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GROUP-THEORETIC QUANTISATION AND CENTRAL EXTENSIONS 

by 

HISHAMUDDIN ZAINUDDIN 

Ph.D. Thesis, 1990 

Abstract 

This work is concerned with the applications of Isham's group-theoretic quantisation 

programme to simple systems which involve central extensions of some symmetry group. 

Of particular interest are those systems with a 'Wess-Zumino'-like term in their actions 

where other nontrivial modifications are necessary. 

In Chapters 1 and 2, a review of the necessary tools used in this work as well as 

outlines of the group-theoretic quantisation programme are given to facilitate a smooth 

discussion in the latter chapters. The programme is first exemplified by the normal 

quantum mechanics on R n. This example also involves central extensions but of a slightly 

different nature from those which arise from systems with a 'Wess-Zumino'-like term. 

Chapter 3 forms the core of the whole work. The discussions there provide the basis 

for further examples. It is concerned with the group-theoretic quantisation of the system 

of a particle moving on the two-torus in a constant magnetic field with quantised flux. 

The case without the magnetic field is also given for comparison. The canonical group for 

the case with the magnetic field is required to be the central extension of the universal 

cover of the canonical group for the case without the magnetic field. These results are 

then generalised to the corresponding systems on the n-torus. 

Chapter 4 is a digression from the main topic of quantisation and central extensions 

to the discussions of a-models with Wess-Zumino term. The main purpose of this chapter 

is to provide a parallel between these a-models and the systems of a particle moving in 

a magnetic field (as in Chapter 3). The general construction of a Wess-Zumino term is 

given along with the discussion of an Abelian gauge symmetry that the term provides for 

the a-models. The a-models can be interpreted as systems of a 'particle' moving on an 

infinite-dimensional configuration space in a background 'functional magnetic field'. This 

interpretation is further reinforced by the discussions of Noether's theorem and topological 

effects. 



Finally in Chapter 5, a review of Isham's work on the group-theoretic quantisation of 

strings on the tori is given. The inclusion of an antisymmetric tensor field into the system 

arising from the Wess-Zumino term is then considered. This results in a similar effect to 

the inclusion of the magnetic field considered in Chapter 3 namely the canonical group 

acquires a central extension. Other effects particular to strings are also discussed. 
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Introduction 1 

Chapter 1 

Introduction 

1.1 General Introduction 

Both mathematicians and physicists have kept a continual interest in quantum theory 

ever since its birth. Much of the interest is probably due to its {initial) imprecise formu­

lation and the significance it carries. A simple example would be the idea of 'quantising' 

a classical system. Even at this level, one finds intriguing questions and the implica­

tions that they can bring may be far reaching and physically relevant in further devel­

opments of theoretical physics (e.g. see [1]). Various quantisation schemes have been set 

up to make the procedure of quantising a classical system more 'well-defined' e.g. Feyn­

man path integrals!21 quantisation by *-products!31 geometric quantisation!"·&l stochastic 

quantisation:61 C* -algebra quantisation r71 etc. These procedures mostly differ in their 

starting points. To many physicists, the starting point would seem to be the imposition 

of the canonical commutation relations (CCR) 

{1.1) 

on the position variables qa of the configuration space of the system studied and their 

corresponding conjugate momenta Pa· This is normally known as the canonical quantisa­

tion procedure. For the other schemes, they usually have the CCR built in as an outcome 

at a later stage of the procedure. However, the CCH may be inappropriate as a basis 

for quantising classical systems on say, nonlinear configuration spaces. Thus one requires 

some other guiding principles to serve as a basis for quantisation. A natural ingredient 

would be the consideration of symmetries of the system to be quantised. One particular 

scheme that uses symmetry is Isham's group-theoretic quantisation programme!81 

The group-theoretic quantisation programme grew out oflsham's attenipt to quantise 

gravity~91 It has also recently been applied to strings on tori!
101 

The basic idea of the 

programme is first to identify the symmetry group of the classical phase space of the system 
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studied and to modify it, if necessary. Quantisations of the system are then given by 

irreducible unitary representations of the group. The main advantage of this programme 

is that it addresses symmetry at a fundamental level of the quantisation procedure. Such a 

consideration is useful for understanding the quantum mechanical symmetries of a system 

in comparison to their classical counterparts and in particular, it might lead to possible 

insights on the subject of anomalies. The other main advantage of the programme is 

that it uses geometrical notions, and deals specifically with the question of whether the 

objects defined on the system studied are globally well-defined. These geometrical aspects 

in fact allow one to study the well-known topological effects of quantum mechanics (e.g. 

Aharonov-Bohm effect and charge quantisation) in a group-theoretical context. These 

are but a few of the intriguing aspects of the programme, intertwining global structure 

of the system studied with the properties of the group describing its symmetries. The 

geometrical tools are mainly symplectic geometryl11
'
121 and fibre bundle techniques!13

'
141 

used in a similar way as in the geometric quantisation scheme; while the group-theoretical 

aspects rely very heavily on Mackey's techniques of induced representations!15
'
161 

In discussions of symmetries in a quantum mechanical system, one often finds the idea 

of central extensions!171 in which the group describing the classical symmetries of a system 

can be centrally extended to describe the corresponding quantum mechanical systems. 

In some cases, such simple extensions cannot be achieved; nontrivial modifications of 

the group are necessary!181 Central extensions find a natural place in quantum theory 

since it is known that the axioms that build up a quantum mechanical system form 

• • r191 A 1 · al h f w· r201 h h a proJective geometry. c ass1c t eorem o 1gner states t at t e symmetry 

group of a quantum system must be realised by either unitary or anti-unitary projective 

representations. These projective representations may then be lifted to representations 

of an extension of the original group. These extensions can also be thought of as a 

consequence of an (Abelian) gauge symmetry in the system!211 The main concern of this 

thesis is to investigate simple examples of central extensions that arise from applying the 

group-theoretical programme to systems in an external background field. Of particular 

interest will be those with a Wess-Zumino-like term in the action. These terms will induce 

a line bundle structure over the (possibly infinite-dimensional) configuration space of the 

system studied. This line bundle structure is very much connected to the Abelian gauge 

structure mentioned earlier. 
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Organisation 

The organisation of the thesis will be as follows. 

Chapter 1: The rest of this chapter will review topics from symplectic geometry, fibre 

bundles and induced representations. The reviews will only be brief introductions to the 

essential tools that are needed for the rest of the chapters. They also serve the purpose 

of setting up the appropriate notation contained in this thesis. Most proofs of theorems 

etc. will not be given, they can be found elsewhere in the literature. 

Chapter 2: The second chapter will introduce the basic outlines of Isham's group-theoretic 

quantisation programme, with some elaborations. The standard example of quantum 

mechanics on R n will be given according to this scheme. This example will also be the 

first example that mentions central extension, even though it is of a slightly different 

nature from the examples of prime concern in this work. 

Chapter 3: The third chapter initially discusses the application of the programme to the 

system of a particle on the two-torus. This example leads naturally to the study of the 

simplest example of quantisation of a particle moving on a nonlinear configuration space 

(T2) in a constant background magnetic field. Here is the first encounter of a 'Wess­

Zumino'-like term i.e. the field strength of the magnetic field with quantised flux. This 

term significantly changes the symmetry group of the case without the magnetic field 

to one which also includes some form of central extension. Finally, the results for the 

two-torus are then generalised to the case of the n-torus in a latticised form. 

Chapter 4: Here, the discussion digresses into a slightly different topic, namely nonlinear 

u-models with Wess-Zumino term. The Wess-Zumino term provides an analogue of an 

external background 'magnetic field' in the configuration space of fields of the model and 

hence furnishes these theories with an Abelian gauge symmetry. This allows one to treat 

them as systems of a particle moving on an infinite-dimensional configuration space with 

a magnetic field which provides a parallel with the example studied in Chapter 3. This 

analogy is brought closer by looking into Noether's theorem which will be modified in 

the presence of an external field. Some examples of such theories are given along with a 

discussion of possible topological effects and global problems. 

Chapter 5: The final chapter make use of the results of the previous two chapters to discuss 

the quantisation of strings on the tori. First, a review of Isham's results of quantisation 

of a string on circle/torus for the case without the Wess-Zumino term is given. This is 
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followed by the consideration of the case with Wess-Zumino term. 

1.2 Symplectic Geometry 

Quantisation schemes have always been built around familiar concepts of classical me­

chanics. This is in particular true for Isham's group-theoretic quantisation programme. 

It makes use of the modern geometrical approach to classical mechanics based on sym­

plectic manifolds~11 - 121 A symplectic manifold is a manifold S whose space is modelled on 

R 2". The coordinates of S corresponds to some state space of a particle moving on an 

n-dimensional configuration space Q. A structure defined along with S is a two-form w 

on S such that 

(a) w is closed; dw = 0, and 

(b) for each x E S, Wx : TxS x TxS --+ R is nondegenerate; 

Wx and TxS is the two-form w and the tangent space respectively at x. The two-form w 

is called the symplectic form (structure) and the pair ( S, w) is a symplectic manifold. To 

make the connection with classical mechanics more transparent, we work with a concrete 

example of S. The state space in classical mechanics is determined by the positions and 

velocities (or momenta) of the particle. An appropriate model space for the state space 

would be the tangent bundle TQ of the configuration space of the particle. Alternatively 

one can use the dual to TQ i.e. the cotangent bundle T*Q. Let the coordinates of Q be 

denoted by {qi} (i runs from 1 ton= dimQ). The tangent bundle is then coordinatised 

by {qi, dqi} := {qi, qi} while the cotangent bundle is coordinatised by {qi, 8f8qi} := 

{ qi, Pi} :221 Some explanatory notes are necessary for this notation. The symbols dqi and 

8j8qi are really coordinate functions on TQ and T*Q respectively such that when they 

act on qi8j8qi E TqQ and Pidqi E r;Q (q E Q) (implicitly summed), 

.. 8 . 
dq'(q1-.) = q' 

8q1 
8 . 
-. (pjdq1 ) = Pi 
8q' 

(1.2) 

they reproduce the corresponding fibre coordinates. The coordinate qi is considered to be 

the velocity coordinate defining the state space and by abuse of notation, it is identified 

with the coordinate function dqi. Similarly for Pi and a I 8qi where Pi is the momentum 
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coordinate of the phase space.[The notation is useful when discussing systems on a lattice 

e.g. see Section 3.4.] We will now only use (the phase space) T*Q as the state space since 

it is more convenient to deal with forms than vector fields, and also T*Q is endowed with 

a natural symplectic form which is constructed as follows. 

Let T(T"'Q) be the tangent bundle to T*Q and consider the commutative diagram 

T(T*Q) 

1rT·Q l 
T*Q 

where the maps are defined as 

).T 
Q -

>.q -
7rQ : (qi, t/) E TQ ,_ qi E Q 

AQ: (qi,Pi) E T"'Q ,_ qi E Q 

7rT·Q: (qi,pi;dqi,dpi) E T(T"'Q) ,_ (qi,pi) E T"'Q 

>..~: (qi,pi; dqi, dpi) E T(T"'Q) ,_ (qi, dqi) E TQ 

There is a dual to the upper line in (1.3) i.e. 

T(T*Q) 

duall 

T*(T*Q) 

Consider now the following 

(>.~)" -
TQ 

l dual 

T*Q 

{1.3) 

(1.4) 

(1.5) 

(1.6) 

[The subscript q will be dropped to denote the one-form and the vector field respectively 

in contrast to the tangent vector and covector above.] One has then the identity 

(1.7) 

where .J denotes the contraction between appropriate vectors and one-forms. Using the 
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dual map (>.~)., one can now construct the following one-form on T*Q: 

8 :=(>.~)*a E T*(T*Q) (1.8) 

From ( 1. 7), 8 can be written as 

(1.9) 

since Pi(a) = ai. Thus, the symplectic form on T*Q can now be defined as 

w := -dB = dqi 1\ dpi . (1.10) 

For this reason, 8 is sometimes called the symplectic potential (or canonical one-form). 

Note that w is obviously closed and nondegenerate. Hence, the pair (S,w), where S = 
T*Q, is a symplectic manifold. 

One property of the symplectic structure is that it behaves like a skew-symmetric met­

ric. An isomorphism between the vector fields and one-forms on T*Q can be established 

using the symplectic form via the contraction operation. For example, if ~a is given by 

(1.6) then the one-form that corresponds to ~a is 

(1.11) 

In a similar way, if /3 is a one-form on T* Q given by 

(1.12) 

then a vector field that corresponds to /3 is 

(1.13) 

A special case is when /3 is the exact form df where f E C00 (S, R); its corresponding 

vector field is 

(1.14) 

obtained from the relation 

(1.15) 

This vector field is called Hamiltonian. If f is the Hamiltonian function H on S, the 
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Hamiltonian vector field is then 

(1.16) 

The integral curves of ~H are given by solutions to the Hamilton's equations 

dpi 8H 
dt = - 8qi (1.17) 

where t is the time evolution parameter parametrising the curves. This gives the usual 

connection to Hamiltonian mechanics. Another important relation which can be obtained 

by further contractions with the symplectic form is the following. If e1, eo are two Hamil­

tonian vector fields corresponding to functions f and g respectively, then 

(1.18) 

which is the well-known Poisson bracket. If[·,·] is the Lie bracket for two vector fields, it 

is not difficult to check that 

(1.19) 

This establishes an antihomomorphism of the commutator algebra of vector fields with 

the Poisson bracket algebra of functions, both on S. It is one of the key relations in the 

quantisation procedure. [Note that the observables that are to be quantised are given by 

functions on S.] It provides the first step of representing the Poisson bracket algebra as 

an operator algebra. 

As mentioned in the introduction, one of the first major steps in the quantisation 

programme is to identify the symmetry group g of the classical phase space. These group 

transformations should preserve the equations of motion and the Poisson bracket algebra. 

This amounts to finding transformations that preserve the symplectic structure. Consider 

then a local flow ¢~ : I X Q - Q to a vector field e where I is some interval in R. This 

satisfies 

¢~(q) = q for all q E Q 

¢~(¢~(q)) = <P~+s for all t, s, (t + s) E I 

(1.20) 

(1.21) 
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This generates a (local) one-parameter group of diffeomorphisms of Q. For a symmetry 

transformation, the local flow is given by 

cf;~(q) := qexp(-tA) (1.22) 

where A is a generator of the Lie algebra .C(Q) of some symmetry group g and the vector 

field eA is given by 

A df eq {f)= dt(qexp(-tA) lt=O (1.23) 

Note that the right hand side of (1.22) is a right translation of the point q E Q by an 

element of g. This group of diffeomorphisms is said to be generating symplectomorphisms 

or canonical transformations if 

(1.24) 

which is required of the symmetry group Q. The condition (1.24) is in fact equivalent to 

the condition 

(1.25) 

on ~A where £e denotes the Lie derivative in the direction of ~A. For a Hamiltonian 

vector field ~/, this is always true since 

£(1w = d((c ..J w) + ~! ..J dw 

= d(df) = 0 ' 
(1.26) 

where we have used the homotopy formula £ ( ( ·) = d( ~ ..J ·) + e ..J d( ·) and ( 1.15). It is also 

possible to have a vector field ~A such that (1.25) holds without the property of (1.15). 

Such vector fields are said to be only locally Hamiltonian. However, they will not be of 

much use in the quantisation programme for reasons to be discussed later. 

Finally, it is important to note that the discussions above have their generalisations 

or modifications to the case of infinite-dimensional symplectic manifolds!231 We shall not 

discuss them here, but a mention will be made when any such necessary modifications or 

related technical points arise. 
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1.3 Fibre Bundles 

Before going into ideas of group theory and induced representations which form the 

core of Isham's quantisation programme, it is helpful to delve into some general notions 

of fibre bundles!13
.
141 In particular, fibre bundles have been very useful in providing the 

framework of induced representations!24
.
251 They have also been used in the formulation 

of gauge theories and u-models in physics!
26

'
271 A fibre bundle, intuitively, looks like 

a product 1Rn x 1Rm but maybe glued together in a nontrivial way globally. Tangent 

(cotangent) bundles encountered in the last section are familiar examples of fibre bundles, 

given by the product of the given configuration space with its tangent (cotangent) spaces. 

Formal definitions of fibre bundles and related concepts will now be given below. 

A fibre bundle F - E -X is a triple of manifolds E, X and F with a smooth pro­

jection map 1r from E onto X. At each point x E X, the set Tr- 1 ( x) =: F:r. is diffeomorphic 

to F and is called the fibre at x. The space E is called the total space and for simplicity, 

it will be interchangeably referred to as the bundle itself. A section of the bundle E is 

a maps :X- E such that 1r o s = idx, the identity map on X. A trivial bundle is a 

bundle whose total space is the product X x F (globally) with a natural projection map 

onto X. A bundle is therefore always trivialisable locally. Consider the cover { U a} of X. 

On each Ua, there is the commutative diagram 

7r-1(Ua) Sa -
l ( 1.27) 

Ua 
idx -

where prua is the natural projection onto Ua and Sa is the local trivialisation of E given 

by the diffeomorphism Ua x F- Tr- 1(Ua)· This trivialisation serves as a local chart for 

the bundle. Thus, a section s(x) of E may now be given a pair of coordinates (namely 

that of the base space X and that of the fibre F) using the local trivialisation map Sa : 

s(x) = sa(x, f) =: (x, f) (1.28) 

where f is the fibre coordinate and x E Ua. Note that such a coordinatisation depends on 

the local chart U a· In order to see the coordinatisation in other (overlapping) charts and 

how the bundle is glued together from such local charts, consider two neighbourhoods Ua 
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and Ub of x. On the overlap Ua nUb, one can define the transition function 

nab : Ua n Ub---+ Diff F , 

nab( X) := s;; 1 
0 Sb(X) 

{1.29) 

where the parenthesised x on the right hand side of ( 1. 29) denotes the evaluation of s; 1 o Sb 

at x. In most physical examples, Diff F is realised by a much smaller symmetry group G 

through the monomorphism p : G ---+ Diff F, 

nab= Po gab , 

where gab : Ua nUb---+ G obeying relations 

9aa(x) = e 

gab(x)gba(x) = e 

9ab(X)9bc(X)9ca(x) = e 

Vx E Ua 

Vx E Ua nUb 

Vx E Ua nUb n Uc 

{1.30) 

(1.31) 

where e is the identity in G. The bundle E is then called a G-bundle and the group G 

is said to be the structure group of E. Note that under change of local charts from that 

determined by Ua to that of Ub, the coordinatisation of the section changes as 

Sb(X, f)= Sa( X, !)nab( X) 

= (x, g;bl(x)f) 

[the symbol p has been dropped for simplicity; F now has an effective G-action.] 

Equipped with the above definitions, one has the following theorem. 

(1.32) 

Theorem 1.1: Given the spaces X and F, a covering {Ua}, transition functions {9ab} 

satisfying {1.31 ), there exists a G-bundle F---+ E---+ X over X determined up to an 

isomorphism. 0 

Isomorphic G-bundles over X form equivalence classes. The following proposition gives 

one condition when an isomorphism between G-bundles can be established. 

Proposition 1.2: Let {gab} and {g~b} be two sets of transition functions defined on the 

covering {Ua} on X. They define isomorphic G-bundles over X if and only if there exist 
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functions A a : U a - G such that 

D (1.33) 

Note that from Theorem 1.1 and Proposition 1.2, the isomorphic G-bundles over X fall 

into the same set of equivalence classes irrespective of the fibre F. It will be enough to 

consider one representative of the fibre spaces F to demonstrate the necessary properties 

of the G-bundles. One fibre space that has a natural G-action on it, both from the left and 

the right, is the group G itself. The G-bundle that has Gas its fibre is called a principal 

G-bundle ( G- P- X) where its total space is now denoted by P. The group G is 

often called the gauge group (as in the context of gauge theories). The (local) section u 

of P is trivialised by 

u(x) := (x, ga) X E Ua 

There is a natural right G-action on the bundle P defined by 

X E Ua, g E G . 

This gives an automorphism of P which maps each fibre to itself: 

a- p Tg -
X 

p 

,/ 

Such automorphisms are called gauge transformations of P. 

(1.34) 

(1.35) 

(1.36) 

Associated to the bundle P are various other G-bundles built out of different fibre 

spaces, depending on the structure that is required of F. The construction of such bundle 

is given by first defining a right G-action on P x F by 

g E G, pEP (1.37) 

where 1/J is a function of x = 11"(p) taking values in F and U(g-1) is the representation of 

g-1 on F. The associated bundle E to P with fibre F then has the total space taken to 
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be the quotient of P x F with respect to the G-action (1.37) i.e. 

E = ( p X F) I G =: p X G F . (1.38) 

The projection map 7rE from E to X is obtained by the following commutative diagram 

PxF 

x! 
E 'IrE 

--+ 

p 

!7r 

X 

(1.39) 

where xis the projection map of P x F to the set of equivalence classes under (1.37) and 

thus 

(1.40) 

A section 'l1 of E is given by 

w(x) := [u(x),.,P(x)] (1.41) 

where [·, ·] denotes the equivalence class of P x F under the equivalence relation 

[u(x),.,P(x)] = [r9u(x),U(g-1).,P(x)] . (1.42) 

Note under the change of (local) sections O"b(x) = O"a(x)Oab(x) for X E Ua nub, one finds 

W(x) = [ua(x),'f/1a(x)] = [ub(x),.,Pb(x)] 

= [ua(x)Oab(x), 'f/1b(x)] 

= [ua(x), nab(x).,Pb(x)] 

(1.43) 

where 'f/1a( x) and 'f/1b( x) are the functions 'f/1 on U a and Ub respectively, and p in ( 1.30) is 

now given by U. Hence the function 'f/1 obeys the relation 

'f/1a(x) = nab(x).,Pb(x) . (1.44) 

To close this section, we shall briefly look into the notion of liftings · associated to 

the structure of fibre bundles. A lifting is said to be considered if the objects or specific 

properties defined on the base space are extended or generalised to corresponding objects 



Introduction 13 

or properties defined on the whole bundle. One important consequence of liftings consid­

ered in this work is central extensions of a symmetry group. In view of this main aim of 

studying central extensions, the relevant topic of lifting to be discussed is that of a group 

action!
28

-
311 

Consider the bundle F-E- X where X has a G-action ra defined on 

it. The action ra is said to be lifted to E if there exists a G-action r b on E such that the 

following diagram commutes 

GxE 

(ida, 1r) 1 
GxX 

7"1 
G -

The G-action r b satisfies the right action identity 

91, 92 E G 

Below are some useful results on lifting group actions. 

(1.45) 

(1.46) 

Proposition 1.3: Let P be a principal fibre bundle with base space G, a topological 

group. Let r: G x G- G be the group action on G i.e. r92 91 = 9192, then the action r 

can be lifted if and only if P is a trivial bundle. 0 

An advantage of constructing associated bundles in the way described above is that one 

can immediately see that the following proposition is true. 

Proposition 1.4: If a G-action ra on X has a lifting in a principal bundle P over X, 

then ra has also a lift in every bundle associated to P. 0 

Proposition 1.5: If the G-action ra on X has a lifting in a principal K-bundle P over 

X, then there is a naturally defined action of G x K on P [This action could be that of 

a semi4irect product between G and K]. If ra is transitive (free) then the newly defined 

action of G x K on P will also be transitive (free). 0 

This proposition hints towards the result that central extensions of a symmetry group 

can be established in the presence of a line bundle structure as indicated in the general 

introduction. Finally, one can prove via isomorphism of fibre bundles over a given space 

X the following theorem. 

Theorem 1.6: A lifted G-action on a bundle E over X is only unique up to a bundle 

equivalence. 0 
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1.4 Group Representations 

The problem of quantisation to some in the end boils down to finding unitary repre­

sentations of some symmetry group. Group representation theory 132
-

341 has always occupy 

an important position in mathematics with its wide ranging connections with other ar­

eas, and it has been developed at a very technical level. It will be very useful to give a 

brief exposition of the relevant tools needed in the forecoming chapters. We begin this 

section by introducing the basic ideas forming representation theory and then continue 

with Mackey's induced representation techniques and other topics involving semidirect 

products and group extensions. 

Basic Ideas 

A representation p of a group G on a representation space V is a homomorphism of 

G into invertible (linear) maps of V into itself such that the resulting map (action) 

p:Gxv--v (1.47) 

is continuous. An invariant subspace for p is a vector subspace U of V such that p(g )( U) ~ 

U 'r:/g E G. The representation pis then said to be irreducible if it has no invariant subspace 

other than 0 and V. Otherwise p is reducible. The representation p is unitary if p(g) is 

unitary i.e. 

'r:/g E G (1.48) 

where t denotes the hermitian conjugation and :n. is the identity homomorphism. Two 

representations of G, p on V and p' on V' are (unitarily) equivalent if there is a unitary 

operator n : V -- V' such that 

Op(g) = p'(g)O 'r:/g E G . (1.49) 

The operator n is called an intertwining operator. Thus, among the representations 

of G, the main objects of interest are the equivalence classes of (unitary) irreducible 

representations. Later, these objects would correspond to different quantisations of a 

system with the symmetry group G. One important problem of representation theory 

is to classify representations of G according to these equivalence classes. To do so, the 

function that labels each equivalence class should be independent of the representations 
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that constitute the equivalence class i.e. it should be an invariant of the equivalence class. 

For a finite-dimensional representation p, it is easily defined as 

Xp(g) := 'If p(g) 'Vg E G . (1.50) 

These functions are called characters. For an infinite-dimensional representation, there are 

technical difficulties in defining (1.50) though they can be circumvented (e.g. see Atiyah 

in [33] and [32]). For our purposes, it is sufficient to consider characters as 'generalised 

functions' from G to {). These characters are said to form a dual space to G, Char( G). 

One now has the following theorem. 

Theorem 1. 7: An irreducible representation p is defined by its character up to an 

equivalence. 0 

One distinguishing feature for the Abelian groups is that the dual space forms a topological 

(dual) group. First, note that by Schur's Lemma the irreducible representations p of an 

Abelian group G are always one-dimensional. The character of G is a continuous function 

X : G ----. 4J satisfying 

X(9192) = X(9t)X(92) 91! 92 E G 

lx(g)l = 1 'Vg E G 

Hence, from (1.51) and (1.52) we have 

x(e) = 1 , 

x(g-1) = x(g) = x-1(g) 

(1.51) 

(1.52) 

(1.53) 

(1.54) 

Therefore the character is a one-dimensional unitary representation of G, and hence 

Char( G) is an Abelian group itself. Char( G) sometimes denoted G is called the Pon­

tryagin dual of G. An important theorem due to Pontryagin follows . 
...... 

Theorem 1.8: The dual space G of G is topologically isomorphic toG i.e . 

...... 
G~G . D (1.55) 

Below are some useful results concerning dual groups: 

-it= R, U(l) = 7l , 7l = U(1) , Zn = 7ln (1.56) 
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Induced Representations 

A standard technique of obtaining irreducible representations has always been the 

induction method. This is to to say that given a known irreducible representation of 

a subgroup H of G, an irreducible representation of G may be constructed out of this 

known representation of H. The machinery that underlies the technique involves a deep 

and technical theory of measures. This is ignored in this review for the sake of simplicity; 

their reviews may be found instead in Mackey's work in [15, 16, 33] and also of others 

in [19, 32, 34]. Here, we focus more on the surface of the useful techniques and related 

results involved. 

Let H be a closed subgroup of G and h - L( h) be a unitary representation of h E H 

on a Hilbert space 'H.. Let 1f.L be the set of functions t/J : G -'H. such that 

(i) ,P(gh) = L(h-1)t/J(9) Vh E H, 9 E G; 

( ii) the inner product ( ,P(9 ), t/J(9) )L on 1f.L is 'measurable' for which 

J ( t/J(9 ), t/J(9 ))L djl < oo 

G/H 

where dJl is a measure on the quotient space Gl H (invariant under G-action), 

then 

91!92 E G (1.57) 

defines a unitary representation of G in 1{.L which is called the induced representation of 

Gby L. 

Lemma 1.9: The space 1f.L is isomorphic to the Hilbert space L2( G I H, Jl, 1i) of square 

integrable functions with domain in G I H and values in 1i via relation 

t/J(9) = L( h9 ),P' (9 H) 9 E G (1.58) 

where hg is the factor of subgroup H in 9 and t/J' E L2( G I H, Jl, 'H.). D . 

This lemma allows one to construct the above induced representation naturally on a bundle 

associated to the bundle H - G - G I H. The construction is as follows. Associated to 
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the 'master' bundle Gover G/ H, is a principal U(n)-bundle 

U(n)-G XL U(n)-G/H (1.59) 

The equivalence relation defining this bundle is given by 

[g, U] = [gh, L(h-1 )U) hE H, U E U(n) , (1.60) 

where L( h - 1) above is an irreducible unitary representation of H. The appropriate bundle 

to build the induced representations from is the associated vector bundle to the above 

principal U(n)-bundle, 

(1.61) 

The cross section W of this bundle is given by 

'll(g) := [g,'I/J(g)] 9 E G , (1.62) 

where 1/J is a square-integrable ccn-valued function of G which obeys 

(1.63) 

from (1.60). The function 1/J does in fact form the induced representation of G by L as in 

(1.57). 

It is obvious that the equivalence class of irreducible representations of H will somehow 

determine that of the induced representations of G. To make the statement more precise, 

it is necessary to look into the G-actions on characters of H i.e. the G-orbits of if. Let 

Hx denote the stabiliser group of x E if which includes H itself. [A stabiliser group of 

x is a subgroup of G whose elements g obey gxg-1 = x.] For every X E if, there is a 

continuous one-to-one map 

gHx ~---+ 9X (1.64) 

of G/ Hx onto the G-orbit 0 of X· 
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Theorem 1.10: Let H be a closed normal Abelian subgroup of G and 0, the G-orbit 

of x E ii. Let V(x) be the set of elements V in iix such that V(h) :=< x, h > :n. where 

h E H and < ·, · > denotes the inner product between elements of H with their duals. 

Then the map 

v-uv (V E V(x)) (1.65) 

is a one-to-one map of V(x) onto Glo (the elements in G associated to 0). D 

This theorem effectively gives a specific correspondence between characters of H with those 

of G and hence a correspondence between their equivalence classes of representations. A 

special case of the above theorem is when 0 itself is a one-element orbit {:n.}. Then the 

elements of G correspond to the equivalence classes of irreducible unitary representations 

of G lifted from those of G/ H i.e.those of the form 

g-U(gH) (1.66) 

where U is an irreducible unitary representation of G /H. 

Semi-direct Products 

The theory of induced representations and their orbital analysis takes a more definite form 

when the group G is that of a semi-direct product. First, we define what a semi-direct 

product is. Consider two (Lie) groups K and H. K is said to act on H by automorphism if 

a smooth map 7: K x H- His specified such that 7(k, ·) (k E K) is a homomorphism 

of K into the automorphism group of H. The semi-direct product group of K and H 

denoted G := Kr><. His constructed by the pair (K, H) whose group multiplication is 
'T 

(1.67) 

and the inverse elements are given by 

(k E K, hE H) (1.68) 

Note that one sometimes write Gas K r><. H where a specific action 7 is already assumed. 

The notation H ><J K may also be used for G. It is easy to check from (1.67) and (1.68) 

that His a normal subgroup of G. 
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To study the irreducible unitary representations U of G, it is convenient to introduce 

the notation 

L(h) :=U(e,h), T(k) :=U(k,e) (k E K, hE H) , (1.69) 

where e is the identity in the respective subgroups. L and T are the irreducible unitary 

representations of subgroups H and K respectively such that 

U(k, h)= T(k)L(h) . (1.70) 

They satisfy the relation 

(ki E K, hiE H) , (1.71) 

which reduces to 

(1. 72) 

The relation ( 1. 72) induces a K -action on x E if via 

x ~ k.x; < h, k.x >=< k-1hk, x > (k E K, hE H) . (1. 73) 

Let 0 be a K-orbit on H and x E 0. Given an irreducible representation V of the 

stability subgroup Kx. of K, one can define the irreducible representation Vx of Kx.'>< H 

by 

Vx(k, h):= x(h)V(k) . (1.74) 

Theorem 1.11: Given the irreducible representation Vx of Kx. '>< H, one can construct 

the induced representation uvx. of G which is irreducible. If O' is a K-orbit on fi with 

x' E 0' and V' is an irreducible representation of Kx.•, then uVx. is equivalent to uV'x.' if 

the orbits 0 and 0 1 coincide. 0 

The corollary to Theorem 1.10 when G is the semi-direct product K '>< H is given by the 

following theorem. 
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Theorem 1.12: Let H be a closed normal Abelian subgroup of G = Kr><. H. Let 0 

be a G-orbit in ii with x E 0. For each V in (KnHx), let Vx E fix be given by 

(Vx)(k, h):=< h, x > V(k) (k E K n Hx, hE H) then the map 

(1.75) 

is a one-to-one map of (KnHx) onto Glo. 0 

Equipped with these theorems, one can now simply construct all the irreducible represen­

tations of G by first determining the characters of H and classifying their orbits under G 

(or K). 

Group Extensions 

To end, we direct our discussions to the 'central' theme of the thesis i.e. central exten­

sions and how it connects with everything we have just mentioned. The connection with 

projective representations (and hence projective geometry) will also be briefly illustrated. 

An extension of the group G by A is the short exact sequence 

o-A~G~G-o (1.76) 

of groups where t is the inclusion map and 1r is the projection map. [An exact sequence is 

a sequence of maps between objects of which the kernel of one map is equal to the image 

of the preceding map.] The sequence (1.76) is said to split if there is a (local) section u 

such that u o 1r = idG. The sequence splits if it is isomorphic to the sequence 

o-A-A><~G-G-o 

i.e. the following diagram commutes 

- -
- -

G 

lido 
G 

(1. 77) 

(1.78) 

where 'Y is an isomorphism of G into A XI G. The extension (1. 76) is central if t.(A) lies in 

the centre of G (i.e. gag-1 =a "Vg E G, a E A). 
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Given the machinery of induced representations of semi-direct product groups, one 

can construct irreducible unitary representations of G induced by an irreducible unitary 

representation of A. Suppose that A is a central Abelian subgroup and x E A. Let 

g E G and a9 be the factor of A in g, then an irreducible unitary representation of G on 

L2( G /A, J.L, 'H) may be given by 

- - 2 -gi E G, 1/J E L (G/A, J.L, 'H) (1. 79) 

Let gi be the factor of Gin 9i and writing the above equation (1. 79) as 

( ux (g2 )1/J) (gl) : = x(gl, g2 ),P(g1g2) (1.80) 

defines a projective {multiplier) representation where x(gl, g2) is called a multiplier. The 

multiplier obeys the cocycle identity 

(1.81) 

and 

x(gb e)= 1 . (1.82) 

[This implies extensions may be classified by cohomology of groups (see e.g. [19,35]).] 

Thus this establishes the correspondence between central extensions and projective rep­

resentations. 
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Chapter 2 

Group-Theoretic Quantisation 

2.1 Quantum Theory 

Quantum theory took shape in the early 1900's and went through several phases 

of development (see [1] for a pedagogical introduction to the subject developed along 

historical lines). Today, its conventional formulation rests more or less on the following 

postulates. 

Postulate 1: The (pure) states of a physical system are represented by vectors in a complex 

(projective) Hilbert space 1i in which probabilistic information of the system are encoded. 

Postulate 2: Physical quantities known as observables 0 are represented by self-adjoint 

operators 6 defined on 1{. 

Postulate 3: Result of a measurement of an observable 0 in a state represented by the 

vector '1/J is given by the expectation value 

0 ·- < '1/J, 6¢ > 
< >1/J .- nfo n/o 

< '+'' '+' > 
(2.1) 

where < ·, · > denotes the inner product on 11.. 

Postulate 4: In a physical system with no external influence, states '1/Jt, 1/Jt• at corresponding 

different times t and t' are unitarily related by 

'1/Jt• = u ( t' - t )'1/Jt (2.2) 

where U is a unitary operator given by 

U(t) := exp( -itil /n) (2.3) 

The operator fl is said to be the generator of time translations and is called the Hamil­

ton ian of the system. It may be added here that the operator p corresponding to the 

momentum observable, generates space translations. 
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The future discussions of Isham's group-theoretic quantisation programme 121 will assume 

these four postulates to hold. Other schemes may want to add these further two postulates. 

Postulate 5: Self-adjoint operators q and p of position and momentum observables respec­

tively obey the canonical commutation relation (CCR) 

[q,p] = i1i:n (2.4) 

Postulate 6: A quantum mechanical state vector 1/J E 7-l is symmetric under the permuta­

tion of identical bosons and antisymmetric under the permutation of identical fermions. 

Earlier in Chapter 1, it has been mentioned that Postulate 5 might be undesirable for 

quantisation on nonlinear configuration spaces. In fact, the CCR only holds for systems 

with underlying linear configuration spaces in the group-theoretic quantisation scheme. 

The scheme being based on the correct symmetries of the phase space, disallows the CCR 

for configuration spaces other than the linear ones. Later in the chapter, the example of 

configuration space Q = 1R n will be given showing how the CCR arises from the symmetry 

group of the system's corresponding phase space. Postulate 6, though concerns with a 

kind of symmetry related to spin and statistics, it is of a different level and will not be 

discussed here at all. 

It is Postulate 2 that poses the main problem of quantisation. It was once hoped that 

the quantisation map 

(2.5) 

mapping the observable f (a function of the state space) to a self-adjoint operator t J on 

a Hilbert space 7-l obeys 

(i) (f+g)~i(J+g); 

(ii) >.j ~ t>J, >. E JR.; 

(iii) {f,g} ~ -[J,g]; 

(iv) l~tll; 

( v) qi and Pj act irreducibly on 7-l. 

This is known as the Dirac problem. It is now known that this is not possible by 

Groenwald-Van Hove Theorem (see [3] p. 434 and [4] for a more modern discussion). 
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It turned out that there is a quantisation which respects (i) - (iv) only when the 'mul­

tiplicity' of the representation of the p's and q's is infinite. Alternatively, one can select 

only a subclass of the observables for the quantisation process. A key observation to be 

made in the above problem is that not all observables generate flows globally on the state 

space studied!31 Those which generate only local flows are not expected to have good 

quantum counterparts and should then be discounted. Such a consideration is one of the 

global aims of the group-theoretic quantisation programme~21 The observables considered 

in the programme are those whose vector fields are strictly Hamiltonian, generating a 

global group of symplectomorphisms on the phase space. The outlines of the programme 

will now be given below in Section 2.2. 

2.2 Group-Theoretic Quantisation Programme 

The programme, as the name suggests, rests heavily on a group which describes 

the symmetry of the phase space S = T*Q; Q being the configuration space of the 

particle/string considered. This symmetry group is called the canonical group. Once it 

is identified, the quantisation of the system will then be given by finding its irreducible 

unitary representations. The programme may be summarised (following Isham [2 •
51 

) in the 

four main steps below. 

Step 1: Identify a Lie group g of symplectomorphisms of S. Each element A of the 

Lie algebra .C(Q) of g will generate a one-parameter family of symplectomorphisms s 1-+ 

s exp(tA), s E S. The induced vector field (1.23) 

f E C"'-(S, JR.), s E S 

is Hamiltonian whose flow is globally defined on S. Such vector fields are the homomorphic 

image of .C(Q). It is an isomorphic image if the Q-action on S is almost effective (i.e. if 

only a discrete subgroup of g acts trivially). 

Step 2: To each eA there will be an observable fA E C""(S, 1R) such that eA ..1 w = dfA 

where w is a given symplectic structure on S. Thus, on forming the Poisson bracket 

algebra of these observables, it is hoped that this algebra will be isomorphic to .C(Q). 

Otherwise an extension of g is required to achieve an isomorphism of its Lie algebra with 

the Poisson bracket algebra of thf' observables. 
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Step 3: Once Step 2 is achieved, a canonical group g has then been established in which 

its Lie algebra is represented faithfully by the Poisson bracket algebra of a preferred set of 

observables {fA I A E .C(Q)} =: 0. The set 0 is called the canonical observables. They are 

then required to be large enough to generate every other observable in C'Xi(S, R). Given 

a basis {Ai} of .C(Q), the continuity of the maps --->{/A;} may require the embedding 

of S into some vector space :R k where k 2:: dimS. 

Step 4: Given g, the quantisation of the system is then given by a state space represented 

by the Hilbert space of an irreducible unitary representation of g. Inequivalent represen­

tations provide different quantisations of the system. The set {fA I A E .C(Q)} =: 6 of 

self-adjoint generators of .C(Q) provide the quantisation of the corresponding observables 

in 0 and hence also give an operator representation of the Poisson bracket algebra. 

It must be said at this point that while there is a relation between the choice of 

canonical observables and the canonical group, it is not clear what really determines the 

correct choice for each Q. A position of trial and error is needed. For this reason, the 

programme may be applied in a slightly different order than presented above to some cases 

depending on convenience. For example, one could equally well start with the canonical 

observables and work backwards to obtain the canonical group. Another point that is 

worth mentioning regarding the choice of the canonical group is the possibility of having 

different canonical groups equally acting on S as required in Step 1. They amount to 

giving significantly different quantisations of the system. An example of such a case will 

be given in Chapter 3. In this section, we shall continue to elaborate some aspects involved 

in each step of the programme. 

Step 1 

The task of finding g as mentioned above is far from obvious and hence it will be useful 

to know what type of symmetry group is needed. The first condition that one requires of g 
is that its action on S must be transitive. The reason for this requirement comes from its 

aforementioned connection with the canonical observables from which other observables 

of the system are to be generated. The details of the explanation shall be deferred to the 

discussion of Step 3. One group that acts transitively on Q is the diffeomorphism group 

Diff Q itself. To have a canonical group acting transitively on the whole of S = T*Q, 

one needs to supplement Diff Q with a group acting along the fibres of T*Q. This group 

can be shown to be the Abelian group C00 (Q, :R) and the full canonical group will be 

Diff Q 1>< C00
( Q, R)~21 Note that this group is infinite-dimensional even when dim Q < oo. 
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While it is possible to quantise using this group, one encounters several difficulties in 

giving the resultant theory a physical interpretation, not to mention the technical ones. 

A more modest and sensible attempt would be to find finite-dimensional subgroups of 

both Diff Q and ex ( Q, R) that would work as a canonical group. 

Once a candidate for the canonical group 9 is found, the generators A of its Lie algebra 

£(9) generate one-parameter subgroups of symplectomorphisms 

s 1--+ s exp( -tA) s E S, t E R . (2.6) 

The tangent vector to the flow (2.6) then defines the vector field 

df 
~A (f) := dt (s exp( -tA))It=O (2.7) 

A homomorphism A ~--+ ~A between £(9) and the commutator algebra of these vector 

fields is obtained by the relation 

(2.8) 

An isomorphism can be achieved if and only if there is no element A E £(9) such that 

s = s exp(tA) 'Tis E S (2.9) 

near t = 0. Hence the additional condition on 9 is that its action is almost effective i.e. 

sg = s 'Vs E S (2.10) 

where D is a discrete subgroup of 9. By definition, the Lie derivative of the symplectic 

form w on S with respect to vector fields (2. 7) is 

(2.11) 

Equation (2.11) immediately implies that the ~A·s are locally Hamiltonian vector fields. 

The programme however requires that these vector fields are strictly Hamiltonian in order 

to get globally well-defined observables via relation 

(2.12) 

This will be related to the question of embedding/immersion in Step 3. 
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Step 2 

The relation (2.12) (~J .J w = df) from Step 1 establishes the homomorphism 

C00 (S, JR.) .L Ham V F(S) 

f ~ -~~ 
(2.13) 

between observables and Hamiltonian vector fields on S. The minus sign on ~A comes 

from the fact that 

j,g E C00 (S, R) (2.14) 

Thus with each A E .C(g) one has the map F, 

(2.15) 

called the momentum map. From relations (2.12) -. (2.15) together with (2.8), a homo­

morphism between .C(g) and the Poisson bracket algebra may now be established. It is 

now important to note that this homomorphism may fail to be an isomorphism. This is 

because the homomorphism (2.13) is unique only up to the addition of constant functions 

to f. Thus if the constant functions are included as observables on S, the homomorphism 

of .C(g) with the Poisson bracket algebra is not an isomorphism. To summarise the whole 

situation, one has the following exact sequence/commutative diagram 

0 - R ....!:.... C00 (S, JR.) _i__. Ham V F(S) - 0 

F""' / (2.16) 

.C(g) 

For F to be a Lie algebra isomorphism, it is required that 

A, BE .C(g) (2.17) 

But so far only the relation 

(2.18) 

where z(A, B) is a constant, follows. The constant z(A, B) can be shown to obey 

z(A, B) = -z(B, A) ; (2.19) 

z(A, [B, C]) + z(B, [C, A])+ z(C, [A, B]) = 0 (2.20) 

The functions z : .C(Q) x .C(Q)- 1R is in fact a two-cocycle of .C(Q). If z(A, B) is of the 
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form 

z(A, B) =<a, [A, B] > (2.21) 

for some a E C.( g)* then it is called a two-coboundary. The space of two-cocycles modulo 

two-coboundaries of C(Q) are said to form the second cohomology group H 2(C(Q); R) of 

C(Q)~61 Thus to guarantee that there is an isomorphism between C(Q) and the Poisson 

bracket algebra, H 2(C(Q); R) has to be trivial. Otherwise, an extension of the algebra 

and hence of g itself is required (see Section 1.4). The new extended Lie algebra C(Q) + R 

is defined by the following Lie bracket relations 

[(A, r), (B, 8)] :=([A, B], z(A, B)) (2.22) 

where A, B E C(Q) and r, 8 E R. Its new isomorphic Poisson bracket algebra are given 

by 

(2.23) 

Step 3 

Once the Lie algebra C(Q) is realised by the Poisson bracket of the observables, it 

remains to be seen that the canonical observables generate a 'sufficiently large' set of 

other observables. One way to ensure that they do generate these other observables is to 

employ the local generating principle~21 

Local Generating Principle: Let {Fi, i = 1, ... , k} be a basis of C(Q). Consider an open 

neighbourhood Us of 8 E S. Given any f E C00 (S, R) whose support is contained in Us, 

there exists a function :FJ E C00 (Rk, R) such that for all s E Us, 

D (2.24) 

This implies a local embedding J: S- Rk i.e. 

;(s) := (F1(s), .. ·, Fk(s)) (2.25) 

whose rank is k. Thus, the map J is an immersion and hence the corresponding induced 

map J• : TsS- T3(s)Rk is injective. The transitive action of g on S then guarantees 
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or overspan (if k > 2n) the tangent space T8 S for each point s E S. For if g is not acting 

transitively on S, there would be at least one direction in which there is no one-parameter 

subgroup of g to translate points of S along that direction and hence k must be less than 

2n. Thus the local generating principle would not hold in that case. Given that g is 

transitive, consider an arbitrary vector field p E T S and the relation 

(2.26) 

The non-degenerate property of w then implies that the one-forms { dfA, A E .C(Q)} span 

or overspan every cotangent space r;s. This implies that the canonical observables do 

generate other observables as required. 

In another perspective, the continuity of map J ensures that the observables are glob­

ally well-defined on S. This is very desirable since it avoids any possible obstruction in 

carrying out the quantisation map of the observables. This question sheds light in the 

subject of anomalies for the quantum mechanical system1
'
1 (see Section 3.3). 

Step 4 

Finally, the quantisation process involves finding irreducible unitary representations 

of g on a Hilbert space 11., The irreducibility aspect of the representation is desirable since 

any self-adjoint operator on 11. is then always a function of the operator representation of 

the canonical observables, reflecting the classical picture of any observable being written 

in terms of the canonical ones. The use of the unitary operators help to ease the techni­

cal aspects of the programme since they are bounded. The representations considered in 

this work are those realisable on the cross-sections of the bundles over the configuration 

spaces Q. This leads to the idea of twisted wavefunctions on Q ~81 These representations 

are constructed using the induced representation techniques introduced in Section 1.4. In 

particular, the technique involving semi-direct products will be often used to find repre­

sentations of the canonical group which is a semi-direct product, Gr><. K; G and K being 

the subgroups of Diff Q and C':x'(S, R). With regards to other possible representations on 

other spaces, it has been pointed out that they may be equally important 12
'
91 but they 

will not be considered here. 

Once the representations are found, the quantisation map (2.5) can now be obtained by 

the correspondence between the self-adjoint generators {fA} of .C(Q) and the observables 
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{fA} on S (A E .C(Q)) i.e. 

A E .C(Q) (2.27) 

An important result that one seeks from the representation theory is an analogue of the 

Stone-Von Neumann uniqueness theorem in the case of quantum mechanics say on 1R.n. 

This theorem tells us that after fixing some physical scale, there is only one possible 

quantisation of the system on 1R. n. Since the possible quantisations of a system are 

given by inequivalent irreducible representations of g, it is only necessary to classify 

the irreducible representations and hence obtain some general version of the Stone-Von 

Neumann theorem. This is done by using the orbital analysis discussed in Section 1.4. 

2.3 Quantisation on Q = JR.n 

There is no better example to demonstrate the application of group-theoretic quanti­

sation programme than quantum mechanics on 1R.n. The well-known results of quantum 

mechanics serve as a comparison and a guideline to the programme's performance. Also, 

from the point of view of this work, it is the first simple example that demonstrates the 

idea of central extensions. The steps mentioned in the previous section shall be followed 

closely for the group-theoretic quantisation of the system of a particle moving on the 

configuration space Q = R n. 

The phase space of the system is given by the cotangent bundleS = T*Q = 1R.n* x 

R n ~ R n x 1R. n. The bundle being trivial and a product of two linear spaces, has globally 

well-defined coordinates; {qi, i = 1, ... , n} for Q and {pi, i = 1, ... , n} for the fibres. It 

can be said at this stage that these globally well-defined coordinate functions serve well 

as (part of) the set of canonical observables. The natural symplectic form on S is given 

by 

(2.28) 

(implicit sum over repeated indices is assumed). An obvious candidate ofthe canonical 

group is the Abelian group g = Rn x Rn, acting as the group of translations on S. The 

Lie algebra of g is 1R. n Ef) R n and its exponential map from the algebra to the group is 
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given by 

(2.29) 

where (Ai, Bi) is the corresponding Lie algebra element to (ai, bi) E R 11 x Rn. [The use 

of capital letters for the elements of the algebra is adopted to differentiate them from the 

elements of the group.] Consider then the one-parameter subgroup generated by (Ai, Bi) 

from the map t ~ (tai, tbi)· The induced vector field from this one-parameter subgroup 

is 

(2.30) 

The vector field (2.30) is Hamiltonian and its corresponding observable is 

(2.31) 

Equation (2.31) then gives the desired momentum map (Ai, Bi) ~ f(A;,B;). The Poisson 

bracket algebra of the observables (2.31) is given by 

(2.32) 

Note however that the group R 11 x Rn is Abelian and hence 

(2.33) 

This implies that the Poisson bracket algebra is not isomorphic to .C(Q). The disagreement 

lies in the nontrivial cocycle 

(2.34) 

of .C(Q) in (2.32). A way out of this problem is to extend the Lie algebra .C(Q) to 

R 11 EEl R 11 EEl R as described in Step 2 of the programme. The extended algebra has the 

Lie bracket relation 

(2.35) 

where C and C' are the elements of the central subalgebra R. The new extended canonical 
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group g corresponding to algebra (2.35) is the Heisenberg-Weyl group, 

Its group product law is given by 

( i b )( fi b' ') ( i fi b b' I 1 (b fi b' i)) a , i, c a , i, c := a +a , i + i, c + c + 2 ia - ia . 

The new momentum map is given by 

(Ai, Bi, C)-- f(Ai.B;,C) 

t<Ai,B;.C) := Aipi + Biqi + c 

(2.36) 

(2.37) 

(2.38) 

Note that the local generating principle still holds in the extended case since the Q-action 

on S is still transitive though it is not (almost) effective. [The non-effective action is not 

a problem since the prime interest here is more in achieving the isomorphism between 

the Poisson bracket algebra and C(Q) rather than with the commutator algebra of the 

Hamiltonian vector fields. See also related remark at the end of this section.] 

To study the irreducible unitary representations U of the Heisenberg-Weyl group, the 

following notation is introduced. Let U and V be the unitary representations of the two 

Rn subgroups which are defined by 

(2.39) 

The central subgroup 1R is unitarily represented by the one-dimensional representation 

U(O, 0, c) := e-i!-'C 

where J..L is a real parameter. From (2.37), the operator (2.39) satisfy the relations 

U(ai)U(a'i) = U(ai + a'i) 

V(bi)V(bD = V(bi + bD 

U(ai)V(bi) = V(bi)U(ai)ei~-'A'B; 

(2.40) 

(2.41) 

(2.42) 

(2.43) 
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which are called the Weyl commutation relations. If the generators of U and V are written 

as Pi and qi respectively i.e. 

U(ai) := e-iA;p; 

V(bi) := e-iB;tt 

then the relation (2.43) produces the desired CCR 

(2.44) 

(2.45) 

(2.46) 

The representation of the full Heisenberg-Weyl group is probably best realised by what is 

now known as the Schroedinger representation[101 which is a representation induced by a 

unitary representation of the subgroup 1R n x lR. The Hilbert space of this representation 

is given by L 2(1Rn), the square-integrable functions of 1Rn. The representation U is given 

by 

(2.47) 

and V is the character representation 

(2.48) 

where 7/J E L2(1Rn). The central subgroup is still represented by the multiplicative oper­

ator (2.40). The full representation U of the Heisenberg-Weyl group is then given by the 

induced representation ux. by the characters x of 1Rn x 1R from (2.48) and (2.40). With 

the above class of representation and the techniques of orbital analysis in Section 1.4, one 

can arrive to the following famous theorem. 

Stone- Von Neumann Theorem: Let U(ai, bi, c) be an irreducible unitary representation of 

( ai, bi, c) of the Heisenberg-Weyl group on a Hilbert space 1{. such that U(O, 0, c) = e-ip.C 

for some J.L E 1R. Then U is unitarily equivalent to the induced representation ux. by 

character x of 1Rn x 1R i.e. the Schroedinger representation given above. 0 

At this point, it is important to note that there is a whole family of CCR parametrised by 

J.L. The contact with physics is when J.L is identified with 1i. This intuitively means fixing 

the physical scale of the theory. Note that the Stone-Von Neumann uniqueness theorem 

is only applied after such physical scale is determined. 
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Finally, a brief explanation of the connection of the central extension with a line 

bundle structure for this case is appropriate. The line bundle structure is actually implied 

when it is noted earlier that the g fails to be (almost) effective. This failure also means 

the failure of the isomorphism of the commutator algebra of the Hamiltonian vector fields 

on S with .C(g). The isomorphism however can be restored if there is another degree of 

freedom added to S in order to define a 'new Hamiltonian vector field' corresponding to 

the constant functions!111 This degree of freedom is provided by the fibres of a line bundle 

over S. This line bundle structure has been known to be the quantisation bundle in the 

geometric quantisation school [121 and the bundle is characterised by its curvature which 

is given by the symplectic form. This example is to be contrasted with the example that 

will be given in Section 3.3 where the central extension in that example arises from a 

specific line bundle (up to equivalence) over the configuration space itself rather than the 

phase space. 
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Chapter 3 

Quantisation of a Particle 
on the Torus 

3.1 Introduction 
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In the previous chapter, the outlines of Isham's group-theoretic quantisation pro­

gramme were discussed and then exemplified by quantisation of a system of a particle 

moving on the configuration space Q = 1R n. This example, however, does not fully 

demonstrate the advantages of this programme, owing to the linearity of the configura­

tion space. Here, the coordinates of the phase space S = 1R n x 1R n, namely { qa, Pa} 

readily serve as part of the required set of globally well-defined canonical observables. In 

a nonlinear configuration space, this is not possible, as the coordinates are no longer glob­

ally well-defined. The choice of globally well-defined canonical observables necessitates 

the embedding of the phase space S in some vector space 1R m, mentioned in Step 3 of 

the programme, where m > dimS. Hence the nonlinearity of the configuration space is 

being taken into account from the beginning of the quantisation programme, by choosing 

some canonical variables ( cf. { q, p} in Q = 1R) intrinsic to Q. For example, take the 

simplest case of Q = S 1 whose coordinate is the angle~- Here one requires m = 3, as the 

canonical observables are cos~' sin~' and the momentum coordinate J. Note that cos~ 

is a well-defined continuous function on S 1 while ~ is not; the observable sin~ is then 

needed to close the Poisson bracket algebra of the observables. 

The above modification of the choice of observables then leads to an underlying canon­

ical group for quantisation involving nonlinear spaces, different from the usual Heisenberg­

Weyl group. This in turn disallows the use of the usual canonical commutation relations 

( CCR) [qa, Pb] = inSb. Such relations, as pointed out earlier, assume the linearity of the 

configuration space. The appropriate canonical group obtained by the above consideration 

should then very well describe the symmetries of the underlying nonlinear spaces. This 

is the basic advantage of this programme. The usual erroneous attempt using the CCR 
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is now 'corrected' by taking into account the symmetries of the underlying phase space. 

Various such examples leading to different commutation relations have been discussed in 

Isham's Les Houches lectures!11 

In this chapter, we shall be discussing another example: namely quantisation of a 

system of a particle moving on the two-torus ( Q = T 2
). This example is simply a 

straightforward generalisation of the case of Q = S 1, which has been discussed in de­

tail by Isham!11 The reason why this example is discussed here is to enable us to discuss 

next the simplest example of quantisation of a system of a particle moving in an external 

background magnetic field on a nonlinear configuration space. Here, the presence of the 

background field modifies the natural symplectic form. This leads to a nontrivial modifi­

cation of the canonical group itself. It is found that one has to use the central extension 

of the universal cover of the canonical group found for the case without the background 

field. This example extends Isham's programme to include nontrivial quantisation bun­

dles on the configuration space, as opposed to only bundles with flat connections~11 The 

different possible quantisations for the example are then discussed by looking at inequiv­

alent representations of the new canonical group. Finally, all the above discussions will 

be generalised to the case of the general n-torus ( Q = Tn) but now formulated in the 

language of lattices. This will facilitate the discussions of quantisation of strings on the 

tori in the final chapter. 

3.2 Quantisation on Q = T2 

In this section, we shall proceed in a slightly different way from the example of Q = 1R n 

m Chapter 2. Instead of guessing what the canonical group is, we first identify the 

canonical observables and then proceed to find the appropriate group from them. In this 

way, the methods used in this section can easily be carried over to the next section when 

discussing the case with the magnetic field. This suits our main purpose of finding the 

global structure of the canonical group 9. In this section and the next, the indices a, b, c, ... 

will take values 1 and 2 and they are not summed over repeated indices unless there is an 

explicit summation sign. 

Canonical Group 9 = E2 x E2 

Consider a particle moving on the configuration space Q = T 2 coordinatised by the 

angles ¢a. The phase space S is given by the cotangent bundle T*T2 = T 2 
X 1R 2 which is 
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endowed with the natural symplectic form 

(3.1) 

where la are the coordinates of the fibres 1R 2. As in the case of S1 mentioned in the 

introduction, one chooses the following set of well-defined functions on T*T2
, 

a _ .J,.a a · .J..a J. u - COS 'I' , V = Sln 'I' , a (3.2) 

as the canonical observables. The Hamiltonian vector fields corresponding to these ob­

servables are obtained by the relation ~! .J w = df, where f is the observable and ~,, its 

vector field. They are given by 

ta . .J..a 8 
':.u = sm 'I' 8Ja 

ta .J..a 8 
':.v = - COS 'I' 8Ja 

8 
~Ja = 8</>a 

The Poisson bracket algebra of these observables is 

{Jb, ua} := w(~Jb, ~!) = va8b 

{ Jb, va} := w(~Jb, ~!) = -ua8b 

{ ua, Vb} = 0 = { J a, Jb} 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

It is important to note that the commutator algebra of these Hamiltonian vector fields 

is isomorphic to the Poisson bracket algebra above. This implies that these vector fields 

can be identified with the generators of the canonical group of symplectomorphisms on 

S. Denote the exponential mapping of the vector fields by 

rna := exp(Ma~!) 

na := exp(Na~!) 

7]a := exp(Ha~Ja) 

(3.9) 

(3.10) 

(3.11) 

where Ma, Na and Ha are parameters associated to the Lie algebra of the canonical group. 

The terms on the left hand side are the group elements whose action on the points of S 
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(on the right) are given by evaluating the corresponding terms on the right hand side on 

those points. The group action on S may now be given by 

1"(ma,na,f1°)( </>a' Ja) 

:=((</>a+ 1Ja) mod 211", la + ma sin(</>a + 1Ja)- na cos(</>a + 17a)) 
(3.12) 

for each a. This is the action of the Euclidean group E2. Thus, the canonical group is 

(3.13) 

The elements (ma, na) and 1Ja belong respectively to the R 2 and 50(2) subgroups of 

(E2)a -the a-th Euclidean group. The group law is given by 

(3.14) 

where 

- sin 17a ) ( m~ ) 
cos 1Ja n~ 

(3.15) 

for each a. 

It is also possible to use the universal cover of g as the canonical group. The group 

action on Sis the same, and much of what follows can be easily generalised for the covering 

group. The only difference is in the discussion of its 'nontrivial' representations, which 

will be given later. 

Representations of g 

Given that the canonical group is g = E2 x E2, the next step of the programme 

involves finding irreducible unitary representations 

of g on some Hilbert space 1-l. At this stage, it is convenient to define the operators 

V(mt,nl) := U(ml,nl,O;O,O,O) 

U(771
) := U(O, 0, 771

; 0, 0, 0) 

(3.16) 

(3.17) 



etc. which satisfy the relations 

U(7Ja)U(7]a 1
) = U((7Ja + 7Ja 1

) mod 211') , 

V(ma, na)V(m~, n~) = V(ma + m~, na + n~) , 

etc., where 

U(771 )U(772) = U(O, 0, 77 1
; 0, 0, 772) = U(772)U(711

) , 

U(771 )V(m2, n2) = V(m2, n2)U(771
) , 

U(7Ja)V(ma, na) = V(m~, n~)U(71a) , 
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(3.18) 

(3.19) 

(3.20) 

(3.22) 

(3.23) 

(3.24) 

Suppose that the generators of U(7Ja) and V(ma, na) are given by ia, ua and va i.e. 

U(7Ja) := eiHaja ' 

V(m n ) ·- ei(Maua+Natia) 
a, a .- ' 

then from (3.18) - (3.23), we obtain the following quantum commutators 

[JA Aa] •Aara 
b, v = -zu vb 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

An obvious representation of g is on the space of square-integrable functions on T2 

itself. This is given by 

(U(7Ja)¢)( ¢}, <jJ2 ) := ¢(( <jJ1 + 6!7Ja) mod 211', ( ¢J2 + 8;7Ja) mod 211') , (3.30) 

(V( rna, na )'1/J )( </J\ </J2) := ei(Ma cos r/Ja+Na sin r/Ja)'I/J( </Jl, </J2) , (3.31) 

and these correspond to 

(3.32) 
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( ua1/J) ( ¢1, <f}) = cos ¢a1/J( ¢1, ¢2) 

(va1/J)(¢1, ¢2) =sin ¢a1/J(¢1, ¢2) 

(3.33) 

(3.34) 

There are, however, other inequivalent representations and hence quantisations of the 

system on this representation space. They are characterised by using Mackey's orbital 

techniques in the theory of representations of semi-direct products 12
'
31 (see Theorem 1.12). 

Here, each of the E2 subgroups of Q may be treated separately for this analysis. With 

respect to the above representation space, this simply implies the restriction of wavefunc­

tions 1/J to functions of only one of the angular variables while keeping the other fixed. 

In the group E2, the S0(2) subgroup acts on the 1R.2 subgroup as in (3.24). This 

induces an action of S0(2) on Char(1R.2) by using the isomorphism between Char(lR. 2 ) 

with the dual space 1R. 2* and the natural identification of 1R. 2* with 1R. 2. So, if a character 

of 1R. 2 , Xw, is given by 

Xw(v) := e-aw.v (3.35) 

where w E 1R. 2* (""' 1R. 2), v E 1R.2 and w.v is the inner product between them, then the 

action TR of R = (c~STJ -SinTJ) E S0(2) on Xw(=: X(w
1

,w
2
)) is 

sm TJ cos TJ 

TRXw = X(wt cos 71-w2 sin f1,Wt sin 11+W2 cos 71) = XRw (3.36) 

Thus the orbits of the S0(2)-action in Char(1R.2 ) are circles of radius ). : 

(3.37) 

Note that the isotropy group of any point on Sl is trivial. Hence associated to each ). is 

only one irreducible representation of E2. Returning to the representation of the whole of 

Q, there will then be two parameters >.a, each associated to an E2 subgroup, characterising 

the representations of Q. These representations are given by (3.30) and 

(V(A)(m1, n1; m2, n2)1/J)(¢1, ¢2) 

:= eiAt(Mt cos rt?+Nt sin I/J1 )+iA2(M2 cosrt?+N2 sin c/?)1/J( ¢1, ¢2) 
(3.38) 
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Lifting Actions and Universal Cover of G 

From above, we have seen how representations of Q are realisable on the space of 

square-integrable functions on T 2
. This can be further generalised in a very geometrical 

manner using the space of sections of a line bundle over T2
. 

Consider the trivial principal U ( 1 )-bundle over T 2
, P = T2 x U ( 1). On the base space, 

there is the transitive action ra of G = S0(2) x S0(2). This action ra has a trivial lift 1"'
61 

r b onto P making the following diagram commutative 

U(1) ---+ P 

! 

p 

! (3.39) 

Let ( ¢1, ¢2 ; U) be the (smooth) trivialisation of a section u( ¢1 , ¢2) of P. Given that the 

action r('71,,2) on T 2 ((771
, 772

) E G) is 

then the trivial lift r(1 
1 2 ) on P is simply '1 ,, 

r(,1,,2)u( ¢1
, ¢2

) : = (r(f1t,f12)( ¢1, ¢2
); U) 

= (( ¢1 + 77 1
) mod 271", ( ¢2 + 772

) mod 271"; U) 
(3.41) 

This induces a (trivial) lifted G-action Tb on the associated line bundle E = P Xu(l) C. 

H the trivialisation of the section w( ¢1, ¢2) of E is given by 

(3.42) 

where 1/J is a complex-valued function on T 2 and [· ; ·] denotes equivalence classes under 

U(l )-action, then T(
1 

1 2 ) is defined by '1 ,, 

7(,1,'72) w(¢1, ¢2
): = [r(,t,,2)u(¢\ ¢2

); 1/J(r(,1,,2)(¢1
' ¢2

))] 

= [u((¢1 + 77 1
) mod 271", (¢2 + 772

) mod 271"; 

1/J((¢1 + 77 1
) mod 271", (¢2 + 77 2

) mod 27r)] 

(3.43) 

This reproduces the representation (3.30) when the above function 1/J is identified with 

that of (3.30). 
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In a similar way, one can construct inequivalent representations analogous to (3.30) 

( (3.43)) but they are now representations of the covering group of G and they are generated 

by different liftings of the group action. Let us consider first an arbitrary lift of an action 

of an arbitrary group K (be that of G or its universal cover) on P. An action Tk (k E K) 

is lifted to r l by 

(3.44) 

where f is a (smooth) mapping from K x T2 to U(l). The induced lifted action onE will 

then be given by 

rl'I!(¢},¢>2) = [rlu(¢>1,¢>2); 1f1(rk(¢>1,¢>2))] 

= [u(rk(¢>1,¢>2)); f(k;(¢>1,¢>2))1f1(rk(¢>l,¢>2))] ' 
(3.45) 

where the last equality in (3.45) follows from the property of the equivalence class. Strictly 

speaking one should use a unitary representation of f( k; ( ¢>1, ¢>2)) in (3.45) on the repre­

sentation space of functions 1f1( ¢>1, ¢>2 ) rather than f itself. However, here we will always 

use the identity representation. Note that f obeys the cocycle condition, 

(3.46) 

where k1, k2 E K. One can in fact define equivalent lifts through f by noting that under 

change of sections u' ( ¢>1, ¢>2) = u( ¢>1, ¢>2)!1( ¢>1, ¢>2) where n : T 2 --. U(l ), f is transformed 

to 

Such f and f' are said to be cohomologous and the liftings generated by them are equiva­

lent. Note that if one equates f( k; ( ¢>1, ¢>2)) with the identity (i.e. the trivial lift) in (3.4 7) 

we find 

(3.48) 

Such functions f' are then called coboundaries and they generate lifts equivalent to the 

trivial one. 
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Returning to the group G = 80(2) x 80(2), one may define the following cocycle for 

this group 

(3.49) 

as an attempt to define a nontrivial lift of G-action on P, where ( 171, 172) E G and the o:a 's 

are parameters which are required to be integers to ensure periodicity of f(a) under the 

transformation T/a t-+ .,a+ 211". However, one can define 

(3.50) 

and find that 

(3.51) 

Hence (3.49) would only generate a lift equivalent to the trivial one. In order to get a 

nontrivial lift one should consider instead the universal cover of G, i.e. 1R x 1R in the 

canonical group. In this case the cocycle (3.49) is changed to 

(3.52) 

where ( 171, 172) now belongs to 1R x 1R and the (J a's are real parameters. An attempt similar 

to (3.50) would no longer work as the corresponding function is no longer a continuous 

map from T2 to U(l) unless the Oa's are integers. With this nontrivial lift, one can now 

obtain inequivalent representations to (3.30), now parametrised by Oa, i.e. 

(U(T/1, 172)1/;)(¢}, ¢2) 

= ei(81Tl+B2rl>.,p((¢1 + 171) mod 211", (¢2 + 172) mod 27r) 
(3.53) 

For the complete representations of the new canonical group (i.e. the universal cover of 

9), the representation (3.53) is supplemented by (3.38). It is worth pointing out that 

the phase factors involving the Oa's are simply the phase factors that give the usual (}. 

structure in quantum theory[
6
J arising from Hom(1r1(Q), U(1))!1J One can in fact show 

that the representations ( 3.53) can be obtained by considering 11"1 (T2) ---+ 1R x 1R ---+ T2 

as a 'master bundle' which carries the desired lift of a group action naturally!11 Also, the 
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parameters Oa can be considered as components of a fiat connection on P. This can be 

seen from the generator of (3.53) ( cf. (3.32)) which is 

(3.54) 

This is to be compared with the minimal coupling rule of electromagnetism. The signifi­

cance of this interpretation will be much more evident in the next section. 

Contraction of C(Q) 

Finally in this section, we shall turn briefly to another interesting topic, namely that 

of contraction of the Lie algebra of the canonical group. Contraction 181 involves taking 

a limiting process for a particular parameter which parametrises the Lie (sub-) algebra 

in question. It is often discussed within a physical context 191 in which the parameter 

will be some 'external' physical parameter of the system studied. Here, contraction of 

C( G) relates quantisation of a particle on T 2 to the ordinary quantum mechanics on R 2. 

Physically, this is welcomed, as the quantum system on T 2 should locally resemble that 

of R 2
• The relevant physical parameters that should be considered here are the radii Pa 

of the generating cycles of T2 embedded in R 3 . Taking the limit of these radii to infinity 

would then in effect gives the local character of the quantum system on T2
. In order to see 

how these radii would parametrise C( G), we first observe that locally in a neighbourhood 

of </>4 = 0, the canonical observables u4
, v 4 behave like 1, </> 4 respectively. Thus in this 

neighbourhood, the quantity Pa<Pa would serve as the 'canonical coordinate' xa in R 2 . In a 

similar dimensional argument, the quantity p;1 la would be the 'momentum' Pa conjugate 

to xa. Given this local parametrisation of the observables, it is easily deduced that the 

required Lie algebra parametrisation is the following homomorphism of C( G) into itself 

(3.55) 

where the subscript pis just a label to denote the corresponding quantity depends on the 

parameters Pa· This replaces the commutator relations (3.27)- (3.29) by 

[Jb, ua](p) := A;1 [Jb(P)' u(P)] = ip;2vabb 

[Jb, va](p) := A;1 [Jb(p)' v(p)] = -iuabb 

[ua' vb](p) = 0 = [Ja, Jb](p) 

(3.56) 

(3.57) 

(3.58) 
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(3.59) 

(3.60) 

To illuminate these relations further, one should consider the unitary map of representa­

tion spaces, 

W . L2(T2 d(pld¢2) L2(J I dx1Jx2 ) 
p • ' 4 2 --t 1 X 2, 4 2 

11" 7r P1 P2 
(3.61) 

where I a is the interval [0, 27T' Pa] and 

(3.62) 

where 1/J E L2 (T2
) and tPp E L2

(Jl X h). Under such a map, the operators ja(p)l iL(p)' v(p) 

have the following form: 

( 

A -1 ) ( 1 2) 0 fJtf; p ( 1 2) WpJa(p)Wp t/Jp x ,x = -z fJxa x ,x 

(Wpu(p) W; 1t/Jp)(x1
, x2

) = _xa cos(p;;1xa)t/Jp(x\ x2
) 

(Wpv(P) W;1t/Jp)(x1, x2) = _xa Pa sin(p;;1xa)1/tp(x\ x2) 

(3.63) 

(3.64) 

(3.65) 

where _xa are the parameters mentioned in (3.38). Thus as p --t oo, ua tends to _xa and 

hence (3.60) is given by 

[ 1 Aa] "\aca 
Jb, v (oo) = -v. ob (3.66) 

which is precisely a multiple of the CCR. This justifies the earlier claim that the quantum 

system on T 2 locally resembles normal quantum mechanics on R 2 . 

3.3 Quantisation on Q = T2 with a Constant Magnetic Field 

The quantisation of a particle on Q = T 2 in the previous section serves the purpose 

of setting up the necessary ideas needed to discuss the case of the same system but now 

with the inclusion of a background constant magnetic field. It also enables us to make 

comparisons between the two cases. Many of the points raised in the last section have 

either their analogues or their generalisations for the case with the magnetic field discussed 

in this section!101 
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Canonical Group Q = E2 t><(E2 x U(l)) 

The framework for the system of a particle moving on T 2 in a constant magnetic field 

is very much the same as the last section. The phase space S is the cotangent bundle 

T*T2 but now the symplectic structure is changed from (3.1) to 

WF := w + F ' (3.67) 

where F is the field strength two-form 

F := 2:: ~Fab d</Ja A d</Jb (3.68) 
a,b 

The Fab 's are the constant components of the magnetic field introduced into the system. 

With the same set of observables (3.2), one can use WF to find the corresponding new 

Hamiltonian vector fields to the observables. It is only (3.5) that is changed to 

(3.69) 

the vector fields (3.3) and (3.4) remain the same. This new set of vector fields along with 

w F form a new Poisson bracket algebra. It is found that it no longer closes because 

(3.70) 

However, the vector fields still obey the same commutator algebra as in the last section, 

with [eJa, eJb] = 0. Thus, there is no isomorphism between the Poisson bracket algebra 

and the Lie algebra of g. One possible way out might be to add constants to the observ­

ables (which does not affect the Hamiltonian vector fields), in the hope of restoring the 

isomorphism. But adding constants to Ja leaves {Ja, Jb} unchanged, and so we cannot 

change (3.70). 

What one therefore has to do is to replace the Lie algebra of g by its central extension. 

This is done by replacing the commutator [Ja, Jb] = 0 by the 'quantum commutator' 

corresponding to (3.70), namely 

(3. 71) 

here Fab are the central elements of the new Lie algebra and i is the identity operator. 

Thus one is required to replace (3.69) with some other operator, to generate the new 
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algebra. At this stage, it is helpful to look at the problem in a different way. The 

insertion of a magnetic field suggests that one has a U(l )-gauge theory on T 2
. Hence, 

a natural thing to do is to employ the minimal coupling rule, replacing -ia 1 a¢>a as the 

operator representation for Ja with the corresponding gauge covariant one, namely 

(3.72) 

where Aa( ¢>1 , ¢>2) is the connection (gauge potential for Fab) on the U(l )-bundle over T 2. 

This automatically gives the required commutator (3.71). It is useful to note that there 

is a Dirac quantisation condition on the total flux of the magnetic field (see Appendix); 

the field strength two-form is given by 

(3.73) 

where the magnetic charge m is an integer. For calculational convenience, we will choose 

the gauge 

(3. 74) 

Given the explicit representation of Ja (3. 72) with the above gauge choice, one can now 

construct the new extended canonical group by exponentiating the generators of the new 

algebra. For simplicity, let us just consider only the generators la of (S0(2))a· These 

generators act on sections of a line bundle over T2
• These sections is in one-to-one corre­

spondence with the complex-valued functions t/J = t/J(¢>1, ¢>2 ) which satisfy the appropriate 

boundary conditions given in the Appendix. 

Exponentiating the action of la on the sections gives 

exp(iH1 J1)t/J( ¢>1, ¢>2) = t/J(( ¢>1 + 171) mod 21r, ¢>2) 

exp( iH2 }2)tP( ¢>1, ¢>2) = eimH2,pi /27r t/J( ¢>1' ( ¢>2 + 'f/2) mod 27r) 

(3.75) 

(3.76) 

where Ha E 1R is a coordinate for the Lie algebra of (S0(2))a while "'a is a coordinate 

on the corresponding group (S0(2))a· Of particular interest are the following products 
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of exponentiated actions of J a : 

exp(iH1 J1) exp(iH2 ]2)'1/J(q}, 4>2) 

= eimH24>l/21reimHlH2tl1r'I/J((t/>1 + 7J1) mod 27r, (4>2 + 7]2) mod 27r) ' 
(3.77) 

exp(iH2 J2) exp(iH1 J1)'1/J(tj>1
, 4>2) 

= eimH24>1/21r '1/J( ( 4>1 + 7]1) mod 27r' ( 4>2 + 112) mod 27r) 
(3.78) 

Parametrise the central extension of S0(2) x 80(2) by (111 mod 27r,7]2 mod 21r,eimr), 

where eimr is the central element. So the exponential mapping may be denoted by 

exp(H1,0,0) := (111 mod 21r,O, 1) , 

exp(O, H 2, 0) := (0, 112 mod 27r, 1) , 

exp(O, 0, r) := (0, 0, eimr!21r) 

Hence, (3.77) and (3.78) give 

from which the following general product law is deduced, 

(7]1 mod 27r, 7]2 mod 27r, eimr/27r)((1 mod 27r, ( 2 mod 27r, eims/27r) 

((7J1 + (1) mod 27r, (7J2 + (2) mod 27r, eim(HlZ2+r+s)/21r) ' 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

(3.84) 

where za are the Lie algebra parameters corresponding to group element (a. However, 

as 7Ja and (a are only defined mod 21r, the product H 1 Z 2 in (3.84) is not well-defined. A 

solution to this problem is to use the covering group 80(2) = :R. of 80(2) as the group 

generated by Ja, instead of 80(2). Hence (3.79), (3.80) and (3.84) are defined without 

the 'mod 21r'. This will change the group product (3.84) to 

( 111, 112, eimr/27r)( (1, (2, eims/21r) 

= (7J1 +(1,7]2 +(2,eim(H1
Z

2 +r+s)/21r) 
(3.85) 

which is well-defined. This is the product law of the group G = S0(2) t><(S0(2) x U(l)). 

One may check that the other properties of a group holds with (3.85); the identity is 

( 0, 0, 1) and the inverse of ( 11\ 112, eimr /21r) is ( -7]1, -7]2, eim(H
1 
H

2
-r)/27r). 
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Combining the results of section 3.2 for the other observables ua and va (see (3.33) 

and (3.34)) with those above, one has now found the new canonical group g describing 

the symmetries of the new system ( S, w F), namely 

(3.86) 

where E2 denotes the covering group R 1>< R 2 of E2. Having found this, we must now 

find (other) unitary inequivalent representations of g and classify them. Before doing 

so, a useful observation to make is that the abstract group Q is independent of m for 

m =I 0, as one can rescale one of the S0(2) Lie algebra parameters by ! and still have 

the same group product law. The factor m will then be dropped for this reason. One can 

make further simplification of notation by identifying the central group element with the 

element of its algebra 

(3.87) 

Representations of g 
We will now reconstruct the representations (3. 75) and (3. 76) of g in a more geo­

metrical and condensed form analogous to that given in the previous section. Consider a 

nontrivial U(l )-bundle over T 2
, U(l) --+ Pm --+ T2

, where the subscript m on Pm is just 

to differentiate it from the trivial U(l )-bundle P in Section 3.2, implying the existence of 

a magnetic field (nonvanishing curvature). Locally, its (measurable) section am is given 

by ( ¢}, 4>2; U). A right G-action on T 2 is given by 

(3.88) 

where the U (1) subgroup has a trivial action on T2 . This action has a nontrivial lift to 

Pm given by 

(3.89) 

This action can be seen to satisfy the required right-action identity 

(3.90) 

This action induces a lifted G-action on the associated line bundle to Pm, Em = Pm x U(l) ~ 
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z.e. 

T t \II (</Jl </J2) (qi,q2,r) m ' 

: = [r(t 1 2 )um(</J1,</J2);t/J(r(.,I.,2r)(cP\</J2))] '1 ,q ,r ., ,., ' 

= [um((<P1 + 771) mod 21r, (<P2 + 772) mod 21r); 
(3.91) 

ei(H:zc/1t+r)/27r t/J( ( <P1 + 711) mod 27r' ( <P2 + 712) mod 27r )] ' 

where Wm( <P1, <P2) is the local section of Em trivialised by [um( <P1, <P2); t/J( <P1, <P2)] and t/J 

being a complex-valued function defined only locally on T 2 (or alternatively it obeys the 

boundary conditions given in the Appendix, but we will not need this information in this 

construction). Note that the G-action gives rise to an action of the U(1)-structure group 

of Pm and Em on the fibres. It does leave the inner product on the fibres of Em invariant: 

(3.92) 

where the inner product is given by 

< 1/J,'l/J' >:= J 'I/J*(<P\<P2)'1/J'(<P\¢2)d¢1d¢2/47r2 (3.93) 

T2 

giving the required Hilbert space structure. 

Equation (3.91) reproduces the representations (3.75) and (3.76) on the space of sec­

tions of Em: 

(U(711, 11 2, r)'f/J)(¢1, <P2) 

= ei(H2c/Jt+r)/27r'I/J((<Pl + 711) mod 27r, (<P2 + 712) mod 27r) 
(3.94) 

This is in fact a representation of G induced by a unitary representation of its U ( 1 )­

subgroup manifested by the structure group of Em. One now looks for other inequivalent 

representations of G for quantisation on Q = T2
, if they exist, and tries to classify them. 

This is done by looking at G-orbits on the space of characters Char( U ( 1)) of U ( 1) ~ 111 A 

character of U(1) is given by 

(3.95) 

where Xk E Char(U(1)) and wE U(1) with the parameter k required to be integer. Using 

the isomorphism between Char(U(1)) and the dual objects to elements of U(1), the action 
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of G on Xk is given by 

(3.96) 

i.e. the G-orbits in Char(U(l)) is just trivial. Hence, by a theorem of Mackey (see Theorem 

1.12 1111 ), there is a one-to-one correspondence between Char(G) and Char(U(l)). This 

means that k characterises the inequivalent irreducible unitary representations of G. This 

is what one expects physically - interpreting k as the magnetic charge m which labels the 

different physical systems on (S, wp ). In general, the representation of G on sections of 

Em will be 

(U('71' TJ2' r)'ifJ )( ¢}, ¢}) 

= eim(H2t/J1+r)/27r'ifJ((¢} + '71) mod 211", (¢} + '72) mod 27r) 
(3.97) 

where m is the magnetic charge. It is important to note that there exist other inequivalent 

representations of G, induced by representations of the subgroup 1R x U(l). However, 

they seem physically irrelevant to our problem of quantisation on Q = T 2 as they involve 

functions of only one variable. 

To obtain the representation of the whole canonical group g, one employs again 

Mackey's theory on semidirect products 111 '
2
'31 and note that the central U(l)-subgroup of 

G does not act on the (1R2)a subgroups of g. In fact, the analysis for the representations 

V in Section 3.2 follows here and one simply complements the representation (3.97) with 

the representations of 1R 2 x 1R 2 subgroup of E2 x E2 given by 

(V(>.)( m17 n1; m2, n 2 )1/J )( ¢}, ¢2 ) 

= ei>.1 (M1 cos t/J1+N1 sin t/11 )+i>.(M2 cos t/12 +n2 sin t/12 )1/J( ¢1, ¢2) 
(3.98) 

where (rna, na) and (Ma, Na) are respectively elements of the group (1R2)a and its Lie 

algebra, while Aa is the parameter characterising the (E2)a orbit in Char(1R2)a· One 

easily checks that these representations do obey the required boundary conditions (see 

Appendix). 

This completes the study of possible quantisations on ( S, w F) (modulo .B-angles - see 

below). 
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Related Remarks on Lifting Actions 

From above, we have seen the modification of the symplectic form to include an 

external magnetic field into the physical system significantly changes the canonical group 

of the case without the field to the central extension of its universal cover. Here, the central 

extension arises differently from the example of Q = R n. It arises from the nontrivial line 

bundle structure over the configuration space, rather than the phase space as in Q = R~121 

The change to the universal cover is expected due to the nontrivial lifting of the G-action 

on T2 (to that of G) as in Section 3.2. However, in this case the change is necessary since 

it is known that the 80(2) x 80(2)-action on T2 has only a lift on the product bundle~51 

Passing to the covering group is also desirable as it is related to the possibility of 0-states 

(see Section 3.2), given that there is now a magnetic field in the physical system. This 

arises when we add a constant potential to (3.74) i.e. 

(3.99) 

for some constants fh and 02 • This will generalise the representation (3.97) to 

(U('71, 712, r)t/J )( ¢1, ¢2) 

= eim(H
1
81 +H

2
82+H

2
t/J

1
+r)/27rt/J((¢1 + '71) mod 21r, (¢2 + '72) mod 27r) 

(3.100) 

It is important to note that the semidirect product structure in G seems to suggest 

that one of the generating cycles of T 2 is preferred over the other. However, this is only 

artificial since one can find another lift of G-action on Pm which would suggest a different 

preference of the cycles, but this lift is only cohomologous to the lift (3.89). Consider 

the cocycle f( ( 771, 772, r ); ( ¢1, ¢2)) := ei(H
2

t/J
1
+r )/27r given by the lift (3.89) where the cycle 

coordinatised by the angle ¢1 is being preferred. Define a map n: T2 ---+ U(1) locally by 

(3.101) 

Note that n being globally ill-defined is consistent with the fact that t/J can only be given 

locally by the trivialisation \lim (alternatively, impose the same boundary conditions on 

n as for t/J). Using (3.47), one can define a new cocycle f' by 

The cocycle f' then defines an equivalent lifting of G-action to (3.89) but now the 'pre-
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ferred' cycle is coordinatised by the angle ¢2 • This actually follows from a theorem which 

states that the lifted action of G is unique up to bundle equivalence (see Theorem 1.6151 
). 

One can also understand the above problem in another way by noting that the represen­

tations of G given by f and f' are equivalent in the sense of locally operating (or vector 

bundle) representations~131 This originates from the idea of gauge equivalence1141 where 

in the above problem, it will involve performing a singular gauge transformation to (3.74) 

in order to get the new representation given by cocyle f'. 

Contraction of .C(Q) 

In the last section we have also looked into the contraction of .C(Q). It will be of 

interest to us how the new Lie algebra .C(Q) will contract and how it relates to a local 

picture of quantum mechanics. Consider the previous homomorphism Ap (3.55), but now 

the generators u.a, va, ia will be of (subalgebra of) .C(Q). We only need to know how the 

generator i of the centre of .C(Q) is mapped under an extension Ap of Ap. Again, one 

should consider the physical context of the problem. Earlier, from (3.71), one observes 

that the central element corresponds to the field strength tensor F. Hence its generator 

should carry the same dimension as F, which is (length)-2 in natural units. Thus we 

define Ap as 

(3.103) 

The new commutator algebra defined by Ap is the same as (3.56) - (3.58) apart from the 

last relation, which is replaced by 

(3.104) 

Taking Pa ---+ oo, will give the new contracted algebra which is: 

(3.105) 

together with (3.59) and (3.60). These relations then give the correct commutator algebra 

for the system of a particle moving on R 2 in a constant magnetic field. Thi~ is consistent 

from the intuitive picture that we had earlier in Section 3.2. 
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'Anomalous' Constants of Motion 

Finally, it is interesting to note a particular feature of this example of quantisation 

on ( S, w p). The quantum mechanical system of a particle on T 2 in a magnetic field has 

been described 1151 to exhibit a kind of anomaly in which the expectation value of ia is not 

conserved although it does commute with the Hamiltonian (in the canonical quantisation 

scheme). It has been shown 1161 that such phenomenon can be attributed to the fact 

that the momentum operator does not preserve the domain on which the Hamiltonian 

is hermitian. One way of understanding this problem is to realise that the canonical 

quantisation scheme does not respect the symmetries of the phase space. A similar kind 

of 'domain problem' has also been commented on by Isham 111 in one of his arguments for 

the group-theoretic quantisation programme (see also [17]). We shall now consider the 

problem in the context of this programme. 

The Hamiltonian operator of this system is given by 

(3.106) 
a a 

where Dais the covariant derivative operator representation of ja (3.72). Its commutator 

with jb is 

(3.107) 
a 

and hence 

(3.108) 
a 

Thus an anomalous situation such as in [16) does not arise. However, the fact that one 

cannot find a conserved momentum remains. Suppose that one attempts to redefine the 

operator jb such that its commutator with fi vanishes and hence obtains a new generalised 

momentum which is a constant of motion. This 'can' be done by defining 

j~ := jb + L Fbc¢c (3.109) 
c 

where ¢cis the multiplicative position operator on T2 . This will commute with H, 

[ib, II]= o (3.110) 

However, the operator ¢>c corresponding to observable ¢>c is not well-defined and has 

already been ruled out by the quantisation programme. The fact that ¢>a is not globally 
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well-defined, has in fact been considered 1181 to be the origin of the domain problem 

mentioned earlier. Hence, in this example, one cannot find a generalised momentum 

which is a constant of motion. This is to be contrasted with the case Q = R 2 where the 

position operator xa is a well-defined operator and hence p~ defined in a similar way to 

(3.109) is a constant of motion. The idea of ill-defined (classical) constants of motion as 

in the above example leads to an interesting question whether it has any generalisation 

to field theory and thus possible field-theoretic 'anomalies'. This will be discussed in the 

next chapter on u-models with Wess-Zumino term. 

3.4 Quantisation on Q = Tn 

This section deals with the generalisation of the results of the previous sections for 

the n-torus (n > 2). The generalisation is straightforward, but the treatment given here 

will involve the language of lattices. The motivation of introducing this slightly different 

treatment is that it follows from the usual lattice construction of string in the string 

literature (see e.g. [19]). Thus the results given here will be of use in the discussion of 

· · f t . t . 1201 • Ch t 5 quantisatwn o s rmgs on on m ap er . 

The Case Without the Magnetic Field 

Consider Tn, expressed as the quotient space W/27r A where W is an n-dimensional 

real vector space and A C lV is the lattice 

n 

A:= {LniAi I ni E Z} (3.111) 
i=l 

here { Ai , i = 1, ... , n} =: E is the set of basis vectors for W. The dual vector space W* 

has the basis E* := {Bi , i = 1, ... , n} such that < Bi, Aj >= 8}. Thus, given that the 

configuration space for a particle moving freely on Tn is being expressed as Q = lV /27r A, 

the phase space isS= T*Q = W* x W/27rA. The set of fibre coordinates {JA I A E E} 

serves as a part of the canonical observables for this system of a particle on Tn. Note that 

the basis of W labels the fibre coordinates on W* ( cf. the notation in Section 1.2). For 

other observables, the example of Q = T 2 suggests the following construction adapted to 

the lattice structure. 

As outlined in the introduction, the nonlinearity of Q necessitates its embedding in 

some vector space V to obtain globally well-defined 2n variables intrinsic to Q ( cf. Q = 
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T2). An element v of V shall be given by the components v(B) := (vx(B), vy(B)) E 1R2 

in the direction of B E E•. The relevant observables are then given by functions of S 

taking values in V i.e. 

(3.112) 

(3.113) 

where ci> E w• and [ ¢) E W /27r A is the equivalence class of ¢ E W modulo 21r A ( cf. the 

'angle' <Pa with the locally defined coordinate function <Pa on T2). The natural symplectic 

structure on the phase space S is given by 

(3.114) 

where ¢B' is the coordinate of W in the Ai-direction (dual to the Bi-direction). Note 

· that d¢B' is a well-defined one-form on W/27r A. Thus, the Poisson bracket algebra of 

observables (3.113) and J A is 

where A E E and B, B' E E•. From this algebra, the canonical group G that acts on Q 

is W /27r A itself, and the full canonical group is the direct product 

g = E2 X E2 X •.• X E2 ' 

n times 

(3.116) 

where E2 is the Euclidean group in two dimensions, built out of V and W/27rA. The 

subgroup W /27r A acts on V as an automorphism group in the following way: 

(
cos< B,1] > -sin< B,1] >) (vx(B)) 

T['l]v(B) := 
sin < B, 1J > cos < B, 1J > vy(B) 

where [17] E W/27rA and v E V. The full canonical group g acts on S by 

where [¢), [17) E W/27rA, J E w• and v, v(,p) E V. 

(3.117) 

(3.118) 
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The quantisation of the system involves finding irreducible unitary representations of 

g and hence the Hermitian representation of the algebra (3.115): 

[JA A B] . B A A B A,u = z < , > v , (3.119) 

This is done in a similar way to that of Section 3.2. The classification of the representa­

tions also follows directly from that section, now involving n parameters Ai (i = 1, ... , n) 

parametrising the W /21r A-orbit on V. It is important to note that the group actions 

(3.117) and (3.118) also allows the use of the cover W of W/21rA for the canonical group. 

Similar remarks on the universal cover also follow from Section 3.2, leading to the possi­

bility of 8-states with n parameters ei. 

The Case With the Magnetic Field 

For the system of a particle moving on Tn in a constant magnetic field, the main 

difference from what is given above, lies in the usage of a modified symplectic form for S: 

n 

Wp := L (d~Bj A dJA; + F(Ai,Aj)d~Bj A d~Bi) (3.120) 
i,j=l 

where F can be thought as a skew-symmetric bilinear form on W /21r A such that F(Ai, Aj) 

are the components of the constant magnetic field in the direction of Ai and Aj of E. 

Using the same set of canonical observables, the Poisson bracket algebra then changes to 

(A,A' E E) (3.121) 

together with relations (3.115). The previous canonical group will now no longer work but 

a larger extended group is needed. Analogous to the construction in Section 3.3, one can 

find the global structure of the new canonical group by exponentiating the action of an 

operator representation of J A on sections of a line bundle over Tn where these operators 

obey the 'quantum commutator' corresponding to (3.121) i.e. 

(3.122} 

The sections can be given by complex-valued wavefunctions '1/J(n) obeying the boundary 

conditions given in the Appendix ( cf. Q = T 2 ). The appropriate canonical group acting 
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on W /271" A is then 

(3.123) 

where u( i) is the ith element in the permutation u of (12 ... n) and Wj is the jth com­

ponent of W. The order of the permutation in G does not matter as they correspond to 

taking a particular representation within an equivalence class of bundle representations 

( cf. Section 3.3). The group product of G is given by 

(TJ1, T/2, ... , TJn, eir)((1, (2, ... , ('\ eis) 

=( 1]1 + (1, 1]2 + (2, ... , TJn + ('\ ei(r+11+ ~;.t=l.<i<l·) mit Hi Z")) 
(3.124) 

where ryi(TJ'i) E Wj, and Hi(H'i) are the corresponding Lie algebra parameters while 

the exponential terms belong to the central U(1)-subgroup. The parameters mjk are 

the ~n( n - 1) integers that labels the bundle representation of G over Tn. They corre­

spond to the quantised flux of the constant magnetic field through closed two-dimensional 

submanifolds of Tn. The full canonical group is 

(3.125) 

where E2 is the universal cover of E2. The representations of the subgroup V of g are 

still labelled by the aforementioned >.i 's. 

3.5 Summary 

This chapter has examined the application of group-theoretic quantisation programme 

to systems of a particle moving on a torus, for both cases of with and without an external 

background constant magnetic field. The example of T 2 is given with some elaborations. 

The inclusion of a magnetic field brings about significant changes to the quantisation of 

the system. In particular the canonical group that is used as the basis for the quantisation 

of the system without the magnetic field has to be changed to the central extension of its 

universal cover. This change can be largely understood in terms of lifting ·group actions 

from T 2 onto the line bundle over T 2 which is considered as the representation space. The 

inequivalent unitary representations of this new canonical group in fact correspond to the 
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known physical systems characterised by the inequivalent bundles over T 2• Other results 

on how the Lie algebra of the canonical group contracts to give the algebra that describes 

ordinary quantum mechanics on R 2 (for both cases), and the possibility of 'anomalous' 

constants of motion are also given. Some of these results are then generalised for the 

n-torus Tn adapted to a lattice structure. 

Below is a summary of the main results of this chapter: 

(i) The canonical group g for the system of a particle moving on T2 without the 

magnetic field is the direct product of two Euclidean groups i.e. g = E2 x E2. 

The different quantisations of the system are given by the inequivalent irreducible 

unitary representations of Q which are parametrised by positive real parameters 

Aa (a= 1, 2) associated to the 80(2)-orbits of Char(R2) for each E2 subgroup. 

The group g can also be replaced by its universal cover giving rise to two extra 

parameters Ba known as the B-angles. 

( ii) For the case of the particle in a magnetic field, the canonical group has to be 

changed to the central extension of its universal cover i.e. Q = E2r><(E2 x U(1)). 

The use of the universal cover is necessary in order to generate a nontrivial lift of 

the group action on T 2 to a nontrivial line bundle over T 2
• 

(iii) The abstract group Q is independent of the magnetic charge m. The different 

quantisations of the system are however given by the magnetic charge as well as 

the other parameters Aa and Ba mentioned in (i) above. 

( iv) The use of globally well-defined canonical observables cos ¢>a and sin ¢>a eliminates 

the possibility of anomalous constants of motion though the theory is still 'anoma­

lous' in not possessing a conserved generalised momentum. 

( v) For the general case of a particle moving freely on Tn., the canonical group is simply 

the direct product of n Euclidean groups i.e. Q = E2 x E2 x · · · x E2. Associated 

to each irreducible unitary representations of Q are n parameters Ai ( i = 1, ... , n ). 

(vi) The canonical group g for the general case of a particle moving on Tn. with 

a magnetic field is Q = E2r><(E2 · · ·r><(E2 x U(1)) · · ·)). The representations 

of g are labelled by !n(n- 1) integers mi; (i,j = 2, ... , n) which denotes the 

quantised flux of the magnetic field over closed two-dimensional surfaces of Tn. 

Other parameters are the aforementioned Ai and also the B-angles ()i· 
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Consider the set of functions 1./J of the angular variables of ( <P1 , <P2) of T 2. One imposes 

the following boundary conditions on these wavefunctions: 

1./J(<P\27r) = ,P(<P1,o) , 

,P(21r, <P2) = g(</Jl, <P2)1./J(O, <P2) , 

where g( <P1 , <P2) := exp( -im<P2). One requires that the covariant derivative Da := 8a +iAa 

acting on the wavefunctions obey the same conditions, in order to keep the theory gauge­

invariant i.e. 

(Da1/J)(<P1
, 27r) = (Da'I/J)(<Pl, 0) , 

(Da1/J)(27r, <P2
) = g(</J1

, <P2)(Da1./J)(O, <P2) 

This implies that the connection must satisfy the boundary conditions 

Aa( <P1
, 27r) = Aa( <P\ 0) , 

Aa(27r, <P2) = Aa(O, <P2) + i( 8ag )g-l 

A compatible gauge choice that corresponds to a constant gauge field strength is 

The magnetic charge is 

Al(<Pl,¢}):=0 , 

A2(<Pl, <P2) := ;~<Pl 

2~ j F = i; j dA = m , 

T2 T2 

and this has to be an integer, in order that the gauge transformation function g should 

be well-defined. 

(ii) n-torus Tn 

The above quantisation condition is easily generalised to the general n-torus Tn. One 

uses instead the wavefunctions 1/J(n) of angular variables <Pa (a = 1, ... , n) of Tn whose 
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boundary conditions are 

'1/J(n)(cpl 1 ••• 
1 
cpn-1 1 27r) = 'I/J(n)(cp1 

1 
••• 

1 
cpn-1 

1 
0) 

.1. (..1.1 2 ..J.U) -im2nf/J" .1. (..1.1 0 ..1.n) 
'f'(n) If' ' •.. ' 7r, If' = e 'f'(n) If' ' •.• ' 'If' 

.!, (27r , , , ..l,fl-1 ..J.fl) = e-i(mn2</J
2+ .. +m,,<jl" J.t. (0 , , . ..J.fl-1 ..J.U) 

'f'(n) ' 'If' 'If' 'f'(n) ' 'If' 'If' 

where mi; ( i, j = 2, ... , n) are the !n( n - 1) integers generating the second homology 

group H2(Tn) of Tn. The connection then obeys 

Aa( cpl, ... 'cpn-1' 27r) = Aa( cp1' ... 'cpn-1' 0) 

Aa( cp1 
1 • • • 1 27r 1 cp"') = Aa( c/J1 

1 • • ·, 0, cp"') + ffi2u0an 

A suitable gauge choice would then be 

At(c/J1, ... ,cpn):=O ' 

A2( c/J1, · · ·, c/Jn) := 2; mu2c/J1 

The quantisation condition is then 

where E is any generating 2-surfa.ce ofT". 
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Chapter 4 

Abelian Gauge Symmetry 
in Sigma-Models with Wess-Zumino Term 

4.1 Introduction 

A relevant topic for future discussions is the Abelian gauge symmetry in nonlinear 

symmetry in nonlinear sigma- (u-) models arising from the inclusion of a 'topological term' 

now known as the Wess-Zumino term!11 This chapter will digress from the main topic 

of group-theoretic quantisation and central extensions to look into this Abelian gauge 

symmetry in more detail with the motivation of setting up a parallel between these u­

models and the system of a particle moving in a constant magnetic field. This will be 

given along with a preceding discussion of the general construction of a Wess-Zumino term 

in a two-dimensional Minkowskian space-time. An investigation of Noether's theorem for 

the u-models with the Wess-Zumino term [21 is included to elaborate the close analogy 

with the case of a particle in a magnetic field. Associated global problems will also be 

discussed. 

Sigma-models have been frequently studied in theoretical physics in various ways. It 

was originally studied as an effective theory of scalar mesons (see e.g. Chapter 5 of [3]). 

The u-models however are much more frequently exploited as model field theories exhibit­

ing rich geometrical structures~"] In particular their supersymmetric versions have in fact 

been used as 'mathematical tools', for example in improving Morse inequalities[&] and 

rederiving index theorems!5
'
71 Today, their uses are often directed to the study of confor­

mal field theories and string theories!
8

-
131 In these theories, the inclusion of Wess-Zumino 

terms have found to be crucial. The term has been used to cure anomalies~131 estab­

lish equivalence between bosonic theories and fermionic theories and restore conformal 

invariance!91 among other things. 
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A sigma-model is defined as a set of fields {~i} mapping a (d + I)-dimensional 

(Minkowskian) space-time into a Riemannian manifold M ( i = 1, ... , dim M). The nor­

mal kinetic energy Lagrangian density is given by 

(4.1) 

(Sum over repeated indices is assumed.) Note that the Greek indices are the space-time 

indices and the indices i,j, ... belong to the manifold M. For the purpose of this work, 

the space-time is assumed to be flat and of (1 + 1) dimensions with space coordinate x 

and time coordinate t. The nonlinearity of the theory comes from the ~-dependence of 

the metric g that describes the geometry of M. It is important to observe that £o is 

independent of the coordinate patches on M i.e. 

(4.2) 

where 

(4.3) 

In usual discussions of the u-model, the following boundary condition is normally imposed 

on ~: 

~--+ ~o EM as lxl--+ oo (4.4) 

for ~o, a point on M. This implies that ~ is basically the map 

(4.5) 

where S1 is space with a distinguished point mapped to ~o- The configuration space of 

the fields is then the loop space OM 1141 i.e. loops in M with basepoint ~o. Having defined 

the (normal) u-model above, one can go on to construct its Wess-Zumino term in the next 

section. 
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Fig.l : Joining of loops in M. 

4.2 Wess-Zumino Term 

A Wess-Zumino term is a topological term added to the normal kinetic energy action 

(Lagrangian density) of the u-model. It is topological in the sense that the physically 

relevant quantities derived from it are independent of deformations of the fields. In a 

general (d + 1) dimensions of space-time, the Wess-Zumino action consists of a (d + 2)­

form on M integrated over (d + 2)-chains of M. One example would be the field strength 

two-form of a Dirac monopole on T2 in the previous chapter, where d = 0 and i\1. = T2 • 

Before constructing the Wess-Zumino term, it is useful to look into the maps iP (4.5) 

more closely. Its image, which shall also be called il>, are said to be one-cycles of M and 

they can be decomposed in terms of fundamental cycles of Nl as 

il> := LnaCa + aJ , (4.6) 
a 

where Ca is a set of nontrivial loops generated by 1r1(M) (the first homotopy group of M) 

with nonzero winding numbers na, and the map J is the extension 

( 4.7) 

of the map 

(4.8) 

where pis the boundary operator such that 8D2 = S 1 (with the distingU:ished point). 

Basically, ¢is a map which is homotopic to the constant map. The '+' symbol in (4.6) 

means the joining of oriented loops at the basepoint as in the discussion of the group 

property of the fundamental group!14
-

181 (See Fig. 1.) 
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In general, this (group) operation may be non-Abelian. In such a case one considers only 

the Abelianized version of the group. However the examples of M that shall be considered 

here will all have Abelian fundamental group and thus the discussion will not be pursued 

any further. 

The time-dependence of the fields q, is introduced by considering a family of maps 

q,t : S1 X { t} ----+ M, parametrised by t E I= [to, tt] c R. The whole family of maps 

will be denoted by 

with 

where 

q,I = 2: naG/a+ (8~)J , 
a 

~I D 2 
X I----+ M 

~I= (8~)J S1 
X I----+ M 

(4.9) 

( 4.10) 

(4.11) 

Note that one could take ~I to be (8~I) where there will be an extra contribution from 

the endpoints of I. This amounts only to a total time derivative in the action and hence 

can be ignored. [Further explanations can be found in note 1 below and the discussion of 

gauge symmetry in the next section.) 

The relevant differential form on M for the construction of the Wess-Zumino term is 

the three-form, 

f!+dA , (4.12) 

where n is a generator of the third cohomology group H3 (M) of M, and A is some two 

form on M. The Wess-Zumino action can now be formed from (4.12) together with the 

decomposition (4.10) by the following functionals: 

( 4.13) 
a 

where 

r[(a~)IJ := j ~jn (4.14) 

D 2 xi 
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and 

f'[CI> I] := J CI>jA (4.15) 

S 1 xi 

The asterisk in (4.14) and (4.15) denotes the pullback of the forms nand A by the maps 

~I and CI>I respectively. The first term in equation (4.13) is an arbitrary fixed real number 

given by the following construction of Krichever et al !171 
This is done by first realising 

that Ca is a class of homologous one-cycles. Denote two cycles in the class by Ca and C~. 

Consider a pair (N2 , Xa) where N 2 is a two-dimensional topological space whose boundary 

is S1u( -S1'). Here, S1' is a 'different' circle from S1 and is mapped by C~ to image of 

C~ with the same basepoint as that of Ca. The map Xa is the mapping 

such that 

X a 

Xa ls1 = Ca 

Xa is1' = C~ 

The pair (N2 , Xa) can now be used to construct r[Cia] globally by defining 

r[Cia] := j xjan 
N 2 xi 

where Xla is simply the mapping 

XI a 

It is now important to note the following: 

(4.16) 

(4.17) 

(4.18) 

( 4.19) 

(4.20) 

1. The form n has been assumed to be closed. This is necessary to make the func­

tional (4.14) a topological action i.e. to be independent of the way in which ¢ 

is extended to ¢. This can be seen as follows. (The same can be done for the 

functional (4.19) simply by replacing¢ and~ by Ca and Xa respectively.) Let ~I 
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a.nd 4>] be two different extensions of ¢>I· H ?rz(M) = 0, then a homotopy 

from ~I to ~j always exists where D 3 is a 3-disk (see Fig. 2) and 

h lsxi =~I 

h !Nxi = ~~ , 

h !Exi = if>I 

(4.21) 

( 4.22) 

(4.23) 

(4.24) 

Fig. 2: D 3 (a solid ball) divided by equator E giving two hemispheres Nand S. 

H n is closed, then 

o = j h*dn 
D3 xl 

- j h*n (4.25) 
8(D3 xi) 

= j ~~·n- j ¢jn + j h·n lt=tl - j h*n lt=to 
Nxl Sxi D2 D2 

Note that the last two terms combine to give a total time derivative under inte­

gral J dt. Thus they may be ignored as they do not contribute to the dynamics. 

(Equivalently one may use the gauge freedom discussed in Section· 4.3 to gauge 

them away.) Hence the Wess-Zumino action is independent of extensions ~I (or 

XIa) modulo endpoint contributions and thus is well-defined as a part of a physi~ 

cal action. For those manifolds M with ?rz(M) :/:- 0, there is an ambiguity in the 
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possible extensions of <PI (or CIa). The illustration above then implies the exten­

sions ~I and ~~ are no longer homotopic to each other and hence are inequivalent. 

To resolve this problem one requires an extra datum to make the Wess-Zumino 

action well-defined. An example of such a case is given in Section 4.6 but the 

discussion concerning the ambiguity however shall be deferred to Section 4. 7 for 

ease of explanation. 

2. Most of the time the attention is drawn only to the functional (4.14) of the whole 

Wess-Zumino action. This functional in fact corresponds to the usual definition of 

the Wess-Zumino action which is independent of any deformations of ~I in M. The 

functional ( 4.15) is uninteresting since it can be written consistently and globally 

as an integral over space-time without any difficulty. With this term in mind, 

one can always add further exact forms to n with their integrals contributing 

only to integral (4.15). Hence to define (4.14) one uses only the generators of 

~he third cohomology group H3(M) of M. Thus there are ba(M) = dimH3(M) 

independent Wess-Zumino actions from this functional. The functional r[Cia] will 

be treated as fixed numbers given by (4.19). The contributions from the fields Ca 

shall in fact be ignored later. 

3. This construction of the Wess-Zumino action is different from its usual construc­

tion e.g. that of Braaten et az!t
8

'
191 Here, the normal construction involving Eu­

clideanised space-time is avoided by using a time-parametrised family of maps <P. 

An important consequence is that the fields <PI need no longer be cycles of M but 

are general two-chains on M. 

To write the functionals (4.14) and (4.19) in the usual fashion of the integral of the 

Lagrangian density, we use the Poincare Lemma 1141 to write n as an exact form in some 

local patch of M, 

( 4.26) 

The integral (4.14) may now be written as 
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r[(8~)I] = j ~i~ 
Dxl 

= J q)jw + {total time derivatives} (4.27) 

= J dt dx{E1"'811 ¢}8v<P~Wjk(<P)} 
S 1 xl 

where w(<P) has singularities in q). For the integral (4.19) there seems to be no consistent 

way of writing it locally. This is due to the problem associated with the gauge transfor­

mations belonging only to trivial winding number sector of the fields cp (see next section). 

To avoid a cumbersome notation, the subscript I will be dropped from now on. 

4.3 Abelian Gauge Symmetry 

It has long been noted that there are similarities between the system of a particle in 

the presence of Dirac monopole and the a-model which includes the topological Wess­

Zumino term!20
-

221 The similarity in terms of the presence of a line bundle structure 

over the configuration space is also well-known!231 The Abelian gauge symmetry in the 

a-model with a Wess-Zumino term is first observed explicitly by Wu and Zee 111 through 

this analogy with the particle case. Here, the symmetry is made much more explicit by 

the interpretation of the a-model as a system of a particle moving in a constant magnetic 

field on an infinite-dimensional configuration space OM. 

First, consider the kinetic energy Lagrangian from .Co in ( 4.1 ), 

Lo = j dx{~811 .Pi81'cpi9ij(.P)} ( 4.28) 

Sl 

One can make simplifications to Lo when one realises that the fields Ca are linear func­

tions of x (generating the nontrivial winding numbers). Furthermore it may be made 

independent of t owing to the topological nature of the fields Ca. Thus .derivatives of 

the fields Ca in the kinetic term merely add constants to the kinetic term involving q)'s 

(the cross terms in (4.28) may be integrated out) and therefore the contributions from 

the fields Ca will be ignored for the rest of this chapter. Equations ( 4.28) together with 
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(4.27) form the total Lagrangian density (modulo constants) 

( 4.29) 

The correspondence between the a-model and the system of a particle in a magnetic field 111 

can be observed by first writing down the conjugate momenta to ¢) ( x) from equation 

( 4.29) : 

6£ "k k 1r;(x) := . . = ¢ (x)g;k(¢) + 28x¢ (x)w;k(¢) 
6<f>J(x) 

(4.30) 

Note that the second term provides an analogue of the gauge potential A; ( cf. Pi 

iz; + A;(q)) in the space of field configurations D.M i.e. 

( 4.31) 

To relate A; to topological properties of the configuration space, one must write it as a 

differential form on D.M ( cf. A= A;dxi). It is then useful to digress briefly and describe 

the relevant ideas of differential geometry on D.M. 

A vector field on D.M is intuitively given by an infinitesimal deformation of based­

point loops in M. Thus the set of basis vectors at each point of D.M may be denoted by 

{ 6¢)}. To describe a one-form on D.M, it is convenient to observe that 6¢) evaluated at 

x gives a real number 6¢)(x). Thus 6¢)(x) is likened to be an object that sends 6¢) to 

the real numbers which is precisely the definition of a one-form. Hence denote the basis 

of one-forms on D.M as { 6¢)(x) }!24
'
251 These objects anticommute (resembling the wedge 

product of ordinary one-forms), i.e. 

(4.32) 

The exterior derivative is denoted by 6 and it obeys 

( 4.33) 

The object ¢)(x) is considered to be the zero-form that sends the function ¢) to the 
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number if)(x) for each x. This implies that if)(x) is a closed one-form, i.e. it obeys 

8(8¢-i(x)) = 0 (4.34)</> 

A general k-form 1C may be written as 

1C := J dx(l) J dx(2) ... J dx(k)1Cili2 ... i~o(</>(x(l)), ... ,</>(x(k)))8</>il(x(1)) ... 8</>i~o(x(k)) 
Sl Sl Sl 

{4.35) 

where the bracketed indices on the x's are just labels for different x's and 1Ci1 i2 ... i~o is 

a functional of </> at the various points. Note that apart from the usual summation 

convention over the indices i1, i2, .... , ikl there is also a 'summation' over the different 

x's denoted by the integral sign, showing the infinite dimension of f!M. It is important 

to note that the forms that are to be considered here is only a subclass of such general 

forms namely those in which the functional '!Ci1 i2 ... i~o is a functional of </> at one point x. 

This is because such functionals will be appearing in the Lagrangian for the theory and 

hence required to be local. Lastly, given a vector 8¢) = vi on f!M, its contraction with 

1C is given by 

v ...J 1C = ~ J dx(l) J dx(2) • · · J dx(k)vii '!Ci1 i2 ... i~o8</>i 1 (x(l)) ... &iJ;(x(j)) ... 8<f>i~<(x(k)) 
'i Sl Sl Sl 

(4.36) 

where the careted symbol is missing from the given expression. 

Returning to the discussion of Aj, it can now be understood as the components of 

the gauge potential one-form 

A[8¢-i]: = J dx{28x</>k(x)wjk(<f>)8¢-i(x)} 
Sl 

= J dx{ Aj(</>(x))8¢-i(x)} 
( 4.37) 

Sl 

The field strength two-form on f!M ( cf. F = dA) can be obtained by applying the exterior 
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derivative 8 at point x, i.e. 

F(8<tl, 8ql] : = 8(A(8ql])(8~1] 

= J dx { 2( 8x8~k (X) )Wjk8ql (X) + 2( 8x~k)Wjk,l8~l (X )8ql (X)} 
51 (4.38) 

= j dx{3(8x~k)w;k,l8~1 (x)8ql(x)} , 
Sl 

where Wjk,l denotes the derivative of Wjk with respect to the field ~1 • In deriving equation 

( 4.38), the periodicity of <f>i in x and the following symmetries of w have been used: 

Wjk,l = -Wjl,k · (4.39) 

Note that .r corresponds to a constant gauge field strength on OM where for each indices 

j, k, 1 as well as 'x' in (4.38) there is an assigned 'constant'. The Wess-Zumino action can 

now be written in terms of forms on OM: 

r[(BJ)I] = j dt j dx{2¢i(x)(8x~k(x))w;k(<l>)} 
Sl 

= j dt j dx{ J;i(x)A;(~)} 
Sl 

= j dx j dt{
8t A;(~)} ( 4.40) 

Sl 

= j dx j 8ql(x)A;(~) 
Sl "Y 

where 1 is the 'path traversed' in OM. A more useful form will be 

r((BJ)J] = j dtA[~] , ( 4.41) 

treating ~as a vector at each point of OM and contracting it with A ( cf. J dtAixi). 
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In order to describe the gauge symmetry, one must obtain the analogue of a gauge 

transformation of A i.e. 

A ----. A' = A + SA , ( 4.42) 

for some zero-form A on O.M, and check that the objects defined on O.M have the correct 

gauge symmetry properties. From the form of the Wess-Zumino Lagrangian, SA is required 

to be 

SA:= J dx{ 28x¢kakJS¢i(x)} (4.43) 

Sl 

for some functional one-form o:( ¢) on M. This implies that 

A= j dx{ 8x¢k(x)ak(¢)} ( 4.44) 

Sl 

In deriving equation ( 4.44) from ( 4.43 ), it is necessary that A is a functional of fields only 

from the trivial sector, namely ¢-i(x). This means that the gauge transformation for the 

whole action comes from the trivial sector. This is precisely the reason why (4.19) cannot 

be put in a Lagrangian form, as it depends on the choice of functional w(Ca) (i.e. it is 

no longer gauge (quasi-) invariant). It is easy to check that F stays invariant under the 

transformation ( 4.42) : 

F ____. :F' = dx{3(wjk,l + O:k,jl)(8x¢ )S¢ (x)Scfl(x)} J k I . 

Sl 

= j dx{3wjk,l(8x¢k)S¢1(x)Sc/)(x)} = F . 
( 4.45) 

Sl 

The Wess-Zumino action is also well-defined under transformation ( 4.42) as it changes by 

a total time derivative given by 

J dt j dx{t11"8p.c/)8,Akaj,k} = J dt J dx{8,(t11"8p.q)ai)} 
Sl Sl 

= J dt :t (-J dx {ax q) 0: j}) . 
(4.46) 

Sl 

( cf. lint := J dt(Aixi) --+ lint + J dt(8iA xi) = lint+ J dt ~~ ). This can be ignored as it 

does not contribute to the dynamics of the theory. 
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4.4 N oether's Theorem and Constants of Motion 

With the results of the previous section, the Wess-Zumino action can be clearly inter­

preted as the interacting part of a total action for a 'particle' in a background 'magnetic 

field' on O.M exhibiting the appropriate gauge symmetries. In this section, the space­

time symmetries of the CT-model will be examined. Like any other system in an external 

background gauge field, one expects that the Noether's theorem gives constants of motion 

modified by a contribution from the 'background field'!261 This further elaborates the 

particle analogy. 

Consider the previous Lagrangian density (4.29) as 

C =Co +Cwz , 

where 

(4.47) 

( 4.48) 

Let q) transform as 

with (4.49) 

First, let Co be invariant under this transformation 

This implies 

( 4.50) 

i.e. v must be a Killing vector on ( M, g). 
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To see how .Cwz responds to transformations (4.49) and in particular to see when 

they are symmetry transformations, it is important to recall that the Wess-Zumino action 

may be written in terms of a gauge potential one-form (see (4.41)). Interpreting 6</) as 

a vector field on nM, the gauge potential one-form A transforms under (4.49) in a way 

given by its Lie derivative with respect to 6</J = v, i.e. 

A--+ A'= A+ £vA ( 4.51) 

Thus to make .Cwz invariant one can impose £vA = 0, but note that we can use the 

gauge freedom to modify this into 

(4.52) 

for some scalar W v ( t/J) on nM. From equation ( 4.46) this is equivalent to the condition 

that .Cwz may change by a total time derivative. The change in .Cwz under transformation 

( 4.49) is explicitly given by 

( 4.53) 

This can be set to equal the total derivative 

( 4.54) 

provided that the following condition holds ( cf. [27]): 

( 4.55) 

By using symmetries in ( 4.39) and from equation ( 4.46), a sufficient condition for equation 

( 4.52) to hold is then 

( 4.56) 

Note that in general, condition ( 4.56) is not true. For such cases it is necessary to treat 

equation (4.53) case by case for different M and w (one such case is our second example 

in Section 4.6). For simplicity, we shall assume equation ( 4.56) in order to illustrate the 

point of the modified constants of motion. 
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Now the Lie derivative of A can also be expressed formally using the homotopy formula 

£v(·) := 8( v .J ·) + v ...J 8(· ), in particular 

£vA = 8(v .J A)+ v ...J (SA) 

= 8(A[v]) + v ...J :F . 

Comparing equation ( 4.57) with equation ( 4.52) implies a new condition : 

V .J :F = -8t/Jv , 

for some scalar tPv on D.M with 

Wv = A[v] - tPv 

( 4.57) 

( 4.58) 

(4.59) 

( cf. equation (1.8) in [26]). Of relevance to the discussions on constants of motion is the 

gauge invariant object tPv· From equation ( 4.58) note that tPv is globally well-defined only 

if v .J :F is exact. Note that v ...J :F is necessarily closed since :F, being gauge invariant, 

must be invariant under the symmetry transformation (4.49) , i.e. 

( 4.60) 

Thus v .J :F belongs to the first cohomology class of D.M. A sufficient condition for a 

globally well-defined tPv is then 

( 4.61) 

This is always the case for simply connected configuration spaces, i.e. 

7rt(D.M) ~ 7rz(M) = 0 . (4.62) 

For other spaces, however, there is the possibility of v ...J :F being closed but nonexact and 

thus equation ( 4.58) is only true locally. 

In addition to equation ( 4.58), one can also obtain another equation for t/Jv, involving 

further contraction of :F with v = [w, u] for some vector fields w, u on D.M, namely 

tP[w,u] = :F[w, u] ( 4.63) 

( cf. equation (1.14b) in [26]). 
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Proof: Consider the following identity 

The left-hand side of equation (4.64) gives 

£w(6Wu)- £u(6Ww) = 6(w .J 6Wu)- 6(u .J 6Ww) 

= 6(£wWu- £uWw) · 

The right-hand side of equation (4.64) with equation (4.65) gives the identity 

Using equation (4.59) in equation (4.66) one can obtain 

A[[w, ul] -1/J[w,u) = £wA[u]- £w1/Ju- £uA[w] + £u1/Jw 

= w(A[u])- (w .J 61/Ju)- u(A[w]) + (u .J 61/Jw) 

Thus, 

1/J[w,u) = u(A[w])- w(A[u])+A[[w, ul] 

- U .J (61/Jw) + W .J (61/Ju) 

Using equation (4.59) with the identity 

F[u, w] = u(A[w])- w(A[u]) + A[[w, ul] , 

in equation ( 4.67) will now give the desired identity, 

1/J[w,u) = F[u, w] + F[w, u] - F[u, w] = F[w, u] 

A useful computation is that of £vA using equations ( 4.57) and ( 4.37) : 

0 

I { k . k l. k ., } 
£vA = dx 6(2(8x¢> )w;kv') + 3(8x¢> )wjk,IV 6</J(x)- 3(8x¢> )wjk,lv16¢> (x) 

Sl 

=I dx{28x(6¢>k(x)w;kvi)- 26</>k(x)wjk,lvi(Bx¢>1)- 26¢>k(x)w;kvj,1(8x¢>1) 

Sl 

(4.64) 

(4.65) 

{4.66) 

( 4.67) 

( 4.68) 

+ 2( Bx</>k)w;kvj,h"¢>1 (x) + 4( Bx</>k)Wjk,lv16¢>i (x)} ( 4.69) 

=I dx{2w;kvj,1(6¢>1(x)8x¢>k- 6¢>k(x)8x¢>1) + 2(8x¢>k)Wjk,lv16¢>i(x)} 

Sl 

=I dx{ (8x¢>k6¢>1(x)- 6¢>k(x)8x¢>1)(2w;kvj,l + Wlk,jvj)} 
Sl 
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This is, in fact, consistent with the change in .Cw z when the action is written in terms of 

A: 

j dx o.Cw z = £vA[~] 

J "I k "k I . . 
= dx { ( </> 8x</> - </> 8x</> )(2w;kv3

,1 + wu~.;v3 )} 
sx 

= J dx{ tiL" 8p</>18,<f>k(2w;kvj,l + Wlk,;vi)} 
sx 

Given the above results one can now discuss conserved currents and hence the asso­

ciated constants of motion with respect to the symmetry transformations ( 4.49). For 

completeness, the following standard discussion of Noether's theorem is included. A 

Lagrangian density .C(</>, 8p</>) under the transformation (4.49) changes (without using 

equations of motion) as 

.c ~ .c' = .c + a,.J<IL , ( 4.70) 

for some J<ll. With the equations of motion, it transforms as 

(4.71) 

Thus a conserved current can be constructed from the identity 

( 4.72) 

namely, 

JIL = o<t>i o( ~~<t>i) _ J<ll (4.73) 

From the total Lagrangian density, ( 4.4 7) with ( 4.48), f{ ll is given by 

(4.74) 

(see (4.53)). Hence the current Jll is 

Jll = 811 </>j9jk(<f>)vk + 2t11"811 </>kWikVI 
. k I l 

- tiL"</>' ( 8,</> )(2v ,jWlk + Wjk,IV ) 
( 4.75) 
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One can verify using the equations of motion that 

Hence one can construct constants of motion Cv, out of the time component of Jll such 

that 

8Cv = Jdx {}JO =- Jdx {}Jl = 0 
8t 8t ox 

Sl Sl 

Computation of Cv from equation ( 4. 75) gives 

(4.76) 

The main point now is to understand what the terms in equation ( 4. 76) mean. First, 

compute the exterior derivative of the last term: 

(4.77) 

where equations (4.56) and (4.69) and the fact that <f)'s are periodic functions of x have 

been used. Hence equations (4.77) and (4.56) imply that the third term in (4.76) is simply 

(4.78) 

The second term in (4.76) is straightforwardly given by A[v], while the first term is just 
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the normal contribution from the kinetic term. Writing the first term as C110 , one has 

Cv = Cv0 + A[v] - Wv 

= Cvo + '1/Jv 
(4.79) 

Thus one finds that the normal constant of motion C110 is supplemented by '1/;11 , the contrac­

tion of the field strength :F with the Killing vector field v. This justifies the earlier claim 

that Noether's theorem gives a modified constant of motion which includes a contribution 

from the background field. 

Having obtained these results, specific examples of u~models with Wess-Zumino term 

will now be used to illustrate the above results on modified constants of motion. 

4.5 a-Model on M = T 3 

The first example is the u-model on target manifold M = T 3. Here, all the results 

derived in the previous two sections hold. They will be made more explicit for this 

particular model. 

From the construction of the Wess-Zumino action (in the usual sense), there is only 

one independent action given by the (integral of the) generator of H 3(T3 ), which is the 

volume form 

( 4.80) 

where 4>i ( i = 1, 2, 3) are the angular (field) variables of T 3 . n can be represented locally 

as the exterior derivative (d) of the two-form 

( 4.81) 

Given such an w, the gauge potential one-form ( 4.37) is simply 

( 4.82) 

while the field strength two-form ( 4.38) is 

:F= j dx{~tijkOx4>k84>i(x)84>i(x)} (4.83) 

St 
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The Lagrangian density of this model may now be written as 

(4.84) 

where 1J is the flat metric on T 3 • 

The Killing vectors on (T3 , 1J) that will generate the symmetry transformations are 

just the vectors v generating translations, so that 

(4.85) 

where vi's are constants. The induced vector field on the configuration space f!T3 1s 

obtained by Lie-dragging the coordinate functions by the vector field v, i.e. 

( 4.86) 

Under this symmetry transformation, the Lagrangian density (4.84) changes by a total 

derivative as in (4.53) (note that wand v satisfy condition (4.56)) : 

6£ = 811J< 11 

where 

( 4.87) 

Thus the conserved current J~S (4.73) is simply given by 

(4.88) 

The constant of motion associated with the above current is then 

( 4.89) 

Note that the second term can be written as the contraction of the field strength two-form 

(4.83) with 4> and v, i.e. :F[4>, v] (with an abuse of notation; 4> is not a vector on f!T3 ). 

This can be compared with the case of a particle in magnetic field in which the analogous 

term is Fjkxivk (xi is the coordinate function of the configuration space)~281 
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Being preoccupied with global questions in this work, it is not inappropriate to address 

the possibility of the constants of motion being ill-defined. In [28], it is noted that for 

the case of a particle on rn in a magnetic field, the term F;kx; vk is not globally defined, 

owing to the multiple-valued coordinate function xi on the nonsimply-connected space 

rn. In the present example, however, this problem does not occur. As the field variable 

</) ( x) undergoes a translation of its period, 27r, 

qJ(x)-+ qJ(x) + 27r ( 4.90) 

the change in Cv is trivial : 

( 4.91) 

as the function </>k is periodic in x. This is consistent with the fact that the configuration 

space is now a loop space, OT3 , of T 3 and is simply connected, i.e. 

( 4.92) 

In fact, '1/Jv = F[ </>, v] must be globally defined as a consequence of this (see the remarks 

after equation ( 4.61) ). 

Thus to find any possible phenomena of 'anomalous' constants of motion, one must 

first require that 1r2 ( M) is nontrivial. Such an example will be discussed in the next 

section. 

4.6 a-Model on M = S2 x S1 

This is a more interesting example than the previous one as the target manifold 

M = S 2 x S1 has a nontrivial second homotopy group, which means that the space of 

field configurations is no longer simply connected. However this also means that one 

encounters an ambiguity in the construction of the Wess-Zumino action (see Note 1 in 

Section 4.2). We will nevertheless proceed as in Section 4.5. A comment regarding the 

ambiguity will be made in the next section. 
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The Wess-Zumino action is constructed from the one generator of H3(S2 x SI) which 

is given by the volume form: 

(4.93) 

where <PI and <jJ2 are now the spherical coordinates on S 2 and <jJ3 is the angular coordinate 

on S 1 . Locally this is given by n = dw where 

(4.94) 

With the metric of S2 x SI given by 

ds2 
: = 9jkdql ® d</Jk 

= (d</JI)2 + sin2 <PI(d</J2)2 + (d</J3)2 , 
(4.95) 

the total Lagrangian density of the u-model is 

(4.96) 

The gauge potentials computed from the above Lagrangian density are given by 

AN:= J dx{ -(cos <PI- 1)(8x<P3 8<jJ2(x)- 8x<P28<jJ3(x))} , (4.97) 

Sl 

As:= j dx{-(cos</J1 + 1)(8x<P38<P2(x)- 8x<P28<P3(x))} (4.98) 

Sl 

Note that these are only well-defined locally in the regions 

N, := { (<PI' <P2) I 0 ~ <PI < ~ + t ' 0 ~ <P2 < 27r} 

Sc := { ( </JI' </J2) I ~ - t < </JI ~ 7r ' 0 ~ </J2 < 27r} 

(4.99) 

(4.100) 

of S 2 respectively ( t > 0). A gauge potential which is well-defined on the whole of S 2 
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(and hence of !!M) can then be given by 

(4.101) 

with the observation that AN and As are gauge related on (N£ nSf) by 

e :=As- AN= -2 J dx{ ax¢38¢2(x)- ax¢28¢3 (x)} (4.102) 
St 

Note that this is an exact one-form 

e = 8e ' (4.103) 

where e is the zero-form 

e := -2 J dx{(ax¢3 )¢2(x)} ( 4.104) 
St 

( e is well defined under translations ¢i -----+ c/Ji + 211' for i = 2, 3). The field strength :F is 

simply given by 

:F = J dx{!sincjJ1Eijkax¢k8¢i(x)8</)(x)} (4.105) 
St 

For this model, the symmetry transformations are generated by the following Killing 

vectors on S2 x S1 : 

. 2 a 1 2 a 
v{l) := sm ¢ a¢1 +cot cP cos cP a¢2 ( 4.106) 

a 
V(2) := a¢2 ' (4.107) 

a 
V(3) := a¢3 ' (4.108) 

2 a 1 . 2 a 
v(4) :=-(cos¢ a¢1 - cot¢ sm¢ a¢2 ) (4.109) 

Here, the bracketed indices are just labels denoting different Killing vectors. One can now 

construct the associated constants of motion for each of the symmetry transformations 

given by 8¢i = vd) ( i = 1, ... , 4 ). It is important to note that the condition ( 4.56) does 

not hold for these cases and one has to repeat any necessary computations of Section 4.4 

which assume this condition. 
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The vector field on O.M is given by 

( 4.110) 

where sii on the right hand side is the Kronecker delta. The change in Lagrangian density 

by such a transformation is a total derivative, i.e. 8£ = a,.,J<(1) where 

(4.111) 

Hence the associated constant of motion constructed from transformation (4.110) will be 

Cv(l) = j dx { ~1 sin ¢2 + ~2 sin ¢1 cos ¢1 cos ¢2 + ( 8x ¢3
) sin ¢1 cos ¢2

} 

81 

Here the contribution from the field strength :F, 

'1/Jv(l) = j dx{ sin ¢1 cos ¢28x¢3
} 

81 

( 4.112) 

( 4.113) 

is no longer as transparent as '1/Jv in Section 3. However if we take the exterior derivative 

8 of '¢v<1 > we find 

8'¢v< 1> = j dx{ cos ¢1 cos ¢2(8x¢38¢1(x)- 8x¢18¢3(x)) 

81 

+sin ¢1 sin ¢2 (8x¢28¢3(x)- 8x¢38¢2(x))} 

= -v(l) J :F ' 

thus confirming the previous results. 

The vector field on O.M induced by v(2) is simply given by 

(4.114) 

( 4.115) 

and hence the change in Lagrangian density, 8£, is trivial. The constant of motion is 
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then, 

ctl(2) = J dx{~2 sin2 <P1 - (8x<P3)cos<P1
} 

Sl (4.116) 

= c"(2)o + ¢"(2) 

( Cvc2 >o is the normal kinetic term contribution). As before, we find that 

ht/Jvc2 > = J dx{ sin <P1 (8x<P3 h<P1(x)- 8x<P1h<P3 (x))} 
SI (4.117) 

= -v(2) ...J :F . 

Similar calculations for this case produce the following results : 

( 4.118) 

J {·a 2 1 
ct1(3) = dx <P + ( 8x<P ) cos <P } 

Sl (4.119) 

= ct1(3)0 + tPv(3) 

ht/Jv<3 > = J dx{sin<P1 (8x<P1h<P2(x)- 8x<P2h<P1(x))} 
SI (4.120) 

= -V(3) ...J :F . 

One could proceed for this case with similar calculations to the above; however we 

will instead make use of the observation that 

( 4.121) 

Using equation ( 4.63), one finds the field strength contribution to the constant of motion 
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associated with the symmetry transformation sqj = v{4) to be 

tPv<4 > = F[v(l)' V(2)] 

= J dx{ sin¢} sin ¢J2 8:~;¢}} 
Sl 

One finds again that 

8'f/Jv<4 > = J dx {cos ¢1 sin ¢2 
( 8:~;¢J3 8¢J1 

( x) - 8¢J3 
( x )8:~;¢J1 ) 

Sl 

+sin ¢1 cos ¢J2 (8:~;¢3 8¢2(x)- 8:~;¢J2 8¢J3 (x))} 

= -v(4) .J F . 

( 4.122) 

(4.123) 

Having constructed the constants of motion, it is interesting to check whether the 

tPv<;> 's are globally well-defined or not. As discussed earlier, possible obstructions may 

occur when 1r1(nM) is nontrivial. Thus it is natural to look at a noncontractible loop 

in the configuration space which is generated by this homotopy group. One such loop is 

shown in Fig. 3 below. 

Fig. 3: Evolution of a loop around S2 of M (S1 not shown) giving a resultant noncon­

tractible loop of nM. 

The reason why such a loop can give a possible obstruction to a well-defined constant 

of motion, can be seen as follows. Consider the loop on S 2 in Fig. 3 as given by the map 

¢. In defining the Wess-Zumino action, the map </>has to be extended to ~ (see Section 

4.2). Replacing the loop given by the map </> in Fig. 3 by the image of ( a particular) 

extension ~ gives the corresponding Fig. 4. This figure shows that the Wess-Zumino 
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Fig. 4: The corresponding evolution of the image of the extension ~of <f>. 

action changes value as 4> evolves under such noncontractible loop. Thus constants of 

motion derived from such action can also change values under such evolution of 4> and 

hence are ill-defined. One has to check this explicitly. 

A construction of one such noncontractible loop in nM is given as follows. First, the 

submanifold 52 of M is embedded in R 3 with a triplet of coordinate functions Xi's : 

n : = (x1, X2, X3) 

= (sin ¢1 cos ¢2 , sin ¢1 sin ¢2
, cos ¢1 ) 

(4.124) 

which satisfies n · n = 1 (<Pi's are coordinates on M). The loop may now be constructed 

via such a triplet of functions where they now map [0, 1r] x 5 1 to 52 , i.e. 

n := (sin A sin x, sin2 A cos X+ cos2 A, sin A cos .X( cos X- 1)) ( 4.125) 

where A E [0, 1r] is some parameter and x E 5 1 is the coordinate of space. The vector n 
has all the properties required of a noncontractible loop in nM : 

(i). n.. n. = 1 . 

(ii). For fixed x, 

n 1..\=o= n 1~=1 = (0, 1, O) 

is a fixed point through which the one-parameter family of loops (parametrised 

by .X) appear on the submanifold 5 2• The map (4.125) actually describes the 

intersection of a plane with the two-sphere of unit radius as shown in the figu~e 

below. 
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tan,\= x2 -l 
Xl 

Fig. 5: The intersection of a plane with S 2 in the x2-x3 plane. 

This map possesses the required loop-like property in ns2 as .\ goes from 0 

to 1r. 

(iii). It ha.s a topological winding number one. This can be seen by noting that with 

the coordinate functions (4.124), the volume form of S 2 is given by 

( 4.126) 

For the map (4.125), the volume form is 

n = sin.\(1- cosx)d.\ 1\ dx ( 4.127) 

Integrating ( 4.127) gives the winding number multiplied by the volume : 

ll' 271' 

j d.\ j dx sin.\(1- cosx) = 4Tr 

0 0 

Hence the winding number is one. 

Having obtained the map ( 4.125), it is now easily verified that the constants of motion 

are globally well-defined (with respect to function (4.125)), 

(4.128) 

In fact, one finds that V(i) .J :F is an ·exact form for each i = 1, · · ·, 4 (using the triplet of 
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coordinate functions), i.e. 

V(l) ...J :F = j dx8 {-XI Oxc/>
3

} (4.129) 

Sl 

V(2) ...J :F = j dx8{ X30xc/>
3

} (4.130) 

Sl 

v(3) ...J :F = j dx8{ -XIOxc/>
2

} ( 4.131) 

Sl 

V(4) ...J :F = j dx8{ -X20xc/>
3

} (4.132) 

81 

This brings us to the condusion that while the requirement of f!M is nonsimply-connected 

is necessary for the existence of 'anomalous' constants of motion, it is not sufficient. 

4.7 Topological 1r1(0M) Effects 

In the previous sections, the correspondence between u-models with a Wess-Zumino 

term and the system of a particle in a magnetic field has been made closer through 

discussions of both the gauge symmetries and the space-time symmetries. One other 

possible similarity between the two systems is that of a topological effect. In the second 

example of u-model on M = S 2 x S1, the possibility of an anomalous constant of motion 

due to the nonsimply-connectedness of the configuration space was investigated, though 

such a constant of motion is not found. There is another topological effect that arises from 

nonsimply connected space, namely the Aharonov-Bohm effect from the background gauge 

field. It is possible to demonstrate this effect for the example of u-model on S 2 x S1. But 

prior to this, some comments on the ambiguity in the construction of the Wess-Zumino 

action associated with the nontrivial 1r2(M) (see Note 1 of Section 4.2) are necessary. 

Consider the u-model on M = S2 x S1 of the previous section with 4> mapping space 

S1 into the submanifold S 2 of M. This map has different extensions ~ which are not 

deformable to each other due to the 'obstruction' from S 2 of M. For example, the map 4> 

that sends S1 to the equator of S2 e.g. 

,J.l ·- 1!: 
<p .- 2 c/>3 := t (4.133) 
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have extensions 

13 ·- t 
Y' .- ' (4.134) 

and 

~1 := r; + n(1- r)1r , 13 ·- t 
Y' .- ' (4.135) 

where r E [0, 1] is the radial coordinate of the two-dimensional disk D2 (8D2 = S1
) and 

n is a positive integer The integer n is actually the number of times the map (4.134) 

together with map ( 4.135) winds around S2 of M. 

Fig. 6: The shaded regions are the image of different extensions of cP ( 4.133) given by 

(4.134) and (4.135) (with n = 1) respectively. 

These extensions in fact give different values to the Wess-Zumino action i.e. 

j ~·n 
D2xf 

= J fJJVP sin ~1 8JJ~1 8v~28p~3 rdrdxdt 

D2 xl 
211' 1 

= j dt j dx j dr { r sin( r; + n( 1 - r )1r)} 

I 0 0 

(-1)n4J{ {(2n-1)7r) 2 . {(2n-1)7r)} 
COS - Sln 

(2n-1) 2 (2n-1)7r 2 

( 4.136) 

where I is the length of the time interval and n takes values from 0, 1, 2, ... (n = 0 

corresponds to extension (4.134)). Thus to resolve the ambiguity of the extensions, one 

needs to specify this 'winding number' n which then gives a unique Wess-Zumino action. 
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Having done this, one can now discuss the 'Aharonov-Bohm effect' in nM. An es­

sential ingredient in this topological effect is that one can obtain a different gauge A' by 

performing a singular gauge transformation on A~291 Consider then 

AN = J dx{ -(cos q}- 1)(8x¢38¢2(x)- 8x¢28¢3 (x))} ( 4.137) 

Sl 

from the last section. One can perform a singular gauge transformation on AN by the 

(non exact) one-form 

e' := J dxS[-(cos¢1 -1)¢3(8x¢2
- 8x¢1

)] (4.138) 

Sl 

to give the gauge potential 

A/v = J dx{ ¢3 sin ¢1(8x¢28¢1(x)- 8x¢18¢2(x)) 

SI ( 4.139) 

Similarly one can do the same for As to get 

As= j dx{ ¢3 sin ¢1(8x¢28¢1(x)- 8x¢18¢2(x)) 

SI ( 4.140) 

Both A/v and As can now be 'patched' up in the same way as AN and As in the 

last section to obtain the desired new gauge potential A' on nM which gives the same 

F ( 4.105). In the Aharonov-Bohm effect however the relevant physical quantity to be 

determined is the phase factor 1301 

expi(f A) , (4.141) 

where J denotes an integral over a noncontractible closed path in nM. 

Thus one only needs to obtain different holonomies J A giving different phase factors, 

to demonstrate the existence of Aharonov-Bohm effect in nM. Here, they are easily 
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Fig. 7: A schematic diagram of a noncontractible loop in O.M with the shaded region 

being Int(S2 ) x S1 . 

given by the two gauges A and A'. To show that this is the case we shall use a particular 

mapping tjJ namely, that given by (4.125) i.e. 

n := (sin t sin X, sin2 t COS X+ cos2 t, sin t COSt( COS X - 1)) (4.142) 

and 

tP3 := 1 (a constant mapping) ( 4.143) 

The parameter t in n now denotes the time which parametrizes the noncontractible closed 

path traversed in f!M. Using this set of functions, one finds that the holonomy of A is 

just trivial : 

ll' 
2 211' 

fA= j dt j dx{ -(cos q}- 1)(8xt/J3 ~2 - 8xt/J2 ~3)} 
0 0 

=0 

ll' 211' 

+ j dt j dx{ -(cos t/J1 + 1)(8xt/l3 ~2 - Oxt/J2 ~3 )} 
.!: 0 
2 

as ~3 = 8xt/J3 = 0. For A', the computation of its holonomy, 

11' 211' 

fA'= J dt J dx{ tP3 sin t/Jl(8xt/J2~1- 0xtP1~2)} 
0 0 

(4.144) 

(4.145) 
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IS messy. The integral is done numerically and it gives 

fA'= -0.4159 =/: 0 (to 4 dec. pl.) (4.146) 

These two results, (4.144) and (4.146), then give different phase factors and hence imply 

the significance of the gauge potentials themselves (as in normal Aharonov-Bohm effect). 

It is now important to note that the use of a different gauge potential A' implies the use 

of a different local expression of the Wess-Zumino Lagrangian density from that of (4.96) 

namely, 

(4.147) 

Thus the Aharonov-Bohm effect in D.M would then imply that the local expression for 

the Wess-Zumino Lagrangian density has a physical significance. At this point, it is 

interesting to see whether there is any relation between the ambiguity of the extensions 

for the construction of the Wess-Zumino action (which comes from 1r2(M) -:f. 0) and 

this Aharonov-Bohm effect (which comes from 7l"J (D.M) =/: 0). First, observe that the 

extensions are labelled by integral winding numbers while the Aharonov-Bohm effect is 

labelled by a continuous parameter, say A E R, given by the holonomy of AA+ (1- A)A'. 

A possible relation would be that A, or more precisely the holonomy characterises the 

representation of 7rl(D.M) .(the 'winding number') on U(1) in the same way as in the normal 

Aharonov-Bohm effect from the representations of Hom( 1r1 ( Q), U ( 1)) ~31 '321 However, such 

a relation would be obscured by the functional character of the holonomy. 

4.8 Surmnary 

The main purpose of this chapter has been to show how close is the analogy between 

the u-models with Wess-Zumino term and the system of a particle in a constant magnetic 

field in various aspects. The motivation underlying this purpose is that it is hop~d that 

one can use the particle analogy in applying group-theoretic quantisation to strings/ u­

models with Wess-Zumino term in the next chapter in the same way as in Chapter 3. We 

conclude this chapter by summarising the main results of this chapter in this respect: 

( i) A u-model with a Wess-Zumino term can be treated as a system of a particle in 

a background magnetic field on the configuration space D.M. The Wess-Zumino 

term provides an analogue of the gauge potential on D.M which then gives the 

Lagrangian of the u-model a gauge symmetry. 
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( ii) Like other systems in a background gauge field, the constants of motion associated 

to the symmetry transformations of the system are modified by a contribution from 

the gauge field F on O.M. 

(iii) There is no 'anomalous' phenomenon of ill-defined constants of motion for CJ­

models on M = T 3 and M = S2 x S1. The second example shows that 1r1 ( O.M) =J 0 

is not a sufficient condition for such a phenomena. 

( iv) For nonsimply connected configuration spaces O.M, there is a functional analogue 

of the Aharonov-Bohm effect in O.M. The holonomy of the gauge potential A has 

to be specified to obtain a unique theory. This implies that the local expression of 

the Wess-Zumino Lagrangian density has a physical significance. In addition to 

this, one has to specify the 'winding number' n to have a well-defined Wess-Zumino 

action. 
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Chapter 5 

Quantisation of Strings on Tori 

5.1 Introduction 

String theory[
1

.
21 provides a suitable framework in which gravity can be incorporated 

successfully in quantum theory. It has been so far the most popular among the unification 

theories. However the theory has developed in a rather haphazard manner (see e.g. [3]). 

Together with all the sophisticated machinery associated with the theory, it is not an easy 

subject to follow. One way to put the theory at a more coherent level is to provide it a 

geometrical framework. Among the attempts to do so, the group-theoretic quantisation 

programmel
4
l has managed to address some of its basic issues in a geometrical and group­

theoretical consistent way!
5

'
61 Below, a review of such a work by Isham and Linden [sJ 

on the quantisation of strings on the tori will be given. At the end of this chapter, the 

quantisation of strings in the presence of a background antisymmetric tensor field arising 

from a Wess-Zumino term will also be considered. 

The action of a string can be generally given as 

(5.1) 

where x E S1 is the string parameter and t parametrises its evolution; the indices p., v 

refers to these two parameters. The fields {II> a} denote the map from the world-sheet swept 

out by the string into space-time whose metric is given by {9a{3} (a, (3 are the space-time 

indices). The fields Waf3 is a background antisymmetric tensor field (with possible singu­

larities) introduced into the system which couples to oriented string surfacesl7
J and f,sv is 

the usual alternating tensor. The antisymmetric tensor field Wap plays several important 

roles in string theory namely cancellation of anomalies~81 string compactifications~91 and 

other topological effects!101 The space-time considered here is of the form Ld x M where 

Ld is the d-dimensional Minkowski space-time and M is a compact n-manifold. The fields 

9a{1 and w013 are assumed to have nontrivial components only in the compactified direc­

tions. We will ignore the action that arises from Ld since the quantisation associated with 
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this action can always be done using the normal field-theoretic Heisenberg-Weyl group. 

We will only be concerned with M. One particular M which is of prime interest to string 

theory is the n-torus Tn ~9 ' 111 The part of the action ( 5.1) which is on Tn can be written 

as 

(5.2) 

where TJ is the fiat metric on Tn and indices i, j, k, ... belong to Tn. This is precisely the 

action of au-model with a Wess-Zumino term on Tn ( cf. (4.29)). [There may be a difficulty 

in defining the second term of (5.2) for fields with nonzero winding number (see Section 

4.2) but it can be overcome (see Section 5.4).] However note that the target manifold M 

is now the ( compactified part of) space-time and the domain of the fields is the parameter 

space of the world-sheet. At this stage it is important to note that the configuration space 

is now the free loop space LTn instead of the based-point loop space nTn considered in 

Chapter 4. One can however express LTn as the semidirect productr
12

'
131 

(5.3) 

For other relations between u-models and strings see e.g. [14,15]. The second term in 

(5.2) provides an analogue of a gauge potential one-form A (see Section 4.3) on LTn, 

A= J dx{2(8x4>k)wjk(4>)64>i(x)} (5.4) 

81 

where its corresponding field strength two-form :F is 

:F = j dx{3(8x«l>k)Wjk.l(4>)64>l(x)cS4>i(x)} (5.5) 

81 

[Note that Wjk,l denotes the derivative of Wjk with respect to 4>l and it forms the compo­

nents of a well-defined three-form n on M .] However we will first ignore the 'interaction 

term' with the antisymmetric tensor field and reproduce the results of Isham and Linden rsJ 

of quantisation of strings on a circle in Section 5.2 and their generalisation to Tn in Sec­

tion 5.3. They will serve as a comparison for the case with the antisymmetric tensor field 

and facilitate the discussions in Section 5.4. 
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5.2 Quantisation of String on a Circle 

The configuration space Q of a string moving on a circle T 1 is the infinite-dimensional 

loop space Q = C''"(S1, T 1
) =: LT1

• The phase spaceS is then given by S = T*(LT1) ~ 

L(T*T1 ). There are various subtleties involved in considering infinite-dimensional mani­

folds and structures defined on them~16-201 We will assume that whatever is given below 

will be well-defined in some form or another. Let the 'coordinate functions' of S be given 

by 4»(x) and J(x) (x E 8 1). The natural symplectic form on L(T*T1 ) is[211 

u := j dx{64»(x)6J(x)} (5.6) 

Sl 

Note that we have changed the notation for the symplectic form in the infinite-dimensional 

case from w to u to avoid the confusion with the antisymmetric tensor field Wij(<I>). One 

can also decompose the 'fields' 4»(x) as in Chapter 4 into fields with nonzero winding 

number (C(x)) and fields with zero winding number (<P(x)) but we will only do so when 

it is necessary. As in the case of particle on 8 1 !"'1 the canonical group for the system can 

be taken as 

(5.7) 

The canonical observables on LT1 can be obtained by embedding the target space T 1 in 

R 2 i.e. 

VcJI(x) := (u(x),v(x)) = (cos4»(x),sin4»(x)) (5.8) 

Together with J(x), they form the set of canonical observables on S. Note that LT1 is 

disconnected i.e. 7ro(LT1
) ~ 7!"1 (T1

) = Z where the integer is given by the winding number 

271" 

w(<.I>) :=- dx{u-- v-} , 1 J dv du 
271" dx dx 

(5.9) 

0 

as indicated by the decomposition of the fields. The decomposition is also reflected in 

the transformation group LS0(2) of LT1 i.e. 7ro(LS0(2)) ~ 7rl(U(l)) = 7l. One can 
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decompose the loop group LU(l) as 

LU(1) ~ (LU(1))o ><l7l (5.10) 

and the pair ( ¢, n) E (LU {1) )o ><l7l (where ¢ has winding number zero) corresponds to 

the loop with winding number n via the map 

(5.11) 

Similarly LE2 is decomposed as 

{5.12) 

.. 
With the symplectic form (5.6), one can obtain the following Poisson bracket algebra 

which corresponds to the Lie algebra (LE2)o: 

{J(x), u(x')} = v(x)o(x- x') , 

{J(x),v(x')} = -u(x)o(x- x') , 

{u(x),v(x')} = 0 = {J(x), J(x')} 

where u( x) and v( x) are now cos¢( x) and sin¢( x) respectively. 

(5.13) 

{5.14) 

(5.15). 

To quantise the system, one must find the irreducible unitary representations of g 
and hence the self-adjoint representations of C(Q) on a Hilbert space 1t. It is convenient 

to smear the J( X) operator with a test function h E coc ( 8 1' R) i.e. 

2'11' 

](h):=..!._ jdx{J(x)h(x)} 
271" 

(5.16) 

0 

in order to allow us to write the quantum commutator algebra corresponding to (5.13) -

(5.15) (i.e. £(LE2)o) as 

[J(h),u(x)] = ih(x)v(x) 

[J(h),v(x)] == -ih(x)u(x) , 

[u(x), v(x)] == o == [J(h), }(h')] 

(5.17) 

(5.18) 

(5.19) 
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wher h' is another test function. In addition to this algebra, one must find the represen­

tation of the discrete subgroup Z of Q. It will involve the family {Un InEZ} of unitary 

operators satisfying 

(n,m E Z) 

and they intertwine with the other generators J(h),u(x) and v(x) as 

Note that 

Un](h)U; 1 =](h) , 

Unu(x )U;1 = e-inxu(x) 

Unv(x )U;1 = e-inxv(x) 

is a Casimir operator for g where R is a constant ( cf. particle on S 1 141 
). 

Left-Right Split 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

An interesting problem of quantisation of strings is obtaining and maintaining the 

independence of the left and right moving modes of the strings. The usual approach in 

the string literature is to associate the winding number with one half of a canonical set 

of operators and use Un to generate the other half:
22

•
231 A much more systematic and 

consistent approach is to use the symmetry group that respects the global structure of 

the phase space for the left-right split. First, consider the winding number w (5.9) with 

the operator status 

211' 

A 1 J d { A dv A du} 
w := 2n R 2 x u dx - v dx (5.25) 

0 

where R2 is given by the Casimir operator (5.24). Its commutation relations with the 

operators u(x), v(x), J(h) and Un are 

[w,ft(x)] = [w,v(x)] = [w,J(h)] = o 
[w, Un] = -nUn 

(5.26) 

(5.27) 

Note that the relations ( 5.26) imply that the Hilbert space 1t decomposes into the direct 

sum EBn 'Hn where 'Hn is the eigenspace of w with eigenvalue n. The irreducibility of the 
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representation is restored by the intertwining relation (5.27}. If the aim is to obtain two 

independent sets of operators that will correspond to the left and right moving modes 

of the string, then the relations (5.26) suggest that w belongs to the set different from 

that containing u(x), v(x) and J(x). Also observe that w has a discrete spectrum like 

the angular momentum operator and hence one expects that the set of operators that w 
belongs to, form a representation of £(E2). One can in fact construct the analogues of 

u(x) and ir(x) for this new E2 group by defining 

They satisfy the relations 

u := t(U-1 + UI) 

v := ii(U-1- UI) 

[w,u] = iv , 

[w,v] = -iu , 

[u, v] = o , 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

which are precisely the commutation relations of E2. The corresponding Casimir operator 

u2 + v2 has a fixed value i.e. 

(5.33) 

One can construct the representations of this topological E2 group on a 'configuration 

space' which is effectively a circle. First, note that Um maps the eigenspace ?in of w 
isomorphically onto 'H.n-m from the relation (5.27). Hence one can write any vector 

llt E 1i in terms of vectors belonging to the set llt = { U -m llt m I m E 7l} where llt m E 'H.o. 

One can write the action of the operators U n on 'H.o by 

(5.34) 

One can then construct the isomorphism i 1i- L2(S1
, 'H.o) defined by 

00 

(i(llt))(t?) := ~ exp(int?)llt(t?) (5.35) 
n=-oo 

where S1 is the effective 'topological' circle. The operators Un acting on L2(S1
, 'H.o) have 
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the effect 

(Un \ll)('19) = exp( -in'19)\ll('19) (5.36) 

Thus on this representation space we find the operators u, v and w are represented by 

the operators 

(uw)('19) = cos'l9\l1('19) , 

( v\ll)( '19) = sin '19\ll( '19) ' 

(ww)('l9) = -i d~ w('19) 

(5.37) 

(5.38) 

(5.39) 

Having constructed the topological E2 group, one must now show that this new set 

of generators to this group is indeed 'independent' from the set { u(x ), v(x ), ](h)}. It 

is important to note that u( X) and v( X) do not commute with U and V because of the 

relations (5.22) and (5.23). One can however use the relation (5.27) to remove the 'winding 

mode' from u( X) and v( X) by redefining them to be 

u'(x) := exp(iwx)u(x) ' 

v'(x) := exp(iwx)v(x) 

(5.40) 

(5.41) 

respectively. These new operators with J(h) still form the Lie algebra of (LE2)o but now 

with the desired property of commuting with the generators of the topological E2 group. 

To get the appropriate splitting of the phase space, one must first construct an E2 group 

out of (LE2)o associated with the 'constant loops' to pair with the topological E2. The 

momentum generator for the constant loops is given by 

211" 

J := J(l) = _.!_ j J(x)dx 
27r 

(5.42) 

0 

The operators u and v conjugate to J are to be picked out arbitrarily from the set 

of operators { u'(x)} and { v'(x)} respectively. The arbitrary choice corresponds to the 

arbitrariness of the embedding of the submanifold of constant loops T1 in LT1
. Given 
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that such a choice is made, the generators (it., v, ]) then satisfy the condensed relation 

[J,a] =-a (5.43) 

where 

a:= u.- iv (5.44) 

These are to be paired with 

[ ~ ~] ~ w,a =-a ; (5.45) 

a.:= u.- iv = u1 (5.46) 

from the topological E2. 

A further redefinition of the generators of the two E2 groups can now give the 'left' 

and 'right' set of generators which is consistent with the dynamical evolution of the left 

and right moving modes; the solutions of the string equations of motion are functions of 

t- x and t + x respectively!231 They are given by 

~ ·~ ~ 1 ~~ U£- "tV£ = aL := 72aa , 
~ ·~ ~ 1 ~t~ UR- "tVR = aR := v'2a a . 

(5.4 7) 

(5.48) 

It is easy to check that they reproduce the (condensed) commutation relations of the two 

E2 groups i.e. 

[JL, aL] = -aL 

[JR, izR] = -aR , 

and the two sets are independent of each other: 

[JL,izR] = 0 , 

[JR,izL] = 0 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

Thus it is now established that the canonical left-right split of the phase space is built in 

within the canonical group describing the symmetries of the phase space. 
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5.3 Quantisation of String on Tn 

One can now generalise the results obtained for T 1 in the previous section to the 

case of the n-torus Tn. But as in Section 3.4, it will be done by expressing Tn as 

the quotient space W/27rA where A := {2:~1 niAi I ni E Z} and {Ai} =: E is the 

basis of W. [The dual lattice has the basis E* := {Bi}.] Hence the configuration 

space of the system is Q = L(W/27rA) and the phase space is S R:: LW* x L(W/27rA). 

Before going further, it is useful to rephrase the description of Q being disconnected 

and the 'winding number' that classifies the disconnected classes in terms of the lattice 

structure. Given that W is contractible, the exact homotopy sequence of the bundle 

A---+ W---+ Tn implies the relation 7ro(LTn) R:: 1r1(Tn) R:: 1ro(A) R:: A!241 Thus there is 

a preferred element t of H1(Tn; A) corresponding to the identity map from A to A since 

H 1(Tn; A) R:: Hom(7rt(Tn), A) R:: Hom( A, A). One can now express the winding number 

of the fields {4> 8 I B E E*} as the element of H1(S1; A) R:: A given by the pull-back 

4>8 *(t) (t E H1 (~; A)). Given any string configuration 4> : S1 ---+ Wj21rA, one can 

always lift the map 4> to ~ on the space [251 

PW := {4» E CQO(R, W) l4>(y + 21r)- 4>(y) E A Vy E R} 

where its 'winding number' is given by 

w(4>):=(~(27r)-4»(0)/27r EA . 

One can in fact express L(W/27rA) as PWj21rA. 

The canonical observables on Q can be given by (cf. (3.113) and (5.8)) 

u8 (x)(4>) :=cos< B,~(x) > , 

v8 (x)(4>) :=sin< B, 4»(x) > 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

where B E E*. One can now form the basic set of generators for the connected component 

of the canonical group g = (J.. E2 x L E2 x · · · x L E2), namely { u8 ( x), v8 ( x), J (h)} where 
.... 

n times 
J(h) (h E LW) is the smeared generator of C(LTn)o. With the natural symplectic form, 

the Poisson bracket of these observables are 

{J(h), u8 (x)} =< B, h(x) > v8 (x) , (5.57) 



{J(h), vB(x)} =- < B, h(x) > uB(x) , 

{uB(x),vB'(x')} = 0 = {J(h),J(h')} 
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(5.58) 

(5.59) 

where B, B' E E* and h, h' E LW. The corresponding quantum commutators can be 

simply given by 

where 

[i(h), aB(x)] =- < B, h(x) > aB(x) ' 

[aB(x),aB'(x')] = o 
(5.60) 

(5.61) 

(5.62) 

One must also include a unitary representation U)\, .X E A of the disconnected part of 9; 

7ro(9) ~ 7ro(LTn) ~ 7rl(W/27rA) ~A. It intertwines with the other operators as 

u)\aB(x)U;-1 =exp(-i < B,.X > x) aB(x) ' 
A -1 A 

U>.J(h)U>. = J(h) . 

(5.63) 

(5.64) 

To discuss the left-right split for this system, we proceed in the same way as in Section 

5.2 by first giving an operator status to the 'winding number' wB(tf!) :=< B, w(tfl) >. 
The resultant set of Hermitian operators wB intertwine with the representation U )1. of A 

as 

U A Bu-1 A B B , :n.A 
,\W ). =W +< ,A> . (5.65) 

The pair of operators conjugate to wB can be obtained from the operators {UA} in a 

similar way to (5.28) and (5.29). They are 

iiA:=i(U-A+UA) , 

VA:= ii(U-A- UA) , 

where A E E. They give the commutation relations 

[ ABA l . B A A w , llA = z < , > v A , 

[ ABA] • BAA w , v A = -t < , > llA , 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

(BEE*, A E E). Thus one has obtain the topological E2 x E2 x · · · E2 (n copies of E2). 

The other E2 x E2 x · · · E2 group is constructed out of (LE2 x · · · x LE2)o associated 
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with the constant loops. Its generators are given by uB, vB and J A where J A is given by 

J(h) with h(x) :=A E E. 

To obtain the desired split, (5.47) and (5.48) suggest that the operators JA and wB 
should be added/subtracted. This is no longer possible in this case since these operators 

are labelled by the different spaces i.e. E and E* respectively. One needs to add a further 

structure in order to proceed to get the appropriate split. The metric 9ij = g(Ai, A;) on 

W is introduced to induce an isomorphism between Wand W* i.e. 

t: W--+ W* ; < t(A), A' >:= g(A, A') A,A' E W (5.70) 

The components of the metric are required to be integers so that t( A) C A*. The analogues 

of (5.47) and (5.48) can now be given as 

aLA:= 72at(A)a_A 

aRA == 72a.~ at( A) 

(5.71) 

(5. 72) 

where A E E, BE E* and 1\, is the inverse of£ (I\,: W*--+ W). Note that this construction 

is invertible only if 1\,( A*) C A. This implies that the lattice A must be self-dual. 

5.4 Quantisation of String in a Background Antisymmetric Tensor Field 

Having done quantisation of strings moving freely on Tn in the previous section, one 

can now generalise the situation to include a background antisymmetric tensor field. This 

has the effect of modifying the natural symplectic form on Tn to 

a:F := ~ j dx{o~Bj (x)oJA;(x) + F(A;, A; )o~Bj (x)o~Bj (x)} 
I,J Sl 

(5.73) 

(cf. Section 3.3). The bilinear form F(Ai, A;) on L(W/27rA) gives the components of the 

field strength two-form in (5.5) (adapted to the lattice structure) i.e. 

(5. 74) 

where n is a closed nonexact three-form on Tn i.e. a generator of the third cohomology 

group of Tn (O.i;k denotes the components of 0 along the directions Ai, A; and Ak)· 
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Note that one does not have a difficulty in defining ":F for fields with nontrivial winding 

numbers unlike the Lagrangian formulation in Chapter 4 since 0 is a globally well-defined 

three-form on Tn. Let us first concentrate on the trivial sector namely the fields ¢> that 

generate the constant loops. With (5.73), the Poisson bracket algebra of the observables 

{uB(x),vB(x),J(h)} (hE LW) is given by 

{J(h), uB(x)} =< B, h(x) > vB(x) , 

{J(h), vB(x)} = - < B, h(x) > uB(x) , 
B B' I {u (x),v (x)}=O, 

{J(h), J(h')} = -:F(h, h') ' 

(5.75) 

(5. 76) 

(5.77) 

(5.78) 

where B, B' E E* and h, h' E LW (cf. Section 3.4). They form a representation of the 

Lie algebra of the subgroup of the canonical group Q of the system that corresponds to 

the constant loops. Their corresponding quantum commutators are 

[J(h), -uB(x )] = i < B, h(x) > vB(x) ' 

[J(h), vB(x)] = -i < B, h(x) > uB(x) , 

[uB(x),vB'(x')] = o , 

[J(h), J(h')] = -i:F(h, h')i 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

The above relations suggest that the canonical group G which acts on L(W/27rA) is 

given by 

G := LWp(l) t><(LWp(2) t><(· · ·t><(LWp(n) X U(l)) • · ·)) (5.83) 

(cf. Section 3.4) where LW; is the jth component of LW and p(i) is the ith element in 

the permutation p of (12 · · ·n). Note that the use of the universal cover of L(W/27rA) is 

necessary for the canonical group to be centrally extended. It is important to note that 

at this stage that the resultant full canonical group 

(5.84) 

is not disconnected. However one can still adopt the decomposition (5.11) to decompose 

G (and hence Q) into Go ><1W where Go is the subgroup that generates the constant loops 
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and W generates the analogue of the operators that intertwine the constant loops with 

the other 'winding modes'. The generators of W can be given by the unitary operators 

(5.85) 

They satisfy the relations 

U) = U -r r, s E W (5.86) 

and intertwine with the 'winding number' operators w8 (BEE*) in the same way as in 

(5.65) i.e. 

(5.87) 

Note that the 'winding numbers' are no longer separated by integers and hence the 'wind­

ing numbers' are no longer necessarily integers. This rather peculiar effect may however 

turn out to be desirable as pointed out in [5] as it leads to left-right asymmetry. 

Before discussing the left-right split, it is interesting to note that there is a somewhat 

surprising new result for this case with the antisymmetric tensor field. The 'winding 

number' operators are required to satisfy the commutation relation 

B,B' E E* (5.88) 

where K is the map K: W*-- W mentioned in the previous section (cf. (5.82)). Later we 

will find that this relation is necessary to obtain the desired canonical left-right split. The 

relation (5.88) implies that the central subgroup of g also intertwines with the winding 

modes of the fields. Note that the peculiar feature of the ( eigen-) values of the 'winding 

number' operator being nonintegral is probably due to the presence of the line bundle 

structure associated to this central subgroup in the sense that it 'opens up' the winding 

modes in the quantum theory. [Compare this feature with the effect of adding a gauge 

potential to the momentum operator J .] However it is not clear what kind of physical 

situation such phenomenon corresponds to and why it is so. 

Given these results, one can proceed in almost a similar way to Section 5.3 to obtain 

the canonical left-right split. First, we construct the operators llA and v A as in (5.66) and 
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(5.67) and obtain the topological E2 t><(E2 t><(· · · t><(E2 x U(1)) ···))group. The same is 

done for the constant loops to get the other E2 t><. ( E2 t><. ( • • • t><. ( E2 x U ( 1)) · · ·)) group to 

pair with the topological one. The desired canonical let-right split is then obtained in the 

same way as in the previous section by defining the operators kf, kf, aLA and aRA 

(see (5.71) and (5.72)). But now they have the new relations 

Note also that 

[kf, kf'] = -iF(~(B), ~(B')) 
[kR, kR'l = -i.r(~(B), ~(B')) 

(5.89) 

(5.90) 

(5.91) 

ensuring the independence of the left and right moving modes of the string. Finally, we 

note that the use of the universal cover of E2 in the paired groups above leads to two sets 

of 9-angles in the quantum sector (one for each group). These sets could be different from 

each other which then implies a left-right asymmetry associated to the definitions of k f 
and kf (as mentioned earlier on). Such a situation is of relevance to the construction of 

the heterotic strings~231 

5.5 Summary and Outlook 

We have now observed how Isham's group-theoretic quantisation programme is able 

to describe bosonic strings in a framework that respects the global structure of the phase 

space. The usual splitting of the phase space into sectors corresponding to the left and 

right moving modes of the string is intrinsic in the description of the canonical group 

in both cases of with and without the background antisymmetric tensor field. However 

in the case of string in the background field, a new feature arises from the centrally 

extended canonical group. It is found that the 'winding number' operators have noninte­

ger (eigen) values and these operators do not commute. Here is a specific example of how 

this quantisation programme's global concerns are found to be advantageous in finding 

new (intrinsic) features of the theory. It will be interesting to see what kind of impact 

this would bring to the understanding of string theory. 

To close this work, it must be said that the aims of the study here have been rather 

modest despite the potential of the group-theoretic quantisation programme. Nevertheless 
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it is useful to bring out the simple aspects of the programme in relation to central exten­

sions as described in this work. One hopes that the results found here are of significance 

in any future work. There are many possibilities for future areas of study in the context 

of this programme. Of particular interest will be the study of the Wess-Zumino-Witten 

models 126
-

281 and also theories with Chern-Simons term 1291 
- they share many of the 

properties of the examples discussed in this work in relation to central extensions. 
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