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Studies of Final State Photon Radiation at LEP 

A b s t r a c t 

We consider two aspects of calculations involving the production of f inal 
state photons at LEP. The first addresses photons produced in association wi th 
hadrons. We motivate a measurement of the quark to photon fragmentation 
funct ion and show how i t can be used to account for isolated and non-isolated 
production rates. The second concerns the rare Z-decay to photons. We expose a 
subtle relationship between its various contributions. Following its investigation, 
we offer an improved method of calculation for weak processes at one loop. 
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Poets say science takes away from the beauty of the stars—mere globs of gas 
atoms. 

I too ca,n see the stars on a desert night, and feel them. But do I see less 
or more? The vastness of the heavens stretches my imagination—stuck on this 
carousel my l i t t l e eye can catch mill ion year old l ight. A vast pattern—of which 
I am a pa.rt... What is this pattern, or the meaning, or the why! I t does not do 
harm to the mystery to know a l i t t l e about i t . For far more marvelous is the 
t r u th than any artists of the past imagined i t . Why do the poets of the present 
not speak of it? What men are poets who can speak of Jupiter if he were a man, 
but i f he is an immense spinning sphere of methane and ammonia must be silent? 

—Richard P. Feynman. [1] 

xi i 



Chapter 1 

In t roduct ion 

1.1 High energy physics 

High energy physics is a study of high energy and small length scales. I t is naturally an 

extreme where the theories of Special Relativity and Quantum Mechanics are paramount. 

A scale of distance and momentum at which observation and interaction are unified and 

inseparable. 

A l l of the quantities given in this thesis, other than those in this chapter are given in 

the units that Ti = c = 1, where h is the Plank Constant and c is the speed of light. 

These constants w i t h dimensions of [Energy x Time] and [Length/Time] directly relate three 

dimensionful quantities. As a consequence we need only discuss dimensionful quantities in 

terms of one dimensionful scale. We shall usually do so in terms of an energy. 
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W i t h i n the scheme of these natural units the reciprocal relationship between length and 

energy is quite clear. The Compton wavelength for a particle, 

defines the approximate length scale for a particle traveling wi th a momentum, p. This length 

defines the distance at which the particle can resolve structure wi th which to interact. As 

we raise the momentum so we shorten the length scale. A convenient terrestrial example of 

this inverse relation is the observation that radio waves (A ~ 100m) are well reflected by wire 

netting, for which the spacing is ~ l c m . Such material is used in the construction of radio 

receiving dishes. Wire netting is, however, very poor at preventing the passage of shorter 

wavelength light—we can see through i t ! 

By colliding particles whose relative momentum is very high (A very small) we can ex

amine their small scale structure. Probing wi th energies of a few keV using electron micro

scopes, we can resolve molecular structure. W i t h electrons of MeV energies we can resolve 

the nuclear constituents of atoms. A t the level of a few GeV we can see deeper into the 

sub-structure of individual nucleons. At this level a simple picture of elementary particles 

emerges, of spin-1/2 fermions: leptons; quarks; and neutrinos. The various interactions of 

these particles are mediated by spin-1 gauge bosons: the photon; gluon, and the Z. 

This thesis documents a theoretical study centred around photons emitted in the final 

state at the Large Electron-Positron collider (LEP) . This experiment is designed to collide 

electron and positron (anti-electron) beams at a centre of mass energy of around the rest-

mass of the Z-boson, ~ 91 GeV, per collision. In such collisions electrons and positrons 

annihilate and frequently their energy finds a form in the creation of a Z-boson. Af te r but 

a small moment of t ime ( ~ 1 0 - 2 4 sec), this unstable particle decays via the production of 

elementary particles. In the original work of this thesis we account for ~ .05% of these 
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Z-decays, which currently corresponds to ~ 500 events. 

1.2 A n outline 

The original work of this thesis is contained in the six chapters, 5 to 10, and can be neatly 

divided into two discrete studies. The former, is a phenomenological attempt at parame-

terising the collinear emission of photon radiation f rom quarks. The latter, a more formal 

study of the internal field symmetries of perturbative calculations which is motivated by 

the discovery of a simple relation between the fermionic and bosonic contributions to a rare 

Z-decay. 

Phenomenologically, the former is more interesting as i t represents an observable signal, 

but the latter has its own importance in exploring the more subtle aspects of perturbative 

calculation. 

The order of presentation is as follows. In Chapter 2, we review the framework of Quan

t u m Field Theory—the underlying tool of calculation for high energy physics. In Chapter 3, 

we introduce the Standard Model of Particle Physics which is currently the most popular 

theoretical model for elementary particle interaction. Chapter 4, contains a. simple review 

of the relevant phenomenology at LEP that is assumed throughout the rest of the thesis. 

In Chapter 5, we highlight the difficulties of the straightforward perturbative calculation 

of collinear photon emission in hadronic events at LEP and motivate a method of parame-

terising our ignorance of this problematic region. As a footnote to this chapter we review 

the measurement, made by the A L E P I I collaboration, of the proposed photon fragmentation 

function. In Chapter 6, we discuss isolated photon emission in association w i t h hadrons and 
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account for the apparently large variation in radiative corrections to the various definitions 

for photon isolation. In Chapter 7, we again discuss isolated photon production and use the 

A L E P H measurement of the fragmentation function to account for a previously measured 

rate. 

W i t h Chapter 8 we address the second theme of this thesis. Prompted by an apparent 

disagreement in the literature, we calculate the rate of decay of the Z-boson to three photons. 

In so doing we notice a curious similarity in the fermionic and bosonic contributions to the 

amplitudes. In Chapter 9, we introduce a novel technique for the calculation of fermionic 

internal loops in amplitudes; the 2nd Order Formalism. Using this and the Background Field 

Method i n Chapter 10, we once again perform the above calculation but this t ime use the 

internal su/>er-symmetry present in such a calculation to optimise i t . This symmetry is more 

apparent w i t h the set of more optimal Feynman rules. 

In Chapter 11 we summarise our main results and discuss some future applications. 

The appendices listed at the end of the thesis contain many useful formulae and outline 

the methods used in the calculations of the main text. Appendix A contains the definitions 

for a number of special functions and some of their relevant identities. Appendix B reviews 

the relevant formalism for evaluating general loop integrals. Appendix C contains derivations 

for various phase space integrals in both 4— and d—dimensions. Appendix D contains a 

number of scalar loop integrals in integer and non-integer dimensions used in the text. 

Appendix E is a brief review of the Dirac equation and lists some useful identities for 7 

matrices. Appendix F covers the structure of SU(n) groups. 
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1.3 Some definitions 

The fine structure constant, a. as referred to throughout this thesis is the dimensionless 

constant defined, 
e2 1 1 

a = - (1.2) 
An eo/ic 137 

where, ' — e' is the natural unit of charge as carried by the electron, and e0 is the pe rmi t t iv i ty 

of free space. 

Throughout this thesis we refer to the metric, for this we mean the flat Minkowski metric 

of signature ( + , — , — , — ) . 
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Chapter 2 

A Review of Quantum Field Theory 

Quantum Field Theory (QFT) [2] is a generalisation of Quantum Mechanics ( Q M ) [3] that 

includes, in a manner consistent wi th Special Relativity, the creation and annihilation of 

particles: the number of particles present in a state becomes just another quantum number. 

In Q M , we have the universal operator x that projects out the spatial posi t ion/distr ibution 

of a quantum state Q F T requires instead that we have separate position (density) op

erators for each species (flavour) of particle. Indeed we construct such operators f r o m more 

fundamental field operators. In Q M , the Hamiltonian (or equivalently the Lagrangian) is 

bui l t f rom generalised position and momentum operators. In Q F T , we construct Hamilto

nian and Lagrangian (densities) f r o m these elementary field operators. Individual terms in 

these densities give rise to the particle interactions and calculable transitions; not just in the 

exchange of energy but also of flavour. 

Rather than addressing the evolution of init ial states wi th respect to a prescribed Hamil-
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tonian, i t is the formulation of Q M as hinted at by Dirac [4] a.nd expanded by Feynman [5] 

that Q F T has adopted. Namely an emphasis on the computation of transition amplitudes 

f r o m some in i t ia l state (i) to a final state ( f ) by summing over all possible paths that one can 

construct between them. Each path is weighted according to how much energy is manipu

lated in flight (how great the Classical Action [6] would be for such a t ra jectory) . W i t h i n 

the framework of Q F T this corresponds to the sum over all spatial, and particle flavour, 

routes l inking (i) and ( f ) . These routes are merely constrained to lie along paths allowed by 

the Lagrangian (density) of the theory, and again are weighted by the size of the associated 

action. 

The fields that build the Lagrangian density are of two types: bosons and fermions. The 

distinction between them being whether they permit more than one physical state to have 

identical quantum numbers (as is the case for bosons) or not (for fermions). In terms of the 

f ield operators, bosonic fields, B(x), are said to commute, 

[B(x), B(y)} = B(x)B(y) - B(y)B(x) = 0 (2.1) 

and fermionic fields, F(x), are said to anti-commute, 

{F(x), F(y)} = F(x)F(y) + F(y)F(x) = 0. (2.2) 

High Energy Theory in its phenomenological aspect finds its focus in the calculation of the 

S-matrix. This object is a Quantum Mechanical operator, S, that operates on asymptotically 

free states (at a time well before any interaction) to project out each of its destinies (at a 

t ime well after any interaction). S is a unitary hermitian operator defined to satisfy, 

-> - o o ) = £ > f | f , t -> oo) (2.3) 
r 

7 



where ]T f |sf| 2 = 1. As one might imagine the final state is often unchanged wi th respect to 

the in i t ia l state, so interest in S is especially focused on it 's transition component, T defined 

by, 

5 = 1 + i f . (2.4) 

This simple rewri t ing has a very significant consequence that comes f rom the fact that S is 

required to be hermitian and unitary, namely, 

SlS = l = \+ i ( f - f f ) + f*f (2.5) 

or equivalently, 

f i f = 2 l m ( f ) (2.6) 

—a result that is fundamental to S-ma.trix theory and we shall return to an example of its 

consequences in Chapter 4. 

2.1 Path integral quantisation and a representation 

for S 

The Path Integral approach to Q F T builds on the Feynman formulation of Quantum Me

chanics to include the notion of a. field. His approach was to directly calculate transition 

amplitudes. The simplest of such objects is the vacuum to vacuum transition amplitude, 

(0 ,+oo|0, —oo). That is to say, the probability amplitude that the vacuum in the distant 

past wi l l become the vacuum in the distant future. I t seems quite reasonable to postulate 

that this occurs wi th probability I , so we proceed by defining the arbitrary phase and set 

the amplitude to 1. 
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In the presence of an external source field, J , this transition probabil i ty is not necessarily 

unity, so we define i t to be, 

, fV<f>expif d4x (£{<!>) + 4> J + U 2 t ) 
Z[J] = (0, + o o | 0 , - o o ) J = J P ^ 7; 9 l \ } (2.7) 

JV<f>expifd4x (£(<£) + ^ 2 e ) 

which clearly satisfies Z[0] = 1. We are using a somewhat general notation where <j> represents 

the set of fields in our field theory, and J a set of sources; one for each <f>. The <j> and J given 

here are not operator fields but rather what are termed classical (or c-nurnber) fields; for each 

path of integration \(j>, x) as summed over wi th T>(j) the 4>{x) is really the expectation value of 

that field operator at the space-time point of integration x. For bosonic fields Eqn. (2.1) the 

c-numbers are simple commuting scalars, but for fermionic fields Eqn. (2.2) the c-num,bers 

are anti-commuting scalars—elements of a Grassman algebra. 

Eqn. (2.7) is inherently diff icul t to solve for an arbitrary Lagrangian density, C{<f>). How

ever, i t is i n fact straight-forward in the simpler cases of free theories having no interactions 

(where S = 1). Wr i t ing £ = £ 0 = — 1 / 2 <j)K<t,4>, where is some differential operator acting 

on 4>. The associated vacuum expectation value in the presence of a source is, 

Z0[J] = exp ( - i J d*x d4yJ(x)A4>(x - y)J(y)^ (2.8) 

here is the 2 point Green's function satisfying, K^A^x — y) = —S4(x — y). Using this 

result we can partially solve for Z[J], where C = CQ + £ / / v r to give, 

Z [ J ] _ e x p ( » / r f 4 x £ w r ( ^ ) ) Z 0 [ J ] ^ 

,7=0 
exp (zfd<xCINT ( x f e ) ) Z 0 [ J ] 

By expressing Z[J] as a series expansion in J , i t is seen to generate the 7i-point Green's 
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functions of the theory, i.e. 

Equivalently, we can define the fourier transformed Green's functions, 

(2.10) 
j=o 

G ( n > ( p i , . . . p „ ) = / ( f [ < P x x ) G { n ) ( x u . . . x n ) e x p i j 2 P r * j - (2-11) 
J \i=\ ) j=\ 

For a completely self contained theory, G^(x-[,. . . xn) is translation invariant—it remains 

unchanged after the transformation .T, —> x;-\-Sx. As a consequence f rom the fourier integral 

given here we require that YliPi • Sx = 0, or that 4-momentum is conserved. Accordingly, 

G^n\pi,- • -Pn) contains an implic i t (2TT)484(Yli P?) factor. 

The fields, </> also have fourier transformations. Wr i t ing the inverse of the above trans

formation to obtain <f> f r o m its momentum space fields we have, 

k x ) = / ( ^ E ^ - x « i A ) ( * ) 4 A , ( * ) - (2-12) 

Herea^fc) is an annihilation operator and f ^ \ k ) a representation of the field's polarisation. 

In order to avoid the existence of negative energy particle states, the k° < 0 contribu

tions to a^\k) are taken to be creation operators for an anti-particle state of polarisation, 

g^X\ — k) = f ^ X \ k ) , and conventionally we write, 

h*) = / ^ ( n £ { e - " - r a ^ (2-13) 

= 4>+{x) + 4>.{x). (2.14) 

I t is the operators, and \ that cany the Bosonic. (or Fermionic) nature of the fields, 
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i.e. they satisfy the (anti)commutation relations. They are defined such that they annihilate 

the vacuum, 

a^\0)=0 = b^\0). (2.15) 

In the simple case of hermitian fields, <j>\(x) = 4>i{x), we see that a^}(k) = b\£\(k) and 

These G^ functions correspond to general amplitudes connecting unphysical states (i.e. 

they can be off mass-shell; their invariant mass is not equal to their rest mass) via interactions 

of the theory. By removing (amputating) the external propagators, placing the external states 

on mass-shell and attaching external (or asymptotically free—i.e. obeying the dynamics of 

the free lagrangian) field operators, 4>-m, we obtain the physical scattering matr ix: 

j e x p J 4> s ZJ] 4> in 6J(x) 
j=o 

(2.16) 

The colons : . . . : impose normal ordering, namely that the expansion of the operators con

tained wi th in the colons, is performed such that their annihilation components act before 

their creation components. The term in the exponential generalises to the sum of such 

terms—one for ea,ch physical field of the Lagrangian density. We note that when the expo

nential is expanded the l/n\ factor neatly removes the potential over counting due to the n\ 

identical terms generated by 8 n / S J n . 

2.2 Feynman diagrams and rules 

A simplified method of calculation is arrived at through the use of Feynman Diagrams. These 

are a pictorial representation of the expansion of the exponential in Eqn. (2.9). Namely, the 
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coefficient of each term in CINT is ascribed to a vertex and each factor of Aj, corresponds to 

a line (or propagator). The action of 8/iSJ on Z0[J] gives rise to such a line truncated by a 

source field, J. 

The essence of the simplification is that each Green's funct ion is associated w i t h a series 

of diagrams, the form of which can be readily determined. Taking each diagram in turn and 

using the rules for vertices and propagators, one can reconstruct the mathematical f o rm of 

the Green's funct ion. Over the laborious manipulation of Eqn. (2.9) the diagrams have an 

intuitive appeal that aids in their construction. 

Indeed, in the everyday work of high energy physics i t is diagrams and optimised versions 

of the rules that are used for calculation. 

2*3 Bui ld ing blocks of the S=matrix 

Clearly Eqn. (2.16) includes the no scattering processes; the 1 of Eqn. (2.4). The interesting 

physics is associated wi th the transition part of S. Of the remainder of the S-matrix there 

are two classes of contribution: those processes where all of the external states contribute to 

a single extended interaction; and those where two or more subsets of the external states are 

involved in simultaneous but factorisably independent interactions. In the former situation, 

the corresponding Green's functions are such that their (Feynman) diagrams have all lines 

connected. These functions are generated from the functional , 

W[J] = -t\og Z[J}. (2-17) 



> 
(a 

> 
(b) (c) 

W 

(d) 

Figure 2.1: Diagrams representing the disection of a term f r o m an n-point connected Green's 
function, (a) is the example Green's funct ion term (in this case from a 4-point funct ion of 
a "</>3" theory), (b) cutt ing a line that breaks the diagram into two m(< n)-point diagrams, 
and (c) cut t ing an internal line that produces an (n + 2)-point diagram, (d) is an example 
of a one-particle-irreducible contribution to the n(= 4)-point connected Green's funct ion. 

They are named connected (or irredxicible) Green's functions, 

In the latter case of factorisable sub-processes, the contribution to S is f r o m products of 

lower point connected Green's functions. 

A connected n-point Green's function can be represented diagrammatically by an infini te 

sum of diagrams each having ??, external lines (legs) and some number of internal lines. 

Consider one such diagram (see Figure 2.1a). We now notice the effects of cutting one 

internal line of this figure. Clearly in doing this we w i l l either create a diagram of two 

separate m ( < n)-point diagrams (Figure 2.1b) or create a single (n + 2)-point diagram 

G< n ) ( : x xn) 
in6J{xl)...J{xn) 

W[J) (2.18) 
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(Figure 2.1c). I t follows that amongst the infinite sum of diagrams ( in other words terms in 

Eqn. (2.17)) associated w i t h the connected n-point Green's function, there exist a sub-set of 

terms that only have the property associated wi th the cut of Figure 2.1c. For example that 

of Figure 2 . Id . We note that since Figure 2.1a can be cut in both ways i t wi l l not itself be 

a member of this sub-set. The sum of such a sub-set is labeled the one-particle-irreducible 

n-point Green's funct ion, G^P\. 

2A The Effective Act ion, T[<fi 

The connected Green's functions describe the interactions of the theory. We have shown that 

there is a more fundamental subset of these functions, namely the one-particle-irreducible 

functions G^P\. I t transpires that we can construct the connected functions f rom just the 

two-point connected funct ion (G^ 2 ' ) and truncated G'jp/S, the so called vertex functions, 

r ' n ' ( x i , . . . xn). In other words the sum of all Feynman diagrams leading to a given G^ can 

be buil t f rom trees of vertices, T^n\ held together by G'j.2' propagators. To define the vertex 

functions we must reintroduce some representation of the field, since we have previously 

integrated i t out (see Eqns. (2.10 and 2.18)). We define, 

where we assume that this is invertible leading to J(x, </)) and we also note that for vanishing 

G^\ J — 0 <j> = 0. In some sense this </>(.T, J ) is a generalisation of what is removed by 

the exponent in Eqn. (2.16) before i t attaches an external field operator. Next we introduce 
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the effective action, 

T[<f>] = -iW[J\ - J d4xJ{x)4>{x) = - log Z[J\ - j d4xJ(x)cj>(x). (2.20) 

which immediately leads to the relation, 

T[(f>] is the generating functional for the so called vertex functions, 

T ^ ( x u . . . x n ) = 
6<l>(xi). ..6<j>(xn) 

(2.22) 
4=0 

By functionally differentiating Eqn. (2.19) once wi th respect to <f> and taking the l im i t <j> = 

J = 0 we obtain the relation that, 

J d4zTW{y, z)G™{z, X) = i84(x - y) (2.23) 

which in the free field theory, G 0

2 ' = G ' 2 ' = iAj, (see the paragraph containing Eqn. (2.8)), 

corresponds to I ^ 2 ' = —K^. 

Further differentiation of Eqn. (2.19) and the use of Eqn. (2.23) is seen to generate a 

relation between G^ and a series of tree like structures having r^"1^ for each m-point vertex 

and a G^ propagator l inking them; Figure 2.2 illustrates this point. Note, that there are no 

explicit loops in such structures because that would over count contributions to the vertices. 

r[<̂ >] is termed the effective action because i t is, in the interacting theory, a generalisation 

of the action, S = f d4xC. As was indicated, in the free theory, r o

2 ' (and correspondingly the 

simplest contribution to in the f u l l interacting theory), is 82S/8(j)2. Similarly, the simplest 

contributions to the higher point F( ' 1 - 2 ) vertices are terms of order <f>n in the coefficient of 
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X 

1 

X 

Figure 2.2: The 4—point connected Green's funct ion, G^4\ expanded in terms of the n ( < 
4)—point vertex functions, T*"' (shaded circles), and the f u l l propagator, G^ (empty circles). 

the associated term in the CJNT part of the Lagrangian density. For example, the X(j)3/3\ 

term in the Lagrangian of a "<p3" theory gives rise to a leading T ' 3 ' contribution of A. 

I t is clear that vertices not present in the basic Lagrangian may come about at higher 

orders (i.e. as connected Green's functions containing at least one closed loop) and such a 

process is discussed in the latter chapters of this thesis. 

We conclude this section w i t h a description of the full propagator, G^(x\,X2). Following 

the discussion after Eqn. (2.10) we shall discuss the momentum space forms of G^ etc. i.e. 

via Eqn. (2.11) we wri te f ( x i , x 2 ) —> f{p\iP%) — f { p = Pi — ~~P2), where we have utilised 

the impl ic i t 8 funct ion. We define the self-energy, S(p), which arises f rom the modification 

that interactions make to the free theory by 

r ( 2 ) ( p ) = - / ^ ( p ) + S(p). (2.24) 
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-f — © — + — m — © — + 

Figure 2.3: The full propagator, (wi th empty circle) is equivalent to the sum of free 
propagators, (straight lines), wi th all numbers of vertex functions, (shaded circles), 
inserted. 

In momentum space for, | £ ( p ) | < \K^(p)\, Eqn. (2.23) leads to 

G?\P) - < f 1 1 

KM I a'*(jO KAP)2 

= G$\p) {1 + iZ(p)G(

0

2)(p) + ...+ ( i S ( p ) G i 2 ) ( p ) ) P + . . . } (2.25) 

We have illustrated this series in Figure 2.3. In other words, the full propagator, G^\ is 
(2) 

equivalent to an infini te sum of the free propagators, GQ , wi th all numbers of self-energy 

insertions, S(p). Generically, we f ind that TQ2' has the fo rm, p2 — m 2 , so S gets its name 

self-energy because, due to <̂ 's interactions, an effective modification is made to the mass, 

m , of the free theory. 

2.5 Gauge symmetries 

In considering a typical ( term in a) Lagrangian density, p'dj)*1^, where § is a mult iplet of 

some fixed number of fields, we note that i t is invariant under the global transformation, 
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<J) —> et0(f), where 6 may be expanded as1 

6 = OATA (2.26) 

w i t h respect to the generators, T A , of some symmetry group, satisfying, 

[T\ TB] = i f A B C T C . (2.27) 

The structure constants of the group are labeled as f a b c . 

The corresponding local (gauge) transformation is, [7] 

]>(x) -> e i 9 { x ^ ( x ) , (2.28) 

where 6(x) is required to be small. Unfortunately, this is not a symmetry of the given 

Lagrangian ( term). However, rather than reject this proposed symmetry transformation we 

f ind tha,t i t is more f r u i t f u l to replace the partial derivative wi th a modified gauge covariant 

partial derivative, 

D„ = d, + igA^x) (2.29) 

and thus the contribution to the Lagrangian becomes 

C ~ ftb\frL<j>. (2.30) 

We do this at the expense of invoking a new (Bosonic) gauge field, A^. Both 6(x) and A ^ ( x ) 

can be expanded in terms of the generators, T A , of the symmetry group; indeed i t is the 

component fields, A^(x), that commute with one another (are Bosonic see Eqn. (2.1)). The 

constant generators, which together w i t h g define the coupling of <f> to the gauge f ield, tend 

1 Since we are presenting a summary, we give the general non-abelian gauge theory from the start. 
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to complicate the commutation relations of the multiplet field, Alt{x). The transformation 

of the gauge field w i th respect to 6(x) is constrained by requiring that t ) ^ transforms in 

the Sctme manner as <j>. For small 6(x) this leads to, 

i j ( . r ) = A,(x) + i [0(x), A^x)} - l-d.6(x). (2.31) 

We f ind that mass terms of the fo rm, m2A^A'1/2, are not gauge invariant. I t follows that we 

cannot arbi t rar i ly put put masses into a Lagrangian without breaking its gauge symmetry. 

I f is not to be an external field i t must have a mode of propagation. This is facili tated 

by terms quadratic in the field. The antisymmetric field strength tensor is defined by, 

KM = - [A , A ] = (d,X{x)) - (dJX.ix)) + ig [iM(.r), A„{x)\ (2.32) 

The scjuare of F is a gauge invariant quantity, under Eqn. (2.31), so i t facilitates the required 

propagation term for a gauge invariant Lagrangian, 

-A-Fa^Fa^. (2.33) 

In this general non-abelian theory, this term does not give rise to free propagation since i t 

contains terms cubic and quartic in Alt, instead i t defines a self interacting field. 

2.5.1 Abelian gauge theories 

In the simplified case of an abelian gauge symmetry, wi th the f a b c of Eqn. (2.27) identically 

zero, two important results follow. The first is simply that self interactions are not present 

in Eqn. (2.32), so abelian fields when not coupled to fields <f> wi l l freely propagate. 
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The second is that i t becomes possible to define different ga,uge transformations for 

different (mul t ip le t ) fields. Given <j) and T / J say, we transform them as 

4>(x) -> e z Q ^ 4 ( x ) and ij>(x) -» eiQ*0(x)-d>{x). (2.34) 

The gauge covariant derivative is similarly altered, 

D't = dll + igQ4tAll{x) and D% = d„ + igQ+A^x), (2.35) 

but fortunately this leaves Eqn. (2.31), without the commutator term, unaffected. Eqn. (2.32) 

is modified to read, 

= [£>*, D*\ = [£)*, £>*} = ( d M x ) ) - ( d M x ) ) (2.36) 

Correspondingly, the only terms in a general Lagrangian, that are not guaranteed to be 

gauge invariant are those that involve direct interactions between (f> and ?/>. Such terms are 

typically of the form 

~ ft* ft _> ft'j,' e-i{Q*r-Q+>)<>m (2.37) 

Now, to actually be gauge invariant (for a small 0), we require Q$ — s(Q$/r) = 0. In such 

a scenario Q^/s = Q^/r defines a convenient unit of charge, which may be factored into 

a redefinition of the coupling, g. In summary, whilst i t is possible for abelian gauge fields 

to couple wi th different strengths to different fields, these couplings are always in integer 

multiples of some more basic unit . 
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2.6 Ghosts 

The gauge symmetry of a fully gauge invariant Lagrangian is a complete internal symmetry— 

a gauge choice does not manifest itself in any physical amplitude. Consequently, we must 

take care to treat it correctly in the Path Integral formalism. Having chosen a representation 

of we have effectively selected a gauge. Thus in calculating the vacuum-to-vacuum 

transition amplitude we should not allow the path integral to wander over different gauges. 

Accordingly, we write the path integral over a c-number A^ (of Eqn. (2.31)) field as2, 

J VA^S {0)... (2.38) 

where the action of the delta function is to select the untransformed gauge. Equivalently, 

there is some gauge fixing function, f(A9), satisfying, f(A) = 0. Re-expressing the delta 

function Eqn. (2.38) becomes, 

W(/t M )) . . . (2.39) 
9=0/ 

In reaching the right hand side we have used the delta function to constrain the integration 

region (much as we are able to write S(x2)f(x) = f \ 5(x2)f(x)). The determinant, as 

indicated, is with respect to the component indices of / and 6 (see Eqn. (2.26)) and it is 

simply the Jacobian required to compensate for the change of argument to the delta function. 

Formally, the determinant can be rewritten in an exponential form. This is achieved by 

introducing a complex multiplet of Faddeev-Popov Ghost (FPG) c-number fields that are 

2 M ore formally we introduce an unrestricted path integral over all 0(x) (of Eqn. (2.28)) and show, by 
gauge invariance, the following treatment leads to an overall factor in both the numerator and denominator 
of E q n . (2.7), thus leading to the same result. 

/ VA det 6 f a 

60b j 6 ( / « ) ) . . . = J v A . d e t 8_T_ 
80b 
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fermionic (they anti-commute) [8]. That is to say, 

J ... det (Mab) ... = J VcVJ ... exp i J £FPG = J VcVc*... exp i J dixdiycl(x)Mabcb(y) 

(2.40) 

where Mab — 6fa/60b . It is also possible to write the gauge fixing delta function as an 

exponential, 

J ...expij £ G F = J ...exp-^jd*x{f(A(x))}2 (2.41) 

£ is the gauge parameter. Although £ can be thought of as just altering the normalisation 

of f(A) hence contributing, via the determinant, an overall factor (to the numerator and 

denominator of Eqn. (2.7) and thus canceling), it does provide a convenient method of 

obtaining different gauges for a single type of function, f(A). One of the favoured choices 

for gauge (and directly related to that used for all calculations in this thesis) are those known 

as covariant (or lorentz) gauges, 

f(A) = d-A. (2.42) 

This, and related choices, preserve the lorentz invariance of £ , which after absorbing Eqns. (2.40 

and 2.41) becomes the effective Lagrangian density, CeR = C + £ G F + £ F P G -

Since the FPGs have been artificially introduced to rewrite the determinant of Eqn. (2.39), 

we do not expect them to be manifest as external fields. We do introduce an external source 

(a fermionic c-number field) for both of the. ghost multiplets. However, in addition to setting 

these sources to zero when computing the Green's functions (cf. Eqns. (2.10 and 2.18) etc.) 

we also set c and to zero too. 

Another significant simplification, in the case of abelian gauge fields, is noted: from 

Eqn. (2.31) it follows that in lorentz gauges det(Sf /SO) contains no terms in A*. Conse

quently, the effective Lagrangian does not couple the FPG fields to any others. Accordingly, 
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we may factor away the determinant and ignore ghost terms completely—they cannot con

tribute to any Green's functions in purely abelian gauge symmetric theories. 

2o7 Gauge field polarisations 

In lorentz gauges, the appropriate application of Eqn. (2.13) to massless gauge fields follows 

from the requirement tha.t physical states, \a), satisfy the weak gauge condition, 

d-A+\a)=0. (2.43) 

Where A+^t is the annihilation component (see Eqn. (2.14)) of the expansion Eqn. (2.13). 

Since there are naively 4 orthogonal polarisation vectors for any gauge boson (in 4 dimen

sional space-time) and the two physical (or transverse) polarisations e*, are orthogonal to 

the 4-momentum k, it follows that Eqn. (2.43) reduces to the requirement, 

fc"(£;a»(fc) + £ « a » ( f c ) ) | a > = 0 , (2.44) 

where we define e° to be purely time-like, and e" to be space-like and parallel to the 3-

momentum of k. Since the time-like and space-like components of the Minkowski metric are 

of opposite sign we find that for a massless gauge field, k>l • e° = —k1' • and consequently 

all physical states have an equal number of e° and polarisations: 

a ° ( * ) | a ) = « « ( * ) H (2.45) 

It can be shown that these states have opposite (in sign) contributions to the Hamiltonian 

(total energy) so they are unobservable. 
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Aside from the fact that mass terms for gauge fields are not by themselves gauge invariant, 

the modification for massive vector bosons is as follows. The introduction of mass, and thus 

a defined rest frame for the particle, gives rise to another space-like polarisation. Eqn. (2.43) 

is satisfied by a 4-vector, e", parallel to the direction of motion of k, that transforms to 

(0 ,k / |k | ) as k is transformed to its rest frame. It follows that massive vector boson states, 

should they exist, have no time-like polarisations (the second term of the left-hand-side of 

Eqn. (2.44) is not present). 

In summary, massless vector particles will have two transverse physical polarisations and 

massive vector particles will have three, all of which are space-like. 
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Chapter 3 

The Standard Model 

The most popular current model for elementary particles, enjoying the greatest success in 

describing High Energy Particle interaction data, has become known as the Standard Model 

(SM). It embeds the extremely successful theory of Quantum Electro-Dynamics (QED); a 

theory of Weak Interactions that predict the radioactive /3-decay of nuclei; and Quantum 

Chromo-Dynamics (QCD), which successfully describes much hadronic experimental data. 

As yet, there is compelling evidence for the existence of all but one of the constituent fields1 

of the SM. I t does however, not address all of nature's interactions, making no statements 

about the gravitational force, but in the face of an immense amount of high energy particle 

data, it does represent a formidable model for nature at its most elemental. 

Before we describe the calculation of various physical processes—the topics of all the 

remaining chapters—we give the the Lagrangian density of the Standard Model, CSM, a r>d 

1 T h e most recent particle to be discovered is the heavy Top quark [9]. 
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Fermion, ip Left-handed Right-Handed — Qxl> 

Leptons, I U M ; : ' M " ; ) - 1 e, u, T - 1 

Quarks, cji 
Nf = 6 and Nc = 3 

/ U{ \ I C{ \ ( ti \ 
\ di J' ̂  S i )'\bi ) - 4 Ui. Ci, ti 

1 

3 
+ 1 

Table 3.1: This is a table of Standard Model fermion hypercharge, —the factor governing 
the strength of the respective fermion's coupling to the U(l) field, Bn. 

accompany it with some simple discussion. 

3.1 The Standard Model Lagrangian 

The SM is built from a system of 25 physical particle fields (i.e. observable directly or 

indirectly). Twelve of these are spin-l/2 fermionic fields, broken into their left and right-

handed components (see Appendix E), that couple selectively to the 12 fields of three gauge 

symmetry groups U{\) x SU{2) x SU'{3). The remaining field is just one of the four real 

fields of a complex scalar doublet. It is the only visible remnant of a mechanism invoked 

to give masses to various fields of the theory, and also currently the only field for which 

no direct experimental evidence exists. Superficially, however, the SM Lagrangian contains 

mass terms for neither the fermions nor the gauge bosons; this is as required because it is 

explicitly devised to be gauge independent. 

With respect to the fermionic fields given in Table 3.1 the Standard Model Lagrangian 

has the form, 
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+ E "iLKikK - - 9^>) & - 9s0';) L'qj 

N, Nj 

+ E E K ( K - 9%,nJH») V : - 9s0t) * v 

- - B ^ - l-W'^W'^ - j 6 ^ G ' a ^ 

- £ (Li^Ri + R^Li) - E E ^ ( ^ . ^ , + ^ % , , ) 
f 1=1 (7=1 

i=1 9 = 1 
2 

/ . U ^ , ,,2 if. 

(3.1) 

For brevity we have neglected the operator ha.ts on each of the fields. B^ is the U(l) gauge 

field coupling to both fermions and the complex scalar doublet field, <j>, proportional to then-

respective hypercharge value, Y^,. is the SU(2) gauge field that couples only to left-handed 

fermions and the complex scalar doublet field, <f>. G^ is the SU(3) gauge field of QCD. It is 

noticeable that neither the lepton nor the cj) (and its transformed variant, (j)) fields directly 

interact with G)L] indeed, only particles carrying colour (the indices, i, of Table 3.1) feel this 

gluonic field. The tensors B^, WIIV and Guu, are just the field strengths, FMl/ of Eqn. (2.36) 

(for B) and Eqn. (2.32) (for W and G). 

Both the left and right-handed fermionic fields couple equally to the SU(3) gauge field, or 

in other words, QCD is a chirally invariant theory. It follows that, if the quarks are considered 

massless, then in the absence of U(l) x SU(2) or <j> couplings there is no mechanism for the 

different chiralities to interact: massless QCD is a chirally independent theory. 
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From Table 3.1, the hypercharge, V ,̂, of a given flavour of fermion for the left and right-

handed fermions is not generally the same. This differential coupling obeys gauge invariance 

because the U{\) gauge field is an abelian one (see Section 2.5.1). Indeed, there is noticeably 

an absence of right handed neutrino fields, a point we shall address in Section 3.5. The 

hypercharge of the <j> field is 

n = i - (3.2) 

We shall indicate the significance of the primes on the left-handed quark doublets in 

Section 3.6; they are linearly related to the un-primed doublets. 

3.2 Spontaneous symmetry breaking 

The process we describe in this section has become known as the Higgs Mechanism [10], it 

concerns the nature of the Higgs doublet field, <f>. 

We consider the case that <j> in its un-excited form is (f> — (j)0, for <j>0 ^ 0. The excitations 

of (j) can be re-written as 

4> = <j>0 + ]>'• (3-3) 

The first consequence of this is to ensure that the vacuum-expectation-value (0|< |̂0) = 

(0|<^o|0) is non-zero. This corresponds to quantum numbers belonging to the vacuum. To 

constrain <j>0 we require that rather than being zero, it minimises the last two terms of CSM 

as i t is pr*esented in Eqn. (3.1); these last two terms are called the Higgs potential. Whilst 

</>o = 0 clearly reduces this potential to zero, we find that, for f.i2 > 0, the minimum of the 
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potential is at (f>l4>o = fi2/2X. Correspondingly we define, 

1 0 ^ 

v/y/2 

1 * ^ 
(H + ix)/V2 

(3.4) 

with 

and the related field 

v = A ' 
(3.5) 

(3.6) 

or equivalently, 

4>o 
v/V2 ( (H-ix)/y/2 

\ ) 

(3.7) 

This choice of (f>0 is not unique, but all other choices are related to this one by an SU(2) 

rotation. Since this is a globally selected choice for </>o, we can view the generators of the 

rotation to another choice for <f)0 as the 0 of Eqn. (2.26). 

3»3 Masses for the fields 

The Higgs potential does have a term quadratic in <f> but it has the wrong sign to be a mass 

term, cf. the text following Eqn. (2.25). We note, however, that the H component of (f> 

develops a mass type term of the correct form with respect to ft2. 
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v2 + ...) 

(3.8) 

where we have neglected terms not quadratic in a single component field. We see that i t 

is only the H component that develops a mass in this manner. We now consider how the 

gauge bosons and fermions of the model acquire mass. 

We shall find it useful to decompose the gauge field, WM, into its component fields in the 

basis defined by the Pauli matrices, r;, given in Section F . l . i.e. 

= W ^ . (3.9) 

From the covariant derivative squared terms for the Higgs doublet, we consider the gauge 

field interactions (see Eqns. (3.1 and 3.2)), 

^ (g'B, + gW;jt) (g'B, + gWfc) j> = [gn B • B + g2Wx • Wx + 2g'gB • W^) j> 

(3.10) 

where we have employed Eqn. (F.4). Concentrating on the <f>Q contribution (see Eqn. (F. l )) 

this becomes, 

j{{o'B-gW3y+g'(W? + Wl)}. (3.11) 

This is of a form that strongly suggests mass terms for three vector fields—the minus sign 

which we might expect to be preceding these bosonic terms is actually provided by the metric, 

since when acting on any physical state, the field contributes only space-like polarisations, 

o,2 2 ^ ( ^ ' ) + ( ^ ' + ^'Vo)2 + • . . - ' 

2 I v/2 + v/2 ) + ' 
1 

-u<H< + ... = --m2

HH2 
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(3.13) 

eM, i.e. e • e < 0. 

Wi th respect to the so called, Weak Mixing Angle, 6w, satisfying 

sin 0W = f and cos 0W = / , , (3.12) 
v<r + 5 + fir 

we define the transformed fields, 

A^ — BfL cos 6\Y + sin 0w B^ = Afl cos 0w — Z^ sin 6\y 

Z M = — B f t sin 0w + cos 9w and = v4>(sin 0w + Z M cos Q\v 

The new fields are mass eigenstates, the Z-boson field of mass, 

and the W^-ioso/is of mass 

Mw = Mz cos 0w- (3.15) 

The fourth of these transformed fields, Afl, has no mass term. 

We consider the fermionic terms that contain the v factor of Eqn. (3.5). The L^(j>R^, and 

R^(jJterms, the so-called Yukawa couplings, reduce to terms of the form, 

h^v i— . — 
72 ( M R + 1>RII>L) (3-16) 

which (cf. Section E.4) are chirality mixing mass terms for a fermion of flavour xj) G {d{, Si, 6,}. 

For the leptons of CSM, we see that this is the only included term giving rise to mass like 
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terms. Correspondingly, there would be no mixing of left and right handed neutrino states, 

even if we had included right-handed neutrino fields in Eqn. (3.1). 

For the quarks, however, it is desirable for the tt,, c; and t{ quarks to be massive. So, 

a transformation is made of 4> to <j> (see Eqn. (3.6)) with which we obtain mass generating 

Yukawa terms (see Eqn. (3.16)) for the remaining quarks, -0 £ {ui,Ci,ti}. 

We find that the covariant derivative terms for the <f> field contribute awkward oscillation 

It has been found [11] that such terms can be eliminated by the following choice of gauge 

(see Section 2.6), 

3 c 4 Fixing a gauge 

2-point vertices for the W, B (hence A, Z and W ± ) and (j)' fields of the form, 

(3.17) 

fB(B) = d''5, t + ^ { < ^ o - 4 ^ } -
(3.18) 

Where £ is the gauge parameter, and correspondingly, cf. Eqn. (2.41), 

{.fw(wy + fB(B)2} GF 2£ 
(3.19) 

Note, f 2 here refers to the straightforward square and not f ^ j . 

The terms of the form Eqn. (3.17) are canceled by those from CQF that are linear in 

S(and W). The terms quadratic in the gauge fields are simply the normal lorentz gauge 



fixing condition, Eqn. (2.42). 

The remaining terms in CQF are quadratic in the un-physical component fields to <(>'. 

They give rise to gauge dependent mass terms of the form, (see Eqns. (3.8 and 3.15)) 

- t M U - f - t ^ Y - X 2 - (3-20) 

It is clear that the ^>+(and <f>~) and x fields are deeply linked to the choice of gauge. It is for 

this reason that they are said to be un-physical. Indeed, by choosing £ —> oo we can ensure 

that they are unable to propagate. This gauge is called the unitary gauge and contains only 

the physical fields. 

3.5 The Electroweak theory 

Firstly, we define the coupling, 

e = g' cos Q\v — g sin 0w (3.21) 

The couplings of both the left-handed fermions and the <f> field to the U(l) x SU(2) gauge 

fields involve the generic contribution, 

d, + i g ' ^ B , + igW, = d»+l- (g'B»Ya,L6ab + g W ^ ) (3.22) 

where a is the appropriate field type. Expanding in terms of the transformed fields, Eqn. (3.13), 
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and with Eqn. (3.21) this becomes, [12] 

a « + 2 
(Ya,L + + - T ! ^ ( C O S 2 6W - F Q , L s in 2 dw)^ 

s i n ^ - ^ - - 1 )4 . - ^ 7 ( c o s 2 ^ + Ya,L sin 2 ^ ) Z „ 
(3.23) 

Applying this to the fermionic sector we see that the flavour conserving interactions are with 

the and fields, since they form the diagonal of the matrix in Eqn. (3.23). We note 

that the strength of the A^ couplings to the fermions is one unit of e larger for the upper 

member of the left-handed doublet ( j / e , etc.) than for the lower member (e, a"', etc.). 

Concentrating on the fields, we find that they couple the two flavours of fermion in 

a single doublet, since they form the diagonal components of the matrix. As we have said, 

this transition corresponds to a change of e in the Atl coupling—in a real sense it is the 

that carries this difference. We note also that the couple identically to all doublets 

independently of the hypercharge: the fields are blind to the leptonic or quark nature of 

the fermions. This is entirely as we would expect since the transformation of fields for them 

has just been a rotation in SU(2) and they remain purely non-abelian (cf. Section 2.5.1). 

Another consequence of the non-abelian nature of the SU(2) field is that it gives rise to 

self-interaction (see the discussion following Eqn. (2.32)). It is the W3 component of A and 

Z that cause to interact with them. The fact that B and W3 are mutually abelian 

means that they do not interact without simultaneously coupling to two charged fields—A 

cannot interact without the presence of a charge. 

The right-handed fermions do not couple to the SU(2) field. Instead, their covariant 

derivative to the U{\) x SU(2) sector is, 

c?M + ig'Ya,RB^ = dfl + ieYatR L4M - tan 0WZ„ (3.24) 
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We define eQa to be the value of the coupling for fermion a to the field A^, from Table 3.1 

we observe that, 

Since, Qe,L — Que,L — 1, it follows via this relationship that Ya R = 0. This justifies our 

exclusion of right handed neutrinos from CSM (Eqn. (3.1)). 

Electromagnetic fields, and e with the fundamental unit of charge as defined by the electron 

having e x (—1). Historically, it was the knowledge of e and the relative charges of the 

fermions, Q0,R(= QC»,L), that enabled the hypercharges to be deduced. Indeed, with the 

benefit of hindsight, the choice 3e = g' cos 8w = 9 sin 0w for Eqn. (3.21), might have been 

more natural—in this way all particles would have had integer charges, n e. The massless 

external states of the field Afl are called photons; particles of light. 

We are now in the position to appreciate the significance of the choice Eqn. (3.4). The 

covariant derivative for the Higgs doublet has the form, 

Qa.L = Qa,R — ya,R- (3.25) 

The A field is identified with the 4-vector potential for the classical E and B 3-vector 

(g'B + gW3) 1 P d + ... I 
0 

(g'B - gW*) 
(3.26) 

V 
0 

/ 

where we have neglected the WA and I'V2(equivalently W^) contributions. This leads to the 

following terms expressed with respect to <̂ 's component fields, 

4> eA + 
tan 20 w 

( 
1 1 Hid X d Z< H X sin" 20 sin" 20 w w 

(3.27) 

We note that none of the lower components to <j> couple to the A^ field. That is to say, the <$> 
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field has no charge, either in its unexcited (vacuum) state or with a physical excitation, H. 

The and fields are those of the Weak force. The charged interactions, involving 

the fields and left-handed fermions, axe flavour changing; ue <-» e and u' <-» d' etc. to each 

of which it couples equally. The Zn field couples to both the left and right handed fermions, 

but differentially. This gives rise to the so-called V — A (Vector-minus-Axial-vector) coupling 

of the Z M to fermions. 

Multiplying Eqns. (3.23 and 3.24) by 7" we can write the general fermion, a, to Z^ 

interaction vertex as, 

zeZM [cJZl'lK + cRTtflRa) (3.28) 

where c^^) are the left(right) couplings. Substituting Eqn. (E.19) into this expression we 

can write the overall coupling as, 

ieZ^ (ay'ava — aY'j5aaa) (3.29) 

where, 

v„ = and aa = "* (3.30) 

—A vector - axial vector current, cf. Section E.4. For the fermions whose left-handed 

component is the upper member of a SU(2) doublet these coupling factors have the following 

forms, 

_ < l - ( l + Y a i L + 2Ya,R)s\n20w , l - ( l + YQ<L-2Ya<R)sm20w 

V a ~ + 2 s i n 2 ^ a ° ~ + 2s in20 w ' 

and for the lower members, 

1 - ( l - Y a t L - 2 Y a t R ) s m i 9 w _ 1 - (1 - Ya>L + 2Ya,R) sm2 6W 

2 sin 26w

 a°~ 2 sin 20w ' 
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$.,6 No flavour changing neutral currents 

The use of L'Q •, in CSM (Eqn. (3.1)), indicates that it is modified left handed doublets that 

couple to the SU(2) gauge field. They are related to Lqj by, 

4m = 

/ \ 
u 

\ d ' j 

( \ 
c 

V s J 

(3.33) 

where the primed quarks are related to the unprimed ones by, 

M ( A 

a' — UCKM s 

UCKM is the unitary Cabibbo-Kobayashi-Maskawa [13] 

(3.34) 

form of UCKM ensures that the quark mass eigenstates of the Lagrangian (terms containing 

hq,i) a r e n ° t the same as those participating in interactions with the SU(2) field. This 

transformation is global and unitary so the U(\) and SU(2) couplings are unaffected. 

We have established the fact that W± interaction is associated with flavour change: for 

example, a vertical transition will occur in Eqn. (3.33). The fact that the lower components to 

these doublets are not the mass eigenstates prompts us to investigate whether an interaction 

with the neutral fields, A and Z, can result in a horizontal transition. Assuming some neutral 

combination, iVM ~ A^ + /3ZM, for the fermionic fields, IJJ G {d'i, s\, 6',} and / G i i , 

we have a combined series of interaction terms of the form, 

J2^^J = T,f{UcL,y N.UPKM}. (3.35) 
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Since NFL is diagonal with respect to UCKM, we can commute UCKM through i t to cancel 

against UC\<M- Thus, the neutral currents do not give rise to flavour changing interactions. 

[14] 

3.7 The Strong interaction 

The Higgs field, is not coupled to the gluonic gauge field, G^, in CSM- Thus, the 5f/(3) 

field is not broken by the Higgs mechanism. Consequently, G ̂  remains massless and only 

couples to quarks and itself. Having generated masses for the quarks, we write the SU(3) 

relevant part of Eqn. (3.1) as, 

£QCD = £ t - mq) 8i3 - gsT«$} q3 - -G^Ga (3.36) 
1,3 

The quark fields are, with respect to the gluons, each resolved into a triplet of fields, which 

couple to the 8 gluonic fields via the SU(3) generators T-j and with a strength gs. These 

generators, and the fact that Ga^l/Ga **" contains cubic and quartic, Ga, self couplings are what 

distinguish QCD from QED. An algebra for these generators is discussed in Section F.2. 
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Chapter 4 

Simple Phenomenology for LEP 

A convenient phenomenology of the Standard Model is generated with respect to a perturba-

tive expansion in the couplings, e and gs. It is based on the assumption that these quantities 

are small. Within this framework, the appropriate free Lagrangian density is taken to be the 

(e><7s) —• 0 limit of the ful l Standard Model La,grangian, Eqn. (3.1). In this limit one estab

lishes the propagators for the free theory, Eqn. (2.8). The interaction Lagrangian is simply 

the difference of the ful l and free Lagrangians and naturally leads to the Feynman rules for 

the vertices of the theory. The Green's functions and hence the scattering amplitudes of the 

theory can then be evaluated to some power in the couplings by expanding the exponentials 

in Eqns. (2.9 and 2.16). 

The success of this perturbative approach, in terms of making accurate predictions based 

on the Standard Model Lagrangian, rides on an ability to identify physical quantities for 

which these small coupling limits are a valid approximation. 
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The basic process at LEP is the collision of a beam of electrons with a. beam of anti-

electrons (positrons) at a centre of mass energy for ea.ch particle collision equal to that of the 

Z-boson at rest. Before addressing the high energy collision at the Z-mass we shall cover 

collisions at lower energies. This will give us an opportunity to review some simple QED and 

also indicate the need for renormalisation in a consistent picture of High energy behaviour. 

4.1 Parameters of the Standard Mode! 

World average values for the masses of the massive weak gauge fields and the leptons of the 

Standard Model are as follows [15]. The weak gauge fields: the Z-boson is 91.173±0.020 GeV; 

and the W-boson is 80.22±0.26 GeV. This combination leads to a value for sin 2 0\y of 0.226± 

0.005, the error here is dominated by the uncertainty in the mass of the W. The masses of 

the leptons are very well known and have the values: m e = 0.51099906 ± 0.00000015 MeV; 

mIL = 105.658389 ±0.000034 MeV; and mT = 1784.1±§;e MeV. The masses of the quarks are 

by comparison not well known because they are only observed in bound states—as hadrons. 

For convenience, Table 4.1 contains approximate numerical values used in this chapter for 

all of the fermions of the SM. 

4.2 e + e " 

We consider the 2 —> 2 particle process of, 

e + (p 1 ) + e - ( p 2 ) ^ / ( p 3 ) + /( /x 1 ) . (4.1) 
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Fermion Qf VJ af Mass [MeV] 
e - l -0.048 -0.594 0.5 

- l -0.048 -0.594 100 
r - l -0.048 -0.594 1800 

0 0.594 0.594 0 
0 0.594 0.594 0 
0 0.594 0.594 0 

d -1 /3 —0.412 -0.594 5 
-1 /3 -0.412 -0.594 5 
-1 /3 -0.412 -0.594 5000 

u 2/3 0.230 0.594 5 
c 2/3 0.230 0.594 1500 
t 2/3 0.230 0.594 170000 

Table 4.1: A table of relevant properties for the fermions of the Standard Model. Containing 
the electric charges, Q/, the vector (vj) and axial (a/) couplings, evaluated with respect to 
a weak mixing angle satisfying, sin 2 6w = 0.23, and the approximate masses. 

y 

Figure 4.1: The Feynman diagram for the crea.tion of a fermion-antifermion pair from the 
annihilation of an electron-positron pair via a virtual photon. 

That is to say, the annihilation of a electron-positron pair leading to the production of a 

fermion-anti-fermion pair via a virtual photon. 

With respect to a perturbative expansion in the coupling constant, e, the leading contri

bution to the probability amplitude for this process can be deduced from the single appro

priate Feynman diagram, Figure 4.1, as 

M e e f f = v M ( + i e Y ) u e ( p 2 ) ^ L „ - (1 - O ^ A *j(P3)(-ieQn")»fiP*)- (4-2) 
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The 4-momenta, p,, are defined in Eqn. (4.1) and, respectful of 4-momentum conservation, 

we define 

<7 = Pi + P2 = P3 + P4- (4.3) 

In Eqn. (4.2), we have explicitly included the gauge dependence of the photon propagator. 

The simplest choice for the gauge parameter would be £ = 1, the Feynman gauge. However, 

in this case it is simple to use the on-shell condition for the electron, Eqn. (E.14), to show 

explicitly that the gauge dependent, ^^r1, contribution vanishes. 

The generic two particle cross-section for incoming particle momenta, pi and p2, and 

with invariant masses, mi and m 2 , is, 

a^2 = . ( s y m ) /dLips2^n ( M M ) . (4.4) 
V ( p i . P 2 ) 2 - m ? m l y e v e n t 

Here, M. is the matrix element for the 2 —> n process and (M.^M)event is the matrix element 

squared, which is averaged over degenerate initial states and summed over indistinguishable 

final states. The factor, (sym), is a symmetry factor for averaging over identical bosons in 

the final state. I t is usually of the form where j is the number of identical bosons. The 

appropriate symmetry factor for this process is 1. We shall take the limit that me —> 0. We 

are not to observe the initial or final state polarisations, so we shall sum over the final states 

and average over the initial ones. In this way, 

( M j M ) e e f f = l ^ T r { t ^ W } ^ { t ^ t ^ ~ • (4-5) 

The product of the traces can be evaluated from the identities in Section E. l to be, 

32 ((pi • p2)m) + (pi • p 3 ) 2 + (p 2 • p 3 ) 2 ) (4.6) 
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where we have also employed the momentum conservation of Eqn. (4.3). In the centre of 

mass frame we can specialise to the following representation for the momenta of the process, 

Pi = CE,Pi,0,0) p3 = (E,p3Cos0,p 3sin0,O) 
<7 = (2£ , 0,0,0) . (4.7) 

P2 = (E, - p i , 0 , 0 ) p4 = (E, - p 3 cos 9, - p 3 sin 8,0) 

With respect to this choice, the cross-section for the production of an / / pair becomes, 

1 1 *Q).L rn} 

E2 16TTE 16Eq2 V E2 

x jT cWsm0{64E2 [{E2 + m2) + (E2 - m}) cos2 O)} . (4.8) 

- e + e - ^ 7 = 8 E ^ T ^ E W E f V - E ^ 6 { E - m f ) 

Substituting the 2 —» 2 phase space integral for massive final state particles, Eqn. (C.10), 

we evaluate the total cross-section to be, 

4na2Q2 

*ff 1 + 
2m2, 

\ 
4 m2, ( i— 

(4.9) 

Here, we have replaced e by the fine structure constant, a = e2/4ir. Based on this formula 

the total cross-section, CTTOT, f ° r the rate of production for all fermions (excluding the 

electron) is plotted in Figure 4.2. The quarks have a colour degree of freedom, so they 

appear to contribute 3 times the cross-section that a single fermion of the corresponding 

charge would—in other words, with respect to QED there are 3 types of each quark. Note 

from this expression that cr e + e__^y drops off sharply with increasing energy. This dramatic 

shrinking of the effective target size is a common feature of high energy cross-sections (it is 

driven by the force-mediating propagator contribution). 

Plotting Eqn. (4.9) in the form of Figure 4.2 does show the general prediction for the 

cross-section as a function of the beam energy (half the centre of mass energy). It gives 

some indication of the c quark, the r-lepton and the fe-quark thresholds, but these are 
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Figure 4.2: The total cross-section for e+e~ —> / / verses half the centre of mass energy: at 
leading order (full) and after renormalisation of the charge (dotted). To create this graph, 
we have summed over all final state fermions, excluding the electron, with rest-masses below 
10 GeV. The c-quark and r-lepton thresholds can be seen at 1.5 and 1.8 GeV respectively. 
The 6-quark threshold is barely visible at 5.0 GeV—its contribution to OJOT is suppressed 
because of its small electric charge. 
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e e 

Figure 4.3: Two of the contributions at next-to-leading order (in a) that contribute to the 
observed process e+e~ —> / / . 

mostly swamped by the l/q2 damping. The experimental cross-section is actually larger 

than this simple calculation would suggest. This is principally due to large corrections from 

initial state photon radiation. 

4.3 Ratios: more stable predictions 

Extending the calculation of the process in Eqn. (4.1) to the next order in the coupling, a, we 

must at least include the processes illustrated in Figure 4.3. This corresponds to an additional 

photon being radiated off the incoming particles. For the inclusive / / cross-section, where 

we sum over all additional particles in the final state, all such photons contribute to the 

observable cross-section. Even when we attempt to exclusively measure the cross-section 

for this process, such photons can significantly affect the rate. The observed final state is 

that of a / / pair in any of the following situations: if the photon carries too little energy to 

show up in an experimental measurement; or it travels so close to one of the fermions that 

the two particles seem to be one and the same; or, as is most likely, it escapes detection 

by accompanying the spectator electrons/positrons in the incident beams down the beam 

pipe. Despite the fact that the radiation of a photon costs a power of a, such radiative 

processes involving un-resolved particles can, in some cases, alter the observed cross-section 
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considerably. In this case the effect of radiating an initial sta.te photon reduces the q2 of the 

virtual photon and (see Figure 4.2) significantly enhances the apparent cross-section. 

A more stable calculation, i.e. one that is more likely to compare well at leading order in 

the perturbative expansion with an experimental measurement, arises from calculating the 

ratio of two processes with similar radiative corrections. One such observable is the ratio 

R T Q T = S /*<Ve- . /7 ( 4 J 0 ) 

^e+e —>/i /i+ • 

With respect to Eqn. (4.9), this ratio and the ratio with just quarks in the numerator {RHAD) 

are plotted in Figure 4.4. The correction (often referred to as the A'-factor) associated with 

un-resolved radiation, such as that of Figure 4.3, is present in both the numerator and the 

denominator of Eqn. (4.10) and cancels. We therefore expect the computed value to compare 

with the experimental one. The measured contribution to RJOT from the strongly interacting 

quarks (RHAD) is larger than this. At higher energies this is principally due to large 0(as) 

corrections. Over most of the area of this graph, however, it can be understood in terms of 

resonances associated with the production of quark-bound states (hadrons). 

It is interesting to note that once we are clearly above each of the threshold regions 

(q2 4my) this quantity, RTOT, reduces to the sum of the squared charges for all active 

fermions, 

RTOT^YIQ)- (4- 1 1 ) 

Since we are going to be interested in such ratios, we shall explicitly try to calculate 

only the final state contribution to the cross-section, and not include the complication of the 

incoming e+e~ state. We shall consider a quantity like the decay rate of a virtual photon, 

corresponding to the diagram of Figure 4.5. We shall sum over the 3 helicities of the virtual 
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Figure 4.4: The ratio, RTOT, is shown as a full line and the purely hadronic (just quarks) 
-RffAD-ratio is shown dotted. Away from thresholds, these curves take the value of the sum 
of the squared charges for the corresponding included fermions. Initial state radiation, being 
similar for the cross-sections in the numerator and denominator of these quantities, makes 
a comparison with experiment more meaningful. 

47 



f 

Figure 4.5: A Feynman diagram representing the decay of a virtual photon, 

photon as if it were an on shell massive vector boson, using 

£ e r V = -<r + ^ n - (4.12) 

As was the case with the gauge dependent part of the propagator, a vector current will cancel 

against the q^q" contribution to this sum. 

Correspondingly, the matrix element for this process is, 

M0 = uf(p3) { - i e Q f f u ) v / (p 4 )£ / i . (4,13) 

Which leads to the squared matrix element of the form, 

(4.14) 

Integrating over the two particle final state phase space (see Eqn. (C.10)) we obtain 

•Ft Dlips^2MlM0 = 2aQ)q2 [\ + —J-j ^ 1 - —J-6 ^ q 2 - 2 m ; J , (4.15) 

which, apart from the factor 2wa/3q4, has the same form as the total cross-section, Eqn. (4.9). 

Clearly, a computation for the ratio of e+e~ cross-sections RTOT (see Figure 4.4), based on 
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instead of Eqn. (4.9) will yield the same result. 

The generic ?i-particle decay width for an un-stable particle of a given invariant mass, 

M , is given by, 

As was the case for the cross-section, the factor (sym) is the symmetry factor for averaging 

over identical bosons in the final state. 

The quantity TQ would simply be the decay-width for the virtual photon if we divided 

by twice the invariant mass of this photon and a further factor 3 for each its independent 

polarisations. 

4.4 The self-energy of the photon 

At the same order in e (or equivalently a) as the initial state radiative corrections associated 

with Figure 4.3, there is another form of correction. This arises from the purely internal 

process of 7* —» / / —» 7* and can be viewed as a modification to the photon propagator. 

Guided by the non-perturbative expansion of Eqn. (2.25), we evaluate the leading con

tribution to the photon self-energy, 

which corresponds to the Feynman diagram in Figure 4.6. The various contributions to this 

equation require some explanation. 
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Figure 4.6: The photon self-energy or vacuum polarisation diagram. The virtual photon 
splits into a virtual fermion-antifermion pair which then annihilate to re-form the photon. 

Anticipating problems evaluating the integral in 4 space-time dimensions, we have ex

pressed Eqn. (4.17) as a (/-dimensional integral. By making a variable of the number of 

dimensions over which we perform a divergent (in 4 dimensions) integral, it is possible to 

parameterise the divergence as a function of the number of dimensions, dimensional trans

mutation [16]. This method is just one of a number of ways to regulate divergent integrals 

[17]. These methods are known as regularisation procedures and the one we adopt is that 

of Dimensional Regularisation (DR). It has proved popular because it can regulate both 

Infra-red (IR) and Ultra-violet (UV) divergences with a single parameter. It also preserves 

many of the symmetries of a physical Lagrangian, such as gauge invariance and translational 

invariance. 

Whilst we shall be altering the number of space-time dimensions, it is desirable to keep 

the Action dimensionless. Since each term in the Lagrangian is thus required to have four 

mass dimensions it becomes necessary to make the coupling e dimensionful. Rather than do 

so implicitly, we introduce an arbitrary parameter, /t, with the dimensions of mass. As we 

have indicated in Eqn. (4.17), the generalisation of e is thus e/:t£ where we define, 

e = 
i - d 

2 
(4.18) 
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The vanishingly small e term in the denominators is defined to be positive and is a 

technical device to keep track of which side of a branch cut the integrand is positioned. The 

momentum </, as in Section 4.2, is defined to be the momentum carried by the virtual photon. 

The/?-ee momentum, k, that flows around the loop takes all values for its components. When 

performing the trace we shall be using the convention that T r { l } = d. With this convention 

the numerator of the integrand in Eqn. (4.17) becomes, 

It is clear that separating each of these terms will lead to a sum of separately divergent 

integrals; going as k2 or log(fc2) in the UV limit (k2 —> oo). 

By evaluating the integral with respect to a well defined regularisation scheme, we are 

effectively able to quantify the form of each divergence in the integrals. In this way, we can 

cancel one divergence with respect to another and establish how divergent the total integral 

really is. Having done this, we can set about compensating for i t : Renormalisation. 

Using the method of Form Factor Reduction (See Appendix B.4 and [18]) we can re-write 

Eqn. (4.17) in the form, 

Here the scalar functions A0(q) and B0(q, mf,mj) are defined in Eqn. (D.2) and Appendix D.2.2 

respectively. 

The photon propagator function for the free theory in the Lorentz gauge (as used in 

d [ [ ( j f , + ku + fc,, {qu + K ) - g^(q + k) • k + m)g^ (4.19) 

d 
9t if 2{d - 1 \ q I 

X - 2)(/2 + 4mj) B0 ( 9 , m „ m , ) - 2(d - 2 ) / l 0 ( m , ) ) (4.20) 

9m9 V £(<7 ) 
9 

(4.21) 
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Eqn. (4.2)) is, 

^ U ( l ) = ~2 [-^r - 9 ^ ) - • (4-22) 

Now, since (<?M^/<?2 — Onv)qv — 0, it follows that the approximation of the connected (or full) 

propagator (cf. Eqn. (2.25)) that results from Eqn. (4.20) is, 

^ = Trim {»- - q-f) - ' ( 9 f - (4-23) 

As is clear from this expression, the choice £ = 1 is no longer the Feynman gauge. However, 

this is not a problem since the gauge dependent terms, ~ q^qu, cancel when contracted into 

a fermionic vector current. 

Substituting for Ao and Bo in Eqn. (4.20) we have, 

W = - E + e) i ^ f ) ( 2 m ? ( 1 - I . ) - - 0) • (4.24) 

J c is defined in Appendix D.2.2. 

The physical limit (d —> 4) of this expression diverges, since this is the e —» 0 limit and 

E(</2) ~ 1/e. This represents the total UV divergence of i£ M „ as it is defined in Eqn. (4.17). 

With respect to a series expansion in e, however, there are a number of finite terms, ~ e°. 

It is these finite factors, and notably those which depend on q2, that contain the physics of 

this expression. 

To what extent we expand the various factors as a series in e, is a matter of conven

tion. There are two popular choices: that of Minimal Subtraction (MS), where all contri

butions containing the e parameter are expanded; and the Modified Minimal Subtraction 

(MS) approach where the ubiquitous factor (47r)T(l + e) is not expanded. The divergence 
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of Eqn. (4.24) in these two schemes is thus, 

MS E / ^ 2 7 

(4.25) 

MS g

2 E 0 = £ / ^ 2 ( i + l o g ( 4 7 r ) - 7 £ ; + 0 ( e ) ) . 

In the MS term we have, for the purpose of comparison, expanded the factor T( l + e) (using 

Eqn. (A.7)). Because it is more efficient, we shall adopt MS when regularisation is inquired. 

We define, 

( 7

2 E V ) = S ( q 2 ) - 9

2 S 0 . (4.26) 

The finite correction to the self-energy Y,'(q2), is well behaved in e —> 0 limit. In this limit it 

takes the form, 

where, we define J = (T c — l) /e. We note that in the small q2 limit, the term in J actually 

converges and the above expression reduces to a constant. 

Writing Z = 1/(1 + S 0 ) , the ful l propagator, G^^q), can be written in the following 

manner, 

Recalling that whenever we use a. propagator it is always to join two vertices which each 

contribute a coupling, e. We see that this Z in both the numerator and the denominator is 

always accompanied by a factor e2. Accordingly, we can redefine (renormalise) the coupling 

by replacing it with e2

R = Ze2. The full propagator becomes, 
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with respect to an effective set of Feynman rules that are valid to 1-loop, and have a coupling 

of strength, e#. The value of e\\ is determined by our arbitrary choice for fi (of Eqn. (4.17)) 

and an experimental measurement at one q2. As was the case with e in the more naive 

first order identification of Section 3.5, we identify the q2 —> 0 limit (in fact we choose the 

space-like point; q2 = —ml) with the classical coulomb law, 

2 
= 4?ra. (4.30) 

1 + £ ^ ( - m 2 ) 

The fact that £'(r/ 2) reduces to a constant in the q2 —> 0 limit, implies that the photon 

remains massless even after renormalisation. 

An alternative, but equivalent interpretation of Eqn. (4.28), is to say that the cou

pling runs with q2. Conventionally, we define an = ejj/47r and use a normal, propagator 

(Eqn. (4.22)) with a varying coupling constant, 

a(q2) = 
1/2 

(4.31) 
1 + Efefa2) 

In the large \q2\ l imit, this expression is found to reduce to the following simple form, 

a{q2) = — jr-sr-. (4.32) 

I t is natural, in such a limit, to say that an = a(/.t2), that is to say /j, is the renormalisation 

scale. 

For all of the charged quarks in the SM, we have plotted this running coupling constant 

over the full range up to the LEP energy; Figure 4.7. We observe that a((Mz = 91 GeV) 2) ~ 

1/128. The evolution is most sensitive to the masses of the lightest quarks—reducing their 

masses from 5 to 1 MeV increases o ( M | ) to w 1 /127. The contribution from the extremely 
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Figure 4.7: The running coupling a(q) plotted as a function of y/\q2\ for both time-like 
(clotted) and space-like virtual photons (full). The two lines differ principally at the threshold 
regions for / / production. 
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Figure 4.8: The Electroweak modification to the self-energy of the photon. The ghost loops 
(there are two of these diagrams) contain an implicit minus sign because the ghosts are 
fermionic. 

heavy top quark is negligible; < .01% at Adz-

Further, using the rules developed in Chapter 10, we can evaluate the contribution 

to the self-energy, as represented in Figure 4.8—this corresponds to the extension of QED to 

the ful l Electroweak theory. The corresponding contribution can be written as a modification 

to the photon self energy, Eqns. (4.25 and 4.27), of the form, 

m ^ = - i ^ ™ + « ) i ^ 2 ) = - ^ ( ( i + ^ ) ^ | r ) -
(4.33) 

This contribution, like that of the top quark, is negligible in the range of energies accessible 

to LEP. In the space-like region (q2 = — M | ) it decreases the effective coupling by ~ 0.1%. 

This is also true of the time-like contribution at energies well above twice the mass of the 

W-boson. However, below the W ^ W - threshold, which occurs at q2 = 4 M | cos2 0w, there 

is a small tail to the resonance in E'H / tha.t actually increases the value of a(q2 — M | ) : the 

resonance is of the same type as the fermionic ones, but enters with a relative minus sign. 

The level of this effect is ~ 0.1%, and is insufficient to change the value a ( M | ) from « 1/128. 
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4 . 5 The optical theorem 

We return to the unitary property of the 5-matrix as it was expressed in Eqn. (2.6). In 

matrix element language, contracted between two identical states, |oi), it corresponds to the 

expression, 

(a\f*f\a) = £ \ ( P \ T \ a ) \ 2 = 2lm(a\f\a), (4.34) 
P 

where the sum is over all physical states, \/3). This relation is known as the optical theorem. 

We shall give an example of its validity related to the virtual photon of the previous sections 

and then, in the next section, use it to motivate some Z-particle phenomenology. 

If \a) is a virtual photon state decaying as in Figure 4.5, then this expression may be 

rewritten in terms of the decay-like quantity J-Q (of Eqn. (4.15)), 

F0{q2) = 2lm{-g^,l/{q)). (4.35) 

The imaginary contribution to Tillt/(q) is all from the finite contribution to the self-energy 

and accordingly is not divergent with respect to e. Applying —g'iu to the (q^q^/q2 — g^u) 

part of £ M „ can be seen to give a factor of (d — 1). This equals the number of independent 

helicities of the virtual photon. The consequence of this is that the imaginary part of the 

propagator's denominator is directly proportional to the decay width for the propagating 

particle. With reference to the definition of a particle's decay width (Eqn. (4.16)) we see 

that 

I m S ( 9

2 ) = ^TTOTAL- (4.36) 
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4 o 6 The Breit=Wigner propagator and the Z resonance 

At higher energies the process e+e~ —> / / receives a significant contribution from the in

termediate creation of a Z-boson. For the massive Z-boson, the argument of Section 4.4 is 

modified. The free Z-propagator (cf. that for the photon, Eqn. (4.22)) is, 

^ i z M = 7 ^ X s - ' ( l - ° T ^ m ) - (4-37) 

This function is apparently singular at the point q2 = M f . Neglecting the gauge dependent 

terms (for a recent discussion of this part see [19]), the same analysis as before leads to a 

ful l propagator with a denominator of the form, 

q2 - M2 + Zz(q2). (4.38) 

In this case i t is the mass that we renormalise. By absorbing all of the real component 

of E^(g 2), which includes the divergences, we create a running renormalised mass for the 

Z-boson, Mz(q2)- The renormalisation point for this mass is taken to be the experimental 

mass of the particle; Mzyexvt — Mz(Mzexpl). The experimental mass is determined from the 

position of the peak in the e+e~ —> / / cross-section, which is associated with the vanishing 

of the real contribution to this denominator—its resonance1. Here this denominator reduces 

to the pure imaginary component of S^(</2). 

In the previous section, we established that the imaginary component is nothing other 

than the decay width of the propagating Z. So we can formally re-write the above denomi-

1 Unfortunately, radiative corrections of the type in Figure 4.3 can shift the resonance peak to higher 
energies; we shall not address that complication here. 
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nator in the region of the resonance, as 

92 - M2

z<expt + iMZiexptTTOTAL. (4.39) 

Wi th this denominator we obtain the so called Breit-Wigner form for the Z propagator. 

We can calculate the decay rate for the Z boson. It is the sum of the partial decays of the 

Z to fermions lighter than Mz/2. The process is pictorially the same as that of Figure 4.5 

but with a Z-boson instead of a virtual photon. The matrix element is given by, 

M z ^ j j = u(p3) leY {v} - a/7M) v{p4)ell. (4.40) 

Taking the square and averaging over the three initial polarisations of the Z (with reference 

to Eqn. (4.12) and Section E . l ) , the mean squared amplitude has the form, 

( M W ) 2 W 7 = \e\v) + a))q2 ( l + ^ j P ) - 8e 2 «X- ( 4- 4 1) 

The axial contribution does not cancel against the {q^qu) part of the helicity sum, leading 

to a modification of the simple vector result for the virtual photon decay, Eqn. (4.14). To 

a good approximation, however, this additional term is negligible as it is suppressed by a 

factor of m^/q2 (which is ~ 3 x 1 0 - 3 for the largest of the included quarks—the b). Indeed, 

to a very good approximation we can neglect the fermion masses completely. In this limit 

the partial decay width at the Z-resonance (q2 = M Z e x p t ) is simply, (see Eqns. (4.16 and 

CIO)) 

I W = ^ " " T 1 " * ' (»? + «?) • (4-42) 
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Substituting the values contained in Table 4.1 yields the following statistics, 

Fermion Decay-width Branching 

type in GeV ratio in % 

quarks, q 1.69 69 
(4.43) 

neutrinos,;/ 0.50 21 

leptons, / 0.25 10 

all fermions 2.45 100 

It is interesting to note that 21% of the decays are to neutrinos, which are massless and 

without electric charge; they are extremely difficult to detect giving rise to an unseen decay. 

They only reveal themselves in their contribution to the propagator; namely, in a reduction of 

the resonant cross-section. The experimental measurements agree well with these numbers, 

except for the hadronic width (decay via, quarks) for which the observed width is 1.735 ± 

0.011 GeV [15]. We shall see that this can be explained in terms of a 0(as) correction to 

the hadronic decay width. 

To give some idea of the enhancement in the cross-section for e+e~ —» / / , we have plotted 

the cross-section in the region of the Z resonance using the theory reviewed in this chapter; 

Figure 4.9. It includes both 7 and Z-exchange for the coupling, a(Mz) — 1/128. We indicate 

the unseen neutrino contribution to the total cross-section. As was the case previously, this 

cross-section receives significant modifications when initial state photon radiation is included. 

I t has the effect of modifying the Z peak: moving it to higher energies, reducing its height 

and broadening it . The experimental cross-section reflects this. 

By running the LEP collider at a centre of mass energy equal to the rest-mass of the 

Z, a large number of events have been observed. By far the largest number of these events 

(~ 90%) have been via quark production. 
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Figure 4.9: The Z-resonance. Here we plot the total cross-section for e+e~ —> / / (again 
we exclude the electron). The three contributions are plotted: all channels (full); just 
7-exchange (dotted); just Z-exchange (dashed). The shaded region indicates the unseen 
neutrino component to the total cross-section. 

61 



4 o 7 Quarks and hadrons 

The form of the W-loop contribution to the self-energy of the photon is given in Eqn. (4.33). 

Although small, it is interesting from the point of view that it has the opposite sign to that of 

the fermionic contribution, Eqn. (4.25). This is characteristic of non-abelian (self-coupling) 

theories and leads to weakening contributions in the running of the effective coupling with 

increased energy. 

It follows in those theories where there are sufficient flavours of gauge boson, with re

spect to the number of active fermions, that the overall sign accompanying the self-energy 

contribution is positive. Such theories are said to be asymptotically free because with higher 

and higher energies their constituent fields behave increasingly as if they are free particles. 

QCD, with eight gluons and six quarks, is believed to be of this type. [20] 

In spatial terms, this leads to the notion of confinement—when left unexcited, the 

strongly interacting gluons and quarks, each possessing colour, freeze themselves into colour

less (colour singlet) combinations known as hadrons. It is only with respect to small distance 

scales (large probing momenta) that it becomes a good approximation to say that the quarks 

and gluons behave as almost free particles. In such extremes, the first few terms of a pertur-

bative expansion in the (effective) coupling can be used to calculate observable interaction 

probabilities. If we attempt to separate such particles, then they begin to interact/radiate 

more strongly—to the point that they can confine themselves again with new particles created 

from the resource of their enormous binding energy. The method of perturbative calculation, 

at fixed order in the appropriate coupling, gs, is insufficient to describe this hadronisation. 

For this reason, it is often said to be a no/i-perturbative process. 

Whilst the dynamics of such a process is not currently understood, two important features 
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of this fragmentation are assumed to hold true, (a) Momentum conservation is obeyed, and 

(b) fragmentation can be considered a late time phenomena.—it is a process governed by 

relatively long distances (small |<72|). These two notions lead to the observation that at 

sufficiently high energy, the coloured quarks and gluons (partons) dictate the subsequent 

hadronic momentum flow after hadronisation. In effect, for high enough energies the hard 

process that underlies the formation of hadrons is nothing other than a simple partonic 

event. 

The experimental observation is that of jets of hadrons often in well collimated cones. 

These jets are felt to be the footprint of their hard parton initiators. To some extent, 

softer calculated partons will dictate the distributions of momentum with respect to the 

predominant direction of the leading jets in an event. Complete fixed order calculations are 

currently limited by technical difficulty to just three partons in the final state at next-to-

leading order2. This can be compared with twenty or more final state hadrons in a typical 

event at LEP. By leading order, we mean that each parton separately leads to a jet in the 

final state and by next-to-leading order that one of the calculated partons does not form 

a jet—it is not resolved in the final state. The definition of what constitutes a jet in an 

individual event is conveniently made with respect to a jet algorithm. We shall elaborate on 

two of the more popular choices for these algorithms at LEP in the next chapters. 

The difficulty of many parton calculations has led to the construction of hadronisation 

models. These are models inspired by aspects of perturbative QCD calculations, but are 

sufficiently flexible so as to produce realistic numbers of final state particles that can be 

tuned to mimic experimental distributions. Such models provide a good working description 

of the products of hadronisation and have become a valuable tool in high energy physics. 

2Recently, progress has been made to the level of calculating five parton processes at next-to-leading 
order [21, 22, 23]. But as yet, these calculations are for all massless external states which excludes them 
from use in four-particle final state calculations at LEP. 
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[24] 

The notion that at the heart of high energy hadronic interactions there is a governing 

hard partonic event leads to a, factorisation in the method of calculation. The interaction of 

hadrons, in sufficiently energetic configurations, can be factored into probability distributions 

describing the partonic content of the participating hadrons and a series of hard underlying 

partonic interactions. The philosophy underlying this approach being that the hard partonic 

process occurs over a characteristically short time period and is insensitive to the softer 

physics of the hadron. 

With respect to the initial state, we speak of parton (probability) density functions, 

fa/h{%), which each correspond to the probability of finding a given parton, a, in a given 

hadron, h. The quantity x is related to the fraction of /i's momentum that is carried by a. 

For a recent set of such functions for the proton, as constrained by world data, we refer the 

reader to [25]. For the final state, the relationship is reversed and the probability densities 

are termed fragmentation functions3, Da~*h{x), where this represents the probability that a 

parton, a, will become a hadron, h. 

At LEP, incoming elementary particles, e+e~, interact overwhelmingly via the mediation 

of a Z-boson and generally there is little need to introduce parton densities. At other 

energies, the interaction of high energy bremsstrahlung photons that radiate off the incoming 

electrons can provide a significant contribution to the observed cross-section. In such cases, 

these photons can often be considered to be like neutral mesons and correspondingly they 

can be parameterised in terms of parton densities, fa/1(x) or the associated function F%. For 

a recent review we refer the reader to [26]. 

As for the hadronic final states, based on the fact that all hadronic final states must 

3 The notation £ ) / , / „ (x ) is also used. 
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initiate from qq production, we can just consider the total hadronic cross-section where we 

implicitly sum over all possible fragmentations, i.e. multiply by one! This is addressed in 

the next section. More challenging is the calculation of jet production rates. With next-to-

leading-order calculations, where we begin to calculate the substructure of jets, the energy 

distributions amongst such jets can also be calculated. [27, 28] 

4 o 8 The to ta l hadromic wid th at next=to=leading=order 

The leading order hadronic decay width has been calculated above (see 4.43) and represents 

~ 70% of the total decay rate. In this section, we calculate the leading, O{o.s = g2/iTr), 

correction to this, with respect to the radiation of a single gluon. In this calculation, justified 

by our previous results, we treat the final state particles as massless. In such a limit there 

is no difference in the form, of the decay rate of a virtual photon and a, Z-boson, so we shall 

concern ourselves with the virtual photon decay only. 

The Feynman diagrams for the amplitudes we require are given in Figure 4.10. The 

first four diagrams are for the 2-particle final states and have potential interferences. The 

remaining two diagrams are for the 3-particle final state, involving the real emission of a 

final state gluon. 

We first address the two diagrams with fermion self-energy loops, Figures 4.10c and 4.10d. 

These figures contain factors of the form, 

~ Tl>(p^\p/+ky> + z e l t t = { 2 ' d ) W p * ) + ««-(p«)i» f l. ( 4 - 4 4 ) 

where B0 and B\ are lorentz invariant scalar functions of p2

q (see Eqns. (B.24, D.3 and E.6)). 
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Figure 4.10: The Feynman diagrams required for the calculation of the 0(as) hadronic decay 
width. 
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Since the quarks are taken to be massless, these two amplitudes identically vanish. 

It is the interference between the two diagrams 4.10a and 4.10b, and the squared sum of 

4.10e and 4.lOf that contribute to the 0(as) correction to the inclusive decay width. Except 

for Figure 4.10a, each of these diagrams is divergent over some region of its integrated phase-

space. Unlike the divergences of Sections 4.4 and 4.6, these divergences are of the IR variety. 

They correspond to the regions of phase-space where the invariant mass of the quark(or 

antiquark) and gluon combined vanishes. As a consequence of the Bloch-Nordsiek [50] and 

Kinoshita-Lee-Nauenberg [29] theorems, the divergences will be seen to be an artifact of our 

method of calculation and in fact there is no overall divergence at each order in the coupling. 

These theorems basically say that, if a calculated observable is insensitive to the IR limits, 

then its complete calculation at each order in perturbation theory must be finite. 

Because of the divergences, we shall calculate in (4 — 2e)-dimensions, The leading order 

amplitude is, (cf. Eqn. (4.13)) 

M l { q ) = -i(enc)Qq U i { p q ) ^ V j ( p q ) Sij, (4.45) 

where we have explicitly written out the colour indices for the quarks, (ij). In (4 — 2e) 

dimensions, Eqns. (C.6, E.6 and E.7), the squared matrix element integrated over the final 

state phase-space is 

*S<»') = *QWN {-f-) ( 1 l ' 2 e ) (4.46) 

J~o(q2) is the decay-like quantity we introduced previously, but calculated here for massless 

quarks in (4 — 2e) dimensions. It can be compared with Eqn. (4.15) in the mj —> 0 limit. 
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The correction to this vertex, Figure 4.10b, in the Feynman gauge (£ = 1) is given by, 

M\{q) = ~ M Q q { g . f ) * j — H 7 ( p , ) 7 " q i q 
{k + P q + p^)2 + ier~< k2 + is 

(4.47) 

I t corresponds to the emission and re-absorption of a virtual gluon across the photon vertex, 

i.e. between the quark and anti-quark. This amplitude can be reduced (see Section B.4 and 

Eqn. (F.13)) to the following form, 

Ml(q) = +i{gs^y^L-l ( ( 3 + 2e)B 0(p, + Pq) + 2q2C0(pq,l>q)) M'0(q) (4.48) 
2N 

For a complex number, C, we note that |1 + ig2C\2 = 1 — 2g2\mC + 0(g*). We write 

( — l ) e = exp (±z7re) and contract over the polarisations of the virtual photon with Eqn. (4.12) 

to give the 0(as = </ 2/47r) integrated amplitude squared, 

^ { q ) = V - { — ) r ( i - 2 £) c o s ( 7 r e ) < + - \ ) ^ o ( q ) e(l - 2e) e2 

+0(a2

s), (4.49) 

where the suffix 2 indicates that this is the 0(g2) improved J7^. The term of 0(as) is the 

interference of Figures 4.10a and 4.10b. 

Next, we turn our attention to the pair of three final state particle amplitudes of Fig

ures 4.10e and 4.lOf (which do not interfere with the previous two particle ones). The matrix 

elements for the two processes sum to give, 

Me

3(q) = *(e/OQ9 {(JsHc) U i { P q ) Pq+t _4 
'{Pq+P9)+lZt9 rg(Pq+P3) + ie^ 

ViWT*. (4.50) 
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The helicity sum for massless gauge bosons in the lorentz gauge is, 

= ~9 (4.51) 

Using this and expressing the result in terms of the dimensionless invariants, 

{Pr +Ps)2 _ %Pr • Ps 
q2 q2 (4.52) 

the mat r ix element squared and summed over the helicities of the particles is, 

N2 -
2 

1 
( 2 - c ) ( l - c ) + ( i - c ) hi + yja 

Vqg Vqg. 
(4.53) 

We have neglected some 0 (e ) terms f rom this expression. I t is safe to do this because they do 

not accompany any invariants in the denominator, and consequently they cannot contribute 

f in i te terms in the l i m i t , e —• 0. 

We perform the phase space integrals to obtain the following expression for the integrated 

amplitude squared (for reference this is via: Eqns. (C.15 and 4.46), a change of variables 

x = yqg w i t h z = y-qg/(l — yqg) and repeated use of Eqn. (A. 10)), 

The divergences, as can be seen f r o m Eqn. (4.53), correspond to the l imits that yqg and yqg 

vanish. 

Using the expansion for the function T ( l + z) given in Eqn. (A.7) , we f ind that 

as N 2 -
2TT 2 N 

1 / 4 7 r / i 2 V T 2 ( l - e) [ 1 1 1 

r( l - 3c) I 1 - 3c \ e (2 - 3c 
rQ{q2) (4.54) 

r l - 2 c ) K C ( 2 ) c 2 + 0 ( c 3 ) } exp r i + e r ( i - 3c) 
(4.55) 
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and since £(2) = ^ we have, 

i r ( i + e) 
T ( l - 3 e ) r ( l - 2 e ) 

cos(Tre) + 0 ( e 3 ) . (4.56) 

Thus we can add T\ and Q\ to obtain the total , G(as), hadronic decay rate, 

W2(q2) = F2(q2) + G'2(q2) 

= 1 + V 
1 — e / 1 1 - e 3 + 2e 2 

' l - 3 e \ e 2 e ( 2 - 3 e ) / \ e ( l - 2e) e2 
•W), (4-57) 

where, 

g . j V 2 - ! / ^ 4 7 r / t

2 V r ( l + e ) r 2 ( l - e ) 
= r-r;— I — — I TTTZ — cos(7re). (4.58) 

2TT 2N \ q2 J r ( l - 2e) 

Expanding the contents of the square brackets of Eqn. (4.57) as a series in e, we find that 

all the negative powers in e cancel. Indeed, 

H2(q2) = ( l + / C « [5 + 0 ( e ) ] ) (4.59) 

Since no negative powers remain in this expression, we can safely take the (e —> 0) l i m i t and 

f ind (for N = 3 of QCD) 

W ) = 3a 3 i V 2 - l « . 
•F0(<72) 4TT 2 N + 7T 

(4.60) 

I n summary this correction represents an enhancement to the hadronic width of the 

Z-boson. Reconciling the leading order calculation above for the decay rate and the experi

mentally observed rate w i th this expression gives a value for a s ( M § ) ~ 0.1. 
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4»9 I R finiteness and factorisation 

As required, the 0(as) correction to the total hadronic decay rate is f ini te , whereas the 

individual terms in its calculation are not. In physical terms, this really says that a sim

plistic picture of individual asymptotically free particles as described by the external legs 

of individual feynman diagrams is not a good approximation in some parts of phase-space. 

By summing over these regions and combining the result wi th other terms of the same per-

turbative order, we cancel the ambiguity of what is a v i r tua l , force-mediating, vector boson 

and what can be considered a free gauge field. We sum over oppositely divergent terms to 

obtain a finite result: the real gluon emission is divergently positive and the v i r tua l gluon 

negatively so. 

At tempt ing to resolve particles in these regions leads to difficulties: experiments find 

large backgrounds when they look for fixed numbers of particles in confined regions; and 

calculations run up against divergences. W i t h regard to the latter, they are unable to 

include the natural perturbative antidote—the appropriate v i r tual correction—as this by 

definition does not contain the required particle in the final state. 

As indicated above, real gluon divergences correspond to the regions of phase-space where 

the invariant mass of the gluon wi th respect to the quark (or anti-quark) vanishes. W i t h 

regard to the quark this means, 

y q g = o = H - U - c o s 0 „ ) - » 0, (4.61 
i q 

where Er is the energy of parton r and 6qg is their angular separation. That is to say, the 

gluon is soft, (Eg —-> 0), or the gluon is collinear wi th the quark—we define the soft quark 

l im i t to be part of this region because the qg composite has the quantum numbers of a quark. 

71 



In terms of the experimentally observed hadronisation, probing these regions is equivalent to 

resolving the sub-structure of jets and since non-perturbative effects actually dominate here 

we might expect a fixed order description to break-down. Extensions of perturbation theory 

into these regions are attempted via Resummation techniques and the reader is directed 

to the literature for more information [30]. In QED, an analogous break-down occurs that 

corresponds to the probability for mult iple photon emission to increase in collinear and soft 

regions of phase space. The fini te resolution of experiment justifies the need to sum over 

these problematic regions. [31] 

Despite these problems, i t is desirable to test theory more stringently than by calculating 

total event rates. A solution is to define what are called IR-finile observables. These are 

insensitive to the softer particles in an event. The number of jets in the large resolution l imi t 

is one such observable. Here the soft and collinear particles cannot make jets by themselves: 

they are not resolved and i t is therefore possible to include different numbers of final state 

particles i n a single calculation which allows for the type of I R cancellation discussed in the 

previous section. 

Unresolved emission of partons, as characterised by the invariant mass of the unresolved 

cluster, is necessarily a late-time effect. This causes problems wi th the factorisation of 

calculations involving non-perturbative distr ibution functions. The assumptions used to 

factorise the process were based on the distinct time-scales for the two factors: prompt for 

the hard part and delayed for the soft part. W i t h unresolved emission, the hard partonic 

process extends its intrinsic t ime scale into that of the soft physics of the hadron. The 

remedy to this overlap is to renormalise the non-perturbative function by absorbing the IR 

divergence into i t . This is possible because, in the unresolved l imi ts , the partonic sub-process 

factors into a hard but finite piece and a soft but divergent piece. 
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4»10 Summary 

I t has been the purpose of this chapter to review some simple phenomenology of the Standard 

Model wi th respect to the calculation of observables at LEP. The bias has been deliberately 

weighted in favour of introducing the approximations assumed throughout this thesis. These 

can be summarised in the following way: in general i t is a good approximation to treat 

quarks as massless; the overwhelming phenomenology at LEP can be derived f rom Z-decay, 

or equivalently, after a modification of couplings, f rom the decay of an off-shell photon; 

and that perturbative divergences can be canceled in a meaningful manner to yield stable 

phenomenological predictions. 
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Measuring the photon fragmentation 

func t ion at LEP 

Using an algorithm that treats photons and hadrons democratically, we discuss how the 

quark to photon fragmentation funct ion, / ) , _ ^ 7 , might be measured in 'photon' + jet events 

at LEP. Simple analytic results are given at lowest order. The possibility of determining the 

gluon to photon fragmentation funct ion, D g ^ , in 'photon' -\- 2 jet events is also discussed, 

however, the prospects for doing so seem bleak. 
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5.1 Introduct ion 

High energy hadronic events in e+e~ annihilation are observed to contain sprays or clusters 

of approximately co-moving hadrons. W i t h the aid of a suitable jet algorithm, i t is possible 

to resolve the rather messy hadronic final state into a cleaner skeleton of vectors or jets along 

which the major i ty of the observed energy flows. Events are then defined by the number of 

jets they contain. This jet structure is a result of the high energy perturbative nature of QCD 

and one can in principle calculate 1 ,2 ,3 . . . n jet rates using perturbative QCD. Although 

the quarks and gluons are not directly observed, the jet energy and jet axis is well modeled 

by a shower of partons. I t is thus possible to match theoretical parton level calculations to 

experimental hadronic jet rates by subjecting both parton and hadron momenta to the same 

impart ia l jet algorithm, generally characterised by some invariant cut ycut. 

In a small fract ion of events one may observe an energetic photon in addition to the jets 

of hadrons [32, 33]. This photon may have originated early in the development of the parton 

shower, thus reflecting the electric charge of the parent quark. These 'direct ' or ' internal ' 

photons are generally well separated f rom the hadronic debris formed by the quark shower. 

Alternatively, the photon may have been ra,diated somewhat later during the hadronisation 

process which includes both photon emission collinear wi th the quark and genuine non-

perturbative effects. Physical quantities are necessarily f ini te and the collinear divergence 

may be factorised into the photon fragmentation function [34]. Such 'non-prompt' photons 

are usually not isolated f rom the other hadrons in the event and generally suffer f r o m large 

experimental backgrounds. 

Former studies of photon + jet events at LEP have focused on almost isolated photons 

[35], (thus reducing the fragmentation contribution) w i th a view to extracting the electroweak 

couplings of the quarks [36]. To identify the photon, a cone-type algorithm has been applied 
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where photon candidates are required to have few hadronic tracks wi thin a cone centred on 

the electromagnetic cluster. The photon is then removed f rom the event and a jet algorithm 

applied to the remaining hadrons. Theoretical studies [37, 38, 39] for the photon + 1,2 and 

3 jet rates agree reasonably well at large y c u t w i th experimental results [40, 41 , 42, 43] even 

though the corrections are rather large for the 1 jet rate. As expected, the measured quark 

couplings are in agreement wi th the standard model predictions [40]. 

I t is the purpose of this chapter to advocate an alternative approach to the analysis 

of such f ina l states where the contribution f r o m the photon fragmentation funct ion is not 

suppressed. Provided the experimental difficulties in identifying non-isolated photons can be 

overcome, one can then in principle measure the photon fragmentation funct ion. LEP offers 

a very clean environment for such a measurement since there are relatively few hadrons in 

the event. The necessary formulae for measuring the photon fragmentation function at LEP 

using both the inclusive photon data and the cone-type photon definition were presented in 

[39]. However, since the fragmentation function depends on the fraction of the parent parton 

energy carried by the photon z, i t is potentially more useful to formulate the cross section in 

terms of z rather than the energy of the photon, Ey. A photon wi th a given energy can have 

a range of values of z depending on whether or not i t is associated w i t h a group of hadrons. 

I t therefore makes sense to keep track of the amount of hadronic energy associated w i t h the 

photon. Although this can be done wi th in the context of the cone-type algorithm, in order to 

make comparisons wi th purely hadronic data more straightforward we introduce a somewhat 

different photon definition than that discussed in [39], so that photous and hadrons are 

grouped together democratically into potentially mixed electromagnetic/hadronic clusters. 

The precise algorithm for doing this can be any of those commonly used in the analysis of 

hadronic data such as the JADE/EO [44] or Durham [45] schemes. The fract ion z is then 

the fract ion of electromagnetic energy in the cluster. 
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A n additional advantage of analysing the photon data in terms of the number of clusters 

or jets in the event is that i t enhances the non-perturbative part of the fragmentation funct ion 

that we wish to measure. In the leading log approximation, the fragmentation funct ion grows 

as ~ l o g ^ f . / ' ^ Q C D ) c m e pr imari ly to a kinematic evolution in transverse photon momentum 

w i t h respect to its charged (quark) source. W i t h i n this approximation, the lower l imi t of 

integration is set as the appropriate mass scale for the quarks, KQCD- As discussed in 

[32], this leading log behaviour is a perturbative (i.e. calculable) one and breaks down in 

the l i m i t that the photon is emitted collinear to the quark (as \pr\ —* ^QCD)- The non-

perturbative (i.e. incalculable) hadronic component (characterised above by A.QCD) resides 

in this collinear region corresponding to the delayed emission of the photon f r o m wi th in a 

boosted jet of hadrons. The jet or cone-type algorithm limits the allowed px of the photon 

thus exposing the non-perturbative contribution. In particular, photon + 1 jet events w i l l 

allow the measurement of the quark to photon fragmentation function Dq^(z, ^p) since i t is 

present at the first non-tr ivial order. This would then serve as an input to other calculations 

in much the same way as measurements of the proton structure function are measured in 

deep inelastic scattering and used in pp collisions. Particularly interesting is the application 

to single [46] and double prompt photon [47] production at the Fermilab T E V A T R O N where 

theoretical calculations appear to disagree wi th the data at small transverse momentum 

[48, 49]. 

The structure of this chapter is as follows. In Section 5.2 we review the way in which the 

photon fragmentation function enters in the n jet + photon cross section. We then propose 

a suitable photon definition (Section 5.3) and show in Section 5.4, wi th simple analytic 

calculations, how the quark to photon fragmentation function might be measured in photon 

+ one jet events at LEP. The possibilities for extracting the gluon to photon fragmentation 

funct ion f rom photon + two jet events are briefly discussed in Section 5.5. Our main results 

are summarised in Section 5.6 while the relevant analytic formulae for the photon - f one jet 
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cross section are collected in an appendix at the end of this chapter. 

5o2 The n jet - j - photon cross section 

Let us consider the e + e n jet + photon cross section, fu l l y differentia] in all quantities, 

which at lowest order is given by, 

daL0 (n jets + "7") = 0 dar0(n p + 7 ) . (5.1) 

The n parton + photon cross section da0(n p + " f ) is evaluated in the tree approximation and 

0 represents the experimental jet and photon definition cuts. In this way the theoretical 

cross section can be matched onto the specific experimental details. A t this order, however, 

each parton is identified as a jet and the photon as a photon. 

A t next-to-leading order 1 , the situation is rather more complicated, since in addition to 

QCD corrections to n parton processes including a photon, we admit the possibility of a 

parton fragmenting into a photon, 

The first term in this equation represents the one loop vi r tual corrections to the n parton 

+ photon process while the second describes the tree level emission of an additional parton. 

l B y leading order we mean that each parton (which includes the photon) is separately resolved. For 
next-to-leading-order up to two partons maybe un-resolved and appear as a single hadronic jet. 

(n p + 7 ) + / da0((n + 1) p + 7 ) NLO do"^in jets-(- "7") = © da 1 

dcrMn + 1) p) 
+ £ dEadzdEy5(Ey — zEa)Da^Jz) 

dE 
a a 

(5.2) 
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In both cases, a 'prompt ' photon is produced in the hard process. The th i rd contribution is 

f r o m the lowest order n + 1 parton process where one of the partons fragments into a photon 

and transfers a fract ion z of the parent momentum to the photon. Each type of parton, a, 

contributes according to the parton to photon fragmentation functions Da^ and the sum 

runs over all partons. 

Although the physical cross section is f ini te , the individual contributions are divergent. 

The v i r tua l graphs contain singularities due to soft gluons or collinear partons which cancel 

against similar poles f rom the bremsstrahlung process once the phase space of the additional 

parton is integrated out. The correct treatment of infra-red divergences is well known [50, 29] 

and has been discussed widely in the literature. In order to make the cancellation of poles 

explicit , we use the approach of [28] to remove the divergent part of the bremsstrahlung 

phase space and include i t wi th the vir tual graphs. Nevertheless, after the purely QCD 

infra-red poles have canceled, there remain quark-photon singularities as the quark and 

photon become collinear. These mass singularities are factorisable and can be absorbed by 

a redefinition of the fragmentation function so that, 

d<rNLO{n jets + « 7 " ) = © | da*{n p + 7 ) + J d&*({n + 1) p + 7 ) 

+ £ d ° ° i [ n J l ) P)dEadzdE,6(E, - z E a ) V a ^ ( z ) j{5.3) 

where each term is now finite2. The resolved parton cross sections, daR, are given by da where 

the poles are regulated by Sij = {pi + Pj)2 > s m i n . In other words, the partons are "resolved". 

A more precise definit ion of the resolved parton cross sections is given in refs. [28, 37]. Here, 

we w i l l first focus on the next-to-leading order effective quark fragmentation funct ion T>q^ 

for a quark of electric charge eq which in 4 — 2e dimensions is related to the lowest order 

2 T h e strong coupling constant is renorrnalised to remove the ultra-violet poles 
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(bare) fragmentation funct ion by, 

V „ ( . ) = D „ W - i g ) ' ^ W l - P „ ( , ) , (5.4) 

where, 

1 + (1 - z f - ez 
q—>7 

(z) = -LI > . (5.5) 

The second term in Eqn. (5.4), is the contribution where the photon is collinear w i t h quark 

a such that s a i < sm\n [28]. I t is conventional to factorise the explicit 1/e divergence into the 

bare fragmentation function D(z) at the factorisation scale ftp such that in the MS scheme 

(see Section 4.4, Eqn. (A.7) and [34, 39]), 

ZW*) = D , ^ , , F ) + -(_$-) T — ) (—4—!-) , (5.6) 

so that, 

1 W ) = *W*.M + f f i ± i i ^ ! l log f ^ i ^ ) + ,) . (5.7) 

I t is worth noting that T> should be independent of the unphysical factorisation scale, since 

the factorisation scale dependence only arises through a shuffling of terms between the frag

mentation funct ion D and the perturbative contribution to V. This implies that at this 

order D(z,/.ip) satisfies an evolution equation determined by the perturbative content of Z>, 

dDq^,(z,nF) = (ag\ f l + ( l - z) 
' " - v ' ~ ' 1 (5.8) 

A measurement at a given factorisation scale can thus be related to a measurement at a 

different scale. So far, we have ignored perturbative QCD effects which alter the z depen

dence of the fragmentation funct ion, however, as higher and higher orders are included, more 

and more perturbative terms wi l l appear in the effective fragmentation funct ion T>(z), thus 
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modify ing the evolution equation for D(Z,HF). 

We see that in the MS scheme, an artificial pole as z —> 1 is introduced in the perturbative 

correction to T>(z). This is entirely due to the way soft and collinear poles are regulated 

in dimensional regularisation. For practical purposes, this means that D(Z,[1F) in the MS 

scheme must contain a similar logarithmic divergence so that T>(z) is well behaved as z —> 1. 

We note that different factorisation schemes such as the DIS^ scheme of ref. [51] can remove 

this singularity. 

We also note that the effective quark fragmentation funct ion, "D, depends on the unphys-

ical parton resolution parameter s I T l i n. For physical cross sections this cannot be the case, 

and indeed, as we w i l l show in the next section for an explicit example, when the fragmenta

tion contribution is combined wi th the resolved (n - f 1) parton - f photon cross section, any 

dependence on s ^ n cancels provided sir^n is chosen to be small and terms of 0(s1Tlin) can be 

neglected. 

A t this order, the effective gluon fragmentation function receives no correction, since 

there is no gluon-photon collinear singularity, 

V g ^ ( z ) = Dg^(z). (5.9) 

However, at higher orders, the gluon fragmentation function becomes coupled w i t h the quark 

fragmentation funct ion (through g —> q —> 7 splittings) and has a similar dependence on the 

factorisation scale. I t is thus conventional to use the factorised fo rm, Dg->1(z, (ip) even at 

lowest order. The first process that this fragmentation function enters is "photon" + 2 jet 

production. As wi th the quark fragmentation funct ion, this can in principle be measured at 

LEP. 
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5»3 Photon definition 

In previous analyses of photon + jet events at LEP, the observed "photon" has been almost 

completely isolated f r o m the hadronic debris. This attempts to eliminate the fragmentation 

contribution by requiring that , 

z > l - S , ( 5 . 10 ) 

w i t h 8 very close to zero 3. What we propose here is experimentally more di f f icul t , since 

the backgrounds for non-isolated photons are much greater. However, a measurement of the 

fragmentation functions may be possible. The essence of the algori thm is to treat hadrons 

and "photon" candidates democrats call}' and to cluster them according to a standard jet 

algorithm. After clustering, one of the clusters w i l l contain the electromagnetic shower and 

can be deemed a "photon" if the fraction of electromagnetic energy in the cluster is larger 

than some experimentally determined value z c , l t , 

EEM . , , , , , 
> z c M . ( 5 .11 ) 

EEM + EM AD 

Equivalently, one can require that the hadronic energy in the cluster is smaller than some 

fract ion e c u t of the electromagnetic energy, 

EHAD ^ , 1 ~ zcut /-= i o \ 
< eCut = • (5-12) 

J^EM zcut 

A n additional advantage of such an algorithm is that comparisons between jet and pho-

ton-f jet rates are rather more straightforward. 

There are several distinct jet algorithms in use at LEP and here we wi l l focus on the 

36 cannot be zero either experimentally, due to finite detector resolution, or theoretically since a com
pletely isolated photon is not infra-red safe. 
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JADE/EO [44] (which we shall generally refer to as EO) and Durham [45] algorithms. The 

essence of these algorithms is that a test variable d^ is constructed for all possible momenta 

Pi and pj in the event. The pair w i th the smallest dij are then combined to fo rm a pseudo-

particle w i th four momentum + p^ provided dij is less than the jet resolution parameter 

ymt. This process is then repeated unt i l no further clusterings occur and the number of jets 

in the event and their momenta are then given by the remaining pseudo-particles. In the EO 

scheme at a centre-of-mass energy y/s, 

d i j = Vij = — = , (o.lS) 
s s 

while in the Durham or D scheme, 

: = min Vij- ( 5 - 1 4 ) 

This latter scheme is preferred on the grounds that the soft gluon contributions exponentiate 

[52]. 

5o4 The pho ton + 1 j e t rate 

There is no e + e" —• 7 + 1 parton process, so the lowest order cross section defined by 

Eqn. (5.1) and the first te rm in Eqn. (5.2) both vanish. As a consequence, the first non t r iv ia l 

contribution comes f rom e+e~ —> qqj and e+e~ —> qq where one of the quarks fragments 

into a photon. In this way, the fragmentation function is effectively present at leading order 

rather than at next-to-leading order. This makes the photon + 1 jet rate especially sensitive 

to Dq-,y. 

83 



Rather than the f u l l e+e~ cross-section, we shall consider the ratio of single photon 

production in association w i t h hadrons and the total hadronic rate. The contribution f rom 

the e +e~ —> qqf process to the photon + 1 jet rate can be obtained by integrating the 

differential cross section (for massless quarks of charge e g ) , 

1 d2a { ote2

a\ x2 + x'2 

' 0 4 ( 5 .15 ) 
do dxdx' \2TT ) ( \ - x ) ( \ - x')' 

where the quark energy-fractions are given by x = 2Eq/y/s, x' = 2Eq/\/s and x^ = 2 — x — x'. 

In terms of these energy fractions, the scaled pair invariant masses are given by, 

y r i = \ - x \ T / ? 7 = I - X , = 1 - . T 7 . ( 5 .16 ) 

Up to an overall coupling and the replacement 7 <-> g, Eqn. ( 5 . 1 5 ) is just Eqn. ( 4 . 5 3 ) in the 

e —+ 0 l i m i t . Note that all yij > sm\n/s = y„^n so that the singularities in the matr ix elements 

along x = 1 and x' = 1 are regulated by the parton resolution cut ym\n- Therefore, the three-

particle contribution to the one jet rate wi l l depend on ymin. However, when combined wi th 

the fragmentation contribution all y m j n dependence must vanish in the small ym\n l i m i t . 

I f we work in the EO jet algorithm w i t h a jet resolution parameter j y c u l < 1 /3 then, for a 

photon cluster electromagnetic energy fraction greater than z c u t , the 1 jet region is defined 

by the following three regions of phase space, 

1 : yqq < 2/97*2/97; and yqq < ycut 

£ • J/g-y < 2/9-7? 2/991 2/97 ^ 2/cuti and ( 5 .17 ) 

^ : 2/?7 ^ 2/99 5 2/971 2/?7 < 2/cuti a n d > ^ C U t -

The corresponding Dalitz plot is shown in Figure 5.1 for ycut = 0.1 and zcilt = 0.7. In 

region 1, the quark and antiquark combine to fo rm the jet , while in regions 2 ( 3 ) , the photon 
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Figure 5 . 1 : Dali tz plot for the <7<7 + 7 final state in terms of the quark and antiquark energy 
fractions x and x'. The regions 1, 2 and 3 show the photon + one jet phase space for 
2/cut = 0 .1 and zcut = 0 . 7 in the EO scheme. The dotted lines show regions 2 and 3 for 
2cut = 0 . 9 . Region 1 where the quark-antiquark combine to fo rm a jet is separated f r o m the 
regions where the quark (antiquark) combines wi th the photon by a dashed line. 

coalesces wi th a quark (antiquark) to form a mixed electromagnetic/hadronic cluster. 

I n the Durham scheme, again wi th ycut < 1 / 3 , the 1 jet region is defined by, 

1 Vqq < !/cut m m 
x x 

1 2/<n < Z/cut an m m 
x 

x 
Vq-y < 2/cut. mm 

E^ + Eq 

En 

> z, cut-

( 5 . 1 8 ) 
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Figure 5.2: Dalitz plot for the qq + ~f final state in terms of the quark and antiquark energy 
fractions x and x'. The regions 1, 2 and 3 show the photon + one jet phase space for 
?/cut = 0.1 and z c u t = 0.7 in the Durham scheme. The dotted lines show regions 2 and 3 for 
Zcut = 0.9. Region 1 where the quark-antiquark combine to fo rm a jet is separated f r o m the 
regions where the quark (antiquark) combines wi th the photon by a dashed line. 

The rather more complicated Dalitz plot is shown in Figure 5.2 for y c u t = 0.1 and zcut = 0.7. 

As before, in region 1, the quark and antiquark combine to fo rm the je t , while in regions 2 

(3), the photon coalesces wi th a quark (antiquark) to fo rm a mixed electroma,gnetic/hadronic 

cluster. 

In the region of phase space where the quark and photon combine (regions 2 and 3), the 
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fraction of electromagnetic energy in the cluster, z, is related to x and x' by, 

2 - x - x' 
2-x' ' 

(5.19) 

in region 2 and by Eqn. (5.19) with x <-> x' in region 3. By integrating over either x or x' 

it is straightforward to obtain the 1 jet + photon cross section as a function of z in scheme 

S = £70, A 4 

1 das{\ jet + V ) 
tiz 

2 D , ^ 7 ( z , / t F ) + 
7T 

+ 1 d a s ( l jet + V ) 
<T0 f/z 

+ i2ftf(l - z) + £>(5min). (5.20) 

Here the dependence on the scale /.if has been made explicit, while the quantity 7?,^ represents 

the contribution to the cross section where quark and antiquark combine, thus leaving the 

photon completely isolated. In this case, the photon cluster has z = 1. An explicit form 

for in the two schemes is given in the Appendix. The scale independent contribution is 

given by, 

1 dab(l j e t + V ) _ fae^ 
(7 0 dz \ 7T 

0 + ( i - O 
log (ysz(\ - z)) + z 

l + ( l - z ) 2 / zys y s ( y s - 2 ) ( l - 2 z ) 2 h ( l + ys) - y* 

1 - z 2 z ( l - z ) 2

 z 

4 ( l - z ) / - 4 1 o g K 1 + ^ - ^ ' (5.21) 

where y £ 0 and y D are determined by the lower boundaries of either the x or x' integration, 

.EO 

D 

mm j /cut , 
1 - z 

m y 
(5.22) 

1 - 2 l - 2 / o 
i f z > z 0 = 

1 + 2 1 + y 0 ' 

4 W e have made the natural assumption, D ^ _ » 7 ( z , / / ^ ) = Dq r ( z , f i f ) . 
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1 - z 
otherwise ( 5 . 2 3 ) 

w i t h , 

Vo = 
\J2/cut + 8yCut - y, 

4 

'cut 
( 5 . 2 4 ) 

As expected, the logarithmic dependence on s^n has canceled and the l im i t s 0 can be 

safely taken. We note that as z —+ 1, y —> and therefore, the perturbative contribution 

grows as log ( ( l — z)2). A similar behaviour is observed w i t h other photon definitions such 

as the cone-type algorithm. 

In order to turn this analytic form into a physical cross section, i t is necessary to know the 

process independent fragmentation funct ion, D , _ > 7 ( 2 , /ip) in the MS scheme. The general 

f o r m of the fra.gmenta.tion funct ion which satisfies the evolution equation is, 

V Ho/ 

Here the scale fi0 and the associated function B(z,fj,0) are nothing more than the constants 

of integration. However, a more physical interpretation of fi0 could be the scale below which 

the physics is n<m-perturbative. As discussed above and in Section 5 . 2 , in the MS scheme, 

the perturbative contribution to V contains a logarithmic singularity as z —> 1. This should 

be balanced by a similar behaviour in D. 

To give some idea of the possible size of the 1 jet + photon cross section, we consider 

two over simplified choices for the fragmentation funct ion, 

Dq^(z,nF) = A\z + B(z,n0). ' 2 ( 5 . 2 5 ) 

D'q^(z,iiF) = 0 , ( 5 . 2 6 ) 

aei\ 1 + (1 - z f II log 
Hl(l-z)* 2TT 

( 5 . 2 7 ) 
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Figure 5.3: The differential cross section in the E0 scheme, \/a0d(r/dz, for a single quark of 
unit charge for -Dg_>7 = 0 w i t h /.ip = 10 and 100 GeV and ycut — 0.1. The scale independent 
rate for the Dn fragmentation function wi th /.to = 10 GeV is shown dotted, while the dashed 
lines show the DHI rate for fij? = 10 and 100 GeV. 

The first of these fragmentation functions is clearly unphysical and exhibits only the pertur-

bative contribution to the cross section. The result therefore depends strongly on fj,p a n ( l 

becomes negatively divergent as z —> 1. This is shown for the EO scheme in Figure 5.3 for a 

single quark w i t h unit charge and fip = 10 and 100 GeV. We see that there is a change in 

slope at 1 — z = ^ " ' ^ ~ 0.18 because events wi th yqy > y c u t are identified as "photon" + 2 

jet events where the photon cluster has 2 = 1. 

On the other hand, the second fragmentation function is an exact solution of the leading 

order evolution equation Eqn. (5.8), and therefore the factorisation scale dependence is 

eliminated. Furthermore, the log( l — z) behaviour is canceled so that, as shown in Figure 5.3, 

the differential cross section is positive for all values of z. Although this fragmentation 
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funct ion satisfies the leading order evolution equation i t is not intended as a substitute for 

an experimental determination of Z) 9_> 7. 

As a f inal example, we take the large fip solution of the next-to-leading order evolution 

equations obtained by ref. [53], consistent wi th its use in [47], 

= ( £ ) - L 2 9 f ^ 9

 + 0-002(1 - z f z ^ A log ( < * \ 
q ^ , r r , V27T7 V 7 1 -1 -63 l o g ( l - 2 ) ' ) *\VQCD)' 

(5.28) 

where AQCD = 0.2 GeV. As shown in Figure 5.3, there is a significant scale dependence, since 

this solution contains perturbative contributions that are not included in our calculation. 

I t is also interesting to note that as z —> 1, this fragmentation function does not appear 

to nul l i fy the explicit l og ( l — z) appearing in the leading order perturbative contribution 

and the rate becomes negative. We therefore drop this fragmentation funct ion f r o m further 

consideration. 

However, at present we do not know the fragmentation function and the purpose of 

this chapter is to motivate such a measurement at LEP. Of course, at LEP, both up- and 

down-type quarks are produced so that, in principle, the combination, 

n L E P , n 2 + al)Du^(z, HF) + 3 {vj + apDd^jz^iF) 
u' (*,nF) = — 2 — ^ ' (5.29) 

2 (vl + al) + 3 ( u j + az

d) 

where vq and aq are the vector and axial vector couplings of quark q w i th the Z boson, can 

be determined in photon + 1 jet events. 

The fragmentation funct ion must contribute wi th respect to some scale /.ip. Unlike deep 

inelastic scattering, there is no obvious choice for this scale, and the best one can do is 

to choose /.ip of the order of a few GeV. We wi l l take /.ip = 10 GeV and 100 GeV to be 

representative choices. Measurements at different scales are related through the evolution 
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Figure 5.4: The differential cross section, 1 /<j0da/dz, for Dq^ = 0 w i t h ftp = 10 and 
100 GeV and j / c u t = 0.1. The data points show the distr ibution in bins 0.01 wide, while the 
solid lines show the analytic result. The open square data points shows the distr ibution for 
the Dn fragmentation funct ion wi th fio = 10 GeV. 

equation and in principle should yield identical results. Once a factorisation scale has been 

chosen, the difference between the data c r E X P and Eqn. (5.20) w i th Dq^ = 0 provides a 

lowest order measurement of the fragmentation funct ion, 

In Figure 5.4, we show the z distribution in the Durham scheme for the appropriate 

mixture of up- and down-type quarks normalised to the total hadronic cross section for e+e~ 

collisions at >/s = Mz w i t h /.iF = 10 GeV and 100 GeV. The smooth curve is the analytic 

distr ibution of Ecp. (5.20), while the data points show the differential cross section integrated 
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over bins 0.01 wide. As expected, this unphysical distribution depends strongly on \ip and 

is negative for quite a wide range of z. The divergent behaviour as z —» 1 is clearly seen. 

These effects are reflected in the highest bin of the histogram centred at z — 0.995, where 

the RA contribution f r o m the quark combining wi th the antiqua.rk is added to the integral 

of the distr ibution f rom z — 0.99 to 1. Even though one would expect the end bin to be 

insensitive to the fragmentation contribution, because of the way the MS scheme treats the 

z —> 1 region, there appears to be a sizable effect. This is largely due to cancellations that 

should take place between D and the perturbative part of V. In a different scheme, such as 

the DIS1 scheme [51], this effect may be reduced. To give some idea of what a physical z 

distr ibution might look like, we also show the rate for the D11 fragmentation funct ion, again 

w i t h Ho = 10 GeV. There is a sizable increase in the end bin because the log( l —z) behaviour 

of the perturbative contribution in D is canceled by that of the fragmentation funct ion. 

In the E0 scheme, the z distribution looks rather similar, however there are two main 

differences. First , at small z the cross section is slightly reduced due to the different definition 

of ys. This occurs for z < *T y c"' = 0-82 and reduces the differential cross section by 0.0004 

at z = 0.7 independently of the scale. Second, the quantity is much larger in the Durham 

scheme as can be deduced f rom the Dalitz plots shown in Figures 5.1 and 5.2. Once again, 

the difference between the two schemes is scale invariant and decreases the distribution in 

the end bin by 0.0043. 

I t is also straightforward to integrate over the allowed values of z to obtain the one jet 

fract ion, 

5 ( 1 j e t + V ) 1 da(l j e t + V ) 
dz 0o zcut on 

/ Dq-^{z,fiF) dz + F* + R 

ae cut 2(1 - Zcut) - 21og(z c u t ) log (5.31) + 7T 
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Figure 5.5: Photon + 1 jet rate in the Durham scheme as a funct ion of the jet separation 
parameter y c u t for z c u t = 0.99 wi th Dq^ = 0 and / i f = 10 and 100 GeV. The dashed line 
show Rl i n the Durham scheme while the rate for the D11 fragmentation funct ion wi th 
/<0 = 10 GeV is shown clotted. 
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The scale independent funct ion Fs is somewhat lengthy and is given in the Appendix. We 

see that the scale dependence is the same for all schemes, reflecting the fact that i t originates 

in a subtraction in the collinear l i m i t . The one jet fraction normalised to the total hadronic 

cross section is shown in Figure 5.5 for the Durham scheme as a function of y c u t for -D 9 _, 7 = 0 

w i t h zcut — 0.99. As in the z distr ibution shown in Figure 5.4, even for this very restricted 

range of z, the cross section does depend strongly on the factorisation scale. A t small y c u t , 

the cross section diverges logarithmically in both schemes, 

* + " 7 " ' - (^) { ( 4 ^ - 2 ( 1 - „ ) - 2 l o g U „ , t ) ) • „ < * „ . ) } , (5.32) 

w i t h a coefficient determined by z c u t . For comparison, we show the scale independent R& 

contribution which tends to zero at small ycut. Once again, we also show the total cross 

section for the Du fragmentation funct ion. Even for z > 0.99, the total rate is sensitive 

to the f o r m of the fragmentation function due partly to the log( l — z) behaviour of the 

perturbative part of V, but also to the additional log( l — z) te rm f r o m the boundary of 

phase space. 

A t large z c u t , the cross section simplifies dramatically, 

^ ( I j e t + V ) : R s 

which is simply the contribution when the quark and antiquark combine to fo rm the cluster. 

Figure 5.6 shows the one jet rate in the Durham scheme normalised to the total hadronic 

cross section for fixed ycut as a function of z c u t . As expected, the unphysical prediction 

(-D 9-> 7 — 0) depends strongly on the choice of scale. The difference between the data and 

solid curves w i t h ^j? = 10 or 100 GeV therefore represents a lowest order measurement of 

the integral of the fragmentation function at that scale provided that the non-prompt 7r° 

background has been correctly subtracted. As expected, we see that as z c u t —> 1, the rate 
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Figure 5.6: Photon + 1 jet rate in the Durham scheme as a funct ion of the electromagnetic 
energy fraction zcut w i th Dq^ = 0 for / * F = 10 and 100 GeV and ycul = 0.1. R% is shown as a 
point on the right hand axis. The rate for the Dn fragmentation funct ion wi th / i 0 = 10 GeV 
is shown dotted. 
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becomes independent of the choice of fragmentation function as described by Eqn. (5.33). 

This is also true for the more physical Dn fragmentation funct ion. 

5o5 The pho ton + 2 j e t rate 

Unlike the previous case, the e+e~ —> 7 + 2 parton process does not vanish and therefore, 

the fragmentation function which appears at next-to-leading order is suppressed in the total 

cross-section. The cross section is thus dominated by the lowest order contribution which 

occurs at z — 1. On the other hand, the fragmentation function contribution comes f rom 

the lowest order e+e~ —> qqg process and is potentially sensitive to the gluon fragmenta

tion contribution. In fact, the two jet rate depends on a. combination of quark and gluon 

fragmentation functions, 

a, (2 D ^ ( z , f i F ) + D g ^ ( z , h F ) ) , 

so that in addition to the particular combination of quark fragmentation functions as mea

sured at LEP, a knowledge of the strong coupling constant is also required to have any chance 

of extracting the gluon fragmentation funct ion. 

I t is straightforward to compute the fu l l next-to-leading order QCD corrections to this 

process. The necessary resolved parton one loop qqj and bremsstrahlung qq'yg matr ix el

ements have been described in [28, 37] and can be directly implemented in a Monte Carlo 

program along w i t h the fragmentation process as described by Eqns. (5.3 and 5.6). The 

resulting z distr ibution in the Durham scheme is shown in Figure 5.7 for z < 0.99 and 

J/cut = 0.1. As in the one jet case, the predictions wi th the unphysical choice Dq^ — 0 show 

a dependence on the factorisation scale which should be compensated by a more physical 
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Figure 5.7: The differential cross section in the Durham scheme, l/a0dcr/dz, for photon + 2 
jet events for = Dg^ = 0 wi th / i F = 10 and 100 GeV (dashed) and y c u t = 0.1. The 
dotted line shows the distribution for the Du fragmentation function wi th / t 0 = 10 GeV. 
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choice such as that given by Eqn. (5.27). Nevertheless, the variation of the two jet rate w i t h 

the factorisation scale is rather small, 

g (1 A r * ™ ( 2 jets + V ) \ = 4a . <x^(2 jets + V ) A + (1 - ^ g 

V^O ) 37T <7 0 \ 2 / \ / * 2 / ' ' 

This indicates that even wi th a physical fragmentation funct ion, the two jet rate for z < 0.99 

is small. I t is important to note that, once the fragmentation funct ion D^E^ has been 

established using the one jet data, i t can be directly applied to estimate the two jet rate. 

So far we have not discussed the gluon fragmentation funct ion, which at lowest order 

does not exhibit factorisation scale dependence and is merely a function of z. In principle 

one can hope to make a determination of the lowest order gluon fragmentation funct ion at 

LEP, 

3a 2el(vl + a\) + Ze\{v\ + aft 
4as 2(v* + al) + 3(vl + al) <r*>°(2 jets + V ) 

„ ( l ^ ^ + v ) M , i ^ ( 2 r + v ) , ) k ^ , ( , 3 , 

where the measured quark fragmentation function is used as an input in a N L O and a E X F 

represents the measured data. In practice, however, the event rate is rather small and i t is 

unlikely that such a measurement can be meaningfully carried out. 

Because the lowest order process contributes at z — 1, as expected the z > 0.99 region 

completely dominates the cross section. This is clearly seen in Figure 5.8 where the total 

two jet + photon cross section at next-to-leading order for z > zcut is shown in the Durham 

scheme as a funct ion of zcut for ycut — 0.1. The lowest order cross section, aLO(2 jets + 

"7")/cr 0 , is 0.0004. The bulk of the cross section, (81% for the D!I fragmentation funct ion) , 

exists at z > 0.99. Whi le for smaller z c u t , the integrated ra.te is extremely f lat reflecting the 

rather small da/dz distr ibution shown in Figure 5.7. 
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Figure 5.8: The photon + 2 jet rate in the Durham scheme as a function of the electro
magnetic energy fraction zcnl w i th Dq^y = 0 and Dg_^ = 0 for \ip — 10 and 100 GeV 
and ycut = 0.1. The factorisation scale independent rate for the Dn quark fragmentation 
funct ion is shown dotted. 
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Figure 5.9: The next-to-leading order photon + 2 jet rate for as = 0.1087 divided by the 
leading order rate in the Durham (solid) and EO (dashed) schemes as a funct ion of the jet 
separation parameter ycut for zcul = 0.99. 

We also see that as zcut —» 1, the contribution of the fragmentation function is extremely 

small, since the scale dependence almost vanishes. In other words, the nearly isolated photon 

cross section is insensitive to the fragmentation function in the two jet case and can be 

safely used to determine the quark electroweak charges [36, 40, 41]. For such purposes i t 

is instructive to compare the relative size of the next-to-leading order corrections compared 

to lowest order. In Figure 5.9, we show this ratio for z > 0.99 as a funct ion of y c u t . In 

the Durham scheme wi th as = 0.1087, the correction amounts to about -12% at large ycut, 

eventually exceeding -50% at ycut = 0.005. For larger values of as, the corrections are 

relatively more negative. On the other hand, in the EO scheme, the corrections are much 

larger and imply that higher order corrections are necessary to have any reasonable prediction 

of the two jet rate in this scheme for almost the whole range of ycul. 
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I t is interesting to compare the size of these corrections wi th the two step cone algorithm 

used in previous analyses. Here the photon is required to be isolated wi th in a cone typically 

of half angle 1.5°. I t is then removed f rom the event and the remaining hadrons clustered 

according to a jet algorithm. Of course, the photon is not completely isolated and can 

have 200-500 MeV of hadronic energy wi th in the cone. This is approximately the same 

as requiring z > 0.99. The radiative corrections in this scheme for the E0 algorithm are 

relatively small [37]. However, we now see that in the "democratic" E0 algorithm, the 

corrections are large and negative. This is because the gluon is more often clustered w i t h 

the photon since the effective cone size is larger. The requirement of l i t t l e hadronic energy 

in the cluster then eliminates more events, thus reducing the cross section. Despite the fact 

that the "democratic" E0 scheme suffers large corrections, the "democratic" Durham scheme 

seems perturbatively stable for a reasonable range of ycut. We note that in all algorithms, 

as ?/Cut decreases the correction becomes large since the gluon is resolved as an additional jet 

thus reducing the two jet rate. 

5 o 6 Summary 

Throughout this chapter we have focused on photon production where the "photon" carries 

a large fract ion of hadronic energy. This necessarily involves the photon fragmentation func

tions, D 9 _> 7 and Dg^. In photon + one jet events at LEP, the quark fragmentation funct ion 

enters effectively at lowest order. Such events can potentially provide an experimental deter

mination of the fragmentation funct ion at large z. W i t h the aid of simple analytic results, 

we have shown how the fragmentation function might be extracted at leading order for a 

"democratic" algorithm where photons and hadrons are treated equivalently. I t is important 

to note that the fragmentation function measured w i t h such a democratic algorithm should 
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be identical to that obtained f rom a cone-type definition. Furthermore, the fragmentation 

funct ion should not depend on the value of ycut at which i t is determined. This provides a 

cross check on the measurement. 

The gluon fragmentation function £> g _ + 7 enters into the "photon" + two jet rate. However, 

i t does so only at next-to-leading order. As a result, the cross section is only weakly sensitive 

to the gluon fragmentation function and i t seems unlikely that a useful measurement can be 

made. On the other hand, the large z or almost isolated "photon" + two jet rate is largely 

insensitive to either quark or gluon fragmentation function and it should be possible to use 

these events to determine the quark electroweak charges. 

We have seen that the next-to-leading order corrections to the photon + two jet rate 

are quite large and negative in the democratic algorithm. For cone-type algorithms, the 

corrections to the one jet rate are larger than for the two jet rate. One might expect that 

they might be important here as well and should be investigated. 

The most important question to answer, however, is whether or not i t is experimentally 

possible to observe the non-isolated photon signal at LEP. The main background is f r o m 7T° 

decay into two photons. By requiring large z, the number of 7r°'s in the cluster can be reduced, 

however i t is s t i l l a significant experimental problem to resolve two almost colli near photons 

f r o m 7T° decay when the cluster energy is close to M ^ / 2 . This is a detector dependent issue 

and requires much study. Nevertheless, provided that the non-prompt background f r o m 7r° 

decay can be experimentally controlled, events containing a single jet give an unparalleled 

opportunity to measure Z) g_» 7. This may then be used as an input to other calculations 

such as the inclusive photon spectrum at the Fermilab T E V A T R O N where the theoretical 

uncertainty w i l l be reduced. A determination of the small x gluon structure funct ion may 

then be possible. 
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5 c 7 Postscript 

Following the work contained in this chapter, the A L E P H collaboration have measured the 

photon fragmentation funct ion at LEP. W i t h respect to Eqn. (5.25), they f ind a parameter-

isation of the fo rm 

is consistent w i t h their data, where / i 0 = 0.16 ± 0.2 GeV and B = —12.9 ± 2.9. This 

funct ion has been measured for a democratic photon definition and the Durham clustering 

algori thm in the region 0.7 < z < 0.95. W i t h respect to their f i t , the preferred values for 

these parameters are f.i0 = 0.2 GeV and B = —12A. [58] 

For comparison wi th Figure 5.4, we include graphs of this fit plotted w i t h respect to the 

A L E P H data, Figure 5.10, as i t appeared in Ref. [58]. I t is clear that our approach gives a 

consistent description of the available data. Note the rise of the data over the f i t for all but 

the smallest value of ycat shown. Following an analysis wi th the two hadronisation models 

A R I A D N E and H E R W I G [24], A L E P H conclude that this rise is due to large hadronisation 

corrections in this region. This point is illustrated by Figure 5.11, which is a comparison 

of the z values for 1-jet + photon events at the parton level and then at the hadron level 

as given by A R I A D N E . In reaching the hadron level, they observe a significant fraction of 

'isolated' parton level events populate the 0.95 < z < .99 bin . This spilling over of events is 

noted to increase wi th ycut. For y c u t = 0 . 1 there is a « 20% migration of events. 

Accordingly, A L E P H choose to define 'isolated' 1-jet + photon events as those events 

w i t h z > .95 and a comparison of the data to the f u l l calculation, including the above 

parameterisation for the photon fragmentation funct ion, is shown in Figure 5.12. Whils t 
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Figure 5.10: Comparison between the 1-jet + "photon" data and the f u l l calculation in
cluding the A L E P H preferred f i t for the photon fragmentation funct ion. The large con
t r ibu t ion to the 0.99 < z < 1 bin is essentially the /?a contribution. The graphs 
are for four different values of y c l l t . The quantity represented on the vertical axis is 
10 3 x 1/O-HAD c/cr(l-jet + "photon" )/dz. 
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Figure 5.12: The 'isolated' 1-jet + photon rate plotted as a funct ion of ycut. This 
graph shows the dependence of the "isolated" rate as a function of the jet resolu
tion parameter ycut. Good agreement between the calculation of this chapter and the 
A L E P H data is observed in the central region of this plot. The vertical axis is 10 3 x 
^/VHAD /o.95[d0'( 1-jet - f "photon" )/cfe] &fe. 
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good agreement over the central range of y c u t is observed, taking the data as a whole i t 

would appear that the overall slope is steeper in ycut than the calculation would suggest. I t 

is hoped that extending the calculation to the next order w i l l address this difference. 

The 2-jet + photon events (wi th a soft photon cut of Ey > 5 GeV) are observed to be 

mostly insensitive to the fragmentation process, as might be expected since the leading order 

process is non-zero. For completeness, we show a comparison between the experimental rate 

and the predicted rate which includes the fragmentation funct ion as measured in 1-jet + 

photon events. I t is soft gluons that give the gentle slope to the high z region of the graphs, 

but the isolated, 2 = 1 , leading order (qqj) contribution to the cross-section dominates the 

end bin. The effect of a rise in the cross-section f rom the collinear 97 region appears to be 

suppressed over the whole range of z plotted. 

The treatment of the asymptotic solution to the fragmentation funct ion DIH(z, fip) of 

Eqn. (5.28) [53], in the main text of this chapter was based on its apparent use in a calculation 

of direct photon production [47]. Perhaps a more appropriate use of this funct ion is as follows: 

for a suitable choice of scale, /.tp, chosen to characterise the size of a photon je t , we can hope 

to obtain f r o m D n i ( z , f i f ) the fraction of all hadronic f inal states that contain a photon of 

energy f ract ion z. In Figure 5.14, we ha.ve plotted the differential distr ibution in z of the 1-jet 

rate for ycul = 0.1. We include the A L E P H data and a number of curves. The f u l l line is the 

calculation documented above using the A L E P H fragmentation funct ion. The dotted curve 

is 2 x D H I ( z , jj,2 = M\) and as is to be expected this lies well above the observed rate. The 

dashed curve is interesting in that i t is simply the A L E P H measured fragmentation funct ion 

2 x D^(z,fj,2 = yDMz/3), where ys is the z dependent dimensionless invariant describing 

the size of the quark-photon jet ( i t is defined in Eqn. (5.23)). The factor 1/3 is inserted 

by hand and approximates the value of the non-logarithmic remainder to the complete 

calculation. The agreement of this curve wi th the f u l l calculation suggests \J?F = y D M | / 3 
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Figure 5.14: A comparison of the A L E P H data (at y c u t = 0.1) w i t h a more in tui t ive use of 
the DIH and fragmentation functions. 
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is an appropriate choice. The remaining (dash-dotted) curve is 2 x D I H ( z , f i 2 = y D M | / 3 ) . 

Whils t the normalisation of this curve seems about right, i t does appear to be somewhat 

flatter than the data would suggest. Figure 5.15 is the same as the previous graph but for 

a smaller jet resolution parameter, ycul = 0.01. Again, 2 x D r i I ( z , f j , 2 = yDM|/3) does not 

compare well w i t h the data. 

In this appendix we give explicit formulae for the integrated cross-sections for the one jet 

plus photon events in various regions of phase space (see Figures 5.1 and 5.2). 

The quantity is the contribution f rom the region where the quark and antiquark 

combine to fo rm a jet . For the two schemes considered here we find that (for a quark of 

charge e 9 ) , 

Append 

EG R 
( l - ygg - y^) y<n 

ae 
7T 

- 2 S p ( l - y Cut 
3y 7T cut 

1 + - 2 S p 2 j , 1 + 22/ cut cut 6 

+ log ( l - 2 t / c u t ) ( J - 21og(2 - 2 y c u t ) ) + log tfcut 

1 i/cut 
Z/cut + 

2/cut ,(5.37) 

and, 

D R 

S c n l - ! ( 

V 7T / " ' y c u t J y 

(1 - yjh) + + Vri) 22 EO dy 
q-y (1 yqq 2/<n) Vqi ii 

ae 
IT 

- (Sy cut - 9y0 - 5 - 4(2 + y0) log(y 0)) j + ( J - log(4)) log(l - 2y0) 

+ log 
(2 + yo)y i/cut 0 2 1 o g ( l - y 0 + 

yo2)(l-2yQ) cut 
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Figure 5.15: A comparison of the A L E P H data (at ycut = 0.01) w i th a more in tui t ive use of 
the D111 and DH fragmentation functions. 
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2 1 ° g + y ^ - y ^ ~ 
(3 + 2 1 o g(y c u t)) 2/cut 

4 

+ 21og(l - v ' ^ t ) l o g ( v ^ i t - J/o) + 21og(l - f s/y^t)log{s/y^Tt + yo) 

(5.38) 
7T2 

where, 

2Sp(2</0 - 1) - 4Sp(l - y0) + Sp(l - y m t ) + — 

yo = J(\/j/™t + 8 j / c u t - y c u t ) -

The Spence funct ion, Sp, is given in Eqn. (A.14). 

Where the photon and the quark (antiquark) combine to form a cluster w i t h electromag

netic energy fract ion greater than 2 c u t , we f ind that the scale independent part of the 1 jet 

cross-section is given, in the EO scheme by, 

F E 0 = h{zmt,y) (5.39) 

where, 

. / 1 - * c u t \ 
y = min y c u t , — 1 . 

V 1 T zcut / 

In the Durham algorithm, for zcut > 0.5, we f ind , 

F° = h (x, + 0 (*„ - ^cut) {h(z0) - / 2 ( z C u t ) } (5-40) 

w i t h , 

x = max (2 0 , z c u t ) , 
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and, 

1 - Vo 
z ° = T T — • 1 + Ifo 

The integral Ii(a,b) has the following form, 

I,(a,b) = ^ W i ^ - 2 ( l - a ) - 2 ] o g ( « ) ) l o g ( 6 ( l - a ) ) + I ( l - < > ) 

-2Sp(24) - 2Sp(l - a) + ^ - 1 6 f c + 4 i ^ ^ _ 2 J ) _ ] o g 2 ( < > ) 

2 ( 1 - a ) 2 ( l - a ) / V a J 2(1 - a ) 

y - 2ft] log(a - (1 - a)b) - ( y - 2a ] l o g ( a ) | , (5.41) 

while, 

H z ) = [ z - 2 *_ 2 + ^ y c u t ( l + + ( ^ ^ ^ + 2 log(*)) l o g ( y c u t ) 

+ z 3 y c B t ( ^ C U t " 4 ) + + 2/cut ( 3 + 2/cut) log( l - z) + 4 z + (z - 4 ) z log(z) 
4 1 — z 

+ ^2 l o g ( i ^ ) + 2

5

(~_6")2) l o g ( l ~ ^ u t ) + 2 log 2 (z ) . ( 5 . 4 2 ) 

1 1 3 



Chapter 6 

oft Gliion Radiation in Photon pins 

ingle Jet Events at LEP 

'Isolated' photon events at LEP have been defined using either a cone algorithm (where 

the photon is isolated in a cone and the remaining particles clustered wi th a jet algorithm) 

or a democratic algorithm (where all particles are clustered and the cluster containing the 

photon is identified as the photon). By studying the flow of soft gluon radiation in 'isolated' 

photon + single jet events at LEP we give a qualitative explanation of the size of radiative 

corrections in the different schemes. 
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6.1 l e t ro duct ion 

Recently e+e~ annihilation events w i t h hadronic final states containing an 'isolated' photon 

have attracted both experimental [40, 41 , 42, 43] and theoretical interest [35, 38, 37, 39]. The 

physics motivation for studying such events is that the photon preferentially couples to up-

type quarks, and therefore this event sample is enriched in up-type quarks. A measurement 

of the quark couplings to the Z boson [36] is thus possible. However, since a perfectly isolated 

photon is not an infrared safe quantity, i t is necessary to discuss exactly what is meant by 

'isolation'. 

Experimentally, the photon candidate has been defined in two ways. In the CONE 

algorithm, the photon and all particles in a cone of half-angle 0C are removed f r o m the event 

to fo rm the photon cluster. The remaining particles are then scanned for jets using a jet 

algori thm such as the JADE/EO [44] or Durham [45] schemes wi th a jet resolution parameter 

ycut. In the democratic ( D E M O ) algorithm, the jet finding algorithm is applied to all particles 

in the event. The ' je t ' containing the photon is then interpreted as the photon candidate. In 

both cases, in order to reduce the background f rom ir° decay, the photon cluster is required 

to contain l i t t l e or no hadronic contamination and the variable 

where is the hadronic energy in the cluster, is constrained to be close to unity. Since i t 

is very hard to detect very low energy particles, for practical purposes an 'isolated' photon 

may be accompanied by 0(500 M e V ) of hadronic energy. 

Theoretical calculations have used both the democratic [35] and cone-type [38, 37, 39] 

algorithms. In order to cancel the infrared singularities associated w i t h soft gluons, the soft 
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gluon must be allowed wi th in the photon cluster. However, i f all coloured partons are to be 

treated equally, then the quarks wi th in the event should also be allowed inside the photon 

cluster and may be collinear w i t h the photon. The quark-photon collinear singularity is 

regulated by the photon fragmentation funct ion. To eliminate the uncertainty due to this 

fragmentation funct ion, the theoretical calculations have compromised by allowing a small 

amount of gluonic energy into the photon cluster, but not allowing quarks to cluster w i th 

the photon. Since different calculations allow different amounts of gluon energy inside the 

photon cluster, the calculations are not in complete agreement [54]. To reconcile these dif

ferences i t is necessary to treat the quark and gluon equally and to involve the fragmentation 

function properly [39, 55]. Even then, the region around z = 1 is problematic since radiating 

additional soft gluons may change z significantly. 

6c2 Radiative corrections to the one jet rate 

The issue we wish to address in this chapter is the size of radiative corrections in the different 

photon algorithms for photon + 1 jet events. I t has been noted [35] that in a democratic 

scheme the corrections are small. In other words, the ratio of next-to-leading to leading 

order cross sections (fC factor) is close to unity. On the other hand, in the cone type scheme, 

the corrections are quite large and negative [38, 37], IC < 1. Clearly the absolute size of the 

correction is determined by how the soft gluon region is treated, nevertheless, the relative 

size of the correction is determined by how the isolation cuts affect gluons wi th an energy 

above the energy allowed wi th in the photon cluster. The K. factors in both C O N E and 

D E M O schemes for both the EO and Durham jet algorithms are shown in Figure 6.1 using 

the theoretical definit ion of ' isolation' as described in ref. [37]. We see that for all ycxlt and 
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for both jet algorithms, 

K-DEMO > ICCONE-

By dressing the lowest order e+e~ —> qq^ mat r ix elements w i t h a soft gluon and examining 

the radiation pattern, we hope to show why this is so. 

6o3 Lowest order events 

The leading order contribution f r o m the e +e~ —> qqj process to the photon + 1 jet rate 

is given by integrating the differential cross section (for massless quarks of charge eq), 

(Eqn. (5.15)) 

1 d2a _ fae^\ x2 + x'2 

a0 dxdx' ~ \~2w) (1 - x)(l - a:')' 

over the allowed region of the Dali tz plot. Here x and x' are the quark energy-fractions given 

by x = 2Eq/^/s, x' = 2E-q/y/s and xy = 2 — x — x'. In terms of these energy fractions, the 

scaled pair invariant masses are given by, 

yqi = 1 - x', yg-y = 1 - x, yqq = 1 - a,\, (6.2) 

where yij = (pi + P j ) 2 / s = Sij/s = 2EiEj(l — cos0,j)/.s. 

The Dali tz plots for "isolated" photons w i t h the CONE and D E M O schemes are shown 

in Fig. 6.2 for both the EO and Durham algorithms. In the CONE scheme, the quark-photon 

singularities at 9q^ — 0 and = 0 which lie along the sides of the Dalitz plot are regulated 

by the photon isolation cut 6C. In the D E M O scheme, the effective cone size for the photon 

cluster is much larger and consequently the cross section, for 8C <C 90°, is much smaller [37]. 

Note that as is the case for pure jet analysis the Durham scheme [45] affords more phase 
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Figure 6.1: The ratio of next-to-leading order to leading-order cross sections for e +e~ —> 
1-jet + 'isolated' photon production at LEP energies in the CONE scheme (wi th 9C = 15°) 
for the Durham (solid) and EO (dotted) jet algorithms and in the D E M O scheme also for 
the Durham (dashed) and EO (dash-dotted) jet algorithms. 
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Scheme £ 7 hard/ \/s Eq s oft. / \fs @~yq hard ^79 soft eqq 

CONE Durham .448 .475 .077 173 61 126 
CONE EO .486 .468 .047 176 81 103 
D E M O Durham .475 .419 .106 169 126 65 
D E M O EO .487 .427 .085 173 132 55 

Table 6.1: The average value of energies and angles for 1 jet + 'isolated' photon events wi th 
J/cut = 0.06 and 9C = 15° for the different schemes. A l l angles are in degrees. 

space to the analysis for a given y c u t than that of the E0 scheme. 

The topology of the average (planar) event in the CONE and D E M O algorithms are 

quite different. As shown in Table 6.1, in the D E M O scheme, the average energy of the 

softest quark is larger than in the CONE scheme while the average angle between the quark 

and antiquark is much smaller. In the CONE algorithm, the softest quark typically lies 

relatively close to the isolation cone so that j / 7 9 S o f t is minimised. Momentum conservation 

then requires 8qq to be large while the requirement that the q and q coalesce to f o r m a jet 

forces Eqsoit to be relatively small. On the other hand, in the D E M O scheme, because the 

photon is in principle allowed to cluster w i th the quark/antiquark, the isolation criterion 

forces the 0^qso{t to be large. As a consequence, 9q^ is much smaller and Eqso(t somewhat 

larger. W i t h i n a given scheme, we see that 6q^ is smaller wi th the E0 jet algorithm than in 

the Durham scheme. This reflects the extra phase space admitted by the Durham algorithm 

which is principally at large angles. The difference in the average angle between quark and 

antiquark w i l l influence the colour flow in the event at higher orders. 
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Figure 6.2: The Dali tz plots of isolated 1-jet - f photon events wi th ycut — 0.1 for (a) the 
CONE algori thm w i t h 6C = 30° and (b) the D E M O algorithm. The 1-jet phase space is 
the region enclosed by the main diagonal, the isolation cut (dashed line) and the clustering 
algori thm - dotted line for E0 clustering and the dash-dotted line for the Durham algorithm. 
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©o4 The soft gluon distribution. 

The next-to-leading order corrections involve the addition of a gluon to the event in its real 

and v i r tua l forms. The physical cross section is the result of a. cancellation between the 

divergent (and positive) bremsstrahlung process and the divergent (and negative) v i r tua l 

process (cf. Eqn. (4.57)). The isolation cuts wi l l play an important role in determining the 

size of the bremsstrahlung process since they wi l l veto the allowed configuration of the qqjg 

f inal state. The radiative cross section is largest when the gluon is soft. In this case, the 

mat r ix elements undergo the usual soft factorisation in the l i m i t Eg —> 0, 

\Mqqyg\2 ~* S F \ M Q ^ \ \ (6.3) 

where the soft eikonal factor SF is given by, 

SF ~ J^22_. (6.4) 

One can therefore study the effect of the isolation cuts on the bremsstrahlung process by 

f ix ing the energy of the gluon to be soft and examining the colour flow wi th respect to the 

partons of the underlying qq^y event. The more that the isolation cuts restrict the allowed 

phase space for the soft gluon to be outside the photon cone, the smaller the radiative 

contribution wi l l be. The K, factor w i l l be correspondingly smaller. 

In Fig. 6.3 we show radial plots, in the plane of the underlying event, of the soft eikonal 

factor, SF, The qqj configurations chosen are the average final state energies and angles, 

appropriate to (a) the CONE scheme and (b) the D E M O scheme for both the EO and 

Durham algorithms as given in Table 6.1. The shaded regions of the plots indicate the 

forbidden region for gluon emission as dictated by the isolation cuts of the different schemes. 
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Figure 6.3: Eikonal factor plots for a soft gluon lying in the plane of .the underlying 1-jet + 
photon event for y c u t = 0.06 in (a) the CONE scheme (wi th 6C = 15°) for the Durham (solid) 
and E0 (dotted) jet algorithms and (b) the D E M O scheme for the Durham (dashed) and 
E0 (dash-dotted) jet algorithms. The qqf configuration represents the average configuration 
as described in Table 1. For reference, the energy vectors for the Durham scheme are 
also plotted. The scale is radially logarithmic and normalised to the m i n i m u m value of the 
eikonal factor in the D E M O E0 scheme. The shaded regions indicate the appropriate photon 
isolation cut for each scheme. In (b) the darker shaded region corresponds to the E0 isolation 
cut. 
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The quark and antiquark f o r m a coloured antenna that radiates gluons [56]. The radiation 

is greatest in the direction of the quark (antiquark) corresponding to the singularity in l / s q g 

{l/sgq). Nevertheless, there is significant soft gluon radiation at other angles. The radiation 

patterns clearly reflect the differences between the CONE and D E M O schemes. In the CONE 

scheme, the antenna is bent to one side of the exclusion cone surrounding the photon. As a 

result, the radiation pattern is stretched on the side opposite the soft quark and compressed 

between the quark and antiquark. The colour flow in such events is s t i l l relatively spread 

out, and soft gluons are able to identify sources of colour flow all around phase space. I n 

the EO scheme the average angle between quark and antiquark is smaller and this effect is 

slightly enhanced relative to the CONE Durham scheme. 

In contrast, i n the D E M O scheme, the antenna has been bent much more—the average 

angle between quark and antiquark is less than 90° and the compression/stretching of the 

radiation pattern is much more significant. Together the quark and antiquark fo rm a colour 

singlet antenna out of which only hard gluons, w i th a small wavelength, are able to radiate; 

i.e. soft gluons are unable to resolve the macroscopic dimensions of the je t . The physical 

consequence of this is that the soft gluons are radiated in the region between the two quarks 

where they can see two colour sources. In the l imi t that ycut —> 0, 6qq —> 0 and the antenna 

closes up. The jet has no net colour and there should be no soft gluon radiation outside of 

the jet . This is precisely what we are seeing in Fig. 6.3. As is true in the CONE case, the 

effect is more marked w i t h the EO jet algorithm than the Durham scheme. 

We can now interpret these radiation plots in terms of the photon isolation cuts. When

ever there is a significant overlap in the energy flow of soft gluons into the isolation cone, 

those events w i l l be vetoed by the isolation criterion. We can see that in the CONE algo

r i t h m , there is a significant overlap in the energy flow of soft gluons into the isolation cone. 

In contrast to this the soft gluon flow in the democratic events is almost exclusively away 
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f r o m the photon and relatively few soft gluon events w i l l be eliminated by the isolation cuts. 

We therefore expect that 

j^DEMO > j^CONE 

We would also expect that hadronisation effects (and their influence on isolation) would be 

relatively smaller i n the D E M O scheme precisely because the colour flow is largely contained 

wi th in the jet . Experimentally, jet + photon events in the D E M O scheme should look rather 

clean in the hemisphere containing the photon. Indeed, i t would be an interesting test of 

QCD to compare the energy flow (particle mul t ip l ic i ty) in ordinary two jet events where, each 

jet is nominally a colour t r iplet wi th the energy flow (particle mul t ip l ic i ty) i n democratic jet 

+ photon events where the jet is almost a colour singlet. 

Finally, we can make some comments about the jet algorithm dependence of the K, factors 

w i th in a given photon definit ion. In the democratic analysis, we see that (a) 6qg is smaller and 

(b) the angular region excluded by the isolation cuts is smaller in the EO scheme compared to 

the Durham scheme. Crudely speaking, the EO scheme is better at reaching into the wrong 

hemisphere to pul l the gluon away f rom the photon and combine i t wi th the quark-antiquark 

pair. This is precisely the feature that made the EO scheme unattractive for purely hadronic 

f inal states. These arguments indicate that the EO scheme wi l l be more stable to radiative 

corrections so that, 

i-DEMO . rDEMO (n r\ 

as is seen in Figure 6.1. In fact, unlike ordinary purely hadronic jet events (and the CONE 

type photon + jet events where the colour antenna is relatively straight and the colour flow 

is more spread out) , as y c u t —* 0, we do not resolve more jets because the radiation is largely 

w i t h i n the jet and the K, factor does not diminish for small y c u t . This is more marked in the 

D E M O EO scheme because the average value of 9^ is smaller than in the D E M O Durham 

scheme. 

124 



I n the CONE type algorithm, these simple arguments do not tell the whole story. We 

see i n Figure 6.3 that isolation cuts do play a more significant role in the Durham scheme, 

however, contrary to our naive expectations, we see f r o m Figure 6.1 that, 

trCONE . r-CONE 

The reason for this discrepancy is that the typical energy of the soft quark is much lower i n 

the CONE EO scheme than in all the other schemes. This is shown in Figure 6.4 as a funct ion 

of the jet resolution parameter ycut. Typically, the soft quark in this scheme has an energy of 

only a few GeV, significantly less than in the other schemes. To understand how the isolation 

cuts affect the isolated photon cross section, we have focused on soft gluon radiation wi th 

an energy that is in principle resolvable by an experiment, which is typically of 0 ( 1 GeV). 

This is not much less than the average energy of the softest quark in the CONE EO scheme. 

Therefore, we might expect that the soft gluon approximation is not very reliable in this 

case and, although the gross features are correct, the radiation pattern does not accurately 

describe the distr ibution of soft gluons for this particular scheme. Consequently, the detailed 

ordering of /C-factors in the CONE scheme cannot be not explained by the rather qualitative 

discussion presented here. 

605 Summary 

In this chapter we have attempted to understand the relative sizes of QCD corrections to 

'isolated' photon + 1 jet events at LEP which depend quite dramatically upon the scheme 

used to define the 'isolated' photon. To do this we have examined the colour flow of soft 

gluons wi th respect to the underlying hard scattering and how the isolation cuts restrict the 
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Figure 6.4: The average energy of the softest quark at leading order for e+e~ —•> 1-jet + 
'isolated' photon production at LEP energies as a function of ycut in the CONE scheme (wi th 
6C = 15°) for the Durham (solid) and EO (dotted) jet algorithms and in the D E M O scheme 
also for the Durham (dashed) and EO (dash-dotted) jet algorithms. 
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allowed phase space of the soft gluon. Whi le these arguments are rather qualitative, they do 

describe the more quantitative results of Figure 6.1, namely, 

JQDEMO > JQCONE 

A t the same t ime, we can understand the hierarchy of radiative corrections in the D E M O 

scheme. 

606 Postscript 

Courtesy of the A L E P H collaboration, we include an example of a z = 1 isolated Durham 

D E M O 1-jet - f photon event, Figure 6.5. In accordance wi th the expectations of this chapter, 

we note the extremely clean hemisphere associated wi th the photon. In addition, we note 

that the event as a whole only contains 6 hadrons—which can be compared w i t h the more 

normal ~ 20+ for a purely hadronic event. This is consistent w i th notion of a colour confining 

antenna of the fo rm in Figure 6.3b. 
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Figure 6.5: Courtesy of the A L E P H collaboration we present a z = 1 Durham D E M O 1-jet 
event. Note that all of the hadrons are confined to the hemisphere not containing the photon. 
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Chapter 7 

The photon + 1 jet event rate w i th 

the cone algorithm In hadronic 

events at LEP 

Using the recently measured photon fragmentation funct ion, we make predictions for 'iso

lated' photon - f 1 jet events using a cone type algorithm at LEP energies. For small cone 

half-angles, perturbation theory breaks down due to the presence of large logarithms. Fur

thermore, large hadronisation corrections are present. We suggest a definition of an 'isolated' 

photon which avoids these problems at small cone sizes and can be extrapolated to the reli

ably calculated large cone region. 
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7.1 Introduct ion 

As noted in the previous two chapters, there has been some recent interest in studying 

'isolated' and non-isolated photon production in hadronic final states in e +e~ annihilation at 

LEP energies, ^/s ~ Mz [57, 41 , 42, 43, 35, 37, 38, 39]. A n 'isolated' photon is accompanied 

by essentially no hadronic energy, while a non-isolated photon cluster is characterised by 

the fract ion z of electromagnetic energy compared w i t h the total energy of the cluster, 

(Eqn. (5.11)) 

_ EEM 

EEM + EHAD 

The original motivat ion for making this distinction was to t ry to measure the electroweak 

couplings of the quarks using 'isolated' photons where the background f rom 7r° —> 77 was 

not severe [36]. I t is diff icul t to resolve the two photons f r o m an energetic 7T° and the pion 

can appear as a single electromagnetic shower in the calorimeter. Since a 7r° is usually 

accompanied by other hadronic debris, to reduce this background, i t was required that few 

(or no) tracks occurred close to the electromagnetic shower. In non-isolated language, this 

corresponds to z ~ 1. From the theoretical standpoint, perfectly isolated photons are not 

infra-red safe since the isolation is spoiled by the emission of soft gluons and consequently 

soft hadrons into the photon direction. Provided that the non-trivial experimental problems 

in removing ir° background can be overcome 1, i t makes more sense theoretically to study 

the production of non-isolated photons and subsequently define an 'isolated' photon cluster 

as having z larger than some cutoff, zlso. However, in allowing some hadronic energy to 

accompany the photon, we admit the perturbatively divergent possibility that the photon 

was emitted f r o m a collinear massless quark. In reality, this happens at large times, cr ~ 

1 /yASg-p so that in practice the quark has already hadronised and this f inal state collinear 

x The A L E P H collaboration claims t,o be able to remove the w° background for z > 0.7 [58] and it may 
prove possible to extend this to z > 0.5 
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divergence can be factorised into a non-perturbative quark to photon fragmentation funct ion 

at factorisation scale f.ijr in much the same way that in i t ia l state collinear divergences are 

factorised into parton distributions [ 3 4 ] . The fip independent cross section then contains 

two components, 

a ~ <T(7 - f partons)(//^) + ]P cr(partons) Da^y(z, f.tp), ( 7 - 1 ) 
a=quarks 

often denoted 'direct ' and 'resolved' respectively which individually depend on ftp. I t is 

important to note that in order to correctly absorb the infra-red divergence, each con

t r ibu t ion should be evaluated at the same order in perturbation theory [59 , 5 5 ] , i.e. i f 

(7(7 + partons)(/i/r) is evaluated at 0(aa™), then cr(partons) should be evaluated at 0(a™) 

since Dq^y(z, fip) is O(a) in the presence of isolation [39 ] (and not 0(a/as) as commonly 

quoted in the l i terature). Once measured, the parton to photon fragmentation funct ion, 

Dpa.rton-*-y(z, (.IF), can be applied to a wide range of processes just as the proton parton den

sities are extracted f r o m deep inelastic scattering experiments and used in hadron hadron 

collisions. 

Previously (see Chapter 5 [ 5 5 ] ) , we described how the quark to photon fragmentation 

funct ion could be measured in 'photon' + 1 jet events at LEP using a democratic algorithm 

to define the photon cluster: all particles (including the photon) are subjected to a clustering 

algori thm and the cluster containing the photon is designated the photon cluster provided 

that z > z c u t . This 'photon' - f 1 jet rate is especially sensitive to the fragmentation funct ion 

since the lowest order process, e+e~ —• 7 + parton, vanishes, while the next-to-leading order 

C>(OJ3) 'photon' + 1 jet cross section, schematically given by, 

a ~ a(qq1) + ^ <r(qq) Da^(z^iF), ( 7 . 2 ) 

a=q,q 

does depend on the fragmentation funct ion. 
1 3 1 



Following the A L E P H measurement of this function using a democratic photon definition 

w i t h the Durham clustering algorithm in the region 0.7 < z < 0.95 [58], one finds that the 

'photon' + 1 jet data, (after subtraction of the rather large 7r° background) can be described 

by a fragmentation funct ion of the fo rm, (Eqn. (5.36)) 

where fi0 = 0.20 GeV and B = —12.40. The particular fo rm of the f i t t i n g funct ion is 

motivated by requiring that (a) the cross section is independent of /.ip and (b) the cross 

section is well behaved as z —> 1. This latter point requires some fur ther clarification: the 

'direct ' contribution acquires one factor of (1 — z) in the logarithm f r o m using dimensional 

regularisation and the MS scheme to isolate the divergence as s q i —> 0. The second factor of 

(1 — z) comes f rom the boundary between the phase space regions where either the quark and 

antiquark combine to form the jet or the quark(antiquark) and photon combine to fo rm the 

photon cluster. By explicit ly removing these factors wi th this form of fragmentation function 

we ensure that the differential distr ibution is well behaved as z —» 1. In this chapter, we 

wish to make predictions for the 'photon' + 1 jet rate using the cone type photon definition 

currently in use for 'isolated' photon studies at LEP. The fragmentation funct ion as measured 

by A L E P H should enable this quantity to be reliably predicted. 

7.2 Photons defined w i t h respect to a cone 

The CONE algorithm for 'isolated' photon production [57, 41 , 42, 43] can be straightfor

wardly carried over into the non-isolated case. First, a cone of half angle 8 is placed around 

the photon and all hadrons inside the cone are clustered wi th the photon to f o r m the photon 
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cluster such that z > z c u t . Second, all hadrons outside the cone are subjected to a jet-f inding 

algori thm, typically the EO/JADE [44] or the Durham [45] algorithms, w i t h a jet resolution 

parameter ycut. T h i r d , the photon cluster is resolved f rom the jets according to a resolution 

parameter y j u t . 

. As discussed above, the first non t r iv ia l contribution to the 'photon' + 1 jet rate comes 

f r o m e +e~ —> qq'f and e+e~ —> qq where one of the quarks fragments into a photon. The 

Dali tz plot for the qq~f f inal state is shown in Figure 7.1 for the Durham and EO jet algorithms 

w i t h 6 — 60°, y c u t = i /Jut = 0.1 and zcut = 0.8 in terms of the quark and antiquark energy 

fractions, 

x = -=• = 1 — y-q'y, x = -=• = 1 — y9-y, (7-4) 
V s V s 

where y, j = Sjj/s = (p,- + Pj)2/s a.nd xy = 2E-Jy/s = 2 — x — x'. This plot is basically the 

same as that of Figure 6.2b, the only difference is that here we indicate a non-unity zcut 

value. In region 1, the quark and antiquark coalesce to form the je t and the photon cluster 

has z = I, while i n region 2 (3), the quark (antiquark) combines w i t h the photon to f o r m a 

mixed cluster w i t h z < 1. The dashed line separating regions 1 and 2, shows the effect of 

the cone size in determining whether the quark combines w i t h the photon or the antiquark. 

The collinear divergence occurs at x' = 1 and a; = 1 respectively and lies along the edge of 

regions 2 and 3. This singularity can be absorbed into the 'resolved' photon contribution 

f r o m qq f inal states where one of the quarks fragments into a photon. The 1 jet + 'photon' 

cross section (for massless quarks of charge eq) as a funct ion of z in scheme S = EO, D is 

then given by (Eqn. (5.20)), 

1 das(l jet + "7") (at 
= 2 D q ^ ( z , f i F ) + 

(Jo dZ \ 7T 

1 ^ ( l j e t + " 7 " ) s 

+ T0 Tz + (™) 

133 



— 3 

Figure 7.1: Dalitz plot for the qq + j f inal state in terms of the quark and antiquark energy 
fractions x and x'. The dotted and dash-dotted lines show the 'photon' + one and two 
jet regions for 8 = 60°, ycut = y2ut = 0.1 in the Durham and E0 schemes respectively. The 
regions where the quark-antiquark combine to fo rm a jet are separated f r o m the region where 
the quark (antiquark) combines wi th the photon by a dashed line. The boundary in z for 
zcnt = 0.8 curtai l ing regions 2 and 3 is shown solid. 
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Here the dependence on the scale /.ip has been made explicit , while the quantity repre

sents the jet algorithm dependent contribution to the cross section where quark and anti-

quark combine, thus leaving the photon completely isolated. I n this case, the photon cluster 

has z — 1. Unlike the democratic algorithms, is the only scheme dependent contribu

t ion. The factorisation scale independent (but cone size dependent) contribution is given by, 

(Eqn. (5.21)) 

1 da(\ jet + V ) f a e r(i + ( i - 0 
(Tq dz \ 7T Z 

log(yz(l - z)) + z 

i + (i - *)2 ( zv + y ( y - 2 ) | ( i - 2 z f / z ( \ + y ) - y 
l—z \1 — z 2 z (1 — z)2 \ z 

(7.6) 

Here y is the maximum value of y 9 7 allowed when the photon and quark combine, 

y = - ( l - y/l - 2v) - 1 where v = z (I - z){\ - cos6). (7.7) 

In the l im i t z —> 1 this boundary is given by, 

j , - I ( l - * ) ( l - c o s * ) , (7.8) 

which is to be compared w i t h the analogous large z boundaries in the democratic Durham 

and EO schemes of y = (1 — z)/(l + z) (see Eqn. (5.23) [55]). We see that in both cases, 

the boundary contains the same (l—z) factor, so that wi th the choice of fragmentation 

funct ion given in Eqn. (5.36), the cross section should in principle be well behaved as z —> 1. 

Furthermore, for 8 = 90°, the large z l imits for the cone and democratic algorithms are 

identical. 

There is a slight subtlety since there is a discontinuity in z across this boundary - for 
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Ug-y > y, z — 1, while for yqi < y, z < 1. This causes a. problem when hadronisation 

effects are taken into account—the process of going f rom the parton level to the hadron level 

can cause a sizable shift i n z. Although this mismatch exists in both democratic and cone 

algorithms, the problem is most severe when the matr ix elements are largest - i.e. when y is 

small. In the democratic case, analysed by A L E P H [58], this problem is visible in the data as 

a spillover f r o m the z = 0.99 — 1 bin to the adjoining z = 0.95 — 0.99 bin (see Figure 5.10). To 

get round this problem and to make a sensible comparison w i t h the parton level predictions, 

A L E P H have defined an 'isolated' photon as having z > zlso = 0.95 and compared that 

w i t h the parton level prediction for z > z-lso. Since the z / 1 contribution (all the terms 

i n Eqn. (7.5) apart f rom R&) tends to zero at high z in the democratic Durham scheme, 

the result is dominated by jR^. By doing this, the uncertainty in z due to hadronisation 

effects is reduced where the cross section is largest. Hadronisation corrections can s t i l l move 

events f r o m z = 1 to values of z < z-iSO, however, this occurs at larger values of yqi where 

the cross section is smaller. W i t h this procedure, A L E P H f ind good agreement between the 

theoretical predictions for the democratically 'isolated' photon + 1,2 and 3 jet rates [58]. 

In the cone algorithm, because y is somewhat smaller than in the democratic scheme, we 

expect that the mismatch between the z measured at the parton and hadron levels where 

the cross section is significant w i l l extend over a larger range of z and that the corresponding 

value of z-)SO should be smaller. 

The differential cross section 1 /a0da/dz for the appropriate combination of light quarks 

at LEP energies is shown in Figure 7.2 for the CONE algorithm (this contribution is inde

pendent of the choice of hadron clustering algorithm) w i t h y c u t = y^ut = 

0.1 and 8 = 90°, 

60°, 30° and 15°. As noted earlier, for 8 = 90°, the cone and democratic algorithms merge at 

large z so that i t is no surprise that the z distribution for 8 — 90° is well behaved as z —> 1. 

However, for smaller cone sizes, although fini te the distr ibution is negative for z close to 1. 

This is balanced by the rapid increase of R& w i th decreasing cone size. 
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Figure 7.2: The differential cross section l/a0dcr/dz, in the CONE type schemes and ycut = 
Vcut = 0.1 for the appropriate combination of light quarks at LEP energies w i t h the A L E P H 
determination of the fragmentation funct ion. The cone size is 8 = 90° (solid), 8 = 60° 
(dotted), 8 = 30° (dashed) and 5 = 15° (dash-dotted). 
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Based on the previous discussion, we expect that after hadronisation corrections the Z?A 

contribution is part ial ly smeared to lower z values, thereby f i l l ing in the negative region and 

creating a physically sensible positive definite distr ibution. To make a sensible comparison 

w i t h experiment, i t is necessary to introduce a suitable (8 dependent) choice of z-ls0. Clearly, 

for 8 = 90°, the A L E P H choice for the democratic algorithm would be appropriate, zlso = 

0.95. However, we see that as 8 becomes smaller, the negative region rapidly extends to 

much smaller values of z so that a much smaller value of z\so is required. We can understand 

this by looking at the small 8 l i m i t , 

* - (^)l i i l^!) ,o g ( i) , 

l ^ C ^ + V ) _ ( < ) ( 1 + " - A o S ( ^ ) . (7.9) 
a0 dz \ 7r J z v ' 

The z = 1 contribution (R&) grows logarithmically as 8 —> 0 at the expense of the z < 1 

fragmentation contribution. This is precisely the region in which perturbation theory breaks 

down because we t ry to resolve the collinear region where the fragmentation contribution 

is important . A t small cone angles, the R& contribution alone becomes meaningless. Note 

that i n many studies of 'isolated' photons, the cone size is chosen to be 10° — 20° so that i t is 

important to attempt to make a sensible prediction for 'isolated' photon + 1 jet production 

w i t h small cone angles at LEP energies. 

To estimate the cross section in the small 8 l imi t i t is v i ta l to include the fragmentation 

contribution. This can be done in a well defined way, that avoids the large logarithms of the 

cone angle while simultaneously reducing the hadronisation corrections, by extending the 

boundary between the 'photon' + two jet region and region 1 (the dotted and dot-dashed 

lines i n Figure 7.1) onto the x = 1 or x' — 1 axes such that, 

zSo = 1 ~ \ / 2 / cut , 
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1 - 2/cut- (7.10) 

W i t h this choice, the log(l/<?>) f rom precisely cancels w i t h a similar logarithm f r o m the 

fragmentation region so that the cross section is almost independent of the cone size. This is 

exactly what we would expect; varying the cone size wi th in the fragmentation region should 

not affect the cross section since we are unable to resolve any structure w i t h i n this region. 

Furthermore, hadronisation corrections which slightly change x (x1) and move events f r o m 

region 1 to region 2(3) or vice versa, do not change the cross section. As a consequence, we 

expect that the cross section for z > z f s o (where S = JD, E0) is a reliable estimate of the 

'isolated' photon + 1 jet rate at small cone angles. 

Figure 7.3 shows the 'isolated' photon + 1 jet cross section normalised to the total 

hadronic cross section as a function of the jet resolution parameter y c u t . In Figure 7.3a, 

the cone size is 20° and the data is taken f rom ref. [41], while in Figure 7.3b, 8 = 15° and 

the data is taken f r o m ref. [57]. In both cases, the solid lines show the lowest order 

contribution. As discussed in the previous chapter [37, 38, 60], the 0(as) corrections to 

are large and negative ( ~ —45%), so that reasonable agreement w i th the data can be made 

for as ~ 0.12 [57, 41]. These large corrections reflect the confusion over the precise definition 

of an isolated photon. On the other hand, the 8 independent 'isolated' photon + 1 jet cross 

section for z > zlso defined by Eqn. (7.10) (dotted line) is significantly closer to the data 

which suggests that (a) the hadronisation effects are modeled better and (b) that the higher 

order corrections to both R& and the fragmentation region are of a more reasonable size. 

I t is interesting to ask how the 'isolated' photon + 1 jet cross section varies as a funct ion 

of the cone angle. A t large angles, 8 ~ 90°, the prediction merges wi th that for the demo

cratic algori thm used to extract the fragmentation function while at small angles, we see 

f r o m Figure 7.3 that the prescription described by Eqn. (7.10) is reasonable. By measuring 
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Figure 7.3: The 'isolated' photon + 1 jet cross section (solid) and l/a0da/dz dz 
(dotted) for (a) 6 = 20° in the EO scheme and (b) 6 = 15° in both Durham and EO schemes 
as a funct ion of the jet resolution parameter ycui. z\so is given in the text, whilst the data is 
taken f r o m Refs. [57, 41] 
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the cross section as a funct ion of 8, we can hope to extract fur ther information about the 

fragmentation region. To make a rough estimate of how the cross section varies for interme

diate 8, we can a,da.pt the phenomenological A L E P H approach to solving the hadronisation 

problem and choose the value of z separating 'isolated' f rom non-isolated photons to be the 

value of z where the boundary between the fragmentation and quark-antiquark combination 

region takes the value y = yo such that for 8 > 8Q, 

Z°~ 2 \ 1 + Y ( l - c o s 6 ) 
r i -cosjio) \ ( 7 1 1 ) 

where 

( i + y o ) 2 

For y > yo (z < z0) we can in principle use perturbation theory to examine the fragmen

tat ion region, however for y < yo (z > Zo), we cannot reliably resolve the photon f r o m the 

accompanying hadronic debris and therefore assign the event to the 'isolated' photon cate

gory. In the democratic scheme, A L E P H find z-,so — 0.95 corresponding to y0 = 0.025 to be 

a suitable choice [58] which corresponds to a cone size of 80 = 35.9°, and an apparently large 

invariant mass for the photon quark cluster of w 14 GeV. Therefore, as a first estimate of 

the cone size dependence of the cross section, we define the value of z separating 'isolated' 

f r o m non-isolated photons to be, 

z i s o = max (z?o,z0). (7.13) 

This is shown in Figure 7.4 for both the Durham and E0 schemes w i t h y c u t = y2ut = 0.1 and 

yo = 0.025. The solid lines show the logarithmically increasing contribution while the 

dotted lines represent this approximation. A t large values of 8, zlso —> 0.95, while for small 

values of 8 (8 < 39° in the Durham scheme and 8 < 61° in the E0 scheme), z-lso —> 0.68 and 0.9 

respectively. As expected f r o m Eqn. (7.2), at large cone angles, the cross section integrated 
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Figure 7.4: The 'isolated' photon + 1 jet cross section (solid) and / ^ s o l/a0da/dz dz 
(dotted) for z-lso given by Eqn. (7.13) in the Durham and E0 schemes as a funct ion of the 
cone angle 8 for y c u t = y^ut = 0.1. The data is taken f r o m Refs. [57, 41] and [58] 

142 



above z-lso and are rather close; perturbation theory is working well and the hadronisation 

corrections are small. The z distribution tends to zero as z —> 1 and the contribution f r o m 

1 > z > z\so is small. On the other hand, for smaller values of 8 this is no longer the case 

and the rapid growth of jRa is counterbalanced by the increasingly negative contribution 

f r o m 1 > z > z-iS0. Around 6 ~ 4 0 ° in the Durham scheme, the overall contribution f r o m 

1 > z > zlso is slightly positive resulting in a cross section slightly larger than The 

available data f r o m OPAL [ 57 ] and A L E P H [41] are also shown. For comparison, we also 

show the ? / c u t = 0 .1 point f r o m the democratic A L E P H analysis [ 58 ] at 6 = 9 0 ° . 

7 c 3 Summary 

In this chapter we have attempted to utilise the recent A L E P H measurement of the photon 

fragmentation funct ion to predict the 'photon' + 1 jet rate using the cone algorithm. How

ever, at small angles there are large hadronisation corrections and large logarithms of the 

cone size. To avoid these problems, we have defined an 'isolated' photon as having z > ziso 

where z-lso is given in Eqn. (7.13). A t small angles, we f ind rough agreement between our 

lowest order prediction and the available data. This is quite remarkable since previously 

large negative 0(as) corrections to the 'perfectly' isolated photon event rate alone) 

were necessary to describe the data. We expect that the 0(as) corrections to the 'isolated' 

photon + 1 jet rate using our definition w i l l be small. 

A t large cone sizes, the cone algorithm is very close to the democratic algori thm used 

to extract the photon fragmentation funct ion. Accordingly, we expect the prediction of the 

large 6 cross section to be reliable. Motivated by the A L E P H data, we have also provided an 

estimate of how the 'isolated' photon + 1 jet rate depends on the cone size. A measurement 
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of this dependence should provide yet another probe of the fragmentation region. 
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Chapter 8 

Z boson decay into photons 

We perform a complete one-loop 0(a4) calculation of the coupling of the Z-boson to three 

photons via both fermion and W boson loops keeping the f u l l dependence on the quark and 

W masses. To evaluate the W boson contribution to the four th rank polarisation tensor 

we use the unitary gauge. We f ind that the contributions f rom fermion and boson loops 

are remarkably similar. Expressions for the helicity amplitudes are presented. The results 

are applied to the decay Z —> 777 where we f ind a partial width of about 1.35 eV for 

m t o p > 91 GeV and s in 2 Ow — 0.23, of which the W boson loops account for approximately 

0.3 eV mainly through their interference wi th the fermion loops. 

145 



S o l Int roduct ion 

One interesting aspect of quantum field theories is the generation of interactions that are 

not present at the classical level. Such interactions occur when a vir tual pair of particles is 

emitted, radiate fur ther particles and are then reabsorbed. The most famous example of this 

is the scattering of light by light which was first studied in the context of quantum electro

dynamics [61]. Since the photon only interacts directly w i t h charged particles, this process 

first occurs at 0(a4) when four photons are attached to a charged fermion loop. In other 

words, at one-loop the effective action contains terms that couple chargeless fields. W i t h i n 

the SU(2) x U(l) model of electroweak interactions, there is also a contribution at the same 

order f r o m charged boson loops. Although i t has been shown that the boson contribution is 

f in i te for photon-photon scattering [62, 63], as indeed i t must be in a renormalisable theory, 

the effects of the W loops have not been widely studied. 

Recently, prompted by experiments at LEP, attention has focused on the decay of the Z 

boson into photons [64, 65, 66]. The two photon decay is forbidden by Yang's theorem, how

ever the three photon decay is allowed and the fermion contribution is well known [67, 68, 69]. 

As dictated by the Appelquist-Carrazone decoupling theorem [70], the top quark contribu

tion rapidly decouples for m t o p > Mz/2 and can essentially be ignored. The remaining light 

leptons and quarks give a contribution to the amplitude proportional to the vector coupling 

w i t h the Z boson, vj and the cube of the electric charge, ey. A closed fo rm for the light 

fermion contribution to the partial width can be found [71, 69], 

T(Z -> 7 7 7 ) = c?az { ^ e ] v q + £ e ? „ ) 2 \ - ^ L X , (8.1) 

where, 

X = 200( 5 - 8 T T 2 C 3 + - ^ V - 128(3 + - 124 ~ 14.954, (8.2) 
15 3 
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and ( n is the ?ith Riemann zeta funct ion. The factor 3 mult iplying the quark contribution is 

due to colour. For five flavours of light quarks, a(Mz) = 1/128, az = a(Mz)/sin2 6w cos2 9w 

and s in 2 6w = 0.23, we f ind , 

T{Z -> 777) = 1.05 eV. (8.3) 

In addition to the fermion loop contribution, there is also a contribution f r o m W*- boson 

loops which probes the non-abelian nature of the electroweak model. Both trilinear (WW7 

and WWZ) and quartic (WW77 and WW^Z) vertices contribute and in principle this 

provides a test of these couplings. In practice, however, i f these couplings deviate f rom the 

structure dictated by the SU{2) x U(\) gauge theory, the W boson loop contribution is 

incalculable. Three calculations exist in the literature. Baillargeon and Boudjema [64] use 

a non-linear R( gauge [72], while Pham [65] and Dong et al. [66] use a linear R% gauge. By 

making an approximation where M\y is large compared to all other scales i n the problem, 

Refs. [64] and [66] f ind that the W loop alone contributes about 0.02 eV to the Z boson 

wid th , approximately 50 times smaller than the fermion contribution. Pham, estimates that 

the total Z —* 777 wid th for both fermion and boson loops is about 2 eV. No estimate exists 

where the exact dependence on both Mw and the unknown top quark mass is kept. 

I t is wor th noting that in all three cases, t h e ' t Hooft-Feynman gauge is chosen so that 

£ = 1. This gauge has the particular advantage that the k^k" part of the W boson propagator 

is zero so that individual diagrams do not contain superficial divergences. On the other hand, 

these gauges do contain many more diagrams than the unitary gauge due to the propagation 

of the unphysical Goldstone boson and ghost fields. For the purposes of this chapter, we 

choose to minimise the number of Feynman diagrams and use the unitary gauge. I t is 

straightforward to cancel the superficial divergences before reducing the tensor integral to 

scalar integrals in the usual way [18]. 

147 



The organisation of our chapter is as follows. In Section 8.2, we construct the polarisation 

tensor for the Z777 coupling. Due to gauge invariance and the possibility of exchanging 

identical photons, this tensor be described by three independent scalar amplitudes (rather 

than four [66, 73]). We f ind that the boson amplitudes are (surprisingly) closely related to 

the fermion amplitudes. In order to translate the polarisation tensor into a physical decay 

wid th , we introduce helicity amplitudes in Section 8.3. Numerical results for the Z —• 777 

part ial w id th are given in Section 8.4, while the main results are summarised in Section 8.5. 

8 . 2 T h e ZJJJ p o l a r i s a t i o n tensor 

The matr ix element, T , for the scattering of an on-shell Z boson wi th three on-shell photons 

can be wr i t ten as, 

X = t M e M e M c M T ^ i p u ^ p a ) , (8.4) 

where we denote the ingoing momenta and Lorentz indices of the photons by pi, p\, p% while 

the momentum and Lorentz index for the Z boson is Using momentum conservation, 

the momentum of the Z boson is related to the photon momenta by, 

V\ = -V\-P%-Pl, (8-5) 

so that the polarisation tensor for the Z777 coupling, Ta^vp{j>\, p 2 , P'i)-, depends only on the 

three photon momenta. 

The most general four th rank tensor contains 81 terms of the type PiPjPlpf, 54 terms 

of the type PiPjgpa and 3 terms of the f o r m g^' gpa'. However, the general tensor must 

have certain properties which provide relations between the different terms and allow for a 
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somewhat simpler expression. For example, using the fact that in the matrix element, the 

tensor is always contracted with physical polarisations for on-shell photons allows us to make 

the identification, 

= Pu2 = Pi = 0. (8.6) 

This drastically reduces the number of terms to 24 terms of the type PiPjP^pf and 30 terms 

of the type p f p j g p a while the number of ' gpa terms remains 3. 

We also note that the tensor must be completely symmetric under interchange of the 

photon momenta and indices, 

Pi <->Pa ^PS Pi- ( 8 - 7 ) 

It is therefore useful to write the tensor in a manifestly symmetric way, 

T a ^ p ( P u P 2 , p 3 ) = £ M a ^ ( P u P 2 , P 3 ) , (8.8) 
perm 

where the sum is over the six possible permutations of the photon four momenta. Gauge 

invariance requires that the tensor is transverse, 

P\v T 0 ^ ( P l , p 2 , p 3 ) = p2v Ta^"(pup2,p3) = p3p T a ^ ( p u p 2 , P 3 ) = 0. (8.9) 

This reduces the number of independent terms to 3 so that, 

MC"U"(p1,P2,p3)= + M P u P 2 , p 3 ) — ( t i r t - g A f i f P* P" ^ 
Pl-P3 \Pl-P3 / \P2-P3 Pl-PtJ 

+ ^2Pi,P2,P3M 9 )\ 9 
[P2-P3 \Pl-P3 J \Pl-P2 J 

+ — ^ W < T - r f < r ) } 
Pl-P3 \Pl-P2 P2-P3/ J 

+ ^3(Pl,P2,P3) — ( ^ - < r ) { ^ - A • (8-10) 
Pl-Ps \Pl-P3 / \P2-P3 / 
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Finally, we note that the tensor is also transversal with respect to the Z boson momentum, 

P4aTa^(PuP2,p3)=0. (8.11) 

The three functions, A{, receive contributions from the fermion and boson loops such 

that, 

• 4 
ie ^2Q3

fvj A{{s,t,mf) +cot 0W A^s^Mw)) , (8.12) 
16TT2 . F 

where the sum runs over fermions with mass my, electric charge Qj and vector coupling to 

the Z boson vj. We have also introduced the M.a.ndelst,a.m variables s, t and u, 

s = (Pi + P2)2 = 2pi.p 2, si = s - M\, 

t = (P2+ Ps)2 = 2p2.p3, tx = t - Ml, (8.13) 

u = (P3 + Pi)2 = 2p3.pi, ux = u-M\. 

The different photon permutations are obtained by exchanging the Mandelstam variables in 

the obvious way, 

A(P3,Pl,P2) = J4,-(U,S), ^.(Pl,P3,P2) = A ( M ) , (8-14) 

and so on. 

It is straightforward to obtain the scalar functions A[ and A\ using the standard tech

niques for one loop integrals of reducing the tensor integral to a combination of scalar 

integrals ([18] see Sections B.4 and B.4.4). There are three types of boson loop as shown 
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Figure 8.1: Feynman diagrams in the unitary gauge for Z boson decay into three photons 
(a) via fermion loops and (b) via W boson loops. 
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in Figure 8.1 containing triple and quartic boson couplings. As mentioned earlier, we use 

the unitary gauge so that only physical particles can propagate—there are no diagrams con

taining ghosts or unphysical Goldstone bosons. As a penalty, each diagram is superficially 

divergent. However, all graphs taken together are finite and we find that, 

1 / M2 \ 
A\(s,t,Mw) = - | _ f - 6 j A{(s,t,Mw), 

1 / M2 \ 
Ab

2(s,t,Mw) = - ( — | - - 6 j Al(s,t,Mw) 

1 (Ml 
4 \M2y 

+ 10 j (2Mlvut H{MW) - ~ E(ttu,Mw)^ - 2sut F(MW), 

1 ( M2 \ 
Ab

3(s,t,Mw) = - ( ^ f - 6 j Al(s,t,Mw) 

+ ^ ( ^ f + lO^j j * 2 E(s, t, Mw) - u2 E(u, s, M w ) 

+2M?vui(u - I) 7 / ( M w ) | , (8.15) 

where the functions E and H are combinations of scalar integrals and are defined below. 

As a consistency check, we have constructed the complete tensor to make sure that 

reinserting the scalar functions into Eqns. (8.8 and 8.10) does indeed regenerate the ful l 

tensor which is therefore automatically gauge invariant with respect to the external photons. 

It is quite remarkable that the boson contribution is so similar to that of a fermion loop, 

for which we find, 

A{(s,t,mf) = — + —(sBl{s,mJ)-s1B1{t,mJ)) B ^ m j ) 
t\ u \ / i j 

2st(2t + u) _ . $m2A 4m2

ft 
u' u s 

+ Am2(s C(s,m/) + < C(t,mj) + ux C^tt, 
8m2

f(s + 2u)t 4m2

fst(u + 2t) 
t i ti 
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— 2m2^iit D( / , u ,m/ ) -f st D(s,t,mj) + us D(u,s,nif)^ — Sm4jt H(rrij), 

(8.16) 

A f . . A(2s-u)t 2s(u-St) n . . 2ii(s + 4i) n , 
Af

2(s,t,mf) = V

 3 ' K ^ 1 B1(s,mJ) K— Bl{u,mf) 

2t(3su - Aut + Bts) n , x AMlut „ , 
+ ~ ^ 3 ^ - " ^ f " 

Sm^u* 2m2,t(u<i - 4si) 2 — — C\{t,m.j) -\ - D(s,t,mj) - f 2m.fUUi D(u,s,mf) 
ti u 

Srnlsut2 ( 1 1 1 \ 
+ ^ ( D(t, u, m}) + — D(u, s, mj) + — D{s, t, m}) J 

4m2,* , , 8m4,* , x . 
+ - ^ E ( s , f , m / ) - _ - > - f f ( m / ) (8.17) 

XL O 

and, 

l / ( , Au As (2t — u „ , . (2s - u)t „ . . u ^ 2 . , \ 
A ^ a . i . m / ) = Y ~ y ( ^ — — fr^m,) + g 2 B1(t,mf) + — B1(u,mf)j 

( 3 - 3 * i ) i x ( f - 2 u , ) u 3 _ . 2 t i 2 i , 
- V

 3 m

 7 + - g - ^ — £ ; ( M , s , m / ) + _ E(t,u,mf) 

Am2,u 
+ 

n fu ( \ 
•y— ( 5 C(s,mj) + t C(t,m,f) + i t j Ci(u,irif)j 

2m2,(4si + 6tu - ZMlu) x 2m2,u*(3s - 2u) , 
6 os 

2m2

fu(3t2 — Ztu — 5su) , , Smiu „ , 
+ jt D(u,s,mf) ^— H(rnf), (8.18) 

where the scalar integrals B^, C, C\, and D are defined as follows. The finite function B\ is 

defined, 

Bitf.m) = -H6ir2(B0(p,m,m) - B 0 ( M z , m , m ) ) (8.19) 

with respect to Section D.2.2. The function C is defined as —il67r 2x Eqn. (D.16). The 
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function C\ follows from this definition as, 

d(s,m) -
sC(s, m)- MzC(Mz,m) 

s-Ml 
(8.20) 

D(s,t,m), like C above, is defined to be —i'167r2x Eqn. (D.18). As auxiliary functions we 

also define, 

E(s,t,m) = s C(s,m) + t C(t,m) + st C t (s ,m) + U C^t.m) - st D(s,t,m), (8.21) 

and, 

We have checked that this reproduces the result for the vector coupling of the Z boson 

with three gluons given in ref. [68]. 

8,3 The Z777 helicity ampli tudes 

Using the Z777 polarisation tensor given in the previous section, we can construct the 

corresponding helicity amplitudes. For simplicity, we work in the rest frame of the pi and 

P2 system where the momenta are given in (E,px,py,pz) notation by, 

H{m) = D(s,t,m) + D(t,n,m) + D(u,s,m). (8.22) 

pt = ( - p , 0 , 0 , - p ) , 

P2 = (-P,0,0,p) 

P3 = (g, 9 sin 0,0, 9 cos 0), 

p% = (E, — </sin 0,0, — </cos0), (8.23) 
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where all momenta are ingoing and where E = \Jq2 + m | . The appropriate helicity vectors 

are then, 

et» = e^ = -L ( 0 , - i , l ,0) , 

e r = 4" = -L (CM, 1,0), 

—̂ = (0, i cos 0,1, — i sin 0), 
v 2 

6 3 ^ = 6 4 ^ = —= (0, — i cos 0,1, i sin 0), 
v 2 

e0 = —(q,-E sin 0 , 0 , - £ cos 0). (8.24) 

Here ef represents the A, = ± polarisation vector of particle i while e0 represents a Z boson 

that is longitudinally polarised. It is useful to define the quantity, 

/ — M 2 

A = < 8 - 2 5 > 

which occurs in all helicity amplitudes associated with a longitudinally polarised Z boson. 

In terms of the three independent functions given in Eqns. (8.10 and 8.12) we find that 

there are nine independent helicity amplitudes, T\1\2x3\z, with — + which are given by, 

(Ax{t,u) , A2(s,i) + A2{u,t) + A3(u,s) | u \ 
1 r (t +-* u) I , 

Si t J 

^A1(t,u) + Ax(u,t)j 

A1(s,t)-A1{u,t)-A2(s,t) + A2(u,t) | A3(s,t) u A3(u,t) < ^ \ 
1 (- «-> u j 1 , 

- ^ ( 6 , 0 + Ai(u,t) + A2(s,t)- A2(u,t) t A3(t,s) t A3(u,t) , u \ 
(- (- <—> "UJ 1 , 

5l U SSi ) 
A1(s,u) - A 2 (a,u) - i4 2 (f ,u) A 2 ( M ) + A2{u,s) A3(s,t) _ « A 3 ( t x , f ) \ 

Si S U SS\ J 

• H 

= - 2 

- • ( 
T + + -

- • ( 
. 4 
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X = 2 M i ( - S ^ ) ( t (A 2 (a,u) + >42(t,u)) | < A 3 ( u , < ) \ 

(8.26) 

while for the amplitudes where the Z boson is longitudinally polarised, 

^ 2A (su-tMl A . . , A , . , . .. s t iA 3 (u ,5 ) . A 
T + + + 0 = ^ — ^ A t ( i , u ) + a (A2(s,u) + A2(t,u)) + 3A-Lj.-(t~u)j 

T + + _ 0 = ^ ( S U ~ t M z (A1(s,u)-Al(t,u) + A2(t,u)-A2{s,u)) + s1(A1{t,s)-A2(t,s)) 

st , A . , A . NX + Ml) A . A 
A 3 a, 0 - A 3 (*, s ) + V ^ ^ A 3 (n , < - < «) , 

u ss1 I 
^ 2A (su - tMl . . \ A . . t(s + Ml) . A , 

M | \ ax ai 

- * ( A 2 ( i , a) + A2(u, a)) - - A 3 (a, *) + "* ( * + A 3 (u , t)). (8.27) 
u sai / 

The other three helicity amplitudes with Ax = + are obtained by exchanging u and t,1 

T+—+ = T+-+- (t «-+ w), 

T + ___ = T + _ + + ( i <-» u), 

T + _ _ 0 - T + _ + 0 (* <-• u), (8.28) 

while the amplitudes with Ax = — are obtained by the parity relations, 

T-\i\3\z = 7+ - A 2 - A 3 - A z , (8.29) 

for A^ = ± , and, 

^"-A 2A 30 — — ^ + - A 2 - A 3 0 i (8.30) 

for longitudinally polarised Z bosons. 

'Note that in Appendix B of ref. [68], the amplitude V+ is incorrectly given and should read 
V+ (s,t,u) = V+-++{s,u,t). 

156 



8o4 Numer i ca l results 

Using the helicity amplitudes, from the previous section and the explicit forms for the scalar 

integrals given above, it is straightforward to calculate the Z —> 777 decay rate, 

T(Z -> 777) = 3,, 3 8 4 ^ 3 / E l ^ w J 2 ^ dt du S(MZ - s - t - u ) . (8.31) 

The factor 1/3! is the identical particle factor for the photons. The coupling constants and 

the masses of the particles in the loop are contained in the definition of the Ai in Eqn. (8.12). 

For the numerical results, we take Mz = 91.175 GeV, a(Mz) = e2/(47r) = 1/128 and 

sin 2 0w — 0.23 while the W boson mass is given by the relation, M\y — Mz cos 9w — 

80.0 GeV. The vector couplings, vj, are defined in Eqns. (3.31 and 3.32) and are listed in 

Table 4.1. For very light fermions, the amplitudes are essentially independent of the precise 

value of the fermion mass. For computational reasons we choose mu = rrid = ms = mc = 

me = m M = mT = 100 eV. Varying this mass between 100 eV and 2 GeV does not change 

the results by more than the monte-carlo error on the integration, which is less than 1%. 

For the bottom quark, we take m j = 5 GeV. 

The only unknown parameter is the top quark mass, m t o p , and in Figure 8.2, we show 

T(Z —* 777) in the interval 0 < m t o p < 200 GeV. The latest experimental bound on the 

mass of the top quark from CDF is 174 ± 10±}| GeV and from LEP is 177 ± llt\l GeV [9]. 

Nevertheless, we show the whole range of m t o p in order to exhibit the threshold behaviour 

around m t o p = Mz/2 where the possibility of making two on-shell top quarks vanishes. 

Above the threshold, the top quark rapidly decouples as is well known [71]. 

At small m t o p , the top quark makes a sizable contribution. This is because each quarks 

contribution is proportional to the cube of the quark charge and therefore quarks with 
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Figure 8.2: The partial width for Z —> 777 in eV as a function of the top quark mass mtop. 
The total (fermion -f boson) width is shown as a solid line, while the fermion contribution 
alone is shown dotted. 
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Qf — +2/3 dominate. The lepton contribution is suppressed both by colour and by the 

fact that Vj is small for charged leptons. The rate at small m t o p is therefore approximately 

50% larger than at large m t o p where the up and charm quark contribution dominates. The 

monte-carlo estimate of the partial width at small m t o p agrees with the analytic formula of 

Eqn. (8.1). 

Figure 8.3 shows both the total Z —> 777 partial width (including both fermion and 

boson loops) and the fermion contribution alone. On its own, the W loop contribution is 

0.026 eV, in rough agreement with the estimates of [64, 66], however, the interference with 

the larger fermion loop contribution is significant and increases the width by about 27% or 

0.3 eV over the whole range of mtop. 

We note that the decay rate does depend quite sensitively on the precise choice of sin 2 Qw 

through the vector couplings of the Z boson with the fermions. Allowing sin 2 Qw = 1 — 

M$v/Mz to vary between 0.20 and 0.25 (i.e. 81.5 GeV > Mw > 78.9 GeV) causes the total 

three photon decay width to vary up or downwards by a factor of about 2. The W loop 

contribution alone remains almost constant at 0.026 eV. 

8o5 Summary 

In summary, we have computed the polarisation tensor for the Z777 coupling including both 

fermion and W boson loops using the unitary gauge. The three independent amplitudes 

describing this tensor have not appeared in the literature before. It is remarkable that the 

boson and fermion contributions are so similar, bearing in mind the non-supersymmetric 

nature of the standard model. By projecting out the different helicity amplitudes we have 

obtained the Z —> 777 decay width keeping the fu l l dependence on the top quark and W 
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boson masses. For the allowed range of m t o p , the entire one-loop standard model contribution 

to the Z —• 777 decay is 1.35 eV. In other words, one such decay would occur for every 109 

hadronic Z boson events. Svich a rate is clearly beyond even the high luminosity option at 

LEP. I t is interesting to compare this rate with that for the two loop process Z —> jH —> 777, 

which is heavily dependent on the mass of the Higgs particle, H. The product of the branching 

ratios for these two processes are: 2 x I O - 1 0 for a Higgs mass of m# = 60 GeV; and 7 x 1 0 - 1 1 

for mu = 70 GeV [76]. The current limit on the mass of the Higgs is ra# > 62.5 GeV [77] 

so our calculation represents the majority of the SM signal. 

In fact, three photon events have already been observed at LEP [78, 79, 80], however, 

they are completely consistent with the purely QED process, 

e+e~ -> 777. (8.32) 

This tree level process provides an irreducible background to the rare decay discussed here. 

Expressed as an effective partial width at the Z-pole, this has a value of about 10 keV [81] 

and makes the observation of the standard model process described here completely unlikely. 

Nevertheless, many extensions to the Standard Model such as models where the Z boson is a 

bound state of charged constituents do allow an anomalously large three photon decay rate 

[82, 81] analogous to the decay of the J ftp into photons. Any disagreement with the QED 

prediction cannot be due to standard model processes and must indicate some new physics. 
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Chapter 9 

The 2nd Order Formalism 

Here we describe, in two distinct ways, a re-interpretation of the Dirac algebra of interaction 

in QED; the 2nd Order Formalism. 

9.1 Int roduct ion 

Fermionic calculations, at their most elementary, are just strings of 7^ (Appendix E) matrices 

over which we must eventually perform a trace. The 2nd Order Formalism is in essence a re

writing of the conventional 1st Order Feynman rules for the calculation of processes involving 

gauge bosons coupled to fermions that form a closed loop. A general property of complete 

perturbative calculations at any fixed order in the coupling is that they are gauge invariant. 

These rules ensure that explicit gauge invariance is present at the level of small subsets of 
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diagrams and not just when all of the diagrams for a given process are summed. 

The discussion of Section 9.2 will show that this approach does generalise to non-abelian 

theories, indeed from its string inspired origins [83, 84] it was originally directed at problems 

in QCD, but for the purposes of this thesis (namely the content of Chapter 10) all that is 

required is an abelian analysis. 

The calculation of fermion processes in quantum field theories necessitates the extensive 

manipulation of Dirac algebra. Specifically, we are required to manipulate so called gamma 

matrices, 7M. Section 9.3 will explicitly relate the 2nd Order Feynman rules to the more 

conventional 1st Order ones. 

The contribution to Z (of Eqn. (2.7)) from a fermion coupled to an abelian field is a factor, 

J DifrVij)... exp i J if) (iJ/) — m^,j if) (9.1) 

which, with reference to Eqn. (2.40), may be formally re-written as, 

det (ip - nty) = det [(ip - m^j (i$ + m ^ ) ] 1 / 2 = [det - m j ) ] 
1 1 / 2 

(9.2) 

We recall that the vertex functions of a theory are generated from the Effective Action 

Eqn. (2.20). So in calculating amplitudes for a theory containing this determinant we should 

expect the power of 1/2 to reveal itself as an overall factor. With this in mind we discard 

it—only to divide by two when we finish an amplitude calculation. Using Eqn. (2.40) again, 
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we raise the operator to obtain, 

det (-$2 - m j ) . . . = J V$V$ ... exp 

Note, that these ^ fields are clearly not the same as the ip fields since C by definition 

must have dimension [ M ] 4 . Indeed, they bare a closer resemblance to regular scalar fields, 

fermionic ones. 

This exponent may be re-written (see Eqns. (E . l , E.3 and 2.32)), 

= D2 + ml + ^ [£>„, D„\ 

= D-2+ml + ^ t a ^ F f l l / . (9.4) 

Provided we do not forget the factor of —1/2, from the log det(...) of the Effective Action, 

we can deduce a set of 2nd Order Feynman rules (from Eqn. (9.4)) for closed fermion loops— 

the minus sign being the conventional fermion loop factor. The fact that the fermions are in 

closed loops ensures that we need not address the question of how ^ is physically manifest. 

( # 2 + mj ) t f ] . (9.3) 

164 



-p 
A ,V-

k+p 

Figure 9.1: The basic unit of contribution to a gauge boson-fermion calculation; A%p. 

9o3 A hands on approach 

On close inspection we see that all gauge field-fermion interaction calculations are built from 

sequences of the following form 1 , 

- r - i ( - i g Q r f ) = - g Q j ^ L (9-5) 

with 

Dk = - (k2 - m2

f) (9.6) 

Here, we define Ak p to be the lorentz structure carrying part and Dk+P the denominator of 

the normal (1st Order) product of a fermion propagator, and a gauge vertex. Here g is the 

coupling and Qj is the charge of the fermion, / , with respect to the gauge field that carries 

—p from the vertex. This is shown explicitly in Figure 9.1. In QED g = e and Qj = —1. 

We can manipulate this expression into the following useful form, 

< P = (* + J» + m/ ) 7 " ( 9 - 7 ) 

= 1(2 (2P + p") + fY ~ Y (2# + f - 2 m ; ) ) 

1 We are considering only those processes not involving the 75 matrix. 
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= ( F + p») - - I [7",^] - 7 " (/(• - m / ) (9.8) 

We note that the contracted 7 matrices, f and are now separated. The first is present 

in a conveniently minimal form, i.e. for massless, or massive, gauge bosons i t identically 

obeys the gauge invariance condition for externally polarised gauge fields, namely, 

(^ + ̂ )[r,f} = ^w\f]. (9.9) 

As we shall see, the second gives rise to a different simplification when i t is followed by 

another A. 

For transparency we define B£p, C£ and E**" for this fermion (with Eqn. (E.3)), 

Blv = ( * " + - + i ^ p , , (9.10) 

d = + Y ( t - m } ) (9.11) 

= 7"7" (9.12) 

such that, 

KP = KP - CH (9.13) 

and, 

C^pAl>v = -E»»Dk+p. (9.14) 

We shall now consider the consequences of partially expanding two or more consecutive 

As in terms of these new objects, (see Figure 9.2a) 

Ak+p,q Ak,p ••• ~ {Bk+p,q ~ Ck+p) Ak,p • • • 
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Figure 9.2: A consecutive pair of A^.p type objects; generalising to a fermion spin line 
connected to a number of gauge bosons, (a) and (b) correspond to the two "orderings" of 
coupling the fermion to the bosons. 

= {Bk+P,gBk,p - Ck+pAk\p - £fc+Pl<,Cfc) . . . 

= ( B ^ B ^ + E ^ D ^ - B ^ C j ! ) . . . (9.15) 

where we have used the property Eqn. (9.14). We note that only the last term in the 

numerator contains the object C. 

The above process of exchanging As for Bs, Es and Ds generalises immediately for n 

consecutive As. The obvious complication, however, is that we do require a C factor to 

truncate a fraction of the terms. We note that such terms are always preceded by a minus 

sign. 

In the case that the fermion line is closed (i.e. a fermion loop) the string of As is actually 

traced over. For this reason we are permitted to move a trailing C to come at the left of the 

sequence (the cyclic property of the trace operation). It is then possible to all but completely 

remove the Cs from the trace, by simply replacing all Bs that are to the immediate right 

of a C with the appropriate A + C and then using Eqn. (9.14) to remove the A. The 

only offending term that remains after exhaustively repeating such a replacement is a single 

sequence of Cs. For example, in the simple case of two As in a closed loop (the vacuum 
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polarisation cf. Eqn. (4.17) and Figure 4.6) we have, 

- T r { < Al^_q) = - T r {B^ Bk+q,_q + E»" Dk - C£+J 
= " T r {B^ BK+Q,.Q + E»» Dk - C»k+q + c ( ) } 

= - T r {B^ Bk+q,.q + Dk + Dk+q - C^q Cjt} . 

(9.16) 

The minus sign accompanying the sequence of Cs is the one noted after Eqn. (9.15). This 

form solves the problem of removing the Cs completely, see Eqns. (9.7 and 9.11), since 

Tr {CnCxC2Cz ...} = Tr {A,A2A3 ... An} (9.17) 

where again we have used the cyclic property of the trace. Accordingly, Eqn. (9.16) may be 

written, 

- Tr {A'k\q Al+q,_q} = -l-Tv {B^ + Dk + ET" Dk+q} . (9.18) 

The effect of removing the Cs can be seen as simply pinching the first and last As to 

give an ED term and an overall factor of 1/2 outside the trace. We find that compared with 

the conventional —1 for the 1st Order fermion rules the 2nd Order rules require a factor of 

— 1/2 for a fermion loop. 

In this simple case we can perform a change of loop momentum (change the variable 

of integration in Eqn. (4.17)) k —> —k — q in the third term (of Eqn. (9.18)) to make the 

coefficients of the E terms the same. 

In the more general case (for a larger loop) some more analysis is required. Returning to 
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the level of Eqn. (9.15) we write the spinor line where the gauge couplings are reversed (see 

Figure 9.2b) as 

AZ+q,P

 A l q •••= { B k \ q A + E^Dk+q - B ^ C i ) . . . (9.19) 

In any physical (gauge invariant) process, diagrams of both this and Eqn. (9.15) forms 

must be included when calculating the associated observable. Accordingly, we are at liberty, 

in an attempt to rewrite the Feynma.ii rules, to immediately sum these two contributions. 

Including the associated propagators (Ds), the E parts of the two orderings of As sum to 

give, 

Ak+P,q Ak,P +

 Ak+q,P

 Ak,q _ + + E^ + = + W 1

 + ^g 2Q^ 
Dk+p+qDk+p ^fc+P+g B"k+q Dfc+p+q Dk+p+q 

The effect of this combination of terms is then to pinch the fermion propagator between 

the two gauge couplings and invoke a four point interaction type term—since the only 

surviving propagator is that which is common to both diagrams. Thus, in a gauge invariant 

set of diagrams with all possible orderings of the gauge bosons, all pairs of bosons will give 

rise to pinched four point terms. More generally, with a factor of —gQf for each gauge 

coupling, the objects B, D and 2g^u provide a complete set of Feynman rules for fermion 

loop calculations. 
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Figure 9.3: The Feynman rules for QED type interactions—all momenta are directed out
wards. In addition to the rules given here a factor of —1/2 is required for a closed fermion 
loop. Care should be taken to remember the implicit unit matrix (say 702) present in those 
parts of the rules not containing an explicit aaf3 matrix. 

9 o 4 Summary 

In summary, a closed spinor line may be computed from a 2nd order set of Feynman rules 

namely those given in Figure 9.3. These rules, although equivalent to, are significantly 

different from the standard ones. Notably they only include the anti-symmetric object cr'w 

and no individual 7 matrices. 

In the figure the ± sign accompanying the aa^ contribution to the 3-point interaction 

term is the discrepancy between the two derivations of Sections 9.2(+) and 9.3( —). At 

first sight this might appear to be an inconsistency, but i t actually highlights a curious and 

currently empirical, subtlety in the rules. Namely, that all terms in a traced fermion loop 

that contain an odd number of cr's are canceled in the complete amplitude. We have checked 
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this is the case up to the level of a fermion box. 
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Chapter 10 

Snper symmetry Relations Between. 

Contributions To One-Loop Ganige 

Boson Ampli tudes 

We apply ideas motivated by string theory to improve the calculational efficiency of one-loop 

weak interaction processes with massive external gauge bosons. In certain cases "super-

symmetry" relations between diagrams with a fermion loop and with a gauge boson loop 

hold. This is explicitly illustrated for a particular one-loop standard model process with 

four-external gauge bosons. The supersymmetry relations can be used to provide further 

significant improvements in calculational efficiency. 
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10.1 Introduct ion 

Even the simplest one-loop gauge boson amplitudes can be rather formidable to compute. 

Recently, an advance in the calculation of one-loop gauge boson amplitudes has been made 

based on string theory [85, 83]. Using this technique, the first calculation of the one-loop 

five-gluon amplitude has been performed [21, 22]. As another example, one-loop graviton 

scattering calculations have been shown to be relatively simple once the corresponding QCD 

calculations have been performed [86]. 

In the case of QCD, the string-based rules have been interpreted in terms of a particular 

set of vertices and organisations whose main feature is that they lead to relatively efficient 

computations. As a bonus, the various contributions to the one-loop amplitude exhibit 

simple relations between the gluon and fermion contributions at the level of the integrands. 

In the usual Feynman diagram approach, the initial lorentz structure of the various 

diagrams bear little resemblance to each other. Each of the different types of Feynman 

diagrams are then separately evaluated. This may be contrasted to string theory, where the 

various particle states are treated more uniformly, making relationships between the various 

types of contributions apparent. In the calculation of the five-gluon amplitude [21], a striking 

manifestation of this is that the gluon loop contribution is rather easy to obtain from the 

fermion loop contribution since the two calculations are almost identical. These relations 

between fermion and boson loop contributions are connected to the remarkable simplicity 

of one-loop amplitudes in N = 4 super-Yang-Mills, which was first pointed out with the 

aid of string theory [87]. Supersymmetry relations have become a standard tool in QCD 

calculations [88]. The conventional supersymmetry relations are between amplitudes with 

differing numbers of external fermions. The relations we discuss here are between diagrams 

with the same type of external particles but with differing internal particles. 
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Here we explain how to reorganise one-loop gauge boson amplitudes involving W's and 

Z's to mimic the efficient reorganisation for gluons. As an added bonus in certain cases the 

manifest relations between gauge boson and fermion loops are preserved. These relations 

can then be used to provide further significant reductions in the amount of work involved in 

a computation. To do this, we will make direct use of the field theory lessons obtained from 

string theory [84, 89]. The approach presented here is helpful whenever a one-loop diagram 

contains a non-abelian vertex. 

As a particular example, we will discuss the calculation of the process Z —> 37 [90, 

91] (which is of some interest for compositeness searches). From the results of a unitary 

gauge calculation (Chapter 8 [91]) the striking relationship between the boson and fermion 

contributions to the amplitude has already been noted. Here we explicitly show how to make 

use of this supersymmetry relationship to significantly improve calculational efficiency for 

this process. With the superstring-motivated reorganisation nearly the entire result for the 

W-loop contributions can be obtained from the fermion loop contribution. In processes such 

as 27 —> 2Z [92] (which is of some interest for searches for ultra-heavy fermions at future 

photon-photon colliders) there are additional mixed scalar and gauge-boson loops. However, 

one can still use the supersymmetry relations to significantly reduce the computational 

difficulty of the gauge-boson loop contributions. For processes with external W s , one loses 

simple supersymmetry relations due to the flavour changing in the loop, but there are still 

significant advantages to the gauge choices which we describe. 

In Section 10.2, we review the supersymmetry relations for the diagrams that appear in 

one-loop gauge boson scattering calculations and describe the application to spontaneously 

broken theories such as the standard model. In Section 10.3, we present the calculation of 

Z —*• 37 as an explicit example. In Section 10.4, we comment on other processes such as 

27 —> 2Z and provide tables containing the coupling constants for the various vertices. 
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10,2 N = 4 super symmetry relations 

Although derived from string theory, the string-based organisation, can be understood in 

ordinary field theory [84, 83]. Besides the inherent advantage of obtaining simpler diagrams 

with an efficient organisation, as an added bonus one obtains relations, connected to the 

simplicity of Â  = 4 super-Yang-Mills amplitudes, between gauge-boson and fermion loop 

diagrams. The use of these N = 4 supersymmetry relations as a computational tool was 

pointed out in ref. [21] for the one-loop five-gluon amplitude. With the string-based or

ganisation the relations are manifest at the level of the integrands of diagrams and can be 

effectively used as a computational tool to obtain most of the gauge boson loop contribution 

from the fermion loop contribution. 

Following the discussion of refs. [84, 83] the key field theory ingredients for obtaining a 

good fraction of the gluon amplitude simplifications of the string-based approach are: 

• The Feynman rules should be colour ordered [93, 83]. To a large extent this simply 

amounts to rewriting the Yang-Mills structure constants in terms of traces of commuta

tors of fundamental representation matrices and considering only one colour structure 

at a time (see Appendix F). This concept is useful in QCD because it reduces the 

number of diagrams to be considered. 

» The background field Feynman gauge [94] should be used in calculations where a non-

abelian vertex appears in the loop. This gauge is used to construct the one particle 

irreducible diagrams describing a gauge invariant effective action (see Section 2.4). The 

background field Feynman gauge is advantageous to use because the propagators are 

the normal ones but the vertices are more simple than in the conventional Feynman 

gauge. For the N = 4 supersymmetry identities to be manifest it is essential for all 
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vertices of the one-particle irreducible diagrams to be background field gauge vertices. 

The second order formalism should be used for the vector part (no 75) of one particle 

irreducible diagrams with fermion loops (see Chapter 9 and ref. [84]). This formalism 

amounts to rewriting the usual Dirac determinant with Eqn. (9.2). With this for

malism, the fermion loop contributions are very similar to those of the gauge bosons. 

Additionally, there is considerable overlap with the calculation of ghost or scalar loop 

contributions. 

The scattering amplitudes are constructed by sewing trees onto the one-particle irre

ducible diagrams. One can use standard Feynman gauge for the trees if one desires. For 

gluons, a particularly convenient gauge for the trees is the non-linear Gervais-Neveu 

gauge [95, 84] because of the simple vertices. It is obviously advantageous to use dif

ferent gauges for the tree and loop parts of the computation since one can optimise 

the gauge choices to minimise the computations required in the different parts of the 

diagrams. (Although it might seem strange that two different gauge choices are used 

for the loop and tree parts of the Feynman diagrams, in the background field method 

this has been justified by Abbott, Grisaru and Schaeffer [94]). 

Wi th the background field Feynman gauge and second order fermion formalism for 

the one-particle irreducible diagrams, virtually the entire calculation of a gauge boson 

loop is contained in the fermion loop calculation. This can be used to avoid pointless 

duplication of significant portions of the calculation. 

Finally, a decomposition into gauge invariant tensors [96, 91] or spinor helicity methods 

[97] can be used. In this paper we use the former method. With the tensor decom

position method one can use the usual Passarino-Veltman technique for performing 

tensor integrals ([18] see Section B.4). To use the spinor helicity technique, one first 

performs those spinor simplifications which are not obstructed by the presence of loop 
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momentum. Then a Feynman parameterisation is performed to eliminate the loop 

momentum; the remaining spinor helicity simplifications can then be performed. (One 

can use an electric circuit analogy [98] to arrive at the same integrand if one desires.) 

The Feynman parameter integrals can then be evaluated using the integration method 

Here we apply the latter five ideas to weak interactions and demonstrate that the gain in 

computational efficiency is quite significant. The application of these ideas is straightforward 

since it mainly involves using a different set of Feynman rules than the conventional ones 

and then observing a set of relationships between the integrands of certain diagrams. In 

the string-based approach of refs. [85, 84] these relations are an inherent property of the 

string-based rules. In the above field theory approach, the relations are found after the trace 

over 7-matrices has been performed and the integrands of the various loop contributions are 

compared. We now present the application of the above ideas to weak interactions. 

First consider the case of no fermions. In the background field Feynman gauge [94] this 

sector of the SU(2) x U(l) Lagrangian is given by C\ -f £ 2 + Cgj + Cgilost where, 

of ref. [22]. 

1 1 ( F / ' W + W)f - -{F^{B + B)) l (10.1) 

£2 = ( D ^ { D ^ ) - X ( ^ ) 2 + ^ 

- ^ ( ^ + Y ( ^ o - ^ ' ) ) 2 

Cghost = - w j (dHil - gd^\Wf + WP + gt^wfd. + g2W?(W* + W ^ k e h 

(10.2) 

(10.3) 

(10.4) 
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where r ' are the Pauli spin matrices cind W% and B are respectively the SU(2) and U(l) 

hypercharge background fields and W and B are the corresponding quantum fields. The 

covariant derivatives appearing in C2 are covariant with respect to both quantum and back

ground fields. The field tensor, FfiU(A + A) is that of Eqn. (2.32), for the appropriate gauge 

group, where we have explicitly replaced the single field A M with the sum of quantum field, 

A^ and background field, A*1 [94]. The ghost Lagrangian may be obtained by the usual 

Faddeev-Popov technique. In order to obtain the usual fields of the standard model we shift 

the Higgs field as in Section 3.2. We transform the B and W background fields, 

= Afi cos Ow - 2/t sin 9W 

Wl = Af, sin 9W + cos 6W 

with similar equations for the quantum and ghost fields (cf. Eqn. (3.13)) 

After performing the above shifts of field variables in the various Lagrangian terms, we 

obtain the gauge sector of the standard model Lagrangian in background field Feynman 

gauge. The Feynman rules generated by this Lagrangian relevant for the calculation of 

Z —» 37 are depicted in Figure 10.1. Only those vertices with two quantum fields attached 

are given since those are the only contributing ones at one loop. These Feynman rules satisfy 

the property that there is no A^W^ coupling, considerably reducing the number of diagrams 

which must be considered in the Z —> 37 calculation, since diagrams with mixed (f>-W loops 

do not appear. (This is similar to the absence of such couplings in the non-linear gauges 

discussed in refs. [99].) For generality the coupling constants in the rules of Figure 10.1 have 

been removed since the various types of gauge bosons couple with different strengths. The 

various coupling constants required for the calculation of Z —» 37 are given in Table 10.1. 
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Figure 10.1: The vertices, with coupling constants removed, needed for the calculation of 
the boson loop contributions to Z —> 7 7 7 . 
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Vertex Coefficient 
AW~W+ e 
ZW~W+ e/tan 9w 
A(j>~<f)+, A u + t c j + , AOJ'U'1 —e 
Z<j)-<f>+ — ej tan 29 w 
Zu>+^u>+, ZU~UJ~^ — e/ tan 9w 
AA(l>+<f>-, AAw^u* e2 

AZ<j>+(j>- e 2/ tan 29w 
e 2/ tan 9w 

AAW~W+, e2 

AZW~W+, e 2/ tan 0jy 

Table 10.1: The coupling constants of the vertices needed for the calculation of Z —> 37. 

Now consider the inclusion of internal fermions with no flavour changing in the loop. 

Because the relationship between the fermion and boson loop that we are interested in does 

not involve the 75 in the fermion coupling, we divide the fermion loop computation into 

a part which contains a 75 and a part which does not contain a 75. This can be done by 

considering the one-particle irreducible diagrams in the conventional (first order) formalism; 

one then collects all the 75 's together so that the fermion trace contains no more than a 

single 75. This is then split into the axial part containing the 7.5 and the vector part which 

does not contain the 75. The axial part may be evaluated in the usual way since this part 

does not play a role in the supersymmetry identities. The diagrams of the vector part of 

the one-loop effective action may be described by the familiar Dirac determinant which is 

rewritten in the second order form Eqn. (9.2). It is this form which makes the relationship 

of the fermion loop to the gauge boson loop manifest in the integrands. For the case where 

there is flavour changing within the loop, and necessarily different masses appear inside i t , 

the relationship to the gauge boson loop is more obscure and one loses the added bonus of 

simple supersymmetry relations; the advantage of simpler background field vertices is, of 

course, not lost. 
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In particular, for the case of Z —> 37, the 75 contributions all drop out because of 

cancellations between diagrams where the fermion circulates in one direction and diagrams 

where the fermion circulates in the opposite direction. This means that for this process, the 

relevant fermion loop can calculated with the rules of the 2nd order formalism depicted in 

Figure 9.3. The coupling associated with each background field is the same as the appropriate 

effective vector coupling of the first order formalism with an accompanying loop factor —1/2, 

where the minus sign is the familiar one for a fermion loop. One obvious feature of these 

second order fermion rules is that they bear a much greater resemblance to the boson rules 

than the conventional (1st order formalism) Feynman rules for fermions; this is important 

for making the supersymmetry relations hold diagram-by-diagram. 

Wi th the rules given in Figures 10.1 and 9.3 the integrands of diagrams for one-loop n 

gauge boson scattering satisfy a N = 4 supersymmetry constraint [21, 83]. This relationship 

between diagrams with fermions in the loop and gauge bosons (and associated ghosts) in the 

loop is depicted in Figure 10.2 and is given by 

£> s c a l a r (m s ) = CsS(ms) 

Dkrrnion(mf) = -Cf{2S(ny) + F{mf)) (10.6) 

D g a u g e b o s o n K ) = Cg{{\ - SRe)2S(mg) + AF(mB) + G{m,g)) 

where the particle labels refer to the states circulating in the loop, the mx are the masses 

of the particles circulating in the loop and the C,- are coupling constant factors which de

pend on the processes under consideration. The D all refer to the same diagram types, 

but with different particles circulating in the loops. For two or three legs attached to the 

loop the simple quantity G vanishes at the level of the integrand. (The dimensional reg-

ularisation parameter is 8R = 1 for either conventional dimensional regularisation or for 

the 't Hooft-Veltman scheme [16] while SR = 0 for either the dimensional reduction [100] 
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Figure 10.2: The N = A supersymmetry relations. These relations hold in the integrands of 
the diagrams. (For simplicity the ghost loop is implicitly included in the gauge boson loop.) 
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or four-dimensional helicity [85] schemes.) In cases where all types of diagrams satisfy the 

supersymmetry identities Eqn. (10.6) (such as Z —• 37), the sum over all diagrams - namely 

the amplitude - also satisfies this identity. 

The connection of these identities to N = 4 supersymmetry is that for N — 4 super-

Yang-Mills (one gluon, four Weyl fermions, and 6 real scalars) everything but G cancels after 

summing over the various loop contributions. (The regulator factor 8R = 0 is necessary so 

that supersymmetry is not broken). That is, 

DN=4 s u s y = g4G (10.7) 

where g is the coupling. The other terms all cancel. 

In performing the calculation, instead of calculating the diagrams directly it is more 

efficient to calculate S, F and G. The importance of the above identities is that each part 

of the calculation is successively easier to perform; S is the most complicated part, F is 

the next most complicated part and G is by far the easiest part of the calculation. In a 

conventional approach one would effectively be recomputing the S and F parts since one 

computes the gauge boson loop directly. This leads to a significant computational advantage 

for the gauge boson loop beyond the already large simplifications of Feynman background 

field gauge. (With conventional gauge choices, l ike ' t Hooft-Feynman or unitary gauge, the 

unnecessary re-computation of S and F is actually significantly more complicated than the 

direct computation of these quantities from scalar and fermion loops.) 
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Figure 10.3: The diagrams needed for the calculation of Z —> 37: the loops can be either 
fermions, gauge bosons or scalars. 

1 0 o 3 E x p l i c i t e x a m p l e 

Consider the process Z —> 37. This process has already been discussed in refs. [90, 91] (see 

Chapter 8) using more conventional techniques. We show here how to reduce the PF-loop 

computation to a very simple one once the fermion loop is calculated. The four one-loop 

diagram types required for calculating Z —> 37 are depicted in Figure 10.3. The complete 

amplitude is obtained by summing over the six permutations of external legs. 

From ref. [91] we have the general tensor consistent with gauge invariance and crossing 

symmetry for the three photons as Eqn. (8.10). The amplitude is obtained from this tensor 

by dotting i t into the external polarisation vectors. In this method one only computes the 

scalar quantities A i , A2, A3 thereby eliminating the redundant information contained in a 

gauge invariant expression, in a way analogous to what happens with spinor helicity methods. 

Factoring out the coupling constants we obtain an expression for the A,'s in terms of the 
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scalar, fermionic and gauge boson Feynman rules of Figures 10.1 and 9.3, 

ie4 ( 

+ cot 9wA?(s, t, Mw) + cot 20wAf(s, t, Mw)^j (10.8) 

cf. Eqn. (8.12). Here the fermionic A^s are denned to include their overall minus sign. For 

the gauge loop, A™, we note that the inclusion of both ghosts, and a;**, is straightforward 

since they are just (fermionic) complex scalar fields. In fact, in background field gauge, 

A"* (s, t, Mw) = —Af(s,t,Mw), and thus A}v, which we take to include both the W and 

Faddeev-Popov ghost contributions, is obtained by application of the Feynman rules of 

Figure 10.1 minus twice the scalar Af result. We therefore only need to compute the three 

separate contributions A f , A{ and A f . Further discussion of the tensor decomposition 

method can be found in ref. [96]. 

In order to minimise the duplication of effort, we make use of the supersymmetry relations 

Eqn. (10.6) to systematise our evaluation of the above scalar A, functions. Since all of the 

diagram types in this calculation satisfy the supersymmetry relation Eqn. (10.6), the sum 

over the diagrams or amplitude will satisfy the relation. As mentioned previously, it is 

not difficult to verify that the 75 contribution in the fermion loop drops out because of 

cancellations between diagrams where the fermion circulates in one direction and diagrams 

where the fermion circulates in the opposite direction.. This means that the entire fermion 

loop contribution is of the vector type and therefore included in the supersymmetry identity. 

The first step is to compute the scalar loop contribution. After summing over diagrams 

and reducing the tensor integral down to scalar ones (see Section B.4) the result is 

Af(s,t,m) = S-i(s,t,m) = ~A((s,t,m), 
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At(s,t,m) = S2(s,t,m) = ~A{{s,t,m) - ^-(2m2H(m) - ~E(t,u,mf), (10.9) 

1 1 
A$(s, t, m) = S3(s, t, m) = --A£(s, t, m) - — {t2E(s, t, m) - u2E(u, s, m) 

+2m2ut(u-t)H(m)} 

where the functions A{, etc. are denned in Chapter 8. The mass, m, is that of the scalar 

going around the loop and the arguments s, etc. are defined in Eqn. (8.13). 

The scalar loop is the most complicated piece to integrate since the graphs contain the 

most powers of loop momentum in the numerator. In general, because of the explosion 

of terms which occurs in the evaluation of tensor integrals [18, 22], factors of loop mo

menta cause the largest complications; this is reflected in the complexity of this result, see 

Eqns. (8.16-8.18). 

The next stage of the computation is to subtract out the part of the fermion loop pro

portional to the scalar loop in the integrand of each diagram; after integration this yields 

the T{ which after summing over diagrams are as follows 

^ 1 ( 5 , t,m) = —A{(s,t,m,) — 2Si(s,t,m) = Q, 

F2(s,t,m) = -Af

2(s,t,in)-2S2(s,t,m) = tu(27n2H(7n)--E(t,u,m)), (10.10) 

!F3(s,t,m) = — ^ 3 ( 5 , t, m) — 2S3(s, t, m) — -{t2E(s, t, m.) — u2E(u, 5 , m) 

+2m2ut(u - i ) # ( m ) } . 

The required integrals are much simpler quantities than for Si since the integrands contain 

at most two powers of loop momentum instead of four. The relative simplicity of the com

putation as compared to the scalar loop calculation is reflected in the relative simplicity 

of the results. Plugging the S{ and JF; into the second of the supersymmetry relations in 

Eqn. (10.6) reproduces the results for fermion loops of ref. [91]. 
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To obtain the loop contribution in each diagram we subtract the integrands associ

ated with 2S(s,t, M\y) + 4^ r(s, t, Mjy) from the fu l l expression for the loop (including 

Faddeev-Popov ghosts); this leaves only box diagrams to be evaluated since all other inte

grands cancel by the supersymmetry relations given in Figure 10.2. Furthermore, the only 

terms in the vertices which contribute are those which contain no loop momentum. The 

ones containing loop momentum manifestly cancel in the calculation of Q(s,t,Mw)- This 

cancellation is a direct consequence of the N = 4 supersymmetry relations. Since the terms 

with loop momentum cancel, Q is reduced to a relatively simple algebraic expression times a 

scalar box integral, which may be obtained from ref. [101]. Since there is no need to evaluate 

a tensor integral, this part of the computation is relatively trivial. (Indeed, by using rules of 

the string based type [85, 83] it is possible to write down the answer without calculation.) 

For the diagrams with a 1,2,3,4 and reversed ordering of legs the remaining kinematic tensor 

is simple and given by 

£ ^ ( 1 2 3 4 ) - -D(stt)(8(g°"tg'"'su + g^g^st + g^g^ut) 

+ 16s (g-'pM + p ^ ' p j - g*"fi) + - gaYi)) 

+ m(ga»rtp{ + fM"pl - gap

P$) + PWPI - g ^ r f j ) 

+ l ^ y ' ^ + p ^ p ^ - g ^ + pUg^P^-g^))) (10.11) 

where we have organised the terms to exhibit manifest gauge invariance. The other orderings 

of external legs are obtained by a relabeling of legs. After summing over the independent 

orderings, comparing to the kinematic tensor Eqn. (8.10) and using 

Gi{s,t,Mw) = A™(s,t,Mw) - (25 ,(5, t, M w ) +4J i ( s , t,Mw)) 

187 



the result can be summarized in terms of the three scalar functions 

Gi(s,t,Mw) = 0, 

Gi(s,t,Mw) = -2stuH(Mw), (10.12) 

g3(s,t,Mw) = 0 . 

Again the simplicity of the calculation is reflected in the simplicity of the result. Inserting 

these functions into the supersymmetry identities Eqn. (10.6), reproduces the results of 

Chapter 8 for the gauge boson loop. In particular, eliminating for <S; in favour of A{, and 

using the following SM identity, 

cot20W/ = i c o t 0 w ( 2 - M | / M ^ ) , (10.13) 

(cf. Eqn. (3.15)) we find that the non-fermionic contribution to the Z777 scattering tensor 

A\ = AY + ^ - M (10.14) 

4 \M? ,w vA{+*H+wy-+e'- (i°-15' 
This then provides an explanation for the empirically observed relations Eqn. (8.15) of 

Chapter 8: namely that they are supersymmetry identities. 

As a simple check on the results for Q, we have verified that for external mass Mz —* 0 

the kinematic coefficient of the box diagram given in Eqn. (10.11) is proportional to the 

colour ordered Yang-Mills tree. This is in agreement with expectations from superstring 

theory with N = 4 space-time supersymmetry [87] where the one-loop four-point amplitude 

is also proportional to the tree. 

The calculation we have presented for the W loop may be compared to the unitary gauge 
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calculation presented in ref. [91]. In that paper, the unitary gauge was used because of 

the significant reduction in the number of diagrams as compared to the standard 't Hooft-

Feynman gauge. In the string-motivated organisation presented here we have retained all 

the diagrammatic advantages of the unitary gauge. In addition, since it has been possible 

to use a simple Feynman type background field gauge it has not been necessary at any stage 

to cancel superficial ultra-violet divergences arising from the extra powers of momentum 

in the unitary gauge propagator. (This was the most time consuming part of the tensor 

reduction of ref. [91]). Furthermore, the vertices of background field 't Hooft-Feynman 

gauge are simpler than those of the unitary gauge. Finally, by making use of the N — 4 

supersymmetry relations we have reduced the M^-loop calculation to that of simple scalar 

box integrals which are given in refs. [101]. The reorganisation we have presented therefore 

represents a clear computational advantage. 

What about the fermion loop part of the calculation? Superficially it might seem that, 

since there are four diagram types in the second order formalism (Figures 9.3 and 10.3) 

instead of a single diagram type in the more usual spinor based (first order) formalism, this 

represents a retrograde step in the calculational technique. In fact, the use of the second 

order formalism significantly improves the calculational efficiency of the fermion loops since 

most of the calculation can be directly obtained from the calculation of scalars or ghosts 

in the loop. The similarity in structure of the fermion to scalar vertices (Figures 10.1 and 

9.3) ensures that when calculating the the cancellations between the scalar and fermion 

loops implied by the supersymmetry equations of Eqn. (10.6), occur on the first line at the 

level of the integrand and before the evaluation of any tensor integrals. (Even if one were 

not interested in scalar or gauge boson loop contributions, it is generally still advantageous 

to break the fermion loop contribution into two separate pieces since it is usually easier to 

handle smaller physical pieces in a large calculation.) The second order formalism therefore 

also represents a considerable advance in calculational efficiency for the vector part of fermion 
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Figure 10.4: Two extra rules. The three point rule for a mixed scalar gauge boson internal 
loop and the non-abelian four-point vertex where the internal fields are not interchangeable. 

loops (with no flavour changing). 

1 0 c 4 Other processes 

The string-motivated reorganisation discussed above is useful for other amplitudes. For 

completeness the coupling constants for the various other vertices with external gauge bosons 

are presented in Tables 10.2-10.4. 

Table 10.2 contains the coupling constants associated with other three point vertices. 

Those involving an odd number of gauge fields may be found in Figure 10.1 and the remaining 

vertices that involve only two gauge fields are to be found in Figure 10.4. 

Table 10.3 contains the remaining four-point couplings that obey the rules of Figure 10.1. 

A 
P 

a 

R 
P 

Q 
a 

190 



Vertex Coefficient 
W+AW-, W-W+A e 

w+zw-, w-w+z e/ tan Ow 
ZW±$* — e2vf sin 0w sin 26w 
ZZH 2e2v/s'm2 20w 

e 2 u /2s in 2 Ow 
^ie2v/2s'm2 Ow 

W±A<F e2v/sin 6\y 
W±Z(p e2v/tan 20w sin Ow 
W+H<f>-, W~(j>+H e/2 sin Ow 

ie/2sin0w 
ZXH —iej sin2#w 

Table 10.2: The coupling constants associated with other three point vertices as represented 
in Figures 10.1 and 10.4. 

Ver tex Coefficient 
W+W'AA e 2 

W+W-AZ e 2 / tan Ow 

zzw-w+, w+w-zz e 2 / t a n 2 Ow 
] V ± W ± W ^ W T - e 2 / s i n 2 0W 

W+W~OJA1OJA e2 

W±Au±*wA, W±AuA^u* -e2 

e 2 / s i n 2 Ow 

- e 2 / s i n 2 0W 

W±Zu^uA, W^Zu^u*, 
W±AUJ±1OJZ, W±Auz1u^ — e 2 / tan Ow 
ZZHH, ZZxx e2/sm220w 

ZZ(f>+(j)- e 2/tan 22<?M/ 

W+W~<t>+(j>-, W+W'HH, W+W~xx e 2 /4 s i n 2 0W 

W±AH^ e 2 /4sin Ow 
W±ZH^ — e 2/4cos Ow 
W±Ax^ ± z e 2 / 4 s i n 0W 

W^Zxt* =pie2/4cos Ow 
W+W-uz^A, W+W~UA1UJZ e 2 / tan 0w 
W+W-UZ^<JOZ, ZZU^U* e 2 / t a n 2 Ow 

W±Zu±tuz, W±Zuz^*, — e 2 / t a n 2 Ow 

Table 10.3: The remaining four-point vertices represented by Figure 10.1. 
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Vertex CoefRcient 
W±AW^A e 2 

W+ZW^A, W±AW*Z e 2 / tan 9w 
W±ZW*Z e 2 / tan 2 6W 

w+w-w+w- - e 2 / sin 2 0W 

Table 10.4: The coupling constants associated with non-abelian four-point vertex as repre
sented by Figure 10.4. 

Besides the vertex structures already encountered in Figure 10.1 there is an additional 

non-abelian vertex given in Figure 10.4; the coupling constants associated with this vertex 

are presented in Table 10.4. 

Using these tables, one could for example consider the one-loop process 27 —> 2Z [92] 

(which is of some interest to future photon-photon colliders). In this process one can again 

use the N = A supersymmetry relations of Figure 10.2 to relate the diagrams with the W 

going around the loop to the diagrams with fermions going around the loop. In this case, 

however, there are mixed diagrams with both Ws and <̂ 's in the loop. Although such 

diagrams are apparently not simply related to fermion loop diagrams they are simpler to 

evaluate since they have a maximum of two powers of loop momentum in the numerator. 

Due to the simplicity of the background field vertices as well as the supersymmetry 

relations Eqn. (10.6), one can expect a significant efficiency over previous calculations of 

27 —> 2Z [92]. For example in the one performed by Berger in standard 't Hooft-Feynman 

gauge, there were 188 diagrams to evaluate for the boson loop contributions. Since each of 

the vertices is relatively complicated compared to background field vertices, this calculation 

is significantly more complicated than one which follows the above strategy. Indeed, Bajc in 

his paper states that there are 608 terms in the W box diagram alone. We may also contrast 

the above strategy to the non-linear gauge used by Jikia in his calculation; we retain the 

advantage of eliminating the A^W^ vertex and have the additional advantages of having 
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simpler vertices and supersymmetry relations between diagrams. A third alternative is the 

non-linear gauge used by Dicus and Kao which has the advantage of eliminating all remaining 

diagrams with mixed W-<j> loops, but then the vertices are more complicated a.nd one loses the 

supersymmetry relations for the un-mixed diagrams. Due to the supersymmetry relations, 

the main part of each of these calculations only reproduces pieces already computed for the 

fermion loops. 

The ideas discussed above can also be applied to the case of external fermions. In 

particular, background field Feynman gauge is still advantageous to use even when some 

external legs are fermions. As for the purely external gauge boson case it is also useful to 

identify parts of the calculation which are duplicated in the various diagrams. This type of 

strategy has already been successfully applied in the calculation of the one-loop corrections 

to four- [102] and five-parton [103] processes. 

10.5 Summary 

Various contributions to gauge boson amplitudes have relations between them connected to 

the fact that amplitudes in N = 4 super-Yang-Mills have extremely simple forms. These 

relations were first applied in the string-based calculation of gluon amplitudes [21, 83]. In 

order to make practical use of the supersymmetry relations one needs a formalism where the 

relations hold between the integrands of diagrams. The guidance for constructing such a for

malism is provided by string theory and amounts to special gauge choices and organisations 

of the diagrams. 

In this chapter we have described the supersymmetry relations in weak interaction pro

cesses which involve gauge bosons. These types of relationships were observed to hold in the 
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explicitly computed weak interaction process Z —-> 37 [91], although in the unitary gauge 

where the calculation was performed the relations seem mysterious. We have shown how to 

reorganise this calculation as well as other processes so that the supersymmetry relations are 

manifest in all stages of the calculation. Important ingredients for making the relationships 

manifest in the diagrams are the background field Feynman gauge for the gauge-boson loops 

and the second order formalism for fermion loops. In this way the gauge boson and fermion 

loop computations have considerable overlap. The parts of the calculation which overlap do 

not need to be recomputed for the gauge boson loop contributions. 

A practical consequence of the reorganised calculation and the manifest supersymmetry 

relations is that instead of the VF-loop contribution being the most complicated part of the 

calculation i t is relatively easy to obtain it using results from the fermion loop contribution. 
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Chapter 11 

ComclTULsioni 

1 1 . 1 Summary 

In this thesis we have reviewed the path integral approach to Quantum Field Theory, the 

Standard Model of Particle Physics and some simple phenomenology appropriate for the 

Large Electron-Positron Collider (LEP). The remainder of the text has been devoted to a 

study of final state photon radiation at LEP. 

Firstly, we have discussed photons produced in association with hadrons. We have es

tablished that fixed order perturbation theory is unreliable in describing photon radiation 

collinear to its partonic radiator. We have invoked the mechanism of factorisation to re

move the divergence associated with a perturbative collinear emission. To do this we have 

had to introduce a. non-perturbative contribution to photon production. This photon frag-
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mentation function accounts for the hadronic component to photon emission—necessarily 

in the collinear region. It is irrevokably (via factorisation and the regularisation scheme) 

tied to the perturbative divergence it is required to absorb. By itself it has little physical 

meaning, much like the single diagram of virtual gluon emission in Figure 4.10b. Indeed, it 

contains a divergence! Only when it is combined with an appropriately regulated perturba

tive calculation does it make possible a good description of prompt and non-prompt photon 

emission. Following this work, the ALEPH collaboration have succeeded in measuring the 

fragmentation function at LEP, and we have seen that our approach satisfactorily describes 

the observed data, both isolated and non-isolated. 

Struck by the apparent sensitivity of calculations to the different methods of isolating 

photon in photon+1 jet rate at LEP (see Figure 6.1), we have investigated the flow of soft 

gluons in such events. The collinear photon/gluon region does not contribute a divergence 

to the calculation. In spite of this, we find that depending upon which photon definition is 

chosen, a large fraction of the gluon radiation can reside inside the photon's effective cone 

of isolation. This naturally leads to large radiative corrections, and in the least, signals 

a need for a more complete calculation. This is especially acute for the cone-type photon 

definitions. The 'democratically' defined photon events, however, have smaller and generally 

more stable radiative corrections. The cuts tend to favour more energetic photons and 

consequently the quarks are forced into a more confined configuration. Such a configuration 

leads to a suppression in soft gluon radiation in the direction of the photon because here 

the quarks appear as a colour singlet. This tendency can be seen clearly in actual hadronic 

events and also apparently leads to a suppression in the number of emerging hadrons (see 

Figure 6.5). 

We have used the ALEPH measurement of the photon fragmentation function to make 

non-isolated cone predictions. In studying this result, we have uncovered an extreme break-
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down in the isolated perturbative photon prediction: a breakdown that previously required 

large and negative 0(as) radiative corrections to agree with data. Motivated by ALEPH's 

observation of apparently large hadronisation corrections at the high photon energy end of 

the fragmentation region, we have made a pseudo-isolated prediction for the 1-jet rate that 

coincide with the democratic isolated rate for 90° and the fully non-isolated 1-jet rate for 

small cone angles. This prescription agrees with existing isolated data. 

Secondly, we have made a study of the rare Z-decay to three photons within the Standard 

Model. Initially motivated by disagreements in the literature over the observability of such 

a process at LEP, we have calculated it and found it to be unobservable. In the process 

of calculation, however, we found that there was a striking similarity in the analytic form 

of the boson and fermion amplitudes (Eqn. (8.15)). This observation has stimulated much 

further study. 

Following a string theory inspired rewriting of the Dirac determinant, we have derived a 

set of 2nd Order Fermionic Feynman rules that are valid for gauge invariant effective one-

loop vertex functions. We have found a derivation of these same rules from a manipulation 

of the conventional Feynman rules that has suggested a further symmetry within them. We 

have applied the Background Field Method to the Electroweak sector of the Standard Model 

to obtain a gauge invariant Effective Action. From which we have obtained a set of Feynman 

rules for the calculation of gauge invariant vertex functions. 

Using these calculational improvements, we are able to see the sorts of symmetry observed 

in the above calculation at the level of individual diagrams, and not just at the level of the 

complete amplitude. The symmetry observed above is inherent in all field theories involving 

fermions and gauge fields, but was first noted in a supersymmetric theory with the aid of 

string theory. We have sketched a method of calculation based on these principles which 

removes the redundant parts of calculations at an early stage. 
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11=2 O u t l o o k 

This thesis has two aspects: a phenomenological one and a more formal field theoretic one. 

The results of both lead naturally to further questions and topics for further study. 

Having an ideal test-bed of high statistics at LEP, there is sufficient reason for extending 

the Measurement of the photon fragmentation function to a higher order calculation. This 

necessitates the inclusion of doubly collinear radiation into the formulation, to extend the 

calculation to next-to-next-to-leading order. This may provide an explanation for the shoul

der observed at high photon energy, in the ALEPH data. Furthermore it may give an insight 

into the possibility of resumming the collinear region. Also of interest, is the prospect of 

using the measured fragmentation function at other colliders, such as the Tevatron at Fer-

milab. Following the appropriate calculation it may prove possible to measure the gluon 

structure function from non-isolated photon data, where the statistics are higher and, if our 

observations about 'isolated' photons carry over from LEP, more reliable. 

With regard to the Fermion methods developed in this thesis, there is some prospect 

for extending them to general fermion calculations. In doing this it may prove possible 

to calculate internal loops of mixed fermions and gauge bosons in a more transparent and 

interchangeable manner. 

In conclusion, it is the opinion of the author that there has been, and will continue to 

be, more to the photon than meets the eye! 
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Appendix A 

Useful Functions 

A d T h e G a m m a f u n c t i o n , T(z) 

The Gamma Function, T(z), is defined in the following way, 

r(z) = C dte-'t'-*. (A . l ) 
Jo 

The function T{z) is defined to satisfy the following identity, 

zT(z) = T{z + l). (A.2) 

I t can be seen to be a natural extension to the factorial function since for integer arguments, 
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n > 0, 

r (n + l) = n\. (A.3) 

It follows from the gaussian integral that, 

r (I) = y/Z. (A.4) 

A useful identity is, 
r(i) 2 - T ( , + i ) 

r w ~ r(2.) ' ( A ' 5 ) 

An alternative, but equivalent, definition for this function is the so called Euler Repre

sentation: 

T(z) = l im 1

N / ' 2 ' 3 ; " n

/ -nz. (A.6) 
v 1

 2 ( 1 + 2 ) (2 + z)...(n + z) y ' 

The advantage of this definition is that it enables one to write the gamma function in 

exponential form, 

r ( l + z) = exp j - * 7 B + £ ^pC(j) j (A.7) 

where ( ( j ) is the j th Riemann-Zeta function and 7^ the Euler constant. The Gamma 

Function is a fundamental tool in the application of Dimensional Regulation, where it is 

used to generalise the notion of n\. 
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Ao2 T h e B e t a f u i n c t i o n ? B(x,y) 

The Beta Function is denned as follows, 

= (A.8) 
T{x + y) 

As for the Gamma function this combination is useful in the evaluation of non-integer di

mension integrals. 

From a manipulation of Eqn. ( A . l ) we obtain, 

f j 2
 dO cos'" 0 sin" 0 = \ B (^±1, !1±1) . (A.9) 

Wi th respect to this integral form and a change of variables to z = cos2 6, we obtain an 

alternative integral form, 

f1 dz z\\ - z)J = B(i + + 1). (A.10) 
Jo 

From this identity with the change of variable, i = u/{\ + u), we obtain 

r°° um 1 
/ - - = -B(m + 1,??. - m - 1) ( A . l l ) 

Jo (u + a)n a' 1-™- 1 v ' K ' 
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Ao3 T h e s y m m e t r i c G r a m d e t e r m i n a n t , A ( a , 6,... c) 

The Gram Determinant, A, is defined, 

A(a, b,... c) — det 

a • a a • b 

b • a b • b 

a • c 

b-c 

c • a c • b . . . c • c j 

Three of its most useful properties are immediately apparent, 

( A . 1 2 ) 

A(a,/) , .- .) = A(6,a , . . . ) 

A(a, b + Aa, . . . ) = A(a, &, . . . ) 

A ( - a , &,...) = A(a, &, . . . ) 

( A . 1 3 ) 

A . 4 T h e Speece f u n c t i o n , Sp(rr) 

The Spence Function (or dilogarithm) [104, 101] is defined, 

r\ dz 
Sp(x) = - — l o g ( l - x z ) . ( A . 1 4 ) 

Jo z 

It is a frequently recurring function in high energy physics calculations, and is used exten

sively in this thesis. The following two identities are found to be useful, 

S P ( .T ) = -Sp ( l - x) + j - log(x) log(l - x) ( A . 1 5 ) 

2 1 2 



and 

Sp(x) = - S P ( i ) - y - i l o g 2 ( - s ) - (A.16) 
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Appendix B 

Integrat ion Tools and Technique 

In this appendix we have collected a number of integration tools and techniques that we 

have referred to in the text and cross-referenced in other appendices. 

B . l T h e W i c k rotation 

The Wick Rotation is a technique used to turn four dimensional Minkowski space integrals 

into four dimensional Euclidean space integrals. This pi'ocedure has the effect of making 

coordinate transformations more transparent, and consequently simplifies the method of 

solution for the following class of integrals, 

r ddk 1 
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A 

Figure B . l : The contour of integration used in performing the wick rotation. The poles are 
indicated by crosses and lie outside the contour. 

We note the positions of potential poles i n the integrand. These poles satisfy, (k0)2 = 

k 2 + m2 — ie\ 

k° = ± ( k 2 + m 2 ) * T ^ (B.2) 

(S = e/2\k°\> 0) and thus (see Figure B . l ) , 

. dk°— -
c (k2 - m2 + ie)a 

= 0 (B.3) 

hence (for a real mass m), 

r d ] 0 i r 
Joo (k2 - m2 + ie)a Li 

dk°-
(k2 - m2 + ie)a 7-too {k2 - m2 + ie)a 

(B.4) 

For a moment we define the quantity k 0 = ik such that 

k2 = -(k-°)2 - k 2 = - k 2 (B.5) 
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(where k is an Euclidean d-vector). Changing variable f r o m k° to k 0 we can wri te ( B . l ) as 

an integral over Euclidean space: 

f ddk 1 

We are free to drop the ie because the potential poles do not lie close to the real (k~°) axis. 

In summary then, for real m, 

r ddk 1 _ r ddk 1 

J (27r)d (fc2 - 777.2 + ie)a ~ J (27r)d (k2 + m 2 )" ' ( ' 

B.2 Dimensional regular isat ion 

We find that the following result is very useful [16]. We consider the following integral, 

f ddk 1 

Completing the square and making the substitutions q = k+p and a2 = p2 — C2 this integral 

takes the fo rm, 

/ ddq 1 

J {2-KY {q2 - a2 + ie)" V ' ' 

performing a Wick Rotation (B.7) and noting that the integrand becomes symmetric about 

q = 0 we separate out the radial and angular integrals; 

w i t h , / dSld = / * d6i r d02 sin 92 . . . T dOd s i n * - 1 0d (B.10) 
7 JO JO Jo 
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Using the identi ty (cf. Eqn. (A.9)) 

we have 

/ d n d = F ^ r y (B.12) 

and making the substitution u = q2 (B.8) becomes 

d , / «i«7 rr— B.13 
( 4 7 r ) l r ( f ) - / o (u + a 2 ) « V ' 

Finally, we use Eqn. (A.11) to obtain the result, 

/ * L . I = i (=1)1 TJ^J1(C - „ » ) # - (B 14) 
J (2icy(k* + 2k-p + C + ie)° W W T(a) 1 P > ' [ j 

B . 3 F e y n m a n Parameters 

I t is often the case in loop calculations that one must integrate over a string of denominators 

each of which is quadratic in the loop momentum. A favourite method for dealing w i t h such 

calculations is to employ Feynman Parameters. 

We note that (by simply integrating out x and y ) , 

1 /•! , f l , 6(1 - x - y ) ,„ N 

—— = / dx / c l y - \ — i — B . 1 5 
AXA2 Jo Jo (xAi + yA2)2 
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The general case, for any positive integer N, is 

, 4 1 4 = TW f d X l f dx2 . . . [ ' dxN 

A \ A 2 • • • AN JO JO JO 

S(l X\ x 2 . . . — x N ) 

(xxAi + x2A2 + ... x N A N ) N ' 
( B . 1 6 ) 

We can show this to be so by induction. The XN integral is t r iv ia l giving, 

1 

AiA2 ...AN 

T{N) / dxi / dx2 ... 
Jo Jo Jo 

1— x\ —X2...—XN—2 
dxN-i ( B . 1 7 ) 

x 
1 

{xy{Ax - AN) + ... XJV_I(AJV-I - A N ) + AN) N 

and the XN-I integration is simply performed to yield 

T(N) / d X l / dx2 ... 
Jo Jo Jo 

1 — x\— x?xjv-
dxpj-

- 1 

(N — 1 ) ( / 1 ^ _ 1 — AN) 
1—XI—X2... — XN—2 

X 

T ( N — 1) f X f i - x \ r ~ l - x i - x 2 ~ - - x N _ 3 
J~ d x 2 . . . / dxN-2 x 

- AJV) + . . .XN-MN-I - AN) + A N ) N - 1 

J
rl rl-x\ r 

' dxi / dx2 ... 
o Jo Jo 

1 
( x ^ y l j - A N ) + ... + xN-2{AN-2 - A N ) + A N ) N - 1 

1 

(x^A, - Ayv-i) + . . . + x N ^ 2 ( A N - 2 - A N ^ ) + AN_,)N - 1 

Comparison of these two terms w i t h the form of B . 1 7 reveals that we may wri te this result 

as, 

AN-i — A N 

x 

/ dxx I dx2 ... I dxff-i6{l - X\ - x2 ... - x N - i ) 
Jo Jo Jo 

1 

[(x1Ai ... + XN-2AN~2 + x N - \ A N ) N - 1 

1 

(xiAi... + XN-?AN-7 + x N - \ A N - i ) N - 1 

2 1 8 



In the case N = 3 both of these terms have the fo rm of B . l 5 and this expression reduces to 

{ A ^ ~ ~ A ^ A 2 } = A , A 2 A 3

 ( B ' 1 8 ) A2~A3 lA^A3 A 

and hence by induction we conclude that B . l 6 is true 

B 0 4 F o r m Factor Reduct ion 

This technique is essentially a method of reducing loop integrals which possess a lorentz 

structure to a sum of scalar integrals w i th tensor coefficients. 

Firs t ly we make some definitions, (for brevity we have made the infinitesimal transfor

mations m 2 = m2

n — is —see for example (D.14) ) 

A , . , ddk 1 
A /

d k I 
< a i 9 > 

("••"»•"") = J {ty{k*-jH(t+k

p[y-mi) ( B ' 2 0 ) 

C0^;tw;f,up{Pl, P2,ni0, 772] , m 2 ) = 

/
ddk 1; k^; fc^fc^; k^k^kp (vi oi\ 

(2*y(k*-mi)((k + P l y - m i ) { ( k + p 1 + P 2 y - m i ) 1 • ' 

d k \\kll\ktlku\kiXkL,kp')klxkukpktT r d"i 
J (27 (2TTY ( F _ m g ) + pi)2 _ m ? ) { { k + } h + p 2 y _ m 2 } { { k + p i + p 2 + p 3 ) 2 _ m 2 ) 

(B.22) 
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B.4.1 Reduction of the As 

As indicated by the exclusion of the fermion-type tadpole integral f r o m the above set of 

definitions the following integral, 

f ddk ku 

J (27r)d k2 - ml v ' 

simply because the integrand is antisymmetric about k = 0. 

B.4.2 Reduction of the Bs 

Whils t the C case is more representative we shall first consider the B fo rm factor reduction. 

The only vector available to provide the tensor structure of is its argument momentum 

Pi. We may write, 

B'l(pi,mQ,m1) = p^B1(p1,m0,nii) (B.24) 

Further i f we consider the identity, 

k - P l = ^([(k + p l ) 2 - m2} - [k2 - ml] - [p\ - m\ + m j j ] ) (B.25) 

and contract Bfl w i th p\ then the result can be obtained in two ways. Firs t ly as p\B\{...) 

and secondly, by canceling the denominators occurring in B^ (B.20) against the alternative 

f o r m of the contracted numerator (B.25), as 

PiB^px.mQ.mx) = ]- (^AQ(m,0) - A 0 ( m i ) - (p\ - m\ + ml)B0(p1,m0,m1fj (B.26) 
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In the case that pi ^ 0 we can use this observation to write By in terms of the scalar integrals 

AQ and BQ (see Appendix D) . Expanding B^u; 

Bo" = P ^ B 2 2 + g ^ B 2 0 (B.27) 

and contracting in d dimensions wi th pifl and we obtain a new set of relations for B22 

and B20. A summary of the relations concerning these scalar coefficients is: 

B2o(pi,mQ,mx) = 
2 ( d - l ) 

x ( A 0 ( m ! ) + 2B0(pum0,m-l)ml + (p\ + ml - m f ) ^ ^ , , ? ^ , ? ? ! ! ) ) 

P i 5 2 2 ( p i , m 0 , m 1 ) = 2 ( d - l ) (B.28) 

x ({d - 2)A0(my) - d(p\ - f ml - ml)Bi(pumQ,mi) - 2mlB0(pi,m0,mijj 

P? m 0 , m ! ) = ]- (A0(mQ) - AO(mj) - (p 2 + ml - ?7i j )B 0 (p i , mo, m i ) ) 

For massless external particles these equations become insufficient to reduce all of the Bs 

to B0 and the distinction between B0 and A0 is blurred. A new set of relations emerges; i f 

m 2 = in2, 

Bi(pum0,m0) = - ^ o ( P i , m o , m o ) 

#2o(Pi, m 0 , mo) = ^ v 4 0 ( m 0 ) (B.29) 

B0{Pi,m0,?nQ) = -z—n-Aoimo) 
ImZ 

d - 2 

We note that the first of these three relations also holds in the ml = m 2 , p\ ^ 0 case. 
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B.4.3 Reduction of the Cs and Ds 

The masslessness of external particles does not affect the fo rm factor reduction of C and 

higher integrals. The two simultaneous equations that arise f rom contraction wi th p2, 

etc. and (where appropriate) g*w f o rm a matr ix equation, for example 1 

w i t h , 

2 \ / 
Pi Pi * P2 

\P\-P2 P\ J 

C22O 

C2II 
(B.31) 

#2 

C'200 

^ (-2C200 + B0(p2,mum2) - (pj + ml - m f j CUQ + # i (pi +P2,m0,m2)) 

2^!, 2) ( + ( P l + m ° ~ m 0 C ' 1 1 0 + ( p 2 + 2 p i ' P 2 + m i ~ m i ) C l 

+B0(p2,mum2) + 2mlC0) 

'ioi 

Inverting the matr ix we do not encounter a problem when an external invariant mass goes 

to zero because the inverse of the matr ix (B.31) is not identically singular here. Indeed when 

the associated Gram determinant (see appendix A.3) goes to zero we encounter the I R poles 

that are dealt w i th by our regularisation procedure. 

In a very mechanical way we ca.n reduce each of the integrals of Eqns. (B.20 to B.22) 

: The adopted convention for labeling the expansion coefficients associated with each tensor integral is as 
follows. 

C""" = ... + Cn abPiWPk" +••• ( B - 3 0) 
where n is the number of ks appearing in the numerator of the corresponding integral, i,j and k take the 
values 1 or 2 and a is the number of p^'s multiplying the scalar coefficient; b is that for p2 (this convention 
is also obeyed by the B2 s of the previous section—although B\ one might argue should be written as flu)-
For example, 

C" = C W f r ? + C202p2Y2 + CnMpv

2 + P2V1) + c w ' " . 

This is not the same notation as employed in Ref. [18]. 
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down to a sum of Do, Co, Bo and AQ integrals. Using the symbolic manipulation language 

F O R M [105] this process has been automated. 

B.4.4 A note on simplifications 

We note the following property of general integrals w i th an odd power of loop momenta in 

the numerator. Consider the following integral, 

The method given above would have to be extended beyond the integrals B.20 in order to 

handle this form. Instead we can consider the effect of making the momentum transforma

t ion, k —* —k — p\. Af te r such a change we have, 

where the denominators have effectively swapped over and the leading term in numerator 

powers of k has changed sign. By taking this contribution to the left ha,nd side we obtain 

an expression for 21 in terms of integrals w i t h only 2 powers of k in the numerator. This 

technique generalises to the higher point integrals, and was used extensively in the unitary 

gauge calculation of Chapter 8, where there were ini t ia l ly 12 powers of k in some box nu

merators! I t should be noted that this technique fails to work i f the masses of the internal 

propagators of the loop differ. 

ddk 

(27r) d (k ) ( (* + Pi 2 m2) ((k m2) 
(B.32) 

ddk (k + P l ) a ( k + P l f ( k + p,y 

(27r)d (k2 - m 2 ) ( ( f c + P l ) 2 - m 2 ) 
(B.33) 
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Appendix C 

Analyt ic Phase Space Integrals 

For many of the calculations in this thesis i t is required that we integrate over the two and 

three particle phase space [106] of our out going particles. The derivations of the relevant 

integrations in terms of invariants are presented here. 

Col T w o particle phase space 

We present the 1 —> 2 particle phase spaces for massless particles in d-dimensions and that 

for massive particles in 4-dimensions. 
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C 1.1 Massless two particle phase space in ^-dimensions 

The basic integral for massless out going particles is 

/ DUps^2 ...=J0-dJ ^ ( 2 i r ) 8 ( p \ ) ( 2 ^ p l ) ( 2 i r y 8 d ( P o - P l - p 2 ) . . . ( C . l ) 

Where p0 is the in going (/-momentum and pj and p2 are the out going (/-momenta. 

Performing the p2 integral using the 8d funct ion, integrating over p i ° and rewri t ing the 

remaining dd~1p\ integral as a radial-angular integral we have that 

(C.2) 
P2=P0~Pl 

where we have chosen a particular frame in which to do our integral, namely one in which 

PQ = ( M , 0 , 0 , . . . ) and E\ is the magnitude of the energy of the out going particle. 

We have that 

M2 — 9 
p2

2 = ( p o - P i ) 2 = S01=M2-2MEr i.e. = (C.3) 

and thus (see Eqn. (B.10)), 

We use the identity of Eqn. (A.5) to wri te (see Eqn. (B.12)), 

In the case that the integrand ( . . . ) is independent of S Q I , the integration becomes a pre-
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factor, expanding about 4 physical dimensions d = 4 — 2e, i t has the fo rm, 

f 1 T ( l - e) / 4 T T V 1 

C.1.2 Massive Particles in 4=Dimensions 

For massive out-going particles the two particle phase space integral (cf. Eqn. ( C . l ) ) gener

alises to 

/ DlipsM . . . = J 0 j - d j ^ ( 2 T ) * ( P ? - rnl)(2*)6(p> - m2

2)(2^)d8\pQ - ft - ft)... 

We choose the centre of mass frame to evaluate this integral, (E > m\) 

p0 = ( A f , 0 , 0 , 0 ) ft = ( £ , p c o s 0 , p s i n 0 , O ) , (C.8) 

where i t becomes, 

/ Dlipsw = — ^ / dSl2 j°° dE dpp2 8{E2 - p2 - m2)5{M2 - 2ME + ml - m 2

2 ) . . . (C.9) 
J (2TT) J J mi 

I n the case of the 2 —> 2 process we must retain one of the angles of integration f r o m dtt2 to 

correlate the in i t i a l and f inal state directions. Changing the arguments to the delta functions, 

we obtain, 

/ D U p s ^ = s i So d 0 s i n 9 1 d E
 d p p 6 ( p - ^ ^ ^ ^ ) 6 { E ~ M 2 + 2 m M ~ m l ) • • • 

( C I O ) 
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In the case of 1 —* 2 the 9 integral may be performed, i.e. i t is replaced by a factor 2. 

Co2 T h r e e particle phase space 

A l l of the processes involving 3 particles in the f inal state that are studied in this thesis are 

for massless ones. Accordingly we give an analytic fo rm for the d-dimensional 1 —> 3 phase 

space integral only. 

C.2.1 Massless particles in ^-dimensions 

Having utilised a 6d funct ion and integrated away the of-momentum of the th i rd particle the 

integral the massless three particle phase space integral takes the form, 

d d ~ l

P l f dd~2p2 (2ir)8(pl) 
J D U p s ^ 3 . . . = jc—^J — {2n)d J (2n)d \EXE2 

(C. l l ) 
P3=P0-f> l~P2 

(we have chosen the special frame of reference in which p£ — {M, 0> 0, • • •)> Pi ~ ( ^ i > &i, 0 , . . . ) 

and p2 = (E2, E2 cos Qi2, E2 sin 012,...)). 

Wri t ing this as a radial/angular integral, but singling out the angle between p : and p 2 ; 

$12, we obtain 

J DlipSl^3... = 4{2^2d_3 J dVll_2dtfd_3 j dE1dE2d912 (E1E2 sin 012)d~3 6(p2

3) (C.12) 
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The two solid angle integrals i f evaluated become, (see Eqns. (B.12 and A.5)) 

/ = r ( ¥ ) r ( ¥ ) = f ( d ^ - <c-13> 

I n order to be of use we transform the remaining integral into one over the invariants S ,

1 2, Sx3 

and 5i3 the associated Jacobian, J for this change of co-ordinates satisfies, (see Eqn. (A. 13)) 

(8MJ)~2 = (ME1E2sm012)2 = A(p0,Pl,p2) = A ( P L + p2 + p3,pup2) = A(Pl,p2,p3) 

= \ s l 2 S 2 3 S 1 3 . (C.14) 

Defining yij = and expanding about d = 4 the fo rm of the integral is 

M2 1 / 4TT ^ 2 T 

J Dlips l->3 • 
1287r 3 r ( l - 2 e ) V M 2 / 1 - 2e 

X / drji2dy23dy13S(l - yl2 - y23 - y 3 1 ) ( y 1 2 y 2 3 y 3 1 ) ~ e . . . (G.15) 
./o 
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Appendix D 

calar Loop Integrals 

As is shown in Section B.4 the technique of fo rm factor reduction is i n essence a method by 

which one may reduce complicated Lorentz tensor loop integrals down into a sum of more 

elementary scalar loop integrals w i t h tensor coefficients. The following sections include the 

evaluation of the first four scalar loops needed in the main text, in order of increasing 

complexity; j4Q, Bq, Cq and a selected D0. [22] 

D . l The Tadpole: A0 

We consider the simplest loop integral, 

ddk 1 
(m) = / 

d 1.2 (27T m* + is 
( D . l ) 
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which is clearly (simply counting powers of momentum) divergent in d = 2 and 4 dimensions. 

As indicated by the use of d we evaluate the loop keeping tabs on the divergences using 

Dimensional Regularization. 

Directly f r o m (B.14) we may wri te 

* ( m > = 'Ur) ( - m ) * T w ~ 

and expanding about 4-physical dimensions d — 4 — 2e we have that, 

„ , . im2 / 4 T T \ c T ( l + e) , n , 

As a special case we observe that in the l i m i t m —» 0, Ao(m) —> 0. 

,2 The Bubble: £ 0 

/

d k 1 

( 2 ^ ( P - m g + z £ )((fc + p 1 ) 2 - - f + ^ ) ( D " 3 ) 

This integral is logarithmically divergent in d = 4 dimensions. To calculate i t we use Feyn-

man parameters (Section B.3) to re-write the integral in the f o r m of (B.8) . 

f ddk f1 f1 

B0(pi,mo^rii) = J j 2 ^ y T ( 2 ) Jo

 d x Jo d y S ( l - x - y ) 

x 
(x(k2 - ml + is) + y(k2 + 2k • pt + p\ - mj + ie)) 
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Performing the t r i v i a l x integration we obtain, 

ddk 
y JJo yJ (2v)d(k' (2n)d ( P + 2k • P l y + y(pl + ml - m\) - ml + xef 

Following the discussion in Section B.2 and substituting into (B.14) we perform the integral 

over k to obtain, 

/ 4 _ J \ / _ 1 \ f r\ . - d-i 

5 0 (p i ,m 0 ,mi ) = iT I — — J J j f dy (y(p\ + ml - m\) - ml - y2p\ + ie) 

and expressing in terms of e ( d = 4 — 2e ) this may be wr i t ten 

47r"J Jo ^ + m ° _ m ^ ~ m ° ~ y ^ + ^ ) 6 ' ^ D ' 4 ^ 

L2.1 Massless internal particles 

We consider the ml = m\ = 0 l im i t of Eqn. (D.4). When p\ ^ 0 (D.4) becomes, 

Bo(Pu0,0) = ^ ^ ( e ) ( ^ ) 2 ~ £ ( p ? r / o

1 ^ ( y ( l - 2 / ) ) - £ 

= i (^) 2 " e ( r f )" e r (eW-e, l -e) 
_ , / i y r ( i + e ) r 2 ( i - £ ) 1 / - 4 7 r V 

I n the case that p\ = 0 i t is not immediately apparent what the value of this integral is. 

Considering the associated integral we have, 

ddk 1 f ddk 1 

- J (2n)dk*(k + v,)2 - J T ^ (27r)d k2 (k + P l ) 2 J (2Tr)d (k - a)2 (k + a)2 
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where we have made a change of variable k — k — a w i t h a = \p\. Using part ial fractions 

this may be wr i t ten , 

B0(pi) = / 
ddk 1 ( 1 1 

(2ir)d{4:k-a) \(k - a)2 (k + a)2 

and since, for any A, (k + Xa) • a — k • a we f ind that both of these integrands become 

anti-symmetric about k = 0. I n summary, for p\ = 0, £ o ( p i , 0 , 0 ) = 0 in dimensional 

regularization. When we compare this result w i th (D.5) we see that have made the statement 

that ( 0 ) _ £ = 0. 

D.2.2 Equal Mass Internal Particles 

For the case of equally massive internal fields we return to Eqn. (D.4) and make the simpli

fication rriQ — m\ = m'2. In this l i m i t , 

\ m v e 
B0(pi,m,m) 

16TT 2 
(D.6) 

where J e = / 0 d y ( f ( y ) ) 

for / ( „ ) Pi 2 Pi + 1 - te y y 
m 

Pi 
—(y - y+)(y - y-) 
711 * 

(D.7) 

(D.8) 

w i t h 
4 m 2 1 

1 ± Wl + is y± 
Pi 

(D.9) 
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Note, that the is t e rm fixes the sign of the imaginary part of the square root for y± to be 

±ve. Expanding to 0(e2) and performing the integrations we obtain the following result, 

1 + e 2 + y+ log 
l - y + \ , I y + ' + y_ log - y-

-y+ -y-
+ 0(e2). (D.10) 

We can consider each of the physical regions for X e w i t h respect to the invariant mass squared, 

pi, of the external particle, being careful to analytically continue where necessary. In terms 

of the positive quantity, x = |1 — ^t-]1/2, J £ is as follows: 

p\ < 0 (x > 1) 

0 < p\ < 4 m 2 (oo > x > 0) 

4 m 2 < p\ < oo (0 < x < 1) 

I , = 1 + e { 2 + x log ( ^ - j ) } + 0(e2) ( D . l l ) 

J C = 1 + e { 2 - a; (TT - 2 t a n - 1 3)} + 0{e2) (D.12) 

I c = 1 + e | 2 + .x log ( | ^ ) + + 0(e2). (D.13) 

The quanti ty J = ( J c — l ) / e , is the finite correction to the divergence of Bo(pi,m,m). 

D.3 The Triangle: Cq 

C0(Pi,P2,m0,m1:m2) = J 
ddk 

(27T) d 

1 
X (k2 -m% + is) ((k + P l ) 2 - mj + is) {(k + P l + p2)2 -m\ + ie) 

This integral is not ultra-violet divergent in d = 4 dimensions however we evaluate i t i n 

4 — 2e dimensions as before in order to account for the infra-red divergences associated w i t h 

the soft l i m i t of the loop integration. As before we use Feynman parameters to re-write this 
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integral in a more straight forward way; 

f ddk f 1 f1 f1 

C o ( p i , P 2 , m 0 , m 1 , m 2 ) = J ^ 2 ? r ^ r ( 3 ) dx dy dzS(l - x - y - z) 

1 

(x (k2 - m2 + ie) + y ({k + P l ) 2 - m\ + ie) + z ((k + P l + p2)2 - m\ + ie)y 

1 

( F + 2k • fay + fa + p2)z) + y {pj + m2

Q - m\) + z ( f a + p2)2 + mg - m\) - mg + ie'f 

and then substituting into equation (B.14) we obtain, 

Co(pi ,P2 ,n*o ,»Wi,m 2) = i { ^ ) T ~ J0

 d y J0

 d z 

——3 

x (y (p\ + ™o - m f ) + z ((Pi + Pif + ml - 777,2) - m l - fay + fa + p2)z)2)2 

x (2/ (p? + m o - m i ) + z ((Pi + P2) 2 + mg - m f j - ml - fay + fa + p2)z)2) 

D.3.1 Massless internal particles 

We give the case for p2 = p2 = ml = m\ = m\ = 0. In this l im i t we have, 

C o ( p i , p 2 , 0 , 0 , 0 ) = 

z ( i - ) 2 r ( l + e ) ( - 4 7 T r ( 2 P l - p 2 ) - ( 1 + £ ) f Q d y £ ~ V dz ((1 - y - z) z ) ^ 1 + t ) 

making the change of variable to x = z/(l — y) and the double integral becomes 

ri /-i 
•••JodyJo d x ( l - y ) ( ( l - y ) 2 ( l - x ) x ) ~ { i + t ) 
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( \ l y ( \ - y ) - ^ f 1 d x ( ( l - x ) x ) - { 1 + i ) = 5 ( 1 , - 2 c ) B ( - £ , - £ ) , 
Jo Jo 

where B is the Beta funct ion satisfying Eqn. (A.10). Hence we obtain, 

C 0 ( p i , p 2 , 0 , 0 , 0 ) = i 
-47T I N 2 1 r ( l + e)r2(l - e) 1 | 

4 W 2px • p2 r(l - 2e) ~? \2Pl • p2> 

(D.15) 

D.3.2 Constant internal masses 

We consider Eqn. (D.14) in the l i m i t , p\ = p\ — 0 and m0 = m-i = m2 = in. This funct ion 

is f ini te i n four-dimensions so we evaluate i t straightforwardly, 

i dx { s \ 
C0(pi,P2,m,m,m) = y ^ - j J — log f 1 - ie - ^ ^ ( 1 - x)J 

2 
16TT 2 

i 1 r. 
log (D.16) 

where 5 = (p\ + p2)2 and, 
1 / / 4 m 2 

Z = 2 W 1 " — + l £ 
(D.17) 

Do4 The Box: D 0 

Finally there is the four-point funct ion wi th three massless and one massive external line, 

Pi = p\ = ?l = 0 5 p\ — Mz a n d a n internal mass m, (we suppress the ie on the first line) 

D0(pi,P2,P3,m,m,m,m) 

d4q r cTi 

J T2z ( 2 T T ) 4 (ry2 - m*)((q + P i y - m*)((q + P l + p2f - m*)((q - pAf - m*) 
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- S 
st Jo 

dx 
— log 1 — is 

m 2 
: ( l - x ) 

st Jo x ( l — x) + m2u/ts 

+ log ( l - is - ^ x ( l - x ) ) + log ( l - i e - ^ j x ( l - x ) ) } , 

(D.18) 

for s = (pi + p 2 ) 2 , < = (j»2 + Pa) 2 and u = (p3 + pr)2. 

This result can be expressed in terms of Spence functions (see Eqn. (A . 14)) via the 

relation, 

So s(l - x ) l moults '°« I 1 " ^ " ^ J X ( 1 " X ) ) 

= i \ , ( S P ( — ) - s p f - ^ ) + S P ( — ) - s A — ) 
yfi+4m2u/ts[ \ x - - y ) \x+~yJ \ y - x + J \ y - x _ ) 

_log(~^r) l o g ( 1 _ ' £ + 3 } ' ( D , 1 9 ) 

where, 

x± = i ( l ± 4m2u/ts ) , (D.20) 

and, 

y = i ( l + / l - 4 ( m 2 - i e ) / u ) . (D.21) 
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Appendix E 

Birac Algebra 

E o l The 7 M a t r i x 

The ubiquitous 7 matr ix is defined by the following two relations, 

{ 7 ^ 7 , } = 2 ^ ( E . l ) 

and the 'hermitici ty condition, 

7 " t = 7 ° 7 " 7

0 . (E.2) 

Along wi th the definition there are a number of conventional constructions that are 

237 



referenced throughout the text of this thesis, these are, 

(E.3) 

and 

7s = - ^ f ^ l a l ^ l s = ^ 7 0 7 1 7 2 7 3 = 75 = 7 5 -

Further, we frequently use the Feynman slash notation, 

(E.4) 

= p . 7 = p ^ 7 a i 
(E.5) 

From these definitions we have the following relations: we list them (where they do not 

involve 75) for d space-time dimensions and also the conventional d —» 4 l i m i t . 

d d - > 4 

7"7m d 4 

(2 - d ) r - 2 7

a 

7 M 7 ° , 7 / V 4g°"3 - ( d - 4 ) 7

a

7

/ 3 4ga(3 

7 ' 1 7 a r 7 / 3 7 7 7f i - 2 7

7 W + (d - 4 ) 7

a

7

/ 3

7

7 - 2 7 ^ / 7

a 

7575 1 

[75,71 0 

(E.6) 

A l l Dirac fermion calculations at some level require a trace to be taken over the impl ic i t 

spinor indices of a string of 7 matrices. As for the above table, we give the following results 

i n d dimensions, where we take the dimension for the representation of the gamma matr ix 

to be d. 
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T r { . . . } d d = A 

(odd number of 7 's) 0 0 

dg^ 

d V * - g^gf*6 + g^g^5) 

75 0 

0 

7 5 7 a 7 / 3 7 7 7 5 -4iea^s 

E.2 The DIrac 

The 7 -matr ix finds its place in high energy formalism through its defining role in the Dirac 

Equation, a relativistic equation for the fermionic wave funct ion [3]. That is to say, free 

Dirac fermion sates, j-0, p), obey 

(f-m)\il>,p) = Q. (E.8) 

The observation that such states are on-shell or, 

ft\it>,p) = m2h/>,p>, (E.9) 

leads to the definition of 7; Eqn. ( E . l ) . We can expand the field operator associated w i t h 

such states, as a sum over creation and annihilation operators (cf. Eqn. (2.13)) 

* ( * ) = / ( ^ * ( * ° ) E {e-'kxa3(k)u3(k) + elk »b){k)v3{k)} . (E.10) 
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Here, hj &j obey fermionic statistics, and the spinors if; and V{ define the polarisations of 

the fermion states. I n coordinate space, where p^ —• idtl the free field Dirac Equation is, 

(i0-m)4>(x)-=O ( E . l l ) 

which follows f rom a Lagrangian term of the f o r m \P (i$ — mj In terms of the fourier 

components, 

-m)uj(p)e-ip-xaj = 0 (E.12) 

(f + m)vj(p)eip-xb} = 0. (E.13) 

W i t h respect to the hermitici ty condition of Eqn. (E.2), the hermitian conjugate of these 

equations i n terms of the adjoint field, \P = ^ 7 ° , combines w i t h the above to give the 

following spinor properties, 

(j> - rnj Uj(p) = 0 = (j> + nij Vj(p) 

uj(p) (j> - m ) = 0 = vj(p) [f + m ) . 
(E.14) 

We shall take the normalisation of the spinors to be that defined by, 

-^-Ui(p)uj(p) = Sij and J-Vi(p)vj(p) = ( E - 1 5 ) 
zm zm 

where p2 = m2 

For the summed u spinors in the reverse order, we find that mult ipl icat ion on the left or 

right by the operator (fl — m) must yield zero. This leads to, ^ Uj(p)uj oc (|* + m ) . From the 
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normalisation condition above (and a similar argument for the vs) we obtain the following, 

£ UAP)UJ(P) = 0* + m ) vi{p)~Av) = {f~™) (E.16) 

Ec3 Coupling Fermions to a Gauge Field 

The coupling of a Gauge f ield, A^, to a fermionic field is enabled by the replacement of the 

dfi w i th the Gauge covariant derivative Eqn. (2.29). The coupled Dirac Equation is thus, 

- m ) $>(x) = - gAM - m ) V(x). (E.17) 

This leads to the Feynman rule for a fermion-gauge vertex of the general fo rm —igTa, where 

T a are the structure constants of the group. Note, that mass terms for a gauge field are 

gauge invariant, unlike those for the gauge field itself. 

E»4 Chiral Fermions 

We define the left and right-handed projection operators, 

^ L = 1 - T ^ and \ R = l ± l * . (E.18) 
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W i t h respect to these projection operators ( A ^ A ^ = A ^ ) , we define the left and right handed 

spinors 1, 

UL = A L u \ U l = uAR 

\ u L + uR = ul }. (E.19) 
UR = A R t i I i i f t = u A L 

The following currents can be wri t ten wi th respect to these component spinors as, 

scalar: uu = UZUR + URIIL 

pseudo-scalar: ufsu = UL75UR — UR^^U^ 

(E.20) 

vector: uj^u = uZf^u^ + UR'J^UR 

axial-vector: u-y^u = - u l Y l ^ L + U R Y i ^ R -

From this list we see that the Lagrangian terms that give mass to the fermions are like 

chirality-mixing vertices. 

For the remainder of this section the u will stand for either u ox v. 
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Appendix F 

A 1 bra e 577(2) and SU(3) 

The three gauge groups of the Standard Model are U(l), SU(2) and SU(3). The first of these 

is an abelian group corresponding to a simple phase symmetry of the Lagrangian fields. The 

remaining two groups constitute more complex internal symmetries of the Standard model 

Lagrangian. 

We note that the number of generators required for the SU(N) groups is (N2 — 1). I n 

this appendix we review some useful results for these algebras. 

The structure constants for the generators of the SU(2) symmetry group are f a b c = eabc 

so, w i t h reference to Eqn. (2.27), we f ind that the Pauli Matrices, T j / 2 , f o r m a suitable 

F . l S U ( 2 ) 
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representation for the generators of this group. 

The Pauli Matrices are denned to be hermitian and are as follows, 

7*1 
'o 1̂  

v i 0 , 
7*2 

(J —I 

\ l 0 / 
7*3 

0 - 1 
( F . l ) 

They satisfy the following relation, 

(F.2) 

which is sufficient to ensure that r ; /2 is a generator for SU(2). They also satisfy the following 

anti-commutator relation, 

{ T i , T j } = 2 S i j . (F.3) 

Combining these two relations we obtain the following useful result, 

T ; 7 j = itijkTk + t>ij. (FA) 

F,2 577(3) 

The algebra of SU(3) is more complex than that of 5/7(2) i t contains 8 instead of 3 gener

ators. I t remains an un-broken symmetry of the fields of the Standard Model so i t is not 

necessary to wri te out an explicit representation for i t . Instead, we shall consider some gen

eral arguments for fundamental generators of arbitrary groups and use only the dimension 

of the group as a parameter. 
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The defining equation for a group is Eqn. (2.27): 

rj-ia ^P^j ^ j a b c r p c 

The normalisation of the fundamental representation (hermitian, N x N matrices) of this 

group is given by, 

T r { T a r 6 } = ] - 8 a b . (F.5) 

These two relations are sufficient to calculate the effect of the group structure of SU(N) 

in all Feynman diagrams. It is conventional to compute colour factors for such diagrams: 

these correspond to an overall factor to accompany the lorentz structure associated with 

general fermions and general gauge bosons. 

The members of the SU(n) group have unit determinant from which we can deduce the 

tracelessness of the generators; 

det (e ! " a T Q ) = 1 + i9aTv {Ta} + 0(6a2) = 1 =» T r { T a } = 0. (F.6) 

Now, we consider the general form of the product of two identical Ts, 

TtjTgf = aSijSu + P6u6jk (F.7) 

where a and j3 are to be determined and we implicitly sum over the index a. We exclude the 

SikSji term from this sum because the first and second indices on T-j are not interchangeable; 

they correspond to colour and anti-colour. The neglect of this term simply expresses colour 

conservation at each vertex, and hence throughout all Feynman diagrams. 
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Contracting the indices (ij) and using Eqn. (F.6) we obtain, 

O = {aN + 0)6k, = ( F . 8 ) 

Contracting instead the indices (il) and ( j k ) we obtain Sabx Eqn. (F.5), and in terms of 

8 N2
 — 1 1 

Thus, we can write Eqn. (F.7) as follows, 

^T£, = ±{6ii6jk-±6ij6kl}. (F.10) 

We can represent the structure constants f a b c in terms of the generators too. Multiplying 

Eqn. (2.27) on the right by Td we obtain, 

[ r a , r 6 ] Td = ipbcTcTd ( F . I I ) 

and taking the trace of this expression (with respect to Eqn. (F.5)) we find, 

f a b c = - 2 i T r { [ r a , T 6 ] T c } . (F.12) 

Relations Eqns. (F.10 and F.12) are sufficient to compute any colour factor, either par

tially where the free indices are given in terms of the generator indices, a for external gluons, 

and i for external quarks, or completely as for the cases of fully contracted squared ampli

tudes. The terms resulting from the former application of these rules is often termed a colour 

decomposition. I t has proved very useful as a tool to break up large QCD calculations into 
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smaller, gauge invariant, sub-amplitudes that can be evaluated more readily. [93, 83] 

To keep track of the many indices in the application of these two rules it is both convenient 

and efficient to represent the two equations in the form of diagrams—this is in the spirit of 

Feynman diagrams, but rather than as an aide to writing down a colour structure they can 

be used to evaluate a colour factor. 

The basic diagram unit is 

a 
a 

'J 
J I 

which is an angularly ordered unit. With respect to this unit the relation, Eqn. (F.10), can 

be written 

r p a r p a 

I 

i i 
j i N 

We give an example of using this diagrammatic algebra to evaluate the colour factor 

associated with the virtual correction to the hadronic branching ratio in Figure 4.10b. The 
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appropriate diagram is as follows, 

< O 1 1 
2N 

N - l 
2N 

which in terms of the SU(3) generators (a closed loop evaluates to N) is, 

N2 - 1 
TtkTii = -STH*- (F.13) 

The structure constants in this diagrammatic representation have the form, 

A A { } abc f 
a 

a 
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