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ABSTRACT 

A 02 ductile thrust imbricate stack has been identified within 
the mid greenschist facies (Appin Group) metasediments of the 
Breaghy Head area of Co. Donegal. Major stratigraphy parallel 
tectonic slides detach arrays of subsidiary ductile thrust 
imbricates, which display patterns of intensifying strain and minor 
structures generally regarded as being diagnostic of the much 
broader thrust sense shear zones (tectonic slides) which typify 
deformation within metamorphic ·parts of mountain belts. This 
commonality of structural associations implies that th~ Breaghy Head 
imbricates and their broader larger scale counterparts must share 
similar generative and propagative processes. 

The imbricates have 'shaped' geometries with long bedding 
parallel flats and shorter 20-30° ramps preserved as hangingwall 
anticlines, footwall synclines or complex remnant zones of climbing 
vein arrays. At a number of localities, ramps have escaped direct 
incorporation into mature thrust profiles and have been preserved 
within thrust hangingwalls, 'frozen' at early or intermediate stages 
of development. This has enabled identification of three distinct 
ramp styles; "Vein array ramps" characterised by vein array 
complexes, and "fold ramps" & "fabric slip ramps", both hosted by 
primary F2 folds. These fold hosted ramps can be seen to nucleate or 

"result from coallescent propagation of ductile thrust dislocation 
cells (FSR & FR respectively). 

The concept of thrust dislocation cells is supported by the 
presence of 02 extensional flow within the imbricate stack, 
expressed by shear bands and boudinage. These structures are 
kinematically and temporally intimate, forming combinant structures 
at a number of localities. These 8tructures characteristically 
intensify towards the thrust planes but are never seen to deform 
them, such that extensional flow is detached at the thrust plane to 
which it is seen to intensify. 

The extensional and contractional flow clearly relates 
spatially and temporally to the generation and movement of 
individual imbricates and must, therefore, coexist kinematically as 
this takes place. This can be explained by rheologically focusing 
(localising) deformation to produce stratigraphy parallel 
dislocation cells. The development and subsequent propagation of 
these features produces the observed structural patterns and 
displacement connectivity via ramp generation to produce mature 
'shaped' ductile thrust profiles. 

Local polyphase fold and fabric histories are seen to be 
generated during continuum 02 ductile thrusting. These structures 
are temporally and spatially restricted, chiefly as hangingwall 
strains produced by local thrust stacking processes (eg. imbricate 
back-steepening and culmination extension). Local polyphase 
sequences are also generated by development of rare backthrusts, 
buttressing and footwall collapse oF ramps and hard band block 
rotations. These structures are clearly 02 ductile thrust secondary 
structures, related to local kinematic processes and do not 
therefore reflect regional polyphase deformation. 
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CHAPTER 1 

INTRODUCTION AND PREVIOUS RESEARCH 

The study area lies within NW Donegal, on the western shores 

of Sheephaven Bay (Fig 1 .1). The highest ground is the NE-SW 

chain of dissected ridges dominated by Muckish mountain, the 

summit of which reaches some 670m. The topography falls sharply 

to the NW from Muckish and then slopes gently, via a series of lee 

and scarp slopes, towards the coastline of Breaghy Head and 

Dunfanaghy. A sand choked tidal estuary separates Dunfanaghy From 

the relatively high ground (120-240m) of the Horn Head peninsula, 

whose hummocky topography is abruptly terminated on three sides by 

high cliffs. Originally surveyed by Kilroe & Nolan ( 1891), the 

reeks ~hemselves are deformed mixed lithology greenschist facies 

metasediments and siN-like metadolerite sheets. 

1.1 Stratigraphy 

In order to make accurate structural interpretations in 

complexly deformed sedimentary rocks, an understanding of the 

stratigraphy is vital. The lack of fossils or instantaneous time 

markers in these rocks has necessitated a lithostratigraphic 

approach. The stratigraphy of NW Donegal was described in detail 

from separate study areas by Iyenger et al (1954), McCall ('1954), 

Knill & Knill (1961), Pulvertraft (1961) and Rickard (1962). This 

generated a confusing picture of geographically 

successions with locally derived nomenclature. 

separated type 

Pitcher & 

Shackleton (1966) reviewed and simplified the stratigraphy into a 

standard succession (Fig 1. 2), and correlated it with the 

Ballachulish succession in the Scottish Appin (lower Dalradian) 

1. 



Group. 

(1937). 

This correlation was originally suggested by McCallien 

Pitcher & Berger (1972) and Harris & Pitcher (1975) give 

this simplification and correlation a more detailed treatment. 

With respect to the present author's study area, the 

lithologically varied Sessiagh-Clonmass formation, which contains 

metamorphosed limestones, pelites, silts and quartzites, has 

received detailed scrutiny from a number of authors. McCall 

(1954) and Rickard (1962) were in disagreement about the 

stratigraphic thickness of this formation. McCall had suggested 

the existence of "considerable repetition" by isoclinal folds and 

had therefore made allowances for tiLi s in his estimate. Whilst a 

combinant of folding and facies diversity was favoured by Pitcher 

& Berger ( 1972), Hut ton ( 1977a) adopted a strong facies 

variability to explain the complex and sometimes abrupt thickness 

and lithological changes presented by the Breaghy Head peninsula 

(Fig 1.3). This non layer-cake npproach to the stratigraphic 

question is maintained in the present study. 

1.2 Structure 

McCall (1954) restricted his interpretation to that of the 

major structure. This he suggested, consisted of the NW verging 

and facing Marble Hill syncline and a similarly verging fold pair 

on Horn Head. These structures were envisaged to fold the Horn 

Head slide, which he correlated with the slide at Dun fanaghy and 

interpreted as being stratigraphicnlly extensional, cutting out 

the complete Sessiagh-Clonmass formation between Dunfanaghy and 

Horn Head (Fig 1.4). This geometrical interpretation was in 

conflict with his view that the slide had developed in conjunction 

with the folding. Working in the Errigal area to the west, 

Rickard ( 1962) was in agreement with McCall's interpretation and 

recognised the Aghla anticline as the overlying return hinge to 

theMarble Hill syncline (which he renamed the Errigal syncline). 
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Rickard also suggested that a series of later cross cutting 

structures were related to the intrusion of the Thorr Granodiorite 

and the Main Donegal Granite. 

His observations came at a time when the concept of polyphase 

deformation was gaining widespread acceptance in the geological 

fraternity. This developed into the technique of placing 

structures into chronologies of deformation 'events'. Employing 

this methodology, Pitcher & Berger (1972) were the first authors 

to establish a chronology of metamorphic and deformational events 

for the region (Fig. 1.5). 

Pitcher & Berger (1972) interpreted the major structure in a 

very similar way to McCall (1954) and Rickard (1962), (Fig 1.4), 

but pointed out that the folding of the Horn Head slide presented 

a mechanical problem: how could a major dislocation be folded 

around the hinge of a fold and still be generated as a result of 

that folding? This was based on the understanding that slides 

were developed in strong causal connection with fold development 

(Bailey 1910, Fleuty 1964). The problem also rested with the 

paradox that the Horn Head slide apparently represented a strong 

thinning and removal of stratigraphy around a fold hinge, where 

stratigraphy would normally be expected to thicken. Pitcher & 

Berger therefore concluded that the Horn Head slide predated the 

folding. 

Hutton ( 1977a, 1979a, 1983) interpreted the major structure 

not as a single extensional and folded slide, but as two separate 

thrust slides. Recognising the peli tes on Horn Head as Ards 

Pelites, (and not Falcarragh Pelites), gave the Horn Head slide a 

thrust geometry and displacement, placing older rocks over younger 

(Figs 1.4, 1.6). Hutton was then able to demonstrate that the 

folding and thrusting were of similar (02) age, and concluded that 

the Dunfanaghy slide to the south was also a thrust of 02 age. 
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Hutton (1977a, 1977b) also revised and updated (1982, 1983) the 

deformation chronology of Pitcher & Berger (1972), (Fig 1.5), and 

demonstrated a strong causal association of his 06-09 structures 

with the emplacement of the Main Donegal Granite into a 

transcurrent sinistral shear zone to the south. 

1.3 Methodology 

One of the original briefs of this study was to investigate 

the extent to which polyphase deformation is generated during 

continuum ductile thrusting. An investigation was therefore 

undertaken, using the standard methodology as applied to polyphase 

deformation belts. This was carried out in order to establish 

which of the structures observed were of local kinematic 

significance and which of 'true' polyphase character. This is 

based on the cross-cutting relationships between structural 

elements, such that an earlier element is deformed by a later one. 

The resulting local chronology of elements is then pigeon-holed, 

such that folds (F) and cleavages (5) are allocated to a 

deformation 'phase' (D). A numerical subscript then denotes 

relative age in the chronological sequence, such that ( 01) is 

post-dated by (02), (51) by (52) and (F1) by (F2). These local 

chronologies of cross cutting structures are then correlated 

between outcrops across the area. Other abbreviations are 

utilized, but explanations are addressed where appropriate. 

Fieldwork began by concentrating on major, identified ductile 

thrusts on Horn Head and at Dunfanaghy (Hutton 1977a, 1979a, 

1983). These are broad ductile shear zones which are host to a 

complex series of structural elements. The chronology of cross 

cutting relationships established at these localities formed the 

basis for Hut ton's ( 1983) regional chronology of events. It was 

found, however, that some of the fabrics in the chronology were 

extensional crenulations, belonging kinematically to 02 and not 
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part of any subsequent deformation. As will be discussed in 

detail in the following chapters, the Sessiagh Clonmass formation 

rocks of the Breaghy Head - Ounfanaghy area were found to contain 

a number of more discrete ductile thrust shear zones. These are 

also found to host fabrics which represent secondary shear zone 

crenulations. These thrusts are also seen to have 'shaped' 

profiles with ramp and flat segments. These geometrical features 

concentrate local fabric histories, which are kinematically linked 

to the thrusting and not therefore part of subsequent deformation. 

In view of these discoveries, it was felt that a purely 

chronological approach to the structural investigation was 

inappropriate. Instead a geometrical approach was included in the 

investigation, similar to that applied to foreland fold and thrust 

belts. This involves identification of geometrical elements 

within the system (eg. hangingwall & footwall ramps, flats, 

hangingwall or footwall short-cuts, etc.), and identifying their 

geometrical (eg. triangle zones), and temporal inter-relationships 

(as in folded or breaching thrusts). This was greatly aided and 

supplemented by an emphasis on ductile kinematic behaviour, 

drawing on a range of cross cutting relationships and kinematic 

indicator criteria. 

The approach therefore attempts to identify those structures 

developed in response to local processes as distinct from those 

related to polyphase deformation patterns. In this respect 01 and 

02 were found to exist, although the deformation associated with 

the thrusting (02) was seen to be far more complex than Hutton's 

( 1983) 02, being found to contain his 03 and elements of his 04 

and 05 deformation phases. 

This geometrical approach was also favoured since the 

similarities and contrasts between thrust geometries found in this 

greenschist facies study area and the geometries of equivalent 
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structures within foreland thrust and fold belts might suggest the 

extent to which kinematic processes compare or contrast between 

the two crustal levels. Since the terminology applied to geometric 

features found in thrust belts is well documented in the 

literature (eg. Boyer & Elliott 1982, Butler 1982a) and seemingly 

commonplace in geological discussion, terminology explanations 

have not been repeated here. 

The ductile thrusts within the Breaghy Head - Ounfanaghy area 

were found to display patterns of intensifying 02 strain and minor 

structures generally regarded as being diagnostic of the much 

broader thrust sense shear zones (tectonic slides) which typify 

deformation within metamorphic parts of mountain belts. Emphasis 

was placed on the details of nature and distribution of these 

minor structures, since the siMilc:....rd:.J of structural associations 

implied that the Breaghy Head - Ounfanaghy ductile thrusts and 

their broader larger scale counterparts must share similar 

generative and propagative processes. The attempt to identify 

these processes and those responsible for the generation of ramps 

in the thrust profiles was considered to be a vital aspect of the 

investigation. 

The following chapters describe and investigate the 

geometries, sequencing and kinematic histories of ductile thrusts 

within the Breaghy Head Ounfanaghy Horn Head area, and 

processes responsible for the development of local polyphase 

fabric and fold histories during continuum 02 thrusting, ramp 

development and the propagation of ductile thrusts (tectonic 

slides). 

6. 
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CHAPTER 2 

FEATURES DIAGNOSTIC OF DUCTILE THRUSTING IN THE 

DUNFANAGHY-BREAGHY HEAD AREA 

As indicated in Chapter 1, the rocks of the present study 

area are mainly composed of the Ards Peli te, Ards Quartzite and 

Sessiagh-Clonmass formation greenschist facies metasediments. As 

defined by McCall (1954), Rickard (1962) and Hutton (1977a), the 

Sessiagh-Clonmass formation rocks are a variable sequence of 

metamorphosed pelites, silts, quartzites, calcarenites and 

limestones, intruded by sill-like metadolerite sheets (Figs 2.1 & 
1.3). This lithological variation of the Sessiagh-Clonmass 

formation is best developed and exposed on the Breaghy Head 

peninsula. 

A reconnaissance of the Brea~Jily Head area led to the 

recognition of a large number of exposures displaying mylonitic 

strains, bedding cut-offs with thrust geometries and small scale 

kinematic indicators. The excellent exposure, (often in three 

dimensions), lithological variation and good primary way up 

evidence aided the recognition of a stack of imbricate ductile 

thrusts. Since this interpretation conflicts with the accepted 

interpretation which attributes the repetitive distribution of the 

Sessiagh-Clonmass lithologies to folding and the sedimentary 

history of the formation, it was decided to produce a detailed 

lithological map of the Breaghy Head peninsula and the surrounding 

environs. 
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The relatively small scale of the imbricate system and the 

excellent exposure tightly constrained observations and 

correlation of structural elements in the area. Whilst kinematic 

models will be discussed more fully in subsequent chapters, the 

main aim of this chapter and chapter three is to demonstrate 

ductile thrusting from the field evidence and to describe the 

geometry of the imbricates. 

2.1 Thrust Rationale 

The basic evidence that thrusts exist in this area is as 

follows: There are within the area relatively narrow zones of 

mylonitic fabric which must represent ductile displacement zones. 

There are clear duplications of stratigraphy across these zones. 

These repeat a relatively simple stratigraphic package which 

consists of a limestone, a quartzite and a limestone-quartzite 

transition. For example, N-S transects between ( 724100-633266) 

and (741 W0-7073'14), map ·1. 

With respect to bedding, these mylonitic zones have 

characteristic flat and ramp geometries similar to thrust faults 

from higher levels in the crust and are clearly visible and 

mappable in the field. These features support the contention that 

stratigraphy is duplicated across the mylonite zones. 

Shear sense indicators (discussed in more detail below) are 

common and show a consistent NW directed overshear parallel to the 

well developed stretching lineation in the mylonites. Since the 

ramps are seen to incline in a variety of directions, with the 

general exception of NW, the kinematic indicators con firm that 

stratigraphy climbs the ramp segments and is not extended across 

them. 
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As will be discussed below, the mylonitic fabric has a 

non-mylonitic variant which is cant ractional in nature and is 

axial planar to westerly, northerly ond easterly vergent folds. 

This shows that the mylonite zones were developed in a 

contractional environment and must, therefore represent 

contractional (thrust) dislocations of the stratigraphy. 

The lithological map is similar in general appearance to maps 

of other thrust belts (maps 1 & 2) and the thrusts have been found 

to duplicate a relatively simple limestone-transition-quartzite 

stratigraphy (discussed in more detaJl below). McCall (1954) had 

suggested the existence of 'considerable repetition' in the 

Sessiagh Clonmass formation by isoclinal folding. However, the 

stratigraphic repetition is consistent with imbrication and not 

isoclinal folding (ie. abcabcabc compared with abcbabcba is 

asymmetric, Fig 2.2 & maps 1 & 2). In addition, primary way up 

criteria (such as cross stratification and ripples in the 

quartzites), reflect an overall constant right way up younging 

direction, and do not therefore record the repetitive younging 

reversals required by isoclinal folding. Furthermore, fabric 

(strain) characteristically intensifies towards basal limestone 

contacts, such that this is asymmetric with respect to 

stratigraphic repetition, consistent with intensification towards 

thrust planes and quite unlike the symmetrically disposed strain 

patterns of isoclinal folding (cf Fig 2.2 a & b). 

In the study area, the earliest tectonic deformation is 

expressed as a weak, rarely developed bedding parallel to gently 

NW vergent slaty cle'avage (51) of very low metamorphic grade 

(Hutton 1977a, 1977b, 1983). In Central Donegal, 01 is associated 

with a major ductile thrust (Alsopi<Jl?7, 19'31}, but there is no evidence 

of 01 thrusting in the present study area and therefore the 

remaining discussion will concentrate on the post 01 deformation. 



The thrust planes are easily identified in the field as 

localised zones of intense platey mylonite which contain a strong 

NW-SE mineral extension lineation and small scale sheath folds. 

As noted above, these mylonites strengthen the case for high 

strain dislocations of the stratigraphy, with small scale 

shear sense indicators (discussed below) showing predominantly NW 

directed overthrusting. The main mylonitic fabric can be traced 

away from the thrust planes, where the mylonitic character of the 

fabric is gradually lost. It is transitional with a gently 

inclined non-mylonitic pervasive fabric which is axial planar to 

W, N & E vergent folds, and is occasionally be seen to crenulate 

51. The folds are therefore referred to as F2, the fabric as 52 

and it's mylonitic variant at the thrust planes as S2m. Clearly, 

the thrusts and folds are penecontemporaneous D2 structures that 

belong to the same kinematic system. Since the thickness of the 

mylonitic zones is variable, (often between 1m and approximately 

10m), the transition between 52 and S2m can be observed within 

individual exposures and cliff sections. 

The mineralogy associated wi tl1 52 consists of quartz, 

plagioclase (probably albite), K feldspar, chlorite, muscovite, 

biotite, margarite, actinolite, epidote and occasionally garnet. 

The metamorphic grade is therefore interpreted as being within the 

quartz, albite, epidote, almandine sub facies of the Greenschist 

facies;. (Winkler 1967), or within the upper biotite, lower garnet 

Barrovian zone. The 52 fabrics are associated with the 

segregation and growth of quartz and micas in contractional 

cleavages indicating pressure solution of quartz and migration by 

diffusional mass trans fer to the hinge regions of microli than 

microfolds (Cosgrove 1976). 52 is also seen to wrap around 

chloritic polygonal knots which are probably pseudomorphs of 

garnet (Pitcher & Berger 1972, Hutton 1977a); Fresh garnets are 

sometimes seen in peli tes (Fig 2. 3). Feldspar porphyroblasts are 

occasionally seen to contain 52 crenulations of 51 (Hutton 1977a, 

• In a detailed review of the thermobarometry of metamorphic 
rocks, Essene (1989) indicates that temperatures under greenschist 
facies conditions are typically constrained to lie between 
300-500°[. However, Essene also indicates that existing barometers 
for greenschist facies rocks are insufficiently calibrated to 
reliably constrain pressure estimates. Although an accurate 
estimate of P/T conditions for the study area Ues outside the 
scope of this thesis, a crude estimate of 15-25 km depth can be 
achieved by assuming a geothermal gradient of 20°C per km. 



pers comm. 1988), suggesting early crenulation of 51 preserved by 

rapid porphyroblast growth followed by intensification of 52 

around the feldspars. These factors suggest that 52 and therefore 

the thrusting in the Breaghy Head and Horn Head area is 

synchronous with peak Greenschist facies metamorphism. 

A qualitative estimate of the strain state of the rocks has 

been made, based on the spacing and intensity of 52 fabrics. The 

thickness of mylonitic and intensely cleaved rock is seen to be 

greater in the hangingwalls than in the footwalls. A good example 

of this can be seen _on the eastern shore of Sessiagh Lough at 

( 567110, maps 1 & 2). Here a thrust emplaces limestone in the 

hangingwall onto micaceous limestones of the transition beds in 

the footwall, the thrust being demarked at one position by a thin 

sliver of quartzite (see chapter 3 for detailed description of 

stratigraphy). Delicate trace fossils (worm burrows) are 

preserved some 2m into the footwall, allowing approximately 1m of 

intensely cleaved and myloni tized limestone below the thrust. By 

comparison, the hangingwall mylonite/high strain is in excess of 

10-15m thickness. 

Hangingwall dominant strain patterns have been described from 

other thrust belts, for example the 5candanadian Caledonides, 

where the broader hangingwall strain profiles are thought to 

result from transport of thrust sheets from deeper crustal levels 

where distributed shearing processes dominate into shallower 

levels characterised by more discrete shearing processes 

(R. Gayer, pers comm. 1994). 

D2 strains are associated with and therefore generally 

localised around thrust planes such that mylonite (thrust) bound 

horses can be identified. These are seen to contain easily 

identifiable lithologies with well preserved sedimentary 

structures as testimony to the low strain states of the horse 
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interiors. This also equates well with observations in higher 

level thrust belts, where the deformation zones are the discrete 

horse-bounding thrust planes. 

2.2 Kinematic Indicators 

The high strain zones and mylonites of the thrusts frequently 

contain kinematic indicators. These were used to deduce the shear 

sense of thrusts and complemented other independent criteria, 

(such as stratigraphic repetition), in these deductions. These 

kinematic indicators are summarised in Fig 2.4, together with some 

of the terminology used below. 

The sense of deflection of syn-Lhrusting 52 fabrics through 

the thrust strain profiles was used as a general guide to the 

shear sense. These fabrics have a general southerly dip and were 

found to curve asymptotically and intensify towards the thrusts, 

consistently indicating a NW directed overshear. As discussed 

below, this effect can also be clearly seen at bed margins, and is 

distinct from cleavage refraction since it is noted in uniform 

lithologies (eg. quartzites) and around 'banded' shears (see 

section 2. 3. 1) within metadolerite Bheets. This enabled shear 

sense to be deduced at exposl..ire. level, being frequently supported 

by other kinematic criteria (eg. C band shears parallel to bedding 

or the planes of discrete shears within metadoleri tes). The 

asymmetry of deformed and rotated markers (eg. metadolerite sheets 

at Mickey's Hole discussed below and located on Fig 1.1), provided 

a reliable criterion for deducing the sense of shear. Displaced 

markers were also found to be reliable shear sense indicators. 

These include boudin necks and quartz veins displaced parallel to 

the shear planes (C shears) and in the R-1 direction within the 

thrust high strain zones (Fig 2.5). fhe margins of the displaced 

markers, especially the segregated vein portions, are seen to thin 

and tail to form asymmetric 'fish' (Lister & Snoke 1984), in the 
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direction of their displacement. This indicates localised ductile 

displacement rather than brittle offsets. With the notable 

exception of those exposed at Dunfannqhy harbour (Fig 1 .1, maps 1 

& 2), these displaced markers consistently indicated a NW 

overshear. 

Asymmetric and rotated porphyroblast (generally pyrite) 

pressure shadows were uncommon, but: useful additional kinematic 

indicators. They were used with caution since the pressure shadow 

asymmetry is different in rotated and non rotated porphyroblasts 

(Simpson & Schmid 1983). Again, with the exception of Dunfanaghy, 

(discussed below), these indicators supported a NW overshear (eg. 

Fig 2.6). 

Mica 'fish' are also seen in the mylonites, and together with 

recrystallization of the host rock mineralogy with asymmetric 

alignment of elongate axes (especially calcite crystals in 

calc-mylonites), give a consistent indication of NW overshear (Fig 

2. 7). 

Certain beds, or bands in the mylonites, were found to have 

deformed by fracturing or discrete shearing and 'domino' rotation 

of the shear-bound blocks (Fig 2. 8). These features, similar to 

the 'asymmetric pull aparts' of Hanmer (1986), are interpreted as 

R-2 shears and were found to consistently rotate towards the NW, 

indicating overshear in that direction. Strain slip (extensional) 

crenulations are frequently seen to emanate from the block 

delimiting shear zones into the surrounding rocks, especially 

where the 'dominos' are large. The most striking example of 

domino rotation occurs in the footwall of the Horn Head thrust 

(Fig 2.8). These large scale features generate open folding, 

sometimes with weak axial planar crenulation cleavage, at and 

around the corners of the blocks as a consequence of rotation. 

These folds and fabrics have previously been interpreted as D4 & 
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D5 structures (Hutton 1977a), they are however, clearly D2 

kinematic structures. 

2.2.1 Reliability of extensional crenulations and shear bands 

The reliability of extensional crenulation cleavages (Platt & 

Vissers 1980) as shear sense indicators has become the subject of 

debate in recent years (eg. White et al 1980, Platt 1984, Brunei 

1986, White et al 1986, Berhmann 1987, Dennis & Secor 1987). 

These crenulations, also known as shear bands (White et al 1980), 

are similar to the C bands of S-C mylonites (Lister & Snoke 1984), 

since they represent small scale shear zones (Platt & Vissers 

1980). The displacement direction of the crenulations is taken to 

reflect the movement sense of the ovnTall shear zone -in the same 

way that C band displacement direcUons are used to determine 

shear sense (Lister & Snoke 1984). In the Breaghy Head area, 

these crenulations are seen to occur in the D2 high strain zones 

and mylonites. The cleavage displacements are predominantly 

towards the NW and are seen to offset the host S2m fabrics and 

markers such as thin quartz veins. These offsets are distinct 

from those noted in contractional crenulations since pressure 

solution features are absent and the microli than structure thins 

into and is asymptotic with the cleavage planes in a consistently 

asymmetric direction across the outcrop width of a given cleavage 

zone (Figs 2.9, 2.10, 2.11). The extensional crenulations are 

therefore taken to represent R-1 shears (White et al 1986, Fig 

2.4), and are clearly seen to be closely related to shear plane 

parallel C Shears and reverse P shears (Brunei 1986, Dennis & 

Secor 1987, Fig 2.12): 

The occasional development in mylonites of a second, 

apparently conjugate set of crenulal ions with opposite dip and 

displacement direction has placed the reliability of extensional 

crenulations into debate (Platt 198Lt, Berhrnann 1987). However, 
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White et al (1980) and White et al (1986) suggest that extensional 

crenulations may be used to determine shear sense where only one 

set is formed, a general rule of thumb now used by rnany field 

geologists. The exact geometrical nature of the crenulations, 

however, and that of the conjugacy between two sets is vitally 

important since it may allow shear sense to be determined from the 

extensional crenulations even when two 'conjugate' sets are 

developed. Using geometrical criterja, a regular field assessment 

of the reliability of the crenulations as kinematic indicators is 

possible, especially in the Breaghy Head area, where jndependent 

shear sense criteria can be used to verify shear sense deduced 

from the crenulations 

In extens-i-onal crenu:lation cleavages, the -fabr-ic in the 

microlithons curves asymptotically into the cleavage planes, with 

one limb thinner than the other, defining the extensional 

micro-shear (Fig 2.10). In truly conjugate extensional 

crenulation cleavages, the microlithon structure should reflect 

the intersection of synchronously developed opposite sense shears 

and therefore be of augen or phacoidal geometry (Figs 2.10, 2.11, 

Platt & Vissers 1980). Such conjugate extensional crenulations 

would be unreliable as shear sense indicators. In the Breaghy 

Head area, conjugate sets with these geometries are rare. If a 

distinction between R-1 and R-2 extensional crenulations can be 

established, the crenulations may still be used to deduce shear 

sense even where both sets are developed. A geometrical approach 

to distinguishing between the two sets of extensional fabrics in 

the field was therefore used in the Breaghy Head area. 

Gently NW dipping extensional crenulations are well developed 

within the thrust mylonites and high strain zones of the Breaghy 

Head and Horn Head area. They are best developed within micaceous 

lithologies or where S2m is intense enough to create sufficient 

anisotropy for their formation. The angle between these 
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crenulations and the host 52 fabrics rarely exceeds 30°. Since 

they crenulate the high strain 52 fabrics, are sometimes 

penetratively developed (eg. Mickey's Hole) and verge in the 

opposite direction to 52, they have previously been interpreted 

and correlated as 53 in NW Donegal (eg. Hutton 1977a, 1979a, 

1983), with the implication that this cleavage is essentially 

contractional in nature. This work, however, has shown that the 

microlithon geometries maintain 'tai J' 

width and are essentially extensionnl 

asymmetry across outcrop 

in character. If these 

fabrics were contractional, the microli than asymmetry would be 

expected to change across the outcrop width (eg. as a result of 

minor folding), (Figs 2.9, 2.10). Furthermore, pressure solution 

has not been seen to be associated w_i th these fabrics even when 

-peneTratively aevelopea, and fliey are sometrmes seen to cleat ly 

displace markers (eg. quartz veins). fhese displacements are not 

equal across the cleavage zone, but the apparent intensity of the 

individual cleavage plane development remains broadly constant, 

regardless of the difference in displacement recorded by adjacent 

cleavage planes (measured in rnm or several ern). If these fabrics 

were contractional, the cleavage planes would be expected to be of 

greater intensity than adjacent planes where the marker offsets 

are greatest (by virtue of pressure solution). These cleavages 

also form multiple sets (cf. Platt 1904), which can be seen in the 

field to link in a similar way to fault systems, or cross-cut such 

that lower angle sets are seen to be cut by younger higher angle 

sets. 

The crenulations are generally open microfolds of 52 fabrics 

with the NW dipping- limbs (defining the extensional cleavage 

planes) being thinned with respect to the SE dipping lirnbs. This 

lends an asymmetric 'tail' or 'fish' geometry to the microlithons, 

indicating NW directed extensional shear displacements along the 

cleavage planes. The cleavage planes are seen to shallow out 

towards parallelism with S2m and are occasionally seen to change 
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orientation to cut up section with respect to 52m, producing P 

shears (Fig 2.12). 

The evidence above strongly suggests that the crenulations 

represent secondary shear fabrics ( R-1) developed in response to 

NW directed thrusting. This shear nense is confirmed by other 

criteria in the same outcrops as the crenulations (eg. asymmetric 

pyrite pressure shadows). These fabrics are also occasionally 

deformed by NW verging F2 warps which rework the 52 or 52m and 

clearly place the extensional crenulations in D2 (Fig 2.13, 

section 2.3). In conclusion, these fabrics are now recognised as 

D2 extensional crenulations (as defined by Platt & Vissers 1980) 

but were previously identified as 53 (Hutton 1977a, 1983) and 

correlated regionally between tectonic slide outcrops. 

A less common second 5E dipping sP.t of extensional 

crenulations is sometimes developed in the thrust .. high strain 

zones. This set is generally not o 'true' conjugate to the NW 

dipping set (in the sense of Figs 2.10, 2.11 and Platt & Vissers 

1980), since the opposing sets of the Breaghy Head area differ in 

geometry. As described above, the NW dipping (R-1) extensional 

crenulations are generally open microfolds of 52 fabrics with the 

NW limbs gently curving and tapering to define the cleavage 

planes. The 5E dipping crenulation microlithons however, do not 

usually have this 'smooth' geometry (Fig 2.10). The 52 in the 

microlithons tends to make a far higher angle with the cleavage 

planes than noted for the R-1 crenulations and the asymptotic 

curve between the 52 and the extensional cleavage planes is 

tighter and narrower than in the R-1 crenulations. This suggests 

formation at a far higher angle (possibly up to 90°) to the 52 

fabrics. In the final position the 52 in the microlithons dips NW 

and would therefore verge 5E with respect to the surrounding 

bedding. 52 verges towards the NW on bedding in surrounding rocks 

unaffected by these extensional crenulations. This suggests that 
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the extensional crenulation microlithons and cleavage planes 

rotate towards the NW during formation. 

The microlithons of the SE dipping extensional crenulations 

may sometimes display gentle internal crenulations which give the 

cleavage a superficially contractional appearance. Like the NW 

dipping R-1 extensional crenulatiorm, however, the SE dipping 

second set also maintains the direct ion of 'tail 1 taper asymmetry 

across outcrop width. The cleavogA is also seen to displace 

markers in a consistently SE direction and the cleavage planes are 

occasionally associated with fine quartz veining. These fabrics 

are therefore interpreted as extensional crenulations which have 

undergone rotation and experienced a contractional and dilatant 

.deformation .component clueing formation .. _ These features all 

suggest that the SE dipping exterwional crenulation set is a 

cleavage equivalent to rotational 'domino 1 
( R-2) shears and is 

geometrically distinct from the R-1 crenulations. The extensional 

crenulations of the Breaghy Head area are therefore judged to be 

reliable shear sense criteria, even where both sets are developed 

together. 

Where the two sets of crenulati ons are developed together, 

the R-2 · crenulations are apparently slightly later than the R-1 

set and wider spaced. At (200085, maps 1 & 2) the R-2 set deforms 

the early R-1 but at one position the microlithon geometries 

appear to show a more conjugate relationship. This suggests R-2 

initiation took place towards the latter part of R-1 activity to 

take over as the dominant secondary shear. There are multiple 

sets of extensional crenulations in these exposures. The earliest 

set of closely spaced (1-2mm) R-1 crenulations is cut at a higher 

angle by a second set of wider spaced (56mm) R-1 crenulations. 

These are then deformed by R-2 crenulations (again some 5-6mm 

spacing). Occasional open NW vergent minor warps deform both of 

the R-1 sets but do not appear to deform the R-2 crenulations. 
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These warps may therefore be developed at the same time as the R-2 

crenulations, although the warps are associated with a rare and 

weakly developed crenulation cleavage only seen in micaceous 

partings and this is distinct from the R-2 fabric. This would 

tend to suggest a change in deformation style of the shear zones 

over time from pervasive to more localised processes. The R-2 

crenulations, however, are not the .last fabrics to develop. At 

this locality all three sets of extensional crenulations are 

deformed by a final set of widely spaced ( 1 0-20mm) R-1 

crenulations. 

At (677146, maps 1 & 2) an early set of closely spaced (2mm) 

R-1 extensional crenulations is deformed by a set of wider spaced 

( 5-6mm) R-2- crenu-lations. N-o conjugate geometrie-s were seen here, 

but the R-2 crenulations are assod a ted with fine quartz veins 

sub-parallel to the cleavage planes. As found at (509150, maps 1 

& 2), small open NW vergent warps again deform the R-1 fabric, are 

associated with a separately developed weak crenulation but do not 

appear to deform the R-2 fabric. 

Rotation of the extensional crenulations during formation and 

microshear (cleavage plane) displacement (Platt & Vissers 1980, 

Platt 1984, Kelley & Powell 1985, Dennis & Secor 1987) must 

ultimately lead to narrowing of the cleavage spacing, however, as 

described above, the later extensional crenulation sets may be as 

much as three or four times more widely spaced. One possible 

explanation to account for this additional spacing discrepancy is 

as follows: The extensional crenulntions deform the pervasive 

mylonitic S2m, and si~ce they represent microshears in which the 

shear zone displacement is carried across spaced narrow zones, the 

extensional crenulations effectively represent localisation of 

displacement. This localisation of dJoplacement will increase the 

ambient shear strain rate in the shear zone and will therefore 

promote further localisation. The wider spacing of successively 
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developed extensional crenulations may therefore reflect 

increasing localisation of the shear zone displacement with time. 

2.3 Nature of the Thrusts 

As described above, the strain profiles through the ductile 

thrusts were qualitatively estimated from the intensity, nature 

and spacing of 52 fabrics. Both these fabrics and the mineral 

extension lineations they contain are seen to intensify and curve 

asymptotically towards thrust planes. These estimates were 

supplemented where possible, by quantitative data in the form of 

pyrite pressure shadow aspect ratio measurements. These were 

measured in the 52 cleavage planes as the difference between 

pyrite width (lo) and total length of pyrite and pressure shadow 

(11). However, these features are rare, pyrites in general 

lacking pressure shadows, suggesting late to post 02 

crystallization. 

The sporadic occurrence of pyrite pressure shadows precluded 

construction of a complete strain profile through any of the 

thrusts. As a general observation, however, aspect ratios (1+e1) 

increase towards the value of 8 in the vicinity of thrusts. 

However, these values are likely to be under estimates since the 

pyrites are likely to crystallize at different times during the 

deformation and may therefore only record relatively late strain 

increments. Furthermore, the closest Jlyrites with pressure shadows 

found to a thrust plane are N of JLincleven Point to the 5W of 

Dunfanaghy (182218, maps 1 & 2). These are approximately 1m below 

the thrust plane and record a 1+e1 of 8. The 52m host fabric to 

these pyrites, however, is seen to intensify over that distance to 

the thrust so that the spacing is reduced by some sm~ in a 

constant silty quartzite lithology. This indicates that the 
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strain state nearest to the thrust is much higher than that 

recorded by the pyrites. 

Hutton (1979c) demonstrated X/Y strains up to 9 in the 

footwall of the Horn Head thrust, using deformed quartz pebbles in 

the Ards Quartzite. Despite certain problems with overprinting 

footwall collapse structures here, this strain figure compares 

with those observed for other thrusts in the area. Since 

mylonitic strains closer to the thrust contact destroy all primary 

features of the quartzite, they are strong enough to obliterate 

any pebbles that might have been in the host rock. Strains are 

therefore liable to exceed 8 or 9 in the vicinity of the thrust 

planes. 

The hangingwall dominance of strains has already been 

described, but the general character of strain increase is seen to 

be exponential; As a general feature, 52 is seen to intensify 

towards the thrust contacts, reducing it's angularity to bedding 

(20° to 30°) to swing into parallelism with the contacts. The 52 

becomes mylonitic as it approaches the thrusts so that 52 is 

transitional with 52m of the same r~eneration. Bedding thickness 

is also reduced as the contact is approached and bedding becomes 

indistinguishable from 52m. The strain state of the rock seems to 

increase exponentially, escalating in the last metre or so nearest 

the contacts where intense 52m may be the only recognisable 

banding. This apparently exponential strain profile is supported 

in Fig 2.14a using data from the Horn Head thrust, (presented in 

Hutton 1977a & 1979c). A schematic strain profile through a 

thrust is suggested iri Fig 2.14b. 

This exponential trend suggests localisation of strains and 

displacement at the thrust contacts, so that the majority of 

thrust displacement is carried along thin high strain zones. This 

is analogous to the case in higher crustal levels where 
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displacements are generally carried on discrete thrust faults. 

This is evidenced by the lithological breaks which the ductile 

thrusts represent, sometimes seen to occur along thin (em) zones 

of hybridised lithology or 'tectonic schist', the best examples of 

which are exposed at Mickey's Hole, W Horn Head and Lishagh (Figs 

2. 9, 2. 15a) . 

The actual strain profiles, however, are not simple 

exponential increases. This is well illustrated by a thrust 

exposed in a road cut at (669228, maps 1 & 2), where hangingwall 

limestones are in contact with metadolerites in the footwall. The 

limestones are intensely cleaved by platey mylonite ( S2m) which 

contains small (em scale) sheath fold closures and a strong 

miner_al extensiQn lineation. This mylonitic de-formation spans the 

6-7m outcrop without any marked decrease in intensity and is 

likely therefore to be thick (in excess of 15m) at this location. 

Strain in the metadolerites, however, rises from undeformed 

crystalline rock to intense platey mylonite in under 1Om as the 

thrust is approached. This is accomplished via a series of 

localised bands of high strain contaJning C-band shears (discussed 

above) of the chlori tised mineralogy which support a NW directed 

thrust displacement. These zones increase in thickness and 

intensity towards the thrust plane, suggesting a more 'dog tooth' 

strain profile in the thrust zones (Figs 2.14c, 2.15b). 

A similar situation is seen in a series of low cliffs around 

Lishagh (410112, maps 1 & 2). Here the character of hangingwall 

strains is well recorded in quartzitic and silty lithologies. 

Bedding thickness reduces towards a thrust at the base of the 

eli ffs, and bands of high strain increase in intensity and 

thickness. Furthest away from the thrust, strains are recorded in 

certain hor i z.ons as micro-shears which anastomose when viewed in 

the stretching direction, suggesting a component of layer-parallel 

shearing of the bedding. This anastomosing habit intensifies 
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towards the thrust, increasing the density of shears and 

apparently attenuating the shear-bound 'pods' . These give way to 

bands of platey strains as the dominant strain expression, which 

increase in thickness and intensity (Fig 2.16). It should be 

noted at this juncture that the platey strain habit is by far the 

more common observation. 

Bedding/52 angles decrease towards the thrusts and bedding 

becomes thinne.r. Where bedding is preserved between platey 

zones, 52 can be seen to be transitional at the bed margins with 

the platey 52m. This might suggest that as shearing progresses, 

the 52 intensifies, becoming transposed and mylonitic at the bed 

margins. Also at the bed margins, occasional C-band shears deform 

the emerging 52/52m, _ but appear to be S2m -planes themselves. Tnis 

supports a syn-thrusting component of layer parallel shear and 

supports the notion of a 'dog tooth' character to the thrust 

strain profiles (Fig 2.14c). This 'banded' shearing, however, is 

also noted from crystalline metadolerites (as described above), so 

that bedding/banding anisotropy may not be the primary cause for 

developing the effect of 'banded' shearing. 

2.3.2 Boudinage and Minor Folds 

Hutton (1979b) noted that the "dr.gree of boudinage" 

close to tectonic slides, given the presence of 

rheological contrasts within the near-slide lithologies. 

increases 

adequate 

In the 

Breaghy Head area, boudinage, especially of metadoler ite sheets 

and quartzites close to the ductile thrusts is not an uncommon 

feature. The boudinage is generally of symmetrical geometry with 

neck long axes lying close to perpendicular to the mineral 

extension lineation. This suggests that the boudinage expresses a 

non-flattening L-5 type deformation synchronous with thrust 

motion. Intensification of 52 fabrjcs around boudins supports a 

syn-thrusting 02 age for their formation, and was also observed by 
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Hutton (1977a) as evidence for syn-02 boudinage. 

Although generally of overall symmetrical geometry, some 

boudins contain internal 'domino' fractures which indicate a NW or 

NNW overshear direction (Fig 2.17). This is compatible with the 

shear sense of the majority of the thrusts and therefore provides 

supportive evidence for a syn-thrusting age for boudin formation. 

It also suggests a layer-parallel (simple) shear component to the 

deformation. The exact nature of boudinage intensification 

however, enables a more accurate assessment of the temporal 

relationship between boudinage and thrust motion to be made. The 

set of outcrops around Lishagh has already received partial 

description above, where the nature of bed thinning and fabric 

intensification -was di-gcussed. 1;:\oudins- he:r-s -l;mcome smaller and 

more frequent towards the thrust as bedding thickness decreases. 

This suggests that boudinage must have begun to initiate after the 

main phase of bed thinning near the thrust (associated with the 

increase of strain). The thrust strain profile must therefore 

have been at an advanced stage in it's development at the time of 

boudinage initiation. Significantly, the boudinage in the Breaghy 

Head area is never seen to deform the thrust planes despite 

intensifying towards them. This strongly suggests that the 

extensional strains which these structures represent is 

effectively detached at the thrust planes to which they intensify 

during thrust motion. 

Asymmetric minor folds which verge W, NW, NE & E, and which 

frequently have an intrafolial geometry have 52 and 52m axial 

planar cleavages. These folds are therefore minor F2 folds. In a 

similar way to the boudinage, F2 minor folds are seen to become 

smaller as the thrust planes are approached and bedding thickness 

is reduced. Also as the thrusts are approached and strain 

increases, the fold hinges swing towards parallelism with the 

stretching lineation and the fold closures tighten to become 
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isoclinal, sheath-like or rootless closest to the contacts ( eg. 

Fig 2.18). Folds are not always developed throughout individual 

strain profiles, but are sufficiently numerous and well developed 

at some localities (eg. 568209, maps & 2) to see these 

relationships clearly. These observBtions indicate that the minor 

fold development took place after the main bedding thickness 

reduction phase, but whilst the thrusts and their mylonitic mantle 

were still in motion. That the folds are an integral part of the 

thrust motion kinematics is also strongly suggested by these 

relationships. 

Whilst the minor folds are usually restricted to the thinned 

bedding, this is not always the case. Near to the thrusts, S2m 

domains are some-times se-en- to oe -rolaetl oy in-inor folds wt1rch have 

a mylonitic axial planar cleavage. When fully developed, this 

fabric is indistinguishable from the S2m surrounding the folds. 

These folds may become sideways closing and 'crenulate', 

disharmonic or sheath like in appearance. In some examples the 

axial planar fabric is clearly transitional with S2m along the 

axial plane (Fig 2.19). These folds must therefore express 

reworking of the thrust mylonites during motion, analogous to 

reworking noted by Bell (1978), Bell & Hammond (1984), Evans & 

White ( 1984). 

Occasionally, folds are found within thrust strain profiles 

which have become transposed by the high strain 52 fabrics ( eg. 

448154, maps 1 & 2, Fig 2.18). At (578162, maps & Z) intensely 

cleaved micaceous limestones contain a tight fold closure 

associated with SE vergence (Fig 2. 20). The fold axial plane 

steepens to the SE, appearing to have been deformed by a gentle NW 

vergent refold. The fold axial planar crenulation cleavage is 

seen to have symmetrical (contractional) microlithon geometries at 

the mid point of the axial plane. As the cleavage shallows at the 

lower (NW) end of the axial plane, the microlithons take on an 
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extensional (to the NW) geometry (regardless of which fold limb 

they occur in), before shallowing into near parallelism with the 

intense 52, which becomes mylonitic in the lower parts of the 

exposure. Thin section investigation showed that a calcite, 

muscovite, quartz/ feldspar mineralogical banding is crenulated by 

the fold axial planar cleavage. This banding is expressed by 

segregation and growth of the mineral phases (eg. large muscovite 

laths and calcite crystals). The muscovites have reaction coronas 

which appear to be related to altered feldspars in the quartz rich 

domains. This schistosity is uncharacteristic of 51, which where 

preserved, is an alignment of small mineral grains involving 

negligible segregation or mineral growth. It is likely to 

represent strongly thinned bedding and sub-parallel 52 frequently 

found wi th-tn the higl1 -strain pads of the tnrust strain pro files. 

The cross cutting fabric causes strong deformation of the earlier 

schistosity with quartz grain size reduction, kinking and bending 

of muscovite, lattice distortions in tim feldspars and deformation 

twinning in the calcite. The fabric is also associated with 

growth of large chlorite bundles and ren~wed growth of muscovite 

along the cleavage planes and in pyrite pressure shadows. Being 

fresh and euhedral, this 'new' muscovite is distinctive from the 

earlier growth. 

Since the fabric is associated with phyllosilicate 

porphyroblast growth, crenulates 52 and is axial planar to an 

apparently SE verging fold, the fabric and fold would be 53 & F3 

as defined by Hutton (1977a, 1983). The fold axial plane, 

however, is deformed by a NW vergent refold, implying a return to 

NW overshear. The fabric, a mylonitic strain slip cleavage, is 

reactivated and modified as an extensional crenulation consistent 

with NW overshear. A correlative of the fabric in the lower parts 

of the exposure is also seen to be in mutual interference with S2m 

so that it appears to crenulate and be crenulated by 52 fabrics. 

This implies that the two cleavages have negligible time 
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separation, and must share part of a single progressively evolving 

kinematic system of D2 age. Indeed, the reaction relationships 

between the different mineral constituents of the rock and the 

apparent syn-tectonic rejuvination of phyllosilicate growth 

probably reflects a cyclic scavenging and recrystallisation 

process similar to that described within mylonites by Knipe & 

Wintch ( 1985). These relationships are therefore interpreted as 

an expression of reworking of 52 and 52m fabrics. As described and 

discussed in detail in chapter 3, similar relationships have been 

observed elsewhere in close connection with rare D2 backthrust 

development. 

2.3.3 Syn-tectonic Veining 

Quartz veining sub-parallel to 52m is frequently seen to 

develop close to the ductile thrusts (eg. at 200220, 405157, 

420113, maps 1 & 2). These are sometimes seen to be related to 

boudinage necks, tension gashes and veins parallel to F2 axial 

planar 52. These veins appear to be contemporary since they are 

seen to be both interconnected and mutually cross cutting in a 

number of outcrops (Fig 2. 21). These veins are seen to be folded 

by F2 folds and are also seen to cross cut F2 folds, suggesting 

vein opening during D2 deformation; lhe further significance of 

veins parallel to F2 axial planes will be discussed in chapter 4. 

Veins parallel to 52 fabrics and bedding have a large lateral 

extent and often occur in swarms of ten, twenty or more. These 

swarms represent displacement zones across which thrust 

displacements of markers are seen to occur. It is interesting to 

note here that similar features have been described from foreland 

thrust belts as a precursor to discrete thrust fault development, 

during progressively localising deformation (Beach 1981). 

Beach (1981) suggests that such veins are developed by 
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'' •.. very large, lateral extension, opening and infilling of short, 

subvertical cross-cleavage boudin necks". This produces oblong, 

lozenge or 'beaded' vein geometries and would be expected to 

produce inclusion (opening) trails in the vein material parallel 

to the host cleavage. In the Breaghy Head area, although 'beaded' 

geometries are occasionally seen, the veins generally have smooth 

walls and where developed, opening trails run obliquely across the 

veins such that the upper vein margin must have moved forward and 

upwards to the NW in the direction of D2 thrust transport. Where 

associated with boudin necks, opening trails remain oblique. 

These veins are therefore interpreted as fabric parallel dilatant 

fractures developed in the thrust strain profile during the later 

stages of the localisation history, (and therefore at reloti vely 

high strain rates)' since they are occasionally associated with 

boudinage which deforms S2m and must, therefore, have formed after 

the main stage of S2m development. Furthermore, the vein margins 

are occasionally sheared so that the S2m at the margin becomes 

intensified, suggesting that the veins may catalyse discrete 

displacement surfaces in the strain profile during this 

localisation. 

This suggests a different mechanism of vein development to 

that proposed by Beach ( 1981). Indeed, the S2m parallel veins 

described above are morphologically and causally closer to fabric 

parallel veins described by Roering & Smit (1987) to be restricted 

to narrow layer (bedding) parallel thrust shear zones within 

quartzites metamorphosed to greenschist facies grades (Phillips 

1987). Similar 'smooth' veins with large lateral extent and 

oblique opening trails/fibres are not uncommon in foreland areas 

of thrust belts. For example, the Moine Thrust zone ( S. Bowler 

pers. comm. 1989), the external French Alps (R. Butler, S. Bowler, 

G. Roberts pers. comm. 1989) and the External Sierras (Spanish 

Pyrenean foreland). 



2.4 Summary 

The Breaghy Head peninsula contains a number of high strain 

(mylonitic) zones across which stratigraphy is thrust dislocated 

and repeated. The high strain zones contain reliable kinematic 

indicators which show that the thrust hangingwalls are displaced 

towards the NW. Some of the structural elements associated with 

the high strain zones and interpreted here as being diagnostic of 

ductile thrusts in the Breaghy Head area are cited by Hutton 

(1977a, 1979b) and Rathbone et al (1983) as being diagnostic of 

broader, larger scale tectonic slides (for partial summary see Fig 

2. 22). The high strain zones in the Breaghy Head area are 

generally less than 20m thick and as such are more discrete 

structures than the tectonic slides to which Hutton ( 1979b) and 

Rathbone et al (1983) refer. In most other respects however, the 

ductile thrusts of Breaghy Head conform to the definition of 

tectonic slides proposed by Hutton (1979b): 

"A tectonic slide is a fault which forms in metamorphic 

rocks prior to or during a metamorphic event. It occurs 

within a zone of coeval penetrative (ie. microscopic) 

deformation that represents an intensification of a more 

widespread, often regionally developed deformation phase. 

Within this zone of high strain slides may lie along and 

be sub-parallel to (although they will cross cut on a 

large scale) the boundaries of lithological, tectonic and 

tectonic-metamorphic units". 

It would perhaps' be unwise however, to label the structures 

of Breaghy Head 'small' tectonic slides, since this would imply a 

lesser displacement magnitude than slides of wider visible 

expression. As noted above (and described in chapter three), the 

Breaghy Head thrusts display marked similarity to thrusts from 

higher crustal levels where fault zone width bears little relation 
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to fault displacement. 

The term "tectonic slide" (Fleuty 1964, Hutton 1977a, 1979b) 

is intended to describe strike-slip syn-metamorphic dislocations 

( eg. that bounding the Main Donegal Granite) or dip-slip 

syn-metamorphic dislocations where the shear sense and therefore 

extensional or thrust nature of the shear zone is unknown. We 

are however, aware of the thrust nature of the Breaghy Head 

dislocations, so that they may be termed 'thrusts'. Furthermore, 

the thrusts are seen to be marked by an intensification of the 

regional D2 fabric (essentially zones of mylonitic S2), and 

therefore represent part of a distributed (regional) deformation. 

The thrusts therefore conform with the definition of ·ductile' 

proposed by Rutter (1986). It foJlows, therefore, that the 

Breaghy Head tectonic slides might best be referred to as discrete 

D2 "ductile thrusts". 

30. 



1 i _L FALCARRAGH 
1----......._ 1__..1_~ LIMESTONE 

LOWER FALCARRAGH 
PELITES 

r 1---......._l__..l_._.-:-.,.:-i. PORT LIMESTONE 

· · SESSIAGH 
.. :· QUARTZITE · ... · 

.·: .... ·-:·:·· . 

. . . . :-· 
.. ·. ·.· :-. :.· .. 

I I I MARBLE HILL 

I I LIMESTONE 
.. .. . . . .. ~ . .. . . . .... 

CLONMASS . . . . . . .. 
QUARTZITE .. ·. .· . . :.·. 

·. 

/[C~;;.~t11: ARDS CUARTZITE 

•o.-J/.fX\ 
·.. -~-w-:·o: ;-D. 

ARDS PELITE 

f---,1--L--1 ~ 
1

1--.-
1 
~ ALTA N L1 ME STONE 

(McCeDI 195dil) (Ricetard 1962) 

300 610 

30 60 

150 400 

45 60 

120 400 

60 60 

305-460 460-610 

300 240-460 

1325 to 1480m 2290 to 2650m 

Figure 2. 1 Summary diagram of the sequence 
and nomenclature of the standard succession 
of meta-sedimentary rocks in the study area, 
with comparative thickness estimates made by 
McCall (1954) and Rickard (1962). 
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FigJ.lJ"~ The disposition of stratigraphic and strain 
repetition associated with folding and thrust 
imbrication. (A) Folding produces symmetric repetition 
of rock units (abcbabcba), concentration of intensified 
fabric in limb areas (symmetric distribution with 
respect to rock units) and revearsals in younging 
direction and cleavage vergence. (B) Thrust imbrication 
produces asymmetric repetition of rock units 
(abcabcabc), concentration of intensified fabric near 
thrust planes (asymmetric distribution with respect to 
rock units) and constant younging direction and 
cleavage vergence. 
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1) Rotationjcurvature of a generated (S2) foliation into 
the thrust plane. 

2) Rotation and 'tail' asymmetry of deformed markers. 

3) Displaced markers (eg. veins). 

4) C shears. 

5) R-1 Shear bands or extensional crenulation cleavages. 

6) R-2 Shear bands or extensional crenulation cleavages. 

7) Asymmetry of intrafolial 
suppliment to other criteria). 

folds (only used as 

8) /\symmetry of pressure sho'ldow trails growing around 
non-rotating 'hard grains'. 

9) Asymmetry of elongate recrystallized grains (eg. 
calcite) . 

10) Asymmetry of mica 'fish'. 

11) R-2 'domino' rotation of hard bands. 

12) Asy""'""etry of rolabecl f'OTryroblasl:. rressure ..sh.adows. 

P R-2 R-1 

~ 

Figure 2.4 Diagrams summarising ductile kinematic/shear sense 
indicators used in the Breaghy Head area. (A) Kinematic 
indicators in a hypothetic shear zone. (B) Riedel terminology 
applied to the various types of secondary or strain 
slip/shear cleavages encountered in the area. (modified from 
White et al., 1986). 
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0.5mm 

figure 2 . 6 Photomicrogra ph s of asymmetric pres sure s hadow 
trails . (A) Pyri tes with asymmetric pressure shadow trail s 
indicating NW directed overshear (top to the right), from 
189095 (maps 1 & 2), near Rincleven Point . (B) A chlorite 
'knot' with asymmetr i c pressure shadow trails indicating NW 
directed overshear (top to the right), from 470200 (maps 1 & 
2), north of Sandhill. This porphyroblast appears to be a 
pseudomorph, possibly of a garnet or feldspar, the chlorite 
growing in optical continuity with a central ovate structure 
which represents the original porphyroblast . Chlorite fibres 
can be seen to have grown into tho pressure shadow area , 
indicating c hlori t isa tio n dur i ng 02 shearing. 
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Figure 2.7 Elongation and alignment of calcite grains within 
mylol\itised limestones at 8451 26 (maps 1 & 2), on the south 
shore of Marble Hill . Note that in t h is example the grain 
alignment swings asymptotically into a zone of increased 
grain size reduction at the ba s e of the photomicrograph (a C 
shear) . The alignment indicates NW directed overshear (top to 
the left) . 



Figure 2.1! Photogr-aphs of R- 2 hacd band 'domi no' r-otations . 
(A) Quactzitc outcrop ncar Lishilgh with domino s indicating NW 
diccctcd ovcrsh cat- (photogr-aph's top to the eight). (D) L<Jrg c 
sca le R- 2 disru ption of a majo c metadolerite body on the NW 
coast . of llorn llead. These d o mi nos produce folds and fabric s 
which cros s - cut 02 str-uctures bu t are c learly of a similar 02 
age (see text for details) . The rotations indicate NW 
directed overshcar (photograph's top to the left) and arc 
located just north of Mi ckey's !tole in the footwall to th e 
llorn Head thru s t (OS sheet 1, 0990405). 
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Figure 2.9 Line drawing from a photograph (Hutton 1983, fig 3a) 
illustrating constan;: :1ature of extensional crenulation 
asymmetry across an outcrop (Hickey's Hole, west Horn Head), 
(A) to (D) represen;: the constant slip d~rect1on of R-1 
extensional crenulations ir, the exposure and (D) illustrates 
t:he direction of marker offsets (eg. fine quartz veins) across 
the crenulations seen at: positions. 
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Narrow 'stratght' sec !ton 

Broad curvature domain 

Broad 'stratght' section 
Narrow curvature domain 

Figure 2.10 Extensional crenulation cleavage geometries. (A) 
The augen or phacoidal microlithon geometry created by 
synchronously developed R-1 & R-2 extensional microshears (B) 
R- 1 extensional crenulations. Note the broad curvature 
domains and narrow 'straight' sections in the microlithon 
structure which create 'smooth' asymptotic curvature of the 
deformed fabric into the cleavage planes. The cleavage planes 
which are defined by the attenuated microfold limbs represent 
extensional microshears. (C) R- 2 extensional crenulations. 
Note the narrow curvature domains and broad 'straight' 
sections in the microlithon structure. The asymptotic 
curvature of the deformed fabric into the cleavage planes is 
far 'sharper' than in the R-1 crenulations and the 'straight' 
sections are at a higher angle to the cleavage planes. Also 
by comparison to the R-1 crenulations, the microshears 
(defined by the attenuated limbs of the microfolds) are 
narrower. 
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Figure 2.11 Photomicrographs of extensional crenulations . (A) 
An example of the rare phacoid geometry associated with 
synchronously developed R-1 and R-2 extensional crenulations, 
from 597216 (maps I & 2) . R-1 is represented by the 
crenulations aligned with the upper and lower frames of the 
photomicrograph. R-2 is less well developed, wider spaced and 
near vertical in the photomicrograph. Compare with figure 
2 . !0a : (D) R-1 extensional crenulations indicating NW 
directed overshear, from 593157 (maps I & 2). Note the smooth 
asymptotic curvature of the microlithon S2m into the cleavage 
planes. 

SSE 

8 



S!E /MW 

2cm 

/MW 
2cm 

SE 

6 
·':.·_'-::~: ... ·.·· ... 

. . . . ·· . . :: _: ~ ·. · .. · ·. · . 
. :. . ·.' 

Figure 2.12 Simplified field sketches of the transitions 
between R-1 shear bands and P shears. (A) An example where 
the extensional crenulation displacements appear to sum 
together and become a P shear, analogous to a thrust fault 
tip fold. (locality at 546160). (B) A more complex example 
containing a number of shear sense criteria. In this case the 
R- 1 extensional crenulations are continuous with a P shear 
fabric and folds. (locality at 525156). 

(1) S2m. (2) Bedding/S2m. (3) R-1 extensional 
crenulations. (4) P shears. (5) R-2 'domino' 
rotations in hard band. (6) C shear displacement 
of vein. 
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Figure 2.13 Simplified 
extensional crenulations 
calc-mylonites at 590225, 
1 & 2. 

S2e 

S2m 

field sketches of folding of R-1 
by NW verging F2 folds. (A) In 

(B) In calc-mylonites at 525156 maps 
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Figure 2.14 Graphs illustrating the nature of stfain profiles through 
ductile thrusts. (A) Graph illustrating the • exponential' nature of strain 
increase towards the Horn Head Thrust (modified from Hutton 1979c). (B) A 
schematic strain profile through a ductile thrust, with scales 
appropriate to the thrusts found pn the Breaghy Head!peninsula. (C) A more 
realistic 'dog-tooth' strain profile through a ductile thrust. This strain 
character is manifested at outcrop as 'banded' shearlstrains of increasing 
intensity within the overall 'background' strain ipcrease profile. (see 
text for details). 
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Figure 2.15 (A) Sketch log through a thrust contact at Lishagh, showing 
compositional details of the tectonic schist zone. Limestone and quartzite 
is tectonically interbanded (seen as colour and hardness changes) on a (mm) 
scale, giving the rock a streaked appearance. A central 5-6cm thick zone is 
a micaceous hybrid lithology which acts as a matrix for rootlessly folded 
or C shear displaced thin quartz veins. (B) Sketch log through the footwall 
of a thrust at 669228, maps 1 & 2, indicating the "banded" nature of 
strains at this locality. There is a "background" strain here against which 
the "banded" strains appear as spaced zones of (in a relative sense) 
anomalously high strain. 
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Figure 2.16 Diagramatic representation of the strain increase and bed 
thinning associated with a ductile thrust at Lishagh. (11) St1:ain 'bands' 
increasing intensity and thickness towards the thrust plane. (13) 
Progressive reduction in bed thickness towards the thrust plane. 13edding 
becomes obliterated and therefore indistinguishable from S2m close to the 
thrust plane. (C) Occasionally, microshears are seen between beds in the 
marginal areas of the thrust-related strain. These microshears anastomose 
when viewed down the stretching direction and intensify towards the thrust 
so that the shear-bound 'pods' become rapidly attenuated ancl the geometry 
indistinguishable from planar S2 fabrics. 



Figure 2.17 Photograph of symmetric boudins in mixed 
dolomitic lithologies with long axes orthogonal to the 
stretching lineation. These boudins contain internal R·2 
'dominos' which indicate NW directed overshear (photograph's 
top to the left) . Located at 648249, maps 1 & 2. 



E. 

Figure 2.18 Photographs of rootless and sheath fold closures 
within calcareous 02 thrust mylonites. (A) Rootless folds : 
the hinges are orientated at an acute angle to the stretching 
lineation. Located at 448154, maps 1 & 2. (B) Sheath fold 
closure: note that the axial planar S2m is the pervasive 
horizontal fabric visible in the photograph, not bedding . 
Located at 648249, maps 1 & 2 . 
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Secondary S2m indistinguishable from primary S2m 

Crenutabon of primary S2m by 

secondary S2m 

Figure 2.19 Simplified field sketch of a minor fold which folds 
_S2m-in __ calc -_mylonites at -568209, (maps 1 & 2-), d-i-spla-y-i-ng--t-he­
transitional nature of the fold axial planar cleavage with the 
surrounding S2m. In the central portion of the fold, the axial 
planar cleavage produces contractional crenulations of the S2m, 
but becomes mylonitic and indistinguishable from the S2m up and 
down the axial Syi~<e. 

Extensional crenulabons 
Contractional crenulaticns 

Figure 2.20 Simplified field sketch of a SE verging minor fold 
from 578162, (maps 1 & 2), which displays reactivation of it's 
axial planar cleavage as R·1 extensional crenulations which are 
indicative of NW directed overshear and are of D2 age. The 
axial planar cleavage creates contractional crenulations of 
intense 82, (alternating 'tail' asymmetries within the 
microlithon structures), which become extensional in character 
down the axial plane to the NW (constant 'tail asymmetries 
reguardless of position in minor fold limbs). (see text for 
details). 
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Figure 2. 21 Diagram illustrating the contemporaneity of vein 
types: (TG) tension gashes, (BN) boudinage necks, (82/BP) 
52/bedding parallel. The veins are seen at outcrop to be 
mutually cross cutting or interconnected. (A) 405157, (B) 
200220·, (C) & (D) 420113 maps 1 & 2. 
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Cn-l!APlER 3 

HIRUSl SE~l.IIENCE AND KMBIIUCAIE GEOMETRY KN THE 

OUNt ANAGHV -II:JIREAG~OV OOEJ.ID AREA 

This chapter aims to describe the main aspects of the 

imbricated stratigraphy and the geometry, sequencing and kinematic 

histories of the Breaghy Head ductile thrusts. This chapter also 

aims to describe and discuss processes responsible for development 

of local polyphase fabric and fold histories during continuum D2 

ductile thrusting. In the interests of clarity this is approached 

in a similar way to a field excursion guide, so that locality 

numbers quoted in brackets in the text refer to the circled 

numbers displayed on map 2. 

3.1 Knockduff, Dunrudian, Sessiagh, L.ishagh-andKill 

The low flat rocks and stepped cliffs at (1) provide a 

section through the lower contact of the Knockduff metadolerite 

sill and the underlying gently SE dipping stratigraphy, summarised 

in Fig. 3.1. The lowest units exposed at this locality are well 

bedded green pelites and pink fine grained quartzites. Pelitic 

content decreases upwards, the quartzites become cream coloured 

(purer) over some 2m and are over lain by 2m of white fine grained 

quartzite. Metre scale shear bands are developed across the 

contact between the white and pelitic quartzites and indicate 

overshear to the NW (Fig. 3.2a). Gently NW vergent 52 which is 

seen in the pelitic lithologies is lost in the white quartzite, 

presumably in response to lack of micaceous content. However, the 

upper metre of quartzite displays S2m sub-parallel to bedding 

which gives the rock a fissile and flaggy appearance. These are 
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overlain by white limestones with intense platey S2m development. 

This limestone gradually becomes dolomitic over some 3-4m upwards 

and the S2m decreases in intensity. Metre scale shear bands, 

again extending to the NW, are well developed and restricted to a 

zone 1m above the limestone-quartzite contact. 

The dolomite is overlain by 2-3m of intercalated thin 

calc-silts and quartzitic bands which are rapidly replaced upwards 

by green phyllites. In the final metre of section these phyllites 

become intercalated with pink quartzites which increase in 

thickness and frequency upwards as the phyllitic content of the 

sequence decreases. This suggests a stratigraphic transition from 

limestone to quartzite. The 52 at this position has lost 

my-lonitic character, verges gently NW and con-tains a NNW-SSE 

mineral extension lineation. The base of the metadoler i te above 

this contact displays discrete intense shearing (em scale 

thickness); The contact is also deformed by a well developed 

domino shear extending towards the SE and deflecting the 

stratigraphy below the sill, indicating NW overshear (Fig 3.2b). 

These features suggest that a NW directed thrust shear zone is 

located at the base of the limestone and that this thrust 

duplicates a limestone quartzi le transition quartzite 

stratigraphic package. The lithologies are sub-parallel across 

the contact indicating hangingwall and footwall flat geometry. 

Further NW at (2), the cream limestone (which at this 

locality contains grey banding), shallows and changes dip to 5° or 

less to the west, whilst the footwall quartzites dip at 

approximately 10-12° to the northwest. The quartzite is clearly 

seen to be cut off against the limestones above showing the 

geometry here to be that of a hangingwall flat resting on a gentle 

footwall ramp. The contact itself is a highly fissile schistose 

band some 2cm thick (tectonic schist). S2m decreases in intensity 

rapidly down into the quartzites (in under 1m), but the quartzite 
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is host to numerous high strain zones which are subparallel to 

bedding and which contain (em) scale anastomosing shears. These 

anastomosing shears are occasionally offset by small shear bands 

which indicate NW directed overshear. These high strain zones 

must therefore have sheared the footwall towards the NW (ie. layer 

parallel shear), and must therefore have reduced the ramp angle 

from an originally higher angle. 

The hangingwall limestones are dominated by intense platey 

S2m which parallels the thrust contact. Approximately 1m above 

the contact, the mylonites contain bands of asymmetric NW verging 

minor folds with sheared and displaced mid limbs. Minor folds with 

sheath closure geometries are also developed. Some of the 

mylorrltes contain bahds of domino shears and fractures extending 

to the SE and indicating NW overshear (Fig 3.3). Some of these 

dominos are seen to have been reactivated as P bands following 

rotation into a shallow angle with S2m. The S2m here is also host 

to dense bands of micro-boudins. Above these features the 

limestone deformation state reduces although still remaining 

fairly platey. Again the limestones become dolomitic and pass up 

into mixed pelitic and silty lithologies, which in turn pass up 

into quartzites where the strain decays rapidly and the quartzites 

become massively bedded. The strain profile in the hangingwall is 

therefore some 6-7m thick. At the uppermost part of the eli ff 

here, another thrust is found with platey limestones again with an 

angular discordance to the quartzites below. This is a similar 

hangingwall flat and footwall ramp relationship to that described 

in the previous paragraph. Again S2m development is greater in 

the hangingwall and the footwall massive quartzites are disrupted 

by high strain zones of anastomosing shears. 

Within the limestone between (1) and (2), a zone (approx. 1m 

thick) contains S2m which is visjbly more intense than the 

surrounding parallel S2m. This is likely to be the expression of 
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a branch point between the two thrusts. 

Further north at (3), grey limestones are overlain by cream 

limestones. The limestones overly pink quartzites and green 

pelites in thrust contact. Again, intense platey mylonite ( 52m) 

is concentrated around the contact and is thicker in the 

hangingwall. The intense platey my Jonite Lends to obliterate 

bedding near the thrust, but it is clearly preserved 1m above the 

thrust as thin bands of cream limestone within the grey limestone. 

The bedding in the limestones is seen to be folded into a NW 

vergent monoform with axial planar 52m and curvilinear minor 

hinges. The contact between the cream and grey limestones defines 

the smooth outer arc of the fold and shows that the grey limestone 

thins- to -the NNW by some--2m~ Furthermore, the bedding within-the­

grey limestone follows a trajectory which will intersect the 

contact with the quartzites. When traced towards the NNW, bedding 

can be clearly seen to become parallel to 52m and the thrust 

contact, dipping gently SE. This represents a hangingwall ramp of 

smooth trajectory resting on a qentle footwall ramp (the 

quartzites appear to thicken as the limestones thin). The ramp 

geometry is very similar to 1 classic 1 ramp geometries seen in 

foreland thrust zones (Fig 3.4). 

Further to the north and below this thrust at (4), a second 

thrust is exposed emplacing platey limestones onto platey 

quartzites. The platey 52m is transitional up section with gently 

NW vergent non mylonitic 52 in the pelitic mixed lithologies which 

overly the limestone. These pass up into pink and green pelitic 

quartzites over some 7-Bm. Bedding, which dips shallowly to the 

south, is parallel across the thrust contact intimating a 

hangingwall flat, footwall flat geometry. 
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The quartzites and to a lesser extent the limestones form low 

ridges which enable the lithologies and therefore the thrusts to 

be traced westwards towards (5). Here the upper thrust sheet is 

partially exposed in nearby fields and drainage ditches, and again 

shows increasing intensity of the 52 to become S2m closer to the 

thrust contact. The lower thrust sheet is more generously exposed 

in road cuts, enabling a near complete section through the thrust 

to be examined: Pelitic impure pale to iron stained quartzites 

contain weak 52 crenulations which verge gently NW and contain a 

NW-SE stretching lineation. Silty micaceous limestones exposed 

nearby to the NW are pervasively deformed by extensional 

crenulations of equally intense 52 and indicate NW overthrusting. 

These extensional crenulations are superseded approximately 1m 

down sectton -by 0-bands (Fig 2.4), wliTch disprace 52 and small 

quartz veins towards the NW. Below this zone (approx. 1m), the 52 

becomes intense and mylonitic. The 1 imestones become pure and 

crystalline below this level and the S2m becomes less prominent. 

Fresh faces in the limestone, however, show strong asymmetric 

alignment of the calcite crystals in the limestone indicating NW 

over thrusting and dynamic recrystallization. The loss of the 

micaceous component in the limestones presumably enables secondary 

recrystallization (recovery) to proceed uninhibited and thereby 

overprints and obscures S2m fabric planes. 

The thrust contact is exposed further NW, where the rocks are 

intensely cleaved by S2m which gives the footwall micaceous 

quartzites a fissile papery habit. A strong NW-SE stretching 

lineation is developed in the S2m 

displaced to the NW along C-shears. 

and late boudin necks are 

S2m has obliterated bedding 

here, however the general attitude of surrounding bedding suggests 

concordance and therefore flat on flat geometry. 
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The thrusts can be traced SW via a series of low linear 

exposures towards Dunrudian at (6) where the lower thrust is 

exposed in a small eli ff. Here SE dipping grey limestones have 

some 35° discordance with near horizontal footwall quartzites. As 

noted at ( 2), the thrust contact generates a narrow zone of 

intense platey S2m in the quartzites. The limestones are heavily 

recrystallized which masks the S2m in them, however where the 

limestones have a micaceous content intense S2m is preserved. 

Also as noted at ( 2), the footwall quartzites feature bedding 

parallel shears which here are not as intense as at ( 2 ), but which 

displace quartz veins to the NW. This is therefore a hangingwall 

flat on footwall ramp geometry. This exposure will be described 

and discussed in detail in chapter four. 

The limestones pass up into pelitic and micaceous limestones 

where intense S2m is preserved. These limestones shallow by some 

20° along strike to the SW, suggesting a decrease in ramp angle 

towards the SW. At ( 7) both quartzites and limestones dip 15° 

ESE, giving the thrust a flat on flat geometry. 

Above the pelitic and micaceous limestones at ( 6), silty 

impure dolomitic limestones pass up into mixed thin intercalations 

of dolomite, silt, quartzite and pelite, with the pelites making 

up the greater part of the percentage lithology log. These become 

platey up section and contain pyrites with asymmetric pressure 

shadows indicating NW over shear. Above this, highly deformed 

white and grey crystalline limestone marks the position of the 

upper thrust. Away from the thrust, the limestone becomes pelitic 

and micaceous, passing up into silty dolomitic limestones, which 

in turn pass up into intercalations of dolomite, silt, quartzite 

and pelite. These contain shear bands, P-bands and dominos 

indicating NW overthrusting. 



The limestones of the upper thrust are here in concordance 

with the sequence below and are therefore in a flat on flat 

relationship. However, the quartzites separating the two thrusts 

at (5) are missing here, suggesting that the upper thrust gently 

climbs section to the NE in the footwall. 

At (8) towards the SW, the footwall quartzites to the upper 

thrust reappear, containing dominos and extensional crenulations 

which indicate NW directed over thrusting. The limestones become 

very platey towards the base where they are in thrust contact with 

the quartzites which thicken towards the south. This thrust 

therefore climbs section to the south and indicates a hangingwall 

flat on a footwall lateral ramp geometry. SW towards ( 7) the 

q-uartzites ana mixed li thologie-8 are graduany- cuf out against the 

limestone indicating another footwall lateral ramp. 

The branch point between the two thrusts is visible in a set 

of low exposures at (7). The footwall quartzites here are highly 

strained with alternating zones of anastomosing shears and platey 

S2m containing a strong NNW-SSE stretching lineation. This 

footwall strain is some 3m thick here. The basal part of the 

limestones are affected by intense platey S2m which decreases 

111 intensity up section rapidly and the limestone becomes more 

crystalline (as noted at (6)). A zone (some 1m thick) of very 

intense S2m gently climbs across the exposure towards the NE, 

above which two sets of extensional crenulations are well 

developed in a band some 1m thick. Broad (2cm spacing) 

crenulations apparently extensional to the W intensify towards the 

NE and swing to apparently extend to the WSW. Remnants of this 

crenulation are occasionally seen in the intense S2rn zone, where 

the extensional crenulations are apparently reworked where the S2rn 

crosses them. The reworking S2m is indistinguishable from S2m in 

the surrounding rocks. A low angle closely (2-5mm) spaced set of 

extensional (to the NW) crenulations cross cuts both the earlier 



set of crenulations and the 52m. Veining is also present in this 

outcrop and is generally fabric parallel, but is also seen to 

transgress the 52 in places, and to cross cut the earlier broad 

extensional crenulations. These veins are deformed and sheared 

out in the mid exposure high strain 52m zone and deformed by the 

later lower angle crenulations. 

The above observations strongly suggest that the higher 

thrust is the later of the two, being a break-back thrust, the 

displacement of which is likely to be responsible for the 

anomalous strike and strike swing in the earlier broad extensional 

crenulations, which appear to have been rotated towards the X 

direction. The total thickness of the hangingwall shear strains 

here_ is in excess of Sm. These relationships -are summarised in 

Fig 3.5. 

Further 5W at 

footwall to the 

(9) a number of subsidiary thrusts in the 

limestone thrust: bring metadolerite over 

quartzite. As illustrated in Fig 3.6, the geometry at exposure 

level is that of a leading edge brnnch point in the metadolerite 

resting on a footwall ramp in the qunrtzi tes. Above and to the 

south of the branch point there are o number of warps and folds in 

the metadolerite-quartzite contact and changes in the thickness of 

the metadolerite. These features are most satisfactorily 

explained by structurally necessary folds above ramp-flat thrust 

geometries (Fig 3.6). 

The limestone thrust swings westward towards ( 1 D) south of 

( 9). The thrust contact is not exposed between the localities, 

however, a series of cliffs at (11) bring the erosion level down 

to the lower structural levels and 52 is seen to intensify 

transitionally into 52m as the thrust is approached. Here pink 

and grey limestones pass upwards into white and buff to grey 

limestones with a ~eneral upwards increase in micaceous content. 
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At the thrust contact between micaceous limestones and quartzites 

exposed at (10), a 30cm zone of intense shearing (relative to 

surrounding shear strains) contains apparent lithological mixing 

between the hangingwall and footwall (tectonic schist). 

South of (10) at (12), a second higher thrust is exposed. 

This thrust emplaces limestone onto limestone and, (as described 

in chapter 2), has a hangingwall dominant strain profile, being 

some 1m thick in the footwall and some 10-15m thick in the 

hangingwall. A thin sliver of quartzite which defines the thrust 

contact at this location is seen to thicken towards (13) to become 

3m thick. The mixed lithologies noted between limestone and 

quartzite are absent here, instead the quartzites are intercalated 

with common pelit-ic pa1'tings. m-n; thrust swirfgs NE from this 

locality and may branch with the lower thrust near ( 9) . This 

suggests that the thrust climbs and descends the stratigraphic 

section very gently across strike. The lower thrust can be traced 

westward from (10) to (14) where it can clearly be seen to climb 

through the quartzites towards the west to form a hangingwall flat 

resting on a lateral footwall ramp. Again strain (S2m) increases 

towards the mapped contact. In cliffs to the sou til of ( 12) and 

(13), quartzites contain well developed cross bedding which 

indicates that the stratigraphy is dght way up. 

This thrust can be traced westward to (15) as lying between 

isolated exposures and breaks of slope, and NW through increasing 

numbers of exposures towards (16) at Kill. Bedding attitudes 

across the mapped contact remain virtually parallel from (14) to 

( 16) indicating a flat on flat geometry over this distance. Also 

over this distance, the exposures show a consistent 

intensification of 52 fabrics towards the mapped thrust contact 

between limestone and quartzite. South of (16) at (17), 

limestones become dolomitic up section, containing strong 52. 

These are overlain by interbedded impure quartzites and grey 
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pelites. These pass up into pure white quartzites with intense 

platey S2m. Approximately 1m above these quartzites, platey 

limestones are seen to show a decrease in S2m intensity up 

section. The quartzite can be traced westward from here into dead 

ground using the break of slope it creates for up to 700m before 

this feature disappears. This is interpreted as being cut out by 

the thrust in that direction. The qusrtzites are clearly seen to 

be cut out to the ~ast and the thrust, which then emplaces 

limestone onto limestone, is demarked by a zone several metres 

thick of S2m which is highly intensified relative to that in the 

surrounding outcrops. 

This higher strain zone (thrust) is easily traced southwards 

to ( 18) at Lishagh. Here the quartzites reappear and the thrust 

climbs section briefly to the east before descending section once 

more. These outcrops are more 

two, however, both limestone 

strained and contain intense 

fully described above in chapter 

and quartzite here are highly 

S2m. These mylonites contain 

extensional crenulations, C-bands, P-bands and dominos indicating 

NW directed overshear. 

East of ( 18), exposure is more sporadic, however, a high 

strain zone in the limestones traces east towards the shore of 

Sessiagh Lough, where it is logical to correlate the thrust to the 

east shore at (12) and is here considered a continuation of this 

thrust along strike. 

Both thrusts are traced westward from (16) and (17) via 

breaks of slope. The-lower thrust apparently cuts down section to 

emplace limestone onto metadoler i te. As described above, the 

break of slope representing the quartzites of (17) can be traced 

westward towards (19) before disappearing at (20). This is 

accompanied by the disappearance of scrub vegetation in the same 

area. The break of slope representing the limestone and 
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metadolerite interface of the lower tl1rust swings to the southwest 

in such a way that this and the quartzite break of slope are 

aligned to intersect. This suggests that the upper thrust 

branches into the lower thrust near (21). 

Further west at (22), limestones and rnetadolerites are in 

contact with intense platey S2m developed in both lithologies, 

dipping shallowly SE. Quartzites crop-out in a small exposure 10m 

west of here in contact with the metadolerite. This quartzite and 

metadolerite contact runs due west from (22) whilst a break of 

slope runs SW to intersect the coast at (23) where platey 

micaceous limestones containing several generations of extensional 

crenulation are in contact with platey quartzites. This indicates 

that the thrust climbs section to the SW from (22) -to (23) to 

create a footwall ramp. The platey S2m in these lithologies 

decays away from the contact in a hangingwall dominant pat tern, 

being some 1 0-15m thick in the hangingwall and only some 3-4m 

thick in the footwall. The limestones, exposed in shoreline 

eli ffs can be traced westwards to ( 24) where they pass 

gradationally upwards into grey pelites. Above and to the west of 

( 24), these pelites become intercalr~ted with thin fine grained 

iron stained quartzites. These quor tzite intercalations become 

more important upwards so that in the area of ( 25) they occupy 

some 60-Bmo of the stratigraphic loc1. At this position 1 0-15cm 

thick quartzite beds show a variable vertical spacing so that in 

places evenly spaced quartzite-pelite intercalations are replaced 

by closely stacked quartzite beds separated by thin pelite 

veneers. This may suggest that the quartzites were deposited in 

pulses against a background pelitic sedimentation. 

Above the quartzites of (25) a bedding parallel metadolerite 

sill is coarsely crystalline and contains sub-horizontal igneous 

banding. This indicates negligible strain at this position, 

supported by undeformed hornfels spots in the quartzites near the 
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sill contact. Southwest of (25) al (26), the top of the sill is 

exposed in contact with iron stained and pelitic fine grained 

quartzites. At the contact the metadolerite is very fine grained, 

containing a ghost banding and the quartzite bedding is locally 

disrupted to form open domes. Inn I de these domes, bedding is 

contorted and apparently autobrecciated with fragments of 

quartzite suspended in a fine grained metadolerite matrix. These 

structures (Fig 3.7) resemble sedimentary de-watering features 

with buckling of bed fragments being highly disharmonic and 

ptygmatic in geometry. There are no fabrics associated with these 

buckles and since the surrounding rocks are unstrained, these 

bedding disruptions must be original (pre-deformation) features 

associated with the sill intrusion. It is possible that they 

repJ:'esEmt local-l-y developed volatil-e escape struc-tures a-na they 

are therefore used here to indicate right way up stratigraphy. 

Above and south of (26) at (27), cream and buff fine grained 

quartzites have negligible pelite content. These have a high 

strain with intense 52 parallel to bedding and a NW-SE extension 

lineation. Boudinage occasionally showing crude domino rotations 

and extensional crenulations in the outcrops suggest a SE directed 

over shear. These features represent a strain increase from the 

negligible strain of (26) and imply lhe existence of a thrust 

above and to the south of (27). At (28) to the east, inverted 

igneous banding in the metadoler ite dips 75 ° to the NE and is 

overprinted by gently SSW dipping 52. Further east at ( 29), the 

metadolerite contains intense 52 and a NNW-SSE extension 

lineation. These outcrops indicate that a high strain zone 

(thrust) can be traced from the upper part of the quartzite at 

(27) eastwards into the metadolerite. The thrust therefore has a 

lateral footwall ramp at this position. Atypically the kinematic 

indicators suggest SE overthrusting, so that the thrust is a 

backthrust (regionally 02 structures verge NW). 
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Returning to the outcrops around Lishagh, we can examine the 

stratigraphy in the hangingwall to the thrust exposed at (18). At 

(30), platey grey micaceous limestones overly the platey more 

crystalline limestones of ( 18). The micaceous limestones pass 

upwards into silver grey pelites which contain thin bands of 

limestone and calcpeli te, together with thin silt and quartzite 

bands. The quartzite bands become more important upwards so that 

quartzite makes up some 80% to 9m~ uf the log thickness. This 

transition between limestone and qunrtzite is some 4-5m thick at 

this locality but appears to reduce thickness and disappear 

westwards. This is accomplished by a westward increase in the 

quartzite component in the transition beds so that micaceous 

limestones rapidly pass upwards into quartzite-pelite 

fntercalations. Above these outcrops, cream to light grey and 

iron stained fine grained quartzites, exposed in a series of 

eli ffs are in excess of 1OOm thick. These eli ffs dominate the 

skyline south of Dunfanaghy and Sessiagh Lough so that the 

quartzites are easily traced westwards from Lishagh to (25) south 

of Rincleven Point and eastwards to the south of Sessiagh Lough, 

the type section for the Sessiagh Quartzite. 

Southeast of Sessiagh Lough nt ( 31)' the gradational 

limestone-quartzite contact is exposed in a eli ff face. Pelitic 

grey and dolomitic limestones pass up into approximately 1m of 

intercalated pelites, thin limestones, porous iron rich silts and 

thin fine grained iron stained quartzites. Above these beds grey 

pelites are intercalated with heavily iron stained quartzites 

which become more important upwards so that pelite is only present 

as rare thin veneers,' The quartzites become less iron stained as 

the pelitic content of the sequence diminishes and well developed 

cross bedding indicates right way up stratigraphy. At (32) to the 

NE, the limestone to quartzite transition is a 3m sequence of 

intercalated grey pelites, green pel ites and grey iron stained 

fine grained quartzites. These quartzites become the dominant 

43. 



lithology up sequence. Here a metadolerite sill is intruded into 

the quartzites, above which the quartzites contain cross bedding 

indicative of right way up stratigraphy. These quartzites are 

easily traced westwards to the cliffs south of Sessiagh Lough. 

West of Dunrudian at (33) the upper part of the limestones 

are dolomitic and pass rapidly upwn rds into silver grey pel i tes 

which contain thin quartzite partinqs and thin iron rich silts. 

Approximately 15-2Dm above these beds grey phyllitic pelites are 

in contact with the Dunrudian metadoJer i te sill. These peli tes 

contain thin quartzite partings m1d thin (up to 2cm) more 

laterally persistent quartzite bands. The pelites, which contain 

hornfels spots and appear 'baked' near to the sill contact, make 

up- ar-ound 80?~ of: c!o-he sequence at -this posit-ion. Th-e-se rocks aT so 

contain NW vergent minor folds with sheared mid limbs and broad 

shear bands which indicate NW directed overshear. Exposed at a 

similar stratigraphic level at ( 34), grey peli tes contain thin 

intercalations of iron stained quar l:zi te and green peli te, with 

some quartzite bands being very dark grey and chert-like in 

appearance. Above the sill at (35), silver grey pelites contain 

occasional thin quartzite veneers and both R-1 & R-2 extensional 

crenulations indicative of NW directed overshear. Above this the 

pelites, which are rich in biotite porphyroblasts, contain thin 

bands of pale calcpelite and quartzite. The quartzite bands 

become more frequent over some 20m upwards, so that at (36) iron 

stained and grey quartzites are the dominant lithology ( 80-90?~), 

containing intercalations of thin grey and green pelite and rare 

thin calc silt veneers. Up sequence from (36) the silt component 

is lost and the pelitic component further reduced. 

Along strike to the NE at (37) the upper contact of the 

Dunrudian sill~ is exposed again. Intercalations of iron stained 

quartzite, buff silts and grey and green pelite pass upwards over 

5-10m into massively bedded iron stained quartzite. The Sessiagh 
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Clonmass quartzites are characteristically fine grained, however 

at this location some of the lower quartzite beds contain thin 

bands of medium to coarse grain size with calcareous clasts. 

Above these beds a complete 30-4Dm coastal section through the 

quartzites shows a consistent fine grain size. This suggests that 

at least in part the early quartzite sediment load was 

supplemented by locally derived detritus. The base of the 

quartzites may therefore in places be erosive in character. 

An open synclinal feature with a crude 'spoon-like' geometry 

exists between Dunrudian and Knockduff, as evidenced by bedding 

attitudes in the area (map 1). This is consistent with 

hangingwall accommodation to movement over the ·shaped' footwall 

-topo(_'Jraphy so far described in -the ar-ea. This -fold pr-oduces 

multiple exposure of the mid part of the transition beds at (38) & 

(39). At both localities silver grPy peli tes contain thin calc 

pelite veneers and silt bands. 

In summary, it has been shown Umt both the limestone and the 

quartzite are laterally persistent units, whilst the transition 

beds between the limestone and quartzite are variable in both 

lithological content and thickness. These variations are 

summarized in Fig 3.8. This suggests that the thrusts duplicate a 

non layer-cake stratigraphy. 

3.2 Breaghy Head and Curragh Harbour 

The quartzites exposed around Breaghy Head are massively 

bedded, white to light blue-grey, coarse grained and contain well 

developed cross bedding. These quartzites also contain occasional 

feldspathic grit and pebble bands. In all these respects the 

quartzites are identical to and are therefore correlated with the 

Ards Quartzite. 
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East of Breaghy Head at (40), cross bedding indicates that 

south dipping Ards Quartzite is inver ted. These inverted beds 

occupy the mid limb of a major NW vergent F2 fold. A metre scale 

platey S2m (high strain) zone in the rnid limb can be traced SW 

from this position to disappear in the direction of Curragh 

Harbour. This high strain zone can also be seen to disappear down 

the cliff to the south, however, the treacherous slopes and sheer 

faces of the cliffs at this location prevented direct observation 

of this high strain zone in the fold profile plane. Cut-offs and 

shear bands indicating NW overshear were found to be clearly 

visible, however, from a boat (Fig 3.9a). This structure 

represents a fold with a thrusted middle limb, a relationship 

commonly described from foreland thrust and fold belts. 

To the west at (41), Ards Quartzite contains cross bedding 

indicative of inverted stratigraphy. This inversion 1s also 

indicated by cross bedding in other outcrops between (40) & (41). 

The contact between the Ards Quartzite and the metadolerite sill 

below (41) is undeformed, since cross bedding is preserved close 

to the contact and a nearby pebble bnd records negligible strain. 

The metadoler ite at ( 42) to the SW, however, is pervaded by high 

D2 strains, implying sill intrusion prior to deformation. The 

metadolerite must therefore be inverted with the Ards Quartzite by 

the F2 folding and thrusting. 

At (42), limestone containing numerous small isoclinal and 

sheath fold closures overlies the metndolerite in thrust contact. 

Both these lithologies are pervaded by intense platey S2m with a 

strong NW-SE extension lineation and large (m scale) shear bands 

are developed in the metadoler ite indicating NW directed 

over shear. The limestones become micaceous upwards, passing into 

intercalations of buff silty dolomite, buff silt, pale green and 

grey pelite and thin quartzite. These rocks resemble the 

transition beds described elsewhere, however, at this location 
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silty lithologies dominate the sequence. Strain appears to 

decrease upwards through these beds. Above these rocks to the 

south, exposed in a cliff face, cream and pink to iron stained 

fine grained quartzites interbed with the silty and pelitic 

transition beds. Strain appears to increase upwards once more 

into an intense zone below a panel of strongly folded transition 

beds which overly a quartzite body. lhese rocks are overlain by a 

second thick (4-Sm) quartzite body which is cloaked by high 

strains containing S2m and tight to isoclinal minor folds with 

sheared out mid limbs. This quartzite is also cut by more 

discrete high strain thrust shear zones (Fig 3.9b). The limestone 

and transition sequence thin out and taper towards the NE where 

they disappear into a high strain zone within the Ards Quartzite. 

Ards Q-uartzTte also over lies file transiTion -oeds- -fa fne SE and 

appears to taper out towards a position beneath the Sessiagh 

Clonmass quartzite body described above. The disposition of high 

strains and outcrop pattern indicate that the limestone and 

transition beds represent a NW directed forethrust-backthrust 

wedge. Similarly, the Ards Quartzite above t_he transition beds 

represents a wedge remnant of the backthrust hangingwall, cut out 

by an overlying forethrust. These relationships are summarised in 

Fig 3.10. 

The western limit of the Sess:iagh Clonmass quartzite body 

(described in the above paragraph), :is folded into a syncline so 

that the quartzite bedding is cut out against the upper high 

strain zone (Fig 3.9b). Silty transition beds rest in a 

hangingwall flat relationship against the quartzite footwall 

syncline. Along strike to the east, these rocks are in a footwall 

flat against hangingwall flat relationship. Down dip to the south 

towards ( 43), the quartzite body tapers out so that transition 

beds rest on top of transition beds. Here the high strain zone 

can be traced towards an anticline-syncline pair with a sheared 

out mid limb (Fig 3.11). It is significant to note at this 

47. 



juncture that the fold pair have a westerly vergence and imply the 

opposite sense of overthrusting to that implied by the quartzite 

footwall syncline and nearby minor fold vergence. Another 

narrower high strain zone in the lower normal limb of the fold 

pair appears to trace out towards the quartzite footwall syncline. 

This high strain zone traces westwards from the anticline-syncline 

pair around the Curragh Harbour anticline to a position above an 

easterly facing footwall syncline on the west limb of the 

anticline (Figs 3.11, 3.15). This footwall syncline faces in the 

same direction as the one in the quartzite, suggesting that a 

folded thrust climbs section to the east in a footwall ramp 

hangingwall flat relationship. 

-- An E-W lrenaing sub-vertical IaEe normal -fault was mapped to 

intersect Curragh Harbour. This fault has previously been used to 

explain the juxtaposition of Ards Quartzites and Sessiagh Clonmass 

rocks here (McCall 1954, Hutton 1977a). It should be noted, 

however, that a normal fault in this area would not explain the 

presence of the wed_gE)s of Se$_s_i_agb Clonmass _ _rocks to the N and NE 

of the harbour. This normal fault branches into two strands to 

trace to the N and S of an Appinite body west of the harbour (cf. 

Elsdon & Todd 1989). The fault is therefore expressed in the cliff 

line surrounding the SE shore of the harbour as two faults. 

Neither fault is seen to exceed a displacement of a metre or so, 

since distinctive lithologies and the above described high strain 

zones can be matched across the faults; (these observations were 

greatly aided by an excursion in an inflatable boat). These normal 

faults do not, therefore, explain the Ards Quartzite - Sessiagh 

Clonmass juxtaposition and consequently do not affect the above or 

following observations. 

The core of the Curragh harbour anticline must, therefore, be 

occupied by the limestones and transition beds exposed at ( 42), 

since these thrust hangingwall lithologies follow a dip trajectory 
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across the narrow harbour to this position. 

On the western limb of the anticline above the folded thrust, 

platey limestones reappear in high strain thrust contact with the 

transition beds at (44). A thrust near to the upper part of the 

limestones forms an easterly facing footwall syncline and 

hangingwall flat. This thrust contains multiple shear bands, 

extensional crenulations and domino shears indicating NW directed 

overshear (Fig 3.12). The limestones thin out to the east 

(hangingwall ramp) so that above the (43) cliff exposure, at (45), 

transition beds are once more emplaced onto transition beds. The 

rocks here are highly strained with intense 52 and 52m 

development. A metadoler i te sheet is domino sheared here and 

boudins in the sediments -contain well developed -.lnt:ef-flal domino 

shears indicating NW overshear (Figs 3.13 & 2.17). 

The exposures at (45) also contain sheath fold closures with 

west vergent (on surrounding bedding) axial planar 52 cleavage. An 

east vergent cleavage crenulates this 52 and would be interpreted 

as 53 in the deformation chronology of Hutton (1977a, 1982, 1983). 

Near to one of the sheath fold closures, a thin (5cm) metadolerite 

sheet is intruded across bedding, parallel to 52. The metadolerite 

sheet contains 52 and occupies the mid limb of a west vergent F2 

fold. These relationships suggest that the metadolerite was 

intruded during 02 deformation. The F2 fold and the associated 

axial planar 52, fold and crenulate the east vergent cleavage. The 

two cleavages, which face and verge in the opposite direction to 

one another, therefore mutually overprint in a conjugate 

relationship and cannot therefore be separated into 52 & 53 (02 

& 03), (Fig 3.14). 

Thrust hangingwall cleavage which verges in the direction of 

thrust transport is a familiar feature of thrust belts (e.g. Mitra 

& Elliott 1980, Cooper & Trayner 1986, Boyer & Mitra 1988). The 
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development of forethrusts and backthrusts therefore offers an 

environment conducive to the development of two sets of cleavage 

with an opposing sense of vergence and facing, especially where 

the forethrusts and backthrusts face one another (eg. Morley 1986, 

Seago & Chapman 1988). In the Curragh Harbour area, these 

relationships are 

(43) lies below 

seen where the rnid limb sheared fold pair of 

and north of the outcrops of ( 45). This 

fold-thrust feature appears to overshear in the opposite direction 

to the lower Folded thrust and the thrust of (44) & (45). These 

relationships support the suggestion that the conjugate folds and 

fabrics are penecontemporaneous and representative of forethrust 

and backthrust strains associated with continuum D2 thrusting. 

These relationships are summarized in Fig 3.15. 

The thrust of (44) & (45) can be traced NE above the Sessiagh 

Clonmass quartzite body (Fig 3.9b) Lo the NE of which at (46) it 

emplaces transition beds onto Ards !~uartzi te. Another thrust 

emplaces Ards Quartzite above the tram;ition beds of (46) so that 

the transition beds taper an~ ~isappear into a high strain zone in 

the Ards Quartzite to the NE. This suggests the existence of 

another NW directed forethrust-backthrust wedge cored by 

transition beds. The Ards Quartzite backthrus t here is cut out 

against the intense platey S2m of a limestone thrust at ( 47). 

Below this thrust and above the Ards Quartzite backthrust, an 

intensely platey limestone is exposed at (48). Highly strained 

Ards Quartzite lies above and below this limestone, which can be 

traced eastwards to (49). Hutton (1977a) described anomalously 

high local strains recorded by stretched pebbles in the Ards 

Quartzite close to limestones near (49). Kinematic indicators 

associated with this limestone remained elusive, however, it is 

logical (in view of the relationships described above) to 

interpret this feature as a further forethrus t-backthrust wedge. 

In a similar way to the Ards Quartzite thrust, these thrusts are 

clearly seen to be cut out against the breaching limestone thrust 
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(bt1) at (47), as described 1n detail below. 

On the western limb of the Curragh Harbour anticline, south 

of (44) at (50), the intercalations of silty dolomite, silt, green 

and grey pelite and thin quartzite pass upwards into 

intercalations of green and grey pelite and cream to pink or iron 

stained fine grained quartzite. The quartzites lose their pink 

colour and become the dominant lithology up section to occupy in 

excess of 80% of the sequence. This limestone to quartzite 

succession is summarized in Fig 3.16. Also at (50), the 

quartzites are in thrust contact with overlying grey limestones. 

Both lithologies are intensely cleaved by platey 52m which lies 

parallel to the steeply west dipping contact. In the footwall the 

52m reduces intensity downwards to the ea-~t over approximately Bm­

to be transitionally replaced by gently west verging non mylonitic 

52. Above the contact in the hangin~Jwall, however, 52m remains 

intense for approximately 1Om of section, crossing the contact 

with metadoler ite which over lies tho limestone with no apparent 

loss of intensity. The S2m sha-llows dip and loses intensity 

upwards over the next 10m to be replaced by a more gently westward 

inclined non mylonitic 52 fabric. Extensional crenulations, 

P-shears and C-shear offsets of small quartz veins are well 

developed close to the thrust contact all of which indicate NW 

over shear. These relationships show that the thrust shallows to 

the west and is therefore folded to become downward facing by the 

Curragh Harbour anticline (Fig 3.17). 

To the south at (51), the downward facing thrust is still 

steeply west dipping and is cut out by a higher thrust which dips 

shallowly to the SE. This thrust is a correlative of the 

breaching thrust at (47) to the NE. At (51) this breaching thrust 

has intense platey S2m characteristic of the ductile thrusts in 

the area and is therefore of 02 age. Thus a 02 thrust clearly 

breaches other 02 thrusts so that time separation between the 

51. 



thrusts is short lived and local in significance. Furthermore, 

the downward facing thrust is folded by the Curragh Harbour 

anticline prior to being breached by the new thrust which cuts 

down through the fold to the NE. The breaching thrust therefore 

cuts the Curragh Harbour anticline. This anticline is associated 

with upright contractional and strain slip cleavages which 

crenulate the 52 fabrics at (50) and the 'conjugate• 52 fabrics at 

( 45). The anticline and associated minor folds and fabrics have 

been interpreted (Hutton 1977a) as a large F4 fold with subsidiary 

conjugate F5 & 55 elements. These fabrics and the folds cannot, 

however, reflect post 02 deformation since this would create the 

inescapable paradox of a 02 structure (the breaching thrust) cross 

cutting 02, 03, 04 and 05 structures. 

In summary, it has been described how Ards Quartzite and 

5essiagh Clonmass rocks tectonically interdigitate in the Curragh 

Harbour area. The stratigraphically younger 5essiagh Clonmass 

rocks are found in the forethrust hangingwalls and the 

stratigraphically older Ards Qunrtzi tes in the back thrust 

hangingwalls. This strongly suggests that the Ards Quartzites and 

the 5essiagh Clonmass lithologies were at a similar datum level at 

the time of 02 thrusting. This stratigraphic juxtaposition does 

not indicate the presence of an F1 fold since there are no 

refolding structures associated with the F2 folding noted between 

(40) & (41). Furthermore, this F2 fold would not bring 5essiagh 

Clonmass rocka into a position favourable to emplace them into the 

Ards Quartzite via a forethrust-backthrust complex. The most 

likely explanation is that an original basin fault is responsible 

for bringing 5essiagh Clonmass rocks and Ards Quartzite into a 

similar position. It is considered therefore that the 

forethrust-backthrust complex and the Curragh Harbour anticline 

were developed as buttressing structures in response to the 

rheological interface which this fault must almost certainly have 

presented to propagating thrusts. As illustrated in Fig 3.18, the 
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( cf. s-1-f'<.Ac.·h.•.,..l se.kions ;;J ..-eo.r of j(.....,.;s), 

structures of the Curragh Harbour area/ are very similar to 

buttressing structures seen in foreland fold and thrust belts (eg. 

Gillcrist et al 1987, Welbon 1988, Butler 1989a, 1989b). The 

Curragh Harbour folds and fabrics therefore represent a complex 

fold and fabric history of local kinematic significance in which 

individual structural elements are developed with negligible 

temporal separation. This local polyphase fold and fabric history 

is therefore developed during progressive 02 thrusting 

deformation. 

3.3 lhe Breaching Thrusts 

The thrust which breaches thrusts at (47) near Curragh 

Harbour' contains in it Is hangingwall' cream- and grey limestones 

which are highly strained with intense platey S2m containing a 

strong NW-SE stretching lineation and small isoclinal and sheath 

fold closures to which the S2m is axial planar. The platey S2m of 

the limestone forethrust -backthrust wedge of (48) is folded over 

in the footwall to the breaching thrust. Despite 

recrystallization of the fabric, it can be seen to be crenulated 

by the breaching thrust's 52 fabrics as the contact is approached 

(over approximately 3m) these crenulntions in both limestone and 

quartzite take on a crude SC-like character before the earlier 

fabric rapidly swings into parallelism with the new S2m. Eastwards 

from (47), the thrust ramps in the hangingwall through pelite, 

silt and quartzite intercalations (transition beds) to the base of 

an overlying metadolerite sheet at (52). Further east, the thrust 

ramps back down into limestones and 

base of cliffs between (49) & (53). 

can be traced to follow the 

Southwest of (47) the thrust 

ramps upwards in the hangingwall to the base of the metadolerite 

and back down into the limestones towards (51). The thrust 

therefore gently climbs and descends section between (49) & (51) 

to form a series of gentle lateral to oblique hangingwall ramps. 

The footwall geometry appears to be fairly concordant (flat) from 
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(49) to (47), however, between (47) and (51) this thrust breaches 

an earlier thrust and the Curragh Harbour anticline, making the 

footwall geometry difficult to determine. 

At (51) the thrust on the western limb of the Curragh Harbour 

anticline is cut by the breaching thrust. Fabric relationships 

here are similar to those noted at (47), so that despite 

recrystallization, the S2m of the breaching thrust is seen to 

crenulate and shear out the earliBr S2m which swings into 

parallelism with the new fabric. Also at (51) another thrust 

appears to branch from the breaching thrust and ramp eastwards in 

the footwall to emplace limestone and metadolerite onto 

metadoler ite, quartzite and metadoler ite towards the east (the 

metadoTeti te- bifurc~ftes near (54)) . - This -produces an- oblique 

footwall ramp and hangingwall flat geometry. 

The breaching thrust ramps upwards in the hangingwall from 

limestone into metadolerite SW of (51) at (55). Further west 

towards (56), the thrust ramps upwards in the footwall from 

metadolerite into quartzites. Between (55) & (56), the thrust 

ramps upwards in the footwall from metadolerite into quartzites. 

Between (55) & (56) the quartzites in the footwall are folded into 

an east facing syncline with 52 axial planar cleavage and vertical 

bedding in the mid limb. The thrust must breach this fold, since 

highly sheared hangingwall metadolerite is present in the adjacent 

field to the south, leaving insufficient room to fit in the 

anticlinal return hinge below the metadolerite thrust. 

At (57) folds and a discrete thrust in the footwall 

quartzites display a complex array of different kinematic 

features, summarised in Fig 3.19. These include domino shears in 

massive quartzite beds which 'leak' strain slip crenulations into 

peli tes which occasionally interbed with the quartzites. These 

crenulations sometimes follow a listric trajectory onto the 
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interface between the pelite and the next quartzite bed in the 

sequence. Quartz veins parallel the fold axial planar cleavage in 

mid limb regions and occasionally show thrust sense offsets of 

bedding across individual veins. The axial planar cleavage (52) 

is also deformed by flexural shear inc] along bedding and deformed 

by shear bands and ; extensional crenulations indicating NW 

overshear. Some shear bands are apparently associated with the 

flexural sh.ear and indicate eastward overshear in the fold long 

limbs. A discrete (approximately 2Dcm thick) thrust shear zone at 

the leading (eastern) end of the fold train displaces bedding and 

an anticline-syncline fold pair. The outcrops here are orientated 

E-W so that the section view they afford is oblique to the thrust 

transport direction indicated by a NNW-SSE stretching lineation. 

Fold hinges are sub-parallel to this stretchrng afrecfio-n, 

however, this sub-parallelism is not viewed as resulting from high 

strain passive rotation of the Fold hinges towards the X 

direction. This is because the high strains required to 

accomplish such rotation are not present in these rocks, as 

evidenced by the presence of well preserved cross bedding (wbich 

indicates right way up stratigraphy). The deformation here is 

mainly associated with folding which contains veining parallel to 

the axial planar cleavage across which thrust sense displacements 

are recorded. The discrete thrust at the eastern end of the 

exposure is parallel to the axial planar 52 and shows an 

intensification of this fabric towards the thrust. These 

features are characteristic of 'fabric slip ramps' (see chapter 

4). Significantly, Coward & Potts (1983) have discussed the 

development of asymmetric folds with hinges sub-parallel to the 

stretching direction, · in response to local wrench strains formed 

by thrust sheet differential movement, possibly leading to the 

development of lateral or oblique ramp segments. 

The structures around (57) are interpreted as being 

associated with an oblique fabric slip ramp segment. The 
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breaching thrust, which is traceable from (56) to (57) lies above 

this ramp and is folded by folds associated with the ramp. This 

therefore represents a D2 thrust being deformed by 02 thrust 

related folding. In terms of thrust sequence, movements on the 

ramp must post date movement on the breaching thrust. 

Just west of (57) the platey strain of the breaching thrust 

bifurcates so that platey S2m is seen to follow the metadolerite 

base and is also seen to form a 3m thick zone within the 

metadolerite, traceable for some distance to the SW. Gently 

westward dipping 52 intensifies to become platey S2m and shallows 

into the mid point of this shear zone. Sediment 'rafts' 

(limestone and silt) are contained within the shear zone 

approximately 50cm to 1m into the hangingwall. The Iower -contact 

of the largest of these rafts is folded by minor easterly vergent 

folds with axial planar 52 which intensifies downwards to become 

the thrust shear zone S2m. Certain parts of this raft's lower 

contact contain metadolerite 'tails' which transgress bedding and 

wispy zones of altered iron rich mineralogy. These features, 

which apparently catalyse the folds in the lower contact, may 

represent structures developed during the metadolerite intrusion, 

indicating right way up rocks (Fig 3.20). Similar rafts are seen 

at (58) near the base of the metadolerite body. The margins of 

these rafts appear to concentrate an igneous flow fabric in the 

metadolerite and show gradational contacts with iron rich altered 

mineralogy at the margins. Veins containing this iron rich 

mineralogy emanate from the rafts. These features may suggest 

that fluids escaping from the sediment rafts have altered the host 

metadolerite metasomafically. The presence of these rafts near 

the base of the metadolerite sill suggests that the thrust west of 

(57) detaches and branches from the sill base to emplace it as a 

hangingwall flat onto a metadolerite footwall ramp. 
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North of (57) and (58) the main breaching thrust takes the 

form of two closely spaced (approximately 1Om) imbricates which 

ramp downwards and upwards along strike in their hangingwalls into 

limestone and impure quartzites below the metadolerite sill. The 

higher imbricate is a more discrete shear zone than the lower one, 

with both zones containing a NNW-SSE stretching lineation, 

isoclinal fold closures and extensional crenulations indicating NW 

directed overshear. Small quartz veins are displaced parallel to 

the zones' platey S2m and confirm NW overshear. A small discrete 

forethrust-backthrust 

imbricates (Fig 3.21). 

complex is developed between the two 

West of (58) the platey S2m of the lower 

imbricate rejoins the base of the metndolerite. 

-

The metadolerite forms a prominent rocky hill covered in 

scrub vegetation distinct from the surrounding grassy area. To 

the west a break of slope is coincident with a change from rocky 

scrubland to grassy pasture. It is considered that the breaching 

thrust is itself breached by a new thrust along the line of this 

break of slope at (59). The evidence for this breaching by a new 

thrust is as follows: 

Northwest of (59) at (60), metadolerite is in thrust contact 

with limestone. In the hangingwall the limestones are overlain by 

2-3m of interbanded silts, pelites and dolomites which are 

over lain by quartzites. In the footwall, highly deformed 

quartzite 'rafts' are contained within the uppermost parts of the 

metadolerite. Further NEat (61) the base of the metadolerite is 

exposed in the walls of a blow hole where transition beds similar 

to those in the thrust hangingwall are seen to directly underlie 

the sill. The stratigraphic sequence is therefore thrust repeated 

across the limestone-metadolerite thrust contact. The 

metadolerite contains 52 fabrics which become penetrative, 

intensify and become mylonitic ( S2m) upwards over 1 0-15m towards 

the thrust contact. This S2m contains a strong NNW-SSE stretching 
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lineation and is axial planar to tight, isoclinal or rootless 

folds. In the hangingwall quartzites, the folds are open to tight 

with an intrafolial geometry and Axial planar 52. The folds 

tighten and the 52 becomes S2m as the thrust is approached. The 

fold hinges are sub-parallel to the stretching lineation in the 

hangingwall and footwall, swinging towards greater parallelism 

closest to the thrust where the highest strains are developed. 

Reworking of the S2m fabric is also seen in the higher strain 

parts of the thrust, where S2m is folded by intrafolial F2 folds 

with axial planar S2m which crenulates the folded S2m, but is 

indistinguishable from and transitional with the S2m up and down 

the axial plane (Fig 3.22). The limestones at the western end of 

the exposure contain a complicated set of recumbent fold closures 

-wit-h curvi-l-inear- hinges which thicl<en file lime-stone at this 

position and may represent a highly dP.formed hangingwall anticline 

(Fig 3.22). 

This thrust strikes NE-SW at the western end of the exposure 

at (6o) and is clearly seen to be re-exposed on a Sl:)ries of smC!ll 

rocky islands to the SW. Moving eastwards, the strike of the 

thrust swings to E-W and ESE-WNW. This thrust must continue to 

swing strike into a NW-SE orientation since good exposure (80 to 

90%) in the ground to the east and southeast contains quartzites 

and pelitic quartzites with a consistent N-S to NNE-SSW strike. 

These quartzites overly the metadolerite east of (60) and (61) and 

are therefore in the thrust footwall. The thrust cannot trace 

eastwards into these quartzites since there is insufficient room 

between the quartzite exposures to facilitate such a violent 

strike swing or to accrimmodate its thick (approximately 20m) high 

strain zone without being noticed. Field relationships therefore 

point towards a NW-SE strike swing in the thrust towards alignment 

with the break of slope around (59). This break of slope follows 

the bottom of a small valley to the southeast where limestone is 

in thrust contact with quartzites at (62). This thrust displays a 
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strain gradient in the hangingwall ond footwall from bands of 

anastomosing shears to intense platey S2m near the 

limestone-quartzite contact. The footwall quartzites contain 

domino shears which 'leak' strain slip crenulations beyond the 

domino margins and indicate NW overshear. This thrust is 

considered to be the correlative of the thrust at (60). Between 

(60) and (62), this thrust carries a coherent hangingwall flat 

across a footwall which crosses from the footwall to the 

hangingwall of the lower breaching thrust and must therefore 

breach the lower thrust at (59). 

The thrust can be clearly seen to swing strike to a NE-SW 

orientation and is easily traced NE along low eli ffs to (56). 

Between (62) and (56), S2m is axinl planar to small sheath 

closures and is deformed by extensional crenulations (both R-1 and 

R-2) indicating NW overshear. Further NE at (56), similar shear 

bands are associated with recumbent F2 folds and discrete shear 

zones in the limbs of these folds (Fig 3.23). A steep west 

vergent cleavage (S4 in the chronology of Hutton 1983) crqss cuts 

these crenulations. This steep cleavage is, however, deformed and 

offset by shear bands which are closely related to the S2m and 

indicate NW overshear. This suggests that the steep cleavage was 

developed during the 02 thrust motion and is not representative of 

any subsequent deformation. Instead this cleavage, which is only 

locally developed, must be an expression of an unidentified but 

spatially and temporally local 02 kinematic process. 

It has been suggested above that the thrust traced between 

(60), (62) and (56) breaches the lower breaching thrust at (59). 

This is confirmed at (56), where the lower breaching thrust, 

(bt1), is updomed into a gentle warp. Above this the platey S2m 

of the new breaching thrust ( bt2) is planar so that ( bt2) cuts 

across the up domed ( bt 1). Furthermore, the warp in ( bt 1) is 

related to the oblique ramp in it's footwall at (57) described 
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above. The motion on (bt2) therefore not only breaches (bt1), but 

also post-dates the activity on the oblique ramp. 

South of (56) at (63), another thrust is exposed above (bt2) 

emplacing grey and impure micaceous limestone onto cream and iron 

stai~ed fine grained quartzites. This thrust contains intense S2m 

(which is axial planar to F2 folds) and low angle shear bands 

indicating NW overshear. This thrust, (bt3), gently ramps 

downwards to the NE through the footwall quartzites. The 

hangingwall limestone appears to maintain thickness to the NE to 

produce a hangingwall flat on a gentle lateral footwall ramp 

geometry. The limestones of (bt2) and (bt3) are of similar 

thickness and appear to converge (branch) near (64) so that (bt3) 

does not pass fnlo th-e -fciotwalr of (bt2T UnforTunately -sporadic 

exposure in the area of the branch prevents relative timing 

between (bt2) and (bt3) to be established using fabric criteria. 

Southwest of (64), however, (bt3) occupies a higher topographic 

position than (bt2) whilst maintaining a hangingwall flat on 

[qotwall flat genmetry n~ar and SW of (63). This may suggest that 

(bt3) is elevated by stacking (bt2) in it's footwall so that (bt2) 

follows (bt3) in piggy back sequence. 

East and southeast of (64) towards (65), (bt3) can be seen to 

cut down from metadolerite into limestone to form a gentle frontal 

ramp in the footwall with a flat in the hangingwall. To the E and 

NE of (65), (bt3) appears to laterally cut up and then down 

section to (66). These are not true ramp features, however, since 

at (66) (bt3) breaches the imbricate which branches from (bt1) at 

(51). The apparent footwall topography is an artifact of (bt3) 

cutting straight across the oblique/trailing culmination wall of 

the imbricate in the footwall. The platey S2m of the breached 

imbricate swings towards parallelism with that of (bt3) but is 

poorly exposed in boggy ground here, preventing more detailed 

observations. 
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Further NE at (67), (bt3) is more accessible and better 

exposed in a small road cut. Here pJ atey 52m is axial planar to 

small sheath fold closures and contains a strong NW-SE stretching 

lineation. 52m in the limestone hangingwall only appears to 

decrease intensity marginally upwards over 6-7m where the exposure 

ends, suggesting that high strains in the hangingwall are in 

excess of 15m thick. In the metaclolerite footwall, however, 

strain decreases downwards from intense platey 52m to spaced bands 

of localised shearing to crystalline metadolerite in under 10m 

(see Fig 2.15). In the hangingwaJl, grey limestones become 

micaceous upwards to be overlain by intercalated grey pelites and 

thin iron stained quartzites of the transition beds. These 

underlie a metadolerite sill and appear to maintain a 2-3m 

-lni-ckness from--f67) as far- 5W as (63} an-d beyond. These 

transition beds pinch out against the sill base near (67). . The 

sill is overlain by cream and iron stained fine grained quartzites 

with less than 2m~ pelitic content. NE of (67) at (68) (bt3) 

reaches the coast apparently mai11laining a hangingwall flat 

geome_try. East of (68) the _thr.ust rapidly ramps upwards in the 

hangingwall towards (69) to cut out the limestone. This must be a 

true ramp feature since limestone would be expected to be exposed 

above the sill to the south and east if the feature represented 

transgression of the sill through the stratigraphy. 

Eastwards of (69) towards ( 70), the thrust ramps downwards in 

the hangingwall laterally and frontally back into platey 

limestones. In the footwall, interbedded silts, pe lites and thin 

quartzites of the transition beds also thicken eastwards so that 

the thrust ramps upwards laterally to the east in the footwall 

(Fig 3.24). East of (70) a flat on flat geometry is maintained. 

In the footwall, pelites and thin quartzites overly metadolerite. 

The contact between these lithologies is deformed by open domes 

similar to those associated with sill intrusion at (26) south of 

Rincleven Point (compare Figs 3.7, 3.25). As suggested before, 
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these primary structures are interpreted to indicate right way up 

stratigraphy. This is confirmed approximately 8m above the 

contact, where graded bedding between silt and pelite occurs in 

10cm beds indicating right way up stratigraphy. This graded 

bedding is approximately 8m below the thrust so that strain in the 

footwall rises from relatively undeformed sediments to intense 

platey S2m in approximately 5m as the thrust is approached. In 

the hangingwall, however, the limestones and the metadolerite 

above are intensely deformed for at least 1Om upwards into the 

hangingwall, with well developed intense 52 and S2m fabrics. The 

limestone also contains intensely sheared and contorted 

metadolerite pods which may have originated as a small 

metadolerite sheet below the main sill. The hangingwall therefore 
~ 

displays a thicker strain profile than the ·footwall. 

At (71) above the metadolerite sill, silver grey pelites pass 

rapidly upwards across a short exposure gap into intercalated grey 

and green pelites and cream and iron stained fine grained 

quartzites. The quartzites occupy 60 to 70% of the log sequence, 

rising to over 80% as individual quartzite beds increase in 

frequency and thickness relative to the pelites. 

Returning SE to the branch point between (bt2) and (bt3) at 

(64), (bt3) is easily traced SW to (63). To the SW of (63), (bt3) 

is exposed in a cliff face and easily traced SW to (72) where the 

thrust and the thrust's hangingwall stratigraphy follow the 

topographic contours around the top of a small valley. The gently 

SE dipping grey limestones of the thrust are overlain by micaceous 

limestones which pass upwards into intercalations of pelite, silt 

and thin quartzite over some 4m. intercalations of peli te and 

quartzite replace these mixed lithologies upwards over the next 2m 

and the peli te content decreases so that quartzite makes up over 

80% of the log sequence (Fig 3.26). 52 intensifies to swing into 

parallelism downwards through the micaceous and grey limestones 
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towards the thrust contact. Moving to the NW towards (73) at the 

bottom of the valley, progressively lower structural levels are 

exposed. The limestones' bedding and intense S2 fabrics swing 

strike towards a N-S orientation to dip gently to moderately to 

the west. The limestones contain intense S2 and S2m fabrics which 

are axial planar to tight to isoclinal recumbent minor F2 folds. 

Moving into the hangingwall, the transition beds and quartzites 

dip more steeply to the west and at one position near (73) 

quartzites contain cross bedding which indicates westward younging 

of the sediments. 

steeply east. 

Here the beds are locally overturned to dip 

The gross structure between (72) and (73) is therefore that 

of a west vergent mono form, passing from the upper normal- fimb at 

(72) through the anticlinal hinge to the lower part of the mid 

limb around (73). The upper structural levels are mainly exposed 

in quartzite and S2 cleavage, in the absence of micas, is only 

weakly expressed. Moving towards the anticlinal hinge, however, 

thin beds ana partings of peli te contain S2 which is clearly seen 

to be axial planar to neutral vergent minor folds related to the 

monoform. The monoform must therefore be of 02 age. The S2 

increases intensity towards the mid limb where it is well 

developed in both quartzite and pelite. This must therefore 

represent 

controlled) 

a 'true' rather 

intensification of 

than 

S2 

apparent 

in the mid 

(lithologically 

limb. Lower 

stratigraphic levels are exposed towards the lower part of the mid 

limb, where interbedded quartzites, silts and pelites (transition 

beds) dip moderately westwards, marking the approach of the return 

synclinal hinge of th~ monoform. Minor west vergent folds are well 

developed here, and contain a pervasive axial planar S2. The mid 

limbs of the minor folds are sheared out along discrete ( 1 Ocm) 

thrust shear zones where S2 intensifies to become mylonitic. Small 

intrafolial folds, displaced markers (fine quartz veins) and the 

direction of bed thinning into the shear zones indicate 
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north-westerly directed thrusting. The lowest of these imbricates 

lies on pure quartzite, suggesting that part of the transition 

sequence is emplaced into the quartzites along this lower thrust 

(Fig 3.27). 

A number of interesting features are displayed by the 

attitude and position of structures at this structural level of 

the monoform. Firstly, the minor folds verge westwards, and since 

the synclinal hinge has not yet been crossed, they are still 

within the mid limb and should, therefore, be neutral or easterly 

vergent. Secondly, bedding, the imbricate shears and fold axial 

planar cleavage dip westwards so that the folds and imbricate 

thrusts face downwards to the west. At the lowest structural 

levels wl1ere the limestone oT- (bt3-) is exposed, -oedding ana- -the 

thrust S2m dip to the west. These features suggest that the major 

F2 monoform folds a major 02 ductile thrust and a small ductile 

imbricate stack in it's hangingwall, during progressive 02 

deformation (Fig 3.28). Also, as illustrated in Fig 3.28, the 

mono form is breached by further ductile imbr i_cates, (described and 

discussed below). 

Northwest of (73), (bt3) can be traced through exposures in 

private gardens and a break of slope west of that of (bt2) to 

coastal exposure at (74). Here limestone is in thrust contact 

with interbedded quartzites and peli tes (quartzite in excess of 

80% log sequence). These limestones are overlain by approximately 

6m of intercalated limestone, dolomite, silt, pelite and thin 

quartzite. The limestones, dolomites and silts become less 

important upwards through this 6m so that quartzites and pelites 

become the dominant interbedded lithologies, with quartzites 

becoming increasingly important upwards to make up in excess of 

90% of the log sequence (Fig 3.29). The limestones and footwall 

quartzites are intensely deformed and contain opposed vergence (E 

and W) minor F2 folds and minor F2 folds with curvilinear hinges 
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are well developed near the thrust contact suggesting sheath type 

closure geometries. Open folds are also developed here with 

upright axial planes (equating with F4 and F5 of Hutton 1983). 

These folds tighten upwards along curved (convex) axial planes 

which curve into the west or east vergent F2 folds. These folds 

have axial planar S2m or else they rework the 52 fabric in the 

more inclined portions of the axial plane and swing into 

parallelism with the 52 fabric up Llle axial planes (Fig 3.30). 

The above fabrics and folds are therefore part of a progressive D2 

thrusting deformation. Higher up in the hangingwall, the 

quartzites are dominated by a complex of boudinage and large shear 

bands indicating NW overshear. The shear bands form shear zones 

in their own right and contain synthetic extensional crenulations 

which shallow list~dca1-ly into~-the-shear ~zones. Some of the shear 

bands appear to form composite structures with the boudinage, with 

folded shears across which cut o ffs can be seen. These features 

are sometimes spatially associated with SE vergent folds with a SE 

vergent axial planar cleavage rising listrically from the shears. 

These cleavages appear to be llybridised with extensional 

crenulations associated with the shear bands in certain positions, 

suggesting negligible time separation and therefore development 

during D2 thrusting (Fig 3.31). Bedding and the 52 fabrics dip 

gently southwards in the hangingwall but steepen towards the 

thrust. This appears to steepen (bend) the boudins above and may 

be responsible for the development of detaching SE vergent folds 

and fabrics. A similar process of SE vergent fabric and fold 

development related to D2 thrust hangingwall back-steepening is 

described from the Middle Town area later in this chapter. 

At the western end of the exposure, (bt3) swings strike to a 

more southerly direction and is clearly in alignment with a series 

of linear rocky islands within the bay, so that (bt3) is easily 

traced SW to the eli ffs at ( 75). Here ( bt3) is folded by an 

easterly vergent monoform. Hut ton ( 1977a) suggested with 

65. 



reservations that the monoform might be of 03 age, principally on 

the basis of the structure's easterly vergence, however, F2 folds 

which verge in opposite directions have been described above (eg. 

Curragh Harbour). Furthermore the structural relationships 

presented at (75) are remarkably similar to those noted within the 

02 monoform at (73): 

The monoform, which for the most part is exposed in 

quartzite, is of similar dimension and geometry to that of (73) 

and contains a comparable intensi fie at ion of the axial planar 

fabric into the mid limb. Also, two minor thrusts emplace part of 

the transition sequence into the quartzites and are then folded 

around the monoform. These thrusts are at a comparable structural 

and stratigraphic level t~-- those at (73) and are considered to be 

laterally equivalent to the thrusts exposed at ( 73). Narrow 

C30-40cm) zones of high strain are concentrated at the thrust 

contacts, away from which strain rapidly decays. In the immediate 

thrust footwalls, the quartzite is finely laminated. This is not 

thin bedding however, sinee close inspection reveals oGcasional 

small (em scale) intrafolial folds and sheath closures. At one 

position, a tight closure is apparently 'rootless', however, by 

carefully tracing banding on one limb for a metre or so along 

strike, a complimentary hinge is discovered. This confirms the 

tectonic origin of the fine laminations and bears testimony to the 

high strains involved. 

Over most of the exposure, the axial planar cleavage at (75) 

is a strong biotite muscovite 

discernable microlithon structure. 

quartz fabric with no 

This strongly resembles 52 

fabrics elsewhere in the study area. Indeed, Hutton (1977a) 

expressed difficulty in including this monoform in 03, despite 

its easterly vergence, (in view of the syn-metarnorphic nature, 

and therefore close resemblance of the axial planar fabric to 52). 

In summary of these observations, Hutton (1977a) suggested that 
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the mono form and it's axial planar cleavage might, therefore, 

represent a late 02 to pre-03 structure, thereby implying short 

geological time separation between his 02 & 03 deformation phases. 

The axial planar cleavage to this monoform is seen to be 

transitional downwards with the S2m of (bt3), demonstrating a 02 

age for this structure. Similar to the 02 monoform noted at (73), 

therefore, the 02 monoform at (75) folds 02 thrusts during 

progressive 02 deformation (Fig 3.32). 

In the mid limb, the monoform's axial planar cleavage 

crenulates the minor thrusts' high strain fabric. In both the 

upper normal limb and the mid limb of the monoform, the high 

strain (mylonite) zones of the minor thrusTs- are- -o-r -co-mparal5Te 

width ( 30-40cm). In the mid limb, however, the expression of the 

cleavage 'transition' zones (ie. mylonitic to background cleavage 

strength) outboard of the mylonitic strain zones are apparently 

narrower. These features might be best explained by: (A) 

intensification and transposition of minor thrust fabrics in the 

upper normal limb by the development of the axial planar cleavage, 

and (B) heightened crenulation of minor thrust fabrics in the mid 

limb by the axial planar cleavage so that the latter has a more 

visible expression at exposure level (Fig 3.32). (A and 8 being 

primarily a result of appropriate orientation of the minor thrust 

fabrics with respect to the newly developing fold axial planar 

cleavage). 

A further similarity between the structures at (73) and (75) 

is that the mono form at ( 75) is breached by a further ductile 

thrust imbricate. This structure is parallel to the fold axial 

planar fabric (which intensifies into it) and is associ a ted with 

shear bands indicating a northerly directed overshear. These 

shear bands also intensify the 52 axial planar fabric and are 

associated with more symmetrical boudinage of the cleavage in the 
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mid limb. This shear banding and boudinage is very similar in 

dimension and geometry to that deforming 52 and S2m fabrics at 

(74), (compare Figs 3.33 & 3.31). The boudinage at both (74) and 

(75) have similar orientations (mean boudin axes 078° and 086° 

respectively), with a sub-perpendicular extension lineation (mean 

161° at both localities). This suggests that these structures are 

of the same (02) generation and are Jikely to be related to the 

thrust breaching of both monoforms ((73) and (75)). The structure 

of these rocks is summarised in Fig 3.34. 

Moving into the footwall of (bt3), west of (75), (bt2) is 

re-exposed at (76). This thrust is easily traced SW from (60) 

along the line of a series of rocky islands and long thin 
-

peninsulas orientated NE-SW. At (76) white and grey intensefy 

platey limestones reduce in strain upwards over 12m and pass 

upwards into limestones containing thin (less than 1 ern) partings 

of grey calcpeli te. These calcpeli te bands increase in frequency 

and thickness upwards over 2rn to become 3-4cm thick and spaced 

15-ZOcm. -At this position in the sequence thin (ern scale) grey 

brown quartzite beds appear. These quartzites increase thickness 

(to 10cm) and frequency upwards over the next 2m of stratigraphy, 

as do the calcpelites, at the expense of limestone which steadily 

reduces in importance. Over the next 2m of the sequence, the 

quartzites rapidly increase thickness to some 20-30crn to become 

more persistent whilst the proportion of limestone decreases to 

disappear altogether. The calcpeli le bands increase thickness 

between the more persistent and regularly spaced quartzites and 

thin pale silts and grey pelites appear in the sequence. As the 

calcpelites increase ihickness, the pelites and silts increase in 

proportion up section so that a combination of calcpelites, 

pelites and silts appear to replace the limestones in the 

sequence. These calcpelites, pelites and silts reach similar 

frequency and thickness (5-1 Ocrn) upwards over the next 1rn of 

section. Although occurring mostly as 'individual' beds, these 
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lithologies occasionally show diffuse boundaries with the top of 

quartzite beds in an upward fining· relationship to indicate right 

way up stratigraphy. Upwards over tl1e next 1-2m of section, the 

grey pelites increase in frequency to replace the calcpelites and 

silts in the sequence. The sequence therefore becomes one of 

interbedded grey pelites and grey cream quartzites. Also in this 

part of the log, the quartzites become more important, increasing 

thickness (to 30-40cm) as the pelites reduce thickness (to less 

than 5cm). This stratigraphic section is summarized in Fig 3.35). 

The limestones of (bt2) are in thrust contact with pink 

micaceous quartzites and green grey pelites. The quartzites and 

limestones near to the thrust contain intense platey S2m which 

gives the lithologies cl-ose-st to the contact- a -paper-y appearance. 

Strain decreases away from the thrust to 'background' 52 intensity 

in less than 5m in the footwall and approximately 8-1 Om in the 

hangingwall, where 52 is seen to verge gently NNW on bedding. The 

strain reduces up section via a series of highly strained horizons 

containing NW vergent intrafolial mi_uor folds with axial planar 

52. These folds become smaller, more frequent and isoclinal as 

the thrust is approached. Extensional crenulations (mostly R-1 

with some R-2) are also present in these strained zones and 

indicate NW overshear. Quartzite beds are also occasionally 

disrupted into R-2 domino style boudins, with strain slip 

crenulations 'leaking' from the domino slip shears. These features 

also indicate NW directed overshear. Higher in the sequence, 

quartzite beds are symmetrically boudinaged. Both the domino 

boudinage and the symmetrical boudinage intensifies 52 fabrics and 

in a few places veins ~ssociated with both styles of boudinage can 

be seen to link as a continuum. These features imply a common 02 

age for both boudin types as suggested at (74) and (75). These 

features also indicate non plane strain, as suggested at ( 45), 

(Figs 2.17 & 3.13). 
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Moving west from (76) into the Footwall of (bt2~ sheer cliffs 

prevent direct observation of the rocks until accessible exposure 

is regained in the small cove around ( 77). Here limestones 

containing platey S2m lose strain upwards to the SE and pass up 

into peli tes, silts and cream grey and iron stained quartzites. 

The platey limestones are in thrust contact with grey and 

phyllitic pelites containing thin beds of pale iron stained 

quartzite and grey silty pel ite. !he quartzi tic and silty bands 

are lost downwards into the footwall to be replaced by a 

relatively thick (in excess of 18m) sequence of finely bedded grey 

phyllitic pelites. This thrust Js lost to the west in non 

exposure, however, the strike of bedding and S2m suggests that the 

thrust intercepts (bt2) near (78). The exact relationship between 

( bt2) an_d_ this thru-st remains hidden in lhe non-exposure. rF1e 

trace of (bt2) can be easily followed SW for several hundred 

metres from a roadside exposure above ( 78), using the break of 

slope and vegetation change it creates. These features peter out 

towards Sandhill where the further course of the thrust is 

tentatively mapped using sub-crop 1nnter.iaJ surrounding newly cut 

drainage ditches. 

Moving inland to the SW, ( bt3) can be traced towards ( 79). 

Here bedding in the hangingwall of (bt3) strikes NE and dips 

gently SE. Strain increases upwards so that the hangingwall 

quartzites contain platey S2m with extensional crenulations and 

larger scale shear bands indicating NW directed overshear. 

Immediately above these exposures, pJntey limestones indicate the 

presence of a further thrust contact. This thrust has a more E-W 

strike and is seen fo ramp upwards across the quartzites in the 

footwall to the east. The thrust is also seen to cross into the 

footwall of (bt3) to the west and therefore breaches (bt3) around 

(79). This thrust, (bt4), also runs straight across the western 

and eastern contacts between quartzites and the metadolerite body 

exposed between the mono forms of ( 73) and ( 75). This creates 
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apparent footwall ramps cutting up section eastwards to (80) and 

down section towards (72). It is clear, however, that these 

geometrical features are a consequence of (bt4) breaching ( bt3) 

and the monoform structures on eiUmr side of the metadolerite 

(Fig 3.34). Shear bands indicating NW directed overshear in the 

quartzites and strong 52 fabrics in the metadolerite are 

associated with (bt4). 

3.4 The Middle Town Stack and Sandhill Imbricates 

East of (72) at (81), the grey limestones and micaceous 

limestones of (bt4) become silty and interbedded with dolomitic 

limestones upwards over 1-2m. These buff dolomitic and silty beds 

pass upwards abruptly into grey and white quartzites containing 

thin peli te interbeds. The lower 1m of these quartzites contain 

banded shear strains manifested as discrete shears which deform 

strong 52 and anastomose when viewed down the NNW-SSE stretching 

lineation. Also in these quartzites, and exclusive to the lower 

1m, are occasional fragments of limestone which measure up to 

5cm x 0. 5cm. These do not represent tectonically disturbed thin 

limestones since they occur in beds containing relatively low 

strains between the bands of high shear strain. These fragments 

may represent rip-up clasts derived from the limestones below. The 

quartzites here contain good examples of cross bedding (indicating 

right way up stratigraphy) which, in conjunction with the 

limestone fragments, may suggest a sudden deposition of quartzites 

into the relatively quiescent 'limestone environment' and a 

resultant slightly erosive base to the quartzites not noted 

elsewhere. 

The strains associ~ted with (bt4) become more localised 

eastwards from ( 72) where ( bt4) can be seen to branch into a 

number of more discrete ductile imbricates just east of ( 81). 

These imbricates appear to form an anti formal stack, the higher 
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imbricates achieving successively greater dips. The magnitude and 

direction of these dips also appears to conform well with position 

in the stack and the geometry of individual imbricates (Fig 3.36). 

At (82), the hangingwall of the lowest of the imbricates is 

composed of very platey grey crystalline limestones which overly 

grey-cream fine grained quartzites in thrust (flat on flat) 

contact. The hangingwall limestone, although of generally high 

strain, contains 'banded' shear strains, where the relatively 

higher strain zones are host to reworked quartz vein material. 

Shear bands and asymmetrical pull-aparts (domino hard band 

rotations) of some hangingwall quartzite beds indicate NW directed 

overthrusting. The limestones pass upwards into micaceous 

limestoAes, micaceous and- s±l ty liliHYstones-, intercalations of 

quartzite with ·mixed' silty lithologies and finally micaceous 

quartzites. This transition sequence is 2-3m thick and is lost in 

under 25m along strike to the east and the west where it is 

cut-out against the next higher thrust. This thrust at this 

position therefore contains two lateral footwall_ ramps which dip 

away from each other. One of these ramps can be clearly seen in a 

small cliff where a (m) scale footwall syncline (with axial planar 

52) overturns beds to the west. Beds in the overturned mid limb 

can be seen to terminate within the thrust high strain zone. 

The hangingwall of the thrust does not appear to contain any 

transition beds, instead the limestones and the quartzites are 

separated by a small (approx. 4m thick) metadolerite sheet. This 

metadolerite, like the quartzite above it is relatively 

undeformed, with strains increasing towards the base of the 

limestone where platey S2m is the only discernable banding. In 

the hangingwall, the thrust ramps gently up stratigraphic section 

towards the east, but ramps upwards rapidly towards the west where 

the metadolerite is thrust onto quartzites. 
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A number of hangingwall straj ns are associated with the 

position of this western ramp/culmination wall, expressed as local 

fabric development and vein opening: In the higher strain parts 

of the limestone, nearer to the thrust, shear bands and a strain 

slip fabric are present and are extensional to the SW (Fig 3.36). 

Similar, but more intense south-westerly extending shear bands are 

developed further west in the micaceous mylonitic limestones of 

(bt4) at (81). These shear bands are deformed by R-1 extensional 

crenulations of 02 age which record NNW directed overshear and 

indicate that the southwesterly extending shear bands were 

developed during 02 thrust motion. The shear band and strain slip 

fabrics can be correlated with a steeper cleavage higher in the 

stack. This cleavage has tighter asymptotic curves in the 
-

microlithon geometries (similar to R-2 shear bands described 

above) and would be interpreted as 54 or 55 on the basis of 

superficial appearance and orientation, but it is clear that this 

cleavage is of 02 age. 

Summarised in Fig 3.37, these fabrics collectively represent 

a broad shear zone with a crude listric geometry which is 

interpreted as extension in the western culmination wall of the 

stack in response to differential uplift created by imbricate 

accretion. In the lower strain areas of the hangingwalls, planar 

steeply dipping quartz veins are present in swarms 

(sub-perpendicular to bedding) which record bedding parallel 

extension around the 'outer arc' of individual culminations and 

the outer arc of the stack. These veins are restricted to the 

area of the thrust stack and many' extend in a similar direction to 

the shear bands in the western culmination wall. The above 

features are therefore interpreted as structures analogous to 

hangingwall drop faults seen in foreland thrust belts and similar 

to culmination wall extension described from these higher crustal 

level belts (Fig 3.37, Butler 1982c, Coward & Smallwood 1984). 
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At (83), the penultimate thrust in the stack (below (bt4)) 

emplaces grey massive limestones ont.o quartzites. The strain 

increases towards the thrust contact in both the hangingwall and 

the footwall, with 3-4m platey S2m and intense 52 in the 

limestones and 1-2m of these fabrics in the quartzites. The 

footwall quartzites contain swarms of steep planar veins consistent 

with culmination extension. Some of these veins cut the thrust 

S2m indicating that the thrust had ceased movement at the time of 

vein generation and further suggesting that the veins are 

developed in response to culmination development during accretion 

of the thrust below in piggy back sequence. The hangingwall 

limestones also contain veins, however these are in the form of a 

network of irregular shapes which in places give the limestones a 

'chicken-wire' textural appearance. 

Moving up through the hangingwall, the limestones become buff 

coloured, dolomitic and more thinly bedded. In a roadside quarry 

approximately 5m of 'mixed' li tholoqies represent the transition 

beds between the limestomJS and quartzites (both of which are 

exposed here). Buff crystalline dolomitic limestones interbed 

with thin layers of very iron rich silt which readily 

disintegrates when touched. Occasional thin beds of pale silty 

limestone are seen in the sequence and green-grey peli te beds 

appear. The limestones gradually disappear upwards over 3m as 

iron content increases and the green pelites become more important 

in the sequence. The limestones are replaced by thin grey-brown 

or 'rusty' quartzites which increase in frequency and thickness 

and become paler (purer) upwards over 2m as the silty beds 

disappear and iron content diminishes (see Fig 3.38). 

Bedding in the thrust sheet has steepened markedly from the 

thrust contact so that the roadside quarry is positioned somewhere 

towards the rear of the imbricate stack. There is also a weak 

cleavage in these rocks which dips and verges towards the SW (see 
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Fig 3. 36). This fabric shallows Rtlll intensifies downwards and 

eastwards towards the thrust where i l can be correlated with a 

cleavage near (84) which is axial planar to a 5 & 5W closing 

synform. The limestones here are closer to the thrust and 

therefore contain relatively high strains. An isoclinal minor 

fold with intense axial planar 52 is folded around the synform and 

the 52 crenulated by the synform 1 s nxial planar cleavage. This 

cleavage and syncline would be interpreted as 53 & F3 in the 

deformation chronology of Hutton (1903) on the basis of cleavage 

appearance, the southerly vergence and fold morphology. There 

is, however, a clear association between the cleavage and the 

antiformal stack. 

_ Ih~e cleavage loses -strength upwards to (85 t and downwards 

from (84) and also along strike, so that the cleavage is seen to 

form a 'belt 1 which follows and is restricted to the steep rear of 

the stack. This strongly suggests a causal relationship between 

the growth and back steepening of the stack and the development of 

the cleavage and associated fold, making the fold and fabric D2 

structures (see Fig 3.39). Further, this aiso implies that the 

thickening and back steepening of the anti formal stack is not 

entirely accomplished by imbricate accretion, there being at least 

some ductile strain involved. 

Moving upwards to the 5W to (05) across (bt4), the highest 

imbricate in the stack, bedding steepens further to become near 

vertical before shallowing again to form a broad syncline which 

demarks the rear of the stack. The cleavage which is axial planar 

to the syncline at C 84) weakens and steepens to dip and face 

downwards towards the SW in the roBdside quarry. The cleavage 

steepens further with bedding as (bt4) is crossed, before 

shallowing with bedding to face upwards to the NW at ( 85). This 

cleavage is therefore deformed by the broad syncline and can be 

seen to be crenulated by a relatively upright fabric which is 
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axial planar to the syncline. This upright cleavage would be 

interpreted as 54 in the chronology of Hutton (1983) on the basis 

of the fabric's appearance, upright nature and westerly vergence. 

As with the cleavage it crenulates, however, the upright fabric 

can be seen to form a 'belt' which Follows and is restricted to 

the steep rear of the stack. The fabric weakens and disappears 

rapidly upwards and downwards from the immediate hangingwall of 

(bt4) and along strike. Again, the inference is a causal 

relationship between the growth and back steepening of the stack 

and the development of the cleavage, so that the fold and fabric 

are locally generated D2 structures (see Fig 3.39). The warping 

of the earlier cleavage and development of a second upright fabric 

may be the result of hinge tightening at the rear of the stack and 

onset ·or-a more- fle-xur-al shear dominated (olding- process. 

It is clear that east of (81) (bt4) branches into a number of 

imbricates which form a piggy back sequence antiformal stack. The 

lower imbricates breach a thrust (likely to have originally been 

part _of bt4), at (86) & (87). Bedding in the hangingwall to this 

breached thrust contains right way up stratigraphy (cross bedding) 

which dips inwards to form a 'basin' or 'spoon' geometry. Bedding 

strikes at near right angles to the lower imbricates of the stack 

and is seen very close to the map trace of the imbricates. This 

suggests that the spoon geometry was, at least in part, developed 

prior to breaching by the lower imbricates of the stack. 

Some of the imbricates appear t.o branch onto the base of a 

metadolerite sheet towards the east around (88), whilst the 

highest imbricate, (the map trace of bt4), appears to localise 

onto the top of the metadolerite. From (85), (bt4) ramps up 

section along strike in the hangingwall towards (88), then down 

into transition beds (not seen around (81) or (85)), and back up 

into quartzites to the NE of (88). The presence of all the 

imbricates is lost approximately 200m to the NE of (88) in a zone 
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of diminishing S2 & S2m strength and complex of multiple fabric 

development and large (m) scale shear bands which indicate NW 

directed overshear. 

Where the imbricates have bnlllched onto the base of the 

metadolerite, S2 & S2m forms intensiLy 'bands' similar to those 

described around Lishagh and (67) (see Fig 2.15). These bands 

become less well defined to the NE as overall S2 & S2m intensity 

diminishes and the S2 fabrics become deformed by C-shears and 

extensional crenulations which indicBte NW directed over shear. 

Also in this area, a number of discrete minor thrusts with 

south-westerly dipping lateral ramps are clearly visible, onto 

which S2 rapidly intensifies (in less than 10cm) to become S2m. 

These discrete features contain ramp-flat geometries, a 

hangingwall short cut complex (Knipe 1985) and deformed asperity 

fragments are contained within the narrow but intense thrust 

mylonites (Fig 3.40). This is analogous to terminations of shear 

zones described by Simpson (1983) to have developed under 

g~eenschist conditions in granodiorites. In the case of the 

granodiorite shear zones, as the shear zone tips are approached, 

the C-planes of SC mylonites occur with less and less frequency 

and the S-planes diminish intensity and disappear so that the tips 

are " ••• essentially brittle fractures" (Simpson 1983). 

Above and including part of the metadoleri te, two large ( m) 

scale shear bands are developed which extend towards the NW. 

These shear bands appear to be responsible for the development of 

a number of local fabrics. Extensional crenulations are developed 

near the rear of the structures and a contractional fabric in the 

frontal part of one. On the flanks of the shear bands, strain 

slip cleavages with a strike slip sense of shear are developed 

(see Fig 3.41). These fabrics and overall bedding disposition 

define the margins of the structures which have an extensional 

'tongue' geometry. 
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These structures and the imbricate stack are believed to 

represent the tip line of (bt4). 

Re-tracing (bt4) westwards to (79) where (bt4) breaches 

(bt3), we arrive at a position west of (79) where the hangingwall 

of (bt2) lies in the footwall of (bt4). Here (bt4) emplaces 

platey grey limestones onto quartzites. The platey S2m of the 

limestones dips at 30° to the SE and contains common R-1 

extensional crenulations indicatinq NW directed overshear. The 

limestones rapidly pass upwards into 1nlcaceous limestones which in 

turn pass up into dark grey pelites containing occasional 

quartzite beds which become dominant upwards to make up over 80% 

of the log sequence. The transition between micaceous limestones 

and quart-zites-- is ··approximately 'Jm tnicl<-. -Bedding in the 

quartzites dips 30° to the SE in a very similar way to the platey 

S2m in the limestones near to the thrust. This suggests that at 

this position the hangingwall of (bl:4) has a flat geometry. At 

(89) the limestones thin out towards the SW and are emplaced onto 

a metadoleri te sheet containing intense S2m. This suggests a 

lateral ramp in both the hangingwall and footwall of (bt4) at this 

position. 

Following the trace of (bt4) further towards the west, 

transition beds are in thrust contact with quartzites and at (90), 

thin interbeds of pelite, calc pelite, silt, calc silt and 

quartzite contain a NE verging fold with a thrusted mid limb and 

discrete subsidiary shears (this exposure is described in detail 

in chapter four and illustrated in Fig 4. 2). This structure 

appears to ramp material towards the NE, but contains a NW-SE 

stretching lineation and must therefore represent an oblique ramp 

in the hangingwall of (bt4) which failed to reach maturity and 

incorporation into the profile of (bt4). 

Moving further west to ( 91), ( bt4) emplaces transition beds 
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similar to those of (90) onto the metadolerite body described at 

(89). For some 250m between (90) and (91), the quartzite appears 

to maintain thickness in the footwnll of ( bt4) and assuming the 

metadolerite sheet to be bedding paraLLel, (bt4) must have a flat 

on flat geometry between (90) and (91). 

To the W and NW of (91), (bt4) ramps downwards in it's 

hangingwall to include platey grey limestones containing 

occasional thin beds of silt, well exposed at (92). Here, a 

series of folds with axial planar S2m are exposed in a small cliff 

(some 4m high). The lower two thirds of the cliff is dominated by 

relatively flat lying intense S2m which contains many minor 

(15-20cm scale) recumbent rootless folds (illustrated in Fig 

2.18a) and streaked--out S2rn parallel vein material. Strain 

decreases marginally upwards towards the upper third of the cliff, 

which contains a (m) scale fold pair. This folds S2m, but has an 

axial planar cleavage which is indistinguishable from the S2rn in 

surrounding rocks away from the fold pair. A series of veins 

within the fold pair are parallel to the axial planar cleavage. 

The limestones are overlain by rnetadolerite. 

Platey limestone debris in a N-S drainage ditch near to (92) 

indicates an outcrop width of S0-100m for the limestones in this 

area. Breaks of slope and vegetation changes indicate that the 

hangingwall of (bt4) ramps upwards into transition beds at a point 

nearly equi-distant between (91) and (92). 

The exposures in the area around ( 92) are scattered and 

sporadic, however, to the south of ( 92), the metadoler ite above 

the limestones climbs section towards the NW and SE into 

transition beds and is cut out ago inst a higher thrust which 

emplaces limestones onto the metadolerite and thrust duplicates 

the hangingwall stratigraphy of ( bt4). This thrust also ramps 
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upwards in it's hangingwall into transition beds towards (93) in 

the NW and (94) in the SE to form a 'pip' of limestone with 

lateral culmination walls. To the east of ( 94), the thrust 

emplaces transition beds onto transition beds in an apparently 

flat on flat relationship, the thrunl being marked as a zone of 

intensified strain ( S2m) within the transition beds' outcrop. At 

the east of (95), the thrust ramps upwards into quartzites in both 

hangingwall and footwall and is apparently lost within a zone of 

boudinage, large and small scale R-1 & R-2 shear banding and vein 

swarms around ( 96) where S2m rapidly loses intensity. 

believed to represent a tip region of lhe thrust. 

This is 

The outcrop of the thrust (which lies structurally above 

bt4)-, appears to foilow ·th-e outcrop of (b[4), suggesting that 

(bt4) is the later of the two thrusts to develop (in local piggy 

back sequence) . Other structural observations at (91) and (97) 

to the south would seem to agree with this development sequence. 

At (97), a sequ_ence of silts_, peJ.Hes, calc pelites and 

occasional thin quartzites are exposed in a broad eli ff some 6rn 

high. In the central part of this cliff the beds are folded by an 

easterly verging fold pair. At first glance the fold appears to 

be paradoxically associated with a westerly vergent 52 cleavage. 

On close inspection, however, the exposure is seen to contain two 

cleavages, the later of which is weaker, axial planar to the fold 

and dips towards the SW. The earlier westerly verging cleavage is 

rotated into parallelism with the fold axial plane, but the 

original westerly vergence is preserved at some bed margins where 

the later cleavage cr~nulates the earlier (Fig 3.42). 

Also within the exposure are a number of extensional features 

which disrupt some of the thicker silt beds or quartzites. These 

features have geometries very similar to structures generated by 

lystric extensional basin faults. D1Bcrete high angle fractures 
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in the beds shallow downwards to detach within pelite beds 

beneath, where bedding subparalleJ C shears take up the 

displacement and deform the early westerly verging 52 cleavage 

(Fig 3.43). In a similar way to the layer parallel extensional 

features (veining) within the Middle Town Stack, the extensional 

structures at this locality are interpreted as an expression of 

culmination extension developed during 02 thrusting. 

The C shears associated with the culmination extension 

structures at (97) are seen to be folded by the easterly verging 

fold pair and to have been crenulated by the axial planar 

cleavage. Furthermore, in some parts of the exposure, these 

features have become re-closed or 'inverted' (Fig 3.43). 

This is spatially associated with development of the NE 

vergent fold axial planar cleavage and easterly vergent minor fold 

trains in the normal limbs of the mnjor fold pair. Where the 

structures are inverted, the weaker NE verging cleavage crenulates 

52 and the C shears and is axial planar to tightened rollover 

gebmetries (Fig 3.43). This inversion therefore reflects a return 

to contractional deformation and is temporally associated with the 

development of the major fold pair ancl axial planar cleavage. 

Passing down structural level northwards between ( 97) and 

(91), the NE verging cleavage becomes stronger and 52 intensifies 

to become platey S2m. This locates the thrust above (bt4). 

Further north, S2m decreases intensity briefly before increasing 

intensity once more as (bt4) is approached at (91). The NE 

verging cleavage, how~ver, steadily increases intensity from (97) 

to (91) where it shallows towards parallelism with S2m, the two 

cleavages becoming indistinguishable, except where S2m is folded 

or rare extensional ·rollover' features are inverted. A small 

west vergent fold with axial planar 52 is preserved in a pod 

within the composite mylonitic cleavage (Fig 3.44). 
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Occasional bands appear to contain 52 which has become 

steepened to dip more steeply towards the west or even overturned 

by the re-working. This is associated with a banding parallel 

mylonitic fabric and must therefore represent layer parallel 

shearing related to the NE and E verging structures further south 

(Fig 3. 44). 

The NE and E verging structures described above would be F3 

and 53 in the chronology of Hutton ( 1983), however, they are 

clearly related to movement of (bt4) rather than a separate post 

02 deformation. The structures are restricted to the hangingwall 

of (bt4) and clearly intensify towards (bt4). This suggests a 

direct relationship between the structures and (bt4) and indicates 

_ tbaL tbe tbr.ust-- above (l:lt-4) had-' become inactive b-e-fore -rnovement on 

( bt4). The cleavage appears to form a hybrid fabric with and to 

partially rework the S2m of (bt4) with an apparent shear towards 

the NE. As described above and in chapter four, a NE verging F2 

fold with a thrusted mid limb is exposed further east at (90). NE 

or E verging structures are not found to the east of this thrusted 

fold. 

It is considered that the structures described above and the 

thrusted fold represent the aborted propagation of an oblique ramp 

into the hangingwall (bt4). Also, the hangingwall of (bt4) 

contains structures from the thrust's early history, (as part of 

bt3?), and it is therefore to be expected that these early 

structures may be at least partially reworked during the breaching 

movement of (bt4) and the attempted propagation of a ramp into the 

hangingwall of (bt4). 

3.5 Summary 

As described above, the Breaghy Head peninsula contains a 

number of 02 ductile thrust imbricates, developed under 
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greenschist metamorphic conditions. lhese thrusts have geometries 

very similar to those in foreland thrust and fold belts, with long 

stratigraphy parallel flats and shorter ramp segments. With only 

a few exceptions, the thrusts overshear towards the NW. 

The thrusts duplicate a relatively simple limestone, 

stratigraphy, such that the quartzite-transition, quartzite 

various elements of the standard Sessiagh-Clonmass succession in 

the area, (Fig 2.1), are thrust duplications of the same 

stratigraphic package. The Clonmass 0< Marble Hill 

Limestones are therefore the same limestone and the Clonmass and 

Sessiagh Quartzites are the same quartzite. It seems reasonable, 

therefore, to suggest that the stratigraphy in the area be unified 

_l!n_de_r a .commor:1 -label. Since "Sessiaqh=C1onmass Fo-rmation"- is now 

entrenched within the literature (Pitcher & Shackleton 1966, 

Pitcher & Berger 1972, Harris & Pitcher 1975, Hutton 1983), it 

would be sensible to term the limestone, quartzite-transition and 

quartzite as "Clonmass Limestone", "Sessiagh-Clonmass 

Transition Beds" and "Sessiagh Quartzite" respectively. 

Thii will hopefully dispense with spurious nomenclature and avoid 

confusion. 

3.5.1 Sessiagh-Clonmass Formation Depositional Environment 

As described above, the Sessiagh Clonmass sequence in the 

Breaghy Head area consists of a laterally persistent limestone and 

quartzite between which transition beds are laterally changeable 

in both thickness and lithological make up. The transition beds 

do, however, characteristically become more detrital and less 

calcareous upwards in a smooth transition from limestones to 

quartzites, with the exception of locality (81) where quartzites 

rapidly replace limestones and appear to contain small limestone 

rip-up clasts (suggesting a more erosive transition by comparison 

with the depositional transition noted elsewhere). 
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A number of features within the calcareous part of the 

sequence suggest a low energy shallow water depositional 

environment. The limestones at locality (12) on the shores of 

Sessiagh Lough contain delicate worm tracks/burrows which are 

bundles of bedding parallel cylindd cal spines. Although these 

structures are not reliable evidence of shallow water, they may 

indicate a low energy environment since they are quite unlike 

'bio-escape' structures which are indicative of higher energy 

conditions. Collaborative evidence for quiet shallow water comes 

form stromatolitic (algal mat) structures described by Bliss et al 

( 1978) in Sessiagh Clonmass limestones near Maas further to the 

west in Donegal. Dolomitic limestones at Ballymore, several 

kilometres south of the study area, contain polygonal desiccation 

cracks, de_s_c-dbed in Cletail by -s1Tss et- aT ( 197Br. This suggests 

that the Sessiagh Clonmass sediments may have been subject to 

occasional sub-aerial exposure. Indeed, White & Hutton ( 1985) 

describe the presence of 'cargneules' within rocks higher in the 

stratigraphic column further east on West Fanad. These are 

brecciated and heavily calcite-dolomite_ veined dolomite::? derived 

from dehydrated and metamorphosed evaporite/dolomite interbeds. 

There are a few locations in the study area ( eg. 1OOm NE of ( 7) 

and near the northern shore of Sessia~h Lough), where saccharoidal 

dolomites are heavily veined by calcite-dolomite veins. These 

veins have highly random and sinuous geometries, may make up as 

much as 60% of the rock volume, are clearly not tectonic in origin 

and may therefore represent 'cargneules'. 

The transition beds occasionally contain upwardly fining 

graded bedding and th~ quartzites only occasionally contain small 

cross beds or ripples. The vast majority of these rocks are 

planar bedded, with thin intercalations of the various 

lithologies, (especially within the transition beds and lower 

quartzite section), again suggesting low energy deposition. 
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It would appear, therefore, that the Sessiagh Clonmass rocks 

of the study area may have been deposited in a lagoonal to 

laucustrine or estuarine environmentj a similar setting to that 

suggested by McCall (1954). 

3.5.2 Sessiagh-Clonmass Limestone and Quartzite Thickness 

An un-tectonised contact betweer1 the base of the Sessiagh 

Clonmass formation and the underlying Ards Quartzite has not been 

discovered within the study area. A directly observed estimate of 

the maximum thickness of the Clonmass limestones is 

therefore not possible. As described above, however, and argued in 

chapter 5, the Breaghy Head imbricates appear to detach from the 

Ards Quartzite - Sessiagh Clonmass formation boundary. The thickest 

limestone development is seen to be within the hangingwalls to the 

highest and apparently furthest travelled thrusts. Assuming, 

therefore, that these thrusts brin~J limestones from detatchment 

level to surface exposure, maximurrr limestone thickness is 

estimated from localities with- poorest - t-Fansition sequence 

development to be between 45m (S of Mnrble Hill) and 60m (Sessiagh 

Lough). 

Diachronei_b between areas of depositional transition and local 

non-deposition to erosive low angle unconformities at the basal 

part of the quartzite section suggests that whilst the quartzites 

should be lithologically constant, they may vary in thickness at 

the expense of the transition beds. This certainly appears to be 

the case within the higher thrust sheets between Knockduff, 

Dunrudian and Sessiagh Lough. The maximum observed thickness of 

the Sessiagh Quartzites is therefore estimated (at 

localities where the transition beds are only poorly developed), 

to be between 90m (SW of Dunrudian) and 100m (S of Marble Hill). 

Unless it is assumed that the top of the quartzites represents an 

upper detachment (roof thrust) to the Breaghy Head imbricates, 
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however, these figures must be regarded as under-estimates. 

3.5.3 Structure 

The majority of the thrusts on the peninsula are breaching 

thrusts arising from a common detachment within the 

Clonmass limestones. These thrusts originate from the hangingwall 

of the previous structure and ore therefore in break-back 

sequence, (as defined by Butler 1987). The thrusts are, however, 

locally in piggy-back sequence (eg. Middle Town Stack), such that: 

The first clearly identifiable breaching thrust, (bt1), 

breaches structures south of Curragh Harbour, (bt1) is then 

breached by (bt2) in break-back sequen~~'- whil-st (b-t2f posf date-s 

( bt3) in piggy-back sequence. Thrust ( bt3), however, is breached 

by (bt4) in break-back sequence. The two imbricates north of 

Knockdu ff and Ounrudian are in brenk-back sequence, but their 

timing with respect to thrusts in their collective footwall and 

hangingwall is possibly piggy-back, since their outcrops follow 

these thrusts for considerable distance. 

It has also been shown in this chapter that fabrics and folds 

in the area, previously categorised chronologically into 02, 03, 

04 and 05 (Hutton 1977a, 1982, 1983), ore contained within 02 and 

that local polyphase fold and fabric histories can be related to 

local kinematic inhomogeneities created during continuum 02 

thrusting (eg. antiformal stacking, backthrusting, culmination 

extension, buttressing). 

The propagation of 02 ductile thrusts, the generation of 

syn-kinematic contractional and extensional structural patterns in 

the study area and the generation of shaped ductile thrust 

profiles are discussed in chapters 4 & 5. 
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Figure 3. 2 Simplified field sketches of shear bands in quartzites 
and 'domino' offset of the base of the Knockduff metadoler.ite at 
locality 1, map1. (A) Shear bands indicating NW directed overshear 
which cross the boundary between pelitic quartzites and purer white 
quartzites (see fig 3.1). Note the apparent rarnp·flat geometry of 
the NW extending shear band. (B) Domino offset of the base of the 
metadoleri te indicating NW directed overs hear. This offset takes 
place across a fairly discrete shear zone in the metadolerite which 
can be seen to shallow into the base of the rnetadoleri te. This 
offset deflects and locally thins the country rock bedding and is 
the catalyst for a late normal fault. 
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Figure 3.3 Deformation in limestones at locality (2), map 1 . (A) 
Photograph, looking south, of highly curvilinear and sheath fold 
closures. (B) Photograph of ex tensional domino rotations (at 
middle bottom of photograph) , indicating NW directed overshear 
(NW to right of photograph). NW vP. r g i ng fold trains are visible 
in centre of photograph. 
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Figure 3.4 Diagram comparing a hangingwall ramp-flat geometry from 
Breaghy Head with a 'classic' high crustal level geometry. (A) The 
ramp-flat geometry of an "ideal thrust fault" (after Dahlstrom 
1970). (B) Simplified field sketch of an example of a D2 ductile 
thrust with ramp-flat geometry from near Knockduff, locality 3, map 
1. 
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Figure 3.5 Diagrams illustrating fabric and veining 
relationships developed within the break-back sequence branch 
point at 662169, locality 7, map 1. (A) Schematic summary of 
the main structure and vertical strain distribution (intensity 
of S2 fabrics) at locality 7. Note that intense platey S2m is 
associated with both thrust 1 and thrust 2. Thrust 2 and its 
associated platey S2m climb across the exposure to the 
northeast. (B) Summary of fabric and vein relationships. An 
early set of extensional crenulations (S2e1) deform the S2m 
associated with thrust 1. This crenulation and the S2m are 
cross cut by narrow (em) quartz veins which must therefore 
have been intruded as or shortly after displacement ceased on 
thrust 1. These veins and S2e1 are sheared out by the 
rejuvination of S2m associated with thrust 2. Finally, a 
second set of extensional crenulations (S2e2) deform S2e1, the 
quartz veins and the S2m associated with thrust 2. These 
relationships indicate that thrust 2 is the later structure to 
be developed, (during progressive D2 deformation), so that the 
thrust sequence is break-back in nature. 
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Figure 3.6 Minor ductile thrusts displaying ramp-flat 
geometries, structurally necessary folding and a leading edge 
branch point in the area between 64 712 7, (locality 9) and 
640140, map 1. (A) Schematic N-S cross section illustrating 
the ramp-flat thrust geometries and structurally necessary 
folding of the metadolerite-quartzite contact. (B) Simplified 
field sketch of the leading edge branch point and footwall 
ramp 100m NW of locality 9. The upper thrust is folded by the 
lower, indicating development in piggy-back sequence. Note 
that the mylonitic fabric of the upper thrust swings into 
general parallelism with that of the lower thrust but is also 
partially cross cut by the lower thrust's fabric. 



' Volatile escape dome ' 

Disrupted sediments 

Metadolerite matrix 

Figure 3.7 A simplified field sketch of a volatile escape (?) 
structure at the upper contact between the metadolerite sheet 
and country rock SW of Rincleven Point (locality 26, map1). 
The undeformed 'volatile escape dome' contains contorted fine 
sediment rafts suspended within fine grained metadolerite. 
This and similar structures found at sill contacts elsewhere 
in the area were tentatively used as way up criteria, since 
the vast majority of the metadolerites are considered to be 
pre-deformational (see text chapters 3 & 4 for details). 
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Figure 3.8 Schematic summary logs of lithologies found in the 
hangingwall of a major thrust sheet in the Breaghy

1
Head area. 

The thrust hangingwall contains a laterally 
1
persistent 

limestone and quartzite sequence. The transition beds between 
the limestone and the quartzite, however, are laterally 
changeable in both thickness and lithological make-up. The 
dashed lines indicate the boundaries between limestone, 
transition and quartzite sequences. (Detailed ~xamp.les of 
transition sequences from the Breaghy Head area are illustrated 
in Figs. 3.1, 3.16, 3.26, 3.29, 3.35, 3.38). · 
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Figure 3.9 (A) A photograph of the F2 fold with thrusted middle 
limb exposed in the coastal cliff at 716293, locality 40, map 1 . 
(B) Simplified field sketch of two minor thrusts exposed in a 
cliff face at 647255, between localities 42 and 43, map 1. Note 
the footwall ramp - syncline in the upper thrust. 
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Figure 3.10 Diagram summarising the position of Ards Quartzite in 
the forethrust-backthrust complex east of the Curragh Harbour 
Anticline. 
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Figure 3.11 Simplified field sketch of fold- thrust structures 
exposed in a coastal cliff at Curragh Harbour (at and to the west 
of locality 43, map 1). Note the opposing throw directions of the 
two lower thrusts. Note also that the folded thrust can be 
traced northwards to overly the quartzite footwall syncline of 
fig 3.9b (see also fig ~.15). 
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Figure 3.12 A D2 thrust with footwall syncline, hangingwall flat 
geometry and containing numerous shear bands, extensional 
crenulations and tension gashes indicative of an apparent thrust 
motion across the syncline to the easL However, the view is highly 
oblique to D2 stretching lineations indicat'ive of NNW directed 
overshear. Locality q4, map 2. 

2m 

Figure 3.13 Large scale 'domino' rotations of a metadolerite and 
within country rock boudins (see fig 2.17) at locality 45, (map 
1) indicate NW directed overshear of the thrust in fig 3.12. 
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Figure 3.14 Diagram illustrating the development of an F2 
fold and conjugate 82 fabrics previously identified as 82 and 
83 at 647248, location 45, map 1. 
( 1) Thin metadoleri te sheet intruded during D2 parallel to 
primary 82 in the mid limb of an F2 fold. ( 2) Development of 
the 'conjugate' 82 ("83" in the chronology of Hutton 1977a, 
1982, 1983). This forms a new cleavage within the 
metadoleri te and crenulates 82 in the country rock. ( 3) 
Resumation of 82 development (secondary 82) which crenulates 
the 'conjugate' 82 in both metadolerite and country rock. 
Tightening of the F2 fold also deforms the 'conjugate' 82. 
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Figure 3.15 (A) Schematic east-west section across the Curragh 
Harbour anticline. Positions of field localities are 
indicated. (B) Location within the structure of figures 3.9b 
to 3. 17. 
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Cream quartzites and green-grey 
pelites. Quartzites increase 
importance upwards to occupy 80% 
log sequence. 

Loss of quartzite colour. 

of the 

Dolomites and silts lost from sequence, 
replaced by interbeds of green-grey 
pelites and Fe stained, pink-cream 
quartzites (50%-50%) . 

Interbedded silty dolomite, silt, . ~1m 
quartz1tes.l ·--· green-grey pelites and thin 
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Figure 3.16 summary lithological log of transition beds at 
637240, locality 50, map 1. Ornament as for Figure 3.1. 



Figure 3.17 Fabric relationships surrounding the western-most 
thrust to be folded by the Curragh Harbour Anticline. The 
direction of the swing of 52 into the thrust, numerous 
extensional crenulations, P-shears and C-shears indicate that the 
thrust overshears towards the NW and is therefore downward facing 
at this position. 
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Figure 3.18 Schematic section through a buttressing structure 
from the Col de la Bataille area of the Vercors, western 
Alps. This structure is developed by a thrust attempting to 
propogate across a normal fault from relatively weak 
Hauterivian limestones and shales into massive Urgonian 
limestones. (from Butler 19B9a). 
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Figure J .19 Simplified field sketches of minor structure 
relationships in an easterly verging F2 fold pair in quartzites 
which deforms breaching thrust (btl), at locality 57, map 1. 
Mineral extension lineations in 52 plunge into the page, so 
that thrust transport is out of the page. 52 parallel quartz 
veins are present in the fold mid limb. Bedd.L •. , .-- ~ ... ~-~~ 
displaced across some of these veins. (A) 52 is deformed by 
bedding parallel flexural shearing (fs) and extensional 
crenulations and shear bands (S2e). Some shear bands appear 
to have a lystric geometry and link to flexural shears. 
(B) R2 'domino' rotations are present in some quartzite beds, 
from which extensional crenulations 'leak' into pel i te 
interbeds, lystrically detaching the rotation displacements 
onto the quartzite bed below. 
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Figure 3.20 A simplified field sketch of the lower contact of 
a sediment raft in host metadolerite. Certain parts of the 
contact are intruded by finger-like 'tails' of metadoleri te 
{asterisked) which transgress/buckle bedding and contain wispy 
zones of altered mineralogy. These features appear to catalyse 
minor F2 folds and may represent deformed examples of volatile 
escape {?) structures {see also fig 3.7). 
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Figure 3.21 Simplified field sketch of two discrete minor ductile 
thrusts in a forelhrust-backthrust ~elationship. These minor 
thrusts are located between two splays of (btl) at 597214, 
locality 58, map 1. The actual movement direction of the thrusts 
is obliquely out of the page, so that 

1 
the limestones have been 

emplaced ontojwi thin the quartzites from a footwall ramp some 
distance to the sout~ (behind the page). 52 is axial planar to an 
F2 fold and is transitional with plate~ S2m associated with the 
thrust planes. 

S2 transitional 
with S2m 
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Crenulation of primary S2m by 

secondary S2m 
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Figure 3. 22 Simplified field sketches of fold reworked S2m in 
limestones at 568209, locality 60, map 1. (A} Minor fold of S2m, 
showing the transitional nature of the fold axial planar cleavage 
with surrounding S2m. In the central portion of the axial plane, 
the axial planar cleavage produces contractional crenulations of 
S2m, but becomes mylonitic and indistinguishable from the 
surrounding S2m up and down the axial plane. This particular 
example is located 3-4m east of figure 3.22b. (B) A series of 
recumbent to isoclinal folds of bedding/S2m which have highly 
curvilinear hinges and appear, in part, to have sheath 
geometries. As indicated, these folds thicken the limestone 
towards the west and may collectively represent a highly deformed 
hangingwall anticline. 
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Figure 3.23 Schematic field sketch of the inter-relationship 
between recumbent F2 folds, discrete thrust shear zones and shear 
bands at 612200, locality 56 map 1. Note that the fold mid limbs 
at this locality effectively represent ramps between thrust 
flats. 



.... · 
Figure _3. H l>hotograph look in~ due west at loca~i ty 70 map 1 . 
This shows a frontal ramp in {bt2}3) in the background emplacing 
ll.me t.onea and metadoleri e ifi the h nq;ingwaJ.l onto a veneer ot 
quartzitic transition beds abov A metadolerite in the footwall. 
The thrust aQso ramps eastwards (out of the page) in the footwall 
across ~artzit~c transition beds nd quartzites from the 
background tQ a position just abQye the ~ead of the 99nt1eman on 
the far right. This is visible from tbe l!l&rlc!ed i.nerea. t in 
thickness of the footwall beds from the background to the 
foreg ourul. 

Figure 3~2p Photograph at locality 70, map 1, of an open dome ill 
the coun~y rooks above a metadolerite sill, causQd bY volatile 
escape (?), being a simUa.x: 13t.r:uoture to that described south of 
Rincleven Point (compare With fig 3.7), 
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Silts become replaced by quartzites, 
and sequence becomes a series of pelite 
and quartzite interbeds with quartzite 
proportion increasing to 80\. 

Mixed intercalations of 
pelite, silt and thin quartzites (3m). 

Grey limestones, become increasingly 
micaceous (1m). 
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Figure 3. 26 Summary lithological log of transition beds at 
588164, locality 72, map 2. Ornament as for Figure 3.1 (with 
exception indicated). 
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Figure 3.27 Simplified field sketch of minor ductile 
imbricates at locality 73, map 1. These minor thrusts are 
localised in the mid limbs of westerly vergent minor folds and 
displace the transition beds - quartzite contact. The lowest 
thrust emplaces transition beds onto pure quartzites, 
indicating displacement in tens of metres. The folds, S2 
cleavage and the thrusts all face downwards to the west. 
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Fiaure 3.28 Schematic diagram of the fold-thrust structure at 
locality 73, map 1. The fold deforms limestones, transition 
beds, quartzites, a metadolerite body, major thrust (btJ) and 
a minor ductile imbricate stack in its hangingwall (x), 
illustrated in Fig 3. 27. The fold and folded thrusts are 
breached by further minor ductile thrusts. 
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Dolomite beds punctuate 1nixed 
sequence of calc-pelitcs, pelitcs, 
silts and thin quartzites. 

Limestone becoming dolomitic upwards. 
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Figure 3. 29 Summary lithological log of transition beds at 
565202, locality 74, map 2. The boudinaged quartzites of 
Figure 3. 31 occur immediately above the logged sequence as 
indicated. Ornament (with exception indicated) as for Figure 
3.1. 
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Ficrure 3.30 Simplified field sketch of upright folds which 
tighten upwards along shallowing axial planes. The folds have 
axial planar 52 & 52m which reworks the 52 fabrics in the upright 
regions of the folds, but is parallel to and indistinguishable 
from S2 fabrics higher up the axial plane. The folds are 
developed during 02 but partially rework S2. 
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3 Figure 3. 31 (A) Simplified field sketch of the complex of 
boudinage and large scale shear bands which deform bedding 

~2 

1 and sub-parallel S~/S2m in quartzites at 565202, locality (74) 
map 1. These form composite structures indicating 
contemporaneous development of symmetrical boudins, and both 
R-1 and R-2 shear !bands. The solid ornament indicates quartz 

, veining. (B) Insej: from part of the northern end of the 
exposure, illustrating one of the small SE vergent folds 
which are spatially associated with the shear bands (location 
indicated on (A)). lA contractional cleavage (1) is associated 

1with some of these
1 
folds and is seen to be transitional with 

extensional crenul~tions (2) synthetic with the main large 
scale shear band 'via a zone of cleavage with a 'hybrid' 
contractional- exten'sional character ( 3) . These cleavages and 
folds are clearly developed in strong causal relationship to 
the development of ~he large scale D2 shear bands. 
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Figure 3.32 Simplified field sketches of the monoformally 
refolded minor thrusts at 550173, locality (75) map 1. (A) 
Overall morphology of the easterly vergent F2 monoform which 
appears to lose amplitude downwards towards (bt3). Note that 
the minor thrusts are refolded by the structure and that the 
higher of the two has been offset by a further minor thrust. 
This thrust is parallel to and lies within a zone of 
intensification of the monoform's axial planar cleavage 
(cleavage ommitted for clarity). (Bl & B2) Diagramatic 
comparison of the relationships between minor thrust fabrics 
and the fold axial planar cleavage in the upper normal limb 
and the mid limb of the monoform. In both cases the high 
strain zone (hsz) is of similar width. The width of the strain 
transition zones (stz) outboard of the minor thrust mylonites, 
however, is narrower in the mid limb. (The stz is the 
transition between mylonitic and 'background' cleavage 
intensity associated with an individual ductile thrusts). 
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Figure 3o33 Simplified field sketches of composite shear band & 
boudinage structure within the monoform at 550173, locality 75, 
map 1 (see fig 3 0 32) 0 (A) Diagramatic representation of the 
monoform with (B) & (C) located 0 Note that it is the bands of 
intensified S2 associated with a minor fabric slip ramp (chapter 
4), which provides the anisotropy to catalyse boudinage in (B), 
and bedding in the case of (C) 0 Note also that both (B) & (C) are 
morphologically very similar to the composite shear band & 
boudinage structures at 565202, locality 74, map 1 (compare this 
figure with figure 3o31) o 
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Figure 3.34 Schematic east-west section viewed down the 
transport direction, summarising the major structure 
between locations (73), (80) and (75) (maps 1 & 2). 
Note the ppposing vergence of the two 02 antiforms at 
(73) and (75) and the breaching nature of (bt4). 
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Figure 3. 35 Summary 
532175, locality 76, 
exception indicated) . 

Polites rcplncc silts n11d calc-pclitc:; i11 

the sequence. Qunrtzitcs become crcarn coloured 
and more important upwards to occupy in excess 
of 80\ of the log. 

Quartzites, silts, pelites and calc-pelites 
interbed in upward fining cycles. Quartzites 
become more important upwards. 

Mixed sequence of quartzite, calc-polite, 
dark grey pelitc and 'rusty' silt intercalations. 

Thin brown-grey quartzites appear with 
the calc-pclitcs and become more frcqllCIJt 
upwards so that the quartzites and calc-pelites 
replace the limestones in ll1e seque11Cc. 

Occasional thin light grey calc-pelites 
within the limestones become more common 
upwards. 

White and grey limestones. 

Calc- petite 

.£..-'>-A~A=>-- (bt2) t --------~ ----------"""""-

lithological log of transition beds at 
map 1. Ornament as for figure 3. 1 (with 
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Figure 3. 36 Detail map of the Hiddle Town ductile thrust 
stack. Bedding and 52 dips increase towards the rear (south) 
of the stack in response to footwall collapse and back­
steepening of the higher thrust sheets during accretion of 
younger thrust sheets to the collective footwall. Note the 
development and restriction of secondary S2 fabrics to the rear 
of the stack during this back-steepening. These fabrics would 
be S3 and S4 in the regional chronology of Hutton (1983), but 
are more appropriately labelled S2' and 53" (see Fig. 3.39). 
Details in text. 



Figure 3.37 Schematic E-W structural section across the Middle 
Town stack illustrating culmination wall extension structures. 
These are shear bands and ext ens ion a l crenu la ti ens on the 
culmination walls which form shear zones with lystric geor:1etry. 
These structures are well developed on the western side of the 
stack where the imbricates have marked 1 a teral hang i ng·,·a 11 
ramps. These fabrics would be S4 and S5 in the regional 
chronology of Hutton (1983), but are clearly secondary S2 
fabrics. High in the stack, swarms of quartz veins accommodate 
stretch around the outer arc of the culmination. 
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Quartzites increase in proportion upwards and silts disappeat­
to leave interbeds of quartzite (90\) and pelite (10\). 

Thin grey-brown quartzites interbed with pelite and silt. 

Intercalations of iron silt, green-grey pelite 
and occasional pale grey silty limestone. Pelites 
increase in importance upwards and the limestones 
disappear to leave intercalations of silt and pelite. 

Buff crystalline dolomite with thin beds 
of iron rich silt. 

_ _Silty Limestone 
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Figure 3 _ 38 Summary lithological log of transition beds at 
603154, locality 83, map 1. Ornament as for figure 3.1 (with 
exception indicated). 
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Figure 3.39 (A) Schematic diagram of structural relationships 
in exposures at the rear of the Middle Town stack (see also 
Figs. 3.36 & 3.37). In addition to 52, a shallow sw vergent 
cleavage and steep W vergent cleavage are developed, being 
restricted to a 'belt' at the rear of the stack. The cleavages 
would be 53 & 54 in the chronology of Hutton (1983). vs: Vein 
Swarm bdg: Bedding. (B) Schematic summary cross section through 
the Middle Town stack, illustrating the restricted distribution 
of the '53' and '54' fabrics. These fabrics are clearly 02 in 
age, however, being causally related to the back-steepening of 
the stack rear. These secondary 02 cleavages are therefore 
more appropriately labelled 52' and 52". Details in text. 
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Platey mylonite containing 

deformed asperity fragments 

Quartz veining in H.W. only 

H.W. short - cut complex 
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Figure 3. 40 Simplified field sketch of discrete ,minor thrusts 
at 637157, locality 88, map 1. Note the ramp·flat geometries 
and hangingwall short cut (Knipe 1985) complex.,Also of note 
at this locality is the presence of hangingwall restricted 
quartz veins (which have beeh cut by the short cut complex). 
These features are likely to represent; progressive 
hangingwall deformation associated with ramp climb. 
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Figure 3. 41 Schematic 3D diagram of distribution of secondary 
fabrics associated with (m) scale 'tongue'-shaped shear bands 
at 637157, maps 1 & 2. (A) Bedding. (B) S2 containing mineral 
extension lineation. (C) S2 rotates and intensifies to S2rn, 
bedding rotates and thins. (D) Secondary contractional fabric 
crenulates S2. (E) S2e extensional crenulation fabric. (F) 
Secondary strain slip fabric, deforms 52-bedding intersection 
lineation. 
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Figure 3. 4 2 Schematic cl i agram i 11 ustrating the apparent 
vergence anomaly in the fold pair at locality 97, map 1. The 
cleavage (1), verges west on long limbs, but is axial planar 
to the fold pair in the mid limb. Close examination reveals 
a second weaker cleavage (2), which is axial planar to the fold 
pair: the earlier cleavoge (1) is transposed into the axial 
planar orientation, except at some bed margins where original 
vergence is preserved and (1) is crenulated by (2). 
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Figure 3.43 Simplified field sketches of extensional 
structures in long limbs of the easterly vergent fold poir of 
locality 97, map 1. These structures disaggregate individual 
silt or quartzite beds with geometries reminiscent of 
li strically detaching graben structures. These structures 
appear to be associated '"'i th S2 development, since S2 is 
deflected by the rotations, but is also seen to cut straight 
across them. (a) Discreet high angle fractures in the 
disaggregated beds shallow and detach within zones of c shears 
in pelite beds below. (b,c) In some parts of the exposure, 
these extensional structures have been re-closed or 'inverted', 
indicating a shear sense reversal. These re-closed zones are 
spatially associated with development of a second cleavage ( 2), 
which is axial planar to the fold pair and crenulates S2 (1). 
(See Fig. 3.42). 
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Figure 3.44 Simplified field sketches of early structures 
preserved in the mylonitic banding of thrust (bt4), locality 
91, map 1. (A) An F2 fold and axial planar 52 preserved in an 
asymmetric augen-like 'pod' of quartzite bedding. 
(B) Crenulated 52, apparently over-steepened to subvertical dip 
by viscous drag in a thinned bed. 



ICHJ\IPlfEIR 4 

RAMPS 

As described in chapters 2 & 3, the Breaghy Head peninsula 

contains a number of ductile thrusts which are morphologically 

very similar to thrusts from higher crustal levels. With only a 

few rare exceptions, the thrusts on Breaghy Head overshear towards 

the NW and generally have smooth geometries with long bedding 

parallel flats and shorter ramps which transgress stratigraphy at 

20,..}0.!1. _Some o_L the_ ramps bave_mcidest strike swings and __ a number 

of ramp strike directions are present on the peninsula, but no 

ramp segment dips away from the hinterland such that it might 

become extensional. It is the aim of this chapter to describe and 

discuss the nature and propagation of ductile thrust ramps. 

Many of the ramps seen and mapped strike NW-SE or NNW-SSE, 

sub-parallel to the 02 stretching lineation, and are therefore 

lateral or very oblique structures. Tt1e intensification of S2 and 

S2m follows these geometries, but where the ramps are lateral or 

very oblique, F2 folds do not appear to be commonly developed as a 

precursor to the ramp. Folds, it would seem, are more commonly 

related to the development of less oblique or frontal ramp 

segments. 

4. 1 Ramps and r olds -

The thrust planes in the Breayhy Head area are associated 

with intense platey mylonite containing a strong NW-SE to NNW-SSE 

mineral extension lineation, small scale sheath folds and shear 

sense indicators. The main mylonitic fabric ( S2m), can be traced 
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away from the thrust planes, where it's mylonitic character is 

lost, being transitionally replaced by non-mylonitic 52, which is 

axial planar to W & NW vergent F2 folds. This indicates that the 

thrusts and folds are part of the same 02 kinematic system. Less 

common easterly verging folds of identical style, dimension and 

geometry are also found within the penetrative deformation. Like 

their NW vergent counterparts, their axial planar cleavage becomes 

mylonitic in character towards thrust planes. This would suggest 

that the westerly and easterly vergent structures share a common 

kinematic origin related to the ductile thrusts. Indeed, Pitcher 

& Berger (1972) concluded that these structures were 

" .. genetically related". The significance of the westerly and 

easterly vergence of these structures will be discussed in detail 

in chapter 5. 

The geometry and style of the penetrative deformation folds 

is akin to that frequently described in the literature as 

'intafolial' where hinges tighten and shallow along their axial 

surfo.ces viewed in profile section (Fig 4.1). Here the anticlinal 

hinge region is displaced forward and upward relative to the 

synclinal hinge region. In profile section this displacement dies 

out as the hinge tightness and amplitude decays both up and down 

the axial 5urfQce, Since these folds die out along strike, a 

displacement gradient also exists normal to the profile plane. 

These folds therefore represent biconvex discs of distributed 

displacement which effectively ramp material upwards and forwards 

such that they may be considered as being shear zones 

kinematically equivalent to thrust ramps. As described in the 

following sections, lhese structures frequently have thrusted 

middle limbs and feature displacements of bedding cut offs 

parallel to the axial planar cleavage. This fabric parallel 

displacement is along an azimuth oblique to thrust flats, since it 

occurs between them where the pervasive axial planar cleavage is 

inclined with respect to the S2m of the flats. The displacements 
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therefore have a true ramp attitude with respect to flat-parallel 

datum lines (see Fig 4.1). 

4.1101 Fabric Slip Ramps 

Figure 4.2 illustrates folds with thrusted middle limbs. In 

both cases, strain increases towards the thrust plane concomitant 

with intensification on the fold axial planar cleavage. A mineral 

extension lineation within the cleavage also intensifies and the 

cleavage becomes a (m) scale mylonite. Bedding is overturned and 

attenuated into this high strain zone where displaced tight to 

isoclinal rootless minor fold hinges are present. (The 

significance of augened vein quartz material in this zone will be 

discussed l-ater). -Al-t-hough a- t-r-ans[)ct -into -the mid limb appea_r_s 

to follow a smooth strain gradient, this is not the case. Within 

the gradient, more discrete (em) scale mylonite zones are 

associated with the mid limbs of minor folds and produce stepped 

cut offs of beds near to the main mid limb shear zone (Fig 4. 2). 

This produces a 'dog-tooth' strain profile similar to that 

described in chapter 2 (see Fig 2.14). 

The sequence of development begins with formation of the 

mesoscopic asymmetric fold and it's axial planar cleavage. This 

is followed by intensification of the cleavage, overturning of 

bedding in the mid-limb region, and development of a (m) scale 

mylonite (the main mid limb shear zone). Locally, the more 

discrete (em) scale zones gently climb up and down section with 

respect to the pervasive fabric. This gives them a subtle 

ramp-flat geometry aria suggests that they post date the fabric and 

(m) scale mylonite development. Shear bands associated with the 

(m) scale mylonite, however, either link with the discrete (em) 

scale zones, or else deflect them. The more discrete mylonites 

must therefore have developed towards the later stages in the (m) 

scale zone's history. Time separation is therefore negligible 
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between formation of the various structural elements and a 

progressive localisation of strains is inferred. 

at C 2ol5 4-34-9, 

Similar relationships exisy 2km SW of Dun fanaghy along the 

eastern shores of Port Lough, in a roadside quarry exposure of 

thinly bedded pelites. Here F2 folds with thrusted middle limbs 

are seen some 10-15m above a major ductile thrust. By virtue of 

the nature of the exposure, both top and bottom of the folds' 

axial planes and the surrounding non-folded rock can be observed 

(see Fig 4. 3). The mylonitic S2m fabric of the major thrust 

becomes less intense and steepens dip by some 20° up section to 

become the penetrative axial planar 52 cleavage in the exposure. 

Witl:t~n the domain of individual folds, the cleavage again 

intensifies towards the mid llmb wne-re fatll'iC paral-le-l -high strain 

zones displace cut offs of beds. This cleavage intensification 

and the attendant displacements seem to be bound within the extent 

of the folds, although in some cases they 'leak' beyond the fold 

for short distances. Long thin quartz veins are frequently 

intruded along these displacement surfaces, and again, generally 

contained within the folds' jurisdiction. Impurity trails within 

these veins record a gradual thrust sense opening at a shallow 

angle to the cleavage and displacement across the veins cannot be 

accounted for solely by restoring the vein walls along the opening 

trails. This indicates that the veins were intruded into the 

displacement zones during movement. Indeed, shearing of the 

trails at the vein margins confirms cleavage-parallel thrust 

displacement. Shear bands which occasionally deform the veins are 

restricted to the folds and are therefore interpreted to result 

from shearing within fhe developing ramp segment. Displacement of 

cutoffs decreases up and down the high strain zones from a central 

maximum, indicating a forward and rearward propagation along the 

axial planes. 

Again, the folds and cleavage must pre-date intensification 
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of the cleavage and the development of cutoff displacements. Since 

the veins are cleavage parallel, are within the high strain zones, 

have opening trails which verge in the same direction as the axial 

planar cleavage and become thrust sense sheared themselves, the 

veins must have been formed during the displacement of bedding 

cutoffs. Clearly these veins were intruded during the latter part 

of strain and displacement localisation his tory. It is 

interesting to note here that augened quartz vein material was 

present within the (m) scale mylonite of the previous exposure 

description and that this exposure is lacking in the discrete (em) 

scale mylonites. The shear bands are the latest structures to be 

developed. Since these are restricted to the fold shear zone, 

they are considered to be a consequence of movements on individual 

ramps. 

Significantly, some of these structures are developed in 

alignment with one another, suggesting that individual ramp 

segments may propagate towards each other and coalesce to form 

single larger ramps. 

In a coastal exposure in northern Breaghy Head, thickly 

bedded quartzites are folded by a J nrge F2 fold and intruded by 

thin metadolerite sheets (Fig 4.4). The metadolerites are 

intruded within high strain zones pn rallel to the fold 1 s axial 

planar 52 cleavage in a similar way tu the veins described above. 

Passing through gentle-steep-gently inclined bedding, these sheets 

must post-date the main buckling stage of the fold development, 

but record several important aspects of the structure 1 s later 

history. 

The metadolerite sheets contain a cleavage parallel to that 

in the surrounding quartzites and are cloaked by an intensified 

version of the same cleavage. This would suggest intrusion during 

intensification of the mid limb fabric. At their tips, the sheets 
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are clearly seen to intrude along the cleavage planes and discrete 

cleavage-parallel shears (Fig 4.4). This suggests intrusion at a 

time when mid limb fabric intensification was generating discrete 

shearing and displacement of cut offs. As with the veins 

described above from the quarry exposure, continued shearing must 

have led to a build up of strains, leading to formation of a 

fabric internal to the sheets and to further intensification of 

the existing external fabric. Extensional crenulations which 

deform the internal fabric indicate that the sheets were sites of 

thrust displacement. Following this, the internal 

deformed by flexural slip-shearing of bedding 

fabrics were 

(Fig 4.4), 

i-ndicatiog_ that the fold structure underwent a tightening phase. 

Close to the sheets, cTe-avage --paraJ)_E)) (mm) scale quartz veins 

with ( mm) scale spacing are arranged in dense swarrns. T-hese are 

deformed by the flexural shearing, but play host to discrete 

cleavage parallel thrust mylonites which displace bedding and 

deform the flexural shear structures. This suggests that although 

the development of a mid lirnb thrust did not reach maturity at 

this locality (as it has at locality 40, map 2 (see Fig 3.9a)), 

discrete thrusts were still developing during the last stages of 

the fold tightening phase. These are the last structures to 

develop in the exposure. 

We can see that the different structural elements described 

from the examples above share a common development sequence, 

summarized in Fig 4. 5. This begins with a meso scopic asymmetric 

fold and it's axial planar cleavage. Increase in intensity of 

this cleavage (strain) in the mid limb is the next logical step, 

providing a smooth strain gradient backdrop against which the 

other structures and discrete strains are seen. During this stage 

at least some mylonite develops, but what is readily apparent is 

that strain becomes localised onto discrete planes which displace 

stratigraphy. This modifies the original smooth strain gradient 

to a more 'dog tooth' character (cf. Fig 2.14), and records the 
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localisation of displacement. It is at this stage when fluids or 

melts may become injected along these discrete zones; separation 

of the hangingwall from footwall presumably being a response to 

resulting heightened local strain rate and pressure of the 

intruding fluid; motion across the zone may create 
1 decompression 1 by effectively relieving the stress across the 

zone, thus enabling injection of pressured fluids into the zone. 

The fabric parallel slippage and mylonite development continues, 

however, deforming these discrete structures and veins. This 

would make these features difficult if not impossible to recognise 

in ductile thrusts of high displacement. The latest structures to 

develop are. the discrete hangingwall and footwall mylonites and 

shear bands. 

Fabric slip ramps are therefore characterised by the 

propagation of a fabric parallel thrust outwards from the mid limb 

of an asymmetric fold. Individually developing ramps may 

propagate towards each other and coalesce, thereby generating 

larger ramp structures which may ultimately become incorporated 

into the trajectory of a major ductile thrust. This is analogous 

to some thrust faults in foreland thrust and fold belts (eg. Ellis 

& Dunlap 1988). 

4.1.2 fold Ramps 

As described above, the penetrative deformation folds may be 

considered as being shear zones, kinematically equivalent to 

thrust ramps. Fabric slip ramps are characterised by the 

localisation of displ~cement and strnin and the propagation of a 

ductile thrust ramp outwards from the mid limb. By comparison, 

(as will be described below), 'fold romps 1 ramp material from Flat 

tip to flat tip, so that thrusts propagate towards the fold mid 

limb. 
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At 612200, locality 56 map 2, qrey and micaceous 

in the hangingwall of (bt2) are pervaded by platey 

limestones 

S2m. The 

mylonites decrease intensity away from the thrust contact, (from 

cleavage spacing of less than 1mm to n spacing of several mm) in a 

series of low cliff exposures approximately 4-Sm above the thrust. 

These exposures contain a number of (m) scale recumbent folds with 

axial planar 52m (see Fig 3.23). 

The S2m intensifies (to spacing less than 1mm from the 

'background 1 state) into zones of discrete ( 10-20cm) very high 

strain within the fold normal limbs, forming discrete shear zones 

. ( thft..Hfts7 ·at thE! low.er and upper part of the fold axial planes. 

These shear zones are associated wi·th fine fabric parallel quartz 

veins and shear bands, so that they are similar to the sheaf tones 

found within fabric slip ramps. The intensity of the shear zone 

S2m, however, decreases towards the central portion of the mid 

limbs so that the thrust shear zones effectively tip out in these 

areas. This is the reverse of the strain pattern associated with 

fabric slip ramps. 

For most of their visible length, the discrete shear zones 

are bedding parallel and therefore have thrust flat geometry. As 

the folds are approached, however, bedding becomes overturned, 

attenuated towards and cut off against the shear zones so that the 

shear zones climb (ramp) section with thrust displacement. As the 

central portion of the mid limb is approached both up and down the 

axial plane, however, the shear zone 52m decreases intensity to 

'background 1 as cut off displacements decrease and overturned 

bedding is less sharply attenuated. This strongly suggests that 

the shear zones (thrusts) tip both up and down the axial plane 

towards the central portion of the fold mid limb and further 

suggests that the thrusts may propagate towards one another 

through the fold. 
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A large scale example of a Fold ramp is exposed in sea cliffs 

on the SE shore of Marble Hill Bay (045126 map 1). These cliffs 

are dominated by overturned SE dipp.ing limestones and transition 

beds, folded by the Errigal Syncline (see chapter 1), the hinge of 

which runs NE-SW through Marble Hill Bay and non exposure inland. 

The overturned limestones, peli tes, calc peli tes and silts are 

pervaded by 52 fabrics and are host to two ramping ductile 

thrusts. These thrust structures are found within a major 

easterly verging fold pair (Fig 4.6). Both thrusts are associated 

with marked increase in 52 and S2rn intensity into a ( m) scale 

shear zone. Both thrusts (especially the higher of the two) are 

also associated with isoclinal overturning and sharp attenuation 

of bedding. Q~~~tz veining, both fabric parallel and cross 

cutting tension gashes are spatially associal:Efd with the shear 

zones which also contain streaked and uugenedvein material. 

The higher of the two thrusts plnces a hangingwall flat onto 

a footwall flat at the western end of the exposure, and maintains 

a hangingwall flat geometry towards the east whilst ramping at a 

progressively higher angle to bedding in the footwall. The 

thrust, and therefore the ramp, however, maintains a smooth 

trajectory of less than 30° with respect to the flat. 

The lower of the two thrusts has a more complicated structure 

and geometry. At the eastern end of the exposure, the thrust has 

a flat on flat geometry. Moving westwards, the thrust ramps 

briefly in the footwall before returning to flat on flat geometry. 

Further west the thrust develops a hangingwall ramp on footwall 

flat geometry briefly-(Z Fig 4.6), before a ramp on ramp geometry. 

At this position the S2m decreases intensity, veins are lost and 

bedding displacements across the thrust decrease. The thrust 

shear zone disappears as the S2m is lost into a broad zone of 

isoclinal and recumbent folds between the anticlinal hinge (X Fig 

4.6), and the synclinal hinge (Y Fi~J lL6). The implication here 
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is that the thrust has propagated towards the fold pair mid limb 

(similar to the fold ramp structures described from locality 56 

above). Also present in this exposure is a large open anticlinal 

refold of the lower thrust. This may represent buttressing 

deformation in the form of layer parallel shortening in response 

to the fold ramp structure locking up. The development of this 

structure is summarised in Fig 4.7. 

The generation of fold ramps must proceed with the 

development of the regional pervasive 52 cleavage. 52 must then 

intensify into discrete bedding parallel zones of localised 

strain, to form thrust flat shear zones. These thrust flats, 

developed as isolated dislocations would then propagate outwards 

from their point of origin. In order to maintain displacem~nt 

continuity, it is likely that an asymmetric fold will develop 

between convergently propagating flat tips, especially where the 

tip stress fields interact. In this situation, the thrust tips 

would propagate towards one another through the fold to form a 

single larger thrust from originally separate 'cells'. 

4.2 Vein an-a) Ramps 

Unlike the two fold associated rarnp styles described above, 

vein arra.y ramps' are developed within zones of climbing 

tension gash vein arrays. 

At 691200, locality 6 map 2, limestones and micaceous 

limestones are in thrust contact with quartzites. The thrust has 

a hangingwall flat on· footwall rarnp geometry. P latey 52rn in the 

limestones is parallel to the contact which dips approximately 35° 

to the SE with respect to sub horizontal bedding in the footwall 

quartzites which is easily traced to within 1rn of the thrust. If 

there is a footwall synclinal deflection of bedding into the 

thrust it is obscured by 52rn and _intense veining and rnust be 
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sharp. 52 intensifies towards the thrust contact,but has a narrow 

expression in both hangingwall and footwall. In the immediate 

hangingwall, (as discussed in chapter 3), this may be a response 

to the crystalline (recrystallised) nature of the limestone. 

Higher in the hangingwall, the limestones become micaceous and are 

host to a (m) scale zone of intense platey 52m which cuts across 

and is seen at the zone's lower margin to shear out the 52 in the 

'lower' limestone. This intra-limestone thrust shear zone is 

orientated at a lower (20-25°) angle with respect to the footwall 

bedding. This 52m within this zone produces C shears oF the 

earlier 52 and displaces quartz veins towards the NNW. This 

feature is interpreted as a hangingwall short cut (Knipe, 1985), 

which lowers the active ramp angle (Fjg 4.8). 

The hangingwall and footwall are pervaded by (mm) to (ern) 

scale quartz veins, which are extremely dense in the footwall, 

especially closer to the thrust contact, being numbered in 

thousands. These veins fall into two Fairly distinct groups: long 

tension gashes and swarms of veins sub-parallel to the 

limestone~quartzite thrust contact. The tension gashes appear to 

form multiple sets of shallowly to moderately north-westerly 

dipping veins. There are a large number of mutually cross cutting 

and inter-connectivity relationships between individual veins, 

indicating contemporaneity. The majority of the cross cutting 

relationships, however, indicate that the oldest tension gash 

veins have the steeper dips and the youngest veins the shallower 

dips. The thrust parallel veins also cross cut and are cut by 

individual tension gashes, indicatin~1 negligible time separation 

between the development of each vein group. The 52m parallel 

veins in the hangingwall short cut shear zone are not seen to be 

cut by any tension gashes, suggesting that they are the latest 

veins to develop in the exposure. 

A number of solitary R-2 shear bands are developed and 
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restricted to the footwall quartzites. These deform tension 

gashes, but are also cross cut by these veins in certain places, 

indicating development synchronous with the latter part of the 

veining history. Also restricted to the footwall are a number of 

minor NW vergent intrafolial folds nnd discrete bedding parallel 

thrust shears which also deform and in places are cross cut by 

tension gash veins. 

The shear bands, folds and bedding parallel thrust shears are 

developed towards the latter part of vein generation and may 

represent deformation associated with incipient 'collapse' of the 

footwall prior to the development of the hangingwall short cut. 

The features described above indicate that the 35° !a~p angle 

may be too n-igh -to- remain stable -during ductile thrusting in the 

Breaghy Head area. Although incorporated into the thrust profile, 

such footwall ramps may hinder further thrust motion, such that 

short-cutting or footwall collapse aids mechanical expediency. 

A sm_a}Jer scale example of a Vein -array ramp is to be 

found in the hangingwall of the Dun fmwghy Slide (at 280227, map 

1 ) , where the whole of the ramp sm_11nent is exposed. Here, a 

quartzite bed within pelitic and silty lithologies contains a zone 

of climbing tension gash arrays within which a discrete thrust 

ramp is developed, causing displacement of the bed. 

As Fig 4.9 illustrates, the majority of the tension gashes 

are contained within the ramp region and show progressive 

steepening of veins followed by cross cutting of these veins by 

new generations of lower angle tension gashes. The later tension 

gashes also tend to be shorter structures than the earlier ones 

and are preferentially located within the central region of the 

vein array zone. It is within the central region of this zone of 

vein arrays that the discrete thrust is developed. This thrust 

98. 



takes the form of a discrete (max. 5mm thick) zone of mylonite 

which thins and thickens erratically upwards and downwards, being 

knife sharp in some places, suggesting a fracture separation 

origin. 

The above structures suggest that ve.in an- a .Y ramps are 

generated by progressive localisatior1 of displacement in the ramp 

region, and that prior to the separation of the hangingwall from 

the footwall, the deformation is essentially 'brittle flow'. This 

may suggest that the generation of this ramp style involves 

rheological control (ie. relatively t1igh competency) and anomalous 

strain rates. 

4.3 Su1110ary 

Three frontal to oblique ramp styles have been identified in 

the Breaghy Head ductile thrust system. These are here named 

"fabric slip ramps", "fold ramps" and " Ve..in anay ramps". 

Ramps associated with fold development, especially fabric slip 

ramps, appear to be the more commonly developed frontal to oblique 

ramp styles in the Breaghy Head area, transtensional ramps being 

less frequently developed. All three ramp styles display 

displacement/strain localisation histories and are an integral 

part of the coalescent propagation of isolated flat and ramp 

thrust dislocation 'cells' . In order of increasing occurence in 

the Breaghy Head area: 

(1) In vein 21rray ramps', the ramp is generated in a 

zone of climbing tension gash vein arrays, with early deformation 

essentially brittle flow. The veining history shows an increasing 

density of veins in a central zone, the youngest veins appearing 

to concentrate in this central zone where they crosscut a series 

of earlier generations of tension gash veins. This represents a 

zone of strain (displacement) localisation within which a discrete 
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mylonitic thrust dislocation develops. The 35° ramp angle which 

appears to be character is tic of t:IH)Be structures, however, is 

apparently unstable such that Vein arya_y ramps appear to be 

susceptible to lock-up, creating a type of "buttressing" 

deformation in which the footwall begins to flat ten and collapse 

towards the foreland in an attempt to achieve a lower, more stable 

ramp angle. This buttressing and collapse deformation is manifest 

by the dense generation of secondary structures (intrafolial 

folds, shear bands, layer parallel shears) which move the footwall 

away from the ramp. This deformation seems to be inefficient, and 

may be circumvented by the development of footwall or hangingwall 

short-cut dislocations which are better able to accommodate the 

displacement (strain) rate (cf. Knipe, 1985). 

(2) -Fold-assoc-iaced ramp_s_ which result from- coalescent 

propagation of isolated thrust flat dislocation cells (fold ramps) 

maintain displacement continuity by ramping bed length as relay 

structures between flat tips. the geometry of the folding between 

the flat tips is akin to that frequently described as 

'intra folial' , (fold amplitude and hinge tightness decreases up 

and down the axial plane towards the flat tips), and S2m decreases 

intensity and increases dip away frorn the flat tips to become 

non-mylonitic 52, axial planar to the Jnter-flat tip F2 folds. 

These structures develop as the adjacent flat-tip strains 

begin to interact and therefore the ramps post dale the flats in 

the structural sequence. The ductile thrust dislocations 

propagate towards each other through the fold to create a 

flat-ramp-flat thrust-trajectory. 

(3) Fold-associated ramps which initiate as ramp-attitude 

thrust dislocation cells in their own right (fabric slip ramps) 

develop by progressive localisation of shear strain in F2 fold mid 

limbs. This leads to development of mylonitic S2m in the mid 
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limb, parallel to surrounding non-my Jonitic axial planar S2. A 

central (m) scale mylonite zone is flanked by narrower (ern) scale 

mylonite zones, visible as intensification of S2 relative to 

"background" S2 strains. This produces a "dog-tooth" strain 

profile across the mid limb similar to that seen in thrust-flat 

tectonic slides (see chapter two and Figs 2.14, 2.15). The fabric 

slip ramps therefore represent 'small 1 thrust-ramp attitude 

tectonic slides in their own right. Displacement of mid limb 

markers takes place across these mylonite zones parallel to the 

surrounding axial planar S2 fabrics. 

The geometry of fabric slip ramps is apparently precise. The 

fold hosting the ramp dislocatio11 is 'intrafolial 1 and non 

cylindrical in style, with ~rnpli. tude and bioge_ tightness 

decreasing in all directions along the axial plane from a central 

maxima. The mid limb S2rn zone is contained within the fold and 

the displacement of mid limb markers across the S2rn zone has 

finite limits, decreasing in all directions along the zone from a 

central maxima. The fabric slip ramps therefore represent 

isolated thPust dislocation cells. 

Propagation of the dislocation cell (fabric slip ramp) is in 

all directions outwards from and parallel with the mid 1 imb S2m 

zone. Several fabric slip ramps are seen to be developed in 

alignment in some exposures and some appear to be hybrids of more 

than one original fabric slip ramp. This suggests that large 

fabric slip ramps may be developed by coalescence of a number of 

smaller dislocation cells. 

Development of flexural shear deflection and thinning of S2 

at discrete bedding parallel shears, similar to that described by 

Trayner & Cooper (1984), is occasionally seen in fabric slip ramp 

folds. This flexural shearing along bedding appears late in the 

mid limb strain history, reflecting a change in the dominant 
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deformation process from pervasive straining to more localised 

displacement processes, which culminate in the generation of 

discrete mid limb mylonitic dislocations. 

As the thrust displacement localises and has to be 

accommodated by a progressively narrower mid limb 52m dislocation 

zone, anomalously high shear strain rntes may be generated within 

the zone. This is evidenced by the presence of 52m parallel veins 

which are intruded into the mid limb late in the strain 

localisation history. This indicates that as the localisation 

process reaches an advanced stage, further propagation of the 

fabric slip ramp outwards from the mid limb 52m zone may, at least 

in part, be by brittle fracture. This is analogous to shear zone 

tips des~ribe(j by 5_i_mR_90D (19_81). Tbese _52m paral-lel- vei-ns ami­

fractures (also noted in thrust flats, chapters 2 & 3), indicate 

that the ductile thrusts may become partially seismic 

dislocations. 

Both fabric slip ramps and fold ramps are developed parallel 

with 52 where 52 is inclined ( 20 - 30°) with respect to bedding 

and the S2m of bedding parallel flats. They therefore have a 

'true' ramp attitude. Once incorporated into a mature 'shaped' 

thrust trajectory, however, it would be very difficult to tell 

whether a fold related ramp originated as a fold ramp or a fabric 

slip ramp. Accurate displacement variation measurements along the 

thrust (similar to that of Ellis & Dunlap 1988), however, might 

identify fabric slip ramps as displncement 'highs' and fold ramps 

as displacement 'lows'. 
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Figure 4.1 Schematic diagrams illustrating the morphology of 
penetrative deformation folds in the Breaghy Head area. (A) 
Note that the amount of upward and forward displacement of the 
anticlinal hinge relative to the synclinal hinge decreases up 
and down the axial su~~- (B) Bedding (bdg) displacement in 
a fold mid-limb, parallel to tt1e fold axial planar cleavage 
(52). The cleavage and therefore the displacement is oblique 
to bedding and therefore bedding parallel flats. The 
di splacernent in the fold mid-limb therefore has a ramp attitude 
with respect to flat-parallel datum lines (bedding). Note that 
52 intensifies towards both ramps and flats. ( R) ramp, (F) 
flat. 
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Figure 4.2 Simplified field sketches of examples of fabric 
slip ramps. (1) Within pelitic quartzites west of Dunfanaghy 
at 200186, maps 1 & 2. The main (m scale) ramp mylonites lie 
1-2m below this example, which illustrates discrete (em scale) 
zones of S2m across which bedding cut offs record (m) scale 
displacements. These zones al terna tel y link with or are 
deflected by shear bands associated with the main ramp 
mylonites. (2) Within mixed pelites, silts and thin quartzites 
near Sandhill at 496145, maps 1 & 2. Illustrated from this 
example is the anticlinal mid limb portion of a fabric slip 
ramp. Strain (fabric intensity) increases towards the base of 
the diagram as bedding becomes overturned and attenuated into 
the mid limb's (m) scale mylonite. This (m) scale mylonite 
contains rootless recumbent minor fold hinges and augened 
remnant quartz vein material. Above this mylonite, more 
discrete (em scale) mylonite zones displace bedding cutoffs. 
(A) Displacements of bedding across discrete (ern scale) 
mylonite zones (S2rn). (B) Shear bands deflect andjor link ~ith 
discrete S2m zones (C) Main (m scale) ramp mylonites. 
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Figure 4.3 (A) Photograph of a minor fabric slip ramp in pelites 
in a roadside quarry near Port Lough, 2km sw of Dunfanaghy. Note 
the presence of a quartz vein within the mid limb displacement 
zone . (B) Simplified field sketch of some more examples from the 
same quarry, occurring in a swarm. A number of the fabric slip 
ramps in this quarry occur in alignment, suggesting that they 
may propagate forwards and rearwards towards one another and 
coalesce to form single larger ramps. This may be the case with 
the uppermost ramp in the diagram which appears to be a composite 
of two individual ramp segments, each with a central displacement 
maximum. Note also shear banding in the central ramp and shear -
thinning of the vein in the lowermost ramp, indicating continued 

displacement across the ramp. 
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Figure 4.4 Schematic field sketches summarizing structural 
relationships in a fabric slip ramp in quartzites at 610235, maps 
1 & 2, west of Curragh Harbour. The mid limb of the fold at this 
locality is intruded by several thin 52-parallel metadolerite 
sheets. (A) The metadolerite sheets are intruded within and 
parallel to zones of intensified S2 in the quartzites. The 
metadolerites contain S2 parallel to that in the quartzites, and 
extensional crenulations indicative of north-westerly directed 
overshear. (B) Dense swarms of fine S2 parallel quartz veins 
emanate from the metadolerite margins. These vein swarms (vs) 
contain discrete (em scale) mylonites which thrust displace 
bedding. These discrete thrusts also displace bedding-parallel 
flexural slip shears (fss) which deflect S2 in the quartzites and 
metadolerite. (C) Metadolerite is clearly seen to be intruded 
along 52 cleavage planes, S2 parallel shears and occasional 
bedding planes. 



Increase 1n 1ntcnsity of 52 in mid 
11mb and localisation of displacement 
011lo dtscrctc S2 parallel zones of S2tn. 

Conttnued localisation of displacement onto 
a mid limb S2m mylonite zone (thrust). This 
thrust propagates forewards and rearwards along 
the 52 trajectory. Veins or igneous sheets may 
intrude parallel to 52 as displacement localisation 
peaks. 

Figure 4. 5 Sequential diagram summarising the development of a 
fabric slip ramp during progressive displacement localisation. 
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Figure 4.6 Simplified field sketch of a large scale exanple of 
a fold ramp in sea cliffs along the SE shore of Marble Htll Bay 
(845126, maps 1 & 2). X,Y,Z referred to in text discussion. 
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Figure 4.7 Summary diagram illustrating the development of a 
fold ramp. (1 & 2) Propagation of two flats towards one-another. 
The generation of a fold maintains displacement continuity 
between the lower and upper flats which may propagate into each 
other through the fold to form one larger thrust from separate 
"cells". (3) Re-folding of the fold ramp during buttressing and 
incipient footwall collapse. 
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Figure 4. 8 Schematic diagram illustrating structural 
relationships in the region of a vein ~r.ray ramp located 
at 691200, maps 1 & 2. The exposure is approximately 4m high 
and 8-lOm long. Two thrusts Tl & T2 dip towards the SE and 
emplace 1 imestones onto sub-horizontal footwall quartzites. 
(.A) Narrow (m scale) 52/platey S2m zones. (B) Thin (mm-cm 
scale) S2m parallel veins, become dense close to thrust 
contact, representing up to 50% rock volume. (C) Last veins 
in exposure parallel to S2m of upper thrust T2. (D) .Arrays of 
thin (mm-cm scale) north-westerly inclined veins have shallower 
dip and lower density in the limestones. (E) .Arrays of thin 
(mm-cm scale) north-westerly inclined veins have steeper dip 
and higher density in the quartzites. .Also steep to sub 
vertical veins in quartzites cut by younger shallower vein 
sets. (F) Mutual cross cutting of inclined veins and those 
parallel to S2m of lower thrust Tl. (G) S2jS2m of thrust Tl 
deformed by S2/S2m of thrust T2. (H) Sub-horizontal, bedding 
parallel shears in quartzites displace veins towards the NW. 
(I) Hutual cross cutting of R2 shear bands anrl veins in 
quartzites. (J) NW vergent intrafolial folds in quartzites. 
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Figure 4.9 Simplified field sketch of a small scale example 
of a Vein tara y ramp at Dunfanaghy Harbour 1 280227 1 maps 
1 & 2. (P) pelites (Q) Quartzite bed. See text for details. 



CHAPTEIR 5 

PROPAGATION OF TECTONIC SliDES AND 

lfD-1[ GENERAlHJN OF uvsHAPED'u IDUICHL[ lD-fRUISTS 

It has been shown (chapters 2 & 3) that within the present 

study area, continuum 02 ductile thrusting has been responsible 

for the development of a locally complex fold-fabric history of 

structures previously categorised into 02, 03, 04 & 05 (Hutton 

1979a, 1982, 1983). In the Breaghy Head area, 02 is seen to 

contain- the- "peneerati-ve- det=:orma~ion'~ f-ab-rics- ar:Jd- folds (02 & _03 

of Hutton op. cit.), related directly to ductile thrusts, and to 

contain the "non- Fe:.ne.l:x3bve'' fabrics and folds (04 & 05 of 

Hutton op. cit.), related indirectly to the ductile thrusts, 

chiefly as hangingwall strains of local kinematic significance. 

The development of the latter structures has been described in 

chapters 2 & 3. This chapter aims to address the development of 

the 'penetrative deformation' structures in relation to the 

propagation and movement of 02 ductile thrusts. 

5.1 History 

The ductile thrusts of the Dunfanaghy - Breaghy Head area 

conform to the definition of tectonic slides proposed by Hutton 

(1979b). Tectonic slides form a distinct class of dislocation 

formed as part of the penetrative deformation stages in many mid 

crustal thrust zones (Hutton 1979b, Sanderson 1982, Platt & 
Behrmann 1986, Holdsworth 1989). 

As discussed in detail by Hutton (1979b), "tectonic slides" 

(Fleuty 1964), were first identified by Bailey (1910) in the 
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Scottish Dalradian. Bailey's work was based on the recognition 

and correlation of stratigraphic sequences, with which he was able 

to infer the existence of major recumbent fold hinges where these 

stratigraphic sequences were symmetrically repeated. Bailey noted 

that the stratigraphic repetitions across the fold hinges were 

often incomplete, with formations excised or thinned against both 

sides of clearly mappable dislocations (slides) which gradually 

crossed the stratigraphy in the fold limbs. This led Bailey 

( 191 0) to. suggest that slides were developed in fold limbs in 

response to the folding process. 

Fleuty (1964) stressed this causal relationship between major 

folds and tectonic slides, proposing the rigid definition: 

"A slide is a fault formed in close connection with folding, 

which is broadly conformable with a major geometric feature 

(either fold limb or axial sur face) of the structure, and 

which is accompanied by thinning and/or excision of 

members of the rock succession affected by the folding." 

As Hutton ( 1979b) points out, however, many tectonic slides 

do not appear to be related to major folds. Indeed, Bailey 

(1922, 1938) modified his earlier definition of slides to account 

for their occurrence in the absence of major folds, comparing 

major Dalradian slides and folds to Alpine thrusts and nappes, 

such that slfdes were considered to ·be an integral part of the 

deformation rather than a mechanical product of the folding 

process alone. 

Hutton (1979b) emphasised the connection between tectonic 

slides and the penetrative deformation within which they are 

contained. The high strain fabrics of tectonic slides are 

orientated at only low angles to the surrounding lower strain 

pervasive cleavages of the same age, at clear variance to the 

104. 



expected 45° angular relationship and underformed walls of 

'classical' shear zones (cf. Ramsay & Graham 1970). This led 

Hutton (1979b) to suggest that tectonic slides are generated by 

intensification and modification of (principally) the regional 

pervasive fabrics, and to propose the following redefinition: 

"A tectonic slide is a fault which forms in 

metamorphic rocks prior to or during a metamorphic 

event. It occurs within a zone of coeval penetrative ( ie 

microscopic) deformation that represents an intensification 

of a more widespread, often regionally developed 

deformation phase. Within this zone of high strain slides 

may lie along and be sub-parallel to (although they will 

cross-cut on a large_~cal~L_the bound~ries_ of l~thological, 

tectonic and tectonic-metamorphic units". 

The observations and discussions contained within this 

chapter and chapters 2, 3, & 4 provide a strong case for retention 

of this definition. 

5.2 02 "Associated" structu:u.-es 

As described in chapters 2 & 3, the ductile thrusts in the 

Breaghy Head area are syn-metamorphic (greenschist facies) high 

strain mylonitic dislocations which duplicate stratigraphy with 

linked thrust geometries similar to those described- -frem- forelaAd 

thrust zones. The mylonites contain shear sense indicators which 

support thrust sense dislocation of the stratigraphy across the 

mylonitic zones. Iri addition, the ductile thrust high strain 

zones and the inter-thrust low strain horses contain "associated" 

structures, 

(cf. Hutton 

considered to be diagnostic 

1979b, Rathbone et al 1983, 

of tectonic 

Fig. 5.1). 

slides 

These 

structures are now discussed with special reference to the Breaghy 

Head ductile thrusts: 
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5.2.1 Kinematic classification of rz folds. 

As noted in chapters 2 & 3 and Fig 5.1, minor intrafolial 

folds are seen to become tight to isoclinal with sheath closures 

and rootless geometries with increasing strain as ductile 

thrusts are approached. These folds often verge towards the W or 

NW, but also towards the E, and hinges become rotated towards 

parallelism with the 02 stretching lineation as strain increases 

towards the ductile thrust contacts. Whilst these folds often 

deform thinned bedding, they are also seen to fold S2m, some with 

axial planar cleavage indistinguishable from the S2rn which they 

fold. These minor intrafolial folds appear to be restricted to 

ftie -dudile- throst high st-rain z-enes, -and were_ clear_l_y fqrf!le_d 

after the ductile thrust strain profiles had been established. 

These structures are therefore considered to represent a distinct 

class of F2 folds related to local flow perturbations within and 

reworking of the mylonitic banding during ductile thrust motion 

(cf. Bell 1978, Bell & Hammond 1984, Evans & White 1984), and will 

not be discussed further. Other, larger penetrative de Formation 

folds which fold bedding outside the S2m zones of the ductile 

thrusts or which S2m dislocates (see chapter 4) require more 

detailed consideration: 

The chronology of deformation events in the study area 

(Hutton 1977a, 1977b, 1982, 1983) was first describea and ordered 

at exposures of major tectonic slides (Mickey's Hole and 

Dunfanaghy) and subsequently correlated outwards from these 

localities (Hutton 1983, pers. comm. 1986). These two 

exposures are therefore the basis for the regional chronology of 

deformation events described by Hutton (op. cit.). This followed 

standard procedure for structural investigation in metamorphic 

polyphase deformation belts, based on the suggestion that the 

pelitic lithologies in these exposures might contain the most 
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complete record of the regional polyphase fold and fabric history. 

R-1 extensional crenulations are well developed in these 

exposures, and were therefore interpreted as a SE verging cleavage 

post-dating S2 (at a time when extensional crenulations were 

poorly understood), and formed the basis for D3 in the chronology, 

being correlated with E & SE verging folds and cleavage in 

surrounding rocks regionally (Hutton pers. comm. 1986) . In the 

Breaghy Head area, this cleavage is restricted to the D2 thrust 

high strain zones and demonstrably an extensional crenulation 

cleavage (this chapter and chapters 2 & 3). 

Significantly, westerly vergent folds and easterly vergent 

folds (F2 and F3 respectively in the sense of Hutton op. cit.) are 

geometrical-ly ident-ical (Wutton 1977a, tbis _work chapte~~ 3 & 4). 

This work has shown that both the westerly and easterly vergent 

folds share a common axial planar S2 cleavage which is 

indistinguishable despite orientation. These observations strongly 

suggest that both fold sets are D2 in age. The westerly and 

easterly vergence of the folds cannot be explained as vergence 

reversals across major fold hinges, since the required younging 

reversals and symmetrical repetitions of stratigraphy are 

absent. Indeed, both westerly and easterly vergent folds are seen 

to occupy the same stratigraphic and/or structural level in some 

exposures with notable absence of fold interference relationships. 

Thus the westerly and easterly verging folds in the study area 

appear to be mutually exclusive in 3D space, such that "F3" folds 

are not seen to refold F2 folds. These observations further 

suggest contemporaneous (D2) formation of the westerly and 

easterly verging folds. 

In addition to having axial planar S2 cleavage, both westerly 

and easterly verging folds are seen to host D2 ductile thrust 

ramps (chapters 3 & 4). This confirms a D2 age for these 

structures and strongly suggests that their orientation is an 
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original feature associated with the development of 02 ductile 

thrusts. 

As described in chapter 3, folds shown to be intimately 

associated with rare backthrusts posses an easterly vergent axial 

planar cleavage which crenulates 52, however this cleavage is 

seen to be in mutual cross-cutting (conjugate) relationship with 

52 (eg. Fig 3.14). Both fabrics are therefore of 02 age with 

negligible temporal separation. Similar conjugate fold and fabric 

relationships associated with forethrusts and backthrusts have 

been described from other thrust belts (eg. Morley 1986, Seago & 

Chapman 19 88) . Indeed, spatially and temporally localised 

polyphase structure sequences are not uncommon within foreland 

thrust belts (eg; -Butler 198-2b-, -Cewa-F-d- & Ratts 1983_). lh_e E to SE 

vergent conjugate cleavage to 52 is therefore here termed 

"conjugate 52". The E & SE verging 'conjugate 52' and attendant 

folds therefore represent a distinct class of 02 structure, 

restricted in development to the immediate vicinity of rare 

backthrusts and are therefore not considered further. 

It is now possible to examine the relationship between 02 

ductile thrusts and "primary" 52 and F2 folds ( ie those remaining 

in the data set after removal of small scale intrafolial folds and 

'conjugate' structures) with confidence. As described above, the 

westerly and easterly vergence of these structures appears to be 

an original feature which is clearly ~ot r~lated to larger scale 

F2 structures or polyphase deformation. Passive rotation of the 

fold hinges towards the X direction during progressive shearing 

( cf. Sanderson 1973, Escher & Watterson 1974, Rhodes & Gayer '1977' 

Bell 1978, Cobbold & Quinquis 1980) to explain the vergence 

pattern is also precluded since the high strains required are 

absent. Thus, primary F2 folds form a distinct class of 02 

structures which must be intimately associated with ductile 

thrusting in the area. In view of the above arguments, this 
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association must pertain specifically to forethrusts. 

5.2.2 "Primary" f2 folds 

"Primary" F2 folds (defined above), with dislocated mid limbs 

have been described in some detail in chapters 3 & 4. Some of 

these folds have become incorporated into mature 'shaped' ductile 

thrust profiles, now present as hangingwall anticlines and 

footwall synclines. Some of these folds form structures which 

connect leading and trailing tip lines of adjacent ductile thrust 

flats, and others, now present in the hangingwalls of the thrusts 

appear to have escaped direct incorporation into the thrust 

profiles and instead host isolated thrust ramp dislocation 

"cell-s''. I-n -view of the strong . associatioo _ Q.et~een D2 ductile 

thrust ramps and F2 folds, it is suqgested that the majority of 

primary F2 folds may potentially have nucleated ramps for 

incorporation into through-going ductile thrust profiles. 

As described in chapter 4, the thrust dislocation of primary 

F2 fold limbs is parallel to the axial planar 52, across zones of 

52 parallel 52m. The parallelism of the 52 and dislocating 52m 

presents an apparent paradox, since it implies shearing along the 

axial planar cleavage, which is generally regarded as representing 

the XY plane of the strain ellipsoid and therefore a plane of no 

shear strain. This problem has been addressed by Ghosh ( 1982), 

who demonstrated that axial planar cleavage may rotate as a 

material plane to deviate from the orientation of the XY plane of 

the strain ellipsoid if the deformation is characterized by a 

combination of pure shear and simple shear. This angular 

deviation will always be small, being less than 5° for simple 

shear and even less for combined pure and simple shear. 

Under these 

conditions, the axial planar cleavage becomes a plane of 

shearing and may potentially accrue considerable fabric-parallel 
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shear strains, even though the angular deviation from the XY plane 

is only slight. This style of deformation in the F2 fold mid 

limbs is evidenced by the shallowly oblique thrust-sense impurity 

trails observed in S2m - parallel quartz veins described in 

chapter 4, where the instantaneous stretching azimuth is clearly 

outside the cleavage plane. 

It is important to note that the angular deviations between 

52 and the XY plane of the strain ellipsoid discussed above are 

too small to be resolved by field measurement. For the purposes 

of this discussion, we may therefore consider F2 fold mid limb 

ramp S2m to be parallel to the axial planar 52 in the hinges and 

normal limbs, as described in chapters 3 & 4. It is also 

appropriat-e to note here tbat 52-...,bedding intersection lineation9 

are parallel to F2 hinges, such that 52 is, within the bounds of 

field resolution, an authentic axial planar cleavage. The 02 

ductile thrust ramps may therefore be considered to be 'axial 

planar' to primary F2 folds. 

"Facing" is defined by Shackleton (1958), Lisle (1985) and in 

discussion by Holdsworth (1988) as follows: 

1. Fold Facing: the direction, normal to the fold axis, 

along the fold axial plane, and towards the younger beds. 

2. Cleavage facing: the direction, normal to the bedding 

plane intersection, along the cleavage plane, and towards 

the younger beds. 

3. Fault Facing: 

intersection, 

younger beds. 

the direction, normal to the bedding plane 

along the fault plane and towards the 

In view of the parallelism of the ductile thrust ramps and 
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the axial planar 52 found within the ramp-hosting primary F2 

folds, the axial plane, cleavage plane and fault plane in the 

above definitions are iri this case equivalent reference planes. 

Since, as noted earlier, the majority of primary F2 folds may 

potentially have nucleated ramps, it is possible to consider 

primary F2 fold facing data as representative of the potential 

range of 02 ductile thrust ramp facing directions. 

In Fig 5.2, So, 52 and S2m, D2 stretching lineation and, 

following a technique described by Holdsworth (1988), primary F2 

fold facing data are presented stereographically. A number of 

important features are evident in the facing stereonet 

(Fig. 5.2d): 

1. All downward facing primary F2 folds have a W to NW facing 

azimuth, suggesting an axis of rotation orthogonal to the 02 

ductile thrust transport direction. These folds' downward facing 

can be attributed in the field (chapter 3), to buttressing 

deformation or thrust folding caused by movement of underlying 

thrusts during continuum 02 thrusting. 

2. Holdsworth (1988) indicates that in areas of deformation 

dominated by sheath folding, the lines of facing should plot about 

a great circle coincident with the mean axial plane of that 

folding. This geometrical restriction must reflect the rotation 

of hinges -cowards the X direct-ion: within the axial p-lane, a 

condition of the sheath folding process ( cf. Escher & Watterson 

1974). As Fig 5.2d shows, however, the lines of facing of primary 

F2 folds in the Breaghy Head area are not coincident with any 

particular great circle. 

3. The primary F2 facing azimuths show a broad bimodal 

distribution with respect to the mean 02 thrust transport 

direction, one cluster facing from SW to NW and one from E to 
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NE. Those folds hosting examples of 02 thrust ramps (bold azimuth 

arrows) are restricted to the NW and NE, with facing azimuths 

forming a more acute angle with the NNW transport direction than 

the non-ramp hosting primary F2 folds. Significantly, the 

majority of 02 thrust ramp hosting folds face to the NW in a 

frontal thrust orientation. 

The easterly and westerly vergence and facing pattern of 

primary F2 folds in the Breaghy Head area cannot be attributed 

to a sheath folding process involving rotation of hinges towards 

the X direction within the S2 plane. This is geometrically 

untenable (Fig 5.2d) and (as noted earlier), there is insufficient 

strain in the rocks hosting the folds to have accomplished the 

required rotations. 

In view of the above, it is suggested that these folds formed 

with hinges close to their present orientations with only modest 

rotational modification. The vergence and facing pattern of 

primary F2 folds must therefore reflect gross inhomogeneity in the 

02 de format ion. Significantly, the 02 strain inhomogeneity which 

the 02 ductile thrusts represent has been described in chapters 2 

& 3. 

As described in chapters 2, 3 & 4, the primary F2 folds and 

02 ductile thrusts are kinematically intimate. It would appear 

that the development of the primary F2 fold orientations are 

related to the development of the 02 ductile thrusts, indeed it 

has been shown in chapter 4 that primary F2 folds are intimately 

related to the process of 02 ductile thrust ramp propagation. It 

is therefore suggested in the absence of any identified post 02 

refolds (chapter 3), that the primary F2 fold vergence and facing 

pattern and the 02 deformation inhomogeneity this represents is a 

direct result of 02 ductile thrust propagation. 

112. 



5.2.3 02 strain 9 S2 cleavage and bedding 

As described and discussed in chapters 2 & 3, 02 strain 

increases towards 02 ductile thrust contacts. The strain was 

estimated in the field qualitatively from 52 spacing, nature and 

intensity, and where possible quantitatively from measurement of 

porphyroblast (chiefly pyrite) pressure shadows. The strain was 

found to increase exponentially towards the thrust contacts in 

under 20m from "background" strains to 1+e1 in excess of 8 or 9 

closest to the 02 thrust contacts. This clearly indicates 

localisation of 02 strains and displacement at the 02 ductile 

thrust contacts so that the majority of thrust displacement is 

carried along these thin high strain zones, as evidenced by the 

sharp lithological breaks across the thrust contacts. Indeed, 

this 02 strain localisation around the thrust planes enables 

mylonite (thrust) bound low strain horses to be identified. The 

02 thrusts therefore represent dislocation-related inhomogeneity 

in the 02 deformation. 

In detail, the 02 ductile thrust strain profiles are 

apparently not simple exponential increases towards the thrust 

contacts, since the presence of localised bands of high shear 

strain or thin zones of intense 52m offsetting markers form an 

integral part of the strain profile in some thrusts. This 

superimposes on the smooth exponential strain profiles a 

'dog-tooth' pattern of strain 'highs' (cf. Fig 2.14). 

The 52 cleavage becomes mylonitic as 02 thrust contacts are 

approached such that 52 is transitional with 52m. Indeed, as 

Hutton (1983) noted, platey 52m is a diagnostic feature of D2 

ductile thrusts. 

52 is seen to curve asymptotically towards parallelism with 

the D2 thrust planes as they are approached, such that 52m is 
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parallel or sub-parallel to the thrust planes. Thus, (a) 52m 

will be shallowly 5E dipping, parallel to D2 thrust flats and 

oblique to steeper 5E dipping 52, (b) 52m will be steeper 5E, 

easterly and westerly dipping parallel to D2 thrust ramps where 

52m will be less oblique or sub-parallel to 52 (as indicated in 

chapter 4). These relationships are reflected in Fig 5.2b. 

As 52 swings towards parallelism with D2 thrust planes, the 

angle between 52 and bedding decreases from 20-30° towards 

parallelism as the thrust planes are approached, the thrust flats 

being parallel or sub-parallel to bedding (cf. Figs 5.2a & b). 

Bedding thickness is also progressively reduced towards the D2 

thrust planes to become obliterated by the high strains such 

that platey 52m and S2m related mineral banding is the only 

recognisable pervasive 

contacts. 

planarity closest to the D2 thrust 

The thickness of the D2 ductile thrust high strain zones 

(mylonite and intensely cleaved rock) is noted to be greater in 

the hangingwalls of D2 thrusts. fhe high strain zones are 

generally less than 20m thick (this thickness is laterally 

variable, such that 20m is an approximate maximum). This 

indicates further spatial inhomogeneity of D2 thrust related 

strain. 

02 stretching lineation 

The D2 stretching lineation, representing the X direction of 

the strain ellipsoid ·is contained within the 52 cleavage planes 

which represent the XY plane of the D2 strain ellipsoid (cf. Figs 

5. 2b & c). As a general feature of the Breaghy Head D2 ductile 

thrusts, the stretching lin eat ion ( X2) intensifies towards the 

thrust contacts as the host 52 intensifies in the same direction. 
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Hutton (1977a, 1979b) noted intensification of 

contemporaneous stretching lineation as a diagnostic feature of 

tectonic slides, aiding their field recognition, but also noted 

(Hutton 1979b, pers. comm. 1989) that this feature is absent from 

some tectonic slides, suggesting that this may be a result of syn­

or post-tectonic annealing of the mylonites. ln the case of the 

Breaghy Head D2 ductile thrusts, a qualitative estimate of X2 

strength indicates that the relative intensification of X2 towards 

the thrust contacts is sometimes conspicuously variable along 

strike. A change of lithology would be expected to accompany 

this if an along strike variation in annealing (secondary 

recrystallization) were responsible, since: 

1. A pure quartzite and pure limestone might be expected to 

undergo secondary recrystallization at different rates and to 

different finite grain sizes under the same (greenschist) 

metamorphic conditions. 

2. The presence of a second phase (eg. mica) is known to 

suppress migration of grain boundaries during recrystallization 

( eg. Drury & Urai 1990). This effect is noted in limestone 

exposures where pure limestone bands are seen to have a larger 

grain size with saccharoidal crystalline texture and less distinct 

S2m planes and stretching lineation development than adjacent 

micaceous limestone bands where grain size is submicroscopic with 

intense-ly developed 5-2m and X2- (-eg. --loca-l-ities 5 & 6 and al-ong t-l'le 

SE shore of Marble Hill Bay, chapter 3, maps 1 & 2). 

The lateral vari~tion in X2 intensification towards D2 thrust 

contacts noted above, however, appears to take place within 

identical lithologies along strike (eg. within quartzite beds 

and within metadolerite between localities 7 & 9 west of 

Dunrudian, maps & 2). If variation in secondary 

recrystallization is not responsible for the lateral variation in 
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X2 intensity, it must represent an original feature developed 

during the 02 ductile thrusting process. This may imply lateral 

variation in the finite extension in the X direction of the 02 

strain ellipsoid. The intensification of X2 towards the 02 thrust 

contacts is an integral part of the 02 thrust high strain zones, 
~ 

therefore any lateral variation in the X2 intensity must have 

developed during the strain profile development and subsequent 

displacement history of the 02 ductile thrusts. 

5.2.5 Tectonic schists 

At some exposures of 02 ductile thrust contacts, a thin 

(em scale) zone of "tectonic schist" separates hangingwall and 

footwall, the best examples of which are exposed at Mickey's Hole 

and Lishagh (Figs 2.9 & 2.15a). 

This tectonic schist is a mineralogical hybrid of the 

hangingwall and footwall lithologies, containing small lenses and 

rootless fold hinges of wall rock lithology and/or vein quartz 

within the hybrid schistose matrix. This represents locally 

developed metamorphic and mechanical mixing of the adjoining 

hangingwall and footwall lithologies at the thrust contact. This 

requires to some degree the 'shaving' and fragmentation of 

wallrock asperities (as indicated by the presence of the 

porphyroclasts of wall rock lithologies), suggesting local 

pseudo-brittle behaviour along the tt'rrust contact such- that the 

thrust motion is carried along the knife sharp plane this 

represents. Indeed, as noted in chapter 3, brittle fractures are 

associated with the hp zone of a 02 ductile thrust at locality 

88, (maps 1& 2, Fig 3.40) and the presence of S2m parallel 

brittle fractures within 02 thrust ramps has been described in 

chapter 4. The presence of these fractures and tectonic schists 

at some localities suggests that 02 ductile thrust propagation 

may, at least in part, proceed along brittle fractures. 



In section 5. 2.1 , F2 folds have been categorised into minor 

intrafolial F2 folds resulting from flow perturbations within the 

S2m banding, 'conjugate' F2 folds related to rare D2 ductile 

backthrusts and 'primary' F2 folds related to the D2 ductile 

forethrusts which dominate the D2 deformation in the Breaghy Head 

area. In section 5. 2. 2 the nature and orientation pattern of 

'primary' F2 folds bear testimony to inhomogeneity in D2 

contractional deformation associated with the D2 ductile thrusting 

process. The presence of D2 boudinage and shear bands must 

further indicate inhomogeneity in the D2 deformation, since the 

contractional and extensional deformation must coexist 

kinematically. An examination of the geometry, orientation and 

relationship of boudinage to D2 strain leads to further insight 

into the nature of D2 ductile thrust propagation and motion. 

As noted in chapters 2 & 3, boudinage is contained within the 

higher strain zones approaching D2 ductile thrust contacts. The 

rheological control to this boudinage is evident in the fact that 

metadolerite sheets and quartzites between pelites in thinned 

bedding are boudinaged, as are the more quartz or calcite rich 

microlithons between the more mica rich planes of S2m cleavage. 

Thus, as noted in chapter 2 & 3, where boudinage is well 

developed, the individual boudins become smaller and more 

frequent, o-r denser as D2 ductile thrus-t- contacts are-approached. 

Certainly, where small scale boudinage of S2m is concerned, the 

timing is late in the local deformation history since the required 

rheological anisotropy is only present once S2m is well 

developed. Boudinage of bedding becomes smaller as bedding 

thickness is reduced towards thrust contacts. This suggests 

boudinage formation either during or after the main phase of D2 

ductile thrust strain profile development.' 
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There is little dispute as to the 02 age of these structures, 

however, since firstly, 52 is locally intensified around 

individual boudins, both within the boudinaged competent unit 

margins and within the enclosing less competent unit. Secondly, 

some boudins internally contain R2 shear bands or domino rotations 

(Fig 2.17), some individual boudin necks nucleate R2 shears where 

the rheological contrast is strong (eg. metadolerite sheet within 

banded pelites, silts and thin quartzites, Fig 3.13), and some 

individual boudin necks nucleate R1 shears where the rheological 

contrast is weaker (eg. quartzites within pelites and spaced 

mica-rich 52 planes, Fig 3.33). These 'internal' and 'neck' shear 

bands are consistent with 02 shear bands and extensional 

crenulations in surrounding rocks. 

The boudins are generally of symmetrical geometry with long 

axes lying close to perpendicular to the local 02 stretching 

lineation (X2). The orientation of these boudins with respect to 

the mean X2 direction is illustrated in Fig 5.3. Significantly, 

those boudins containing or nucleating shear bands are also those 

with long axes closest to perpendicular to the mean X2 direction. 

The boudinage is generally contaJned within the rheological 

banding, be it within S2/S2m close to the 02 thrust contacts, 

thinned bedding (sub-parallel to 52 closer to the 02 thrust 

conta~ts, or acutely oblique to 52 further away from the contacts) 

or else metadolerite sheets or quartzite beds on- the margins of 

the 02 thrust high strain zones. Where boudinage is well 

developed, the host banding is parallel or sub-parallel to the 

nearby 02 thrust contact. In the absence of 'chocolate tablet 

geometries, the boudinage must therefore represent a 

non-flattening (stretching) deformation within the banding 

parallel to the thrust contacts, with a component of NW directed 

overshear parallel to the transport direction of the 02 thrusts. 

118. 



Although not uncommon, this boudinage is not ubiquitously 

developed, being not only confined to the 02 thrust high strain 

zones, but also laterally restricted within them. Clearly, the 

stretching deformation that the boudlns represent is temporally 

and spatially localised. This indicates further inhomogeneity in 

the ductile thrust related 02 deformation. 

Furthermore, although boudinage is seen to intensify towards 

02 thrust planes, it is never seen to deform them. This suggests 

that the stretching deformation which the boudins represent is 

detached at the thrust planes to which they intensify. 02 

boudinage in the Breaghy Head area must, therefore, be related 

spatially and temporally to the motion of individual 02 thrusts. 

Syn-tectonic quartz veins 

Quartz veins are not uncommonly developed in the Breaghy Head 

area. The majority of these veins are demonstrably 02 in age. 

For example in chapter 3, steeply inclined swarms of thin planar 

quartz veins were shown to be developed over 02 thrust 

culminations and in chapter 4, dense zones of thin climbing planar 

vein arrays were shown to be developed within Vein -arr~ y ramps. 

These two vein types have already been discussed and are not, 

therefore, considered further in the following discussion. 

Three main kinematically important ty11eq of 02 age quartz 

veins exist in the Breaghy Head area: 

1. Rod-like veins with irregular or lozenge shaped cross 

sections hosted by 02 boudin necks (chapters 2 & 3). 

2. Moderately to shallowly inclined thin planar veins present as 

tension gash arrays indicating NW directed overshear in sympathy 

with the 02 thrust shear sense (chapters 2 & 3). 
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3. Thin planar veins parallel or subparallel to 52/thinned 

bedding or S2m in the D2 thrust high strain zones in both flats 

and ramps which are sometimes quite dense close to the thrust 

contacts (chapters 2, 3 & 4). 

Mutual cross-cutting and interconnectivity of veins of the 

three main types can be identified in the field (chapters 2 & 3, 

Fig 2.21), indicating that the three main ~ein types must be of D2 

age, since the boudinage within the area has been shown to be of 

D2 age, the three vein types are shown to have a close spatial and 

kinematic relationship to D2 thrust structures and high strain 

zones, and the planar veins within the thrust high strain zones 

closer to the thrust contacts are often folded by minor 

intra folial F2 folds or displaced by C, P, R1 & R2 shears ( eg. 

Figs 2.5 & 3.5). 

The minor F2 intrafolial folding of some planar veins, often 

with rootless geometries, and the presence of augen remnants of 

vein quartz within the D2 thrust S2rn zones suggests quartz vein 

formation in the thrust high strain zones when the thrust 

hangingwalls and footwalls were being pervasively strained, 

possibly prior to the host thrust high strain zones achieving 

maturity. As discussed above, however, D2 boudinage formation 

appears to have taken place after or as the D2 thrust high strain 

zones achieved maturity. The connectivity between boudin 

necks and planar veins, the presenc~ ~f r~lati~ely undeformed ~2~ 

parallel planar veins with oblique impurity (opening) trails 

indicative of NW directed overshear and the displacement of planar 

veins by discrete secondary shears all suggest vein formation 

during or just after a change in the thrust related deformation 

from pervasive straining to more localised displacement processes. 

It appears therefore, that quartz vein formation was 

initiated by planar veins developed within the rocks closest to 
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the thrust contacts, presumably representing transient high strain 

rate events (cf. Knipe & Wintsch 1985, Knipe 1989), within the 

developing thrust mylonite zones. Vein formation then appears to 

have continued, progressively spreading into the thrust wall rocks 

as the D2 thrust deformation process changed from pervasive wall 

rock straining to more localised displacement processes, with the 

synchronous formation of both planar vein types and boudinage 

related veins across the entire width of the thrust high strain 

zone profile. 

S.J 02 Secondary fabrics 

This group of minor structures includes R2 'domino' hard band 

rotations, C & P shears, R1 & R2 ex tensional crenulations and 

shear bands (Figs 2.4, 2.8, 2.9, 2.10, 2.11, 2.12). These 

structures have been described and discussed in detail in chapters 

2 & 3, where their value as kinematic (shear sense) indicators was 

established. It is not intended to repeat those arguments here. 

The following discussion is biased towards R1 & R2 extensional 

crenulations since they are commonly developed, and as will be 

demonstrated, kinematically revealing. 

5.3. 1 Secondary fabric timing 

lnl.Jl_I'C()nn_es:tivity of C, P & R1 shears is well developed at 

some localities (eg. Fig 2.12). This, together-wHh tlie mutual-ly 

cross-cutting and rare conjugate relationships between R1 & R2 

extensional crenulations (chapter 2), clearly demonstrates that C, 

P, R1 & R2 shears ar~ contemporaneously developed. The D2 age of 

R1 & R2 extensional crenulations (and therefore D2 age of C & P 

shears) is in little doubt for the following reasons: 
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1. As noted above, both R1 & R2 shears and R2 'domino' rotations 

are contemporaneously developed with D2 boudinage at some 

localities. 

2. The D2 thrust high strain zones represent pervasive (i.e. 

microscopic) straining of the thrust hangingwall and footwall 

rocks. This involves mobilization and recrystallization of micas 

and quartz into cleavage planes and microlithon micro fold hinges 

respectively in the non-mylonitic 52 zones, and quartz grain size 

reduction with subgrain development, mica growth and thinning at 

crystal tips, feldspar fracturing/minor subgrain development 

and feldspar break-down to muscovite & quartz in the mylonitic 

(S2m) zones closest to the thrust contacts which host much of the 

extensional crenulation cleavage. 

Since extensional crenulation cleavages (ecc) represent 

extensional microshears which deform host S2/S2m, the ecc must be 

developed after the D2 thrust high strain zones have become 

established, implying ecc development after pervasive 

crystal-plastic deformation processes have ceased. Thin section 

investigation, however, indicates that the same mylonite-related 

crystal plastic deformation processes outlined above are active 

within the ecc "curvature domains" (Fig 2.10), but diffusional 

migration of quartz into microlithon microfold hinges is 

absent. Rec_overy (secon_dary recrystallization) textures are also 

noted in thin section to be common to both ecc plan~s arid the host 

S2/S2m (eg. quartz grain boundary migration to form larger 

crystals with triple point boundaries and crossfabric mica 

porphyroblast growth (eg. large biotites at Mickey's Hole)). 

In summary, the ecc and host S2m share common microstructural 

deformation processes and recrystallization textural history, 

indicating negligible temporal separation between S2rn maturity and 

ecc development. The ecc must therefore be developed later in the 
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local S2m history, marking a change from pervasive straining to 

more localised displacement processes. 

3. The geometry of the Breaghy Head ecc/shearbands and the 

microstructural deformation mechanisms associated with them are 

consistent with shear zone 'contemporary' secondary fabrics 

described from ductile deformation zones around the world ( eg. 

Platt & Vissers 1980, White et al 1980, Hutton 1982, Law et al 

1984, Platt 1984, Weijemars & Rondeel 1984, Kelley & Powell 1985, 

Brunel 1986, Platt & Behrmann 1986, White et al 1986, Behrmann 

1987, Dennis & Secor 1987, Butler & Prior 1988). 

The above arguments clearly place the Breaghy Head ecc (and 

there fore C & P shears and R2 'dominoes') within 02. More 

specifically, the ecc appear to be developed as the 02 ductile 

thrust deformation proceeds from pervasive thrust wall rock 

straining to more localised displacement processes. 

5.J.2 Extensional crenulation orientation 

Extensional crenulation (ecc) orientational data collected in 

the field was only qualitative for the following reasons: 

1. The ecc planes are defined by asymptotic curvature and 

thinning of the host S2/S2m into the extensional microshears 

The ecc -planes oRen gently 

anastomose, especially in the strike direction and/or curve 

asymptotically towards parallelism with the host S2 fabric, 

especially in the S2m'zones. Accurate field measurement of ecc is 

therefore precluded by the general absence of clearly defined 

planar cleavage surfaces. 
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2. Until fieldwork was almost completed, the significance of ecc 

was considered to be purely in relation to shear sense 

determination. Only crude estimates of ecc strike or ecc 

microlithon microfold plunges were therefore made in the field in 

order to supply a quadrant to the shear sense indicated by the 

microlithon asymmetries (see map 2). If additional kinematic 

significance had been attached to these structures earlier in the 

fieldwork, additional efforts would have been made to obtain a 

reliable quantitative data set for the ecc. 

5.3.3 Extensional crenulation geometry and flow partitioning 

If extensional crenulation cleavages (ecc) are viewed purely 

as shear sense indicators, they might be perceived as only a 

kinematic spin-off of D2 ductile thrusting. There is greater 

depth to the kinematic significance of ecc, however, and to 

highlight this it is necessary to examine the causative processes 

responsible for ecc development in D2 ductile thrust high strain 

zones. It is therefore of value to briefly recap and categorise 

the salient feat4res of R1 and R2 ecc: 

R1 Extensional crenulations: 

1. There is no evidence of pressure solution along R1 ecc 

planes. 

2. The R1 ecc are extensional rnicroshears which deform the 52 

host fabric and define the ecc planes. The microlithon structure 

is therefore that of open microfolds of 52 fabrics with NW dipping 

limbs which are thinned (with respect to the 5E dipping limbs), as 
I 

they curve asymptotically into the ecc planes (microshears) which 

they define (Figs 2.10, 2.11). This produces a 'tail' or 'fish' 

microlithon geometry which is maintained across the exposure width 

of ecc zones (Fig 2.9). 
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3. R1 ecc planes are sometimes seen to clearly displace passive 

markers ( eg. distinct discrete S2/S2rn parallel mineral bands or 

fine S2/S2m parallel quartz veins) towards the NW (mm or em 

scale). These displacements are not equal across the ecc zone and 

occasionally differ markedly across adjacent ecc planes. 

4. Multiple sets of R1 ecc may be developed in some exposures, 

with the later set being wider spaced than the earlier set. The 

later set cross-cuts the earlier set at a higher angle, but 

individual later ecc planes are seen to link with the earlier 

planes in a similar way to fault systems. This suggests 

negligible temporal separation between the sets and rotation of 

the ecc planes top towards the SE during movement. 

5. R1 ecc are occasionally folded by open minor F2 folds, a rare 

gentle axial planar crenulation may be present which is only seen 

in thin (mm scale) micaceous partings represented by S2/S2m or ecc 

planes. The trace of the ecc planes around these folds appears to 

be more geometrically coherent than the trace of the 52 fabric in 

the ecc microlithons around these folds. This may suggest that it 

is the ecc anisotropy which is being folded, 

along the R1 ecc planes (Fig 2.13). 

R2 Extensional crenulations 

(i.e. shortening 

1. Simila-r to R1 ecc, -R2- ecc are extensional miGF-oshears- which 

de form host S2/S2m fabrics. R2 ecc microlithons are also open 

microfolds of host 52 fabrics, but with SE dipping limbs (defining 

ecc planes) being thinned with respect to NW dipping limbs and 

curving asymptotically into the ecc planes which they define, 

however, the microfolds have tighter, sharper hinges than those of 

R1 ecc counterparts (Fig 2.10). 
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2. 52 in the R2 ecc microlithons dips NW and would therefore 

verge 5E with respect to surrounding bedding. 52 verges towards 

the NW in surrounding rocks unaffected by the R2 ecc. This 

suggests that the R2 ecc planes and the 52 fabrics in the 

microlithons have rotated top towards the NW 'domino fashion' 

during R2 ecc development and motion. 

3. R2 ecc planes are sometimes clearly seen to displace passive 

markers towards the 5E. 

4. Gentle crenulations of the 52 fabrics in the microlithons are 

occasionally present with axes sub-parallel to the R2 ecc planes. 

This gives a superficial contractional appearance, however, 

similar to R1 ecc, 'tail' asymmetry is maintained across 

exposure width. This may suggest weak postslip shortening 

orthogonal to the R2 planes where these crenulations are 

developed. 

Miscellaneous 

1. Where R1 & R2 ecc developed together in a given exposure, R2 

always cross cuts earlier R1 generations. In some rare isolated 

positions of these exposures, phacoidal (conjugate) interference 

geometries exist (cf. Figs 2.10, 2.11), suggesting R2 initiation 

towards the latter part of R1 activity. 

2. Later ecc are always wider spaced than earlier ecc 

generations. 

Lister & Williams (1979, 1983) suggest that the flow within 

shear zones may be spatially partitioned. As Behrmann (1987) 

notes, the formation of extensional crenulations requires local 

partitioning of flow into either simple shear plus spin or coaxial 

stretching plus spin. 
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A rheologically "hard band" (eg. metadolerite sheet) within a 

02 ductile thrust high strain zone will promote local flow 

partitioning into rotation of the hard band and slip along it's 

boundaries, consistent with the former flow partitioning model 

(ie. simple shear plus spin). The development of cross-band R2 

'domino' shears (eg. Fig 2.8), may in part help to facilitate the 

hard band rotation. 

Other hard band related secondary extensional fabrics are 

closely associated with boudinage of the hard band, manifested as 

R2 dominos within boudins and ecc or large isolated shear bands 

eminating from the boudin necks. The crystallization and shearing 

of the boudin vein quartz within the intra-boudin domino and neck 

shear band planes (eg. Figs 2.17, 3.13, 3.31, 3.33), clearly 

indicates synchronous secondary fabric and boudinage 

development. This negates potential argument that the secondary 

fabrics may have nucleated on pre-existing boudins or visa-versa. 

This clearly indicates that the intra-boudin dominos, neck ecc and 

shear bands are developed in response to flow partitioning which 

involves coaxial stretching of the hard bands, more consistent 

with the latter flow partitioning model (coaxial stretching plus 

spin). 

Platt (1984) has examined the potential of the coaxial 

stretching plus spin flow partitioning model for the development 

- oT ecc- in- deta-il tr-ig 5.4]~- Plat-t (-1984-)-provides- t;wo end-membe-r 

cases for the precise nature in which the coaxial stretching plus 

spin flow partitioning may take place with respect to ecc. In the 

context of the Breagh~ Head/Horn Head area, this would be either: 
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1. Flow is partitioned into slip parallel to S2/S2m, stretching 

parallel to S2/S2m and spin (top to the NW). This predicts that 

R1 should rotate towards the shear plane and S2/S2m, promoting 

multiple R1 ecc sets, such that low angle R1 are cross-cut by 

higher angle R1. R2 should also rotate towards the shear plane 

and S2/S2m under these conditions or: 

2. Flow is partitioned into slip along R1 ecc, shortening along 

R1 ecc planes and spin (top of the NW). This predicts that R1 

ecc should rotate away from the shear plane and S2/S2m, and R2 

should rotate towards the shear plane and S2/S2m. Shortening 

orthogonal to R2 planes should quickly develop. 

As Platt indicates, the true situation will lie between (1) 

and (2) above. In all respects, the detailed geometrical 

attributes of the D2 ecc, summarized above, are consistent with 

those predicted by the coaxial stretching plus spin flow 

partitioning model for ecc development of Platt (1984). 

5.4 Propagation of tectonic slides and the generation of 

'shaped' ductile thrusts. 

The D2 ductile thrusts of the Breaghy Head area have been 

shown (chapters 2, 3 & 4) to have ramp-flat geometries with long 

bedding-parallel flats, smooth shallow lateral ramps and shorter 

20-3!J!! fPontal to obl-ique ramps para:l:tel to surrounaiTtg 52. 

Shallow frontal ramps may be present, however, since the ramp 

angles are probably below the resolution of field observation 

(especially in view of the restricted down-dip extent of 

exposure), their recognition has been treated with caution. The 

D2 ductile thrusts have also been shown to have a complicated 

sequence, with both piggy-back and break-back sequences 

identified. 
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Chapter 4 strongly indicates that ramps and flats may be 

developed separately as a consequence of ductile thrust 

dislocation cell propagation, such that mature D2 ductile thrusts 

result from coalescent propagation of: 

1. Bedding parallel (flat) dislocation cells which propagate 

towards one another through 'fold ramps' which maintain 

displacement continuity between adjacent flat tips as the adjacent 

leading and trailing tip strains interact. A flat-ramp-flat thrust 

geometry is generated as the dislocation cells coalesce (Fig 4.7). 

2. Ductile thrust ramp dislocation cells ('fabric slip ramps') 

are generated within the mid limbs of primary F2 folds parallel to 

the axial planar 52 between thrust flats (Figs 4.1, 4. 5). These 

fabric slip ramp dislocation cells propagate in all directions 

along 52 from a central point and will therefore potentially link 

with flats of different structural level. 

5.4.1 Propagation of D2 thrust flats: a rheological control 

As described above and in chapters 2, 3 & 4, 52 intensifies 

to become 52m in the vicinity of the D2 ductile thrust contacts, 

such that the thrusts are represented by discrete mylonitic 

dislocations of the stratigraphic package contained within 

identifiable high strain shear zones. 

Hutton (1979b) noted that the regional D2 strain in NW 

Donegal is of plane strain character, but deviates to non-plane 

strain within the high strain zones approaching the major 

Dunfanaghy and Mickey's Hole tectonic slides. In both cases, the 

tectonic slides bring into sharp thrust contact hangingwall 

pelitic lithologies and footwall quartzites, and in both cases 

the pelitic lithologies record exponentially increasing oblate 

strains, whilst the quartzites record exponentially increasing 
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prolate strains as the thrust contact is 

the low angle of regional 52 fabrics to 

planes (statistically less than 10°) 

approached. This, and 

major tectonic slide 

in NW Donegal, are 

significant departures from "classic" shear zones ( c f. Ramsay & 

Graham 1970), where the shear zone cleavage is developed at 45° to 

the shear plane at the shear zone margins and the strain pattern 

is a gradual increase of plane strain towards the shear plane in 

both hangingwall and footwall. This led Hutton (1979b) to 

conclude that the tectonic slides in NW Donegal represent local 

intensification and modification of the regional 52 at the 

boundaries between different lithologies. The different 

lithologies on either side of the boundary are believed to have 

experienced correspondingly different strain paths during the 

intensification of 52, leading to the development of a strain 

discontinuity at 

to develop and 

ellipsoid types. 

the lithological boundary, inducing a dislocation 

thereby enabling separation of the two strain 

Hutton (1983) suggested that once such a 

dislocation is developed, it 11 
••• may be able to propagate along 

the axis of the shear zone into rocks of non-contrasting 

lithology". This supports and is analogous to the suggestion 

above that the Breaghy Head D2 ductile thrust flats originate as 

dislocation cells which propagate outwards from a central point of 

origin. 

The nature of strain refraction at lithological boundaries 

has been investigated by a number of authors. Theoretical 

modelling by Cobbold (1983) and Treagus (1983, 1988) has shown 

that for layered Newtonian mediums, finite strain ellipsoids 

refract and show high.er values within the less competent units, 

such that: "the ratio of layer parallel finite shear strain across 

a boundary is equal to the inverse viscosity rS~tio. 11 (Treagus & 

5okoutis 1992). In layered power law mediums, however, the finite 

shear strain ratio across the boundaries does not follow a 

constant relationship with the viscosity ratio (Cobbold 1983). 
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Treagus & Sokoutis (1992) in their investigation of strain 

variation across rheological boundaries discuss in review of key 

literature, the nature of rock rheology. It would appear that 

despite certain problems with comparing laboratory creep 

experiments with naturally deforming rocks, such comparisons 

indicate that rocks are essentially non-linear materials which 

characteristically deform by power law flow. 

The multi and single layer laboratory models of Treagus & 

Sokoutis (1992) use a variety of model materials of both Newtonian 

and power law rheology. These models highlight rheological 

control of strain inhomogeneity, indicating the following: 

1. Deformation of closely spaced banding of different rheology 

leads to overall Newtonian behaviour in which strain refracts 

sharply at the boundaries and strain is uniform within the bands, 

suggesting that the close spacing of the rheological banding 

effectively smooths the rheological influence on shear stress to 

produce a constant shear stress across the multilayer zone. This 

would be analogous to minor lithological boundaries within the 

study area (eg. quartzite pelite intercalations within the 

Sessiagh-Clonmass formation). 

2. When isolated single layers or (more pertinent to this 

discussion)' single rheological boundaries are deformed' shear 

stress gradients are generated across the rheological boundaries. 

The resultant strain refraction across the rheological boundary is 

characterised by strain rate and finite strain intensification 

towards the boundary within the less competent material. This 

would be analogous to major, formation sc,ale lithological 

boundaries within the study area (eg. the Ards Quartzite 

Sessiagh-Clonmass formation boundary). 
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Naturally deforming rocks, as noted above, are believed to 

deform according to power law flow, such that a linear shear 

stress increase across a lithological (rheological) boundary 

produces a non-linear increase in shear strain rate, resulting in 

finite strain refraction across the boundary with exponential 

strain intensification towards the boundary. This is consistent 

with observations of hangingwall dominance and general character 

of strain and 52 intensification towards D2 ductile thrust flat 

contacts in the Breaghy Head area discussed above. Indeed, Hutton 

(1979b) suggested that major tectonic slides may be generated 

within zones of intensified regional contemporary cleavage at 

major lithological boundaries (specifically 52 at the Ards 

Pelite/Ards Quartzite and Ards Quartzite/5essiagh-Clonmass 

formation boundaries in the present study area). 

The planar mineralogical segregation which 52 fabrics 

represent creates an anisotropy in the rock which intensifies and 

rotates towards parallelism with the D2 thrust planes, becoming 

mylonitic (involving strong grain size reduction and crystal axis 

alignment) as the thrust planes are approached. The formation of 

these features represent geometric, recrystallisation and reaction 

enhanced flow softening mechanisms (Poirier 1980, White et al 

1980), which have been spatially localised at major lithological 

(rheological) boundaries in the study area, in response to the 

process outlined above. These flow softening mechanisms promote 

further D2 deformation localisatio-n by effe-ctively reducing the 

load (stress) bearing capacity of the rocks at the lithological 

boundaries (Fig 5.5). 

D2 strain localisation onto major lithological boundaries 

necessitates that orogenic shortening becomes progressively 

accommodated by thrust motion across progressively narrowing 

(localising) zones within major 1 ithological boundary zone 
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rocks. The development of a thrust dislocation within such 

lithological (rheological) boundary zone rocks is almost 

inevitable. 

That this 02 thrust flat dislocation should nucleate and 

develop from a dislocation cell which propagates outwards from a 

central point of origin is a logical conclusion. The host 

lithological boundary must have finite area within which any 

dislocation would be spatially restricted. The temporal and 

spatial diachroneity which characterises orogenic deformation may 

also impose a spatial restriction on the potential area over which 

a rheological boundary hosted thrust dislocation may develop at 

any given time, since only part of a spatially significant 

lithological boundary may be contained within the rock volume 

undergoing active pervasive deformation. Furthermore, the strength 

of rheological contrast across such a boundary is likely to be 

spatially variable, controlled by facies variations within 

inter-formation transition beds and specific mineralogical content 

of the rocks; for example the arkosic content of quartzites, or 

the proportional second phase content ( cf. Olgaard 1990). These 

considerations dictate that isolated areas of a lithological 

boundary will preferentially localise and intensify 02 strains, 

such that development of a mature 02 ductile thrust flat is 

accomplished through coalescent propagation of spatially isolated 

dislocation cells. Indeed, compelling evidence consistent with 

growth of 02 ducHie -Thrus[s fi·bfn coale-scent propagat-ion ef 

dislocation cells has already been presented and discussed above 

and in chapters 3 and 4. 
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5.4.2 flo~ kinematics associail:adl with dislocatii[J)n cells 

Eshelby ( 1973) examined the concept of dislocation cells, 

suggesting that faults might be considered as Somigliana 

dislocations in which the dislocation is an isolated planar entity 

with a finite boundary or "tip line" which demarcates the outer 

edge of the slipped region, within which the magnitude of 

displacement across the dislocation is spatially variable 

(Fig 5.6a). The tip line of a Somiqliana dislocation is ideally 

e.LLir~,.c"'I with a centrally located displacement maxima (Fig 5. 6b). 

Contours of both the finite and incremental displacements 

associated with real faults produce broadly e 1\ip hCal pat terns on a 

fault plane projection, ( eg. Archuleta 1984, Barnett et al 1987, 

Price 1988, Sibson 1989, Walsh & Watterson 1989, 1991; Fig 5.6c). 

Pertinent to this discussion is the effect which localising 

D2 strain and displacement onto a discrete plane as a dislocation 

cell has on flow patterns, since it is changes in flow patterns 

which lead to inhomogeneous strains and generation of new 

structures: 

Kinematics is the consideration of the "geometry of motion of 

systems of particles, without any regard for associated forces." 

(Means 1990). Consider the motion behaviour of a system of marker 

particles within a deforming medium. At any instant in time, each 

individual particle has a definiTe velocity and movement 

direction, which can be defined as a velocity vector. When this is 

considered together with the velocity vectors of a large number of 

neighbouring particles, the pattern of vectors defines the 

velocity field. The velocity vector of the individual particle and 

the overall pattern of vectors (velocity field) can be viewed as 

the vectoral summation of three aspects of motion; translation, 

rotation or spin and distortion·or stretch (Fig 5.7). Some success 

has been achieved in explaining the development of structural 
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features by considering the way in which flow can be partitioned 

into these various components (eg. Lister & Williams 1983, Platt 

1984), as discussed above. 

The relativity of motion must also be considered, however, 

since the motion of particles can only be observed with respect to 

a fixed reference point. The choice of reference point effects the 

nature of particle motion observed and therefore the kinematic 

conclusions drawn. 

Consider the velocity field associated with a graphical model 

of a simple shear zone. In Fig 5.8a, the reference point lies at 

the centre of the shear zone, such that particles occupying the 

centre line of the shear zone are stationary with respect to each 

other. Flow velocity therefore appears to decrease towards the 

shear zone centre line. This can be re-plotted, however, to 

illustrate the velocity field with respect to a reference point 

along the lower margin of the shear zone (Fig 5.8b). Here 

particles occupying the lower edge of the shear zone are 

stationary with respect to each other and flow velocity appears to 

increase towards the top edge of the model. 

The uni-directional velocity gradient inherent in Fig 5. Bb 

would enable any anomalies in the velocity field to be more 

readily observed and interpreted than the bi-directional gradient 

of Fig 5. Ba would allow. A- reference poirit is- Tnerefd1'e- chosen at 

the lower edge of the shear zone model in Figs 5. Be & d to 

highlight anomalies in the flow velocity generated by a 

lithological boundary-hosted dislocation cell. This reveals a zone 

of anomalously high flow velocity centred on the dislocation cell. 

In an informative discussion, Talbot & Jackson (1987) explain 

the connections between a number of flow related concepts and 

strain, highlighting the use of stream lines as an illustrative 
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tool in this respect. In summary, stream lines are defined as 

lines, at any point along which the tangent is the velocity 

vector; the pattern of stream lines therefore defines the geometry 

of the velocity field. The stream 1 ine spacing reflects flow 

velocity with closer spacing indicating higher velocity; it 

therefore follows that parallel stream lines reflect uniform flow, 

whilst non-uniform accelerating or decelerating flow is intimated 

by converging or diverging stream lines respectively. 

Following the study of Hansen (1971), Talbot & Jackson (1987) 

indicate that there is a strong relationship between changes in 

the stream line spacing in the direction of flow and the strain 

ellipsoid shapes which are produced (illustrated in Fig 5. 9 for 

incompressible mediums). This leads to the conclusion that 

accelerating flow (converging stream lines) produces prolate 

strain types, whilst decelerating flow (diverging stream lines) 

produces oblate strain types. This fundamental relationship is 

unaltered by a dilational component to the deformation, therefore 

although the rock types of the Breaghy Head area are not 

incompressible materials, Fig 5.9 is a valid illustration of the 

relationship between D2 flow behaviour and strain. Significantly, 

the change from plane to non plane D2 strain approaching D2 

ductile thrusts and the co-existence of contractional and 

extensional structures within the D2 strain in the Breaghy Head 

area has been described in detail above. 

The behaviour of flow against a time frame also classifies 

flow types into steady and unsteady flow. In the case of steady 

flow, the velocity at any point does not vary over time, with 

particle movement paths and stream lines following an identical 

track. The integrity of straight parallel markers is maintained 

during flow, and whilst inherited structures in these markers may 

grow, no new structures may form. This implies that steady flow 

produces homogeneous strain. In the case of unsteady flow, the 



stream lines can depart from the particle paths in direction or 

velocity. Stream lines in unsteady flow can therefore cross 

markers parallel to previous stream lines and form new structures 

in those markers. This implies that unsteady flow produces 

inhomogeneous strain. It should be noted that inhomogeneity is a 

characteristic of the D2 deformation in the Breaghy Head area 

which has been described in detail above. 

As discussed above, stress gradients appear to be generated 

at the boundaries between lithologies of differing rheological 

property. The strain refraction which develops across such a 

boundary is characterised by a gradient of increasing shear strain 

rate and finite strain towards the boundary within the less 

competent lithology. The shear strain rate (and therefore finite 

strain) within this boundary zone increases with each additional 

strain increment, enhanced by flow softening mechanisms. This flow 

pattern dictates that the anomalous boundary strain zone becomes 

narrower ( ie. strain and displacement localises) over successive 

strain increments. As discussed, strain and displacement 

localisation will be spatially and temporally variable, focused by 

rheological control onto specific areas of the lithological 

boundary. A dislocation cell may develop within such an area if 

strain rate and finite strain becomes sufficiently anomalous to 

enable separation of hangingwall and footwall across a discrete 

plane. 

This is equivalent to stating that the boundary zone rocks in 

the less competent lithology within a developing dislocation cell 

represent a zone of·· increasingly anomalous high flow velocity 

(cf. Fig 5.8). Stream lines within the less competent unit must 

therefore become closer spaced as the developing dislocation cell 

is approached. The stream lines must therefore converge as flow 

accelerates across the trailing edge of the developing dislocation 

cell and diverge as flow decelerates across the leading edge in 
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the flow direction (Figs 5.8c, d & 5.10). This indicates that 

extensional strains and structures develop across the trailing 

edge, whilst contractional strains and structures develop across 

the leading edge. Flow velocity gradients must also exist 

orthogonal to the flow direction across the lateral margins of the 

developing dislocation cell. The development of wrench shear 

strains at the lateral margins are an inescapable consequence of 

these velocity gradients. 

With general emphasis on the generation of folds, dislocation 

cells have been invoked elsewhere in the literature to explain 

similar strain patterns and structural associations to those 

predicted above; in both the foreland areas of thrust belts (eg. 

Coward & Kim 1981, Coward 1982, Fischer & Coward 1982, Coward & 

Potts 1983, Williams & Chapman 1983), and more recently, within 

thrust belt internal zones ( eg. Ridley 1986, Holdsworth 1990, 

Alsop & Holdsworth 1993). The D2 deformation in the Breaghy Head 

area is implicitly contractional, but also contains extensional 

structures. If the development of dislocation cells is responsible 

for the coexistence of these structures within the D2 deformation, 

a dislocation cell must display testable kinematic coherence which 

links the predicted contractional and extensional zones at the 

leading and trailing edges respectively. 

5.4.3 02 extensional structures: support for a dislocation cell 

model 

The zone of maximum stream line convergence must lie inside 

the tip line of a developing dislocation cell, since flow 

accelerates across the trailing edge (Figs 5.8c, d & 5.10). By 

definition, the stream lines must converge towards a narrow point 

close to the lithological boundary within the anomalous high flow 

velocity zone. In the context of the Breaghy Head area, this 

predicts that extensional strains should be restricted to the high 



strain rocks inside the trailing edge of any developing DZ ductile 

thrust dislocation cell; a further prediction being that the 

extensional strains are compelled to intensify towards the thrust 

plane (Fig 5.10). The converging stream lines must cross both 

bedding and 52, which in addition to deflecting these markers 

towards the thrust plane, predicts that new structures will 

develop which deform and extend these planar markers. 

The salient features of D2 boudinage, shear bands and 

extensional crenulations in the Breaghy Head area are consistent 

with these predictions. As described above, these extensional 

structures are contained within the high strain zones which mantle 

the D2 ductile thrusts and intensify towards the thrust planes. 

These structures are kinematically ond temporally intimate, such 

that boudins, shear bands and extensional crenulations have been 

observed at a number of exposures to form combination structures. 

Although demonstrably of D2 age, these structures deform and 

extend both bedding and 52 cleavage. Detailed evidence presented 

and discussed above and in chapters 2 & 3 indicates that these 

structures are developed during the later stages of local D2 

thrust strain profile development, as accommodation of 

displacement across the shear zone changes from pervasive 

straining to more localised displacement processes. Indeed, D2 

boudinage of bedding, 52 & 52m within a number of well exposed 

transects across D2 thrusts is seen to intensify towards the 

t-hrust -p·i-anes- b-e. -individual -boudins- t:n:!-r:ome· snraTlet- ana mote 
frequently developed). However, the thrust planes (defined by a 

lithological break or tectonic schist) towards which the boudinage 

structures intensify is never seen to be deformed by or contained 

within the boudins. This strongly suggests that the extensional 

flow which the boudinage and extensional fabrics represent is 

effectively detached at the thrust plane. 
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It is therefore suggested that D2 boudinage, shear bands and 

extensional crenulations within the Breaghy Head area are 

representative of structures formed within the extensional strain 

zones, generated by flow acceleration across the trailing edge of 

developing thrust dislocation cells. Indeed, the zone of maximum 

stream line convergence should map out as a line inside the 

trailing edge of the dislocation cell, similar to a great circle 

path on a stereonet. This line must, therefore, be sub-orthogonal 

to the transport direction for much of it's length (Fig 5.11). 

This may explain why (as noted above), the majority of boudin neck 

axes, especially those associated with shear bands and extensional 

crenulations, are orientated orthogonal to the local D2 stretching 

lineation. 

5.4.4 Implications for 02 stretching lineations 

The D2 stretching lineation is contained within the 52 

cleavage plane and therefore taken to represent the X direction of 

the D2 strain ellipsoid. As described above, this stretching 

lineation ( X2) intensifies with the 52 cleavage as strain 

increases towards the D2 thrust planes, but in some areas this X2 

intensification is laterally variable. As discussed above, Platt 

(1984) has suggested that extensional crenulations might be 

generated as a result of flow partitioning involving stretch 

parallel to the host fabric. This suggests the X dimension of the 

strain ellipsoid within such regions of a shear -zo-ne--5ecomes 

anomalously elongated with respect to that in the surrounding rock 

volume. Where the host cleavage represents only a relatively weak 

layered anisotropy, the formation of extensional secondary fabrics 

will be suppressed (Platt & Vissers 1980). Under these conditions, 

the penetrative cleavage (52) and especially the X2 stretching 

lineation can be expected to intensify to accommodate the stretch 

component of the flow partitioning. In view of these arguments, X2 

can be expected to undergo anomalous intensification over a broad 
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area within the extensional strain area inside the trailing edge 

of a developing dislocation cell. This may explain much of the 

lateral variation in X2 intensification towards 02 thrust planes. 

In Fig 5.2c, 02 stretching lineation data displays a conical 

dispersal about a main cluster indicating mean plunge towards 165° 

and therefore 02 thrust transport towards the NNW. Outboard of 

this, some data plunge to the north and west, and can be 

attributed in the field to locally developed structures (eg. 

thrust breaching or buttressing deformation, chapter 3). At the 

lateral and oblique tip lines of thrust shear zones, the addition 

of thrust normal (wrench) shear strains to the dominant thrust 

(transport) parallel shearing will cause deviation in the strain 

ellipse orientation (discussed in detail by Sanderson 1982, Coward 

& Potts 1983). In addition to contemporary cleavage strike swings, 

this predicts that stretching lineations may deviate from 

parallelism with the thrust transport direction across the lateral 

to oblique edges of dislocation cells; although the permissible 

limit of angular deviation from parallelism may be debatable (cf. 

Sanderson 1982, Ridley 1986). This may, therefore, explain at 

least some of the mean centred conical dispersal of the 02 

stretching lineation data (Figs 5.2c, 5.11). 

5.4o5 Implications for propagation of 02 thrust ramps 

The 02 ducl:.ife -thrusts aT- tl1e -Breagny -Head area have been 

shown to have 'shaped' geometries, with long bedding parallel 

flats separated by smooth shallow lateral ramps and shorter more 

frontal to oblique ramps (chapters 2, 3 & 4). The shorter ramps 

are preserved as hangingwall anticlines, footwall synclines or 

remnant complex zones of climbing vein arrays. At a number of 

localities, ramps have escaped direct incorporation into mature 

thrust profiles and have been preserved 'frozen' at an early or 

intermediate stage of development. As described in chapter 4, this 

14L 



has enabled three distinct ramp styles to be identified, each with 

a different mode of formation; 'Vein ~rray ramps' (characterised 

by complex zones of climbing vein arrays), 'fold ramps' and 

'fabric slip ramps' (both primary F2 fold hosted). Described in 

detail in chapter 4, the salient features of primary F2 folds and 

S2/S2m relationships associated with the latter (fold hosted) 02 

thrust ramp structures have provided compelling evidence for the 

existence of 02 ductile thrust dislocation cells. Indeed, 

mesoscopic dislocation cells of this type have been directly 

observed. In the absence of post 02 refolds in the Breaghy Head 

area (chapter 3), the gross patterns of 52 dip and S2/F2 vergence 

and facing also support the dislocation cell model of thrust 

propagation in terms of larger (map) scale considerations: 

As illustrated in Fig 5.8, a developing dislocation cell will 

generate a zone of anomalously high flow velocity, producing 

trailing edge convergence and leading edge divergence in the 

stream line pattern (Fig 5.10). By definition, the stream lines 

must diverge away from the anomalous high velocity zone within an 

increasingly broad zone as flow decelerates across the leading 

edge. The region of maximum stream line divergence must, 

therefore, lie above or outside the tip line. Furthermore, the 

diverging stream lines of a bedding parallel dislocation cell must 

transect bedding (Fig 5.10), such that bedding above or outside 

the tip line will be deflected away from the thrust plane and 

deTormed -by ne-wry generated contractional structures. The 

development of primary F2 folds and D2 thrust ramps in the Breaghy 

Head area are consistent with these predictions. Contractional 

strains should increase within a broad zone away from the high 

strain rocks towards and across the leading edge of any developing 

02 ductile thrust dislocation cell, such that the trace of maximum 

contractional strain (primary F2 folds, 02 ramps), should follow 

or lie just outside the leading edge tip line (Fig 5.11). 
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Detailed field observations (this and chapters 2, 3 & 4), 

have clearly demonstrated the kinematic and temporal intimacy 

between primary F2 folds and D2 ductile thrusts in the Breaghy 

Head area. Primary F2 folds are generally found between D2 ductile 

thrust flats and clearly deflect bedding upwards and 

forelandwards, such that these structures are kinematically 

equivalent to thrust ·ramps. As discussed above, primary F2 fold 

facing can be considered equivalent to D2 forethrust ramp facing, 

since ramps develop parallel to the fold axial planar 52. An 

arcuate range of primary F2 fold facing directions from NW 

(frontal) to 5W and NE (oblique to lateral) has been identified 

(Fig 5.2d). 

The non mylonitic 52 which is axial planar to primary F2 

folds is seen to shallow towards thrust flats by some 20-30° and 

intensify transitionally to become bedding parallel mylonitic 52m 

(chapters 2 & 3, Figs 5. 2a & b). F2 fold hosted ramps are 

developed parallel to the fold axial planar 52 and are therefore 

formed between flats with a 'true' ramp attitude of 20-30° to the 

flats. Ramp hosted 52m is therefore locally developed parallel to 
--~· 

52 at up to 20-30° to the bedding parallel thrust flat 52m (Fig 

5.2b). Maximum 52 dips exceed those of 52m, since 5:?. within a 

hangingwall flat in contact with a footwall ramp will always have 

a steeper dip than the 52 fabrics in the footwall ramp (eg. Fig 

3. 39). The 52 and S2m data show a range of strike directions 

consistent- -wi-th-thrust- r-tat, -rrontal ana- o5Ti-queto -rafera1 ramp 

orientations (Fig 5.2b). 

The S2/S2m dip and primary F2 

indicate an arcuate range of D2 

orientations in the Breaghy Head area, 

fold facing data clearly 

ductile forethrust ramp 

similar to that predicted 

by the trace of maximum stream line divergence (contractional 

strain) in Fig 5.11. Similar arcuate fold and/or ramp orientation 
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trends have been recognised elsewhere in both the foreland and 

internal parts of thrust belts and attributed to the leading edge 

of dislocation cells (eg. Fischer & Coward 1982, Coward & Potts 

1983, Ridley 1986, Holdsworth 1990). 

The above evidence supports the dislocation cell model and 

clearly indicates that primary F2 folds and fold hosted 02 thrust 

ramps are developed at the leading edge tip line to bedding 

parallel (thrust flat) dislocation cells. Indeed, as described 

above and in chapters 3 & 4, this relationship has been directly 

observed in mesoscopic field examples of 02 thrust dislocation 

cells. Fold ramps, for example, are observed to result from the 

coalescent propagation of 02 ductile thrust flat dislocation cells 

from different structural levels. These structures are therefore 

effectively tip line folds through which the dislocation cell 

thrust propagates away from the lithological boundary along the 52 

trajectory, similar to propagation of thrusts through tip folds in 

foreland areas of thrust belts (cg. Fischer & Coward 1982, 

Williams & Chapman 1983). 

Unlike the converging stream lines at the trailing edge of a 

dislocation cell, the diverging stream lines at the leading edge 

will be sub-parallel to or cross 52 at an acute angle (Fig 5.10). 

This suggests that rather than being deformed by the development 

of-new st~uctures, SZ_ and __ exi~ting 52 parallel structures are more 

likely to intensify and amplify respectively. The inten~ifitatiorr 

and modification of 52 to 52m in primary F2 fold mid limbs in 

fabric slip ramps may fulfil this prediction. As discussed above, 

Ghosh (1982) has indicated that axial planar cleavage may rotate 

through small angles to become a shear plane of the strain 

ellipsoid during pure CY S1mpk ,;,\.-e,r deformation. At the leading edge 

of a dislocation cell, the small angular deviation of the stream 

lines from parallelism with the 52 trajectory and addition of 

contraction to the shearing strain would satisfy these conditions 
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and may therefore promote the rotation and shearing suggested by 

Ghosh. 

5.4.6 lateral structures 

As noted above, Sanderson (1982) and Coward & Potts (1983) 

have discussed in detail the interaction between thrust 

(transport) parallel shear strain and additional thrust normal 

(wrench) strains developed at the oblique to lateral tip lines of 

thrust shear zones. This deformation produces arcuate fold and 

contemporary cleavage orientation patterns, such that folds are 

generated with axes sub-parallel or at acute angles to the X 

direction of the strain ellipsoid. As noted above, such arcuate 52 

and F2 orientation trends are identified in the Breaghy Head area, 

where ambient 02 strains are insufficient to bring F2 axes into 

parallelism with X2 by passive rotation (cf. Escher & Watterson 

1974, Cobbold & Quinquis 1980). 

Watkinson (1975) 

generated close or 

indicates 

parallel 

experimentally that 

to the X direction 

folds 

are 

characteristically cylindrical in geometry. This implies that from 

the frontal to lateral areas of a thrust shear zone, fold geometry 

should change from asymmetric to symmetric. These relationships 

h9ve been identified in the field ( eg. Rattey & Sanderson 1982, 

Ridley 1986). Convers-ely,- maintenancg of fold asymmetry through 

the frontal to lateral thrust tip line has also been observed in 

both the foreland and internal zones of thrust belts (eg. Coward & 

Potts 1983, Holdsworth 1990). This appears to be the case in the 

Breaghy Head area, sfnce primary F2 folds are characteristically 

asymmetric with inclined axial planar 52, regardless of axis 

orientation (described above and in chapters 2, 3 & 4). 

In view of the evidence presented above, SW & NE facing and 

verging primary F2 folds in the Breaghy Head area may be 
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considered representative of the wrench strains developed at the 

leading oblique to lateral edges of dislocation cells. The 

majority of fold hosted ramps are of frontal to oblique 

orientation (chapters 3 & 4, Fig 5.2d). A number of fold hosted 

ramps have also, however, been identified with more lateral 

orientations (chapter 3, Figs 3. 19, 3. 22, 5. 2d). Some of these 

lateral folds may therefore mature into through-going inclined 

lateral ramps, such that a dislocation cell may develop leading 

edge frontal, oblique and lateral ramp segments, all potentially 

dislocating primary F2 fold mid limbs. 

As discussed above and in chapter 4, however, most of the 

lateral ramps observed and mapped in the Breaghy Head area are 

smooth structures, which are apparently unrelated to F2 folding. 

At a number of localities, these lateral ramps are observed to 

contain a combination of S2 parallel vein swarms, cross S2 planar 

vein arrays and extensional structures ( eg. Fig 3. 5). In the 

context of a 02 thrust dislocation cell, these relationships 

suggest a position towards the trailing edge, where the lateral 

ramp is transitional with the development of ex tensional 

structures inside the trailing edge lip line. Supporting evidence 

for such transitions is provided by the salient relationships 

between inclined planar vein arrays and boudinage in the Breaghy 
--

Head ai'EH'l. 

A component of 02 

expressed at a number 

thrust sheet differential shearing is 

of localities by the development of 

en-echelon planar vein arrays. In most cases, the centre line of 

the array is developed at an acute angle to the X2 direction, with 

constituent veins developed at more oblique intermediate angles. 

This is illustrated by Fig 5.3b, in which the mean vein strike 

directions lie close to 55° to the mean X2 direction (165°). 

As described above, the majority of 02 boudins have neck long 



axes orientated orthogonal to the local X2 direction and may fonn 

combination structures with shear bands. Those boudins with neck 

axes orientated at intermediate angles to the X2 direction, 

however, show a clear tendency to form combination structures with 

planar vein arrays (see Fig 2.21). Furthermore, in some examples, 

the boudin forms the dominant structure, whilst in other examples 

it is the planar en-echelon veins which form the dominant 

structure. Symmetrical boudinage and en-echelon vein arrays 

therefore appear to represent end members in a continuous series, 

in which the 'mid range' is represented by the combination 

structures. It is suggested that these relationships reflect the 

transition between lateral ramps and the extensional strains 

developed inside the trailing edge tip lines of 02 thrust 

dislocation cells. 

5.5 Summary 

It has been shown that penetrative deformation (ie. 

syn-metamorphic) westerly and easterly vergent folds and axial 

planar fabrics in the Breaghy Head area share a similar (02) age. 

It has also been shown (chapter 3), that 'post-metamorphic' folds 

and fabrics within the Breaghy Head area can be related to local 

hangingwall straining processes ( eg. thrust stacking). There is, 

therefore, a general absence of identifiable post-02 structures in 

the Breaghy Head area. 

There is a clear spatial, temporal and kinematic intimacy 

between the propagation and motion of 02 ductile thrusts and the 

development of both contractional and extensional 02 structures. A 

thrust dislocation cell model has been proposed to best explain 

these observations, the orientational data and the kinematic 

co-existence of contractional and extensional flow during the 

propagation and motion of the 02 ductile thrusts in the Breaghy 

Head area. Indeed, 02 ductile thrust dislocation cells have been 
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directly observed (see chapter 4). 

In terms of the structures produced by this process in the 

Breaghy Head area, it would appear, therefore, that a transition 

may exist between frontal, oblique and lateral F2 fold hosted ramp 

segments developed towards the lending edge of D2 thrust 

dislocation cells. The lateral F2 fold hosted ramp segments are 

likely to be transitional with the smoother ramps which form the 

majority of the lateral structures observed and mapped in the 

Breaghy Head area. Where prominent veining is associated with 

mature examples of these lateral ramps, complicated mutual 

cross-cutting and inter-connectivity relationships exist between 

inclined and 52 parallel planar veins, with early inclined vein 

arrays deformed by movement of the thrust. This suggests that 

en-echelon vein arrays are developed during the early stages of 

the ramp development in a similar fashion to vein array ramps 

(chapter 4). As indicated by the boudinage/planar vein combination 

structures, these lateral ramp structures may be transitional with 

the extensional strains developed inside the trailing edge tip 

line of D2 thrust dislocation cells. These relationships are 

summarised in Fig 5.12. 

The development and growth of these dislocation cell related 

structures and structural patterns may rely to some extent on the 

di~l5cation ~el1 t~p line prQpagation rate. This would need to be 

slower than the rate at which the related structures -cari grow to 

acco!'u"1odate its displacement, since a prerequisite for the 

generation of these structures by the dislocation cell model is 

the presence of tip iine associated accelerating or decelerating 

flow. As the tip line propagates outwards, the zones of 

accelerating and decelerating flow will migrate with it, such that 

a region subject to accelerating or decelerating flow will 

subsequently be contained within the tip line and therefore 

subject to steady state flow conditions. Any existing structures 
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or those inherited from the passa~Je of the tip line may amplify 

under the steady state flow conditions (ie. parallel stream 

lines), or else be abandoned and cnrried passively, but no new 

structures may form. The presence of S2m parallel veining and 

brittle fracturing emanating from nome ductile thrust tip lines 

into surrounding non folded or extended rocks (chapters 3 & 4), 

may provide evidence for this. 
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Figure 5.2 Lower hemisphere equal area stereographic plots of passive marker 
and primary 02 structures in the Breaghy Head area. (a) Bedding (SO), (b) Non 
mylonitic (52) and mylonitic (S2m) cleavage, (c) 02 stretching lineation 
(X2),(d) Facing data of primary F2 folds and 02 ductile thrust ramp-hosting 
primary F2 folds, plotted according to a technique described by 
Holdsworth (1988). 
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Figure 5.3 Histograms of: (a) Orientation of D2 symmetrical boudin neck axes 
with respect to the mean DZ stretching lineation azimuth ( 165°). Boudin neck 
orientations nucleating R2 shear bands are black ornamented. (b) Strike 
directions of planar quartz veins which are inclined with respect to 52. 
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Figure 5.4 Development of R1 & R2 
extensional crenulation cleavages 
within a shear zone in response to 
flow partitioning as envisaged by 
Platt (1984). 
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Figure 5.5 Schematic diagram illustrating the nature and evolution of 
power law stress-strain behaviour approaching a hypothetic rheologtcal 
(lithological) boundary under constant applied shear strain rate, over 
successive strain increments ( t1-t4). Individual graphs represent mean 
rheological behaviour within given zones approaching the boundary 
(V=shear stress, H=shear strain). A thrust dislocation develops within 
the boundary rocks at t4. 
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Figure 5.6 Somigliana dislocations: (a) After [shelby (1973), (b) Ideal 
dislocation with central displacement maxima and symmetrically disposed 
displacement contours decreasing to zero at the encompassing tip line, 
(c) A hypothetic representation of a displacement pattern associated with 
a more realistic Somigliana dislocation occuring in nature. 
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Figure 5.8 Graphical models of simple shear zone velocity fields. 
(a) Total velocity field with central reference point, (b) Total 
velocity field with lower margin reference point. The choice of 
reference point alters perceived relative motion and therefore 
kinematic observations. In the case of (b) the lower margin 
reference point simplifies the velocity field. This would highlight 
and ease kinematic interpretation of any anomalous zones within the 
velocity field. (c) Total velocity field of a simple shear zone with 
a lower margin dislocation cell, (d) Anomalous velocity field 
associated with the lower margin dislocation cell (c minus b); note 
that flow accelerates and then decelerates from left to right. 

A. 

B. 

c. 

D . 



X/Y 
F 

, o-( 
E 

accelerating 
flows 

, 
decelerating 
flows 

~----------------------~----------------~Y/Z 

Figure 5. 9 Stream tubes (bundles of stream lines), illustrating 
qualitatively the flow geometries of an incompressible fluid with 
respect to three orthogonal flow axes (D, E & F), where F represents 
the flow direction. Unit volume cubes at the front distort to other 
shapes downstream (into the page as arrowed). Spheres imagined 
within the cubes will therefore distort to strain ellipsoids 
downstream. The stream bundles are arranged on a Flinn graph to 
illustrate the relationship between stream line geometry and strain 
type. Accelerating flow (converging stream lines) can be seen to 
produce prolate strains, whilst decelerating flow (diverging 
streamlines) produces oblate strains. (after Talbot & Jackson 1987; 
modified from Hansen 1971). 
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Figure 5.10 Graphical model of a bedding parallel shear zone with a 
lower margin dislocation cell, showing changes in the pattern of 
stream lines in the flow direction. Shaded areas represent zones of 
maximum stream line convergence (extension) and divergence 
(contraction). 
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Figure 5.11 Plan view of a model dislocation cell, onto which zones 
of maximum stream line convergence (C) and divergence (D) have been 
mapped as bold lines. Large arrow indicates transport direction. 
Dashed lines indicate distribution of stretching lineation (X2) 
orientations; longer lines represent area of potential XZ 
intensification. See text for details. 



Figure 5.12 Plan view of a model ductile thrust dislocation cell, 
sununarising expected distribution and orientation of structures 
developed in response to movement of the cell (compare with Figs 
5.10 & 5.11). Large arrow indicates hangingwall transport 
direction, smaller arrows and h~lf arrows indicate zones of 
leading contraction, trailing extension and lateral differential 

··shearing-. -Bold -lines --wHh .. cr.oss~and. diamond_ ll_)lmbols indicate 
primary F2 folds. Large thin bold crescent symbol~ indicate 
boudinage; laterally transitional with tension gash vein arrays 
( T). Lollipop symbols super imposed on crescents indicate region 
where boudinage, shear bands and extensional crenulations may 
coexist. Ramps may develop throughout and parallel to U1e primary 
fold trace and be transitional with the lateral tension gash 
zones. See text for details. 



CIHAPTEIR 6 

DISC~SSION AND CONCLUSIONS 

Chapters 1 to 5 inclusive have described the evidence for the 

presence of a 02 ductile thrust imbricate zone within the Sessiagh 

Clonmass formation rocks of the Ounfanaghy - Breaghy Head area. 

Much discussion has already been provided internal to these 

chapters and within the summarizing remarks at their close. It is 

not intended to repeat those discussions here, but rather to 

broaden the discussion of some of the salient implications and 

conclusions. 

6.1 Section !Restoration and D2 Ductile Thrust Displacement in the 

Breaghy He®d area 

It has been demonstrated in chapters 2 & 3 that the Sessiagh 

Clonmass sequence in the Ounfanaghy - Breaghy Head area contains a 

well defined 02 ductile thrust imbricate zone which repeatedly 

duplicates a relatively simple limestone - quartzite transition -

quartzite stratigraphic package. The imbricates detach frorn a 

majbr stratigraphy parallel tectonic slide located at the Ards 

Quartzite Sessiagh Clonmass formation boundary. These mid 

crustal 02 ductile thrusts have ramp/flat geometries, sequence 

histories and gross strain pat terns similar to thrusts within 

foreland fold and thrust belts. A ball-park estimate of the 

cumulative displacement of the Breaghy Head imbricates can be rnade 

from maps 1 & 2 to exceed 4km. 
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The D2 ductile thrusts have been shown to have 'shaped' 

geometries, with long flats and shorter ramps developed at up to 

30° to the flats (chapters 3, 4 & 5). The D2 thrust sequence has 

also been well defined (chapter 3), such that it is possible to 

construct a sequentially restored section in order to provide a 

more accurate cumulative minimum displacement estimate for the 

Breaghy Head D2 thrusts, in excess of 6km. 

The minimum estimate for shortening associated with the 

Errigal Syncline, the trace of which runs through Marble Hill bay, 

is in excess of 1.5km. Total D2 shortening in the Breaghy Head 

area therefore exceeds 7.5km (70%). 

The section restoration is included with maps 1 & 2 at the 

rear of this thesis. The section line (Fig 6.1) has been chosen to 

maximise constraint during construction from exposures lateral to 

the line and to incorporate geometrical and kinematic observations 

intrinsic to chapter 3. Salient constraining observations are 

indicated on the section. 

As shown in chapter 5, the D2 ductile thrusts appear to 

result from coalescent propagation of thrust dislocation cells. 

This implies the presence of bi-directional displacement gradients 

along the thrusts within the section line. Initial attempts to 

est-imate likely displacement gradients were hampered by lateral 

and down dip exposure limitations which preclude systematic 

measurement of down dip and strike parallel displacement patterns 

associated with individual thrusts. Considerable difficulty also 

exists in estimating the position of dislocation cell centre 

points. Significant and cumulative errors would therefore arise if 

displacement gradients were incorporated into the section; the 

restoration is therefore constructed to conserve individual thrust 

displacement. 
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The growth of D2 ductile thrusts from intensification and 

localisation of D2 strain and 52 cleavages (chapter 4 & 5), 

suggests that lithologies closest to the thrusts should display an 

exponential component of sheor pl"'-"'e- Pc..f"-li<:J: e.ck~s·c"' towards the 

thrust planes. This would be expressed as a loss of cross 

sectional area in the near-thrust lithologies on the section. This 

shortening, although difficult to estimate, would be contained 

within the thrust parallel high strain zones which are generally 

about 20m thick (chapter 3), and is therefore assumed to have 

negligible effect on the section restoration at the scale of 

construction. 

The section restoration is sequential, with removal of 

imbricates in reverse order to that of development as identified 

in chapter 3. The construction technique uses a combination of 

slip-line and vertical shear methods in order to preserve 

geometrical features (eg. ramps), which appear to be retained 

during D2 ductile thrust displacement (chapter 3). 

6.2 D2 Ductile Thrust Dislocation Cells 

The Breaghy Head D2 ductile thrusts display patterns of 

intensifying strain and minor structures generally regarded as 

being diagnostic of the much broader thrust shear zones (tectonic 

slides) which typify deformation within metamorphic parts of 

mountain belts (cf. Hutton 19/9b, Rathbone et al l983, Figs 2.22, 

5.1). This commonality of structural associations implies that the 

Breaghy Head D2 ductile thrusts and their broader larger scale 

counterparts must share similar generative and propagative 

processes. 

As discussed in detail in chapter 5, there is a clear 

spatial, temporal and kinematic intimacy between the propagation 

and motion of D2 ductile thrusts and the development of both 
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contractional and extensional 02 structures. A thrust dislocation 

cell model has been proposed to best explain these observations, 

the orientational data and the kinematic coexistence of 02 thrust 

related contractional and extensional flow in the Breaghy Head 

area. Graphical modelling of flow characteristics associated with 

dislocation cells appears to predict the 02 structural patterns 

observed. Indeed, 02 ductile thrust dislocation cells have been 

directly observed (chapter 4). 

The dislocation cell model is similar to the tectonic slide 

generative model of Hutton ( 1979b, 1983) in suggesting that a 

major rheological (lithological) boundary might focus 02 strains, 

ultimately leading to thrust separation across the boundary. As 

discussed in chapter 5, the shear stress gradient created across a 

strong rheological (lithological) boundary may cause focusing 

(localisation) of 02 strains at the boundary within the less 

competent lithology. The resulting thrust dislocation would 

propagate outwards from a central point of origin. In the case of 

the Breaghy Head imbricates, the strong rheological contrast 

across the boundary between the massive Ards Quartzite and the 

calcareous to pelitic lower section of the Sessiagh Clonmass 

formation is seen as a good example of this rheological strain 

focusing process. 

The emphasis on rheological control inherent in the model 

suggests that strain localisation leading to discrete ductile 

thrust development would be less efficient in the case of weaker 

rheological boundaries, since any shear stress gradients created 

~auld be correspondihgly weaker. A ductile thrust shear zone 

associated with such a boundary is therefore likely to be broader 

in its finite state than ductile thrusts developed at stranger 

rheological boundaries (cf. Alsop & Hutton 1993). 

153. 



Since ductile thrusts appear to grow from coalescent 

propagation of dislocation cells, the strain profile thickness 

(shear zone width) associated with a mature through going ductile 

thrust may change spatially as a function of the strength of the 

original hangingwall and footwall rheological contrast. This may 

in part explain the approximate 10-30m range of 02 ductile thrust 

high strain zone thickness variation in the Breaghy Head area 

(chapter 3). 

6o3 Implications for Polyphase Deformation 

Described in detail in chapters 2, 3 & 5, this work has shown 

that the 02 deformation within the Dunfanaghy - Breaghy Head area 

is kinematically more complex than envisaged by Hutton ( 1977a, 

1983) and contains fabrics and folds previously interpreted as 03, 

04 & 05 structures (cf. Hutton op. cit.): 

6.3o1 Penetrative Deformation Structures 

The westerly and easterly verging and facing penetrative 

deformation folds and fabrics within the study area were separated 

into 02 & 03 respectively, principally on the basis of vergence 

(Hutton 1977a, 1983, pers. comm. 1986). As described and discussed 

in detail in chapters 4 & 5, however, this work has shown that 

these structures are intimately associated with 02 ductile thrust 

ramp development, such that fold vergence and- facing- in this case 

is related to ramp orientation. Some folds, however, contain axial 

planar fabrics which are conjugate to 52 and are clearly related 

to rare 02 backthru~ts (chapters 3 & 5). Both westerly and 

easterly verging and facing penetrative deformation folds and 

fabrics are therefore contained within the 02 thrust related 

deformation. 
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Clearly, easterly vergent 02 folds and fabrics related to 

westerly dipping forethrust ramps and rare backthrusts might 

easily be mistaken for regional 03 structures (as defined by 

Hutton op. cit.). Whilst 03 structures are not found to exist 

within the study area, 03 structures are developed elsewhere 

within the Dalradian of Donegal (cf. Alsop 1987, Alsop & Hutton 

1993). 

6.3.2 Local Polyphase Deformation Histories 

The shear zones which separate R2 domino hard band rotation 

blocks are responsible for the local generation of strain slip 

fabrics, which emanate from the shear zones into the surrounding 

less competent lithologies. The block rotation also creates open 

folding of the surrounding rocks with axial planar crenula tion 

cleavage at the block corners. The size of the folds and the 

extent of the fabrics is governed by the size of the domino blocks 

involved (see Fig 2. 8). These folds, strain slip and crenulation 

fabrics are essentially 'non- penel::cal:.ive' in character and would 

be 04 & 05 structures in the sense of Hut ton ( op. cit.). These 

structures are, however, clearly an integral part of 02 kinematic 

structure development. 

Steeply dipping 'non- penetra~ive' strain slip crenulation 

cleavages (previously interpreted as 54 & 55), are also locally 

d-eveloped ln association with culmination wa-ll extension zones 

analogous to hangingwall drop faults in foreland thrust and fold 

belts (Figs 3.36 & 3.37). 

A local polyphase history of 'non- pene ha bve_' folds and 

axial planar contractional crenulation cleavages (previously 

interpreted as 03 & 04 structures) is developed and restricted to 

the rear of the Middle Town ductile thrust stack, in response to 

imbricate back-steepening (Figs 3.36, 3.39). 
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Upright contractional 1 non- pene.·habve 1 folds and axial 

planar crenulation fabrics (previously interpreted as 04 & 05 

structures) are also locally developed and restricted to the 

region of 02 ductile thrust footwall ramps (eg. Figs 4.6, 4.7) and 

the forethrust - backthrust complex at Curragh Harbour (Figs 3.11 

3. 15). These are interpreted as an expression oF 02 buttressing 

deformation (cf. Fig 3.18). 

Clearly, there is strong potential for generation of local 

polyphase fold and fabric histories during continuum 02 ductile 

thrusting. This implies that the 03, 04 & 05 deformation events of 

Hutton (1977a, 1979a, 1982, 1983) may not be as regionally 

ubiquitous as previously indicated. 

This work also indicates that peak metamorphism may not be an 

entirely reliable criteria for temporal separation of structures 

and should therefore be used with caution. It is suggested that 

the local kinematic significance of a given 'non- pe11el::r2bve ' 

structure (with respect to surrounding penetrative deformation 

structures) should be evaluated in order to establish the 

significance of relative temporal separation. 

6.3.3 D2 Thrust and fold Sequence 

As described in detail 

sequence has been establisned 

in 

for 

chapter 3, a clear 02 

the Breaghy Head area. 

thrust 

Both 

piggy back and break back thrust sequences have been identified, 

such that individual 02 ductile thrusts and F2 folds are seen to 

breach and/or fold previous thrusts in the sequence and some 

thrusts are clearly seen to originate from the hangingwall of the 

previous thrust in the sequence. Thus 02 structures deform other 

02 structures to create local polyphase deformation sequences 

entirely composed of 02 structures. This is analogous to local 

polyphase deformation histories within foreland thrust and Fold 
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belts (eg. Butler 1982b). 

The breaching action of thrust (bt1) in particular, has 

significant implications for polyphase deformation. This thrust 

cuts across the Curragh Harbour anticline and therefore structures 

previously interpreted as 03, 04 & 05 (Hutton op. cit.). This 

thrust therefore provides independent evidence for the containment 

of these structures within 02. 

6.4 Metamorphic Implications 

Whilst 

metamorphism 

in general the effects of 

appear to be spatially and 

syn-02 greenschist 

therefore temporally 

concentrated towards 02 ductile thrusts, the local presence oF 

"non- penef::rative" structures within the 02 thrusting deformation 

(chapter 3), implies sharper spatial and temporal metamorphic 

inhomogeneity. Although more complicated metamorphic discussion of 

these implications is outside the scope of this work, the 

following are indicated: 

6.4.1 Spatial and Temporal focusing of Greenschist Metamorphism 

The 52 & 52m fabrics which intensify towards 02 ductile 

thrusts are characteristically associated with mineral growth, 

crystal-plastic deformation and secondary recrystallisation 

indicative of syn-peak greenschist facies metamorphism (chapter-s 2 

& 5, also Hutton 1977a). This mineral growth is seen to become 

more marked as a function of 52 fabric intensification, such that 

the peak greenschist· metamorphic effects are spatially focused 

towards 02 ductile thrusts in the Breaghy Head area. 

As described and discussed in chapters 4 & 5, the propagation 

of 02 ductile thrusts is a direct result of 02 strain/cleavage 

localisation and intensification, suggesting a temporal as well as 
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spatial association between individual thrust development and 

greenschist facies mineral growth. Indeed, chemically evolving and 

changing mineral growth within mylonites has been shown to be 

induced by active straining (Wintsch & Knipe 1983, Knipe & Wintsch 

1985). This implies that during thrust motion, metamorphic mineral 

growth within 02 thrust plane S2m may continue after it has ceased 

in the thrust hangingwall and footwall 52 (as a function of the 

strain localisation history). The clear identification of a thrust 

sequence (chapter 3), therefore indicates diachronous coexistence 

of 02 deformation and peak metamorphism. 

6.4.2 02 °Noro- Penet;rative 0 rabrics 

As described 

deformation also 

interpreted as 

above and in chapters 

contains a number of 

2, 3 & 

fabrics 

53, 54 & 55), which are 

5, the 02 

(previously 

essentially 

'non-p~netra~ve• crenulations of 52 with little or no associated 

mineral growth. These include R1 & R2 extensional crenulations, 

C & P shears, strain slip and contractional fabrics associated 

with domino block rotations, culmination wall extensional fabrics 

and contractional fabrics associated with imbricate 

back-steepening and buttressing structures. These fabrics, some of 

which are axial planar to folds, have therefore been shown to 

reflect local kinematic processes associated with and therefore 

intimate to individual 02 ductile thrusts. 

Clearly, all these fabrics are· generated as or after 02 

strains thrust shear zone displacement 

discrete thrust planes; that is 

focusing effects outlined above), 

become localised into 

(according to the metamorphic 

outside the zones of active 

mineral growth. Strain localisation-driven focusing of metamorphic 

fluid and ionic flow into the thrust planes may provide an 

additional explanation for the lack of mineral growth associated 

with these fabricsi 
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As discussed in chapter 5, a developing D2 thrust plane 

becomes increasingly less able to support loads (stress) and can 

therefore be regarded as a low stress feature during motion. It is 

suggested that this may generate sufficient pressure gradients 

within the metamorphic fluids to cause channelling of fluid flow 

into the thrust plane from the hangingwall and footwall, leading 

to preferential mineral growth within the thrust plane S2m. 

Furthermore, stress gradients associated with some structures (eg. 

between hinge and limb regions of folds), appear to result in 

metamorphic mineral growth concentration and composition gradients 

within those structures as a consequence of ions migrating along 

stress-sympathetic pressure gradients in the metamorphic fluid 

(cf. Gresens 1966, Cosgrove 1976). 

6.5 Structure and Age of Metadolerite Intrusives 

The timing of metadolerite sill-like intrusions in NW Donegal 

with respect to contractional deformation phases, and their 

significance with respect to similar basic sheet intrusives within 

the Scottish Dalradian belt has been a subject of recent debate 

(cf. Hutton 1979d, Elsdon 1986). The majority of metadolerite 

sills in the region are concordant with the stratigraphy and at 

some localities clearly deformed by D2 structures, whilst some 

sills transgress stratigraphy and cut through or are contained 

within D2 structures (McCall 1954, Rickard 1962, Pitcher & Berger 

1972, Hulton 19778, -1979d, - Elsdon 1986). This has led to the 

suggestion that two temporally disparate suites of metadolerite 

intrusions are present in NW Donegal; a pre-orogenic suite and a 

syn-orogenic suite (Pitcher & Berger 1972 and references therein, 

Hutton 1979d, Elsdon 1986). 

Contrary to this suggestion, however, the metadolerites 

variously interpreted as pre-D2, syn-D2 and post-D2 in NW Donegal 

all share a common (originally quartz dolerite) composition and no 
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cross-cutting relationships between the sills have so far been 

described. 

6.5.1 Evidence for Pre-orogenic Intrusion? 

Elsdon ( 1986) has shown that the major Rough Point 

metadolerite sill is inverted with host stratigraphy within the 

mid limb of a major recumbent F2 fold in the hangingwall of the 

Horn Head thrust, suggesting pre-02 intrusion. Furthermore, Elsdon 

shows that this sill is geochemically indistinguishable from basic 

intrusives within the SW Scottish Highlands, interpreted as being 

intruded into unli thi fied sediments during the rifting phase of 

the Dalradian basin development (Graham 1976). 

As described by Elsdon (1986), the country rocks adjacent to 

the northern (top) contact of the Rough Point sill contain a zone 

of disrupted metasediments, in which pelite rafts are contained 

within a massive medium grained crystalline matrix. The rafts have 

sharp and bedding-parallel and orthogonal boundaries, and many 

contain bedding-parallel and orthogonal fractures and veins of the 

matrix material. The matrix and rafts share a common geochemical 

and mineralogical composition, such that the matrix is highly 

disrupted metasediment (pelite), not metadolerite (Elsdon 1986). 

The metadoler ite sill makes a sharp, laterally continuous 

conformable planar contact with the country rocks and no 

metase-diment raTEs are ~men to be concained wi-thin the sill. 

Similar relationships are noted at the contact of the regionally 

significant Mam sill, several kilometres to the SW; the sill-top 

structures described as 1 volatile escape 1 features in chapter 3 

are also analogous. These contact relationships are unlike the 

pillowed chilled margins, fluidized sediment veins and dense 

population of intra-intrusive wispy to globular xenoliths of 

fluidized sediment described as indicative of magma - wet sediment 

interaction (cf. Kokelaar 1982, Walker & Francis 1987, Leat & 
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Thompson 1988). 

In the absence of any well developed 01 structures in the 

area, the timing of metadoler ite intrusions with respect to 01 is 

unknown. This work has shown, however, that the majority of the 

sill-like metadolerite sheet intrusions within the study area have 

been duplicated across a suite of previously unrecognised 02 

ductile thrusts (chapter 3, maps 1 & 2). These metadolerite sheets 

have therefore acted as passive markers to the thrusting 

deformation in much the same way as the metasediments; it is 

significant that the sills occupy similar stratigraphic levels 

within adjacent thrust sheets in the imbricate stack. At some 

localities, the metadolerites are seen to be cut out against 

thrusts, where they host 52 fabrics which show intensity gradients 

(52 'background' to platey S2m) of similar style to the 

cleavage/strain gradients seen approaching 02 thrusts within the 

metasediments which host the intrusives (also Hutton 1979d). This 

appears to suggest intrusion of the metadolerites prior to 02 

deformation, however, this may represent an over simplification of 

the true situation: 

6a5a2 Evidence for Syn-02 Intrusion 

Clearly, the metadolerite sills in NW Donegal were intruded 

after the host sediments had been li thi fied. The mineralogy of 

hornfels spots in tne ·colin-tty rocks marginal· to seme o-f the larger 

metadolerite sills is composed of biotite, muscovite, quartz and 

iron oxides; grain size increases outwards from the core to the 

margins of the spots ~here large biotites are prominent (Fig 2.3, 

also McCall 1954). Significantly, this mineral assemblage is 

identical to that characteristic of the peak (syn-02) metamorphism 

described above, the growth of which define the regional 

penetrative 52 fabrics. Careful examination of thin sections of 

hornfels spots indicates that the randomly orientated muscov i tes 
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and biotites contained within the spots have the same clean, 

colour and pleochroism characteristics as those outside the spots 

which define the 52 cleavage (see Fig 2.3). This may suggest 

syn-02 hornfelsing of the sill margins; the presence of fresh 

garnets within the outer margins of the spots may support this 

(Fig 2.3). The indication here is a negligible temporal separation 

between metadolerite intrusion and onset of 02 thrusting and 

folding. 

Indeed, strong evidence exists for syn-02 intrusion of 

metadolerite sills within the study area. As described in 

chapter 3, for example, a thin (em scale) metadolerite sheet is 

seen to be intruded during and parallel to 'primary' 52 generation 

within the developing 02 Curragh Harbour forethrust - back thrust 

complex (Fig 3.14). 

Further evidence for syn-02 intrusion comes from a thin 

boudinaged metadolerite sheet contained within the western limb of 

the Curragh Harbour anticline. The necks of the boudins, which 

have a pronounced ovoid or 'rugby ball' geometry, are filled with 

interlocking masses of quartz and dark green chloritic material 

which in the field strongly resembles the boudinaged metadolerite 

(which is also chloritized). The quartz and chloritic masses 

within the neck veins are apparently mutually exclusive in 3D 

space, with only intermittently developed thin zones of minor 

intermixing at their boundaries. These· masses are· also- crud_ely 

polarized, such that patches of the chloritic material are 

concentrated towards and in contact with metadolerite boudins and 

the quartz patches are concentrated towards the interior of the 

neck veins. Although the quartz and chlori tic masses appear to 

form a texture crudely reminiscent of pegmati tes, the boundaries 

between the quartz and chloritic masses are irregular to rounded 

or even rene form in character. At some positions, small 

sub-spherical 'blob'-like patches of quartz are seen to be 
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enclosed within but towards the margins of chlorite masses and 

vis a versa, in what appears to be an extension of the irregular 

contact relationship between the masses. These relationships may 

indicate D2 boudinage of the metadolerite sheet prior to it's full 

crystallization, and therefore a syn-D2 age for the intrusion. 

This would require pull-apart of the metadolerite sheet by 

fracturing the solidified margins, thus enabling escape/extrusion 

of unsolidified magma from the core of the sheet into the boudin 

neck areas where it would interact (immiscibly ? ) with rapidly 

crystallizing quartz rich fluid. A thin 'beaded' sliver of 

metadolerite which emanates from the intrusive/country rock 

contact and crosses one of the boudin necks for some distance may 

represent a remnant of the solidified margin. Evacuation of magma 

from inside the sheet close to the boudin necks might also explain 

the pronounced ovoid boudin geometry. 

At 610235 (maps 1 & 2), thin metadolerite sheets are clearly 

seen to be intruded within the mid limb area parallel to the axial 

planes of evolving F2 hosted D2 thrust ramps, at a specific point 

in the kinematic history of the structures (chapter 4, Fig 4.4, 

also Hutton 1979d). Of significance is the relationship between 

these thin sheets and the much larger sill beneath: 

This large:r ( 40m+ thick) intrusive is contained within the 

hangingwall to a D2 ductile EhfUB~ which is downward facing in the 

western limb of the Curragh Harbour anticline (chapter 3, Figs 

3.15, 3.17, locality 50, map 2). West of (50), a second D2 ductile 

thrust emplaces limestones and a thin sequence of transition beds 

onto this sill, such that the top of the sill is pervaded by high 

strain S2m fabrics related to the thrust. This thrust climbs 

stratigraphic section in the hangingwall towards 610235 (maps 1 & 

2) to the west, to bring transition beds and quartzites into 

thrust contact with the large sill beneath the fold structure 

described above (Fig 4.4). The mid limb metadolerite sheet within 
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this fold passes through the thrust into the larger sill beneath, 

where it's margins rapidly become indecipherable from the 

surrounding metadolerite. Approximately 100m further to the west, 

the thrust climbs section in the footwall away from the top of the 

large sill; here another thin metadolerite sheet crosses the 

thrust and, again, appears to 'vanish' into the sill beneath. 

These relationships indicate that although intrusion of the 

large sill at this locality appears to pre-date movement of the D2 

ductile thrusts above and below it, the core of the sill may not 

have completely solidified and therefore acted as the magma source 

for the thin syn-D2 metadolerite sheets. A negligible temporal 

separation between intrusion of the sill and the motion of the two 

thrusts is clearly implied. Good evidence for this occurs at 

590226 (maps 1 & 2), where the sill, which is exposed at the base 

of the eli ffs to the east, turns sharply to transgress 

stratigraphy and cuts across the thrust. 52 cleavage pervades the 

contact metadolerite here and to the south, although this is 

visibly weaker than that developed at 610235 (maps 1 & 2) or the 

base of the sill exposed within a blow hole ~t (61), map 2. This 

sill is cut out against and pervasively de formed by break-back 

thrust (bt2) to the SWat locality (60), map 2. Significantly, the 

thrusts above and below the sill described above are among the 

earliest to develop in the Breaghy Head area, whilst (bt2) is 

considerably later in the thrust s~~uence (chapter 3). 

6.5.3 Temporal Interaction between Metadolerite Intrusions and 02 

Thrusting 

Estimates of plate convergence and individual thrust 

displacement rates within foreland areas of thrust belts range 

between 5-10km/my (eg. Burbank & Reynolds 1988, Allen et al 1991). 

Estimated cooling times for dolerite sheet intrusives under 

greenschist conditions range from 1-10 years for a sill 1m thick 
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to between 1000 and 10,000 years for a sill 100m thick (R. England 

& S. Day pers. comm. 1989). This indicates that a thrust would 

only achieve 5-50m displacement in the time it would take a 50m 

thick sill to intrude and cool to a completely solid state; (the 

upper limit for sill thickness in the Breaghy Head area is 

approximately 50m). 

The majority of the 02 ductile thrusts in the Breaghy Head 

area (including the thrusts immediately above and below the sill 

described above) have map measurable minimum displacements of 

several 1OOm to 1 km+ (maps 1 & 2). This indicates that there is 

sufficient time to accommodate intrusion and cooling of a 

metadolerite sill within a thrust sheet prior to development of 

the next thrust in the sequence. Clearly, in view of the above 

observations, 02 thrust imbrication and/or F2 folding of a 

metadolerite sill does not prove pre-regional 02 age of intrusion; 

rather it indicates intrusion prior to the particular 02 thrust or 

fold structures locally involved. Thus the intrusion of sills 

during regional 02 deformation, at different times and places 

within the evolving 02 thrust stack explains why apparently 

pre-02, syn-D2, and post-02 relationships are all associated with 

the sills in NW Donegal. 

6.6 Significance oTIDall!.'adian Basin Extensional Faults 

The broad thrust sense shear zones (tectonic slides) which 

typify the penetrative deformation within the Dalradian belt show 

clear kinematic and spatial association with contractional 

folds and fabrics of the same generation ( ie. the slides are 

clearly contractional structures). The considerable stratigraphic 

dislocations which many of these structures represent, however, 

are apparently extensional (ie. the slides emplace younger rocks 

onto older rocks, often with marked stratigraphic excision). 
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In order to account for this, 

suggested that the Ballachulish and 

represent Dalradian basin extensional 

Soper & Anderton (1984) 

Fort William slides may 

growth faults which have 

undergone incomplete inversion during penetrative contractional 

deformation. Anderton (1988) modified and expanded this 

interpretation to encompass the entire Dalradian belt, at the 

expense of detailed precluding structural observations, and has 

therefore come into strong criticism (cf. Roberts & Treagus 1990). 

Alsop ( 1987) invokes the presence of an original Dalradian 

basin extensional fault to explain stratigraphic excision across a 

major tectonic slide in Central Donegal. In this case, however, 

Alsop suggests that the slide cuts across the basin fault to 

emplace younger rocks onto older. A similar suggestion has been 

made in chapter 3 to best explain the tectonic interleaving by 

forethrusts and backthrusts of the Ards Quartzite and Sessiagh 

Clonmass rocks and the buttressing deformation seen in the Curragh 

Harbour area. 

6. 7 Other Discrete Ductile Thrust Imbricate Zones within the 

Dalradiarn Belt 

The 02 ductile thrusts in the Breaghy Head - Dunfanaghy area 

are, by Dalradian standards, unusually discrete tectonic slides. 

It has been sugg~ste~ that the ~eason for this might be the strong 

rheological contrast across the Ards Quartzite - Se~siagh Clonmass 

formation boundary. This rheological contrast and the lithological 

variability of the Sessiagh Clonmass formation may also promote 

rapid strain localisation over spatially restricted areas of the 

boundary (see chapter 5), leading to multiple imbricate 

development. 

This imbricate zone is not unique within the Dalradian belt. 

Significantly, another discrete ductile imbricate stack has been 
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identified within Appin Group rocks of identical stratigraphic 

level and 

Scottish 

lithological composition near Loch Creran in the 

Oalradian (Litherland 1980, 1982). Although less 

complicated than the Breaghy Head ductile thrust zone, field 

checking of the Loch Creran imbricates during this study revealed 

similar patterns of intensifying strain and minor structures over 

similar 10-30m thick high strain zones within similar lithologies. 

6.8 Regional Implications and Concluding Remarks 

The trace of the Errigal Syncline runs through Marble Hill 

bay, with the long normal limb exposed to the north of the bay and 

the steep limb exposed to the south. This syncline folds the 02 

ductile thrust detachment surface and one of the highest (most 

southerly) thrusts. This indicates later displacement on a lower 

( sub-Ards Peli te) detachment and therefore a regional 02 piggy 

back thrust sequence. 

Recently, Hutton (pers. comm. 1993, re: Hutton & Alsop 

in prep.) suggested that major 02 tectonic slides with 

excellent regional down-dip e~posure (principally between and west 

of Ards Point and Ounlewy Lough, Fig 6.2), record many tens of 

kilometres displacement and have a clear piggy back sequence of 

development. The diachrony and inhomogeneity of 02 deformation and 

greenschist facies metamorphism indicated for the Ounfanaghy -

Breaghy Head area may therefore be appTied at a regional scale. 

In addition to describing ductile thrust geometry, this 

thesis has described processes leading to generation and 

propagation of 'shaped' ductile thrusts and development of local 

polyphase deformation histories during continuum ductile 

thrusting. These processes may apply to larger scale tectonic 

slides within the Oalradian and the metamorphic parts of other 

mountain belts. 
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Figure 6. 1 Map trace of restored secU on line ( c f. maps 1 & 2). 
Numbers refer to thrust sequence identified in chapter 3, as 
indicated in the sequential section restoration. 
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Figure 5.2f 

Contoured-plot of poles to S2 (cleavage) planes 
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Figure 5.2g 

Contoured plot of F2 (minor fold) axes 
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Figure 5.2h 

Contoured plot of D2 (mineral stretching) lineations 
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Figure 5.2i 

Contoured plot of D2 (boudin) axes 
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Figure 5.2j 

Contoured plot of D2 planar veins 

Contour intervals, counting circle of 1% total net area 
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Figure 5.2k 

Rose diagram of strike directions of D2 planar veins 
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Figure 5.21 

Contoured plot of poles to non-penetrative cleavage planes 
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Figure 5.2m 

Composite scatter plot of non-penetrative fold aX.es and non-penetrative crenulation 
lineations on S2 or SO 
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Figure 5.2n 

Composite contoured plot of non-penetrative fold axes and non-penetrative crenulation 
intersection lineations 
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