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A B S T R A C T 

Quasi-Integrable Models in (2+1) Dimensions 

Maker Rashid 

Recently cr-models have received a lot of attention for many reasons. One interesting 

aspect of the C P " sigma models is the fact they are the simplest Loreiitz invariant models 

which possess topologically stable (minimum of the action) solutions in (2+0) dimensions. 

Unfortunately, i t appears that Lorentz covariance and integrability are incompatable in 

(2+1) dimensions. 

In the literature a few integrable models were constructed in (2+1) dimensions at 

the expense of Lorentz invariance {e.g. modified chiral model,...). An alternative way to 

proceed is to retain Lorentz invariance and relax the property of integrability by replacing 

i t w i t h a new property of quasi-integrability. 

Zakrzewski and others have constructed an example of such quasi-integrable models. 

Their example is based on the CP^ model modified by the addition of two stabilising 

terms (the first called the "Skyrme-like" term and the second the "potential-like" term) 

to the basic Lagrangian. In this thesis we have addressed the following relevant questions: 

How unique is this model? What are the properties of its static structures (skyrmions)? 

Is i t possible to generalise this model? Is quasi-integrabilty, as a property, shared by all 

C P " models, or i t is only restricted to the CP^ model? 

I t turns out that the first stabihsing term (i.e the Skyrme-like term) is only unique 

for CP^ model and this uniqueness does not survive the generalisations to larger coset 

spaces, say, CP^. The second stabilising term is not unique. By taking advantage of 

this observation, i.e arbitrariness of the potential term, a generalisation of Zakrzewski's 

model has become possible. Most important of all is the fact that all the C P " models are 

quasi-integrable provided one incurs the size instabilities of their soliton solutions. 
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I . INTRODUCTION 

I t is unanimously agreed that non-Abelian gauge theories are at the heart of particle 

dynamics. For example, the electroweak forces are described by the U{1) x SU{2)L gauge 

theory. Likewise strong interactions, though there are some fundamental difficulties yet 

to be resolved, are best described by the SU(3)c gauge theory. To get a taste of the 

technical difficulties associated wi th the non-AbeUan gauge theories let us consider the 

example of a SU{2) gauge theory in (3+1) dimensions which is defined by the following 

Lagrangian 

L = Ur{F^F\ (1.1) 

w i t h F being the coefficient of a Lie algebra-valued curvature two form, which is given in 

terms of the one form connection A as 

F ^ D{A) = dA^ A^A. (1.2) 

Most of the quantities we are interested in , after making a Wick rotation, are given 

in terms of functional integrals of the form 

j Z ) [y i , , ] exp- / ' ^^^^^ ' ' )C(y l , , ) , (1.3) 

w i t h 0[A^) being some function of the fields A^. Unfortunately in most cases we are 

not able to compute analytically the above integrals, which prevents us f rom making any 

further progress wi th these theories at least at the nonperturbative level. However, one 

approach to the evaluation of the above integrals is to resort to numerical simulations; 

which is part of the reason for the strong interest in lattice field theory. 

On the other hand one can t ry the so called quantum fluctuations approach which 

is based on an expansion around the stationary points of the EucUdeanised action of the 

theory and then quantum perturbation theory of the resulting effective theory. Therefore, 

i f we are to take this option seriously, we have to determine first all the stationary points 

of the action. But these are just the solutions of the Euclidean equations of motion. Thus, 
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i f we apply the variational principle to the Lagrangian given by (1.1), we get 

D*F = 0, (1.4) 

or in terms of local coordinate indices, 

V = V + ^M^] = 0. (1-5) 

where 

V = ^^^A^ - dyA,, + [A^, ^ ^ ] . (1.6) 

However, these are highly nonlinear second order equations in A^. Taking advantage of 

the Bianchi identity i.e. 

DF = 0, (1.7) 

one can show that a subclass of solutions of the equations of motion (1.5) is provided by 

the solutions to the first order equations 

F = ±*F (1.8) 

which are known as the "self-duality"(antiself-duality) equations. These equations stem 

f rom a Bogomolny bound on the energy density of the model. In fact the Bogomolny 

condition reads 

L = ± g , (1.9) 

where Q is given by 

Q = tr{FA*F). (1.10) 

When we integrate the charge density (1.10) over all of space-time we obtain the (unnor-

malised) topological charge of the given field configuration. 

The most interesting solutions of the "self-duality" equations are those for which the 

action is finite as i t is only for these solutions that perturbation theory makes sense. A l l 

finite action solutions of (1.8) have been determined by Atiyah and et al'''' . In the 

case of the plus (minus) sign in (1.8), the corresponding finite energy solutions are called 

instantons (anti-instantons). Because these solutions are absolute minima of the action, 

they are stable under fluctuations. 
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Calculating fluctuations around the instanton solutions of the equations of motion has 
turned out to be a hard problem. Hence, due to the complexity of non-Abelian gauge 
theories in 4 dimensions, people started to look at models in lower dimensions which 
share many features wi th the 4 dimensional theories. Many of such models have been 
constructed in (2+0) dimensions; here I am going to list some of them, such as: The 0{n) 
nonlinear a-models, the principal chiral models U{n), the projective space CP"' models 
and their non-Abelian generalisations i.e. Grassmannian models G,i„i((D). 

A l l the above mentioned models are in many respects similar to the four dimensional 

non-Abelian theories. A t the classical level they share wi th the non-abelian 4 dimensional 

theories the topological nontriviali ty of the space of solutions; they are geometrical in 

origin and they possess conformal invariance. A t the quantum level, i t is the dynamical 

mass generation and asymptotic freedom that are common aspects to both classes of 

theories. 

The importance of low dimensional cr-models extends to many diverse disciplines. 

Since the low dimensional cr-models, f rom the point of view of performing computations, 

are easier to handle, they have been a test-ground for many ideas in particle physics. 

Progress in string theories reveals that the origin of many properties of strings and su-

perstrings is also very much attached to the two dimensional nature of their world sheet. 

In fact string theorists have shown that at low energy, the physics of strings can be de­

scribed by effective cr-models. Furthermore, cr-models have been used to trace the implica­

tions of nonlinearity in field theories e.g. the existence of extended structures (monopoles, 

skyrmions, vortices,....) and their scattering patterns. In addition, a-models provide 

many examples of harmonic maps which are mathematically interesting in their own right. 

Moreover, they also provide examples of integrable systems in (2 + 0) dimensions since 

one can show that their nonhnear equations of motion are the compatibility conditions 

for a Lax-pair containing a free parameter. Therefore they posses an infinite number of 

conservation laws which generate an infinite dimensional Lie (Kac-Moody) algebra. For 

fur ther examples of low dimensional cr- models one can consult Zakrzewski''' . 

In this thesis we wi l l put more emphasis on the C P " models since they are the simplest 

of all the nonlinear cr-models. In chapter three we wi l l discuss all (2+0) dimensional 

instanton and anti-instanton solutions that had been explicitly c o n s t r u c t e d . Since the 

C P " models are not integrable in (2-(- l ) dimensions. Din and Z a k r z e w s k i c o n s i d e r e d 

the static extended structures of the CP^ model as slowly moving objects in (2 + 1) 
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dimensions, i.e. a system of these lumps, during its time evolution, can be approximated 
by a sequence of static configurations for which the parameters are appropriately modified. 
The main advantage of this collective coordinates approximation, lies in the fact that i t 
truncates the infini te number of degrees of freedom of the solution space of the model to a 
finite number corresponding to the parameters of the solution. Din and Zakrzewski have 
argued that the classical dynamics of such structures can be described by the geodesic 
motion on the Kahler manifold of the parameters of the extended structures solutions. 
I n fact, a similar approach was adopted by Manton in the study of the dynamics of 
monopoles''^^ . This suggests that extended structures in (2+0) dimensions are reasonable 
candidates for being soliton-Hke objects in (2+1) dimensions. To check various nonstatic 
properties of the extended structures is a highly nontrivial task; in most cases one has to 
resort to numerical work, or to drastic and sometimes not very rehable approximations. 

For this purpose Zakrzewski and o t h e r s c o n d u c t e d further studies of the same 

model by performing many numerical simulations of the fu l l field equations. Their studies 

revealed that the time evolution of static lumps in (2+1) dimensions is very much like 

that of solitons in (1 + 1) dimensions. When the lumps are sent towards each other, they 

scatter at 90° to the original direction and shrink rapidly after their scattering, unti l they 

become too spiky, so that the numerical procedure breaks down. In addition, the studies 

conducted'^^^ have disclosed that the CP^ lumps are not stable under perturbations, in the 

sense that i f they are subjected to a perturbation {e.g. squashing, scattering effects ) , 

they become either very broad or more and more point-like (spiky). However, one can 

at t r ibute this behaviour of CP^ lumps to the conformal invariance of the model in (2+0) 

dimensions, which makes the evolution operator insensitive to the size of CP^ lumps or, 

in simpler terms, the C P " models as they stand do lack an intrinsic scale. 

Independently Leese'"' has used the collective coordinates approximation in studying 

the evolution of the static CP^ lumps. This approximation is very good for small veloci­

ties, but i t is less clear how good it is for higher velocities. The results of refs.[10,11] are 

pret ty much in agreement wi th each other, thus supporting the use of the collective co­

ordinates approximation approach to study the main features of the scattering properties 

of lumps. 

Had the CP^ lumps shown size stabihty under perturbations, one could have claimed 

that some of the properties of solitons may not be restricted to the integrable models in 

which they arise; in fact they may arise in many models whether they are integrable or 
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not. Consequently we are required to adopt a finer division among the models in terms 
of their integrability i.e. we have basically three categories of models, those which are 
integrable, quasi-integrable and not-integrable. 

So i f we can overcome the lumps instability observed in the first simulations, then 

the modified CP^ model could become an example of a quasi-integrable model in (2-M) 

dimensions. A similar situation was faced in the original soliton model of the proton''^' 

in (3+1) dimensions. However, there is much arbitrariness in the choice of the various 

terms used in the description of a proton treated as soHton. The original suggestion was 

based on the ideas of Skyrme'" ' . I t involved SU{2) (and later a SU{3)) cr-model which, 

in addition to the usual term trdjjU&'U~^, had an additional "Skyrme" term involving 

four derivatives. The additional term has the form 

Lsky = ^tr{[U-^d^U, U-^dyU]\U-'d^U, U-'d'^U]), (1.11) 

where U is an SU(2) valued matrix and is a couphng constant. This term, i t was argued, 

is uniquely determined by various conditions imposed on the model, such as positivity of 

the Hamiltonian, Lorentz invariance, etc... 

Zakrzewski and others' ' ' ' , inspired by the old idea of Skyrme, suggested a modifica­

t ion of the CP^ model by adding a new additional term made up of four derivatives, which 

they called the Skyrme-like term. They also added a potential term. The Lagrangian of 

the modified CP^ model, when the equivalent formulation of CP^ model in terms of the 

variables of the 0 ( 3 ) model is used (this is explained in chapter three), is given by 

o 1 (1-12) 

- ^ 2 ( 1 + 0Y-

Indeed, all the results obtained'^'"'*' have shown that the additional terms stabilise 

the solitons, and, at the same time, have l i t t le eff"ect on the dynamics of the scattering; 

namely, in ref. [18] i t was shown that the scattering at 90° observed in the original CP^ 

model is reproduced in the modified model when the velocities of the incoming solitons are 

above a critical value Va-. This is partly due to the complicated forces acting on a system 

of two solitons as a result of the introduction of the additional terms. These forces are 

mainly repulsive; i f one places two solitons some distance apart after some rearrangement, 

they start moving away f rom each other. Moreover, the size of sohtons is fixed; so in the 



introduction 6 

simulations their sizes tend to oscillate around their correct values. However, apart from 
that , most of the solitonic properties of the extended structures are not seriously modified 
by the addition of the stabilising terms. 

A t this stage i t is very important to understand the geometrical origin of the Skyrme-

like terms, to be able to answer the following three questions. How many candidates 

are there for the Skyrme-hke term in (2 + 1) dimensions ? Are they equivalent ? And 

how do the Skyrme-Uke terms generalise to larger cosets i.e. C P " for n > 1, or even 

to larger group manifolds i.e. SU{n),n > 2 ? The fourth chapter provides the answers 

to these questions, and reports on our investigations on the possibiUty of constructing 

further additional terms other than Skyrme terms, which could be of topological nature, 

e.g. the W Z W term and the Hopf term. 

A t this stage a natural question arises: can one construct a quasi-integrable modified 

CP^ model which admits k displaced static Skyrmions ? A t first sight, the answer to this 

question is far f rom obvious. However, in chapter five we construct classes of modified 

CP^ models which possess k displaced static Skyrmions. Since these configurations are 

expected to have solitonic nature in (2+1) dimensions we also investigate their topological 

stability. 

Motivated by the two incentives to show that all C P " models are potentially quasi-

integrable, and to shed more fight on the scattering properties of the interacting C P " 

solitons we consider the CP^ model and investigate its soliton scattering. This is the topic 

addressed in chapter six. First, we study the solitonic properties of the static solutions 

of the CP^ model in (2 + 1) dimensions. We also show that, as in the CP^ model, in 

head-on scatterings solitons scatter at 90° and undergo a shift along their trajectories. 

In addition, we also modify the CP^ model by the addition of two further terms to the 

basic Lagrangian and investigate the effects of the additional terms on the behaviour of 

the CP^ lumps. The first additional term is an analogue of the CP^ Hopf term, which 

in the CP^ case is not locally a total divergence and gives a nonvanishing contribution 

to the equations of motion. We show that the Hopf term has a subtle rotational effect 

on the CP^ lumps, i.e. i t rotates the different parts of the extended objects unequally. 

The second term is one of the possible candidates for a Skyrme-like term in CP^ spaces. 

We compute its contribution to the equations of motions and show that, as in the CP^ 

model, i t fixes the size of the CP^ lumps. 

Chapter seven summarises the main results of this thesis and indicates some of the 
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topics which could be studied further to broaden and deepen our knowledge of this inter­

esting area of mathematical physics. 



Geometry of sigma models 8 

I I . GEOMETRY OF SIGMA-MODELS 
2.1 Structures on complex manifolds 

Since all the sigma models we are going to encounter in this thesis are of complex 

nature, i.e. based on Kahler manifolds, i t becomes very compelfing to understand their 

structure. Thus i t is useful to include this introductory section to describe the fundamental 

tools we can use to understand the geometry of complex manifolds. Clearly for further 

discussion one can always consult the vast literature on this subject''^' . 

To define complex manifolds one first needs to set up the definition of holomorphic 

functions, or in a larger context, of holomorphic maps. 

Definit ion [2.1] : 

Let / : (D"' —> (D; then / = (/^ + i /2) is said to holomorphic i f i t satisfies the Cauchy-

Riemann relations for each 2'' = x ' ' + i y ' ' i.e. 

dxi" dyi' dxi' dyi' ' ^ ' ' 

As a straightforward generalisation a map 

( / \ / ' , . - , / \ - ,n:(c"^ — 

is called holomorphic i f and only i f each component /"^ (1 < A < n) is holomorphic. 

Having defined holomorphicity of a function / , one can define complex manifolds. M 

is called a complex manifold of complex dimension m {dim(^M = m) i f the following three 

axioms are satisfied : 

(1) M is a topological space, 

(2) M is provided wi th a family of pairs {{Ui., (f>i)] , where U-i is a family of open sets 

which cover M and is a homeomorphism f rom U;. to an open set of (D"', 

(3) Given Ui, Uj such that Ui HUj ^ (j) then the map ipji = o f rom 4>i{Ui n Uj) to 

(f)j{Ui n Uj) is holomorphic. 

I t is worth emphasising that complex manifolds have the liberty to admit more than 

one complex structure. In fact i f Ti{Ui,(t)i) and T2(C/i,0i) are two atlases of M (an atlas 
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on M is a family of coordinate systems (Ui, (f>i)i£i w i th the properties that the family 
{Ui, 'l>i)i£l covers M , and any two coordinate systems in the family are smoothly related) 
of M then i f T i f l T2 is another atlas which satisfies all the axioms of complex manifolds 
then they are said to define equivalent complex structures. 

Good examples of complex manifolds are the complex projective spaces C P " and their 

non-Abehan generahsations, the Grassmannian manifolds Gnm{^)- The C P " spaces are 

defined as the quotient of (D""*"̂  by the equivalence relation ~ , which states that ~ 2 i f 

there exists a non vanishing A such that 

w = Xz. (2.2) 

More precisely i f a point z e (D""*"̂  has the coordinates (2°, z^,2"), then by the equiv­

alence relation ~ all points given by (A2°, A 2 \ A 2 " ) belong to the same equivalence 

class. But these equivalence classes are the straight fines passing through the origin pro­

vided that 2 7̂  0. Therefore one can write the C P " manifolds as 

CP" = t ^ " " - ' ) . (2.3) 

For the Grassmannian manifolds C„,„i((D), we proceed as follows; let M,„„,((D) be the 

set of complex n x m matrices of rank m < n. Take A, B E M„,„i((D) and define an 

equivalence relation ~ by A ~ P i f there exists g 6 GL{n, (D) such that B = gA. Then 

the G,„„((D) is identified wi th M,„„,((D)/GL(n, (D), or in different terms, the G,i„i((D) spaces 

are sets of m-dimensional subspaces of (D""*"̂  ( note that C P " = Gni{(C)). 

Attached to every point P G M we have a tangent space Tp{M) which is spanned by 

2m vectors 

d _d d_ d 

where 2'' =̂  rc'̂  + zy^ are the coordinates of P in the chart [U, (j)). Similarily, the cotangent 

space T*{M) is spanned by 

{dx^'\ ,dx^'"\dy>'\ ,dy^'-). (2.5) 

However, i t is more convenient to work wi th complex orthonormal basis for both Tp{M) 
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and T*(M). Thus for the tangent space attached to P they take the form 

dzi^ 2^dx^' ^y^'' 2^^x^' dy^" 

whereas for the cotangent space at P, the basis read 

dz^" = dxf" + i d / dz^' = dxi" - idy^\ (2.7) 

A very important object defined on complex manifolds is the almost complex structure 

U, which is a linear map 

Up : TpM TpM 

such that 

d___d_ = 
'^x^' ~ dyt^ ^y^'' ~ dxt' U p ^ - — = (2.8) 

Hence Up is a real tensor field of type (1,1) wi th = - 1 . In our complex basis i t takes 

the form, 

(iE 0 \ 
Up= ^ . „ , (2.9) 

y 0 -lE j 

and, consequently, the tangent space Tp'M of complex manifolds is spht into two disjoint 

vector spaces 

T^M ®T-. (2.10) 

I t is worth emphasising that any complex manifold wi th dimq^ — m locally admits a 

tensor U which squares to —E. However, U may be patched across charts and defined 

globally only on complex manifolds' '^"^°' . 

Other very interesting structures that one can define on complex manifolds are differ­

ential forms. For example a {r, s)-form u, in the basis given by (2.7), is writ ten as (for 

fur ther details see'^^"^°' ) 

a; = - L ^ ^ ^ ^̂ ^̂  dz^'' A....Adzl'^ Ad^''' A....Ad^''\ (2.11) 
V ,s. 

where the components are total ly antisymmetric in n and v separately. 
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So far we have been handling complex manifolds only as topological spaces. In fact 
one can assign a certain geometry to our manifold by choosing a metric g. Take, say, 
z — {x + iy) and w = [u + iv) 6 Tp{M) and define g so that 

g{z, w) = gp{x, u) - gp{y, v) + i[gp{x, v) + gp{y, u)]. (2.12) 

Then the components of the metric tensor in the complex basis (2.6) take the form: 

(_d_ _d_ 

f_d_ _d_ ^^•^'^^ 

g , , y - g p { g - , - ^ ) 

w i t h 

9iJ.i' ~ 9yfi 1 9jiv ~ 9l7fl ) 9fiD — 9jti' > 9^1^ ~ 9jw- {'^•^^) 

I f a Riemmanian metric ^ of a complex manifold M satisfies 

gp{UX,UY) = gp{X,Y) (2.15) 

at each point P £ M , and for each X,Y E TpM^, then g is said to be a hermitian metric 

and the pair {M,g) is called a hermitian manifold. I t is easy to show that for a hermitian 

metric g the components g^, and gj^^ vanish; thus the hermitian metric form is given by 

5 - 5 p I 7 dz''A dz^ + ffji^ dzi^Adz". (2.16) 

Of all hermitian manifolds we are particularly interested in a subclass called Kahler man­

ifolds. To define them, let us define first the so-called Kahler form as 

npiX,Y) = gp{UX,Y). (2.17) 

From this definition i t follows that 

(i) 0 is antisymmetric i.e. Q,{X,Y) = —Q,(Y,X), 
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{a) 0 is invariant under the action of U i.e. 

n{ux,uY) = n{x,Y), (2.18) 

(iii) is a two form of type (1 , i ) w i t h the components given by 

= nj^ = 0 %v = -^n^ = «5/x57- (2.19) 

Thus Q can be wr i t ten as 

(2.20) 

Then we have the following definition. 

Definit ion [2.3 

A Kahler manifold is a hermitian manifold ( M , g) whose Kahler form is closed [dO, = 0). 

The metric g is called a Kahler metric of M. 

In fact one can show that a hermitian manifold {M,g) is a Kahler manifold i f and 

only i f the almost complex structure U satisfies 

V;,I7 = 0, (2.21) 

where is the Levi-Civita connection associated wi th g. The condition of the Kahler 

fo rm Q, is satisfied provided the following equations hold: 

dgj^ _ dgxv dgj^ _ ^ , 
dz^ dz^^ dz^ ~ dz- ^^-^^^ 

Suppose a hermitian metric g is given in a chart Ui by 

g^^•u = d^d^K,. (2.23) 

Then this metric satisfies (2.22), and hence the pair {M,g) defines a Kahler manifold. 

Conversly, i t can be shown that any Kahler metric is expressed locally as (2.23)''^"^°' ; the 

funct ion Ki is called the Kahler potential of the Kahler metric. 

Let us close this section wi th a few useful facts'"^'^"^ . 
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(a) 5^ is the only sphere which admits a complex structure, since 5^ = C P \ i t is 
actually a Kahler manifold. 

{h) A product of two odd-dimensional spheres S^"^""^^^^ x always admits a com­

plex structure, but this complex structure does not admit a Kahler metric. 

(c) Any complex submanifold of a Kahler manifold is Kahler. 

{d) A compact Kahler manifold wi th a vanishing first Chern class C\{m) = 0 is called 

Calabi-Yau manifold which has a great relevance in superstring compactification. 

2.2 F i b e r bundles 

I t is helpful to introduce the notion of fibre bundles. Fiber bundles have been used 
f22l f23l 

in the formulation of gauge theories and cr-models in physics . A fibre bundle, 

intuitively, looks locally Uke a product IR^ x IR^ but these two spaces may be glued 

together globally in a non-trivial way. Tangent bundles are familiar examples of fibre 

bundles given by the product of the base manifold wi th its tangent space. A formal 

definition of fibre bundles and related concepts is as follows. 

Definit ion [2.1]: 

A fibre bundle F —> £• ^ X is a treble manifold X and F w i th a smooth projection 

map TT f r om E onto X. A t each point x G A", the set 7 r ~ ^ ( x ) = F^, is difi"eomorphic to 

F and is called the fibre at x. The space E is called the total space and, for simplicity, 

i t w i l l be interchangeably referred to as the bundle itself. A section of the bundle £ is a 

map S : X E such that TTOS = id^, and id^ is the identity map on X. A t r ivial bundle 

is a bundle whose tota l space is the product X x F (globally) wi th a natural projection 

map onto X. A bundle is therefore always t r iv ia l (locally); i f one considers the cover Ua 

of X then on each Ua, there exists the commutative diagram. 

Prua 

Ua ^ Ua 

where Pru^ is the natural projection onto Ua and 5a is the local trivialisation of E given 

by the diffeomorphism Ua x F 7r"^([/a). This trivialisation serves as a local chart for 
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the bundle; thus a section S{x) of E may be given a pair of coordinates, namely that of 
the base space X and of the fibre F, using the local trivialisation map 

S{x) = Sa{xJ) = { x J \ (2.24) 

where / are the fibre coordinates and xE.Ua- Note that the coordinatization depends on 

the local chart Ua- In order to see the coordinatization in other (overlapping) charts and 

for the bundle to be glued together f rom such local charts, we consider two neighbourhoods 

Ua and Ub at x. On the overlap Ua n C/j, one can define the transition functions 

^ab -.UaDUb^ D i f f { F ) such that 

Qab = o Sb. (2.25) 

In most physical examples , D i f f { F ) is realised by a much smaller symmetry group 

G through the monomorphism p : G D i f f { F ) 

^ab^potab, (2.26) 

where tab • UadUb G obeys the relations 

taa - e Vx G C/o 

tabha = e Vx G t/a n C/b (2.27) 

tabhctca = e yx e UanUbnUc 

and where e is the identity in G. In this case the bundle E is called a G-bundle and the 

group G is said to be the structure group of E. Note that a change of local charts from 

that determined by Ua to that of Ub, results in a change of the coordinatization of the 

section 5 as 

Sb{xJ) = Sa{xJ)nab{x). 

Sb{x,f) = {x,t-J{x)f). (2.28) 

Equipped w i t h the above definitions, one has the following theorem. 
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T h e o r e m [2.1] : 

Given spaces X,F, a covering Ua and transition functions tab satisfying (2.27), there exists 

a G-bundle F ^ E ^ X over X determined up to an isomorphism. 

Isomorphic C-bundles over X form an equivalence class. The following proposition 

gives a condition when an isomorphism between G-bundles can be established. 

Proposi t ion [2.2] : 

Let tab â nd t'^^^ be two sets of transition functions defined on the covering Uaoi X. They 

define isomorphic G-bundles over X i f and only if there exists functions Xa '• Ua ^ G such 

that 

t'ab = Ktabh- (2.29) 

From the theorem (2.1) and the proposition (2.2), the isomorphic G-bundles over 

X fa l l into the same set of equivalence classes irrespective of their fibres. Thus i t is 

sufficient to consider one representative of each fibre space F to demonstrate the necessary 

properties of the G bundle. One fibre space which has a natural group action f rom both 

left and right, is the group G itself. The G-bundle that has G as its fibre is called the 

principal G- bundle (G —> P ^ X), where its total space now is denoted by P. The group 

G is often called the gauge group. The local section a is trivialised by 

a{x) = {x,ga), xeUa ga^G. (2.30) 

The natural right G-action on the bundle P is defined by 

g) xeUa , g£G. (2.31) 

This gives an automorphism of P which maps each fibre into itself 

G ^ P ^ P 

Such automorphisms are called gauge transformations of P. 
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Associated w i t h a bundle P are various other G-bundles built out of different fibre 
spaces, depending on the structure that is required of F. The construction of such bundles 
is given by first defining a right G-action on P x F by 

Tg{p,i;) = {rgp,U{g-')i^) gEG , p E P, (2.32) 

where ip is a funct ion of x = 7r(p) taking values in F and U{g~^) is the representation of 

g~^ on F. The bundle E associated wi th P w i th fibre F then has the total space taken 

to be the quotient oi P x F w i th respect to the G action (2.33) i.e. 

P X F 

E ^ = P XG F. (2.33) 

The projection map TT^ f rom E to X is obtained by the following commutative diagram 

PxF ^ P 
X TT 

E ^ X 

where % is the projective map of P x F to the set of equivalence classes under (2.32) and 

thus 

^Eix{p,^)) = ^{p)- (2.34) 

A section 5' of E is given by. 

* ( x ) = [ ( j (x ) ,V(x ) ] , (2.35) 

where [.,. ] is the equivalence class of P x F under the equivalence relation 

a{x), * ( x ) ] = [rga{x), U'^'i!]. (2.36) 

Under the change of local sections crt(x) = Oa^ab for x G t̂ a 0 Ub, one finds 

* ( x ) = [cra,*a] = [(^a.^ft] 

= [aa^ab, ^b] (2.37) 

where *a and are functions on Ua, Ub respectively. Hence the function ij) obeys the 
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relation 

^a{x) = ^ab^b (2.38) 

To close this section, we shall briefly look into the notion of l i f t ing of structures on 

fibre bundles. A l i f t i ng is to be considered i f an object or a specific property defined on 

the base space are to be extended or generalised to a corresponding object or a property 

defined on the whole bundle . A good example for l i f t ing objects f rom the base manifold 

to the bundle E is the group action itself. Consider the bundle F ^ E X where X 

has a G-action defined on i t . The action TQ is said to be l if ted to E i f there exists a 

G-action on E such that the following diagram commutes. 

GxE E 

(idc.v) T^E 

GxX ^ X 

2.3 S igma Models A n d T h e i r Topology 

2.3.1] G e n e r a l Aspects O f S igma Models 

A sigma modeP*' uses a set of fields (pi which map a. {d + 1) dimensional pseudo-

Riemannian space-time manifold w i t h a signature ( 1 , - 1 , - 1 , - 1 ) to a Riemannian 

manifold M endowed wi th a metric g. The action describing these models take the form 

i J d'^xdt g,jd^,,4>'d''<j>', (2.39) 

where (/>'(i = l , . . . . , 7 i ) and gij are the coordinates and the metric on M respectively. 

The Greek indices range over 0,1,2, ,d and they are associated wi th the space-time 

coordinates. Minimising the above action using the variational principle leads to the 

equations of motion which have the form. 

a^a^V' + rif,d^4r>d''(t>^ = 0. (2.40) 

Note that these equations are nonlinear due to the presence of the quadratic term 

in the derivatives of the fields. The coefficients of this term are the usual ChristofFel 
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symbols (T*^), showing that in a-models nonlinearities arise purelj ' f rom the curvature of 
the target manifold M. As we shall see later i t is this type of model that leads to soliton 
solutions in two dimensions. Moreover these models possess Lorentzian invariance i.e. 
they are invariant under the action of SO{d, 1) on the space-time manifold. 

Sometimes i t is more convenient to use an alternative formulation of these models 

which is based on taking a free field theory, containing m independent fields [m > n), and 

then using Lagrange multipliers to impose m — n constraints, so as to restrict the fields 

to lie on M. A typical example of the last procedure is the 0 (3 ) sigma model, in which 

case M is just the two sphere 5^. I t is coinmon to use the fields (f) = {(j)i,<j)2,<t>^), wi th the 

constraint $ • 4> = 1- Introducing Lagrange multiplier A, the relevant Lagrangian becomes 

L = U f , 4 > - d > ' $ - \ { f ^ - l ) . (2.41) 

The equations of motion are given by 

d,,d^^+{df,^-d^4>)^^Q, f ^ = l . (2.42) 

I t is convenient to consider an alternative setting for cr-models'^^' i.e. describe them 

in a more abstract and geometrical approach. The virtue of resorting to the geometrical 

approach lies in the fact this approach leads to a coset description of cr-models. To show 

how this idea works let us choose M to be a homogeneous space, wi th continuous group 

of symmetry G acting transitively on i t . Let ruo be a base point and let us then considers 

the l i t t le group H (isotropy group) of ruo, defined by 

i7 = { / i G G : hrrio = mo} (2.43) 

Suppose that gi and g2 E G and have the same action on mo; then 

9l{mo) = p2(mo), 

and so 

9i^92{'mo) = mo, 

which shows that 

9i^92 G H. 

Hence gi,g2 belong to the same left coset of G w i th respect to H. Clearly, the converse is 

also true, namely every two elements in the same left coset have the same action on mo-
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But as G acts transitively then any point of M may be obtained by the action of some 
left coset. Hence we can make the following identification between points of M and cosets 
of G 

M ^ GIH = {gH:ge G}. (2.44) 

Note that as M is homogeneous, this construction is independent of the choice of rrio. 

To give examples of sigma models which are defined on homogeneous spaces, let us choose 

first the 0{n) sigma models which are defined as 

0{n) f « SO{n)/SO{n - 1). (2.45) 

Similarly G P " models are defined as 

G P " ^ SU{n + l)l{SU{n) x C/(l)) , (2.46) 

and the Grassmannian models have the following coset description. 

Gnm = SU{m + n)/{SU{m) x SU{n) x f / ( l ) ) . (2.47) 

A t this stage a very intriguing question arises: Given a Lagrangian L, can we tell 

whether the theory described by L admits solitons? Unfortunately, i t is difficult to an­

swer this question in general but luckily there exists a theorem due to Derrick'^*' which 

sometimes can be of some help. In the next few paragraphs we discuss this theorem. 

Consider a nonhnear field theory, l iving in {d+ 1) dimensional Minkowski space-time 

whose Lagrangian is 

L = \ g^J^„f^'''(j^ - V[(}>]. (2.48) 

Of course, one has always to ensure that the energy density is positive definite, which 

shows that V[<p] must be nonnegative. The energy E may be split into two parts: 

E[(i)] = Ei[(i>] + E2[^] (2.49) 

w i t h 

EM = \ I d'^x grjd,,<i>'d''<tP 
(2.50) 

E2\(i>] = / d'^x V[ct>\ 

where in the last equations the summation convention over ^ is performed wi th Euclidean 
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metric. 

As far as solitons are concerned one can always consider first static structures i.e. 

^ ( x ^ , x ^ , ,x'^) {i.e. independent of t ime). The moving solitons are then obtained by 
[26] 

Lorentz boost of the static fields. Derrick observed that the difference in the scahng 

behaviour of Ei,E2 constrains the theories which possess such structures. To see this 

consider a one parameter family of configurations 

<?̂ A(I) - <^(Ai) (2.51) 

and observe that the energy associated wi th these configurations responds to this rescaling 

as follows: 

Ex = X^-'^Ei [(t>\ + [<̂ ] • (2.52) 

However; (t)x is a static solution i f i t extremises E, namely if i t makes Ex stationary 

w i t h respect to the variations of A, i.e. ^j^\x=\ — 0. But 

dX 
= (2 - d)X'~''Ei[(t>] - d\-''-'E2[(l}]. (2.53) 

Hence, we see that the following cases can occur, depending on the dimensionality of the 

spatial coordinates. 

^̂  = 1: ^ | A = I = 0 ^ Ei[<P] ^ E2[<I>] 

d = 2: ^\x=i=0 ^E2[cl>]^0 (2.54) 

d>2: ^\x=i=0 ^E2<0. 

The imphcations of the first equation is that, for solitons to exist in one spatial dimension 

there must be a potential term. The second relation suggests a very opposing conclusion 

to the first, namely i f cr-models contain a potential term in two spatial dimensions then 

there is no chance for solitonic solutions to exist. In spatial dimensions higher than 2, say 

3, solutions cannot exist unless one modifies (2.49). Let us discuss the different ways of 

overcoming the constraints of Derrick's theorem in three spatial dimensions. The first way 

is to redefine what is meant by static solutions, by considering configurations which have 

explicit t ime dependence but whose energy is independent of time e.g. Q-balls which were 
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originally introduced by Coleman'^'^ . Another possibility is to allow for the inclusion 
of gauge fields e.g. a Yang-Mills gauge field coupled to scalar Higgs fields; these are the 
theories in which magnetic monopoles occur. 

The t h i r d way is to add higher-derivative terms to the Lagrangian. This is the idea 

behind the Skyrme m o d e l , in which the additional term contributes to the potential 

energy. Consequently the scahng behaviour of the total potential energy is changed as 

Ex = X^-'^EilU] + X-^E2[U] + X'^-'^Esky[U], (2.55) 

so that for d — 3: 

= -X-'^Ei[U] - 3X-'^E2[U] + Esky[U]. (2.56) 
dX 

I f we set E2 to zero (potential), then there is a possibihty for sohton solutions; in fact 

such a solution does exist and is called the Skyrmion. 

[2.3.2] Topological Aspects O f Sigma-Models 

So far we have been concerned mainly wi th the properties of the target manifold M. 

Remarkably, one can extract a lot of information about possible sohtonic solutions by a 

careful study of the global topology of M. For this purpose one needs some results about 

fundamental groups (honiotopy groups) of topological spaces. 

For the sake of clarity let us show intuitively that homotopy classes of maps form a 

group. First, let us start by defining homotopy between two maps say / and g. Roughly 

speaking, i f two maps are continuously deformable into each other then they are said to 

be homotopic. More precisely, i f X, Y are two manifolds and / , g are two continuous maps 

f r o m X to Y, then / , g are homotopic i f there exists a continuous map 

h : X X [0,1] ^ Y such that for a\\ x e X 

h{x,0) = f { x ) 
(2.57) 

h { x , l ) = g { x ) . 

Taking advantage of this definition one can classify all continuous maps between two 

spaces X,Y into homotopy classes e.g. / ~ (? 6 [ / ] . Then one can define a group law 
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between the homotopy classes such that 

[f + 9] = [ / ] + [9] = [h] (2.58) 

I t is not diff icult to show that the binary operation defined by (2.58) and the set of all 

homotopy classes form a group. 

I f in constructing homotopy groups one chooses the first topological space X to be 

either or any other generalisation of e.g. S^', then the homotopy groups are denoted 

by 7 r i , 7 r 2 , ,7rp respectively. The first two homotopy groups do have a nice geometrical 

interpretation. First , iToiY); counts the number of disjoint pieces of Y. Hence if TTO = 0, 

this means that Y is connected. Secondly, Tri(Y) classifies the set of loops in Y\ in fact if 

7 r i ( F ) = 0 then Y is said to be simply connected. 

In order to fit the homotopy theory into the context of cr-models, one should observe 

that the constraint of finite energy configurations amounts to compactifying the spatial 

degrees of freedom f rom M'^ to 5̂ ^ by identifying all points at spatial infinity. Therefore, 

since each and every possible field configuration may be thought of as a map 

</. : ^ M , (2.59) 

such configurations are classified by the homotopy group Tr^iM), which also imphes that 

t ime evolution of the field configurations does not allow any transition or tunehng be­

tween different topological sectors. I f 7r(f (M) / 0, the model is said to be topologically 

nontrivial . I t is worth mentioning that topologically nontrivial theories are the ones en­

joying topological stability, in the sense that configurations cannot evolve out of their 

topological sectors, hence solutions cannot decay into the vacuum. 

Some of the results which are very useful to us in homotopy theory are, 

(2.60) 
7 r „ ( 5 " ' ) = 0. (m > n) . 

The first result shows that the (9(3)-sigma model in two dimensions is topologically non-

t r iv i a l . Another useful result is 

7r2(G) = 0, (2.61) 

w i t h G being a Lie-group which indicates that chiral models are topologically tr ivial . Two 
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other useful results which are relevant in working out the homotopy groups of Grassman­
nian models are 

Therefore 

iTniX x Y ) = nn{X)e7r4Y) 

7r2{X/Y) = 7 r i ( y ) ; 7ro(X) ^ 7 r i (X) = 0. 

MGnm) = MSU{m) X SU{n) x U{1)) 

(2.62) 

(2.63) 

I n fact, for any compact Kahler symmetric space M , one can easily show that 7 r 2 ( M ) = Z , 

i.e. all such models are topologically nontrivial. 

I n some other exotic cases the structure of the homotopy group is more complicated 

(in this thesis we have restricted ourselves only to Abelian homotopy groups , but in 

general homotopy groups are not necessarily Abelian). A good example of such exotic 

spaces is the coset space defined as 

(2.64) 
U{1) X U{1) X X U{\) 

w i t h N copies of U{1) in the denominator of (2.64). To determine the form of the second 

homotopy group of Fn one should take the advantage of (2.62); having done this one can 

easily show the following result, 

7r2 (P„) = Z © Z © © Z (n times). (2.65) 

Note that in the examples of nontrivial topology, the homotopy group is isomorphic either 

to Z or to the direct sum of, say N copies of Z- An elegant interpretation of the above 

result is given by the so called topological charge which is perceived as an integer label 

of the homotopy classes. In the case when we have more than one copy of Z , we need 

more than one topological charge to label completely the homotopy classes (topological 

sectors). 

I t is worth saying a few words about ways of constructing Q (topological charge) 

for any Kahler model in (2-1-1) dimensions. Closed forms [da = 0) are divided into 
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cohomology classes, w i t h two elements belonging to the same class i f and only if they 
differ by an exact form. Therefore the set of cohomology classes is wri t ten as 

H'(M) = (2.66) 

w i t h 

ZP : the set of closed p-forms 

BP :the set of exact p-forms. 

However, one can define a natural binary operation on the above cohomology classes, 

which is the addition since the sum of two closed forms is a closed form and the sum of 

two exact forms is an exact form. Then W[M) is a group and i t is called the p^^ order 

cohomology group of M. 

Despite the fact that cohomology is defined locally via the exterior derivative, i t 

contains some information about the global topology of M. In fact a theorem due to 

Hurewicz establishes the connection between cohomology groups and the topology of 

manifolds. In its simplest version this theorem states that i f M is both connected and 

simply connected wi th the lowest nonzero homotopy group TTn{M), then 7 r , i (M) = H''^[M) 

and all the lower cohomology groups are zero. In order to define the topological charge 

one needs the notion of a pullback mapping. 

Let {X, Y) be two differentiable manifolds, g a real valued function on Y, (j) & mapping 

f r o m X toY ,uj a. 1-form hving on T^^^-^{Y) and v G Tp{M). Then (j) induces the following 

maps 

cj>. : Tp{X) T^^p){Y) ; {4>*V\ = V,{<l>{p)) 
(2.67) 

r--T;^p){y)^T;{M){x) • <ru^,v>=<u>,<i>,v> 

The second map (/>* is called the pullback mapping, wi th the property that i t takes 

closed forms on Y to closed forms on X; therefore one can consider i t as a map between 

cohomology classes. In connection w i t h our a-models we have defined the fields (f) as maps 

f r o m 5^ (look at (2.59)), hence each field configuration defines a pullback mapping 

(j>* : H\M) ^ H\S^). (2.68) 

On the other hand we have a natural closed form on all Kahler manifolds, which is the 
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Kahler form defined in (2.17). Taking advantage of u the topological charge is defined 
as 

Q = c-' J (2.69) 

where c is a normahsation constant so chosen that Q takes integer values. For Q to 

be a topological charge we have to show that Q is invariant under field deformations. 

To do so we have to resort to a theorem in differential geometry which states that if 

(j)i,(f>2 are homotopic i.e. [(f)i,(t)2) 6 [0], their pullbacks (j)\,4>2 homotopic i.e. <j)\ = 

<p2- Furthermore, in our definition of Q there exists another feature which shows the 

topological nature of Q, due to the fact that the domain of integral in Q is defined on a 

class of homeomorphic geometries. For example consider 5^ and a squashed 5^ i.e. 5 ,̂ 

and define 

/ : 52 ^ 5̂  

Then 

Q = j = J r m u ) ) = 1 r o f { u ) . (2.70) 

52 

But throughout their time evolution, the fields (p must remain in the same homotopy 

class. Thus (p* is unchanged which is equivalent to the invariance of Q. Note that Q 

is different f rom the conserved quantities obtained by the continuous symmetries of the 

Lagrangian. In fact the construction of Q depends only on the compactification of the 

spatial dimensions into a two sphere. 

2.3.3] Bogomolny Bounds 

As the previous sections suggest static structures in topologically nontrivial models 

in (2-1-1) dimensions contain a great deal of information about the solitonic behaviour 

of these theories in (2 + 1) dimensions. Hence i t is very intriguing to construct these 

configurations explicitly. In fact, Bogomolny'^*' suggested a general technique for the 

construction of such solutions. To see how this method works let us consider a scalar field 
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theory in (1 -f- 1) dimensions given by the Lagrangian 

L = ^df,(j)d''(f> - V[<j>] (2 .71) 

The tota l energy for a static solution in this model is 

oo 

—oo 
oo 

= / (^^x - ^/vW]? + ̂ xVm)dx (2 .72) 

— oo 

0 0 <p+ 

= J (^^x - \ ^ ] ? d x + J ^/V[^]d(l>. 

This leads to 

E> j y/vW\d(l), (2 .73) 

w i t h the equality holding i f and only i f 

i 0, = V ^ - (2 .74) 

The lower bound on E is known as the Bogomolny bound, and the condition for equality 

is the Bogomolny equation. For example, in the case of the Sine-Gordon equation one has 

E>^J y/l - cos{(l))d(f) = 4 (2 .75) 

0 

w i t h equahty i f and only i f 

.^^ - ^/2{l - cos{(j))) = 0 (2 .76) 

The solutions of the last equation are called kink (anti-kink) solutions. The advantage of 

Bogomolny equations (B.E.) over the equations of motion, hes in the fact that BE are first 

order, whereas the equations of motion are second order (in fact "self-duality" equations 

are examples of BE) . 
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Let US t r y to extend this idea to Kahler models in (2 + 1) dimensions. But before 

doing so, let us observe the following identity 

j g^p{d.iU^±iei^djU") {dJj'^TieikdkU^) dx' > 0. (2.77) 

But for static solutions 

E = \ j g-p d^U^ d;U^ d^x (2.78) 

and 

hence (2.77) reads 

c Q ^ i j g-p e,,diU^ djU'^ d'x; (2.79) 

E > ]\cQl (2.80) 
4 

w i t h equahty holding i f and only if 

diU'^±ieijdjU'' = 0 (2.81) 

By analogy w i t h "self-duality" in Yang-Mills, the situation in (2.81) is sometimes re­

ferred to as "self-duality". I t does have a much simpler form in holomorphic and anti-

holomorphic coordinates i.e. x^ = x + iy, x^ = x — iy respectively. In fact i t takes the 

fo rm 

d-W^ = 0, 
(2-82) 

d+U"^ = 0, 

where 5+ = The corresponding solutions are called instantons and anti-instantons. 

To sum up, for models w i th nontrivial topology one can construct a lower bound on the 

potential energy in a given topological sector. I t is usually proportional to the topological 

charge. Provided the bound can be attained, the corresponding static solutions arise as 

solutions of the first order B.E. For instance this is the situation in the (2 + 1) dimensional 

Kahler models (static solutions are known as instantons). However, there exist also the 

so-called frustrated models, such as the Skyrme model, in which the bound cannot be 

attained. In these models one must either resort to approximations or conduct numerical 

simulations. 
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I I I . CP^ MODELS 

3.1 F o r m u l a t i o n o f t h e C P " M o d e l s a n d P r o p e r t i e s o f T h e i r Solut ions 

In chapter one we stated that the modified CP^ model^^'^ is based on the CP^ model; 

i n chapter six we w i l l discuss the CP^ model; hence we need a deeper understanding 

of C P " models. These models in two dimensions are typical examples of Kahler mani­

folds. They were first discussed by Eichenherr'^^' , Cremmer and Scherk'̂ "* , Golo and 

Perelomov'"' , and d 'Adda et aP^' . In chapter two, C P " manifolds were defined by 

equation (2.3) and the n + 1-dimensional complex vector field Z°', where a = 0 ,1 , . . , n , are 

the coordinates parametrising this space. These coordinates are subject to the constraint 

= (3.1) 

Two such fields are equivalent i f they are related by a phase: 

Z'^ = Z^exp'^^^-y\ (3.2) 

Hence, the theory is required to be U(l) gauge invariant. The covariant derivative is given 

by 

D^, = d^, - Z^ • d^,Z (3.3) 

and the Lagrangian describing the model takes the form 

L = {D,,Zy • {D,Z) 

= d,,Z^ • d,,Z + {Z^ • d,,Z)\ 

w i t h the action S defined by 

S= f SxL. (3.5) 

To have a deeper understanding of C P " models, one ought to understand the geomet­

rical implications of both the Lagrangian (3.4) and the constraint (3.1). For a start i t is 

evident that the basic Lagrangian depends on the parametrisation of the target manifold 
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i.e. i t is not reparametrisation invariant. In order to see this, first rewrite the Lagrangian 
as 

Lo = 6,,{D^Z.i)^{D^'Zj). (3.6) 

Then, recall that the sphere S^ji+l ^^^^^ ^j^g product space U{1) x C P " are, locally, iso­

morphic. The covariant derivatives are one forms on the cotangent space of 5^""^^ Since 

the 8ij is not the intrinsic metric on 5^""^^ then the Lagrangian is not invariant under 

reparametrisations either. I n other words, i f Zi = f{{(/>''') and Z'- = / • (^*) are two diff'erent 

parametrisations, then the Lagrangians take the forms, respectively, 

Lo = 9rjd,,<f>'dt'f, (3.7) 

and 

Lo = g',,d,,<l>''df'ct>'^, (3.8) 

where 

^ d<j)'^ d<i>'i ' ^ ' 

which implies that gij does not transform as a second rank tensor under the diffeomor-

phism group of the target manifold. 

Let us discuss the meaning of these results. Let be a two dimensional space-time 

manifold and be another complex manifold [i.e. target manifold). Then our fields 

are mappings f rom to 

Z, • M f . 

But as the fields are constrained to he on the unit sphere 5 ^ " + \ we are more interested in 

a submanifold of submanifold of which is 5^"+^ So the whole picture reduces to the immersion of 

the unit sphere 5^"''"^ into the nonlinear space endowed wi th the metric g. Therefore 

choosing a particular parametrisation is equivalent to choosing the metric g on M^- To 

clarify and illuminate the above remark, let us consider the CP^ model as an example 

and show how the nonflat metric affects the curvature of the sphere. One parametrisation 
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which satisfies the constraint (3.1), is given as 

w f ^ ' - . ^ l (3-10) 

and 

4>-4>^i. (3.11) 

I n this parametrisation of the CP^ model the Lagrangian takes the form 

(3.12) 

w i t h gij given by 

9ij 

/ I 0 0 \ 

0 ( 1 - . ^ ^ h h 

Vo h h ( i - < ^ 2 ) / 

(3.13) 

Here, gij is the metric on the three dimensional space parametrised by the vector (j). The 

constraint ^ • ^ = 1 is the immersion of 5^ into the nonlinear space parametrised by 0 and 

endowed wi th the metric g. In the remainder of this chapter we wil l refer to this space as 

M^. Furthermore the metric g induces a metric on M2, namely, 

g ^ g^j^,,f^,<|P (3.14) 

and another metric on 5^ (target manifold). But to determine the form of the induced 

metric on 5^, let us parametrise i t by 

(1)1 = 00302, (f>2 — sin62Cos9i, (f)^ = sin6isind2- (3.15) 

Then the induced metric on 5^ reads 

grjde'^(l)'de,<i^. (3.16) 

A t this stage i t is very useful to compare the immersion of 5^ into to the immersion 

of the sphere 5^ into M^. Obviously the immersion of the unit sphere into is given 
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by the standard spherical polar coordinates 

X = sinOcostp, y = sinOsintp, z = cosd, (3-17) 

and the induced metric on 5^ is obtained f rom the fine element given by 

{ds)^ = sin^dd-e + d^^), (3.18) 

the corresponding scalar Ricci curvature R has the value 

P = - 2 , (3.19) 

which is calculated using 

^liu = ^g'^^ld^ig^x + d^g^cx + dxg^,^], 

RUP = ^pr;. + r;i ,rj , - (/. - .), (3.20) 

Rfw - RfiXiy R - g'^^Rfw 

In our case the embedding of 5^ into the space is simply given by 

= costj}, (j)2 = sinipcosO, ^3 = sinipsinO, (3-21) 

the line element in 5^ is 

ds'^ = d(t)l + (1 - (l)l)d(j)l + (1 - </>2)c?<̂ 3 + hhdhdh + hhdhdh 

ds^ = -[sin^ipde^ + d{2iP)\ 
(3.22) 

and the Ricci curvature R is 

P = - 1 6 . (3.23) 

Af te r elucidating the geometrical meaning of the parametrisation (3.10) of the CP^ 

model, an intriguing question arises: can one make a transformation which euclideanises 
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the above metric ? In order to answer this question, let us first t ry to put the Lagrangian 
in a more convenient form by taking advantage of the following relations 

$•^=1 = ^ {$-$„f = Q. (3.24) 

A few lines of algebra shows that L takes the new form 

L = <i>\^ + cfi{4>l, + 4^. + ^3m)- (3-25) 

The new form of the Lagrangian is more suggestive, in the sense that i t implies that the 

transformation we are looking for should involve (f>i as the very basic object. So, let us 

t r y the transformation 

mi = l-2cl>l ^2 = 2hh, ^3 = 2(1)1(1)3, (3.26) 

and note that * st i l l parametrise S since • ̂ ' = 1. After a long but straightforward 

calculation one can show that the Lagrangian takes the new form 

L = ^df,^ • a^^. (3.27) 

So, indeed the transformation (3.26) linearises the metric on the background nonlinear 

space. Therefore one can draw the conclusion that we have at our disposal two independent 

parametrisations of the CP^ model which produce two inequivalent Lagrangians. 

The equations of motion resulting f rom applying the variational principle to the La­

grangian (3.4) read 

D^,D,,Z + {Df,Z)^ •{D^,Z)Z ^0, Z+Z=l. (3.28) 

On the other hand the form of the CP^ equations of motion wi th respect to the parametri­

sation given by (3.12), after decouphng, are 

2 —* 

(P2vi> - 2(p2B„ + (p2(pv • (Pu + 2 ^2 ^3 

where 

B, = ihhu - h M , (3-30) 

together w i t h (j) • (j) — 1. 
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The solutions to these equations, which have finite action and energy, are the required 
solutions of the model. More precisely, imposing the condition that the action is finite 
means that the base space of the model is compactified f rom E^ to as we have argued 
in chapter two. 

As was first suggested by Din and Zakrzewski'"' , i t is more convenient to use holo­

morphic and antiholomorphic coordinates. Then the Lagrangian has the form 

L = 2[\D+Z^ + \D-Z\% (3.31) 

w i t h 

D±=d±- • d±Z (3.32) 

where d+ - and the equations of motion become 

i : ' _ L ' + Z + Z |Z)+Z|2 = 0 

L»+D_Z + = 0. 
(3.33) 

I t is useful to introduce the quantity q defined by 

q = 2[\D+Z\^ - \D-Z\^] (3.34) 

which, as we shall see later on, is the topological charge density. 

Having wri t ten the equations in the above form, i t is clear f rom (3.33) that there 

exists a subclass of equations called the self-duality equations 

D±Z = 0, (3.35) 

which correspond to the condition 

L = ± 9 . (3.36) 

The solutions oi D-Z - 0 are the instanton solutions of the C P " models (anti-instantons 

being the solutions of DJ^Z = 0). In fact d 'Adda et al.'^^' have shown that the general 
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instanton solution has the form 

where fa are polynomials in x+ of the form 

Za = #NT, (3-37) 

fa{x+) = \ a l [ { x + - ai), (3.38) 
•j=l 

w i t h Xa and complex constants. The general anti-instanton solution is obtained by 

complex conjugation. The degree of the polynomial corresponds to the instanton number, 

and the action for such solutions is 

S = 2TTk. (3.39) 

For example, in CP'^ model, choosing the polynomials as 

U{x+) = {l,x+) (3.40) 

and using (3.37) results in the configuration 

Za = , • (3.41) 
v i + k+r 

I t is then a straightforward task to show that the value of the action associated wi th (3.40) 

is 

5 = 27r, (3.42) 

which shows that the instanton number, which is the topological charge for the configu­

rat ion (3.40), is one. Thus this configuration is an example of a one instanton solution of 

C P ^ 

Using the well-known result f rom pure mathematics that 7r2(CP") = 2 , d'Adda et 

al. concluded that classical field configurations fall into homotopy classes labelled by an 

integer winding number Q. Din and Zakrzewski'^^' exhibited a simple expression for Q 
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as follows 

Q = J d h r , (3.43) 

w i t h 

r = -^e^^'m.Zy-iD,Z)]. (3.44) 

wr i t t en in terms of complex variables x± this becomes 

Q = ^ J d^x\2{\D+Zf - ID-Zn = ^ J dhq. (3.45) 

Given this definition we see that i f Z is an instanton (anti-instanton) field, then the 

topological charge is positive (negative) and Q gives directly the instanton number. Fur­

thermore, one can use equations (3.31) , (3.34) to show that the action of a general field 

obeys the inequality 

S > \2'KQ\- (3.46) 

w i t h the equality holding only i f Z is either an instanton or anti-instanton solution. Con­

sequently the instanton (anti-instanton) solutions are absolute minima of the action, and 

therefore they are topologically stable and have definite positive (negative) integer topo­

logical charge. 

Are there any other finite action solutions? In other words, do there exist finite 

action solutions which are not solutions of self-duality (or antiself-duaUty)? Din and 

Zakrzewski'^^^ studied this problem and exhibited some of these. Their method of deriving 

them rehed on some results f rom two-dimensional Euclidean 0{n) non-linear cr-models. 

The 0{n) models'̂ " '̂ '''^ , as we have argued in chapter two, are defined by the coset 

description (2.46) which is, globally, equivalent to 5"~^ They are parametrised by n-

component fields (j)''' = <^'(x,y), where i = 1,2, . . . . ,n , subject to the constraint 

f • f = 1. (3.47) 

Of course the fields (p are functions of the spatial coordinates of the EucUdean space E"^. 
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The Lagrangian for these models is defined to be 

L = dJ-d^$ (3.48) 

and gives rise to the equations of motions 

d^d,,$ + {d^,fd,J)$ = 0 ; f $ = l . (3.49) 

Again the base space E"^ is compactified by requiring the solutions to correspond to finite 

action. 

In (2+0) dimensions the 0 ( 3 ) sigma model (or 5^ model) has a special role to play 

since i t is the simplest Lorentz invariant cr-model in (2-f 0) dimensions, which possess static 

solutions which could be interpreted as solitons. However, the fact that the 0(3) model is 

the only model among all the other 0 ( n ) models which possesses stable static structures 

in (2+0) dimensions is attr ibuted to the observation that, of all 0{n) nonhnear sigma 

models, i t is only the 0 ( 3 ) model which is topologically nontrivial in (2+0) dimensions 

(see chapter two). The nontrivial topology of the 0 (3 ) model stems f rom the boundary 

conditions on the vector field (f> = {(j)^,(f)'^,(f>^) at spatial infinity, which is equivalent to 

imposing a one-point compactification of E"^ into a two sphere 5^. Hence, there are 

distinct topological sectors, labelled by the winding number of the map (/> from to the 

target manifold which happens to be another S^. As we have shown in chapter two this 

winding number can be interpreted as an integer-valued topological charge and may be 

expressed as the integral of a topological charge density over all space: 

= 77- / ^ij^- X ^)d^x. (3.50) 
87r J 

[8] 

Belavin and Polyakov , and Woo have constructed, explicitly, the static solutions 

of the 0 ( 3 ) sigma model and have shown that a general k instanton solution has the form: 

W = A i i f i ^ ± ± : : i ^ , (3.51) 

where W is a complex field related to (f> by the relation 

and X,ai,b.i, are complex constants such that ai / for all i and j . Anti-instanton 

solutions are given by the complex conjugate of the field W, and the instanton number of 
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the solution (3.51) is k. Finally the action 5 for this solution is 

S = Sirk. (3.53) 

In order to have a better feeling for the physical interpretation of the parameters in 

solution (3.51), let us concentrate on the general one instanton solution which is given as 

W = X^^±^ (3.54) 
X- — 0 

where a, b and A are arbitrary complex numbers. The appearance of 6 real parameters 

in this solution is a reflection of the conformal invariance of the two-dimensional model 

(under such a transformation the values of these parameters change but the general form 

of (3.54) remains the same). I t is easy to calculate the energy density E corresponding to 

the static solution (3.54): 

8 | A p | a - 6 p 
( |x+ - 6|2 + |a;+ - a|2)2 - T T Li9 , 1 . . : i2\2 (3.55) 

Hence, the instanton has a bell-like shape, wi th its position and size respectively deter­

mined by 

a|Ap + 5 | A p | a - 6p 
|A|2 + 1 ' (|A|2 + 1)2-

Its total energy is Et = 27r and so is independent of the instanton's position (translational 

invariance) or its size (conformal invariance). 

Returning to C P " models, we first observe that the CP^ model is equivalent to the 

0 ( 3 ) model. In fact, we can establish the following mapping between the two fields of the 

models 

<l>' = ZiaipZp ( a , ^ = l , 2 ) ( i = 1,2,3), (3.56) 

where cr* are the Pauli matrices. Here again (f) • (j) = Z^ • Z = I. Then a very simple 

calculation shows that 

d,J-d^J=4{D^Z)^ -{D^Z). (3.57) 

Hence the two models are classically equivalent. 
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There exists another formulation of the CP^ model; instead of using the fields (f) we 
express the dependence on ^ in terms of its stereographic projection onto the complex 
plane W. The $ field is then related to W by 

. W + W* . .W-W* ,3 l - | M / p 

The Lagrangian, in the new formulation of the model, is 

(1 + |M/ |2)2 ' 

and the new equations of motion are 

W*d WQ^W 

The topological charge Q is now given by 

and the Noether charge, due to the ^7(1) rigid symmetry, is obtained as 

^ = - y (1 + |H/|2)2 (3-62) 

Returing to the non-instanton finite action solutions, we reproduce an argument made 

by Din and Zakrzewski'^^' which they used to prove the existence of noninstanton solutions. 

First we consider the energy momentum tensor which has the form 

V = - V { ^ A ^ ) ^ • ( ^ A ^ ) + {D^Z)"^ • {D,Z) + (D^Z) • {D,Z)l (3.63) 

This tensor is conserved and so i t satisfies 

d^J,^^ = 0. (3.64) 

Rewrit ing this conservation law in terms of complex coordinates we obtain 

d-[D+Z • D-Z^]^0 (3.65) 

which indicates that D+Z • D-Z^ is a function of X - f only. Imposing the condition of the 
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finiteness of the action gives \Dij,Z\ —> 0 as |x | ^ oo, which implies that 

D+Z • D-Z^ = 0. (3.66) 

I n the CP^ case this implies that 

D-Z = Q, (3.67) 

or 

D+Z = 0. (3.68) 

However, for C P " (n > 1) this does not have to be the case. In fact Din and Zakrzewski 

showed how to exploit this fact to find new solutions of the equations of motion. 

Another (gauge invariant) reformulation of the C P " models was introduced indepen­

dently by Sasaki'̂ ^^ and Zakrzewski'*"' . In this case an n x n projection matrix IP is 

introduced. This matr ix is defined by 

P = ZZ\ (3.69) 

and so i t possesses the following properties: 

JP = p t ^ p 2 ( ^ . ^ = 1). (3 70) 

The Lagrangian of the model in this formulation takes the form 

L - ]dT{d,]Pd,,P\ (3.71) 

and the equations of motion become 

[a/,a,,iP,F] = 0, (3.72) 

or, when wr i t ten in terms of complex coordinates, 

a+a_iP,F] = 0. (3.73) 
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The self-duality equations take the form 

(9_iP • iP = 0, F • 5 _ F = 0, (3.74) 

or equivalently 

F • d+P = 0, d+P • F = 0. (3.75) 

In chapter one we have argued that, in quasi-integrable models stable static structures 

in (2+0) dimensions {e.g. instantons solutions and anti-instanton solutions of CP^) are 

reasonable candidates for solitons in (2+1) dimensions. Subsequently, numerical simula­

tions showed that their scattering properties are more subtle than the scattering proper­

ties of the solitons of integrable models in (1 + 1) dimensions. Therefore, one may wonder 

whether general solutions {i.e. those which are neither instantonic or anti-instantonic) 

might reveal even a more subtle scattering pattern. Of course the only way to find out 

is to first find these solutions, investigate their topological stability and then perform the 

numerical simulations to explore their scattering behaviour. 

Thus, for completeness, we present here the general form of these solutions. We follow 

L an( 

satisfy 

Din and Zakrzewski'*"' . First of all, note the following property that these solutions must 

A':^ = {DlZa)^ +-{D^Z^ = 0 ; m = i + j > l . (3.76) 

Thus for a given solution Za, we can construct two orthogonal subspaces of (D" defined 

by 

H = [DtZa,i = 1,2,.... 
(3.77) 

H' =[D'^Z,,i = l,2,....] 

Let the dimension of these two spaces be k,m respectively, and for an obvious reason 

consider the case ^ + m = n — 1. The spaces H/;, H'„^ are spanned by the first k and m 

vectors of (3.77). 

Next define the space Hk = HkU Z, and let / G (D" such that f eHk where 

f+.DlZ^ = ujS^^ z = 0 , l , ,k. (3.78) 

Then one can show that the set 

,dlfa (3.79) 
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spans the space H^. Din and Zakrzewski then showed that the general finite action 
solution can be expressed in terms of the analytic vector / by 

where k = 0,1, , n - 1 and 

k.-i 
Zi") = d l f - Y , 9^f{Mr:;r'd+M^_, (3.81) 

i.i=0 

and where the matr ix M'̂ ^ is given by 

M(f = a ; / - 4 / z , ; = 0 , l , , ^ - 1 . (3.82) 

I n equation (3.70) taking A; = 0 corresponds to the instanton solutions; A; = n - 1 results 

in the anti-instanton solutions. However, for any other choice of k wi th in the specified 

range, new classes of solutions are obtained. 

There exists an alternative construction of this general solution. This new construction 

is based on the use of the Gramm-Schmidt orthonormalisation procedure, we wil l describe 

this construction using Zakrzewski's notation'""'' although making certain identifications 

in the two formulations can be used to prove their equivalence. In addition we wil l 

reproduce Sasaki's proof'^^' that the expression obtained by the second method solves 

the C P " equations of motion in their projector formulation. The construction of these 

solutions starts by considering a vector field g ^ ^ - { 0 } , and an operator P+, which is 

defined by its action on g as 

P , , = 9 , « - ^ ( ^ . (3,83) 

Its repeated action is defined by 

Pig = P+iP^'g), (3.84) 

where 

Pig = g. (3.85) 

Let us add a further operator, P_; this operator is like P^. except that the differentiation is 

performed wi th respect to x- instead of x^. I t is not difficult to show that P+P-g ~ g and 
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SO P± seem to behave like a pair of raising and lowering operators. In their construction 
Din and Zakrzewski observed that 

(1) ( P t / ) t - P | / = 0 i f l ^ k 

(2) d-{Pif) = - P ^ - i / S ^ , 
i n . 

(3) 9+{j^pj^2) = j p S ^ . 

(4) p ; v = 0. 

These orthogonality properties show that the P^f vectors can be thought of as being 

obtained by the Gramm-Schmidt orthogonalisation of the sequence of vectors given by 

(3.79) and when normalised, as shown by Sasaki'^^' , they provide solutions of the C P " 

Euler-Lagrange equations. To see this denote by 

ei,e2,. . . . ,e„, (3.86) 

the set of vectors obtained f rom (3.79) by the Gramm-Schmidt orthonormalisation method. 

Then take the j^^ element of the sequence and consider 

F = ejej. (3.87) 

Also consider another projector 

Q - E ^ 4 > (3-88) 
A;=l 

which satisfies the equations 

a_Q-Q = 0. (3.89) 

Moreover, 

5 - ( F + Q ) - ( F + Q) = 0. (3.90) 

Using the properties of the e's one can show that 

c ) _ F - Q = 0, (3.91) 
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as well as 

a _ i P - i P + 5 _ Q - F = 0, 

F - a 4 . Q = 5+(Q, (3.92) 

Then put t ing the last two equations of (3.92) into the first one of the same set of equations 

leads to 

a _ F - i P + (9_Q = 0. (3.93) 

Taking the hermitian conjugate of this equation gives 

P •d+P + d+q = 0, (3.94) 

and finally, i f the combination 5+(3.93) — 5_(3.94) is considered, i t is found that 

d+d-P,P] = 0 (3.95) 

which is the required equation (3.72). This completes the proof that 

\PU\ 
^ = ^ (3-96) 

is a genuine solution of the CP"' model: k = 0 correspond to instanton solutions, k — n - 1 

to anti-instantons solutions and any other choice of k gives new noninstanton solutions. 

Let us end this chapter by reporting Din and Zakrzewski investigation of the properties 

of non-instanton solutions. In fact. Din and Zakrzewski showed that any solution which 

is neither instanton or anti-instanton in nature is necessarily u n s t a b l e . To see this, we 

start w i t h a certain solution Z such that 

D±Z ^ 0, (3.97) 

and then consider a small complex fluctuation about Z of the form 

Z' = y ^ l - \^\^Z + • (?i - 0. (3.98) 
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The action for this new field Z' is 

S ' ^ ^ J ( I ^ V ^ f + \D'_Z'\'^)(fx. (3.99) 

However, since the quantity 

Q' = 2{\D'^Z'\'^ - \D'_Z'\^) (3.100) 

is a topological invariant, we must have Q' = Q — 2{\D+Z\'^ — |Z )_Zp) . Hence the action 

can be rewritten as 

S'^ J Qcfix + i J \ D ' _ Z ' \ ^ S x . (3.101) 

To second order in i t can be shown that 

D'_Z'f = \D-Zf + \D+(t>f - \(j)f\D-Z\^ - \Z* • D-(j) + (f>* • D-Z\^ 

+ {D-Zy • D-4> + {D^(f>y • D-Z. 

Thus 

(3.102) 

5 ' = 5 + 4 J V{(t))(fx, (3.103) 

where 5 is the action associated wi th Z and V{<f)) is given by the expression 

V{(j)) = - \(p\'^\D_Zf - \Z* • D_(f) + f • D_Zf. (3.104) 

Then i f we choose 

(l) = €D+Z (3.105) 

where e is a small complex number, we find that 

D-(f> = eD-D+Z =-e\D+ZfZ, (3.106) 

and 

<j>* • D-Z - 0, (3.107) 
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and so V{^) becomes 

F ( ^ ) - |e|2|£)+Z|2 - \ef\D+Z\^\D-Z\^ - \ef\D+Z 

=-\e\'\D-Z\'\D+Z\\ 
(3.108) 

The last equation implies that 

5 ' < 5. (3.109) 

Therefore the solution Z does not correspond to a minimum of the action: i t is unstable 

under fluctuations, and is, in fact, a saddle point of the action. 

Thus we see that any solution of the C P " models which is neither instanton nor anti-

instanton is necessarily unstable. One should note that what is meant by stability in this 

context, is the topological stability i.e. the impossibility of the reduction of the value of 

the action by an addition of a small fluctuation. However, this type of stability should 

not be confused wi th the size stability discussed in later chapters. 
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IV. SKYRME TERMS AND TOPOLOGICAL 
TERMS IN SIGMA MODELS 

4.1 Introduct ion 

As we showed in chapter two, recently i t has become clear that many field theories 

possess classical s o l u t i o n s d e s c r i b i n g various extended structures. Some of these 

structures are stable wi th respect to small perturbations; often such stabihty is guaranteed 

by the topological properties of these theories. 

There are many examples of such structures. They range f rom kinks and antikinks in 

some simple dynamical systems to monopoles of non-abelian gauge theories. In addition, 

as we have argued in chapter one, in ref.[15] i t was shown that a proton can be described 

by such an extended structure. A model has been proposed (Skyrme model'"'' ) in which 

properties of such an approximation to the proton were studied. They were found to be 

in a good agreement w i t h experimental v a l u e s . Most of these comparisons refer to the 

static properties of the proton; the model has been much less successful in reproducing 

proton's scattering properties. This may be partly due to the fact that most of the 

applications were based on the collective coordinates approach to the proton treated as a 

soliton of the proposed model. To test this approximation in more detail one has to study 

the fu l l evolution of an extended structure in field theory. Unfortunately, this cannot be 

done analytically and numerical procedures require too much computing power to be a 

practical proposition at present. 

Of course, one can study this approximation in some lower dimensional models. As 

the proton of the Skyrme model and the monopoles arise as classical solutions of theories 

in (3 + 1) dimensions which are difficult to handle, we may look for simpler models in 

(1 + 1) or (2 + 1) dimensions. Of these the (1 + 1) dimensional models are easier to 

deal w i th , but are too simple to study these problems in sufficient generality. In (1 + 1) 

dimensions there is no scattering angle and, moreover, many models are integrable and, 

as such, guarantee the solitonic nature of their extended solutions. On the other hand the 

Skyrme model of the proton is not integrable and so a more realistic model in which its 

properties should be studied would correspond to a model in (2 + 1) dimensions. 

As was discussed in chapter one, the modified CP^ model is an example of a noninte-

grable model whose extended structures (skyrmions) show solitonic scattering properties 
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in (2+1) dimensions together w i th the release of a l i t t le bit of radiation during the scat­
tering. Therefore this model can be thought of as a sort of (2-M) dimensional analogue 
of the proton model in (3+1) dimensions. 

However, i t is not clear why we should consider only the 0 ( 3 ) sigma model, or whether 

there are further possibilities i f we t r y to generalise the original SU(2) to larger groups. 

Thus, i n this chapter we shall study this problem and look at the various possibilities which 

arise ( in different dimensions, but concentrating on the (2+1) dimensions) for different 

choices of the target manifold. I n particular we are going to consider various SU(n) groups 

and some interesting coset spaces such as the C P " spaces. Most of our results can be 

generalised to the case of the more general Grassmannian spaces Gnm{^)-

I n the next section various a models which have been used in this context are intro­

duced and a discussion of the additional terms that can be added to the conventional 

Lagrangian terms is included. A discussion of what conditions these terms have to satisfy, 

and what would be their effects on the equations of motion is given. The discussion puts 

more emphasis on " Skyrme-Uke" terras but mentions also some topological terms, such as 

the W Z W term or the Hopf term. The following two sections scrutinize the problem and 

look in detail at the terms that can be used when the target manifold is SU{2) or C P ^ 

Section four generalises the discussion to more general spaces. 

4.2 a models and the addit ional terms 

The original model of a p r o t o n i n v o l v e s a standard U{n) a-model wi th the La­

grangian 

Lo = ^ trd,,Ud''V, U-^ = U\ (4.1) 

to which an additional term (called the "Skyrme term") given by (1.11) was added in order 

to stabilise the soHtonic solutions of the classical equations of motion. The model was 

considered in (3+1) dimensions. Its static solutions fall into disjoint classes characterised 

by the value of the integer valued topological index 

B = ^ e ' ^ ' ' I tr{U-^a,UU-'^djUU-^dkU). (4.2) 
247r̂  J 

The simplest nontrivial solution which corresponds to B = 1 is called the "Skyrmion", 

and since B is interpreted as the baryon number, this Skyrmion solution of the static 

equations of motion is taken as providing us wi th a description of a proton. 
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The original Lagrangian (4.1) ( in (3+1) dimensions) has no stable static or even 
nonstatic solutions, as for any given field configuration U{r) we can always decrease its 
energy by replacing i t by U{Xr), where A > 1. However, as (4.1) involves four derivatives, 
i t scales under r Xr in the opposite way to (4.1) and this property stabilises the 
Skyrmions. The above scaling argument shows why we need a term containing more 
than 3 derivatives, in addition to (4.1). Not all of them are possible, as we want the 
additional terms to posses most of the symmetries of the original Lagrangian (4.1). Hence 
the additional terms should be Lorentz and SU(n) invariant. Moreover, they should not 
alter the equations of motion too much; thus we need terms which are, at most, of the 
second order in time derivatives. In addition, we want the total Hamiltonian to be well 
defined and non-negative. 

I t was shown in the earhest papers on the Skyrme modeP '" ' " , that (4.2) is a unique 

term which satisfies all these conditions in the SU(2) case. However, as we wil l see below, 

this is not the case for SU{n) when n > 2. We wi l l demonstrate this point in section 4. 

Of course, the four derivative Skyrme term is not the only term we can add to (4.1) to 

have a physically relevant theory. We could add also further terms involving either more 

derivatives (say, six ) or terms which are topological in nature. The addition of terms 

involving more derivatives may seem a bit arbitrary at first, and against the spirit of 

simpHcity; however the appearance of such terms can be justified in a low energy effective 

theory approximation to QCD as studied in detail by the Oxford group'^"^ . However, as 

the results of such studies are not very encouraging, we wi l l not consider such terms in 

this thesis. 

The topological terms are more important. In fact Wi t t en has shown''^' that, i f we 

want the soUton of the model to represent a fermion, the Lagrangian of the Skyrme model 

should be supplemented by an appropriate Wess-Zumino ( W Z W ) term. Such a term 

provides a contribution to the equations of motion of the fu l l theory but vanishes for its 

static extended solutions. In the latter case, i t allows the solitons of the theory to be 

quantised as fermions and i t is responsible for the imposition of the fermionic statistics 

on these solitons. 

We are also interested in field theories defined on appropriate coset spaces and, in 

particular, in C P " and other Grassmannian models obtained e.g. f rom the U{n) a models 

by the reduction V — jU'^, where 7 is a complex number of modulus 1. In fact such 

reductions were introduced and used in Uhlenbeck's approach to the construction of clas-
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sical solutions of the U{n) a models in (2+0) dimensions''"^' . In this chapter we shall 
consider first the case of C P " models; the generalisation to more general Grassmannian 
models is relatively easy. To consider such models we take IJ = /3(l — 2iP), where /3 is a 
constant matr ix such that the matr ix V 6 SV(n) and iP is a projector of rank 1 and so 
i t can be wri t ten as iP = ZZ'^ since, of course, Z'^Z = 1. Then, the natural description of 
the reduced model involves Dfj,Z and Dfj_Z\ where D stands for the covariant derivative. 
The conventional term in the Lagrangian for these models is given by equation (3.4). 

Of course the modified CP^ model, discussed earlier, can be obtained by this method. 

However, the question then arises as to the uniqueness of the "Skyrme-term" added to 

this model and its generalisation when one goes beyond the the CP^ model. This problem 

w i l l be considered in the next sections. 

We can also look at further topological and nontopological terms that can be added 

to the Lagrangian of the coset space models. Ignoring terms involving more derivatives, 

the obvious candidate is the Hopf term'^ ' . This term is purely topological in nature only 

in the CP^ case, and in this case, i t does not contribute to the equations of motion (it 

would contribute to the equations for C P " , w i th higher values of n); for static solitons i t 

would be responsible for their quantisations as fermions, bosons or anyons'^'' . We shall 

discuss the role of this term further in section 4 of this chapter, where we wil l study more 

general coset space models. 

4.3 SU{2) or CP^ models 

To construct G-invariant models we use the left invariant forms on G, which can be 

wr i t ten as 

e = U-^ dU =cuoX (4.3) 

where X generate the Lie algebra of G. For SU{2), we take X hermitian, X = a and 

9^ — —9. Selecting the th i rd axis we find 

u = Aa\ A = ltr{a^e) = ZUZ = -A^ (4.4) 

where the complex 2-vector Z - (21, z-i) parametrises the 5 t / (2 ) elements by 

t / = " " ? (4.5) 

w i t h Z'^Z - 1, which guarantee that = t/^ and delJJ = 1. The action of C/(l) on V 
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or Z is given by 

/e'-^ 0 \ 
U ^ u i Z^Ze^t (4.6) 

\ o e f j 

Thus, on account of the unimodularity condition, the SU(2) elements may be parametrised 

by 

Z = (4.7) 

and the elements of the 5^ coset by j ' ' ' ^ ^ in terms of one complex parameter W. The 

one-form (4.4) defines a U{\) connection for the SU{2){U{\), S^) Hopf bundle, which can 

be used to define the covariant differential 

DZ^dZ ~ AZ DZ* = dZ* + AZ*, (4.8) 

since, under a local U{1) phase transformation, Z ^ Ze^'^,A ^ A + id(j) so that DZ 

e^^DZ. The covariant derivative also fulfi l ls the obvious condition 

Z^DZ = 0. (4.9) 

I n terms of U, (4.8) and (4.9) read 

DU = dU -UAa^ (DUy = dU^ + a^U^A (4.10) 

and 

tr{a^U^DU) = 0 (4.11) 

respectively. The curvature F = D{A){=^ dA) is given by the well known two-form 

F = dZ*AdZ (4.12) 

and can be wri t ten as F = DZ* A DZ. This two-form has the same expression both on 

SU[2) and the coset 5^. A l l the above expressions are defined on the group manifold 

SU(2); they are also defined on the coset ^^7^ = 5^ i f they do not depend on ^ i.e. i f 

they are gauge invariant. 
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Let us consider now SU{2) as the target space for the map ^ : M —> SU{2) where 
M is some {d + 1) dimensional manifold parametrised by a;'̂ , = 0 ,1 , 2 , d . Then the 
forms on SU{2) induce forms on M , dZ i—> ^|J,Zdx^\ In particular, we find that 

A = A„, dx'\ A^ = Z^d^Z = Z^Z^, (4.13) 

F = ^F,., dx'' A F^, = Z^Z, - ZlZ^. (4.14) 

We now tu rn our attention to the definition of the Lagrangian on M. The standard 

term necessarily involves the metric on M , which we shall assume to be flat. Using 0* to 

denote the form on M induced by the forms on the group, the standard term is given by 

tT[f{9)^{*<f>\9))], (4.15) 

where * before ^* is the Hodge operator which includes the Lorentzian metric on M. In 

coordinates, this gives rise to the standard term in the action 

So = - \ j tr[{U-^d^U){U-^d'V)]d''+'^x = J Lod'^+^x, 

Lo = \tr[d^,U-'^di'U]. (4.16) 

For SU{2), (4.16) gives 

i o = Z ;Z" ' . (4.17) 

Another possible term is the (gauge invariant) term obtained f rom 

~U = <^\DZ^)^{^i>\DZ)). (4.18) 

I n coordinates i t has the form 

Zo = [D^,Z)\D^'Z) = Z^Z^' - A\Ai'. (4.19) 

We are also interested in o fields taking values in C P " spaces i.e.. when the fields U 

are considered as fields on coset spaces [/•(„.^i)"xt/(l) ^^"^^^ replace the group as a target 
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manifold. In fact, for topological reasons, many static extended structures in (2+1) coset 
models are stable, while they are not stable when considered as fields on the group man­
ifold . Clearly, only the U{1) gauge invariant Lagrangian on SU{2) leads to well defined 
terms on the coset space. This imphes the replacing of dZ by DZ, which effectively cor­
responds to subtraction of the U{1) part f rom U~^dU. Thus (4.18) is replaced by Lo in 
(4.19) which w i t h Z given by (4.7) leads to 

^0 = ( T T T M W ' (4-20) 

where M^,, = 1 5 , and 

W*W.-WW* , ^ 

and so that Lo corresponds to LQ given by (4.18), f rom which A^^^A^ has been subtracted. 

There is an alternative way of implementing the Hopf projection SU{2) 5^. Using 

the projector ZZ^ an alternative parametrisation for the elements of the coset is given by 

U = i{ff -2ZZ^), (4.22) 

which amounts to defining coset elements U by the condition U — -U^. They clearly 

depend on two parameters: we may set Z £ 5^ = CP^ as 

Z = <i£' , (4.23) 

or we may take l ^ i p , and the relative phase of zi and 22 as the independent parameters. 

The advantage of (4.22) and (4.23) is that they generalise to more general complex Grass­

mannian models C„,n((C). Using (4.23) in (4.18) leads directly to the coset Lagrangian 

(4.19). 

Let us consider which terms could be added to the action based on (4.16). The best 

way to fist all the possible terms is to start defining them f rom the invariant forms on the 

SU{2) manifold. The terms which do not depend on the metric M are topological. The 

two possible terms are 
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(a) W Z W - like term. This term is defined f rom the three form on M 

Lwzw = Hct>\e) A <t>\9) A r (^)) (4.24) 

which comes, in fact, f rom the only nonzero form tr[9 A 9 A 9) on SU(2) which can 

be obtained by taking the trace of products of the forms (4.3). 

(6) Hopf term. This term was introduced by Wilczek and Zee''*'' , and it is defined by 

the Hopf invariant integral. Let ip be a. map ip : 5^, then the area element 

tj on S"^ induces a form 'ip*{uj) which is exact on S'^. I f a is the potential form for 

ip*{uj), da = •^*{oj), the Hopf invariant of the map ip is defined by 

H{ij) = J aA^*(a;) = J h. (4.25) 

I t is easy to check, e.g. by using (3.58) that the area element on 5^ is given by the two 

f o r m F [i.e. equation (4.12)). W i t h i) being the map of the compactified three-dimensional 

space-time on C P \ i t is clear that h is given by 

h = e''''P{Z^d^,Z){d^Z^dpZ) 
(4-26) 

= e^'''f'{Z^d^Z){D,Z^D,Z). 

I t can also be wri t ten in the form h = A^J^^, where J'* = e^'''^Pdi,Ap is a topological 

current. 

The metric M is introduced by using the Hodge operator. This gives rise to various 

possible forms of the Skyrme terms. In the SU(2) case the standard form of this term is 

given by 

tr[(i>*{9^ A9)A{*(i>*{9^ A9))\. (4.27) 

On M this expression can be wri t ten as 

Lx = \tr{[d\j,W\n)- (4.28) 

One may also consider a term of the form 

L2 = + tr{9]fi,)tr{9^^^'^), (4.29) 

but for SU{2), Li = L2. This can be proved easily by wri t ing = U~^d^U - iaVp, wi th 

V^, real and making use of tr{9l9^') = 2V^,Vi\ 



Skyrme terms and topological terms in sigma models 54 

The other simple term one may think of is the one defined on M by the form (f>*{F) A 
{*(/)*(F)). In coordinates, this term is given by 

L3 = F,,,F"'\ (4.30) 

Finally we could also wri t ten the term 

L4 = ei"'^{D^Z^DPZ + ccy^^^iD^Z^D'^Z + c.c). (4.31) 

Next we look at possible terms defined on the CP^ coset. The terms (4.31) and (4.30), 

being gauge invariant, are already defined on 5^ ; the terms (4.28) and (4.29) are not. 

Nevertheless, replacing d^i by D^, in 6^ = U~^d^U results in (4.28) and (4.29) being defined 

on 5^. There is another way of proceeding, however, which produces the same effect: the 

same result is obtained, i f , when computing (4.28) and (4.29), the parametrisation (4.22) 

and (4.23) of CP^ is used for U~^d^U. This is based on the observation that, wi th U 

given by (4.22) and (4.23) 

tr{daU-^d,.U) = (daZ^dr^Z) + (d^Z^daZ) + 2{Z^ d.Z){Z^ d^Z) 
(4.32) 

= {{D^Z^D,Z) + c.c). 

Next we observe that on 5^ all these terms (4.28)-(4.3l) give rise to the same Skyrme 

term for the action. In particular, the expression (4.30) is given by 

~ (1 + \W\^f • ^ ' 

The fact that the other Skyrme terms are equivalent to (4.33) follows f rom the fact that 

they lead to (4.33) plus a term proportional to the expression 

77 = 2[{Z^>'Z''){Z^Z.){Z^Z^) - {Z^i'Za){Z^Z^){Z^Z,)] 
(4.34) 

- {Z^''Z^f + (Zt''Z^)(^iZ,) 

which, for SU{2), is zero. Of course (4.28) and (4.29) had to be equivalent since they 

were already equal at the group manifold level. 
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4.4 L a r g e r SU{n) Groups , C P " Spaces A n d Gnm(C)Manifolds 

Next we consider larger groups. We take, for instance 5J7(3) and look at (4.28) 

and (4.29). This time these two expressions are not equal. To see this let us consider 

a particular element of SU{3), which is a product of two elements f rom two difl^erent 

subgroups SU{2). Thus we take, say 

U = U1U2 = 

la 0 0 \ / I 

— 0 a* 0 0 

Vo 0 1 ) 
la 0 0 \ 

— 0 0 ih* 

\o m*6 0 / 

0 \ 

(4.35) 

where a and h are complex functions of unit modulus, which we can thus set a = 

exp{ia),b = exp{i/3). Next we calculate (4.28) and (4.29) for these terms. We find 

that (4.28) vanishes while (4.29) is proportional to 

(4.36) 

This expression is clearly nonzero. Although this result has been obtained for a very 

special element of 5^7(3), i t is clear that had we chosen more general elements of SU{3) 

or larger groups, we would have found similar differences between (4.28) and (4.29). Thus 

for SU{n) w i th n > 2, we have two candidates for a Skyrme term, namely (4.28) and 

(4.29). 

A similar situation exists when we consider the theory on larger coset C P " spaces. 

There is a U{1) principle bundle structure 5(2"+^'(C/(l), C P " ) over general C P " spaces"" 

but the total manifold 5(2"+l) no longer a group i f n > 1. Thus we no longer have 

(4.28) and (4.29) as the starting point for the construction of an additional term to be 

added to L. Nevertheless we have again two possible Skyrme terms which this time we 

can take to be given by (4.30) and (4.31). Although they are the same in the CP^ = 5^ 

case, they are different already for the CP^ model. To see this we parametrise Z € CP^ 

by 

(4.37) 
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Then (4.30) is given by 

where P ' ' = Wi^'W2 — W1W2 and where the square implies the summation over / i and u 

w i t h the Lorentzian metric. 

Next we have to calculate (4.31) However, instead of calculating i t explicitly i t is 

convenient to rewrite -Py^^^P'*^ as 

-F,,,F^'' = -{A,,, - A,,,\A^^ - A'^^) (4.39) 

wt here A.,^ = D.Z^D^Z. Then (4.31) is given by 

4 ^ { ; : ^ j : - 2A,.,A'"' - 2A^,A'''' (4.40) 

and so we see that the difference of (4.38) and (4.40) is given by A{A'IJ,A'^ - iA^^A'^'^''). 

Since in the C P ^ case is given by 

, ( ^ I ; H ^ I , . + ^ 2 ; ^ 2 . + P ; P . ) 
( l + | M / i | 2 + |VK2|2)2 ' ^ •̂̂ >̂ 

we find that the required difference is given by 

( l + |M/i|2 + |H/2|2)4 ' ^^-^^^ 

where the summation over ji and v is again understood wi th the Lorentzian metric. The 

derived expression clearly does not vanish in general (of course, i t is zero if 14̂ 2 = 0, which 

correspond to the previous C P ^ case). Similar results can be obtained for other C P " 

models. 

In addition we w i l l t r y to extend our handling of the C P " spaces to the Grassmannian 

manifolds G,„„,(C). Since the basic Lagrangian for the Grassmannian models possess a 

?7(m) local symmetry, we can th ink of the Lagrangian as giving a constant function on 

the orbits of the U{m) group realised on the Gnm.{'^) spaces. Therefore the picture looks 

locally as a product of two spaces G„.„i(C) x U{m). 
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To construct both the basic Lagrangian and the additional terms in G,i,„,(C) spaces 
we wi l l consider the line bundle E, whose cross section is the n x m field matrix of the 
Grassmannian base space. Furthermore, its structure group is the unitary group of order 
M , i.e.[U{m)). To show that U{m) is the structure group, consider two overlapping 
patches say [Ui, Uj) such that Ui Pi Uj ^ 4>, and consider the local trivialisation maps ipi: 

i^i-.E^ n-\U,). 

Then the transition function tij at the point Z 6 G,„,i((D) which takes the form 

Uj = 0 ,Pi (4.43) 

is an element of U{m), that is Uj G U{m). 

To complete the description of i?, we also need to specify how covariant variations of 

Z are performed. For this purpose we introduce the one form connection, used to parallel 

transport structures in E, by the unique split t ing of the fibre space into two orthogonal 

subspaces, one of which is (called) the horizontal subspace and the other the vertical one. 

So let r[c] be the transport of Z w i th respect to the curve c. Then r[c] belongs to 

U{m) and i t takes, infinitesimally, the form' [23) 

r [c ] = P ( J ' ^ ^ ^ ) , (4.44) 

where P in the above expression stands for the path ordering and A is the one form gauge 

potential, which in our case of the m x m matrix, can be wri t ten as 

A = Z+dZ. (4.45) 

From this connection we determine the covariant derivative on E which is given by 

DZ^dZ - AZ = dZ+ + Z+A. (4.46) 

I t is easy to show that DZ transforms under U{rn) as required. 
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Another important object, which transforms covariantly under U(m), is the curva­
ture of the bundle P, which is obtained form the one-form connection by the covariant 
differentiation 

p = DA = DZ+ ADZ 
(4.47) 

= dZ+ - AAA. 

Following the same steps as in the C P " models, let our fields be mappings from the 

space-time manifold to the target manifold E: 

( P - . M ^ E , (4.48) 

where M is chosen to be a Lorentzian manifold wi th dimension d + 1 and parametrised 

by the coordinates x'^ = (x°, Consequently, forms defined on E induce forms 

on M by the puUback mapping (^*. In this description the basic Lagrangian in Ĝ ^̂ ^̂ d̂̂ j 

models is the bihnear form on the space of one forms, namely 

Lo = tr(l)*{DZy A*(I)*{DZ) (4.49) 

or wr i t t en w i t h respect to a coordinates system on E, 

Lo = tr{D,,ZyiD^'Z). (4.50) 

Another equivalent approach in constructing the basic Lagrangian and possibly ad­

dit ional terms on Gnm{^) spaces is to construct expressions on the group manifold U{n) 

and then restrict the group elements to the proper coset by the appropriate projection. 

Obviously the most diff icult part of the second approach is to find the projection from 

the group manifold to the Grassmannian space. In fact Uhlenbeck''*"' showed that in this 

case the projection operator has the form 

U = i{E-2P), (4.51) 

w i t h the condition that P is a matr ix of rank M ; in other words let {Zi, Z2, , Z,n) be 

a set of orthonormal vectors then JP is given by 

P = zlZi + ZIZ2 + + ZlZ^,. (4.52) 

In any model building process one needs covariant objects on the group manifold U{n) 

and the left invariant forms are the best candidates to play this role for us. Thus in the 
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other description the basic Lagrangian has the form 

(4.53) 

provided that U satisfies (4.54). 

The additional terms on G,„„,(€) spaces are of two different types; namely, those 

which are topological and others which are not. For the topological ones we are interested 

in constructing an analogue of the VVZW term of SU{2) or CP^ on G,i„i(€) spaces. In 

(2 + 0) dimensions a reasonable candidate for the WZW term is 

Lwzw = m A m A m 
(4.54) 

= e'^^Ptriil - F ) F / , ( 1 - P)P,{1 - P)Pp). 

However, due to the trace properties, the above term is symmetric in {n.vp} and on 

the other hand, it is proportional to the alternating tensor. Therefore the WZW term 

identically vanishes on the Grassmannian coset. 

For Skyrme terms one can define four possible terms. The first one takes the form 

Li=trf{F)A*f{F), (4.55) 

or, in terms of a coordinates system on E, 

Li = tvFf.^Fi''' (4.56) 

where is given by 

= d,,Z+d^Z - d^Z+d^,Z + [Af,,A^]. 
(4.57) 

The second candidate, just as in CP^ case, is written as 

L2 = e^''^tr{Df,Z^D''Z + c.c)ep<,-^ir(D^^+Z)'^Z + c.c), (4.58) 

whereas the third term is given by 

L3 = tr[f{e^ A 9) A *f{d-^ A 9)], (4.59) 
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which in our case reduces to 

L3 = tr[P^,Pt,F^'P" - F „ F , , F ' ' F ' ' ] . (4.60) 

The fourth term is simply given as 

L4 = -[tr{ep>')f + f r [ ^ + ^ ^ ] i r [ r + r ] , (4.61) 

which upon projection onto the Grassmannian manifold takes the form 

L4 - -tr{P^P"f + tr{F,,P,.)tT{F^'F''). (4.62) 

Are any of these Skyrme terms equivalent? To check this we resort to a parametri-

sation of the Grassmannian spaces due to Macfarlane'^"' . He wrote the field matrix 

as 

Z = \ ^ , (4.63) 

where P and Q are (n - m, m) and (m, m) matrices, respectively, and then exploited the 

U(m) local symmetry to rewrite it as 

Z = I ^ (4.64) 

where L is a hermitian matrix. 

After a straightforward but tedious calculation one can show that the four terms take 
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the following forms respectively 

Li = tr{Ld^K+[l - KL^K+ + {KL^K+)]d^KL - {ft ^ u)), 

L3 = tr{d^iKL^K+)du{KL^K+) + d^{KL^)d^(L^K+)f 

tr{{d,{KL'K+)d,{KL') + d^{KL')^,{IJ)){^i ^ v)+} 

tr{{d,,L^Kd^KL^K+ + d^L'^d^L'~K+){^i ^ 

+ tr{d^LrK+d,KL^ + d^.l'^dyL^f 

- tr{d^KL^K^dyKL^K+ + d^^KL^d^L^K^){ii ^ vf 

- tr\d,^KL^K+d„KL^ + d^KL^d^L^\^ 

- tr\d,,L^K+d^KL^K+ + d^,L^d,.L^K+\\ 

= tr{(df,KL^K+d^KL^K+ + d„KL^d^L^K^) 

tr{d^L^K+d^KL^ + df^L''d^L^)(^i ^ u)} 

(4.65) 

Finally, we should add a few comments about the generalisation of the terms (4.24) 

and (4.25). Of these, the first contributes to the equations of motion only in (1 + 1) 

and (2 + 0) dimensions. In these cases its contribution to the action comes from the 

fact that (4.26) can be locally written as d~^tr{9 A 9 A 9) since tr{9 A 9 A 9) is closed 

but not exact. The presence of the WZW term in the action implies that the original 

SU{2) current algebra associated with (4.16) is replaced by the Kac-Moody algebra; also 

quantum considerations require the quantisation of the coefficient of WZW term'^^' . In 

(2-f 1) dimensions, we can consider the three-form (4.24) as an additional contribution 

to the action. This term is locally a total divergence and so it contributes only to the 

quantum properties of the extended structures that the theory may posses. This pattern 

also holds in higher dimensions if we consider larger SU(n) groups. For instance, in the 

general even dimensional case, the WZW term determines the "Schwinger terms" in the 

a l g e b r a . 

Let us now look at (4.25). As already mentioned by Wilczek and Zee'̂ '' , (4.25) is 

also locally a total divergence. Nevertheless, and although they look different, the local 

expressions (4.24) and (4.25) are in fact equal. This can be seen by setting the two 
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components zi and 22 of Z as 

zi = ai + ia2 Z2 = az + ia^ (4.66) 

where ^ • aj = 1, and then observing that in these variables (4.25) becomes 

h = -^e''^"^'^e^"'^aad,,abd,a,dxad. (4.67) 

But (4.67) is the expression for the topological charge density of the SU{2) model in three 

dimensions, which is, in fact, given by the form (4.24). In fact both (4.67) and (4.24) 

come from the invariant volume form on 5^, which is given by the well known expression 

dai A da2 A da^ 

and which is equivalent to tr(9 A9 A9). 

The expression (4.25) is not locally a total divergence when we consider it for CP" 

with n > 1, i.e. when Z has more than two components. Of course, introduced this way, 

the term looses its topological character and so it should not be called the " Hopf term", 

a name which is reserved for (4.25). However, from a pure field theoretic point of view, 

we could include such a term in the total action for CP", n > 1. We could calculate it 

explicitly, e.g. for the CP^ case using the parametrisation (4.37). In this case one finds 

h = (1 + |vt / , |2)2[^"^i*^/^^i(^2^7^2 - W2d,W*2) + {W, ^ W2)]. (4.69) 

All in all, we have studied various a models which one can use for seeking relativistic 

field equations with soliton-like extended structures in (2+1) dimensions. Such models 

can be thought of as lower dimensional analogues of the (3+1) dimensional Skyrme model. 

Some of the discussion was not restricted to (2+1) dimensions. In particular, we have 

found that when we consider SU{S) or larger spaces we have two possible Skyrme terms 

which can be used to stabilise the sohtons; for SU{2) both of these terms coincide and 

give the conventional Skyrme term. Of course, for extended sructures, and solitons in 

particular, we should consider their stability. It may be that in practice, for stability 

reasons, we may be able to restrict our attention in (3+1) dimensions. However, when 

we consider more general numerical simulations there seems to be very little to choose 

between these two types of terms and we suggest that both are included. 
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When we restrict ourselves to (2+1) dimensions, and consider CP" models, the situa­
tion is similar and, again, we have two terms involving four derivatives and in addition we 
have also one term involving three derivatives. In the CP^ case the two four derivatives 
terms are the same and the three derivative term becomes topological (it becomes the 
Hopf term). For higher n the two terms are different and the possible additional three 
derivative term is no longer topological. In the next chapter we will discuss some implica­
tions of the addition of the Skyrme terms to the basic CP" models and will discuss static 
solutions (Skyrmions) of these models. 
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V. SIGMA MODELS WITH SOLITONS IN (2+-1) DIMENSIONS 
5.1 Introduction 

It is generally beheved that most of the properties displayed by solitons in their scat­

tering are associated with the integrability of the solitonic models, i.e. with the existence 

of an infinite number of conservation laws which restrict the form of the scattering and 

also partially determine some of its properties. Most integrable models correspond to field 

theories which describe the time evolution of one dimensional systems; very often the un­

derlying field theory is nonrelativistic and the solitonic properties of the solution of this 

theory are achieved by a subtle interplay between the dispersive and the nonhnear terms. 

In many physical applications however, we are interested in models in higher dimensions, 

particularly those which are Lorentz invariant. But already in (2+1) dimensions only very 

special models are integrable e.g. the modified chiral model'"' or the Davey-Stewartson 

equation'^^' and the Kadomtsev-Petviashvih equation'*"' . Moreover none of these models 

is relativistically invariant. So, as we have argued in chapter one, if we want to consider 

Lorentz invariant models with solitonic-hke behaviour in (2+1) dimensions or even higher, 

we have to go beyond integrable models and look at some quasi-integrable models in (2+1) 

dimensions. 

At the same time it is not clear from the physical point of view whether we would 

prefer to restrict ourselves to purely integrable models, at least as far as the radiation 

effects are concerned. In fact, most physical processes, such as e.g. the proton-proton 

scattering, do indeed show some radiation effects but, as it turns out, these effects are 

often rather small. Thus, in the proton-proton scattering case, the elastic cross section 

dominates the inelastic one, especially for not too high energies. So may be the idea of 

going beyond the integrable models is physically more sound than it may seem at first 

sight-as long as all radiation effects observed in the quasi-integrable models are not too 

large. 

In chapter 1 we have argued that the simplest of such quasi-integrable models is the 

modified CP^ model whose Lagrangian is given by equation (1.12). However, having 

presented such a model, a question then arise as to the uniqueness of this model and its 

solutions. What are the properties of various terms in the model? What is their role? 

How much freedom does the model possess? We have already looked at these questions in 
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the previous chapter where we studied the uniqueness of the Skyrme term. In this chapter 
we will concentrate on the potential term. 

5.2 Skyrme Model 

To perform our analysis of the modified CP^ model, let us start by observing that 

the additional potential term (a term with no derivatives), whatever it is, must break the 

global 0(3) invariance. Thus let us take it to be a function of only one component of (j), 

say, (f)"^, (1.8).e. we take it as 

Lv = f{<f>')- (5.1) 

I t is clear that the model based on the Lagrangian consisting of the sum of Lo (basic 

Lagrangian) , Ls (Skyrme term) and Ly (potential term) is still Lorentz invariant and for 

positive values of 9i and reasonable choices of /{(p"^), its Hamiltonian is positive definite. 

Moreover, despite the appearance to the contrary, the Lagrangian does not contain time 

derivatives higher than two and so its equation of motion takes the conventional form. 

How unique are the two new terms? This problem was considered in chapter four 

where i t was shown that for a model with a C(3) symmetry the Ls term is unique; the 

other term is very nonunique and we will discuss here some of the choices one can make. 

What is the role of all our additional terms whatever the choice of Ly? To study this 

point let us consider an arbitrary field configuration ^ — = ^(t,x,y) and compare it 

with ^2 = </'(M^> f-y) {c^nd use the corresponding expressions for 4>). In particular, let us 

look at EQ = J Lo dxdy, Es — J Lsdxdy and Ey = / Ly dxdy and compare their values 

for both field configurations. Clearly, for ^2 we can change the variables of integration 

(t iJ,t, X ^ fix, y —> iiy) and so find that 

Eoih) = Eoih) 

Esih) = y^^Esi^i) 

Ev{h) = li~'^Ev{h)-

We see that as the scaling properties of the last two terms are opposite, the combined 

effect of the inclusion of both of them is to introduce a scale and to stabilise the solitons. 

Moreover, the value of pL for which £'(02) = £o(</'2) + £ 5 ( ^ 2 ) + Ev[(l)2) is minimal is 

given by /X = {Ev{}i)lEs{}i)fl'^. So, for that value of ES[}) = Ev{4>) and E{4>) = 
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EQ{4>\) + 2 * {Ev{4>\) * Es{4>\)Y^'^- We have thus proved that for every solution </> of the 
Skyrme model the energies of the additional terras are the same {Es{4') = Ey[(f))). This 
was, in fact, observed in the model introduced in ref.'^ ' , where Ly was taken to be given 

by 

Lv = - ^ ^ 2 ( 1 + ^ ' . (5.2) 

where 02 is a new parameter of the model. The equation of motion of this model is then 

given by 

df,d''(l>' - {$.^^^^'^)4>'-29i[d^,di'f{dJ.d"^) + d,,(l)'{df,d''}.d^'$) 

-d,d^(j)\d''}. a'V) - d^,(t>\d''dj. a'V) + (a,i. d>'4>){dj. d''^)f ( 5 . 3 ) 

- { d j . d^$){d''l d^'^)<i>'] + 2 ^ 2 ( 1 + cf>^f {Sii - <i>'(i>^) - 0, 

and, as shown in ref.'^'' , the model possesses a static one soliton solution. This solution 

has a simple form in the W formulation. In fact, it is given by 

W = A(x+ - a), ( 5 . 4 ) 

where A takes the value 

A = A „ = y A . (5.5) 

Observe that this is a particular case of the one instanton solution of the 5^ cr-model 

( 3 . 5 9 ) , but with the fixed "size" (determined by AQ). In what follows we shall refer to this 

solution as a skyrmion. The total energy of the field configuration ( 5 . 4 ) is given by 

E{X) = 2 ^ ( 1 + + ^ | ) . ( 5 . 6 ) 

The solution ( 5 . 4 ) was then used in many further investigations'''""' which have 

shown, among other things, that 

( 1 ) the skyrmion is stable, 

( 2 ) there exist small repulsive forces between two skyrmions, 

(3) the forces between a skyrmion and a anti-skyrmion are attractive. 
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(4) if two skyrmions are sent towards each other at a zero impact parameter and at 
sufficiently high velocity, then they come out of the interaction region at 90° to the 
direction of the original motion. 

(5) the mechanism of this 90° scattering proceeds through the process of the formation 

of a ring (when two skyrmions are on top of each other). 

Even though most of these results were determined in numerical simulations, some of 

them may in fact be estabhshed by analytical considerations. In particular, in the next 

section we discuss the stabihty properties of the solutions of our modified models; most 

of that analysis is actually apphcable to the whole class of potential-hke terms {i.e. going 

beyond (5.2).) 

5.3 Modified Skyrme Model 

To proceed with our construction of more generahsed models we will use the formula­

tion in terms of the W field (instead of (f) field), since this makes the description of results 

simpler. Let us consider more general potential terms, namely corresponding to Ly given 

by 

V(W) 2 

where V is any function of W. As is easy to check, (5.2) corresponds to V = 1. 

Let us also adopt the convention that Wx denotes ^ and that Wi, i = 1,2 stand 

for Wx and Wy respectively. And let 14̂ 4. and W- denote ^ and ^ respectively. The 

equation of motion for the static solutions of our family of models is then given by 

+ W++WIW- + W--W1W+ - VK+_(|V7+|2-h|M^_Py 

2 _ | p ^ 2)2 (5-8) 

We will shortly restrict our attention to some particular choices for V but first, let us 

describe some properties of the models which hold for any choice of V. Thus we observe 
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that the energy density for the static solutions can be expressed in terms of W as follows 

" ( T T I m W ^ (1 + |M/p)4 + ^^1 (1 + \w\^Y^- ^^-^^ 

Moreover, following Tchrakian'""' we can define 

/

i f . , ur* w . 
j ^ f P ^ 2 U d x d y , (5.10) 

which is a topological-like charge for most suitable real functions U dependent on W and 

its complex conjugate (for more details see the appendix). In fact, (5.10) is equivalent to 

the topological charge of the unmodified CP^ when U = 1. But as 

,Wi + i€ijWj^2 
(1 + |M/|2)2 

dxdy > 0, 

i eij W* 
(5.11) 

and ' , 0 +U^dxdy,>0 
+ |V^|2)2 

we see that (for U real) 

/

W- f ie-. W* W.-

(512) 

Next we observe that the right hand sides of the above inequalities are two particular 

cases of (5.10) corresponding to = 1 and (7 = 2 f/. Taking U = 2f^ J ^ ^ j ^ L ^ and as 

E = EQ + 29i El we see that the topological nature of Q implies that all solutions which 

satisfy 

Wi + ie,jWj = 0, 
ze,,W*W, _ (5.13) 

^ + (1 + |VK|2)2 - ^ 

are stable static solutions of the general model. In terms of the complex variables x+ and 

x_, these equations can be rewritten as 

(as a matter of fact, every solution of the pair of equations (5.14) is also a solution of 

(5.8).) As the one skyrmion solution (5.4) is also a solution of (5.14) for K = 1 when (5.5) 

is satisfied, we have shown that this solution is stable. 
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It is interesting to determine the zero modes of our solutions. This is quite tedious 
for a general configuration, but can be done quite easily for (5.4). 

To determine the fluctuations around the solution (5.4) of the model with Ly as given 

by (5.2) we look at the terms that are of the the second order in 8W in the expansion 

of the total action S (ignoring the time derivatives), around the solution (5.4) i.e. WQ — 

\{x+ — a). For simplicity, we shall take a = 0 (exploiting the translational invariance). 

The expansion of 5, to the second order in 8W, is 

S{W) =S{WQ) + dx+dx-i^2SW*{x-) 
6'S 

+SW{x-) 

+6W*{x-) 

6W{x-)6W{x+) 

6'S 

6W*{x-)6W{x+) 

6W(x+) 

6W{x+) 
W=Wo 

W=Wo (5.15) 

SW*{x-)6W*{x+) W=Wo 
6W*{x+) 

+0{6W^) = S{WQ) + 5(2) -f 0{SW^) 

where the first order terms cancel because WQ is a solution of the Euler-Lagrange equations 

for S. A short calculation shows that in this case, 

dx+dx. 
d-6W 

1 + \Wo\'^ 
+ 0, 

2X*d+6W ^ 2Xd-SW* 
( 1 + 11̂ 012)2 {i + m ^ y 

> 0 , (5.16) 

where, as before, d- = d+ = Equation (5.16) implies that WQ is a minimum of 

the action S. 

Next we look at the the zero modes of the solution, i.e. the values of 8W for which 

5 ( 2 ) = 0. In our case the zero modes are the solutions of the system of equations 

d-6W = 0, 

\*d+8W + \d-8W* = 0 , 
(5.17) 

the general solution of which is 8W - AXJ^ + 5, with A* = - \ A . 

Clearly, all these modes correspond to either a translation (x+ H-> x-i- -|-6) or a rotation 

(a;+ 1-^ x+e*^). In fact, if PVQ - is a solution, then e'^'^Xx^ + \b is also a solution. 

Then, 8W — e'^'^Xxj^+Xb — Xx^ must be a zero mode. But 8W can be written, to first 
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order in (j) and b, as 

6W = i(l)Xx+ + Xb = Ax+ + B , (5.18) 

with A — i(j)X, B — Xb. Note, however, that 

A* = -icj)X* = ^i(j)X - - \ A , (5.19) 
A A 

thus we see that the only zero modes relative to the static solution (5.4) are those of 

translations and rotations. 

5.4 A Skyrme Model With Static Pairs 

The choice of V was somewhat arbitrary so we should check what happens when we 

take other expressions for Ly which correspond to only small modifications of (5.2). Thus 

let us take, first, 

V ^\W + Xa^\\ (5.20) 

where A and a are the new parameters of the model. Clearly, the appearance of a intro­

duces a new scale into the model and, as is easy to check, 

VK = A ( 4 - a 2 ) , (5.21) 

satisfies (5.14) if 

32A2 

and corresponds to a stable solution of (5.8). The parameter a of the model sets the scale 

of the relative distance between the two skyrmions in the solution (5.21). Is this new 

solution stable and how general is it? What are its properties? 

Like (5.2) the solution of the previous model, (5.21) also satisfies (5.13) and so by the 

same argument as before it is stable. Again, its zero modes can be computed exphcitly. 

To do this, hke in section 3 we consider the fluctuations around the static solution WQ 
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given by (5.21). Then, the second order term 5^2) given by 

5(2) 

+64^] 

= j dx^dx-^ 
d-6W 

l + |M ôP 
\*x-d+8w + \x+d-8w* - y'j^sw - X^SW* |2 

( l + |VKo|2)2 
> 0 , 

(5.22) 

and so we see that the zero modes of (5.21) are the solutions of 

d-6W = 0, 

X*x-d+8W + Xx+d-6W* - X*—6W - X^SW* = 0 
x^ X -

(5.23) 

Clearly, the general solution of this system of equations is given by 6W of the form: 

SW = Ax\ + Bx+, with the condition A* - - x ^ - But, as in the previous case, the new 

action is invariant under translations and rotations. Thus, 

6W = A(e2'^(a;+ + bf - a^) - A(x^ - a^) ^ 2i(j)Xxl + 26Aa;+ (5.24) 

with and b small, must be a zero mode. But this is precisely of the form 6W = 

Ax\ + Bx^ with A = 2i(j)X, B - 2Xb and fulfills the condition A* - -^A. Thus we see 

that there are no zero modes other than the global translations and rotations. 

What are the properties of our new solutions? Some preUminary results on the scat­

tering properties of the field configurations like (5.21) have already been obtained'^'' In 

particular, they show that when the two skyrmions are displaced a httle from their po­

sitions of equihbrium ± a they oscillate around these positions and if the displacement 

is quite large they may even scatter at 90° during these oscillations. I f the simulations 

are performed with absorbing boundary conditions then the skyrmions, while oscillating, 

gradually settle at their positions of equilibrium. 

What would happen if one started the simulations with an initial field configuration 

corresponding to one skyrmion i.e. given by (5.4)? This, as is easy to check, is not a static 

solution, so some evolution is to be expected. The surprising result is that the prehminary 

results showed very httle evolution; i.e. the fields behave as if (5.4) were a static solution. 

The only resolution of this paradox is that there exists a solution which is very close to 

(5.4). However, it is diflBcult to find its analytical form. All our attempts at finding it have 

failed. Of course due to the existence of a topological charge we can easily write down field 
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configurations which he in the Q = 1 sector of the theory. Then choosing the configuration 
for which the action is minimal would provide us with a solution of the equation of motion. 
However, there is no guarantee that such a procedure will give a well behaved solution; 
namely that it will lead to a solution which is not singular and reasonably localised (as 
seen in our simulations). For a start let us choose the configuration 

W = ax++ f5x-+^. (5.25) 

What is the topological charge? Note that if the fields of CP" models are given by 

Z = / / | / | , then the topological charge takes the form 

Q = I d X pjyj2^2 • (^-^fi) 

But for the CP^ model in the sterographic parametrisation, / takes the form / = (1, W), 

and so the topological charge is given by 

Q = J [ l + |H^|2]2 • (5-27) 

Inserting the configuration (5.25) into the expression of the topological charge gives us 

To perform the integration, first make the substitution x x + Then the integral 

becomes 

0 0 

Next we integrate over the radial variable which yields 

Q = ~ ^ J, (5.30) 

where 
27r 

J = I d9 ^ \ . (5.31) 
J \acos9 + bsin9Y' 
0 

To evaluate the integral J, we made the substitution i = tan9, calculate the resultant 
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integral by the method of residues and find 

47r 

Therefore the topological charge of our configuration is 

Q = sign{\a\^ - (5.33) 

where sign in the above equation is the sign function defined as 

X 
sign{x) = — . (5.34) 

X 

Note that i f the parameter a is larger than P then the configuration (5.25) is close to 

an instanton configuration, whereas if the converse is true then the same configuration is 

closer to an anti-instanton configuration. So may be this configuration will be the required 

solution for some choice of a and /3. Unfortunately this is not the case. 

Next we examined another configuration, namely 

W = ° " ^ + ^ " - + ^ . ( 5 . 3 5 ) 

KXJ^ + mx- + / 

The topological charge associated with this configuration is given by 

Q I j d x J dy^^ (5.36) 

-OO - ( X ) 

with 

and 

N = x{{am - f3k][{a* + /?*)/* - ^*{k* + m*)] + c.c) 

+ iy{[a*m* - p*k*][{a - 0)1 - ^{k - m)] - c.c) (5.37) 

+ (|a/ - 7^|2 - 1/3/ - 7m |2), 

D^il + lWl"^). (5.38) 

In evaluating this integral we decided to take a diff'erent strategy, namely first integrating 

over x using the residue techniques and then integrating the remainder (y integration) 
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by ordinary methods. In doing so we encountered the following two integrals, the first of 
which is 

+00 

/ d , - 4 l J ^ f - - . (5.39) J [ax^ + bx + cY 

Evaluating this integral by the residue method we found that h is 

where A = 6̂  — 4ac (discriminant). The second integral is 

-1-00 

h= dy I 
a'y + /3' 

ay^ + by + c]3/2 
0 0 (5.41) 

Puting everything together we found that the topological charge of the configuration 

(5.5) is given by equation (5.41) provided that 

a' = (2i(a*m* - P*k*)[{\k + mp + \a + /?P)((a - /?)/ - ^{k - m)) 

~ ((a - /5)/ -{k + m)^){{m*k - k*m) + {a*f3 - p*a))] - c.c), 

= i\k + m|2 + |a + P\^){\al - jk\^ - \/3l - jm\^) 

- 4{Re{a*m* - (3*k*)[{a + /?)/ - {k + m)^]Re{k + m)L* + (a + /3)7*), 

a = A[\k + m|2 + \a + /3p + {{mk* - km*) + (a*/3 - a^*))^ 

b = 2i[(-{k + mf{k* - my* + c.c) + \k + m\^(,{k - m)l* - l{k* - m*)) 

+ {~{k + m){a + f3){l*{a* - P*) + y*{k* - m*)) + c.c) 

+ {{k + m){a* + P*){l*ia - P) - ^{k* - m*)) ~ c.c) 

+ {{a* + p*)'j{a -P) + c.c) + \a + P\\j*ia ~ P) - c.c)] 

- Ai{\k + mp + |a + Pf){l*{k - m) + 7*(a - p) - c.c), 

c = 4(\k + mp + \a + /3p)(|/|2 + |7 |2) + (((k + m)l* + c.c) + ((a + P)j* + c.c))\ 

(5.42) 

It is easy to check this expression by considering the two limits when our configuration 

is either an instanton or an anti-instanton. Indeed the limits are just as expected i.e. ± 1 

respectively. Once again, it turns out that the configuration (5.38) does not solve the 

equations of motion, for any choice of its parameters. 



Cmodels with solitons in (2+1) dimensions 75 

A l l other methods of f inding the analytical form of the one Skyrmion configuration 

has been unsuccessful, so the challenge is stil l there. 

5.5 Models wi th k Skyrmions and G e n e r a l Comments 

One can go even further and seek models which possess solutions wi th k static 

skyrmions. A superposition of k skyrraions wi l l in general be described by a configu­

ration corresponding to a polynomial of degree k 'm xj^ for W. Rather than looking at 

a general configuration, we wi l l investigate the most symmetric case namely the one for 

which the k skyrraions form a regular polygon of order k. Our solution wi l l thus be of the 

type 

W = A(x^^ - (5.43) 

where a w i l l be the distance f rom each skyrmion to the origin (the position of the skyrmion 

are given by the zeros of W). Notice that when a = 0 the k skyrmions are on top of each 

other. What is the potential for which (5.43) is a solution of the model? 

I n fact i t is easy to check that i f V is given by 

V = {W + Aa^)2(*^-i)A, (5.44) 

corresponding to 

Lv = + ^a'd + h)? + M l + h?f^'-'^'\ (5.45) 

then (5.43) is a solution of (5.14), i f 

= (5.46) 

Moreover this solution is stable as can be shown by looking at the fluctuation around i t . 

I t is important to note that Ly is given by a non-integer power of W except for k equal 

to 1 or 2. 

We have presented a class of models which possess sohtons-hke static solutions. A l l 

these models are based on the 5^ cr-model. Their Lagrangian consist of the Lagrangian 

of the 5*̂  model supplemented by additional Skyrme-hke and potential terms. The two 
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additional terms, taken together, stabilise the solitons. As the Skyrme term is unique we 

see that we have some freedom in the choice of the potential term. The simplest choice 

of the potential term gives a model which possesses a one-skyrmion static solution; the 

other choices have static solutions wi th other skyrmion numbers. Thus in these other 

models there are rather complicated forces in multi-skyrmion channels; some attractive 

and some repulsive and such that for some special configurations of skyrmions all forces 

cancel allowing us to have multi-skyrmion configurations as their static solutions. 

We have looked at some properties of these models; in particular we have analysed 

the stabilities of their multi-skyrmion solutions. We have found them all to be stable; 

hence these solutions can be the starting points of the investigations of their scattering 

properties. A numerical investigation of some of these properties is currently being carried 

out ' " ' . 



soliton scattering in CP^ model 77 

VL SOLITON SCATTERING IN CP^ MODEL 
6.1 Introduct ion 

In this chapter we w i l l consider the solitonic properties of the static solutions of CP^ 

models in (2 + 1) dimensions. Along the way we wi l l investigate the impact of adding 

extra terms to the basic CP^ Lagrangian, particularly two sorts of terms, the first of 

which is a generalisation of the Hopf term to the CP^ space, and the second corresponds 

to generahsations of the Skyrme term. 

I n chapters one and five we have argued that both quasi-integrable and integrable 

models share the same property of having extended structures (solitons) in (2-M) di­

mensions. However, for quasi-integrable models, unUke integrable ones, their soUtons are 

not very much constrained in their scatterings by the existence of an infinite number of 

conservation laws. Thus to have a further understanding of the scattering properties of 

sohtons in quasi-integrable models Zakrzewski and others'"' have investigated this aspect 

in the CP^ model. 

So what are the scattering properties of the extended structures as they come close 

together in , say, head-on collisions? Simulations have shown that in all cases the scattering 

proceeds through the same intermediate stages: first the extended structures come close 

to each other, then they form a ring and finally they emerge out of the ring at 90° to the 

original direction of motion. 

The formation of the intermediate stage in the form of a ring is one of the properties of 

the CP^ model, and prevents us f rom following too closely the trajectories of the solitons; 

clearly when the solitons are close together they overlap and due tn their indistinguisha-

bi l i ty their trajectories lose their meaning. Comparing the expressions for the positions 

of the solitons when they are far apart, and considering their speed, i t was found that, 

in analogy wi th a similar result in ( l - f - l ) dimensions, the solitons are shifted along their 

trajectories. However, due to the ring structure of the intermediate state the qualitative 

assessment of the shift is somewhat difficult to perform. What happens when the two 

solitons are on top of each other, say, at the origin? As is easy to see, the energy density 

of such configuration is in the shape of a ring centered at the origin. Thus i t would seem 

natural to assume that the two solitons come on top of each other before they scatter at 

90°. 
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To study the importance of the ring formation and/or the shrinking of sohtons one 
ought to go beyond the simplest 5^ model. The effects of shrinking were taken care of by 
adding the "Skyrme-like" and potential terms; here we concentrate on the ring formation 
and the phase shift along the trajectory. 

To go beyond the formation of a ring, when the solitons are on top of each other, one 

has to consider a model w i th a larger target manifold space; the simplest such model is 

the CP2 model. 

6.2 M o d e l 

As we showed in chapter three and four, the CP'^ model is based on the Lagrangian 

Lo = {D"z)^D^,z, (6.1) 

where the basic field vector z has three components z , which are constrained to 22 

satisfy zjzi = 1, and where the covariant derivative Dfj,Z is defined as in chapter three. 

The Lagrangian (6.1) is invariant under U{1) local gauge transformations z ze**̂  

which allows us to set 

{l,Wi,W2) 

y/1 + \Wi\^ + \W2\^ 
(6.2) 

and so consider the complex Wi and W2 fields as the independent fields of the theory, 

(the CP^ case corresponds to setting, say, W2 - 0). I f we rewrite our Lagrangian in terms 

of Wi and W2 fields as defined above i t takes the form 

_ d„Widm^ + di,W2d"w^ + {Wid,W2 - W2d,,Wi){Widm2 - W2dnviy 
^ - ( l + |Vl/i|2 + |M/2|2)2 • ^ 

But f rom our past experience w i t h the CP^ model i t is more convenient, f rom the 

point view of simulations and the accumulated numerical errors, to work wi th a different 

parametrisation, in which the fields at spatial inf ini ty go to finite values. In the case of 

the CP^ model, this corresponds to using 0 (3 ) variables = 1,2,3. Inspired by the 
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CP^ model, let us t r y the following parametrisation and check whether i t leads to the 
equations of motion which are free of any singularities: 

Z = e'^ 
/ ^1 \ 

i{h + h) (6.4) 

where the fields (j)'-s parametrise locally the sphere 5'* i.e. 

$•^=1. (6.5) 

In chapter 3 we showed, at some length, that choosing a particular parametrisation is 

equivalent to choosing a metric for the background space in which we embed the sphere 

5"̂  locally. But w i th respect to this parametrisation the CP^ Lagrangian density takes 

the new form 

L - df^cj) • d''(j) - {(f)2h)j. - h<f>2^i + - Mi^if, (6.6) 

which shows that the metric of the background space is not Euclidean. Therefore one 

may wonder whether we can repeat our construction in the CP^ case, that is finding a 

nonlinear transformation to linearise the metric on the background space. In the new 

metric the Lagrangian would take the simple form; something like 

L = di,^-&'^, ^ • * = 1, (6.7) 

w i t h some "small" corrections. Unfortunately all our attempts to find such transformation 

have failed. However, (6.6) is not convenient to use as the equations of motion obtained 

f rom i t are not free of singularities; in fact they have a singularity at the origin. So we 

have to use the Wi formulation. 

The equations of motion of the Wi fields are given by 

2 W l { { d m f - { d , . W , f - { d y W , f ) 
* ' " l + |I4/i|2 + |VF2|2 

and a similar equation for W2, obtained f rom (6.8) by the interchange (1 2). I f we set 

1̂ 2 = 0 in (6.3) and in (6.8) we reduce the problem to the CP^ = 5^ case studied before; 
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however, now we are interested in the CP'^ case and so we consider Wi and 14̂ 2 as two 
independent fields. What are the static solutions of the equations of motion for Wi and 

First of all we observe that any finite action solution of the CP^ model in two Eu­

clidean dimensions is a static solution of (6.8). Moreover, the topological charge of their 

instanton solutions corresponds to the number of solitons in our case. Thus a static one 

soliton configuration can be chosen to be given by 

Wi^ f j , z - bi W2 = i^z- b2. (6.9) 

Clearly (6.9) solves (6.8). Moreover, although (6.9) is not the most general field configu­

rat ion describing one soliton, i t is sufficient for our purposes. I t describes a soliton which 

is located at ^^^-^ and whose size is proportional to |6i — 62P + 2. 

To see this substitute (6.9) in the static part of Lo, giving 

[1 + 2|mP |2 - + 

By generalising (6.9), i t is easy to see that Wi — Az^, W2 = ^2, where z — x + iy, is 

also a static solution of the equations of motion and describes two solitons on top of each 

other (and located at z = 0). For a general choice of the parameters A and fi the energy 

density of the configuration has a ring-Hke structure (like in the CP^ case); to see this 

one has to work out the expression of energy density for this configuration which, as i t 

turns out, has the fo rm 

(1-h |/x|2r2 + |A|2r4)2 ^ ^ 

I t is very clear that this expression is radially symmetric and i t has a maximum which 

is not at the origin; thus this expression describes a ring shape. However, when the 

parameters fi and A satisfy /j? = 2A the energy density takes the shape of a single peak 

[i.e. the ring becomes a peak) due to the fact the energy density in this case has the new 

form 

an expression which is radially symmetric and has a maximum at the origin, hence i t 

describes a single peak. We can displace the sohtons init ial ly by choosing Wi — X{z'^ - a) 
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for some reasonable value of a, and then taking W2 as above wi th fi"^ = 2A, set the two 
solitons moving towards each other by taking as ini t ial conditions — aV, = 0. 
W i t h such an ini t ia l value problem the solitons are set to expand as well, so when they, 
emerge out of the interaction region they do not shrink too fast. 

To perform any numerical simulation we have to choose the appropriate boundary 

conditions on our fields. As is rlear f rom the expression of the W-^ given above, the W^^ 

are the largest at the boundary of our grid and there they vary a lot. Hence we cannot 

impose any "f ixed" boundary conditions; instead, following the ideas developed in' '*' , we 

have chosen to update the fields on the boundary using a linear or quadratic extrapolation 

f rom the values of the fields inside the lattice grid. Such an extrapolation produces an 

exact result for the in i t ia l values for the fields corresponding to one or two solitons and i t 

allows for their change of size. The extrapolation is not good when waves of the radiation 

generated in the scattering reach the boundary. A t this stage, gradually, our boundary 

conditions introduce small distortions which, after a while, lead to numerical instabilities 

and the results of the simulations cannot be trusted. However, all of these instabilities 

manifest themselves as extra peaks in the energy density (at the boundaries), and the 

to ta l energy is no longer conserved. Luckily, they take some time to arise, due to their 

localisation, and they do not perturb significantly the solitons or their motion. They do 

prevent us, however, f rom carrying our simulations wi th the Wi formalism for more than 

only l imited periods of time. Luckily, these periods are long enough to see what is going 

on. 

We have performed many simulations corresponding to different values of the init ial 

velocity V. A l l our simulations were performed at various workstations in Durham and 

at Los Alamos working in double precision and using a fourth order Rung-Kutta method 

of simulating the time evolution. Almost all of the simulations were performed on a fixed 

201 X 201 lattice, w i t h lattice spacing Sx = 8y = 0.03, the time step being 0.01. Some 

simulations were rechecked on larger grids (301 x 301 or even 401 x 401) or on different 

machines including the Los Alamos connection machine in which case the grid involved 

512 X 512 lattice points. 

A l l our simulations showed a 90° scattering. Moreover, they also showed a shift along 

the trajectory as seen ini t ia l ly in the CP^ case. In fig.l we display typical trajectories of 

our solitons and in fig.2a, 2b and 2c we show the time dependence of the distance between 

the solitons for simulations started wi th three different values of V. We clearly see a shift 
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Fig.2a The time dependence of the distance between the two solitons for V = 0.25. 
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along the trajectory which is similar to the one observed in the CP^ case except that 
this time the interpretation is easier (our picture suggests that as the solitons are close 
together they speed up and then come on top of each other where they spend some time 
after which they separate and gradually, as they leave the interaction region, they regain 
their in i t ia l speed). Clearly this is only a qualitative picture of their interaction; when 
they are close together they loose their identity, and Hke in the ( l - f - l ) dimensional case, 
i t makes l i t t le sense of talking about their trajectories. Moreover, as is easy to check, 
the shift along the trajectories does not depend on V (and in the case of the simulations 
shown in fig.2 its value is ^ = 1, i f we assume that the solitons go through the origin). 

In addition we would like to add that the Durham soliton group'''*' has also looked at 

some field configurations corresponding to one soliton and one anti-soliton. As the forces 

between them are basically attractive, placed some distance apart, solitons and anti-

solitons move towards each other and then annihilate into pure radiation. The angular 

dependence of the outgoing radiation is not uniform; most of i t is, again, sent out at 90° 

to the direction of their final approach (just before the annihilation). 

Hence, we see that apart f rom the fact that the energy density of two solitons on 

top of each other can have any shape between a single peak and a ring, the scattering 

properties of the solitons in the CP^ model are very similar to those of the CP^ model. 

However, the CP^ model, involving two complex fields, has more degrees of freedom and 

so i t allows the addition of extra terms to the Lagrangian density, these terms in the CP^ 

case either vanish identically or are given by total derivatives. An example of such a term 

is the generalisation of the Hopf term. This term, in the CP^ case is purely topological 

and, as such, is locally a total divergence (and so does not contribute to the equations of 

motion); in the CP^ case i t ceases to be topological and so can affect the dynamics. We 

w i l l study the effects of this term in the next section. On top of that "Skyrme-Uke" terms 

in CP2 spaces are considered and a brief study of their effects is given. 

6.3 General i sed H o p f t erm and its effects 

To introduce the generalised Hopf term we have to go back a l i t t le and look at the 

Lagrangian (6.1). How unique is this expression? Are there any terms we could add to 

(6.1)? Clearly, there are many but i f we restrict ourselves to terms involving not more 

than three derivatives we are only left w i th 

LH.^f = {D^z)\D,.z){z^daz)e^^''^, (6.13) 
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or the terms derived f rom i t , in a particular representation hke (6.2), w i th the additional 
factors 1 4- \Wi\^ + |VF2p in the denominator. I t is easy to check that L^^f is locally 
a to ta l divergence i f the z field has only two components and so describes a CP^ field. 
I n this case, the explicit substitution of (6.2) wi th W2 = 0 into Ljjf^f gives a vanishing 
contribution. However, for CP^ field Lj jop/ does not vanish. So what are the equations of 
motion of the model w i t h the Lagrangian given hj L — Lo + KLuopf'^ A li t t le calculation 
shows that this equation is given by 

(1 - zz^)D^,D''z - 2Kei""'Daz{{D^z)'^Dyz) = 0, (6.14) 

where, as before z^z = 1. Inserting the specific form of z given by (6.2) gives us the two 

equations for Wi and W2\ they are given by 

d'^Wi d'^Wi d''-Wi 2 
"I" f̂  O ^" dt^ dx^ V [i + |iyi|2 + |M/2|2 

m / * ^ r ^ ^ l ^ 2 r ^ ^ i ^ 2 fdWi\ dW,dW2 dWidW2 dWidW2.. 
W ( ( - ^ ) - ( ^ ) )) + W2 i - g f - Q f - - Q ^ ^ - - ^ ^ ) } 

(6.15) 

and a similar equation for 14̂ 2-

These expressions are rather complicated but their form is completely straightforward. 

Wha t is the role of the new term and its coirtribution to the equations of motion? 

Looking at the effects of the additional term we observe that due to the e'̂ '̂ '' symbol 

and the three derivatives in (6.14) these effects vanish for static fields. Hence the additional 

term in (6.14) or (6.15) resemble a l i t t le the familiar Lorentz force of classical dynamics. 

To test this we have decided to analyse the generahsed Hopf term further and so we 

have looked at the energy momentum tensor T^iy. Then a tedious but straightforward 

calculation shows that the energy momentum tensor does not receive any contribution 

f r o m Luopf. I t is a well known fact that the energy momentum tensor is the result of 

varying the Lagrangian wi th respect to the metric but as in our case the Hopf term is 

independent of the metric by construction then one should expect the contribution of the 
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Hopf term to be zero. Thus the additional term plays the role of the "internal magnetic 
field" and the additional contributions to the equations of motion resemble a l i t t le the 
"internal Lorentz force". 

We have analysed the role of the additional terms by performing some numerical 

simulations carried out w i th various values of K. First of all we have looked at the 

effects of the new term on the behaviour of a single soliton i.e. on the behaviour of the 

field configuration described by (6.9) of the previous section. In the previous section 

we considered the parameters / i and hi constant, corresponding thus to a static field 

configuration, and so the energy density (2.10) corresponds to the potential energy density. 

I f we assume a specific time dependence of /x and 6,; we can determine the total energy 

density of the in i t ia l one soliton configuration. For all reasonable assumptions as to this 

t ime dependence the shapes of the tota l and potential energy densities are very similar 

(and the kinetic energy is quite small). 

We performed several simulations starting wi th different ini t ial assumptions for 61,62 

and ^ . We have found that the new term only alters the rate of shrinking or expanding of 

the soliton (i.e. 61 — 62). And i t always acts in the direction of reducing the effect; thus i t 

reduces the shrinking i f the soliton is shrinking or reduces the expansion i f the soliton is 

expanding. In fig.3 we show the plots of the maximum of the energy density of the three 

simulations in which the in i t ia l soliton is shrinking. (As the total energy is conserved, the 

height of the energy peak is inversely proportional to the square of the size of the soliton). 

In fig.4 we show similar plots for the expanding sohtons. 

Incidentally, i t is easy to check that when we restrict ourselves to the one soliton 

configurations mentioned above and consider only time dependent 61 and 62 then the 

contribution of the new term to the evolution of 61 and 62 treated as collective coordinate 

vanishes. Hence our results are also an indirect test of the validity of the collective 

coordinates description of the evolution. We see that although this approximation is 

quite good for small values of K, its validity decreases as K increases. Clearly the new 

term affects the field configuration in a rather complicated way (and different parts of 

i t differently) and as we wi l l argue below some of its effects can be approximated by a 

rotation. 

To get a better understanding we can go beyond the collective coordinate approxima­

t ion and substitute the field configurations (6.9) into the fu l l equations (6.15). However, 

i t is easy to check that the fields (6.9) do not solve (6.15) for any choice of bi{t). 
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Thus, clearly, even i f ini t ial ly Wi{x,y,t) are given by (6.9) their evolution takes them 
away f rom this form. However, disregarding this fact, we find that the substitution of 
(6.9) to (6.15) gives us 

2 [ l + |W^i|2 + |VK2p; 

and 

{ESS* + ^ + ^ ) 2iK\fi\^SS*{2tix+ - R) 

[1 + \Wi\^ + \W2\'^] [ l + |VKi|2 + |VK2|2]2 

^ (P^ - S^)S* 2fi*x-SR 

2[1 -F |W^i|2 + | I ^ 2 p ] [1 + + \W2\^ ' 

^SRR* + ^ + B f ) 2ifi*KS{2 + \S\^) 

(6.16) 

(6.17) 

l + | M ^ l | 2 + | M / 2 p ] [ l + |M^l|2 + |H^2p]2 

where we have introduced the sohton position R = bi + b2 and the soliton size S = bi- 62. 

As we have said before these equations cannot be satisfied at all values of x and y. 

However, we expect the field configurations around the maximum of the energy density 

to be the most important. Hence we propose a new approximation based on replacing 

the x and y dependence in (6.16) and (6.17) by their values at the point of the maximum 

energy density. I t is diff icult to assess the validity of this new approximation; the obtained 

results are its best test. 

In our studies of the effects of the modified Hopf term on the shrinking or expansion of 

a single soliton we used as our ini t ia l conditions R{0) ^ 0, ^ ( 0 ) = 0, 5(0) = A, ^ ( 0 ) = B, 

where A and B were taken to be real and the sign of ^ determines whether the soliton 

was ini t ia l ly expanding or shrinking. Keeping these ini t ial values and observing that the 

maximum of the energy density corresponds to a; = y = 0 we find that (6.16) tells us that 

R remains zero at all times in agreement wi th the results of the fu l l simulations. The 

equation for S (6.17) reduces to 

S = ^ ! f ± | ^ p . ( . 1 8 ) 

This equation is clearly nonlinear but i t is easy to see that i f /c = 0 (i.e. there is no 

modified Hopf term), 5" remains real at all times (as A and B are real). However, the 

appearance of i in front of K in (6.18) gradually introduces a phase to S. Thus, 5 becomes 
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complex and its time dependent phase corresponds to a rotation of the soliton. Of course 
this rotation wi l l not be uniform (different parts of the soHton can rotate unequally) and 
only the f u l l simulations can reveal what is going on-our approximations wi l l only measure 
the gross effects of this rotation. 

In addition the rotation of the soliton wi l l affect its size; to see this we have to solve 

(6.18) numerically or introduce a further approximation. Thus, in particular, we can put 

S{t) = /(i)e'^(*) (6.19) 

and then perform the Taylor series expansion around the ini t ial value t = 0. We find 

m = A + Bt + — , t ' + 3(2 + ^2)2 + 0{i^) (6.20) 

and 

We note that as the contribution K to f { t ) is negative the nonvanishing K tends to reduce 

the shrinking or expanding of the soUton in agreement wi th what we have observed in our 

f u l l simulations. 

To go beyond the Taylor series expansion we must resort to some numerical work. 

In fig.5 we present the curves of f { t ) obtained for three values of K and in fig.6 the 

corresponding curves for (}>{t) for four values of K (including « = 0 when ^ = 0). We 

see that an effect of the nonvanishing value of K is to slow down the original expansion 

or shrinking of the sohton, reverse i t and, for large enough K to replace i t by a periodic 

variation of the soliton size / = |5 . 

To compare w i t h the results of our simulations we have to translate the information 

about f { i ) into the behaviour of the maximum of the energy density (2.7). Hence we do 

not need f { t ) but instead an expression proportional to G{t) = j+p- ^S-^ present 

the plots of G{t) corresponding to the plots of f { t ) . To compare wi th our numerical results 

we have to insert a further overall factor. In fig.8a we present the time dependence of 

the maximum of the energy density found in our fu l l simulation for /c = 0 and /c = 1 

and in fig.8b the corresponding plots based on our approximation. We notice a very good 

agreement despite the crudeness of our approximation. Hence the additional term acts 

a l i t t le like an internal rotation and slows down all the shrinking or expanding of the 

solitons. 
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Given this rotation-like action of tlae additional term what would be the effects of 
the new term on the scattering properties of solitons? To answer this question we have 
performed many simulations for the initial configuration of two solitons for different values 
of K. In all simulations the solitons were given an initial velocity towards each other (so 
that for /c = 0 their scattering would have resulted in a head-on collision, which as we 
mentioned in the previous section leads to the 90° scattering). The results were very 
much as expected. The trajectories of the solitons were deflected, with the degree of 
the deflection increasing with K. In fig.9 we present some trajectories corresponding to 
different values of K. We see that the effects of the extra term resemble a little the effects 
of a rotation. I f we look in detail at the pictures of the energy densities at various times 
during the scattering we find various irregularities, thus the rotation is non-uniform (see 
fig.10). In consequence, sooner or later the variation of the fields gets so large that the 
simulations develop numerical errors and the results of the simulations cannot be trusted. 
However, this takes a while so that the gross features of our results are still rehable. To go 
further we would need another formulation of the model (which would avoid using W\ and 
W2 fields, replacing them by constrained fields, which cannot get too large). In the CP^ 
case such a formulation is given by the real 5^ variables. The price paid by this choice is 
the reduction of the speed of the simulations and larger memory requirements, the gain is 
a better control of the numerical errors. Our simulations in the CP^ case have shown that 
although the simulations involving the complex W field have larger errors these errors are 
relatively insignificant when the fields do not vary too much and until some divergencies 
arise at the boundaries; unfortunately we do not have a similar convenient formulation in 
the CP"^ case (apart from, of course, the formulation in terms of the 2/ fields mentioned 
earlier) which is not too demanding on the computer memory. 

6.4 Skyrme model on CP^ spaces 

In chapter 4 we showed that in the CP"^ spaces one has the liberty to define two 

inequivalent Skyrme terms given by (4.32) and (4.33). In this section we will consider 

answers to the following two questions: What is the nature of the difference between the 

two CP^ Skyrme terms? And, what is the influence of either of these two terms on the 

fixing of the size of the extended structures (skyrmions). 
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As to the difference between the two terms one can show, after lengthy and tedious 
calculations, that the difference {/!s.sky) takes the form 

^ ' ' ^ ^ [ 1 - H P ^ , | ' + | P ^ , | 2 ] 4 { I ^ 1 ^ I ^ [ ( 1 + m'W^^\' + | M ^ 2 | > l + P ] 

+ \W2t\\l + \W2\'^)\Wi+\^ + \W2\^\W2+\'^] (^-22) 

- {WitW^,[W^_W2+ + (|V7i|2 - t - \W2f)W_iW,*_] + c.c)}, 

where this expression has been evaluated only for the holomorphic maps. Of course, it is 

even more complicated for more general fields. Observe that (6.22) vanishes identically in 

(2-t-O) dimensions i.e. for static configurations. This observation suggests either that the 

difference between the two terms is topological, or that there exist two different evolution 

patterns in the configuration space with the same initial conditions. Each pattern provides 

a different evolution trajectory, corresponding to the Skyrme term used in the model. 

To investigate the first possibility one can either try to rewrite the difference as a total 

divergence, or equally well, work out its contribution to the equations of motion and check 

whether this contribution vanishes. In doing so we have found that the contribution of 

the difference term to the equations of motion does not vanish. Therefore the difference 

term is not topological. 

So if we want to have a further understanding of the impact of the difference term 

on the evolution of a system of skyrmions, we have to perform numerical simulations or 

employ some reliable approximation scheme. In fact an approximation method Uke the 

collective coordinate approach can be used to investigate this problem or, perhaps, only 

the numerical simulations can answer all these questions. 

In the remainder of this chapter we will compute the equations of motion of the CP^ 

model modified by the addition of the Skyrme term given in chapter 4 by (4.30). To begin 

with we write down the form of the modified Lagrangian 

[1 + \Wi\^ + \W2\' 

+ 2{W^^Wi, - c.c){W^*Wl^ - c.c) ^ 2{WlyV,, - c.c){R^*R'' - c.c) ^ 3 ) 

4- 2(14^2^^2. - c.c)2 + 2{W^^W2, - c.c){R^^*R'' - c.c) 

+ ^R^^*Ry - c.cf 

where R^ is given by (4.38). Then applying the variational principle to the modified 
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Lagrangian results in the following equation 

(1 + \W2\^)WlWuW^ + (1 - + \W2\^)W^Wi„W^ - 2 W f w ; w ^ - W^*WiW2aW^} 

- W2^^a^2^l + W^„{W^*Wi^R'' + W2^R^W^* - W^^R^^ + R^R^'R"* - R^R^^Ri" 

- W^Wl^W) + W^iR.^R'^R''* + RuR"RT) 

- \ m i , ^ i v - c.c) + {WIW2U - c.c) + {R^R, - c.c)){wrR^' - V K f 

+ [1 + \W,\^ \ [ H - , | 2 | 3 { 4 W ^ r ^ l M ^ n ^ l ^ l a + ^2M^2*. + M 2̂.W 2̂*) 

- 4W^f + W2WI + VK2*^2a + m^'w^^w^^{WiWi +14/2.14/2* + M/2M/2;) 

- m^W^,W!l\WiWl + 14/2*M/2a + W^W2a) + 414/i^.i?'^i?''*{t4/il4/iV + M/2*H/2a + WiW^^) 

- AWi^R^*R%WiWl^ + WiW2a + VF2M/2*^) + 4l4/2*14^rM/i.i?" 

- m^W^WlR^'iWiWl^ + W^2*^2a + W2W^„) + SWiR^R^R"* 

{WiWi, + WlW2a + W 2̂M/2V) 

- 4V^2*^''*^p^"(2V^rW/i<7 + M/iV^r^ + Ŵ 2*W/2<T + M/2VK2V) 

- 4 i 4 / 2 ^ P F 2 M ^ " W 2 * ( ^ i ^ r a + ^ 2 ^ 2 . + y^i^io) 

AWfW2^,R"W^W^Wia + 4M/i*M/2*i?^H'̂ 7?^*ma - Wi[iVV^^,Wi, - c.cf 

+ 2{W^^Wi^ - c.c){Wi'*W^ - c.c) + 2{W;,,Wi^ - c.c){R^'*R'' - c.c) 

+ {m,W2v - c.cf + 2{W^,yV2u - c.c){R^'*R" - c.c) + [R^R, - R^X,?]} = 0 
(6.24) 

and a similar equation for W2 obtained by the interchange (1 <-» 2). As a check, we can 

take the CP^ limit ( i.e. set W2 = 0) and compare our equation with the one in ref.'^'' ; 

the two expressions agree. 

To construct classical static solutions for the modified model, we exploit the freedom of 

adding a potential term. After a few pages of algebra one can show that the configuration 

Wi = Xix+ W2 = \2X+ (6.25) 
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is a static solution with 

\ f > ^ 2 = i ^ f \ (6.26) 

provided that we add to the modified Lagrangian an extra potential term which has the 

form 

^ ~ [I + ^^"^^^ 

What is the meaning of this result? In fact, what we have done so far is just the 

embedding of the modified CP^ Skyrmion into the larger CP^ target manifold. To see 

this choose Wi, W2 as the basis of the solution space. Then any vector belonging to the 

solution space is given by 

U ^ a W i + p W 2 , (6.28) 

but one can easily show that this configuration is equivalent to the expression 

/ 1 \ 
0 (6.29) 

which is a solution of the modified CP^ model provided u is given as ^Jx^ + and it 

satisfies (6.26). However the configuration (6.29) is just a CP^ Skyrmion. Hence by 

making a global rotation inside the subspace spanned by the Wi and W2 one can rewrite 

our solution as a CP^ embedding. 

6.5 Some further remarks and conclusions 

We have studied the scattering properties of soliton hke structures in a CP^ model 

in (2-t-l) dimensions. We have found that most of their properties resemble those seen 

in the CP^ case. In head-on collisions the solitons scatter at 90° to the direction of 

their initial motion. The scattering tends to destabifise the solitons; in most scattering 

processes they shrink. In the CP^ case they can be stabilised by the addition of extra 

terms to the Lagrangian; however, these extra terms involve higher derivatives and require 

more computing power and in the CP^ case most of their effects can be reduced to being 

responsible for the required stability of solitons. In the CP^ case the stabiUsing terms are 

non-unique and it would be interesting to see what the efl̂ ects of their different choices 
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are; however, due to the large computing power required we have not performed these 
tests yet. Also, all our simulations have been performed in the W formulation and so we 
can trust our results only until solitons have not shrunk too much. The results of the 
CP^ model support this expectation. 

Since the CP^ model has field configurations more general than the CP^ model, we 

have looked at the mechanism of scattering. We have found that, indeed, the solitons 

come on top of each other before they scatter at 90°. During this they experience a 

shift in their trajectories; our results have suggested that the shift along the trajectory is 

approximately independent of the velocity (if relativistic effects are properly taken into 

account). 

We have also looked at the effects of a particular additional term in the Lagrangian 

that can be added to the CP^ model Lagrangian. This term vanishes for static config­

urations and is identically zero in the CP^ case. I t does not contribute to the energy 

momentum tensor but it does alter the equations of motion of the CP^ model. We have 

found that its efll'ect resembles a little the effect of rotation. This rotation can stabilise a 

single soliton but it alters the trajectories of solitons in motion. 

Al l in all, the CP^ model possesses a rich spectrum of extended structures which to 

a large extend behave like sohtons. The scattering properties of these structures are rich 

and highly nontrivial. The results obtained so far are only a foretaste of what can be 

expected in physically more relevant (3+1) models. 
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V I I . C O N C L U S I O N S 

At first sight it appears that solitons owe their existence to the integrability of the 

models in which they arise. For example, in the literature, there are quite a number of 

integrable models in (1+1) dimensions which admit solitonic solutions. Moreover, in (2-|-0) 

dimensions a few cr-models, which are integrable, have been constructed (CP", G„.„i((D) 

and U{m)). However, introducing time to these models destroys their integrability. At 

this stage the following question may arise: is it unlikely for solitons to appear in these 

models in (2-|-l) dimensions? 

In this thesis we have answered this question by showing that in (2-f 1) dimensions the 

CP^ model, if modified by the addition of two stabilising terms, to cure the size instability 

of its lumps, admits solitonic solutions. Furthermore, the scattering properties of these 

solutions are very much like the scattering properties of the solitons of the integrable 

models in (1+1) dimensions. 

Then we have argued that the modified CP^ model is unique up to a potential term. 

However, this uniqueness does not generalise to the other CP"^ models {i.e. n > 1). 

We have also studied the scattering properties of the static CP^ lumps in (2+1) 

dimensions, and like the CP^ case, they undergo a shift in their trajectories and in their 

head-on coflisions they show 90° scattering. However, in the CP^ case, to treat the 

instability of the CP^ lumps, one has the liberty of either repeating the handhng of the 

CP^ model i.e. adding the Skyrme terms and a potential term to the basic Lagrangian, 

but unlike the CP^ case, the Skyrme term is not unique, or to consider other terms, 

containing fewer derivatives than Skyrme terms, e.g. the generalised Hopf term which is 

not topological in the CP^ case, though it is independent of the metric. We have shown 

that this term has a subtle rotational effect on the CP^ lumps, in the sense that it rotates 

different parts of the lump unequally. Thus it always acts in the direction of reducing the 

effects. 

One interesting thing left for future investigation is to understand the nature of the 

difference between the two Skyrnie terms in the CP^ case. For this purpose one has to 

employ some reliable approximation. One poewrful approximation, frequently used in 

the study of the lumps interactions, which can be considered in our case is the collective 

coordinates approximation, or perhaps resorting to numerical simulations could give an 

answer to this question. 
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Another interesting thing to do is to consider the supersymmetric version of the mod­
ified CP^ model, and look at the various topics considered in this thesis again for the 
supersymmetrized model. 

In fact, one may wonder whether the addition of extra terms to the basic Lagrangian 

of a given model is the only way of stabilising the size of its lumps. Probably an alternative 

way could be by considering models on target manifolds whose topologies do not allow 

for conformal invariance of the underlying model. Of course, an answer to the feasibihty 

of this alternate resides in giving an example of such a quasi-integrable model, if it exists. 

One would have to note that in our study of CP"' models, only the scattering properties 

of instantonic solutions have received much attention. Therefore, it would be interesting 

to investigate the scattering properties of non-instantonic solutions. However, one would a 

priory expect their scattering properties to be more complicated than the instantonic ones 

due to the fact that the non-instantonic solutions are not stable for topological reasons. 

Finally it would be interesting to study the consequences of building CP'* models on 

quantum planes (so far all the CP" models have been constructed on either bosonic spaces, 

or in their supersymmetric version, on superspaces) where the commutativity properties 

of the coordinates parametrising these planes depends on the deformation parameter. 
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A P P E N D I X 

To establish the topological nature of the quantity Q introduced in chapter 3 (5.10) 

we observe that if we consider (VKJVI^J, — WyW.j:)P, where P is any function of W and 

we can rewrite it as 

{W^Wy - WlW,)P = - ^{WlWy - WlW.,){W^Pw, + WPw) 

^--.^(w^Wy - wlw)p) - -^-Q-ym^w, - WlW)P), 

where Pw denotes ^ etc. Thus we see that {WlWy - wlw.j,){P + \{Pwt + WPw)) is 

given by 

^ = ^ ^ ^ ^ ^ ^ ^ ^ " M/tM/)P) - \^ym^W, - WlW)P), 

and so is really topological in nature. To see this last point we integrate q over the whole 

space and use the divergence theorem in 2 dimensions to obtain 

j dxdy[^{{W^Wy - WlW)P)-^{{W^W, - WlW)P) 

= j 2{W^WzP-W{W,)^P)dz, 

(A2) 

where we have introduced a complex variable z = x + iy and used the fact that W — W{z) 

only {i.e. is not a function of 2 ^ ) . The line integral in (A2) is along a large circle at infinity 

and around any singularities of the integrand. Thus, if there are no singularities in the 

finite plane the integral of q is determined only by the behaviour of the fields {W and 

W^) at infinity. In this sense it is topological. 

To apply this observation to our problem we notice that all we have to do is to 

relate / = ^^^^W^-^' in (5.10) to (P + ^{Pw^ + WPw)), i.e. find P such that / = 

P + |(PM/t + VVPw)- We see that the problem has been reduced to having to solve one 

simple equation (linear, first order partial differential equation for real P). It is clear that 

this equation always has a solution. The expression for it depends, of course, on the specific 

form of U. In particular when (7 = 1 it is easy to check that P is given by P = ^^^^tyt)) 

while liU = ^^^^yyt)* (our original model) P is proportional to vKĤ t ^\'i+ww\y-^ • ^ 

more general choice of K(VF, VK )̂ the calculation of P is more involved. However, if we 



Appendix 103 

look at the case of V = WW^ (a special case of the choice made in section 4) then P is 
proportional to 

1 , 1 1 1 1 1 1 J_. 
WW^^ 3 ( l + lVM/t)3 ^ 2( l - | - iy i4 / t )4 5(14-I4^iyt)5 + 30^ ^ ^ 

The expression for P in the case of y(M/, VK )̂ = |M/ + Aa^p is much more involved but 

its expUcit form can be found with relative ease. 

In each of the cases, for z on the large circle z = re"^, where W ~ 2 " ~ r'̂ e*'̂ '̂ , the 

asymptotic behaviour of P is given by P ~ '^^^ ^° corresponds to P ~ constxr~'^°'. 

On the other hand the integrand of the line integral in (A2) is proportional to r'^°'d(j) and 

so we see that, in the Hmit of the large circle the powers of r cancel, the integration over 

(j) gives 27r and we obtain a finite nonvanishing number that that is proportional to the 

overall constant in the asymptotic form of P. Thus we see that Q is topological and we 

know how to find its value. The topological nature of Q holds for most choices of V-as 

long its form does not introduce any singularities or spoil the asymptotic behaviour. 
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