data from World Register of Dams (ICOLD , 

1986). 

On the whole, concrete dams tend to be high and have narrow crest lengths due 

to valley shape. They require smaller volumes of material in construction and 

impound larger reservoirs in terms of both volume and surface area. It must 

be emphasized that the deviation on all the mean dimensions is very high, so 

although the statistics are useful in showing overall trends it is important not 

to attach too much significance to them. Figure 2.2 demonstrates the change of 

some of these statistics with time, and also shows the number of dams built in 

consecutive decades beginning with 1797. The early British dams were earth fill 
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with puddle clay cores and were built to impound supplies for canals and water 

mills. After the 1830s, when methods of water treatment and distribution began 

to be developed and improved, more emphasis was placed on public water supply. 

The increase in numbers in the late nineteenth century reflects the industrialisation 

of the north of England, particularly Yorkshire and Lancashire. The numbers of 

concrete and earth dams being constructed dropped during both world wars as 

would be expected, and show an overall decrease during the last few decades. 

The construction of hydro-electric schemes in the Scottish Highlands between 

1930 and 1960 resulted in increased numbers of concrete dams constructed during 

that period. The data show an overall increase in reservoir capacity and dam size 

with time. This is due to a rise in demand and improvement in technology both 

in terms of dam engineering and water treatment. Of the 67 dams built in the 

U.K. between 1964 and 1984, 65 are more than 15m high and 16 more than 50Tn 

high although this is still modest by world standards (Griffiths, 1983). 

Legislation governing British dams and changes in design practice have been influ

enced by several failures - some very serious. These are summarized by Kennard 

(1983) and Charles and Boden (1985). Following the worst British dam failures 

on record, those at Bilberry in 1852 and Dale Dyke in 1864, which claimed 81 and 

238 lives, respectively, a set of Parliamentary recommendations was produced in 

1865 which required the inspection both of existing reservoirs and of the plans for 

new ones. No legal action was taken until 1930 after further failures at Coedty 

and Eigau in North Wales where 16 people died and at Skelmorlie in Scotland 

where 3 were killed. The three incidents, which occurred in 1925, caused pubUc 

outcry and put pressure on the Government to act. 

The 1930 Reservoirs (Safety Provisions) Act requires that all reservoirs over 5 

million gallons (or 22700m^) in capacity are inspected on a regular ten yearly 

basis by quahfied Engineers who are appointed to a Panel. Likewise, design and 

construction must be under the supervision of a Panel Engineer who, although 

the dam owner is responsible for maintenance, carries the ultimate responsibility 

for safety. Before this legislation, owners were able to appoint any engineer they 

considered to be suitable, and inspections, i f undertaken at all, tended to be 
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spasmodic. Although this Act was an improvement, and indeed no hves have 

been lost in the intervening period, betv̂ êen 1963 and 1966 ICOLD recommended 

that the Institute of Civil Engineers (ICE) submit new proposals to the British 

government to modify the 1930 regulations. No immediate action was taken. The 

Mines and Quarries (Tips) Act of 1969 covered tailings dams adjacent to mines 

and quarries, but not those at distant sites so was not as far reaching as the ICE 

would have liked. In 1969 however, a potentially serious case of internal erosion 

was accidentally discovered at Lluest Wen Dam in South Wales, when a horseman 

riding over the crest fell into a swallow hole caused by internal erosion. Six years 

later the 1975 Reservoirs Act was passed. This includes some of the ICE's 1966 

recommendations and specifies that, for the first time, county councils become 

the enforcement authorities. Regulated lakes are also included, and the Act also 

provides for the abandonment and demoUtion of old reservoirs. 

At present the ICOLD World Register contains around half the estimated 2,000 

reservoirs in Britain (Kennard, 1984), the average age of these being around 150 

years. 

2.3 Earth Fill Dam Failures 

The causes of failure in earth fill dams are varied and may occur during con-

stuction or while the dam is in service. In some cases the dam remains usable 

(serviceability limit state), whereas in others, failure may render it completely 

inoperable (ultimate limit state). Statistics for these conditions, based on work 

by Charles and Boden (1985), are summarized in Tables 1.3, 1.4 and 1.5. 
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Cause of Failure U. K. U.S.A. 

No % % 

External Erosion 17 24 30 

Internal Erosion 39 55 38 

Shearing 10 14 15 

Other 5 7 17 

71 100 100 

Table 2.3: Causes of in-service failure in earth fi l l dams, U.K. and U.S.A. (data 

for USA from Middlebrooks (1953)) 

Time of Failure No % 

Construction 17 19 

In-Service 71 81 

88 100 

Table 2.4-' Timing of failure in U.K. earth fi l l dams. 

Extent of Failure No % 

Ultimate Limit State 18 25 

Serviceability Limit State 53 75 

71 100 

Table 2.5: Extent of in-service failure in U.K. earth-fill dams. 

Table 2.3 shows the comparitive frequency of shear failure as a cause of in-service 

failure in earth fill dams. Earth fill dams tend to become more stable with time 

as consoUdation processes (especially in wet puddle clay cores) take effect, so the 

likelihood of failure with age is substantially reduced (Londe, 1982). Charles and 

Boden (1985) concluded that the end of construction, or the first rapid filhng, is 
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the most critical time for shear instability. 

The most frequent cause of failure is internal erosion, that is, seepage or leakage 

of water through the dam and/or its foundations. This causes finer material to be 

washed through the structure and leads to settlement of overlying unsupported 

material. This mechanism was responsible for the Bilberry and Dale Dyke inci

dents. In the first case the first sign of trouble was the observation of muddy water 

running through the culvert. This eventually burst and subsequent excessive set

tlement left the dam with no freeboard, hence it was overtopped during the next 

high rainfall. A similar process occurred at Dale Dyke where hydraulic fracturing 

of the core was caused by arching due to differential settlement between the weak 

puddle clay and relatively incompressible crushed Millstone Grit shoulders. In 

both dams the highly permeable shoulders were unable to retain the fines being 

washed through and thereby prevent, or slow, the process. 

In some cases overspilling alone, with no previous settlement or other lowering 

of the crest, may be responsible for the failure. At Coedty Dam, South Wales, 

a flood caused by the breaching of a smaller dam upstream overtopped the dam. 

Water flowing over the downstream slope eroded the shoulder material and hence 

the unsupported central concrete core collapsed. There is a danger of overtopping 

if floods occur during construction and inadequate provision has been made for 

diversionary flow away from the impounded area. 

Sliding or shear failure may be initiated in either the fill material or foundations 

and may be influenced by the presence and shape of the core. The relatively rapid 

construction rate used at Chingford Dam, where modern earth moving equipment 

was used for the first time, was thought to be responsible for the build up of 

high porewater pressures in a thin layer of yellow clay in the foundation, which 

led to its failure in 1937. Traditionally, shear stability has been analysed by hmit 

equilibrium methods but, for reasons explained in later chapters, this analysis does 

not apply to situations where progressive failure is operating. Finite Element 

Analysis has been employed by workers at Imperial College, London (Dounias, 

1987) and the University of Swansea {eg: Naylor in Coxon, 1986) to interpret the 
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failure of Carsington Dam. 

There have been relatively few complete failures in the UK in which dams have 

been completely breached, but serious incidents where emergency drawdown and 

extensive remedial works are required may be just as costly. Constructional events, 

even though not threatening reservoir safety or putting the public at risk, lead to 

high costs and great inconvenience. 

2.4 Types of Fill - Marine versus Non-marine 

It was noted in Section 2.2.2 that one of the advantages of building earth fill 

dams is the opportunity to use a cheap and convenient source of material. A wide 

variety of rock types has been utilized in the past as shown in Table 2.7, which 

summarizes materials used in shoulders of dams constructed in the period 1964 -

1984. 
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Material used for shoulders number of dams number of incidents 

Earth fill Glacial Ti l l 14 1 

Fluvio-glacial Sands and Gravels 3 

Tertiary Sediments 3 

Weald Clay 2 

Oxford Clay 1 

Lias Clay 2 2 

Carboiriferous Shales and Grits 7 1 

Carboniferous Marine Shales 2 2 

Rock fill Sandstone and Grit 5 1 

L.Palaeozoic Mudrocks 4 

Limestone 1 

Unspecified 3 

Granite and Sand Waste (E.C.C.) 1 

Concrete 19 1 

67 9 

Table 2.7: Materials used in shoulders of recently constructed dams. Data from 

Dams in the U.K. 1964 -1984 (BNCOLD, 1984). 

During this period there have been few problems during construction of new dams, 

the failure at Carsington being the most disastrous. Minor slips at Draycote and 

its subsidiary dam Toft, near Coventry, occurred in 1967 due to the presence 

of fissures in the Liassic foundation clays. The design was modified with the 

addition of berms. Altmore in County Tyrone developed significant leakage on 

first filling and grouting of the Boulder Clay fill became necessary. Bakethin, 

in Northumberland, also showed signs of leakage and cavities developed at the 

junction between the upstream clay blanket and the permeable rockfill shoulder. 

At Balderhead, south of Teesdale in County Durham, increased seepage and the 

appearance of swallow holes were noted during the first filling, and grouting W C L S 
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undertaken to fill cavities and prevent further internal erosion. Unforeseen ground 

conditions have been reported at several dam sites and these have necessitated 

modifications to the original design. Empingham, in the former county of Rutland, 

is built in an area where the Liassic stata have suff'ered considerable cambering 

and valley bulging. Wet Sleddale, a gravity dam near Penrith, is founded on 

a complex fault zone, which necessitated further excavation and redesign of the 

cut-off so substantially increasing the volume of concrete used. Remedial work to 

stabilize both old coal workings and a landslip was necessary before construction 

of Grimwith Dam near Harrogate. A shear surface in the foundations at Ardleigh, 

just north of Eastbourne, resulted in the need for a redesign of the dam with flatter 

slopes. 

A major factor in earth fill dam building is the suitabihty of the available fill mate

rial. Obviously the design of the dam will allow for certain material inadequacies 

by the use of flatter slopes, addition of berms and so on, but it is not possible 

to use certain materials. ColUns and Humphreys (1974) describe the construc

tion of Winscar dam, near Huddersfield. The local geology comprises Millstone 

Grit with beds of shale, mudstone and siltstone of varying thickness. The in situ 

undisturbed strength of the shale, although variable, was found to be adequate 

for supporting the dam, but on exposure to air and water it underwent rapid de

terioration. For this reason. Millstone Grit alone, and no shale, was used for the 

, embankment shoulders and during excavation fine granular fill was placed over 

the shale foundations to prevent further breakdown. 

In non-marine mudrocks and shales, physical disintegration is the primary control 

on breakdown - this indirectly controls the rate of chemical weathering which is 

dependent on the surface area available. Marine shales, especially those which 

are brittle and fissile, are more susceptible to chemical weathering because they 

customarily contain pyrite which readily oxidises. Added to this, the relatively 

high quantities of calcite will give rise to greater rates of weathering (see Chapter 

4). In non-marine Coal Measures shales amounts of weathering were found to be 

at a low level (Spears ei al 1970) whereas geologically older marine mudrocks of 

Cambrian and Ordovician age tend to be more susceptible to chemical breakdown 
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(Taylor, 1986). 

This raises the question of whether it is wise to use marine shales in earth fill 

structures when their geochemical stability is in doubt. Taylor (1985) suggests 

that such materials are appropriate for use in construction provided that adequate 

quality control is employed, and that the mechanical and geochemical behaviour 

is fully understood. 
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Chapter 3. T H E P R O P E R T I E S OF F R E S H S H A L E 

The following chapter reviews the definition of and classification of the term 'shale' 

which has caused and continues to cause a certain amount of confusion. Typical 

compositions of British shales are reported, including in particular those aspects 

which may be problematic. The effects of weathering processes are discussed later 

in Chapter 4. The history of formation of shales, particularly their sedimentary 

and diagenetic history, determines their properties. In the case of geotechnical 

properties, consolidation history is important. Finally, the geology of the shales 

used in the experimental work discussed in subsequent chapters is examined. 

3.1 Classification and Terminology 

According to Stow (1981) around 50 to 75% of the geological column comprises 

fine grained or argillaceous sediments, that is, those with a dominant grain size 

of less than 63/xm. Until the advent of modern analytical techniques such as 

X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and Scanning Electron Mi

croscopy (SEM), little was known about such rocks. Their fine grain size allowed 

only limited study both in hand specimen and with the optical microscope and 

their cause was not helped by their usually poor exposure at the surface. The 

latter is largely a result of their susceptibility to weathering. Limestones and 

sandstones on the other hand are typically much better exposed and a greater 

amount of information concerning texture and composition can be observed with 

the naked eye. Various different criteria - texture, mineralogy, chemistry, colour, 

degree of metamorphism, and depositional environment have been used to classify 

sedimentary rocks, including fine grained varieties, at one time or another, and 

with varying degrees of success. 
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Pettijohn (1975) quotes an old definition of the term clay: 'a natural plastic earth, 

composed of hydrous aluminium silicates'. The key factor appears to be 'fine 

grained', although, as Shaw (1981) and Stow and Piper (1984) point out, this can 

include substances of different hardness, origin and composition. Problems arise 

because the term 'clay' is used to refer to both grain size, and to mineralogical 

composition. To assist clarification, Weaver (1989) suggests using the term 'physil' 

(an abbreviation of phyllosilicate) for mineralogy, and to keep the term 'clay' solely 

for grain size. This however would only avoid some of the confusion as there is 

no agreement between geologists and engineers on the size of clay - petrologists 

using 4^m as the upper Hmit (Wentworth, 1922) and engineers 2fxm (Atterberg, 

1905). The latter convention will be adhered to throughout this thesis. It is 

important that any classification is employable in the field, and as such, most 

workers employ the grain size definitions shown in Table 3.1, which are based on 

Stow (1981). A recent paper by Hawkins and Pinches (1992) notes that in many 

cases rocks are merely described as mudrocks when the terms claystone or siltstone 

would be better employed. Furthermore, they suggest that claystones should be 

defined as those 'mudrocks' with more than 40% clay size and siltstones as those 

with less than 25% clay size as this reflects differences in geological properties and 

engineering behaviour. 

size definition field criteria classification 

> 1 silt 

i - 1 silt 

> 1 clay 

silt visible with hand lens 

feels gritty when chewed 

feels smooth when chewed 

silt [stone) 

mud [stone) 

clay [stone) 

where 

clay size < 2jj.m 

and silt size 2 to 63/im 

Table 3.1 Field classification of fine grained sediments and their lithified counter

parts (based on Stow (1981)). 

Blatt et al (1980) quote Picard in saying that modern marine muds comprise on 
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average 15% sand, 45% silt and 40% clay thus placing them firmly in the 'mud' 

category. There are drawbacks to using such a scheme however. The wisdom of 

chewing sediments in order to distinguish clay from silt on many engineering sites 

is dubious to say the least, especially when one considers the range of possible 

contaminants encountered in industrial areas. A major problem is the efficiency of 

disaggregation possible, especially of lithified deposits, before particle size analysis 

can be carried out. I t is equally possible to break up original individual grains or 

to fail to separate aggregates of grains. In many cases the results will reflect this 

part of the test rather than the true grain size of the sediment. 

Spears (1980) considered the problem of what the grain size of a fine grained rock 

actually means and found that it reflects the mineralogy, as shown in Figure 3.1. 

As the silt/clay size ratio increases then so does the quartz/clay minerals ratio. As 

quartz content affects physical and engineering properties. Spears recommended 

that quartz content, determined directly, be used as a means of classification. 

Other problems which have been associated with a grain size based classification 

are the time consuming nature of the experimental work. The minerals present will 

have undergone diagenesis which may well have altered the grain size distribution, 

hence any analysis will not reflect the original distribution and is therefore of 

limited use in determining the initial environment. For engineering purposes, 

however, which deal with what exists at present, these analyses are adequate. 

Having distinguished between silt, mud and clay in terms of grain size, several 

problems still remain. As indicated in Table 3.1 the suffix -stone may be added to 

indicate the lithified counterpart, and similarly, many workers will add the suffix 

-shale when the rock is fissile. The term shale is often used rather loosely, in 

isolation, and to some has become meaningless and as such, many civil engineering 

consultants refuse to acknowledge its use. Potter et al (1980) quote Tourtelot 

(1960) who defined shale as follows: 'a generally accepted clciss name for all fine

grained argillaceous sediment, including mud, clay and mudstone'. Apart from its 

broad basis, this definition has the earlier noted problem of being ambiguous in 

that chalks and other fine grained carbonates are included with siliciclastics. Stow 

29 



and Piper (1984) reviewed the use of a two-fold division ie: mudrocks which are 

comprised of detrital siliclastics, and biogenic mudrocks which are composed of 

biogenic material - either calcareous or siliceous in origin. The word shale usually 

implies fissility, the nature of which is further discussed in Section 3.1.1. Whatever 

recommendations are made, the word will still continue to be used in connection 

with several stratigraphic units, for example the Lias Shales, Wenlock Shales and 

many others. 

At the root of another minor controversy is the use of the term 'mudrock'. Both 

Grainger (1984) and Weaver (1989) give reviews of this. As Stow (19816) indicates, 

the words mud and rock describe opposing physical states and hence he claims 

that the two cannot be used together. However there do not appear to be any 

other useful descriptors in this context, so the name is frequently used. Tucker 

(1991), for example, uses the term in a much wider context as a group name for 

all fine grained clastic sediments. It is therefore necessary to define the point at 

which a mud becomes a rock. The criteria for distinguishing muds from mudrocks 

(or shales) are based on geological changes which accompany the rock during 

diagenesis and are discussed in Section 3.3. The words argillite and slate f are 

used by geologists to describe shales/mudrocks which have suffered very low or 

low grade metamorphism and are thus harder than their unaltered counterparts. 

To engineers, such features are of little importance unless they have a direct 

bearing on the strength characteristics of the resulting soil or rock. Geological 

classifications do not distinguish between over-consohdated clays and indurated 

mudrocks, yet it is well known that the sensitivity of geotechnical properties is 

directly related to the degree and nature of induration. As early as 1936, Mead 

realised the difference between compacted and cemented shales. Morgenstern 

and Eigenbrod (1974) devised a scheme of classification based on the unconfined 

compressive strength (UCS) of a soil or rock, and the effect of immersion in water 

on this property. Basically, they proposed that a soil ('clay') has an initial UCS 

t pelite and lutite have also been used to describe shales in the past but are no 

longer in vogue; pelite in particular has metamorphic connotations 

30 



of less than 3.6MPa (c„ of less than 250psi, or l,800kN/m'^) and that it would 

loose more than 60% of this strength on soaking. Further subdivisions are based 

on the time of softening during which more than 50% of the initial UCS is lost. 

On the other hand, a rock ('mudstone') has an initial UCS greater than 3.6MPa 

and will never loose more than 40% of this strength on soaking. The Engineering 

Group of the Geological Society, in a Working Party (1977), proposed somewhat 

diflFerent criteria, in which a weak or very soft rock has a UCS of 1.25 — d.OMPa, 

a weak rock or hard soil 0.6 - 1.25MPa and a soil less than 0.6MPa. BS 5930 

(1981) employs similar criteria with very weak rocks having UCS of less than 

1.25MPa and weak rocks between 1.25 — 5.00MPa. This classification is in many 

ways more useful in that it is directly applicable, enabling instant identification 

in the field without the necessity of time consuming tests. The two schemes are 

compared in Figure 3.2 and the field criteria employed by the latter method are 

listed. Some formations normally considered to be rocks turn out to be defined as 

soils when this classification is applied {see Taylor and Cripps 1987). The simplest 

and quickest method of testing rocks in the field or laboratory is the Point Load 

Test, although it is claimed that it is unsuitable for rocks with strengths less 

than moderately ŵ eak (Norbury, 1986, Hawkins and Pinches, 1992) as part of the 

measured load reflects the indentation of the plattens into the sample. There is 

at present, no generally accepted correlation of the Point Load Index with UCS. 

3.1.1 The Property of Fissility 

If the property of fissility is to be used to distinguish between shales and mudrocks 

its nature and origin must be considered. Fissility is the tendency of a rock to 

split along relatively smooth planes which may be parallel to bedding, or to a 

tectonically imposed fabric such as cleavage. Various classifications have been 

suggested based on thickness, morphology and ease of breakage although none 

has found its way into common useage. There are various reasons why a rock will 

split easily in one direction or plane. These include clay mineral orientation, either 

natural or by compaction, and the presence of layers of organic matter. It is likely 

that various causes will apply in different shales. In a study of a Carboniferous 
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shale. Spears (1976) compared samples from a surface exposure with those from a 

borehole. While the surface samples were fissile, the deep ones were not, although 

they contained laminations of a comparable thickness to the fissility and were 

assumed to be a varves. The dark laminations contained a higher proportion of 

organic material and clay minerals than the lighter layers and although the clay 

mineralogy was no different, these layers showed a greater swelling potential. In 

this case the fissility appears to be a surface (weathered) expression of laminations 

observed in fresh samples. In the same study, exposed mudstones were observed 

to break irregularly into blocky fragments and did not appear laminated when 

sampled at depth. 

Such features are useful environmental indicators - formation occurs in conditions 

of alternating moving and slack water and relatively low energy conditions are re

quired for preservation. Mud laminae have reasonably high preservation potential 

due to their cohesiveness but they will be destroyed by bioturbation. Hence a mu

drock deposited with an active infauna is unlikely to become fissile in the manner 

described. 

To summarize then, for the purposes of this work, a shale is a member of the class 

of mudrocks which are dominantly siliclastic in composition and defined according 

to the percentage of silt and clay size particles present. This is also in keeping 

with British Standard 5930 (1981). Shales are those mudrocks which display the 

property of fissility. 
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3.2 The Composition of Mudrocks 

3.2.1 General 

As mentioned previously in Section 3.1, until fairly recently fine grained sediments 

were studied only in terms of bulk properties. Apart from the small grain size, 

there was little economic interest in, or knowledge about, prevailing depositional 

environments and likely palaeocurrents. Although interesting to the geologist, it 

is bulk properties which most influence the geotechnical properties, hence it is 

pertinent to discuss bulk chemistry and mineralogy at this point. Each section 

begins by looking at average compositions of shales collected by various authors. 

Defining an 'average' mudrock presents many problems, not least of which are 

the substantial regional and local variations resulting from conditions prevaihng 

during deposition. These are subsequently modified during diagenesis, and later 

during weathering. 

3.2.2 Chemistry 

The average chemistry of three sets of shales and mudrocks sampled by three 

authors is shown in Table 3.2. Despite potential problems in looking at average 

values, the results are remarkably consistent. 

33 



Oxide A 

Weight(%) 

B C 

Si02 58.1 58.5 56.2 

A1202 15.4 17.3 15.1 

FeiOz 6.4 7.4 5.7 

MgO 2.4 2.6 2.1 

CaO 3.1 1.3 4.4 

Na^O 1.3 1.2 1.1 

K2O 3.2 3.7 2.6 

Ti02 0.6 0.8 0.8 

0.2 0.1 0.1 

MnO trace 0.1 0.1 

CO2 2.6 1.2 3.3 

S 0.6 0.3 0.2 

c 0.8 1.2 0.8 

H20 5.0 3.9 7.6 

Misc. - 1.2 -

Total 99.7 100.8 100.1 

Table 3.2 Average chemistry of 3 Sets of mudrocks and shales. (A: Clarke (1924) -

78 shales, B: Pettijohn (1975) - 69 shales, C: Ranov et al (1966) - 4030 mudrocks) 

I t is possible to estimate the mineralogical composition of a rock using normative 

formulae and known oxide concentrations. Nicholls (1962) describes the proce

dure adopted for mudrocks, and an alternative method by Taylor is described 

and utilised by Middleton (1985). It is possible to demonstrate the correlations 

between the various oxides and the minerals in which they appear within the rock 

(see for example Taylor, 1986). Silica is a major constituent of both clay and 

silicate minerals and may also be present as biogenically formed free or detrital 

silica. Alumina occurs in clay and silicate minerals as do the alkali metals, mag-
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nesium and iron. The latter is found in various iron oxides, sulphides and so on, 

while magnesium is a constituent of dolomite. Calcium oxide is present in calcite 

and dolomite. Carbon and sulphur generally derive from organic matter while 

carbon dioxide is released from the breakdown of carbonates. The iron and car

bon contents are thought to be responsible for the colour of mudrocks (see Section 

3.2.3a). 

3.2.3 Mineralogy 

One expects to find substantial amounts of clay minerals in mudrocks even though 

classification is size rather than composition based. Composition has important 

commercial implications - for example, potential hydrocarbon sources, pure clay 

mineral sources (bentonite, china clay). Within engineering studies, knowledge of 

mineralogy is essential in predicting long term behaviour. Such determinations, 

however, are not necessarily helpful in determining the origin of the sediments, 

although some mineral suites are characteristic of given environments. 

Mineral A B C D E F G mean st.dev 

Clay Minerals 25 59 61 66.9 58 72.8 60.6 57.6 14.2 

Quartz and Chert 22.3 20 31 36.8 28 19.2 32.4 27.1 6.3 

Feldspar 30 8 4.5 4.5 6 1.2 3.4 8.3 9.1 

Carbonates 5.7 7 3.6 3.6 5 4.5 3.2 4.5 1.3 

Organic Matter - - 1 1.0 - 1.1 0.8 

Iron Oxides 5.6 3 0.5 0.5 2 - -

Pyrite - - - - - 1.8 0.2 

Miscellaneous 11.4 3 - 2.0 - - -

Table 3.3 Average mineralogy of seven sets of mudrocks (A: Clarke (1924), B: 

Yaalon (1962), C: Shaw and Weaver (1965), D: Weaver (1967), E: Pettijohn (1975), 

F: Smith (1978) - UK samples, G: Smith (1978) - USA samples. 
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As with the chemical compositions shown in Table 3.2, the mineralogies shown 

in Table 3.3 are surprisingly consistent bearing in mind the variation expected. 

Variability is more likely to show when clay minerals are analysed separately since 

these are present in high quantities overall and are susceptible to environment 

related changes during burial and diagenesis. The greatest deviation from the 

mean is shown by Group A (Clarke, 1924); this is largely due to inadequate 

analytical techniques and lack of resolution - it would appear that a proportion of 

the clay minerals were interpreted as feldspars. A fine grained sediment is unlikely 

to have so much feldspar due to textural and mineralogical maturity. Shaw and 

Weaver (1965) noted that the quartz/clay ratio is generally variable in mudrocks 

but tends to be related to that of associated sandstones. The changes in clay 

mineralogy of UK sediments with time are discussed in Section 3.4 . The origins 

of the various minerals present in mudrocks are given below. 

3.2.3. a Non Clay Minerals 

Quartz: The majority of quartz is detrital but a certain amount of both biogenic 

and authigenic silica may be present. This is described as chert by Blatt et al 

(1980). During early diagenesis in marine sediments, silica may be released during 

clay mineral transformations such as the illitisation of smectite-illite mixed layer 

clays (Millot, 1970). 

Feldspar: Similarly, there is likely to be a mixture of detrital and authigenic forms. 

Plagioclase, being slightly more resistant tends to dominate over potassium-rich 

feldspars as it does in other sediment types. 

Carbonates: Carbonates may be present as discrete clasts or as chemically pre

cipitated cements. Calcite and dolomite are the more common varieties; siderite 

forms authigenically in brackish, partly reducing environments and diagenetically 

to form ironstone nodules and layers. 

Iron Oxides and Hydroxides: These are usually present as grain coatings and have 

a strong influence on the overall colour of the lithified sediment. Haematite is the 

most common form in older sedimentary rocks, although hydrous.forms such as 

goethite may dominate in weathered rocks and younger strata. 

Sulphides: Pyrite is the most abundant of the sulphides, and is probably also one 

of the most troublesome minerals. It forms within the sediment, under reducing 
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conditions, during early burial diagenesis and is commonly finely disseminated 

throughout the rock. This fineness of grain-size leads to a rapid rate of reaction 

under later oxidising conditions in which acid solutions and substantial amounts 

of heat are generated. Less distinctively crystalline varieties such as hydrotroilite 

occur in modern muds, although these quickly recrystaUise to pyrite. 

Sulphates: Gypsum and anhydrite are quantitatively important but tend to be 

restricted stratigraphically, being, for example, related to evaporite sequences. 

Gypsum, in particular, is commonly found on the bedding planes of weathered 

fissile shale, the sulphate deriving from pyrite oxidation. 

Organic Material: More than 2% — 10% carbonaceous matter in a shale, if of the 

right type, can make the shale a good source of hydrocarbons; some black shales 

may contain as much as 20%. Carbon, with iron, is largely responsible for the 

colour of mudrocks (see Figure 3.3). Overall, the colour reflects the redox con

ditions, the production of organic matter and the relative rates of decomposition 

and sedimentation since it is these factors which control the concentration of iron 

and organic matter in the sediment. 

3.2.3.b Clay Minerals 

The clay minerals are a group of hydrous aluminium silicates, the majority of 

which have a sheet structure. Some notable exceptions with other morphologies 

include palygorskite which has a chain structure. 

Detrital clays are formed through the progressive leaching of metal cations dur

ing the weathering of pre-existing siUcates either directly at the source, during 

transport and deposition, or in a soil profile. The type of clay mineral formed 

is in part related to the environment, with kaolinites forming under humid, acid, 

well drained conditions and illites and chlorites under temperate, alkahne condi

tions. Impeded drainage tends to encourage formation of smectites as shown in 

the left hand side of Figure 3.4. Present day marine muds reflect the prevaiUng 

climate and drainage conditions on adjacent land masses. Several authors have 

noted lateral variation in clay percentage with increasing smectite and decreasing 

kaolinite and/or illite away from terrigenous source. This has been explained as 
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the result of differential settling rates resulting from flocculation to form different 

sized particles (Whitehouse, 1951) or by transformation via halmyrolysis. 

It is known that hydrothermal fluids alter silicates and aluminosilicates to produce 

clay minerals and other secondary phases. Again, if the conditions are moderately 

acidic then kaolinite is formed while smectites, illites and chlorites are formed in 

weakly acidic or alkaline environments. Clays can also form authigenically, for 

example glauconite, while chlorite often forms during diagenesis at the expense 

of smectites. Submarine alteration of volcanic debris to form tonsteins and ben-

tonites also occurs. In some situations, such as hypersaUne lakes, authigenic forms 

may dominate the assemblage. 

Figure 3.4 summarises the changes which accompany clay minerals during burial 

diagenesis. As temperature increases (this is controlled by burial depth - depth 

on its own is not an influencing factor) the trend is towards increasing stabihty 

and degree of crystallinity. Illites and chlorites become more stable; smectites are 

converted to illites or chlorites via mixed layer phases. Kaohnite is transformed 

into other kandites - dickite or nacrite which break down completely at tempera

tures in excess of 200° — 250°. The other factor determining diagenetic changes is 

porewater chemistry. If conditions change from acid to alkaUne then kaohnite may 

transform into illite, smectite or chlorite depending on the ionic species present, 

or vice versa with leaching under acid conditions. 

From these observations, several authors, for example Shaw (1981), have explained 

the variation in clay mineralogy with age. The data from the literature is in

evitably biased by sample numbers and positions, varying methods of analysis 

and so on, but the trends shown in Figure 3.5 appear well founded. In Tertiary 

sediments smectite is more abundant than mixed layer clays while the reverse 

is true for Mesozoic rocks. Smectites are eflfectively absent in rocks older than 

Carboniferous, while mixed layer clays do not appear to have been found in rocks 

older than the Silurian. Illite, kaolinite and chlorite are ubiquitous and clearly are 

the stable species. 
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3.3 The Engineering Properties of Fresh Mudrocks and Shales 

Investigations into the properties of British over-consolidated clays and mudrocks 

by Cripps and Taylor, (1981, 1986 and 1987) revealed a wide variation and range in 

properties. These are furthermore substantially modified by the process of weath

ering, which will be discussed in the next chapter. Apart from obvious differences 

in lithology, a number of factors are well known to influence the geotechnical be

haviour of mudrocks. These factors include overconsolidation ratio, the extent and 

degree of fissuring, the variability of suction pressures and anisotropy. Problems 

associated with testing on small samples also leads to difficulties in applying the 

measured values to in-situ rocks. Sampling methods may result in stress release 

and thus misleading results. Geographical variation in composition/lithology and 

other previously mentioned factors causes wide variation in properties for any one 

formation. 

In general, Mesozoic mudrocks tend to be stronger, less compressible and more 

durable than their Tertiary counterparts (Cripps and Taylor, 1986). This is due 

to greater depth and duration of burial which leads to enhanced induration, and 

the lithological differences described in Section 3.2.3. 

3.4 Distribution, Formation and Environment of British Mudrocks 

and Shales 

The majority of the sedimentary column, as already stated, comprises fine-grained 

rocks, with that of Britain being no exception, as shown in Figure 3.6. The 

following section outlines the distribution and dominant facies of these strata, 

throughout time in the UK. 

Lower Palaeozoic fine-grained rocks are restricted to Scotland, Wales and the Lake 

District and are largely metamorphosed although by varying amounts. These 

rocks contain mostly illite and chlorite although minor mixed layer clays have 

been found in the Silurian rocks of Wenlock/Ludlow age in Wales (Shaw 1981). 

Most are either associated with turbidity currents, or are black graptolitic deep-sea 
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shales/slates, grading into siltier muds and greywackes at basin margins. 

Several distinct depositional environments existed during the Devonian; sand

stones dominate, although significant amounts of fine-grained deposits were laid 

down. In Devon and Cornwall there are several kilometres thickness of deep ma

rine mud, now metamorphosed to slates and low grade phyllites, with interbedded 

Old Red Sandstone tongues to the north. These marine muds now contain mostly 

illite with minor chlorite, kaolinite and expandable mixed layer clays. Lacustrine 

deposits in the Orcadian basin contain laminated black silty mudstones within 

cyclothemic units (House, 1981). Micas again predominate amongst the clay min

erals present. Shaw (1981), quotes the oldest smectites in the British geological 

record in North East England. Further south, there are no significant muds in the 

intermontane deposits. 

The Carboniferous depositional pattern was determined by block/basin structures 

which resulted in a mixture of marine and non-marine environments. The Dinan-

tian was dominated by limestones with interbedded muddy elastics which were 

iilite rich derived from warm, upland regions, or kaolinite rich, originating from 

tropical lowland swamps. Associated shales are often calcareous and may inherit 

limestone type properties (Ramsbottom et al, 1981). Cyclothemic sedimentation 

continued into the Namurian during which the proportion of limestones decreased, 

with around 40% of the deposits being true mudrocks. During the Westphahan, 

non-marine, fluviodeltaic conditions ensued, resulting in a predominance (greater 

than 50%) of mudrocks together with significant fireclays/seatearths and coals. 

Local kaolinite-rich tonstein deposits resulted from the alteration of pyroclastic 

debris in acid brackish swamp conditions. Taylor (1986) found a regional variation 

in the clay mineralogy of Carboniferous mudrocks with kaoHnite being more abun

dant in Scotland and North-East England, and a higher proportion of expandable 

mixed layer clays occurring in Yorkshire. 

Unlike the Palaeozoic, the structure of Britain was relatively simple during Meso

zoic and Tertiary times although, despite this, stratigraphical units are locally 

heterogeneous. Clay assemblages are easier to interpret as diagenetic changes 

40 



have not been as profound (Sellwood and Sladen, 1981). 

The Pernio-Trias saw a diversity of depositional environments beginning with a hot 

dry climate under which high salinity playa basins (inland seas) existed. In these 

conditions the Mercia Mudstone (formerly known as Keuper Marl) was deposited. 

These are aeolian silts dominantly illitic (70 — 80%) but with some chlorite, ex

pandable mixed layer clays and authigenic clays such as sepiohte, palygorskite, 

corrensite and attapulgite. Lagoonal conditions marked the initial stages of a ma

rine incursion and the Rhaetic Group consists of marine and semi-marine shales 

and limestones. 

The Rhaetic Westbury beds contain more mixed layer clay and, later, more vermi-

cuUte and smectite reflecting increased weathering at the source area. KaoUnite 

appears at the expense of chlorite in the Upper Rhaetic, reflecting an overall 

increase in humidity (Sellwood and Sladen, 1981). 

In the Lower Jurassic Liassic formation, illite is again the dominant clay mineral 

in shallow marine shelf deposits of shales and mudstones. Periods of oxygen 

depletion resulted in the deposition of bituminous shales, which, with more than 

4% carbon form potential petroleum source rocks. The Mid-Jurassic saw a return 

to humid, sub-tropical weathering shown by higher kaolinite concentrations in 

elastics derived from the north, while in central and southern England carbonate 

shelf seas and lagoons persisted. High local concentrations of smectite, with ilUte-

smectite mixed layer phases in adjacent beds, occur in the Fuller's Earth deposits. 

These are thought to be weathered volcanic debris. 

Deep marine conditions were widespread during the Upper Jurassic and resulted 

in major clay/mudrock deposits: the Oxford Clay, Ampthill Clay and Kimmeridge 

Clay. Low oxygen concentrations led to reducing conditions in the depositional 

basins which were responsible for the bituminous nature of the Oxford Clay and 

locally high organic content of Kimmeridge Clay. The two are separated by the 

Corallian limestone deposited during a regression in southern England and York

shire. 
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Minor uplift, associated with tectonic movements in Europe at the Jurassic - Cre

taceous boundary, saw the return of alluvial conditions to the Wessex - Weald 

Basin, and shallow marine depositional environments in the Yorkshire - Lin

colnshire - Norfolk area. Approximately 80% of Lower Cretaceous deposits com

prise fine grained elastics with apparently unaltered quartz-clay mineral assem

blages together with early diagenetic minerals such as pyrite, chamosite, glau

conite, and siderite. Although the source rocks were illite-bearing Mesozoic and 

Palaeozoic sediments, warm temperate conditions and acid leaching of soils at 

the source resulted in kaolinite, mixed-layer clay and vermiculite as the main clay 

mineral species, with local smectites derived from the volcanic debris of periodic 

eruptions. During the Cretaceous transgression, the proportion of clastic detritus 

was reduced to generally less than 5% within the chalk itself. Occasional beds 

and partings are present in the chalk marl and Jeans (1968) recognised two clastic 

assemblages in the Lower Chalk. These are a detrital ilhte, kaolinite, chlorite, 

vermiculite assemblage and an assemblage comprising mixed layer illite/smectite 

together with authigenic smectite, illite and mixed layer smectite/illite. The lat

ter assemblage increases in percentage with distance from the shore. Negligible 

amounts of illite and smectite have been found in the Upper Chalk. 

The Tertiary marks the return of shallow marine, brackish and alluvial, condi

tions the deposits of which are now exposed in the London and Hampshire Basins. 

Quartz and clay minerals are again thought to have suffered little, i f any, alter

ation since deposition. Associated flora indicate tropical conditions as do lateritic 

deposits. Kaolinite dominated sediments and clays are found in the west, while 

to the east, iUite and smectite-rich mixed-layer clays predominate. Chlorite is 

found in minor amounts throughout. Discrete smectite horizons accompanied by 

zeolites occuring in the London basin have been linked to volcanic activity during 

the early Tertiary. 

The widespread occurrence of mudrocks and shales leads to their inevitable varied 

use in construction. Detailed knowledge of their behaviour is therefore essential 

for the establishment of appropriate design criteria. The prediction of long and 

short term effects including weathering and overstressing are most important. 
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Overstressing includes disturbance during construction. 

3.5 Geology of the shales used in this study 

The shales studied in this work were all taken from northern and north-east Eng

land; Figure 3.7 shows the locations. As explained in Chapter One, two sets of 

materials were collected. Firstly two shales to act as 'standards' and secondly 

shales from real and dateable structures. 

3.5.1 Geology of the Westphalian shale at Tanners Hall, 

County Durham. 

Tanners Hall Opencast site (National Grid Reference NE 170 380 on Ordnance 

Survey 1:50,000 Sheet Number 92), owned and operated by British Coal until 

its closure in 1989, was situated between the villages of Oakenshaw and Stanley 

Crook to the west of Durham City. Coal was extracted from the Hutton and 

Low Main seams. In March 1987 a bulk sample from the intervening shale was 

collected. Figure 3.8 gives the stratigraphy of the relevant part of the Westphalian 

of the Durham Coalfield which has been interpreted as a floodplain with deltaic 

sequences. The majority of the beds comprise grey mudstones and silty mudstone. 

Immediately after excavation the rock appeared massive and it was possible to 

transport large equidimensional blocks. However, after only a short period of 

exposure the blocks developed a marked fissility and rapidly disintegrated into 

flaky fragments, with many of the flat surfaces revealing plant fragments. The 

typical mineralogy and physical properties of the material are shown in Table 3.4. 
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Mineralogy Physical Properties 

Quartz 7 - 15% Specific Gravity 2.50 

Illite 45 - 65% Liquid Limit 29% 

Kaolinite 13 - 18% Plastic limit 19% 

Chlorite 2 - 7 % Plasticity Index 10% 

Montmorillonite 0 

Mixed Layer Clay 14% 

Calcite 3 - 4 % 

Pyrite 2 - 3 % 

Gypsum 2% 

Other 

Table 3.4 Mineralogy and physical properties of fresh Coal Measures shale from 

Tanners Hall. 

3.5.2 Geology of the Kimmeridge Clay at Foxholes Quarry, North York

shire 

A bulk sample of Lower Kimmeridge Clay was collected from Foxholes Quarry 

(National Grid Reference SE 724 831 on Ordnance Survey 1:50,000 Sheet Number 

100) which is situated near the village of Marton, south west of Pickering, North 

Yorkshire. The quarry has been disused for many years and is largely overgrown. 

New exposures occur following slipping of the side walls, which are in many places 

sub-vertical. The stratigraphy of the Mid Jurassic in North Yorkshire is shown in 

Figure 3.9, with a section through the sequence at Foxholes Quarry. The Middle 

Jurassic consists of fluvio-deltaic facies followed by a marine transgression. Fol

lowing the transgression thick sequences of marine shales were laid down. These 

are locally rich in organic matter and may also contain calcareous laminations due 

to seasonal blooms of coccolithoporoids (Anderton et al, 1978). Rhythmic alter

nations of laminated bituminous shales, bioturbated shales, shales with calcareous 
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laminations and thin laminated limestones have been observed. The section at 

Foxholes Quarry (Figure 3.10) confirms these small scale variations. Overall the 

exposure is composed of blue grey clays and shales (the Kimmeridge Clay is often 

referred to as a 'clay-shale') which are iron stained and frequently fossiliferous. 

The sequence was also described by Middleton (1985) who noted high concentra

tions of calcite but generally less than 1% pyrite. 

Mineralogy Physical Properties 

Quartz 15 Specific Gravity 2.51 

Illite 20 Liquid Limit 49 

Kaolinite 10 Plastic limit 23 

Chlorite Plasticity Index 26 

Montmorillonite 

Mixed Layer Clay 20 

Calcite 35 

Pyrite 

Gypsum 

Other 

Table 3.5 Mineralogy and physical properties of Lower Kimmeridge clay at Fox

holes Quarry, near Pickering, North Yorkshire. 

3.5.3 Geology of the Westphalian Shale at Gale Common P F A lagoon, 

South Yorkshire 

Gale Common (National Grid Reference SE 535 217 on Ordnance Survey 1:50,000 

Sheet Number 106) is situated near Knottingley, South Yorkshire. The pfa lagoon 

acts as a disposal point for the approximately 1 million tonnes of pfa produced 

each week by coal fired power stations at Eggborough and Ferrybridge, 4.8 and 

7.2 km away, respectively. Construction began in 1964, and at the time of writing. 
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work on the third stage of the scheme is under way. At the end of the second 

stage, the main lagoons covered an area of 21.3 hectares and emergency lagoons 

20 hectares. A volume of approximately 16 million cubic metres of shale was used 

in constucting the embankments. Four sets of samples were collected in May 1987, 

these being: 

1. Fresh shale from a lorry arriving at the site 

2. Stockpiled material placed during the previous autumn (1986) 

3. Five year old shale (1982) from the 19.5m elevation, on the south side of 

the main lagoon B approximately 100m east of cross section Q. This shale 

had been exposed in the side of a roadway excavated one week previously in 

preparation for the addition of further material. Iron staining was observed 

at approximately Im depth, and was unusual according to the site engineer. 

Such staining is seen in coal tips and attributed to weathering during earlier 

exposure (Billing 1987). 

4. Fifteen year old material (1972) from the embankment between emergency 

lagoons C and D. 

Shale used in the construction of the embankments at Gale Common derives 

from Kellingley Colliery which generates around 800 000 tonnes per annum. The 

colliery is owned by British Coal and was mining from the Beeston seam in 1972, 

and from the Beeston and Silkstone seams in 1982, 86 and 87. Fresh samples 

of the roof measures from these two seams were obtained from the colliery and 

analysed, the results are shown in Table 3.6. Ramsbottom et al (1978) show the 

position of the two seams in the WestphaUan 'A' , Figure 3.8. In South Yorkshire 

the sequence is about 168m thick, compared with 98m in the Durham Coalfield. 
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Mineralogy Physical Properties 

Quartz 23% Specific Gravity 2.54 

Illite 54% Liquid Limit 34 

Kaolinite 19% Plastic limit 20 

Chlorite 0.5% Plasticity Index 14 

Montmorillonite -

Mixed Layer Clay -

Calcite trace 

Pyrite -

Gypsum -

Other 3.5% 

Table 3.6 Mineralogy and physical properties of fresh Coal Measures shale from 

Kellingley Colliery. 

Several points of significance emerge from the XRD traces and these will be ex

panded in Chapter 4. The kaolinite and ilUte peaks are sharp and symmetrical 

indicating crystalline materials. There is Uttle expandable mixed-layer clay and 

no montmorillonite present. This is shown by glycolated analyses and also by the 

fact that the sum of the components is approximately 100%. The two samples 

have closely similar compositions and therefore variations on the embankment 

are likely to be due to later weathering effects rather than mixing of the two ex

tremes of underground measures. This was demonstrated by McWilliam (1975). 

No pyrite or gypsum and only a small amount of calcite was recorded. 
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Elemental Oxide (wt %) 

Oxide Silkstone Roof Beeston Roof 

Sl02 57.62 54.28 

A1203 21.78 22.28 

Fe20z 4.65 4.91 

MgO 1.73 1.66 

CaO 0.29 1.31 

Na^O 0.75 0.64 

K2O 3.64 3.80 

Ti02 1.07 1.19 

P2O, 0.04 0.02 

MnO 0.13 0.13 

CO2 

s 
c 8.29 9.78 

H20 

Misc. 

Total 

Table 3.7 Major Element compositions of Coal Measures Shale from Kellingley 

ColUery. 

Major element data again indicate that there is close similarity between the two 

shales. I t is interesting to note that while the amounts of illite and quartz can 

be closely estimated by calculation from silica and potassium oxide levels, the 

kaolinite value obtained by recalculation is significantly smaller than the XRD 

value. The small amounts of calcium oxide present correlates with the minor 

amounts of calcite measured. 
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3.5.4. Sampling of Dams 

A series of near surface samples was taken from shale fill dams in the Teesside and 

Weardale areas of County Durham in order to gain quantitative and quaUtative 

estimates of the condition of the shale fill. The relevant entries for these dams in 

the ICOLD World Register of Dams are listed in Table 3.8. Data for Carsington 

Dam and for Gale Common have been added for comparison. Originally it was 

hoped to sample Cod Beck Dam in North Yorkshire. This dam, described by Cook 

(1973), has suffered from problems related to foundation leakage and slope insta

bility in the valley downstream during its lifetime and several phases of remedial 

work have been necessary. A bulge in the downstream slope has existed for some 

time and exploratory work was undertaken in the Autumn of 1987 to check for 

water-tightness of the dam itself. This involved continuous coring and open hole 

rotary driUing, but neither method revealed Liassic shale as expected. The dam is 

founded partly on Liassic shale and partly on sands and gravels which derive from 

a fluvio-glacial channel running down the east side of the valley. Enquiries to the 

consulting engineers confirmed that although shale was used near the core during 

the early construction, the source had run out by the time the dam reached half 

height and consequently the most clayey material available from the neighbouring 

glacial deposit was employed (Bass (of Consulting Engineers Rofe, Kennard and 

Lapworth), 1987 personal communication). Consequently the samples from Cod 

Beck, being sandy and not shaly as hoped, were not considered appropriate for 

use in this study. 

The three dams to the north of the Weardale Valley, Waskerley, Tunstall and 

Smiddy Shaw were constructed by the Victorian water engineer Thomas Hawk-

sley whose life and achievements are described by Binnie (1981). Waskerley and 

Tunstall were both large schemes for the time in which they were built. Problems 

occurred during the construction of Waskerley dam when movement occurred in 

the outlet shaft due to differential pressure on the 3 in 1 upstream slope. Cracks 

and cavities were backfilled and sealed, and impounding proceeded with no further 

trouble. The shaft, however, remains in its non-vertical position. Tunstall also 
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showed signs of leakage through the puddle clay core when only half fu l l and as a 

result became one of the first earth f i l l dams in the world to be grouted. Smiddy 

Shaw is slightly unusual in being impounded on all four sides by embankments. 

I t is fed by rainwaters and has no natural catchment area of its own. In hard 

winters i t has been known for the surface to completely freeze over and hence 

pipes have been incorporated into the embankments to allow entry of air during 

withdrawal thereby preventing a vacuum forming. Samples were also taken f rom 

Hisehope dam but these proved to be sandy wi th sandstone clasts and therefore 

not appropriate to this study. 

To the south of Teesdale, two of the five dams in Lunedale and Baldersdale were 

examined. The shaly nature of the f i l l at Grassholme was confirmed in exploratory 

work by Rofe, Kennard and Lapworth in 1969. This work was required due to 

observed seepages on the downstream slope manifest as damp patches wi th soft 

rushes (sp. Juncus). There were also questions relating to the stability of the 

boulder clay supporting the spillway. A relatively permeable layer was proved 

at a depth corresponding to the observed wet spots. I t is now thought that the 

seepages are due to percolating rainwater at the permeable layer and not to water 

leaking through the dam. 

Balderhead dam was also large for its time. Due to concern over using shale on 

a project of such magnitude an experimental programme to outline the material 

properties was init iated (Kennard et al, 1967). The seepage problems experienced 

during the first filling have been mentioned in Chapter Two, but the dam has 

performed satisfactorily since then. 

In addition to these dams, two spoil heaps were sampled. These were formed 

f rom waste created by the excavation of a tunnel in 1907. Many reservoirs are 

interconnected and this particular tunnel runs f rom Grassholme reservoir allowing 

water to be pumped into Hury reservoir. In a similar way water may be transferred 

f rom Selset into Grassholme, or f rom Balderhead to Blackton to Hury via other 

tunnels, when the levels in the lower reservoirs are depleted. Selset dam itself 

comprised boulder clay and therefore was not suitable for sampling. This was 



unfortunate because at the time of work the level had been drawndown for repair 

to the riprap. The spoil heaps provided f i l l material, which was again dateable, 

but had not suffered compaction or been used to impound water. The geology of 

the areas surrounding the dams is shown in Figures 3.11 to 3.14, and described in 

futher detail below. 

Name Year Situation Heiglit Lcngtli Volume Reservoir Reservoir Owner 

of completed River Nearest town County Capacity Area 

dam ( M ) (M) (10^71=) (lO^Ji^) (in^n^) 

WaskerJcy 1872 WcLskcrley Beck Consett Durham 27 732 685 2045 7 N.W 

Smiddy Shaw 1875 - Consett Durham 14 960 - 1386 ? N.W 

Tunstall 1879 Waskerlcy Beck Crook Durliam 25 3GG 551 2364 ? N.W 

Grassholme 1915 Liine Darlington Durham 30 274 417 6000 567 N.VV 

Burnliopo 1936 Burnliope Crook Durham 40 540 1223 6168 7 N.W 

Cod Beck 1953 Cod Beck Northallerton N.Yorks 24 155 514 7 Y . W 

Balderhead 1965 Balder Darlington Durham 48 914 2307 19,684 1169 N.W 

Gale Common C off river Doncaster Yorks 51 2170 12,300 11,000 273 C . E . G . B 

Carsington 1992 Scow Brook Derby Derbys. 35 1250 2231 35M 295ha S .T.W.A. 

Table 3.8 Statistics for dams mentioned in study (taken f rom ICOLD World 

Register of Dams, 1986). (C - under construction, N . W - Northumbrian Water, 

Y . W - Yorkshire Water, S.T.W.A - Severn Trent Water Author i ty) 
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3.5.5.a. Geology of the Area surrounding Grassholme and Balderhead Reservoirs. 

This area lies in the Stainmore Trough which forms a physiographic and struc

tural depression between the Alston and Askrigg blocks of the North Pennines. 

The sub area between Lune Forest and Stainmore is known as the Cotherstone 

Syncline, and is described by Reading (1957). Although covered wi th thick d r i f t 

deposits, bedrock is exposed in valley and stream sections, and here ranges f rom 

Late Dinatian through Namurian in age. The Middle Limestone Group comprises 

typical Yoredale facies cyclothems which pass f rom marine Hmestones and marine 

shales through unfossihferous ferruginous shales, sandy shales and shaley sand

stones, sandstones, ganisters and coal going up the sequence. The cycles become 

less regular in the Upper Limestone Group wi th irregular marine bands, some 

have more than one sandstone and in some cases a marine sandstone or shale may 

replace the limestone. I t is important to note the lateral variations in thickness of 

individual beds. This is demonstrated by Reading (1957) who shows the variation 

in thickness of the Four Fathom and Iron Post Cyclothems across the area. 

Grassholme reservoir is founded on beds f rom the Middle and Upper Limestone 

Groups between the Three Yard cyclothem and the Crow Limestone cyclothem. 

5 Yard and Scar Limestones were encountered in the trench excavations (Burgess 

and Holliday, 1972). Mudstones and shales from these cyclothems are dominantly 

marine although a few are thought to be non-marine. Balderhead reservoir covers 

an area including a distinct marine band below the Upper Felltop Limestone. 

Both dams lie on near horizontal strata as shown on the map. 

3.5.5 b Geology of the area around Bumhope reservoir. 

Burnhope Reservoir lies on rocks of Middle Limestone age, ie: below the Great 

Limestone. Although the strata are again horizontal the area lies to the north of 

the Lunedale fault system and therefore, being on the Alston block, the sequence 

is significantly thinner and contains fewer limestones. 
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3.5.5 c Geology of the area around Waskerley, Smiddy Shaw and Tunstall Reser

voirs 

These reservoirs are founded on late Namurian strata which, as shown on the 

map in Figure 3.13, is gently inclined to the east. The rocks are part of the 

Millstone Gr i t group and here the cyclothems comprise a marine band, shale, 

sandstone or grit followed by coal. Limestones are much less frequent or persistent, 

and where they do occur are much thinner - see for example the Upper Felltop 

Limestone on Figure 3.13 compared to that in Figure 3.11. Marine bands too 

are rare, but are of great importance in mapping and correlation. During the 

Namurian sandstones and/or gritstones became both more frequent and thicker 

w i t h time. The Namurian/Westphalian boundary is marked by the Gastrioceras 

suhcrenatum Marine Band (Ramsbottom et al 1978) which was formerly known as 

the Quarterburn Marine Band. The stratigraphy of the area is described in detail 

by Dunham (1948). Figure 3.15 shows Waskerley and Tunstall sited on shale 

between sandstone bodies while Smiddy Shaw is on sandstone just below the 

suhcrenatum marine band. I n view of this i t is quite surprising that the samples 

contain a fair ly high proport ion of shale. Hisehope Reservoir is founded on and 

surrounded by sandstone and as expected, shallow pits on the surface yielded no 

shale fragments. Typical properties of fresh Namurian shales are summarized in 

Table 3.10 below. 



Mineralogy (%) Physical Properties 

Quartz 30 -- 60 Specific Gravity 2.48 

Il l i te 15 -- 40 Liquid Limi t 61 

Kaolinite 5 - 20 Plastic l imi t 24 

Chlorite 2 -- 5 Plasticity Index 37 

Montmoril lonite 

Mixed Layer Clay 0 - 20 

Calcite 

Pyrite 0 - 5 

Gypsum 0 - 2 

Other 

Table 3.9 Mineralogy and Physical Properties of Fresh Namurian Shale. Data 

f r o m Fytis (1986) - Carsington Dam, and Middleton (1985) - Plankey M i l l (Grid 

reference 795 622), near River Allen in Allendale. The shale was an unweathered 

sample f rom the Upper Limestone Group and due its proximity to a coal seam 

was assumed to be non-marine. 
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Morgenstern and 
Eigenbrod (1974) 

ROCK 

SOIL 

stiff soil 
t5o < 1 day 
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tso > 1 day 

soft soil 
tso 1 hour 

UCS 
(MPa) 

1 
0.6 
0 ^ 

0.1 
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0.01 

Engineering Group (1977) 

WEAK ROCK material crumbles' 
under firm blows 
from hammer 

WEAK ROCK brittle or tough 
OR broken by hand 

HARD SOIL with difficulty 
V. STIFF SOIL indented with 

fingernail 

STIFF SOIL 

FIRM SOIL 

SOFT SOIL 

V. SOFT SOIL 

tso = soaking time required for reduction of 
50% in UCS. 

Figure 3.2 Strength (UCS) classification of mudrocks and muds according to Mor

genstern and Eigenbrod (1974) and the Engineering Group (1977). 

56 



BLACK 

BLACK 

ARK GREY 

G R E Y 

OLIVE GREY 

PURPLE 

GREENISH GREY 

M o l e F r a c t i o n Fe*= , 

Figure 3.3 Relationship between organic carbon content, iron I l / i r o n I I I content 

and the colour of mudrocks (after Potter et al, 1980). 
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Figure 3.5 Variation in clay mineralogy wi th geological age (after Shaw, 1981, 

and Weaver, 1967). 
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Figure 3.6 Distr ibut ion of mudrocks in Great Bri ta in . 
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Figure 3.7 Location of sites f rom which shales collected. 
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Figure 3.8 Stratigraphy of WestphaUan rocks in the Durham coalfield (after 

Ramsbottom et al, 1978). 
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Figure 3.9 Lower Jurassic stratigraphy. 

Boulder Qay 

blue/grey stiff mudstone. moderately fissile 
contains ammonite and bivalve fragments 
weak lamination parallel to bedding where fresh 

buff/grey sandy siltstone, weak rock 
fissile, v/hite speckles on weathered surface 

brown/black soft shale, iron stained bivalves, 
extremely fissile, weathers to give brown soft shale 
stiffer at base with some subvertical jointing 

midyiight grey weak mudstone. fissile where weathered 
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remains, iron stained, irregular patches are black and feel gres 
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Figure 3.10 Quarry wall section in Kimmeridge Clay at Foxholes Quarry. 

63 



(D 

o E <D ne
 

C 
T J O 

c o C o I - 4^ 

o x: o CO CO 

C
I 

i CO 
m C

I 
i 

0) T3 E 
( ! ) . _ 

T3 l i . o C E 
( ! ) . _ c E 03 

« CD 

F
o J j 

T
h 

3 
u B n u B u I a 

s n o j e i i u o q j e o 



o 

CO 

o 

o 
o 
o 
o 

® 
as 
O 
to 

CO 

o 

CO 

0) 

c 

O 

03 

a 
CO 

-a 

B 
CO 
>^ <v 

TH 
(U 

M 

I 
bo 
Ci 

=1 o 
l-l 
l-l 
:3 
(0 
a v 
M 
<u 

J3 

on
 

o 
>> 
bO 

o 
o in O 

S
e CVJ O 

O 

ti
ca

 

0) o > 

ti
ca

 

S
ea

 

o
n 3 

es
e 

i _ S
ea

 

PC 

> 

S
a

n
d 

Hi: m m 

0) <D -̂̂  (D <D 
c o C c CO C C 

o o o 

n
e o o 

S
t 

d
s

t S
t n
e 

o S
t 

S 
t 

T3 d
s

t 

•o T3 TJ 
C ra c c ra •o C C 
CO O ra ra c ra ra 
to O to to ra to to to 

c CO 

te
 

u 
r CO 

(0 n 
L_ 

c 0} 

ra *.» 

O 

Q
 u

 a
 r 

c 
o 
m 

E 

0) 
(0 

o 
© 

0 a> <D 
c c c 
o o o 

_ oi _ Q . 
? E ? o a , 
- — ra ra 

CO 
a 
o 
*^ 
•o 
c 

O 

L L (0 

a 
3 

s ! 
XJ 
c 
ra 
to 

— 1 ® 

o u- o 

d j t G O 

O o 

o 
cc 

U B ! | B l j d | S 8 M u e u n u i B N 

s n o j o i j u o q J B O j e d d f i 



prnniirnj 

fflFFT 

Lowef FeRop 
Limestone (LR) 

Dag Limcitone 

Uttlo Limesiono 

Coeb 

Great Limettone (Gl | 

4 Fathom Limeslone ( ^ ) 

3YatdLimestore 

5 Y a d Limestone 

Scat Limestone 
Co<*leshe« Limestone 
Single Post Limestone 

SCOie 1 :S3,000 

Figure 3.12 Geology of the area surrounding Burnhope reservoir. 
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4. W E A T H E R I N G OF S H A L E S 

4.1 Introduction 

Weathering is often regarded as the reverse process of diagenesis and results in 

an overall deterioration in quality and loss of integrity of a soil or rock. During 

diagenesis, increase in compaction leads to increase in permeabiUty and porosity. 

Chandler (1969) notes that one of the most important effects of weathering is the 

increase in void ratio. 

Both diagenesis and weathering result from bringing a material into equihbrium 

with the prevaiUng pressure and temperature regime, and the degree of weathering 

is therefore directly related to the extent by which a material is out of equihbrium 

with its surroundings. By definition, weathering is caused by the action of atmo

spheric agents, occuring at or near the surface and involving httle or no transport. 

Most rocks form under pressure - temperature conditions which are-very different 

from those existing at the surface today and hence tend to be more susceptible to 

weathering than soils which have been formed by prolonged weathering and are 

therefore generally stable. 

Diagenesis is initiated by burial and loading. Weathering on the other hand results 

from unloading, either by natural (uplift and erosion) or man-made (excavation) 

processes. Unloading leads to the release of strain energy and thus propagation of 

high horizontal stresses close to the surface. These are beUeved to be an important 

factor in exacerbating weathering (Bjerrum, 1967). Ko values * obtained by both 

measurement and calculation (Taylor and Cripps, 1987) are highest close to the 

* Ko is the ratio between horizontal and vertical stresses 
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ground surface. In laboratory experiments, Brooker (1967), demonstrated that 

stored energy was increased by post geological loading and resulted in increased 

values of Ko- Such energy is stored by the bonding and deformation of individ

ual particles. Furthermore, diagenetic bonding, that is authigenic cementation, 

adhesion at particle contacts and grain to grain 'cold welds' (Bjerrum's so-called 

'strong diagenetic bonds') contribute to storage of energy in the system. During 

unloading, the soil expands and there is an increase in the void ratio and water 

content. Strain energy stored by bonding and compression is recovered relatively 

quickly but strong diagenetic bonds take longer to break down; thus there is a 

secondary time dependent effect. Expansion is obviously restricted in the horizon

tal direction; consequently stresses are set up which may lead to fracturing and 

breakage subparallel to the ground surface. 

4.2 Weathering Processes and factors influencing weathering 

Weathering occurs by a combination of two interacting processes - namely physical 

disintegration and chemical decomposition. Physical disintegration tends to be 

the more rapid of the two, and is responsible for the overall rate of weathering 

as it controls the amount of surface area available for chemical reaction, see for 

example Taylor and Spears (1970). 

4.2.1 Physical Disintegration 

The physical component of weathering involves in situ fragmentation of rock or 

soil by application of cyclical stresses; for example wetting - drying, heating -

cooling and freeze - thaw. The effect of application of man-made stresses is 

discussed later. Stress relief due to unloading has already been mentioned; this 

leads to swelling and increase in water content. Taylor and Cripps (1987) give a 

useful summary of swelling processes which include intra particle sweUing due to 

rehydration of clay minerals, and inter particle or osmotic sweUing between clay 

minerals. The latter arises when separation between clay minerals is greater than 

that at which attraction by Van der Waals forces occurs (usually about I s A ) . A 
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net repulsion between particles causes water to be drawn into the system, which 

leads to further increase in volume. 

The amount of physical disintegration experienced by a mudrock under given 

conditions is controlled by a number of factors which include: 

1. Presence of sedimentary structures and discontinuities. 

2. Slaking of the rock - this depends on suction characteristics. 

3. Amount of expansion of expandable clay minerals. 

4.2.2 Chemical Deterioration 

Under any given climatic regime, minerals will tend to dissolve or precipitate in 

order to achieve equilibrium. During diagenesis mineralogical changes lead to an 

increase in mechanical stability of clays due to loss of expandable layers (see for 

example Dunoyer de Segonzac, 1970). During weathering, prolonged leaching of 

clays generates simplified forms or, at the other extreme, certain conditions may 

lead to the precipitation of minerals. 

The processes by which chemical decomposition of rocks and soils take place are 

summarised in many texts (see for example Krauskopf, 1967). These are hsted 

below. 

1. Solution and Precipitation 

Minerals most likely to be dissolved are halite, gypsum, anhydrite, calcite and 

dolomite. Of these, calcite is most likely to be a constituent of mudrocks. Sev

eral cases where solution of calcite has led to a significant decrease in strength 

are recorded in the hterature, for example the Carboniferous Shales used in the 

construction of Balderhead Dam (Kennard et al, 1967), and Oxford Clay (Russell 

and Parker, 1979). Precipitation of minerals leads to the formation of duricrusts 

and duricretes under certain conditions. This may cause problems in man-made 

structures by precipitation of iron hydroxides ('ochre') in filters and drains. 
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2. Hydration 

Hydration of clay minerals such as montmorillonite may render them unsuitable 

for use in structures. Uptake of water between lattice layers in the mineral does 

not lead to any major differences in the compound itself but may cause significant 

amounts of swelling and hence contribute to further disintegration. 

3. Dispersion and Cation Exchange 

Minerals prone to dispersion disintegrate on exposure to water. They tend to 

be rare in the U.K. , although the Gault Clay is one notable exception. They 

can generally be recognised by their high exchangeable sodium percentage (ESP) 

values. Structures in which such materials are utilised may be vulnerable to 

internal erosion or piping. 

4. Oxidation and Reduction 

The oxidation of sulphides such as pyrite, marcasite and pyrrhotite in mudrocks 

is presently receiving a great deal of attention due to its often dramatic effects 

on structures and buildings. Penner et al (1973) provide the following probable 

mechanism for the reaction. 

( / ) 2FeS2 + 702 + 2H2O ^ 2Fe504 + 2^2^04 

( / / ) iFeS04 + O2 + 2H2SO4 2^62(504)3 + 2^20 

( / / / ) 7^62(504)3 + FeS2 + 8^r20 15Fe504 -1- 8/^2504 

(I) ferric oxide is produced during this stage. (II) ferrous oxide is generated , the 

reaction is catalysed by bacteria. 

Sulphuric acid produced in the last part of the reaction is known to react with 

carbonates and clay minerals present to form secondary minerals such as gypsum 

(from calcite) and jarrosite (from illite). These reactions generally involve an in

crease in volume, and a great deal of heat is generated in the initial oxidation 

reaction. Acid generation may also have a significant effect on geotechnical prof)-

erties - Steward and Cripps (1983) note that residual strength of Carboniferous 
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Shales at Mam Tor in Derbyshire reduced due to mineralogical and porewater 

composition changes resulting from pyrite breakdown. 

5. Hydrolysis 

Hydrolysis is the process whereby primary rock forming minerals are weathered 

to secondary clays, hydrous oxides and so on. Although this process is important 

geologically, it is generally thought to be too long term to influence man-made 

structures. 

The processes most commonly reported to affect mudrocks used in structures in 

the U.K. are dissolution of calcite and oxidation of pyrite. Mudrocks formed under 

marine conditions are much more likely to contain these minerals than their non-

marine counterparts. This, coupled with the increased incidence of fine laminae 

built up under slow rates of sedimentation in deep marine environments, causes 

marine mudrocks to be much more susceptible to both chemical and physical 

weathering than non-marine mudrocks (Taylor, 1988). 

It must be emphasised that the distribution of calcite and pyrite in mudrocks 

is dependent on depositionai and diagenetic factors (Russell and Parker, 1979). 

Therefore their absence in profiles otherwise containing calcite and pyrite does not 

necessarily imply weathering away of the mineral. Furthermore, Spears and Taylor 

(1972) concluded that pyrite content was not a prime cause of rock breakdown, 

after observations of weathering depths and presence of pyrite in Carboniferous 

rocks. 

4.3 Weathering Classifications 

Several visual classifications are available for use in the field as it is thought 

expedient to describe the condition of weathered rocks in a uniform style for 

comparitive purposes. General schemes are provided by the Engineering Group of 

the Geological Society (Anon, 1977) and in BS 5930(1981). Both schemes define 

the various grades according to the amount of altered material present rather 
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than by the extent of alteration. Variants of the general classifications which 

refer to individual formations can be found in the literature, for example - Mercia 

Mudstone (Chandler, 1969), Upper Lias Clay (Chandler, 1972), Chalk (Ward et 

al, 1968). 

The distribution of weathered material observed in a rock mass depends on, 

amongst other things, differences in the original character of the rock, particularly 

its porosity and the presence of discontinuities. Consequently, the full range of 

weathering grades may not be seen in any one rock mass. Moreover, mantling 

effects of drift deposits may preclude development of grades in a mass. Despite 

this, several authors have attempted to establish depths of in situ weathering 

based on the Zone I I / Zone I I I (that is, slightly weathered/moderately weathered 

boundary. For example, 5 - 15m in London Clay (Skempton, 1977), 6 - 10m in 

Oxford Clay (Russell and Parker, 1979), 2.4 - 4.0m in Carboniferous mudstone 

and 2.0m in Carboniferous shale (Spears and Taylor, 1972). The latter observed 

weathering down to depths of 20 to 25m where there existed a high frequency of 

rock mass discontinuities. 

It is important to remember that such schemes are intended for in situ weathering 

of a rock mass and therefore cannot be directly appUed to earth or rock fills. In 

such cases man-imposed physical weathering is inflicted on the material as de

scribed in Section 4.5, as well as bringing rocks of potentially different weathering 

states into the same new conditions. 

4.4 The effects of weathering on geotechnical properties 

The gradational changes in geoteclinical properties which accompany weathering 

are widely known and well documented. The most obvious is, as already described, 

increase in void ratio due to volume increase and swelling and consequent increase 

in moisture content. The effect is more pronounced in mudrocks and shales than 

clays since their initial moisture content is generally lower. This is accompanied 

by an overall decrease in undrained shear strength which is probably related to 
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increase in amount of fissuring besides the void ratio increase. 

Effective shear strength parameters are more difficult to interpret due to the pres

ence of fissures and discontinuities and curvature of the shear strength envelope. 

The following is based on Taylor and Cripps (1987) and summarised in Figures 

4.1 and 4.2. Generally, a large drop in cohesion is observed, with a smaller, but 

nevertheless significant decrease in the angle of shearing resistance. The drop to 

a lower bound value of peak effective shearing resistance in the fully weathered 

state is comparable to the behaviour of a normally consolidated or fully softened 

(remoulded) clay. Weathering alone cannot produce the ultimate (residual) shear 

strength which is only attained after large strains. 

Relationships between weathering and other variables such as clay mineralogy 

(and therefore Atterberg Limits) appear less clear cut overall, although correla

tions have been recorded in individual sites or for specific strata. 

4.5 Weathering in earth fill dams 

In earth fill dams and similar structures any weathering which takes place may 

have serious impUcations in one of two ways. Firstly, weathering may cause a 

change in material and physical properties - in dam design it is generally assumed 

that the properties stay constant during the Ufetime of the structure (Anon, 1986). 

Secondly, by-products of chemical reactions may be polluting and hazardous to 

health and/or the environment. The effects of acid generation at Carsington Dam 

have been mentioned in Chapter 1. 

The extent and rate of weathering on earth or rock fill structures is controlled by 

material susceptibility, by the degree of leaching taking place within the dam and 

by the chemistry of water within the fill. In the U.K. , waters are not normally 

aggressive although tailings dams in industrial, urban or mining areas have to 

be designated to allow for highly acidic and/or chemically contaminated water. 

Normally, due to the effects of running over hill peat, groundwater in upland 
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areas tends to be slightly acidic whereas that in limestone areas may be highly 

alkaline and contain high concentrations of calcium. Water in lowland areas is 

generally neutral or slightly alkaline. Water entering the system as precipitation 

will have a different chemical composition from that already present. This may 

be an important factor in influencing chemical and physico-chemical reactions. 

Weathering in earth fill dams tends to be restricted to the unsaturated part of the 

shoulders. The core is, by design, impermeable and effectively chemically inert 

when fully saturated. A large part of the shoulders, that is, from the water level 

on the upstream slope to the downstream toe, is also fully saturated but reactions 

may occur above the ground water level. The scenario may be complicated if 

cycles of drawdown and refilling occur. During dry summers the presence of a 

lower than usual ground water table leads to a larger volume unsaturated for 

weathering. 

Leaching through the body of the dam is largely controlled by the permeabihty of 

the core, and may be further hindered by the placing of impermeable membranes 

on the upstream face. The placing of drainage blankets speeds up any pore water 

pressure dissipation, but may also allow the leaching of chemical by-products 

away from the reaction site. Furthermore, the presence of drainage blankets may 

introduce chemically reactive material into the system. 

Despite the potential for degradation, a survey conducted by Babtie Shaw and 

Morton (Anon, 1986) for the Department of the Environment, recorded httle 

evidence of dam failure caused by chemical deterioration of the fill. They did note 

however that changes to rockfiU dams were more rapid and obvious, and that such 

dams may degrade to earthfiU dams with time (see Chapter 2 for definition). It 

would appear that dams constructed from highly weathered material are more 

susceptible to chemical decomposition and tend to degrade more rapidly during 

their lifetime than those built from fresh and slightly weathered rock. 

A great deal of work has been carried out on the condition of colliery spoil heaps 

following implications made in the Aberfan Enquiry that degradation may influ-
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ence shear strength characteristics of the spoil (Taylor, 1973). Spears et al (1970) 

recorded the rapid breakdown of underground samples on exposure to the atmo

sphere and concluded that colhery discard would reach its level of degradation 

fairly quickly. Little weathering was noted below a shallow surface zone less than 

about one metre thick on the 50 year old Yorkshire Main Tip (Spears and Taylor, 

1972) and at the 100 year old Brancepeth Tip in County Durham, Uttle change 

was noted other than that attributed to combustion in the spoil heap (Taylor, 

1973) . 

4.6 Weathering Studies 

Samples taken from the sites described in Chapter 3 were tested as follows in 

order to view their condition and to determine whether any significant weathering 

processes appeared to be operating. 

4.6.1 Moisture Content 

On arrival in the laboratory, samples from weathering profiles were tested for 

moisture content according to the method outhned in BS 1377:1975 *. Plots of 

moisture content against depth are presented in Figure 4.3. 

The moisture content - depth relationships for the five year and fifteen year weath

ered profiles at Gale Common are both sinusoidal in shape with the higher (wet

ter) values occurring between approximately 0.3 and 1.3m below the ground level. 

Samples from the surface are drier, presumably due to slight desiccation, as are 

those below 1.3m in the five year wethered profile. In both cases the values range 

between 10and22%. The similarity in both shape and numerical range of the two 

suggests that little change occurs to the in situ material during this time range. 

Work was carried out prior to publication of the 1990 edition 
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The data from Balderhead Dam and Grassholme Dam show moisture contents to 

be in the ranges 8 — 12% and 16 — 23% respectively. In both locations slightly 

higher values are observed at the 'top' of the profiles followed by a decrease in 

moisture content with depth. Both dams were topsoiled and grassed shortly after 

construction and this layer, approximately 0.3m in thickness, appears to prevent 

drying out of the upper surface of the shale fill. On initial excavation, material 

from Grassholme dam appeared more highly degraded than that from other dam 

sites. It could be described as brown clayey sand to gravel sized shale fragments, 

whereas other sites yielded grey sand to cobble sized fragments with occasional 

boulders. This visual difference is reflected in the higher moisture contents ob

served. 

The two spoil heaps formed during the excavation of the Grassholme Hury tun

nel have been partially colonised by grass and low plants. Moisture contents of 

samples from this area are higher than those from ungrassed parts of the heap 

with values of 13 — 28% as opposed to 7 — 21%. In neither case is the surface 

desiccation observed in Gale Common samples apparent, and the shape of the 

profiles are irregular. One isolated point, denoted 'shale' on the plot in Figure 

4.3, is from a sample of arisings at the mouth of the rabbit burrow. Its low value 

suggest that lower moisture contents exist at depth within the spoil heap although 

it is obviously not possible to ascertain the original depth of the sample, or the 

length of time to which it has been exposed to the atmosphere. 

4.6.2 Particle Size Analysis 

Particle size analysis was carried out on bulk samples from weathering profiles by 

wet sieve analysis and sedimentation (pipette) analysis according to BS 1377:1975. 

Care was necessary to overcome the following problem encountered whilst under

taking particle size analysis: Wet sieving is the preferred method in order to 

separate clay bound clasts, if this is not effected then the distribution curve will 
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overestimate the amount of coarser particles present. However, it is well known 

that mudrocks and especially shales, tend to slake when wet, and it was found that 

the addition of water during the sieving process caused clasts to disintegrate. It is 

important that larger clasts are represented in the distribution curve because they 

may have an important influence in the shearing process, as shown in Chapter 6. 

Slake durability tests were carried out on clasts from the four bulk samples taken 

at Gale Common, according to the method specified by I .S.R.M. (1974). This 

method is not ideal (Taylor and Spears, 1981), but it provides a useful illustration 

of the rate and ease of breakdown of these shales. The results are summarised in 

Table 4.1 below. Further problems were encountered in trying to find appropriate 

clasts to use in the tests - they had to be clean in order to prevent extraneous 

particles being washed off them during the test, but cleaning them could easily 

cause them to disintegrate. 

Slake Durability Index (%) 

Material hi 

fresh 43 76 

stockpiled 51 78 

5 year weathered 58 71 

15 year weathered 80 85 

Table 4-1'- Slake durability indices for four bulk samples of shale from Gale Com

mon. 

Partical size distribution curves for the sites are presented in Figure 4.4, and 

relevant parameters summarised in Table 4.2 below. 
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location sample clay fraction ^10 Cu 

(%) (mm) 

Gale Common fresh 1 0.8 25 2.25 

stockpile 2 0.015 1133 8.82 

5 year 4 0.009 522 8.51 

15 year 5 0.005 200 8 

Grassholme G H l 1 0.025 112 1.75 

Dam GH3 1 0.021 119 1.19 

GH5 <1 0.15 22.7 0.96 

Balderhead BH2 <1 2.50 13.6 1.2 

Dam BH4 <1 0.15 106.7 3.8 

BH6 <1 0.19 136.8 8.3 

BH8 <1 0.02 789.5 17.0 

BHIO <1 0.03 128.6 96.6 

Grassholme - 1-1 6 0.004 150.0 0.14 

Hury tunnel 1-5 7 0.004 95.2 17.8 

spoil heap 1-7 3 0.008 56.2 0.25 

1-9 2 0.023 282.6 0.15 

1-11 3 0.020 500 4.1 

2-1 1 0.02 100 0.81 

2-2 1 0.10 50 8 

2-3 1 0.05 120 6.5 

2-4 1 0.60 33 3 

Table 4 - S : Clay fraction (< 2//m), effective particle size (Dio), coefficient of 

uniformity (Cu) and coefficient of curvature (Cc) for samples from Gale Common, 

Balderhead Dam, Grassholme Dam and Grassholme Hury tunnel spoil heaps. 

Particle size analysis of bulk samples from Gale Common clearly indicates a de-
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crease in overall particle size of the shale fragments with time of exposure. Fresh 

shale arriving from Kellingley Colliery was found to contain the highest proportion 

of coarse material and shale fill from older parts of the embankment the lowest. 

It is not possible to determine how much of this apparent breakdown is due to 

natural weathering processes, and to what extent mechanical processes involved 

in transporting the material and constructing the embankment are responsible. 

Furthermore if one is to use decrease in particle size as an indicator of weathering 

then it has to be assumed that all material arriving at the site is similarly graded, 

and that any processes utilised in embankment construction do not cause any 

segragation or grading of the material. 

Data from Grassholme Dam shows httle variation with depth, although it should 

be noted that the samples were taken from a limited depth range. Overall the 

samples near to the top of the profile are slightly finer. This trend is shown very 

clearly by particle size distribution curves for both grassed and ungrassed parts of 

the Grassholme Hury tunnel spoU heaps. In both cases surface samples are con

siderably finer grained than those taken from depth, suggesting that weathering 

processes have been acting on the surfaces of the spoil heaps to break down the 

shale. Again it must be assumed that tipping spoil onto the heap did not cause 

any segregation of the different sizes. 

No obvious trend is visible in the data from Balderhead Dam. Presumably the 

presence of the topsoil layer has a blanketing effect, and protects the shale against 

atmospheric weathering agents. The same process is probably responsible for the 

small variation seen in samples from Grassholme Dam. 

4.6.3 X . R . F . Analysis 

Samples were analysed for major and trace elements using standard X-Ray Fluo-

resence method, after Jenkins and de Vries (1967). Approximately 4.0g of powder 

of each sample produced in a T E M A swingmill with tungsten carbide vial, was 

pelletised by mixing with a few drops of PVA solution (MOVIOL) and compress-
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ing in a hydraulic press at approximately 6 tonnes. Pellets were run through the 

machine, a PhiUips PW212 Automatic Sequential X-Ray Fluorescence Analyser 

using a Rhodium 3kW X-Ray tube at 80kV and 35mA, and the counts compared 

to a number of standard samples of known composition using computer software 

developed in the Department of Geological Sciences of Durham University. Read

ings were further corrected for loss on ignition (OO2 and H2O). Four sets of 

twelve identical samples were run through the machine in order to confirm preci

sion of the results - these are tabulated in Appendix I. Three standards of known 

composition were also run blind to check the accuracy of the machine. Results 

are tabulated in Appendix I I and plots of elemental concentration against depth 

given in Figures 4.7 to 4.12. It should be noted that although vertical scales are 

the same in each of these figures, the horizontal scales vary and thus care must 

be taken if comparing profiles from different sites. 

4.6.4 X .R .D . Analysis 

Standard methods of X-Ray Diffraction Analysis (Hardy and Tucker, 1989, Brind-

ley and Brown, 1980) were used to identify mineralogical composition of samples. 

Samples were crushed and smear mounts prepared by mixing with acetone and 

placing on a glass shde. Some workers recommend use of water rather than acetone 

as this allows slower settling, partial orientation of clay particles and theoretically 

a stronger response. However BilUng (1987) found that measured intensities were 

not significantly improved by using distilled water. Therefore acetone was chosen 

because the method of preparation is quicker and more convenient. The machine 

used was a Philhps PW1130 2kW Generator Diffractometer, using C o K a radiation 

at 40kV and 20mA. 

Qualitative analysis is relatively straightforward for clay minerals and rehes on 

comparison of peak positions on the diffractogram to data given by the Joint Com

mittee on Powder Diffraction Standards ( J C P D S ) to identify individual minerals. 

However for weathering studies (semi-)quantitative data is necessary. The X-Ray 

response of a mineral, and therefore the intensity of peak produced depends on 
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a number of variables and therefore direct comparison of peak height or area is 

not possible. A series of cahbration curves (Klug and Alexander, 1948), in which 

the responses at different concentrations against the concentration of a mineral 

are plotted, is neccessary. There are several methods of doing this. A mineral 

present in the system can be varied and then a direct calculation method appUed 

(Hooton and Giorgetta, 1977). Alternatively, a constant amount of a new mineraJ 

can be added to the system to act as a standard and the response of varying con

centration of any mineral in the system can be compared to this known constant. 

This method was used succesfuUy by Smith (1978). Boehmite was used as the 

internal standard (Griffin, 1954), its axivantages being that it shows a convenient 

peak reflection which does not interfere with any of the peaks of minerals being 

analysed for. It has a similar total mass absorption coefficient to the minerals 

under analysis and gives a strong intensity when small amounts are present. X-

Ray diffractograms for samples of shale with and without 10% boehmite present 

are shown in Figure 4.5. A series of samples with the following compositions was 

made up: 

(90 - x)% shale + x% mineral + 10% boehmite 

with X = 1%, 2%, 5%, 10%, 15%, 20%, 30%, 40% and 50% 

For each different mineral, plots of the peak area ratio of the mineral to that of 

boehmite, were plotted against the concentraion of the mineral. The resulting 

calibration curves are given in Appendix I I I . A typical Carboniferous shale was 

used as a basis for the standard samples with additional appropriate commercially 

available minerals. Gibbs (1967) suggests that the minerals to be added should be 

extracted from the samples to be tested to ensure maximum accuracy. Measure

ments of peak areas (rather than heights) was made using a polar planimeter. One 

disadvantage of this method is that the areas measured from a baseline, the draw

ing of which is subjective - errors were reduced by keeping its position standard 

on each occasion. 
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10% boehmite was added to all unknown samples and the calibration curves used 

to estimate the proportions of major minerals present. Results are tabulated in 

Appendix I V and plots of mineral composition against depth given in Figure 4.7 

to 4.12. In most cases the total percentage measured was less than 100% and the 

remainder has been labelled 'miscellaneous'. This comprises a mixture of carbon, 

degraded clays and mixed layer clays although secondary minerals such as goethite 

and siderite have also been identified - these are indicated on the tables of results 

in Appendix IV . The amount of carbon present is determined by loss on ignition 

analysis in which the sample is heated and the weight loss due to the driving off 

of volatiles is measured. The results are given in Appendix I I with the major 

element chemistry. On most charts, the illite lOA peak is asymmetrical with a 

tail on the low 26 angle side, this is caused by reflections from the degraded illite 

and mixed layer clays, and is illustrated in Figure 4.6. The tail can be removed 

during glycolation and heating as explained below, to leave a symmetrical illite 

peak. The quoted value for illite is taken from this peak, that is pure illite, 

and the degraded illite and mixed layer clays included within miscellaneous. A 

number of geometrical indices are available to measure the crystallinity of illite 

based on the symmetry of its peak, see for example. Hardy and Tucker (1989). 

Several workers have used such indices as weathering indicators (Taylor (1971), 

Smith (1978), Russell and Parker (1979), Billing (1987) amongst others) noting 

that increased weathering towards the top of profiles at both natural and man 

made sites leads to degradation of illite. Smith (1978) noted similar phenomena 

in kaolinite although this was not obverved in samples from this study. Illite shape 

factors for the samples analysed given in Table 4.3. 
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sample shape sample shape sample shape sample shape 

factor factor factor factor 

G C A l 0.36 G C L l 0.95 B H l 0.96 Beeston 0.23 

G C A 2 0.50 G C L 2 0.79 BH2 0.23 Silkston 0.14 

G C A 3 0.10 G C L 3 1.59 BH3 0.64 

G C A 4 0.27 G C L 4 0.61 BH4 0.33 G C F coarse 0.15 

G C A 5 0.33 G C L 5 0.47 BH5 0.31 G C S coarse 0.18 

G C A 6 0.30 G C L 6 0.49 BH6 0.19 GC5 coarse 0.24 

G C A 7 0.20 G C L 7 0.58 BH7 0.50 GC15 coarse 0.82 

G C A 8 0.33 G C L 8 0.54 BH8 0.20 

G C A I O 0.23 G C L 9 1.05 BH9 0.21 

G C A l l 0.22 G C L I O 0.42 BHIO 0.19 

GCA12 0.25 G C L l l 0.77 

GCA13 0.33 G C L 1 2 0.39 G H l 1 

GCA14 0.21 G C L 1 3 0.59 GH2 1 

GCA15 0.15 GCL14 0.75 GH3 1 

GCA16 0.23 GH4 1 

GCA18 0.20 GH5 1 

GCA20 0.24 GH6 1 

Table 4-3 : lUite shape factors for samples from Gale Common five year weathered 

( G C A ) and fifteen year weathered ( G C B ) , Balderhead Dam (BH) and Grassholme 

Dam (GH). 
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Certain workers recommend separate analysis of the clay fraction (passing 2/xm). 

Towe (1974) points to possible dangers in this. Methods of clay analysis are 

given in Hardy and Tucker (1989) and in Wilson (1987). The method adopted in 

this work was as follows: The passing 2/xm fraction obtained from sedimentation 

analysis was allowed to settle on to a glass slide by evaporation in a warm oven. 

This produced oriented sections with stronger reflections. Some interference of 

peaks occurs, so after an initial run, the slides were first glycolated by placing 

in a desiccator containing glycerol in an oven at 60°C for 4 hours. This expands 

smectites to 17A so that the reflection does not interfere with that of chlorite 

I4A. Heating to 375°C collapses smectites and illites to lOA and further heating to 

550°C destroys kaolinites whose 7A peaks may interfere with second order chlorite 

peaks. These methods were used to confirm the clay mineralogy as measured on 

the whole rock samples. 

4 . 6 . 5 M i n e r a l o g y a n d C h e m i s t r y o f t h e s i t e s s t u d i e d 

In general, at first glance, there appears to be little variation in mineralogy with 

depth. The distribution of trace elements in particular is remarkably consistent 

with depth. The average mineralogy and major element chemistry for the sites 

is shown below in Tables 4.4 and 4.5. In most cases there is an apparent inverse 

correlation between illite and degraded ilUte/mixed layer clays, but only in the 

case of Balderhead Dam does this also appear to be influenced by depth. This 

also correlates with the illite shape factors, and shows there to be more weathering 

and degradation at the tops of the profiles. 
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Mineralogy (% weight) 

sample quartz illite kaohnite chlorite mixed layer 

clays 

other 

fresh Coal 11 55 15 5 14 

Measures shale 

(Tanners Hall) 

fresh Kimmeridge 15 20 10 - 20 35% calcite 

Clay 

fresh Coal 23 54 19 1 

Measures shale 

(Kellingley) 

Gale Common 5 22 44 12 1 

Gale Common 15 22 27 12 1 

Balderhead 25 21 22 1 

Grassholme 28 16 15 1 

Burnhope 28 19 15 1 

Tunstall 28 13 8 1 

Waskerley 26 27 16 1 

Smiddy Shaw 41 31 14 1 

C D (model dam) 18 30 24 1 

Table 4-4 •' Average mineralogy of samples. 
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Element (5 ̂  weight) 

sample Si02 AhOz F e 2 0 3 MgO CaO Na20 K2O Ti02 MnO S + ^ 2 0 + C 

B R 57.6 21.8 4.7 1.7 0.3 0.8 3.6 1.1 tr 0.1 8.3 

SR 59.5 20.4 5.0 1.5 0.3 0.8 3.6 1.1 0.1 0.2 7.8 

G C F 40.3 18.1 4.7 1.1 0.6 0.4 2.8 0.8 tr 0.1 19.2 

G C S 40.3 18.4 4.0 1.0 0.4 0.5 2.8 0.8 tr 0.1 30.6 

G C 5 42.9 18.9 5.1 1.3 0.4 0.4 3.2 0.8 tr 0.1 27.5 

GC15 43.9 18.9 5.9 1.2 0.3 0.3 3.0 0.9 tr 0.1 24.6 

B H 49.8 20.5 6.1 1.5 3.1 0.2 2.3 1.0 0.1 0.1 14.8 

G H 52.3 20.9 8.7 1.3 0.2 0.2 2.1 0.8 0.1 0.2 12.8 

G H S H 59.6 21.2 7.8 2.3 4.4 0.3 2.8 0.9 0.1 0.2 0.4 

C D 40.4 19.0 3.7 0.8 0.4 0.1 2.4 0.9 tr 0.1 31.5 

Table 4-5 : Average chemistry of samples. 

It is interesting to compare the mineralogy of samples from Beeston and Silkstone 

roof rocks taken direct from Kellingley Colliery (underground samples were sup

plied by British Coal) with other samples from Gale Common. The underground 

samples contain few mixed layer clays and the iUite peaks are sharp and symmet

rical. Bulk samples from fresh, stockpiled, five year and fifteen year weathered 

samples contain progressively higher amounts of mixed layer clays, less pure il

lite and have higher shape factors. The underground samples contained Uttle 

calcite and no pyrite or gypsum; various amounts of all three are present in the 

weathered rocks, although as mentioned earlier the presence of such minerals is 

generally sporadic and therefore their presence or absence cannot be used to infer 

any weathering effects. Samples near the surface of the five and fifteen year pro

files show enhanced quartz contents, that is, higher than those measured in the 

fresh and underground sampes, although this tends to decrease to the expected 

value with depth and may represent leaching of clays at the surface. Coarse gravel 

sized clasts from the bulk sampes were also analysed separately - the results are in 

Appendix IV . In fresh, stockpiled and five year weathered samples the mineralogy 

is close to that in the underground samples. However, in the fifteen year weath

ered sample the clasts contain more degraded illite and mixed layer clays and it 
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appears that, given time, the larger clasts start to become weathered as well as 

the matrix. Furthermore samples of shale from the Gale Common embankment 

itself contain significant amounts of carbon - this is derived from coal fragments 

which are visible in the fill material and are indicated by high loss on ignition 

values. 

Namurian shales from Balderhead and Grassholme Dams contain approximately 

equal amounts of illite and kaolinite, although the latter also contains a high 

proportion of mixed layer clay and degraded illite, this is reflected in the higher 

shape factors. Samples from the remaining dams are similar in composition to the 

Coal Measures shale with the clay mineral assemblage being dominated by ilhte. 

The high quartz value observed in the fill from Smiddy Shaw Dam is probably 

related to fragments of sandstone which were observed in excavations on the dam. 

The lack of calcite in samples from Grassholme compared to that in samples 

from Balderhead may be an expression of the longer time of exposure, but it is 

not possible to say for sure whether the mineral was present in shales used at 

Grassholme in the first instance. 



overconsolidated clay/mudrock 

__^~~^non brittle 

normally consolidated clay/fully softened 

brittle 

large strain 

Figure 4-1 Eff'ective peak and residual shear strength parameters for progressively 

weathered mudrocks. 
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peak shear strength, intact, non-weathered 

fissured, jointed, slightly weathered 

fully weathered 

residual 

Cr. 

Figure 4-2 Shear strength - displacement curves for overconsolidated and fully 

softened clays. 
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Figure 4-4 Particle size distribution curves. 

92 



E 
09 
o. >< 
O 
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5. B R I T T L E N E S S A N D P R O G R E S S I V E F A I L U R E 

5.1 Introduction 

5.1.1 The property of brittleness 

According to Gordon (1968), the worst sin that an engineering material can have 

is not lack of stiffness or strength, but lack of toughness: that is, to be brittle. 

Whereas weakness in a material can be predicted and catered for at the design 

stage by allowing for excessive elastic deformation and plastic yielding, brittleness 

cannot be treated in this way. 

By studying the shape of the stress - strain graphs for various materials, three 

types of post-failure behaviour as shown in Figure 5.1 have been recognised: 

1. work hardening 

2. perfectly plastic 

3. work softening or brittle 

Brittleness has also been defined as an inability to resist the propagation of cracks 

and is characterised by unstable situations in which a crack, once initiated, will 

accelerate rapidly. This may lead to sudden and catastrophic failures. 

The Griffith Theory (1921) illustrates one of the essential factors of brittle be

haviour, that is, that a material will fail at unpredictable levels of applied stress 

which may be significantly lower than the general yield strength of the material. 

Griffith accounts for this by assuming the presence of many fine elhptical cracks 

throughout the material. Calculations of stress concentrations at the tips of these 

cracks show that locally the yield strength is reached, thus leading to failure at 
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that point and progressive propagation of the crack. In reality, microflaws in a 

material act as stress concentrators. Fracture mechanics theory shows that crack

ing tends to proceed along the most energetically favourable route available. This 

is towards the major principal stresses in an isotropic and homogeneous material, 

but tends to be parallel to cleavage planes or along grain boundaries where these 

are present. 

To summarize, a brittle material is one in which the ability to resist load decreases 

beyond the yield point ('failure'). This may occur at isolated points within the 

body of the material, thus allowing a chain reaction of localised .failures. This 

leads to brittle behaviour which occurs at lower than anticipated stress levels. 

5.1,2 Rock deformation in the laboratory 

Jaeger and Cook (1969) describe the 'brittle state' in rocks as that in which 

the ability to resist load is lost with increaising deformation. During a typical 

conventional unconfined compression test on a cylindrical rock specimen a graph 

of stress against radial strain can be plotted and will show the following features. 

First, as stress is applied there is an overall decrease in volume thought to be 

caused by the closure of pre-existing cracks. Second, however, at approximately 

40% of the peak stress value, dilation begins to occur as micro cracking proceeds 

- once the amount of dilation exceeds that of contraction the overall volume 

of the sample begins to increase. During this brittle or strain softening stage, 

failure is occurring continuously throughout the sample which, despite its highly 

disordered internal structure, remains intact. Further application of stress causes 

a large permanent set. Lastly, at its residual state, the sample is no longer intact, 

and any strength is largely derived from inter-particle friction. 

By fixing microphones around such test specimens, Obert and Duval (1957) mea

sured what they term 'micro-seismics'. These are the result of vibrations pro

duced when elastic strain potential energy is dissipated during crack growth and 

is analagous to the cracking sounds emitted from glaciers. It has been shown that 
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the amount of micro-cracking is directly responsible for the micro seismic activity 

and correlates with the dilation effects discussed above. The frequency of these 

acoustic events is apparently random up to stresses at around 90% of the peak 

value, and then is directly proportional to the stress up until failure. 

One problem with attempting to observe brittle behaviour is that of machine -

sample interaction (Hudson, 1972). As elastic energy is stored up in the sample it 

must also be held in the machine so that the whole system remains in equilibrium. 

When the specimen fails, the elastic energy from the machine columns is dissipated 

through the specimen, hence a fracture is induced almost immediately after peak 

stress is reached. I f a stiff testing machine is employed then the strain energy 

* accumulated is much lower, hence less energy is available to be put back into 

the system at failure and the whole range of behaviour can be observed - the 

ability of a partially failed rock to withstand load is greater in stiff machines or 

when surrounded by rock. In the field, surrounding rock provides the necessary 

stiffness required to prevent sudden and explosive failure from occurring. This is 

one reason why laboratory testing does not adequately reproduce field conditions. 

Others include the rate of and time taken for loading, and the fact that results 

from tests are strongly affected by both the size and shape of specimen as well as 

end effects. 

Although laboratory testing may be valid in terms of short term structures, care 

must be taken especially when natural structures such as faults are being consid

ered - a technique criticized by Price (1966), amongst others, who suggests that 

it is wrong to invoke such criteria and mechanisms in the field. The processes 

behind fault development may be at least partly ductile, especially in the lower 

crust where temperature and pressure conditions are very different from those 

used in laboratory testing. 

Strain energy is equal to where a - stress and E = Young's Modulus 
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5.2 Brittleness in Soils 

The preceding discussion refers to sohd materials. The following section deals 

with cohesive and granular soils, and it is assumed that earth and rock fills, being 

particulate in nature, will also be governed by the same factors. 

5.2.1 Cohesive Soils 

The strength of cohesive soils, that is soils where interparticle bonds and forces 

make a significant contribution to their behaviour, is derived from a combination 

of cohesion and interparticle friction. Cohesion itself is controlled by interparticle 

bonds and physico-chemical properties of the clay minerals present (for example, 

see Smith and Taylor, 1978). The destruction of such bonds during stressing leads 

to irreversible loss of strength and thus brittle behaviour. 

Most naturally occurring clays will behave in a brittle manner under drained con

ditions with large strains being accommodated in relatively thin concentrated 

shear zones in which particles are orientated (Skempton, 1964). Peak shear 

strength envelopes are typically curved with a small cohesion intercept whereas 

residual shear strength envelopes tend to be hnear with zero cohesion intercept. 

In this latter condition cohesive bonds are destroyed and strength is derived solely 

from interparticle friction. As the plasticity index (this reflects clay content) in

creases so particles tend to undergo sliding as opposed to turbulent behaviour 

(Lupini et al, 1978). As this effect increases so the residual strength becomes 

increasingly lower than the critical state strength. 

Brittleness in undrained conditions is much more difficult to evaluate as, along 

with the factors discussed above, changes in pore water pressure also contribute 

to the drop in strength. 
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5.2.2 Granular (non-cohesive) soils 

The behaviour of granular soils is somewhat simpler to assess since the presence of 

interparticle bonds and the effect of clay mineral reorientation are not significant 

and strength depends on the mean applied stress. Sands, gravels and rock fills 

faU into this category. Shearing resistance derives from interparticle friction and 

depends on the density, distribution and shape of the particles. 

The post peak drop in strength under drained conditions is due to the dilation of 

particles until critical state is reached (residual and critical strength are equal in 

soils comprising rotund and non deformable particles). Dilation will not occur in 

very loose materials, and under high confining pressures the increase in volume is 

prevented. Hence in both cases non brittle behaviour is observed. 

Again, undrained conditions present a somewhat more complicated scenario as 

porewater pressure is a contributing factor. Dense soils tend not to be brittle 

unless under enormous pressure, whilst loose materials may exhibit extreme loss 

of strength as liquefaction occurs. 

Thus it can be seen that brittleness is an observable phenomenon in soils. Bjerrum 

(1967) used the term 'brittle' to describe stiff clays liable to progressive failure. 

In discussing brittle soils, Bromhead (1984), refers to the loss of strength which 

occurs when deformation is continued beyond the maximum load bearing capacity. 

Beyond this point, the shearing process is irreversible and the soil is left with a 

permanently impaired strength. Dounias (1987) concludes that most naturally 

occurring soils represent a hybrid of these two types and that all are brittle with 

the exception of undrained dense granular soils, and drained very loose granular 

types. 

5.3 Definition and use of the Brittleness Index 

Given that soils behave in a brittle manner, it is worth considering a method of 
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quantifying the extent, and to give an indication of the likely magnitude of the 

consequences of brittle behaviour. Haefeli (1965) proposed the use of the Residual 

Coefficient (Iji) as a means of comparing peak and residual shear strengths. 

5.1 

where 

TR = Residual shear strength 

Tf = Shear strength at failure 

Bishop (1967) considered it premature to establish parameters to define this aspect 

of soil behaviour prior to any detailed study of shear surface formation under non

uniform stress conditions. The influence of such problems as fissures, intact lumps 

within a rock mass and suggested differences between clays and rock fills had yet 

to be ascertained. In the absence of such information the Brittleness Index was 

proposed. This expresses the reduction in strength in going from peak to residual 

state as a percentage of the peak value and is given in equations 5.2 a and b. 

IB = 
rp 

X 100% 5.2a 

where 

Tp = peak shear strength 

rji = residual shear strength 

or, for the undrained case; 

IB = X 100% 
(^uP 

5.2b 

where 

CuP — undrained peak shear strength 

CuR = undrained residual shear strength 
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An alternative way of observing this is to look at the additional energy involved in 

proceeding from the peak to the residual condition (Bishop 1967 and 1974). For 

example, the rupture index expresses the difference in work done to reach peak 

and residual as a percentage of that to reach peak. 

Bishop (1973) quotes Brittleness Index when comparing case studies of a number 

of failure events. In a recent literature review some twelve papers were found which 

referred to the Brittleness Index. Of these, Highter and Page (1976) claimed to 

have found no values of the Index quoted in the literature. However, Bishop 

(1973), gives values for some typical soils, colliery waste and rockfill. These are 

summarised in Table 5.1. More recently there has been an upsurge of interest in 

the Brittleness Index, due to its application in the computer analysis of progressive 

failure (see Section 5.5). 
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Cohesionle-ss soils, drained conditions 

material state test type IB{%) 

Ham River Sand very dense axial comp 15 33 

very dense plane strain 15 44 

dense axial comp 100 18 

dense axial comp 990 8 

loose axial comp 40 3 

Rockfill dense axial comp 10 38 

(granitic dense axial comp 41 22 

gneiss) dense axial comp 150 4 

Rockfill dense axial comp 10 30,59 

(Silurian dense axial comp 40 14,50 

mudstone) dense axial comp 135 0,41 

Colliery waste loose axial comp 5 - 35 61 

(Aberfan) loose axial comp 10 - 90 52 

Cohesioiiless soil 3, undrained conditions 

material state test type IB(%) 

Banding Sand V . loose stress 4 94 

Ottawa Sand med loose controlled 4 65 

med loose axial comp 4 10 

Hiiachipate V . loose axial comp 4 91 

Sand, Chile loose axial comp 4 65 

Ham River Sand loose axial 99.4 75 

loose extension 90.0 75 

Table 5.1: Values ol " Brittleness Index for cohesionless soils after Bishop (1973). 
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Cohesive soils, drained conditions 

material state PI C F a'Jpsi) IB{%) 

Blue Loudon Clay intact 43 57 5 93 

80 77 

remoulded 30 52 

Brown Loudon Clay undisturbed 42 40 5 81 

40 71 

slurried 43 64 131 63 

Boulder Clay undisturbed 13 17 5 34 

(Selset) 40 12 

Studenterlunden remoulded 20 38 0.5 6 

Clay, Oslo 2 5 

Toulnustuc undisturbed 4.2 24 5 >77 

Estuariue 80 0 

Clay 

Cohesive soils, undrained conditions 

Blue Loudon Clay undisturbed (0.7") 45 56 28 55 

undisturbed (1.5") 16 

undisturbed (12") 86 

remoulded 55 35.5 43 

remoulded 39 55 31.7 70 

31.5 67 

Boulder Clay undisturbed 21 14 0 

(Tynemouth) 

Norwegian in situ 3 40 97 

Quick Clay vane 99 

Table 5.2: Values of Brittleness Index for cohesive soils after Bishop (1973). (PI 

= plastic index, CF = clay fraction) 
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It is important to emphasize that brittleness varies with mean normal stress and 

therefore should be regarded as a parameter of soil behaviour rather than a soil 

property sensu stricto. This point is important when dealing with slopes, for 

example, because the normal load in the centre of the profile is higher than at 

either end. Consequently the brittleness index will be higher at the edges of a slip 

surface, where as previously mentioned, the stress ratio is at its highest. 

A second essential point is that the measured brittleness of a soil is strongly 

affected by the method of measurement, and by such factors as sample size and 

sample end restraints which are known to influence the measured strength of a 

specimen. There are problems associated with developing parameters using stress-

strain graphs as their shape is affected by a number of factors including the type of 

test, size and shape of the sample, amount of volume change during shearing and 

whether a single shear surface or a more complex zone develops. The stiffness of 

the testing system and the need for strain controlled testing to observe post peak 

behaviour has already been mentioned. Lo (1972) observed that post peak drops 

in strength on a number of samples were proportional to the recorded stiffness of 

the test system used. Stress path shape can also have a strong influence. In an 

investigation of the effect of stress path on drained brittleness. Law (1981) found 

that if confining stress was kept constant then the highest brittleness values were 

measured in a conventional drained triaxial test followed in decreasing order by 

tests with constant p', constant s' and constant o'l, respectively. He also showed 

that Brittleness Index was proportional to cohesion and inversely proportional to 

the conflning stress. 

In determining brittle or strain softening parameters for a soil it is therefore nec

essary to establish both peak and residual shear strength envelopes, thus avoiding 

dependency on the shape of the stress path. It is difficult, however, to measure 

undrained residual strength. The post peak behaviour of the soil must be ob

served - although strain controlled testing is necessary for this. Such behaviour 

is difficult to assess in terms of strain since conditions within samples become 

non-uniform as shear zones begin to form. 

Little work may be found directly relating to Brittleness Index in the hterature. 
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In order to obtain data on the brittleness of a number of materials, in an at

tempt to identify any further trends, two approaches were employed. Firstly MSc 

dissertations completed by students in Engineering Geology at the University of 

Durham were examined and all appropriate data relating to shear strength testing 

on mudrocks extracted. Data chosen was from shear box testing (see Chapter 6 

for reasons) and in each case peak and residual strengths at various normal loads 

recorded. From this information, Brittleness Index was calculated according to 

Equation 5-2. All results are shown in Table 5-2 along with other data where 

available. Unfortunately many of the students were interested only in the peak 

shear strength data and consequently the amount of information available for this 

study is less than hoped for if the total amount of shear box testing is taken 

into consideration. Furthermore, data are heavily biased by the large amount of 

research on Coal Measures material undertaken by this Department. Neverthe

less, several interesting points are apparent. For each set of tests the calculated 

Brittleness Index varies according to the normal load - in most cases there is an 

inverse relation although in some cases scatter appears random. An inverse re

lationship showed more conclusively in data coUected by Bishop, Table 5-1. The 

highest measured values of Brittleness Index are from the Kimmeridge Clay and 

the Ampthill Clay and is probably a reflection of low residual shear strength val

ues compared to the rest of the data. Peak values are fairly average. Lowest 

values are seen in a Quaternary laminated clay from County Durham which has 

low values of both peak and residual shear strength. These examples illustrate 

firstly that there is no influence of geological age on brittleness and secondly that 

brittleness is only related to magnitude of peak and residual strength inasmuch 

as the difference between the two values is important. A high peak strength does 

not imply a high brittleness for example. 
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material state P I (%) C F (%) an{kNm ^) IB Reference 

Upper Devonian Slate powder 7 80 50 3 Peacock (1983) 

116 7 

224 15 

Namurian Shale rem 144 17 Middleton (1985) 

207 30 

215 9 

rem ( L ) 37 300 64 Fytis (1986) 

rem (S) 300 45 

Coal Meaisures rem 211 17 Middleton (1985) 

rem ( L ) 12 300 48 Fytis (1985) 

rem (S) 12 300 26 

(Lumley) 69 30 Starr (1970) 

138 19 

207 26 

276 44 

(Langley Park) 69 28 

138 43 

207 27 

276 30 

(Hett - shear plane 69 47 

parallel to bedding) 138 29 

207 26 

276 29 

(Hett - shear plane 69 42 

at 90° to bedding) 138 30 

207 34 

276 39 

rem = remoulded sample, ( L ) = large shear box, (S) = small shear box 
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material state P I (%) C P (%) an{kNm •^) IB Reference 

(Hirwauu - Bassett 1200-600 7 43 Green (1970) 

roof rocks) 105 38 

140 44 

175 60 

210 57 

600-300 69 4 

105 52 

138 62 

140 56 

175 62 

207 62 

210 55 

300-76 69 26 

105 13 

138 13 

(Hirwaun - seat earthy 600 -1200 105 51 

140 27 

175 61 

210 20 

(Bersham Colliery) 300 17 Ratsey (1974) 

(Littleton Colliery) rem 5-10 90 61 McWilliam (1975) 

150 40 

230 43 

90 59 

150 54 

230 47 
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material state P I (%) C F (%) anikNui ^) IB Reference 

Kimmeridge Clay S S B rem 210 67 Middleton (1985) 

(fresh) S S B rem 300 50 Fytis (1986) 

L S B rem 300 32 Fytis (1986) 

Kimmeridge Clay S S B rem 210 44 Middleton (1985) 

(weathered) S S B rem 300 54 Fytis (1986) 

L S B rem 300 26 Fytis (1986) 

S S B 107 29 Little (1972) 

Ampthil l Clay und 3m 41 69 58 Harris (1971) 

177 52 

263 50 

und 6m 138 80 

207 63 

und 12m 69 76 

138 67 

207 54 

und 15m 69 75 

91 42 

177 66 

263 53 

Boulder Clay 13-26 25 100 19 Rozier (1977) 

200 12 

300 8 

Glacial Clay und 22-34 15-24 50 39 Lynn (1973) 

(Carrvil le, Durham) 121 39 

200 44 

300 47 

Quaternary laminatei 1 100 67 Clarkson (1974) 

clay 200 59 

(Browney, Co . Durhai n) 294 45 
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The data f rom Coal Measures mudrocks and shales is often scattered but on 

observation of original peak and residual shear strength data we f ind that this 

often does not fal l on well defined failure envelopes. 

There are many problems wi th attempting to use such data. Information was 

obtained f rom many sources hence there is much potential for operator error 

(backed up by poor correlation of points on failure envelopes) and in each case 

there is no guarantee that the test was taken to a true residual value. Quoted 

displacements and/or number of runs taken to reach residual value are often low 

(see Chapter 6). 

In an attempt to eUminate some of the scatter a second approach was adopted. 

Equations of peak and residual shear strength envelopes for a series of mudrocks 

were taken, and peak and residual shear strength values calculated for defined 

normal loads. Brittleness Indices were then calculated for each normal load and 

plotted. The resulting graphs are shown in Figure 5-2 and 5-3. Data were taken 

f rom surveys of engineering properties in the literature for Tertiary and Meso-

zoic overconsolidated clays and mudrocks by Cripps and Taylor (1985 and 1987). 

Again, the data shows a large scatter some of which is undoubtedly related to the 

large variation in sample type, test method and operator. However, the following 

trends may be recognised: 

1. Maximum unweathered values tend to be higher than weathered values - i.e.: 

greater difference between peak and residual values in unweathered mudrocks than 

in weathered derivatives. 

2. High peak values of shear strength, cohesion and fr ict ion angle do not dictate 

a high or low brittleness. 

3. Age is not a controlling factor. 

4. In all cases brittleness index - normal load is a curved function. 

5. In all cases brittleness index decreases wi th increasing normal load. 

Of the MSc theses studied, one (Fytis, 1986) was specifically dedicated to the 

study of brittleness, and a second (Middleton, 1985) referred to rate {that is, the 

rate at which the strength decreases wi th increasing displacement) and index of 
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brittleness. Table 5-4 lists Brittleness Indices measured by Fytis on four material 

types tested in both small and large shear boxes at a normal load of 300kNm~'^ 

Material Brittleness Index (%) (cr„ = 300kNm'^) 

small shear box large shear box 

Heavily remouldeo Namurian Shale 44.8 64.4 

Unweathered Coal Measures 48.0 25.6 

Unweathered Kimmeridge Clay 50.4 32.3 

Weathered Kimmeridge Clay 53.4 25.8 

Table 5.4: Values of Brittleness Index (after Fytis, 1986) 

The most obvious feature of these values is the discrepancy in results obtained 

f rom the large and small shear boxes. For the sample of Coal Measures Shale, and 

for both samples of Kimmeridge Clay, the small shear box gave significantly higher 

indices than did the large box although the reverse is true for tests on remoulded 

Namurian Shale. When the 'rate' of Brittleness i.e.: the decrease in shear strength 

per m m displacement in going f rom peak to residual shear strength was measured, 

i t was found that the Namurian Shale showed the highest rate, followed by the 

samples of Kimmeridge Clay, Coal Measures Shale and Weathered Kimmeridge 

Clay in decreasing order. Again, the age of the material bore no relation to 

the measured index or rate of brittleness. Other interesting conclusions from 

this particular study include the following: shear surfaces produced in shear box 

testing were smoother and similarly residual shear strengths were more easily 

obtained in weathered clays than in shale fills. As expected, all samples showed 

an increase in moisture content adjacent to the shear plane. 

5.4 The influence of brittleness on mode of failure. 

Unt i l now, brittleness has only been considered in terms of the state of the soil 

at or near l imi t ing equilibrium of the shear surface as a whole. However, i t is the 

behaviour of the slipped mass of the soil after this stage which poses a potential 
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threat to public safety. The magnitude of post failure displacement, that is, the 

distance travelled by the slipped mass, is dependent on brittleness as well as 

geometry, local topography and the scale of the problem. 

Soils w i th low brittleness show small post-rupture movements, whereas those wi th 

high indices show large movements, and progressive failure is well established by 

the time these displacements are observed. Flow slides, as opposed to the more 

usual gravity slides, may be regarded as extreme forms of britt le behaviour where 

high brittleness values are associated wi th stress transfer on to pore fluid. 

I t is important to remember that i t is difficult to assess brittleness under field con

ditions as discussed above. A change in strength due to smaU displacements near 

to the point of failure may occur under either drained or undrained conditions not 

necessarily identical to those which controlled the earlier history of the structure. 

This presents two problems - not only the choice of whether to employ drained or 

undrained values, but the fact that undrained residual strength depends on the 

rate of displacement further comphcates the issue, the most critical case being 

the shearing of loose granular materials where the brittleness is due to the rise in 

porewater pressure during structural collapse. 

5.5 Progressive Failure 

As mentioned in Chapter 2 and Section 5.3, one possible need for use of the 

Brittleness Index is in the computer modelling (finite element analysis) of pro

gressive failure. Before looking at this, i t is pertinent to look at what is meant by 

progressive failure. 

5.5.1 Definition and Mechanism of Progressive Failure 

One of the first references to progressive failure was by Terzaghi and Peck (1948). 

Since then many authors have looked at this aspect of soil failure, for example 

Skempton (1964), Bishop (1967), Bjerrum (1967), Vaughan et a/(1978). 

The mechanism for progressive failure, as discussed in such papers, can be sum

marised as follows. The process begins when the strength of the soil body is 

locally exceeded; the means by which this occurs is not relevant to the next stage 
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which depends solely on the behaviour of the soil itself around that point. I f the 

soil exhibits non-brittle characteristics then the failure propagates slowly as mo

bilized strengths in the adjacent regions reach the available strength of the soil. 

A t general failure (state of equilibrium is reached) peak strength is reached along 

the whole of the failure surface. Such cases are typically characterised by large 

pre-failure but small post-failure displacements. 

The alternative to this is the scenario in which the soil behaves in a brittle man

ner f rom the same starting point, that is, locally exceeding the material's yield 

strength, the soil at this point fails. The resulting state of non-equilibrium results 

in the stressing of adjacent soil which in turn fails and propagates the instability 

to the soil around i t . Thus a chain reaction is initiated. The process is generally 

slow, w i t h small displacements up to the point of instabihty or general failure. A t 

this point parts of the shear plane wi l l be substantially reduced in strength where 

failure has occurred, whereas in pre-peak regions, soil may not have mobilized 

strength up to peak value. Post-failure movements in such cases are typically 

large compared to those observed in non-brittle cases. 

Thus for progressive failure to occur, i t is essential that two conditions are met. 

First the soil body must behave in a bri t t le manner, and second, stress distribu

t ion along potential slip surfaces in the soil body should be non-uniform. Such 

conditions occur in both natural and man-made slopes, and so progressive failure 

is a common phenomenon. 

5.5.2 Factors Affecting Progressive Failure 

Dounias (1987) examines a number of parameters which may influence progressive 

failure. There are many potential sources of strain non-uniformity found in natural 

slopes. Because of their nature, they are not homogeneous and isotropic as is often 

assumed in engineering anaysis. In addition, many potential stress concentrations 

exist in man-made structures. These include interbedding of different layers, rigid 

boundaries, weak spots caused by softening due to weathering, high porewater 

pressures, geometric corners and irregular dam core shapes. Bjerrum (1967) claims 

that release of strain energy due to the weathering of overconsohdated clays and 

clay-shales can be a dr iving force for progressive failure in itself. This slow release 
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of strain energy is also mentioned by Bishop (1967) who also includes factors such 

as porewater pressure re-adjustments following changes in loading of slope or in 

groundwater level. To be of use in design and analysis, a method is needed to 

quantify the effects of such parameters. 

A further problem concerns the effects of scale; relative displacements are propor

tional to the size of the engineering structure, and so large structures are more 

susceptible to the effects of progressive failure and the use of models is question

able. 

Using linear elastic finite element analysis Lo and Lee (1973) calculated Residual 

Factors (defined by Skempton, 1964) and calculated that on a drained slope the 

effects of progressive failure increase wi th height and inclination of the slope. 

Vaughan (1986 - quoted in Dounias, 1987) disagreed wi th these findings on the 

basis that Residual Factor is defined at a factor of safety of 1 and that Lo and 

Lee's analysis was not carried out at failure. Vaughan used a simplified wedge 

analysis at l imi t ing equilibrium conditions to show that progressive failure effects 

increase w i t h the height of a drained slope but decrease as the slope's inclination 

increases. 

The rate of strain may be an influencing factor. I t is known that loading rate 

affects the magnitude of peak and residual strength in laboratory testing, and it 

may therefore be assumed such conditions apply in the field. The' magnitude of 

post-failure movement is also Ukely to be affected by strain rate. 

5.5.3 Methods of Stability Analysis 

Traditional stablil i ty analyses employ l imi t equilibrium methods to derive factors 

of safety for stability. Such methods are comparatively quick and simple to use, 

and can be shown to be reasonably accurate for non-brittle materials. However, 

assumptions made in the analysis, such as the soil being a rigid material and 

deforming but not changing in strength after failure, are not valid:_ Furthermore, 

l imi t equilibrium analysis aissumes that at the point of failure (state of l imit ing 

equilibrium) all shear stresses along the failure surface are exactly equal to the 

maximum available shear strength of the soil. This is in direct contradiction to 
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the mechanism of progressive failure, in which stresses and strains are assumed 

to be non-uniform. A further disadvantage of such methods is that they yield no 

information cconcerning stress distribution or displacements. A separate analysis 

based on elastic methods and consolidation theory must be employed. 

More recently, continuum analysis methods, in which stress distributions are calcu

lated and then checked to determine whether strength criteria have been violated, 

have been used. These are useful in that they are simple to adopt, give informa

tion on stability, stress distribution and displacements, and have been shown to 

be reasonably accurate, albeit somewhat conservative. The simplest form is when 

linear elastic conditions are assumed in the calculations. However.this is grossly 

oversimphfied since soil behaviour is neither finear nor elastic. Non-linear meth

ods, of which there are many forms in the literature, involve plasticity, so although 

they are more accurate they still cannot predict all aspects of soil behaviour. 

Current practice in the design of earth fill dams employs a combination of tradi

tional stability and non-linear stress analysis. 

Various methods have been used to analyse progressive failure. It is possible to 

incorporate the effects of brittle behaviour into traditional methods of stabihty 

analysis; for example by reducing cohesion to zero and using critical state rather 

than peak strength (Schofield and Wroth, 1968). 

Several examples of methods which postulate the method of failure and then 

model soil parameters accordingly can be found in the literature. Bjerrum (1967) 

proposed one of the earliest models in which peak strength was exceeded locally 

and residual conditions were reached. Although elcistic energy was considered, 

strain was not modelled directly. Christian and Whitman (1969) modelled soil and 

represented stress-strain behaviour, and later, the Palmer and Rice (1973) model 

illustrated the importance of elastic energy release by using fracture mechanics 

and shear band propagation. 

The use of finite element analysis, although recognised in the late 1960's (Peck 

1967, Bishop 1967), has recently come to the fore since computational methods 

advanced sufficiently to surmount numerical difficulties. 
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Figure 5.1 Summary of post failure behaviour observed in different materials. 
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Chapter 6: D I R E C T S H E A R BOX T E S T I N G 

6.1. Introduction 

Direct shear boxes are the earliest and simplest form of shear strength testing 

apparatus used for soils, and despite their many shortcomings are frequently em

ployed in commercial testing. 

This Chapter describes the use of both small ('standard') 60 x 60mm size and 

large 300 x SOOrmn shear boxes in the current research and presents some of the 

problems encountered during testing. Test results are presented in Section 6.4 

and w i l l be further discussed in Chapter 7. 

6.1.1. The Principle of Direct Shear Testing 

The principle of direct shear box testing is based on coefficient of: friction tests 

in which the resistance to sliding between two surfaces is measured. The first 

shear boxes were designed to measure the internal fr ict ion angle of recompacted 

sands and, despite modifications and the development of ring shear techniques, 

the design of the apparatus has changed httle since the early twentieth century. 

The basic design is shown in Figure 6.1. I t wi l l be explained later why the shear 

box is not appropriate for studying stress-strain relations, but is probably the 

most convenient means of measuring the average shear strength of soils. 

The soil sample is placed in a horizontally split box in which the top half is free 

to move along the horizontal shear thrust axis of the apparatus. The shear force 

is applied to the lower half of the box and the resistance to shear movement 

transmitted through the upper half is measured by a proving ring or load cell. 
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The method of testing is given by Ackroyd (1962) and Head (1982) based on the 

A S T M (1979). 

I t is important to note that shear strength is related to prevailing ground condi

tions, and therefore the measured value is strongly dependent on the test type and 

conditions. Pore water pressure in particular can have a significant effect on mea

sured values. This obviously has some bearing on the method of shear strength 

testing and i t is well known that values measured in different tests themselves 

differ consistently. This point is further discussed in Section 6.2. 

6.1.2. Limitations of Direct Shear Box Testing 

Despite the simplicity of direct shear box testing in basic theory, sample prepara

t ion and testing procedure, many workers have indicated drawbacks in this type 

of testing. Some of these disadvantages are listed below, and explained in more 

detail in the following paragraph. 

a. Non-uniform stress-strain distr ibution wi th in the sample, 

b. Problems w i t h drainage f rom the sample, 

c. Problems related to box geometry, and 

d. Problems associated wi th reversing shear direction (see section 6.1.3). 

The only known stresses acting on the sample are the applied normal and shear 

stress. Therefore a discrete point can be drawn on a shear stress - normal stress 

graph, but not a unique Mohr Circle. The principal stresses cannot be determined 

and have been shown to rotate during testing. The stress distribution throughout 

the sample is known to be non-uniform - this being largely due to box shape and 

to the presence of rough loading plates (see for example, Atkinson and Bransby, 

1978). Since only the boundary displacements of the box can be observed and the 

exact volume of the shear zone to which deformation is restricted is not known, 

the strains calculated are average values and do not adequately describe that part 

of the soil which is undergoing failure. I t is thought that stress concentrations 

build up at the box edges and failure moves into the centre of the box from 
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there (Craig, 1983). However Potts et al (1987), using finite element analysis 

w i t h severely strain softening conditions, have demonstrated surprisingly uniform 

stresses and strains in the final shear zone and very l i t t le progressive failure. 

Unlike the t r iaxial apparatus, the shear box includes no means of either porewater 

pressure measurement or of drainage control f rom the box. This problem can be 

largely overcome by using a slow rate of deformation which allows excess pore 

pressure to dissipate. Most shear boxes employ th in samples in which this process 

is obviously more rapid than in thick samples where consolidation wil l be slower. 

Hence, the porewater pressure can be assumed to equal zero, the test considered 

fu l ly drained and the effective stress numerically equivalent to the measured total 

stress. Some workers have studied the increase of moisture in the area of the shear 

zone (see for example, Skempton, 1964), while others have examined the overall 

effect of water content on shear strength. CuUen and Donald (1971) noted that 

the residual f r ic t ion angle was dependent on the moisture content in a series of 

tests on an over-consolidated kaolinitic clay. A partially saturated soil may show 

an anomalous cohesion which can be at tr ibuted to suction effects (Head, 1982). 

One strong objection to the test apparatus is that of the split nature of the box, 

which imposes both the location and direction of the shear plane upon the sample. 

This however can be of use in the testing of pre-cut and naturaUy sheared or 

fissured samples when the plane of discontinuity can be orientated parallel to the 

split in the box. Other geometry-related problems include a l imi t on maximum 

displacement determined by the size of the box - this is particularly inconvenient 

in residual strength determinations which require large displacements. Finally, 

the area of contact between the two sample halves decreases during the course 

of a run, so the stress values consequently increase. Some authors argue that 

since both shear and normal stresses are affected equally, the end result of this is 

neglible, (for example, a 15% reduction in area wi l l result in only a 5% increase 

in shear strength, (Petley, 1989 personal communication.), although i t is simple 

to incorporate area corrections into the calculations. Figure 6.2 shows raw and 

treated data for comparison. 
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6.1.3 Use of the Shear Box to measure Residual Strength 

One of the advantages of the direct shear box is its applicability to both drained 

and multi-reversal testing, hence its popularity in testing for residual strength of 

over-consolidated clays. By reversing the box halves back to their original position 

(either by hand or mechaiucally) and re-shearing several times, a cumulative dis

placement is buil t up and, after relatively large strains, a constant, steady state 

value of shear strength is reached. Modifications to the basic equipment, such 

as those described by Marsh (1972), are required. These include microswitches, 

locating pieces on the box, and automatic data recording. There^are problems 

w i t h this technique. Most obviously, the reversal technique cannot replicate large 

shear movement along one constant direction. A certain amount of material is 

inevitably lost f rom the sample, and, on re-shearing a small 'peak' at the be

ginning of subsequent runs is commonly observed. This is attributed to local 

reorientation of clay minerals (Ratsey, 1974) or to relocation of the shear plane 

(CuUen and Donald, 1971). I t is important to ensure that a sufficient number of 

runs have been used and that the sample has reached a true steady state. Recent 

work by Chandler and Hardie (1989) employs the use of th in samples. Using a 

min imum thickness of 2mm they found that the residual strength was reached 

more rapidly than in conventional 25mm thick samples. The authors attribute 

this to the quicker concentration of shear stress on to the shear surface, although 

i t is possible that there is a danger of the influence of physical boundaries on the 

shear plane. 

'Cut plane' tests can also be employed to find residual shear strengths - here the 

sample is sliced through along the joint between the box halves in order to reduce 

the number of runs required. Head (1982) has reported loss of fine material from 

the shear plane during such tests which has a significant affect on measured shear 

strength. 
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6.2 Use of the Shear Box in the Current Research 

Of the soils testing apparatus available, the direct shear box was considered to be 

the most appropriate means of examining the samples for the following reasons: 

a. Peak and Residual strengths are obtained f rom the same specimen. 

b. Ease of sample preparation and testing. 

c. Repeatability of results. 

d. Greater accuracy of results. 

From the shear stress-displacement graph produced at the end of a shear box 

test on a single sample i t is possible to obtain both the peak and residual shear 

strengths. Thus the bri t t le behaviour of the sample as an expression of these 

two relative strengths can be observed directly. Neither triaxial nor ring shear 

apparatus are capable of presenting this overall picture because, although separate 

peak and residual strengths are obtained, the transition between the two cannot be 

observed. For comparative purposes i t is essential to maintain constant conditions 

throughout the test programme, especially wi th a material as inhomogeneous as a 

rock fill. By using the same sample, possible differences arising f rom the variation 

in clay fraction and in composition are reduced and thus the measured brittleness 

can be considered representative of the sample and not due to differences between 

samples. 

There is some debate in the literature as to which type of test most closely re

sembles the natural strength of material in situ. I t is generally considered that 

t r iaxial tests tend to give sfightly higher values of residual shear strength, while 

ring shear boxes yield lower values than those obtained f rom direct reversing shear 

boxes (Bromhead, 1979). Hawkins and Privett (1985) attribute this discrepancy 

to the relative ease w i t h which residual conditions are reached. Lupini et al. 

(1981) claim that the differences in strength are apparent only. Both Chandler et 

al. (1973) and Taylor and Spears (1985), amongst others, agree that ring shear 

tests tend to underestimate and reversing direct shear boxes overestimate the in 

situ residual shear strength. Bishop (1971) quotes differences of 2 - 6° in Lon-
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don Clay. Whils t Townsend and Gilbert (1973) accept this conclusion for hard, 

overconsoUdated shales they, w i th Bromhead and Curtis (1983), show evidence 

that the two types of box yield similar results. Taylor and Garrard (1984) in the 

analysis of data f rom the site investigations of colliery discards found that triax-

ial tests on samples of 100mm diameter gave higher peak shear strengths than 

in situ and laboratory shear box tests. I t follows therefore that a calculation of 

Brittleness Index using values derived f rom triaxial and ring shear tests wi l l tend 

to give an exaggerated value. Consequently i t was decided to employ direct shear 

boxes throughout the test schedule. 

Because a wide variety of clast sizes is found in a typical rock f i l l , both large 

and small boxes are appropriate. The maximum appropriate particle size for an 

apparatus is equal to one sixteenth of the equivalent spherical diameter of the 

test specimen (Taylor and Spears, 1985). The large (300 x 300mm) box is thus 

suitable for particles up to 37.5mm - this is illustrated in Plate 6.1 - (compared to 

2 m m in the 60 x 60mm 'standard' small box) and is commonly used to test fills, 

road construction materials, colliery spoils as well as industrial slags and rubble. 

The large box also allows a longer uninterrupted distance of travel which i t was 

thought may contribute to better development of the shear plane. The affect of 

box size on the results is discussed later in this Chapter. 

Due to the length of time (typically three days to peak and two to three months 

to residual) for a single shear box to test a sample to residual state only a limited 

number of samples could be tested in the large box. Accordingly tests were also 

conducted using the small boxes. 

6.3 Practical Method 

6.3.1 Sample Sites 

The locations f rom which samples were collected have been identified and de

scribed in Chapter 3. At each site two types of sample, undisturbed and bulk 
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disturbed, were taken f rom the pits for shear strength testing, in addition to 

those collected for geological and chemical analysis. A l l samples were sealed in 

polythene cling f i lm in the field, then further wrapped and waxed in the labora

tory (after taking moisture contents) to ensure air tightness during storage. In all 

cases testing was carried out as soon as possible after collection. 

6.3.2 Sample Collection 

Ideally, undisturbed samples taken by pressing a cutting shoe into the fiU should 

be used throughout the programme in order to test for the effects of compaction 

wi th in the structure. Although such sampling was possible in a few cases, the 

major i ty of tests had to be undertaken on remoulded samples due to the following 

problems encountered whilst at tempting to take undisturbed samples: 

a. unsuitability of large clast size for apparatus, 

b. diff icul ty in insertion of cut t ing shoe by hand, 

c. collapse of poorly compacted samples, 

d. potential damage to Water Board property. 

By the nature of undisturbed samples, i t is not possible to discover the particle 

size distr ibution unt i l after the test is complete. Many of the pits which were dug 

contained clasts in excess of 37.5mm equivalent diameter, and consequently bulk 

samples were collected to be later remoulded in the laboratory. Plate 6-2 shows 

the clast size range in a typical pi t , while Plate 6-3 demonstrates the effect this 

may have on a large shear box test result. 

Large clasts can cause problems in other ways; the cutting shoe must be pushed 

into the material by hand, which is straight forward when the material is fine 

grained, but the presence of large clasts hinder the operation since these must be 

either broken or pushed out of the way by the cutt ing shoe. 

Whils t most samples taken f rom dams were well compacted, a few were less densely 

packed and therefore prone to collapse. The spoil heap samples also fall into this 
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category. Once clasts and matr ix have fallen f rom the cutt ing shoe and been 

pressed back in , the sample cannot be considered t ru ly undisturbed. 

The cut t ing shoe, plus sample, must be dug f rom the ground; this involves the 

removal of a quanti ty of material f rom around the pit unti l the shoe can be levered 

out. On a 1 m 2 or 1 in 3 sloped dam face this disturbed area inevitably covers 

several square metres, and this may cause diff icul ty because damage to Water 

Board property had to be kept to a minimum. 

6.3.3 Preparation and testing of Samples 

The method that was used is essentially that quoted earlier. Preparation depends 

on the type of sample undergoing testing. 

a. Undisturbed 

In this case the samples were transferred directly f rom the cutting shoe to the 

large shear box either by hand or by using a hydraulic jack. Particle size analysis 

and Atterberg limits were determined at the end of the test. 

b. Bulk Samples 

The bulk samples were air dried prior to testing, thus preventing excess breakage 

by oven drying. Samples were then dry sieved to remove particles of unsuitable 

particle size and the mass required to give the correct density weighed. The 

appropriate amount of distilled water was added; then the sample was wrapped in 

polythene and left to equilibriate for at least 24 hours before being compacted into 

the shear box by hand. The compaction densities that were used were determined 

by Proctor compaction tests according to B.S. 1377 (1975 * ) . 

work was done prior to publication of the 1990 edition. 
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Compaction in the large shear box can also be achieved by using a Kango hammer 

although this did not prove significantly more efficient than completing the job 

manually. There is also a risk of introducing hard layers into the box and these 

may act as potential shear surfaces. 

Due to the restraints of time and number of samples, most of the large shear box 

tests were of multi-stage form (method according to Head (1982)) wi th four normal 

loads being applied in increasing magnitude in order to obtain peak strengths, and 

then in decreasing magnitude for residual strength. The box was run at a higher 

speed between these two stages in order to form the shear plane. A few tests 

were conducted at single loads for comparative purposes since multi-stage tests 

are often thought to be unrehable. 

6.4 Results 

The results of both large and small shear box tests are presented in this section 

although the accompanying discussion is l imited to brief comments. The overall 

relevance, and significance of the tests w i t h respect to earlier weathering and 

chemical studies is discussed in Chapter 7. The results are grouped according to 

material type as previously used in Chapter 4. 

For each test, shear stress - displacement curves can be drawn for each increment 

of normal load. A shear stress - normal stress plot is then drawn for a series 

of tests to produce the failure envelope. Ideally, a vertical displacement - hori

zontal displacement curve should be drawn so that any expansion or contraction 

during shearing can be monitored. Although vertical movements were recorded 

these showed a decrease in sample height, a feature which is inconsistent wi th the 

observed losses in shear strength and increases in moisture content (wi th corre

sponding decreases in bulk and dry density). Loss of material f rom between the 

two box halves is a common problem in shear box testing (Section 6.L3) and it 

is this which is thought to be responsible for obscuring true dilation of the sam

ples, which occurs as critical state is approached. A small amount of contraction 
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due to particle breakage and crushing, and to clay mineral alignment, does take 

place, but this is thought to be small in magnitude and restricted to the relatively 

narrow shear zone. 

6.4.1 Tests to check apparatus precision 

A series of 16 tests was performed, using the small shear boxes, in order to study 

the l imits of precision of the apparatus. In total , four boxes were available for 

use and i t was therefore necessary to confirm their ability to produce consistent 

results. A sample of fresh Coal Measures shale, crushed to pass a 2mm sieve was 

remoulded at 11.5% water content (determined by Proctor compaction) and then 

used for tests at normal stresses of approximately 50,100,150 and 200kNm~^ on 

each box. Figures 6.3 a-d show the stress - displacement curves. Figures 6.4 a 

and b show the resulting failure envelopes. The average ini t ia l and final water 

contents are plotted against normal stress in Figure 6.5. 

Figures 6.3a to d and 6.4a and b both show a reasonable agreement in peak 

shear strength between boxes at each normal load. Peak shear strength val

ues ranged f rom 47 - 50kN/m^ at normal load of bOkN/n?, 78 - MkNjm? at 

imkNlw?, 116 - 120/fcA^/m2 at mkNlm^ and 146 - l52kN/m'^ at 200kN/m^. 

The residual shear strength values however show a greater variation, wi th values 

of 35 - 43A;iV/m2,52 - 75kN/m^,65 - 88kN/m^ and 70 - lObkN/vn} over the 

same normal loads respectively. I t is important to note that none of the boxes 

reads consistently high or low, and any variation appears random. The stiffnesses 

in reaching peak do however follow the same trend at each normal load wi th the 

four boxes reading in the following order: 4 > 2 > 1 > 3 . 
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Normal Stress Peak Shear Strength Resid ual Shear Strength 

mean st.dev r.d mean st.dev r.d 

50 49.4 1.6 3 34.5 3.3 9 

100 73.5 4.4 6 54.8 6.3 12 

150 100.1 1.7 2 68.6 9.4 14 

200 130.1 10.4 8 69.1 6.7 10 

relative deviation (r.d.) = x 100% 

Table 6.1: Summary of results f rom precision tests on small shear boxes. 

The poorest agreement is seen at normal loads of 200A:A''m~^, but this is largely 

due to the use of inappropriate proving rings. For routine testing, a stiffer proving 

ring was mounted on one machine which was then used for all high loading tests. 

Table 6.1 shows the means and standard deviations of peak and residual shear 

strengths, and also the relative deviations in the observed values. I t has already 

been noted that there is more variation in the data for residual shear strengths. 

I t is debateable whether the samples have reached a true residual value after 

only 120 — 160mm displacement, since typical displacements of 100 - 500mm 

are required for obtaining residual strength in over-consolidated clays (Skempton, 

1985). This may be compared to distances of 0.5 - 3mm and 3 — 6mm to reach 

peak strength for overconsolidated and normally consolidated clays, respectively. 

Skempton (1985) states that the change in water content starts at a typical dis

placement of 5 — 10mm. The values that are obtained may in fact be the constant 

volume (critical state) value (Atkinson 1989, personal communication). However, 

as shown in Plate 6.4, in all cases the samples split easily along planes to reveal 
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shiny striated surfaces. I t is therefore assumed that the samples are nearing their 

residual strengths. This point is further discussed in Section 6.4.2 in connection 

wi th the large shear boxes. I t is important, too, to note that these samples are 

remoulded and so wi l l yield lower peak strengths and wil l reach the residual state 

more rapidly due to the more disordered structure of the soil. 

Other checks made on the apparatus to ensure precision and accuracy are hsted 

below. 

a. Regular calibration of linear variable differential transducers (LVDT) 

and proving rings. 

b. Fluctuation of the above wi th time/temperature. 

c. Stiffness of the shear box. 

6.4.2 Tests on 'standard materials' 

fresh Kimmeridge Clay 

Fresh Coal Measures Shale and 

The purpose of this set of tests was to use standard materials to identify differences 

between the large and small shear boxes, to estabhsh whether multi-stage testing 

would be apphcable and for observation of the effect of particle size in the large 

shear box. Data was also provided for the comparative study of a typical 'br i t t le ' 

and 'less br i t t l e ' shale. Coal Measures shale and Kimmeridge Clay, respectively. 

Fresh samples of the two materials were collected, then air dried and mechanically 

crushed and sieved to produce samples wi th the appropriate particle size ranges. 

Figure 6.6 shows the shear strength - normal stress data for tests on the West-

phalian Shale, while that for the Kimmeridge clay is in Figure 6.7 and the results 

are further summarised in Tables presented in each section. 
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6.4.2 a Large vs Small box 

small shear box large shear box 

normal load normal load 

shear strength 0 100 150 200 shear strength 70 150 220 300 

peak 

residual 

43 

34 

72 

57 

94 

67 

105 

78 

peak 

residual 

209 

S2 

Table 6.2 : Results of direct shear box tests: Coal Measures shale. 

small shear box large shear box 

normal load normal load 

shear strength 5 0 100 150 200 shear strength 75 150 320 

peak 

residual 

84.7 

22.8 

104.9 

31.6 

125.1 

40.5 

145.3 

49.3 

peak 

residual 

58 115 205 

145 

Table 6.3 : Results of direct shear box tests: Kimmeridge Clay. 

Figure 6.7 clearly shows that peak and residual shear strengths obtained from the 

large shear box are slightly higher and lower, respectively, than those from the 

small shear box when a less than 2mm fraction is tested in each box. 

The shear strength envelopes shown in Figures 6.6 and 6.7 appear strongly curved 

and pass through the origin. Several authors have noted that this is generally 

the case for rock fill (Marsland, 1973). Hawkins and Privett (1985) report the 

same effect in cohesive soils. Taylor and Garrard (1984) noted that whilst in

dividual tests on coarse colliery discards yielded curvihnear shear strength en

velopes, the composite data f rom over a thousand tests showed litt le curvature. 

They employed a statistically tested power fit of the general form r = m{a'Y (or 

logiQT = zlogiQa' + log\Qm) where m and z are constants to describe the curved 

envelopes. The cause of the curvature is thought to be due to at tr i t ion between 

particles - for example the abrasion of corners. This wi l l be common in a shale 
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fill where particles are tabular and angular. The effect increases wi th increasing 

normal pressure. Figure 6.8 shows the results of particle size analysis on a shale 

fill pre and post shear box testing and demonstrates the breakdown observed. I t 

is of interest to note that Taylor and Garrard (op cit) found that this effect was 

more pronounced in the results of shear box tests than in triaxial tests. 

6.4.2. b The Effect of Particle Size 

passing 2mm passing 20mm 

normal load normal load 

shear strength C M 300 K C 300 shear strength CM 300 KC :m 
peak 

residual 

209 

82 

200 

145 

peak 

residual 

217 

119 

250 

Table 6.4 : Results of direct shear box tests: Coal Measures shale and Kimmeridge 

Clay - samples of different maximum clast size. 

I n both Kimmeridge Clay and Westphalian Shale the results f rom large shear 

box tests show slightly higher peak strengths in the coarser particle size samples. 

There is a much larger difference in residual strengths - this being a reflection of 

the larger clay fraction present in the less than 2mm fraction. Peak strength is 

less dominated by this effect since packing, pore water pressure and composition, 

and rate of deformation as well as particle shape and frict ion are all controlling 

factors. 

I t is interesting to note that the residual strengths of the Westphahan Shales 

passing 20mm and passing 2 m m lie slightly above, and significantly below, that 

of the small shear box samples. I t would appear that the ratio between the 

maximum particle size and the shear plane area has an effect on the ultimate 

strength of the sample. 

This ratio appears to be important in determining the morphology of the shear 

plane produced. This is demonstrated in Plates 6.5 to 6.8 which show the effect of 
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increasing maximum particle size on the type of shear plane produced. In the less 

than 2 m m size sample the shear plane is flat and smooth, whereas in the passing 

20mm sample i t is ridged and hummocky. Figure 6.9 is a comparison of vertical 

profiles drawn across the shear surface of tests on Kimmeridge Clay using these 

two size fractions. The greater surface area of the rougher surface may also have 

some bearing on the measured shear strength. Plate 6.9 shows an undisturbed 

sample of Namurian shale (discussed in Section 6.4.4) in which the shear plane 

has been forced around a large clast. The sample fails through the path of least 

resistance and thus passes through the the relatively soft clay and silt, rather than 

through the solid shale clast, despite the fact that the geometry of the box wil l t ry 

to force a plane which should pass straight through the clast. This phenomenon 

was observed in several of the undisturbed samples tested. 

6.4.2 c Comparison of brittleness 

Tests on the less than 2mm and less than 20mm size ranges in the large shear boxes 

under a normal stress of 300kNm~^ were used to demonstrate some differences 

between the two standard materials. Even though both samples were crushed and 

remoulded so that none of the original structure was present and able to influence 

the peak strength i t is clear that there are significant differences in the shear 

behaviour of the two samples. Figure 6.10 shows the shear stress - displacement 

curves for two of the four tests; the resulting Brittleness Indices for the samples 

(calculated f rom equation 5.2 in Chapter 5) are listed in Table 6.2 

material Brittleness Index 

size range less than 2 mm size range less than 20 mm 

Kimmeridge Clay 34% 

Westphalian Shale 61% 44% 

Table 6.5 Comparison of Brittleness Index in remoulded samples of Kimmeridge 

Clay and Coal Measures shale. 
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The peak strengths are wi th in AOkMrn'"^ of each other, and show similar init ial 

stiffnesses. A much greater range in shear strength, nearly 100kNm~^, is observed 

in the residual strengths. This is reflected in the range of brittleness indices, the 

latter being directly dependent on the former. 

The samples appear to reach their residual strengths over the same displacement, 

probably due to their remoulded nature. 

6.4.2 d Comparison of data from triaxial apparatus and shear boxes 

Data obtained f rom consolidated drained triaxial tests on remoulded samples of 

Coal Measures shale and Kimmeridge Clay have also been plotted on Figures 

6.6 and 6.7 for comparitive purposes. Peak shear strength envelopes for both 

materials appear linear, w i t h measurable cohesion intercepts, unlike the envelopes 

drawn f rom data f rom shear box tests. This is in agreement wi th the findings of 

Taylor and Garrard mentioned earher. I t would appear that the forcing of shear 

plane formation and the imposed movement during the shear box test causes a 

greater amount of particle breakdown, expressed as greater curvature of the shear 

strength envelope, than that in the tr iaxial apparatus during testing. I t should 

be borne in mind however that observation of naturally occurring failures reveals 

a t t r i t ion of particles in the shear zone. 

The t r iaxial data appear to be comparable to that f rom the shear box tests wi th 

shear strength parameters, determined graphically, as follows: Coal Measures 

shale - c'p = nkN/m^,(l>'p = 30°, and Kimmeridge Clay - ^ = 25kN/m'^,(l)'p = 

32.5°. 

6.4.3 Gale Common - Weathered Westphalian shale 

The location of Gale Common and the sample lithologies, mineralogies and general 

engineering properties have been described in Chapter 3. 
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Figures 6.11 to 6.14 show shear stress - normal stress relations for smaU and large 

shear box tests on less than 20m7n size fraction, f rom fresh, stockpiled, 5 and 15 

year old samples. 

small shear box large shear box 

normal load normal load 

shear strength r )8.4 109.2 156.5 200.1 shear strength 70.2 116.2 208.3 300.5 

peak 

residual 

brittleness index 

49.6 

35.6 

28 

93.5 

65.5 

29 

126.0 

75.1 

67 

peak 

residual 

brittleness index 

62.5 

32.6 

48 

105.7 

45.6 

57 

168.7 

75.0 

56 

120.1 

Table 6.6 : Results of direct shear box tests: Gale Common fresh shale. 

small shear box large shear box 

normal load normal load 

shear strength 58.4 109.2 156.5 shear strength 72.25 200 200 200 

peak 48.4 81.8 125.9 peak 50.35 

residual 39.9 74.8 91.5 residual 

brittleness index 18 9 27 brittleness index 

Table 6.7 : Results of direct shear box tests: Gale Common stockpile. 

The fresh samples show trends observed in the standard samples - markedly 

curved envelopes w i t h the large shear box results straddhng those of the small 

box. Only one large shear box test result is available for the stockpiled material 

but allowing for a margin of error the results f rom the small shear box are similar 

to those f rom the fresh material. 
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small shear box large shear box 

normal load normal load 

shear strength 58.' 109.^ 155.^ 204.4 shear strength 75.3 124.7 198.C 1296.4 

peak 

residual 

brittleness inde? 

50.( 

32.( 

35 

81.6 

65.9 

19 

113.] 118.0 

78.8 

33 

peak 

residual 

brittleness index 

44.8 

30.6 

103.C 

47.5 

54 

135.6 

67.8 

50 

undistui 

samp 

bed 

e 

peak 

residual 

brittleness index 

112.8(u) 

99.9 

11 

188.9(u) 

Table 6.8 : Results of direct shear box tests: Gale Common five year weathered, 

((u) - undisturbed sample) 

In the five year old material, the peak strengths measured in the large shear box 

are approximately equal to those f rom the small boxes. However there is stiU a 

significant difference in the measured residual strengths. Both sets of results are 

markedly lower than those of the fresh material. 

Two undisturbed samples were taken f rom the five year old part of the embank

ment. The results are also shown on Figure 6.15. The peak shear strength enve

lope, although st i l l probably curved, is much higher than in the remoulded sam

ples and yields f r ic t ion angles about twice as high. The residual shear strength at 

70kNm~'^ is extremely high {4>r of 51° compared to 13° in the remoulded sample) 

this being due to the presence of a large clast across the 'shear plane' which forced 

failure away f rom the central part of the box - this effect was discussed in 6.4.2 b. 

141 



small shear box large shear box 

norm al load normal load 

shear strength 58.4 109.2 158.2 204.4 shear strength 75.3 124.7 296.4 200 

peak 48.1 71.4 106.3 125.6 peak 47.54 89.7 125.4 

residual 30.6 61.5 81.9 95.1 residual - - 109.0 

brittleness index 37 14 23 24 brittleness index - - 13 

Table 6.9 : Results of direct shear box tests: Gale Common fifteen year weathered. 

Figure 6.16 demonstrates again the marked curvature of failure envelopes in the 15 

year old material. Strengths are lower than in the fresh material although slightly 

higher than in 5 year old samples. This may be related to the highly weathered 

appearance of parts of the 5 year old profile, which as discussed in Chapter 3 may 

possibly be at tr ibuted to the presence of a roadway. 

6.4.4 East Pennine Dams - Weathered Namurian Shale 

Several dams in the Weardale and Teesdale area of the east Pennines, County 

Durham were described in Section 3.5.5. The results f rom four sites are presented 

below, and in Figures 6.15 to 6.18 

small shear box large shear box 

normal load normal load 

shear strength 58.4 109.2 156.5 shear strength 200 200 200 200 

peak 39.7 78.2 120.7 peak 

residual 29.9 67.0 90.8 residual 

brittleness index 25 14 25 brittleness index 

Table 6.10: Results of direct shear box tests: Grassholme Dam. 
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small shear box large shear box 

normal load normal load 

shear strength )8.4 109.2 156.5 204.4 shear strength 75.0 124.7 208.0 300.5 

peak 

residual 

brittleness index 

10.7 

15.9 

12 

70.8 

62.4 

12 

100.7 

96.7 

4 

113.6 

81.7 

28 

peak 

residual 

brittleness index 

64.4 

30.4 

53 

110.3 153.0 

86.6 

43 

195.8 

102 

48 

Table 6.11: Results of direct shear box tests: Balderhead Dam. 

small shear box large shear box 

normal load normal load 

shear strength 58.4 109.2 158.2 204.4 shear strength 75.3(u) 200 300.5 300.5 

peak 34.2 73.9 88.5 116.0 peak 55.9 225.7 224.5 

residual 31.6 61.2 65.4 91.2 residual - 149.6 120.5 

brittleness index 8 17 26 21 brittleness index 34 46 

Table 6.12: Results of direct shear box tests: Grassholme Hury tunnel spoil heaps, 

((u) - undisturbed sample) 

small shear box large shear box 

normal load normal load 

shear strength 58.4 109.2 156.5 204.4 shear strength 200 200 200 300 

peak 40.3 79.2 112.5 122.0 peak 245.9 

residual 39.6 70.6 86.1 89.3 residual 165 

brittleness index 17 11 23 27 brittleness index 33 

Table 6.13: Results of direct shear box tests: Burnhope Dam. 

Small shear box tests on samples f rom Grassholme Dam (Figure 6.14) show a near 

linear shear stress - normal stress relationship. This may reflect the more clayey 
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nature of the material causing i t to be less prone to breakdown and at tr i t ion 

during shearing. A series of tests on samples f rom I m depth on the Grassholme 

- Hury tunnel spoil heaps, however, yielded the expected curved failure envelope 

w i t h noticeably lower values of both peak and residual strength. Samples f rom 

Burnhope Dam also gave rise to curved envelopes having shear strength values 

closer to those f rom Grassholme. Values f rom Balderhead dam follow a similar 

pattern, but are slightly lower. 

As in earlier testing, large shear box peak and residual shear strengths fall respec

tively above and below those f rom the small shear boxes, although it should be 

noted that the data set is smaller so i t is possible that the trend may be coinci

dental. Mechanical problems following the intensive use of the large shear boxes 

prevented the undertaking of more than the one completed multi-stage test in this 

group, so producing the isolated values for the spoil heap and Burnhope samples. 

I t was only possible to take one undisturbed sample - f rom the surface of the more 

northerly Spoil Heap where a significant clayey matrix provided the necessary 

cohesion. Below this level, the fill was not sufficiently compacted to allow a sample 

to be taken. In the dams themselves, the presence of boulders, that is, clasts wi th 

a diameter larger than 200mm (B.S. 5930 (1981)), prevented the insertion of the 

cut t ing shoe. Peak fr ic t ion angles f rom this undisturbed sample and remoulded 

material f rom the same source are wi th in a close range of 0.5°. I t is also interesting 

to note that the clast size in the remoulded sample is not excessively large and i t 

would therefore appear that there is l i t t le difference between the samples. 

6.5 Chemical aspects of shear box testing 

6.5.1 The problem 

During the testing of five year old samples f rom Gale Common in the large shear 

box, growths of a white to buff crystalline substance were noted around the l id 

of the shear box. These are shown in Plates 6.10 and 6.11. Fragments of the 
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growth were removed, taking care not to damage the crystal structure and after 

preparation, observed under the Scanning Electron Microscope. Plate 6.12 shows 

a micrograph of a typical part of the growth. The view comprises a dominant 

equant, blocky species wi th subordinate elongate varieties. 

A further sample of the growth was subjected to X-Ray Diffraction Analysis. 

This revealed the composition to be a mixture of hahte [NaCl) and thenardite 

{Na2S0i) (JCPDS 5-628 and 5-631 respectively) A second sample from the 

same box and test also contained small amounts of quartz and clay minerals. 

Subsequent large shear box tests also yielded such growths, the compositions of 

which are listed in Table 6.14 below. 

Test Number Mineralogy 

GCLSBa4 

GCLSB2 (u) 

GCLSBb4 

GCLSBb4 

Thenardite, Hahte, Quartz, Gypsum, Clays 

Thenardite, Halite, Quartz, Clays 

Quartz, Gypsum, Clays, Gibbsite 

Thenardite, Halite, Quartz, Gypsum, Clays 

Table 6.14 - Minerals identified in crystalline growths formed during large shear 

box testing. 

Thenardite is at first glance a somewhat unusual mineral to find under these 

circumstances. Normally i t is associated wi th alkahne lakes and playas in arid 

areas where i t is deposited f rom sodium sulphate rich waters (especially warm 

brines) for example the western USA, Canada, Siberia, northern Afr ica and central 

Asia (Dana, 1951). Other occurences may be as an efflorescence in arid soils, and 

i t has also been associated wi th other alkali halides and sulphates adjacent to 

fumaroles and as an encrustation on recent lavas. However, thenardite has been 

reported f rom the surface of old coal spoil heaps (Bilhng, 1987) wi th halite. Here i t 

was thought that thenardite was able to exist due to the preferential crystallisation 

of sulphates over halides (Weast and Astle, 1983) 
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The occurrence of halite is less puzzling. Sodium chloride rich brines are well 

known to be associated w i t h coal bearing strata and old mine workings. This 

condition is thought to be worse on the eastern side of Bri tain. 

I t was therefore decided to observe the composition of water in the shear box and 

to look at change in composition wi th time during testing. 

6.5.2 Modifications to Shear Box Apparatus 

Samples of water were taken f rom around the shear box at various stages of 

testing, for chemical analysis. Before this could be done however, several potential 

problems had to be dealt w i th . 

Firstly, i t had become visually obvious that the shear boxes were rusting badly 

despite being cleaned and repainted wi th hamerite paint prior to each test. I t 

was clear that the paint was suffering abrasion f rom shale clasts even after only 

two or three runs of the shear box. There was therefore a strong risk of serious 

contamination of water samples by rust, by flakes of paint and by elements leached 

f rom the metal of the box itself. I t was decided to construct two new boxes and 

reservoirs entirely of stainless steel. These were designed to f i t on the existing 

frameworks and thus used the original motors, gearboxes and hydrauhc loading 

system. Similar problems were encountered by Chuay (1986) when testing the 

effect of various solutions on the consolidation/swelling of clays. Stcdnless steel 

equipment had to be manufactured to allow testing in an inert apparatus which 

would not react wi th the solutions being tested. 

I t was important to confirm that the stainless steel itself was not contributing to 

the ionic composition of the water in the reservoir. Thus a series of tests were 

performed in which the apparatus was left for several days containing only distilled 

water. Samples were taken at regular intervals and tested as described below. 

Another potential source of contamination was dust in the atmosphere of the 
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laboratory itself. The effect of this Wcis to a large extent prohibited by covering 

the box and reservoir wi th polythene cling film. To moniter the amount of dust 

Ukely to have settled on the surface of the water in the reservoir, a container was 

placed next to the shear box, filled wi th distilled water and covered in the same 

way. Before the potential problem of dust was realised, several tests were run 

without chng film covering. In all cases, samples were taken f rom the 'control' 

container at the same time as those f rom the shear box itself. 

6.5.3. Method of Testing 

Samples were taken by pipette f rom several positions around the reservoir to 

ensure an average composition was collected. These were then stored in 125m/ 

screwtop plastic sample bottles which were kept in a dark, cool place unti l testing. 

Testing was carried out as soon as possible after collection. 

A n in i t ia l batch of samples was run on the Varian AA-575 Atomic Absorption 

Spectrophotameter at Newcastle University in February 1988. A second set of 

samples was also run at Newcastle University in May 1988 but after this, fur

ther use of the machine was not possible. Rather than use another machine and 

thereby have to re-run several of the original samples to confirm that the two 

pieces of equipment were comparable to each other, all the samples were tested 

using Inductively Coupled Plasma-Atomic Spectroscopy (ICP-AS). The machine 

used was a Philips PV 8050 Emission Spectrometer w i th a Philips PV 8490 ICP 

Source Unit at Royal Holloway and Bedford New College (RHBNC) , University of 

London. This equipment allows much more rapid testing as the sample is scanned 

for all elements simultaneously, whereas conventional machines have to be set 

for a particular element. A l l samples are then analysed for this element before 

re-setting for the next element. 

Raw data is given in intensity f rom which concentrations were calculated in parts 

per mil l ion, using a programme 'WATERS ' specially developed by RHBNC for 

analysis of cations in water. Intensities are compared to those in a known standard 
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which is scanned at regular intervals during testing (every ten samples) to identify 

machine d r i f t . Af ter each scan of the standard the machine may be recalibrated, 

although in this case i t was rarely necessary. The conventional atomic absorption 

spectrameter produces results in a similar way, that is: by comparison to standards 

of known composition. Again, the standards are run at regular intervals and the 

machine recahbrated to correct for d r i f t . I t was found that this was necessary 

after every five samples for most elements, and every other sample for aluminium 

and sihca. The method of Atomic Absorption Spectroscopy is described in Tucker 

(1989). 

6.5.4. Results 

Preliminary results obtained in the manner described above are tabulated and 

also shown graphically in Appendix V. Although of interest, as they may give 

information on both the breakdown of shales during shearing under saturated 

conditions, and also shed light on the relationship between shear strength and ionic 

composition of porewaters they are not however directly related to the immediate 

matter in question and therefore have been presented as an Appendix to this 

thesis. 

The time taken for a complete large shear box test to residual strength has already 

been mentioned, and due to the number of different sample locations the first 

pr iori ty was to test material f rom each of these. However, the possibilty of related 

testing was considered. The stainless steel shear box, being inert, would readily 

lend itself to other chemical testing, for example the effect of changing water 

composition on shear properties of material in the shear box. The work of Kenney 

(1968) (see Chapter 7) for example, is well known. The potential problem with 

undertaking such work on shales is the amount of time taken for change in water 

composition to permeate throughout samples although recent work by Cripps 

and Anderson (1990) on Namurian Shale showed that acid solutions were capable 

of leaching out many elements wi th in days. Similarly, McDermott (1989) was 

able to demonstrate that nitrate and phosphate rich solutions were able to alter 
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consolidation characteristics of various clays wi thin a few days. 
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Figure 6.1: Basic design of shear strength apparatus 
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Figure 6.2: Data f rom shear box test, and same data corrected for change in 

area during testing. 
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Figure 6.3 a - d: Shear stress - displacement curves: Coal Measures shale passing 

2mm, at different normal loads. Tests to check precision of small shear boxes. 

162 



200 

150 

100H 

50 

residual strengths 

X Box 1 
. Box 2 
. Box 3 
. Box I* 

50 100 150 200 
cr;(kNni-2) 

250 

Tp(kNm-2) 

200 

150 

100 

50 

peak strengths 

50 100 150 
o-'(kNm-2) 

• 

200 250 

Figure 6.4 a and b: Shear stress - normal load: Coal Measures shale passing 

2mm. Tests to check precision of small shear boxes. 
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Figure 6.5: In i t i a l and final moisture content: Coal Measures shale passing 2mm. 

Tests to check precision of small shear boxes. 
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Figure 6.6: Shear strength - normal load: Coal Measures shale. 
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Figure 6.7: Shear strength - normal load: Kimmeridge Clay. 
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Kimmeridge Clay - Large shearbox test, sample passing 2mm 

FRONT OF BOX 

o 
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Kimmeridge Clay - Large shearbox test, sample passing 20mm 
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LEFT SIDE IGHT SIDE 

Figure 6.9: Profiles across shear planes produced in Kimmeridge Clay (a) passing 

2mm, and (b) passing 20mm. 
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Figure 6.10: Shear stress - displacement curves: Coal Measures shale and Kim

meridge Clay passing 2mm. 
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Figure 6.11: Shear stress - normal load, brittleness index - normal load and 

moisture content - normal load: Gale Common fresh shale. 
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TlkNiTi"') Shear strength vs normal load 
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Figure 6.12: Shear stress - normal load, brittleness index - normal load and 

moisture content - normal load: Gale Common stockpiled shale. 
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T(kNm'^) Shear strength vs normal load 
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Figure 6.13: Shear stress - normal load, brittleness index - normal load and 

moisture content - normal load: Gale Common five year weathered shale. 
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T(kNm-M S-hear strength vs normal load 
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Figure 6.14- Shear stress - normal load, brittleness index - normal load and 

moisture content - normal load: Gale Common fifteen year weathered shale. 
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TikNm"') Shear strength vs normal load 
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Figure 6.15: Shear stress - normal load, brittleness index - normal load and 

moisture content - normal load: Grassholme Dam. 
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TlkNm"-) Shear strength vs normal load 
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Figure 6.16: Shear stress - normal load, brittleness index - normal load and 

moisture content - normal load: Balderhead Dam. 
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T(kNm"") Shear strength vs normal load 
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Figure 6.17: Shear stress - normal load, brittleness index - normal load and 

moisture content - normal load: Grassholme - Hury tunnel spoil heaps. 
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TikNm"') Shear strength vs normal load 
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Figure 6.18: Shear stress - normal load, brittleness index - normal load and 

moisture content - normal load: Burnhope Dam 
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Plate 6.1: Clast size range used in large shear box test 
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Plate 6.2: Clast size range used in typical pits dug in shale fill dams. 
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Plate 6.3: Interruption of shear plane by large clast in shear box test (undisturbed 

sample. Gale Common 5 year weathered shale) 

Plate 6.4: Sample from small shear box split after testing to reveal shear plane 

(Coal Measures shale passing 2mm sieve). 
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Plate 6.5: Shear plane from large shear box test (fresh Goal Measures shaJe 

passing 2mm sieve). 

Plate 6.6: Shear plane from large shear box test (Gale Common 15 year weathered 

shale passing 20mm sieve) 
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Plate 6.7: Shear plane from large shear box test (undisturbed Namurian shale 

from Grassholme Hury tunnel spoil heap. 

Plate 6.8: Close up of shear plane from Plate 6.7. 
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Plate 6.9: Shear plane in undisturbed sample of Namurian shale showing distor

tion of plane by large clasts. 

Plate 6.10: Crystalline growths around box lid observed during large shear box 

test (Gale Common 5 year weathered shale). 
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Plate 6.11: Close up of crystalline growth shown in Plate 6.10. 

Plate 6.12: Electron micrograph of growth shown in Plate 6.10 showing thenardite 

and halite crystals. 
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Chapter 7. DISCUSSION 

7.1 Integration of geotechnical and mineralogical data 

The general geotechnical properties of the samples tested were determined accord

ing to the methods described in BS 1377 (1975), and were presented in Chapter 

3. In addition to this, geological and chemical characteristics were discussed in 

Chapter 4. This Chapter reviews the nature of possible correlations between such 

properties and shear strength, and makes note of any such correlations in the 

samples tested. 

7,1.1 Shear strength and geotechnical properties. 

There have been numerous attempts in the past to link shear strength with various 

geotechnical properties. For example, residual shear strength with clay fraction, 

residual strength with plasticity index, and residual strength with hquid limit. 

Kenney (1968) hnks residual shear strength with plasticity index and with grain 

size, although in both cases stresses that there is no unique relationship. Similarly, 

Lupini et al (1981) note that residual shear strength does change significantly 

with increasing clay content, but again make no general correlations with index 

properties. They proposed two extremes of shear behaviour: Sliding shear in 

which flat (clay) particles slide over each other, and turbulent shear which occurs 

when equant (non-clay) minerals attempt to move past each other^ Most natural 

soils, containing a mixture of clay and non-clay minerals, will exhibit a hybrid 

form of behaviour. The mechanism, however, explains why the increase in clay 

fraction will alter shear properties. 
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Hawkins and Privett (1985) suggest that correlations may indeed be valid, but 

only at certain stress levels. They also show that where the clay fraction exceeds 

60% and the plsLsticity index is greater than 45%, the residual angle of friction is 

low, and there is little scatter observed in the data. Consequently correlations will 

be valid. However where clay fractions were in the range 35 - 60% and plasticity 

indices between 25 — 45% the data showed wide scatter. Under these conditions, 

which are those typically encountered in British soils, it is inappropriate to employ 

the use of correlations. 

On account of the large amount of scatter experienced, Collotta et al (1989) 

proposed a combination measure 'CALIP' which is calculated as shown below on 

the basis that the properties discussed are all related. 

CALIP = {CFf X LLx PI X 10"^ 

where CP = clay fraction 

6.1 

The measure was tested in a study of 150 silty clay soils from the Appenines 

and hard Pliocene clays, flysch and clay shales from various Italian sites and was 

found to show less scatter when plotted against residual shear strength than the 

individual soil properties. Furthermore, for soils with CALIP greater than 60 the 

ring shear and direct shear box test results were found to be roughly similar. For 

values less than 60 then direct shear box test results exceeded those from the ring 

shear box by 15 - 20%. 

Relevant geotechnical data for the samples tested are summarised in Table 7.1 

and graphs these parameters plotted against shear strength given in Figure 7.1. 

The shear strength data for all sites has been collated in Figure 7.2 in its normal 

form, and in log form in Figure 7.3. Brittleness Index data, again for all the sites 

tested, is summarised in Figure 7.4. 
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7.1.2 Shear strength and Mineralogy 

The conclusions drawn by Kenney (1967 and 1977), are well known, and form the 

basis of the sliding versus turbulent shear model discussed above. These are that 

layer lattice minerals tend to have lower shear strength than massive minerals, and 

that particle size and shape is an influential factor in the behaviour of massive 

minerals. 

Having established that residual shear strength is influenced to some degree by 

the amount of clay minerals present, i t is then necessary to determine whether the 

type of mineral present wi l l have any effect. Skempton (1985) stated that if the 

clay fraction is greater than 50% then the mineralogy becomes important. The 

following typical values for residual angle of fr ict ion are often quoted; 

Kaolinite 15° 

I l l i te 10° 

Montmoril lonite 5° 

The possible relationships between mineralogy and shear strength of the samples 

tested are summarised in Figure 7.5. 
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Figure 7.1 : Relationship between shear strength and other geotechnical data. 
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C h a p t e r 8. S U M M A R Y A N D C O N C L U S I O N S 

The failure at Carsington dam, described in Chapter 1 as a means of introduction 

to this work, provoked a great deal of interest in several aspects of earth fill dam 

behaviour. The general consensus of the research and review into tli£ causes of the 

failure is that the collapse was due to progressive failure triggered by a number of 

mainly geometrical factors and the low shear strength of certain materials. How

ever, not everyone agrees w i t h this conclusion, for example Rowe (1992) attributes 

the failure to the presence of shears caused by the movement of heavy plant on 

wet plastic clay. Using the finite element methods now available workers have 

re-analysed several other dam failures, for example that at Chingford (Dounias, 

personal communication). 

On the face of i t , the situation at Aberfan appears to have been completely dif

ferent. The failure there occurred over a much shorter time span, the failed mass 

of material travelled over a much greater distance, and there was loss of life as a 

direct result of the failure. In the case of Carsington Dam the main problem was 

the inconvenience caused and the resultant increase in costs. There was no direct 

threat to public safety although secondary effects of pollution to water and air did 

cause problems. However the two failures can be considered as end members in a 

spectrum of the expression of bri t t le behaviour in soils. In both cases excavation 

of the failed mass revealed a shear plane on which the shear strength had been 

reduced to its residual value. 

More specifically, wi th in the scope of the work in this thesis, ther^ has been the 

need to understand the behaviour of shale fills i f they are to be used satisfacto

ri ly in embankment construction. Both mechanical and mineralogical/chemical 

factors need to be considered. I t was proposed that there are two methods by 
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which the strength of a shale fill reduces wi th time: First by progressive failure, 

and second by chemical and physical degradation. Overstressing, initiated by an 

external factor such as anomalously high porewater pressures, a geometrical cor

ner or boundary, wi l l cause stress to build up at that point. This then causes 

the loading of adjacent material which wil l fail and in turn transfer stress onto 

surrounding material. This process, progressive failure, is repeated in a chain 

reaction throughout the structure so that at any one time some of the soil is at 

its residual strength value, some wi l l be at or close to peak strength, and some 

w i l l not have been stressed at all. Complete failure w i l l occur when the maximum 

available shear strength is unable to counteract the applied stress. T3ie alternative 

process is by a combination of physical and chemical degradation and weathering 

which leads to an increase in void ratio of the shale, and therefore a corresponding 

loss of strength. I t may be possible to reduce the available shear strength of a 

shale or overconsolidated clay to its critical state i f a large enough amount of di

lation occurs, so that the material can only mobilise the equivalent of a normally 

consolidated shear strength. In clayey materials further mechanical shearing is 

required, however, to bring the shear strength to its residual value because par

ticle alignment is required to reach this condition. Marine mudrocks appear to 

be particularly prone to this latter process of shear strength reduction because 

they are generally th in ly laminated and/or fissile (and as such, therefore, should 

be cleissified as shales) and thus more hable to breakage and slaking. They also 

tend to contain minerals such as pyrite and calcite which render them particularly 

vulnerable to chemical decomposition. Taylor (1988) reports that concentrations 

of pyrite as low as 5% can have a significant effect. The random clay mineral 

fabric frequently observed in marine clay deposits is often invoked as a cause of 

instability in marine mudrocks. However, much of this disorder becomes ordered 

during compaction and diagenesis, and furthermore, Smith (1978) reports that 

the presence of smectite appears to be important in maintaining such a structure. 

In the Carboniferous rocks considered in this study smectite was absent and the 

structure was ordered and stable. * 

* Specimens of shales were studied under the scanning electron microscope to con

firm this; however no photographs are available for inclusion in the thesis 
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The Oxford English Dictionary defines the word brit t le as 'easily cracked, snapped 

or broken; fragile' . A selection of materials science and engineering text books 

yielded several references to bri t t le fracture, but few to brittleness. Kempster 

(1975), in stating that the 'tendency to fracture without visible plastic deformation 

is called brittleness' is an exception. Brittleness to the 'person in the street' is 

something instantaneous, or at least very rapid (even explosive), and involves 

complete breakage or fracture. This does not seem to correspond with observations 

of slope failures where failure may take place over a long period of time, and 

although the failure may result in the formation of a shear plane which separates 

the slipped mass f rom that below, i t does not produce two obviously4)roken halves. 

Moreover, although the shape of stress-strain curves for brit t le solids and soil are 

generally similar up to the point of failure, the drop in strength, followed by a 

constant residual value is not observed in solid materials. I t may prove necessary 

to define a less misleading term i f brittleness in soils is to be discussed in a fu l l 

materials setting. 

Brittleness in soils and fills is caused by a combination of dilation (increase in void 

ratio) to reach critical state together w i th particle breakdown and alignment of 

clay minerals where present. I f these two effects do not take place, then behaviour 

w i l l be non-britt le. The former is a function of environment and packing rather 

than of material type, w i t h the latter being controlled by material ^ype. I t there

fore follows that any attempt to measure brittleness must take into account the 

fact that the test system w i l l impose a type of behaviour on the sample (as well 

as considering factors which affect the measured strength). For example, the stiff

ness of the testing machine and its ability not to inject elastic strain energy into 

the sample due to imbalance at and immediately after the point of failure is an 

important consideration. I t is essential to model the correct environment, that is, 

one cannot estimate the brittleness of a rock fill by selecting an aggregate sample 

and testing under ideal conditions then assuming that that brittleness value wi l l 

apply in the field. Inadequate compaction for example may lead toiai lure because 

packing wi l l control the in situ brittleness. I f one is t rying to avoid progressive 

failure i t is as important not to promote conditions such as this where a material 

wi l l behave in a bri t t le manner, as i t is to t ry and use a non britt le material. The 
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Brittleness Index is rather loosely defined - Bishop admitted that when he de

fined i t , but i t is st i l l the only measure of brittleness available. Although not used 

universally, when it has been adopted i t has been apphed to a whole spectrum 

of failures f rom rapid flow slides to long-term slope stability problems. Limited 

data gathered on material brittleness suggests that brittleness is not related to 

age, but decreases wi th increasing confining pressure or normal load. I t is not 

necessarily related to either peak strength or residual strength, and brittleness in 

unweathered materials is generally higher than in their weathered counterparts. 

Evidence f rom Carsington dam suggested that there was a significamt decrease in 

shale strength near to the surface of the dam and this occurred during the con

struction period. Although shale in such a position was not involved in the actual 

failure i t does show that rapid degradation of the materials used in construction 

can occur in a relatively short time span, and this may be critical. 

Mudrocks and shales, as defined in Chapter 3 *, have been l i t t le studied until 

recently despite the fact of their dominance wi th in the geological column. I t 

is essential to study them for engineering purposes because when the amount, 

dis tr ibut ion and general availability of mudrocks and shales is considered, i t is 

then inevitable that they wiU be used in the building of embankment structures. 

They are inexpensive, widespread and relatively easy to work withi : Also, even i f 

not employed directly as fill they wi l l inevitably be used in foundations of other 

structures because they outcrop over such large areas. Moreover large volumes of 

mudrocks and shales occur as waste materials f rom various mining and industrial 

operations, and these must all be t ipped and stored somewhere. I t is important 

to distinguish shales f rom other mudrocks and certainly to comment on lami

nations since this appears to have a significant effect on the hkelihood of rapid 

disintegration and slaking on exposure to the atmosphere. 

Surveys of the literature indicates that experience and past failures have lead both 

* the disagreements outlined in that chapter are academic and not really that rele

vant to the current dicussion 
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to increases in design standards and also to legislation and guidelines on design 

and upkeep of structures. The major i ty of UK dams are earth fill although the 

real number is unknown. Only those above a certain size require to be registered, 

and many tailings dams are not registered. 

Data f rom the literature indicates that failure rates due to shearing whilst the 

dam is in service are low (14% in the U K ) , and of all failures only 25% have 

rendered the dam completely unusable. The chances of a shear failure completely 

destroying a fu l l dam therefore appear to be small, although if this did happen 

i t could be disastrous! W i t h time, earth fill dams become more^stable as the 

fill material consolidates and the water in the dam loading the toe also increases 

its stability. The most vulnerable periods of time are near to and at the end of 

construction, and during any period of rapid drawdown. 

I t is possible, although i t seems a bit improbable, to define average mineralogy and 

chemistry for mudrocks and shales despite both local and regional variations. The 

shales used in this study were substantially Carboniferous and therefore generally 

similar in composition. A Kimmeridge Clay was also used as one of the standards. 

I t was not possible to sample any other dams made of shale. Even Cod Beck 

Dam, which is part ly founded on Lias shales, appears to be composed of glacial 

materials found locally. Compositions of the fresh shales that were used were 

wi th in expected hmits and show nothing unusual. 

Weathering can be considered as the reverse process to diagenesis and leads to 

an increase in void ratio, moisture content and therefore change in geotechnical 

properties. I t always acts to bring material into equilibrium wi th prevailing tem

perature and pressure conditions acting at the material surface in current climatic 

conditions. Obviously a rock formed under very different conditions from that in 

present day UK may undergo severe change when exposed; for example, problems 

occurred when volcanic glass in submarine basalts used as road aggregate rapidly 

weathered to clay (Wylde, 1976), although on the other hand diagenesis may lead 

to inceased stability. Weathering is a combination of two processes - physical 

disintegration and chemical decomposition, the various processes being outhned 

187 



in Chapter 4. 

Classifications are available to describe weathering effects and to assign grades of 

weathering, but these all refer to tn situ rock and not to fills. Rock fills present 

problems because it is not possible to ascertain how much of the physical disinte

gration has been imposed during mechanical operations such as digging and rock 

moving. By the time a rock has been excavated, transported and left stockpiled 

i t could theoretically be fair ly stable by the time i t is used for construction. Lit t le 

evidence has been found in the hterature of deterioration of earth fiU in dams 

actually causing failure or any other major problems. CorresponcHngly, there is 

l i t t le evidence of major changes occurring on surfaces of colliery spoil heaps. This 

may be evidence of the relative stability of Carboniferous mudrocks and shales. 

The fact cannot be ignored that some shales are inherently problematic materials. 

The best known are those containing pyrite and soluble cements such as calcite as 

already mentioned. Examples of such material w i t h respect to dam building are 

at Balderhead where shales containing calcite were rejected, and Winscar where 

shale slaked rapidly on exposure to the atmosphere, was rejected for fill and only 

left in the foundations i f i t was protected. 

Shales collected f rom weathered profiles showed normal moisture content profiles. 

A difference lies in the grading as a function of time of exposure as j io ted at Gale 

Common, although as before, i t is not possible to quantify how much of this is 

natural. A difference in grading was also noted on surfaces of spoil heaps. I f 

i t is assumed that the material came out of the ground in a uniform manner i t 

then appears that weathering acts to further break down the shale over this time 

period. Dams wi th grass and topsoil do not show this trend, probably because 

the shale is reasonably protected f rom the effects of atmosphere by this cover. 

Chemistry and mineralogy was fairly consistent in the materials examined and no 

trends appear to have developed wi th depth. Expected correlations^ between min

eralogy and chemistry were observed, and some weathering products, for example 

goethite and siderite, were noted. There also appeared to have been some iUite 

degradation wi th time. 
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Shear box testing was used in an attempt to detect any measurable differences in 

brittleness between the shales that were collected (all under identical conditions). 

Despite its many disadvantages, such as a non-uniform stress - strain regime, the 

calculation of only average stresses along the shear surface, the inability to measure 

porewater pressure, and box geometry controls on the location and direction of 

failure, i t is easy to use, and gives a peak and residual shear strength from the 

same sample. 

Ideally, undisturbed samples should be used, but there are problems both in taking 

them and in testing due to large clast size. Tests on standard materials show that 

there are differences in results between the large and the smaU shear boxes, the 

large size box giving a higher peak shear strength and lower residual shear strength 

than the small size box for the same size fraction. In the large shear box, use of 

an overaU coarser size fraction results in higher residual shear strength (therefore 

lower brittleness) and also has an effect on the morphology of the shear plane 

produced. Kimmeridge Clay is less brit t le than Coal Meaures shale - they have 

similar peak strengths, but the former has a higher residual shear strength. 

Material f rom Gale Common shows the same overall trends in terms of differences 

between boxes and size fractions. Fresh and stockpiled samples yield similar re

sults, and the two weathered samples show lower values of shear, strength and 

brittleness. This correlates w i th changes noted in Atterberg limits and in miner

alogy between the different bulk samples. Samples f rom the Pennine dams aU have 

similar values, a result which is not in the least bit surprising since the mineralogy 

and chemistry are remarkably consistent. 
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cô  

o> 
CM 

•<s> 
C O 

CM CO CO CO LO CM CO o i CO 

T-H 

o 

o 

CM 

o 

u 

CO 

o 

o 

H J 
o 

o 

LO 

O 

c 

CD 

O 

t - -
H J 
o 

o 

OC 

O 

C 

c r . 
H ^ 
O 

c 

—' 

O 

T— 
T—1 

c 

CM 
T-H 

O 

CO 

o 

T-H 
h J 

O 

O 



a; 
-O 

O 

B 

+ 

+ 
CO 

o 
CO 

CO CD CD cr. 
CO LO LO LO cr 
CO CO 1 — I CO CN 1—1 

CO 

o 1—1 
CM 

CO CN O 
CN 

CO CN 00 CN 05 
1—1 

a. d d d o d d 

o OO 
o 

CO 
1—1 

00 
1—1 

t ~ 
c o 

o o o o O o 

CN 

o OO CJi 00 c r 00 lO 00 
d d d o d d 

o o 
CO 

LO 
CO 

o 
CN 

00 CO o lO 
00 

o 

CN CN d CN o i CN 

o 
d 

CO 
1—1 

LO CO CN lO 
1-^ 

c r C5 
1—1 

d d d d d d 

o 
C3 

I — I 
CM 

LO 
CN 

CO 
OQ 

GC 
I — 1 

CO CN lO CD 
d d d d d d 

M
g
O
 

c r 
CM 

CO 
CO 

c r 
o 

05 CO 04 CN 
CO 

O 
CO 

CO 
CM CO 

o 
c r 

O 
r — i 

CO 
r-H 

O 
CO 

d 00 d t > d 

CO 

o 
cs 

CM 
1—1 

CO 
CO c r 

T-1 CO CO LO CO 

o 
cs rH 

CM 
CN 
CN 00 

I — I 
CN 
CN 

o 
CN 

o 
CN 

LO CO c r t-- 1—1 
00 CO CO OC CN 00 
d d LO d CN 

LO LO lO L-O lO 

1—1 CN CO lO CO 

o o o O O O I 
CO 



S 

W 
IH 
o 

o p. 

u 

0) 
a 

I — t 
o 
c« 

;H 

+ 
o 

CM 

- ) -

36
25
 

,4
22
0
 

.4
45
6
 

.2
60
8
 

.4
53
3
 

.6
17
0
 

.4
50
8
 

,2
98
5
 

.3
83
9
 

,5
45
3
 

,4
68
5
 

.1
94
4
 + 

o 

CM 

- ) -

o o o o o o CO o o o o o 

C O 

CO 
O 
a . 17

99
 0555]

 17
34
 

31
06
 

17
35
 

.1
62
8
 

,1
70
1
 

,1
75
0
 

.1
50
6
 

,1
55
6
 

.1
85
1
 

.1
89
6
 

o d o o o o o o C D c o o 

M
n
O
 

07
34
 

07
48
 

.0
76
7
 

.0
35
5
 

.0
72
4
 

.0
59
7
 

,0
72
3
 

,0
92
6
 

.0
77
8
 

,0
75
2
 

.0
80
2
 

.1
09
8
 

M
n
O
 

o o o o o o o o o o o o 

CM 
o 

•9
86
1
 

.9
35
5
 6986

 .9
95
1
 

.9
33
4
 

.9
15
7
 

,9
79
8
 

.0
52
9
 

LO 

.9
35
0
 

.9
31
7
 

.1
01
6
 

CM 
o 

o o o o o o o r-H d - o o 

E O 
CM 73

98
 

84
69
 62X8

 77
97
 

.8
56
7
 

.9
10
1
 

,8
04
7
 

,5
38
1
 

,7
17
0
 

,8
05
8
 2085

 

2095'
 X ) 

• a 
C M C M C N C M C N C N C M CM CM OJ C M 

m
e
n
t
 
0:
 

o 
CM 
C3 35

39
 

29
42
 

.3
18
8
 

.2
78
1
 

.3
22
8
 

33
13
 

,3
15
2
 

,3
28
0
 

,3
30
1
 

,3
19
0
 

.3
54
9
 

.3
29
4
 

m
e
n
t
 
0:
 

o 
CM 
C3 

o o o o o o o o o o o o 

W 

Ca
O 

8600
 .6

52
1
 

.7
28
2
 

.1
47
2
 8X09'

 

9092'
 .2

45
3
 5925'

 .7
16
8
 

.6
25
0
 

.7
22
9
 

.9
69
1
 

Ca
O 

o LO lO. - I * CO lO C M 

40
76
 5592

 28
51
 

71
20
 

.2
72
7
 8908

 

2022
 ,3

77
8
 

,4
01
7
 

,4
31
9
 

,4
29
9
 

.4
27
5
 

C M C N C N C M C N C M C M C M OJ C M 

O 
CO 

5998
 43

76
 

81
73
 

11
12
 

50
49
 8992

 64
92
 

15
41
 

30
82
 

48
91
 

42
41
 

84
63
 

6 H t ~ t - t - a> t ~ 0 0 t ~ t - 0 0 

CO 
o 

43
97
 

67
05
 

83
41
 6909

 76
86
 

10
37
 

87
52
 

.9
26
4
 

,0
41
5
 

,2
93
2
 

.9
98
3
 

.4
52
2
 

o 
C M 

o 
C N 

o 
C N 

C N 
C N 

o 
C N 

o 
OJ 

o 
C N 

T-H 
C M CM 

o 
C M 

CO 
C M 

CO 
CM 

CM 
o 
C o 

08
13
 

24
58
 

57
12
 

76
29
 

04
03
 9990

 21
72
 6625

 

9968
 

0528
 ,8

24
2
 

.8
19
9
 

CM 
o 
C o o 

CD 
CJS 
LO 

0 0 lO 
T-H 
CD 

CS 
ta 

o 
CD 

o 
CO lO 

c r . 
lO 

o 
lO 

c r . 
LO 

m
p
l
e
 

T—1 C N 
1 

CO 
1 

LO CD 
1 

t -
1 

OC 
1 

c r . 
1 

ox-

T—1 
1 1 

CM 
I-H 

S
a
 



£ 
CD 

o 

C I , a 
G 

• l-H 
O 
CM 

>> 

c 
s 

r — I 
o 
cn c« cC 
0 

- O 

O 
+^ 
c 

E 
s 

+ c r r—1 OC LO' CN 
o t — CN CD -00 CD CD 0 

t ~ - c r C O 0 
to CO CO CN CD 0 1—1 CD r-H 

d d d d d d d d 

Co 

00 CN 0 10 CN 0 
(--\ CO 1—1 c r c r t- CTi CD CO \ j 0 0 c r CN 1 — 0 0 CN 
a. CN CO CN CN CN 1—1 CN CM 

d d d d d d d d 

10 CM C O CXi LO CO 0 0 
\ ^ CO CO LO 

CN CO CO 0 co cr CO 
0 CD CD CD) 1—1 

d d d CD d d d d 

CN lO CM 0 0 LO r — 0 0 

^- 0 0 CO 0 0 0 LO 
c^ 0 CN CO •QO CO c r 
CM 0 0 0 i-H 0 1 ! 1—1 

T—( C32 T—I 0 0 LO 10 Oi 
0 0 CO 0 CD LO CO CO 

CM 0 0 0 CO LO 1 — CO CD CM LO CM 
CM CN CN CN CM CO CM CN 

0 05 CO 0 0 CM 0 0 0 0 
CM CO 1 — I CN c r CO c r 

t>- CO CO T—I LO CO 0 CO > CN CM CN CO CN OJ CO CN 
d d d d d d d d 

c r 1—1 0 0 0 0 0 0 
CO CD 0 CO 0 0 CO CD CO 

C3 0 0 0 0 0 0 0 LO OC 
CN CD CD CO CO CO CO (O 
d d d d d d I — 1—1 

CO i ^ CO 05 CO CN 0 0 0 
0 c r CO 0 0 0 1—1 

10 CN CO LO 0 0 0 LO CN 
a> CN CN L O 
1—( 1-^ 1 — I CM CM CN» CM CM 

CM CO r — I LO 0 c r (—1 
0 CO CN 0 0 CO —i CN CO 0 0 CO 0 0 c r CD 
T—1 CO 0 0 CO !>• CM 

fen d d 0 6 d 0 0 d d 
1—1 

CO CO 0 r — i LO r — 
10 0 C75 LO LO CN 0 0 —̂' 0 0 0 T—( CD t — CO 0 0 

CM 1—1 CO 0 0 CO 
10 CO CO CN LO CO 
CM CN CM CN CN CM CN CM 

CM 
iC a i 00 CN O) C O 0 

CM 0 0 1—1 0 CM CM 
0 0 OC CO 0 CN CO 0 03 
CO CO 1—1 t-- CO CO 

Co d d d I — 1 d 0 6 0 ^ 
CO CO CO CO 10 U3 LO LO 

r-l CN CO 
0 1—1 es 00 LO 

CN OJ CM 01 TO 
1—1 



+ o 
CM 

+ 

Co 

C O 
C O 

O I 

O J 
OO 
«d 
CM 

C O 

CO 

O J 

co .-; 
C35 1—1 CN O O 

o 
CO 
d 
C O 

O C 
CM 

O l 

C O 
o 

CM 

CO 
d 
O J 

CM 
lO 
CO. CO 

o 
C O 

O 1-1 o LO CO 1 — I 
o o 

CJ CN 1-1 c r 0 0 
CN C O ^ 

CN 
OJ 

CO 

o 
a . 

O O 
o 

CO 
o 

CO 
o 

C O 
o 

LO 
o 

CO CO 
o o o o 

LO 
o 

OC 
o 

C O 
O : 

c r 
C D 

C C 

o 
X 
CD o 

a 
o 
s 0) 

I — " 
w 

o 
CO 

o u 
a. 

-o 

o 

o 
CM 

C3 

o 
C3 

C O 
o 

o 
O O 

CO CN 

CO 
CO 

o 

d 

C O 
o o o 

C O 
o o o 

LO. 
o 

C O 
o o 

LO 
o 

CD' 
c: o • o 

O CN 
O O 0 0 

OC CD 
O O O O 

O C 
C O C D 

c r 
C D 

CO 
c r 

o 

O CN 
CO CO 
CO 0 0 

o 
1 — I 

CO 
1 — I 

CO 

o 

CO 
CN 
CO 

CO 
c r 

CN 

CO 
CO 
CO 

o 

1—' 

CO 
LO. o. 

CN 

CO 
o 

c r o 
i.O 

C O 
C O 
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XRD Results 
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Results of AAs and ICP-AS 
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