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S O F T W A R E I M P L E M E N T E D FAULT T O L E R A N C E 
FOR M I C R O P R O C E S S O R C O N T R O L L E R S 

Guy A.S. Wingate, B.Sc.(Hons), M.Sc. 

A B S T R A C T 

It is generally accepted that transient faults are a major cause of failure in micro
processor systems. Industrial controllers with embedded microprocessors are partic
ularly at risk from this type of failure because their working environments are prone 
to transient disturbances which can generate transient faults. 

In order to improve the reliability of processor systems for industrial applica
tions within a limited budget, fault tolerant techniques for uniprocessors are imple
mented. These techniques aim to identify characteristics of processor operation which 
are attributed to erroneous behaviour. Once detection is achieved, a programme of 
restoration activity can be initiated. 

This thesis initially develops a previous model of erroneous microprocessor be
haviour from which characteristics particular to mal-operation are identified. A new 
technique is proposed, based on software implemented fault tolerance which, by rec
ognizing a particular behavioural characteristic, facilitates the self-detection of er
roneous execution. The technique involves inserting detection mechanisms into the 
target software. This can be quite a complex process and so a prototype software 
tool called Post-programming Automated Recovery UTility (PARUT) is developed 
to automate the technique's application. The utility can be used to apply the pro
posed behavioural fault tolerant technique for a selection of target processors. Fault 
injection and emulation experiments assess the effectiveness of the proposed fault 
tolerant technique for three application programs implemented on an 8, 16, and 32-
bit processors respectively. The modified application programs are shown to have an 
improved detection capability and hence reliability when the proposed fault tolerant 
technique is applied. General assessment of the technique cannot be made, however, 
because its effectiveness is application specific. 

The thesis concludes by considering methods of generating non-hazardous appli
cation programs at the compilation stage, and design features for incorporation into 
the architecture of a microprocessor which inherently reduce the hazard, and increase 
the detection capability of the target software. Particular suggestions are made to 
add a 'PARUT' phase to the translation process, and to orientate microprocessor 
design towards the instruction opcode map. 
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"Bloody instructions, which, being learned, return to plague 

the inventor." 

'Macbeth': Act 1, Scene 7, Lines 8-10 

by William Shakespeare. 
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C H A P T E R O N E 

R E L I A B I L I T Y A N D M I C R O P R O C E S S O R - B A S E D C O N T R O L L E R S 

1.1. I n t r o d u c t i o n 

The continuing technological evolution of microprocessor design has resulted in a 

large number of commercially available devices wi th a wide variety of characteristics. 

Many microprocessors are embedded wi th in control systems to automatically operate, 

monitor, or control a physical process. Applications range f rom relatively simple 

control of domestic appliances such as toasters or washing machines, to the complex 

control of industrial plant such as power stations or chemical works. A n important 

feature of all these control systems is their reliability, that is, the probability that 

the system wil l perform its function under stated environmental conditions, without 

malfunction, over a specified period of time or operational duration (adapted f r o m 

[Bennetts, 1979]). 

Bri t ish Gas use microprocessor systems to manage individual governors control

ling the transmission of gas to industrial and public customers. Such microprocessor 

controllers require high reliability because of the proximity of their installation, wi th 

the hazard of gas, to the general public. 

The United Kingdom gas distribution system involves the transmission of gas 

at high- and medium- low pressures between the off-shore gas fields, local consumer 

districts, and end-customers respectively. The low pressure (LP) system dates back 

to the production of town gas in the 19th century and serves local districts and 

individual users. The LP network has tradit ionally been controlled by independent 

pneumatic governors. Governors are devices which control, through a valve action, 

the gas pressure in a pipeline. The governors implement a clocking mechanism which 

alters the gas pressure depending on predicted daily fluctuations in demand. Gas 

pressures that fall below a critical level allow air to enter the gas pipework and 

can produce potentially explosive mixtures. To prevent this situation arising the 

governor system implements a shut-down operation, called 'slam-open', when the 
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gas pressure falls at an excessive rate or when the gas pressure falls beneath the 

statutory safety l imi t of 12.3 mbar. The slam-open operation involves completely 

opening the governor valve so that adjacent normal and hazardous gas pressures 

across the valve are equalized. Slam-open operations may cascade through several 

consecutive governor systems before the mean pressure along a section of pipeline is 

acceptable. 

In order to increase management efficiency of the LP network i t is necessary to 

improve control of the gas distribution. The small value of gas handled by each 

governor system in the gas network means that a low-cost upgrade is required. To 

this end, microprocessors have been embedded wi th in the governor control systems 

[Clark et al, 1987] to facilitate more effective and integrated control of the LP gas 

distr ibution system [Wynne et al, 1988]. The distribution of gas can now be managed 

in an efficient and interactive manner. Seasonal and diurnal load variations can 

be monitored and appropriate responsive action taken automatically in a real-time 

environment. Stringent safety regulations of the gas industry require the back-up of 

electronic systems failure by traditional pneumatic slam-open operation. 

Brit ish Gas predict failures of the microprocessor assisted governors to occur 

once every 10 years, a failure rate approximately one thousandth of the original 

pneumatic governor systems [Clark et al, 1987]. The slam-open back-up ensures 

that microprocessor controller failures are not catastrophic. Nevertheless, loss of the 

governor management function incurs a financial penalty; reduced gas distribution 

efficiency, and repair of the controller which may reside at a remote site. A n overall 

improvement in the reliability of the microprocessor controller is required. Bri t ish 

Gas are particularly interested in the effect of software, 'which may become highly 

unpredictable' under the influence of hardware faults, on system reliabili ty [Clark et 

al, 1987]. 

This thesis presents techniques for enhancing the operational reliabili ty of micro

processor-based controllers without adversely increasing their cost. These techniques 

are applicable to any microprocessor system, including those used by Bri t ish Gas to 

manage governors. 
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1.2. Microprocessor-Based Contro l Systems 

Many control systems have their designs based on complex logic circuits incor

porating flip-flops, analogue-to-digital converters, shift-registers, and other logic gate 

structures. In these cases i t is often convenient to incorporate, or replace, such cir

cuitry wi th a dedicated microprocessor and its support chips. The control system 

behaviour can now to a large extent be governed by the software stored on a micro

processor memory chip. Software can be maintained without physically altering the 

system hardware. Sucl flexibil i ty can be valuable as in a recently reported incident 

when a car manufacturer discovered a design error in a fuel injection system [IEEE, 

1989]. Replacing the system wi th an alternative was extremely expensive. However, 

replacement was not necessary: the system was controlled by a microprocessor which 

was re-programmed to compensate for, and effectively mask, the design error. The 

problem was rectified at l i t t le cost. In such instances the maintenance engineers must 

be careful not to introduce new errors (the 'Software Death Cycle', [Rigby & Norris, 

1990]). 

In recent years digital techniques have become so powerful that tasks well suited 

to analogue systems are often partially or totally controlled by digital systems. For 

example, a temperature meter based on a thermocouple or thermistor might incor

porate a microprocessor and memory in order to improve accuracy by compensating 

for the instrument's departure from perfect linearity. 

Although ever more powerful microprocessors are being developed, most con

trollers do not require further advanced processing capabilities. A recent Japanese 

survey [Fujimura, 1989] reported that approximately 80% of microprocessor-based 

controllers incorporated either an 8 or 16-bit machine. Despite the commercial avail

abil i ty of 32-bit processors for over five years, they were only used in approximately 

11% of the controllers. The remaining 9% of controllers had embedded 4-bit micro

processors. Obviously the 4-bit microprocessor-based controllers had a very simple 

•function. 
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1.3. Faul t s , E r r o r s , and Fai lures in E lec tron ic Systems 

A system failure is said to occur when the behaviour of the system first deviates 

f rom that required by the specification of the system (as defined by [Anderson & Lee, 

1982]). System failures are caused by the external exposure of a defective internal 

state. Deficiencies in the internal state of a system, referred to as 'errors', can exist 

without the generation of a failure. 

A system consists of a set of components (or sub-systems) which interact under 

the control of a design. Errors originate f rom the activation of defective system 

components. Defective components are referred to as 'faults ' . 

A fault in a digital electronic system is characterized by its nature, extent, and 

duration [Avizienis, 1976]. The nature of the fault can be classified as either logical 

or non-logical. A logical fault causes the logic value at a point in the digital circuit 

to become opposite to the specified value. Non-logical faults include the remaining 

faults such as a malfunction of the clock signal. The extent of a fault specifies whether 

the effect of the fault is localized or distributed in the the digital system. Finally, 

the duration of a fault refers to whether the fault is permanent or temporary. 

McCluskey & Wakerly [1981] distinguish between two classes of temporary fault , 

transient and intermittent . Transient faults are non-recurring temporary faults which 

are caused by environmental influences. They are not repairable because there is 

no physical damage to the hardware. Intermittent faults are recurring temporary 

faults caused by deteriorating or ageing hardware. Intermittent faults may eventually 

become permanent and can be repaired. 

1.4. Engineer ing Rel iabi l i ty T h r o u g h Design 

Reliability can be engineered in a digital system by implementing a disciplined 

design process. The reliability of a microprocessor-based system depends on its hard

ware and software design, deficiencies in either are expensive to correct. I t is therefore 

prudent, when developing reliable systems, for the design to be fault-free or fault-

tolerant. 
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1.4.1. Rel iable H a r d w a r e 

Poor specification, design, and manufacture can individually or collectively intro

duce faults wi th in digital electronic systems. Specifications are normally wri t ten in 

natural language which makes their integrity extremely difficult to check. Specifica

tions can be wri t ten using Formal Methods, enabling designs to be proven to comply 

wi th their specification, but this technique does not ensure that the specification itself 

is defect-free (Cullyer, 1988]. 

The integrity of manufacture can be validated using 'black-box' tests. Digital 

systems, however, can be complex and comprehensive black-box testing extremely 

expensive. Intel only test 98% of the logic nodes for faults in each manufactured 

80486 microprocessor (even though untested nodes may be faulty) because, as for 

many other digital systems, complete testing is considered prohibitively expensive 

(IEEE, 1990]. 

The methods outlined above for the procurement of reliable hardware are all 

fault avoidance techniques. A complementary approach involves tolerating faults 

through the implementation of special design features. Fault tolerant techniques can 

be divided into those that detect faults and initiate recovery such as parity checking 

and watchdogs, and those that mask faults such as Triple Modular Redundancy 

( T M R ) and error-correcting codes [Carter, 1985]. 

1.4.2. Rel iable Software 

Software faults (commonly called 'bugs') can arise f rom the specification, design, 

or coding process. Typically more than half the faults which are recorded during 

the software development originate in the specification [O'Connor, 1985]. This is 

mainly due to the use of natural language for documenting the 'non-technical' user 

requirements specification [Hit t & Webb, 1985]. Engineering principles are being 

proposed [Sommerville, 1985] to enable defect-free development and maintenance of 

software. 

Software verification involves semantic and syntactic checks on the program code 

for programmer error, and structured walk-through checks for functional correctness. 

Black-box tests can be used to identify faults but the complexity of software often 

5 



prevents exhaustive checking due to prohibitive costs. The complexity of software 

testing can be reduced by adopting a modular code structure. Many methods have 

been proposed to assess acceptable test-set coverage for software [Musa et al, 1987] 

but they all are subject to the Di jks t ra maxim 'testing reveals the presence of faults, 

not their absence' [Dijkstra, 1972]. 

Software can be manipulated to tolerate faults. Two well known approaches to 

fault tolerant software are N-Version Programming [Chen & Avizienis, 1978], and 

Recovery Blocks [Randall, 1975]. Both techniques rely on design diversity, the avail

abili ty of multiple implementation of a specification, to tolerate faults. N-Version 

Programming requires the independent implementation of multiple, ' N ' , versions of 

the specification. These versions are processed in parallel w i t h the same inputs. A 

voter collects the outputs and a major i ty decision made to select the perceived correct 

output . Theory implies high reliability for this method, but in practice the multiple 

program versions can share common mode failures [Eckhardt & Lee, 1988]. 

Recovery Blocks consist of a primary routine, which normally performs a task; an 

acceptance test which checks the primary routine result; and an alternative routine 

which is executed i f the check fails. Unlike N-Version Programming where routine 

independence is assumed, Recovery Blocks require ensured independence between 

the primary routine, the acceptance test, and the alternative routine. Application 

of recovery blocks improves reliability. The degree of reliability can be enhanced by 

extending the number of independent alternative routines ensuring each acceptance 

test is also wholly independent. 

Software data structures can also be manipulated so that they can tolerate the 

presence of faults. Taylor et al [1980] briefly outline this topic and propose fault 

tolerant structures for linear lists and binary trees. 

1.5. E v a l u a t i n g Control ler Rel iabi l i ty 

To evaluate the reliability of a microprocessor-based controller i t is necessary to 

apply a 'systems approach'. The systems approach involves integrating the inter-

dependencies of all sub-systems constituting a whole system. Microprocessor-based 

controllers consist of two entities; hardware and software. Many authors, including 
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H i l t & Webb [1985]. and Ferrara et al [1989], integrate calculations for hardware 

and software reliability. However such reliability assessments do not involve any 

allowance for the internal interaction of hardware faults on software. Internal hard

ware/software interaction occurs across what is referred to as the 'interface'. To 

determine system reliability more accurately i t is necessary to integrate assessments 

of hardware reliability, software reliability, and interface reliability. 

1.5.1. H a r d w a r e Rel iabi l i ty 

I t is valuable to calculate the reliability of a hardware product for the duration of 

its 'useful' lifetime. Historical failure data which takes into account benign operating 

conditions and general age degradation is used to assess the expected lifetime of the 

hardware. Popular compilations of such data include the United States A i r Force 

'Reliability Prediction for Electronic Systems' (MIL-HDBK-217) , and the United 

Kingdom Brit ish Telecom 'Handbook of Reliability Data ' (HRD-4). Techniques for 

manipulating this data to reflect hardware architecture are well understood [Lala, 

1985], 

1.5.2. Software Rel iabi l i ty 

Methods of establishing the reliability of software are stil l under development. 

Although many techniques have been proposed none have had the widespread accep

tance given to the corresponding assessment of hardware reliability. 

Assessments of software reliability usually involve the prediction of errors existing 

in the software. However, the reliability of the software depends not only on the 

existence of a fault but also its activation. Many authors have used Markov processes 

to model software reliability [Musa, 1987]. There are two types of Markovian software 

reliability model widely used; Poisson and binomial. The Poisson models assume an 

infinite number of faults in the software, whilst the binomial models assume a fixed 

number of faults. Both model types assume faults exist randomly wi th in the software. 

Musa [1975] refined the basic Poisson model so that fault activation is a funct ion of 

the time for which the software is executed. In reality, however, fault exposure is 

dependent on the fault location within the software and its associated probabili ty of 
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activation by program execution. Lit t lewood [1981] attempts to model this situation 

w i t h a binomial model that weights software faults according to the probability of 

their execution. Trachtenberg [1990] has recently reviewed and suggested a general 

theory of software reliability models based on Markovian processes. 

The Markov software reliability models provide a valuable indication of the like

lihood that a fault wi l l be exposed during software execution. The hazard attr ibuted 

to fault exposure can be further estimated by using ad hoc methods such as 'Fault 

Tree Analysis' (FTA) or 'Failure-Mode, Effects, and Crit icali ty Analysis' ( F M E C A ) . 

1.5.3. Interface Rel iabi l i ty 

In software controlled digital systems, failures can occur which are diff icult to 

diagnose as being due to the exposure of a hardware fault or software error. A dis

t inction is not clear usually because the systems internal hardware/software interface 

has not been defined. The interface occurs wi thin electronic devices such as proces

sors and memories. For example, a fault in an individual cell on a memory device 

holding a program can cause what appears to be a software error. Memory devices 

are sometimes referred to as firmware to reflect their hardware/software interface. 

Other faults may occur on a data bus line wi th similar effect. 

Permanent faults relating to interface reliability should be identified by the burn-

in procurement of the hardware. However because of their l imited duration, tempo

rary faults are rarely located during the burn-in process. Assessment of the interface 

reliability requires knowledge of the occurrence of faults and errors they induce. 

1.6. L o w - C o s t E n h a n c e m e n t of Control ler Rel iabi l i ty 

The reliability of microprocessor controllers can be enhanced by addressing the 

problem of faults introduced during procurement and operation. Techniques for 

procuring reliability have been briefly outlined. Operational faults are generated 

by component aging and transient disturbances in the working environment such 

as power supply fluctuations, electro-magnetic interference ( E M I ) , and electro-static 

discharge (ESD) [Siewiorek & Swarz, 1982]. 
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Transient disturbances are associated wi th temporary faults in digital systems. 

Unlike analogue or mechanical systems which tend to pass the effect of a transient 

disturbance as a temporary signal discrepancy whilst retaining overall function, digi

tal systems are susceptible to malfunction in the presence of temporary faults because 

of their discrete state nature. Indeed it is becoming established that, even in 'benign' 

working environments, about 90% of microprocessor system failures can be at tr ibuted 

to temporary faults [Siewiorek & Swarz, 1982]. 

Control systems are often required to operate in 'harsh' industrial environments 

liable to produce transient disturbances. Although shielding can be employed to re

duce the effects of transient disturbances on digital systems, their elimination is rarely 

possible [Horowitz & Hi l l , 1986]. The benefit of tolerating temporary faults induced 

by transient disturbances can be considerable. Industrial microprocessor controllers, 

however, are often developed within a l imited budget which cannot support the re

dundancy incurred by many established fault tolerant techniques. This thesis ap

proaches the topic of interface reliability, proposing a low-cost software-implemented 

fault tolerant technique for temporary hardware faults. 

1.7. Thes i s P r e v i e w 

The topic of reliability for microprocessor-based controllers has been introduced 

wi th respect to the requirement for low-cost fault tolerance (the objective of the 

research presented in this thesis). Chapter 2 surveys literature investigating the fault-

error-failure mechanism in microprocessor systems. The failure process is identified 

wi th malfunction, particular hazard being associated wi th the corruption of program 

flow. Current techniques to detect this class of fault are reviewed, but many require 

considerable expense to implement. 

As a first step to developing new and more cost-effective techniques to detect 

program flow corruption, i t is useful to consider the character of associated erroneous 

microprocessor behaviour. Chapter 3 presents a model for erroneous microprocessor 

execution. Performance parameters are evolved to show the benefit of implement

ing a detection capability together wi th a recovery mechanism. These parameters 
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include detection latency, reliability, Mean Time To Failure (MTTF), and availability. 

The model is applied to a selection of microprocessors commonly embedded within 

controllers, results are discussed in Chapter 4. 

Microprocessor software displays various characteristics depending on the func

tion of its implementation. Functional sections of code include program areas, data 

areas, and reserved memory mapped input/output areas. In addition, the micro

processor may have a proportion of its address space which is not populated by 

software. Whilst correct microprocessor operation executes instructions within the 

program area in a predictable manner, erroneous execution can invalidly interpret 

an instruction anywhere in the microprocessor address space in an unpredictable 

manner. Fault tolerant techniques whose implementation is based on software for 

detecting erroneous execution within each functional area of the microprocessor ad

dress space are presented in Chapter 5. In particular a novel technique for detecting 

erroneous program flow is proposed. 

An algorithm for implementing the proposed fault tolerant technique in the pro

gram area is presented in Chapter 6. The technique involves manipulating the pro

gram code in order to strategically insert detection mechanisms. The mechanisms 

are designed to detect erroneous execution by identifying beforehand particular cor

rupted execution routes in the software. The algorithm is implemented in a software 

utility so that program code can automatically be given the detection capability. The 

software utility is called Post-programming Automated Recovery UTility (PARUT). 

PA RUT is designed to be flexible, allowing the generation of fault tolerant code for 

a selection of microprocessors. 

Several example programs are processed by the PARUT algorithm in Chapter 7 

so that the performance of the fault tolerant technique can be assessed. Enhanced 

program code is evaluated by emulation and fault injection programmes. These 

experiments monitor the behaviour associated with corrupted patterns of erroneous 

execution. The information obtained from the experiments enables the detection 

performance of individual programs to be assessed. 
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Translators are used to generate significant amounts of software for microproces

sor based controllers. The programmer has no control over the nature of the translator 

generated code. Chapter 8 identifies critical hazards which are not covered by the 

fault tolerant techniques outlined in Chapter 5. These hazards are associated with 

the catastrophic failures of cessation of processing and infinite execution loops. Tech

niques are proposed for the translator code generation process so that critical hazards 

are not produced. These techniques are influenced by the nature and structure of the 

target microprocessor instruction set. 

Fault tolerant microprocessor design features are proposed in Chapter 9. These 

features facilitate rapid detection of corrupted program flow. 

The final chapter reviews the thesis and draws conclusions on the research. Five 

appendices provide details of: microprocessor parameters applied in Chapter 4 to 

the model presented in Chapter 3; the design of a hardware unit associated with 

the software implemented fault tolerant technique proposed in Chapter 5; a code 

listing of the PA RUT tool described in Chapter 6; the example programs evaluated 

in Chapter 7; and the papers published by the author relating to work presented in 

this thesis. 
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C H A P T E R T W O 

T E M P O R A R Y FAULTS: G E N E R A T I O N , I M P L I C A T I O N , A N D D E T E C T I O N 

(A L I T E R A T U R E R E V I E W ) 

2.1 . In t roduc t ion 

An industrial environment can be less than ideal for microprocessor-based con

trollers. In particular externally generated transient events can disrupt microproces

sor operation. Erroneous microprocessor behaviour is associated with a degraded or 

lost control function, and the mal-operation of any equipment under the micropro

cessor based controller's supervision. Mal-operation of controlled equipment can be 

extremely hazardous because of the unpredictable nature of erroneous microprocessor 

behaviour. 

This chapter discusses transient events that lead to temporary corruption of a 

microprocessor bus. register, or memory. Such corruption incurs no permanent hard

ware damage. The limited duration of temporary faults inhibits their detection. 

Without detection, and exercised by circuit action, temporary faults generate errors 

which can spawn other errors, the process terminating as either benign activity or 

catastrophic failure. The fault-error-failure mechanism is explored using the results 

of fault observations in real processor systems, fault simulations, and physical fault 

injection experiments. 

Prolonged periods of erroneous behaviour increase the likelihood of generating 

a catastrophic failure. In order to prevent catastrophic failure, erroneous opera

tion must be detected and appropriate recovery action initiated. Error detection is 

achieved by identifying characteristics of erroneous behaviour. Several techniques 

are reviewed which offer fault tolerance suitable for low-cost microprocessor based 

systems. The performance of the techniques is discussed in relation to the benefit of 

rapid error detection. Finally, assessing the reliability of a microprocessor systems 

adopting a fault tolerant technique is considered. 
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2.2. Faults and Their Impl ica t ion on Microprocessor System Rel iabi l i ty 

Assessing the reliability of a microprocessor based system involves evaluating the 

probability of failure which in turn is dependent on the fault-error-failure mechanism. 

As defined in Chapter 1, a fault is physical defect, an error is an activated fault, and 

a failure is classified as the deviation of system behaviour from that expected. The 

time interval between the occurrence of a fault and its manifestation as an error is 

called the fault latency. Similarly, the time interval between the occurrence of an error 

and the generation of a failure is called the error latency. Fault and error latencies 

are shown in Figure 2.1. The relationship between faults, errors, and failures is now 

explored. 

Over the last decade, computer failure data has been collected for several contin

uously operational computer systems. Diagnosis of the data reveals temporary faults 

to be a significant cause of microprocessor failure. Collated computer failure data, 

see Table 2.1., shows temporary faults to account for between 93% and 98% of the in

duced computer system failures, the remaining failures being due to permanent faults. 

Furthermore, within the selection of computer systems, temporary faults have been 

observed to occur approximately every 40 to 330 hours during continuous operation. 

Temporary faults in digital devices are associated with electro-magnetic interference 

(EMI) [Liu k Whalen, 1988], electro-static discharge (ESD) [Bhar & Mahon, 1983], 

electrical noise [Shoji, 1987], ionizing radiation [Amerasekera & Campbell, 1987], and 

power supply fluctuations [Cortes et al, 1986]. 

The manifestation of a temporary fault within a microprocessor based system is 

dependent on the susceptibility of its digital circuitry. Ball & Hardie [1969] report 

experiments which suggest that the probability of logic malfunction is dependent 

on the duration of the temporary fault. Typically, temporary faults only had a 

significant effect when they existed in excess of five clock cycles. Sequential logic 

was more susceptible than combinational logic, its probability of malfunction being 

in excess of 90% for temporary faults of 100 clock cycle duration. 

Additionally, the miniaturisation of digital integrated circuits (scaling) makes 

them more vulnerable to many environmental effects [Russel & Sayers, 1989]. Scal-
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ing is associated with two operational characteristics on VLSI devices; lower operat

ing power and higher processing speed. Lower operating power means that smaller 

power variations can generate a signal ambiguity or fault. Hence the severity of a 

transient disturbance required to induce a temporary fault is reduced. Higher pro

cessing frequencies enable smaller duration temporary faults to induce a logic fault. 

A fault may have various effects depending on the state of the microprocessor 

system at the time of the fault and the duration of the fault. Errors are not generated 

when the fault duration is less than the fault latency. A primary error is produced 

when the duration of the fault is equal to the fault latency, the associated event 

probability being denoted by Pr{Error | Fault}. Subsequent errors, referred to as 

secondary errors, are generated in numbers that increase with the fault duration 

beyond the fault latency [Damm, 1988]. 

Errors can influence a microprocessor system in several ways. Errors can spawn 

further errors as modelled by StifRer [1980] and Kopetz [1982]. Each of these errors 

can cause passive or active failure depending on whether or not they are dormant. 

Dormant errors, e.g. memory errors, have an error latency dependent on the access 

frequency of the corrupted memory locations. Hence, the microprocessor system 

application can have a major influence on determining whether or not an error leads 

to failure. Indeed Iyer & Rossetti [1986] and Woodbury & Shin [1990] both report 

evidence that a processor's workload can affect fault latency. Furthermore, the same 

error may have various effects on the microprocessor system depending on the timing 

of the error manifestation. The probability that an error generates a failure is denoted 

by Pr{Failure | Error}. 

Reliability is defined in Chapter 1 as the probability of operating without failure, 

and can be expressed as, 

R = 1 - Pr{Failure}. (2.1.) 

Inserting conditional probabilities, associated with the fault and error latencies, rep

resenting the fault-error-failure mechanism yields, 
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R = \ - Pr{Failure \ Fault}.Pr{Fault}. (2.2.) 

Techniques to improve microprocessor system reliability can be broadly divided into 

two groups: those that endeavour to prevent or reduce the generation of faults 

(fault prevention, to reduce Pr {Fault}), and those which attempt to intervene 

and prevent generated faults from causing system failure (fault tolerance, to reduce 

Pr {Failure \ Error} and Pr{Error \ Fault}). 

Fault prevention can involve the strategic implementation of two types of tech

niques [Anderson &; Lee, 1982]. Firstly, fault avoidance can be employed to protect 

the controller from transient disturbances. This commonly involves 'shielding' the 

controller to obstruct the effects of a transient disturbance. Secondly, fault removal 

can be applied to identify weak design or components within the microprocessor-

based controller. This process is commonly referred to as 'screening'. Rectifying the 

weaknesses should reduce the susceptibility of the controller to the effects of transient 

disturbances. 

Anderson & Lee [1982] identified four operations to be complete in order for a 

system to be fault tolerant. 

® error detection, 

© damage assessment, 

e error recovery, and 

• fault treatment and continued system service. 

Once an error is detected it is necessary to identify and isolate the damage incurred. 

Then the system must be restored to a valid operational state in order to prevent re

curring errors evoking system failure. Finally, any damage must be repaired and the 

original system operation re-initiated. Temporary faults do not incur any physical 

damage and hence on completion of the fault tolerant process, assuming the tempo

rary fault has terminated its existence, the system is returned to complete working 

order. 
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The duration of the error until its detection is called error-detection latency. The 

sum of the fault latency and error-detection latency is referred to as the fault detection 

latency [Damm, 1988], see Figure 2.1. 

Equation (2.2.) denotes two levels at which fault tolerant techniques can be ap

plied: the circuit (or gate) level Pr{Error \ Fault}, and the functional (or compo

nent) level, Pr {Failure \ Error}. Temporary faults are extremely difficult to detect 

because of their short duration. The overhead in providing a detection capability 

for individual faults in a VLSI device at circuit level is considered by Mahmood & 

McCluskey [1985] to be prohibitive. Some of the faults generated will in any case 

be benign and hence not require detection. Nevertheless, other faults, exercised by 

circuit operation, can generate errors. In order for a system to tolerate such faults 

it is necessary to detect their associated errors before they in turn induce system 

failure. Fortunately, there appears to be a good correlation between the circuit level 

and behaviour level reaction of common VLSI design elements, such as Arithmetic 

Logic Units (ALU) and multiplexers, to the effects of faults [Chakraborty & Ghosh, 

1988] which suggests that functional level fault tolerance will be acceptable for most 

fault tolerant systems. 

2.3. Erroneous Operat ion of Microprocessor Systems 

The impact of faults upon microprocessor operation has been the subject of 

much research. Iyer uses fault simulation experiments, see Table 2.2., to investigate 

the susceptibility of generating and the likelihood of propagating functional element 

errors. Memory, arithmetic logic units (ALU), and multiplexers are found to be, in 

descending order, the most susceptible functional elements to error generation and 

propagation. The remaining fault simulation experiments in Table 2.2., together with 

the physical fault injection experiments listed in Table 2.3., investigate the effect of 

such errors on software operation. 

Software execution errors generated by faults are diverse, but can be divided into 

two general groups: data flow errors and program flow errors. Both are affected by 

fault latencies with a bimodal distribution, i.e. there are two or more distinct classes 

of error manifestation [Arlat et al, 1990] [Czeck & Siewiorek, 1990]. Faults, such 
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as stack corruption, are dormant requiring particular processing for their activation 

whilst other faults generate 'fast' failures. Nineteen percent of faults injected into 

a Motorola 6809 microprocessor system through ion bombardment [Gunneflo et al, 

1989], and 22% of faults injected into an IBM 3081 processor system through memory 

corruption [Chillarege & Bowan, 1989], produce dormant faults. 

Gunneflo's experiment also reports 78%, 17%, and 5% of the injected faults to 

generate program flow errors, data flow errors, and other consequences respectively 

[Gunneflo et al, 1989]. Experiments that physically inject faults on processor package 

pins, Schmid et al [1982] and Schuette & Shen [1986], support these results with 63% 

and 78% of faults generating program flow errors in Zilog Z80 and Motorola 68000 

microprocessor systems respectively. Further, McGough & Swern [1981] report over 

half the logical faults inserted in a simulation of a AMD 2901 processor system to 

generate 'wild' branches, i.e. program flow errors. Caution should be exercised when 

comparing the significance of data and program flow errors in the fault insertion 

experiments because the experiments use different microprocessors, different fault 

insertion methods, and different fault locations. 

2.3.1. Data Flow Errors 

Data flow errors are generated by corruption or incorrect processing of data ele

ments resident in data structures or instruction operands. Erroneous data can pro

duce 'unreasonable' as well as failure conditions [Damm, 1988]. Data flow errors do 

not disturb the program flow and hence acceptance tests can be embedded within 

the program to check for bad data. 

2.3.2. Program Flow Errors 

Program flow errors can be initiated in microprocessor systems by the incorrect 

identification of a memory location as containing an instruction [Marchal & Courtois, 

1982], or corruption of an instruction itself [Carpenter, 1989]. There are three main 

mechanisms by which faults can generate erroneous program flow. Firstly, corrupted 

opcodes may have a different instruction length. Carpenter [1989] demonstrates this 

effect for the Motorola 68000 microprocessor. A change in the instruction length 
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forces incorrect interpretation of the memory location for the next instruction opcode. 

Secondly, corruption of a branch or jump instruction operand will alter the location 

of the next instruction opcode to be executed. Finally, registers in the microprocessor 

specifying the address of the next instruction opcode may be directly corrupted. A 

SBR9000 processor fault simulation, [Li et al, 1984], reports 73% of program flow 

errors to be generated in this way. Either of these three mechanisms effectively 

initiates execution of an unknown program. The nature of ensuing execution is 

dependent on the code content of memory under interrogation. The character of this 

execution is haphazard and not usually in sympathy with the organized execution 

associated with the application program. This behaviour leads to the malfunction 

of the controller. Particular hazard is attributed to such occurrences because of the 

implications of their unpredictable effect on controller operation. 

Once incorrect memory locations are accessed for instruction opcodes then there 

is a high probability that following instruction opcodes will also be incorrectly iden

tified [Marchal & Courtois, 1982]. As erroneous program flow progresses, processing 

may further corrupt memory containing the original software. Erroneous program 

flow can terminate naturally via re-synchronization. Re-synchronization involves re

establishing identification of instruction opcodes within the original software appli

cation program. A physical fault injection experiment reports 75%, 6%, and 19% of 

program flow errors diverge permanently from the correct program (program crash), 

diverge temporarily from the program flow (re-synchronization), and are dormant 

(stack errors, etc) respectively. Tests cannot be embedded within the application 

program to identify opcode corruption because the application program is no longer 

executed. 

Sosnowski [1986a] considers steady state outcomes of erroneous behaviour asso

ciated with microprocessor failure. He develops models for false loops, traps, and 

deadlocks. False loops and deadlocks are essentially infinite execution loop phenom

ena which have also been modelled by Halse k Preece [1987], Deadlocks involve the 

termination of execution when the processor enters a 'wait' state. Halse & Preece 

22 



[1985] and Sosnowski [1986b] investigate characteristics of erroneous behaviour re

lating to the influence of different microprocessor instruction sets and address space 

utilization. 

2.4. Assessing Error Detection Techniques for Microprocessor Systems 

Hardware and software fault tolerant techniques are briefly outlined in Chapter 1. 

Many techniques, however, may be unsuitable for microprocessor controllers because 

the costs of their application exceed the controllers budget. This section reviews low-

cost fault tolerant techniques for microprocessor controllers requiring high reliability. 

2.4.1. Watchdog Timers 

One of the most basic techniques for checking the operation of a microprocessor-

based system is the use of a watchdog timer [Connet et al, 1972], [Ornstein et al, 1975]. 

The system is designed such that, under normal operation, program execution signals 

the watchdog timer within a specified time interval. The signal presets the timer to 

its initial value. The timer generates an error if no preset signal is forthcoming 

during the specified time interval. On receiving the error signal from the watchdog, 

the system initiates suitable recovery action. Typically this involves re-establishing 

a correct set of operating parameters. Watchdogs incur a small switching overhead 

and no performance degradation is incurred directly upon the executing software. 

Watchdog timers, however, may have a hazardous error-detection latency. Con

sider a processor operating at 8 MHz, whose mean instruction processing time is 100 

clock cycles, implementing a watchdog with a 100 ms interval. If a malfunction occurs 

in the middle of this interval then approximately 4000 instructions can be processed 

erroneously before the malfunction is detected. During the malfunction, processor 

operation is uncontrolled and may have hazardous implications for the processor 

activity. Therefore, other techniques providing fault detection are being developed. 

2.4.2. Capabi l i ty Checking 

Lu [1980] was one of the first to propose what is now commonly referred to as 

the 'smart' watchdog. These units are based on an additional processor to provide 
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a monitoring capability, facilitating faster detection without the high cost associated 

with fault masking techniques. Mahmood et al [1983] proposed a smart watchdog 

to check algorithm-level assertions about executing software. Namjoo & McCluskey 

[1982] suggested a scheme called 'capability checking' implemented by a smart watch

dog that identifies illegal operations and memory accesses. Such a unit would detect 

system malfunctions as well as prevent memory mutilation by erroneous behaviour. 

Marchal & Courtois [1982] applied a selection of capability checks, whilst Schmid et 

al [1982], referring to capability checking as 'abstraction verification', extend the test 

set and estimate fault detection through direct fault simulation. Smart watchdogs 

can be applied to modern microprocessors that implement co-processors and caches 

[Saxena & McCluskey. 1990]. Mahmood & McCluskey [1988] survey the use of smart 

watchdogs. 

Capability checks, see Table 2.4., implemented together create reliable computer 

systems as demonstrated by Schmid et al [1982], Gunneflo et al [1989], and Madeira 

et al [1990] with 88%, 79%. and 75% fault detection respectively. The variation in 

fault detection is due to different selection of the capability checks implemented by 

each system, and the method of fault insertion when evaluating the microproces

sor systems fault tolerance. Collectively applying capability checks provides both 

program and data flow error detection. However, implementing all these techniques 

can be complex so another simpler alternative is being explored by researchers. It 

involves detecting data flow errors by placing reasonableness checks in the software 

[Damm, 1988] (this includes Recovery Blocks, and N-Version Programming), and im

plementing a monitoring scheme to directly verify the program flow of the application 

processor. 

2.4.3. P rogram Flow M o n i t o r i n g 

Program flow monitoring schemes are typically based, to some extent, on control 

flow graphs. The graphs consist of linked nodes. Each node represents a sequence 

of instructions performing some task, and each link represents the transition condi

tions, i.e. status information. Lu [1982] proposed a scheme called 'structural integrity 
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Capability Checks 

a) incorrect sequence of instructions 

b) branch to invalid destination 

c) fetch illegal instruction 

d) fetch an opcode from a none opcode address 

e) invalid read within permitted memory 

0 invalid write within permitted memory 

g) access to memory outside permitted memory area 

h ) watchdog timer 

Table 2.4. : Capabil i ty Checks 
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checking' involving the generation of a tag for each task. These tags are checked dur

ing execution to verify correct operation. Lu does not check transition conditions. 

Yau & Chen [1980] ensure each task does not have any inherent loops, hence, prevent

ing the possibility of infinite erroneous execution loops without potential detection. 

They also implement verification of transition conditions between tasks. 

Task tags assigned values based on cyclic encoding of their instruction sequences 

are called 'signatures'. Two techniques implementing signatures, Path Signature 

Analysis [Namjoo, 1982] and Signatured Instruction Streams [Shen & Schuette, 1983] 

embed precomputed signatures into the application program. During program execu

tion, special circuitry re-computes the signature and compares it with the embedded 

code signature, any ambiguity signalling detection of erroneous program flow. Both 

techniques impose a performance and code overhead. Schuette & Shen [1986] have 

implemented an embedded signature technique. The dedicated circuitry required 

3947 gates and 5435 bytes of memory, a hardware overhead of approximately 38% 

compared to the gate count of the host Motorola 68000 application processor. The 

memory overhead is incurred by embedded tags in the application program: typi

cal overhead estimates range between 10 and 20% [Wilken & Shen 1987]. Finally, 

pseudo-branches, required by the implementation so that correct execution by-passes 

embedded signatures, are estimated to reduce application program performance by 

10%. The technique implemented in a Motorola 68000 processor system is reported 

to have a mean detection latency of less than 100 /is, the maximum latency be

ing 3.8 ms. This is a considerable improvement on the detection latency expected 

from watchdogs. Schuette & Shen [1986] and Segall et al [1988] report a 98% and 

94% coverage of program flow errors respectively. Wilken & Shen [1987] review the 

mechanism of several signature monitoring techniques that embed signatures in the 

application software. 

Namjoo [1983] proposes a smart watchdog to compute run-time signatures inde

pendently to verify application processor behaviour. This technique does not incur 

the performance or code overhead associated to earlier schemes. Eifert & Schuette 

[1984] refine the technique, replacing the smart watchdog with dedicated circuitry. 
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These techniques whilst not degrading system performance or requiring extra mem

ory, do require an additional hardware unit. Smart watchdogs introduce approxi

mately 100% redundancy by duplicating the number of processors. Replacing the 

watchdog with dedicated circuitry implies that the design is not directly applicable 

for use with different microprocessor types. 

2.4.4. Hazards Associated w i t h Er ror Detection Techniques 

It should be noted that those fault tolerant techniques implementing hardware 

redundancy will also be susceptible to the effects of faults induced by the environ

ment. In particular, hazard is associated with those detection techniques such as 

the smart watchdogs that use a microprocessor to monitor a microprocessor. Duba 

& Iyer [1988] and Choi et al [1989] in their fault simulations identify the watchdog 

element of their microprocessor system to be significantly vulnerable to temporary 

fault generation, and diagnose a critical fault propagation path between the control 

unit and the watchdog. The reliability of a microprocessor-based controller imple

menting a watchdog device can be seriously undermined if the detection capability 

of the watchdog is lost. Damm [1988] refers to this occurrence as the 'doomsday' 

syndrome. 

2.4.5. A Novel Er ror Detect ion Technique 

This thesis proposes an alternative technique based on the self-detection of pro

gram flow errors by erroneous execution. Potential program flow errors within the 

software are identified and the code structure enhanced by the strategic placement 

of detection mechanisms. These mechanisms can only be activated by erroneous pro

gram flow. The technique does not inherently require additional hardware. The only 

overhead is the extended code requirement, and the associated additional execution 

to by-pass the inserted detection mechanisms. The code extension, and the degrada

tion to application program performance by by-pass operations is comparable with 

that required by the embedded tags and pseudo-branches reported for an implemen

tation of the embedded signature technique [Schuette & Shen, 1986], [Wilken &; Shen, 

1987]. 
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2.5. Rel iabi l i ty Evaluation 

The reliability of microprocessor systems implementing fault masking can be 

assessed using architectural analysis. However, this method cannot be used in mi

croprocessor systems implementing other fault tolerant techniques, such as those 

discussed in this chapter because of the uncertainty of fault detection. 

An alternative reliability evaluation which can be adapted to the fault tolerant 

techniques discussed in this chapter is given by Schuette & Shen [1986]. They pro

pose the following estimation for reliability of a microprocessor-based system, Rs(t), 

employing signature monitoring, 

Rs(t) = [R(t).RF(t)} + [(1 - R(t)).RF(t).E] . (2.3.) 

where the reliability of the microprocessor-based system R(t) is the expectation of 

an error occurring in the microprocessor before time t, RF(t) is the expectation of an 

error occurring in the additional circuitry required by the fault tolerant mechanism 

before time t, and E is the error coverage of the employed detection mechanism. 

Re-arranging equation (2.3.) gives, 

Ra(t) = RF(t)[R(t) - (1 - R{t)).E). (2.4.) 

The correct operation of the system is dependent on avoiding the 'doomsday' syn

drome discussed earlier, for the detection mechanism. Therefore the reliability of the 

system, Rs(t), is directly dependent on the reliability of the detection mechanism, 

RF(t). An additional constraint on system reliability is the sum of the probability 

that the processor is working correctly, R(t), with the probability of fault coverage by 

the detection mechanism when the processor is not working correctly, (1 — R(t)).E. 

Reliability engineers commonly use the complementary reliability parameter Mean 

Time To Failure (MTTF) for failure rates; increases in the event rate reduce the 

MTTF expectations. Event rates are, as discussed earlier in this chapter, dependent 

on the occurrence of transient disturbances and the susceptibility of a system to this 

disturbance. It cannot be assumed that environmental conditions are stable - the 
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mean rate of occurrence of transient disturbances may approximate to a constant, 

but it should be recognized that occurrences may cluster. Clustered occurrences are 

known as 'bursts', and within the C.vmp microprocessor system approximately 25% 

of observed fault events were bursts [McConnel & Siewiorek, 1978]. 

Variations in the event rate will alter the expected reliability for individual ap

plications, and hence limit the usefulness of equations like (2.3.) when evaluating 

system reliability. However, equation (2.3.) can be applied to many other fault 

tolerant techniques, implemented in a simple single processor system, to provide a 

comparative index of their effectiveness. 

2.6. Summary and Conclusions 

Temporary faults have been diagnosed as causing between 15 and 50 times 

more failures in microprocessor systems than permanent faults. Reliability engineers 

attribute the generation of many temporary faults to the occurrence of transienten-

vironmental disturbances. 

Microprocessor-based controllers are often required to operate in harsh environ

ments where transient disturbances are a regular hazard. Prevention techniques in

volving screening and shielding can be applied in an attempt to eradicate the effects 

of transient disturbances on microprocessor controllers. In practice these techniques, 

however, only reduce the problem. 

Temporary faults are difficult to detect because of their limited duration. Fur

thermore, the errors they generate can induce microprocessor malfunction and this 

may lead to erroneous operation of equipment under directives from the controller. 

Equipment operation may be haphazard and pose a danger in particular applications. 

Microprocessor malfunction should be detected rapidly to reduce the hazard of 

erroneous equipment operation. It is with this purpose that fault tolerant techniques 

have been developed. Fault tolerant techniques enable digital systems to isolate 

and repair the effects of temporary faults before restoring the application function. 

Program flow errors are identified as having particular influence on the character of 
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microprocessor malfunction. A selection of techniques applicable to microprocessor-

based controllers are reviewed. In particular, techniques are discussed which incur a 

low system overhead. 

Assessment of the fault tolerant techniques reviewed in this chapter involves 

inserting faults into a microprocessor system and monitoring its response. These 

assessments only reflect the efficiency of the implemented fault tolerant techniques. 

A major number of observed computer system failures are attributed to temporary 

faults. Assessments of microprocessor system reliability should, therefore, take this 

class of fault into account. Reliability assessments should involve information includ

ing knowledge of the susceptibility of the processor to transient disturbances, and 

the likelihood of such disturbances in the application environment. 

In summary, temporary faults can be responsible for a significant number of 

microprocessor system failures. Fault prevention techniques cannot guarantee the 

eradication of all faults. It is therefore pertinent to incorporate fault tolerant features 

into the system design. Effective fault tolerance can be implemented at low-cost. For 

microprocessor systems with safety applications, developed within limited financial 

budgets, these techniques can provide highly beneficial and cost-effective reliability. 
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C H A P T E R T H R E E 

M O D E L L I N G E R R O N E O U S M I C R O P R O C E S S O R B E H A V I O U R 

3.1. In t roduc t ion 

This chapter investigates microprocessor behaviour with particular regard to fault 

conditions. Temporary hardware faults may disrupt software processing and induce 

erroneous execution. The event initiating erroneous behaviour is defined. A model is 

proposed to simulate erroneous microprocessor behaviour. This model is developed 

for the von Neumann class of microprocessor which has dominated processor design 

over the last thirty years. Erroneous behaviour is investigated. A facility for detecting 

erroneous execution is introduced into the model. The efficiency of detection is 

examined with respect to the latency between initiation and detection of erroneous 

behaviour. A stochastic reliability model is proposed to assess the effect of software 

disruption on microprocessor performance. A method is developed for calculating 

Mean Time To Failure (MTTF) of the microprocessor system. Availability is also 

determined under the assumption that the processor has a resident recovery routine in 

its memory. M T T F and availability are common engineering measures of reliability. 

Hence the modelled reliability for a microprocessor can be compared to other device 

reliabilities. 

The models presented are robust, not relying on the features of any microproces

sor (s). Model application allows the analysis and comparison of a wide selection of 

microprocessors. 

3.2. I n i t i a t i n g Erroneous Microprocessor Behaviour 

Erroneous microprocessor behaviour is considered to occur when a temporary 

fault manifests itself as a control flow failure. Loss of the correctly operating control 

flow will cause the microprocessor to mis-interpret its software with the hazard of 

malfunction. The ensuing behaviour comprises of propagating erroneous execution 

with a progressively increasing likelihood of catastrophic failure. 
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Any control flow failure will be reflected by an erroneous target entry in the 

microprocessor's program counter, and hence, the following assumption is made. 

Assumption (1) : The event initiating erroneous micro
processor behaviour is that of program 
counter corruption. 

The program counter is considered as a single register used to locate instructions 

through the whole address space. The nature of the program counter corruption 

is not known. The event initiating erroneous behaviour may have had a variety of 

sources including stack pointer corruption, bus-line transients, and memory bit-flips. 

I t is assumed that all bits in the program counter are equally susceptible to error. 

Assumption (2) : The contents of the microprocessor pro
gram counter are corrupted randomly by 
the event initiating erroneous behaviour. 

These assumptions enables a mathematical model, based on probability theory, 

to be developed for erroneous microprocessor behaviour. 

3.3. Erroneous Behaviour 

Consider erroneous behaviour to be initiated by random corruption of the pro

gram counter. This event produces a jump in the control flow of the existing software 

to a random location in the address space of the microprocessor. This random jump 

is termed the Initial Erroneous Jump (IEJ). Erroneous execution then commences. 

The data contents of the memory at the new location will be executed as if they were 

instruction codes. Erroneous execution will take place in a linear fashion until the 

execution of a further jump instruction causes a Subsequent Erroneous Jump (SEJ). 

Repeated periods of linear erroneous execution interspersed by SEJs follow until ter

minated either by catastrophic failure or system recovery. This process is shown in 

Figure 3.1., where the execution flow through the address space is shown as a stream 

of linked periods of linear erroneous execution. 
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3.4. Erroneous Execution 

Erroneous execution consists of a sequence of execution states, each state rep

resenting the operation of an instruction. Execution states can be categorized with 

respect to the nature of their outcome. Halse [1984] identified the state outcomes 

listed below. 

Non-Jump : leads to the program counter pointing to 
the next instruction in the address space. 

Restart : leads to a jump to a predefined location 
in the address space. 

Unspecified Jump : leads to a jump to a new location in the 
address space determined by volatile mem
ory contents. 

Return : leads to a jump to an address held in a 
stack. 

Stop/Wait : leads to a cessation of processing ; and 
requires an interrupt or hardware reset 
to exit from this state. 

Restart outcomes are usually generated by interrupts or exceptions. The restart out

come vectors execution to a location predefined by the microprocessor architecture. 

A recovery routine can be placed at the restart outcome vector target. Hence for 

controlled recovery, a restart outcome defines erroneous behaviour detection and an 

ordered return to a recovery routine. 

A model for erroneous execution is shown in Figure 3.2. The model shows erro

neous microprocessor behaviour being entered by program counter corruption (IEJ). 

The cascading sequence of state outcomes throughout erroneous execution can be 

traced. Successive 'non-jump' state outcomes will produce a period of linear erro

neous execution. A restart outcome can be used to provide detection of erroneous 

execution. Any of the remaining state outcomes, including a stop/wait outcome, are 

defined as generating further erroneous jump (SEJ) in the erroneous execution. 

In a particular make of microprocessor, not all possible instruction bit patterns 

are necessarily defined as instructions. Illegal, or 'undefined' instructions can, when 
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executed, result in any one of the state outcomes defined above. The actual state 

outcome depends on the particular microprocessor die, as manufacturers are not 

obliged to ensure that every batch produces the same operation. In some machines, 

such as the Motorola 68000 and Intel 80386, the execution of all undefined instructions 

is specified as an exception (software interrupt) and hence will produce a restart state 

outcome. 

3.5. Halse Execution M o d e l 

This section briefly reviews the foundations of a model for microprocessor op

eration proposed by Halse [1984]. The model analyses erroneous microprocessor 

operation. 

A statistical model of erroneous execution is made using the assumption that 

the memory contents, throughout the address space, have a distribution that does 

not change. This clearly does not reflect the memory content distribution for real 

microprocessor based systems. Their distribution will vary through the memory map 

dependent on the utilization of locations. Nevertheless, the model does enable the 

identification of some general characteristics of erroneous execution. 

As a result of erroneous behaviour, erroneous execution will interpret some lo

cation in the address space as an instruction. This results in one of two outcomes. 

Either an erroneous jump is generated which transfers control to another part of the 

address space; or no jump occurs and control passes onto the next logical location. 

Let the probability of an instruction execution yielding a 'jump' or 'non-jump' 

outcome be Pj and PNJ respectively. Hence by definition, 

It follows that the probability of terminating a period of linear execution on the ktK 

instruction (i.e. generate an erroneous jump) is given by 

Pj = 1 - PNJ (3.1.) 

Pj(k) = P\ >(*-!) 
NJ •Pj where k > 1. (3.2.) 
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When evaluating a microprocessor's erroneous behaviour, it is more realistic to 

use effective instruction outcome distributions rather than instruction outcome distri

butions based upon instruction set definitions. It is recognized that some instructions 

have different outcomes dependent on some conditional test. In particular it is noted 

that conditional branch instructions can be paired, such that groups of two instruc

tions covered a condition and its complement. Hence each pair of conditional branch 

instructions, such as a 'branch if zero' and 'branch if not zero', can be treated as 

if it were a single jump instruction and a single non-jump instruction. Halse [1984] 

assumes conditional instructions to have a 50% chance of occurring. Although this 

is strictly not true for individual conditions, the overall treatment of conditional 

instructions in this manner is considered valid. 

Let Nej be the effective number of address space locations that when interpreted 

as an instruction generate a 'jump' outcome instructions. Let Ni be the number of 

address space locations that could be interpreted as an instruction. 

Then: 

and, 

Nej = NeRN + NeRT + Nes/W + NeU3 (3.4.) 

where NeiiN, NeRT, Nes/w, and Neuj are the effective numbers of 'return', 'restart', 

'stop/wait', and 'unspecified jump' outcome instructions in the available address 

space. 

The probability that termination of a period of linear execution results in a 

particular outcome Px(k), is dependent on the proportion of that type of instruction 

in the set of 'jump' instructions. Collecting equations (3.2.), (3.3.), and (3.4.) gives, 

when k = 0, 
(3.5.) 

%^.Pj(k), w h e n f c > l . 

where the subscript x denotes the respective jump outcomes; x 6 {RT, U J, RN, S/W) 

represents restart, unspecified jump, return, and stop/wait. 

Px(k) = 
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3.6. H y b r i d Execution Mode l 

A hybrid model is proposed here facilitates further investigation of erroneous 

microprocessor behaviour. Erroneous behaviour has two phases of execution; lin

ear execution following an IEJ, and linear execution following an SEJ. The hybrid 

model enables the examination of the characteristics associated with each of the two 

patterns. In particular, three mechanisms have been identified that terminate linear 

erroneous execution. 

a) Another period of linear erroneous execution is initiated: an 'un

specified jump' or 'return' state is entered. 

b) Processing stalls: a 'stop/wait' state is entered. 

c) Detection of erroneous execution: a 'restart' state is entered. 

This section initially models the periods of linear erroneous execution associated 

with each of the two patterns of behaviour. These are then developed to investigate 

the probability of further periods of linear erroneous execution being initiated, stalled, 

or detected. 

3.6.1. Linear Erroneous Execution 

Both restart and stop/wait erroneous jump outcomes terminate erroneous execu

tion. Unspecified jump and return outcomes initiate a new period of linear erroneous 

execution. Let Pj<(k) represent the probability of the kth instruction processed yield

ing a jump outcome, other than a restart or stop/wait, following an erroneous jump. 

The subscript J' represents the jump outcomes; unspecified jump, and return. 

Pj,(k)= Y , P *( f c )> where fc>0. (3.6.) 
xe{UJ,RN] 

Logical processing errors such as 'divide by zero' can cause premature completion 

of an instruction's execution, generating an otherwise unexpected restart outcome 

within a fraction of the clock cycles normally required by the instruction. These 

errors have different influences on each of the two phases of erroneous behaviour. An 

IEJ may not initiate erroneous execution but fire what is considered by the model 
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to be an immediate restart outcome. The same assumption is made for an SEJ such 

that the SEJ instruction is considered to fire a restart rather than a jump outcome. 

Let 0 and 7 be the respective proportion of I E J S and SEJs firing a restart outcome 

in this way, such that 0 < /? < 1 and 0 < 7 < 1. 

Consider the execution model probability for the outcome of the kth processed 

instruction, equation (3.5.). Let P^EJ{k) and P^EJ (k) be the probability density 

functions for the execution outcome of the kth processed instruction. The subscript 

x denotes the class of outcome; x G {RT, UJ, RN, S/W} representing restart, un

specified jump, return, and stop/wait outcomes respectively. The superscript IE J 

or SEJ denotes execution following an IE J or SEJ respectively. 

Evaluating erroneous execution following an IEJ when fc = 0; 

' 0 , where x G {UJ, RN, S/W}, 

k P, where x G {RT}. 
P l E J ( k ) = { 

and when k > 1: 

(3.7a.) 

'1 - /?).[(1 - i).Px(k)\, where x G {UJ, RN, S/W}, 
P<EJ(k) = { (3.7b.) 

(1 - /?). [Px(k) + i-Pj>{k)\ , where x G {RT}. 

Evaluating erroneous execution following an SEJ when k = 0, 

p S £ J ( k ) = 0, where x G {RT, UJ, RN, S/W}, (3.8a.) 

and when k > I, 

(1 - i).Px{k), where x G {UJ, RN, S/W}, 
P^EJ(k) = { (3.86.) 

Px{k) + -y.Pj>(h), where x G {RT}. 

Let Pj(k) be the probability of terminating a period of linear erroneous execution 

where the subscript x denotes the class of outcome; x G {RT, UJ, RN, S/W} repre

senting restart, unspecified jump, return, and stop/wait respectively. The superscript 
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y denotes execution following an erroneous jump; y e {IEJ, SEJ} representing IEJ 

and SEJ respectively. 

/3(*) = E W 0 . (3-90 
X 

The probability that k instructions have been linearly processed in the current 

phase of linear execution is evolved f rom equation (3.9.), 

k 

Pl(k) = 1 - Y,{Pyj{k)}, where k > 0, and y G {IEJ, SEJ}. (3.10.) 

The mean number of instructions expected to be executed during each phase of 

erroneous behaviour, / , is given by, 

/ = E[K] = k-Pyj{k), where k > 0, and y G {IEJ, SEJ}. (3.11.) 
k 

where K is the random variable of the probability density function, defined by equa

tion (3.9.), Pjf(fc). 

I f the probability of a jump in either of the patterns of erroneous behaviour is zero 

then the number of instructions processed during linear erroneous execution is infinite. 

This, of course, assumes that repeated passes of execution through the address space 

due to program counter overflow, are considered as a single period of linear erroneous 

execution. 

3.6.2. Propagat ing F u r t h e r Periods of L i n e a r Erroneous E x e c u t i o n 

Periods of linear erroneous execution are propagated when erroneous behaviour 

generates a SEJ. The probability of a SEJ outcome on the fcth processed instruction 

during either of the two patterns of linear erroneous execution is developed f rom 

equation (3.6.), 

= px(k), where k > 0 (3.12.) 
X 
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where the subscript x denotes the class of outcome; x e {UJ, RN] representing un

specified jump, and return respectively. The superscript y denotes execution following 

an erroneous jump; y G {IEJ, SEJ} representing IEJ and SEJ respectively. 

3.6.3. Detect ion of Erroneous Execut ion 

Error detection latency is defined as the time between the ini t iat ion of erroneous 

behaviour and its detection. This parameter is an important performance character

istic when evaluating detection techniques [Blough &; Masson, 1987], The discrete 

state nature of the microprocessor model presented in this chapter means that error 

detection latency is determined as a function of the number of erroneously processed 

instructions during erroneous behaviour. 

Detection of erroneous behaviour can be provided by implementation of restart 

outcomes. Restart outcomes take execution to an address space location predefined 

by the processor architecture. A recovery routine can be placed at this address. Now 

restart outcomes produce controlled return to the recovery routine. Hence erroneous 

behaviour is detected by a restart outcome. In order to remove any ambiguity, recov

ery routines are only placed for restart outcomes generated by erroneous behaviour. 

Detection of erroneous behaviour may occur during the linear erroneous execution 

following an IEJ, or one or more SEJs. The probability of detection D(k) on the kth 

processed instruction of erroneous execution is given by, 

D(k) = D I E J ( k ) + DSEJ{k), where k > 0. (3.13.) 

where Di£j(k) and DsEj(k) respectively represent the detection coefficients of erro

neous execution following either an IEJ or SEJ. 

The detection coefficients are derived using the execution characteristics of er

roneous behaviour during processing following an IEJ and SEJ. Let Pi£J(k) and 

PjiTJ(k) represent the probabili ty of the kth instruction processed yielding detection 

(restart outcome) of erroneous behaviour following an IEJ and SEJ respectively. 

The detection coefficient D I E J ( k ) is the probabili ty of detecting erroneous exe

cution on the kth instruction before a SEJ occurs, 
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DiEjik) = Pj£J(k)., where k > 0. (3.14.) 

The detection coefficient DSEj(k) sums the probability of all possible execution paths 

resulting in detection after one or more SEJs. Every such execution route requires at 

least one SEJ, other than a stop/wait or restart outcome representing a processing 

stall and error detection respectively, after the IE.I commencing erroneous behaviour. 

DseAk) = £ P'/J{m). 
m=0 

k—m 
y £ * ( n ) . P % f J ( k - m - n ) 
n=0 

(3.15a.) 

where, 

, when n = 0, 

E"= i Pj,EJ{z).V{n - z) , when n > 1. 
(3.156.) 

Equation (3.15b.) calculates the probability associated wi th periods of erroneous 

execution initiated by and terminating wi th an unspecified jump or return outcome. 

To demonstrate the function of equation (3.13.) consider a simple example to 

determine the probability of detecting erroneous execution before four instructions 

have been erroneously processed. That is, evaluate D(k) when k = 3. From equation 

(3.13.), 

0(3) = DIEJ(3) + DSEJ(3) (3.16.) 

Equation (3.14.) yields the probability of detecting erroneous execution when no 

SEJs occur, 

DIBJ(3) = PLTW (3.17.) 

Equation (3.15.) yields the probability of detecting erroneous execution when one or 

more SEJs occur, 
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i pSEJ i 
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pIEJ 
r J ' (1) . P S / \ \ ) . P ! E J ( I ).l.Ps

R

EJ(0) + 

pIEJ 
(1) . P f E J ( 2 \ -i pSEJ 

1 • 1 • rRT :o)+ 

pIEJ 
' J' (2) i pSEJi 

1) + 

piEJ 
1 J' (2) .ps,EJ{\ ).\.PS

R

EJ (0)+ 

pIEJ 
1 J' (3) i pSEJi '0), 

where equation (3.7.) and equation (3.8.) define P},EJ(0) = 0, P | E J ( 0 ) = 0, and 

P£# J (0 ) = 0, 

Substituting equation (3.17.) and equation (3.18.) into equation (3.16.) gives, 

D(3) = P A f J ( 3 ) + 

P j P ( l ) . l . P ^ ( 2 ) + 
(3.19.) 

P j P ( l ) . P j ^ ( l ) . l . P ^ ( l ) + 

P,/\2).l.Ps

R

EJ{\). 

This simple example demonstrates the function of equation (3.13.). Although com

plex, the equation does simplify to produce an almost intui t ive result. 

Error detection latency Ld can be determined for the microprocessor model by 

calculating the expectation of detecting erroneous behaviour: 
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Ld = E[K) = £ f c .£>( fc ) , (3.20.) 
k 

where K is the random variable of the detection function D(k). 

This formula determines the mean number of instructions expected to be processed 

before detection. 

3.6.4. Erroneous Execut ion Sta l l 

A processing stall is considered to occur when the microprocessor enters a stop/ 

wait state. Execution stalls require an external hardware interrupt to facilitate state 

exit and continuing execution, but the occurrence of such events during erroneous 

execution is unknown. I t is therefore important to predict the significance of this 

eventuality. The following evaluations determine the probability of a processing stall 

during erroneous execution. 

Erroneous execution may stall during the linear erroneous execution following 

an IEJ, or one or more SEJs. The probability of stalling S(k) on the kth processed 

instruction of erroneous execution is given by, 

where SiEj(k) and SsEj{k) respectively represent the stalling coefficients of erroneous 

execution following either an IEJ or SEJ. 

The stalling coefficients are derived using the execution characteristics of er

roneous behaviour during processing following an IEJ and SEJ. Let Psw{k) and 

PswJ(k) represent the probability of the kth instruction processed stalling (stop/wait 

outcome) erroneous behaviour following an IEJ and SEJ respectively. 

The stalling coefficient S i E j ( k ) is given by, 

S(k) = S l E J ( k ) + S S E j ( k ) where k > 0. (3.21.) 

SiEj{k) — Psw (fc) where k > 0. (3.22.) 
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which is the probability of execution following an IEJ terminating wi th a stall outcome 

before a SEJ occurs. 

The stalling coefficient SsEj(k) represents all possible execution routes to a stall 

incorporating one or more SEJs. Every such execution route requires at least one 

SEJ, other than a stop/wait or restart outcome representing SjEj{k) and detection 

respectively, after the IE J commencing erroneous behaviour ( P j , E J ) . The stalling 

execution path may or may not include SEJs propagating further periods of linear 

erroneous execution Finally, an execution path generating a processing stall 

must terminate wi th a stop/wait outcome (PjswJ)- Hence, 

S s E j ( k ) = £ P'/'im). 
m=0 

k—m 

(3.23.) 
n=0 

where ^ ( n ) is defined by equation (3.15b.). 

The recursive nature of equation (3.15.) is similar to the above equation, and its 

functional description can be shared. 

The stalling latency Ls can be determined for the microprocessor model by cal

culating the expectation of stalling erroneous behaviour: 

Ls = E[K] = ^ k . S ( k ) , (3.24.) 
k 

where K is the random variable of the stalling function S(k). 

3.7. Rel iabi l i ty Analys i s 

The reliability model proposed here defines a microprocessor system failure as 

hazardous behaviour rather than loss of function. Hazardous behaviour is unpre

dictable and may mutilate system integrity and/or lead to catastrophic failure. The 

model outlined below describes how loss of funct ion may not immediately induce 

hazardous behaviour i f there is automatic repair. 

The reliability of a microprocessor system can be analysed using a state/t ime ran

dom variable stochastic model. Let a microprocessor occupy one of two behavioural 

states: controlled (C), and uncontrolled (U). The processor remains in a controlled 
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state unti l the occurrence of an event induces a transition to the uncontrolled state. 

Such transitions are considered system failures and mark the ini t iat ion of hazardous 

microprocessor operation. The probability of a transition in time 6t is X(t).8t, where 

A(£) is the failure rate. The reliability model is shown in Figure 3.3. The model is 

called a Markov Process because of its discrete-state, continuous-time nature. 

3 .7 .1 . Fa i lure R a t e , A(t) 

Let the sample space Es, comprise of a set of events corresponding to ini t iated 

erroneous behaviour, that is, IEJs. Let Er e Es where Er is an event leading to 

recovery, and Ej e Es where Ej is an event leading to failure. W i t h i n the sample 

space the conditions ET U Ej — Es, and Er D Ef — 0 exist. 

Let the probability of the event Er and Ej be P{ET) and P ( E f ) respectively, 

which leads to 

P(Er) + P(Ef) = 1 (3.25.) 

Now, assuming the event Es occurs randomly at a rate of q events per hour, then the 

failure rate of the microprocessor is given by 

A(i) = q.P(Ef) (3.26.) 

The failure rate is not time dependent giving, 

X(t) = constant = A (3.27.) 

so the Markov Process is termed homogeneous. 

Equation (3.25.) shows that the probability of an event leading to failure is dependent 

on the event not leading to recovery. The probability of recovery is itself dependent 

on the detection of erroneous behaviour. 
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3.7.2. Probabi l i ty of an E v e n t E Leading to Fai lure , P ( E f ) 

A stringent specification of failure requires the uncontrolled (erroneous) execu

tion of one or more instructions to be complete. The failure event is therefore any 

outcome, other than a restart, generated on or before completion of the first erro

neously processed instruction following an IE J. The detection capability of a restart 

outcome means that its operation is controlled. The probabili ty of a failure event is 

expressed as, 

P{E}) = 1 - £ { D ( f c ) } , where k < 1. (3.28.) 
k 

The cumulative density of the detection function incorporates the probability of 

detection through the two basic phases of erroneous execution: execution follow

ing an IE J and SEJ. Properties of these phases are now given in respect of the 

microprocessor model. A jump outcome, other than restart, following an IEJ or 

SEJ can only occur when an instruction has completed its processing. Equations 

(3.7a.) and (3.8a.) yield PjFJ(0) and Pj,EJ{0) w i th nil probabilities. Equation 

(3.8a.) also yields P | # J ( 0 ) a nil probability. Evaluating the effective instruction 

distr ibution in the address space given by equation (3.7.) yields P ^ f J ( 0 ) = /?, and 

P$J(1) = (1 - ^[Ppxil) + 7 .P j / ( l ) ] . Substituting equation (3.13.) into equation 

(3.28.) and applying these conditions gives, 

P(Ef) = 1 - {P + (1 - /3)(P* T (1) + 7 - M 1 ) ) ] (3-29.) 

substituting equations (3.2.) and (3.6.), 

P(Ef) = 1 -
Ne., 

' Neyj + NeRN + Nes/w 
Nej 

substituting equation (3.4.), 

P(Ef) = 1 0 + [Neirr + i\Neuj + NeRN + NeS/w\) 
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P(Ef) = ( 1 - 0 ) 1 1 -
Near + l[NeUj + NeRN + NeS/w] 

N, 
(3.32.) 

and from equation (3.25.), 

P{Er) 0 + ( 1 „ ®. {Near + ^.[Neyj + NeRN + NeS/w}) 
N 

(3.33.) 

3.7.3. Rel iabi l i ty Eva luat ion 

Consider the respective probabilities, for the reliability model, of being in a con

trolled state or uncontrolled state at time t + 6t. 

Pc(t + 6t) = [1 - X(t).6t}.Pc(t), (3.34.) 

Pu(t + 6t) = [X(t):6t}.Pc(t) + l.Pu(t). (3.35.) 

Substituting equation (3.27.) and re-arranging equations (3.34.) and (3.35.) gives, 

Pc{i + 6t) - Pc{t) 
St 

= -X-Pc(t), (3.36.) 

Pu{t + 6t) - Pu{t) 
6t 

= A.PC(<), (3.37.) 

and passing to a l imi t as 8t —> 0 yields, 

d{Pc(t)} 
dt 

-A.Pc(i) , (3.38.) 

d{Pu(t)} 
dt 

= \.Pc(t). (3.39.) 

Re-arranging and integrating equation (3.38.), 
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(3.40.) 

ln{Pc(t)} = -Xt + C u (3.41.) 

Pc{t) = exp{-Xt + Ci}. (3.42.) 

Applying the ini t ia l conditions; when t = 0, then Pc(t) = 1 and Pu{t) — 0 giving 

C\ = 0. Hence equation (3.42.) becomes, 

P c ( t ) = exp{-Xt}. (3.43.) 

Now re-arranging and integrating equation (3.39.) gives, 

J d{Pu(t)} = x j Pc(t).dt, (3.44.) 

J d{Pu(t)} = X J e-xtdt, (3.45.) 

Pu(t) = exp{-Xt} + C 2 . (3.46.) 

Again applying the ini t ia l conditions; when t — 0, then Pc{t) — 1 and Pu(t) = 0 

giving Ci = 1. Hence equation (3.46.) becomes, 

Pu(t) = 1 - e x p { - A i } . (3.47.) 

The reliability of the microprocessor system in the model is given by the proba

bi l i ty of the system remaining in a controlled state. That is, 

R(t) = Pc(t), (3.48.) 
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R(t) = exp{-Xt}, (3.49.) 

substituting equations (3.26.) and (3.27.) gives 

R(t) - e x P { - „ . ( ! - 0). ( l - " t t r + ^ + W ^ + A ^ l j j . ( 3 .50 . ) 

3.7.4. M e a n T i m e To Fai lure 

The concept of Mean Time To Failure ( M T T F ) , used in hardware reliability cal

culations, can be adapted for this work. I t provides a method of comparing hardware 

and software reliability. 

M T T F is defined as. 

MTTF = / R(t).dt, 
Jo 

(3.51.) 

substituting (3.49.) gives, 

rOO 

MTTF = / exp{-Xt}.dt, 
Jo 

(3.52.) 

MTTF 
exp{—Xt} 

X 
(3.53.) 

MTTF = (3.54.) 

Substi tuting equations (3.26.) and (3.27.) gives, 

MTTF = 
q.P{EjY 

(3.55.) 

and substituting equation (3.32.) gives, 

MTTF = 
_g(l - 0)(NL - New - l\Neuj + NeRN + Nes/w] 
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3.8. Avai labi l i ty 

The availability of a microprocessor is the proportion of time for which the mi 

croprocessor is ful ly operational'. An inherent assumption made when calculating 

availability is that the target system is maintained, i.e. the system has its operation 

restored after failure. W i t h i n the microprocessor model presented in this chapter, 

restoration is provided by the automatic execution of a recovery routine when a 

restart outcome is generated during erroneous execution. Availabil i ty Av is depen

dent on Mean T i m e To Failure ( M T T F ) and Mean Time To Repair ( M T T R ) , 

A„ = 
MTTF 

[MTTF + MTTR 
(3.57.) 

The Mean Time To Failure ( M T T F ) is defined by equation (3.54.). The Mean 

Time To Repair ( M T T R ) includes all processing before the microprocessor is restored 

to its ful ly operational state. In order to facilitate repair the microprocessor model 

must allow for the implementation of a recovery routine. Mean Time To Repair can 

be estimated using the following equation. 

MTTR = ( — ^ ^ j , (3-58.) 

where LD is the mean number of instructions processes erroneously before detection 

of erroneous behaviour (error latency f rom equation 3.20.), NJI is the mean number 

of instructions executed after detection by the recovery routine, and If is the mean 

number of instructions executed per hour. 

Substituting equations (3.54.) and (3.58.) into (3.57.) gives an estimate for the avail

abil i ty of a microprocessor system that employs coverage for the erroneous behaviour 

described in this chapter. 

Av = (3.59.) 

- I 1 + A . | ^ + W,< I • <*»•> 
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3.9. S u m m a r y 

The event, induced by a temporary fault, in i t ia t ing erroneous microprocessor be

haviour is defined as an Init ial Erroneous Jump (IEJ). Erroneous behaviour is char

acterized by periods of linear erroneous execution interspersed by erroneous jumps. 

The characteristics of erroneous execution following an IEJ or SEJ can be statistically 

modelled. Error latency is derived f rom detection capabilities in the microprocessor 

model. Failure mode analysis is used wi th in a Markov Model to determine functions 

of reliability and Mean Time To Failure ( M T T F ) . Availabil i ty of the microprocessor 

system by the model is estimated under the assumption that a recovery routine is 

implemented. These functions allow the comparative assessment of recovery tech

niques to be made for software disrupted by temporary faults i n a form which can be 

related to calculations for permanent faults in digital systems. 
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C H A P T E R F O U R 

E V A L U A T I N G M I C R O P R O C E S S O R B E H A V I O U R 

4.1. Introduct ion 

A model of erroneous microprocessor behaviour is presented in the previous chap

ter. This chapter applies the model to a selection of target processors which include 

8, 16, and 32-bit architectures using instruction mix analysis. 

The chapter commences wi th the derivation of parameter values required by the 

model for the microprocessors under investigation. The content of the address space 

is assumed to be random for the purpose of statistical analysis. Characteristics of 

erroneous execution are described for each of the target processors. In particular 

the possibilities of catastrophic failure and recovery are investigated because of their 

influence on the dependability of a microprocessor based system. 

Finally, the reliability of a microprocessor system is considered. A comparison 

is made between the microprocessors modelled using the reliability parameter Mean 

Time To Failure ( M T T F ) . Reliability calculations assume that the host processor 

has no recovery capability. Many of the microprocessors investigated, however, do 

have a recovery capability provided by the detection at tr ibute of instructions that 

develop a restart outcome. In order to assess the performance of such maintained 

microprocessor systems, the microprocessor systems availability is evaluated. 

4.2. Ins truct ion M i x Analys i s 

The model of erroneous microprocessor behaviour presented in Chapter 3 is eval

uated using instruction mix analysis. This involves determining the mean instruction 

distr ibution for a section of memory and modelling the expected behavioural charac

teristics. Such modelling is abstracted f rom actual microprocessor behaviour which 

is dependent on instruction sequences. Nevertheless, instruction mix analysis does 

provide a valuable method for indicating the nature of erroneous microprocessor be

haviour and its variation between target processors. 
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This chapter evaluates the erroneous behaviour of a selection of microprocessors. 

The processors considered are: Motorola 6800, Intel 8048, Intel 8085, Intel 8086, 

Motorola 68000, Motorola 68010, AMD Am29000, Motorola 68020, and Intel 80386. 

The microprocessors are chosen to include common application examples of 8, 16, 

and 32-bit architectures. In addition, these processors implement various design fea

tures including reduced instruction sets, ROM instruction decoders, and instruction 

processing exceptions. 

The instruction mix of the target processors is shown in Table 4.1., data being 

collated from Appendix A. Each instruction set is divided into instruction state out

comes, non-jump, restart, undefined jump, return, and stop/wait. The instruction 

mix of the undefined instructions within the processor instruction sets is detailed 

in Table 4.2. Some of these instruction sets contain unspecified instructions which 

through experiment have been defined [Halse, 1984]. 

4.3. Architecture Parameters For The Microprocessor Model 

This section determines the parameter values for the model of erroneous micro

processor behaviour which are dependent on the processor architecture. 

4.3.1. Built-in Microprocessor Detection Capability 

The Motorola 68000 family of microprocessors execute instruction op-codes resid

ing at an even byte boundary location in the address space. If an attempt to process 

an instruction op-code at an odd byte boundary location in the address space is 

made, then an immediate 'restart' outcome is entered. The outcome is assumed to 

be immediate because the 'odd byte address' exception does not process the instruc

tion op-code concerned but rather after a few clock cycles determines an illegal odd 

address has been accessed. The (5 parameter defined in equations (3.7.) and (3.8.) 

will therefore have an inherent value of 0.5 for this family of microprocessors. 

The remaining microprocessors evaluated within this chapter do not have this or 

a similar method of generating a restart outcome during instruction processing. The 

models of these microprocessors therefore define 0 to be zero. 
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4.3.2. Modelling the Microprocessor Program Counter 

Most of the microprocessors evaluated in this chapter have a single program 

counter which is capable of specifying every location in the address space. The Intel 

8086 and 80386 microprocessors, however, have an internal address bus smaller than 

its external address bus. To derive a location in the 8086 address space it uses two 

program counters. The address put on the external address bus is the sum of the 16-

bit Instruction Pointer and the 16-bit Control Segment Register which has already 

been left shifted four bits. Hence a 20-bit location is put on the external address bus. 

This method of deriving the address bus value means that corruption of either the 

Instruction Pointer or the Control Segment Register corrupts the microprocessor's 

effective program counter. The model considers the generation of an erroneous jump 

as corruption of the single effective program counter. 

4.3.3. Instruction Processing Exceptions 

Some microprocessor instruction sets include instructions which generate a restart 

outcome when an abnormal processing condition is identified. A good example com

mon to most microprocessors is the 'divide by zero' processing exception. Processing 

exceptions should not be confused with conditional instruction outcomes where a test 

is incorporated into the instruction operation in order to determine whether or not 

a task is performed, e.g. conditional branch. For the purpose of statistical analysis 

within this chapter, instruction processing exceptions are considered not to occur. 

The 7 parameter used in equation (3.7.) and (3.8.) is therefore zero. 

4.4. Evaluating Microprocessor Models of Erroneous Behaviour 

Erroneous execution within the used area is initially modelled by execution 

through a memory of random content. The two main behavioural characteristics, 

linear erroneous execution and erroneous jumps, are investigated. 

A selection of microprocessor instruction sets are examined in Table 4.3. The 

distribution of instructions through the address space of random content for many 

target processors is the same as their instruction set mix. In many instances, this is 
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due to the processor implementing a ROM instruction decoder, within its architec

ture, which specifies an instruction for all possible opcode bit formats. The Intel 8086 

and 80386. however, require their instruction set mix to be manipulated to reflect a 

random data instruction mix. 

Linear erroneous execution state outcomes are plotted as cumulative functions 

using equation (3.9.) in Figure 4.1. (8-bit processors), Figure 4.2. (16-bit processors), 

and Figure 4.3. (32-bit processors). The cumulative probability that linear erroneous 

execution has a particular state outcome after processing a number of instructions, 

indicated by the instruction index, is shown by the vertical width of the labelled area 

at that point. The features of each plot to notice are: 

i) Continued Linear Erroneous Execution 

This is the vertical width of the area labelled 'linear erroneous ex

ecution' at each instruction index. The larger the vertical width, 

the greater the probability that linear erroneous execution has 

continued through the number of instructions indicated by the 

instruction index. 

ii) Termination by Erroneous Jump 

This is the vertical distance of the combined areas beneath the 

area labelled 'linear erroneous execution' at each instruction in

dex. The larger the vertical width, the greater the probabil

ity that linear erroneous execution has been terminated by the 

present (or any preceding) processed instruction indicated by the 

instruction index. 

iii) Stop/Wait Outcome 

This is the vertical width of the area labelled 'stop/wait' at each 

instruction index. This outcome represents a catastrophic failure 

involving the termination of processor activity until the appro

priate external interrupt re-initiates operation. The likelihood 

60 



UJ 

UJ 
UJ to 
CO 

UJ 

to -z. 
r> o 
o —• 

£K UJ I — -< z :=> y o u 2 CC U J 
—• a: x 
- J LU U J 

O O O o 
3ivis JO juniaveoad 

o 
o 

T 
UJ 

UJ 
c_> 
U J 

CO 

( O 2 
CC U J I — 

U J O (_) 
ZOCUJ 
—> (X. X 
_ 1 UJ UJ 

00 CM 

31 vis JO Ainigvgoad 

\ 
r 

UJ 
v. 

u_ co 
UJ 
ce UJ CO 

in 

en 

UJ OC UJ 
U J O O 
z a i u — o: x I UJ UJ 

CO 

3ivis JO unigveoud 



o. 
in LU UJ V) ac co o LU to CC 0> LU 

CC IV. LU c_> to 
0-UJ to 

•o UJ 
to to to in LU in o 

oo to <r i_) LU 

o 
^ in to z LU 

o LU t— 

or LU a: x LU LU 

in 

31Y1S JO AiniaVGOud 

o. 
to or LU LU CO CC oo a to LU to ce 0) LU l_> a: LU to LU LU to <_) cc •o LU a: to to in to LU in o cc 

00 
CD 

L U 

O 
<n 2 LU 

LU h-

CC LU 
OS X LU LU 

in 
d 

31 VIS JO Aini8V80ud 

o 

cc 
10 or LU 
to LU 

L U CC 
to LU 

t_) LU LU 
X to •O L U 

a. to to 00 in 0 to 
CO 

cc 
to in 2T 

or I U »— 
U l O U 
Z CC LU a: x LU LU 

O 00 -O ~T <M. O 
—' c3 d o o o 

31Y1S JO AiniQYQOad 



or LU 

00 o 
LU 
t— 
i_> 
LU 
X 

•O I U 
t n 

in § 

o: 

co -o -? (M o 
°3ivis JO AinigvGoad 

o (_) or LU ce x 
LU LU 

or «< 
I — 
1/1 
LU 
tx 
<n tn 
LU or o o «< 
a a a 

o-

x 
sQ L U 

tn 
in § 

o—« 

a: 

in 
—* o 
o 

3JLV1S JO Ainiavoodd 

or LU 

LU UJ 

co -o <r r\i 

°3iYiS JO Ain?8Y90Md° 
o 
d 

o> 

co Q 
LU 
t— 

- 3 
LU 
X 

•O LU 
LO 

in § 
•—i 
t— 

<r (_> 

a 

z 



of such a restoring event occurring is unpredictable. The larger the 

vertical width of this area, the higher the probability of this outcome. 

iv) Restart Outcome 

This is the vertical width of the area labelled 'restart' at each 

instruction index. The restart outcome is the only one that when 

executed erroneously is considered to generate a controlled out

come. It is for this reason that i t will be used for detecting er

roneous execution. Hence the 'inherent' detection capability of 

a microprocessor may be observed by thickness of the 'restart' 

area. The larger the vertical width, the greater the probability 

that linear erroneous execution has been detected, and hence ter

minated, by the present (or any preceding) processed instruction 

indicated by the instruction index. 

The investigation of linear erroneous execution and erroneous jumps gives an indica

tion of the character and attributes of erroneous behaviour. 

4.4.1. 8-Bit Processor Evaluations 

All the 8-bit microprocessors evaluated exhibit a high probability of periods of 

linear erroneous execution exceeding ten instructions, see Figure 4.1. In particular 

the Intel 8048 and 8085 processor models suggest 31% and 27%, respectively, of the 

periods of linear erroneous execution are expected to terminate within ten instruc

tions. The Motorola 6800 is about twice as likely to terminate a period of linear 

erroneous execution within ten instructions. 

A SEJ terminates all periods of linear erroneous execution in the 8048 micropro

cessor system. However, for the other two 8-bit processors some periods of linear 

erroneous execution are terminated by recovery or catastrophic failure. Approxi

mately 79% of the periods of linear erroneous execution are terminated with a SEJ 

for the Motorola 6800 processor, a similar value of 65% is modelled for the Intel 8085 

microprocessor. Although the Intel 8048 processor will never catastrophically fail in 
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the model, it will also never inherently recover. Within the Motorola 6800 proces

sor non-SEJ terminations of linear erroneous execution as catastrophic failure are 

expected to occur four more times than recovery. The Intel 8085 processor has a con

verse relationship, recovery being expected to occur six more times than catastrophic 

failure. 

In summary, the model for the Motorola 6800 microprocessor suggests periods of 

linear erroneous execution of approximately ten instructions which are approximately 

five times more likely to terminate in an SEJ than failure, and the chance of recovery 

is small. The Intel 8048 processor model predicts much longer periods of linear er

roneous execution which will always terminate with an SEJ, no catastrophic failure 

of recovery is possible. Although the Intel 8048 processor will never catastrophically 

fail in the model, failure is implied by the fact that erroneous execution never ceases. 

Within the model for the Intel 8085 microprocessor periods of linear erroneous execu

tion are expected of a similar length to those evaluated for the Intel 8048 processor, 

of which approximately one third terminations are expected to generate recovery, the 

vast majority of the remaining terminations producing a SEJ. 

4.4.2. 16-Bit Processor Evaluations 

The instruction mix analysis of erroneous execution presented for the 16-bit mi

croprocessors in Figure 4.2. suggests that these processors have shorter periods of 

linear erroneous execution than those modelled for the 8-bit processors. The model 

predicts that in excess of 80% of linear erroneous execution periods will terminate 

before their tenth processed instruction. The Intel 8086 processor has a mean ex

pected period of linear erroneous execution longer than that for the Motorola 68000 

and 68010 microprocessors. This is due to the influence of the instruction set and 

architecture. The 68000 detection capability is considerably influenced by the 'odd 

address exception' processor facility. This exception yields a restart outcome for any 

access to an instruction located at an odd byte address in the memory map. 

Within the Intel 8086 processor model there is a 90% probability that a period 

of linear erroneous execution is terminated by a SEJ. This is much larger than that 

for the Motorola 68000 and 68010 processors whose model suggests the likelihood of 
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the same outcome as less than 3%. Hence, not only are the periods of linear erro

neous execution expected to be shorter for the Motorola processors than the Intel, 

but also the Motorola processors will have fewer periods of linear erroneous execution 

before either catastrophic failure or recovery is attained. The Intel 8086 processor 

model has a similar probability of linear erroneous execution being terminated by 

recovery through a restart outcome or catastrophic failure through a stop/wait out

come. The Motorola 68000 processors yields very different results. The probability 

of a stop/ wait outcome for the Motorola 68000 processors is too small to be shown 

on Figure 4.2(b & c) whilst the probability of a restart outcome and hence recovery 

is approximately 93% after just four processed instructions during linear erroneous 

execution. 

4.4.3. 32-Bit Processor Evaluations 

The result of model application for a selection of 32-bit processors is shown in 

Figure 4.3. The microprocessors evaluated are the Advanced Micro Devices Am29000 

(Version D), the Motorola 68020, and the Intel 80386. 

The influence in the model of the 'odd byte address' exception of the Motorola 

68020 microprocessor is clearly seen as the 50% intercept in Figure 4.3(b). This 

feature greatly reduces the mean expected period of linear erroneous execution as 

previously described for the Motorola 68000 and 68010 processors. The Advanced 

Micro Devices Am29000 achieves similar periods of erroneous execution without this 

architectural feature. Its performance relies totally on its instruction set attributes. 

Both the AMD Am29000 and Motorola 68020 models predict approximately 90% 

of linear execution periods of five instructions to terminate. This characteristic is 

not shared by the Intel 80386 processor model in which approximately 63% of linear 

erroneous execution periods of five instructions are expected to terminate. 

Termination of linear erroneous execution for the AMD Am29000 and Motorola 

68020 processor models have about a 90% expectation of of generating a restart 

outcome and hence detection and recovery. The Intel 80386 does not compare so 

favourably with a 37% chance of a restart terminating linear erroneous execution. The 
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Intel 80386 restart probability is, however, higher than all 8-bit and 16-bit processors 

considered earlier with the exception of the Motorola 68000 microprocessor family. 

The probability for the Motorola 68020, as with other members of the Motorola 

68000 processor family considered earlier, of catastrophic failure through a stop/wait 

outcome is too small to be shown in Figure 4.3(b). At 0.0015% it is very small when 

compared with the 8 and 16-bit processor evaluations. Although the AMD Am29000 

and Intel 80386 processors have a larger probability of 0.391% of a stop/wait outcome 

which is visible in Figure 4.3(a & c), it is still small in relation to other processor 

model evaluations. 

4.5. Catastrophic Failure Analysis 

The probability of a stop/wait outcome is identified as a catastrophic failure. 

Such a processing outcome stalls execution until an external interrupt generates a 

restart outcome and hence initiates recovery. The occurrence of a stop/wait outcome 

during periods of linear erroneous execution has been investigated for a selection of 

8. 16, and 32-bit microprocessors. It is valuable to further consider the probability of 

catastrophic failure as a function of general erroneous execution. Figure 4.4. shows 

the predicted chance of catastrophic failure using instruction mix analysis for a se

lection of processors. The graph is developed using equation (3.21) and data from 

Table 4.3. 

The Motorola 6800 microprocessor has a significantly higher probability of pro

ducing a catastrophic failure than the other evaluated processors. The Intel 8086 has 

an 8% probability of catastrophic failure after ten instructions have been processed 

during erroneous execution which is just under half that expected for the Motorola 

6800. The remaining processors are plotted as two groups in Figure 4.4. One group, 

comprising of the Intel 8085, A M D Am29000, and Intel 80386, has twice the expecta

tion of catastrophic failure of the other group of the Motorola 68000 family processors. 

This can be illustrated by a comparison between the Intel 8085 and AMD Am29000 

which have the respective likelihoods of 4% and 2% for catastrophic failure before 

ten instructions are erroneously processed. 
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4.6. Recovery Through The Detection of Erroneous Execution 

The probability of detecting erroneous execution is dependent on the generation 

of a restart outcome. This can be achieved through either an instruction's natu

ral outcome, or a hardware induced outcome where a processing exception occurs. 

Although the probability of a restart outcome has been considered during periods 

of linear erroneous execution, it is valuable to evaluate the general function of this 

outcome during erroneous behaviour. Figure 4.5. shows the probability of a restart 

outcome during erroneous execution for a selection of processors. The graph is plotted 

using equation (3.13) and data from Table 4.3. 

Both the Motorola 6800 and Intel 8086 have very low probabilities of generating 

a restart outcome, the former having less than half the expectation of the other. The 

Intel 8085 shows a significant improvement with a 32% chance of initiated recov

ery after ten instruction are erroneously processed. This represents over a four-fold 

improvement on the Intel 8086 processor. The Intel 80386 also shows an enhanced 

performance with approximately 63% probability that erroneous execution is detected 

after ten processed instructions. The remaining processors, the AMD Am29000 and 

Motorola 68000 processor family, have a much better performance. Their instruction 

mix models suggest the likelihood of erroneous execution being detected after ten er

roneously processed instructions is in excess of 97%. The 'odd byte address' exception 

is a major contributory factor for the performance of the Motorola 68000 processor 

family. This influence of the exception is shown as the 50% intercept value for the 

Motorola 68000 processor plots. The performance of the AMD Am29000 processor 

is dependent solely on its instruction set mix. 

4.7. Evaluating Microprocessor Reliability 

Microprocessor reliability is calculated under the 'worst case' assumption that 

any processor activity other than immediate detection is considered as system fail

ure. Detection is provided by those instructions which generate a restart outcome. 

Immediate detection requires a restart outcome to be attained before the second 

instruction of erroneous behaviour is processed. 
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The reliability of the microprocessors modelled, R(t), is assessed using equations 

(3.49.) wi th the substitution of equations (3.27.), (3.26.), and (3.32.), to yield, 

R(t) = exp { -qt.(l — ̂ ?). 1 — 
New + l[Neuj + NeRN + NeSw] 

(4.1.) 

where q is the event rate ini t iat ing erroneous behaviour, 0 is the probabili ty of hard

ware detection of erroneous execution, 7 is the probability of a processing exception, 

Nepar, Neyj, NCRN, and Nesw are the effective numbers of restart, unspecified 

jump, return and stop/wait outcome generating instructions wi th in the instruction 

mix, and finally, NL is the number of instructions in the instruction mix. 

Details of the instruction mix for reliability evaluation are shown in Table 4.3. The 

parameter 7 is defined in section 4.3.3., for the purpose of statistical analysis, to be 

zero so equation (4.1.) becomes, 

The parameter 0 is set to zero except for the Motorola 68000 microprocessor family 

where i t is set to 50% to represent the 'odd byte address' exception facility. The 

determination of processor parameters is discussed in section 4.3. 

The reliability curves evaluated for the selection of 8, 16, and 32-bit processors 

considered in this chapter are shown in Figure 4.6. Unfortunately some processor 

evaluations are so similar that their individual reliability curves cannot be distin

guished. In particular this occurs for the Motorola 68000 and 68010 processors, and 

the Motorola 6800, Intel 8048, and Intel 8086 processors. The variation in the respec

tive processor reliability for these clusters of curves is indicated by the Mean Time 

To Failure ( M T T F ) calculations shown in Table 4.4. These calculations assume the 

events which initiate erroneous behaviour to occur once per month or every 714 hours. 

As discussed earlier the Intel 8048 has no detection capability for erroneous ex

ecution and hence its M T T F is equivalent to the event rate. The remaining micro

processors have some degree of detection capability depending on instruction mix 

Ne 
R(t) = exp {-<?*.(! - 0). (l RT (4.2.) 
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and architectural influences. This detection capability has l i t t le effect of the M T T F 

for the Motorola 6800, Intel 8086, Intel 8085, and Intel 80386 processors. A more 

significant improvement is shown by the A M D Am29000 processor which has an 

M T T F approximately double the inter-arrival event period. Finally, the Motorola 

68000 processors have the best M T T F which are about three times the inter-arrival 

event rate. The performance of the Motorola processors can be largely attr ibuted 

to their 'odd byte address' exception facility which wi l l , under the model conditions, 

immediately detect half the initiated periods of erroneous microprocessor behaviour. 

4.8. Eva lua t ing Microprocessor Avai labi l i ty 

The availability of a microprocessor system can only be evaluated i f the system 

is maintained, i.e. manual or automatic repair is facilitated. The model presented 

for the erroneous behaviour of a microprocessor in Chapter 3 assumes that restart 

outcome generating instructions can be used to provide a detection capability for 

erroneous execution. Hence equation (3.60.) can be used to calculate availability, 

where A is the rate of failure events (per hour) that initiate erroneous behaviour, If 

is the mean number of instructions executed per hour by the processor, Ld is the 

error detection latency, and NR is the number of instructions to be processed in the 

recovery routine. 

A three dimensional availability plot shown in Figure 4.7. describes how avail

abil i ty varies wi th different event rates and error detection latencies. The solid plane 

denotes the use of a recovery routine wi th 50 instructions, whilst the dashed plane 

shows the effect of a larger recovery routine of 1000 instructions. 

In order to aid comprehension of the equation (4.3.) plot consider the following 

example. A microprocessor operates at 0.4 MHz and has a mean instruction process

ing t ime of 400 cycles. Failure events in i t ia t ing erroneous microprocessor behaviour 

are expected to occur once per second. Hence, 

1 
A V l + ±.[Ld + NR] 

(4.3.) 
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A 1.400 
400000 

= 0.001 (4.4.) 

The mean error detection latency (Ld) is ten instructions, and the recovery routine 

consists of 50 instructions (NR)- The availability of the system can now be determined 

using equation (4.3.): 

The calculated availability can be located on Figure 4.7. by mapping the event 

rate (per instruction) j-fi a n d error latency (number of instructions) Ld on the solid 

surface representing 50 instructions in the recovery routine NR. The actual operating 

frequency of a processor may be higher and the mean instruction cycle time shorter 

than that used in this example. These parameter values would increase the calculated 

value of system availability. 

4.9. C o n c l u s i o n 

A model based on probability theory is used to predict microprocessor erroneous 

behaviour. Characteristics of linear erroneous execution and their termination are 

compared for a selection of 8, 16, and 32-bit microprocessors using instruction mix 

analysis. Whils t this method of analysis does not reflect the time dependency of 

erroneous behaviour on the instruction sequence, i t does provide a valuable insight 

into the patterns of erroneous behaviour. 

Two important processing outcomes are studied: the probability of catastrophic 

failure and recovery. Catastrophic failure is denned as the entry into a stop/wait 

state where normal instruction activity ceases. This state can only be exited by 

the generation of an external interrupt. Such a reset signal cannot be relied upon 

because they have not been incorporated into the microprocessor system design. The 

1 
A V 1 + 0.001 10 + 50 

(4.5.) 

Av = 94.3%. (4.6.) 
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other important processing outcome is recovery. This is attained through entry into 

a restart state which by its definition establishes controlled microprocessor activity. 

The evaluation of recovery leads to the determination of reliability for the micro

processor system. The selection of target processors is compared using the reliability 

parameter Mean Time to Failure ( M T T F ) . Many processors show l i t t le improve

ment in the M T T F wi th respect to the inter-arrival event period. The best results 

are obtained f rom the microprocessor models for the A M D Am29000 and Motorola 

68000 family which have a three-fold increase in their M T T F compared wi th the 

inter-arrival event period. 

Finally, the chapter concludes wi th an investigation of microprocessor system 

availability. A general plot is shown to indicate the availability of a processor system 

implementing recovery routine of two sizes and an example discussed. Availabil i ty 

calculations are only made possible where a microprocessor system has an automatic 

detection and recovery capability for erroneous behaviour. 
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C H A P T E R F I V E 

D E T E C T I N G E R R O N E O U S M I C R O P R O C E S S O R B E H A V I O U R 

5 . 1 . I n t r o d u c t i o n 

The previous chapters of this thesis have proposed and evaluated a model of er

roneous behaviour for a selection of microprocessors. This chapter considers methods 

of exploiting characteristics of erroneous execution as part of a detection strategy. 

In particular the characteristics of Ini t ia l Erroneous Jump (IEJ) and Subsequent 

Erroneous Jump (SEJ) are identified for this purpose. 

The chapter commences by defining the functional allocation of a microproces

sor's address space: the used area consisting of program, data, and reserved i n p u t / 

output areas; the unused area consisting of physically implemented and non-existent 

memory. Detection techniques are then considered for these functional address space 

allocations. Particular proposals are made using software techniques for the program 

and physically implemented unused areas of the address space. In instances where 

a microprocessor does not have its address space totally implemented w i t h physical 

memory, a proposed hardware unit called an Access Guardian can be implemented 

to provide detection of unused area access. 

The application of faul t tolerance incurs a physical and/or performance overhead 

to the target microprocessor system. Each of the detection techniques considered 

wi th in this chapter has its required overhead evaluated. 

5 .2. Addre s s Space A l l o c a t i o n 

W i t h i n the system memory, areas can be defined which have different execution 

characteristics dependent on the defined uti l ization of that memory area. For the 

purpose of statistical analysis, the memory is divided into functional areas. Each 

functional area wil l exhibit a particular instruction distr ibution. 

Ini t ia l ly the address space is divided into two distinct areas, used area and unused 

area, such that 
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{ 
Total Address Space 

(bytes) H Used Area 
(bytes) } + 

Unused Area 
(bytes) } (5-1.) 

The unused area is considered to include those address space locations not re

served for, or required by the processor during correct operation. This area can be 

subdivided depending on the implementation of the resident address space, 

The used area contains locations reserved for external communication, and loca

tions for instructions and the data they require for correct operation. The used area 

can be functionally subdivided into, 

The program area is considered to contain all software instructions, opcodes and 

operands. The data area is considered to contain any information required by the 

software, i.e. data structures including stacks and linked lists. The input /output 

reserved area contains those locations specified as reserved for communication ports 

and exception targets. 

The functional allocation of the address space into its constituent areas is shown 

in Figure 5.1. I t should be realized that for microprocessor systems, allocation of the 

address space rarely involves contiguous functional areas. 

5.3. Erroneous E x e c u t i o n in the U n u s e d A r e a of the Address Space 

This section ini t ia l ly describes the character of modelled erroneous execution in 

the unused area of the address space. In particular the In i t ia l Erroneous Jump (IEJ) , 

first described in Chapter 3, is identified wi th erroneous execution in the unused 

area. Software and hardware detection techniques are presented which exploit this 

characteristic. Finally, the design of the hardware technique is detailed. 

o physically implemented memory, and 

o non-existent memory. 

o program area. 

o data area, and 

o input/output reserved area. 
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5 .3 .1 . T h e I n i t i a l E r roneous J u m p C h a r a c t e r i s t i c 

The event associated wi th the ini t iat ion of erroneous behaviour is the In i t ia l Er

roneous Jump (IEJ) . The destination of an IEJ has been assumed to be a random 

location in the address space in the model of erroneous execution presented in Chap

ter 3. Hence the probability that the destination of an IEJ w i l l be in the unused 

area, PiEj{Unused Area), is dependent on the proportion of the total address space 

occupied by the used area. That is, 

A linear relationship between PjEj{Used Area) and Used Area for a selection of 

address space sizes is shown in Figure 5.2. In particular the graph describes the IEJ 

characteristic exhibited by the Motorola 6800, Intel 8048, and Intel 8085 microproces

sors which have a 64 KByte address space, the Intel 8086 microprocessor which has 

a 1 MByte address space, and finally the Motorola 68000 and 68010 microprocessors 

which have a 16 MByte address space. 

Consider a particular software application on two microprocessors whose only 

difference is the size of their respective address space. I t is evident f rom equation 

(5.1.) that the microprocessor wi th the larger address space wi l l have an unused 

area occupying a greater proportion of the address space. The IEJ characteristic 

of equation (5.2.) highlights the profi tabi l i ty of detecting processor execution in the 

unused area which by definition is erroneous, particular benefit being offered by those 

microprocessors wi th a larger address space. 

5.3.2. D e t e c t i n g E r r o n e o u s E x e c u t i o n 

Access to the unused area of the address space is indicative of erroneous execution. 

Therefore a technique to detect such access is required to prevent erroneous execution. 

The unused area may partially or entirely include physical memory locations. These 

Unused Area (bytes) 
PiEJ (Unused Area) 

Total Address Space (bytes) 
(5.2.) 

and 

PiEj(Unused Area) = 1 - PiEj(Used Area) (5.3.) 
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locations may occur as a single contiguous block or as a collection of blocks distributed 

throughout the address space. 

5.3.2.1. A Software-Based Technique 

Software constructs can be placed in the blocks of physically implemented unused 

address space to provide detection of erroneous execution. The principles of their 

structure are as follows: 

i) A l l instructions wi th in the construct should be without an operand 

requirement in order that there is only one possible program flow 

path through the memory. 

i i) The program flow path of the software construct must have one 

or more termination points where recovery action is ini t iated, 

otherwise no recovery is possible. 

The software construct adopted by particular processor systems is influenced by the 

availability of instructions in their respective instruction sets. 

Error latency can be minimized by the placing of restart instructions wi thout an 

operand requirement at every location in a block of unused physical memory. Pro

cessing any one of these restart instructions initiates execution of a recovery routine 

for the application software. However, not all microprocessors possess such a restart 

instruction, e.g. the Intel 8048 processor. For microprocessors like these, a software 

construct called the 'snake' can be used [Pearson, 1983]. The snake construct involves 

placing a chain of 'no-operation' instructions, without an operand requirement, at 

each location except the last in a block of unused memory. The terminating location 

in the block holds a jump instruction. The action of the snake is to 'slide' erroneous 

execution ini t iated on i t to the jump, which then directs execution to the recovery 

routine. The error latency associated wi th the processing time required to 'slide' 

down the snake can be reduced by placing intermediate jumps, whose destination is 

the recovery routine, wi thin the blocks. However, in order to preserve detection of 

erroneous execution at every location in a block of unused physical memory, such 

intermediate jumps should not require any operands. 
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Many microprocessor systems do not implement their entire unused area in physi

cal memory, and hence a complementary or alternative detection technique is required 

for non-existent memory in the address space. 

5.3.2.2. Watchdog T i m e r s and S m a r t Watchdogs 

As described in Chapter 2, watchdog timers and smart watchdogs can be im

plemented in a microprocessor system to detect access to the unused areas of the 

processors address space. 

I B M [1986] describe an analogue watchdog timer which they have developed for 

microprocessor controllers. I t was developed because automatic reset is required when 

an embedded microprocessor in a controller improperly executes code. Watchdog 

timers require the application software to correctly reset the watchdog timer. Hence 

the programmer requires a prerequisite knowledge of the target processor system in 

order to satisfy the watchdog timer requirements. Such programming practice is much 

slower than code generation for microprocessor systems employing a transparent fault 

tolerant technique. 

Namjoo & McCluskey [1982] propose a smart watchdog, based on an additional 

processor, to detect (in a transparent fashion to the application software) unused 

area access. The watchdog monitors access to the unused area. On an invalid access, 

the watchdog signals a hardware interrupt to the host microprocessor indicating 

detection of erroneous behaviour. The host machine then processes the interrupt in a 

manner that wi l l initiate recovery. I t should be realized that the additional processor 

implemented by the smart watchdog is susceptible to error generation in the way as 

the microprocessor i t is protecting. 

5.3.2.3. T h e Access G u a r d i a n Proposa l 

The redundancy of the smart watchdog can be reduced by implementing its de

tection function in a dedicated hardware unit . The design of such a uni t , referred to 

as an 'Access Guardian', is proposed here. The Access Guardian provides indepen

dent on-line monitoring and detection of unused area access by the microprocessor. 
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The topology of a microprocessor system incorporating an Access Guardian is shown 

in Figure 5.3. 

The Access Guardian detects whether or not invalid address lines are activated, 

and if so, impresses an interrupt signal to the microprocessor. This induces a restart 

state outcome wi th in the microprocessor which then directs execution to a recovery 

routine for the software application. Implementation of an Access Guardian requires 

a prerequisite knowledge of the residence of the used area wi th in the microprocessor 

address space. This implies that Access Guardians can only be used in dedicated 

microprocessor systems. 

The general function of the Access Guardian is shown in Figure 5.4. The Ac

cess Guardian takes the system address bus as input to its 'address decoder' which 

generates a signal when invalid address lines are activated. This signal is then pro

cessed w i t h Access Guardian status information by the 'restart generator' to produce 

an interrupt signal 'RESTART' for the application processor. The interrupt signal 

must exist slightly in excess of the microprocessor interrupt latency. The interrupt 

latency is the length of time an interrupt must exist to guarantee processing by the 

microprocessor. Assuming the interrupt is given highest pr ior i ty the processor w i l l 

detect i t following the execution of the present instruction. The interrupt signal must 

therefore be just longer than the longest execution time required by any instruction. 

A 'timer un i t ' holds a set interrupt signal for the required period. The detailed design 

of an Access Guardian is presented in Appendix B. 

The effectiveness of detecting unused area access has been investigated using 

faul t insertion experiments. Gunneflo et al [1989] report 60% of faults inserted into 

an operating Motorola 6809 microprocessor system as generating access to an unused 

area occupying 88% of the address space. They expect unused area area to fa l l and 

rise wi th decreasing and increasing proportions of the address space occupied by 

the unused area respectively. This suggestion is supported by Schmid et al [1982] 

who report only 10% of faults inserted into a Zilog Z80 microprocessor system as 

generating access to an unused area occupying 10% of the address space. 
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5.4. Erroneous Execution in Used Area of the Address Space 

A technique has been proposed so that erroneous execution in the unused area 

will be detected. There still remains, however, the possibility of erroneous execution 

in the used area. This involves periods of linear erroneous execution interspersed 

by Subsequent Erroneous Jumps (SEJs) within the used area. This characteristic 

is investigated by tracing successive SEJ destinations, and several microprocessors 

are evaluated using the model of erroneous microprocessor behaviour proposed in 

Chapter 3. Techniques are proposed for detecting erroneous execution using software 

implemented fault tolerance. 

5.4.1. The Subsequent Erroneous Jump Characteristic 

The probability of a SEJ whose generator and destination are both in the used 

area can be determined as follows. Let the set {L} contain every location in the used 

area, and NL be the number of items in the set {L}. Let the set {J} contain every 

jump type instructions in the microprocessor instruction set, and Nj be the number 

of items in the set {J}. Let / be a location in the used area, and j be a particular 

jump type instruction in the instruction set. Hence I € {L}, and j € {</}. 

Let the function H(l,j) represent the percentage of possible destinations gener

ated by a particular jump type instruction ( j ) at a used area location (/), that reside 

within the used area. This function is referred to as the 'hit ' function. Let the set 

{ T } contain all the locations that can be addressed by a jump type instruction ( j ) 

residing at location (/). Then 

Pr({T} n { L } ) 
Pr({L}) 

where Pr({L}) = 1 (5.4.) 

which can be expressed as a conditional probability, 

H(l,j) = Pr({T}\{L}) (5.5.) 

having the boundary condition Pr({L}) > 0 is satisfied. 
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Typically jump type instructions can generate destinations within either a local 

2 8 , 2 1 6 , or 2 3 2 byte range. Consider a jump type instruction employing relative 

addressing with a byte operand specifying the displacement. Various operand values 

alter the destination of the jump type instruction. If this jump type instruction 

resides in the middle of the used area of > 2 8 bytes then it is guaranteed to generate 

all its possible destinations within the used area: that is H(l,j) = 1. However the 

same jump type instruction residing in the middle of a used area of 2 7 bytes only has 

half its possible destinations within the used area: that is H(l,j) = 0.5. Figure 5.5. 

is provided to further aid comprehension of the HIT function. 

Let Ps£j(Used Area) be the probability of a jump type instruction ( j ) selected 

at random from the microprocessor instruction set, residing at a random location in 

the used area (I), generating a destination which is also within the used area. 

PsEj(UsedArea) = -±—.J2 E H i 1 ^ ) - ( 5 - 6 0 

The relationship between PsEj(Used Area) and Used Area for a range of 8, 16 

and 32-bit microprocessors is investigated in Figure 5.6. Al l jump type instructions 

within the 8-bit Intel 8085 microprocessor instruction set specify absolute target ad

dresses and hence its SEJ characteristic is linear. When half the Intel 8085 processors 

address space is used, there is a 50% expectation that a SEJ in the used area will 

return to the used area. For the same address space utilization, however, the 8-bit 

Motorola 6800 microprocessor has an 80% probability that a SEJs generator and 

destination lie within the used area. This is because the Motorola 6800 processor 

instruction set does have some relative addressing mode jump instructions. Similar 

results are obtained for the 16-bit processors evaluated. The Motorola 68000 micro

processor has a much higher probability of a used area SEJ targeting the the used 

area again than the Intel 8086 because i t has a far higher proportion of opcode for

mats within its instruction set dedicated to relative addressing. For example, a 300 

KByte used area on the Motorola 68000 and Intel 8086 have respective probabilities 

of approximately 95% and 70% that a SEJ generated in the used area will also target 

the used area. The 32-bit microprocessors evaluated show that for a 300 KByte used 
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area of random data, the AMD Am29000 Intel 80386, and Motorola 68020 micropro

cessors are expected to generate a target with the used area of approximately 25%, 

60%, and 95% respectively. The variation in the HIT function evaluation for the pro

cessors is due to the proportion of relative jump opcode formats in their instruction 

sets. 

A high probability of an SEJ in the used area generating a target address which is 

also in the used area suggest extended periods of erroneous execution in the used area. 

Such behaviour can be extremely hazardous, not only involving mal-operation but 

also program area corruption from invalid data manipulation. Therefore, a method of 

detection is required within the used area to prevent extended erroneous execution. 

5.4.2. Detection Using Software Implemented Fault Tolerance 

The following section describes techniques which can be implemented in the soft

ware to detect erroneous execution in the used area. The techniques utilize instruc

tions that generate a restart outcome. Such instructions direct execution to a pre

defined location in memory at which a recovery routine resides. The recovery rou

tine restores operation as required by the application software, two possible recovery 

strategies are reset and rollback. 

5.4.2.1. Program Areas 

A software detection technique is proposed which exploits the SEJ characteris

tic. In particular, erroneous jumps are considered which are generated by invalid 

interpretation of an operand as an opcode. Such erroneous jumps are referred to as 

invalid branches. Detection mechanisms are strategically inserted at each identifiable 

invalid branch destination. 

Detection Mechanism Construction 

The actual construction of a detection mechanism will vary in detail for different 

microprocessors. A detection mechanism consists of an initial relative branch instruc

tion over the remainder of the detection mechanism so that logical control flow of 
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the correctly executing program is not interrupted. The remainder of the detection 

mechanism consists of a number of 'seed' instructions. 

The instructions used to construct a detection mechanism should not require any 

operands, however, this may not always be possible. In such instances care must be 

taken to avoid the use of operand bit formats which when erroneously interpreted as 

an opcode generate erroneous jumps. Failure to ensure that detection mechanisms 

do not themselves generate erroneous jumps leads to successive detection mechanism 

placements with no guarantee of placement completion. 

A detection mechanism seed instruction is a software exception without operands 

which, through a restart outcome, directs execution flow to a recovery routine. The 

number of seeds required depends on the individual placement of a detection mech

anism. 

General examples of detection mechanism structure are shown in Figure 5.7. 

The Motorola 68000 microprocessor facilitates detection mechanism constructs like 

that in Figure 5.7(a), the jump over mechanism being provided by the operandless 

hexadecimal instruction 600X where ! X ' is the necessary relative displacement, and 

the seed is provided by the hexadecimal instruction 6001 which is branch that al

ways generates an 'odd address' exception (restart) and again does not require any 

operands. Within the Intel 8048 microprocessor there are no restart instructions or 

jump instructions without a operand requirement. The detection mechanism in this 

case is like that in Figure 5.7(b). The mechanism uses the hexadecimal instruction 

04XX for the jump over the mechanism, the hexadecimal no-operation instruction 00 

for the snake, and the hexadecimal instruction 04XX to jump to the recovery routine 

(mimic restart function) where 'XX' specifies the hexadecimal representation of the 

jump destination location. 

Detection Mechanism Placement 

Figure 5.8. shows the two basic methods of inserting a detection mechanism 

within the target software. Forward invalid branch destinations are covered by 

inserting the detection mechanism at the location of the preceding instruction. 
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Detection mechanisms are inserted to cover backward invalid branches at the location 

of their respective following instruction. Each detection mechanism requires sufficient 

seeds to ensure that the invalid branch destination has a resident seed. The maximum 

number of seeds required will be equivalent to the byte length of the largest instruction 

construct in the instruction set. 

The insertion of a detection mechanism may itself alter the destination of an in

valid branch. This situation arises when the invalid branch generator has a specified 

displacement contained in the byte locations directly following the host instruction 

and a detection mechanism is inserted immediately after the host instruction. A 

good example of this is provided by the Motorola 68(7)05 microprocessor where the 

'test and branch' instruction requires two operands, the final operands containing 

the relative displacement. This instruction has the same size as the maximum length 

instruction within the instruction set; therefore, whenever an invalid branch has this 

operation, its destination information will always be contained outside the generating 

instruction. If a detection mechanism is inserted immediately after the generating 

instruction then the destination for the invalid branch is altered by the change in the 

information content at the location specifying the relative displacement. Successive 

invalid branches can be generated in this manner. Application of detection mech

anism placement should test for this situation and take evasive action to prevent 

changing the destination of an invalid branch. 

The Detection Capability of the Mechanism 

The mechanisms inserted within the program code provide a detection capability 

which has two methods of activation. The first method of detection is associated 

with an invalid branch generated by erroneous execution. Detection mechanisms are 

placed in order to detect such SEJs. Secondly, ensuing linear erroneous execution 

processing through a placed mechanism is detected when a seed is interpreted as 

an opcode. This second method of detection is guaranteed to be successful if the 

detection mechanism has a number of seeds equivalent to the byte length of the 

longest instruction within the application processors instruction set. 
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Detection Mechanism Placement Deadlock 

Detection mechanisms cannot be placed where the generator and destination of an 

invalid branch are both operands of a single instruction. This occurrence is referred 

to as placement deadlock. There are two particular types of placement deadlock, 

those where the invalid branch has a forward direction and those with a backward 

direction. In addition placement deadlock occurs when the destination of an invalid 

branch is displaced forward of its generating instruction by the equivalent or fewer 

bytes than that required by the detection mechanism's jump instruction. Placement 

deadlock with a backward invalid branch is critical because an infinite execution loop 

may be created. This processing outcome is classified as a failure and has a particular 

hazard in real-time systems. Placement deadlock involving a forward branch does not 

share this hazard, erroneous execution continuing unhindered through the associated 

code. 

5.4.2.2. Data and Reserved Input/Output Areas 

Data areas and areas reserved for input/output communication can be manipu

lated using similar techniques to facilitate a detection capability of erroneous execu

tion. The information content of both area types cannot be changed, but the method 

and location of storage can be altered. 

Halse [1984] investigates methods of inserting special sections of code within the 

data area. Erroneous execution in the data area is detected when i t flows through one 

of these sections of inserted code. The efficiency of various sizes of code insertions 

with different desperations throughout the data area are analysed by Halse. This 

technique is not transferable to the reserved input/output area because the locations 

of this area are fixed and no code insertion is therefore possible. 

An alternative technique involves utilizing particular bits of each memory ele

ment to specify an opcode restart operation. The remainder of the memory element 

is free for information storage. This technique can best be explained using the Mo

torola 68000 as an example. Within this processor the hexadecimal opcode format 

FXXX can be used where 'X' denotes an unspecified content. This opcode format 

is not necessarily available in upwardly compatible members of the Motorola 68000 
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family, e.g. the Motorola 68020 reserves this format for a co-processor. The execu

tion of a Motorola 68000 FXXX opcode is denned to be illegal and to generate an 

exception (restart outcome), and hence can be used to detect erroneous execution. 

The unspecified opcode bits can be used to contain useful data area or input/output 

reserved area information. Implementation of this technique in the data area and 

input/output reserved areas will required the application software only to extract 

the least significant 12-bits of information from each memory location. In addition, 

the input/output locations should have the most significant 4-bits hard-wired for the 

restart opcode format. This technique incurs redundancy, which may be substantial 

in some microprocessor applications. Indeed, the technique may not be feasible for 

some microprocessor systems. 

A third technique involves moving the location of data areas in the address space 

so that their address specification within an operand has the format of a restart in

struction. This ensures that when erroneous execution in the program area generates 

a SEJ destination in the data area, erroneous execution is detected. Application of 

this technique is highly dependent on the host microprocessor instruction set. The 

best results are obtained for those instruction sets with a larger number of restart 

generating opcode formats. Small numbers of restart opcode formats restricts the 

number of locations available for positioning sections of data area. This technique 

is investigated further by Halse [1984]. Again, however, this technique cannot be 

applied to the input/ output reserved area because its locations are fixed, although 

some locations may be available that, by coincidence, map restart opcode formats. 

5.5. The Overheads of Implementing Eault Tolerance 

5.5.1. Hardware Fault Tolerant Techniques 

The Access Guardian and smart watchdog have an error latency much smaller 

than that typically exhibited by watchdog timers. In addition their application, 

unlike the watchdog timer, is transparent to the application program. The use of an 

Access Guardian or smart watchdog, therefore, releases the application programmer 
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from requiring a knowledge of the target processor system architecture in order to 

produce dedicated software. 

The design of the Access Guardian can be applied to most microprocessor sys

tems. The complexity of the 'address decoder' is dependent on the nature of the 

address space, and the bus architecture employed by the microprocessor. The 'timer 

unit' will also vary in size depending on the microprocessor interrupt latency. The 

'restart generator' has a fixed size. An Access Guardian designed in Appendix B 

requires 60 logic gates, representing 17 standard T T L IC parts. This represents a 

significant reduction in the gate overhead introduced by a smart watchdog which 

typically has thousands of gates. 

The Access Guardian acts in parallel with the microprocessor and does not inflict 

a performance overhead to the system during correct operation. Its reduced size in 

comparison with a smart watchdog also implies a smaller chance of the 'doomsday' 

syndrome occurring by which the hardware detection unit fails [Damm, 1988]. 

5.5.2. Software Implemented Fault Tolerant Techniques 

The overheads of used area software enhancement are additional memory re

quirement and increased operational processing during correct operation of detection 

mechanism jumps. Modification of the unused physical memory locations does not 

incur any overhead to the microprocessor system because during the course of correct 

operation the section of the address space is totally independent of processor action. 

The memory extension required by the software implemented fault tolerant tech

nique proposed for the program area can be reduced by generating optimum size de

tection mechanisms at each placement rather than a default maximum size. Whilst 

this reduces the memory overhead, it also decreases the effectiveness of the mechanism 

to detect linear erroneous execution. The relative cost of a byte of physical memory 

has decreased over recent decades [Freer, 1987] and, therefore, the memory overhead 

is not predicted to be a major system constraint. Nevertheless, in those systems with 

a limited memory, optimum size detection mechanisms can be implemented. 

A memory overhead is also produced by the insertion of software in the data area 

to detect erroneous execution. Further details of the expected overhead for particular 
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processor systems can be found in Halse [1984]. This memory overhead does not have 

an associated performance overhead. 

The extra processing requirement of detection mechanism jumps during correct 

operation of program code may prove critical for some stringent real-time and parallel 

processing applications. This processing overhead is not influenced by the placement 

of optimum or default size detection mechanisms in the target code. However, for 

the majority of applications this overhead is considered to be acceptable. 

The technique proposed for the data and reserved input/ output area by which 

the data content of each memory location is reduced in order to give that location 

a detection capability, also generates a processing overhead. Data transfers and 

memory requirement may be increased. The magnitude of this overhead is application 

dependent. The architecture of a microprocessor could incorporate this technique in 

order to reduce lost operational performance. 

5.6. A Fault Tolerant Strategy for Microprocessor Controllers 

The detection techniques described in this chapter cover attributes of erroneous 

execution associated with the model of erroneous microprocessor behaviour presented 

in Chapter 3. Individual application of one of the techniques will improve the re

liability of the processor system in relation to this mode of failure. However, the 

reliability of the system can be further improved by the selection of techniques for 

collective implementation. Such techniques should be complementary and feasible for 

incorporation into a particular microprocessor system. Hence, the selection of fault 

tolerant techniques is termed 'strategic'. 

The model of erroneous microprocessor behaviour described in Chapter 3 is sum

marized in Figure 3.2. This figure can now be modified to include the detection 

capability of unused area access via the Access Guardian, and invalid used area oper

ation via the detection mechanisms planted in the software. The model of erroneous 

behaviour in a microprocessor implementing such fault tolerant techniques is shown 

in Figure 5.9. 
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The reliability of a selection of microprocessors implementing an Access Guardian 

are shown in Figure 5.10. The evaluations assume a worst case of no recovery capabil

ity exhibited by the used area so equation (3.49.) with equation (3.26.) substituted 

becomes, 

R(t) = exp{-q.P(Ef).t}, (5.7.) 

where, 

f Used Area (bytes) 1 
1 f ) \ Address Space (bytes) J ' K ' 

and q is the event rate, P{Ej) the probability that the event initiates erroneous 

execution, and t is time. 

Figure 5.10. has a normalized time base. Reliability can also be expressed as MTTF 

using the following equation for the microprocessor system described above, 

MTTF =-.{ Address Space (bytes) 1 
q [ Used Area (bytes) J 

Table 5.1. shows the MTTF calculations corresponding to Figure 5.15. where events 

initiating erroneous microprocessor behaviour are taken to occur once a month (every 

714 hours). 

The complementary application of fault tolerance in the used area enables the 

reliability of the microprocessor system to be improved. Future chapters investigate 

the recovery capability enhancement realized by particular microprocessor systems. 

Meanwhile it is sufficient to demonstrate the benefit of detecting erroneous micro

processor behaviour in the used area of the address space. Consider a Motorola 

68000 microprocessor system with 48 KBytes used area and implementing an Access 

Guardian. The used area is initially assumed not to have a recovery capability. For 

the purpose of statistical analysis let the used area be divided into program and 
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Microprocessor Class P{Ef) M T T F 

6800 8-Bit 0.750000 952 hrs = 39 days 

8048 8-Bit 0.750000 952 hrs = 39 days 

8085 8-Bit 0.750000 952 hrs = 39 days 

8086 16-Bit 0.046870 15232 hrs = 21.6 months 

68000 16-Bit 0.001465 487567 hrs = 56 yrs 

68010 16-Bit 0.001465 487567 hrs = 56 yrs 

68020 32-Bit 0.000006 119047619 hrs = 13590 yrs 

Tab le 5 .1 . : M T T F w i t h U n u s e d A r e a D e t e c t i o n 

Program/Data P(Ef) M T T F 

4 8 K / 0 K 

4 0 K / 8 K 

8 K / 4 0 K 

0.001465 

0.001383 

0.001052 

487567 hrs = 56 yrs 

516476 hrs = 59 yrs 

678979 hrs = 78 yrs 

T a b l e 5.2. : M T T F E n h a n c e m e n t w i t h U s e d A r e a D e t e c t i o n 
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data areas wi th no and total recovery capability respectively. Reliability enhancement 

is now dependent on the proportion of the used area occupied by the data area. 

Table 5.2. notes 8 KByte and 40 KByte data areas and calculates their respective 

M T T F influence on the microprocessor system. These calculations are represented 

as reliability curves in Figure 5.11. Of course the program area can have a recovery 

capability too: the above calculations are given purely as an example. 

The strategic selection of fault tolerant techniques is not l imi ted to those special

ized techniques presented in this chapter for particular modes of failure at t r ibuted to 

erroneous microprocessor behaviour described in Chapter 3. Addi t ional techniques 

such as Recovery Blocks for programs, and parity bi t checking for physical memory 

(both described in Chapter 1), can be incorporated to further enhance reliability 

through the coverage of other modes of processor system failure. 

5.7. S u m m a r y 

Operational characteristics have been identified in the model of erroneous mi 

croprocessor behaviour proposed in Chapter 3. In particular the characteristics of 

In i t ia l Erroneous Jump (IEJ) and Subsequent Erroneous Jump (SEJ) are associated 

w i t h erroneous execution within the unused and used areas of the processor address 

space respectively. The characteristics are modelled for a selection of 8-bit, 16-bit 

and 32-bit processors, and variations are observed wi th differences in processor archi

tecture and instruction sets. Detection techniques are proposed which exploit these 

characteristics in order to provide fault tolerance and hence increased reliability to 

the microprocessor system. 

A detection capability can be provided for the unused area using either a software 

based technique for physically implemented memory, and/or an Access Guardian 

which provides an additional detection capability for non-existent memory. 

The used area incorporates functional areas for the program, data, and inpu t / 

output communications, and can be implemented in volatile and non-volatile mem

ory. A detection capability is provided for the program area by the application of a 

proposed technique involving the strategic insertion of mechanisms at invalid branch 
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(SEJ) destinations to detect erroneous execution. The application of this technique 

and its performance evaluation are covered by future chapters. Other techniques are 

discussed in relation to providing a detection capability for the data and reserved 

i n p u t / output areas of the used area. 

Application of fault tolerance in the used area involves an additional memory 

overhead. This memory overhead inflicts a processing performance overhead when 

inserted wi th in the program area, namely the jumps over detection mechanism which 

avoid correct program flow corruption. The magnitude of these overheads is evaluated 

for particular applications in the following chapters. 

Fault tolerant techniques can be strategically selected for collective application 

in order to achieve high reliability. The selection criteria used depends on the fault 

classes which require detection and the feasibility of implementing fault tolerant 

techniques wi th in particular microprocessor systems. 
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C H A P T E R S I X 

P O S T - P R O G R A M M I N G , A U T O M A T E D , R E C O V E R Y U T I L I T Y ( P A R U T ) 

6 . 1 . I n t r o d u c t i o n 

A prototype software u t i l i ty has been designed to automatically apply the soft

ware implemented fault tolerant technique, proposed in the previous chapter, on 

program code. This ut i l i ty , called PARUT (Post-programming Automated Recovery 

U T i l i t y ) , can also apply other software based fault tolerant techniques. 

This chapter in i t ia l ly outlines the objectives of PARUT, and these are appraised 

at the end of the chapter to assess the success of the prototype. P A R U T , its function 

and structure, are described in overview, a description of the physical mechanics 

of the code can be found by examining the annotated u t i l i t y listing in Appendix C. 

Finally, enhancements for the PARUT prototype are suggested, and a proposal for the 

development and application of PARUT as a standard programming tool discussed. 

6.2. D e s i g n a n d D e v e l o p m e n t O b j e c t i v e s f o r t h e P A R U T P r o t o t y p e 

The software implemented fault tolerant technique proposed in Chapter 5 involves 

inserting detection mechanisms at machine code level to cover invalid branches asso

ciated w i t h erroneous microprocessor behaviour. Manual application of the technique 

can be complex, especially for large target programs. The P A R U T prototype is de

signed to automate the technique's application. 

As a prototype, PARUT does not have rigorous specification but rather a set of 

objectives. In order to facilitate a wider application of PARUT, its ini t ia l objective 

is broadened to include those listed below. 

o Apply and assess software implemented fault tolerant techniques. 

o Process software for a variety of target microprocessors. 

o Facilitate application to any software whose host processor is supported. 

o Produce a report assessing u t i l i ty activity. 
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In addition to the design objectives i t is worthwhile specifying some development 

objectives for the production of this prototype ut i l i ty. In particular the prototype 

program should exhibit qualities facil i tat ing programmer/analyst comprehension and 

modification of module mechanics. These qualities are especially important in the 

production of a prototype because alterations are commonplace. 

6.3. A F u n c t i o n a l O v e r v i e w o f P A R U T 

P A R U T has two input requirements: a copy of the software and a description 

of the microprocessor on which i t resides. The microprocessor description input 

to P A R U T is a file, referred to as M I C R O - F I L E , containing the target processor 

instruction set. The file lists the defined instructions wi thin the instruction set, 

specifying each instruction opcode. The software presented to P A R U T for processing 

is in machine code format because the detection capability assessment and fault 

tolerant technique application require knowledge of the opcode and operand usage 

on the target processor. The target software is held in a file called CODE_FILE. 

The execution of PARUT generates a report file, referred to as ANALYSIS-FILE , 

which documents the detection capability assessment of the software under investi

gation. The detection capability is evaluated by determining the proportion invalid 

branches that are detected during erroneous execution. PARUT also produces a file 

called RESULT-FILE, containing the fault tolerant version of CODE-FILE, when 

a software implemented fault tolerant technique is applied to the target software 

represented in CODE_FILE. The format of this file can be tailored to meet specific 

requirements. P A R U T currently outputs the enhanced software in a format which 

facilities easy user interpretation of the u t i l i t y action at machine code level. 

A n overview of the PARUT program is shown in Figure 6.1. Examples of the 

two input files, M I C R O - F I L E (Motorola 68000 microprocessor) and C O D E - F I L E , 

and the two output files, RESULT_FILE and ANALYSIS-F ILE , associated wi th the 

operation of P A R U T on C O D E - F I L E can be found in Appendix C. 
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6.4. D e s i g n Features I n c o r p o r a t e d i n t o t h e P A R U T P r o t o t y p e 

Particular design features can be incorporated into the PARUT program to realize 

prototype objectives, outlined in section section 6.2.. or to underpin the procedural 

activity of P A R U T which is described in the next section of this chapter. This section 

presents such design features and describes the criteria for their application. 

6 .4 .1 . P r o g r a m m i n g Language 

P A R U T is implemented in the Pascal programming language. This language was 

selected for the prototype because of its structural constructs and readability. A n 

alternative considered was the programming language C, but was rejected because 

language constructs such as those involving linked lists are difficult to understand 

when the reader is not proficient in the language. A n important feature of a prototype 

program is readability. A future development of PARUT might involve the translation 

of the present code into another language deemed more appropriate. I t is considered 

that Pascal is relatively easy to translate. 

6.4.2. P r o g r a m m i n g S ty le 

The u t i l i ty program has been wri t ten implementing 'good' programming practice 

[Sommerville, 1985]. This involves developing code in concise modules (a few tens 

of lines) which exhibit low coupling and high cohesion. Coupling and cohesion refer 

to the required passing of external parameters to a module, and uni ty of operation 

respectively. Such programming practice facilitates easy modification or replacement 

of modules wi thout disruptive consequences for the remainder of the u t i l i t y program. 

Furthermore, 'good' programming practice also encourages the production of readable 

code. 

6.4.3. T h e Diagnos t i c s F a c i l i t y 

A diagnostics facility is provided to aid understanding of the funct ion of PARUT. 

The facil i ty is activated by setting the ' D I A G N O S T I C variable at the beginning 

of the P A R U T listing to 'true'. When active, the facili ty generates a file called 

T R A C E - F I L E in which all functions and procedures accessed by the code operation 
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insert an entry specifying their name. Nested functions appear in the TRACE_FILE 

as indented entries. This file can be accessed by the analyst to monitor the chronolog

ical activity of PARUT. The last enclosure in Appendix C is a typical T R A C E - F I L E . 

6.4.4. T a r g e t S o f t w a r e 

P A R U T processes target software at machine code level in order to apply and/or 

analyse its fault tolerance. The data structure chosen to represent the machine code is 

a linked list of records. This data structure is used because it requires no predefinition 

of dimensions and can easily be manipulated when inserting records representing code 

associated wi th the application of fault tolerance. 

Each record within the linked list contains information describing the character

istic of a machine code element (usually 8 or 16 bits). The contents of a record are 

itemized below and can be found at the beginning of the PARUT listing in Appendix 

C under the ' T Y P E ' declaration. The items wi th in each record are reviewed below : 

nexLaddress & last^address 

- are pointers connecting adjacent records in the linked list. 'next_address' 

and 'last_address' are set to nil in the last and first records in the 

linked list respectively denoting the lists termination. 

op, optype, & address 

- specify the absolute value of the machine code element (typically 

8 or 16 bits), whether i t is an opcode or operand, and its resident 

location in the address space. 

offset 

- is a parameter used in address processing. 

seeded 

- specifies the status of an operand identified as a potential invalid 

branch ; ' true' and 'false' signify the presence and absence of fault 

tolerance respectively. 

offset 

- is a parameter used in address processing. 
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jump-type, jump-too & jump^address 

- specify the type of jump instruction that the item 'op' generates 

under erroneous execution as an opcode (details are shown under 

the ' T Y P E ' declaration at the beginning of the PARUT listing), 

a pointer to the target location, and the target address respec

tively. Non-jump instructions set ' jump_type', ' jump_too', and 

'jump_address', to '0', ' n i l ' , and '0' respectively. 

jump-from 

- is a pointer to a record containing machine code identified as po

tentially generating an invalid branch whose target is this record, 

the pointer has the default setting of ' n i l ' . 

6.4.5. T a r g e t Processors 

Target software is input to the u t i l i ty via a file called CODE_FILE. P A R U T pro

cesses the software at source code level. The source code on most microprocessor 

systems is not directly readable and hence an indirect method of input for the code 

is required. C O D E - F I L E contains data generated by U N I X 'adb' (a debugger). Par

ticular details of CODE_FILE can be found in Appendix C. In summary, the file 

contains two sections: a memory dump of the resident source code, and a list of 

opcode addresses wi th in the source code. 

6.5. A D e s c r i p t i o n o f t h e P A R U T P r o t o t y p e ' s O p e r a t i o n 

This section briefly describes the procedural activity of, and user interaction wi th , 

P A R U T . A n annotated listing of the P A R U T code is held in Appendix C. 

W i t h i n the program structure defined by Pascal, the root module is a function 

called ' M A I N ' . A call chart of functions and procedures used by M A I N is shown in 

Figure 6.2. The chart depicts module operations in rectangular boxes, and functions 

and procedures in rectangular boxes wi th duplicated vertical bars. 

The ini t ia l job of module M A I N is to initialize variables and prepare all files 

required by PARUT. After this is completed, the user is required to respond to a 

prompt which enquires whether or not a data area requires analysis, and i f not, 
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then whether a program area requires analysis. I f neither option is requested, the 

prompts are repeatedly presented unti l the user chooses an option. Af te r completion 

of the requested analysis PARUT terminates activity and returns the user to the host 

environment. 

Data and program code analysis implement a common multi-stage processing 

approach. The approach involves the following sequence of activity, 

i) Generating a linked list to represent the machine code of the soft

ware under investigation. This includes the insertion of informa

tion wi thin each record of the linked list detailing program flow 

associated with valid and invalid interpretation of the machine 

code. 

i i ) Apply fault tolerance by manipulating the linked list ensuring 

that the valid program flow is preserved (program code only). 

i i i ) Produce a report documenting fault tolerant analysis of the ma

chine code and, in the case of program code, detail the enhance

ment provided by the application of software implemented fault 

tolerant techniques. 

6 .5 .1 . D a t a Code A n a l y s i s 

Analysis of data code involves four basic operations, each operation being con

tained within a function or procedure. Ini t ial ly the user may request by prompt to 

construct a data structure either f rom actual data code (procedure B U I L D _ A D B ) , or 

f rom pseudo-random generated code (procedure BUILD_RNG) . Actual data code was 

received in a U N I X 'DIS' format in an early version of the P A R U T prototype, and 

for this the procedure BUILD_DIS was wri t ten. Now data code is received in a U N I X 

' A D B ' format and hence procedure B U I L D _ A D B is used, however, BUILDJ3IS re

mains available for future use i f required. Af te r generating the data structure for the 

code, procedure B U I L D . J U M P S is used to derive the program flow through the data 

area if i t was incorrectly interpreted as program code. The penultimate operation 

of data area analysis is the output of the data code (primarily "of use when the code 
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is generated by PARUT) using the procedure PRINT_LIST. Finally, the data code 

is analysed to determine the hazard of interpreting i t as program code, and this is 

achieved by the procedure DATA-ANALYSIS. 

6.5.2. P r o g r a m Code Ana lys i s 

Program area analysis calls more procedures than data area analysis but retains 

the same basic approach. Ini t ial ly a data structure is constructed by procedure 

B U I L D _ A D B to represent input program code. The user is then requested by a 

sequence of prompts to select a combination of software implemented fault tolerant 

techniques to be applied to the code including the technique proposed in Chapter 5. 

Selection of any of the fault tolerant techniques offered to the user requires a 

duplicate copy of the linked list representing the target program code and this is 

provided by activating the procedure COPY-LIST. This copy is then processed by 

the procedure BUILD_JUMPS so that the necessary program now information asso

ciated with both valid and invalid interpretation of the program code is incorporated. 

Then depending on the fault tolerant techniques chosen by the user, the procedures 

SEED_LIST (technique proposed in Chapter 5), S T R E A M - L I S T (signature analysis), 

and R E L O C A T E - L I S T (an alternative technique now discarded due to poor results) 

are executed. Other techniques can be added to those offered by PARUT, and would 

be included here in the structure of PARUT. 

Once the selected techniques have been implemented on the copies of the linked 

list representing the original target program code, two 'housekeeping' operations are 

required. Firstly, procedure ALIGN_LIST is called which resets any disturbed abso

lute branches in the program code. In this manner P A R U T does not compromise the 

transparent application feature of the software implemented fault tolerant technique 

(proposed in Chapter 5) upon the target software. Secondly, procedure T I D Y - L I S T 

is executed to remove any redundancy in the placed detection mechanisms. When 

the housekeeping is complete, the resultant code enhancement is output by procedure 

P R I N T - L I S T . 

The operation of program code analysis terminates w i t h a prompt to the user re

questing a choice whether or not program flow analysis is required. I f i t is not required 
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then the action of this section of code is complete, otherwise the procedure A N A L 

YSIS is activated. As a prerequisite to executing ANALYSIS the original program 

code data structure must be prepared for comparison with the enhanced program code 

version(s). This is achieved by the activation of the procedure BUILD-JUMPS. On 

returning f rom ANALYSIS this section of the PARUT code completes its operation. 

ANALYSIS reports instances of placement deadlock when the software implemented 

fault tolerant technique proposed in Chapter 5 is applied. A screen dump of the user 

interface for program code analysis is shown in Figure 6.3. 

6.5.3. T h e 'Seeding' A l g o r i t h m 

This section describes the algorithm used by PARUT to apply the fault tolerant 

technique proposed in Chapter 5. The algorithm is implemented by a procedure 

called SEED_LIST. 

I t is necessary before the algorithm is described to introduce some basic termi

nology and observations concerning the structure of invalid branches wi th in machine 

code. The 'range' of an invalid branch describes the machine code locations lying 

between its generating location and target address. The range of an invalid branch 

has a 'level' which denotes how many target addresses of other invalid branches lie 

wi thin its range. Wi th in a section of machine code, invalid branches can 'group' 

incorporating features of four identified basic constructs. These constructs are shown 

in Figure 6.4. and are: 

a) Non-Intersect ing Inval id Branches 

The generating locations and target addresses of the individual in 

valid branches range over independent areas of the machine code. 

b) Intersect ing Inval id Branches 

The generating locations and target addresses of the individual 

invalid branches range over areas of the machine code that over

lap. The range of one invalid branch contains the target address 

but not the generating location of the remaining invalid branch. 
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#Execution begins 

PARUT : TRANSIENT FAULT RECOVERY TOOL 

INFORMATION INPUT :- P l e a s e type a p p r o p r i a t e response 

Data or Program Area (DATA/PROGRAM) ? 
PROGRAM 
De t e c t i o n Mechanism Placement (YES/NO)? 
YES 
=> Optimise Placement (YES/NO)? 
YES 
Boundary R e l o c a t i o n (YES/NO)? 
NO 
S i g n a t u r e Placement (YES/NO)? 
NO 

« < O r i g i n a l Code ( f o r comparison) being prepared » > 

A n a l y s i s Required (YES/NO)? 
YES 

• E x e c u t i o n t e r m i n a t e d 

Figure 6.3. : Screen Dump of PARUT User Interface 
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c) Coupled Inval id Branches 

Intersecting invalid branches except that ranges of both invalid 

branches contain the target address, but not the generating loca

tion, of the respective remaining invalid branch. 

d) Embedded Inval id Branches 

The generating location and target addresses of one invalid branch 

both lie within the range of the remaining invalid branch. 

Of course there may be more complex situations of invalid branch interaction in the 

machine code under investigation, but such situations are constructs of the primitives 

listed above. The 'seeding' algorithm ensures that all invalid branches are resolved 

by 'seeding' except where placement deadlock is identified. 

The A l g o r i t h m 

Stage 1. Check whether or not there remain any unresolved invalid branches 

within the machine code. If not go to stage 8 of the algorithm. 

Stage 2. 'Seeding' required. Investigate the machine code resolving invalid 

branches at level zero unless this is not the first pass of the code, 

in which case, increment the level to be investigated by 1. 

Stage 3. Search the machine code until an unresolved invalid branch with 

the same level as that under investigation is found, or the end of 

the machine code is located. Searching commences initially from 

the start of the machine code. However, if an invalid branch has 

been resolved in the current code pass then the search commences 

at the location following the last address of the group in which 

that invalid branch was a member. 

Stage 4. Resolve the invalid branch -unless the end of the machine code 

was located in which case go to stage 6 of the algorithm. 

Stage 5. Addresses are updated and valid program flow re-established for 

the machine code due to the insertion of a detection mechanism. 

Go to stage 3 of the algorithm. 
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Stage 6. Remove complex groups of invalid branches. If the present level of 

investigation is greater than zero then recursively apply the 'seed

ing' algorithm from stage 3 incrementing the level of investigation 

from zero to one lower than the present level. 

Stage 7. If there remain unresolved invalid branches at the level of investi

gation after the code pass then return to stage 3 of the algorithm 

and start a new pass of the code, otherwise go to stage 1. 

Stage 8. 'Seeding' complete. 

The function of the 'seeding' algorithm is now demonstrated with the example 

of a complex invalid branch group shown in Figure 6.5. Noted below are the stages 

processed by the algorithm with status comments. The example should be examined 

in association with the 'seeding' algorithm. 

Stage 1 : Unresolved invalid branches. 

Stage 2 : 'Seeding' required. Level = 0. 

Stage 3 : Start pass of linked list. 

Stage 4 : Pass of linked list completed. 

Stage 6 : No recursive call. 

Stage 7 : No invalid branches at this level. 

Stage 1 : Unresolved invalid branches. 

Stage 2 : 'Seeding' required. Level = 1. 

Stage 3 : Start pass of linked list. 

Stage 4 : Invalid branch 'B' identified. 

Stage 5 : Resolve coupled invalid branch. 

Stage 3 : Complete pass of linked list. 

Stage 4 : Pass of linked list completed. 

Stage 6 : Recursive call to stage 3 with level = 0. 

Stage 4 : No invalid branches at this level. 

Stage 6 : Recursive call completed. 

Stage 7 : Level 1 invalid branches remain unresolved 
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Stage 3 : Start pass of linked list. 

Stage 4 : Invalid branch ' C identified. 

Stage 5 : Resolve coupled invalid branch. 

Stage 3 : Complete pass of linked list. 

Stage 4 : Pass of linked list completed. 

Stage 6 : Recursive call to stage 3 with level = 0. 

Stage 3 : Start pass of linked list. 

Stage 4 : Invalid branch ! D' identified. 

Stage r 

o : Resolve embedded invalid branch. 

Stage 3 : Continue pass of linked list. 

Stage 4 : Invalid branch 'A' identified. 

Stage 5 : Resolve non-intersecting invalid branch. 

Stage 3 : Continue pass of linked list. 

Stage 4 : Pass of linked list completed. 

Stage 6 : Recursive call completed. 

Stage 7 : Level 1 invalid branches resolved. 

Stage 1 : All invalid branches resolved. 

Stage 8 : 'Seeding' complete. 

The procedural implementation of this algorithm is now briefly reviewed. Stages 

1, 2, and 8 of the algorithm are implemented directly by procedure SEED-LIST, 

whilst the remaining stages are controlled by the called procedure SEED-PLACE-

MENT. Procedure SEED_PLACEMENT manages three procedures and recursive ac

tivation of itself. SEED_PLACEMENT initially executes procedure SEED-LOCAT

ION to achieve stage 3 and 4 of the algorithm. This routine activates five other pro

cedures. Initially JUMP_DIRECTION is used to determine the forward or backward 

nature of the invalid branch, then INTERVAL evaluates the level of the invalid branch 

and procedure TEST_SEED checks whether the invalid branch is already resolved by 

another detection mechanism placement. If the present invalid branch can be resolved 

then procedures SEED_DETAILS and PLACE-SEED construct and insert the detec

tion mechanism into the machine code. SEED-DETAILS can place a default size or 
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optimum size detection mechanism, depending on user criteria passed by the root 

procedure MAIN. After executing SEED_LOCATION, SEED_PLACEMENT pro

cesses stage 5 of the 'seeding' algorithm by activating procedures ADDRESS_LIST 

and BUILD_JUMPS. These procedures are also directly used by the root proce

dure MAIN and are described in the following sections of this chapter. Finally, 

SEED_PLACEMENT implements repetitive and recursive calls to stages 3-7 of the 

'seeding' algorithm in order to resolve complex invalid branch groups. 

6.6. P A R U T : A Review of the Prototype 

The PARUT prototype successfully applies the software implemented fault toler

ant technique proposed in Chapter 5. The 'seeding' algorithm employed by PARUT 

appears from experience to be efficient, but no quantitative assessment of its perfor

mance has been attempted. The algorithm is based on solving constructs of invalid 

branches: non-intersecting, intersecting, coupled, and embedded. The algorithm is 

also validated for an example of complex invalid branch group structure in machine 

code. In addition PARUT is designed to enable the simple inclusion of other soft

ware implemented fault tolerant techniques. In particular the prototype currently 

implements a simulation of the signature analysis technique. Further techniques can 

be included as required during any futur„ development. 

It is important that the operation of the prototype can be easily understood. A 

diagnostic facility is built into PARUT enabling the generation of a procedure call 

list referred to as TRACE_FILE. This list enables the operation of the utility to be 

monitored and hence aid comprehension of operation. Furthermore, prograrnrning 

language and style are adopted to facilitate understanding of the PARUT program. 

These qualities of the prototype have also proved valuable during the utili ty devel

opment, facilitating easy code manipulation without the disruption often associated 

with prototype development of similar sized programs. 

A linked list is employed to represent the input machine code for processing by 

PARUT. This data structure is not dimensioned and does not itself restrict the size 

of machine code input. Equally, modules processing the linked list are designed not 

to impose a dimension restriction. However, there will be a constraint on the size 
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of the input code due to general limitations of the host system environment, e.g. 

a maximum size of CODE_FILE generation by UNIX 'adb'. Such restrictions are 

outside the scope of the PA RUT development programme. 

One of the most difficult objectives to achieve is the use of PARUT with a 

range of target processor types. Software manipulation required for the applica

tion of software implemented fault tolerance uses the pseudo-compiler action of pro

cedure BUILD_JUMPS on the source code of the target processor. Such activity 

implies knowledge of the processor's instruction set, currently input to PARUT in 

MICRO_FILE. A robust version of PARUT should incorporate design features which 

facilitate a complete specification of a microprocessor type within MICRO_FILE to be 

processed by BUILD-JUMPS whose activity is independent of microprocessor archi

tecture. Implementing such a robust specification is complex; therefore, for simplicity 

PARUT was developed to target only one processor type: the Motorola 68000 family. 

This family of microprocessors have a fixed size instruction set and extensions to the 

used instruction set are upwardly compatible. Hence, although only one processor 

type is made available by PARUT, the utility in reality can be used with a selection 

of processors within the Motorola 68000 family. This gives PARUT a base selection 

of target processors. 

6.7. P A R U T : Developing a Standard Programming Tool 

The PARUT prototype extensively realizes its design and development objectives. 

It therefore appears feasible to further develop PARUT into a standard programming 

tool. Such a tool is valuable when implementing and assessing fault tolerance asso

ciated with the characteristics of erroneous behaviour described in Chapter 3. 

A standard programming tool based on the prototype PARUT should adopt the 

following recommended enhancements. Firstly, the range of target processors should 

be extended. This is possibly the most complex modification of PARUT involving 

the integrated development of a robust BUILD_JUMPS module and general purpose 

format for MICRO_FILE. Secondly, PARUT should be extended to implement (rather 

than simulate) other software implemented fault tolerant techniques. The program 

structure of the PARUT program has been demonstrated to provide easy inclusion 
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of new techniques. Thirdly, the analysis techniques used to assess the effectiveness 

of the fault tolerant techniques implemented could, in addition to static analysis, 

provide dynamic analysis via emulation/ simulation. 

As a standard programming tool PARUT might be incorporated into a compiler. 

This would remove the necessity of generating and processing CODE_FILE because 

all the required information on the target software is inherently available from the 

translation process of the compiler. 

6.8. Summary 

This chapter describes the design and development of the prototype programming 

tool PARUT. Design objectives are successfully attained. In particular a selection of 

software implemented fault tolerant techniques, including that proposed in Chapter 

5, are facilitated for a variety of target processors. This is achieved without undue 

restrictions on the size of the target software. Additionally the fault tolerance of 

the software can be assessed in respect of the hazard of erroneous microprocessor 

behaviour modelled in Chapter 3. 

The structured programming language Pascal is used in conjunction with 'good' 

programming practice to generate readable code and hence ease comprehension and 

modification. A diagnostic facility which monitors procedure access by PARUT op

eration is also provided to aid understanding of the utility function. All these design 

features have proved valuable during the development of the PARUT prototype. 

The success of PARUT leads to the proposal that further development be init i

ated in order to produce a standard programming tool. Enhancements to PARUT 

for this purpose are outlined. The post-programming nature of the software imple

mented fault tolerant techniques applied by the PARUT function suggests its possible 

inclusion within a compiler, providing an additional code enhancement stage at the 

end of the translation process. 
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C H A P T E R S E V E N 

ASSESSING F A U L T T O L E R A N C E 

7.1. In t roduc t ion 

The effectiveness of software implemented fault tolerance in a microprocessor 

system is difficult to assess. Microprocessors and their memories are VLSI devices 

which have a huge number of potential logical fault sites. In addition these faults will 

not always be activated because of time dependent circuit operation. This chapter 

reports two fault insertion experiments initiated in order to investigate temporary 

faults within a microprocessor system implementing the software based fault tolerance 

technique proposed in Chapter 5. 

The fault insertion experiments investigate the effect of single-bit and multiple-bit 

faults on program behaviour. The faults are inserted into memory and the program 

counter, and the response of the microprocessor system tracked instruction by in

struction. 

The first set of experiments involve injecting single-bit faults into a microproces

sor system. Five classes of single-bit fault are injected in order to model faults at 

various locations in the microprocessor and memory. The faults include line-errors 

on the address and data bus during instruction and data cycles, and program counter 

faults. The response of the microprocessor system once the faults have been injected 

is monitored. A detailed analysis of the system response gives an important insight 

into the character and nature of erroneous microprocessor behaviour. 

Within microprocessor based systems faults are often observed to affect multiple-

bit as well as single-bit locations. This occurrence is investigated by the second set 

of fault injection experiment. The fault class selected for multiple-bit fault injection 

is program counter corruption. This fault is selected because i t is observed in many 

of the single-bit fault injection experiments, and it is relatively simple to inject. The 

fault response of three microprocessor systems (an 8, 16, and 32-bit machine), is 

analysed. 
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Finally, the chapter concludes with a summary of experimental observations relat

ing to the effectiveness of the software detection mechanisms and the Access Guardian 

function. In particular, detection latency and the hazard of re-synchronization are 

discussed. 

7.2. Assessing the Fault Tolerance of a Microprocessor System 

7.2.1. Assessment Parameters 

Techniques providing tolerance of temporary faults in VLSI devices are difficult 

to assess. This is particularly true for microprocessor systems. In order to assess the 

effectiveness of a fault tolerant technique it is necessary to evaluate several perfor

mance parameters. Two performance parameters are particularly important: detec

tion latency, and error coverage. Error coverage is the percentage of error conditions 

that can be detected by the technique, and the time taken between the activation 

of a fault as an error and its detection is referred to as its detection latency. It is 

also important to quantify the performance overhead imposed by the technique. The 

overhead comprises processing degradation and additional hardware requirement. 

7.2.2. Parameter Evaluation 

Analytic assessment of fault tolerant microprocessors is a difficult task, because 

in most applications it is impossible to determine appropriate error classes and the 

distribution of errors amongst these classes. Although models have been developed 

to investigate the effect of temporary hardware faults on executing microprocessor 

systems, their analysis is limited by assumptions and imposed restrictions. Mahmood 

& McCluskey [1985], and Namjoo [1982] have modelled the error coverage of signature 

analysis techniques but their investigation was limited to the effect of control flow 

errors, and their estimates proved slightly optimistic compared with actual results 

presented by Schuette & Shen [1986]. Nevertheless, the model did give a valuable 

indication of the effectiveness of signature analysis. 

Experimental evaluation by fault injection into actual hardware in many cases is 

the only way to estimate fault tolerance effectiveness successfully. In such experiments 
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the selection of the fault injection method is crucial. Ideally a fault should be capable 

of injection at random and specific VLSI device locations, and at a certain point in 

time for a controlled period. Executing software is dynamic and temporary faults can 

have different outcomes depending on the activation of circuitry by microprocessing 

within the processor. This is referred to as the instruction sequence dependency. 

Higher processor workloads, in a multi-tasking environment, may also increase the 

probability of activating a fault. 

Temporary faults that occur in microprocessor devices are difficult to mimic in 

the laboratory. Initially fault injection experiments, see Table 2.3., inserted faults 

via the hardware pins of a device. More recently Chillarege & Bowen [1989] inserted 

faults into a microprocessors memory. Whilst these faults model internal faults, faults 

are not actually injected within the device. Although there are methods of injecting 

internal faults to a microprocessor, notably Damm [1988] by power line fluctuations, 

and Gunneflo et al [1989] by ion radiation, these methods generate multiple faults at 

uncontrolled locations. 

Controlled fault generation can be provided by using microprocessor emulators 

and simulators, see Table 2.2., but analysis of the microprocessor response may be 

limited by the tool's sophistication. Armstrong & Devlin [1981] suggest that gate-

level microprocessor simulators are prohibi'' /ely expensive for fault injection experi

ments. Therefore, they used a microprocessor simulator based on a functional model 

[Li et al, 1984]. More sophisticated emulators have become available to researchers, 

whereby gate-level descriptions are incorporated into functional models. Czeck & 

Siewiorek [1990] recently used such a sophisticated simulator. However, it must be 

realized that as the simulators increase in complexity so they become increasingly 

susceptible themselves to development errors. A simulator was not available to the 

author of this thesis so an alternative method of assessing fault tolerance is utilized. 

As mentioned above, an accepted method used by many researchers to obtain 

assessments of fault tolerant techniques is fault injection. The method is popular 

because it gives actual error coverage analysis for the injected faults. A limitation 

of the method is the validity of the result for the whole device. Locations for fault 
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injection are usually chosen by the experiment designer following some predefined 

selection criteria. The representivity of these points for the remainder of the device 

should always be critically examined. This method appeared to be the best approach 

to analyse the software based fault tolerant technique proposed in Chapter 5. 

7.2.3. In te rna l Microprocessor Faults 

Faults are selected for insertion in order to model actual faults in a microprocessor 

system. The inserted faults are only valid when modelling processor and memory 

faults, faults in the peripheral devices are not accurately modelled. Before comparing 

inserted and actual faults, it is necessary to describe the basic structure of the tested 

microprocessor system. 

The microprocessor system under test is considered as the integration of a data 

path (consisting of an ALU and data registers), and a control path (consisting of 

an opcode decoder, controller, and program control unit). The program control unit 

(PCU) contains bus interface circuitry (BIC), program counter (PC), instruction 

prefetch queue (1PQ), and a controller. The PCU is responsible for address calcula

tions, and it is assumed to be responsible for the reading and writing of opcodes and 

operands. Interrupt handling and bus arbitration circuitry will not be considered 

because the inserted faults will not closely model faults within these units. A general 

microprocessor topology is shown in Figure 7.1. The microprocessor system under 

test does not have the following features: co-processor, memory cache, instruction 

pipeline (beyond the prefetch queue), and multiplexed busses. 

7.2.4. Assessment Dependence on Appl ica t ion Software 

The effectiveness of software based fault tolerant techniques is difficult to access. 

Techniques such as recovery blocks, signature analysis, and the technique proposed 

in Chapter 5 are all dependent on the application program for their performance. 

It is therefore important to select a representative application program when assess

ing the effectiveness of a fault tolerant technique. Czeck & Siewiorek [1990] and 

Schuette & Shen [1986] each choose a different collection of application programs 
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in order to provide an assessment benchmark. However, particular applications for 

implementation can have quite different characteristics from any of the benchmark 

software. Hence the value of a benchmark program is limited to giving an indication 

of the effectiveness of a fault tolerant technique implemented on a similar application 

program. 

7.2.5. Behavioural Observations 

Recently reported fault injection experiments (see Table 2.2.) measure the detec

tion latency of fault tolerant techniques. Such experiments do not enable the mech

anism of spawning errors, at a functional level, to be observed. The fault injection 

experiments described within this chapter involve tracing the instruction sequence 

of microprocessor operation from the activation of the fault to its detection or de

activation. These experiments provide an interesting insight into the mechanisms, 

modelled in Chapter 3, of processing failures induced by temporary faults. 

7.3. Single-Bit Fault In jec t ion Experiment 

7.3.1. Fault In jec t ion Experiment 

The experimental set-up of the fault injection programme is shown in Figure 7.2. 

Within the Engineering Department at the University of Durham there is a Vittese 5 

computer system based on the Motorola 68020 microprocessor which services many 

devices, including terminals independently connected through a dedicated Motorola 

68000 microprocessor system, in a multi-user environment. Programs written for 

implementation on a dedicated Motorola 68000 system are coded on the Vittese in 

Assembler before being assembled. The object code can then be down-loaded onto 

an MC68000 microprocessor system if one is attached to the terminal in use. The 

MC68000 microprocessor system used was developed by the Microprocessor Centre 

at the University of Durham, and has a special 'monitor' program which provides, 

amongst other facilities, 
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o read/ write memory locations. 

o read/ write register contents. 

o trace execution (instruction by instruction). 

The fault injection programme implemented involves injecting faults into the 

microprocessor memory or program counter. These faults are activated by the appli

cation program's execution, and their effects are monitored by using the trace facility 

and interrogating the register contents to ascertain the processor's status. 

7.3.2. Microprocessor Appl ica t ion Under Investigation 

For the purpose of this section, a single microprocessor application is analysed. 

The system chosen has many typical characteristics of an industrial microprocessor 

based controller such as the monitoring and control of equipment to perform an 

on-going task or process. 

The application system monitors the water level in two connected reservoirs, 

one higher than the other. If the higher reservoir level falls beneath a minimum 

marker (solenoid float) then water is pumped from the lower to the higher reservoir. 

Similarly, if the higher reservoir level goes above a maximum marker (solenoid float) 

then water is drained from the higher to the lower reservoir. 

The controller is based on a iMotorola 68000 microprocessor operating at 8MHz 

although a lower operating frequency would be acceptable for this application. The 

microprocessor executes software stored within 64 KBytes of memory. The actual 

program size is initially 381 Bytes. The application program is processed by the 

PARUT tool, described in Chapter 6, in order to strategically place software detection 

mechanisms within the code. These mechanisms, designed to provide fault tolerance, 

for the application program under investigation required an additional 108 Bytes of 

memory. An annotated listing of the original application program, and the same 

program after processing by PARUT can be found in Appendix D respectively. 

The Motorola 68000 microprocessor system has several detection mechanisms; 

bus errors (access to unavailable address space) are detected by logic external to the 

processor whilst address errors (invalid specification of memory locations , e.g. odd 
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byte address exception) and illegal opcodes are inherently detected by the processor. 

Collectively these mechanisms shall be referred to as the MC68000 detection facility. 

The bus and address errors within the MC68000 detection facility duplicate 

the function of the Access Guardian proposed in Chapter 5. Therefore an Access 

Guardian unit is not attached to the microprocessor system. The collected results 

from the fault injection experiments are processed in order to de-couple the Access 

Guardian function from the MC68000 detection facility. 

7.3.3. Programme of Injected Faults 

The fault insertion programme was based on that used by Schuette & Shen [1986]. 

They injected faults by temporarily altering pin logic values on an embedded Mo

torola 68000 microprocessor. The faults in this insertion programme are injected by 

corrupting the microprocessor memory. The experiment models five classes of fault 

within the microprocessor system as described below. 

A. Instruction Cycle : Data Bus Faults 

These faults are inserted by corrupting bit positions of an opcode stored in mem

ory. The fault appears on the data bus when the instruction opcode is read. This 

class of fault models the following situations. 

® Memory degradation or data bus line-errors external to the microprocessor. 

© Errors in the bus interface circuitry or internal data bus line-errors. 

© Errors in the Opcode Decoder. 

s Program Counter faults or Address Calculating Circuitry errors as a result of 

either determining an incorrect branch address (special MC68000 case where 

displacement is held in the opcode), or corrupted opcode, or opcode decoder 

error leads to the wrong number of operands being read and hence an incorrect 

location is accessed for the next opcode. 
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B. Data Cycle : Data Bus Faults 

These faults are inserted by corrupting bit positions of an operand in memory, 

the fault appearing on the data bus when the operand is accessed. This class of fault 

models the following situations. 

o Memory degradation or data bus line-errors external to the microprocessor, 

o Errors in the bus interface circuitry or internal data bus line-errors, 

o Faults in the data registers when operands are moved by them, 

o Arithmetic Logic Unit (ALU) errors if the operands are processed. 

© Program Counter faults or Address Calculating Circuitry errors if the operand 

is used in determining a branch address. 

C. Instruction Cycle : Address Bus Faults 

These faults are inserted by replacing an opcode in memory with data from 

another location in the address space. The fault is activated when the opcode is 

accessed and an alternative opcode value is put on the data bus. This class of fault 

models the following situations. 

© Memory degradation or data bus line-errors external to the microprocessor. 

© Errors in the bus interface circuitry or internal data bus line-errors. 

® Faults in the stack pointer (when retrieving the next opcode location), pro

gram counter faults, or errors in the Address Calculating Circuitry. 

e Multiple faults in the Opcode Decoder which cause severe malfunction and 

have an effect similar to multiple line-errors on either the internal or external 

data bus, and burst faults in memory. 

D. Data Cycle : Address Bus Faults 

These faults are inserted by replacing an operand in memory with data from 

another location in the address space. The fault is activated when the operand is 

accessed and an alternative operand value is put on the data bus. This class of fault 

models the following situations. 
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o Memory degradation or data bus line-errors external to the microprocessor, 

o Errors in the bus interface circuitry or internal data bus line-errors, 

o Errors in the Address Calculating Circuitry. 

o Alternatively this fault class can mimic multiple faults in the data register, 

or ALU malfunction, or multiple line-errors on the internal or external data 

bus, or burst faults in memory. 

E. Program Counter Fa- 'ts 

These faults are inserted by corrupting the contents of the program counter using 

the status facility in the MC68000 board monitor program. The fault becomes active 

when the next opcode is accessed and processing is forced to deviate from its intended 

path. This class of fault models the following situations. 

o Line-errors on the internal address bus. 

o Opcode Decoder faults initiating a branch. 

o Corruption of the program counter, errors in the Address Calculating Cir

cuitry, or stack pointer faults which lead to an incorrect branch. 

Review 

A summary of the injected fault programme and modelled fault situations can 

be found in Table 7.1. The injected faults are all single-bit; multiple bit faults were 

not injected in this experiment. The modelled faults are single-bit, or simple errors, 

except where stated. 

7.3.4. Selected Single-Bit Faults 

The faults injected for the instruction and data cycle address and data bus ex

periments, and the corrupted program counter experiment are single-bit corruptions. 

Bit faults on the address bus and program counter affect address bit positions 1, 4, 

8, and 12. Bit fault positions on the data bus are 0, 7, 8, and 15. These bit posi

tions are used by Schuette & Shen [1986] and Damm [1988] in their fault injection 
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Fault Modelled Fault Class Injected 

A B c D E 

Memory Bit Faults X X X<6) X(6) 

Memory Select Circuitry Error X X 

Line Errors : Internal Data Bus X X X(6) X(6) 

External Data Bus X X X(6) 
X(6) 

Internal Address Bus X X X 

External Address Bus X X 

Bus Interface Circuitry Errors X X X X 

Faults : Data Registers X X(6) 

ALU X X(5) 

Opcode Decoder X X(5) X 

Program Counter Faults X(2,3) X ( D X X 

Address Calculating Circuitry Errors X(2.3) X ( D X X X 

Stack Pointer Faults X(4) X 

Fault Class Injected: 
A: Instruction Cycle: Data Bus Faults 
B: Data Cycle: Data Bus Faults 
C: Instruction Cycle: Address Bus Faults 
D: Data Cycle: Address Bus Faults 
E: Program Counter Faults 

Notes: 
Cl) Only if the operand is used in determining a branch address. 
(2) Special MC68000 case (1): displacement held in opcode. 
(3) Corruption of an opcode or a fault in the Opcode Decoder can result in the wrong 

number of operands being read for an instruction and hence a program counter 
or address calculating circuitry error when accessing the next opcode. 

(4} When retrieving next opcode address from stack. 
(5) Multiple faults causing severe malfunction. 
(6) Multiple faults causing severe mis-interpretation of opcode/operand. 

Table 7.1. : Single-Bit Fault Injection Programme 
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experiments. The application program resides in low memory and hence address bus 

faults on line 12 are typically detected by the Access Guardian function. 

In total 2136 faults were injected during the single-bit fault experiment. These 

faults disrupted program and data flow. A feature of the fault injection programme 

is that results are dependent on the instruction sequence and not the instruction 

mix: actual execution paths are traced instruction by instruction. This is important 

because faults can have different effects when the the microprocessor system is in 

various run-time conditions. 

Each instruction cycle fault class had 472 faults injected, as did the program 

counter fault experiment. The data cycle fault classes comprise of 360 faults each. 

7.3.5. Decoupling the Microprocessor Detection Mechanisms 

The microprocessor system under investigation has two sources of detection mech

anisms: those implemented by the software based fault tolerant techniques proposed 

in Chapter 5, and those inherently present in the embedded MC68000 microprocessor. 

Let the sample space F contain all the faults injected into the microprocessor 

system. Let the sets M and P be the faults covered by the MC68000 detection 

facility and the software detection mechanisms planted in the application program 

respectively. Now, 

( M n P ) = 0, (7.1.) 

but unfortunately M and P do not describe the whole fault set F. 

(M U P) C F. (7.2.) 

This is because the errors generated by some faults cause erroneous execution to 

re-synchronize and hence avoid detection. 

Let R be the set of faults that generate a re-synchronized outcome, and therefore 

the injected fault outcomes can be described as follows. 
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( M U P) U R = F, (7.3.) 

( M u P) n R = 0. (7.4.) 

The MC68000 detection facility is observed to detect fault outcomes which would 

otherwise have been diagnosed by an Access Guardian. For the purpose of analysis 

it is useful to de-couple the Access Guardian function from the inherent MC68000 

detection mechanisms. Let set A contain all the faults that are detectable by the 

Access Guardian function. Then 

The faults detected by the MC68000 detection facility without the Access Guardian 

function is therefore given by (M n A). 

7.3.d. Performance Evaluation 

The detection mechanisms provided fault tolerance for approximately 60% of the 

faults injected into the system. The outcome of the faults no detected is observed 

as re-synchronization. The mean latency to either detection or re-synchronization is 

1.2 processed instructions. The implications of this latency is discussed below. The 

overhead associated with the implementation of the software based fault tolerant 

technique have been estimated in Chapter 5. The hardware overhead attributed to 

the Access Guardian is approximately 5% of the MC68000 transistor count. The 

additional memory required by the fault tolerant software is approximately 30% of 

the original application program size. 

A summary of the processing outcome after each single-bit fault is injected is 

shown in Table 7.2. The processing outcomes are classified as re-synchronization, 

(Mr\A) = A. (7.5.) 

(M li A) — M. (7.6.) 
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detection by a software mechanism, detection by the MC68000 microprocessor ex

cluding the Access Guardian function, and finally, detection by the Access Guardian 

function. The processing response en route to the monitored outcomes is detailed in 

Table 7.3. and shown in Figure 7.3. 

Re-synchronization involves the program flow, which has already diverged from 

the specified control path, rejoining the specified control path. Over 40% of the 

injected faults lead to re-synchronization. This is not surprising, as a significant 

proportion of the faults injected during the experiment corrupted the instruction 

without initially affecting the program counter, but corrupted the program counter 

following the completed execution of the first instruction because the wrong number 

of operands were interpreted as belonging to the initial opcode. This scenario initiates 

irregular processing through the coded area before processing once more aligns itself 

with the original program flow. Gunneflo et al [1989] recorded 5% of his injected faults 

leading to re-synchronization, the lower value of this figure can be attributed to the 

nature of his fault experiments. Arlat et al [1989] and Chillarege & Bowen [1989] 

report 46% and 42% of their fault injections leading to undiagnosed errors which 

did not prevent continued processing although the function may have been slightly 

corrupted. These faults together with similar faults, referred to as overwritten faults 

and collated by Czeck & Siewiorek [1990], (59% [Schuette & Shen, 1986], 60-70% 

[Czeck & Siewiorek, 1990], and 77% [Choi et al, 1989]), may to some degree be due 

to the re-synchronization phenomena. 

It is clear that re-synchronization is an important class of fault outcome. In the 

experiment re-synchronization occurred within five erroneously processed instruc

tions, and had a mean occurrence latency of 1.2 instructions. It is interesting to 

note that 29 of the injected faults classified as re-synchronization, had no effect on 

execution - the induced erroneous behaviour being totally benign as far as the system 

status is concerned. For example, in the data cycle with address bus fault, the incor

rectly accessed operand address may contain the same operand value as the correct 

operand address. These occurrences are shown in Table 7.3. where re-synchronization 

is labelled as occurring after no instructions are processed. 
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A particular hazard associated with re-synchronization is that from a user per

spective there is a small and perhaps un-noticeable processing glitch which can involve 

corruption of the microprocessor stack or stack pointer. Approximately 3% of the 

injected faults re-synchronize with a corrupted stack. A similar result is reported 

by Damm [1988] who diagnosed 3.6% of his injected faults to cause this error. This 

hazard may prove critical at a much later processing stage when the return from a 

subroutine or other stack access occurs. This phenomena of a sleeping fault, called 

a potential hazard by Chillarege &; Bowen [1989], being awakened at some future 

period could explain the system crash data presented by Czeck & Siewiorek [1990] 

where high corruption of system integrity is experienced. 

Those faults injected to disrupt the data cycle have a 56% probability (approxi

mately) of generating re-synchronization, which is twice the expectation for instruc

tion cycle faults. This is not an unexpected result because corrupted operands will 

typically alter the result of the function but not the function itself whilst corrupted 

opcodes will alter the function and interpretation of operands. It is interesting to 

note that the program counter faults, which are intuitively more allied to instruc

tion cycle faults, generate re-synchronization for 30% of their outcomes which is very 

similar to the data cycle fault experiment. 

In the experiment non-re-synchronized erroneous execution was detected, by ei

ther a software detection mechanism, Access Guardian function, or a non-Access 

Guardian function of the MC68000 detection facility, with a mean latency of 1.2 in

structions. This is extremely rapid and highly desirable for reliable systems. The 

faults trapped with greatest latency (6 instructions) were detected by the software 

detection mechanism. 

Just over one quarter of the faults which do not re-synchronize, are caught by the 

software detection mechanisms. Only 8, or 1%, of the data cycle faults are detected 

in this way, compared with 20% of the instruction cycle and program counter faults. 

The software detection mechanisms have caught erroneous execution as late as the 

sixth processed instruction, and have a mean detection latency of 1.6 instructions in 

the experiment. 
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The Access Guardian function was very successful in detecting injected faults. It 

detected 40% of the faults inserted with a mean detection latency of one processed 

instruction. The experimental result reported here compares favourably with other 

documented versions of this detection function; 60% [Gunneflo et al, 1989] where the 

used memory filled 12% of the Motorola 6809 microprocessor address space, and 58% 

[Schmid et al, 1982] where the used area filled 90% of the Zilog Z80 microprocessor 

address space. As noted by Gunneflo et al [1989], the effectiveness of this detection 

mechanism will increase as the percentage of used memory in the microprocessor 

address space decreases. 

The remaining injected faults were detected by the illegal opcode facility of the 

MC68000 microprocessor. These accounted for almost 5% of the detected faults. 

Early microprocessor designs did not incorporate this facility and under these fault 

injection experiments would have a reduced reliability. Schmid et al [1982] and Gun

neflo et al [1989] attached an illegal opcode detector to their respective Z80 and 

MC6809 microprocessor systems; the facility detected approximately 35% and 30% 

of the injected faults. Most modern microprocessor designs incorporate this detec

tion capability. The effectiveness of this mechanism is dependent on the number of 

illegal opcodes in the instruction (opcode) map, and the data diversity within the 

microprocessor used memory which is application dependent. It is therefore difficult 

to quantify the usefulness of this utility, but it can considerably improve a micropro

cessor system's reliability. 

7.4. Multiple-Bit Fault Emulation Experiments 

7.4.1. Emulation and Fault Investigation 

Emulators are software tools that mimic the register action of a target micropro

cessor. As such the injection of a fault will not be as accurately modelled as in a 

simulator which models the functional/gate activity of a microprocessor. However, 

emulators, unlike simulators, are commonly available and inexpensive. Indeed many 

modern microprocessor systems are provided with an emulator within a debugging 

facility. 
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The register selected for fault investigation is the program counter. Other register 

faults would only investigate data type errors, whilst program counter faults are in

dicative of instruction type faults. Gunneflo et al [1989], who injected faults internally 

at random via ion radiation, found that 77% of faults were instruction type. Other 

fault injection experiments support this finding: 77% [Schuette & Shen, 1986] and 

60% (experienced in the single-bit experiment documented within this chapter). It 

therefore seems reasonable to conduct experiments that investigate instruction type 

faults. 

7.4.2. Microprocessor Applications Under Investigation 

Three application programs have been selected for the multiple-bit fault injection 

experiment. The first program ('A'), is the same program used for the single-bit 

fault injection experiment. That is, a slurry pump control application involving the 

monitoring and control of a reservoir system. Program A is written in assembler for 

the Motorola 68000 microprocessor. The second program ('B'), is written in assembler 

for a Motorola 68(7)05 microprocessor based system and is concerned primarily with 

data movement using the processor input/output ports. The third program ('C'), 

unlike the other programs, is not an application program but rather a section of high 

level code written in C. The purpose oi tiiis program is to investigate the hidden 

hazards that can be generated when high level language programs are translated 

to machine code. Program C is translated into machine code for the Intel 80386 

microprocessor. 

The three programs were selected to provide a diverse variety of application 

processors types and sizes; the Motorola 68(7)05, Motorola 68000, and Intel 80386 

are 8, 16, and 32-bit machines respectively. As for the single-bit fault injection 

experiment, the programs are prepared by applying the software based fault tolerant 

technique proposed in Chapter 5. Annotated assembler/ machine code listings of the 

original application programs and the programs with strategically placed software 

detection mechanisms are shown in Appendix D. 
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7.4.3. Programme of Emulated Faults 

The faults injected into the program counter are single and multiple-bit corrup

tions. All possible program counter corruption patterns representing execution in the 

used area of the microprocessor address space are analysed through fault injection. 

The remaining program counter corruption patterns generate detection by the Access 

Guardian and are evaluated. Hence this class of fault is comprehensively analysed. 

High order bit faults in the program counter typically lead to detection by the Access 

Guardian'feature because the application program resides in low memory. 

The programs A, B. and C are investigated to assess their respective fault tol

erance with and without the software based fault tolerant technique proposed in 

Chapter 5. Each program is evaluated :-

Version 1 : without the software technique applied, 

Version 2 : with the software technique applied (default detection 

mechanism size), 

Version 3 : with the software technique applied (optimum detection 

mechanism size), 

Program A : { 68000} 

The size of this program is 308 bytes, increasing to 500 and 416 bytes when default 

and optimum size software detection mechanisms are inserted respectively. Faults 

are emulated to analyse the microprocessor response to even byte program counter 

corruption covering every location in the program for each of the three program 

versions; a total of 612 fault runs. Odd byte program counter corruptions are detected 

automatically by the inherent MC68000 detection facility. 

Program B : {68(7)05} 

The size of this program is 53 bytes, increasing to 86 and 80 bytes when default 

and optimum size software detection mechanisms are inserted respectively. Faults 

are emulated to analyse the microprocessor response to program counter corruption 

covering every location in the program for each of the three program versions; a total 

of 219 fault runs. 
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Program C : {80386} 

The size of this program is 293 bytes, increasing to 365 and 323 bytes when default 

and optimum size software detection mechanisms are inserted respectively. Faults 

are emulated to analyse the microprocessor response to program counter corruption 

covering every location in the program for each of the three program versions; a total 

of 981 fault runs. 

7.4.4. Behavioural Analysis 

The performance evaluation in the preceding section, concerning the fault in

jection experiment, and other fault tolerance evaluations (see Tables 2.2. and 2.3.) 

involving fault injection, simulation, or emulation, provide static analysis. They do 

not investigate the processing behaviour associated with the latency of the spawning 

errors generated by the injected fault, and hence cannot identify dangers or assets of 

the techniques under evaluation. 

The emulation experiment reported here involves tracing erroneous execution 

instruction by instruction. In this way, the character of erroneous microprocessor 

behaviour can be investigated. This study validates the erroneous microprocessor be

haviour model presented in Chapter 3, demonstrates the effectiveness of the software 

based fault tolerant technique proposed in Chapter 5, and re-iterates the importance 

of the re-synchronization phenomenon. 

7.4.5. Identified Phases of Erroneous Execution 

The erroneous microprocessor behaviour model assumes two phases of erroneous 

execution: that following an Initial Erroneous Jump (IEJ), and that following a Sub

sequent Erroneous Jump (SEJ). The fault programme primarily investigates the SEJ 

phase, but the results can be extended to investigate the IEJ phase under the as

sumption that an Access Guardian is embedded within the microprocessor system 

being evaluated. Execution within each phase can generate either a restart, unspec

ified jump, return, or stop/wait outcome as described in Chapter 3. Restart out

comes signify detection of erroneous execution, whilst stop/wait outcomes signify a 
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cessation of execution. Only unspecified jump and return outcomes lead to another 

SEJ phase of erroneous execution. 

The fault emulation results for program A, shown in Table 7.4., are analysed 

in detail in order to validate the erroneous microprocessor behaviour model. Erro

neous execution can be detected in the MC68000 microprocessor system by either 

the Access Guardian, the inherent MC68000 detection mechanisms, or the software 

detection mechanisms. The Access Guardian detects access to the unused address 

space. Inherent MC68000 processor detection mechanisms include the odd byte ad

dress exception for the program counter, and the illegal opcode exception. The 

software detection mechanisms are designed to detect SEJs. 

7.4.5.1. The Initial Erroneous Jump Phase 

The purpose of Figure 7.4. is to show the behavioural phase of program execution 

following an Initial Erroneous Jump (IEJ). The I E J is generated by corrupting the 

program counter. Some IEJ destinations are detected immediately, such as target 

locations in the unused area and odd byte addresses, and these are represented by 

the ordinate intercept in Figure 7.4. During erroneous execution such detection 

coerces the outcome of an instruction to a restart. The ordinate intercept is lower 

for version 2 because the injected software mechanisms increase the used memory 

requirement, which reduces the initial effectiveness of the Access Guardian. The odd 

byte address exception facility in the MC68000 microprocessor detects all program 

counter corruptions with an odd byte address, and hence will always have the same 

detection capability. 

During the I E J phase, detection is provided by the software detection mecha

nisms or instructions generating conditions that are detected by the Access Guardian 

or an inherent MC68000 detection mechanism. Version 1 does not have any inserted 

software detection mechanism, whilst version 2 does. Not all return instructions in 

program A produce a return outcome, some are liable to generate conditions which 

are detected by the Access Guardian or an inherent MC68000 detection mechanism 

and generate a restart outcome. The effect of the software detection mechanisms is 
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(a) Version 1 : Original Program 

Jump 

Outcome 

Number of Instructions Processed Jump 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 13 7 4 5 4 4.5 2.5 3 0 0 

UJ 0 16.5 14 14 16.5 12 6.5 4.5 4 2.5 1 

RN 0 2 2 3 3.5 2 1.5 1 1.5 1 0.5 

SW 0 0 0 0 0 0 0 0 0 0 0 

(b) Version 2 : Insertion of Default Size Detection Mechanisms 

Jump Number of Instructions Processed 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 93 17 5 1 0 0 0 0 0 0 

UJ 0 32.5 37.5 33 15 8.5 4 0.5 0 0 0 

RN 0 2 2 0.5 1 0.5 0 0 0 0 0 

SW 0 0 0 0 0 0 0 0 0 0 0 

(c) Version 3 : Insertion of Optimum Size Detection Mechanisms 

Jump Number of Instructions Processed 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 51 16 5 0 0 0 0 0 0 0 

UJ n 32.5 35.5 33 15 8.5 4 0.5 0 0 0 

RN 0 2 2 0.5 1 0.5 0 0 0 0 0 

SW 0 0 0 0 0 0 0 0 0 0 0 

Notes: 
i) RT - Restart Outcome 

ii) UJ - Unspecifies Jump Outcome 
iii) RN - Return Outcome 
iv) SW - Stop/Wait Outcome 

Jump Outcome Statistics 
i) There are a total of 32 potential jump instructions open to interpretation (version 1). 

ii) 15 valid branches are specified within the original program. 
iii) None of the invalid branches can be detected by an Access Guardian. 
iv) 17 invalid branches can be detected by the insertion of 16 software detection mechanisms 

(version 2 and version 3). 

Table 7.4. : Observed Behaviour of Program 'A' 
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clearly observed in version 2 in which approximately half of the unspecified jump 

outcomes now generate a restart outcome, the remaining unspecified jumps occurring 

within re-synchronization. 

7.4.5.2. The Subsequent Erroneous Jump Phase 

The observed Subsequent Erroneous Jump (SEJ) phase of erroneous execution 

for version 1 and 2 of program A are shown in Figure 7.5. The observations made 

for the SEJ phase are the same as those for the IEJ phase except that the ordinate 

intercept is origin. This is because the detection capabilities of the Access Guardian 

and the MC68000 odd byte address exception are taken into account by the detection 

outcome of their generating instructions in the previous phase of erroneous execution. 

The period of linear erroneous execution following an SEJ in version 1 is typically 

longer than that for version 2. This is denoted in Figure 4 by the combined cumula

tive jump outcomes for version 1 reaching approximately 100% after 10 instructions 

processed, compared to 6 instructions processed for version 2. Furthermore, the 

percentage of SEJ phases terminated by a restart outcome, representing detection, 

is greater for version 2 than version 1. This observation clearly demonstrates the 

enhanced detection capability, provided by the insertion of software detection mech

anisms, in the SEJ phase. 

7.4.6. Analysing Detection Capability 

The data collected for the two phases of erroneous execution are inserted into 

equation (3.13.) in order to determine the dynamic detection capability of the soft

ware based fault tolerant technique. The fault emulation results for program A, B, 

and C, shown in Tables 7.4., 7.5., and 7.6., are processed by equation (3.13.) to pro

duce Figure 7.6(a, b, c). respectively. Each figure shows the detection capability for 

version 1,2, and 3 of the program. The programs are assumed to be implemented on 

a microprocessor system with an embedded Access Guardian. This assumption facil

itates evaluation of program counter faults covering the whole address space without 

the need to model and emulate the unknown data content of the unused address 

space. 
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(a) Version 1 : Original Program 

Jump Number of Instructions Processed 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 2.5 1.5 0.5 0 0 0 0 0 0 0 

UJ 0 15 10 6.5 4.5 5 3 1.5 0.5 0.5 0 

RN 0 2 0 0 0 0 0 0 0 0 0 

SW 0 0 0 0 0 0 0 0 0 0 0 

( b) Version 2 : Insertion of Default Size Detection Mechanisms 

Jump Number of Instructions Processed 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 20.5 13.5 6.5 2.5 1.0 0 0 0 0 0 

UJ 0 19.5 8 5.5 3 3.5 2 0.5 0 0 0 

RN 0 2 0 0 0 0 0 0 0 0 0 

SW 0 0 0 0 0 0 0 0 0 0 0 

(c) Version 3,: Insertion of Optimum Size Detection Mechanisms 

Jump 

Outcome 

Number of Instructions Processed Jump 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 14.5 13.5 6.5 2.5 1.0 0 0 0 0 0 

UJ 0 19.5 8 5.5 3 3.5 2 0.5 0 0 0 

RN 0 2 0 0 0 0 0 0 0 0 0 

SW 0 0 0 0 0 0 0 0 0 0 0 

Notes: 
i) RT - Restart Outcome 

ii) UJ - Unspecifies Jump Outcome 
iii) RN - Return Outcome 
iv) SW - Stop/ Wait Outcome 

Jump Outcome Statistics 
i) There are a total of 22 potential jump instructions open to interpretation (version 1). 

ii) 7 valid branches are specified within the original program. 
iii) 5 invalid branches can be detected by an Access Guardian (version 1). 
iv) 9 invalid branches can be detected by the insertion of 9 software detection mechanisms, the re

maining invalid branches created by the inserted software detection mechanisms can be detected 
by the Access Guardian (version 2 and version 3). 

Table 7.5. : Observed Behaviour of Program ' B ' 
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(a) Version 1 : Original Program 

Jump Number of Instructions Processed 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 10 7 2 1 0 0 0 0 0 0 

UJ 0 32.5 39.5 45 34 21 16.5 14.5 10 11 7 

RN 0 3 3.5 2 0 0 0 0 0 0 0 

SW 0 0 0 0 0 0 0 0 0 0 0 

( b) Version 2 : Insertion of Default Size Detection Mechanisms 

Jump Number of Instructions Processed 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 76 7 2 1 0 0 0 0 0 0 

UJ 0 32.5 42.5 47.5 34.5 19 15.5 14.5 10 11 7 

RN 0 3 3.5 2 0 0 0 0 0 0 0 

SW 0 0 0 0 0 0 0 0 0 0 0 

(c) Version 3 : Insertion of Optimum Size Detection Mechanisms 

Jump 

Outcome 

Number of Instructions Processed Jump 

Outcome 0 1 2 3 4 5 6 7 8 9 10 

RT 0 19 7 2 1 0 0 0 0 0 0 

UJ 0 32.5 42.5 47.5 34.5 19 15.5 14.5 10 11 7 

RN 0 3 3.5 2 0 0 0 0 0 0 0 

SW 0 0 0 0 0 0 0 0 0 0 0 

Notes: 
i) RT - Restart Outcome 

ii) UJ - Unspecifies Jump Outcome 
iii) RN - Return Outcome 
iv) SW - Stop/Wait Outcome 

Jump Outcome Statistics 
i) There are a total of 35 potential jump instructions open to interpretation (version 1). 

ii) 27 valid branches are specified within the original program. 
iii) None of the invalid branches can be detected by an Access Guardian. 
iv) 7 invalid branches can be detected by the insertion of 6 software detection mechanisms (version 

2 and version 3). 
v) There is 1 non-critical placement deadlock. 

Table 7.6. : Observed Behaviour of Program ' C 
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The relationship between the three versions of each of the programs is very similar. 

There is a detection capability enhancement shown by versions 2 and 3 over version 

1, and version 3 over version 2. However, there is an initial performance overhead 

associated with inserting software detection mechanisms. This is clearly seen in 

Figures 7.6(a, b, c). where for the first one or two erroneously processed instructions 

the detection capability of versions 2 and 3 is lower than that for version 1 (the 

original) of the program. This performance overhead is due to the increased program 

size and hence the higher probability that the corruption of the program counter, 

initiating the IEJ phase of erroneous execution, takes a value corresponding to a 

location within the program. The performance overhead is quickly over-ridden by 

the enhanced detection capability provided by the software detection mechanisms. 

The relative overhead of the version 2 compared with version 1 depends on the 

number and default size of the detection mechanisms. The number of detection 

mechanisms that can be placed is dependent on the code content of the application 

program. The default size of detection mechanisms is dependent on the applica

tion processor's instruction set, and the optimum size required for each placement 

is dependent on the local code structure. The overhead associated with version 3 is 

dependent of the memory saving facilitated by using the optimum size of detection 

mechanism on each placement. There is little difference in versions 2 and 3 for pro

gram B because the mean optimum detection mechanism size is about the same as 

the default detection mechanism size. There is a larger difference in program A, and 

larger again in program C, because the mean optimum detection mechanism size is 

smaller than the default detection mechanism size. 

The effectiveness of the software detection mechanisms is dependent on their 

number and distribution within the application program. Program B yields some 

of the best results due to a large number of software detection mechanisms spread 

evenly throughout the code. Program A obtains similar benefits from the insertion of 

software detection mechanisms. Program C results are poorer because fewer software 

detection mechanisms could be placed, and there is a contiguous block the size of 
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half the application program which is void of mechanism placements. The effect on 

program C is to greatly slow down the detection capability. 

I t will also be noticed that the version 3 results, whilst having a smaller overhead 

have a slightly reduced detection capability, compared with version 2, after several 

instructions have been erroneously processed. This is clearly seen for programs A and 

C in Figure 7.5. The variation in detection capabilities is due to erroneous execution 

flow, other than a SEJ, being detected by the software detection mechanisms. The 

default size detection mechanisms detect all non-re-synchronized linear erroneous 

execution because they have the same number of seed bytes as bytes in the longest 

instruction construct for the application processor. Hence, it is guaranteed that 

during linear erroneous execution a seed will be interpreted as an opcode, generating 

a restart outcome and detection. Optimum size detection mechanism will not detect 

all linear erroneous execution passing through the detection mechanism because some 

erroneously interpreted opcodes will consider all the seeds as operands of the current 

instruction. 

Re-synchronization of erroneous execution within the experiment generates a de

tection capability ceiling. This ceiling is rapidly approached by programs A and B, 

due to the large number of inserted software detection mechanisms. Program C did 

not facilitate the same potential for software detection mechanism insertion because 

of the limited number of invalid branches, and hence the detection capability en

hancement is not so rapid. Nevertheless, all three programs show improved detection 

capability. For highly reliable systems, additional techniques should be employed to 

cover the probability of re-synchronized erroneous execution. 

7.4.7. Critical Hazards of Erroneous Behaviour 

Three main classes of critical hazard are identified: cessation of processing (de

scribed in Chapter 3), placement deadlock (described in Chapter 5), and infinite 

execution loops. The observations and implications of these hazards within the ex

ample programs A, B, and C are now discussed. The next chapter in this thesis 

considers a technique for removing these hazards. 
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7.4.7.1. Cessation of Processing 

None of the example programs included code which could be interpreted during 

erroneous execution as a stop/wait outcome and hence cause microprocessor opera

tion to cease. Program B does, however, include instruction sequences which require 

user input. These instruction sequences could generate an apparent cessation of pro

cessing if erroneous execution re-synchronizes at one of these instruction sequences -

the user not being aware of the required input. Such occurrences are very difficult 

to prevent and an additional fault tolerant methodology is required to remove the 

hazard. 

7.4.7.2. Infinite Execution Loops 

These hazards involve the creation of an infinite loop by erroneous jumps. Once 

erroneous execution enters such a structure, the correct function of the program is 

permanently lost. The hazard is removed by implementing the software based fault 

tolerant technique proposed in the thesis, involving the placement of software detec

tion mechanisms and the attachment of an Access Guardian to the microprocessor 

system as required. A good example of this hazard is demonstrated in program C. 

The assembler listing of the program can be found in Appendix D. An infinite loop 

is generated by the erroneous jump at location l D ^ in the 'getvalue' routine, as 

shown in Table 7.7. 

7.4.7.3. Placement Deadlock 

The potential hazard of a placement deadlock occurred once during the applica

tion of software implemented fault tolerance documented in Appendix D. Placement 

deadlock describes the situation where an erroneous jump has its generator and desti

nation are operands within the same instruction. The identified placement deadlock, 

shown in Table 7.8., is at location 2 E / i e i within the 'main' routine in version 1 of 

program C (listed in Appendix D). Fortunately this potential erroneous jump is not 

backward, and hence there is no danger of an erroneous infinite execution loop. 

Placement deadlocks can, however, be hazardous and it is pertinent to develop 

techniques for manipulating code with this attribute. 
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Intended Execution Program Segment Erroneous Execution Intended Execution 

Address Code 

Erroneous Execution 

addl $8,%esp 001B 83 

operand 001C C4 

operand 001D 08 OR and <- JNE at 001F 

movl -4(%ebp),%eax 001E FF operand 

operand 001F 75 JNE -> 001D 

operand 0020 FC operand 

Table 7.7. Erroneous Infinite Execution Loop 

Intended Execution Program Segment Erroneous Execution 

Address Code 

call swap 002D E8 

operand 002E 7A JP — 002F 

operand 002F FF operand and *— JP at 002E 

operand 002F FF 

operand 002F FF 

operand 002F FF 

Table 7.8. Placement Deadlock 
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7.4.8. Re-synchronizing Erroneous Execution 

The re-synchronization experienced by version 1 of the example programs is in

fluenced by the relative number of opcodes to operands. Lower ratios encourage 

re-synchronization, because there are more opcodes available for interpretation as 

such in the range of locations open to instruction translation during erroneous execu

tion. Version 1 of programs C, A, and B have ascending speeds of re-synchronization, 

with descending opcode/operand ratios respectively. The op code/operand ratio is de

pendent on the instruction mix within the application program, and the instruction 

constructions within an applications processor's instruction set. 

7.5. Summary and Conclusions 

This chapter documents the results of two experimental programmes. The first 

involved injecting 2136 faults into a MC68000 microprocessor-based system and mon

itoring the system's response. The second involved emulating the response of a 

MC68(7)05. a MC68000, and an Intel 80386 microprocessor-based system with a 

combined total of 1812 emulated faults. 

The faults selected for the experiments were single and multiple bit. Several 

microprocessor systems with various detection facilities are monitored in order to 

evaluate their response to each fault insertion. The behavioural observations highlight 

the re-synchronization phenomenon whereby erroneous execution, diverted by the 

activation of an inserted fault, returns to a valid program path. In particular two 

types of hazard are associated with re-synchronization: placement deadlock, and 

sleeping corruption of the processor stack. Access to a corrupted stack re-initiates 

erroneous execution and detection is facilitated by the fault tolerant mechanisms 

resident in the experimental system. Cessation of processing and placement deadlock 

are identified as not being covered by the implemented fault tolerant mechanisms, 

and require other techniques to remove their hazards. Such techniques are proposed 

and discussed in the next chapter. 

Fault injection experiments and fault emulations have indicated the effectiveness 

of the software based fault tolerant technique proposed in Chapter 5. Performance 

parameters used to assess the technique are largely dependent on the nature of the 
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application program to be implemented with the microprocessor system under eval

uation. The only overhead which can be accurately stated is the hardware overhead 

attributed to the design of the Access Guardian, and this is discussed in Chapter 

5. Therefore although figures for error coverage, detection latency, and processing 

overhead are derived for application programs, their replication for other program 

implementations is not assured. This is a point not sufficiently stressed by other 

reports of fault injection, simulation, or emulation experiments. 

Nevertheless, the benefits of implementing the software based fault tolerant tech

nique have been clearly demonstrated for those microprocessor systems under evalu

ation. In addition, the behaviour of a microprocessor's erroneous execution has been 

observed. These observations have shown the importance of re-synchronizing erro

neous execution, and have validated the erroneous microprocessor behaviour model 

proposed in Chapter 3. 
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C H A P T E R E I G H T 

G E N E R A T I N G N O N - H A Z A R D O U S S O F T W A R E 

8.1. In t roduc t ion 

Previous chapters have identified the characteristics of microprocessor behaviour 

following an event disrupting software execution. A fault tolerant technique has been 

developed to detect erroneous behaviour and initiate recovery. There still, however, 

remains the uncertainty of the nature of any erroneous behaviour. 

Erroneous microprocessor execution is dependent upon the operation outcomes 

of interpreted instructions through the address space. There may be associated risks 

with erroneous execution which adversely effects system integrity. In particular, 

erroneous execution may process critical hazards which are indicative of catastrophic 

processing failures. 

Translators can have considerable influence on the nature of target machine code 

generated to implement a high-level language program [Ciminiera& Valenzano, 1987]. 

Machine code is produced primarily on the criteria of performance and efficiency, 

however, such code may incorporate critical hazards as observed in the previous 

chapter. Microprocessor reliability can be considerably improved if hazardous code 

is not generated. 

This chapter investigates the generation of software by two types of translator: 

compilers and assemblers. Generated software consists of machine code for program, 

data, and input/ output reserved areas of the address space. Techniques are proposed 

for each of these areas to manipulate the machine code in order to prevent the gener

ation of critical hazards within the code released by a translator. To facilitate these 

techniques, it is necessary to encourage and discourage particular translator practices. 

These practices are influenced by the characteristics of the target microprocessor. A 

selection of 8, 16, and 32-bit microprocessors are examined including the Intel 8086 

and Motorola 68000 families, and their implications for translator action discussed. 
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8.2. Br idg ing the Semantic Gap 

Microprocessor design is advancing so rapidly that design-oriented software can 

quickly become obsolete. It is therefore important that software should be written 

in a manner that facilitates implementation on a variety of processors. Even with 

upwardly compatible microprocessor designs, implementation of an original piece of 

software inefficiently uses the capability of the advanced design. 

High-level languages have been developed which are abstracted from processor 

architectures and configurations to the extent that the language is independent of 

the target machine. Examples of high-level languages include FORTRAN, Pascal, 

and C. They are considered portable languages because they allow software to be 

implemented on a range of processor types. 

The difference between a high-level language and its target microprocessor imple

mentation is known as the semantic gap. Bridging this gap has a major influence on 

the overall execution efficiency and software reliability of the microprocessor appli

cation. The tool used to bridge the gap is the translator. Translators automatically 

process the high-level software down through the levels of abstraction until code is 

generated which is executable on the target processor. The nature of translation 

means that the programmer has no control over the generation of the machine code 

and any hazards it may contain. It is important that translators are designed to 

generate non-hazardous machine code. 

8.3. The Risks of Erroneous Execution 

8.3.1. Catastrophic Processing Failures 

Two particular hazards identified with catastrophic failure are the possibilities of 

cessation of processing, and infinite processing loops during erroneous execution. 

Both occurrences prevent the possible detection of erroneous microprocessor be

haviour by software techniques: an external hardware reset being necessary to restore 

the microprocessor system. 
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Processing ceases when an instruction execution outcome is a stop/wait state. 

Exit from this state requires external intervention. The probability of process cessa

tion can be predicted by examining individual address space elements for stop/wait 

instruction codes. However, it must be recognized that the processing action of the 

processor with volatile memory can introduce further occurrences of this hazard which 

cannot be predicted. 

Infinite execution loops are instruction sequences that are continuously executed 

in a cyclic fashion. There is no processing exit from these loops except through some 

external intervention. Such loops may incorporate a chain of erroneous jumps, and 

operate through a combination of different functional areas in the address space (de

scribed in Chapter 5). Identification of all infinite execution loops for application 

software would involve tracing the execution path for all possible erroneous execu

tion variants following an Initial Erroneous Jump (IEJ). In reality, execution paths 

may change. A loop might include a conditional branch instruction. Erroneous ex

ecution might change the tested condition codes and hence the loop would not be 

infinite. Prediction of infinite execution loops would also have to allow for a section 

of address space being implemented on volatile or non-volatile memory. Obviously 

volatile memory is subject to manipulation through processor activity such as stack 

operations. 

8.3.2. Cr i t i ca l Hazard Coverage 

In order to prevent the occurrence of catastrophic processing failures, it is nec

essary to provide coverage for all associated critical hazards. The two identified 

hazards of catastrophic failure, cessation of processing and infinite execution loops, 

rely on the action of erroneous jumps. I t has been shown in the previous chapter 

that translator generated software can include hazardous code which if interpreted 

as an opcode produces an erroneous jump. The generation and eventuality of execut

ing such hazardous code is covered to improve the reliability of the microprocessor 

system. 

A fault tolerant technique based on software enhancement has been proposed 

in Chapter 5. This technique provides rapid termination of erroneous behaviour by 
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detecting the execution of erroneous jumps. The technique implements an Access 

Guardian which provides immediate detection of erroneous execution in the unused 

area of the address space. The effectiveness of the technique in the used area depends 

on the number of erroneous jumps within the machine code. However there are 

three particular erroneous jump constructs which cannot be covered by the the fault 

tolerant technique : stop/wait erroneous jump outcomes, return erroneous jump 

outcomes, and placement deadlock. 

The interval between the initiation of erroneous execution and its detection is 

called error latency. During this period there is a risk of a critical hazard not covered 

by the fault tolerant technique being executed. Such processing may generate a 

catastrophic failure. 

Clearly there is a need to develop a translator which avoids generating these 

classes of erroneous jump hazard. Such a translator would reduce the inherent hazard 

associated with the code without reducing the detection improvement offered by 

application of the fault tolerant technique. Indeed the ability to manipulate used 

area code enables not just the prevention of hazards, but also the introduction of 

attributes facilitating detection of erroneous execution. 

8.4. Non-Hazardous Program Area Code 

8.4.1. Hazardous Ins t ruc t ion Formats 

The program area consists of instruction sequences generated by the translator. 

Each instruction has a conceptual structure consisting of a descriptor and an address 

field. The descriptor specifies the instruction operation. The address field specifies 

the information to be processed by the instruction. The manner in which the address 

field is interpreted is known as the addressing mode of the instruction. The content 

of the address field is referred to as the stated address. The address of the referenced 

memory location, containing the information to be processed, is referred to as the 

effective address. 

The physical implementation of an instruction consists of opcodes representing 

the descriptor, and operand(s) if required by the addressing mode representing the 
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stated address. Opcodes are defined in the microprocessor's instruction set. Operands 

are specified by the addressing modes implemented within the microprocessors archi

tecture. The most common addressing modes are 

Inherent Addressing : 

Direct Addressing : 

Immediate Addressing : 

Indexed Addressing : 

Indirect Addressing : 

Register-Indirect Addressing : 

Relative Addressing : 

No effective address required. 

The stated address is the effective address 
of a register. 

The effective address is the location im
mediately following the opcode. 

The effective address is the stated address 
added to the contents of a specific register 
(index register). 

The stated address serves as a pointer to 
the location at which the effective address 
resides. 

The stated address serves as a pointer to 
a specified register which contains the ef
fective address. 

The stated address is an offset which is 
added to the contents of a location inher
ently selected by the opcode to form the 
effective address. 

The hazard identified with catastrophic processing failures, the erroneous jump, 

can be generated by opcodes and operands. The addressing mode adopted by an 

instruction influences the requirement and nature of operands. Techniques are pro

posed for the selection of instructions and their manipulation to prevent the genera

tion of critical hazards. To this end, certain translator practices can be encouraged 

or discouraged. Several practices are identified and discussed. 

8.4.2. Hazardous Opcodes 

Early microprocessor designs such as the Intel 8080 and Motorola 6800 implement 

an instruction set in which all operations can be uniquely identified by a single-byte 

opcode. Hence these opcodes have no associated hazard. 
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Later processor designs extended the instruction set to improve flexibility and 

performance. Examples of this type of machine include the Motorola 68000 and In

tel 8086. Such microprocessors are known as Complex Instruction Set Computers 

(CISC). Processor designs that extend the instruction set beyond 256 unique oper

ations require a multiple-byte opcode. However, the second and subsequent opcode 

bytes are liable to have a hazardous format susceptible to erroneous execution. The 

nature of this hazard can be determined by mapping the opcode bytes onto the 

first-byte opco map. 

The Intel 8086 microprocessor family have instructions which require an addi

tional opcode byte to further specify the operation code of the first opcode byte. 

Hazardous bytes can be identified and suitable translator action taken. 

The Intel 80286 microprocessor instruction set has an instruction 'SETNP' whose 

second byte, if interpreted as an opcode, generates a stop/ wait outcome. This is a 

critical hazard associated with catastrophic processing failure. There is no method 

of manipulating the second-byte of the opcode because its format is completely de

fined. The selection of this and other instructions that have hazardous opcode bytes 

that cannot be manipulated should be avoided in order to prevent the possibility of 

catastrophic failure during erroneous execution. 

All instructions in the Motorola 68000 microprocessor family instruction sets 

have a two-byte opcode. Furthermore, these microprocessors implement memory 

organization which specifies that instructions reside at even-byte boundary addresses. 

Interpretation of an instruction at an odd-byte boundary address generates a software 

exception and hence a restart outcome. Hence there is no hazard associated with the 

second opcode byte because of the over-ride action of the odd-address exception. 

Some modern microprocessor designs have returned to a smaller instruction set, 

discarding under-utilized instructions. The core of the instruction set facilitates effi

cient processing within a simplified machine architecture. The processors are known 

as Reduced Instruction Set Computers (RISC). An example of this processor type is 

the AMD Am29000. This microprocessor specifies its instructions to have a single-

byte opcode and a three-byte operand, with the notable exception of the load and 
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store instructions where there is a two-byte opcode and a two-byte operand. Single-

byte opcodes have no hazard whilst two-byte opcodes may have a hazardous second 

byte. 

8.4.3. Hazardous Operands 

8.4.3.1. Prevention of Addressing Mode Hazards 

In general, instructions have operands which are susceptible to interpretation as 

a first-byte opcode during erroneous execution. The addressing mode adopted by an 

instruction influences the requirement and nature of these operands. Instructions may 

be selected on the basis of the non-hazardous operands associated with addressing 

mode and their ease of manipulation. 

An exception to the rule is the AMD Am29000 microprocessor. This machine 

locates instructions at every other even-byte address. A exception facility can be en

abled within this processor such that a program counter, containing the address of an 

operand byte, is masked to access the opcode address. Hence the operands may have 

a hazardous format but the microprocessor architecture prevents their interpretation 

during erroneous execution. No operands, therefore, require manipulation to remove 

any hazard. 

The Intel 8086 microprocessor family arcmtecture implements segmentation. Ev

ery memory access requires the specification of a segment register in conjunction with 

an addressing mode. The segment register and the addressing mode implement the 

most and least significant address bits respectively. Hence all addressing modes facili

tated by these processors are pseudo-relative. The allocation of segment registers can 

be automatic which eases the complexity for low-level programmers and translators 

alike. 

8.4.3.2. Inherent Addressing 

In this addressing mode there is no effective address requirement. Inherent ad

dressing instructions have all necessary information for processing within the instruc-
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tion opcode. No operands are needed. A common inherent addressing instruction to 

many microprocessor instruction sets is 'no-operation'. 

8.4.3.3. Man ipu la t ing Direct Addressing 

The number of operands required by an instruction implementing direct address

ing to specify the effective address is dependent upon the size of the microprocessor 

address space and the size of each operand. For instance, a 4 GByte address space 

requires 4 bytes to specify an absolute address, whilst a 64 KByte address space 

requires only 2 bytes. Operands typically take a one-byte structure. However, larger 

byte structures are implemented by particular microprocessors, notably the Motorola 

68000 family which have two-byte operands. Each operand used to represent the ef

fective address may have a hazardous format. 

The hazard associated with an operand that partially or fully represents an ef

fective address is dependent on that address. Accessed memory can be relocated so 

that the operands specifying the effective address take non-hazardous code formats. 

To give the operands of an instruction implementing direct addressing a restart 

format, it is necessary to have groups of consecutive restart opcodes within the mi

croprocessor instruction set. Larger groups of restart opcodes reduce the complexity 

of movement of the used area when covering each directly addressed location. The 

Intel 8086 microprocessor like the AMD Am29000 has an instruction set which has 

few useful restart instruction formats. The advanced Intel 80286 and 80386 micro

processors, which are upwardly compatible with the 8086, have no additional restart 

instructions of a useful format. The Motorola 68000 microprocessor family have a 

large number of useful restart instruction formats. Their instruction sets of 65536 

instructions comprise of approximately 2% denned restart instructions, and 30% un

defined instructions specified to generate a software exception which is a restart out

come. Within these restart formats are two large blocks taking the hexadecimal values 

AXXX and FXXX, where 'X ' is a 'don't care' hexadecimal value. These represent 

undefined instructions which are reserved for implementation by later releases of the 

microprocessor family. In particular, the Motorola 68030 microprocessor facilitates 

the use of some FXXX hexadecimal format instructions for co-processor operation. 
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However, if the microprocessor system does not incorporate a co-processor then these 

instructions revert to generating a restart outcome. Each of the two blocks of restart 

instructions when converted to an address range cover 4 KBytes. The remainder of 

the instructions generating a restart outcome are scattered about the opcode map. 

8.4.3.4. Man ipu la t ing Immediate Addressing 

In the immediate addressing mode, the effective address is, by default, the in

struction operand(s). The operands contain data to be processed by the instruction. 

The operands are by their nature application specific. Their hazards are depen

dent on the host microprocessor instruction set. Although the data stored cannot be 

altered, the format of its storage can be manipulated. 

A technique is proposed for microprocessors whose architecture organizes memory 

on a double byte addressing scheme such as the Motorola 68000 family. Operands 

therefore have a two-byte format. For single byte data, one byte holds the data, while 

the remaining byte can be set to a value such that the resultant operand code is non-

hazardous. The choice of operand values that do not exhibit a hazard is dependent 

on the target instruction set. 

8.4.3.5. Man ipu la t ing Indexed Addressing 

This mode of addressing requires operands to represent the stated address and 

the index register. This addressing mode is particularly useful when implementing a 

stack structure in memory for microprocessor operation. 

Some microprocessor architectures, including the Motorola 68000 family, specify 

register use within the instruction opcode. Other architectures, such as the Intel 8086 

family require an operand to specify register usage. In these instances it is suggested 

that some registers may be preferred. The generation of operand code specifying 

particular registers and which has a hazardous format should be avoided. 

The operand(s) representing the stated address can be manipulated using the 

same techniques proposed for direct addressing: operands specifying absolute ad

dresses for direct addressing should not have a hazardous bit format. 
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The Intel 8086 and Motorola 68000 microprocessor families implement additional 

variants of the indexed addressing mode. These involve a base address displacement 

which is added to the effective address. Such extensions to the indexed addressing 

mode facilitate enhanced data processing techniques. 

8.4.3.6. Man ipu la t i ng Indirect Addressing 

The stated address contained in the operands attached to an instruction imple

menting indirect addressing is an intermediate location in the address space. The 

content of this location specifies the effective address of the data to be processed by 

the instruction. 

It is proposed that an intermediate location is selected so that the operands 

specifying its address do not take a hazardous value. However, the intermediate 

locations available may be restricted by the residence of used areas in the address 

space. Movement of the used area can release useful locations. 

It is valuable when manipulating indirect addressing, to have a large number 

of scattered opcode formats for restart instructions. This reduces the likelihood of 

having to move sections of the used area in order to release addresses that mimic a 

restart opcode format. 

Both the Intel 8086 and Motorola 68000 microprocessor families do not implement 

indirect addressing, preferring to use the equivalent register-indirect addressing mode. 

8.4.3.7. Man ipu la t i ng Register-Indirect Addressing 

This method of addressing is closely allied to the indirect addressing mode. The 

effective address is contained within a register specified by the stated address. 

As identified with the index addressing mode, some microprocessor architectures 

require the specification of a register within an operand. These operands can be 

manipulated to remove any hazard loc cit. 

This addressing mode is implemented with particular effect in respect to hazard 

generation in the Motorola 68000 microprocessor family. These machines implement 

an instruction using register-indirect addressing without an operand requirement, 

i.e. the opcode specifies the register. Opcodes for these processors do not have a 
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hazard, so instructions implementing this addressing mode do not introduce hazards 

and should be encouraged by translator code generation. 

8.4.3.8. Man ipu la t ing Relative Addressing 

The inherent register specified by relative addressing serves as a pointer to a 

memory location. The stated address acts as a displacement to the pointer. The 

result is a method of referencing memory in the vicinity of the address contained in 

the register. 

An important class of instruction that implement relative addressing are branches. 

These facilitate changes in the otherwise sequential control flow of program execu

tion. Relative addressing is used in conjunction with the microprocessor's dedicated 

register, the program counter, which serves as a pointer to the next instruction to be 

processed. 

The displacement required by this addressing mode is stored in one or more 

operands. A large proportion of relative addressing displacements are local. Operands 

specifying local forward and backward displacements have low and high hexadecimal 

values respectively. The hazards associated with such operand values are dependent 

on the host microprocessor instruction set. Displacements represented by operand 

code of a hazardous format should not be used. Operand manipulation is only possible 

where the displacement value is independent of run-time conditions. 

Assuming that branch offsets tend to be local, deductions can be made for dif

ferent microprocessor implementations. This is known as the principle of program 

locality [Ciminiera & Valenzano, 1987]. Two popular microprocessor families are 

investigated with respect to local relative addressing hazards. 

Firstly, consider a Motorola 68000 target machine. Local backward branches 

will produce an operand of the hexadecimal format FFXX, an undefined instruction, 

which, when executed as an opcode, generates a restart outcome and hence no hazard. 

Local forward branches produce an operand of the format 00XX which, when executed 

as an opcode, is highly likely to produce an OR instruction. Although there is 

no immediate hazard associated with an OR instruction it does continue erroneous 

execution, and may corrupt system data. Implementation on the compatible but 
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extended instruction set of the Motorola 68020 realizes usage of some of the FFXX 

instructions for co-processor operation. When a co-processor is incorporated into 

the microprocessor system, local backward jumps have a probability of producing 

an erroneous instruction execution hazard. However, if a co-processor is not present 

then these instructions continue to generate a restart outcome. 

Secondly consider the Intel 8086 microprocessor family. Local backward branches 

tend to produce FF hexadecimal values for the most-significant, and high hexadec

imal values for the least-significant operand bytes. Equally, local forward branches 

tend to produce 00 hexadecimal values for the most-significant, and low hexadecimal 

values for the least-significant operand bytes. The byte FF hexadecimal value, when 

erroneously interpreted as a first-byte opcode specifies a multi-byte opcode, which 

can take a format associated with critical hazards. The byte 00 hexadecimal value, 

when mapped onto the first-byte opcode map, reveals that erroneous execution will 

generate an ADD instruction. Whilst this is not classified as a critical hazard, it 

still allows erroneous execution to propagate and perhaps activate a critical hazard 

elsewhere. Low and high hexadecimal values can thus generate both detection of 

erroneous execution and catastrophic processing failures. Hence local branches are 

fraught with danger for translators generating machine code for the Intel 8086 mi

croprocessor family. Translators can move sections of code within the address space 

to ensure bytes specifying local branches do not take formats defining critical haz

ards. The intermediate vacant slots of memory between relocated sections of code 

can be filled with 'no-operation' single-byte instructions, or sections of code linked by 

a branch instruction and intermediate locations filled with restart single-byte restart 

outcome instructions yielding a detection capability. This proposed manipulation of 

the program area will introduce a processing performance overhead to the correctly 

executing program. However, this overhead is deemed to be acceptable for most 

microprocessor applications. 
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8.5. Inf luencing Translator Practices 

8.5.1. Ins t ruc t ion Selection 

It is desirable that a translator uses a microprocessor instruction set efficiently 

during its code generation phase. That is, program code is produced for optimal 

performance. Ineffective use of the instruction set could lead to unnecessary increases 

in the processing time and memory space required by the program code. 

Selection of instructions which process registers has a particular benefit. Ad

dressing modes using registers do not require a memory fetch and hence are more 

efficient than addressing modes using direct addressing. Instructions which process 

registers thus enhance program code performance. 

An example of translator inefficiency is demonstrated by the UNIX 'cc' compiler. 

The target machine is the Motorola 68000. The instruction set for this microproces

sor includes a branch instruction with an embedded byte displacement, for relative 

addressing, in the opcode. This compiler, however, generates a branch instruction 

with a two-byte displacement for a branch requiring a single byte displacement. The 

implemented instruction requires an otherwise unnecessary operand. Resultant pro

gram code requires extra memory, and has a slower execution for this instruction. 

Whilst generated code should be efficient, it should also not exhibit any critical 

hazards. Manipulation of the code to remove these hazards may degrade program 

performance. Particular translator actions can be encouraged or discouraged so that 

the generated code is acceptable. 

8.5.2. Coupl ing and Cohesion 

Selected instructions should exhibit the characteristics of coupling and cohesion. 

These characteristics are more commonly associated with high-level language soft

ware engineering [Sommerville, 1985]. Coupling is a measure of the programs code 

dependence on referenced parameters. Cohesion is a measure of the functionality 

(unity of operation) of the program code. Translators should generate program code 

that exhibits both high coupling and cohesion characteristics. 
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Low coupling indicates the use of specified parameters rather than referenced 

parameters. Specified parameters give operand formats which may have an associated 

hazard. Program code may replicate use of the parameter and hence the hazard is 

propagated. An example of this is demonstrated by the UNIX 'cc' translator on 

the SUN machines whose target processor is the Motorola 68020. The translator 

generates instructions with an immediate addressing mode to access repeated data 

values, and hence any hazard associated the data value is replicated. Translators can 

avoid this problem by implementing reference parameters. Reference parameters are 

independent of the specified parameter value. The reference can be altered so that 

its operand format does not have an associated hazard. Such manipulation does not 

affect the specified value of the referenced parameter. High coupling is, therefore, a 

useful attribute when manipulating the program code to remove hazards. 

Cohesion reflects the efficiency of the generated program code. Low cohesion 

indicates unnecessary control flow in the generated instruction sequences. Loop in

variants are a source of inefficient control flow [Aho & Ullman, 1977]. They involve a 

computation that produces the same result at each cycle of a loop. The computation 

can be moved to a point just before the loop is entered. In general, loops are a major 

source of program inefficiency. High cohesion is an attribute of effective program 

code generation. 

8.5.3. Macros 

A macro is a collection of target machine instructions which perform some oper

ation not directly facilitated by the microprocessor instruction set. Macros appear in 

the intermediate code generated by a translator. The translator replaces the macro 

with its defined target instruction sequence when producing target machine code. A 

macro should not be confused with a procedure. Macros are called and expanded by 

translator action whereas procedures are called and processed by program execution. 

The specification of macros should ensure no resident hazards. Removal of haz

ards can be achieved using the code manipulation techniques outlined in this chap

ter. The importance of macros increases with processor architectures implementing 
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smaller instruction sets which provide fewer directly executable operations. This is 

particularly so in RISC processors such as the AMD Am29000. 

8.5.4. Peephole Opt imiza t ion 

Translator generated code usually goes through the process of peephole optimiza

tion before release. This is designed to enhance the performance of the program code 

by increasing the efficiency of small sections of code. The JPI TopSpeed (version 1) 

Modula-2 translator produces code for the Intel 80296 microprocessor which is par

ticularly effective in this respect. However, optimization may involve manipulation 

of instruction sequences such that hazards are re-introduced. Nevertheless, peephole 

optimization is very valuable in generating efficient program code. Therefore, this 

process cannot be abandoned, but rather it must endeavour not to create any new 

hazards. 

8.6. Non-Hazardous Data Area 

These areas can include both volatile and non-volatile memory. Non-volatile 

memory is used to implement static data structures such as 'look-up' tables. Volatile 

memory can implement dynamic structures such as stacks, as well as static data 

structures. 

Halse [1984] suggests many variants of a software seeding strategy to implement 

detection of erroneous behaviour in this area. Experiments demonstrate the effec

tiveness of seeding. However, erroneous execution in this area can have unpredictable 

behaviour before detection, depending on the data content. In some instances the 

content may change through the operation of the microprocessor system. 

The AMD Am29000 microprocessor has a separate instruction and data channels, 

therefore instruction fetches from the data area are impossible. Interpretation of a 

data area as a program area generates an exception and hence a restart outcome 

which denotes detection of erroneous behaviour: the data area within this processor 

is therefore intrinsically non-hazardous. 
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8.7. Non-Hazardous I n p u t / O u t p u t Reserved Area 

These memory mapped areas contain locations reserved by the microprocessor 

architecture for communication with external devices. Used locations will contain 

time dependent values related to the requests to, and responses from external de

vices. Unused locations with an attached communication link can have an undefined 

content. 

All memory mapped I/O locations are susceptible to erroneous interpretation as 

an opcode. Such erroneous behaviour may be hazardous. Manipulating the content 

of the I /O reserved locations can remove any associated hazard. The proposed alter

ations of the microprocessor system require knowledge of the I /O communication of 

the application software. 

The values resident at used locations can be manipulated using the same tech

nique proposed for immediate addressing. Alternatively, values sent and received 

from any external device could be defined to take non-hazardous formats. The com

munication links for the unused locations can be tied high or low, corresponding 

to logic 1 and logic 0 respectively. In this manner, unused memory mapped I /O 

addresses can be set to hold non-hazardous values. 

8.8. Influence of the Ins t ruc t ion Set 

Manipulation techniques for machine code in the used area of the address space 

have been proposed, based on microprocessor architecture. Specific implementation is 

dependent upon the instruction set of the host microprocessor. This section identifies 

instruction set characteristics, including content and format, which facilitate or hinder 

the manipulation techniques. 

8.8.1. Undef ined Instructions 

Some microprocessors do not declare the operation of undefined instructions 

within their instruction set. The physical implementation of such instructions de

pends on the manufacturer. A manufacturer will, typically, introduce useful and 

varied operations for these instructions. However, there are no standard operations 
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for these instructions and their function can vary between manufacturers. Further

more, the manufacturer is under no obligation to keep a particular function for differ

ent fabrications of the same microprocessor. Modern microprocessors have generally 

avoided this ambiguity by declaring their undefined instructions to generate a soft

ware exception - a restart outcome. Undefined instructions have therefore been given 

a detection attribute. Translators should encourage the use of these codes so that 

the detection capability of the generated code is enhanced. Modern microprocessors 

generally declare the operation of all possible instruction opcodes even though the 

use of some is undefined. 

8.8.2. R e s t a r t I n s t r u c t i o n s 

Instructions w i t h a restart outcome are used to detect erroneous behaviour. 

Where possible code should be manipulated to attain this detection capability. The 

abil i ty of a translator to endow code with this at tr ibute is influenced by the numbers 

of restart instructions and their position wi th in the target processor's instruction set. 

The proportion of instructions in a microprocessor instruction set that generate a 

restart outcome are typically small, see Appendix A. However, in some microproces

sors the undefined instructions are specified to generate a restart outcome. Undefined 

instructions also usually occur as groups within the instruction set, being reserved 

for future instruction set extensions. There can be substantial numbers of undefined 

instructions wi th in an instruction set. 

8.8.3. S t o p / W a i t a n d R e t u r n I n s t r u c t i o n s 

Hazards associated wi th code which reflect the format of a stop/wait instruction 

are critical. They are synonymous wi th cessation of processing: a catastrophic failure. 

Similarly, code wi th a return instruction format is deemed a critical hazard because 

i t can create an infini te execution loop during erroneous execution. Such erroneous 

processing is also associated wi th catastrophic failure. 

Fewer stop/wait and return instructions in the instruction set discourage the 

generation of critical hazards. This assumes that the translation of target machine 

code can be broadly considered as a pseudo-random process. 
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Additionally, the principle of locality, associated wi th relative addressing, identi

fies that high and low value operands occur more regularly than other formats. To 

further reduce the probability of hazard generation, i t wi l l be an advantage i f the 

stop/wait and return instructions take mid-range operand values. 

The generation of hazards wi l l also be influenced by the application code access 

to inpu t /ou tpu t reserved areas. Specific, utilized locations in this area may have 

an address which has a hazardous format corresponding to a stop/wait or return 

instruction. The translator generation of these hazards is application specific. For 

this reason, microprocessors are preferred whose stop/wait and return instructions 

do not reflect any reserved input /output locations. 

8.8.4. U n s p e c i f i e d J u m p I n s t r u c t i o n s 

Code which has a format of an unspecified jump instruction is considered haz

ardous in the same manner as code wi th a return instruction format, the hazard being 

indicative of an infini te execution loop and hence catastrophic failure. Although such 

code has an embedded critical hazard, i t is a feature of asset rather than liability. 

The fault tolerance technique proposed in this thesis uses the occurrence of code 

wi th unspecified jump instructions formats to detect erroneous execution. Hence the 

presence of this code hazard is an attr ibute which indirectly enhances the software 

detection capability. 

8.9. C o n c l u s i o n 

A significant amount of software produced for microprocessor applications is wr i t 

ten in a high-level language which is independent of the target processor. This soft

ware is converted by a translator to equivalent machine code implementation. The 

programmer, therefore, does not have any control over the nature of the machine code 

generated. This code could contain embedded hazards which cause catastrophic fai l 

ures during erroneous execution. 

I t has been shown that translators can implement techniques to manipulate ma

chine code. Such manipulation can prevent the release of hazardous code by the 
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translator. The techniques involve encouraging and discouraging particular transla

tor practices. W i t h i n program areas instructions are selected wi th respect to their 

opcode and operand. Both may have a hazardous format. Equivalent operations 

can be chosen to provide alternative opcodes, and operands can be manipulated by 

implementing different addressing modes so that no critical hazards are generated. 

In addition, the configuration of the address space can be altered to cover certain 

hazards. The manipulation techniques proposed to prevent hazardous code genera

tion in the data and inpu t / output reserved areas are dependent to a large extent on 

the data structures implemented by the microprocessor. Apply ing the collection of 

manipulation techniques can prevent the generation of critical hazards. 

The proposed translator techniques are influenced by the format and content of 

the target processor instruction set. General inferences are made for instruction set 

characteristics. 

The abil i ty to manipulate translation of target machine code also facilitates fur

ther working of the code to introduce a detection capability for erroneous execution. 

This is achieved by encouraging the generation of code wi th a restart instruction 

format. Such enhancement of the code can further improve the reliability of a micro

processor application by reducing error latency. 
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C H A P T E R N I N E 

M I C R O P R O C E S S O R D E S I G N F O R F A U L T T O L E R A N C E 

9 . 1 . I n t r o d u c t i o n 

The hazard of erroneous microprocessor behaviour is modelled and evaluated in 

the early chapters of this thesis. A technique is proposed in Chapter 5 using software 

implemented fault tolerance to provide detection of erroneous execution. A u t i l i ty 

has been buil t which automatically applies the proposed software based technique 

to target code, with the performance of the enhanced code being analysed and the 

benefit of its improved detection capability demonstrated. Furthermore, the previ

ous chapter discusses methods of software translation which reduce the hazard of the 

target source code in respect of erroneous execution. This chapter concludes the re

search presented in this thesis by considering design features that can be incorporated 

wi th in the architecture of a microprocessor to provide fault tolerance. 

The design features presented identify particular characteristics of erroneous exe

cution. Once erroneous execution is distinguished f rom valid processing, appropriate 

recovery action can be init iated to restore the integrity of the microprocessor system. 

The performance of the implemented design features and their at t r ibuted architecture 

overhead for a microprocessor is discussed. 

9.2. T h e Ef fec t iveness o f F a u l t To le rance 

As discussed in Chapter 1, the implementation of fault tolerance at the logic level 

wi th in a microprocessor's architecture incurs large overheads, in particular, a large 

extension in the number of gates is required. Chakraborty & Ghosh [1988] show that 

logic faults have a good correlation to functional errors in processor operation. I t is 

therefore feasible to implement techniques faci l i tat ing functional-level faul t tolerance. 

These techniques require less gate overhead than logic faul t tolerance because they 

only attempt to detect particular characteristics of erroneous behaviour rather than 

all possible failure patterns. 
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Established functional-level fault tolerant techniques for microprocessor systems, 

called capability checks, are discussed in Chapter 2. Application of these techniques 

to microprocessor systems involves the addition of dedicated hardware units and/or 

software manipulation. Fault tolerant techniques which operate on functional aspects 

of erroneous execution are extremely diff icult to assess. Erroneous behaviour w i l l vary 

f rom application to application, depending on the target software and processor and 

hence the detection capability of the applied technique wi l l vary too. This is known 

as the ' instruction sequence' dependency. Nevertheless, inclusion of capability checks 

wi th in microprocessor systems can be beneficial where high reliability is required. 

9.3. I m p l e m e n t i n g Fau l t To le rance 

The implementation of fault tolerance as described in Chapter 2 involves the 

co-ordinated detection of an error and restoration of the microprocessor system in

tegrity. This thesis considers the first stage of fault tolerance, i.e. the detection of 

erroneous microprocessor behaviour as described in Chapter 3. I t is proposed that 

detection can be achieved through the generation of a restart outcome during erro

neous execution. Such a processing outcome re-establishes control of the program 

flow by directing execution to a predefined location in the address space. In order to 

complete recovery, a restart outcome must initiate execution of a module of code that 

restores system integrity. The predefined location in memory, accessed as a result of a 

restart outcome, is therefore hardwired wi th in the microprocessor architecture to be 

a section of Read Only Memory (ROM) . The micro-code in the R O M is programmed 

wi th a recovery routine for the application software. 

Microprocessor design features are proposed in this chapter which facilitate an 

increased probability of erroneous execution generating a restart outcome, without 

the need for peripheral circuitry or software manipulation. 

9.4. I n f luences o n M i c r o p r o c e s s o r Des ign 

I t is very diff icul t to present a list of influences on microprocessor architecture de

sign because of the diversity of application requirements between different processors. 

For instance, the Intel 4004 is a 4-bit microprocessor designed for simple arithmetical 
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functions, while the Motorola 68(7)05 is an 8-bit processor specifically designed for 

programmable controllers, and the Advanced Micro Device Am29000 processor is a 

32-bit processor designed for real-time systems requiring large amounts of processing. 

The architecture of these microprocessors satisfies many design requirements includ

ing processing performance, processing capability, and cost. This is achieved through 

the implementation of various design features: for example, the A M D Am29000 im

plements a Reduced Instruction Set Computer (RISC) architecture incorporating a 

cache memory, .struction pipeline, and reduced instruction set in order to improve 

its run-time processing capability. 

The following sections of this chapter consider design features which can be in

corporated into the microprocessor architecture to facilitate the self-detection of erro

neous behaviour. In particular, design features are proposed which facilitate detection 

of the erroneous execution modelled in Chapter 3, and the hardware representation 

of the software implemented fault tolerant technique presented in Chapter 5. 

9.5. I n s t r u c t i o n Set A r c h i t e c t u r e 

A l l programs which are executable on a target microprocessor consist of a se

quence of machine instructions. Typical instruction formats contain the following 

basic elements: 

e an opcode specifying the operation, 

© addressing mode specification for each of the input operands and 

result, and 

• addressing mode data, e.g. immediate data for direct addressing. 

An instruction's addressing mode is designated by either the opcode or a reserved 

tag wi th in the operand. The Motorola 68000 processor family defines the addressing 

mode of instruction operands within the opcode, whilst the Intel 8086 processor 

implements a tag wi th in the operand bit format which is decoded to ascertain the 

operand's addressing mode. 
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The architecture and organization of the processor instruction set can be ma

nipulated to enhance the inherent detection capability of erroneous execution by the 

microprocessor. Techniques considered within this section involve the instruction set 

mix, the opcode map, and the instruction operand requirements. 

9 .5 .1 . I n s t r u c t i o n Set M i x 

The selection of instruction operations for inclusion in an instruction set is the 

subject of much research [Tanenbaum, 1990]. Instructions can be separated into 

two broad groups: general purpose and specialized instructions. General purpose 

instructions include data movement operations that are needed by almost every ap

plication. Specialized instructions are only useful i n specific applications, e.g. the 

Motorola 68000 instruction M O V E P takes the content of the D register and stores 

i t in alternate bytes and is intended for communication wi th specific 8-bit peripheral 

devices. 

Studies of instruction set usage have led to the development of Reduced Instruc

tion Set Computers (RISC) such as the Advanced Micro Device Am29000 processor. 

These processors incorporate only the most used and general purpose instructions 

unlike Complex Instruction Set Computers (CISC) which have large instruction sets 

that are often extended when the processor is upgraded through an upwardly com

patible revision. W i t h i n the RISC processor, particular tasks that can be achieved 

by a single sophisticated CISC instruction may require several of the more basic in 

structions provided in its instruction set. Although the application software for a 

particular task is larger on a RISC compared to a CISC processor, its simpler data 

path processing (partially facilitated by the RISC instruction set) improves overall 

performance. 

The instruction mix analysis of Chapter 4 which is used to evaluate the model 

of erroneous microprocessor behaviour highlights the advantages and disadvantages 

associated wi th the inclusion of restart and stop/wait outcome generating operations 

wi th in the processor instruction set respectively. Stop/wait outcome instructions in i 

tiate catastrophic failure during erroneous execution because all independent opera

tion is lost, and restart outcome instructions provide a controlled route for erroneous 
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execution to a recovery routine which restores processor integrity. Obviously the 

number of stop/wait outcome generating instructions in the instruction set should be 

minimized, although the degree of their influence on erroneous execution is dependent 

on their activation rather than their occurrence in an instruction mix. 

9.5.2. O p c o d e M a p s 

A n instruction opcode is designed to have sufficient bits to identify all facilitated 

unique operations. The number of bits, n , used to specify an opcode format should be 

an integral multiple, m, of the processors memory element length b (usually a byte) 

in order to simplify data flow processing. Additionally, the number of bits specified 

for an opcode should be kept as small as possible in order to reduce the memory 

requirement of software. Hence opcodes which specify i instruction operations are 

designed wi th a bi t length n where, 

i < 2n. (9.1.) 

Re-arranging gives. 

loq i 
n > r-^—, (9.2.) 

~ log 2 ' v ' 

n > log2 i, (9.3.) 

and, 

n = m.b. (9.4.) 

The specified opcodes form an instruction set, and the range of opcode formats is 

usually referred to as the processors opcode map. 

Equation (9.1.) notes that there may be some redundancy in the opcode map. 

This redundancy is acceptable in many architectures because the processing ben

efits of fixed-length instruction implementation within the overall processor design 

outweigh the sacrifice of larger average code size [Hennessy & Patterson, 1990]. 
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A l l redundant opcode formats in the opcode map should be defined to generate 

a restart outcome. In this manner, execution of an undeclared operation, which is 

synonymous wi th erroneous microprocessor behaviour, is detected. 

The opcode map can also be designed to eliminate the hazard of instruction 

operands associated wi th a local displacement by a relative branch. Program flow 

typically follows the 'principle of locality', well known by memory systems' designers, 

and can be explained by using a rule of thumb: 

! A program executes about 90% of its instructions in about 

10% of its code'. 

The implication is that the major i ty of program flow involves branches whose target 

destination is in the local vicinity to the location of the generating instruction in 

the program code. Hennessy & Patterson [1990] describe the analysis of benchmark 

programs which support this assertion. 

Many processor architectures define local branch displacement information to be 

contained wi th a branch instruction operands. These operands are susceptible to 

interpretation as an opcode during periods of erroneous execution. I t is therefore 

proposed that the processor instruction set reserves areas representing low and high 

values in the opcode map for restart generating instructions, see Figure 9.1. Such 

opcode map organization ensures that local branch instruction operands interpreted 

as an opcode generate a restart outcome and hence detect erroneous execution. 

A particular hazard associated wi th branch locality is observed wi th in the Mo

torola 68(7)05 microprocessor instruction set. Here, branch instructions specify their 

displacement in the attached operands. Low order relative displacements for forward 

branch instructions which specify byte operands wi th the most significant four bits 

set to '0000' or '0010' are potential invalid branches. 

The Motorola 68000 microprocessor reserves high value opcode formats for future 

upwardly compatible processor extensions. Execution of a memory element w i t h such 

an opcode format results in a restart outcome via a software exception. This at tr ibute 
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Figure 9.1.: Microprocessor Opcode Map 

The unused opcode bit formats represent high 
and low values. These opcodes can be set to 
generate a restart outcome. Relative branch 
instructions specify a local displacement. 
Operands containing such displacements which 
are erroneously interpreted as an opcode will 
now generate a restart outcome and hence 
detect erroneous execution. 
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of the Motorola 68000 instruction set facilitates a detection capability where relative 

branch instructions specify an operand to contain a local backward displacement. 

9.5.3. O p e r a n d R e q u i r e m e n t s a n d S p e c i f i c a t i o n 

Operands have a bit size equivalent to an opcode in order to preserve the mem

ory and data path organization associated wi th opcode processing. Microprocessor 

architects aim to keep the number of operands as small as possible in order to re

duce instruction decoding and hence improve performance [Ciminiera & Valenzano, 

1987]. Additionally, implementing fewer operands reduces the memory requirement 

of a program. The number of operands required depends on the amount of data to 

be processed and the addressing mode used. 

The code extension required by the application of the software implemented fault 

tolerant techniques proposed in Chapter 5 is largely influenced by the operand re

quirements of instructions wi th in the processor instruction set. Particular influence is 

observed where default size mechanisms are inserted with target software; the default 

size is equivalent to the maximum number of operands required by an instruction in 

the instruction set. Optimum size detection mechanisms may require less additional 

code, depending on the placement conditions at each insertion. Further details of 

detection mechanism construction can be found in Chapter 5. In order to reduce the 

code extension required when applying the software implemented fault tolerant tech

nique proposed in Chapter 5, the instruction architecture should specify instructions 

to have fewer operands. 

Register oriented addressing modes can be encouraged to reduce the operand 

requirements of an instruction. Such addressing modes remove the necessity for 

operand specification of absolute addresses or immediate data. Details of the registers 

to be processed can be specified wi th in the opcode bit format. Where this information 

cannot be incorporated within the opcode bi t format, a single operand can be specified 

to contain the register allocation information. The bi t format of the operand is 

designated to represent a restart generating opcode. In many instances a single 

operand wil l be shorter than the number of operands required to represent an absolute 

address. 
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9.6. I n p u t / O u t p u t C o m m u n i c a t i o n P o r t s 

Chapter 5 discusses two attributes of a microprocessor's architecture which facil

itate an erroneous execution detection capability for the reserved input /ou tput port 

locations in the address space. These attributes can be incorporated into the design 

specification of a processor. 

Firstly, instructions that communicate w i th external devices may specify access 

to an input /ou tput port wi thin an operand. In particular, individual instruction 

operands may be set to contain the whole or partial address of the communication 

port. The location of these communication ports in the memory map can be defined 

to take bi t formats which represent restart generating instructions in the opcode map. 

Hence, erroneous execution of an input /ou tput port address as an opcode results in 

detection and recovery can be initiated. 

Secondly, erroneous execution may itself interpret an input /ou tpu t port location 

as an opcode. The microprocessor design can incorporate the hardwiring of particular 

bits in the input /output port such that the bit format represents a restart instruction, 

as Figure 9.2. Erroneous execution of this location as an opcode is self-detected. 

This method, of course, incurs an overhead in that the data transfer capability to 

an external device is reduced because of the redundant bits reserved for erroneous 

execution detection. 

9.7. M e m o r y O r g a n i z a t i o n 

This section discusses techniques which involve the organization and implemen

tation of memory used by a microprocessor. 

9 .7 .1 . M e m o r y A l i g n m e n t 

Some microprocessors require elements (e.g. byte, double-byte, or quad-byte) in 

memory to be aligned according to the memory organization. A memory element of 

size s bytes resident at location Ad in the address space is aligned when, 

[Ad m o d s] = 0 (9.5.) 
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Hence, byte memory elements in a byte orientated memory organization wi l l always 

be aligned. Byte memory elements in a double-byte orientated memory are aligned on 

even byte boundary addresses, but mis-aligned on odd byte boundary addresses. Mis

aligned element access specified by an instruction requires multiple physical memory 

accesses, whilst aligned memory access requires only one physical memory access by 

the microprocessor hardware. From a performance perspective, therefore, elements 

of memory should be aligned rather than mis-aligned. 

The memory organization employed in a microprocessor architecture has partic

ular implications for the software implemented fault tolerant techniques proposed in 

this thesis. Those processors that implement a byte memory organization for the pro

gram area allow any instruction operand to be processed erroneously as an opcode. 

Hence erroneous execution in the program area is not hindered by the memory orga

nization. Other means of memory organizations allow the possibility of mis-aligned 

opcode access. Mis-aligned opcode access is a characteristic of erroneous behaviour. 

Fault tolerant techniques can be implemented to detect this error. 

The Advanced Micro Device Am29000 microprocessor and the Motorola 68000 

microprocessor family implement a similar approach to mis-aligned opcode access 

for their respective quad-byte and double-byte memory organization. Access to mis

aligned double-byte elements in memory wi th in the Motorola 68000 microprocessor 

architecture generates an exception which, naturally, is called the 'odd byte address' 

exception. This method of imposing a double-byte organization in memory to im

prove the operational performance of the processor, also makes possible a detection 

capability to prevent erroneous execution. The Advanced Micro Device Am29000 

processor has a similar function. Its exception generation can, however, be dis-abled 

by a special status register. Enabling the mis-alignment exception results in the 

least two significant bits of the program counter being masked and hence an opcode 

address is generated. Erroneous execution is, therefore, re-synchronized. 

The design feature described in this section can be incorporated into the archi

tecture of a microprocessor. Digital circuitry can generate a restart outcome when 
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i t detects mis-aligned memory access. Such an outcome can be used to initiate a 

recovery procedure and hence improve the reliability of the microprocessor system. 

9.7.2. D e f i n i n g M e m o r y U t i l i z a t i o n 

The address space of a microprocessor can be divided according to its functional 

allocation. Chapter 5 ini t ia l ly divides the address space into used and unused ar

eas discusses the implications of the division wi th respect to erroneous behaviour. 

Moreover, the said chapter describes the digital implementation of a hardware unit 

called an Access Guardian which detects the unused area access characteristic of er

roneous behaviour. The design of the Access Guardian is not complex and can be 

incorporated into the architecture of a microprocessor. 

There, nevertheless, remains the problem of detecting erroneous execution in the 

used area of the address space. Glaser & Masson [1982] present a hardware unit 

referred to as a 'SAFE R O M ' which has been implemented wi th in a microprocessor 

system by Li et al [1984]. The SAFE ROM is a one-bit wide memory which is attached 

to each memory element (in this case byte) of Read Only Memory (ROM) to signify 

its usage as either opcode or operand, see Figure 9.3. Invalid opcode address access 

is identified by detection circuitry which determines whether or not the location in 

question has its SAFE R O M bit set to opcode or operand. 

A similar approach is proposed here which can be applied to all address space 

locations regardless of their implementation in either Read Only Memory or Random 

Access Memory ( R A M ) . Instead of implementing additional memory, a b i t of each 

memory element is reserved to perform the SAFE R O M function. Hence, there is not 

a memory overhead as such but rather memory redundancy associated wi th the re

served bi t , see Figure 9.4. This method provides detection of erroneous execution for 

all physically implemented memory. The memory redundancy incurred by applying 

this technique can be calculated, thus: 

Memory Redundancy (%) = —, (9.6.) 

where the opcode memory element has n bits. 
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The memory redundancy associated with this technique may be considered sig

nificant for some processor applications. For example, microprocessors whose mem

ories are organized as byte or double-byte structures have a 12.5% and 6.25% re

dundancy in their memory respectively. Nevertheless, the technique is extremely 

effective, providing detection of erroneous execution except in circumstances involv

ing re-synchronization. Detection capability is important for systems requiring high 

reliability and in these applications the memory redundancy is expected to be ac

ceptable. 

9.8. M o n i t o r i n g Branch A c t i v i t y 

The architecture of a microprocessor can be extended to incorporate design fea

tures facilitating the recognition of branch operations similar to that provided by 

the Motorola 68030 microprocessor. Such a facility could be used to activate spe

cial circuitry dedicated to determining whether an invalid or valid branch is being 

processed. 

Two methods of determining invalid branch activity are suggested here. Firstly, 

the software implemented fault tolerant technique proposed in Chapter 5 can be 

incorporated into the microprocessor architecture. The required digital circuitry is 

based on a logical AND function using, as inputs, the recognition of branch activity 

and the opcode 'usage' bit proposed in the previous section. The outcome is detection 

of all invalid branches regardless of whether or not their destination leads to the re-

synchronization of erroneous execution. 

The second technique is based on verifying branch activity, and is commonly re

ferred to as 'signature analysis'. The theory supporting the technique is described 

in Chapter 2. Schuette &c Shen [1986] have implemented the technique using ad

ditional digital circuitry in a Motorola 68000 microprocessor based system, which 

incurred a 17% gate overhead compared with the number of gates in the processor. 

More recently, the technique has been incorporated within the architecture of devel

opment processors where it had a 13% chip area overhead [Leveugle et al, 1990]. The 

technique detects erroneous execution by failing to verify the occurrence of a valid 

branch. 
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On identifying an invalid branch erroneous execution is detected and appropriate 

hardwired recovery action can be initiated. Although the techniques described above 

are only activated when branch activity is recognized, they do detect re-synchronized 

erroneous execution. This contrasts with the technique based on denning memory 

utilization which is activated more regularly because of its on-line monitoring process, 

but which cannot detect re-synchronized erroneous execution. 

9.9. Conclusion 

Design features which can be incorporated into the architecture of a microproces

sor to provide a self-detection capability for erroneous behaviour have been proposed. 

These include suggestions for the instruction set architecture and memory organiza

tion. The benefit of the inclusion of these techniques in the microprocessor hardware 

(enhanced detection capability) are dependent on the particular instruction sequences 

of erroneous execution for a target processor system. Nevertheless, capability checks 

are being included into microprocessor designs, notably the mis-aligned opcode ad

dress exception. Further capability checks, including those proposed in this chapter, 

may be implemented within commercial microprocessor designs in the future. 
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C H A P T E R T E N 

C O N C L U S I O N 

10.1. Microprocessor Controllers For Industrial Applications 

In recent years it has become popular practice to implement industrial control sys

tems using digital circuitry with an embedded microprocessor rather than analogue 

systems. Microprocessor controllers provide a flexible design approach, the nature 

of their operation being easily tailored to particular tasks through the alteration of 

control software. Digital systems, however, are more susceptible to transient dis

turbances, common within industrial environments, than similar analogue systems. 

Analogue systems tend to pass the effects of a transient disturbance as a temporary 

processing discrepancy, whilst digital systems, because of their discrete state nature, 

can have their operation disrupted. This thesis addresses the problem of improving 

the reliability of low budget microprocessor systems where fault masking is considered 

too expensive. 

10.2. Reliable Microprocessor Controllers 

The failure process of a digital system involves the manifestation of a logic fault, 

its activation as an error, and finally error spawn until a fatal operating condition 

is generated. Faults can be manifested as either temporary or permanent logic cor

ruption. Temporary faults have been observed to cause a significant proportion of 

microprocessor system failures. Studies, reviewed in Chapter 2, suggest that in excess 

of 90% of processor failures are generated by temporary faults rather than permanent 

faults. 

Temporary faults, attributed to disturbances in the operating environment of 

a microprocessor based controller, are called transient faults. Environmental dis

turbances can involve electro-magnetic interference (EMI), electro-static discharge 

(ESD), electronic noise, ionizing radiation, and power supply fluctuations. The 

operating environment can often be harsh. In order to achieve high reliability, 
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microprocessor controllers can implement fault tolerance. Fault tolerant techniques 

implement four tasks in sequence: 

o error detection, 

o damage assessment, 

o error recovery, and 

o system restoration. 

Although this thesis focuses on error detection, the remaining fault tolerant tasks 

are equally important and should be considered when implementing a fault tolerant 

system. 

Additional circuitry to detect individual logic faults can be prohibitive within 

a low budget microprocessor architecture. An alternative technique for detecting 

logic faults is based on the premise that logic faults are complemented by processing 

errors. The technique is referred to as functional fault tolerance because it relies on 

distinguishing between valid and invalid characteristics of microprocessor execution. 

Functional fault tolerance must ensure that erroneous microprocessor execution 

does not generate a fatal error and hence catastrophic failure. To achieve this, detec

tion techniques can be applied to recognize different attributes of erroneous execution. 

These techniques are collectively known as 'capability checks'. In order to design and 

evaluate the effectiveness of capability checks i t is necessary to model erroneous mi

croprocessor behaviour. 

10.3. Modelling Erroneous Microprocessor Behaviour 

Erroneous microprocessor behaviour involves either erroneous data or program 

flow within executing software. The 'reasonableness' of data flow can be checked 

by the operating software. Erroneous program flow, however, cannot be verified in 

this manner because predictable operation of the software is lost. This has serious 

implications for industrial applications where microprocessors are responsible for the 

monitoring, process, or control of equipment. Unpredictable processor action can 

command equipment to malfunction, the hazard of this situation being dependent on 

the equipment's task. t 
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A model has been developed which investigates the program flow associated with 

erroneous microprocessor behaviour. Erroneous execution is defined to be initiated 

by a temporary fault generating an Initial Erroneous Jump (IEJ) through corruption 

of the processor's program counter. Ensuing erroneous microprocessor behaviour 

is characterized by periods of linear erroneous execution interspersed with further 

erroneous jumps called Subsequent Erroneous Jumps (SEJs). In addition, the model 

allows consideration of particular processing outcomes associated with catastrophic 

failure and recovery. Recovery is achieved through the processing of an instruction 

developing a restart outcome, which directs execution to a pre-defined location in 

memory where a recovery routine resides. The recovery routine is programmed to 

fulfil the restoration requirements of the application software, two possible recovery 

strategies are reset and roll-back. 

The model of erroneous behaviour is applied to a selection of 8, 16, and 32-

bit processors. The following microprocessors are assessed: (8-bit) Motorola 6800, 

Intel 8048, and Intel 8085; (16-bit) Intel 8086, Motorola 68000, and Motorola 68010; 

(32-bit) Advanced Micro Device Am29000, Motorola 68020, and Intel 80386. All 

processors are assumed to have a random content address space. Erroneous execution 

is evaluated using instruction mix anaiy-is to predict the mean expected operation. 

The character of erroneous jumps is studied. The model assumes that IEJs have a 

random target in the address space. Such erroneous jumps have particular significance 

in relation to microprocessor reliability when their destination is in the unused area 

whose code attributes are unknown. Where an IEJ directs erroneous execution to 

the used area, further erroneous jumps (SEJs) occur as a result of invalid software 

processing. The model suggests that SEJs typically generate a local target and hence 

erroneous execution initiated within the used area is likely to remain there for a 

significant period. This is a hazardous situation because not only is the processor 

out of control but its erroneous activity could be mutilating system integrity, making 

restoration of the microprocessor system more difficult. 

A Markov process is used to predict the reliability of a microprocessor. In partic

ular, the Mean Time To Failure (MTTF) parameter is used because it has more intu-
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itive meaning to reliability engineers. The instruction mix analysis for the selection 

of microprocessors described above suggests that both the instruction distribution 

and the processor architecture can have a significant influence on reliability. The 

Motorola 68000 microprocessor family have the highest reliability with an MTTF 

three times the mean inter-arrival time of events that initiate erroneous execution. 

These processors have instruction sets which define the execution of an undeclared 

opcode and mis-aligned memory access to generate a restart outcome. The Advanced 

Micro Device Am29000 processor has an MTTF prediction twice that of the mean 

inter-arrival event period which is due solely to undeclared opcodes generating a 

restart outcome. The remaining microprocessor reliability models predict a MTTF 

of similar magnitude to the mean inter-arrival event period. These processors do not 

define their undeclared opcodes to have a restart outcome, and implement a byte 

memory organization and hence mis-aligned memory access is impossible. 

The availability of a microprocessor system is dependent on the detection of an 

error and time taken to restore the system integrity. A general model is presented: 

the influences on availability are the mean inter-arrival event period, the processor 

operational frequency, and the size of the routine required to restore system integrity. 

The latter two factors are processor and application dependent. Microprocessor ar

chitectures that require little restoration activity and simple application software can 

reduce the size of the recovery routine. These, together with high processor operating 

speeds, facilitate higher availability. 

10.4. Detecting Erroneous Microprocessor Execution 

This thesis proposes a new capability check for detecting erroneous microproces

sor execution. The technique is based on software implemented fault tolerance. 

The aim of the technique is to identify, through static analysis, the potential tar

gets of erroneous jumps, referred to as invalid branches, and to place at these locations 

a software detection mechanism which is activated by the erroneous execution. In

valid branches are unsynchronized erroneous jumps and should not be confused with 

synchronized erroneous jumps. Interpretation of a memory location containing an 
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opcode is termed 'synchronized', whilst interpretation of any other content is termed 

'unsynchronized'. 

Different approaches are required when applying software implemented fault tol

erance to the used and unused areas of the address space respectively. The first 

approach considers the unused area, which can consist of physical and non-existent 

memory. Physical memory is filled with restart generating instructions which do not 

have an operand requirement. In this way, erroneous execution at any location will 

develop a restart outcome and hence detection of erroneous behaviour. Non-existent 

memory requires a hardware solution, and hence a unit called an Access Guardian is 

designed which detects memory access by monitoring the processor address bus. The 

complexity of the Access Guardian is dependent on the contiguity of non-existent 

memory locations, and whether or not the processor has a multiplexed address/data 

bus such as the Intel 8086 microprocessor. 

Secondly, within the used area, detection mechanisms are inserted within the 

software at invalid branch targets. Some manipulation of the application software 

may be necessary so that the its function is not disturbed by the placement of de

tection mechanisms. Construction principles for the detection mechanisms and an 

algorithm for their placement within the application program are presented. An im

portant limitation of the technique is that of placement deadlock. This describes a 

situation where an invalid branch destination cannot be covered by a detection mech

anism placement because the generator and destination of the invalid branch are both 

within the same instruction, or the destination resides at the location immediately 

following the generating instruction. The former can generate a catastrophic failure 

if an infinite execution loop is created. 

A software tool, called the Post-programming Automated Recovery UTility 

(PARUT), has been developed as a prototype in order to assess the capability of 

the software implemented fault tolerant technique and to assess the feasibility of 

developing a standard software tool to apply the technique. The structure and orga

nization of the prototype is described. The tool is designed to be robust, capable of 

generating enhanced program code for a variety of target processors. The future of 
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PARUT appears to be its incorporation, as an processing option, within a translator. 

This is because PARUT uses much of the information inherently required within the 

translation process, and its phase of activity immediately follows translation. 

10.5. Evaluating Fault Tolerance 

The dynamics of erroneous execution can only be evaluated through instruction 

sequence analysis which involves tracing the execution attributed with each initiated 

period of erroneous behaviour. 

The effectiveness of the software implemented fault tolerant technique proposed 

in this thesis is evaluated by investigating the erroneous behaviour of application 

software before and after application of the technique. Erroneous microprocessor be

haviour is investigated using fault emulation and fault injection experiments. The 

fault injection experiment involves physically inserting faults on the the address bus, 

data bus, and program counter during instruction and data cycles. The fault em

ulation experiment involved inserting faults within a register model of a processor. 

Almost 4000 faults are investigated for a selection of three programs, each with a 

different application processor. 

Improved performance is observed in the processor systems when they employ the 

software implemented fault tolerant technique. The degree of improvement is related 

to the number of detection mechanism placements in the application software. The 

effectiveness of the software technique is clearly demonstrated. The memory overhead 

and performance of the software technique is, however, application specific. Within 

the example programs, the application of the technique required an approximate 

software extension of 20% to 30% for 16-bit and 32-bit microprocessors. 

10.6. Generating Non-Hazardous Software 

Many microprocessor systems utilize application code written in a high level lan

guage which is independent of the target processor architecture, e.g. the programming 

language C. In these instances a translator is used to convert the source code through 

levels of abstraction to the object code. This process can be influenced so that target 
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code is produced without the hazards associated with catastrophic failure, and with 

a high inherent detection capability against erroneous execution. 

Five tasks of the translation process are identified which can influence the produc

tion reliable code. Firstly, opcodes with more than one addressable memory element 

can be hazardous on a mis-aligned opcode access. The selection of opcodes during 

translation should avoid identified hazardous opcodes, their function being imple

mented other equivalent instructions. Secondly, the addressing mode selected for an 

instruction should not generate hazardous operands. Thirdly, macros used to im

plement high level language constructs should not incorporate instruction sequences 

with a hazard. Fourthly, peephole optimization should not create new code hazards. 

Finally, address space allocation for the object code should not introduce hazards, 

for instance through relative address operands. 

These translator proposals have not been implemented. An alternative method of 

generating non-hazardous software is to design a microprocessor architecture which 

inherently defines code with a detection capability against erroneous execution. 

10.7. Microprocessor Design for Fault Tolerance 

Fault tolerant techniques implemented as additional hardware circuitry, with or 

without software manipulation, can be incorporated within the architecture of a 

microprocessor. Many modern microprocessors incorporate a mis-aligned memory 

access exception, and other prototype processors implement signature analysis. The 

techniques proposed in this thesis concerning software implemented fault tolerance 

can also be embedded within the design of a microprocessor. These techniques use 

an Access Guardian to detect all unused area access, and software detection mech

anisms to detect invalid branches regardless of their re-synchronization. Additional 

techniques involve influencing the design of the processor instruction opcode map 

and operand requirements, reserved input/output ports, and memory organization. 

10.8. Summary 

Microprocessor systems are incorporated within many industrial control systems. 

Such applications are often required to be highly reliable. Working environments can, 
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however, be harsh and microprocessor systems are prone to disruption from transient 

disturbances. It is therefore necessary to apply fault tolerance to the microprocessor 

system in order to improve its reliability. The sophistication of the fault tolerance 

may be limited by budget constraints which prevent fault masking. 

The solution is the application of capability checks within a uniprocessor con

troller. The capability checks identify particular characteristics of erroneous pro

cessor behaviour and initiate recovery. This thesis models erroneous microprocessor 

behaviour and proposes a new low-cost software-implemented capability check involv

ing the recognition of invalid branches. The effectiveness of applying the capability 

check is demonstrated; however, a general assessment cannot be made because the 

techniques action is application specific. The error detection capability can be further 

improved by strategically selecting several capability checks for collective application. 

It should be realized that these techniques cannot guarantee enhanced reliability be

cause they are reliant on particular attributes of erroneous execution being exhibited. 

It is pertinent for the reliability engineer to incorporate a back-up detection facility 

into the system design, such as a watchdog timer as well as a fail-safe action, in order 

to prevent unpredicted failure modes causing a catastrophic outcome. 
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A P P E N D I X A 

I N S T R U C T I O N SET P A R A M E T E R S 

A . l . In t roduc t ion 

The model of erroneous microprocessor behaviour described in Chapter 3 is based 

on the instruction mix of the processor software. The evaluation of the model for 

a selection of 8, 16, and 32-bit microprocessors, presented in Chapter 4, requires 

the mix of their respective instruction sets. This appendix contains details of the 

instruction set parameters used in Chapter 4. The microprocessors considered are: 

(8-bit) MC 6800, Intel 8048, and Intel 8085 ; (16-bit) Intel 8086, MC 68000, and MC 

68010 ; (32-bit) AMD 29000-D, MC 68020, and Intel 80386. The notations MC and 

AMD specify 'Motorola Corporation' and 'Advanced Micro Devices' respectively. 

Data for the 8-bit processors is taken from Halse [1984]. Data parameters for the 

16 and 32-bit microprocessors has been evaluated from appropriate manufacturers' 

manuals listed in the bibliography. 

A .2 . Instruct ions Influencing Program Fiow 

Program flow through software is determined by the content of the microproces

sor program counter. The instruction set of a microprocessor contains three types of 

instruction, each affecting the program counter content in a different way. Firstly, 

'non-jump' instructions are classified as those instructions that perform some oper

ation and increment the program counter to the next logical instruction location in 

the address space. Secondly, 'unconditional jump' instructions specify the program 

counter to contain the next sequential instruction address which may not be the next 

logical instruction in memory. Finally, 'conditional jump' instructions test a speci

fied parameter value and, if successful, generate a branch like the unconditional jump 

instruction. If the test is unsuccessful then the program counter increments to the 

next logical instruction address like the non-jump instruction. 
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Microprocessor architectures implementing a ROM opcode decoder generate op

erations for all possible instruction opcode formats, i.e. 2" instructions where the 

opcode has n bits. ROM decoders often have some redundancy, for instance the MC 

68000, MC 68010, MC 68020, where n = 16 have more ROM opcode values than 

implemented operations and hence there is a large number of undeclared instructions. 

The AMD Am29000 is a Reduced Instruction Set Computer (RISC) and implements 

a ROM decoder for opcodes of 8 bits leaving fewer unused opcode formats (undeclared 

instructions). Processors not implementing a ROM decoder, directly interpret the 

opcode through digital circuitry (examples include the Intel 8048, Intel 8085, Intel 

8086, and Intel 80386). These microprocessors have all their instructions hardwire 

defined, although some instructions may appear undeclared because the manufac

ture withholds information. Undeclared instructions can be non-jumps, conditional 

jumps, or unconditional jumps, and knowledge of these instructions may be of benefit 

to the programmer. Tables A . l . to A.9. summarise details of the instruction sets for 

a variety of processors. 

A.3 . Microprocessor Jump Type Ins t ruc t ion Data 

A fundamental characteristic associated with the program flow during erroneous 

microprocessor behaviour is the 'erroneous jump'. Jump type instructions can be 

catagorised in terms of the nature of their branch operation. Chapter 3 defines the 

following catagories of jump instruction ; 

Restart (RT) : Leads to a jump to a predefined location in the address 

space. 

Return (RN) : Leads to a jump to an address held in a stack. 

Stop/Wait (SW) : Leads to cessation of processing and requires an interrupt 
or hardware reset to exit this state. 

Unspecified Jump (U J) : Leads to a jump to a new location in the address space, 
determined by volatile memory content. 

Deriving the distribution of restart, return, stop/wait, and unspecified jump 

instructions in an instruction set requires evaluation of all undeclared instructions. 
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Within the selection of microprocessors analysed in this appendix, the MC 68000, 

MC 68010, AMD Am29000-D, MC 68020, and Intel 80386 specify their undeclared 

instructions to generate a restart. Investigation has shown that the undeclared in

structions in the remaining processors can be restart, return, stop/wait, or unspecified 

jump [Halse, 1984]. 

The distribution of different jump type instructions for the MC 6800, Intel 8048, 

Intel 8085, and Itel 8086 microprocessors are shown in Tables A.10 to A.13. re

spectively. Undeclared instructions with a jump type operation are identified in the 

Tables by the mnemonic '***'. 

The MC 68000, MC 68010, and MC 68020 instruction sets are upwardly com

patible; the distribution of their jump type instructions is collated in Table A. 14. 

Similarly, the jump type instruction distributions for the AMD Am29000 and Intel 

80386 microprocessors are shown in Table A. 15. and Table A. 16. respectively. 
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A P P E N D I X B 

T H E D E S I G N OF A N ACCESS G U A R D I A N 

B . l . In t roduc t ion 

This appendix describes the design of an Access Guardian proposed in Chapter 

5. The Access Guardian detects whether or not invalid address lines are activated by 

the microprocessor whose operation it is montioring, and if so, impresses an interrupt 

signal to the microprocessor. The design is validated through a gate-level simulation, 

and the hardware requirement is listed. The topology of a microprocessor system 

incorporating an Access Guardian is shown in Figure B . l . 

B.2. A n Access Guardian Design 

The Access Guardian design presented here monitors a dedicated address bus for 

access outside a contiguous 16 MByte block of memory, and has a required inter

rupt latency of ten clock cycles. Whilst particular microprocessor applications are 

expected to have a more complex Access Guardian specification, the requirements 

used here are sufficient to indicate design implications. 

The Access Guardian design is based on the interaction of three functional units: 

the 'address decoder', the 'restart generator', and the 'timer unit'. The general func

tion of the Access Guardian is shown in Figure B.2. The 'address decoder' generates 

a signal when invalid address lines are activated. This signal is then processed with 

'timer unit' status information by the 'restart generator' to produce an interrupt sig

nal for the application processor. The interrupt signal must exist slightly in excess of 

the microprocessor interrupt latency. The interrupt latency is the length of time an 

interrupt must exist to guarantee processing by the microprocessor. Assuming the 

interrupt is given highest priority the processor will detect it following the execution 

of the present instruction. The interrupt signal must therefore be just longer than 

the longest execution time required by any instruction. 
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B.3. The Address Decoder 

The 'address decoder' determines whether or not invalid address lines have been 

activated. An example decoder is shown in Figure B.3. for a Motorola 68000 address 

bus (address lines 'A0VAl ' , . . . t A23' specifying a 16 MByte address space) where only 

the least significant 16 MByte of memory is used. A simple OR function for the 

four most significant address lines ('A23','A22','A2r, and 'A20') determines an in

valid access and generates a signal 'A'. The 'address decoder', however, will be more 

complex if sections of the used area are dispersed across the address space, or if the 

address bus is multiplexed with the data bus as in the Intel 8086 microprocessor. 

B.4. The Restart Generator 

The 'restart generator' consists of control logic driving a Set-Reset flip-flop (SRFF). 

The control circuitry determines the logic values for the SRFF depending on the Ac

cess Guardian operating conditions. The controller takes the input 'A ' (from the 

address decoder), the manual reset line ('MRESET'), and the feedback signal 'FB' 

(from the timer). The SRFF has inputs 'S' and !R', and output 'Q'. Table B . l . shows 

the truth table for the control logic to drive the SRFF. The following expressions for 

!S ! and 'R' are developed from the truth table. 

S = A. MRESET (B.l.) 

R = MRESET + FB.A~.MRESET (B.2.) 

Applying DeMorgan's Theorem yields to equation (B.l . ) 

5 = A. MRESET (B.3.) 

S = A + MRESET (BA.) 

and to equation (B.2.). 
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A MRESET FB s R 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 1 0 

1 1 0 0 1 

1 1 1 0 1 

B . l . : T r u t h Table for SRFF Contro l Logic i n Restart Generator. 

Sn Rn Qn+l 

0 0 Qn 

0 1 0 

1 0 1 

1 1 
7 

Table B.2. : Set-Reset F l ip Flop Transi t ion Table 
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R = MRESET + FB^.M RESET 

R = MRESET. FB.A.MRESET (B.6.) 

The SRFF is enabled by an input clock signal ( 'CLK'), and its output 'Q' is dependent 

upon the input control signals 'S' and 'R'. The relationship between 'Q', 'S', and 

'R' is shown in the transition table, see Table B.2. The output 'Q' is set high 

when an invalid address is decoded and there is no manual reset and no feedback 

signal indicating the continuing activity of a previously identified invalid address 

line activity. The output 'Q' remains at the same logic value after being set. The 

SRFF control circuitry resets the output 'Q' to a low when either the manual reset 

is exerted, or the feedback signals completed processing of the Access Guardian, and 

there is no current address line discrepancy detected by the address decoder. The 

logic design for the 'restart generator' implementing equations (B.3.) and (B.5.) to 

drive the SRFF is shown in Figure B.4. 

B.5. The T imer U n i t 

A 'timer unit' is used to hold the interrupt signal for the required interrupt la

tency period and is shown in Figure B.5. This unit takes as inputs the RESTART 

interrupt signal, the manual reset signal ('MRESET'), and the clock signal ( 'CLK'). 

The 'timer unit' generates a feedback signal ('FB') which is used by the 'restart 

generator'. Initially the clock, restart interrupt, and inverse manual reset signal are 

put through a logic AND gate to produce a control signal 'PULSE'. The 'PULSE' 

line is used to drive, together with the clock signal 'CLK', the ripple counter. The 

ripple counter consists of a series of master-slave JK flip-flops active on the negative 

edge of the clock signal ( 'CLK'). The 'PULSE' signal provides the clocking signal 

to the first master-slave JK flip-flop to generate an output ' Q l ' . The output ' Q l ' is 

used as the clocking signal for the second master-slave JK flip-flop. This method of 

connecting the master-slave JK flip-flops is repeated throughout the ripple counter. 
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The 'J' and ! K ' inputs to the flip-flops are set high. A 'CLEAR' signal is used to 

reset the 'Qn' outputs of the flip-flops to logic 0. The ripple counter architecture is 

shown in Figure B.6. [Millmari, 1979]. 

The ripple counter is set to count to a specific number ' C n ' by taking the flip-flop 

outputs ' Q l ' , 'Q2',.. 'Qn' and applying them to a NAND logic gate as required. The 

example ripple counter is a base 10 counter, the NAND gate taking the binary inputs 

representing decimal 10, !Q2' and 'Q4'. The NAND gate generates the 'COUNT' 

signal which indicates a necessary reset of the ripple counter. This signal line could 

be connected directly to the 'CLEAR' line but there may be timing difficulties due 

to the unequal internal delays within the ripple counter flip-flops. These timing 

difficulties are removed by inserting a latch between the 'COUNT' and 'CLEAR' 

lines. 

The latch unit takes the additional input of the clock signal ( 'CLK') and the 

manual reset line ('MRESET'). The latch is now reset by the positive edge of the 

'COUNT' signal to set the ripple counter low. The ripple counter itself is clocked on 

the negative edge of the 'PULSE' signal. There are now no timing difficulties. The 

manual reset line ('MRESET') is used to set the ripple counter outputs low. 

The ' Q l ' . 'Q2',... 'Qn' outputs of the ripple counter are taken to a feedback unit 

which consists of an AND logic gate. The outputs of 'Qn' represent the binary of (Cn — 

1), where the ripple counter is base Cn. In the example, the ripple counter outputs 

representing decimal 9 (Ql and Q4) are used, see Figure B.6. The ripple counter 

can, however, be extended as required to produce the interrupt signal 'RESTART' of 

necessary duration depending on the microprocessor interrupt latency. The feedback 

unit generates an automatic reset signal ('FB') to the 'restart generator'. 

B.6. Design Simulat ion 

The gate-level design for the Access Guardian was simulated using a CLASSIC 

(a trademark of Plessey pic.) Gate Array Simulator. The digital circuit description 

used as input to the simulator, and describing the design presented in this appendix, 

is shown in Figure B.7. The output of the simulator is shown in Figure B.8. The 

design of the Access Guardian is shown to operate correctly. 
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Figure B.8. : Access Guardian Circuit Description 
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B.7. The Design's Hardware Requirement 

The hardware requirement for the Access Guardian design is shown in Table B.3. 

The design specification requires only 60 logic gates, which can be implemented by 

17 standard T T L IC parts. 

B.8. Summary 

The Access Guardian proposed in Chapter 5 has been designed and its operation 

verified through a gate-level simulation. The design implemented is simple, other 

designs may be more appropriate in particular applications. The design chosen here 

operates independently of the processor whose bus activity it is monitoring. 

The hardware requirement of the Access Guardian design presented here for a 

contiguous 16 MByte of used memory, dedicated address bus, and ten cycle interrupt 

latency, can increase with more complex microprocessor systems. The complexity 

of the address decoder will increase with a non-contiguous used area of memory and 

multiplexed busses. The timer unit may be slightly more complicated with particular 

binary time representations. The restart generator has a fixed logic gate requirement. 
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A P P E N D I X C 

P A R U T A N D O T H E R R E L A T E D C O D E L I S T I N G S 

C . l . Introduction 

This appendix is designed to be read in conjunction with Chapter 6 which de

scribes the Post-programming Automated Recovery Utility (PARUT). The appendix 

holds enclosures of the PARUT program listing, and copies of typical input and 

output files processed by PARUT during its operation. These files, referred to as 

MICRO_FILE, CODE_FILE, RESULT_FILE, ANALYSIS-FILE, and TRACE_FILE 

within Chapter 6, are presented respectively with covering notes. 

C.2. P A R U T Listing 

The first enclosure in this append'x is that of the PARUT program. The utility 

code is written in Pascal. The listing is annotated to aid comprehension of program 

activity. Table C. l . details, in chronological order, the utility functions and pro

cedures within the listing and is designed for use as an index when examining the 

PARUT program. 
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C.3. Microprocessor Description File, M I C R O J F I L E 

The following enclosure is a copy of MICRO_FILE which describes the defined in

structions within the Motorola 68000 microprocessor instruction set. Similar versions 

of MICRO-FILE can be designed for the Motorola 68010 and 68020 microprocessor 

instruction sets. 

The first line of the file contains the number of remaining lines in the file, in this 

case 359. Each of the remaining lines of this file contains a 16 character code which 

may or may nc be followed by a comment string. For instance, consider the second 

line of the MICRO-FILE example, 

1100XX110000XXXX ABCD 

16 character code comment string 

The 16 character code represents a 16-bit opcode value, where the most significant 

bit is leftmost (or the first character read). Characters ' 1 ' , '0', and ! X ' denote logic 

values T , '0', and 'don't care' (i.e. either logic value) respectively. The arbitrary 

logic representation allows multiple opcode values to be represented by a single entry 

in MICRO-FILE. This is particularly beneficial in the case of the Motorola 68000 mi

croprocessor instruction set which has 43342 defined instructions. Comment strings 

following character codes describe the instruction represented. Some instructions re

quire several character codes to describe their opcode values, in which case a comment 

string is only attached to the first entry associated with that instruction. 
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C.4. Target Software, C O D E - F I L E 

As described in Chapter 6, CODE-FILE contains the target software to be pro

cessed by PARUT. The software is presented to PARUT in a machine code repre

sentation. The example of CODE-FILE in this enclosure is generated by the UNIX 

'adb' facility. 

CODE-FILE can be split into three sections. The first three lines of the file 

contain redundant information which is ignored when the file is processed by PARUT. 

The remaining two sections are each generated by an 'adb' command of the form, 

< address >, < count > < request > < modif ier > 

where < address > specifies the location from which processing commences, < 

count > specifies the number of consecutive locations to be processed, and < request > 

specifies the output of the operation specified by < modifier > . Further details of 

the UNIX !adb' facility can be found in Bourne [1982], 

The next section of CODE-FILE contains a source code dump and is produced 

by the command, 

lstart,180?i 

The second section contains inforrnati on ihe location of opcodes within the source 

code and is generated by the command, 

lstart,180?x 

In both 'adb' commands, 'lstart' is a label in the source code denoting the start 

of the information to be retrieved, '180' is the hexadecimal number of code lines 

to be extracted, '?' specifies output to the file system file 'a.out' (later renamed 

CODE_FILE), and ' i ' and 'x' specify code dump and opcode information respectively. 
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C.5. Target Software w i t h Fault Tolerance, RESULT JFILE 

The application of software implemented fault tolerance can be complex. This 

enclosure contains an example of the enhanced code generated by PARUT when it 

applies fault tolerance to the target software. The format of the file is tailored to the 

development needs of PARUT. 

RESULT_FILE contains a listing representing the target machine code which 

has four columns of information. The first column denotes the decimal address of 

an opcode or operand. The second and third columns denote whether the location 

content is an opcode ('true') or an operand ('false'), and the decimal value of that 

content respectively. The fourth column, by default, is set to 'true'. Positions marked 

'false' describe identified potential invalid branches that require resolving by the 

insertion of a detection mechanism. Finally, the fifth column contains the relative 

target destination displacement of jump related instructions which have a valid or 

invalid interpretation. This column may also contain entries marked 'exception' which 

describe the action of a seed within a placed detection mechanism. 

Within the listing of RESULT_FILE, the locations of detection mechanisms in

serted within the target software are highlighted by a surrounding box, and potential 

invalid branches have arrows drawn to emphasis their location and action. 
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C.6. P A R U T Report File, A N A L Y S I S - F I L E 

This enclosure contains the tables of information generated by PARUT when it 

assesses the fault tolerance of target software. The first table provides a summary of 

hazards posed by invalid branches and, where appropriate, the inclusion of details of 

the fault tolerance achieved by applying a software implemented fault tolerant tech

nique. The second table collates information regarding the distribution and action 

of jump related instructions during erroneous execution. 

The information contained within ANALYSIS-FILE provides an indication of 

the target software fault tolerance. In particular, it details the recovery capability 

of erroneous jumps within target software. The recovery performance of the target 

software is dependent of the instruction sequence, a dynamic process, and hence the 

static analysis contained within the file has limited application. Chapter 7 describes 

experiments which assess the fault tolerance of target software through dynamic 

testing. 
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O R I G I N A L CODE t t t t t i t i t i t t t 

- O D D — — H I T H X H - - N O 5 E E 0 TOTAL 1 - O U T I N -
OPERAND — — 

- O D D K I T H I N — H O S E E D — - T O T A L -

CHS 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 o . o o 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 
D X V S / D I V U 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 
I L L E G A L 0 . 0 0 0 . 0 0 0 . 0 0 a . o o 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 
RESET 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 o . o o 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 
TRAP 0 . 0 0 1 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 3 . 0 0 1 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 
TRAPV O.DO 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 
u n d a f l n o 4 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 o . o o 5 . 5 0 5 . 9 0 0 . 0 0 0 . 0 0 1 1 . 0 0 

TOTAL 

U N S P E C I F I E D JUMP 

B c c / B R A / B S R 
JMP 
JSR 

TOTAL 

RETURN 

0 . 0 0 
0 . 0 0 
0 . 0 0 

7 . 5 0 
2 . 5 0 
2 . 0 0 

0 . 5 0 0 . 0 0 
0 . 5 0 0 . 0 0 
0 . 0 0 0 . 0 0 

0 . 0 0 
0 . 0 0 

0 . 0 0 
3 . 0 0 
2 . 0 0 

0 . 0 0 1 7 . 0 0 0 . 0 0 0 . 0 0 1 7 . 0 0 1 7 . 0 0 
0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 
0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 

R T t 
RTR 
RTS 

TOTAL 

S T O P / H A I T 

STOP 

0 . 0 0 
0 . 5 0 

0 . 0 0 
0 . 0 0 
0 . 0 0 

1 . 0 0 
0 . 0 0 

0 . 0 0 
0 . 0 0 

0 . 0 0 0 . 0 0 
0 . 0 0 0 . 0 0 
0 , 0 0 0 . 0 0 

0 . 0 0 
0 . 0 0 
0 . 0 0 

DETECTION HECEANISH PLACEMENT d « 0 # 0 f f P 0 « f t f Q O 
1 - O P C O D E — 

OUT I N - ODD I f l T l U N — N O S E E D TOTAL— ODD H I T H I H — N O S E E D - T O T A L 

CMC 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 0 . 0 0 0 . 0 0 
D t v s / o r v u 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 o . o o 0 . 0 0 0 . 0 0 
I L L E G A L 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 0 . 0 0 0 . 0 0 
RESET 0 0 0 0 , 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 0 . 0 0 0 . 0 0 
TRAP 0 0 0 1 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 2 . 0 0 1 0 . 0 0 0 . 0 0 1 . 0 0 0 0 0 0 . 0 0 1 . 0 0 
TRAPV 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 o . o o 0 0 0 0 . 0 0 0 . 0 0 
u n d e f l n e d 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 5 . 9 0 5 . 5 0 0 . 0 0 0 . 0 0 1 1 . 0 0 

TOTAL -

U N S P E C I F I E D JUMP U N S P E C I F I E D JUMP 

B C C / B R A / B S R 0 0 0 2 3 . 5 0 0 . 5 0 O.DO 0 . 0 0 2 4 . 0 0 1 0 . 0 0 1 7 . 0 0 5 4 . 0 0 0 0 0 0 . 0 0 5 4 . 0 0 
JMP 0 . 0 0 2 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 3 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 

JSR 0 . 0 0 1 . 5 0 0 . 5 0 0 . 0 0 0 . 0 0 2 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 , 0 0 0 . 0 0 0 . 0 0 

TOTAL 

RETURN 

RTE 0 . 0 0 0 . 5 O 0 . 5 0 0 . 0 0 0 . 0 0 1 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0- 0 0 0 . 0 0 O.DO 

RTR 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 ' 0 . 0 0 0 . 0 0 0 . 0 0 

RTS 0 . 0 0 0 . 5 O 0 . 5 0 0 . 0 0 0 . 0 0 1 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 0 . 0 0 0 . 0 0 

TOTAL 

e 
5 T 0 P / U A 1 T — 

STOP 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 0 . 0 0 0 . 0 0 
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C.7. PA R U T Diagnostics, T R A C E _ F I L E 

The final enclosure of this appendix contains an example of TRACE_FILE. This 

file is generated when the 'diagnostic' facility within PARUT is activated. The 

file contains, in chronological order, a list of procedures and functions operated by 

PARUT. Indented entries in the file denote nested module calls. TRACE_FILE is 

intended to aid analyst/programmer comprehension of the PARUT function. Exam

ination of this file should be made in association with Chapter 6. 
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E X A M P L E P R O G R A M S 
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D.2. Program 'A' Targeting the Motorola 68000 Microprocessor 274 
D.3. Program 'B' Targeting the Motorola 68(7)05 Microprocessor 284 
D.4. Program ' C Targeting the Intel 80386 Microprocessor 288 



A P P E N D I X D 

E X A M P L E P R O G R A M S 

D . l . In t roduc t ion 

This appendix has three main enclosures, each containing an example of the ap

plication of the software implemented fault tolerant technique proposed in this thesis. 

Each enclosure has a suite of program listings, each suite having a different target 

processor for program implementation. The first and second enclosures contain three 

program code listings concerning Program A and Program B respectively. The first 

enclosure listing details the original code written in Assembler. The second and third 

enclosure listing show the insertion at Assembly code level of the detection mech

anisms planted by the software implemented fault tolerant technique. The second 

listing shows the insertion of default size detection mechanisms, and the third listing 

shows the insertion of an optimum size detection mechanism for each placement. The 

final enclosure contains Assembler code listings, like the previous enclosures, except 

that there is an initial high-level language listing of the original program before its 

compilation to Assembler code. 

To aid comprehension of the listings, two types of function are marked. Firstly, 

erroneous jumps are highlighted by connecting the generator and destination code, 

which are circled, with an arrow denoting the branch direction. Secondly, inserted 

detection mechanisms are distinguished from the program code by their encapsula

tion in rectangular boxes. The detection capability of the inserted mechanisms is 

shown where the destination of an erroneous jump lies with a detection mechanism. 

Erroneous jumps whose destination is outside the memory occupied by the software 

are represented by arrows which terminate with a 'star' symbol denoting detection 

by an Access Guardian. 
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D.2. Program ' A ' Targeting the Moto ro la 68000 Microprocessor 

The original version of Program 'A' is written in Assembler for the 16-bit Mo

torola 68000 microprocessor and is shown as the first in this enclosure. The program 

is written as an example for the Engineering Microprocessor Laboratory at the Uni

versity of Durham. It monitors two water reservoirs and controls the level of one by 

pumping water from or draining water to the remaining reservoir. 

The second and third listings shown the insertion of detection mechanisms by the 

software implementation of fault tolerance proposed in this thesis. The second and 

third listings respectively detail default size and optimum size detection mechanism 

placements. 
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D.3. Program ' B ' Targeting the Motorola 6805 Microprocessor 

Program 'B' is written in Assembler code targeted at the 8-bit Motorola 6805 

microprocessor. The first listing in this enclosure details the program code. The 

program demonstrates the SC687 development system for MC68(7)05 software. It 

simply sends a sequence of user inputs to an output device. 

The insertion of detection mechanisms by the software implemented fault toler

ant technique, proposed in this thesis, is shown in the second and third listings of 

this enclosure. Default size and optimum size detection mechanism placements are 

detailed in the second and third listings respectively. 
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D.4. Program ' C Targeting the Intel 80386 Microprocessor 

The original version of Program ' C is written in the high-level programming 

language known as C. High-level language programs can be transported for appli

cation on many target processors because they describe a function in terms totally 

abstracted from the architectural influences of any one microprocessor system. The 

first listing in this enclosure details the original program. The program has no par

ticular function: its purpose is to demonstrate the potential hazards of machine code 

which are transparent to the high-level language. Functions within the program use 

local or passed parameters. 

The target processor selected for Program ' C is the 32-bit Intel 80386. This 

microprocessor has been chosen so that the software implemented fault tolerant tech

nique proposed in this thesis is demonstrated on a variety of microprocessors. In 

order to generate code tailored for application on the Intel 80386 processor, Program 

' C is compiled and an Assembler code representation of the source code is shown as 

the second listing in this enclosure. 

Application of the software implemented fault tolerant technique proposed in 

this thesis is shown within this enclosure at Assembler code level. The third and 

forth listing respectively detail default size and optimum size detection mechanism 

placements. 
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A P P E N D I X E 

P U B L I C A T I O N S 

E . l . Introduction 

To date five papers have been published in connection wi th the research presented 

in this thesis. They are as follows, 

Paper 1 : Wingate, G.A.S. & Preece, C , Transient Fault Recovery Assess

ment in 8 and 16 Bit Microprocessor Based Controllers in Embed

ded Systems.. Microprocessing and Microprogramming, Vol. 24, 

pp 775-782, 1988. 

Paper 2 : Wingate, G.A.S. &; Preece, C , Performance Evaluation of a New 

Design-Tool for Microprocessor Transient Fault Recovery., Micro

processing arid Microprogramming. Vol. 27, pp 801-808, 1989. 

Paper 3 : Wingate, G.A.S. & Preece. C . Fault Tolerance for Microprocessor-

Based Controllers Susceptible to Transient Disturbances., I E E 

Digest 1989/111, pp 3/1-3, 1989. 

Paper 4 : Wingate, G.A.S. & Preece, C., Fault Tolerance for Uniprocessor 

Systems., IEE Digest 1990/176, pp 4/1-5, 1990. 

Paper 5 : Wingate, G.A.S. & Preece, C., Analysis of Failure Data Collected 

From a TMR Microprocessor Controller., Microprocessing and 

Microprogramming, Vol. 32, pp 861-868, 1991. 

The first, second, and last paper listed were presented at the international E U -

R O M I C R O '88, EUROMICRO '89, and EUROMICRO '91 conferences held i n Zurich 

(Switzerland), Koln (West Germany), and Vienna (Austria) respectively. The th i rd 

paper was presented at the IEE Colloquium "Control Systems Software Reliabili ty for 
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Industrial Applications." organized by the Automation and Control Systems Group 

C13 in London, October 1989. The fourth paper was presented at the I E E Collo

quium "System Architectures for Failure Management." organized by the Control 

Techniques and Applications Group C9 in London, December 1990. 
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North-Holland 
Microprocessing and Microprogramming 24 (1988) 775—782 775 

T R A N S I E N T F A U L T R E C O V E R Y ASSESSMENT I N 8 A N D 16 B I T M I C R O P R O C E S S O R 
B A S E D C O N T R O L L E R S I N E M B E D D E D S Y S T E M S 

G.A.S. Winga te and C. Preece 

Uni t ed K ingdom 
School of Engineering and Appl ied Science 

Univers i ty of Durham 

Keywords : Transient Fault Tolerance, Fault Recovery, Microprocessors, Indus t r ia l 
Controllers, Embedded Systems. 

Microprocessors used i n embedded systems for industr ia l control applications are of ten 
subject to transient disturbances. Th i s can cause system fai lure unless f au l t tolerance 
can be int roduced in to the design. Th i s paper discusses software design techniques for 
enhancing fau l t tolerance i n small d ig i t a l systems. A metric is proposed for assessing 
different designs, and its influence on M - T T F is i l lustrated. 

1. I N T R O D U C T I O N 

M o d e r n indus t r ia l control systems are increasingly 
based on d ig i t a l circuits incorpora t ing microproces
sors. I n par t icular , the use of microprocessor based 
d ig i t a l controllers i n embedded systems provides an 
example of a low cost appl icat ion where simple archi
tectures are preferred. However when replacing ana
logue c i r cu i t ry w i t h d ig i t a l systems, i t is i m p o r t a n t 
to note t ha t the d ig i t a l replacements may be more 
susceptible to catastrophic fa i lure f r o m transient dis
turbances. 

Microprocessor based indust r ia l controllers can en
ter a state of erroneous execution due t o the effects 
of a transient disturbance. The subsequent execution 
his tory depends on the par t icular microprocessor ar
chitecture and the system configurat ion. I n many em
bedded indus t r i a l applications there is a requirement 
for h igh re l iab i l i ty , and this can be enhanced by at
tent ion to software design. Further improvement can 
be achieved by in tegra t ion of hardware and software 
methods. T h i s p rob lem has t rad i t iona l ly been tack
led by electrical shielding techniques. The methods 
presented here provide added protect ion by increas
ing the p robab i l i ty o f recovery once a transient f a u l t 
has occured. 

Studies have been published elsewhere, and are 
referenced below, showing how the probabi l i ty o f re
covery can be determined and subsequently enhanced, 
for systems based on 8-bit microprocessors. Tech
niques have been proposed for assessing the probabi l 
i t y of f au l t recovery fo l lowing certain classes of t ran
sient disturbance. I n this paper this approach is ex
tended to consider 16-bit processors, and i n par t icular 

the Moto ro la M68000 series. I n order to compare dif
ferent processors, an overall measurement parameter 
or metric is defined as the probabi l i ty of executing 
an ins t ruc t ion which w i l l cause an ordered re-entry 
to the program. This metr ic is used to discuss the 
implicat ions of processor choice fo r d ig i t a l controller 
design. 

This paper shows how the inherent properties of 
16-bit microprocessors can be ut i l ised t o improve the 
probabi l i ty o f recovery f r o m a transient f au l t . 

The concept of Mean T i m e To Failure for a sys
tem, commonly used for hardware fa i lure est imation, 
is adapted to provide a measure of transient faul t re
covery capabil i ty. 

2. CLASSES O F T R A N S I E N T D I S T U R B A N C E 

The indus t r ia l environment is a source of transient 
disturbances many of which are derived f r o m power 
supply transients and electromagnetic radia t ion. I t is 
c r i t ica l tha t indus t r ia l d ig i t a l systems i n applications 
such as real-t ime mon i to r i ng and control , have a m i n 
ima l possibi l i ty o f complete system fa i lure f r o m t ran
sient disturbances. D i g i t a l systems are more prone to 
such a fa i lure t h a n analogue systems which tend to 
filter the disturbances. 

Pract ical observations and experiments have 
shown tha t transient disturbances can cause an erro
neous j u m p i n the execution of a program, due to cor
rup t ion of the program counter. Th is may be caused 
by direct co r rup t ion of the program counter, of the 
bus signals, or by data errors which lead to corrupt ion 
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of stored addresses. The stat ist ical calculation of the 
probabi l i ty of recovery fo l lowing an erroneous j u m p 
provides a method of quan t i fy ing fau l t tolerance, and 
leads to the def in i t ion of a recovery metr ic , which en
ables recovery strategies to be assessed qual i tat ively. 

Execut ion at any address results i n the proces
sor entering one of a f ixed number of classified states. 
The probabi l i ty o f reaching a par t icular state may be 
calculated, based on the p ropor t ion of the ins t ruc t ion 
types i n the ins t ruc t ion set, and their d i s t r ibu t ion i n 
the microprocessor. Some of these states lead t o f u r 
ther erroneous execution, whereas others allow an or
dered recovery to take place. 

W i t h i n the system memory, areas can be defined 
which have different characteristics dependent on the 
defined u t i l i sa t ion o f tha t memory area. For the pur
pose of s tat is t ical analysis, the memory is d ivided in to 
dis t inct ive areas, and models are derived fo r erroneous 
execution i n these areas. The models fo r 16-bit m i 
croprocessors fo l low the same principles as those de
veloped fo r 8-bit microprocessors. The differences are 
due to the inherent architecture and ins t ruc t ion word-
length of the 16-bit machines. The common model al
lows comparisons between machine types to be made. 
Once figures fo r recovery probabil i t ies have been cal
culated fo r a par t icu lar design, techniques fo r improv
ing the met r ic can be proposed. T h e a im o f the design 
technique is t o maximise the probabi l i ty of an ordered 
recovery af ter an erroneous j u m p . 

E R R O N E O U S 
E V E N T " 

Erroneous 
J u m p 

3 

^ R E S T A R T ^ 

\ 
^ S T O P / W A I T ^ 

NORMAL 
P R O C E S S I N G 

IN 
A B N O R M A L 

C O N T E X T 

- > ^ R E T U R N ^ 

/'UNSPECIFIEDS 
V J U M P J 

Figure 1. 8-Bit Microprocessor Erroneous Execu
t i o n Mode l . 

( * manifested transient fau l t ) 

3. R E V I E W O F 8 - B I T C O N C E P T S 

The concepts used i n the study of 8-bit machines 
are reviewed here, i n order to i l lustrate the compari
son between 8- and 16- b i t processors. A f u l l descrip
t ion w i l l be f o u n d i n Reference 1. 

Take the M6800 microprocessor which has an ad
dressing range of 64K bytes using a 16-bit address bus. 
A n erroneous j u m p f r o m a runn ing program to a ran
dom address in the address space results i n an entry to 
one of five states as i l lus t ra ted i n Figure 1, the state 
reached being determined by the value of the data 
at the par t icular address. The probabi l i ty of reach
ing one of the five states can be calculated knowing 
the propor t ion of par t icular instructions w i t h i n the 
ins t ruct ion set. 

O f the 256 possible op-codes in the M6800 m i 
croprocessor, not a l l are defined. Those that are un
defined have various state outcomes. The probabil i 
ties of entering each state after an erroneous j u m p are 
shown i n Figure 2 for the M6800 when the contents 
of the memory area are assumed to be random. The 
probabilit ies of entering each state change as fu r the r 
instructions are executed fo l lowing the original j u m p 
as shown i n the figure, the p lo t ted lines represent the 
boundaries between states. 

The i n i t i a l p robabi l i ty of entering a part icular 
state, Ps , is given by 

Ps = El 
NT 

(1) 

where Ns is the number of op-codes corresponding 
to this state, and NT is the t o t a l number of possible 
op-codes. 

The probabi l i ty tha t K instructions w i l l be exe
cuted before a state is reached where a j u m p out of 
ordered processing w i l l occur is given by P j ( K ) where 

Pj{K) = (1 - Pj)<>K-l\Pj (2) 

f r o m Reference 2. 

A n ordered recovery fo l lowing a transient event 
implies the execution of a restart ins t ruct ion. The 
probabi l i ty of executing such an ins t ruct ion , i l lustrated 
i n Figure 2, is low because of the small p ropor t ion of 
restart op-codes i n the M6800 ins t ruc t ion set. Sim
i lar results loc cit f o r other 8-bit processors serve to 
con f i rm this conclusion fo r this class of processor. 

Techniques for improv ing the probabi l i ty of recov
ery i n 8-bit systems have been reported i n Reference 
3. I t is shown below that these methods are much 
more effective when applied to 16-bit processors. 
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Figure 2. 16-Bit Mode l Erroneous Execut ion State 
Outcome. 

4. C O M P A R I S O N W I T H T H E M68000 SERIES 

4.1 State and Type definit ions 

T h e microprocessors considered here i n the M o - , 
torola M68000 f a m i l y are the M68000, M68010, and 
the M68020. These microprocessors have addressing 
capabilities o f between 24 and 32 bi ts , and have 16 b i t 
data buses. T h e ins t ruc t ion set is based upon a 16-
bi t i ns t ruc t ion word . This gives the microprocessors 
a possible ins t ruc t ion set of 65536 inst ruct ions . 

The M68000 f a m i l y o f microprocessors are micro-
coded. T h a t is, the 16-bit op-code is presented to 
an execution unit. Th i s un i t is effectively a R O M to 
which the 16-bit op-code is an address. T h e R O M 
then releases, f o r every possible address variant , an 
appropriate sequence of micro-codes which w i l l carry 
out the requested operat ion. Illegal and undefined 
instruct ions are treated i n exactly the same way as 
legal and defined instruct ions. Il legal and undefined 
instructions have a specified operation: an exception 
cal l . 

Th is fact is par t icu lar ly significant in terms of 
f au l t recovery as execution of any inval id op-code leads 
to an exception, wh ich i n t u r n , can lead to an ordered 
recovery th rough an exception service rout ine . 

The numbers o f defined and undefined instruc
tions fo r the M68000 series are shown i n Table 1, 
where they are compared w i t h equivalent figures for 
the M6800. 

Table 1. Number of defined and undefined instruc
tions for the MC6800 and M68000 micro
processor fami ly . 

Microprocessor No. of instructions Microprocessor 

denned undefined 

MC6800 197 59 

M68000 43342 22194 

M68010 43521 22015 

M68020 46595 18941 

The ins t ruc t ion types can be classified as shown 
in Table 2. 

Table i. Ins t ruc t ion T y p e Classification 

N o n - J u m p 

Restart ( software in te r rup t , software exception ) 

Re tu rn 

Stop ( wai t ) 

Undefined Ins t ruc t ion 

Unspecified J u m p 

We consider an "op-code state" to be the state re
sul t ing f r o m the in te rpre ta t ion of one of the instruc
t ion types as fol lows: 

Non-Jump - leads t o the program counter po in t ing to 
the locat ion fo l lowing a val id single or m u l t i -
byte ins t ruc t ion . 

Restart - leads t o a j u m p to a predefined locat ion i n 
the memory map (by exception). 

Return - leads to a j u m p to an address held i n a stack. 

Stop/Wait - leads to cessation of processing; and re
quires an in te r rup t or hardware reset to exit 
f r o m this state. 

Undefined Instruction - leads to a restart i n the M68000 
series because of the undefined ins t ruc t ion ex
ception feature. 

Unspecified Jump - leads to a j u m p to a new locat ion 
determined by local memory contents. 

Of these states, only two are capable of providing an 
ordered restart, the restart and the undefined instruc
tion exception. A diagram showing the possible states 
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fo l lowing an erroneous jump i n a 16-bit microproces
sor is shown in Figure 3. Th i s diagram can be com
pared to the corresponding diagram fo r 8-bit micro
processors shown i n Figure 1. 

/ E R R O N E O U S \ 
I E V E N T " J 

/ 
Odd Address 
Exception 

Erroneous 
J u m p 

^ R E S T A R T ^ 

NORMAL 
P R O C E S S I N G 

IN 
A B N O R M A L 

C O N T E X T 

( S T O P / W A I T ) 

. ^ R E T U R N j 

r U N D E F I N E D 
I N S T R U C T I O N 

V R E S T A R T 

^ U N S P E C I F I E D ^ 
iN J V J U M P J 

F i j u r e 5. 16-Bit Microprocessor (M68000 Fami ly ) 
Erroneous Execut ion Model . 

( * manifested transient f au l t ) 

4.2 Microprocessor M o d e l 

I n developing the model of microprocessor oper
a t ion subsequent to a transient event leading to an 
erroneous jump, the assumption is made that there is 
an equal p robab i l i ty of the program counter contain
ing any address w i t h i n the memory map. 

The memory map is d iv ided in to not ional areas. 
Assumptions w i l l be made later about the properties 
of par t icular areas wh ich w i l l m o d i f y the s tat is t ical 
evaluation o f state outcome. The categories are shown 
i n Table 3. 

Table 3. M e m o r y M a p Categories 

Memory Map Category 

I n p u t / O u t p u t Reserved Area. 

Program Area. 

D a t a Area. 

Unused Area. 

I f an i n i t i a l assumption is made that the data area 
of the memory contains random data, then compar
ison can be made between the 8-bit and 16-bit ma
chines, by calculat ing the probabi l i ty of entering a 
par t icular state as before. However, an impor tan t fea
ture of the M68000 leads to an addi t ion to the equa
t ion . A n y a t tempt to fe tch an ins t ruc t ion f r o m an 
odd address leads to an exception. Assuming that 
the value of the the corrupted program counter is ran
dom, then the probabi l i ty tha t the program counter 
holds an odd address is 0.5. 

A l l p robabi l i ty calculations for the M68000 series 
therefore apply to even addresses, recovery is guar
anteed for a l l odd address references. A diagram of 
state probabi l i ty for the M68000 fo l lowing an erro
neous j u m p to random data area is shown in Figure 
4. Comparison of this diagram w i t h Figure 2 shows 
the enhanced probabi l i ty of restart i n the M68000. 
The percentages of different ins t ruc t ion types i n the 
microprocessor ins t ruc t ion sets are given i n Table 4. 

Table 4- Ins t ruc t ion Type Percentages i n Mic ro 
processor Ins t ruc t ion Sets. 

Instruction Type M68000 M68010 M68020 M6800 

Non-Jump 57.825 58.095 59.327 91.600 

Restart 1.970 1.970 3.683 0.300 

Return 0.003 0.006 0.006 1.300 

Stop 0.002 0.002 0.002 1.600 

Undefined Instruction 33.865 33.592 28.902 e 

Unspecified Jump 6.335 6.335 8.080 5.200 

* T h e M6800 has 59 undefined instruct ions, bu t 
unl ike the MC68000 f a m i l y of microprocessors, 
these instructions do not lead to exception a j d 
recovery. T h e y have therefore been grouped w i t h 
the other ins t ruc t ion types dependant on their 
effective act ion. 

5. E X E C U T I O N O F A P R O G R A M I N A N 
E M B E D D E D S Y S T E M 

For many indus t r ia l control and mon i to r ing appl i
cations, the program may occupy only a small pro
p o r t i o n of the addressable memory map. W h e n a 
transient event occurs, the corrupted program counter 
may point to any locat ion, whether used or not , i n the 
addressing range. We w i l l refer t o the area occupied 
by the program, data storage, and memory mapped 
I / O as the used area , and.the remainder of the map 
as the unused area. I f the unused area is filled w i t h 
data which are interpreted as restart instruct ions, or 
other instruct ions which would generate exceptions, 
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Figure 4- 16-Bit M o d e l Erroneous Execut ion State 
Outcome. 

then the p robab i l i ty of recovery is fu r the r improved. 
Methods of achieving this have been discussed i n Ref
erence 3, the most powerfu l o f which is bus-biassing. 
This consists of external c i rcu i t ry which asserts a b i t 
pa t te rn on the da ta bus when any unused memory 
address is accessed dur ing an ins t ruc t ion fetch. I f the 
bi t pa t t e rn is chosen to force an exception, then a l l 
references to unused areas provide recovery. 

I n this s i tua t ion the probabi l i ty of recovery de
pends, not only on the proport ions of restart instruc
tions i n the ins t ruc t ion set, bu t also on the ra t io of 
used to unused memory i n the whole addressable mem
ory area. 

The concept of Mean T i m e To Failure, M T T F , 
used i n hardware re l iab i l i ty calculations, can be 
adapted fo r th is work . I t provides a method of com
par ing the improvement i n re l iabi l i ty brought about 
by fau l t recovery w i t h other hardware and software 
methods i n embedded systems. I t also enables com
parisons between designs using different microproces
sors to be made. 

6. M T T F F O R A S Y S T E M S U B J E C T T O 
T R A N S I E N T E V E N T S 

Let the sample space E, comprise a set of events 
corresponding to erroneous jumps i n the runn ing pro
gram. Let ET £ E where E, is an event leading to a 
recovery, and Ej € E where Ej is an event leading 
to a fa i lure . We can also state tha t ET U E j = E and 
Er D Ef = 0. 

Let the probabi l i ty of event ET be P{E,) and the 
probabi l i ty of event Ef be P ( E f ) , which leads to 

P{E,) + P ( E f ) = \ (3) 

I f we assume that transient events occur at a rate 
of k events per hour, then the rate of failures per hour 
is given by A where 

A = k . P ( E f ) (4) 

Assuming an exponential probabi l i ty d i s t r ibu t ion 
func t i on / ( f ) , then 

f { t ) = e 

f i t ) = e - M * * / ) ) - ' 

and 

MTTF = 
1 

k.PiEf) * . ( 1 - P(Er)) 

(5) 

(6) 

(7) 

Equa t ion 7 gives a value of M T T F fo r the system 
when subjected to transient events at the rate of k per 
hour, and where the probabi l i ty of recovery f r o m any 
single event is PiEr) . I t allows a comparative assess
ment to be made for software recovery techniques i n a 
f o r m wh ich can be related t o M T T F calculations fo r 
permanent faul ts in d ig i t a l systems. 

68020 

68000/68010 

6800/8086 

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 

NUMBER OF EVENTS, E (t) 

Figure 5. Microprocessor Rel iabi l i ty . 

( for key see Table 5 ) 
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Let us take an example of a system having a used 
area of 48K bytes. I f we assume, as a worst case, tha t 
any erroneous j u m p in to the 48K byte area w i l l result 
in system fai lure , bu t any j u m p in to the unused area is 
recoverable, then the effect of different processors on 
the re l iabi l i ty can be seen i n Figure 5. These curves 
are d rawn w i t h a normalised t ime base. 

I t is he lp fu l to consider a numerical example t o 
i l lus t ra te the po in t . I f we assume that the system is 
subjected to transient events at a rate of, say, 1 . 4 1 0 - 3 

per hour, or approximate ly once per month . Table 5 
shows the effect on M T T F o f variat ion i n P(ET) . 
The M T T F for this event rate w i t h no recovery, (i.e. 
P(ET) = 0 ) , is 714 hours. 

Table 5. M T T F for different microprocessors. 

MTTF = 

Processor P(Er) M T T F 

M6800 0.250000 952 hrs = 39 days 

8086 * 0.250000 952 hrs = 39 days 

8086 ** 0.999969 23405714 hrs = 2672 yrs 

8086 *** 0.953125 15238 hrs = 21 mths 

M68000 0.998535 487567 hrs = 56 yrs 

M68010 0.998535 487567 hrs = 56 yrs 

M68020 0.999994 119047619 hrs = 13590 yrs 

* assuming cor rup t ion of the program counter only, 
and tha t the p rogram is contiguous. 

** assuming co r rup t ion of the segment register 
only, and tha t the program is contiguous. 

*** assuming cor rup t ion of the program counter 
and segment register are taken together as a sin
gle register. 

I n the case of the 8086, two registers are involved 
i n specifying the address of any ins t ruc t ion . Cor rup
t ion of each register has been treated separately. A 
t h i r d case has been considered ( assuming that the 
8086 could be considered to have a single rather than 
a mul t ip le , program counter ) so tha t a comparison 
fo r a microprocessor w i t h the same addressing range 
as the 8086 can be made. Table 5 illustrates the prob
ab i l i ty of recovery and the M T T F for a range of m i 
croprocessors. 

I t can be seen that once the value of P(Er) ap
proaches a value of 0.99 or better, a small increase i n 
value can b r i n g a large improvement i n M T T F . 

As the p ropor t i on of used area increases, the change 
i n M T T F can be calculated as, i n general, 

( to ta l area i n bytes ) 

k.( used area in bytes ) 
(8) 

This calculation assumes that any entry into the 
used area leads to fai lure. However this is not actu
ally the case. As mentioned above, different areas of 
the memory map have different properties, and more 
accurate figures for recovery probabi l i ty can be deter
mined f o r these areas. 

7. M O D I F I C A T I O N T O M T T F E S T I M A T E B Y 
M E M O R Y C A T E G O R I E S 

W i t h i n the used area of the memory map, tha t is 
the area containing the program w i t h its data area, 
and mapped I / O addresses, d i s t inc t ly different prop
erties of the contents of these areas can be defined. 

The program area contains program code consist
ing of op-codes and operands. As a first approxima
t ion we may assume that there are no restart codes 
in the program area. This means that any erroneous 
j u m p to a program area results i n P(Er) — 0. 

The da ta area on the other hand, consists of nu
merical da ta which bear no re la t ion to an ordered se
quence of instruct ions. I t is therefore possible to as
sume a random d i s t r i bu t i on o f data values. We here 
include I / O mapped registers i n the data area. For the 
M68000 this gives a value of P{ET) = .35835 w i t h i n 
the data area for a l l even addresses. 

1 . 0 0 

M 6 8 0 2 0 
4 8 K - P R 0 G 

M 6 8 0 0 0 
B K - P R O G / 4 0 K - D A T A 

U J O . 9 8 

M 6 8 0 0 0 

1 . 0 K - P R 0 G / 8 I C - 0 A T A 
ZJ0. 9 6 

M 6 8 0 0 0 

4 8 K - P R 0 G 

0 . 9 4 

0 4 8 1 2 16 2 0 2 4 2 8 3 2 3 6 

N U M 8 E R O F E V E N T S , E (t) 

Figure 6. Improved M68000 Microprocessor Rel i
abi l i ty . 
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The effect of this different t reatment for different 
used areas of memory is shown in the examples given 
in Figure 6. A typica l program area of 48K is as
sumed i n one case to comprise 40K of program and 
SK of data, in the second case the proport ions are re
versed. These are compared w i t h the case of a 48K 
program w i t h no da ta area. I f we assume an. event 
rate of approximately 1 per m o n t h as i n the exam
ples above, then the M T T F for these applications can 
be evaluated. The results fo r implementa t ion on the 
M68000 are shown i n Table 6. 

Table 6. M T T F for various P r o g r a m / D a t a ratios 
i n M68000 

P r o g r a m / D a t a P{ET) M T T F 

48K / OK 

4 0 K / 8 K 

8 K / 40K 

0.998535 

0.998617 

0.998948 

487567 hrs = 56 yrs 

516476 hrs = 59 yrs 

678979 hrs = 78 yrs 

A n y pa t te rn of memory use can be analysed to 
give a more accurate value of M T T F for a par t icu lar 
appl icat ion program. 

8. E N H A N C E M E N T O F R E C O V E R Y 
P R O B A B I L I T Y B Y D E S I G N 

A number of design options present themselves as 
candidates for improv ing the recovery metr ic P{ET). 
I t is clear tha t the a im is to increase the number o f 
codes i n the memory which produce vectored restarts. 
The t reatment of units ed memory has already been re
ferred to . A l l unused locations should be f i l l ed w i t h 
restart or exception codes, either by bus-biassing, or 
by special E P R O M s . Par t ia l decoding of the E P R O M s 
can reduce the number required i n a par t icu lar sys
tem. Th i s technique is universally applicable, and 
does not depend on the detai l o f the program or the 
appl icat ion; i t may be par t icu lar ly advantageous where 
the microprocessor has a mul t ip lexed bus. 

The detai led t reatment of da ta and program areas 
of the memory is dependent on the properties of the 
code for a par t icular appl icat ion. Some general rules 
can, however, be formula ted . 

As a first approximat ion , i f data areas can be con
sidered to contain random numbers, then the propor
tions of codes given by Table 4 apply. The inher
ent metr ic is a f unc t i on o f the restart and undefined 
instructions. However, over 50% of the ins t ruc t ion 
types are i n the non- jump category, tha t is, execution 
proceeds beyond them i n sequence. Th i s observation 
introduces the possibil i ty of u t i l i s ing this property to 
force f u r t h e r restarts by seeding the da ta areas w i t h 
recovery traps, sequences of codes spread throughout 

the da ta area. As wel l as providing direct recovery i f 
an erroneous j u m p lands on a t rap , i t also enhances 
the probabi l i ty of recovery after execution of a non-
j u m p ins t ruc t ion . 

The treatment of program areas is quite different. 
Here the codes are valid instructions, and entry to any 
program area has a high probabi l i ty of resuming val id 
code execution. (Reference 1). Seeding the program 
area is appl icat ion dependent, and the programmer 
needs to have this i n m i n d when w r i t i n g the code. 
Al terna t ive ly this func t ion might be implemented by 
a high level compiler. T w o examples of programming 
techniques invo lv ing operands i n the M68000 series 
w i l l be sufficient to i l lustrate the point . 

i ) A propor t ion o f a program area may contain codes 
representing addresses of operands. These ad
dresses po in t t o items of data storage. I f the data 
is stored at addresses which themselves represent 
inva l id ins t ruc t ion codes, then erroneous execu
t i o n of any of these operands i n the program area 
w i l l force restarts. 

i i ) A n alternative f o r m o f addressing can also pro
duce the same result. I f data is referenced us
ing backward relative addressing, then execution 
of the operands containing the negative data off
set w i l l cause inval id op-code exceptions i n the 
M68000 and M68010. This is because setting the 
four most significant bi ts i n the word produces a 
code which is interpreted as an exception i n these 
processors. 

9. D I S C U S S I O N 

Transient faul ts can cause a microprocessor sys
tem t o experience cor rup t ion o f the program counter 
causing erroneous jumps t o random locations i n mem
ory. Th i s brings a loss of control unless some mecha
nism for recovery is present. T h e probabi l i ty of recov
ery can be enhanced i f a restart can be in i t i a ted after 
the f a u l t . The inherent ly larger addressing space of 
16-bit microprocessors provides a ma jo r improvement 
i n the recovery met r ic , as long as al l the unused mem
ory is designed to contain restart instructions, or to 
in i t ia te exceptions, (software in ter rupts) . 

T h e concept of Mean T i m e To Failure can use
f u l l y be applied to systems subjected to transient dis
turbances. The de f in i t ion of M T T F incorporates the 
probabi l i ty of achieving a restart state at any event 
P(Er), and also the rate of events k per hour. 

The method enables the re l iabi l i ty o f micropro
cessor based embedded systems to be assessed, and 
different designs to be compared. I t also provides a 
stat ist ical basis fo r developing the techniques fo r en
hancing the fau l t tolerance o f small systems which are 
described i n Reference 3. 
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The results suggest tha t software recovery for t ran
sient events can provide an addi t ional means of pro
tect ion for microprocessor based systems i n addi t ion 
to tha t t r ad i t iona l ly provided by external hardware 
watchdog circuits . I n selected 16-bit machines the fig
ures fo r M T T F can be h igh even for onerous transient 
event rates. 

A C K N O W L E D G E M E N T S 

T h e authors wish to acknowledge the support o f 
the U K Science and Engineering Research Counci l 
and the B r i t i s h Gas Engineering Research Stat ion, 
K i l l i n g w o r t h , Newcastle upon Tyne . They would also 
like t o thank D r . R . G . Halse, of Westinghouse Sig
nals L t d . , Chippenham, W i l t s , fo r his suggestions and 
he lp fu l comments on the paper. 

R E F E R E N C E S 

[1] Halse R.G. Fault tolerance in digital controllers 
using software techniques. Ph .D . Thesis. Univer
sity of Durham, England. 1984 

[2] Halse R .G. and Preece C. Erroneous execution and 
recovery in microprocessor systems Software and 
Microsystems 4 No. 3. June 1985. pp 63-70. 

[3] Halse R.G. and Preece C. Recovery assessment af
ter microprocessor transient disturbances i n Sys
tem Fault Diagnostics and Related Knowledge-
Based Approaches Vo l 2. pp 383-397. S.Tzafestas 
et al.(eds) 1987 D . Reidel Publ ishing Co. 

306 



North-Holland 
Microprocessing and Microprogramming 27 (1989) 801-808 801 

P E R F O R M A N C E E V A L U A T I O N O F A N E W D E S I G N - T O O L F O R 
M I C R O P R O C E S S O R T R A N S I E N T F A U L T R E C O V E R Y 

G . A . S . W i n g a t e ( U K ) & C . Preece ( U K ) 

S c h o o l o f E n g i n e e r i n g a a d A p p l i e d Science , 
U n i v e r s i t y of D u r h a m , D H l 3 L E . E n g l a n d . 

K e y w o r d s : Transient Fault Tolerance, Fault Recovery, Design Tool , Embedded Systems, 
Microprocessor Controllers. 

A p p r o a c h : Evaluation. 

A model of microprocessor erroneous behaviour has led to the development of a new 
design too l to automate the in t roduct ion of transient fault tolerance into program code. The 
design too l , P A R U T ( Post-programming Automated Recovery U T i l i t y ) provides a method 
of enhancing existing program code to optimise the recovery capability fol lowing a transient 
disturbance. The tool can be used to implement a number of different recovery strategies, 
some of which may involve addit ional hardware. The paper examines the performance of the 
design too l for a range of techniques. 

1 . I N T R O D U C T I O N 

Modern designs of industr ial control systems incor
porate microprocessors for control and moni tor ing pur
poses. The versati l i ty tha t microprocessor based con
trollers offer to the designer, and the flexibility tha t 
customised software provides, makes them attractive in 
many industr ia l situations. 

However, industr ia l environments are of ten harsh, 
fa l l ing short of the ideal for computer systems. I n par
ticular, microprocessor operation can be corrupted by 
externally generated transients events such as electrical 
power transients [ 1 ] and electro-magnetic radiat ion ( 2, 
3, 4 ] . Even i n 'benign' operating conditions transients 
have been observed to cause between 80% and 90% of 
d ig i ta l system failures [ 5, 6, 7, 8 J 

I n analogue systems these transients go through a 
' f i l t e r ing ' process which generally means that the con
t r o l func t ion is not lost. Dig i ta l systems are much more 
liable to lose al l control funct ion following a transient 
disturbance. I t is impor tan t tha t d ig i ta l design should 
incorporate mechanisms for recovery i n the event of er
roneous execution. 

Transient events considered i n this paper are those 
which lead to corrupt ion of data on the bus, or in the 
memory, or registers of a microcomputer system. Whi l e 
such corrupt ion can lead to erroneous behaviour of the 
system, no permanent hardware damage is incurred, 
and i f control of the computational process can be re
established, then this permits the possibility of overall 
recovery of the control system. 

A number of well known techniques are available to 
reduce the probabil i ty of failure f r o m transients. These 
include bo th hardware and software enhancement and 
usually incorporate some f o r m of redundancy. A tech
nique such as hardware modular redundancy w i t h voting 
w i l l prevent many transient failures but involves con
siderable hardware overhead [ 9 ] . Watchdogs circuits 
[ 10 ] , although commonly used, themselves suffer f r o m 
transients. They also introduce a performance overhead 
by constantly in ter rupt ing microprocessor operation. 

This paper includes a comparison of two other re
covery techniques which a im to improve transient faul t 
tolerance by the inclusion of both hardware and soft
ware enhancements. These have been applied to 8-bit, 
16-bit, and 32-bit microprocessors [ 11, 12, 13 ] . The 
hardware modificat ion is simple w i t h a very low over
head. The software enhancement has involved up to 
60% increase in memory requirement, but this figure is 
very much code dependant. A post-programming u t i l i t y 
has been bui l t which automates the method of enhanc
ing software to improve transient faul t tolerance. The 
u t i l i t y is described, and its performance w i t h transient 
faul t tolerant techniques is evaluated. 

2. E R R O N E O U S B E H A V I O U R 

We consider erroneous behaviour to be ini t ia ted by 
corruption of the microprocessor's internal state which 
leads to the corruption of the program counter. I t has 
been suggested that 25% of transients affecting digi ta l 
systems wi l l corrupt the internal state [ 6 ] . The erro-
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neous behaviour produced by a microprocessor is char
acterised as a sequence of erroneous execution states ter
minated either by recovery or catastrophic failure. 

Execution states can be denned in terms of the out
come of each operation. The possible states are defined 
as follows : 

Non-Jump - leads to the program counter point ing to 
the location fol lowing a valid instruction. 

Restart - leads t o a j u m p to a predefined location in the 
address space. 

Unspecified Jump - leads to a j u m p to a new location in 
the address space determined by local memory 
contents. 

Return - leads to a j u m p to an address held in a stack. 

Stop/Wait - leads to a cessation of processing ; and 
requires an in ter rupt or hardware reset to exit 
f r o m this state. 

Not all possible ins t ruct ion b i t patterns in a micropro
cessor are necessarily defined. In such cases these un
defined instructions can, when executed, result in any 
of the defined states. I t should be noted however tha t 
because no specification is available for these undefined 
instructions, manufacturers are not obliged to ensure ev
ery die batch produces the same operation for each of 
the undefined instructions. However, the problem does 
not arise i n al l microprocessors. I n the case of the the 
Motorola 68000 family, for example, the execution of al l 
undefined instructions results in an 'exception' (or soft
ware in te r rup t ) leading to the 'restart ' state as defined 
above. 

For purposes of discussion, we assume that a t ran
sient faul t w i l l cause random corruption of the program 
counter contents. The instruct ion following the t ran
sient event w i l l be fetched f rom a location pointed to by 
the corrupted contents of the program counter resulting 
in a j u m p in the control flow of the executing software. 
This random j u m p is termed the In i t i a l Erroneous Jump 
( IEJ ) . We define execution following the I E J as 'erro
neous execution'. The content of the memory at the new 
execution locat ion is fetched and executed as i f i t were a 
valid ins t ruct ion. The outcome of this erroneous execu
t ion w i l l result i n a new behavioural state. Execution of 
a non- jump type inst ruct ion continues linear erroneous 
execution. I f the new state is a j u m p type (but not 
a ' restart ' ) , then a Subsequent Erroneous Jump (SEJ) 
w i l l occur. I n order to achieve controlled recovery i t is 
necessary to maximise the probabil i ty of a 'restart ' type 
instruct ion being executed as soon as possible after the 
inception of erroneous execution. 

elsewhere ( 11, 12, 13 ] . and is reviewed briefly here. 

The probabil i ty of a j u m p type outcome after k in
structions have been executed in a random area [ 11 J is 
given by 

Pj(k) = PNj{k - \).Pj (1) 

where Pj and Pyj are the in i t i a l probabilities of a j u m p 
and non-jump outcome. I f the s impl i fy ing assumption 
is made that the content of the memory at the j u m p 
target is random, then the probabilit ies for individual 
outcomes can be calculated f r o m the dis t r ibut ion of their 
associated instructions w i t h i n the instruct ion set, and 
mul t ip ly ing by Pj(k). 

Improvement i n the probabil i ty of recovery follow
ing an in i t i a l erroneous j u m p ( IEJ ) has already been dis
cussed in a previous paper [ 12 ) where unused address 
space is filled w i t h restart type instructions. Major i m 
provements were shown for a range of 8, 16, and 32 b i t 
microprocessors. For erroneous execution in the 'used 
areas' of memory, the probabi l i ty of a number of ran
dom subsequent erroneous jumps (SEJ) landing wi th in 
the used area is given by 

PsBj(Used Area) = 

f / N o . addressed bytes in used areaN 
J ^ ^ \ No. bytes in address range / 

N j . N L 

(2) 

68000 

0.0 

0 . 0 0 0 0 1 . 3 1 0 7 2 . 6 2 1 4 3 . 9 3 2 1 5 . 2 4 2 8 

USED AREA x ! 0 5 ( BYTES ) 

3. M O D E L 

A model of erroneous execution has been presented 

Figure 1 : SEJ Characteristic. 
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where the summations to J, and L, map each j u m p type 
instruction and, every location in the used area respec
tively. Nj is the number of j u m p type instructions in 
the instruct ion set. Ni is the number of locations in the 
used area. 

The SEJ characteristic for the Motorola 68000 and 
Intel 8086 is shown in Figure 1. This graph emphasises 
the importance of implementing a recovery technique 
w i t h i n the used area. I f no recovery technique is imple
mented then there is a high probabil i ty of an extended 
period of erroneous behaviour consisting of many SEJs. 
A detailed analysis of this characteristic is given in Ref
erence 13. 

4. P A R U T ( P o s t - p r o g r a m m i n g A u t o m a t e d 
R e c o v e r y U t i l i t y ) 

P A R U T has been designed to accomplish the follow
ing: 

i ) To analyse the original code and report the IEJ re
covery capability inherent in the original code, and 
the SEJ recovery capability. 

i i ) To enhance the faul t tolerance of the original code 
by a selection of methods. This usually involves in 
serting some redundancy into the code. When this is 
completed, the u t i l i t y re-aligns the original software 
control flow which wi l l have been offset at the ma
chine code level by the in t roduct ion of redundancy. 

i i i ) To analyse the enhanced code and report the im
provement in the IEJ recovery capability, the im
provement i n the SEJ recovery capability, and the 
coded area extension overhead required. 

The P A R U T program has two input requirements, 
a description of the microprocessor on which the code 
is to reside, and a copy of the code. Processing this 
informat ion results in two output streams, a report on 

Initial Software Code 

Micro
processor — 
Description 

UTILITY 
Transient 
Fault 
Recovery 
Report 

Code with 
Detection 
Machanism 
Placement 

Code with Other 
Control Flow Enhanced 
Signatures Codings 

the original and the enhanced codes, and a copy of the 
enhanced codes. A n overview of the P A R U T program 
is shown in Figure 2. 

In the present version of the P A R U T program, de
tection mechanisms cannot be inserted for SEJs that 
originate w i th in , and whose destinations lie w i th in , the 
same instruction [ 13 ] . The u t i l i t y does, however, report 
these occurrences. 

5. A P P L I C A T I O N : M o t o r o l a 68000 

Studies of a range of microprocessor types have sug
gested that while many features of erroneous behaviour 
are common to a l l , [ 11, 12 ] , detailed analysis requires 
that each type is considered separately. We consider 
here the Motorola 68000 microprocessor as a typical ex
ample of commonly used 16/32 b i t microprocessors. The 
analysis produced for this microprocessor is specific, but 
the general approach and results are valid for a range of 
microprocessors and architectures. 

The model for the Motorola 68000 follows f rom the 
description of microprocessor behaviour. A particular 
feature of the Motorola 68000 family of microprocessors 
is the 'odd address exeption'. The handling routine for 
this exception can be wr i t ten so that i t directs execution 
to the recovery routine. W i t h unused even addresses also 
giving a restart ( via a hardware address access guard
ian ) , the microprocessor gives an enhanced probabil i ty 
of recovery fol lowing an IEJ . 

MOV 13FC 
00FF 
0002 
6606 

MOV 13FC 
0000 
0002 
5604 • 

Erroneous 
Jump 4 
Words 
Forward 

(a) Original Code Showing 
Potential Erroneous Jump. 

MOV 

DM' 

MOV 

13FC 
OOFF 
0002 
6606 
600A 
SEED 
SEED 
SEED 
SEED 
SEED 
13FC 
0000 
0002 
5604 

J 

Erroneous 
Jump 4 
Words 
Forward 

(b) 

Detection 
Mechanism 
Jump To 
Continue 
Correct 
Execution 
Flow. 

PARUT Enhanced Code: 
Seed In Placed Detection 
Mechanism Will Catch 
Potential Erroneous Jump. 
DM* - Detection Mechanism. 
S E E D - Restart ( e g. 6001 ). 

Figure 2 : P A R U T Overview. Figure 3 : Example of Detectection Mechanism 
Placement. 
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To improve the recovery capability of the micro
processor s t i l l further, P A R U T can implement detec
t ion mechanism placement. The detection mechanism 
used for the Motorola 68000 is shown in Figure 3. I t 
consists of an in i t i a l one-word relative branch instruc
t ion over the remainder of the mechanism, so tha t log
ical control flow of the correctly executing program is 
not interrupted. This does however incur an addit ional 
processing overhead. The remainder of the detection 
mechanism consists of five one-word seed instructions. 
A seed instruction is a software exception instruct ion 
which directs execution flow to the recovery routine. 
Five seed instructions are necessary because the maxi
mum length of an instruct ion in the 68000 microproces
sor is five words. Detection mechanisms must be placed 
so as not to disrupt correct execution flow. The rule for 
placement is that where possible each SEJ destination 
becomes a seed in the detection mechanism, thus ensur
ing a restart dur ing the next execution cycle, and an 
increased probabil i ty of recovery following an SEJ. The 
model applicable to the M68000 is shown in Figure 4. 

ERRONEOUS 
EVENT 

Erroneous 
Jump 

Odd Address 
Exception 

4 STOP/WAIT 

RESTART 

Detection 
Mechanism 

NORMAL 
PROCESSING 

IN 
ABNORMAL 
CONTEXT 

RETURN 

UNSPECIFIED 
JUMP 

Figure 4 •' Erroneous Execution Model . 

To il lustrate the versatility of the P A R U T method a 
second technique has been implemented, based on pro
posals in a paper by Schutte and Shen ( 14 ] of control 
flow monitor ing using 'Signatured Instruct ion Streams '. 
For the purposes of comparison, P A R U T has been mod
ified to produce code w i t h embedded signatures. The 
simulation inserts a single random word immedately fo l 
lowing all valid control flow instructions in the original 
code. 

1.0000 

0. 9995 

0. 9990 
ID 
t— •X 
t— 
i n 

o 0. 9985 

g 0. 9980 
a a a 

0. 9975 

RESTART 

L INEAR 
ERRONEOUS 
EXECUTION 

RETURN 

U N S P E C I F I E D JUMP 

000 ADDRESS RESTART 

UNUSED AREA RESTART 

7 
0 .0 -H 1 1 1 1 1 1 1 1 1 

0 1 2 3 4 5 6 7 8 9 10 
INSTRUCTIONS EXECUTED 

Figure 5 : Execution History Following IEJ 
( Original Code ) t . 

6. P E R F O R M A N C E E V A L U A T I O N 

The results presented here show the effect of the 
P A R U T u t i l i t y on a part icular piece of code. The re
sults are entirely code dependant, and w i l l vary greatly 
f r o m one program to another. A n assessment is made 
of the improvement i n recovery capabili ty achieved by 
detection mechanism placement. 

The performance evaluation of original and P A R U T 
enhanced codings requires examination of the execution 
histories belonging to each of the two phases of erro
neous behaviour. The first phase is defined as tha t of 
erroneous execution fol lowing an IEJ . The second phase 
consists of the erroneous execution fol lowing each of a 
number of SEJs un t i l either recovery or catastrophic fa i l 
ure occurs. The example coding is taken f r o m a short 
Motorola 68000 control program wr i t ten i n assembler 
code. 
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LINEAR 
1.0000 ERRONEOUS 

[EXECUTION 
RETURN 

UNSPECIFIED JUMP 

0.0 

RESTART 

ODD ADDRESS RESTART 

UNUSED AREA RESTART 

2 3 4 5 6 7 8 9 
INSTRUCTIONS EXECUTED 

10 

1.0000 

0. 9995 

0. 9990 
UJ 
i— 
«c 
I— tn 

o 0. 9985 

•< 0. 9980 

0. 9975 

LINEAR 
ERRONEOUS 
EXECUTION 

RETURN 

UNSPECIFIED JUMP 

0.0 

RESTART 

000 ADDRESS RESTART 

UNUSED AREA RESTART 

2 3 4 5 6 7 8 
INSTRUCTIONS EXECUTED 

10 

Figure 6 : Execution History Following I E J 
( Code w i t h Detection Mechanisms ) t . 

6.1 Phase 1 Observations 

The execution histories for the original code, the 
code wi th detection mechanism placement, and the em
bedded signature code, are shown in Figures 5, 6, and 
7 respectively. These results are for execution histories 
following an In i t i a l Erroneous Jump. 

Both enhanced codings exhibit a lower in i t i a l prob
abi l i ty of restart. This overhead is due to the extended 
memory required for the inserted detection mechanisms 
and embedded signatures. 

The code w i t h detection mechanism placement has 
a smaller probabil i ty that the outcome state w i l l be a 
j u m p ( wi thout restart ) compared to the original code. 
This is due to the probabil i ty of an in i t ia l SEJ desti
nation being a detection mechanism seed delivering a 
restart outcome. 

The signatured code also shows a decrease in the 
probabil i ty j u m p ( wi thout restart ) outcome state. This 
is because the signature process delivers a restart out
come for any in i t i a l SEJ which does not synchronised 
wi th valid program flow. 

Figure 7 : Execution History Following IEJ 
( Signatured Code ) t . 

The behaviour of this first phase of erroneous exe
cution, i f restart is not achieved, is characterised by a 
short period of linear execution followed by a fur ther 
erroneous j u m p . Figures 6 suggests that the enhanced 
code wi th embedded signatures wi l l have the longest pe
riod of linear execution, followed by the code wi th detec
t ion mechanism placement, and then the original code. 
I f the first phase of erroneous behaviour is longer than 
three instructions then the performance of the enhanced 
code need not necessarily be reduced. However, i t is only 
when the effects of SEJ are taken into account that the 
overall improvement is clearly apparent. 

6.2 Phase 2 Observations 

The execution histories for the original code, the 
code w i t h detection mechanism placement, and the em
bedded signature code, are shown in Figures 8, 9, and 
10 respectively. These results are for execution histories 
following a Subsequent Erroneous Jump. 

Some SEJ destinations cannot be determined due to 
their use of data which is only specified at run-time. In 
such instances, for analysis purposes, the destinations 
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, o LINEAR 
[ERRONEOUS 

EXECUTION 

0.8 

u.0.6 o 

GO 
CD 
o ex 

"0.2 

0.0 

RETURN 

UNSPECIF ED JUMP 

RESTART 

0 1 2 3 4 5 6 7 8 9 10 
INSTRUCTIONS EXECUTED 

1.0 

.0.8 

u.0.6 

= 0.4 
GQ 
< m o a. 
^ 0 . 2 

0.0 

LINEAR 
ERRONEOUS 
EXECUTION 

RETURN 

UNSPECIFIED JUMP 

RESTART 

0 1 2 3 4 5 6 7 8 9 10 
INSTRUCTIONS EXECUTED 

Figure 8 : Execution History Following S E J 
( Original Code )f. 

Figure 9 : Execution History Following S E J 
( Code with Detection Mechanisms )f. 

are assumed to be random. This is important in es
timating the proportion of S E J destinations which lie 
outside the used area', or at an odd address, and which 
affect the probability of restart. 

The effect of placing detection mechanisms is clearly 
demonstrated by the increased probability of restart as 
shown in Figure 9 compared to the original code shown 
in Figure 8. 

In the case of the signature method, an S E J by an 
attempted execution of an operand will not complete its 
operation because of the hardware detection circuitry. 
On the other hand an S E J by an attempted execution 
of an op-code results in re-synchronisation with the pro
gram flow. 

6.3 Recovery Performance 

Recovery is assumed to be achieved through -
start type instruction directing the program flow to 
recovery routine. 

The absolute probability of restart can be calculated 
from the information held in both the execution histories 
for erroneous exceution following an I E J and S E J . Let 
Pjtr(k) be the absolute probability of restart after k 
instructions processed following an I E J . Let Iftr(k) and 
l j ( k ) be the probabilities of restart and, jump without 
restart, after k instructions processed following an I E J . 
Let Snr(k) and Sj(k) be the probabilities of restart 
and, jump without restart, after k instructions processed 
follwing an S E J . Finally, let n, x, y, and z be instruction 
indicies. 

a re-

PRT(U>) = 

/ «TH + 1 1 1 {'•/(*)• ft S y ( y n ) . S * r ( * ) } (3) 

where i + £ n yn + z = ui, and n, x,y,z > 0. 

The absolute probability of restart for the different 
enhanced versions of the program are shown in Fig
ure 11. The performance of the P A R U T generated code 
shows improvement over the original code after one or 
more instructions have been erroneous executed. The 
period of erroneous behaviour is reduced leading to a 
smaller probability of data corruption. This in turn 
will improve availability, and reduce the chance of catas
trophic failure. 

Absolute probabilities of restart tends to a value less 
than 100% because of the probability of ^synchronisa
tion with the program flow. If resynchronisation occurs, 
complementary recovery techniques are required ( 15, 
16] . 

6.4 Overheads 

Detection mechanism placement incurs a memory 
overhead. This overhead is clearly demonstrated in the 
reduced initial probability of recovery through restart 
for erroneous behaviour following an I E J , see Figure 6. 
Examination of Figure 11 reveals how this initially re
duces the absolute probability of restart of the P A R U T 
enhanced code compared to the original code. However 
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.0.8 
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0.2 

0.0 

LINEAR 
ERRONEOUS 
EXECUriON 

RETURN 

UNSPECIFIED JUMP 

1 2 3 4 5 6 7 8 
INSTRUCTIONS EXECUTED 

10 

Figure 10 : Execution History Following S E J 
( Signatured Code )f. 

we note in Figure 11 that the performance of the en
hanced code improves due to the increased probability 
of restart following a S E J produced by detection mech
anism placement, see Figure 9. 

The execution of the detection mechanism jumps 
over the seeds, during correct program flow, will incur a 
small processing overhead. The influence of this on the 
program performance is code dependant. 

1.0000 

0. 9998 

ERRONEOUS 
EXECUTION 

0. 9996 

u. 0.9994 

QQ 0. 9992 

0. 9990 KEY 
ORIGINAL 

v DETECTION MECHANISM 
a SIGNATURE 

0.0 

2 3 4 5 6 7 8 
INSTRUCTIONS EXECUTED 

Figure 11 : Absolute Probability of Restart 
During Erroneous Execution. 

10 

7. D I S C U S S I O N 

The method described in this paper for improving 
the transient fault recovery capability is valuable for ap
plications which require a high degree of dependability 
or which are safety critical. 

The microprocessor model described above can be 
extended to other types of microprocessors [ 11, 12 ]. 
The design tool P A R U T is based on this model and is 
therefore widely applicable. 

The recovery technique used for erroneous execution 
following an I E J requires the unused area to have a 100% 
detection capability during the processing of the initial 
instruction. In the case of the Motorola 68000 micro
processor, this can be achieved by additional circuitry 
that detects whether invalid address lines have been ac
tivated, and if so, impresses a bus error exception signal 
to the microprocessor. This is acceptable if the used 
area forms a contiguous block in the memory map. If 
it does not, then bus-biassing can be used so that the 
quiescent bus value is loaded to represent an exception 
instruction format. 

One of the major advantages of the detection mech
anism placement is seen in the software development 
cycle. As a post-programming technique, this approach 
does not constrain the initial software, and the program
mer need not be aware of its subsequent application. 
There is no pre-requisite programming requirement, and 
the original language of the software is immaterial be
cause the utility is applied to the machine code. The 
method has wide application, existing software can be 
processed as a maintenance up-grade, or new software 
processed for immediate enhancement. 

The use of the utility is proposed as part of an over
all fault-tolerant strategy, an addition to and not a re
placement for, other software and hardware techniques. 
Watchdogs alone would permit recovery after some in
terrupt interval, but the intervening period could con
sist of prolonged erroneous behaviour. The method pro
posed here reduces the mean period of erroneous be
haviour and hence decreases the probability of catas
trophic failure. 
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8. C O N C L U S I O N S 

It has been shown that the injection of exception 
generating mechanisms into the machine code of a pro
gram can enhance the probability of recovery following a 
transient disturbance. This technique provides coverage 
for transient events which cause erroneous jumps into 
the program code. A particular program example shows 
performance improvement without the need for complex 
additional hardware. The technique is implemented by 
a software utility, P A R U T , applied to existing program 
code. The method is therefore transparent to the pro
grammer. The utility can be used to investigate other 
techniques of fault coverage, and can form part of an 
overall design strategy for reliable digital controllers. 
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F A U L T T O L E R A N C E F O R MICROPROCESSOR-BASED 
C O N T R O L L E R S SUSCEPTABLE T O T R A N S I E N T D I S T U R B A N C E S 

G.A.S. Wingate & C. Preece 

Abstract 

This paper outlines the design of a microprocessor based controller with fault tolerance from 
transient disturbances. Such events can cause erroneous jumps within executing software. Fault 
tolerance is achieved through automatic enhancement of the application software. Performance 
issues are briefly discussed. 

1. In t roduc t ion 

Industrial controllers for monitoring and control are often based on microprocessors. The 
versatility offered to design aspects, both hardware and software, make them attractive in many 
industrial situations. 

Operating conditions within industrial environments are often harsh. Transient disturbances 
such as mains power flucuations [1], and electro-magnetic radiation [2] may occur. Analogue 
systems effectively 'filter' these events without losing their control function by passing the 
transient event as a temporary signal discrepancy. Digital systems having a discrete nature are 
much more liable to lose all control function. Transients have been observed to cause between 80 
and 90% of digital system failures [3,4]. I t is important that digital systems should incorporate 
mechanisms for recovery from transient failures. . 

This paper considers those transient events which lead to corruption of bus information, 
memory contents, and register contents of a microprocessor system. Such corruption can induce 
erroneous behaviour whilst no permanent hardware damage occurs. If control of the micropro
cessor can be restored then overall system recovery is attainable. 

Most techniques available replicate hardware and/or software, involve particular program
ming style, or require complex dedicated hardware. All these techniques are expensive in design 
and/or construction and are generally tailored to individual applications. The technique de
scribed here consists of automated software enhancement transparent to the programmer. The 
technique is directly applicable to a range of microprocessor systems and involves the self-
detection of erroneous behaviour. 

2. Erroneous Behaviour 

We consider erroneous behaviour to be initiated by the corruption of the microprocessor's 
program counter. The erroneous behaviour produced by the microprocessor is characterised as 
a sequence of erroneous states terminated either by catastrophic failure or system recovery. 

Execution states can be defined in terms of the outcome of each operation [5]. The possible 
states are defined below. 

Erroneous execution may be within the used (program, data, or I/O reserved) area, or the 
unused area of the microprocessor address space. Recovery is attained through a restart state 
which vectors execution to a predefined memory location which holds the recovery routine. 

School of Engineering and Appl ied Science, 
Univers i ty of D u r h a m , D H l 3LE. England. 
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Non-Jump - leads to the program counter pointing to the location following a 
valid instruction. 

Restart - leads to a jump to a predefined location in the address space. 

Unspecified Jump - leads to a jump to a new location in the address space 
determined by local memory contents. 

Return - leads to a jump to an address held in a stack. 

Stop/Wait - leads to a cessation of processing ; and requires an interrupt or 
hardware reset to exit from this state. 

3. Detection Technique 

Erroneous execution can flow through both used and unused regions of the address space 
of a microprocessor system. Detection is based on the occurrence of a restart state during 
erroneous execution. Techniques for used and unused areas will now be presented. 

3.1. Unused Area Detection 

All execution within the unused area is defined to be erroneous and hence total detection 
coverage is required. Detection is achieved by ensuring all memory locations have the capability 
of generating restart state when accessed. Unused address space consisting of memory elements 
has every location filled with a restart outcome instruction [6]. Where there are no memory 
elements, a restart outcome is achieved through a simple hardware unit. This unit monitors the 
address bus and any illegal access results in the the unit developing an external reset for the 
microprocessor. The microprocessor will treat the external reset as a restart state. 

3.2. Used Area Detect ion 

Erroneous execution within the used area may flow through either program, data, or I /O 
reserved areas. Each will now be considered. 

Program areas consist of opcodes and operands. Erroneous processing of an opcode will 
follow a valid execution path which is out of phase with the desired execution flow. Fault 
tolerance can be introduced by implementing software techniques such as recovery blocks or 
assertion tests [7]. 

Erroneous processing of an operand as an instruction will lead to erroneous execution depen
dent upon local memory contents. Such erroneous execution will follow paths, unpredictable 
to the programmer, through memory, leading to a danger of catastrophic failure. To detect 
this mode of erroneous behaviour, mechanisms are placed within memory so that any operand 
processed as a jump instruction will have at its destination a restart outcome instruction. This 
means that any operand being interpreted as an instruction and developing an erroneous jump 
will be followed by a restart and hence recovery. A design tool PARUT (Post-programming 
Automated Recovery UTility) automates this process [8j. 

Data and I /O reserved areas cannot have their structure altered in the same manner as the 
program areas. Erroneous execution within these areas may be detected through a watchdog 
timer. 

4. Post-programming Automated Recovery U T i l i t y ( P A R U T ) 

A software tool called PARUT has been built to implement code enhancement. PARUT can 
provide automated code enhancement for a range of microprocessors. The tool works on machine 
code. There is no dependency on the original program language or pre-requisite programming 
style, hence the enhancement is transparent to the programmer. Enhancement may be provided 
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before software release or as a maintenance up-grade. 

The performance improvement can be quantified with the application of PARUT. This is 
described in Reference 8. Many other fault tolerant techniques have been suggested but few 
offer analyses of their performance. 

5. System Recovery 

System recovery is attained through execution of the recovery routine accessed by the de
tection restart states. This routine may implement a number of recovery mechanisms including 
roll-back, roll-forward, or cold-start. The choice of recovery method will often be determined 
by the specific application of the microprocessor based controller. 

6. Discussion 

Detection is statistically very rapid. Early results show that detection within 500ns (10 
instructions) has a likelihood of 99.9% [8]. A watchdog interval of 100ms, in a similar processor 
would permit approximately 2000 instructions to be erroneously processed before detection. 
Extended periods of erroneous execution increase the probability of catastrophic system mal
function. 

Traditional methods of fault tolerance for this class of failure have involved large redundancy, 
or complex dedicated hardware, both very expensive and specific to a particular microprocessor. 
The technique presented here is easily transferable to other microprocessors, and its implemen
tation, based on software, is automated. 
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F A U L T T O L E R A N C E FOR UNIPROCESSOR SYSTEMS 

Wingate , G.A.S. & Preece, C. 

School of Engineering and Appl ied Science 
Univers i ty of Durham 

1. I N T R O D U C T I O N 

Fault tolerance for system architectures is typically associated with multiple levels of 
redundancy, common examples are duplex, triplex, and quadruplex. Such system architectures 
are sometimes referred to as NMR (N-Modular Redundancy). Duplex systems can identify 
the module in error and switch to continue processing on the standby module. NMR systems, 
of a higher or than duplex, mask errant modules. Whilst these architectures offer very high 
reliability, their application also incurs in excess of 100% redundancy. The associated cost of 
this overhead may be significant and perhaps unacceptable for low budget systems. In such 
situations a uniprocessor fault tolerant approach may be appropriate. 

2. FAULTS A N D F A I L U R E S 

A significant hazard for all processor systems is that of temporary fault generation. Tem
porary faults, unlike permanent faults, incur no physical damage and have a limited duration 
and hence system recovery is possible without physical repair. Studies have suggested that 
temporary faults cause between 10 and 50 times more processor system failures than perma
nent faults. 

Temporary faults can be classified as tmnsient or intermittent. Transient faults occur 
unpredicably and are generated by environmental influences on the processor system such as 
electro-magnetic radiation, alpha-particles, power supply disturbances, and radio-frequency 
interference. Intermittent faults are recurring temporary faults and are indicative of imminent 
permanent fault generation. 

3. C A P A B I L I T Y C H E C K I N G 

Namjoo & McCluskey [1982] first used the term 'capability checking' to describe a sell-
detection scheme that could be implemented by a uniprocessor system to identify errant pro
cessing. Since then, it has become evident in the literature that the collective application 
of a selection of capability checks provides the best method of achieving a highly reliable 
uniprocessor system. 

The fault tolerant techniques proposed for capability checking in uniprocessor systems 
employ various strategies to detect erroneous processing. The strategies are based on the 
identification of different processing characteristics associated with erroneous behaviour. Im
plementation of these techniques incurs an overhead, physical (software and/or hardware) 
and/or processing (time). The various capability checks reported in the literature are sum
marised below.. 

Clive Preece is and Guy Wingate was formerly with the School of Engineering and Applied 
Science, University of Durham. Guy Wingato is now with ICI Engineering (Improved Manu
facturing Systems Technology Group), Chilton Mouse, Billingham, Cleveland. 
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A . Watchdog T imer 

This is one of the most basic fault tolerant techniques, and involves a dedicated hardware 
unit called a 'watchdog timer'. The watchdog timer is incorporated into the processor system 
in such a way that failure of the processor to reset the watchdog tinier periodically will result in 
the watchdog sending an alarm signal, representing indentified failure, back to the processor. 
Watchdog timers incur a small switching overhead. A disadvantage of the watchdog tinier as 
a stand-alone technique is that the timer interval to detection can allow many hundreds of 
instructions to be processed haphazardly. The length and effect of this period of malfunction 
vary will vary between individual processor types and their applications. 

B . Fetch Inval id Ins t ruc t ion 

Most processor architectures have defined and undefined instruction opcodes. Some in
struction sets, however, do not specify the action of their undefined instructions which may or 
may not have an operation. Two good examples are the Motorola 68000 in which all possible 
instruction opcodes have a specified operation, and the Intel 8085 which does not specify all its 
opcodes of which some undefined opcodes have useful operations (Denhardt, 1979]. In order 
to prevent the execution of an opcode of unknown operation, only defined instruction fetches 
should be allowed - all illegal instruction fetches should be detected. This technique requires 
additional decoder circuitry to be added to the uniprocessor system, 

C. Inval id Opcode Address 

Glaser & Masson [1982] proposed a SAFE ROM whereby an extra memory-bit is attached 
to each memory unit (usually a byte) to signify usage as an opcode of operand. Interpretation 
of an instruction activates decoding of the 'usage' bit and if the location is not specified as an 
opcode then erroneous processing is assumed to have been identified. The technique incurs 
a memory overhead and additional circuitry to decode the extra memory-bit. Furthermore, 
the techniques cannot be implemeneted in those locations in the address space implementing 
Random Access Memory (RAM) or non-existant memory. 

D . Inval id R e a d / W r i t e W i t h i n Permi t ted Memory 

A dedicated hardware unit can be embedded within the processor system to ensures that 
a read is not made from a write only address, eg. a specified output port, or that a write is 
made to a read only address, eg. a Read Only Memory (ROM) location. 

E. Unused M e m o r y Access & Non-Exis tunt Memory Access 

A commonly used technique involves additional circuitry to check that the address bus 
does not carry signals accessing unused locations of physical memory or addresses without 
resident physical memory in the address space. 

F. Inval id Branch 

An invalid branch involves the incorrect interpretation of an instruction as a branch and 
should not be confused with interpreting a valid branch instruction whose destination is in
correct. A technique has been proposed by Wingate & Preece [1989] in which software de
tection blocks are strategically placed within the application code at locations identified as 
destinations of invalid branch instructions. A complementary hardware unit called an Access 
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Guardian detects unpermitted memory access in parts of the address space not implenieneted 
in physical memory. 

G. Incorrect Sequence of Instruct ions 

This method, commonly referred to a 'signature analysis', assigns tag values on a cyclic en
coding of instruction sequences which are inserted within the software before implementation. 
Additional circuitry monitors the tags in tin* software, comparing the tag with a hardware 
generated tag. A favourable comparison verifies execution, whilst a mis-match of tag values 
signifies the identification of erroneous behaviour. A good review of this approach can be 
found in Mahmood k McCluskey [1988]. 

4. E F F E C T I V E N E S S 

The effectiveness of the fault tolerant techniques can be assessed using two parameters, 
fault coverage and fault latency. Fault coverage is derived from fault insertion experiments 
(injection, emulation, or simulation) expressing the percentage of faults detected. Fault latency 
describes the time interval that passes between the fault insertion and its detection. 

4 .1 . Fault Coverage 

Schmid et al [1982] identified erroneous program flow as the most prominent exposure 
feature of uniprocessor failure induced by a fault. They evaluated the individual performance 
of some of the techniques outlined above. The three most successful techniques, during fault 
simulations on the Z80 microprocessor, with 03%, 58%, and 56% fault coverage respectively 
were those based on detecting incorrect sequences of instructions, invalid opcodes, and unused 
memory access. Similar results are reported by Gunneflo et al [1989] and Li et al [1981] for 
the Z80 and SBR9000 processors respectively. 

The reliability of a uniprocessor system can bo improved by collectively applying several 
techniques. Table 1 collates data from three experiments evaluating different combinations 
of uniprocessor fault tolerant techniques. The fault coverage of the combinations is only an 
indication of the performance. There will be sonic variation in the results due to different 
methods of fault injection employed by the authors. 

Source Techniques Employed Fault Coverage 

Schmid et al [1982] 

Gunnelfo et al [1989] 

Madiera et al [1990] 

D, C, D, E, G 

C, D, E. G. 

A, a, D, E 

73% 

79% 

75% 

Table 1: Collective Appl ica t ion of Capability Checks 
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The overall fault coverage might appear low, but some account must be made for benign 
faults and those faults which generate data value errors and do not disrupt normal program 
action. 

4.2. Fault Latency 

Arlat et al [1990] describe a bimodal distribution of fault latencies, ie. there are two or 
more distinct classes of error manifestation. Cliillarge ic Bowen [1989] identify some faults to 
be dormant, such as stack corruption requiring particular processor activity to exercise the 
fault, whilst other faults induce 'fast failure'. It is therefore important that error detection be 
provided with a minimal fault latency in order to detect faults that would otherwise generate 
a 'fast failure'. 

The fault tolerant techniques outlined above have a short fault latency, eg. the incorrect 
instruction sequence detection reported by Schiuid ct al [1982] ocurred with a mean latency 
of 8 p.s. The precise latencies for each fault tolerant technique will vary depending on their 
host uniprocessor. 

The collective application of a selection of fault tolerant techniques, whilst improving the 
fault coverage, incur a higher mean detection latency. Assessment of the detection latency is 
application specific, further details can be found in the references given in Table 1. 

5. F U T U R E W O R K 

Future work is needed to compare the individual and collective effectiveness of all the 
capability checks listed in this paper. This will facilitate the assessment of the benefits of 
strategically applying particular selections of capability checks to a uniprocessor application 
and the overheads they incur. 

6. C O N C L U S I O N 

Processes or equipment that require low budget and yet reliable control can utilise fault 
tolerant uniprocessor systems. Such systems have high reliability without the order of mag
nitude redundancy associated with NMR architectures. Reliability can be further improved 
by implementing fault tolerant techniques, but this has the effect of increaseing fault latency. 
Nevertheless, fault latency is much less than that introduced by stand-alone watchdog timers 
traditionally associated with uniprocessor systems. In many industrial applications fault la
tency is not a critical factor because the equipment or process under control has a response 
time much longer than the fault latency. 
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A N A L Y S I S O F F A I L U R E D A T A C O L L E C T E D F R O M A 

T M R M I C R O P R O C E S S O R C O N T R O L L E R 

Guy A.S . Wingate* and Clive Preece 
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Experimental failure data has been collected over two operational periods, each in excess 

of one year's duration, from a Triple Modular Redundancy ( T M R ) microprocessor controller 

based on the Intel 8085. Failures of embedded microprocessors are diagnosed as due to either 

temporary or permanent faults. There are few published studies covering temporary fault 

analysis of microprocessor failures; the research reported here is a valuable addition. Failures 

attributed to temporary faults are observed to occur approximately 40 times more frequently 

than those attributed to permanent faults. Further analysis of each data set reveals a very good 

correlation (0.992 and 0.995) to a constant failure rate, which is associated with an exponential 

inter-arrival distribution. T h i s paper will be of interest to reliability engineers considering 

aspects of operational microprocessor system reliability. 

1. I N T R O D U C T I O N 

Microprocessor failures can be diagnosed as due to 

either permanent or temporary faults [9j. Permanent 

faults are physical defects, whilst temporary faults have 

a limited duration asci do not incur physical damage. 

Temporary faults are often divided within the literature 

into transient and intermittent classes. Transient faults 

occur unpredictably and are attributed to temporary en

vironmental conditions such as electrical power distur

bances, electro-magnetic interference, radio-frequency 

interference, electro-static discharge, and alpha-particle 

radiation. Intermittent faults are recurring temporary 

faults and are associated with the imminent creation of 

a permanent fault (wear-out phenomena), or are faults 

whose activation is pattern sensitive. 

Reliability engineers have observed electrical sys-

* G . A . S . Wingate is now with I C I Engineering (Computer 

Aided Production), Chilton House, Billingham, Cleveland. 

U . K . 

tems to exhibit a time dependent failure rate, referred to 

as the hazard rate, Z(t). T h e Weibull function is widely 

used to describe the hazard rate as it varies during a 

systems lifetime (known as the 'Bathtub Curve') . T h e 

function is 

Zit) = ^ . t " - 1 (1.) 

where a and 0 are known as the scale and shape param

eters respectively. 

The Bathtub Curve divides the lifetime of an elec

tronic system into three phases. Firstly, the 'burn-in' 

phase involves the indentification of premature faults 

and is modelled by 0 < 1 : hazard rate decreases. Sec

ondly, the 'useful period' is marked by unpredictable 

faults, induced by component ageing and/or environ

mental stress, and is modelled by 0 = 1 : constant 

hazard rate. A constant failure rate is a special case of 

the Weibull function implying an exponential distribu

tion of inter-arrival failure times. Finally, the 'wear-out' 

phase occurs when faults due to component degrada-
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2. D E S C R I P T I O N O F M I C R O P R O C E S S O R 

C O N T R O L L E R 

Failure data was collected from a T M R micropro

cessor system, based on the Intel 8085, used to control 

a gas governor system. T h e microprocessor system, see 

Figure 1., was designed and implemented by Pearson [8], 

and is briefly reviewed below. 

T h e T M R architecture provides fault tolerance for 

embedded processor failures. A voter is implemented 

which compares thirty bus channel signals from each 

processor every 3 /is. The voter outputs the majority 

agreed value for each signal. Hence, the correct output 

is guaranteed when not more than one processor fails. 

The voter implemented by Pearson has additional cir

cuitry which identifies single errant processors, the di

agnosis being output on two error flag signals. When 

more than one processor fails concurrently, the majority 

decision process breaks down, and the voter outputs a 

signal to indicate voting failure. Some processor failures 

require multiple reset attempts (every 3/is), however, if 

more than 100 reset attempts are required a steady state 

failure is assumed to have occured. The voter can oper

ate at a maximum speed of 3 MHz and is the primary 

constraint on the microprocessor controller's operational 

speed, the Intel 8085 microprocessor being capable of 

operating at 8 MHz. 

System Source Processor Technology Detection 
Mechanism 

Hours 
Observed 

Mean Tune To Failure (Hours) Temporary 
Faults (%) 

System Source Processor Technology Detection 
Mechanism 

Hours 
Observed 

Temporary 
Faults 

Permanent 
Faults 

Temporary 
Faults (%) 

CMUA Fuller & Harbison PDP-10 E C L Parity 5700 44 800-1600 94.8 - 97.3 
[2] 

Parity 

Cm' Siewiorek et al, LSI-11 NMOS Diagnostics 15000 128 4200 97.0 
(10) 

Diagnostics 

C.vmp Siewiorek et al, TMRLSI- NMOS Crash 15000 97-328 4900 93.7 -98.1 
[U] 11 

Telettra Morganti et al, [7] UDET T T L Mismatch N/A 80-170' 1300 88.4 - 94.2 
7116 

SLAC Iyer & Rossetli N/A N/A Diagnostics 26000 58 2300 97.5" 
[3] 

Diagnostics 

CMU- Lin & Siewiorek, MC NMOS Diagnosis 212800"*' 201 6552 97.3 
AFS [5] 68010/20 

Diagnosis 

Notes: • Reported by McConnel [61 
** From which 85* were recovered 
° * * 13 applications monitored over 22 months 

Table 1. : Observed Temporary & Permanent Faults 

tion become increasingly significant compared with use

ful period faults, and is modelled by 0 > 1 : hazard rate 

increases. 

Temporary faults have a significant influence on mi

croprocessor system reliability. A selection of monitored 

processor systems have shown that temporary faults 

are responsible for between 90 and 98% of system fail

ures, see Table 1. In addition, temporary faults have 

been observed to occur as frequently as once every 100 

hours during continuous operation. Microprocessor fail

ure data collated by McConnel [6] and reported by Lin 

k Siewiorek [5] exhibits a Wiebull inter-arrival distribu

tion with a decreasing hazard rate for failures attributed 

to temporary faults. 

Microprocessor '1' 
Output 30 Signals 

Microprocessor '2' 
Output 30 Signals 

Microprocessor '3' 
Output 30 Signals 

Microprocessor 
Signals 

Error Rags 
-c»ldentifying 

Errant Processor 

Figure 1. : T M R Controller 
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Analysis of failure data collected Irom a TMR microprocessor controller 863 

In addition, the microprocessor controller imple

ments self-synchronising clock signals for the embedded 

microprocessors, a common reset signal, Random Access 

Memory ( R A M ) with code protection, Read Only Mem

ory ( R O M ) duplicated - the reserve copy being selected 

by a watchdog timer, and an uninterruptable power sup

ply-

Dale 
(Day:Monlh) " 

Voter 
O e t e c t i o n 

Further 
Diagnosis 
I n l o r m a t i o n 

D A T E 07:06 HR 15:03 
V E C T O R E D R E C O V E R Y 
SYNO=F8 RETRIES=03 " 

f S Y N C E R R CHANNEL 02 

Time 
" (24 Hours) 

Number of 
" R e t r i e s 

Idemil ied 
' Errant 

P r o c e s s o r 

Figure 2. : Example of Diagnosis Printout 

3. D A T A C O L L E C T I O N 

The microprocessor controller was in continuous op

eration from October 1983 to February 1985, and from 

June 1989 to July 1990. During these periods the con

troller retained operation through the automatic activa

tion of fault tolerant mechanisms implemented by the 

system. Failure of the fault tolerant mechanisms re

sulted in a crash outcome. Instances of automatic re

covery are assumed to restore a temporary fault con

dition because the failure incurred no physical dam

age. Crashes require operator intervention for recovery, 

via manual reset or repair, and hence because of their 

steady state failure condition are attributed to perma

nent faults. 

T h e controller self-diagnoses failures from which sys

tem integrity can automatically be restored. Self-diag

nosis information is output by the controller on an at

tached dedicated printer. A typical print-out is shown in 

Figure 2. The print-out shows the date and time of the 

incident, the identified errant processor, and the number 

of sequential reset attempts required to secure restored 

system operation. 

T h e collected 1983/85 failure data was recorded over 

12299 hours, noted 3 permanent faults and 79 tempo

rary faults, and is referred to as data set 'A' . Similarly, 

the 1989/90 failure data is referred to as data set ' B ' 

and recorded 3 permanent and 80 temporary faults in

ducing failure over 9360 hours. In both failure data sets, 

temporary faults are diagnosed as responsible for 96.3% 

of controller failures. 

4. D A T A A N A L Y S I S 

The analysis of temporary fault failure sets 'A' and 
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Figure 3. : Collected Fai lure Data Set 'A' 
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' B ' are shown in Figures 3. and 4. respectively. Each fig

ure has three graphs: (a) showing the cumulative num

ber of events against operational time; (b) the failure 

time of each event as they occurred; and (c) the inter-

arrival failure time distribution of the events. 

4.1. F a i l u r e O c c u r r e n c e 

The observed failures caused by temporary faults 

are shown in Figures 3(a). and 4(a). for data sets 'A' 

and ' B ' respectively. It is interesting to notice the step 

function in these figures, particularly of data set 'A' . 

The three steps of higher failure rate ocurrence in data 

set A are recorded for the months of December 1983, 

July 1984, and December 1984. T h e steps are harder 

to distinguish for data set ' B ' , but occur at the sim

ilar months of December 1989 and May 1990. Other 

processor systems have been observed to have a work

load dependent failure rate [3, 4j. Th i s , however, does 

not explain the observed failure rate step function for 

the T M R controller because its workload is deemed to 

be constant. T h e method of L i n and Siewiorek [5] ap

plies Dispersion Frame Technique ( D F T ) to processor 

system failure data and observes an increased hazard 

rate associated with a intermittent fault. Such an ob

servation does not fit the T M R controller data because 

the steps of increased failure rate do not terminate with 

a failure attributed to a permanent fault. A n alterna-

77 

70 
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0 

live explanation is that the failure rate is dependent on 

some external environmental influence but this sugges

tion cannot be substantiated. 

Analysing linear regresssion on the whole of each 

failure data set still yields a very good correlation to 

a constant failure rate, \m, despite the observed step 

function. Failure data sets 'A' and ' B ' yield Mean Time 

To Failure ( M T T F ) parameters Xm of similar magni

tude, 157.7 hours and 112.0 hours respectively. This 

compares favourably with the sample data M T T F of 

147.8 hours and 117.6 hours for data sets A and B. T a 

ble 2 summarises the linear regression analysis on the 

whole of each failure data set. 

4.2. M T T F D i s t r i b u t i o n 

The inter-arrival times of failures diagnosed as due 

to temporary faults are shown in their sequential order 

of occurrence for failure data sets 'A' and ' B ' in Fig

ures 3(b). and 4(b). respectively. The plots suggest 

a memoryless failure mechanism because the scatter ot 

inter-arrival failure times appears unchanged through

out the observed periods of controller operation. 

A histogram distribution of the inter-arrival times 

for failures attributed to temporary faults for data sets 

'A' and ' B ' are shown in Figures 3(c). and 4(c). respec

tively. Histogram bars represent the number of failures 
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that occur within sequential time intervals following the 

last failure event. The intervals, A , for the histogram, 

distribution plot are calculated using the following equa

tion from Lewis (4): 

A = r [ l + 3.3loyio{Ni)]~l (2.) 

where A is considered to be a 'reasonable' interval, r 

is the range of values taken by the data, and Nt is the 

number of data items under analysis. 

As, A is not usually a convenient value for plotting 

a histogram an approximate value A ' is chosen. Table 

3. summarises the A derivations and the choice of A' . 

The histogram interval for data set 'A' and ' B ' is 80 and 

70 hours respectively. 

T h e distributions for data sets 'A' and 'B ' , yielding 

a correlation of 0.969 and 0.956 respectively with the 

Draper & Smith [lj non-linear regression method, are 

modelled by, 

-y.exp{-XLR.t} (3.) 

where 7 is given by, 

7 = Atfl./V-j.A' (4.) 

T h e exponential distribution of the failure data val

idates the memoryless characteristic observation made 

earlier for the inter-arrival failure times. 

4.3. C o n t r o l l e r U n a v a i l a b i l i t y 

Some detected failures were only successfully recov

ered after multiple attempts (every 3 (is) to restore con

troller operation. Table 4 gives the down time distri

bution for the failures from which automatic recovery 

was achieved. Multiple attempts to restore the system 

integrity implies that the temporary fault causing the 

failure was still active when recovery action was initi

ated. Alternatively, a burst of temporary faults may 

have occurred. The nature of the collected failure data 

prevents further analysis or postulation. 

Failure r (hours) Nj (hours) A (hours) A' (hours) 
Data Set 

A 600 79 82.6 80 
B 500 80 68.7 70 

Table 3. : Histogram Distribution Interval 

Down Time Number of Failures 

Data Set 'A' Data Set ' B ' 

0 - 3 59 61 

3 - 6 20 17 

6 — 9 0 1 

9 — 1 2 0 0 

12 — 15 0 0 

15 — 18 0 1 

18 — 00 0 0 

T a b l e 4. : F a i l u r e I n d u c e d U n a v a i l a b i l i t y 

Failure Linear Regression Data Sample 
Data Set 

Xm (hrs"1) MTTF(hrs) Correlation X s(hr.,-') MTTF (hrs) 

A 0.00634 157.7 0.992 0.00676 147.8 
B 0.00893 112.0 0.995 0.00850 117.6 

Table 2 . : L inear Regression Analysis 
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Figure 5 : Probability Density Function 

5. R E L I A B I L I T Y A S S E S S M E N T 

Siewiorek At Swarz (9) describe four evaluation pa

rameters and their inter-relationship for failure distri

bution analysis: probability density function (pdf) , cu

mulative density function (Cdf), reliability, and hazard 

function. Pdf, ' f ( t ) ' , defines the probability of a failure 

occuring at a specific time. Cdf, 'F ( t ) ' , defines the prob

ability of failure occuring at or before a specific duration 

of operation. Reliability, '/?(()', is the probability of not 

observing a failure before a specific duration of opera

tion. Finally, the hazard function, 'Z(t)\ is defined as 

the time dependent failure rate. Within this experiment 

the hazard function appears time independent, denoted 

by the constant X, hence equation (1.) becomes, 

Z{t) = A (5, 

Basic reliability theory gives the following parameter re

lationship, 

F(t) = 1 - R(t) (6.: 
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0.6 

: 0.5 

0.4 

0.3 

0.2 

0. I 

0.0 

Z(t ) = 

0 100 200 300 400 500 600 

TIME (HOURS) 

Solid line : from Data Set 'A' 
Broken line : from Data Set 'B' 

Figure 6 : Cumulative Density Function 

m 
R(t) 

(7.) 

The probability density function is given by convert

ing the time intervals, used by the experimental results 

histogram, in equation (3.) into a general time parame

ter, 

/(*) = ^LRexp{-XLR.t} (8.) 

Reliability is evaluated using equation (7.), 

R(t) = exP{-\LR-t} (9.) 

and the cumulative density function is evaluated from 

equation (6.), 

F(t)= l-exp{-\LR.t} (10.) 

The performance parameters of pdf, Cdf, and relia

bility are evaluated for failures attributed to temporary 

faults and are plotted in Figures 5., 6., and 7. respec

tively. In each graph, data set ' A ' evaluations are shown 
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Figure 7 : Reliability 

as solid lines and data set ' B ' as broken lines. The pdf 

plot presents the inter-arrival failure times modelled for 

the two data sets in Figure 3(G ) . and 4(c). Data set 

'B ' exhibits a higher failure rate than data set ' A ' which 

may be due to the aging of the controller or varying 

working conditions. Figure 6. plots the Cdf for each 

data set, ie the running sum of the pdf coefficients, and 

clearly shows the higher failure rate observed for data 

set 'B ' . The effect of the observed failure rates on the 

controller reliability for each data set is shown in Figure 

7. Data set 'A ' with the lower failure rate has a higher 

reliability. 

6. D I S C U S S I O N 

The aim of the work was to observe the effects of 

temporary faults on a real control system. The results 

presented add to the limited body of published data in 

this area. The failure history of a TMR microprocessor 

controller has been collected over a 17 and a 13 month 

period. During each period approximately 80 failures 

occurred, of which 96% were diagnosed as due to tem

porary rather than permanent faults. The inter-arrival 

time of the failures, attributed to temporary faults, fol

lows an exponential distribution. This observation sug

gests that the controller was operated during its use

ful period as specified by the Bathtub Curve commonly 

used by reliability engineers. These results demonstrate 

the validity of modelling the effects of temporary faults 

using techniques developed for permanent fault mod

elling, with constant hazard rates. 
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ERRATA: 

Three typo-graphical errors appear in the above paper. Mean and Standard Deviation 

are incorrectly marked on Figure 4b & 5b: the values given there should be ignored. 

Table 3 should mark as an integer. Correlation in Figure 4a should read '0.995'. 


