
Durham E-Theses

An approach to impact analysis in software

maintenance

Fillon, Pierrick

How to cite:

Fillon, Pierrick (1994) An approach to impact analysis in software maintenance, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5823/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5823/
 http://etheses.dur.ac.uk/5823/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

A n Approach To Impact Analysis in Software
Maintenance

Pierr ick Fi l lon

Thesis submitted for the requirements of the degree of Master of Science

School of Engineering and Computer Science
Faculty of Science

University of Durham

30th June, 1994

JUM W

Kaizen

Kaizen is more akin to a philosophy, it is rather an amalga­
mation of interrelated principles of initiating improve­
ments. The starting point for Kaizen is the recognition and
an admission that a problem exists, the ultimate goal is to
make a gradual change.

A mes Parents, A Elena

Il l

Keywords: static impact analysis, ripple effects, traceability, dependencies.

Abstract

Impact analysis is a software maintenance activity, which consists of determin­
ing the scope of a requested change, as a basis for planning and implementing i t .
After a change request has been specified (change understanding) and the initial
part of the system to be changed has been identified (change localization), impact
analysis helps to understand consequences of the change on other parts of the sys­
tem. Induced changes, also named ripple effects, among software components are
detected. Most existing approaches perform impact analysis for changes occurring
at the code level.

In this thesis, concepts developed to perform impact analysis at the code level
are applied to trace changes occurring at the design level. The method consists of
proposing an activity model addressing the different steps of impact analysis and
a data model on which propagations of changes can be traced. The method is
validated with a case study applied to a system from the aerospace field. The tools
we developed on PCTE help for consistency checks in HOOD based designs during
editing. Our data-model based on an Entity Relationship notation describes a way
to model HOOD diagrams in PCTE and further on to propagate changes on the
repository.

Examples chosen address the design phase of a simple engine system. We show
that addressing modifications at a higher level of abstraction than the code eases
understanding and localization of changes. It also limits the propagation of ripple
effects (i.e., unexpected behaviour of the system) by detecting secondary changes at
an earlier stage.

iv

Acknowledgements

I am most grateful to my supervisor Prof. Keith H. Bennett. His guidance,
encouragement and enthusiasm have been much appreciated throughout the different
stages of this project.

I would like to thank in particular Dr. Albert Bokma and Dr. Gerardo Canfora,
who have given me support and advice during my stay at Durham. Beyond having
been colleagues, there are first of all very good friends. Thanks are also given to
the staff of the Department of Computer Science at Durham University for their
assistance.

The financial support provided by Matra Marconi Space France, and the guid­
ance, in particular from Dr. Jean-Pierre Queille, Technical leader of the EPSOM
research team working within the Eureka-ESF project is gratefully acknowledged.

The copyright of this thesis rests with the author. No quotation from it should
be published without his prior written consent and information derived from it
should be acknowledged.

© 1994, Pierrick Fillon.

The work contained in this thesis has not been submitted elsewhere for any other
degree or qualification, and unless otherwise referenced it is the author's own work.

Coeteints

1 In t roduc t ion 8

1.1 Purpose of the Research 8

1.2 Motivations and Objectives 9

1.3 Requirements 9

1.4 Thesis Structure 10

2 Maintenance and Change Analysis 11

2.1 Types of Software Maintenance 11

2.2 Modelling Maintenance Activities 13

2.2.1 A Generic Process Model for Maintenance 14

2.2.2 Activity Models for Impact Analysis 16

2.3 Software Change Analysis 19

2.3.1 Definitions for Impact Analysis 19

2.3.2 Definitions for Ripple Effects Propagation 20

2.4 Traceability and Maintenance 22

2.4.1 Definitions for Traceability 22

2.4.2 Definitions of Objects, Relationships and Closure 24

2.5 Conclusion 25

1

2

3 Background on Impact Analysis 26

3.1 Types of Code Analyses 27

3.2 Study of Code Dependencies 28

3.2.1 Types of Program Dependencies 28

3.2.2 Data-flow Dependencies Analysis 29

3.2.3 Alternative Techniques 31

3.2.4 Tools Support 32

3.3 Design Analysis and Vertical Traceability 32

3.3.1 A Traceability Model between Design and Code 32

3.3.2 Alternative Views of Design Analysis 34

3.3.3 Motivations for Changes Propagation 35

3.4 Conclusion 36

4 Design Analysis for H O O D 37

4.1 The Design Process 38

4.2 HOOD Features 39

4.3 Design Principles 43

4.4 Types of Design Dependencies 45

4.5 Summary 47

5 A n Interconnection Mode l for H O O D 48

5.1 Modelling HOOD 49

5.1.1 Criteria for Modelling and Validation 49

5.1.2 A Conceptual Model 50

5.2 A Data Model Expressed in ERM 51

5.2.1 HOOD Concepts in ERM 52

5.2.2 Description of the HOOD Data Model 53

3

5.2.3 Benefits and Limitations of PCTE for the implementation . . 57

5.2.4 Classification of HOOD Rules and Constraints 58

5.3 An Activity Model for Impact Analysis 59

5.4 Horizontal Propagation 60

5.4.1 Design Checking and Types of Transformations 62

5.4.2 Assessing the Impact 63

5.4.3 Heuristic for the Transformation 'Merging operations' 64

5.5 Summary 66

6 Case s tudy for H O O D 68

6.1 Tools Support for Horizontal Propagation 68

6.2 The Aircraft Engine Monitoring System 70

6.2.1 Criteria for a Case Study 70

6.2.2 Case Study Description 72

6.3 Investigation of Changes 74

6.3.1 Case Study and User Change Requests 74

6.3.2 Validation of Design Consistency 77

6.3.3 Validation of Transformations on PCTE 77

6.4 Conclusion 80

7 Summary and Fur ther Research 82

7.1 Summary 82

7.2 Discussion of the results of the case study and tools development . . . 82

7.3 Further Research 84

4

Append ix 1 : H O O D Rules on the Data -Model 87

Append ix 2 : Transformations on H O O D art ifacts 88

Append ix 3 : Case Study - H O O D Objects 89

Glossary 99

References 102

List of Figures

2.1 Maintenance types and level of the change request 13

2.2 EPSOM generic process model for maintenance 15

3.1 A Traceability Model Between Design and Code 33

4.1 Sections described in the ODS 39

4.2 A Basic HOOD Object 39

4.3 Ods Outline 41

4.4 Passive and Active Objects 42

4.5 OPCS for Operation controller Start: Code part only 43

4.6 OBCS of controller object: Code part only -abstract 44

5.1 Modelling HOOD 50

5.2 Semantics of an ERM representation 51

5.3 HOOD data-model 52

5.4 Subtree of HOOD data-model 53

5.5 Attributes of HOOD data-model 54

5.6 HOOD Object Entity in Textual Form 55

5.7 Operation Entity in Textual Form 56

5.8 Impact analysis activity model 61

5.9 Definition of constraints on incoming/outgoing links 65

5

6

5.10 Network of transformations 66

6.1 Aircraft Engine Monitoring System: Description 71

6.2 Aircraft Engine Monitoring System: Context Diagram (bef. change) . 72

6.3 Aircraft Engine Monitoring System: DCFD (bef. change) 73

6.4 Aircraft Engine Monitoring System HOOD Design (bef. change) . . . 74

6.5 Aircraft Engine Monitoring System: DCFD (after change) 76

6.6 Aircraft Engine Monitoring System: HOOD Design (after change) . . 78

List of Tables

3.1 Types of analyses for program dependencies 31

4.1 Types of dependencies and HOOD concepts 46

5.1 Types of constraints/transformations and related support 59

6.1 Transformations applied on operations defined by Bargraphs object . 75

7

Chapter 1

I ntro uction

1.1 Purpose of the Research

This thesis presents an approach to impact analysis at the design level for the pur­
pose of software maintenance. The aerospace industry is confronted with large scale
software systems, sometimes of several millions of lines of code and with a lifetime
typically of around 20 years. Due to the high cost offer developing new systems, this
lifetime tends to be extended. Thus a greater emphasis is put on evolution, reuse
and maintenance activities. Software maintenance has been estimated as the most
costly phase of the life-cycle. It accounts for more than 50% of the total life-cycle
costs and according to classic studies by Lientz [53, 54, 55] and Nosek [65], it shows
no sign of declining. As software systems evolve, maintenance operations become
more complex and as a result maintenance projects often fail to meet deadlines and
cost targets. One reason for the high cost of maintenance is that there is a lack of
methods to estimate the scope of changes. Two important factors for this activity
are analysis and validation of the modified software.

Impact analysis 1 is a maintenance activity, which consists of analyzing the
software and determining the scope of a requested change, as a basis for planning
and implementing i t . A system is constructed of components that are connected.
Given an initial change the aim of impact analysis is to detect all components
that are affected and must be changed as a result. This approach helps to control
unexpected behaviour of the system after the maintenance operation. Moreover it is
important to detect those affected parts before deciding whether to implement the
changes, for example, in order to correctly evaluate the total cost of the change.

1 I n this thesis, words in bold typeface are defined in the glossary given in appendix.

8

CHAPTER 1. INTRODUCTION 9

1.2 Motivations and Objectives

Maintenance involves different phases of the software life-cycle. Change analysis
must consider where the change originally occurs and according to the type of the
modification the level it propagates to. There are a number of motivations to perform
impact analysis at the design level, and which can be summarized as follows:

o Most current approaches perform impact analysis for changes occurring only
at the code level. This may be a wrong approach since most change requests
address other artifacts, and in particular design documents.

o Addressing changes that appear at a higher level of abstraction than the code,
such as in documentation describing the design, eases understanding and lo­
calization of changes. It also limits the propagation of unexpected results by
detecting effects of changes at an earlier stage.

o Current techniques are difficult to apply at earlier stages of the maintenance
life-cycle, where little or no documentation is available about the system. It is
then at that point critical to assess the impact of change requests, which are
stated at a higher level of abstraction. Thus, looking at software components,
such as design documents provides a valid background.

The main objective in the present thesis is to propose an approach performing
impact analysis at a higher level in the software maintenance process than the code
level. The method that is presented consists of an ac t iv i ty model addressing dif­
ferent steps of impact analysis and a data-model on which propagation of changes
can be traced. Finally, the method is validated with a case study on documents
describing the design of a simple aircraft Engine Monitoring System.

This thesis is based on the following assumptions. It is assumed that only functional
attributes are relevant and not attributes such as safety, security, reliability or per­
formance. Furthermore, approaches related to knowledge base systems or natural
language processing are not being addressed.

The test case in the thesis refers to systems in which code, design components,
and related documentation, are available for investigation. The method addresses
technical issues of impact analysis. Although, the research work is applied to the
field of aerospace systems, it has a wider applicability.

1 o 3 Requirements

CHAPTER 1. INTRODUCTION 10

1.4 Thesis Structure

This thesis is divided in two parts.

Chapter 2, 3 and 4 give an introduction to the research field. Chapter 2 outlines
different types of operations conducted during software maintenance activities and
presents several activity models related to the field of impact analysis. Chapter
3 introduces to the state-of-the art in impact analysis. I t presents approaches and
techniques at the code level. This study provides a background for drawing analogies
at the design level and the state-of-the-art of design analysis is presented. Chapter
4 describes the HOOD method investigated in this thesis.

Main contributions are presented in chapters 5 and 6 defining an interconnection
model for design changes. Chapter 5 presents an interconnection model and chapter
6 illustrates it with a case study. Conclusions and suggestions for further research
are outlined in chapter 7.

Chapter 2

Maintenance and Change
Analysis

Software maintenance has been identified as a crucial activity in the process of soft­
ware evolution. Changes occur at different levels in the life-cycle and correspondingly
there exist different types of changes or modifications, as welFbe'addressed in sec­
tion 2.1. Therefore a general process model to conduct change analysis is required,
and which supports impact analysis, as described in section 2.2. The place of impact
analysis in the frame of the maintenance process is explained in section 2.3. Since a
system is made from components, which are connected, it is necessary to investigate
the traceability between those components to determine the scope of the change, as
described in section 2.4.

2.1 Types of Software Maintenance

IEEE [43] defines software maintenance as: the process of modifying a software
system or component after delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment. Consequently, as Lientz states it [53],
maintenance activities can be classified according to their type as follows:

o Corrective maintenance
Even with the best quality assurance it is likely that defects will occur in the
software. Corrective maintenance identifies repeatable errors, corrects them
and generates test cases.

o Adaptive maintenance
Over time the original environment for which the software was developed may
change. For example, the software has to be adapted to a new processing

11

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 12

environment such as new processors, operating system or changes of the data
environment such as peripheral devices. These changes are classified as adap­
tive maintenance operations.

o Perfect ive maintenance
This type of maintenance describes functionali ty enhancements of a software
system. When a software is used the user wants additional functions and
fur ther enhancements to the existing system. The maintainer then has to
introduce new functions to the system without adversely affecting the current
behaviour and functionali ty of the system.

o Prevent ive maintenance
Unlike other types of maintenance, preventive maintenance is undertaken in­
dependently of any change request anticipating changes to be relevant such
as modifications or enhancements. Another a im is to improve the software
wi th regard to performance, quality, standard conformance or maintainabil­
ity. Since this maintenance operation is undertaken when the system is under
investigation, previous experiences give a greater confidence to maintainers in
introducing additional changes. The main tasks are to review the software
system to make i t more maintainable and to improve its structure. Different
techniques such as redesigning, recoding or testing are used to achieve this
goal.

Lowell [57] uses a slightly different terminology for these three types of mainte­
nance (corrective, adaptive and perfective maintenance). In particular, the defini­
t ion of perfective maintenance that Lowell uses cover also activities relevant to the
above definit ion of preventive maintenance. The diagram emphasizes for each type
of maintenance particular program's attributes, namely its specification, design, im­
plementation or quality. Records on NASA projects show for example, that 90% of
the corrective maintenance classifies changes occurring at the code level.

For each type of change to be 'impacted' a different process-model may be
defined. The aim of impact analysis is then to consider the level where changes
occur ('starting point ') to detect induced changes ('ending points ') . Moreover, for
error corrections (corrective maintenance), possible origins may be found at different
levels. For example, errors occurring in the code may be due to errors at a higher
level, such as requirements mis-understanding. The correction then w i l l induce
changes in other artifacts (e.g., design changes to keep the system in conformance
w i t h the code). Table 2.1 illustrates the relation between maintenance types and
the level where the change request arises.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 13

preventive

specification
— — — O

test validation

preventive

adaptiv
design

perfective

preventive

test integration

correctivj code

perfective

Key:
Trigger representing the change request

Phases dependencies

CD Phase

Figure 2.1: Maintenance types and level of the change request

2„2 M o d e l l i n g Maintenance Ac t iv i t i e s

As Collofello [24, 23] explains i t actors 1 involved in maintenance expressed needs to
improve the maintenance process, both at managerial and technical levels. Process
model l ing is a step in this direction, Lowell [57]. I t defines detailed analysis and
modelling of maintenance activities in order to understand the process (descriptive
point of view), to control i t (prescriptive point of view) and to guide i t (indicative
point of view). The chosen model in this thesis is the generic process model devel­
oped in the Eureka project called EPSOM [36]. I t has the advantage of covering
a large group of technical activities used for maintenance operations. The model
has been ini t ia l ly derived f rom past and on-going projects (descriptive aspect). The
aim is to observe actual practice, and to characterize and improve the maintenance
process. Terminology and activities describing process models are in accordance
w i t h ESA standards, as is the EPSOM model.

An actor is a human agent carrying out a role during the process.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 14

2.2.1 A Generic Process Model for Maintenance

This subsection describes a generic process model developed in the EPSOM project.
I t is based on a classical software engineering model referenced as the 'V-like 'model.
Note that process model and act iv i ty model are notions, which are often con­
fused. A n activi ty model is a particular view of the process model concentrating on
activities. In this case, notions of actors and documents are not relevant.

The EPSOM model identifies two main phases delimited in t ime by the activity,
which consists of implementing the change. Thus, the descendant part of the 'V-
cycle is related to understanding and development steps including impact analysis,
whereas the ascendant part concerns mainly testing activities. The model is pre­
sented below. I t includes six steps and describes corrective maintenance operations.

The entry point of the maintenance process corresponds usually to the detection
of a trigger called a 'software problem report ' (SPR). This SPR 2 indicates an
anomaly in the use of the software, a change request or a diff icul ty in understanding
how to use the software.

o Step 1: P r o b l e m Unders tanding
The aim is to gain a sufficient understanding of the problem to decide if the
problem has to be pursued or not.

o Step 2: Local izat ion
This step determines the origin of the anomaly. I t identifies parts of the
system, which are concerned to the new or changed requirement.

o Step 3: Solution Ana lys i s
After the localization step, several (or just one) solution(s) may be considered.
The next step is to perform an impact analysis for each of them to decide which
solution is preferable.

o Step 4: I m p a c t Analys i s
The aim is to estimate all changes which have to be carried-out in addition
to the in i t ia l change. The impact is first considered at the technical level and
then at a managerial level. The technical impact analysis consists of determin­
ing the propagation on all system components. I t is applied to code, design,
requirements and tests items. The managerial impact analysis investigates
changes generated in the whole system but also points out other consequences
such as costs or organizational issues. I t is applied to the schedule of work,
costs of the maintenance operation, and costs of the non-availability of the

2 In this process model the SPRs are collected by the actor called the SRB - Software Review
Board.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 15

$P& *»# approved

Prchlaa

SPR'

5_
MRB

Protista anoiytis

SPR

i—*
SCR'

MT
SPA

localisation
Solution aftafytis

SPR daxdoaxl
- I >

SCR SCR*

MRB MRB

impact aaatpfa

sattifytng
aoluuo*

SPA*

MT

of tapltt^aadan
TCJ& plan

SCR"

MT
TffcAiucaf impact aaal.
Tcsti pfopasnl

ttaptttatft&dcti

SRB

7T CksttQtr approval

SMR'

MRB

"1

PHD

Eat of 6a
iatffvarxioa

SMR

MT

fagrastioa ttidng
AcS€ptattc6 testing

Figure 2.2: EPSOM generic process model for maintenance

system. After that step, a decision has to be taken, which is either to imple­
ment the change issued by one of the proposed solutions, or to leave the system
as it is without any intervention.

o Step 5: Implementat ion of Changes
The selected solution is implemented and validated following the usual V-like
life-cycle.

© Step 6: Tests Generat ion and Val idat ion of the S y s t e m
Regression and acceptance testing are part of the maintenance operation. Re­
gression testing checks that 'what has not been intentionally changed is not
changed'. I t implies that i f a failure is detected the impact analysis step has
to be re-processed. I E E E [43] definition of acceptance testing is that i t checks
that 'the implemented change is in conformance with the problem report'.

The end of the maintenance operation is marked by a trigger closing the inter­
vention. This act ivi ty model provides a complete framework for the whole mainte­
nance process.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 16

2.2.2 Activi ty Models for Impact Analysis

The impact analysis phase has been described wi th in the maintenance process. The
EPSOM model proposes that when the change is localized and a solution is chosen,
maintainers have to conduct an impact analysis. Subsequently, a decision is taken to
implement the change, or to leave the system as i t is wi thout any intervention. As we
are concerned w i t h technical aspects not only restricted to corrective maintenance
operations, i t is necessary to study other models. Moreover, i t helps to understand
the evolution in the field of process modelling during the last twenty years. These
models specify activities connected to impact analysis such as organizational, or
managerial activities.

First , we present a general model introduced by Yau, and secondly a more
detailed model f r o m Mac Clure that provides guidelines on how to perform the
various tasks of maintenance. Finally, a model presented by Pfleeger and based on
a metrics approach is described.

Y a u ' s Mode l : A R ipp le Effect Assessment B a s e d on Stabi l i ty Metr ics .
This model [84, 89]represents information about development and maintenance of
software systems and emphasizes the relationships between phases of the software
life cycle. I t also gives the basis for automated tools to assist maintenance personnel
in making changes to existing software systems. I t is the first model presenting an
act ivi ty related to the measurement of ripple effects through stability analysis. Each
phase of the process is associated wi th software quality factors and metrics. Af ter
having as described determined the maintenance objectives, maintainers have to go
through phases the following steps:

1. Understanding the Program. This consists of analysing the program in order
to understand i t . The phase is associated w i t h complexity, documentation and
self-descriptiveness attributes of the program.

2. Generate a Maintenance Proposal. A maintenance proposal is generated to
perform the implementation. This requires a clear understanding of both
maintenance objectives and program to be modified. According to Yau, the
ease of generating a maintenance proposal is affected by the extensibility at­
tr ibute.

3. Accounting for Ripple Effect. This phase is crucial for impact analysis. Ripple
effects are annotated as a consequence of program modifications. Yau states
that " if the stability of a program is poor, the impact of any modification on
the program is large".

4. Testing. The modified program is tested to ensure that i t has at least the

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 17

same reliabil i ty level as before. The relevant at t r ibute for this phase is the
testability of the program.

Yau's view is focussed on 'accounting for ripple effect'. This measure is based on
the stabili ty of the program defined as 'the resistance to the amplification of changes
in the program'. Yau's model like those of Boehm [14], L i u [56], or Sharpley [77]
are the earliest software maintenance models. Although Yau is the first author to
focus on impact analysis, the proposed activity model is very simplistic. The 'order'
of phases to be followed is explained, but details of how they should be performed
are not addressed. Recent models like this of Mac Clure [21] provide fur ther details
on how to perform maintenance operations. This model is particularly interesting
since i t illustrates the notion of 'a-posteriori' impact analysis.

M a c C l u r e : A-poster ior i I m p a c t Analys i s
This model [64] is a refinement of the general Boehm model for maintenance. This
model is also based on three main steps: Understanding the change request, Per­
forming the modification and Validation of the modification. Mac Clure [21, 22]
distinguishes three sub-steps for the second step - Performing the modification-,
which are Design the change, Alter the code and Minimize side effects. In this
model, when the change has been understood, i t is implemented and side effects
measured according to new modifications that occur. This 'a-posteriori' strategy
is inadequate because by looking at the symptom rather than at the origin of the
change only few ripple effects are detected.

Most recent models dedicated to software maintenance, like those of Foster [35]
or Pfleeger are for a number of reasons more elaborate. For example, Pfleeger's
model is interesting to investigate, although i t addresses the management rather
than the technical viewpoint of maintenance. The author proposes to improve the
maintenance process by managing i t through metrics.

Pfleeger's Model : A F r a m e w o r k for Software Maintenance Metr ics .
This model [70, 71] emphasizes impact analysis and proposes a framework for soft­
ware maintenance metrics support. A set of metrics is proposed to help management
to take decisions wi th regard to the modification to perform. The major activities
are:

1. Manage software maintenance. This controls the sequence of activities by
receiving feedback wi th metrics and determining the next appropriate action.

2. Analyse software change impact. I t evaluates the effects of a proposed change
regarding the scope of the impact and the traceability of the system after

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 18

performing the change.

3. Understand software under change. Source code and related product analysis
are needed to understand the software system and the proposed change. The
likely degradation of system characteristics (e.g. system complexity or quality
of the documentation) help to decide i f the change has to be implemented or
not.

4. Implement maintenance change. The proposed change is performed. The
adaptabili ty of the system is analysed to perceive the diff icul ty of implementing
the change.

5. Account for ripple effect. This phase consists of analysing the propagation of
changes to other modules as a result of the change just implemented. Stability,
coupling and cohesion of affected modules helps to check the effectiveness of
the impact analysis.

6. Retest affected software. Modifications are tested to meet new requirements,
and the overall system is subject to regression testing to meet existing ones.
Testability, completeness and verifiabil i ty are evaluated in this activity.

Pfleeger's model shows an enhancement of Yau's model, as the software quality
factors and metrics are associated to development phases to monitor product and
process quality. Through the metrics proposed, this model is restricted regarding
types of maintenance requests i t may cover. Evolutive 3 and adaptive maintenance 4

are supported by the framework. Other types however, such as preventive, antici-
pative or perfective maintenances cannot be performed wi th this model.

I t should be noted that existing models are mainly based on a qualitative ap­
proach and therefore predominantly handle management rather than technical is­
sues. Maintenance operation may affect unexpected parts of the system. Thus i t
is necessary to conduct an impact analysis in order to estimate the propagation of
proposed changes. Developing a process model helps maintainers in this task. This
model has to be applicable to modifications occurring in the code, but also in design
or documentation artifacts.

'e.g., a new functional requirement.
e.g., requirements concerning environment modifications.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 19

2 o 3 > Software Change Analysis

Change analysis is one of the steps in the maintenance process and is characterized
by steps 3 and 4 of the EPSOM model described previously . A task performed
by change analysis consists of identifying the impact of the proposed modifications.
Change analysis is directly affected by the quality of the program components and
therefore different analysis (code analysis, design analysis) have to be conducted.
Most of existing techniques tend to consider direct effects of a modification on the
source code. Very few techniques are used to identify indirect effects. This is the
goal of impact analysis.

2.3.1 Definitions for Impact Analysis

Weiss [80] proposed to classify changes according to the development phase they are
related to. His classification is the result of an investigation carried out on NASA
projects. For each phase, statistics are given in percentage of the to ta l number of
changes.

o Requirements phase. 19% of the changes involve modifications of requirements
or funct ional specifications.

o Design phase. 52% of changes expressed by maintainers correspond to design
modifications. Thus, i t is the phase where the largest number of modifications
occur.

o Code implementation phase. Only 7% of the modifications concern interven­
tions on the code such as insert, delete or debug components.

o Miscellaneous changes. Weiss classified in this category 'environment changes'
(3%) caused by changes in hardware or software environments and 'planned
enhancements' (19%).

Weiss refines the study measuring 'the number of code components affected sev­
eral times for a considered change' 5 . He found that 34% of changes affected only
one component and 26% of changes affected two components. These empirical mea­
sures show that most modifications are caused by changes in the design, and that
those changes are propagated among artifacts developed in other phases, such as
specification, or code. In our study we investigate changes occurring at the design
level.

5 For Weiss the granularity of a code component is a function.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 20

I m p a c t analysis . Impact analysis is concerned w i t h determining the scope of a
requested change as a basis for planning and implementing it. Lowell [57] denned
impact analysis as follows:

"Impact analysis is the activity of determining parts of the system to be
modified in order to accomplish a change. To accomplish a change means
to determine the confidence that the change conforms to its specification
or to what we intend it to do."

Since Lowell's study, the definition and understanding of the problem have been
improved. Recent models such as the EPSOM model propose a more detailed defi­
ni t ion: "Impact analysis consists in est imating all the changes, wh ich are
consequent t o the init ial change" . Accordingly, impact analysis is an act ivi ty
that is performed after understanding and locating the change to be accomplished.
Impact analysis also has a wide spectrum and is related to several phases of the
maintenance life-cycle (figure 2.2). Thus, changes to the system may produce unex­
pected results on code, design or analysis artifacts. I n order to avoid this, new test
cases are generated 6 or a simpler solution may be proposed.

2.3.2 Definitions for Ripple Effects Propagation

This section introduces definitions related to the field of impact analysis. Al though
ripple effect analysis is a refinement of impact analysis, many authors use i t syn­
onymously. As for many terms used in maintenance there is no standard definitions
even though a recent publication f r o m IEEE [44]. 7

Ripp le effects propagation. When used in the context of software maintenance,
ripple effect propagation implies errors or undesirable behaviours that occur as a
result of a modification. Yau [88] provides the original definition:

"Ripple effect propagation is the phenomenon by which changes made to
a software-component along the software life-cycle [specification, design,
code, or test phase] have tendencies to be felt in other components."

The application of ripple effect analysis is to ident i fy components, which need
additional maintenance effort to ensure their consistency to the original change. I t

6Regression testing addresses the testing of a system or components to verify that modifications
have not caused unintended effects and that the system or components still comply with the
specified requirements.

7Note: From the author- Although it is only just been published, this standard model seems very
much of the 1986 era of development. It is also heavily criticised in the maintenance community
for being too little and too late.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 21

suggests that changes affect the whole system at different level of representation
(code, documentation, or design). Pfleeger [71] summarized this view and suggested
the need for traceability to detect ripple effects (section 2.2.2). "Impact analysis is
the assessment of the effect of a change. It aids the maintenance team in identifying
software work products affected by software changes".

Side ef fec ts a n d r i p p l e effects . There is a difference in usage of the terms ripple
effects and side effects by authors. Thus, the two notions are sometimes confused,
in particular because they are mainly both applied at the code level. Side effects
are a faci l i ty used when the connection between two elements might produce by­
product effects, which were intended. For example, side effects might suggest a
design decision that must implement an algorithm i n an iterative or recursive way.

Conversely, according to Yau [88] r i p p l e ef fec ts correspond to the phenomenon
that changes made to a program in one area have the tendency to be felt in other
areas. I n other words, i t relates to the propagation of a change. The application
of such analysis is to identify areas, which need additional maintenance efforts to
ensure consistency wi th the original change. Ripple effects occurring at the code
level concern changes to a statement, a variable i tem or a subprogram. They may
be detected during regression testing. Ripple effects may also have their origin at
the design level (i.e., due to a design change) and can induce major code changes.

Another view is given by authors who recognize that ripple effects occur also
at the documentation level because maintenance focuses not only on source code
modification, but also on maintaining documentation. Agusa [1] supports this view
and states ripple effect as follows:

"Ripple effect is the situation that some modification of requirements
description results in a logical inconsistency and we are unable to read
that description as intended."

Ripple effects in documentation exist when changes to code are not reflected
in supporting technical documentation (code or design documentations) or user-
oriented manuals. Some authors, for instance Pressman [72], consider that docu­
mentation, which does not accurately reflect the current state of the software is
worse than no documentation at all . This leads often to an incorrect assessment
of software characteristics. However, some maintenance requests only focus on doc­
umentation. I t is the case when the documentation has to be clarified wi thout
intervening changes to the software such as design or code components. Most errors
occurring in documentation are mostly reduced by reviewing techniques.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 22

2 04 Traceabi l i ty and Maintenance

A major distinction between development and maintenance is the set of constraints
imposed on maintainers by the existing implementation of the system. Information
about system dependencies may be missing, incorrect or complex as a result of con­
tinued changes. A model of the maintenance process must indicate a framework to
evaluate and perform the change. Models previously presented evaluate effects of
a proposed change. This act ivi ty of analysing the software change impact 8 , deter­
mines i f the modification affects the rest of the system. Main factors to investigate
are scope of the impact and traceability of the system. The former corresponds to
the number and size of artifacts affected by the in i t ia l change. The latter expresses
an ' ab i l i ty ' of a system that suggests the connectivity of relevant work-products
and whether the system is easy or hard to navigate once the proposed change is
performed. Some research has been done in the field of traceability for maintenance
purposes.

2.4.1 Defamations for Traceability

This subsection introduces to the terminology related to traceability. Traceabil­
i t y issues have been raised during development phases of the system. The term
traceability is defined by I E E E [43] as follows:

"Traceability is the degree to which a relationship can be established be­
tween two or more products of the development process, especially prod­
ucts having a predecessor-successor or master-subordinate relationship to
one another".

Traceability covers the set of relations between input and output at each step
of the development process and is distinguished in two types horizontal and vertical
traceability. Vertical traceability relates to relationships between work-products. For
example, each design component is traced to code components that implement that
part of the design. Similarly, horizontal traceability addresses relationships among
parts of the work-product such as requirements, design, code or tests items. Both
types of traceability are necessary to understand the complete set of relationships
to be assessed during impact analysis.

Studies o n traceabil i ty. I n the early 1980's, the need for traceability in mainte­
nance is firstly reported by Lowell [57]. This author based his approach on those
two types of traceability and distinguished different impacts of a change. Firstly,

8 I t is annotated as the step 'Accounting for ripple effect' in the Yau model and as the step
'Performing the Modification' in the Mac Clure model -subsection 2.2.2.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 23

impacts that may be traced in items represented in the same formalism (e.g., mod­
i fy ing a specification may affect other specifications). Secondly, impacts may be
traced among items represented differently (e.g., tracing changes in a design i tem
to changes in related code items). Recent studies on traceability i n maintenance in
the EPSOM project [36] have refined this approach. Traceability makes i t possi­
ble to trace f r o m the requirement of a particular funct ion i n a system, through its
specification, design and actual program code implementing i t .

Traceability is not only restricted to the development process, as i t can also be
provided for testing purposes. This is illustrated by different types of propagation.
A 'left to right' propagation 9 is defined as the traceability of the output of a devel­
opment phase against the input of the corresponding validation phase. For example,
architectural design documents are connected to integration test cases. Similarly, a
'right to left' propagation, consists of validating the output of one validation phase
against the input of the corresponding development phase. For example, i t may be
used to detect an erroneous test against a requirement.

Traceabi l i ty and consistency. Another view of traceability is expressed by
I E E E [43] as'the degree to which each element in a software development product
establishes its reason for existing'. This statement supposes that traceability may
be used in a system to control completeness wi th in a phase and the consistency
between phases. For example, i t expresses the degree to which an element at the
code level refers to the design that i t satisfies.

Traceabi l i ty and quality. A method for assessing and controlling change consists
in explicit ly incorporating metrics to express the traceability of a system. The
act ivi ty model presented by Yau [82] (section 2.2.2) is very useful in evaluating
effects of change on the system to be maintained. However, this model does not
explicit ly refer to a metrics approach.

Pfleeger [71] proposed a framework of 'traceability and metrics' (section 2.2.2).
The maintenance process is viewed regarding software work-products as a traceabil­
i t y graph of software life-cycle objects connected by horizontal and vertical trace-
abili ty. The former addresses the process metrics (relationships across parts of the
work-product) . Different graphs are investigated (graphs related to requirement-
design, design-code, code-test links) and the traceability of a graph is expressed
as ' the number of paths in the minimal set of tracing paths'. Vertical traceabil­
i t y addresses product metrics (relationships among parts of the work-product) and
complexity measures such as cyclomatic number V(g) , number of nodes or in /out
number of edges per nodes. The author considers that this type of relationship may
be easily generated by compilers and other static analysis tools. The model depicts
how metrics can be used to manage maintenance. The management of maintenance

9 I t is recommended to look at the development life-cycle in form of a ' V to understand direc­
tions given for each propagation.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 24

controls the sequence of activities by receiving feedbacks w i t h metrics and deter­
mining the next appropriate activity.
Pfleeger's model offers a unified view of the impact of a change - along the soft­
ware life-cycle - based on different types of traceability (horizontal and vertical).
However, this model is restricted to management purposes and costs aspects of the
change.

2.4.2 Definitions of Objects, Relationships and Closure

Traceability can be applied to different elements either on objects (e.g., on func­
tions, interfaces, H O O D objects), on artifacts (documents, files) or between objects
and supports. I n this paragraph the need of traceability to perform impact analysis
is focused on finding and determining impacts. Definitions are given for concepts of
object, relationship and transitive closure.

In software systems, a general definition, of an object is that i t corresponds
to any 'concept' we choose to identify explicitly (e.g., a variable, a statement or a
funct ion) .

A relationship between two objects A and B is a three tuple. Given objects a
and 6, a relation R is defined as < a,R,b >. A dependency is a directed relationship
(e.g. calls, uses, read, write relationships) A depends on B means that a change to A,
causes a change to B. Types of traceability described previously may be illustrated
by several relationships.
Vertical traceability may correspond to links such as 'is-implemented-by (between
design and code elements) or semantical links like 'is-described-by' (between ele­
ments of different nature such a a source-code and a user guide) .
On the opposite, horizontal traceability may correspond to structural links such as
'calls', 'uses' (between functions) or to links between elements of same nature, such
as 'is-composed-of finks. Traceability has an impact on maintenance activities. A
modification may induces several changes and involve several relationships. Tracing
those changes leads to a wide-spread impact.

Concerning transi t ive closure, Lowell [57] specifies that 'the basic goal of
determining impacts is to find the transitive closure of a relationship (or set of
relationships)'. I t can be defined formally (Aho [2]):

Definition: Transitive closure
Let G be a graph. Define G* to be the graph that contains all nodes of
G. The edges of G* are as follows: if there is a path of length 0 or more
between node A and B in G, then the edge (A, B) is in G*. G* is called
the transitive closure of G.

CHAPTER 2. MAINTENANCE AND CHANGE ANALYSIS 25

I n our study, for computing the transitive closure we choose a simple way.

C o m p u t i n g a t r a n s i t i v e c losure
Let us consider the computation of a transitive closure of a directed graph. I f the
graph is represented by a predicate arc such that arc (X, Y) is true i^ythere is an
arc f r o m node X to node Y , then we can express paths in the graph by the rules:
1) path (X, Y) :- arc (X , Y) .
2) path (X, Y) :- path (X,Z) k path (Z , Y) .

The first rule says that a path can be a single arc, and the second says that the
concatenation of any paths, say one f r o m X to Y and another f r o m Y to Z, yields a
path f r o m X to Y . These rules are expressed by the following equation.

path(X, Y) = arc(X, Y) U *XtY{path{X, Z) M path(Z, Y))

wherexand N respectively represent projection and jo in of relational algebra.

2 o 5 Conclusion

This chapter outlines different types of operations conducted during software main­
tenance activities. Change analysis is one of the step of the maintenance process and
concerns in particular impact analysis, which aims to detect all changes consequent
to a modification. I t has been explained that current act ivi ty models supporting
impact analysis do mainly consider modifications at the code level, even though
changes occur at different phases in the life-cycle.

The design of a modification requires an examination of ripple effects, unex­
pected behaviour of the system due to the in i t ia l modifications. I f the impact is too
large, or i f the traceability is severely hampered by the change, management staff
may choose at this point not to implement the change. Assessing the traceability
to maintain a system helps then to find out complex, or highly coupled parts in the
system.

Chapter 3

ackgroumd on Impact Analysis

Most existing techniques performing ripple effect analysis are applicable at the code
level. They do not consider impact of modifications on program specification, anal­
ysis or design artifacts. This chapter presents techniques at the code level and gives
an underlined background for the next chapter, applying a new approach at the
design level.
I n previous chapters, i t has explained that early stages of the maintenance cycle are
crucial for understanding the system. A careful examination of the documentation
available is necessary. However, such information is not always available and other
methods have to be used, by maintainers when performing impact analysis. I t is
necessary to understand the system looking at documents available such as design,
source-code or code artifacts.

This chapter is concerned w i t h techniques used at the code level. Section 3.1
introduces different approaches for code analysis and related techniques. Section 3.2
presents different types of dependencies analysis on which those techniques are ap­
plied. In particular, those techniques are compared and tools supporting them
examined. Section 3.3 presents traceability models and motivations for propagating
changes among software artifacts produced in the life-cycle. In section 3.4 conclu­
sions and argumentation to perform impact analysis at earlier stages are outlined.

26

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 27

S o l Types o f Code Analyses

A software system may be analysed under different view-points either statically or
dynamically, addressing both syntactical and semantical aspects.

Stat ic analysis . IEEE [43] definition is "'Static analysis is the process of evaluating
a system or a component based on its form, its structure, its content, or documen-
tation."ln software maintenance i t may useful for different purposes to analyse a
program without executing i t . This thesis aims to apply static analysis to detect
errors in design artifacts. There are four basic categories of static analysis.

The first category relates to general analyses, which aim to single out prop­
erties of the program. Inspection and walk-through techniques are t radi t ional ex­
amples of such techniques.

IEEE [43] defines Walk- through techniques as techniques, which consist of
"A static analysis technique in which a designer or programmer leads members of
the development team and other interested parties through a segment of documenta­
tion or code, and the participants ask questions and make comments about possible
errors, violation of development standards, and other problems.". Similarly, in­
spection techniques are defined in IEEE terminology [43] as: "A static analysis
technique that relies on visual examination of development products to detect errors,
violations of development standards, and other problems. Types include code and de­
sign inspections". Although these techniques are slightly different to walk-through
techniques, they are also diff icul t to automate.

A second category concerns specific analyses. I t means for example the de­
tection of specific classes of errors or anomalous constructs, such as inconsistencies
between actual and formal parameters, or variables usages. In contrast to the pre­
vious category, such analyses can be easily automated, for example, to detect errors
statically.

A t h i r d category corresponds to symbolic execution, which can be used for
range-bound analysis (i.e. to confirm that variables, typically array index variables,
w i l l remain wi th in bounds). Some control-structures such as 'loops' are manually
investigated to test for exceptional conditions that might occur at run-time. In fact,
such analysis is rather diff icul t to automate.

Finally, a last type of static analysis is based on qual i tat ive measurements
of program-code. Measurements help to estimate the effort required to understand
the program and perform changes. Basic measurements concern size (in terms of
lines of code) and complexity of the program structure. For example, Mac Cabe
techniques correlate number of decisions (i.e. cyclomatic number called V(g)) w i t h
nesting structures. These metrics techniques have been largely investigated and
much research has been undertaken in that field.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 28

Dynamic analysis. IEEE [43] defines dynamic analysis as 'the process of eval­
uating a system or component based on its behaviour.' Fundamental aspects are
introduced by Huang [42] who presents a detection of data flow anomaly through
program instrumentation. Another approach proposed by Taylor [79] concerns al­
gorithms for analysing concurrent programs. Such dynamic aspects of dependencies
analysis are not under the scope of our study.

3 o 2 Study of Code Dependencies

Several types of dependencies between program entities exist and correspondingly,
for maintenance purposes various techniques are available. The state-of-the-art is
presented, in particular concerning data-flow dependencies analyses.

3.2.1 Types of Program Dependencies

Wilde [81] uses the concepts of program entities and program dependencies to define
a dependency graph that helps in understanding relationships in a software system.
Program entities are divided into program modules (such as procedures, functions
and complete programs) and data objects (e.g. variables, data types, files and data
structures). Wilde classifies program dependencies as follows:

e Definition dependencies where one program entity is used to define another.

Q Type dependencies where one data type is used to define another type.

© Calling dependencies where one program module calls another.

© Functional dependencies between data objects and program modules that cre­
ate or update them.

e Data Flow dependencies between data objects where the value held by one
object may be used to calculate or set the value of another.

Both static and dynamic analysis can be used to investigate these dependen­
cies. However our study focusses on data-flow, calling and functional dependencies
since the two first categories are rather relevant to language issues. The aim is to
understand how they affect the process of maintaining software.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 29

3.2,2 Data-flow Dependencies Analysis

Concepts of data dependencies are introduced to model interactions between data
items, such as variables and constants. Analysing data-flow dependencies consists in
gathering information on use and definitions of those items in the program. There
exist several types of data dependencies, but for the purpose of the thesis we shall
concentrate on data-flow dependencies. Aho [2] defines data-flow analysis as "Given
a control flow structure, data flow analysis is the process of collecting information
about the flow of data throughout the corresponding code segment." Firstly, rules on
variable usages are given and secondly different methods of analysis are presented.

Study on Variable Usages. Osterweil and L. Fosdick [67] carried out the first
study in the field of data-flow analysis by examining definition/use pairs of data
items as well as anomalous usages in Fortran programs. Osterweil distinguishes
three possible states for a data, as:

- defined state - a value is stored in the variable (also named definition),

- referenced state - the value stored in the variable is used (also named use),

- undefined state- the value stored in the variable is unknown.

Osterweil [67] gives two rules on variable usages concerning sequence of actions
that can be performed on them.

© Rule 1: A reference must be preceded by a define without an intervening
undefine, also named read-value action.

o Rule 2: A define must be followed by a reference without an intervening define
or undefine, also named write-value action

Traditional methods of analysis check if data items are correctly defined and
referenced in the program. Violations can then be detected. Calliss [16] considered
three resulting anomalous paths for a variable:

- undefined reference: the value stored of a variable is used before the variable is
given a value. This violates rule 1.

- double define: the value stored in a variable is changed without intervening
reference, the old value being not used. This violates rule 1.

- lost define: the value stored in a variable is undefined, the old value being used.
This violates rule 2.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 30

It should be noted that one category of anomalies has not been listed by Calliss,
namely data items that are defined and unreferenced. I t refers, for example, to
the result returned by a function and which is never referenced. Detecting such
anomalies requires an examination of each path in the flow graph, which is easily
performed by a depth-first transversal algorithm.

Classifications of data-flow analysis methods.

Much work has been done on data-flow analysis. Initially, i t has been performed
statically with the help of tools such as cross-referencers 1 , which present data in lists
of definition/use pairs. More recent techniques tend to develop dynamic aspects to
detect more precisely data-flow anomalies occurring at run-time. Three orthogonal
views of data-flow analysis can be proposed.

o A control flow-graph view provided by iterative and interval analyses.
Iterative analysis consists of traversing nodes in the control-flow graph of a
program, propagating data-flow information as nodes are 'visited'. This pro­
cedure is iterated until the data flow information identified with each node
does not change.

Interval analysis is composed of two steps: the elimination phase and the
propagation phase. It defines intervals as sub-graphs of the control-flow graph
of a program. The elimination phase consists of combining these intervals and
their data flow information. A succession of increasingly simpler flow-graphs
results in the analysis of data-flow relations in the program. The propagation
phase propagates the information back to the initial intervals. F. E. Allen [3]
presents "A program data-flow analysis procedure" .

o Regeneration of data-flow information with incremental and exhaustive
analyses.
Following a change, all data-flow information for the whole program can be
recalculated. The traditional approach of exhaustive analysis is nowadays car­
ried out in tools (such as compilers, syntax-directed editors) by an incremental
method for updating data flow information.
The purpose of incremental analysis is different. When a segment of the pro­
gram is changed, data flow information is updated with the information pro­
vided by the change. Not all types of change are supported by algorithms. In
particular, structural changes, involving change of control-flow, are the most
difficult to implement. A survey on incremental algorithms is provided by
Burke and Ryder.

o Analysis of procedure usages and scopes of variables with inter and intra-
procedural techniques.

1 A cross-referencer recently proposed on the market is called Hindsight-C, for C code. It formats
data in lists according to their usages in the program.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 31

Analyses iterative-
interval

incremental-
exhaustive

inter / intra-procedural Interface

source of
informa­
tion

CF graph DF graph variables scope interfaces

Criteria intervals of CF DF
graph-segment

procedures calling
point

data defini­
tions and dec­
larations, pa­
rameters

Table 3.1: Types of analyses for program dependencies.

Inter-procedural analysis calculates data-flow information only for one proce­
dure or function at a time. When a call to a procedure appears, it is assumed
that the procedure can modify or use any global variable. A classical inter-
procedural algorithm is outlined by Barth [10] in his work called "A practical
inter-procedural data-flow analysis algorithm".

By contrast, in intra-procedural analysis, for each procedure the summary
information is calculated. This information usually consists of variables, which
may be modified, used or preserved. The summary information is then used
at the point of call of a procedure defined as the 'entry-point'.

These techniques are summarized in table 3.1. For each of them the source
of information (i.e. structure from which items are extracted) and criteria of the
analysis are outlined.

3.2.3 Alternative Techniques

Other techniques may be used to perform static analysis of a program. The two
following examples investigate different views of the system, namely the controlling
of its execution and the checking of interfaces it defines.

Control - f low dependency analysis. This technique is based on analysing the
sequence of execution of statements in a program. It can be used for different
purposes such as for structural analyses. Structural information detects potential
errors in the code (and unreachable code or procedures having no-exit points) and
assess the program complexity.

Interface analysis and type checking. This aims to check consistency of inter­
faces between modules for data definitions and declarations. For example, it checks
errors due to a subprogram call with the wrong number of parameters, respectively
with the wrong types.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 32

3.2.4 Tools Support

Many features of analyses mentioned above are supported nowadays by compilers.
These tools can be useful to conduct impact analysis at the code level. Most static
analysis tools provide automatic or semi-automatic translators from the source pro­
gramming language into their own target intermediate language. The purpose is to
enable several types of analysis on the same 'platform' 2 . This approach aims to
extract certain aspects of the code for specific analyses such a detection of global
variables or access to external procedures.

Traditional references cite the DAVE tool developed by Osterweil [68, 66, 67]
applied on Fortran programs to detect data-flow anomalies (i.e. errors) and inconsis­
tencies in the system. Osterweil also presents basic algorithms supporting this tool.
A second tool commonly referred in the literature is OMEGA [69], which analyses
data-flow for C code. This tool has also been developed by Osterweil and Wilson.

$ o $ Design Analysis and Vertical Traceafoility

This section presents the state-of-the-art in the field of design analysis, in particular
for maintenance purposes. A traceability model between design and code is pre­
sented (section 3.3.1) that points-out benefits of investigating vertical traceability.
To support the analysis of the process of changing the design, recording decisions
may be useful (section 3.3.2). Then, motivations for propagation of changes between
design and analysis artifacts are explained (section 3.3.3).

3.3.1 A Traceability Model between Design and Code

The traceability model presented in figure 3.3.1 proposes three areas of mapping
between design and code.

o Area A, consists of design components or design decisions that are not trace­
able 3 or not implemented in the code. For example, it concerns design ele­
ments that represent a performance constraint on the software system. Adding
such a constraint may not imply the creation of new code elements. This cate­
gory also corresponds to design errors (e.g. forgotten or removed code element)
or design discrepancies (redundant items or not used design elements).

2 I t should be noted that the translation of the source code representation into an intermediate
form does not provide more semantics about the program.

3 Not traceable refers to design elements having no related concept or representation in the code.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 33

, i g n
Design

Area Bl rea

Code V 7 7

-a-o Horizontal Traceability
« Vertical Traceability

Figure 3.1: A Traceability Model Between Design and Code

o Area B, includes components of the design (area B l) traceable in the code
(area B2). Dependencies in this area are probably the easiest to detect and
trace with tools support. In this area, the traceability realizes a projection of
the design into the code. It consists of identifying links between an object of
the design and an object of the code. These links have the n:m cardinality
that means a design element may be implemented by several code elements
and vice-versa.

Links used in the direct mapping between design and code are easy to trace
for a system designed in HOOD and implemented in Ada. As explained in
section 4.3, HOOD design principles are based on Ada mechanisms. Therefore,
many tools exist, which automatically transform a HOOD design into Ada code
skeletons, and conversely tools that abstract a HOOD design tree from Ada
code 4 .

e Area C, identifies code elements that have no representation in the design. It
refers to low-level mechanisms (e.g. type of structure used in the code: arrays,
pointers) not specified, but necessary for the implementation. It corresponds
also to discrepancies in case the code represents functions which are never
used by the software system, or remaining code elements from a previous
implementation while the design has changed.

Definition of a process to investigate traceability.

The process of tracing aims to propagate changes within design items or be­
tween items represented at different levels of abstraction. The former case is called
horizontal traceability (section 2.4.1), and restricts propagation of changes at the

4 T h e H O O D design tree (H D T) is the tree of the system being designed, and consists of the
root object and its successive decompositions into child- objects until terminal objects are reached.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 34

design level. The later case is called vertical traceability and enables the detection
of effects in the design induced by making changes in analysis or code artifacts.

For example, between design and code the process of tracing consists first of
considering changes located in area C and to investigate effects on areas B. The
second step is to use traceability links between design and code artifacts to propagate
effects in the design (from area B2 to area B l) . Finally, the last step concerns the
propagation of those links within items not mapped in the code (area A) .

The main benefits of this approach are to detect effects of changes investigating
the system at several levels of abstraction.

3.3.2 Alternative Views of Design Analysis

This paragraph presents recent work in the field of recording design decisions. Ar-
rango [7, 8] specifies that for maintenance operations, the designer should not only
describe components that compose the system. It should also record decisions taken
in selecting and modifying components. This author introduces this approach to
Software Development & Maintenance and implements i t with examples describing
constructions of editors.

Lanubile [50] proposes a traceability support system based on design decisions.
Different representation models of a same software system are possible according to
the design method or the environment chosen (operating system or hardware plat­
form). The model of Lanubile investigates systems, which are initially represented
using a design method called the Essential Model and transformed later into a tar­
get model called the Language-oriented model. The system is based on traceability
relations existing between objects, but also on tracking decisions that have a role
in the transformation process. Therefore design decisions are recorded as entities in
the graph description. Using a traceability model, which connects different views
of a system structure with the design decisions made helps to evaluate effects of
changes, and to choose between alternatives. Dependencies are evaluated through
the named 'dependency descriptor'. The value of this "descriptor" is modified by
adding, removing or checking the existence of input, output, cause and derivation
relations between components.

Arrango [6] refines and extends this approach by proposing a tool to track
design decisions, which record four types of objects representing different aspects of
the design process.

1. Problem element objects represent information on problems and solutions. It
concerns the specification of the design called by Arrango the 'What-question'.

2. Design decision objects represent information about possible actions and choices.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 35

It concerns the implementation of the design, called the 'How' part of the de­
sign process.

3. Assertions objects capture the justification of the design decision. Those ele­
ments answer the rationale of the design process i.e. the 'Why' part.

4. agenda objects refer to the physical number of the decision.

The first three types of objects capture information about design decisions,
when agenda objects records only the index of the decision.

3.3.3 Motivations for Changes Propagation

The need to propose a traceability model to support impact analysis and the role
of traceability to conduct maintenance activities has been discussed previously (sec­
tion 2.4). We now have to focus on tracing between design and analysis artifacts,
particularly between DCFDs (Data Flow Control Flow Diagrams) and HOOD dia­
grams.

Supposing a modification on a set of requirements objects is undertaken. To
implement those modifications, the maintenance team modifies a set of objects in
the analysis and design artifacts. Our interest is to trace such dependencies between
analysis and design and to compare the set of design objects really modified to the
set of design objects that is the projection of modified analysis objects. There are
three possible which may occur:

1. the two sets are rigorously equivalent. Modified design and analysis objects
have a one-to-one relationship.

2. the two sets are different and some design objects, which were previously im­
plementing the modified analysis element are not changed. This case arises
when the element is implemented by several design objects. Then the modifi­
cation has an effect limited to particular design objects. However it leads also
to errors if the modification is not applicable (i.e. no related semantics in the
design) or not feasible in the design.

3. the two sets are different because some design objects were modified when
they do not implement any modified analysis elements. This is the case when
the requirement modification implies the creation of new design objects only.
I t is also the case when several analysis elements are implemented by a unique
design object.

CHAPTER 3. BACKGROUND ON IMPACT ANALYSIS 36

These three cases show that it is important to estimate the traceability between
analysis and design. Our approach proposes to record in a data-base relations be­
tween entities issued from analysis and design phases. Then a 'tracing tool' analyses
the completeness backwards and forwards of those elements.

Backwards traceability requires that each output of a phase shall be traceable
to an input to that phase. Outputs that cannot be traced to inputs are unnecessary.
Backward tracing is normally done by including with each item a statement of
why it exists (e.g. the description of the function of a component may be the list of
functional requirements). For the purpose of our study, with a backward propagation
-i.e., projection of the design into the requirements- 'nucleus' objects that do no
implement requirements objects are going to be detected (case 3).

Conversely, forwards traceability requires that each input to a phase shall be
traceable to an output of that phase. Forwards traceability demonstrates complete­
ness. Forward tracing is normally done by constructing cross-reference matrices and
therefore holes in the matrix demonstrate easily incompleteness. In our study, a
forward propagation identifies 'over-specification' (also called fossils) that mean
analysis elements, which are not implemented in the design or design lacks (case 2).

Applying such approach with two different types of propagation may be used
to verify the consistency of objects and interfaces in HOOD versus the consistency
of DCFD diagrams.

3>„4 Conclusion

In this chapter, several techniques to perform impact analysis at the code level have
been presented. However, changes occurring in the code represent a category of
minor importance compared with the modifications happening in the whole software
life-cycle. Different types of traceability and propagation mechanisms have been
outlined. In particular it has been stressed that a modification in one phase has
significant impacts on elements of the same phase, but also on other phases. Several
types of dependencies have been outlined.

Implementation activities correspond to the translation of design elements in in­
structions executable by the computer. Conversely, design activities consist of trans­
lating software requirements into a set of representations describing data, structural,
architectural and algorithmic aspects of the program. The purpose of the thesis is
to propose ways of extending techniques investigated at the code level to perform
change analysis at earlier stages in the maintenance of a project. In particular,
maintainers would benefit from using a traceability support to analyse design arti­
facts.

Chapten0 4

Deslge Analysis for H O O D

HOOD was developed by the ESA (European Space Agency) in conformance to
software standards for aerospace projects [31]. It takes its starting point from Grady
Booch [13] by adopting the object-oriented paradigm, but aiming to be more precise
and 'well-described' in the definition of concepts and design process (e.g., definition
of a BNF). Although its name HOOD suggests an object-oriented approach, it is
only object-based because it does not support concepts defining an object-oriented
model (e.g., inheritance).

HOOD is used by several ESA projects and is becoming a standard method in
Europe for Ada projects. It has been used by large projects like Columbus (Euro­
pean space station program) and EFA (European Fighter Aircraft). The method is
standardized, and defined in manuals [40, 39] owned and maintained by the HOOD
Users Group. A wide range and number of tools and environments support the
method.

This chapter presents an approach to the analysis of dependencies existing in
design documents. The HOOD method and its design process are presented in
section 4.1. Features and design principles used for our study are summarized in
sections 4.2 and 4.3 respectively. Finally, a classification of design dependencies in
HOOD is proposed in section 4.4. Concluding remarks are outlined in section 4.5.

37

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 38

4.1 The Design Process

The scope of the design phase extends from the decomposition of the functional
requirements of the system to the implementation phase. Objectives are to identify
data and functional components and static structures. Much of the creativity in
this process is due to the possible decompositions of requirements. Some of those
decompositions are solutions to the given problem, but others, which appear to be
solutions are not. Designing is a combination of bottom-up, top down and middle
out activities that is divided into several phases: logical design, architectural and
detailed design. The HOOD method defines a design process from architectural
to detailed design a . HOOD consists of four steps, each of them producing an
artifact.

1. Problem Definition:
This first step consists of understanding the problem to analyse and struc­
ture informal requirements. Documents produced are the Statement Of the
Problem (SOP) and Analysis & Structuring data Requirements (ASR).

2. Elaboration of an informal solution strategy:
Requirements are refined into a design solution. The Informal Solution Strat­
egy (ISS) document is produced.

3. Formalisation of the strategy:
In this step objects and operations are identified. Nouns are selected to form
a list of objects, respectively verbs to form a list of operations 2 . Objects and
operations lists are then combined into an object-operation table, and grouped
to form HOOD-objects. In this step design decisions, especially regarding
object type and exceptions mechanisms are justified.

4. Formalisation of the solution:
This phase consists of refining the design, in particular Object interfaces and
to describe formally with the BNF Objects and Operation Control Structures.
Object Description Skeletons (ODS) are produced and later used as the basis
for detailed design and coding phases. This last step is performed iteratively
since each HOOD object is decomposed into smaller components until terminal
objects are identified.

The scope of the thesis focuses on the final step and related design documents
(ODS).

1 However H O O D is oriented towards system development with A d a as implementation language.
Therefore it is possible to produce easily A d a pseudo-code skeletons from H O O D diagrams.

2 Note that Data Flow Control Flow Diagrams - D C F D (s) - and State Transition Diagrams -
S T D (s) - are another means of identifying objects and operations.

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 39

4 , 2 H O O D Features

In comparison to traditional design methods, since HOOD is an object-based method
and therefore concepts of data and operations are the main strength of this approach.
Notions of HOOD-ODS, object, operation and relationship are introduced in this
section.

Object Description Skeleton - ODS. An ODS specifies the architecture of a
system defining data-flows and functions of the program. It is described by a Pro­
gram Definition Language (PDL) syntactically defined by a grammar (BNF form)
and complies to some design rules defined in the HOOD reference manual [40]. An
ODS is represented in a textual form from which a graphical form (HOOD diagram)
may be derived automatically. It contains six main sections depicted in figure 4.1.

Object level description
Provided interface
Required interface
Object Behaviour Control Structure -OBCS-
Internals
Operation Control Structure(s) -QPCS(s)-

Figure 4.1: Sections described in the ODS

Object Name

Provided
Operations
and Types
Provided
Interface

Internal Types

Internal Operations

Required Interface

Used Objects

Figure 4.2: A Basic HOOD Object

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 40

Operations. Two types of operations are distinguished: constrained and non-
constrained. A constrained operation 3 is triggered by an external event (e.g., in­
terrupt or task call). Thus the execution of the operation depends either on the
internal state of the object (e.g., guards on accept statements) or on the execution
request.

Generally, in asynchronous communication, a process A (i.e., in HOOD it cor­
responds to the "execution of the operation") can send data to a process B and
continue their execution without waiting for B to be ready to receive such data.
On the opposite, in the synchronous case, two processes must reach pre-determined
communication points in their flow of control to exchange information with each
other. Several types of execution request are supported by the method 4 repre­
sented by the symbols: HSER, LSER, ASER and TOER triggers, which indicate
that the client requesting process execution is suspended after its request:

- until ful l completion of the requested service (HSER- Highly Synchronous Execu­
tion Request),

- until completion of the requested processing by a server process (LSER- Loosely
Synchronous Execution Request),

- not blocked at all (ASER- A Synchronous Execution Request). This kind of
execution request corresponds to message passing communication protocols,

- or until run-out of a time delay (TOER- Timed Out Execution Request).

Objects. Objects are the basic units of modularity. An object is a collection of
operations and types. There exists different kind of objects depending on the oper­
ations it contains and on the structure of the object. Concerning control-flow it is
necessary to distinguish in HOOD control-flow and control of processing. Control-
flow signifies that a flow carries out control information rather than just data (i.e.,
data-flow information) such as depending upon a state or event. Below, it is ex­
plained how active and passive objects deal with control-flow. On the other hand,
in HOOD, the control of processing between active objects is processed by a spe­
cific structure called OBCS. There are passive objects, active objects, environment
objects and classes.

- Passive objects are objects in which the control-flow is transferred from the using
to the used object. It means that whenever a provided operation is executed
the control-flow is transferred immediately to that operation. This corresponds
to sequential processing.

3 A constrained operation is annotated in a H O O D diagram by a zigzag arrow attached to it.
4 A complete description is proposed by Robinson [74].

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 41

OBJECT J a «Q!t|ject_Typ3sJ>
PARftMETim 8 TYPES 0 OPERATIONS* CONSTANTS' -only for Claes lnstanceo

Tout in natural Bnngungo giving oil information for understanding and maintaining tho object.
Thio taat may te) otructurad according to documentation sections (H1,H2,H3) defined by HOOD

Natural languaga tent giving hordtaaro oonstrainto (memory llimits.cpu) for the object.

TYPES -signature4 in Ada. with associated informal description in natural language
CONSTANTS -signature In Ada, with associated informal description in natural language
OPERATION-SETS -list of set names
OPERATIONS' -signature in Ada, with associated informal description in natural language
EXCEPTIONS -signature in Ada, with associated informal description in natural language

For each Required Object TYPES" CONSTANTS" OPERATIONS" EXCEPTIONS'
OBCS

DESCRIPTCON-in natural language
CONSTRAINED OPERATIONS -Execution Requests on provided operations

DATA FLOWS -Tentual Description of Data labels and direction along the graphical use relationship
EXCEPTION-FLOWS -Textual Description of Esceptlon labels along the graphical use relationship

End of USER'S Manual of the Object

flNTEBNALS
OBJECTS'
TYPE8° CONSTANTS'1 DATA" EXCEPTIONS"
OPERATIONS'"
OBCS (for cctivo terminal objects only)

PSEUDO_C0DE" -luitables notation to express control
CODE -in target language

OPERATION CONTROL STRUCTURES (for terminal objects only)
For each OPCS 0 1

Description
Uaed_Oporntiono
Esceptiona-Propagated1'
Eneeptionn-Handled"
PSEUDO-CODE-in ADA PDL or PDL
CODE-in target language

END<Object_NemQ>

•Object typao an CLA3,ENVmONMENT,OP_CONTROL (operation), and VIRTU AL_NODE
Thio fields exiot and are only edited for CLASSES and their INSTANCES. They describe the formal parameters for classes and effective parameters
for instances.
•Signature0 syntactic definition. By default i t is expressed in Ada syntax, whatever target language
' I f such an item io itcolf member of asst. then its declaration is followed by the declaration "member of <oet-Nome>, thus i t supports toxtuaUy the
definition of tho cet.
The provider object Is specified uoing the dotted notation, types and constants required for the definition of a signature of an operation, another
typo, a declaration of a data and/or for on instantiation. Operations used from server. Exceptions associated to these operations and provided by
the server.
This field lo empty (br terminal abjetto.
These fields provide fttf definition of implementation of associated structures in terminal objects, and far deflation of implemented—by' relationship
far nan terminal ones.
Thin field only oiinto for torminal objects.
'Thio field declare) taxtually tho °imptemented-by" links of parent operations down to child anea. Additional internal ops rati ana (not ahoera on the
graphical description) Eaoy be declared hero In the process of otep-wico refinement of operation control structures.
"The notation eon bo a graphical ons or a textual orto, allowing to specify formally control (Ada, Patri nets. Finite state Automata, Enteral, Temporal
Logic) in ordar to alloc for system dynamic verification, as defined by composition of OBCS along the uea relationship. Thces notations should also
provide for automatic (Feneration of coda, (see (Halts, 92) for more details).
"Thcca oubfialds oro filled for each operation internal or provided.
"Exceptions which may be raised and propagated during execution of OPCS.
"Bxcoptiono which arc treated locally in the OPCS, and they can be reraised or not

Figure 4.3: Ods Outline

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 42

Object Name

Triggers
A Object Name

Triggers
Call

Operation 1
Passive Object

Operation 1
Active Object

Return Operation 2 Operation 2

^Object State ^

Figure 4.4: Passive and Active Objects

- Active objects 5 are objects in which the control-flow is not transferred. Such
objects respond to the stimulus they receive according to their internal state
defined in the OBCS. More specifically, an active object is an object that define
at least one constrained operation.

- Environment objects are objects belonging to other systems, it means to another
HOOD design tree and that can be referred through use relationships.

- Finally, classes are generic objects, amenable of instantiation.

The different types of objects are illustrated in chapter 6 presenting a case
study.

Relationships. Different types of relationships exist between operations and ob­
jects. There are use, include and implemented-by relationships. Use relationships
represent control-flow between objects 6 and refer to operations that are provided
by the used objects. Use relationships refer to operations that are provided by the
used object, but does not refer to other entities like types.
Include relationships concern the successive decomposition of objects into child-
objects within the HOOD design process. Implemented-by relationships exist be­
tween operations. Operations of a parent object have to be implemented-by an op­
eration of a child object. It means that whenever an object calls a parent operation,
it actually calls the child operation.

5 Act ive objects are distinguished in a H O O D diagram by an A in the top left hand corner of
the related H O O D object.

6 Use relationships are shown as a directed thick arrow between objects.

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 43

procedure OPCS.Start i s
. . / . .
— Cod©
begin

Timers-Driver.Init (Monitoring-Timer,Monitoring-Frequency, IT-lHz-Address) ;
Bargraphs.Init;
Analog_display.Init_analog;
Motor., sensors. I n i t ;
Timers-Driver.Start (Monitoring-Timer);

end OPCS.Start;

— END=0PERATI0N OPCS.Start

Figure 4.5: OPCS for Operation controller Start: Code part only

4 o 3 Design Principles

HOOD enforces structuring of objects according to three principles, as follows :
information hiding, control structuring and hierarchical decomposition.

I n f o r m a t i o n Hid ing . An object is denned by its external properties and internal
structure that is hidden from other objects using it . HOOD encourages low cou­
pling and high cohesion within objects by following Kafura's [47] design rules. One
object has to "see the minimum of the object it calls (fan-in)" and has to "show the
minimum of its internal structure to its calling objects' (fan-out)". An object has a
visible part (interface) and a hidden part (internals) that cannot be accessed directly
by external objects. The interface defines services (types, constants, operations and
exceptions) provided by the object (provided interface), as well as services required
from other objects (required interface). This is depicted in figure 4.2. On HOOD
diagrams only provided interfaces can be represented, while required interfaces are
indicated through relationships between used objects and internals can be found in
ODS documents.

Con t ro l S t ructur ing . Generally, control-flow describes [43] for constrained oper­
ations:

- Sequential and parallel execution of operations

- Synchronous and asynchronous dynamical behaviour

HOOD supports those concepts and since it is used in real time systems, it
isolates the expression of the reactive part of a system from its transformational

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 44

- OBJECT_COWTROL_STRUCTURE
task OBCS_Ctrl_EMS i s
entry S t a r t ; entry Stop; entry Monitor;
— f o r Monitor use at IT =lHz_Address;

end OBCS.Ctrl.EMS;

task body OBCS_Ctrl_EMS i s
begin

loop
loop
s e l e c t

accept S t a r t ; OPCS_Start; e x i t ;
or accept Stop; — empties Stop queue
or accept Monitor; — empties Monitor queue
end s e l e c t ;
end loop; ../..

end loop;
end OBCS_Ctrl_EMS;

Figure 4.6: OBCS of controller object: Code part only -abstract

part. The OPCS of an object exclusively describes the transformational semantics
of an operation. Dynamical behavioural aspects 7 are described in the OBCS. In the
OBCS, constructs are similar to Ada-language since it refers to control statements
such as loops. Examples of OBCS and OPCS are given in figures 4.5, 4.5. More
details are given in Appendix 3, Figures A 3.5 and A 3.14. The two types of objects
defined previously handle control structuring differently:

- Passive objects do not have any semantics related to dynamical behaviour (i.e.,
to control flow). The control is transferred from the calling to the called
object and the operation is carried out immediately. Passive objects contain
operations, which can only be executed sequentially in a synchronous mode.

- In contrast, for active objects the execution of provided constrained operations is
controlled by the OBCS. The control is not transferred and reaction to the
stimulus must be serviced at a time determined by the internal state of the
called object. Such operations are constrained in their execution according
to either the internal state of the called object, or may be triggered by an

7Behavioural or Behaviour are mis-leading words since such concepts may describe various
observable aspects/behaviors of the system. Moreover each behaviour requires a specific formal­
ization. In this thesis, those concepts will refer to the HOOD-object dynamical behaviour, i.e. to
the execution model of operations within one object.

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 45

external event (execution request). Active objects may operate simultaneously
for several client-objects (i.e., calling objects).

Hierarchical Decomposition. This construction principle is supported by include
and use relationships. HOOD defines terminal and non-terminal objects. Termi­
nal objects define objects that can not be decomposed any further. Alternatively,
non-terminal objects can be decomposed in several child-objects, which collectively
provide the same functionality as the parent object. Moreover, an object using the
parent object must also use at least one child object. In a HOOD diagram, this
object is called uncle object and it connected to at least one child-objects through
a use relationship. Associated arrows may have attached to i t data- or exceptions-
flows. An other principle for a correct hierarchical decomposition is that usually
active objects should be place at the top of the hierarchy and passive objects at the
bottom, in order to comply with Kafura's laws [47].

4o4 Types of Design Dependencies

Dependencies expressed in design artifacts may be classified into functional, data or
control dependencies. The following classification corresponds to an analogy of the
study at the code level (subsection 3.2.1). In footnotes, examples relevant to the
code level are given.

1. Functional dependencies: 8

In HOOD, functional dependencies correspond to the Include relationship. An
object can be decomposed into a set of child objects in an iterative process un­
t i l all objects are primitive, it corresponds in HOOD terminology to terminal
objects. Thus, a design is complete when all parent operations are carried out
by child operations. This is defined by the implemented-by relationship. Pro­
vides/requires links belong to functional dependencies, because they describe
services available in the system.

2. Data dependencies: 9

In HOOD, objects provide and require data types and operations. There are
different types of data-flow, either in the same (in) or opposite direction (resp.
out) of the use relationship between two objects or two operations 1 0 .

8 A t the code level, functional dependencies correspond to call-tree or modules dependencies
and also to data-flow dependencies between procedures.

9Code analysis of data dependencies consists of producing data-flow graphs or cross-references
for temporary or persistent (files or variables declared statically) data.

1 0Data-flow corresponds to parameters of operations and is mapped into Ada with in, out or
in/out parameters.

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 46

Dependencies Class 1 Class 2 Class 3
HOOD Concepts functional data control
Elements Object X

Operation X
Interface X X
Dataflow X
OBCS X
OPCS X

Relations Use X
Include X
Implemented_by X

Table 4.1: Types of dependencies and HOOD concepts

3. Control dependencies: 1 1

In HOOD, control flow dependencies are expressed between objects linked
by a use relationship. As previously explained in section 4.2, control-flow
signifies that a flow carries out control information rather than just data.
The control between active objects is processed by a specific structure called
OBCS. The control flow interaction may be decomposed in two different ways.
Firstly, when the OBCS is handled in one dedicated child object, then that
must be an active object. Secondly, the OBCS may be handled in several
child objects. Selecting between those two cases determines the resolution of
exception flow, which occur if an abnormal return of control flow during
execution of a provided operation. An exception propagates along the use
relationship 1 2 from the operation where it raises to the exceptionJkandler of
the user object, executing the associated recovering code. Therefore exceptions
propagate from the child to the parent operation, and then to objects using
this parent-object 1 3 .

Categories presented above are ordered in table 4.1. For each category, HOOD
concepts (elements and relations) are listed. It shows that views of a design may be
investigated independently since each view correspond to different concepts.

1 1 At the code level, control dependencies correspond to the analysis of control flow structures
(if-then-else or goto statements).

1 2 I n a HOOD diagram an exception flow is shown by a line crossing the use relationship.
1 3 For the link of type implemented-by between HOOD objects exceptions are not shown in the

graphical representation.

CHAPTER 4. DESIGN ANALYSIS FOR HOOD 47

4o§ S nummary

HOOD is a complete design method. The HOOD notation and language support
designers in their task providing consistency checks of interfaces and defining arti­
facts to be produced. In this chapter, we have presented the structuring principles
of HOOD and how they can be used for the purpose of traceability within soft­
ware life-cycle artifacts, such as requirements, analysis, design or code documents.
This facility should ease maintenance interventions, in particular an interconnection
model supporting impact analysis would be beneficial in providing maintainers with
tools to automate and perform changes.

The classification of design dependencies in HOOD, which is proposed helps
in building the data-model to investigate artifacts. We classified dependencies into
three categories, which are functional, data or control. For each category, HOOD
concepts have been listed in order to show how the correspondance between HOOD
features and the proposed classification. Indeed, the HOOD design method can
describe both architectural, structural and dynamical aspects of a system. However,
we deliberately restricted our study to architectural and structural aspects in order
to master the problem. Investigating issues like related to real-time system would
have possibly required a more complex data-model and approach which are presented
in the next chapter.

Chapter 5

Am Interconnection. Model for
HOOD

In this chapter an interconnection model to analyse dependencies in HOOD doc­
uments is proposed. It consists of a data-model, which maps concepts existing
in HOOD and possible transformations of the design. The adequacy of the inter­
connection model depends on its ability to access fine-grained data and to trace
propagation of changes. This approach is the contribution of the thesis to the field
of impact analysis.

The considered approach and criteria to build a model are outlined in sec­
tion 5.1. Product and process views of the modelling activity are presented in
section 5.2 for the data-model and in section 5.3 for the activity model. The aim of
the interconnection model is to support impact analysis checking of design consis­
tency and propagation of changes resulting from design transformations. Heuristics
for those transformations and formal descriptions are presented for horizontal prop­
agation within HOOD artifacts in section 5.4.

48

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 49

Sol Modell ing H O O D

A software engineering approach to a problem entails proposing a model to system­
atize development of activities. This section defines criteria to validate our approach.
A conceptual model is presented describing the rationale for modelling HOOD with
an ERM representation.

5.1.1 Cri ter ia for Modell ing and Validation

The main objectives of the model are to perform design and change analyses. A sys­
tem may be investigated for different purposes, but we focus our study on checking
design consistency and validation of transformations. Thus, the rationale for Mod­
elling HOOD is outlined. For any kind of software engineering activity, criteria for
modelling and validation are concerned with the adequacy of the proposed solution
to the given problem 1 and the complexity and level of the notation of the proposed
solution-model. Specifically for our approach such criteria are stressed below.

Rationale for Modelling H O O D . HOOD is used to specify a system from ar­
chitectural to detailed design phases. Emphasis is put on architectural (hierarchical
decomposition, information hiding) and behavioural (control structuring) aspects 2 .
Thus, a software system is analysed at a high level of abstraction (early phases of
the life-cycle) and HOOD provides information at a coarse grain level (object inter­
faces mainly). Detailed analyses cannot be conducted by investigating only HOOD
artifacts, which consist of graphical (HOOD-diagrams) or textual descriptions (ODS
documents). Therefore, it is necessary to apply other techniques, which are able to
consider finer grained elements, in particular data aspects.

Mapping Concepts. One of the criteria to build our interconnection model con­
cerns its ability to map concepts of the real-world. Thus, this model must support
validation of design rules and principles. HOOD determines rules, such as for op­
eration usages or organization of objects. Design principles refer, for example, to
laws presented by Kafura, which determine the correctness of design artifacts. The
rational of the model refers also to types of transformations supported. In our study,
functional changes (e.g., modification of the organization of objects) are considered.

Complexity of the Solution and Notation. Similarly, criteria concerning the
solution proposed are crucial factors. It concerns the complexity of the solution
model, in terms of types of relationships and entities existing, or heuristics for
propagations. Another aspect relates to the granularity of the solution and the

1 I n other words, it corresponds to the ability of the solution-domain to map concepts of the
real-world.

2 H O O D design principles are presented in section 4.3.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 50

Real-World Modelling-World

HOOD-Method E R M Model

Modification

Phase A
Abstration

Modification

Phase C

Validation Validation of the

Enhancement

Phase C

Validation Validation of the

Enhancement

Analys i s , Propagat ion

Phase B

Automatisation

Proposi t ion of Impacts

Figure 5.1: Modelling HOOD

support of accessing fine-grained data, such as a single attribute or a small piece of
contents of an artifact. I t also refers to the choice of the notation. I t would have
been possible to use different notations in the present interconnection-model. Since
the Entity-Relationship-Model (ERM) described by Chen [18] in the early seventies
seems to be the most appropriate model for data-oriented aspects of a system, we
will adopt this notation 3

5.1.2 A Conceptual Model

The purpose of impact analysis is to predict direct and indirect effects of a
change. Our approach (figure 5.1) consists of transforming a problem expressed in
the real-world (HOOD model) into the modelling-world (ERM model). Once this
has been achieved, the impact propagation can be automated and finally results
obtained can be "re-transformed" in the real-world to assess the modification.

o Phase A: Abstraction
Modifications to be undertaken on the system, modelled with a HOOD de­
sign, are transformed into an ERM representation. The accuracy of such

3 The E R M notation is ease to use and widespread among software engineers, and can be demon­
strated to users without necessarily requiring prior software knowledge.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 51

source
> Entity Relationship

destination

has has

Attribute

Figure 5.2: Semantics of an ERM representation

transformations depends on the completeness of mapping concepts from the
HOOD-model to the ERM-model (syntax and semantics aspects) . Therefore
a classification of design dependencies in HOOD is proposed (section 4.4).
I t points out three categories of dependencies: data, functional and control
dependencies. In an ERM representation those three views can be supported.

o Phase B: Impact Propagation
Since our model is used to perform impact analysis i t must comply with syntax
and semantics defined by the HOOD method. Entities and relationships have
been built on the analysis of the Object Description Skeleton (ODS) document.
Moreover, as presented in the next section, HOOD-rules to propagate changes
have also been mapped into the model.

o Phase C: Validation
Results of the impact analysis provide system designers and maintainers with
useful information. In the modelling-world discrepancies or impacted elements
are found and have to be expressed in the real-world. The validation of the
model then consists in accurately reflecting the changed requirements.

5,2 A Data Model Expressed in E R M

This subsection explains how the HOOD data model has been extracted from the
study of the design method, its construction rules and also its syntax which is
presented in a BNF form [40]. Key points of our interconnection model are to map
HOOD concepts and rules to control changes.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 52

object <* HOOD_product file name.hood

id.ha id.includes

HOOD Obi
id.uses obi

HOOD ODS d.conta .contained by .described by text

i\.defined_by
interlace OBCS .controte Id .defines

.provides I d by .dynamicpart

8
Provded IF Operation id.stati .has dataflow

Dataflow .describes op

Required IF OPCS
id.requires IF id.uses op

links entity

= 0 cardinality many

relationship -with cardinality one

Figure 5.3: HOOD data-model

5.2.1 H O O D Concepts in E R M

The analysis of sections described in a design document (ODS) has formed the basis
of building the data-model [33]. Therefore entities like ODS, Object, Operations,
Interface (and its subtypes ProvidedJF, RequiredJF) OBCS, OPCS, Dataflow can
be found. The data-model consists of entities, but also of relationships (i.e, links),
which should support design principles described by the HOOD method. There­
fore use and include for objects and implemented-by relationships for operations
have been preserved and named accordingly. The ERM notation is illustrated on
figure 5.2. Base on this notation, we propose a data-model 4 depicted in figure 5.3.

4 I n P C T E , E R M constructions are supported using SDS -Schema Definition Set.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 53

HOOD.ObJ

Operation

Proui<ted_IF

K3 Interfcco

objeot HOQD_produot

H0OD.0BS

OBCS

F i l e 0PC8

Dataflou

Figure 5.4: Subtree of HOOD data-model

To achieve information hiding, links to interface and the operation attribute
operation-type have been designed. Control structuring principles are supported by
the OBCS entity (for control-flow) and attributes operation-status for operations,
respectively the attribute object-status for objects. Hierarchical decomposition of
objects is supported by the relationship include and the attribute object-type.

In order to support propagations on the data-model several links have been
added such as a relation between provided and required interfaces capturing the idea
that there are complementary pairs of provide and require operations. Moreover the
relationship used-by/uses-op between operations 5 supports fine grained propagation.
In this interconnection model, dataflow has been expressed as a separate entity to
ease for transformations on objects, 'redirection' of flows for each object. Finally,
cardinality issues have been easily supported by the data-model by using the ERM
notation (SDS tools in PCTE). For example, a single cardinality shows than an
ODS may have several OPCS(s), but only one OBCS. Similarly, one interface is
containedLby only one object when one object can contain several interfaces (one for
each operation) according to our design.

5.2.2 Description of the HOOD Data Model

The model has been specified using the ERM notation proposed by Chen [18]. It
consists of an ERM diagram represented in a graphical or textual form collecting

5Semantics of used-by/uses-op relationships for operations and used-by.obj/uses.obj relation­
ships for objects are equivalent.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 54

l.L<>

Lyi,„ ..„...-...
| S nana

|ft'Jp^^fe-iM^j*
I B object tapo
B oporation_status
[B Of>er-ation,tape

Figure 5.5: Attributes of HOOD data-model

entities and relationships. Entities are ordered into a hierarchy defined in a subtree
(figure 5.4) and are 'qualified' by attributes (figure 5.5). The model contains ten
types of entities and approximately twenty types of relationships. Therefore types
of links and operation attributes have been carefully chosen with a set of attributes
to 'qualify' an entity.

Following is a complete description of entities, relationships and attributes 6

contained in the data-model. Object and Operation entities, which are the central
part of the proposed model are further detailed, and a textual description is given.

Al l diagrams, figures 5.3, 5.4 and 5.5 have been produced by PCTE-Emeraude.
Therefore the syntax and semantics they convey are on some points different from
the general ERM model. It is advised to ease the understanding of those figures to
refer to the next subsection 5.2.3.

1. O D S -Object Description Skeleton- and HOOD_product Entities
A system is composed of several objects, in particular a root-object. By def­
inition, this object (entity HOOD_product) is decomposed further in objects
so building the HOOD design tree. Each defined HOOD-object is described
in a textual form contained in the ODS entity. The case study (chapter 6)
consists of several ODSs, one for each design object described in the system
-see appendix 3.

2. Object Entity
This corresponds to a HOOD-object that is described in a textual form (ODS)
and in a graphical form (HOOD-diagram), As it can be shown on figure 5.3, the
current implementation of our data-model does not record HOOD-diagrams
(objects of type graphics) in such in the database. Those elements are con­
sidered to be simply rebuilt from the ODSs (objects of type text) if necessary.

6 For attributes possible instances are given in parenthesis.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 55

HOOD_Obj : subtype of object ;
Attributes
name : s t r i n g := "" ;
object =type : boolean := f a l s e ; [terminal =1, non-terminal =0]
o b j e c t = s t a t u s : boolean f a l s e ; [passive =1, ac t i v e ~0]

Relationships
includes : composition l i n k (id) to Many H00D_0bj ;
included_by : i m p l i c i t l i n k to H00D_0bj ; /^recursive r e l a t i o n s h i p * /

uses_obj
used_by_obj

defines

contains

reference l i n k (id) to Many H00D_0bj ;

i m p l i c i t l i n k () to H00D_0bj ; /*recursive r e l a t i o n s h i p * /

composition l i n k (i d) to Many Operation ;

composition l i n k (id) to Many Interface ;
described_by_text : composition l i n k to H00D_0DS ;

end HOOD.Obj

Key f o r fi g u r e
[]
() to Many

instances of a t t r i b u t e s
c a r d i n a l i t y of l i n k s

Figure 5.6: HOOD Object Entity in Textual Form

An object is characterized by the operations i t defines, its state and inter­
face. The interface describes the visibility towards other objects according to
construction rules. An object is denoted (i.e., de-referenced) by a name and
is qualified by the attributes object-status and objecLtype. Finally, an object
may use or include other objects, section 4.3 - Information Hiding.

3. Operation Entity
Operations can be provided, required or internal to an object. This is sup­
ported by the attribute operation-type, which may have two instances, internal
or external. Internal operations have been designed as operations defined by
an object, but without any providesJF links. The attribute operation-status
implements the fact that operations are constrained or non-constrained. The
static part of an operation is defined in the OPCS and its dynamic part in
the OBCS (for constrained operation only). An operation may require for its

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 56

Operation : subtype of object ;
Attributes
name s t r i n g := "" ;;
operation =type : boolean := f a l s e ; [i n t e r n a l =1, external =0]
operation„status boolean :- f a l s e ; [constrained =1, non-constrained s 0]

Relationships
uses_op : reference l i n k (i d) to Many Operation ;

used_by_op : i m p l i c i t l i n k () to Operation ; /*recursive r e l a t i o n s h i p * /

is„implemented_by : reference l i n k to Operation ;

implements : i m p l i c i t l i n k to Operation ; /^recursive r e l a t i o n s h i p * /

provides_IF : reference l i n k to Provided_IF ;

re q u i r e s _ I F : reference l i n k (i d) to Many Required_IF ;

end Operation
Key for f i g u r e :
[] : instances of att r i b u t e s
() to Many : c a r d i n a l i t y of l i n k s

Figure 5.7: Operation Entity in Textual Form

implementation operations provided by other used objects {usesJ)y/uses„op
relationship). It may also be renamed if it is implemented by an other object
{isSmplementeAJay/implements relationship 7) .

4. O P C S -Operation Control Structure - Entity
Each operation of the object has an operation control structure (OPCS) defin­
ing in detail parameters and logic of the operation.

5. O B C S -Object Behaviour Control Structure- Entity
This entity is defined for active objects only. An object may be controlled by
one and only one OBCS (relationship controls). I t is related to the internal
state of the object, in particular for synchronization constraints and control
sequencing (i.e., control-flow).

6. Interfaces
7 The transformation rename in HOOD is mapped in our model by the relationship

is-implemenied-by/implements.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 57

The data-model is designed so that to each provided operation of an object
corresponds an interface. An interface defines the signature of an operation
and an operation can provide an interface or require several interfaces. As
shown on the diagram, figure 5.3 in the PCTE-ERM notation it corresponds
to the Reference links, noted R . The provided interface of an object is the union
of the provided interfaces of its operations, resp. the required interface of its
required operations. On figure 5.3, this is depicted by the Composition links,
noted C . To distinguish between provided and required interfaces for objects
and operations, we designed two subtypes Provided J F and Required J F of the
type Interface.

7. Dataflow
An object is composed of in/out dataflows. A dataflow may be the param­
eter of several objects, reciprocally one object may have several dataflows.
A dataflow must be linked to an object and not to an operation because by
definition in HOOD it is accessed by dereferencing objects.

5.2.3 Benefits and Limitations of P C T E for the implemen­
ta t ion

P C T E Notation for Entity Relationship Diagrams.

Figures 5.3, 5.4 and 5.5 are produced by the PCTE-tools plateform we used.
PCTE supports the ERM notation. Thus, boxes correspond to entities (objects
types) and connections to relationships. Concerning, cardinality different types can
be represented in the graphical form of the data-model provided by PCTE-tools:

- cardinality 1:M (one-to-many relation), if the source entity is connected to many
entities of the target object type,

- and cardinality 1:1 (one-to-one) , if the source entity is connected to only one
entity of the target object type.

Under PCTE-Emeraude, tools indicate the cardinality only on the graphical
documents and not in the textual descriptions produced by the database. Thus, it
has been added in order to improve the readability of the data-model. Similarly, for
the instances of attributes which are is reported in brackets on figures 5.6 and 5.7.

Concerning the type of links available under PCTE, i t exists three types, which
are: C for composition, R for Reference and I for Implicit. Under PCTE relation­
ships are bi-directional links. Several types of relationships can be used according
to the semantics the designer puts into the diagram: (R , I) or (C , I) .

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 58

In PCTE entity may be ordered in a type hierarchy represented in a subtree, fig­
ure 5.4. As described below the types HOOD-object, Operation, Interface, HOOD-
Product and HOOD-ODS inherit directly from the built-in PCTE type object. In
the design of the PCTE database the PCTE type file is a subtype of object. The
type file may record a content. This is the reason why the defined entities OBCS,
OPCS and Dataflow are designed to inherit from the built-in type file. Inheritance
links are only indicated by looking at the subtree and not in the HOOD data-model.
However the type file is indicated in this last figure 5.3.

How to avoid implementation problems in P C T E improving the SDS

Savoia [75] presents a different SDS modelling HOOD. Use relations are de­
signed as separated entities which connect either objects {uses.by.obj/usedrelation)
or operations {usesJby.op/used-op relation). Such a model has the disadvantage
firstly to convey a too fine granularity (which is not required), secondly to assume
that semantically use relations between objects and operations are similar 8 and
finally to input inconsistencies on the repository. Indeed ordered links cannot be
supported by PCTE. It means that it is not possible to impose an order to the links
of a given type that enumerate from an object. Hence this order information has to
be maintained by tools the author proposed to use string attributes to store the key
of the links in the proper order. This duplication of information is of course some­
how a weakness of the implementation. Therefore our design proposes to record
those use relations as links to the corresponding entities. The three weak points
previously enumerated are then avoided.

5.2.4 Classification of H O O D Rules and Constraints

Different rules exist for objects, operations or on link types (e.g., use or include
relationships between objects). Those rules cover syntactical and semantical aspects
of the design method. Moreover, a set of rules can be expressed to support checking
of design consistency. Our approach consists of classifying those rules into three
categories (table 5.1 and Appendix 1 - HOOD rules) and of proposing for each
category a tool supporting the checking mechanism on PCTE.

Class 1: This class describes syntactical constraints. For example, rule ol (Ap­
pendix 1) expresses that 'an operation is either external (i.e., is in the provided
interface) or internal1.

Class 2: This class groups abstract and dynamic constraints such as rule ol6 'an
object cannot have both internal objects and internal operations'. This rule
checks that if the object is non-terminal i t does not define internal operations
and reciprocally that if the object is terminal it does not include child-objects.

8 This should be proved mathematically using for example commutative diagrams [46].

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 59

Category
View

Class 1
Syntax

Class 2
Semantics

Class 3
Design
consistency

Transformations

Conceptual
View

ERM notation semantics semantics heuristics, con­
straints

Environmen
View

PCTE
repository

Hoodchecke; Hoodchecker Hoodmodifier,
Hoodchecker

Table 5.1: Types of constraints/transformations and related support

Class 3: This class corresponds to checking design consistency. For example, if rule
c5 is not verified an error message is given to designers indicating that the
design must be changed. On the opposite, rule c6 produces a warning since a
design providing operations that are not required is a source of discrepancies.

Classifying rules into categories is useful in particular to undertake the devel­
opment of several modular tools. These tools which have been developed in the
context of this thesis are outlined in section 6.1.

5cS A n Ac t iv i t y Model for Impact Analysis

Activity models presented previously (section 2.2.2) have shown weaknesses in sup­
porting activities for performing impact analysis. Therefore, we propose a new
model described in this section and illustrate it with a case study (chapter 6). The
proposed model helps us to understand and formalize different technical activities
involved in impact analysis. It consists of four steps, namely: decomposition of the
initial change, modelling the change, tracing the impact and assessing the impact.
This activity model, depicted in figure 5.8, is an extension of the conceptual model
since step 1 represents phase A, steps 2 and 3 corresponds to phase B and step 4 to
phase C.

o Step 1: Specifying the Change
The change to perform is explained and specified in a free text form called 'the
change proposal'. It describes the dynamic aspects of the change, but does not
specify it in terms of system's specification or code elements. This step veri­
fies the accuracy and completeness of the information in the change request.
When looking at the change request it should be determined whether the de­
scription is clear and concise. The change is translated into the terminology
of the system (i.e., using terms defined by maintainers and understandable
from the users) to minimize mis-understanding. Moreover expected effects of

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 60

the change, which may occur are also described. According to its granularity
and complexity, the in i t ia l change may be decomposed into sub-changes, thus
providing a better understanding of the problem. Each sub-change may be
analysed separately.

o Step 2: Model l ing the Change
The change is matched to the data model (expressed in E R M) , which describes
the system. A t the end of this step the in i t ia l set of items directly affected by
the change are determined in terms of entities and links.

o Step 3: T r a c i n g the I m p a c t
As a consequence of the in i t ia l change, unexpected ripple effects as changes
in the system occur. The goal of this step is to detect them according to
the type of propagation investigated. Different algorithms and heuristics for
propagations may be proposed. Our study present for example one heuristic for
propagating changes among entities of type 'HOOD-operat ion' in section 5.4.3.

o Step 4: Assess ing the Impac t
Results on objects and relationships are translated back into the context of
the original change. Moreover, the scope and complexity of the requested
change are documented. This includes a description of affected software com­
ponents (modules/units, configuration items, databases) and documentation.
The complexity of the change is also reported, regarding the relationships
between impacted components.

This act ivi ty model mainly addresses technical issues. I t does only deal w i t h
one change at a t ime. Therefore, an extension of our method could be to group sev­
eral changes together and to schedule a maintenance intervention once each change
has been specified and modelled (step 2). To support steps of the act ivi ty model,
the following section presents different types of design modifications in HOOD and
related heuristics (steps 1-2-3). Finally, horizontal propagations and benefits of the
model for assessing impacts are explained (step 4).

Objects and operations can be modified in many ways. Such types of functional
changes are investigated in this section. Finally, the thesis focuses on one type of
transformation, presenting i n detail its heuristic and assessment.

5 o 4 Horizontal Propagation

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 61

Change Validation

Ana lys i s en r r n i i r o «wwmm*tw«

(S B O H 5 l = f U 9 9 C = 3

Step 2: Modelling iho Change

Quu-rcfcrcuti&i M&p

Starting Impact Set

Step 3: Treeing the Impact

Impacted Relationship Types

TYsccsbUity

u r n s '

Ending Impact Set

Step 4: Assessing ifao Impact

Impact Pubs

Analysis

Real-World (HOOD)

Modelling World (ERM)

Key:

Informstlon Flow

Artifact

t 1' Activity

Figure 5.8: Impact analysis activity model

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 62

5.4.1 Design Checking and Types of Transformations

Our approach consists both wi th in HOOD artifacts of checking consistency of the
design to detect anomalies and also consecutively to a transformation to evaluate
the possible impacts.

Design Check ing . I t corresponds for example, to determine the usage of opera­
tions. A n operation may have different states, such as: defined, provided, required
or used. Thus, the following anomalies or discrepancies may occur 9 :

1. Anomalies occur if an operation is required, but not provided, or not denned
(un-defined states).

2. Discrepancies are detected if an operation is provided, but not required (un­
referenced state), or if an operation is required but not used (un-used state).

T y p e s of Transformat ions . Several types of transformations may be required for
objects and operations.

o O b j e c t Modif icat ion. The level of objects i n the hierarchy may be modi­
fied, such as by promoting or delegating objects. A n object may be split into
two objects, or two objects may be 'merged' or ' imported ' in a single one.
This last type of modification must preserve services denned in the interface
and provided by in i t ia l objects. Two cases may appear. The two objects are
'merged' in a single one such that the interface of the resulting object is a fold­
ing of the two in i t ia l interfaces. We call this transformation 'merging objects'.
The signature (defined in the interface) and implementation parts (defined in
the body) of operations are unchanged. In the second case, operations may
be rewrit ten, which means that the signature of provided operations is not
changed, but the body part of those operations is changed and encapsulated
in the new object. Since for this transformation, operations defined in in i t ia l
objects are changed, we call i t 'importing objects'.

o Operat ion Modif icat ion. Operations may be modified, added or removed.
Similarly to objects, an operation may be split into two operations, or two
operations provided by an object may be 'merged' i n a single one.

Heuristics have been designed such as for merging objects or operations. This
last type of transformation and the support provided by our tool Hoodmodifier de­
veloped on the P C T E pla t form are outlined in subsection 5.4.3. Those heuristics
for describing transformations on H O O D artifacts are outlined below:

9 I t is advised to refer to subsection 3.2.2, Study on Variable Usages, for an analogy at the code
level.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 63

o Merg ing Operat ions . Two operations can be merged in a new resulting
operation i f they belong to the same terminal object. Those operations can­
not be implementecLby other operations. Their attributes (operation-status
and operation-type) must be of the same value otherwise an error or warning
message arises.

o Merg ing Objects . Two terminal objects can be merged i f they belong to
the same parent object. Their attributes (object-status and object-type) must
be of the same value otherwise an error or warning message arises. For those
objects the former interfaces are folded into the new interface of the resulting
object.

I t should be noted that transformations where more semantics is required, such
as split of operations or objects, promoting or delegating objects, can only be par­
t ia l ly automated (i.e., close interaction w i t h the user is necessary). Such modifica­
tions are beyond the scope of this thesis.

5.4.2 Assessing the Impact

This sub-section presents impact assessments illustrated by an example . In the
following, a modification to an operation and consecutive direct and indirect impacts
are described.

In H O O D , changes may be analysed at different levels. A t a coarse level, the
textual description, as defined in the ODS of the object to change, provides infor­
mation concerning provided/required interfaces. A t a finer grained level, looking at
the internal implementation of objects -described in OPCS and OBCS structures-
helps to trace changes at a detailed level. Different guidelines and constructs may
be used to investigate the propagation of modifications, and is described below.

o Analysing direct impacts consists of checking operation attributes and mod­
ification of the object behaviour 1 0 . I f an operation provided by an object is
modified, i t affects the object containing i t . For example, adding an operation
of type constrained to an object changes its dynamic behaviour (i.e, defined in
the OBCS). I f this object was previously passive, i t becomes an active object.
HOOD rules also check use relationships between objects to avoid cycles and
also to respect dynamical aspects of the design (i.e, an active object shall not
be used by passive objects).

1 0 According to H O O D it defines the execution model of the operations defined in an object, i.e.
the control-flow.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 64

o Analysing indirect impacts consists of analysing operations by using the mod­
ified operation. Different types of propagation may be used to investigate
modifications. In this thesis, we use an object-operation cross-table, which is
issued f r o m the analysis of provided/required interfaces and of OPCSs struc­
tures, indicating used/using operations (Appendix, Figures A 3.6, 3.7, 3.13).
The analysis of OPCSs determines provided/required pairs. Firstly, through
the analysis of this table i t is possible to trace objects affected by the change
and to f ind out connections between operations and therefore between objects.
This reproduces the 'call-graph' of operations. The table matches the calling
operations (i.e., callees) displayed on the rows and the operations called on
in the columns. Anomalies presented in previous sub-sections are detected
looking at the usage of operations.

5.4.3 Heuristic for the Transformation 'Merging opera­
tions'

A heuristic has been designed, which consists of verifying pre-conditions to perform
the transformation 'Merging operations'. These conditions are mathematically de­
scribed, using set theory and are depicted in figure 5.9. Once the transformation
has been done, post-conditions should be satisfied.

Pre-condit ions .
-Let opi and opj be two operations defined by the same object (obj) .
-Let Si and Sj (resp. S1,- and SJ) be the sets of operations having incoming 1 1 (resp.
outgoing 1 2) links w i t h opi and opj respectively.
Then, for the transformation 'merging operations' (symbol: V) between op, and
opj pre-conditions are defined as follows: op, and opj can be merged into a new
operation opi V opj I F F
- opi and opj are definedby the same terminal object [constraint on defines l ink and
rule 016],
- opi and opj have no isJmplemented-by l ink 1 3 [rule 010],
- opi and opj have identical values for attributes operation-status and operation-type.

Steps for the Transformat ion 'merging operation'. This consists of the three
following steps:

Step 1 : U p d a t e of entity attr ibutes . Attr ibutes values of op,- V opj are defined

1 1 For operations, incoming links refers to use<Lby.op and required-by links.
1 2 F o r operations, outgoing links concerns uses.op and requires-IF links.
1 3 F o r this transformation isJmplemented-by/implements links do not apply to operations since

the object must be terminal.

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 65

(i)

S i

A-
op l

11

!VS> S I
(2)

(3)
S i U S j

* ..—
op i v op j

S i ' U S j '

(?)

a)
§ j

V.
.PPJ

s y
(2)

incoming links

outgoing links

Figure 5.9: Defini t ion of constraints on incoming/outgoing links

as follows: for operationstatus i f op; and opj are both non-constrained 1 4 then
the corresponding at tr ibute value for op, V opj is non-constrained else i t is
constrained. Similarly, for operation-type a t tr ibute i f op, and opj have the
same operationJype value then for opi V opj this at tr ibute also has the same
value.

U p d a t e of l inks. For the new enti ty op, V opj of type operation corre­
sponding relationships are created: between operation and object types (de­
finedJoy/'defines relationships) and between operation and interface types (pro-
vides-IF/providedJby relationships).

Step 2 : 'Redirect ing' incoming/outgoing links. Links connected to the for­
mer entities op,- and opj w i l l be replaced by links to the new enti ty opi V opj.
Beyond pre-conditions, at this stage intermediate conditions must be sat­
isfied during the transformation. I t consists of constraints to avoid duplication
of incoming and outgoing links and constraints to avoid cycles between oper­
ations 1 5 .

Definit ion of intermediate conditions on incoming/outgoing l inks

op, V opj has incoming links in Si U Sj and has outgoing links in S[U Sj

i f f jBopk so that opk has incoming links in 5, U Sj

and opj. has outgoing links in S[U S'jConstraint (3)

I n particular, opk V op* = opj. i f opk has incoming links i n 5, f l 5 j a> (resp. if

1 4 Notions of constrained/non-constrained operations are defined in section 4.2.
1 5 Duplicat ions of incoming (resp., outgoing) links refer to constraint (i) (resp., constraint (2)) and

avoiding cycles refers to constraint (3) .

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 66

- 0-oH>
merge obj merge op

0 - q H > — (H=&-t>
merge obj & op

Key for Diagram:

entry-point

transformation
/ •••• pre-conditions

•" repository-update
exit-point

post-conditions
intermediate-conditions

A—>•

Figure 5.10: Network of transformations

opk has outgoing links in S1,' f l S'j constraint (2)) . Note that for constraint 3 i f
Sj = S'j = 0, Si n SI = 0 holds. • .

Step 3: R e m o v e former entities. Entities of type operation (opi and opj) and
corresponding relationships (same as for step 1) are deleted f r o m the object-
base.

Post-condit ions. Those conditions must be satisfied on completion of the trans­
formation. Respectively, the transformation is val id I F F HOOD rules (Appendix
1) are s t i l l verified i n particular for objects (rules C l , C7), interfaces (rules C4,
C8) and operations (rules C5, C6, C9). Intermediate conditions are reported in the
post-conditions (i t concerns C l l for operations).

In conclusion, i t is necessary to recall that pre-conditions must be ful f i l led to
perform a transformation. Moreover, our heuristic consists of intermediate condi­
tions that controls possible cycles between operations due to the merging of links.
Post-conditions which should be satisfied have been listed. The heuristic for 'Merg­
ing objects' is similar to the heuristic for 'Merging operations' and figure 5.10 illus­
trates how such transformations can be combined in a network.

5 o 5 Summary

In this chapter, a conceptual framework is presented to support checks i n H O O D
based designs and describes a way to keep HOOD diagrams in agreement during edit-

CHAPTER 5. AN INTERCONNECTION MODEL FOR HOOD 67

ing. Several heuristics describing possible transformation have been designed such
a for merging H O O D objects or HOOD operations. However, other transformations
possible in a H O O D document cannot be supported yet by our tool development
since they would require a much complex underlined model, i n particular concerning
the data-model.

For the purpose of tracing relationships among design elements, we proposed
an interconnection model defined using the Ent i ty Relationship notation. This
model extracted f rom the study of conventional H O O D documents (HOOD ODS
and H O O D diagrams) has been designed so that its complexity was easy to master
and that i t really could map concepts of the real-world, i.e. concepts present in
H O O D designs. The aim of our study is to control and predict ripple effects during
the change process. Therefore an activity model, which supports the process and
product view of impact analysis activities is outlined.

Thus, a user who has to develop and maintain HOOD documents could pick-up
the data-model and the activity model we proposed to support in his/her work.
I n the next chapter, we present indeed a case study to illustrate how this can be
performed. H O O D diagrams can be recorded in the P C T E object base thanks to
the E R M notation we choose and that is supported by P C T E . This repository is
then helpful supporting the tracing among elements of the object-base consecutively
to a transformation.

Chapter ©

Case study for MOOD

This chapter illustrates the interconnection model presented previously. Section 6.1
outlines the tool development conducted to implement and validate our approach
using a repository called P C T E (Portable Common Tool Environment). A series
of tools is proposed to support the users (i.e., the maintainers) in this task to con­
duct design analysis and design transformations. Section 6.2 describes the Aircraf t
Engine Moni tor ing System issued f r o m a large industrial project. Finally, in sec­
t ion 6.3 several types of changes are performed and results provided by the tools are
explained.

6.1 Tools Support for Horizontal Propagation

Our approach consists of expressing a set of constraints at the design level (sub­
section 5.2) and of detecting errors/warnings corresponding to violations of those
constraints. Rules between design elements -Appendix 1- have been expressed that
can be used either to check design consistency or for a given modification to detect
direct and indirect changes consequently induced. Our approach has been validated
under a P C T E environment. The following paragraph is a brief introduction to
P C T E , while a complete description can be found in Bancilhon [9]. Benefits of
P C T E and comparisons w i t h other environments are also outlined.

Introduct ion to P C T E

The objectives of P C T E [26] are to implement basic utilit ies and working pro­
totypes of a Portable Common Tool Environment (PCTE) to support tool devel­
opment. P C T E has been developed since 1983 in the context of Esprit projects by
large software companies such as B u l l , Siemens-Nixdorf, GEC, I C L and Ol ive t t i .
Various prototypes of P C T E functionalities are available on the market. For our

68

CHAPTER 6. CASE STUDY FOR HOOD 69

study, we used PCTE-Emeraude on a Sun Sparc workstation. The Object Manage­
ment System (OMS) of P C T E implements the Ent i ty Relationship Model (E R M)
so that: entities are represented by typed objects ordered in a hierarchy and that
relationships are represented by bi-directional links. Objects may have a content (if
they inherit f r o m the object type file). P C T E is a repository, which is different f r o m
a relational data-base in the sense that the contents of objects have no semantics.
Another difference concerns the support of a version management system and the
possibility of defining several types of objects and relationships. P C T E is composed
of two layers, namely the meta-base and the object-base. The meta-base defines
types of objects and relationships in a Schema Defini t ion Set (SDS). Each tool has
a specific view of the object-base through the working schema, which is a set of SDS.
Objects i n P C T E are identified through their access path (i.e., Unix pathnames).
SDS are interpreted and not compiled. Thus modifying a SDS l imits the impact
on the actual repository. Moreover, i t provides a better integration between tools
accessing the same data-base.

Support ing Design Cons i s tency U s i n g P C T E Tools

To support such activities, tools can be used. The SDS tool easily supports
rules defined in the first category of constraints (table 5.1) since i t corresponds to
the syntax of links 1 . However concerning constraints defined in categories (2) and
(3), i t has been necessary to develop a tool under PCTE. This environment supports
several languages including Ada [30], C [29] and C-f + [27]. We have implemented a
prototype tool in C + + checking those rules, that we therefore called Hoodchecker.
A second tool called Hoodmodif ier and described below has also been implemented
for this thesis.

Benef i ts of Us ing P C T E to Support Design Transformat ions

The current version of the Hoodmodifier prototype supports under P C T E sev­
eral In table 5.1, the conceptual and environment views of methods and of the
developed tools are depicted. For each category of constraints/transformations re­
lated tool support has been indicated. The following paragraph details how tools
may support the checking of conditions and valid the transformation.

A design transformation is valid iff'pre- and post-conditions fixed by the heuris­
tic of the transformation are verified. Our tool development on P C T E has shown
that these conditions can be checked automatically on the P C T E repository. Sim­
ilarly, the heuristic presented in section 5.4.3 and composed of three steps can be
automated. For example, the steps for the transformation 'merging operation' con­
sists of sub-steps: sub-step 1 -Update of entity attributes, sub-step 2 -'Redirecting'
incoming/outgoing links, and sub-step 3 -Remove former entities.

1 F o r example, cardinality aspects are ensured via the category of links and existence of an
implicit reverse links.

CHAPTER 6. CASE STUDY FOR HOOD 70

If the transformation involves the user in step 1 for the definition of entities
and links for new entities 2 , the rest of the activity has been designed to be sup­
ported by tools. Thus in step 1 update of attributes is automatically performed. In
step 2 'redirecting' links is performed on the repository by Hoodmodifier verifying
intermediate conditions (figure 5.9). Finally, step 3 (removal of former entities and
links) also updates the repository without requiring any user interaction.

L imi ta t ions of P C T E to Support our D a t a - M o d e l and Transformat ions

For our tool development and implementation of the data-model, we used the
plateform called PCTE-Emeraude, which is based on the P C T E version 1.5. One
of the limitation concerns the modifications of the key for links without removing
the object. Once instances of links are removed from the database the key is not
re-calculated . This requirement is not supported by the ECMA-149 standard (2nd
edition-June 1993), neither implemented in P C T E Emeraude. Such a lack could
possibly lead to inconsistencies on the repository.

Moreover, since we did only have PCTE-Emeraude available and no other plate-
form implementing fully E C M A - P C T E requirements, we had to limit the flexibility
and extensibility of our data model. Indeed, conceptually E C M A - P C T E allows more
types of links than those available on PCTE-Emeraude. It is possible to define other
categories than Composition (C) , Reference (R) , or Implicit (I) , namely Existence
(E) and Designation (D). It also allows multiple inheritance of parent types.

6 o 2 The Ai rc ra f t Engine Moni tor ing System

This section presents a case study conducted to validate our approach experimen­
tally. Criteria for selecting an adequate example are explained and the case study
is described.

6.2.1 Cri ter ia for a Case Study

Different reasons have lead to the choice of the engine case study. Firstly, HOOD
strengths are in modelling functional, hierarchical and behavioural 3 aspects of a
software system. Our method addresses structural changes. Therefore the chosen
case study has to handle a system on the functional point of view and different
changes have to be performed such as functional changes (operations modifications)

2 I n the current implementation, the user inserts those elements in the repository via the tool
oms-browser.

3 Behavioural aspects refer to real-time issues such as task handling or exception resolution. It
is denned in the O B C S structure.

CHAPTER 6. CASE STUDY FOR HOOD 71

-v, # <f

water

1%H$r* tSFS*f ; BARQRAPHS
-AfSlog_Dlsplay —

Water

Fuel

MOTOR_

SENSORS

Push Buttons

^y^H^lS^i^^ Keyboard y

Key for diagram

s~ — changes issued from new requirements

environment object

Figure 6.1: Aircraf t Engine Monitoring System: Description

or architectural changes (modifications of object hierarchy). Secondly, to validate
the approach the example has to be simple to master and complete. The engine
system handles only few functionalities and represents an existing complete system.

I n 1981, the D T I 4 issued a report [25] the purpose of which was to give guid­
ance to practitioners of system design in Ada. The study examined in depth four
system development methodologies applied to the same problem, that of designing
an aircraft monitoring system. This D T I report has been made public through some
research publications [73]. For this thesis, we based our case study on this exam­
ple, adding our perspectives to a (simplified) system dealing w i t h a generic engine
system.

4 T h e D T I is the British Department of 1>ade and Industry.

CHAPTER 6. CASE STUDY FOR HOOD 72

stop_button start button sampling

I/O driver

Engine

data in

as

Timers

monitoring_frequency

Timers Driver

Key for DCFD diagram
^> data flow

data name (^actiorP) action external

= => =s> control flow
event name

external event

Figure 6.2: Aircraf t Engine Monitoring System: Context Diagram (bef. change)

6.2.2 Case Study Description

Sys tem Descr ipt ion

The engine system monitors an aircraft and has different inputs 5 and outputs 6 .
The engine uses also environment drivers Input .Output and Timers_Drivers. For
example, sensors are sampled by a signal sent f r o m the timers at a precise frequency.
Pushbuttons are used to start and stop the engine. The system is depicted on
figure 6.1.

Sys tem Before Changes

The engine system is analysed before modifications. Analysis and design doc­
uments have been produced by the development team Data Flow Control Flow
Diagrams -DCFDs- and H O O D diagrams (figures 6.2, 6.3 and 6.4). I t shows the
objects composing the engine system represented at three levels of hierarchy:

- a parent object engine,

- decomposed in children objects Controller, Bargraphs and Motor-Sensors,

s I n p u t hardware interfaces correspond to start, stop and reset pushbuttons.
6 O u t p u t hardware interfaces are represented by bargraphs and analog-Display objects.

CHAPTER 6. CASE STUDY FOR HOOD 73

EE •"StarT
ymonlferina/

forDCFD monltoringjreq start MIOHMt momtorin dataflow data narrtd
^ — - V j
(startsensorf=>

store sensor start
/ start sensor i = n = >

< o control flow
event name

(Tainit ^

V
I external

^ S w i t c h j

X
ainit externaJ event / Switch

stopbutton Dunoi
monitoring start button

=V Controller i (^ S w i t c h J

3E:
bargraphstatus analoastatus

Switch
Stop

decompose 8
" " ^ ^ S t a r t J)

„ - i r V i o r
decompose Start

bargraph_status monltonnofreq
in Monitor X .•decompose 1 Timers Driver

sampling S.lnit
C Set color JL_-> eg color value Set color select color

Acquire f Sensors
c = ^ S . S t o p ^) S.Stop value

bargraph status valu data out
Display

sensor buffer Sample Show value
da ut data in Flash

2 _ i 9—9 data out analoastatus I/O driver sensor buffer

Figure 6.3: Aircraf t Engine Monitor ing System: D C F D (bef. change)

- using services provided by environment objects Timers-Driver and IO-Driver.

The Controller object is an active object, which has been designed to provide a
number of operations start, stop, monitor. I t requires several operations (init, dis­
play, . . .) and has internal operations. The object controls the acquisition and display
of values. To this end i t uses the following objects: MotorJSensors object, which
samples 7 the engine values (fuel, o i l , water); Bargraphs 8 , which displays values
on a Bargraph in normal mode, except i f an error occurs (e.g., sensors disfunction)
switching then the displayed values to a red flashing mode. Since environment ob­
jects refer to hardware components (i.e., handling interruptions) they are designed
as active objects.
Although the proposed model is simple, in total the E R M representation of the sys­
tem is composed of over 150 links and 50 ERM-entities collected in the data-base
(i.e., in the implementation system under P C T E an entity refers to a P C T E object).

7 T h e samples operation is constrained and executed when the signal sampling-frequency arises.
8 T h i s object is passive providing only non-constrained operations.

CHAPTER 6. CASE STUDY FOR HOOD 74

mgine

ASERJw IT
jsnButtt start pushbutton

ASER_by IT
stop pushbutton

ASER_by_tT
Timer 1Hz

Controller

Monitor

value

Bargraphs

Inlt
Display
Set_color
Switch
Flash

^ data_out

disfunction

Display_frequency

^ value
sensor_waming

\ASER by IT
fimer lOHz

value

Motor sensors

Inlt
Sample
Acquire
Stop

T Z
Analog_Display

lnit_analog

Show_value

lnput/Output_Driver

data in

3 disfunct 3n

^ data_out J

• \ . disfunction J r " T , /
ut Driver r

p T i m e r s
D r i v e r

Key for HOOD diagram

uses object
£ > is_implemented_by operation

data flow
exception flow

trigger

Figure 6.4: Aircraf t Engine Monitor ing System HOOD Design (bef. change)

6»3 Investigation of Changes

This section describes different changes investigated w i t h the aircraft engine mon­
i tor ing system (subsection 6.3.1). A t the design level, impact analysis can be used
for two purposes, namely : checking the design consistency (i.e., before any changes
a system is statically verified) or validating the transformations. This is outlined in
subsection 6.3.2, respectively subsection 6.3.3.

6.3.1 Case Study and User Change Requests

The in i t ia l engine system is transformed and several changes are performed on ob­
jects and operations. Ini t ia l ly , the Bargraphs object defines the operations Init,
Switch, Set-color, Flash and Display. Followings changes are performed on objects
or on operations.

file:///ASER

CHAPTER 6. CASE STUDY FOR HOOD 75

Nb Type of transformation set of operations before set of operations after

1 merge_op, mergcob j In i t + In i t .analog In i t

2 spl i t jop Switch Switch_On, Switch-Off

3 mergejop Set.color + Flash Set_color_Flash

4 preserve_op Display Display -

5 adding_new_op — clearscreen

6 mergejobj Show_value show_value

Table 6.1: Transformations applied on operations denned by Bargraphs object

- A new constrained operation reset 9 is added to the parent object Engine. I t

results by adding the operation clearscreen to the Bargraphs object 1 0 .

- Bargraphs and Analog_display are merged into a single object called AnalogJDisplay.

- For the Bargraphs object, operations are merged or splited. For example, Set-color
and Flash operations are merged in a single operation called Set-color-Flash.
On the other hand, Switch operation is split into Switch-On and Switch-Off
operations. Display operation is preserved, in the sense that i t is not changed.
Those transformations are summarized for the Bargraphs object in table 6.1.
Operations that result of the 'merging' of Bargraphs and Analog-display objects
are underlined in table.

Note that by definition of our heuristics for the 'merging' of operations defined
by different objects is not allowed. However, following the merging of two objects
corresponding operations can thus be merged. This is the case for the operations
Init-analog and Show-value defined by Analog-display. As a result, to the merging
transformation of Bargraphs and Analog-display, operations Init and Init-analog can
be merged into a single operation (transformation # 1 , table 6.1).

S y s t e m A f t e r the Changes

After the changes have been carried out Bargraphs defines the following set of
operations: Init, Switch-On, Switch-Off, Set-color.Flash, Display, Clearscreen and
Show-value. Updated versions of analysis and design artifacts describing the system
are produced. I t consists of DCFD and HOOD diagrams (figures 6.5 and 6.6).

Execution mode is A S E R - A Synchronous Execution Request.
Clearscreen implements the functionality of the parent operation reset.

CHAPTER 6. CASE STUDY FOR HOOD 76

c\£lear_screenJ Key
IS9SC9S

forDCFD lear screen
dataflow B.lnlt data name data out

i O control flow
event name s C=t Bargraphs X = 8»P •

Switch On
external event

i
store

stop button DUttO

JL monitoring va I Start_button Switch Off

f Stop « 1 Controller >
j ^ c t l o n ^

in !
i bargraphstatus 7 " A external vcontroley

Start

s. monitonngjreq
i Monitor .decompose Timers Driver

\
sampling S.lnit color Set color value select color Rash

f Sensors \L Acquire display m
S.Stop value

bargraph status
data out valu

» sensor buffer Sample Display
Show value data out

data in

5 data out data ou V I/O driver sensor buffer

Figure 6.5: Aircraft Engine Monitoring System: DCFD (after change)

CHAPTER 6. CASE STUDY FOR HOOD 77

6.3.2 Validation of Design Consistency

Initial design artifacts of the engine system, which are produced in the development
phase are useful to maintainers. For reverse engineering or maintenance purposes,
maintainers can undertake an analysis of design consistency. As Bennett [12] argues,
such cases of preventive maintenance improve the quality of the system, as well as
easing future maintenance actions, whether corrective, adaptive or perfective.
The original engine system included inconsistencies that were detected by the Hood-
checker tool. In particular, the analysis of interfaces (provides/required pairs) has
shown that some operations had been required but not provided (this corresponds to
an error) and that operations had been provided but not required (this corresponds
to a warning). With respects to concerning parent operations, errors have been
pointed out, such operations having no link to implementation (i.e., to any child-
object). By construction principles, a parent object should be decomposed into a
set of child-objects, which collectively should provide the same functionality as the
parent. This anomaly induced an error in the dynamic behaviour of the design.

6.3.3 Validation of Transformations on P C T E

Several changes have been listed in section 6.3.1, in particular for the Bargraphs
object in table 6.1. This section investigates two changes, which corresponds to the
transformations #3 and #5. The other changes are not explained since they are
either similar or being not supported yet by our tools.

Example 1: Merging Operations

'Merging' operations consists of 'transforming' several operations provided by
an object in a single operation. Results and support given by our prototypes Hood-
modifier and Hoodchecker (subsection 6.1) are presented below.

e Step 1: Specifying the Change. In the engine system two operations
Set-color and Flash provided by Bargraphs object are 'merged' in a single
operation Set-color-Flash (transformation #3, table 6.1).

© Step 2: Modelling the Change. This consists of identifying entities and
relationships involved in the modification. This transformation involve entities
of types operations, but also indirectly attributes of objects entities defining
the operations to be merged. Entities concerned by this change are depicted in
figures A 3.1 for the entity Bargraph and figure A 3.2 for the entity Controller.

e Step 3: Tracing the Impact. Conditions are analysed in detail for this step.

- Pre-conditions are full-filled. The HOOD diagram before the transformation
(figure 6.4). mainly shows impacts at a coarse grain level on objects, but

CHAPTER 6. CASE STUDY FOR HOOD 78

^ S t a r t
"^cJ-Stop

"ZiReset

Engine

ASERby IT
start pushbutton

ASERby IT
stop pushbutton ~Zo

ASERJwJT
Timer 1Hz

Controller

Start
Stop
Monitor

tnit

Set_color_Flash
Switeh_On
Switch_Off
Show_value
Clear screen

reset button

data_out

disfunction

Display_frequency

w value
sensor_warnlng

ASERJjy IT
Timer 10Hz

Motor sensors

Inlt
Sample
Acquire
Stop

lnput/Output_Driver

data in

• disfunct sn

Timers
Driver

tfSa SampHng_frequency

Key for HOOD diagram

O - u s e s object
••O- ls_implemented_by operation

-o- data flow
c = J = j > - exception flow

— Z _ e , Wgger :
I

Figure 6.6: Aircraft Engine Monitoring System: HOOD Design (after change)

CHAPTER 6. CASE STUDY FOR HOOD 79

not at finer grained level such as required interfaces or operations 1 1 . Such
information is contained in the ODS 1 2 . Therefore it is recommended to follow-
up the propagation to look at the HOOD data-model (figure 5.3). Set_color
and Flash are defined by the same object that is a terminal object (rule 016,
olO). The two operations have the same type (non-constrained), same status
(external) and are both provided. Since no constraint violation is detected, we
can conclude that the pre-conditions are full-filled.

- The transformation is correctly performed. For step 1, attributes value
(checked in the pre-conditions) are automatically calculated. Operation.status
is non-constrained and operationJ,ype is external. In step 2, for incom­
ing/outgoing links intermediate-conditions to avoid duplication of links and
cycles are verified. Those constraints are reported in the post-conditions. In­
deed for Set-color and Flash operations it does not exist operations common
to sets defining incoming and outgoing operations. Finally, in step 3 former
entities and links on the repository are removed.

- Post-conditions. For this transformation, rules 1 3 are checked again for en­
tities such as objects (rules C l , C7), interfaces (rules C4, C8) and operations
(rules C5, C6, C l l) . No constraints violation of those post-conditions have
been detected, which means that the merging is valid according to the heuris­
tic defined. The HOOD diagram after the transformation (figure 6.5) partially
illustrates new links and interfaces (only provided interfaces) between objects.

o Step 4: Assessing the Impact. This last step concludes that the trans­
formation is valid because pre- and post-conditions are full-filled. Moreover
intermediate conditions (rule C l l) are also satisfied. In the task of merging
operations maintainers have been supported by PCTE-tools and consistency
of the repository has been proved -formal description, figure 5.9.

Example 2: Adding a New Operation

In our study, this type of modification consists of adding a new operation Clear-
Screen to the list of operations provided by Bargraphs object.

o Step 1: Specifying the Change. The screen may be refreshed by pressing a
push-button reset located on the display, transformation #5 in table 6.1.

It corresponds to the activation of the operation ClearScreen. This opera­
tion is provided (attribute operation-type), and constrained (attribute opera-

1 1 O n H O O D diagrams only provided operations are shown.
1 2 N o t visible propagations of rules on the diagram are underlined.
1 3 F o r the 'merging operations' transformation, some rules are not applicable such as rules olO,

117,116 because Bargraphs object is terminal. Similarly, rule C 9 does not apply because operations
are non-constrained.

CHAPTER 6. CASE STUDY FOR HOOD 80

tion_status) 1 4. Bargraphs is an object of type passive (attribute object_status)
providing the operations Init, Display, Set-Color, Flash and Switch,

o Step 2: Modelling the Change. The change is Modelled in terms of new
entities (OBCS, OPCS) and new relationships.

o Step 3: Tracing the Impact. Adding the Clear-Screen operation changes
the type of Bargraph to active, but also establishes new connections be­
tween operations. I t is designed that Clear_Screen is implemented using the
Switch-Off operation provided by Bargraphs object. Entities Bargraphs Ob­
ject and Clear_Screen Operation are modelled on figures A 3.1 and A 3.10.
Two new entities are created an OPCS for the operation and an OBCS for the
object, figure A 3.11. Consequently, new links are established. Tracing the
impact shows that the object containing the new operation changed its type.
Adding a new operation, which only uses an operation defined by the same
object has a limited propagation.

o Step 4: Assessing the Impact. This transformation is valid because condi­
tions are satisfied. Similarly to example 1, rules are verified and propagation
of changes has been described.

6»4 Conclusion

The purpose of the thesis is to support impact analysis in design artifacts speci­
fied with the HOOD method. It has been deliberately decided first to conduct a
simple and complete study, the aircraft engine system, in order to master details of
the different analyses to be performed. The current study focuses on functional as­
pects (merging operations, adding an operation) and on particular views of HOOD
(information hiding and hierarchical decomposition principles). Thus, as explained
previously transformations involving either more semantics or dynamic aspects of
the system (e.g., control structuring principles) are not within the scope of our
study. Assessing effects of changes in the real-world depends mainly on the user
interpretation.

This task can be partially supported by a software engineering approach. Im­
plementation and tests under a PCTE environment validate our solution and show
that design dependencies are accurately investigated with our interconnection model.
The data-model could be supported by the PCTE repository and transformations
performed by the tool we developed. Tools supported then the user during the
change process indicating violations (errors or warnings) to HOOD construction
rules. Using PCTE as a repository has shown benefits for tracing dependencies

1 4 T h e execution request is of type A S E R _ b y _ I T .

CHAPTER 6. CASE STUDY FOR HOOD 81

since it enables the user to access fine-grained data, such as a single attribute or
a small piece of the contents of an artifact. This has been a major criteria in our
choice to base the tool development and heuristics on PCTE.

Our approach could possibly be applied to a larger or more complex systems.
The problem could be scaled-up by improving the performance and enhancing the
functionalities of our tools. The complexity of the case study would require further
conceptual work to propose an extended data-model and more complex transforma­
tions with a possibly mathematically underlined model.

Further work concerning the tool development and the area of impact analysis
are outlined in next chapter.

Chapter 7

S i m m a r y and Pmrtlhier Research

7.1 Summary

This thesis proposes an approach to impact analysis in software maintenance. Soft­
ware maintenance consists of several activities, in particular the understanding of
impact analysis, which aims to detect all changes consequent to a modification. The
design of a modification requires an examination of those unexpected behaviour of
the system and assessing the traceability of a system is a crucial factor. The pur­
pose of the thesis is to propose ways of extending techniques investigated at the code
level to perform change analysis at earlier stages in the maintenance of a project.
In particular, maintainers would benefit from using traceability support to analyse
design artifacts specified with the HOOD method.

The process view of impact analysis has been described through an activity
model. The product view is supported through an interconnection model providing
maintainers with tools to represent transformations, automate and perform changes.
Thus, horizontal propagation of changes at design level and design verification anal­
yses can be undertaken. Heuristics have been implemented and tested on a case
study, the aircraft engine monitoring system.

7 o 2 Discussion of the results of the case study

This section presents a discussion based on our study and explains what worked
well, what failed and further work concerning the tool development.

and tools development

82

CHAPTER 7. SUMMARY AND FURTHER RESEARCH 83

Benefits of the study: "A data-model expressing H O O D concepts and a
case study to validate it"

The rules we proposed to check HOOD design were correct and efficient. We
could check both rules violation expressing the design correctness before and also
after any modification. The data-model had been designed carefully to represent
HOOD concepts and eventually to be simple to master without prior knowledge of
HOOD. Our interconnection model contains ten types of entities and approximately
twenty types of relationships.

The choice of the case study was also determinant since with the aircraft engine
monitoring system we could illustrate most of the HOOD concepts. We had delib­
erately restricted our study to structural aspects and not investigating real-time
issues, for example. Although the case study is rather small, in total the ERM rep­
resentation is composed of over 150 links and 50 entities 1 collected in the data-base.
With such a small system it worked well, but possibly to scale to bigger systems it
would be necessary to modify the data-model as well as to improve the performance
of our tools.

Support of P C T E . The suitability of PCTE-OMS to support successfully a trace-
ability platform for development and maintenance activities arises from our experi­
ence. Our tools development including the prototypes Hoodchecker and Hoodmodi-
fier has shown benefits of using PCTE. At the meta-level shared data-models offer
the possibility of expressing constraints between tools. At the object-base level con­
sistency has been proved formally and the case study has illustrated notification
mechanisms between tools. Moreover PCTE proposes a tool called OMS-Browser,
that enables the user to access directly the repository. We used this feature when
testing the data-model. It has been very helpful since it was possible to access to
a fine granularity such as entity or links attributes. However, any change of the
data-model required the tester to load again all entities and links in the repository.
After entering the elements in the object base, the rest of the activity has been easily
supported by the tools we developed.

Another limitation exists with the current version of PCTE and could possibly
represent an handicap for large size applications. Indeed, PCTE does not support
modifications of the key for links without removing the object. In other words, the
key for links is not recalculated after deleting instances of links. This requirement
is not supported by the ECMA-149 standard and therefore not implemented in
PCTE Emeraude (vl2.4). Such a lack could possibly lead to inconsistencies on the
repository.

Tools development. Possibly our tools could be improved on two aspects, which
are the parsing of HOOD diagrams and the user interface. As explained above, at
present the user enters the links directly in the repository through the oms_browser

In our implementation in P C T E , an entity refers to a P C T E object.

CHAPTER 7. SUMMARY AND FURTHER RESEARCH 84

tool. In particular for large size system, we should develop a parser for HOOD
design to avoid this manual interaction with the repository.

Another aspect concerns the user interface that is very primitive presenting
results in an on line textual mode. We would like to develop a graphical user interface
pointing-out to the user on the HOOD diagrams possible warning or errors. Similar
editors have been developed on PCTE to edit DCFD diagrams or state-transition
diagrams.

I m p r o v i n g the Activity Model. Our approach aims to support impact analysis
during the change process and in particular in understanding, which change can be
made without impacting the structure and semantics of the systems. One important
aspect is to avoid ripple effects without reducing the possibly of transformations on
HOOD documents. Checking that the system described with the HOOD documents
has not been changed is restricted at present to the possible propagations of the
changes we can find out with our tools. Another aspect we did not investigate
concerns concurrent changes which happen frequently in real systems during main­
tenance. By definition it corresponds to a set of changes performed at the same
time. Techniques exist to try to cluster those changes since their inter-correlation is
determinant to predict the impact analysis.

7 o 3 Further Research

Current methods for tracing dependencies among software artifacts proposed by
Pfleeger [71] or Cimitile [4] put emphasis on propagation of coarse grained elements
to avoid 'domain dependence'. If the impact assessment of a software system change
is too coarse, i t must be decomposed to understand complex relationships. On the
other hand, if it is too granular, it is difficult to reconstruct impacts into recogniz­
able understood software work-products. It seems then that opposing granularity
versus domain dependence may not be the proper approach since those views could
be independent. Our approach and interconnection model are suited for accessing
the fine-grained data, such as a single attribute or a small piece of the contents of
an artifact.
A summary of practical studies to assess impact analysis processes, given by Arnold [5],
shows that frameworks have been proposed for tracing dependencies along the
software-life cycle. Among them are earlier work of Yau [88, 82], of the SODOS
project from Horowitz [41], or more recently of Wilde [81]. Several researchers con­
structed meta-models to investigate software artifacts. Brinkkemper [15] proposed
a technique to evaluate constraints written in predicate logic. Although the usage
of predicate logic increases the expressive power of the meta-model, it has the dis­
advantage integrating other paradigms (i.e. functional or procedural paradigms).
Other approaches such as a model proposed by Sawada [76] express constraints via

CHAPTER 7. SUMMARY AND FURTHER RESEARCH 85

a constraint description language, external to the repository. Possibly, the efficiency
on the repository could be increased, but limitations to express either complex con­
structs or dynamic constraints show that such models cannot fully support propa­
gation of changes.

Our study focused on structural aspect of HOOD. However, behavioral aspects
of Hood (i.e., related to control-flow for example) could also be investigated and
therefore constraints modelling should support dynamic constraints (e.g., depen­
dencies between operations and objects dynamically created). Our study focuses on
a few types of transformation, since higher abstraction modifications requires more
semantics of the application. It would also justify more fundamental work mathe­
matically to describe them.
We investigated horizontal traceability and proposed a framework to support propa­
gation of changes. This could be enhanced to support other aspects, such as vertical
traceability applying i t , for example, to trace changes forwards and backwards be­
tween analysis and design documents. Tracing dependencies between analysis and
design artifacts would then help to perform a complete impact analysis, representing
the system at different levels. However, it must be noted that at a higher level of
abstraction (e.g., analysis), syntactical constructs are in smaller number than those
at a lower level (e.g., design) closer to implementation details. Therefore, mapping
concepts is complex since one construct may be mapped to several low-level con­
cepts. Thus propagation of changes cannot be selectively directed, without knowing
semantics of the application or a close interaction between tools and users.

Summary Appendix

Appendix 1 : H O O D Rules (abstract)

Appendix 2 : Transformations on H O O D artifacts (Abstract)

Appendix 3 : Case Study - Data-Base entities

System Description before change

Figure A 3.1: Bargraph Object

Figure A 3.2: Controller Object

Figure A 3.3: Motor-sensors Object

Figure A 3.4: Timers-Driver Object

Figure A 3.5: OPCS for Operation controller.Start

Figure A 3.6: Object-operation Table for Controller

Figure A 3.7: Object-operation Table for Bargraphs

System Description after change

Figure A 3.8: Controller Object

Figure A 3.9: Bargraphs Object

Figure A 3.10: New Operation Clear-Screen

Figure A 3.10: Object-operation Table for Controller

Figure A 3.11: New Entity Clear-Screen OPCS

Figure A 3.12: New Entity Bargraphs OBCS

Figure A 3.13: Object-operation Table for Controller

Figure A 3.14: Controller.OBCS

Appendix 1 : HOOD Rules 87

Appendix 1 s HOOD Rules (Abstract)

o Class 1: Syntactical Constraints - supported by the ERM notation.

- rule o l : An operation may be in the external interface of an object or
internal to an object.

- rule o2: Each operation shall be provided by one and only one object.
- rule o4: Each parent operation shall be implemented by an operation of a

child object.

o Class 2: Semantical Constraints - supported by the hoodchecker tool.

- rule olO: An operation of a terminal object shall not be implemented_by an
operation of another object.

- rule ol2: Each operation of a non terminal object shall be implemented.by
an operation of a child object.

- rule ol6: An object shall not have both internal objects and internal oper­
ations.

- rule 17: An object shall not decompose or be decomposed from itself,

o Class 3: Design Consistency Rules - supported by the hoodchecker tool.

- rule C I : If an object A has a required operation of an object B then object
A must use object B.

- rule C4: The provided Interface of the used object shall correspond to the
required interface of the using objects.

- rule C5: An operation which is required must be provided.
- rule C6: An operation which is provided must be required.
- rule C7: (reverse to rule CI) An using object must have an operation which

requires an op. of the used object.
- rule C8: The provided IF of an object cannot be empty.
- rule C9: A constrained operations must be provided.
- rule CIO: An object shall not use itself directly or indirectly (cycle).
- rule Cll: An operation shall not use itself directly or indirectly (cycle).
- rule Cll-bis: Between two operations having a use relationship for the same

data-name it can only be one dataflow (in, out) - i.e. either flows cannot
exists in both directions.

- rule 116: A constrained operation provided by a non terminal object must
be implemented by a constrained operation.

Note: If there are any violations to rules it produces errors or warnings in bold.

Appendix 2 : Transformations on HOOD artifacts 88

Appendix 2 % Transformations on HOOD artifacts

o check_merge_op. Two operations can be merged in a new resulting opera­
tion if they belong to the same terminal object. Those operations cannot be
implementecLby other operations. Their attributes (operation-status and op­
eration-type) must be of the same value otherwise an error or warning message
arises.

o check_merge_obj. Two terminal objects can be merged if they belong to
the same parent object. Their attributes (object-status and object-type) must
be of the same value otherwise an error or warning message arises. For those
objects the former interfaces are folded into the new interface of the resulting
object.

Notes: The above two rules check constraints on links and attributes to support
merging transformations. If there are any violations to rules it produces errors or
warnings. Those constraints are supported by the hoodchecker and hoodmodifier
tools.

(Abstract)

Appendix 3 : Case Study - HOOD Objects 89

Appendix 3 s Case Study = HOOD Objects

This appendix gives an abstract of entities stored in the data-base. The system
is described before change, in particular, for the objects Bargraphs, Controller,
Motor-sensors and Timers-Driver (figures 3.1, 3.2, 3.3, 3.4) and for operations con­
troller.Start (figures 3.5). After change the system is described for two transforma­
tions (section 6.3).

- Example 1: I t refers to the 'merging' of two objects, respectively of operations
(transformation #3,table 6.1). Controller and Bargraphs objects are depicted
on figures 3.6, 3.7 and related object-operation cross-tables on figures 3.8, 3.9.

- Example 2: This modification consists of adding a new operation ClearScreen
to the list of operations provided by Bargraphs object. I t corresponds to the
transformation #5 in table 6.1. New entities Clear-Screen, Clear-Screen.OPCS
and Bargraphs.OBCS are described on figures 3.10, 3.11, 3.12.

* Note 1: We indicate constrained operations with a start.

* Note 2: New elements (attributes, operations, interfaces) are indicated by the
symbol $.

* Note 3: Internal operations are indicated by the symbol They are also reported
in the object-operation cross-tables. Internal operations are operations listed
in the defines list of operations, but not in the contains Interface list (e.g.,
value_outjof_range for controller object).

Appendix 3 : Case Study - HOOD Objects 90

System Description before change

HOOD Object Bargraphs.obj
A t t r i b u t e s
object_type : [terminal s l]
object.status: [passive =1]

Description — I The bargraphs allow to display values, i n red or green
with or without f l a s h i n g , on appropriate display devices. I —
Links:
included.by engine.obj
uses_obj Input_Output_Driver.obj
used_by_obj Controller.obj
defines I n i t . o p ; Display.op; Show_value.op; Set_Color.op;

Flash.op; Switch.op
contains I n i t . I F ; Display.IF; Show_value.IF; Set_Color.IF;

Flash.IF; Switch.IF
described_by_text Bargraphs.ods

Figure A 3.1: Bargraphs Object (Entity Bargraphs.obj)

HOOD Object Controller.obj
A t t r i b u t e s
object_type : [terminal =1]
object.status : [active =1]

Description — | T h i s object i s the c o n t r o l l e r of the Engine. I t s t a r t s
and stops the Engine (s t a r t s and stops pushbuttons) and monitors the
display. The monitoring i s triggered every second (by i n t e r r u p t i o n) . ! —
Links:
included_by engine.obj
uses.obj Bargraphs.obj; Analog_Display; Motor_sensors.obj;

Timers_Driver.obj; I_ 0_Driver.obj
defines Start.op*; Stop.op*; Monitor.op*;value_out_of_range#
contains S t a r t . I F * ; Stop.IF*; Monitor.IF*
described_by_text Controller.ods

Figure A 3.2: Controller Object (Entity Controller.obj)

Appendix 3 : Case Study - HOOD Objects 91

HOOD Object Motor-sensors.obj
A t t r i b u t e s
object_type : [terminal =1]
object.status: [passive =1]

Description — I This object samples o i l pressure, water temperature and
f u e l l e v e l at a given frequency. I t stores the read values of the three
sensors at any time. I t may provide the mean of stored values f o r each
sensor.I —

Links:
is =used_by Controller.obj
uses Timers_Driver.obj;Input_Output_Driver.obj
defines I n i t . o p ; Sample.op*; Acquire.op; Stop.op
contains I n i t . o p ; Sample.op*; Acquire.op; Stop.op
described_by_text Motor-sensors.ods

Figure A 3.3: Motor-sensors Object (Entity Motor-sensors.obj)

HOOD Object Timers.Driver.obj
A t t r i b u t e s
object_type : [terminal =1] /*environment object*/
object_status: [active = l]

Description —|The Timers.Driver manages a set of timers which send
c y c l i c interruptions at a specified address. A timer i s i n i t i a l i s e d
w i th a given frequency and may be started (r e - started) or stopped at
any moment. A timer then may be deleted from the l i s t of available
timers . 1 —

Links:
is_used_by Controller.obj; Motor-sensors.obj
defines I n i t . o p ; Start.op*; Stop.op*; Delete.op
contains I n i t . I F ; S t a r t . I F * ; Stop.IF*; Delete.IF
described_by_text Timers_Driver.ods

Figure A 3.4: Timers-Driver Object (Entity Timers-Driver.obj)

Appendix 3 : Case Study - HOOD Objects 92

procedure OPCS_Start i s

— Description — T h i s operation i n i t i a l i s e s the system (the bargraphs,
the analog.display, the sensors) and then s t a r t s a timer to t r i g g e r the
monitoring at the frequency of 1 Hz. The monitoring timer i s started
only when a l l hardware devices are i n i t i a l i s e d . I —

— Used.operations
Timers.Driver.Init
Timers.Driver.Start
Motor.sensors.Init
Bargraphs.Init

~ Code
begin
Timers-Driver.Init (Monitoring-Timer.Monitoring-Frequency, IT-lHz-Address) ;
Bargraphs.Init;
Analog.display.Init.analog;
Motor.sensors.Init;
Timers-Driver.Start (Monitoring-Timer);

end OPCS.Start;

-- END.OPERATION OPCS.Start

Figure A 3.5: OPCS for Operation controller.Start (Abstract of the ODS)

Appendix 3 : Case Study - HOOD Objects

Control ler op. Start Stop Monitor Comments
Internals
Outofrange

X

Bargraphs
Init X
Display X
Set.Color X
Flash X
Switch X
Sensors
Init X
Sample - - - not used
Acquire X
Stop X
Timers JDriver
Init X
Start X
Stop - - - not required
Delete X

Figure A 3.6: Object-operation Table for Controller

Bargraphs op. Init Display Set_Color Flash Switch Comments
I _ 0 JDriver
Put X X X X
Get - - - - - not used

Figure A 3.7: Object-operation Table for Bargraphs

Appendix 3 : Case Study - HOOD Objects 94

System Description after change

HOOD Object Controller.obj
Attributes
object =type : [terminal =1]
object^status: [active =1]

Description — I This object i s the c o n t r o l l e r of the Engine. According to
the d i f f e r e n t transformations performed on the system, the structure of
the object has been changed. Since Analog_display has been merged u i t h
Bargraphs, t h i s object i s not any more i n the l i s t of used objects. This
object requires also new or changed operations, but t h i s i s not shown at
the l e v e l of t h i s e n t i t y . Otherwise the f u n c t i o n a l i t i e s of the object
have been globally preserved.
Links:
included.by Engine.obj
uses_obj Bargraphs.obj; Motor_sensors.obj;

Timers.,Driver. obj ; I_0_Driver. obj
defines Start.op*; Stop.op*; Monitor.op*;value_out_of_range#
contains S t a r t . I F * ; Stop.IF*; Monitor.IF*
described_by_text Controller.ods

Figure A 3.8: Controller Object (Entity Controller.obj)

Appendix 3 : Case Study - HOOD Objects 95

HOOD Object Bargraphs.obj
Attributes
object_type : [terminal =1]
object_status: [active =1]

Description —I This object samples o i l pressure, water temperature and
f u e l l e v e l at 10Hz and stores the read values of the three sensors at
any moment. I t may provide the mean of stored values of a sensor. I —
Links:
included_by engine.obj
is_used_by Controller.obj
uses Input_Output_Driver.obj
defines Init.op; Display.op; Clear_Screen.op$; Show.value.op$;

Set_color_Flash.op$; Switch.On.op$; Switch.Off.op$
contains I n i t . I F ; Display.IF; Clear.Screen.IF; Show.value.IF;

Set_color_Flash.IF; Switch.On.IF, Switch_0ff.IF
described_by_text Bargraphs.ods

Figure A 3.9: Bargraphs Object (Entity Bargraphs.obj)

HOOD Operation Clear_Screen.op
Attributes:
operation_type : [external =0]

operation.status: [constrained =1] /*reset pushbutton*/

Description — I This operation refreshes the displays I —

Links:
uses_op Init.op; Display.op; put.op /*I_0.obj*/
implements Reset /*defined i n Engine.obj*/
provides_IF Clear_Screen.IF
r e q u i r e s _ I F put.IF /*I_0.obj*/

Figure A 3.10: New Operation Clear-Screen (Entity Clear-Screen.op)

Appendix 3 : Case Study - HOOD Objects 96

HOOD^OBCS Clear ..Screen, opes
Attributes

Description — I An ac t i v a t i o n of the button to c l e a r the screen
i n i t i a l i s e s the Bargraphs hardware.I —

Links:
component.of Bargraph.obj
describes_op Clear_Screen.op

Figure A 3.11: New Entity Clear-Screen OPCS (Entity Clear-Screen.opcs)

HOOD.OPCS Bargraphs.OBCS
Attributes

Description —|The Bargraphs accepts s t a r t , stop and monitor commands
from the c o n t r o l l e r object at any time. As j u s t i f i e d by the
controller.OBCS a s t a r t command i s not s i g n i f i c a n t a f t e r a s t a r t command,
r e c i p r o c a l l y a stop or a monitor are not s i g n i f i c a n t a f t e r a stop
command. The en t i t y Bargraphs.OBCS controls the processing of the
following operations declared i n Bargraphs: Init.op; Switch._0n.op$;
Switch.Off.op$; Clear_Screen.op$. The Bargraph accepts a Clear.Screen
operation at any time. This operation has no e f f e c t i f the hardware
Bargraph i s not previously i n i t i a l i s e d . I —

Links:
dynamic.part Bargraph.ods;
controls Bargraph.obj;
controls.op Init.op; Switch._0n.op$; Switch.Off.op$; Clear_Screen.op$;
controls_by_op Start.op*; Stop.op*; /*from Controller Object */

Figure A 3.12: New Entity Bargraphs OBCS (Entity Bargraphs.OBCS)

Appendix 3 : Case Study - HOOD Objects

Controller op. Start Stop Monitor Comments
Internals X
Outofrange
Bargraphs
Init X
Display
Clear_Screen X

X

Set_Color_Flash X
Show.value X
Switch.On X
Switch_Off X
Sensors
Init X
Sample - - - not used
Acquire
Stop X

X

Timers JDriver
Init X
Start X
Stop
Delete

-
X

- not required

Figure A 3.13: Object-operation Table for Controller

Appendix 3 : Case Study - HOOD Objects

— OBJECT=CONTROL_STRUCTURE /*OBCS of the c o n t r o l l e r object*/

— -DESCRIPTIOM —ITBDI —

— PSEUDOCODE — | TBD t —

— CODE
task OBCS„Ctrl_EMS i s

entry S t a r t ;
entry Stop;
entry Monitor;
for Monitor use at IT_lHz_Address;

end OBCS.Ctrl.EMS;

task body OBCS_Ctrl_EMS i s
begin

loop
loop
s e l e c t
accept S t a r t ; OPCS.Start; e x i t ;
or
accept Stop; — empties Stop queue
or
accept Monitor; — empties Monitor queue
end s e l e c t ;

end loop;

loop
s e l e c t
accept S t a r t ; — empties Start queue
or
accept Stop; OPCS.Stop; e x i t ;
— only when monitoring i s completely f i n i s h e d
or
accept Monitor; OPCS_Monitor;
end s e l e c t ;

end loop;

end loop;
end OBCS_Ctrl_EMS;

Figure A 3.14: OBCS of the Controller Object
(Abstract of the ODS: code part only)

Glossary 99

Glo s s ary
Note: Several definitions for the same concept may be found, depend­
ing on the context of its usage. This glossary refers only to definitions
presented in the thesis. Only key concepts of the thesis are listed.

Software maintenance: Software maintenance is the process of modifying a soft­
ware system or component after delivery to correct faults, improve performance
or other attributes, or adapt to a changed environment.

Corrective maintenance: Maintenance activities performed to correct faults in a
software system.

Adaptive maintenance: Maintenance activities performed to make a software
system usable in a changed operating environment.

Perfective maintenance: Maintenance activities performed to enhance the func­
tionality of a software system.

Preventive maintenance: Maintenance activities performed to improve perfor­
mance, or maintainability of a software system.

Process modelling: Process modelling is the detailed analysis and modelling of
maintenance activities to understand the process (descriptive point of view),
to control it (prescriptive point of view) and to guide it (indicative point of
view).

Activity model: An activity model is a view of the process model focused on
activities.

Artifact: An artifact is a document produced through an activity model. It might
be formulated in different formalisms such as a text, a diagram, a graphic or
a set of mathematical descriptions. Syn: artefact.

Data-model: A data-model is a model, which emphasizes on the importance of
aspects related to data in a software system.

Impact analysis: Impact analysis is the activity of determining parts of the sys­
tem, which are to modify in order to accomplish a change. Accomplish a
change means to determine the confidence that the change conforms to its
specification or to what we intend it to do.

Ripple effect propagation: Ripple effect propagation is the phenomenon by which
changes made to a software-component along the software life-cycle [specifica­
tion, design, code, or test phases] have tendencies to be felt in other compo­
nents.

Glossary 100

TYaceability: Traceability is the degree to which a relationship can be established
between two or more products of the development process, especially prod­
ucts having a predecessor-successor or master-subordinate relationship to one
another.

Relationship: A relationship between objects a and b is a three tuple.
Given objects a and b, a relation R is denned as < a, R, b >

[another usage is (relation-name, attributes) symbolized R(a,b))].

data-flow analysis: Aho [2] defines it as "Given a control flow structure, data
flow analysis is the process of collecting information about the flow of data
throughout the corresponding code segment."

Control-flow analysis: A control-flow analysis describes the sequence of execu­
tion of statements in a program. This depends in particular of sequential and
parallel operations and of synchronous/asynchronous behaviour of the pro­
gram.

Dependency: From the maintainers point of view, there is a dependency between
two components, if a change to one component has an impact that will require
changes to the other.
A dependency is a directed relationship (e.g. calls, uses, read, write relations).
A depends on B means that a change to A, causes a change to B.

Dependency graph: A dependency graph is a directed graph.
A depends on B i f f there is a path from A to B.

Transitive closure: Let G be a graph. Define G* to be the graph that contains all
the nodes of G. The edges in G* are as follows: if there is a path of length 0
or more between node A and B in G, then the edge (A, B) is in G*. G* is
called the transitive closure of G [2].

Computing a transitive closure: Note that the following example is not neces­
sarily the best way to implement a transitive closure, but probably the most
natural way. Let consider the computing of a transitive closure of a directed
graph. If the graph is represented by a predicate arc such that arc (X,Y) is
true i f f there is an arc from node X to node Y, then we can express paths in
the graph by the rules:

1) path (X, Y) :- arc (X,Y).
2) path (X, Y) :- path (X,Z) k path (Z,Y).

The first rule says that a path can be a single arc, and the second says that
the concatenation of any paths, say one from X to Y and another from Y to Z,
yields a path from X to Y. These rules are expressed by the following equation.

path(X, Y) = arc(X, Y) U nx,Y(path{X, Z) M path(Z, Y))
where 7rand M respectively represent projection and join of relational algebra

Glossary 101

Dynamic analysis: Dynamic analysis is the process of evaluating a system or com­
ponent based on its behaviour.

Static analysis: Static analysis is the process of evaluating a system or a compo­
nent based on its structure, or content.

Error: This word has different meanings. The first view expresses differences be­
tween a computed, or measured value and the specified, or theoretically correct
value. It occurs, for example, if computed and expected results are different.
A second view expresses faults in case of an incorrect step, process, or data
definition, for example, an incorrect instruction in a program.

- Semantic error: An error resulting from a mis-understanding of the relation­
ship of symbols, or groups of symbols to their meaning in a given language.

- Syntactic error: (Syn: syntax error) A violation of structural or grammatical
rules defined for a language. For example, in FORTRAN using the statement
B + C = A , instead of the correct statement A = B + C produces a syntax
error.

IRefereimces

K. Agusa, Y. Kishimoto and Y. Ohno, 1983, A Supporting System for
Software Maintenance, In G. Teichroew and G. David, editors, System De­
scription Methodologies, North Holland, Amsterdam, Proceeding of IFIP TC2

A. V. Aho, R. Sethi and J. D. Ullmann, 1986, Compilers principles tech­
niques and tools, Addison- Wesley Pub.

F. E. Allen and J Cocke , 1977, A program data flow analysis procedure,
Comm. of the ACM, Vol 19 pp 137-147

P. Antonimi, P. Benedusi, G. Cantone, and A. Cimitile, 1987, Maintenance
and Reverse Engineering: Low Level Design Documents Production
and Improvement, in Proc. Conference on Software Maintenance

R.S. Arnold and S.A. Bohmer, 1993, Impact Analysis - Towards A Frame­
work for Comparison, in Proc. Conference on Software Maintenance.

G. Arrango et al., 1991, A Tool Shell for Tracking Design Decisions, in
IEEE Software pp 75-83

G. Arrango et al., 1993, The Graft-Host Method for Design Change, in
Proc. 15th Int. Conf. Software Engineering pp 243-255

G. Arrango et al., 1993, A process for consolidating and reusing Design
Knowledge, in Proc. 15th Int. Conf. Software Engineering pp 233-243

F. Bancilhon, C. Delobel, P. Kanellakis, 1992, Building an Object-Oriented
Database System/The story of 0 2 , The Morgan Kaufmann Series in Data
Management Systems

J. M. Barth, 1978, A practical inter-procedural data flow analysis algo­
rithm, Comm of the ACM, Vol 21 pp724-736

V.R. Basili and D.M. Weiss, 1981, Evaluation of a Software Requirements
Document by Analysis of Change Data, Proc. 5th Int. Conf. on software
Engineering pp 314-323

102

REFERENCES 103

[12] K.H. Bennett, B.J. Cornelius, M. Munro and D.J. Robson, 1988, Software
Maintenance: A K e y Area For Research, University computing, 10(4) PP
184-188

[13] Grady Booch, 1983, Software Engineering with Ada, Benjamin/'Cummings
Publishing

[14] Boehm, 1976, Software Engineering, IEEE transactions on Computing, 25
ppl226-1242

[15] S. Brinkkemper, 1990, Formalisation of Information Systems Modelling,
Thesis publisher.

[16] F.W. Calliss, 1989, Inter-Module Code Analysis Techniques for Soft­
ware Maintenance, Ph.D thesis, University of Durham, Computer Science,
1989

[17] G. Canfora and A. Cimitile, July 1992, Reverse Engineering and inter­
modular data flow analysis: a theoretical approach, Journal of Software
Maintenance, Vol 4 pp 37-59

[18] P. P. Chen, 1976, The entity relationship model -towards a structured
view of data, Trans. Database Systems, 1(1) pp 9-30

[19] A. Cimitile, 1989, A reverse engineering methodology to reconstruct
hierarchical data flow diagrams for software maintenance, in Proc.
Conference on Software Maintenance

[20] A. Cimitile, 1989, Maintenance and intermodular dependencies in Pas­
cal environment, in Proc. Conference on Software Maintenance

[21] Mac Clure C , Martin J., 1983, Software Maintenance: The problems and
its solutions, Prentice Hall

[22] Mc Clure C , Carma L., 1981, Managing Software Development and
Maintenance, Publisher Van Nostrand Reinhold Co., New York, NY

[23] L. D. Cousin and J. S. Collofello, 1992, A Task-Based Approach to Improv­
ing the Software Maintenance Process, in Proc. 8th IEEE Conf. Software
Maintenance , pp 118-126

[24] James S. Collofello and Stephen Bortman, March 1986, A n Analysis of the
Technical Information Necessary to Perform Effective Software Main­
tenance, in Proc. 5th Annual Phoenix Conference on Computers and Commu­
nications pp 420-424

[25] D T I - British Department of Trade and Industry, (1981), Report on the
study of an Ada based system development Methodology, Technical
Report.

REFERENCES 104

ECMA - European Computer Manufacturers Association, Dec. 1990, A ref­
erence model for Computer Assisted Software Engineering Environ-
ments, ECMA-155 Technical Report

ECMA - European Computer Manufacturers Association, 1993, Portable
Common Tool Environment (P C T E) C + + Programming Language
Binding, Draft version 2

ECMA - European Computer Manufacturers Association, June 1993, Portable
Common Tool Environment (P C T E) abstract specification, ECMA-149
Standard version 2

ECMA - European Computer Manufacturers Association, June 1993, Portable
Common Tool Environment (P C T E) C Programming Language
Binding, ECMA-158 Standard version 2

ECMA - European Computer Manufacturers Association, June 1993, Portable
Common Tool Environment (P C T E) Ada Programming Language
Binding, ECMA-162 Standard version 2

ESA Board for Software Standardization and Control, Feb. 1991, E S A Soft­
ware Engineering Standard, ESA PSS-05

Esteban J.A. and Alvarez Carmen, 1992, Reverse engineering from A D A
to H O O D , ESF Publication

P. Fillon, C. Floyd and H. Biskup, (1991), Objekt-orientierte Software E n -
twicklung und Werkzeuge, Technische Universitdt Berlin, Technical Report.

P. Fillon, T. Ajisaka, Y. Matsumoto, IEEE Conf., to appear, Nov. 1994, A
facility to trace dependencies for software maintenance on P C T E ,
Proc. Int. Conference on PCTE, San Fransisco

J. R. Foster and M. Munro, ppl81-185, A documentation method based
on cross-referencing, 1987

Del-Raj Harjani and Jean-Pierre Queille, Nov. 1992, A Process Model for
the Maintenance of Large Space System Software, in Proc. 8th IEEE
Conf. Software Maintenance 127-136

J. Hartmann and D.J. Robson, 1988, Approaches to Regression Testing,
in Proc. IEEE Conference on Software Maintenance

J. Hartmann and D.J. Robson, 1990, Techniques for Selective Revalida­
tion, IEEE Software 7(1) pp 31-36

HOOD User Group, July 1992, H O O D User Manual V3.1.1, Edition Mas-
son

REFERENCES 105

HOOD User Group, July 1992, H O O D Reference Manual V3 .1 . 1 , Edition
Masson

SODOS: A software document support environment, (1986), E . Horowitz and
R. Williamson, IEEE Transactions on Software Engineering, Vol SE-12 No8.

J. C. Huang, May 1979, Detection of data flow anomaly trough program
instrumentation, IEEE Trans, on soft Eng, Vol SE5 pp 226-236

I E E E Standards Board and ANSI Standards Institute, 1990, I E E E Standard
Glossary of Software Engineering Terminology, ANSI/IEEE Std610.12-
1990

I E E E Computer Society, 1993, Standard for Software Maintenance, IEEE
Std 1219-1993

J. Jachner and V. K. Agarwal , September 1984, Data Flow anomaly de­
tection, IEEE Trans, on soft Eng, Vol SE10 pp432-437

M . Johnson, 1993, On the value of commutative diagrams in Informa­
tion modelling, Technical Report, University of Sydney.

D. Kafura and S. Henry, 1981, Software Quality Metrics based on inter-
connectivity, Journal of Systems and Software pp 121-131

J. B. Kam and J. D. Ullmann, 1976, Global data flow analysis and iterative
algorithms, Journal of the ACM Vol £Sppl58-171

B. L. Kell, 1966, Impact and Change, The century Psychology Series

F. Lanubile & al., 1992, Traceability and Design decisions, in Proc. Con­
ference on Software Maintenance

B. Lientz, E . Swanson and E . Tompkins, 1978, Characteristics of Applica­
tion Software Metrics, CACM 21 (6)

B. Lientz, E . Swanson, October 1978, Discovering issues in Software Main­
tenance, Data Management ppl5-18

B. Lientz, E . Swanson , 1979, Software Maintenance a user management
tug of war, Data Management, April 79 pp 26-30

B. Lientz, E . Swanson , 1980, Software Maintenance Management, Addi­
son Wesley

B. Lientz and E . Swanson, 1983, Problems in Application Software Main­
tenance, in tutorial on Software Maintenance, editors G. Prikha and N. Zveg-
intzov, IEEE Computer Society Press

REFERENCES 106

C.C. Liu, 1976, A look at Software Maintenance, Datamation, 22 pp51-55

J. A. Lowell, 1988, Software Evolution: The Software Maintenance
Challenge, edition Wiley pp 39-71

J. Mac Dermid and K. Ripken, 1983, Life Cycle Support for Ada Envi ­
ronment, ESF Deliverable

TA Consultancy Ltd., issue 3, Malpas: Management guide, 2/1992

TA Consultancy Ltd. , issue 1, Malpas: A D A translator example guide,
6/1992

Massimo d'Alessandro et al., 1993, Modelling reusable H O O D designs on
the P C T E Object Management System, Proc. PCTE conference.

N. Mitsuda, A. Sawada, T. Ajisaka, Y. Matsumoto, 1993, A semantic-
Directed graph editor on P C T E , Proc. JCSE conference.

Lawrence B. Mohr, 1988, Impact analysis for program evaluation, Ed.
The Dorsey Press

M . Moriconi and C. Mac Clure, 1979, A Designer/Verifier's Assistant,
IEEE Trans, on Software Engineering

C. Nosek, 1990, Software Maintenance Management: Change in the
Last Decade, Journal of Software Maintenance Research and Practice Vol.
2(3)

L. D. Fosdick and L. J. Osterweil, September 1976, Data Flow Analysis in
software reliability, Computing Survey, Vol 8 pp 305-310

L. Osterweil and L. Fosdick, September 1976, D A V E - A validation error de­
tection and documentation system for F O R T R A N programs, Software
Practice and Experience

L. Osterweil and L. Fosdick, October 1976, The detection of anomalous
inter-procedural data flow, Proc of 2th int. conf. on soft. Eng., IEEE comp.
soc. press pp 624-628

L. Osterweil and C. Wilson, September 1985, O M E G A - a data flow analysis
tool for the C programming language, IEEE Trans, on soft Eng, Vol SE11,
pp 832-838

S.L. Pfleeger and A.B. Shawn, 1990, A Framework for Software Mainte­
nance Metrics, IEEE Conference on Software Maintenance pp 320-331

S.L. Pfleeger, 1991, Software Engineering, Macmilan, second edition

REFERENCES 107

R. Pressman, 1991, Software Engineering: A Practitioner approach, Mac
Graw-Hill, second edition pp538-541

J. P. Privitera, 1982, A D A design language for the structured design
methodology, Proc. of the AdaTEC Conference, pp 76-90.

P. Robinson, 1992, Object-oriented Design, Unicom, published by Chapman
and Hall

G. Savoia, 1993, Building a case toolset on P C T E , Proc. PCTE conference.

A. Sawada, N. Mitsuda, T. Ajisaka, Y. Matsumoto, 1993, Utilities for avoid­
ing Constraints violation, Proc. PCTE conference.

W. K. Sharpley, 1977, Software Maintenance planning for embedded
computer systems, IEEE Compsac 77 pp520-526

B. Schneiderman, R. Mayer, 1979, Syntactic/Semantic Interactions in
Programmer Behaviour: A Model and Experimental results, Interna­
tional Journal of Computer and Information Sciences Vol. 8, nb 3, pp219-238

R. N. Taylor , 1983, A general purpose algorithm for analyzing concur­
rent programs, Comm. of the ACM Vol 26 no 5 pp362-376

D.M. Weiss, 1981, Evaluating software development by analysis of
change, PhD Dissertation, University of Maryland

N. Wilde, 1989, The Maintenance Assistant Work in Progress, Journal
of Systems and Software, 9(1) pp3-18

S.S. Yau and J. S. Collofello, 1978, Ripple Effect Analysis of Software
Maintenance, in Proc. COMPSAC 78

S. S. Yau and J. S. Collofello, 1979, Some stability Measures for Software
Maintenance, in Proc. of the Computer Software and Applications conference,
IEEE pp 674-679

S. S. Yau and J. S. Collofello, 1980, Some Stability Measures for software
Maintenance, IEEE Trans. Software Eng, 6(6) pp 545-552

S. S. Yau, 1984, Methodology for Software Maintenance, RADC Report

S. S. Yau and J. S. Collofello, 1985, Design Stability Measures for Software
Maintenance, IEEE Transactions on Software Engineering (11) pp 849-856

[87] S. S. Yau and S. Liu, 1984, A Knowledge Based Software Maintenance
Environment, in Procs. of the 10th COMPSAC Conf. pp 72-78

REFERENCES 108

[88] S.S. Yau and S. L iu , 1987, Some approach to logical ripple effect analysis ,
Technical report, SERC

[89] S. S. Yau and P. S. Chang, 1988, A M e t r i c of Modif iabi l i ty for Software
Maintenance , in proc. Conference on Software Maintenance pp 374-381

