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Abstract. 

Differential compaction occurs within many sedimentary settings, such as 

alluvial and deltaic deposition, but it is within the submarine fan environment 

where the process is most effective due to the very high depositional 

porosities of the muds found there. Additionally the grain size of siliciclastic 

sediments within the submarine fan environment varies rapidly both 

horizontally and vertically, and hence the effect of differential compaction 

control on the depositional geometry and arrangement needs to be examined 

and modelled. It is also important to ascertain the rate at which sediments 

compact when buried, and whether compaction is complete at the end of 

deposition or whether it requires additional time to achieve this state. Sea

floor topography can be created if the latter case is true, and could influence 

subsequent deposition. Alternatively, if sea-floor. topography is not created, 

the major control upon subsequent deposition may be the compactibility of 

the underlying section. Both controls will favour deposition of successive 

coarse clastic units above areas of fine-grained sediments, i.e. sand above 

shale rather than sand above sand. 

The Palaeocene sediments of the Central North Sea in the Montrose -

Arbroath area (Blocks 22/17 and 22/18) combined with outcrop studies in 

southern California and New Mexico, have been used to assess the control of 
. 

differential compaction on sediment distribution in a deep-sea fan setting. 

Differential compaction affects the Montrose - Arbroath area on a variety of 

scales. Firstly, differential compaction of the entire Palaeocene section 

across the underlying Forties - Montrose High induces structure. At a smaller 

scale, differential compaction may form a considerable control upon the 

spatial distribution of submarine fan channels and lobes that form the 

reservoir section throughout the area, and therefore the areal distribution of 

the oilfields themselves. Finally differential compaction may effect the 

distribution pattern of individual turbidites within such channel systems, thus 

forming a fine control upon the distribution of sands and shales within the 

reservoir. 

Fieldwork on submarine fan deposits in southern California has 

highlighted further complications to differential compaction that need to be 

addressed during the modelling process. Sedimentary processes such as 

basal loading and slumping are highly common in such deposits, and both 

can effect the compactional process to differing degrees. Results obtained 

from the modelling of stratal patterns observed in New Mexico provide 

information on the timing of differential compaction. It is suggested that 

compaction of sediments, even during early burial, requires a time interval 

often greater than the period of deposition, resulting in post-depositional 

compaction and the production of near-surface overpressure. 
II 
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Chapter 1 :- Introduction. 

The purpose of this study is to assess the role of compaction on the 

deposition of deep-marine submarine fan sediments. Particular interest is aimed 

at facies development, stacking patterns and geometry of depositional units. 

The objectives of this study are:-

1. A detailed understanding of sediment compaction, particularly 

near-surface compaction of submarine fan deposits. 

2. A clearer definition of the timing and rate of compaction at shallow 

burial depths, coupled with the implications such as near-surface 

overpressure of pore fluids, and the stratal relationships produced. 

3. An assessment of compaction effects and possible control upon 

deposition in a submarine fan depositional setting. 

4. An assessment of the depositional characteristics of Palaeocene 

rocks of the Montrose Arbroath area of the North Sea, followed by 

an assessment of the role played by differential compaction 

during/upon the fields' depositional development. 

There are various scales at which compactional effects can be viewed, and each 

will be dealt with in the following chapters. 

Modelling of sedimentary basins primarily aims to simulate the geometric 

deformations caused by compaction during geological time, often coupled with 

fluid flow (water and hydrocarbons). However, compaction is a dynamic process 

and is the result of various mechanisms which are not yet well understood. 

Therefore, the wide-ranging topic of compaction forms an important area of 

research. Differential compaction, as part of this category, is equally poorly 

studied, although it can be interpreted to provide possible controls and 

influences on deposition throughout many sedimentary environments. 

The present study concentrates on deposition within the submarine fan 

environment, particularly dealing with channelised, mid-fan deposits for the 

reasons outlined in greater detail in Chapter 2. There is a focus on near-surface 

effects of compaction, as it will be shown (Chapter 2) that within the early burial 

(0-300m) of siliciclastic sediments the greatest bed thickness reductions occur, 

and, therefore, the effects of compaction are at their maximum. Accordingly, the 

difference between the compaction of different sediment types and facies is also 

greatest during early burial, meaning the effects of differential compaction are at 

their most noticeable. However, as depths of burial increase, the porosity-depth 



Chapter 1: Introduction. 

relationships, which define a sediment's compaction history, begin to converge, 

and the amount of differential compaction markedly decreases. 

Near-surface compactional processes are poorly understood, both in 

qualitative and quantitative terms, mainly due to the lack of porosity data from 

shallow buried sediments. Defining a sediments compaction history during burial 

is the first step in the modelling process, and is therefore of fundamental 

importance. Figure 1.1 illustrates possible sources of near-surface porosity data, 

although the quality of data provided varies greatly. The drilling process disturbs 

most of the surface sediment, resulting in porosity data provided by the Deep 

Sea Drilling Project (DSDP) having a wide spread of values. However, Stacor, a 

piston coring device devised by the French Institute of Petroleum, can provide 

porosity-depth data for shallow buried sediments (Truyol, 1989), with minimal 

disturbance effects. Quality of porosity measurements from this source is 

therefore high, exhibiting little scatter of data. Bottom Shear Modulus Profiling 

(BSMP) uses geophysical techniques to assess sediment porosity, but is still at 

an early stage in its development (Yamamoto et al., 1989). Finally, observations 

and modelling of bedding/stratal patterns of outcrop can provide verification of 

near-surface porosity-depth data, with few, minor assumptions. 

To achieve an understanding of the processes involved during early burial, 

an extensive summary of previous published research was undertaken (Chapter 

2). Geological and engineering literature provided the basic understanding of the 

fundamentals of the compaction process. Important to the study is a definition of 

a porosity-depth profile for the early burial of submarine fan sediments, 

principally sand and mud. The starting points of depositional porosities for such 

sediments are relatively well documented (e.g. Hamilton, 1976; Truyol, 1989}, 

however, the following destruction of porosity during burial to approximately 

300m is poorly understood. Porosity-depth equations and compaction curves 

have been proposed by various authors, generally falling into two categories:-

• Mathematically derived porosity-depth relationships, based on soil 

mechanics theories and engineering test results. 

• Porosity-depth relationships based on curve fitting techniques to 

empirical datasets. 

Some of these curves and equations have been interpreted for deep-water, 

submarine fan sediments, and may therefore be suitable for the modelling of the 

present work. 

2 
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Chapter 1: Introduction. 

Models of compactional control upon deposition are mainly qualitative, 

especially those concerned with coal deposition. However, a few are quantitative 

(e.g. Bridge & Leeder, 1979; Collier, 1989; Anderson, 1991; Bridge & Mackey, 

1993}, but mainly deal with deposition in the alluvial environment. These models 

provide information on the techniques involved in modelling depositional 

environments, along with information concerning the problems and assumptions 

required. 

The present study focussed on field based data to define the near-surface 

depositional processes that occur, and to attempt to constrain the amount of 

compaction occurring during early burial. Field data also enable the testing of 

the previouS,published porosity-depth relationships outlined in Chapter 2. As the 

present study was primarily interested in submarine fan deposition, a field area 

consisting of an identical depositional environment was chosen. Large amounts 

of both vertical and lateral exposure were required, to show not only the 

stratigraphy and growth of the fan deposits, but also the lateral changes of the 

facies, along with the stacking patterns of the depositional units. Ridge Basin in 

Southern California was chosen (Chapter 3). Along with providing information on 

compactional processes occurring within such a depositional environment, these 

field studies also provided information concerning depositional and post

depositional processes that occur within submarine fan settings, and that may 

effect the compaction of the sediments involved. 

The regional changes in facies, and hence lithology, are not well matched to 

the outcrop scale in siliciclastic environments. Consequently, the effects of 

compaction produce bedding pattE;}rns and stratal relationships from which it is 

extremely difficult to appreciate the contribution of compaction. Gradual change 

in facies occurs over great distances, thus making. measurement of the effects of 

differential compaction extremely difficult. Rapid facies changes in carbonate 

environments, however, offer the opportunity for the effects of differential 

compaction to be studied more easily at outcrop scale. The presence of large, 

early-cemented carbonate buildups provides a clear reference frame about 

which the effects of compaction can be measured and modelled. An area of the 

Sacramento Mountains of New Mexico was chosen to fulfil this purpose, as giant 

carbonate mounds, consisting of an incompressible framework and having 

excellent lateral exposure, are present here (Chapter 4). 

With a much clearer fundamental understanding of near-surface compaction 

provided by field data, the compactional control upon deposition was assessed 

4 



Chapter 1: Introduction. 

for the Montrose and Arbroath oilfields of the North Sea (Chapter 5). With the 

development of a depositional model for the oilfields, a detailed correlation of 

facies units is proposed, breaking down the depositional model into its 

component parts. Forward modelling of each chronostratigraphic unit allowed 

the assessment of compactional control upon deposition at each time stage, 

aided by data from fieldwork. 

Finally, Chapter 6 outlines the conclusions to the present work. These 

conclusions basically fall into two categories:-
• Conclusions relating to the process of compaction, particularly 

during early burial (0-300m), combined with the effects of 

differential compaction. Also the effects created by varying rates of 

compaction and deposition, and the implications involved. 

• Conclusions relating to deposition within the submarine fan 

environment, with respect to facies development, stacking of 

depositional units, and the geometry of facies packages and the 

entire depositional system. 

Figure 1.2 illustrates a flow diagram of how the present study set about the 

objectives, indicating where various aspects of the work inter-relate. Importantly, 

it shows how the two basic fundamentals (double outline on Fig. 1.2; i.e. 

understanding of near-surface compaction and the depositional model of the 

Montrose - Arbroath area), are finally brought together in order to assess the 

precise role of compaction in the depositional process of the study area. 

5 
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CHAPTER 2:- COMPACTION. 

2.1 Theory of Compaction. 

The process of sediment compaction, due to the gravitational pressure 

resulting from the weight of the sediment unit and the weight of the overlying 

strata, has long been recognised as a geological phenomenon. However, a 

clear understanding of the overall process is still lacking, and indeed a 

consensus of opinion has not yet been achieved for over a century of 

research and study. Early compaction studies showed how the porosity of a 

sediment decreased with age, and that this decrease in pore space was the 

primary result of compaction (Sorby, 1908). The idea that the compaction of 

sediments may have played an important part in the origin of oilfield 

structures promoted compaction studies by Shaw (1918), Mehl.(1919) and 

McCoy (1934). Early geological explanations on the settling of sediments, 

and on the gravitational compaction of_ sediments, along with more 

specialised compaction theories, have been presented by Blackwelder 

(1920), Monnett (1922), Teas (1923), Terzaghi (1925), Hedberg (1926, 

1936), Athy (1930), Parasnis (1960), and Skempton (1970). Athy's (1930) 

study presented the results of some 2200 density determinations and 200 

porosity determinations of well samples from a depth range of 700 to 5,000ft 

(21 0 to 1525m) from wells in Oklahoma and Texas. His was the first research 

to definitively confirm a direct relationship between depth of burial and rock 

density, and an inverse relationship between depth of burial and porosity for 

fine-grained, argillaceous sediments. This also resulted in the first porosity

depth profiles for differing lithologies (sand and shale), and their associated 

mathematical formulae representing the trends of the curves seen. The 

generation of porosity-depth profiles for differing lithologies has since been a 

very active area of research but with much disagreement between workers, 

and will be expanded upon later within this chapter. 

Hedberg1s (1936) research concerning gravitational compaction extended 

the work of Athy, showing how sediments evolved through differing stages of 

compaction as depth of burial, and therefore pressure, increases. Since 

Hedberg1s work there appears to be a scarcity of compaction work within the 

geologic literature for around thirty years (1936-1966). However, many 

important contributions were made during this period by civil engineers 

investigating soil mechanics. These studies were begun by Terzaghi (1925), 

whose work summed up the results of engineering investigations on the effect 

of pressure on clays and soils. 

7 



Chapter 2:- Compaction. 

At this stage it is important to clear up the definition of the terms 

compaction and consolidation, because they tend to be used in differing 

ways by geologists and engineers respectively. The basic laws covering 

consolidation are those of soil mechanics, and engineers do not use the term 

compaction as a synonym for the consolidation process. The Dictionary of 

Geology (Whitten & Brooks, 1987) provides the following definitions, and 

these will be adopted in the present work:-

1) CONSOLIDATION. The process of conversion of a loose 

or soft material to a compact, harder material - e.g. sand to sandstone 

(by cementation}, mud to clay (by de-watering). 

2) COMPACTION. In the diagenetic formation of 

massive rock from loose sediment, the close-packing of the individual 

grains mainly by the elimination of pore-space and the expulsion of 

entrapped water, normally brought about by the weight of the overlying 

sediments. 

Within the engineering literature compaction is considered as a man

made process in which a soil is strengthened due to loading by construction 

projects. Consolidation is the naturally occurring process of settlement of 

sediments and soils. This is the fundamental difference in the use of the two 

terms by engineers and geologists. However, this study will use the term 

compaction throughout, meaning the closer packing of sediment grains due to 

their own weight and the weight of overburden, with the associated reduction 

of pore-space and fluid expulsion. The term consolidation will not be used 

because consolidation is often understood by many geologists to include 

other diagenetic processes such as cementation. 

In order to understand the theory of compaction, the theory of 

consolidation from soil mechanics must be taken in hand. From a geological 

point of view they are essentially the same process. Therefore, the theory of 

compaction involves a two phase system, a sediment matrix and a pore fluid. 

During compaction, due to an increase of overburden pressure, for example, 

pore fluid will be squeezed out of the sediment as the pore volume of the 

sediment is reduced, and a closer packing of the sediment matrix is attained. 

In a coarse-grained, free draining sediment the fluid escape may be very 

rapid. However, in a fine-grained clay, where the permeability is appreciably 

lower, this drainage of pore fluid may take a considerable time. Therefore, 

grain size distribution and drainage pathways play a very important role in 

early sediment compaction. 

8 



Chapter 2:- Compaction. 

In nature the support of the overburden load is divided between the 

sediment matrix and the interstitial pore fluid, so that the total vertical stress 

at any point within the sediment column consists of the sum of the two 

components: the intergranular stress (Pe), and the pore fluid stress (Pw). The 

"effective pressure" (Pe) is the difference between the total overburden 

pressure (Pt) and the pore pressure (Pp) (i.e. Pe = Pt - Pp) (Terzaghi & Peck, 

1948). If the vertical permeability of the sediment allows pore water to escape 

when loaded, then the pressure distribution in the pore fluids is the same as 

that of a continuous column of water extending to the water table surface (i.e. 

hydrostatic pressure). 

The concept of compaction can therefore be described by the mechanical 

model shown in Figure 2.1 (Terzaghi & Peck, 1948). This model consists of a 

perforated, round metal plate and an enclosing cylinder, which contains a 

metal spring and water. In this analogy the spring represents the 

compressible clay particles, the water represents the pore fluid which is 

regarded as incompressible, and the size of the perforations in the metal 

plate represents the permeability of the sediment (i.e. the smaller the holes 

the less the permeability). At the initial stage the perforations are sealed and 

there is no applied load on the sediment, so that both the effective stress and 

the pore fluid stress are zero. Subsequently a 25psi overburden pressure is 

introduced to the system while the perforations are closed. In this scenario 

the entire load is carried by the pore water, which is incompressible, with the 

effective stress (carried by the spring) still equal to zero. Now, as the 

perforations are opened, pore fluid will begin to flow out of the system and 

the perforated plate will begin to descend. During this stage the total stress is 

carried by both the spring and the pore water, with progressive transfer of the 

stress from the pore fluid to the spring. As time continues pore fluid will cease 

to be expelled from the system once the pore-water stress is equal to zero, 

and the entire overburden load is carried by the spring. The perforated plate 

will descend no lower at this equilibrium stage. The length of time required for 

the spring to pass from one state of compaction to another depends on how 

rapidly the pore water can escape from the system, which is determined by 

the size of the perforations in the plate (i.e. the permeability of the sediment). 

This illustrates a very important point when dealing with sediment 

compaction, in that the time required for a state of equilibrium compaction to 

be attained depends on the permeability of the sediment. This point has been 

an underevaluated aspect of the modelling concerning compactional 
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Figure 2.1 Mechanical model used to describe the process of compaction (Terzaghi & 
Peck, 1948). 
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processes and will be dealt with in greater detail at a later stage in this, and 

subsequent chapters (see section 2.3). 

We therefore have a very basic model of additional sediment being 

added on top of a sedimentary column with the associated stress initially 

being carried by the pore fluid as excess pore water pressure. This excess 

pressure causes pore water to bleed off at speeds depending on the 

permeability of the sediment being compressed, and the load is gradually 

transferred to the sediment matrix. The difference between the total applied 

stress (o), and the pore water pressure (ow) at any instant is known as the 

effective stress (o1), and is approximately the same stress as carried by the 

sediment skeleton (Simons & Menzies, 1977). Hence, we can write:-

o1 =a- ow (equation 2.1) 

which is a fundamental equation in soil mechanics (Terzaghi, 1925). As the 

stress is gradually transferred to the sediment matrix a closer packing of the 

individual matrix grains, along with some grain deformation, is induced. 

2.2 Depositional Porosities, Porosity-Depth Relationships, 
Autocompaction and Differential Compaction. 

As explained in the previous section, compaction of sediments occurs 

due to overburden pressure which induces a closer packing arrangement in 

the underlying sediments, with associated dewatering and porosity 

destruction. It therefore follows that the higher the initial, depositional porosity 

of the sediment being loaded the greater the amount of pore fluid which can 

be expelled, thus leading to greater compaction and bed thickness reduction. 

Attempts have been made to measure near-surface porosities for differing 

sedimentary facies, however, there are numerous problems in collecting 

near-surface data due to the great instability, and high water content of the 

sediments within the first few metres below the sediment - water interface. 

This phenomenon can clearly be seen when looking at the majority of 

porosity data collected by the Deep Sea Drilling Project (DSDP), where the 

first twenty to thirty metres of core are highly disturbed due to the drilling and 

coring process (e.g. porosity data collected by Glomar Challenger, leg 18, 

von Huene et al., 1973). Hamilton (1976) used specifically selected DSDP 

core data taken from the least disturbed sediment cores to produce porosity

depth and density-depth profiles for various deep-sea sediments. For deep

sea pelagic clays he demonstrated a surface, depositional porosity of 81.2%. 

Recent studies have been carried out by a French group using a newly 

designed drilling tool called Stacor. This coring device creates very little 
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disturbance in the near-surface sediment and, therefore, porosity 

determinations can be made with a great degree of confidence in their 

accuracy. Their data show that pelagic deep-sea muds at the depositional 

surface have an initial porosity averaging 80% (Truyol, 1989). For non

calcareous muds this appears to be the accepted value for the depositional 

porosity used in forward modelling and back-stripping procedures, and there 

tends to be a consensus for this value throughout the literature (e.g. 

Hamilton, 1976; Baldwin & Butler, 1985; Truyol, 1989; Anderson, 1991 ). 

It has also been shown by various researchers (e.g. Hedberg, 1936; 

Rieke & Chilingarian, 197 4; Hamilton, 1976; Anderson, 1991 ), that deep-sea 

muds have the highest depositional porosities (80%) when compared to muds 

from other depositional environments, and when compared to different 

lithologies (e.g. sandstone). Alluvial muds have depositional porosities 

averaging 55% (Anderson, 1991 }, and deltaic muds average 60% (Brown, 

1975). Lower initial porosities in these environments, relative to undisturbed 

deep-sea sediments, are due to other processes such as sub-areal exposure 

of fluvial sediments, combined with the effects of groundwater lowering, 

evaporation and transpiration (Komornik et al., 1970; Anderson, 1991 ). 

Sandstones, be~ause of their coarser grain size, sorting, grain shape 

(sphericity) and roundness (angularity) have original depositional porosities 

of only 40 to 45% (Pryor, 1973). It is therefore apparent that the greatest 

effects of compaction will be seen in deep-sea pelagic muds as shown in 

Figure 2.2 (curves are based on the porosity-depth relationship of Sclater & 

Christie (1980) as explained in the following section 2.2.1 ). These sediments 

will undergo the greatest bed thickness reduction during compaction, and as 

will be shown later, this thickness reduction will occur at a greater rate during 

burial if equilibrium compaction is maintained. 

As muds and sands are buried compaction will reduce pore volume. The 

decrease in porosity can be used as a convenient measure of the amount of 

compaction a sediment has undergone since deposition. Plots of porosity 

versus depth can therefore be produced to show the evolution of porosity in a 

sedimentary unit as it is progressively buried, thus producing a porosity-depth 

profile. These porosity-depth profiles (or compaction profiles) vary for 

differing lithologies (i.e. between muds and sands), and therefore, are often 

treated separately within the geological literature, and during the modelling 

process. 

Fine-grained sediment density also increases rapidly during the first few 

hundred metres of the burial process, and can therefore also be used as a 
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gauge of compaction (e.g. Athy, 1930). The increase in density is a function 

of overburden and tectonic stresses, temperature, time, loading rate, and in 

part, of grain-size distribution, secondary cementing material, trapped salts in 

the pores, and mineralogy of the non-clay fraction (Rieke & Chilingarian, 

1974). Morgan (1969) observed from data on fresh-water clayey sediments in 

Lake Erie that there was no simple, clear correlation between the median 

diameter of grains and bulk density. Bulk density of argillaceous sediments 

and rocks can vary extensively with depth from one region to another and 

even within the same stratigraphic unit in a depositional basin. Dana (1967) 

investigated the lateral and vertical variations of bulk density within a 

Miocene sandstone and shale sequence in the San Bernadino Mountains in 

California. He did not find any noticeable systematic variation in bulk 

densities, but this study did highlight the problem of considerable variation in 

bulk density within only a short distance in rock units. For these reasons, no 

universal bulk shale density curve can be constructed to characterise a 

specific type of argillaceous sediment or rock. Although there is scatter in 

porosity-depth relationships, there tends not to be such a wide variation of 

porosity values within individual rock units. It is therefore believed that 

porosity-depth profiles provide a better guide to the compactional history of 

argillaceous sediments (Buryakovskiy et al., 1991 ), and the present work 

deals exclusively with such profiles. 

Many simple porosity-depth relationships for muds have been published, 

and will be explained in the following section 2.2.1. This will be followed by 

sections on the compaction of coarse-grained sediments (2.2.2), and the 

compaction of carbonate sediments (2.2.3). However, these relationships, 

mathematical equations and models, often fail to take into account the effects 

of deposition rates and compaction rates. These are highly important 

variables within compaction modelling, and are explained in section 2.3 of 

this chapter. 

2.2.1 Compaction of Argillaceous Sediments. 

Porosity decreases with depth, and as shown in Figure 2.3 shows a 

marked decrease at shallow depths of burial. This curve is based on a 1best

fit1 relationship of various empirically derived porosity-depth relationships. It 

demonstrates that the greatest porosity loss in argillaceous sediments occurs 

in the first few hundred metres of burial, with the loss becoming less 

significant at depths below 300m, if compaction is considered as the only 

process occurring (i.e. no cementation) (Baldwin & Butler, 1985; Weaver, 
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SHALE COMPACTION CURVE Baldwin & Butler (1985) 
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1989). The present study is concentrating on the near-surface compaction 

behaviour of sediments, and it is therefore important to understand near

surface porosity-depth profiles and compaction processes, such as 

mechanical rearrangement of grains, which is the dominant process in the 

near-surface environment (e.g. Hedberg, 1936; Rieke & Chilingarian, 197 4; 

Hinch, 1978; Smosna, 1989; Luo et al., 1993; Waples & Kamata, 1993; 

Bryant et al., 1993). Mechanical compaction of muds may occur in 

geologically short periods of time if fluid expulsion occurs as porosity 

decreases (Magara, 1968). The following section will explain some of the 

better known compaction theories, curves, and models for argillaceous 

sediments and how subsurface data from well logs, core samples and outcrop 

studies have been linked with the depositional porosities explained above to 

produce a porosity-depth relationship. 

Figure 2.4 illustrates the possible sources of porosity data, and how, 

through the combinatio:1 of these studies it is possible to assimilate a 

porosity-depth profile for the entire depth range. Electric well logs and core 

samples, combined with DSDP data, provide porosity information mainly for 

the deeper sections of study. However, the Stacor coring device and the 

Bottom Shear Modulus Profiler (BSMP; Yamamoto et al., 1989) provide near

surface porosity information. Near-surface porosity data is also available from 

studies of the literature of both the geological journals, and the research 

dealing with soil Mechanics and laboratory testing of sediments. Outcrop data 

enable· extra insights into the process of compaction providing some basic 

assumptions are made, mainly dealing with depositional porosities. 

Early Compaction Theory. 

Athy(1930) built the first simple compaction model for muds. He was the 

first to show a definite relationship between porosity and depth of burial for 

relatively pure shales, producing some early porosity-depth curves, such as 

the one shown in Figure 2.5. Hedberg (1936) realised that because 

compaction was a combination of numerous processes which are often 

dependant upon time, permeability of the loaded sediment, the presence or 

absence of flow pathways and cements, it is not possible to express 

satisfactorily pressure-porosity relationships for clays and shales throughout 

the entire depth range by any one, simple equation. 

From well data, Hedberg (1936) proposed a compaction model for clays 

and shale which basically consisted of three stages {Fig. 2.6). The stages are 

defined by pressure intervals {i.e. discrete intervals of overburden stress). 
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Sources of Porosity Data 
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Figure 2.6 Relative importance of different processes in the compaction of clay and 
shale (modified from Hedberg, 1936). 

Figure 2.7 Effect of clay diagenesis on compaction of water from mudrocks. It is 
assumed that same number of particles, "books", and unit layers of clay occur in each 
compaction stage represented. A - No effective porosity or permeability; virtually all water is 
"bound" water. B - Most "bound" water becomes free water; effective porosity and 
permeability thereby produced. C - Free water squeezed out; effective porosity, permeability, 
and original volume are greatly reduced (from Powers 1967). 
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The first stage consists of dominantly mechanical rearrangement and 

dewatering of the clay in a pressure interval from 0 to 800psi (an equivalent 

depth range of 0 to 544m). This is the stage when there is a rapid decrease in 

the porosity for relatively small amounts of overburden pressure. The 

dewatering process also occurs in stages where free water is the first to be 

expelled, followed by adsorbed water (e.g. bound to clays), mainly between a 

porosity of 75% and 35%. In the second stage of this compaction model, 

between a pressure of BOO and 6,000psi (i.e. at a depth between 544m and 

4082m), mechanical deformation and further expulsion of adsorbed water 

reduces the sediment volume. Recrystallization of the clay particles may also 

occur during this stage. The final stage of compaction occurs at very high 

pressure once the porosity has been reduced below 1 0%, and is termed the 

recrystallization phase by Hedberg (1936). Reduction of pore volume by 

recrystallization occurs at a very slow rate with large increases in pressure 

needed. Large crystals may grow during this stage at the expense of smaller 

ones, and there is a gradual transition from shale to slate and, ultimately 

phyllite. 

Hedberg's (1936) model was adapted by Weller (1959), who produced a 

porosity-depth curve based on the data of Terzaghi, Athy and Hedberg. 

However, problems arise from this curve, firstly from applying laboratory soil

compression data to buried sediments, and secondly by failing to account for 

the occurrence of carbonates, sands and abnormal pressure zones within the 

well data used. 

Powers (1967) produced a fluid-release theory for compacting marine 

mudrocks, based on changes in clay mineralogy and other bulk properties 

correlated against depth of burial. This model introduced the fact that when 

montmorillonite is deeply buried (6,000ft (1830m) and deeper) it changes to 

illite, which involves the transfer of large amounts of bound water from 

montmorillonite surfaces to interparticle areas where it becomes interstitial 

water. 

The theoretical model of Powers (1967) basically shows that when 

dealing with marine montmorillonite, after an initial stage of compaction an 

equilibrium is reached within a few hundred feet of burial between the water 

retained in the sediment, and the water-retaining properties of 

montmorillonite. Little pore fluid can now be squeezed out by an increase in 

the overburden. pressure. This is due to the fact that between depths of 1 ,500 

- 3,000 feet (460 - 91 Om) most of the water within the sediment exists as 

water of hydration, and is stacked at least four monomolecular layers thick 
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between the unit layers of montmorillonite (Powers, 1967). Between 3,000 

and 6,000 feet (91 0 - 1830m) only minimal amounts of oriented water (i.e. 

water occurring between the crystals and particles of montmorillonite) exists 

within the sediment (Fig. 2.7). Within this particular study Powers (1967) 

found that at burial depths below 6,000 feet (1830m), montmorillonite is 

altered to illite and the bound water is desorbed and becomes free pore water 

(Fig. 2.7). Due to the decrease in clay-particle size after this alteration, and a 

corresponding increase in the effective porosity and permeability of the 

sediment, further compaction occurs until a new equilibrium balance is 

established, based upon the water-retaining properties of illite (Fig. 2.7). 

Figure 2.8 shows the relationship between water escape and clay type, 

against depth of burial. Powers (1967) stated that the water-escape curves 

are diagnostic of the porosity, permeability, and bulk density of compacting 

argillaceous sediments. He also stated that the compaction history of 

mudrocks depends largely on their original clay composition and the 

diagenesis which they undergo after burial. The figure also shows that as 

montmorillonite alters to illite water is forced out, and this can provide a 

flushing mechanism for any trapped hydrocarbons which are formed at this 

depth of burial, i.e. the montmorillonite rich shale is acting as a source rock. 

However, there is no such flushing effect produced during the burial of illite 

and kaolinite rich shales, and therefore, if these deposits are rich in the 

organic raw materials for forming hydrocarbons, they may compact to oil 

shales rather than to source rocks (Powers, 1967). 

The compaction theory of Teodorovich & Chernov (1968) consists of 

three stages of compaction, related to depth of burial. They, like Hedberg 

(1936), identified an initial rapid compaction within the first 8 to 10 metres of 

burial based on observations from the hydrocarbon productive Apsheron 

horizons of Azerbayjan. Large amounts of water are lost during this stage as 

porosity is destroyed, and this is followed by a stage during which the rate of 

compaction slows down, between the depths 1 0 metres to approximately 

1,200 to 1,400 metres. The final stage of compaction from 1,400 to 6,000 

metres is characterised by very slow sediment compaction, and only small 

changes in shale porosity. 

Burst (1969) also produced a three-stage compaction model for Gulf 

Coast clayey sediments. His basic conclusion was that the initial dehydration 

of the sediment is completed in the first few thousand feet of burial, as the 

interstitial water content is reduced from 70-80% water by volume, to 

approximately 30% (20-25% interlayer water and 5-10% residual pore water). 
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A further compaction model proposed by Beall, and reported in Rieke & 

Chilingarian (197 4}, envisioned an early stage of rapid compaction which 

primarily involves expulsion of pore fluid by mechanical processes. He stated 

that approximately 50% of the total consolidation is reached at a very shallow 

depth of burial. 

Porosity-Depth Curves From Empirical and Mathematical Datasets. 

Since 1970, after the publication of Gretener & Labute's (1969) 

discussion of compaction, interest in the process, its controls and effects 

grew, with the publication of many papers concerning shale, sandstone and 

carbonate sediment compaction. With reference to the compaction theories 

and models for muds, Hamilton (1976) produced in-situ porosity and density

depth profiles for calcareous ooze, siliceous oozes (diatomaceous and 

radiolarian), pelagic clay, and terrigenous sediments. The profiles were 

based on data from the Deep Sea Drilling Project (DSDP). Results of 

laboratory consolidation tests were also used to estimate the amount of 

elastic rebound (increase in volume) which has occurred after removal of the 

samples from overburden pressure in the boreholes. These results were used 

to correct porosity and density data measured from core samples to produce 

in-situ porosity and density-depth profiles. Hamilton's (1976) curves are 

shown in Figure 2.9, with their associated regression equations. For the 

present study we are essentially interested in curve 2 of Figure 2.9, dealing 

with the early compaction of deep-sea pelagic clay. There is very little scatter 

in these porosity-depth curves due to the homogeneity of the sediment cored 

(Hamilton, 1976). This fact shows the dependence of porosity-depth trends 

on the grain size distribution and the composition of the muds being 

investigated. Deep-sea pelagic clays tend to be homogenous (Weaver, 

1989), an important fact in future chapters concerning the modelling of 

submarine fan deposits. 

Baldwin & Butler (1985) attempted to define the porosity-depth trend for 

sands and muds utilising the vast majority of previously published data. They 

argued that solidity (S), the volume of solid grains as a percentage of total 

volume of sediment, should be used as a reference for the pore space 

reduction due to compaction, instead of porosity. Solidity is the compliment of 

porosity. Their reasoning for this is simply the fact that the thickness of solid 

grains is constant when compaction is the only process occurring, so that the 

relationship between solidity and length reduction of sediment is linear, 
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whereas the relationship is non-linear between porosity and length reduction 

(Shinn & Robbin, 1983) (Fig. 2.1 0). 

Baldwin & Butler (1985) plotted a number of published porosity-depth 

curves on a single graph (Fig. 2.11 ), and attempted to produce a best-fit 

curve through the data. Their results show that for normally pressured shales 

(i.e. shales where pore fluid pressure is hydrostatic throughout the unit which 

they define as shales less than 200m (660ft) thick), the porosity-depth curve 

can be represented by a power-law equation of the form:-

Z = Zmax·sa (equation 2.2) 
where sa is the solidity raised to the power a, and Z is the burial depth. The 

power-law equation plots as a straight line on log-log graph paper (Fig. 2.12), 

using values of a = 6.35 and Zmax = 6.02, and provides a mathematical 

solution for burial depth (Z) in kilometres and porosity (1 - solidity). These 

values predict the solidity of the mud to within 2% of Baldwin's (1971) 

empirical curve which is based on published data compiled from compaction 

tests, drill cores, and unlithified clay cores, throughout the depth range from 

0.5m (20 inches) to 6Km (20,000ft)(Fig. 2.12). They noted that for single 

shales units that are 200m (660ft) thick and greater, pore water is not easily 

lost, and therefore undercompaction and overpressure tends to occur, 

especially in young strata (e.g. the Gulf Coast Tertiary muds). Baldwin & 

Butler (1985) also fitted the same power-law equation to a porosity-depth 

curve produced by Dickinson (1953) for the Tertiary muds of the Gulf Coast. 

The values for the proposed "Dickinson equation" for burial depths in 

kilometres are a = 8 and Zmax = 15. This fits Dickinson's curve to within 1% 

solidity from 300m (1 ,OOOft) to 7.3Km (24,000ft) (Fig. 2.12). 

The point is made that the form of these power-law equations may not be 

significant in describing the mechanics of compaction. All the published 

curves show scatter of porosity versus depth, and therefore the curves on 

which the equations are based are not necessarily unique. Hedberg (1936) 

concluded that compaction is a response to a series of discrete processes 

and no universal porosity-depth profile will be possible due to the large 

number of variables. This fact was also a conclusion of Gretener & Labute 

(1969), and Equation 3 of Bridge & Leeder (1979) also implies more than one 

process occurs during compaction. However, the curve of Baldwin & Butler 

(1985) implies that compaction is a continuous process and is not segmented 

during sediment burial. This will be discussed in later chapters dealing with 

the modelling of compaction, and in section 2.3 of this chapter. 
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From a mathematical point of view there has long been a debate as to 

the form of the porosity-depth curve, ranging from an exponential curve, a 

straight line, or a power-law curve. Athy's (1930) law proposed an 

exponential curve for the porosity-depth trend, and this has certainly been 

widely accepted by the vast majority of subsequent researchers. His 

equation, providing an answer for porosity (P), takes the form:-

P = P0 .e-bz (equation 2.3) 

where P 0 is the average porosity of clays at the depositional surface, b is a 

constant, and z is burial depth. Problems have since arisen in Athy's work as 

he used a surface porosity for his muds of 48%, a value that is much lower 

than those obtained from modern coring (Truyol, 1989). Athy also estimated 

425m (1 ,400ft) of beds had been eroded before coring, and questions have 

been raised about the structural deformation of the study area (Rieke & 

Chilingarian, 1974). Both Korvin (1984) and Bayer & Wetzel (1989) pointed 

out that Athy's law is only applicable to thick, homogeneous mudstone 

sequences. Both sets of workers have since published slight variations on 

Athy's law for their compaction laws concerning muds. 

Utilising standard methods of statistical physics, Korvin (1984) attempted 

to mathematically prove the empirical exponential compaction law of Athy 

(1930), which has been widely accepted and confirmed by many examples 

(Hedberg, 1926, 1936; Athy, 1930; Dickinson, 1953; Maxwell, 1964; 

McCulloch, 1965; Watts, 1981; Luo et al., 1993 etc.). Some workers, 

however, have questioned the exponential law for porosity versus depth 

(Baldwin & Butler, 1985), and have instead favoured straight line or power 

law curves. Korvin (1984) points out that the reason for this apparent 

discrepancy is that the Athy compaction law describes the final equilibrium 

state of shales after part of the pore water content has been expelled 

vertically upwards. In the case of sand - shale interbedding there is the 

distinct possibility of significant horizontal migration of pore fluid, as modelled 

by Magara (1976), so that the exponential compaction law should not strictly 

apply. 

Korvin (1984) produced a modified version of Athy's formula:-

( ) 
<(>o.exp[ -(1 + <(>o)Z] 

<I> z = ---=----~ 
Zo 

(equation 2.4) 

where 0(z) is the porosity at depth Z, 00 is the surface porosity, and Z0 is the 

depth of the basement. Working on the principle that the evolution of closed 

systems always proceed towards the maximal entropy, Korvin (1984) 
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proceeded to prove that Athy's empirically derived exponential compaction 

law is mathematically correct. This simply means that the exponential 

compaction law expresses the maximum entropy equilibrium state of the 

pores in the rock; that is compaction is an irreversible process where clay 

particles tend towards a statistically defined final equilibrium. The modified 

equation (2.4) also qualitatively expresses the inverse dependence of 

compaction rate on basin depth, reported by Nate & Drake (1957). Within the 

equation (2.4) the surface porosity, 1210 , and the average porosity 121 are both 

functions of the total amount of water squeezed out of the shale, which are in 

turn linked to geological time, temperature, granulometry and possibly depth. 

However, if the surface porosity, 1210 , of the shale is known and is fairly 

constant, the inverse relation of compaction rate to basin depth appears to be 

an exact law (Korvin, 1984). 

Korvin (1984) noted that the principle of maximum entropy only 

determines the final, asymptotic state of the system studied as the time, t, 

tends to infinity. It does not, however, provide the time - history of the 

evolution towards this final state. His equation therefore cannot be used to 

provide a porosity-depth curve for compactional modelling, such as 

estimating shale thickness during various stages of burial (Anderson, 1991 ). 

Furthermore, any large deviation from the maximal entropy state (i.e. from 

Athy's law) reflects some discrepancy (sand - shale interbedding, recent 

tectonic movements, or sediment heterogeneity), or it simply refers to the fact 

that the shale column is too young and the equilibrium state has not yet been 

achieved. In the latter case one would expect some quantitative relationship 

between the deviation of the porosity-depth curve from Athy's law and the 

age of the shale (Korvin, 1984). 

From the mid 1980's there appears to have been a growing trend of 

defining porosity-depth curves using theories once again developed from soil 

mechanics, and laboratory tests on argillaceous sediments. Jones & Addis 

(1985) utilised clay stress paths, as defined by Atkinson & Bransby (1978), 

and critical state diagrams to investigate the range of porosities possible in 

argillaceous sediment as the effective stress increases. They showed how 

the porosity of argillaceous sediments is determined by the magnitude of the 

effective stress acting within the sediment, the previous stress history and, 

especially at shallow burial depths, the mineralogy and nature of the 

depositional environment. Because of the dependency of porosity on the 

mean effective stress, no simple relationship exists between porosity and 

depth of burial but in the absence of overpressured pore fluids, and assuming 
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the sediment is not overconsolidated, it is possible to contour the 

porosity/effective stress diagram in terms of burial depths (Jones & Addis, 

1985). Figure 2.13 shows the range of possible burial stress paths for clay for 

the first 1OOm of burial as defined by Jones & Addis (1985), using data on 

naturally occurring clays. The actual stress path followed by a particular clay 

is likely to lie somewhere within this envelope and depends on the actual clay 

mineralogy and depositional environment rather than the exact nature of the 

stress system. The authors' note, however, that the data used in their 

research is not complete, and it is possible that some clays, especially those 

with large concentrations of montmorillonite or quartz, may lie outside the 

envelope outlined in Figure 2.13. 

It becomes very clear from the literature that porosity-depth curves for 

argillaceous sediments vary greatly, and this variety probably reflects 

numerous factors which are often superimposed on each other. Dzevanshir et 

al. (1986) lists these factors as: 1) geological age; 2) effective stress; 3) 

lithology; 4) mineralogy; 5) tectonic stresses; 6) speed of deposition; 7) 

thickness of sedimentary formations; 8) sorting; 9) amount and nature of 

cementing material; and 1 0) chemistry of interstitial solutions. They also 

suggested that perhaps one method of solving the problem of the porosity

depth relationship is to establish the dependence of porosity on the most 

important natural factors such as depth of burial, geological age and 

lithology, whose influence greatly overshadows (or incorporates) the 

influence of other factors. Utilising an Athy-type formula based on published 

data and developed by Dobrynin (1970):-
0 = 00.e-0.014~D (equation 2.5) 

where 0 0 = initial porosity of clays, 0 = porosity of clays at burial depth D (in 

metres) and ~=coefficient of irreversible compaction (MPa-1), Dzevanshir et 

al. (1986) produced an equation (see below) which reflects porosity (0) to 

depth of burial (D, in metres), geologic age (A, in millions of years), and 

lithology (R = rate of thickness of shale/total thickness of terrigenous 

deposits). 

The value of the coefficient of irreversible compaction, ~. in equation 2.5 

includes all the previous mentioned variables apart from depth of burial. 

Dzevanshir et al. (1986) correlated ~with geological age and lithology of the 

terrigenous complex by comparing published porosity-depth curves, first of 

differing geological ages, and secondly of the same age but different 

lithologies. From this comparison the authors managed to relate ~ to 

geological age and lithology of the terrigenous complex as follows:-
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CLAY BURIAL STRESS PATHS Jones & Addis (1985) 
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. ~ = (26.62 log A - 8.42) x 1 o-3 

~ = (14.0 -166.61og R) x 10-3 

(equation 2.6) 

(equation 2.7) 

Combining these two equations, equation 2.8 is derived. A nanogram, 

illustrated in Figure 2.14, enables rapid solution of equation 2.8. 

0 = 0 0 .exp[-0.014(13.3 log A- 83.25 log R + 2.79) x 10-3 D] 

(equation 2.8) 

Utilising statistical analysis of DSDP data, laboratory experiments and 

theoretical models, Bayer & Wetzel (1989) attempted to derive standard 

compaction curves for various deep-sea, argillaceous sediments that are in 

compaction equilibrium with their overburden. They essentially follow the 

work of Hamilton (1976), separating the core data into five lithologies: 1) 

terrigenous mud; 2) pelagic clay; 3) carbonate ooze; 4) radiolarian ooze; and 

5) diatomaceous ooze. Samples were selected carefully so that they were not 

taken from overpressured zones, but they were taken from sections that had 

accumulated continuously so that ageing effects (Dzevanshir et al., 1986) 

could be ignored. Like Hamilton (1976), they corrected the data for elastic 

rebound after removal from the borehole using laboratory investigations of 

the samples. Using Athy's exponential compaction law (1930), and Hamilton's 

(1976) data, Bayer & Wetzel (1989) show how there is a clear relationship 

between depth of burial and porosity (Fig. 2.15), which is an exponential 

relationship for terrigenous mud and pelagic clay. However, Athy's law 

appears to break down when dealing with radiolarian and diatomaceous 

ooze. Bayer & Wetzel (1989) conclude that Athy's law is only applicable to 

homogenous sediment (as stated by Korvin (1984)), and, that it may be 

restricted to certain sediment types, such as shales, or perhaps certain 

porosity intervals. Compaction occurring at greater depths and in 'abnormal' 

sediments does not follow Athy's law because this equation can only handle a 

single parameter for compaction, there is no possibility to take account of the 

interaction of multiple processes (Bayer & Wetzel, 1989). The authors 

proceed to modify Athy's equation to encompass all sediment types, not just 

clays, so that secondary effects of grain modification, which they state as 

being the primary cause for these sediments not obeying Athy's law, are also 

taken into account. They also show how the empirical data of Hamilton (1976) 

correlates closely to their modified Athy equation. 

Recent Compaction Studies 

Luo et al. (1993) addressed the problem of the spatial variability of the 

compaction coefficients of argillaceous sediments used within Athy's porosity-
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Figure 2.14 Nanogram for determining porosity at a particular depth of burial using 
geological age and lithology (ratio of thickness of shales/total thickness of terrigenous 
complex) as controlling factors. Enables the solving of equation 2.8 (after Dzevanshir et al., 
1986). 
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Figure 2.15 Semilogarithmic porosity-depth relationship for various sediments for which 
the data have been taken from Hamilton (1976). Clay rich sediments follow a simple 
exponential equation over a sufficiently long depth interval. Within this interval they can be 
approximated by a common regression function, as indicated. The regression function was 
derived from data of DSDP site 511, indicating that some general"laws" may exist for clay
rich sediments (modified from Bayer & Wetzel, 1989). 

32 



Chapter 2:- Compaction. 

depth equation (the variable b in equation 2.3). They suggest that the main 

control upon the compaction coefficients is the microfabric of argillaceous 

sediments inherited from the environmental factors at the time of their 

deposition, and the depositional process of the sediment itself. Variations in 

the compaction coefficients therefore dictate the compactional behaviour of 

the sediment, and thus effect the production of overpressure within shale 

sequences. However, difficulties still exist in accurately measuring the 

compaction coefficients of argillaceous sediments, and Luo et al. (1993) 

propose the use of in-situ values obtained from geophysical well logs. Such 

geophysical well logs have been widely and successfully used in compaction 

studies (e.g. Hottman & Johnson, 1965; Ham, 1966; Fertl, 1976; Magara, 

1978; Serra, 1984; Chen & Luo, 1988) to define a normal, characteristic 

compaction trend for each well. This method is not only beset with empirical 

corrections which cast doubt on its accuracy, but it also requires that density, 

neutron and sonic logs are run throughout the formation in question. These 

logs are usually confined to reservoir formations only. Therefore this method 

is impossible to apply to near-surface compaction phenomena, and is 

probably of only limited value to studies aimed at deeper burial of reservoir 

formations. 

The final compaction theory and model for argillaceous sediments once 

again returned to the principles of soil mechanics theory. It was also the first 

research to recognise, and model, the interrelationship between the rate of 
compaction of the sediment being loaded and the sedimentation rate (i.e. 

the rate of addition of load). Audet & McConnell (1992) presented a 

mathematical model for one-dimensional compaction of an accreting layer of 

argillaceous sediment. Additional theoretical details of their mathematical 

modelling are given in Audet & Fowler (1992). They showed how the extent of 

abnormal pore fluid pressure (overpressure) develops depending on the 
sedimentation parameter, A, which is a dimensionless group representing the 

ratio of the sediment1S hydraulic conductivity to the sediment accumulation 

rate. It is defined by:-

A - .15:2_( ps J 
v 0 PI- 1 

(equation 2.9) 

where k1 is the hydraulic conductivity of the sediments, V0 is the time

averaged sedimentation rate, Ps and Pt are the mass densities of the 

sediment grains and the pore fluid, respectively. The sedimentation 

parameter, A, represents the ratio of the rate at which pore fluid moves 
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through the porous sediments versus the rate of overburden accumulation at 

the depositional surface {Audet & McConnell, 1992). When A>>1, fluid is 

expelled from the compacting sediments sufficiently fast that the pore fluid 

pressure is normal or hydrostatic. Conversely, when 1..<<1, corresponding to 

relatively fast sedimentation rates, pore fluid is retained within the sediments 

with the consequence that the pore fluid pressure is abnormally high {Audet & 

McConnell, 1992). Figures 2.16 and 2.17 graphically show the results of this 

modelling, firstly using porosity versus depth {Fig. 2.16), and secondly pore 

pressure versus depth {Fig. 2.17) at different geological times {t), to show 

how appreciable amounts of overpressure may be achieved if the 

sedimentation rate is high {i.e. 1..<<1 ). 

The initial porosity of the sediments was taken by the authors as being 

50% (0.5 on Figure 2.16) because their studies were primarily interested in 

the mechanical behaviour of the sediments once they have developed an 

appreciable fabric and microscopic structure. When the initial porosity, 00 , is 

greater than 0.5 (50%), the sediment volume consists mostly of pore fluid, 

and the clay particle - pore fluid mixture behaves essentially like a 

concentrated suspension. Therefore, for mixtures with 0o>0.5, the 

compaction process is best described as hindered sedimentation and the 

concept of effective stress is not strictly valid (Audet & McConnell, 1992). 

However, the graphs shown in Figures 2.16 and 2.17 clearly show the 

important relationship between sedimentation rate, compaction rate 

(combined in the sedimentation parameter, A.), and time. 

The work of Audet & McConnell (1992) also highlighted some other 

important factors that were previously glossed over or completely forgotten by 

previous researchers. Firstly Audet & McConnell (1992), with the use of 

compression indices (Cc) (Lambe & Whitman, 1979; Burland, 1990), showed 

how slight compositional variation in argillaceous lithologies compact 

differently as they are loaded (Fig. 2.18). The porosity-depth curve of Figure 

2.18 show that for a clay sediment of Cc=1, comparable to the value for a 

plastic clay like montmorillonite or illite, the porosity profile shows a 

significant loss of porosity near the basement. In contrast, for Cc=0.25, a 

value typical for silt-rich clays, total porosity loss is less, but most of this 

porosity loss is in the upper region of the basin near d=O. 

Finally, Audet & McConnell (1992) showed the effects of changes in 

permeability on one-dimensional compaction (Fig. 2.19). The parameter a is 

used to describe how quickly the permeability of the clay decreases as the 

porosity is reduced, and it is therefore used by the authors to model changes 
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Figure 2.18 Porosity (0) versus depth (d), and the pore pressure (p1) versus depth (d) 
plots for A=1 at t=50, and different values of the compression index: Cc=o.25, 0.5, 1 
(modified from Audet & McConnell, 1992). 
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Figure 2.19 Porosity (0) versus depth (d), and the pore pressure (p1) versus depth (d) 
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in clay permeability. The porosity-depth curve on Figure 2.19 shows that near 

the depositional surface the porosity profiles do not depend significantly on 

the permeability. In contrast, for d>6, the porosity-depth profiles show that 

when the permeability decreases slowly with porosity, the case of a=4.79, 

there is a greater porosity loss than when the permeability decreases rapidly 
with porosity, a=23.21. 

It becomes clear from this work that the compaction of argillaceous 

sediments is extremely complex and depends on many variables, firstly 

dealing with the depositional environment of the clay (i.e. the exact lithology 

and compression index, Cc. and the initial porosity and permeability of the 

sediment), and secondly, dealing with the rate of loading compared to the 

rate of compaction of the sediment. All these variables and the interaction 

between them need to be understood for compactional modelling of a 

depositional system. Later chapters of this work will show how this present 

study has addressed these variables, mainly through field observations and 

modelling, and how the knowledge gained may be applied to the modelling of 

early compaction within the siliciclastic submarine fan depositional 

environment. 

Conclusions Concerning the Compaction of Argillaceous Sediments. 

1. Deep marine muds have the greatest depositional porosity of -80 %. 

2. The compaction process is extremely complex, and the porosity 

evolution is probably best summarised by the porosity-depth profile of 

Baldwin & Butler (1985). 

3. The aspect of timing is very important indeed in the compaction 

process of deep-sea muds. i.e. Rate of compaction versus rate of 

deposition (see section 2.3). This is primarily due to the low 

permeabilities of muds produced by shallow burial. 

2.2.2 Compaction of Coarse-Grained Sediments. 

As explained in section 2.2, the original depositional porosity of the 

sediment is a major control on the compactional response of the sedimentary 

unit to overburden pressure. The previous section also shows how 

argillaceous sediments, especially deep marine pelagic clays, have the 

highest original, depositional porosities, averaging around 80%. For coarse

grained sediments, exclusively sands in this study, original depositional 

porosities are significantly lower than their fine-grained counterparts. 

Estimates of porosity vary from author to author, and there is the difficulty of 
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measuring near-surface porosities, due to the tendency of the coring 

technique disturbing the sediment, and rendering measured 

porosity/permeability values questionable. Coring disturbance is particularly 

common in unconsolidated sands. Early porosity measurements from 

naturally occurring sands range between 34% to 39% (Terzaghi, 1925; Trask, 

1931; Fraser, 1935). In contrast, work carried out using artificially generated 

sands, give estimates of depositional porosities for such sediments ranging 

between 35% and 43% (Gaither, 1953; Ludwick, 1956; Scott, 1960: Bernal & 

Mason, 1960; Rogers & Head, 1961, Bernal & Finney, 1967; Morrow et al., 

1969). 

Near-Surface Textural Parameters. 

Some recent works (Pryor, 1973; Beard & Weyl, 1973; Scherer, 1987) 

collectively provide a sizeable dataset for near-surface sand porosities and 

permeabilities, and also summarise most of the earlier works cited above. 

The first study primarily focused on depositional porosities was carried out by 

Pryor (1973), who studied 922 oriented and undisturbed sand samples from 

river bars, beaches, and dunes undergoing active sedimentation. From these 

three environments Pryor (1973) determined porosity and permeability values 

for his samples to provide a dataset concerning the reservoir characteristics 

of freshly deposited sands. The knowledge of sandstone depositional 

characteristics combined with a knowledge of the modifications impressed 

upon them by post-depositional processes is required to give a clearer 

understanding of the heterogeneous character of sandstone reservoirs, and 

some of the possible controls on the heterogeneity. Pryor (1973) collected 

samples using an aluminium tube pushed carefully into the unconsolidated 

sediment, avoiding the effects of aeolian reworking by taking measurements 

from the samples at six inches burial depth. Table 2.1 shows the data 

collected by Pryor (1973), with the result that mean porosities determined by 

him for the differing environments average slightly higher than 45%. His 

results also show that the permeability of recent sandstone bodies varies 

greatly, illustrating the heterogeneity of flow pathways of equivalent reservoir 

sands, an important observation when dealing with compaction and fluid flow 

through sedimentary units. 

Trench sections provided Pryor (1973) with a vertical face to measure the 

porosity and permeability distributions of river bar, beach, and dune sands. 

These sections should therefore show the porosity and permeability-depth 

relationships for the first few feet of burial, as measured by Pryor (1973) 
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Table 2.1 
1973). 

SAMPLE LOCATION 
. ---- ---- ---- - . . - . ·-·· 

Wabash River Bar 
·--- - ---------- . - ·--·- - - --

Total 
Profile 
Grid 

Trench 

Whitewater River Bar 
----.- . ---

Total 
Profile 
Grid 

Trench 

-------------- -- --------

-.t0!~i~if2.P!_8iyer -~()r 
Total 

·--~E?ci.?~ng Unit_s. 
Boundary Units 

- -· --- - -

Ship l~l?nc:J Beqc:~ _ 
Total 
Profile 
Grid 

Trench 

.. 

Santa Rosa Island Beach 
--- -- --

Total 
Profile 
Grid I 
Grid II 

Trench 

- . 
Sabine Pass Beach 

Total 
Grid 

Trench 

--. --· 

Santa Rosa Island Dune 
Trench 

St. Andrew Park Dunes 
Total 
Profile 
Trench 

PERMEABILITY 
Means (Darcys) 

77.86 
-- --------

79.21 
77.4 

78.88 

.. 

94.74 
81.95 - --- -- --

50.55 
124.95 

6.39 
9.77 
3.02 

60.82 . --- ----

62.82 
. -- -- --

80.29 
52.21 

75.34 
76.62 
73.48 
72.42 
75.61 

6.88 
5.27 
8.49 

.. 

71.59 

36.17 
35.89 
36.58 
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POROSITY 
Means(%) 

44.95 
- ------- --. 

44.85 
44.41 
45.22 

36.92 
---- ----- --

33.76 
40.78 

- -- ---. 

38.57 

44.98 
45.62 
44.35 

45.94 
- ---- ----- .. - -

46.11 
------------ --

47.14 
------------------

45.41 

49.61 
48.24 
51.29 
48.26 
50.75 

45.08 
44.57 
45.59 

47.9 

50.82 
49.07 
52.83 

Permeability and porosity data for Holocene sand bodies (data from Pryor, 
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directly from the field. Figure 2.20 shows the vertical trench section through 

the Wabash River bar, illustrating the porosity-depth relationship for the first 

three feet (1 metre) of burial. It can be seen from this section that there is 

very little systematic change in a sand porosity over this depth of burial, and 

perhaps individual sand units, separated by bedding surfaces, each have 

their own unique porosity-depth profile, which vary slightly from one unit to 

another depending on depositional and textural variations within these units. 

Research into the effect of petrological and geochemical factors 

influencing the porosity and permeability of shallow buried clays and sands 

was carried out by Meade (1966), prior to Pryor's (1973) study. This work was 

then followed later by Beard & Weyl (1973) who documented the influence of 

texture on the porosity and permeability of unconsolidated sand. Meade 

(1966) showed that the porosity of sands is not uniquely related to increases 

in overburden load, but it is also related to texture, composition and the 

depositional history. Studying the early stages of compaction using laboratory 

techniques, Meade (1966) was able to show that for overburden loads 

between 0 and 1 OOk.g per cm2 (approximately 0 - 500m depth of burial) 

different factors influenced the porosity evolution of sand. From initial 

depositional porosities varying from 30% to 50%, Meade (1966) showed that 

the major factors influencing porosity are the textural characteristics of the 

constituent particles: size, sorting, roundness, shape, and flexibility. Well 

sorted sands have greater porosities than poorly sorted sands of equivalent 

grain size (Rogers & Head, 1961 ), and experimental results of Meade (1966) 

showed how this differential persists during burial (Fig. 2.21 a). These 

experimental results also showed how angular sands have greater initial 

porosities, reflecting the instability of the initial packing of the angular 

particles, and are therefore more compressible than rounded sands during 

early burial (Fig. 2.21 b); This latter relationship was also observed in low

pressure experiments on sandstones by Fatt (1958), who noted that 

sandstones consisting of poorly sorted angular grains were more 

compressible than sandstones whose grains were well sorted and rounded. 

Beard & Weyl (1973) investigated the relations between porosity, 

permeability, and texture of artificially mixed and packed sands, to determine 

the approximate porosity and permeability values to be expected for 

unconsolidated sand of eight grain-size subclasses and six sorting groups. 

Porosity values were determined for two packings, designated as "dry loose" 

and "wet-packed". Porosity data for 11Wet-packed" sand samples remains 

about the same for changes in grain size of a given sorting, but decrease 
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PERCENT POROSITY 
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[ 

• Horizontal 3' 0 
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Figure 2.20 Trench sections through sand-scale front on Wabash River bar. Sections are 
taken parallel to the front (modified after Pryor, 1973). 
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Figure 2.21 (A) Influence of sorting in well rounded quartz grains. Sorting index (o0 ) 

defined by Inman (1952); median diameter of the two better sorted sands, 0.60mm; median 
diameter of sand with poorer sorting, 0.48mm. (B) Influence of rounding of quartz sands, 
0.42 to 0.84mm in size (modified form Meade, 1966). 
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from an average of 42.4% for extremely well-sorted sand to 27.9% for very 

poorly sorted sand (Table 2.2) (Beard & Weyl, 1973). Beard & Weyl (1973) 

concluded that grain size is not a major control on sand porosity for sands of 

similar sorting, but permeability increases with increasing grain size. Sorting, 

however, is a very important variable when considering the porosity and 

permeability characteristics of unconsolidated sand. Here the work of Beard 

& Weyl (1973) agrees with Fraser (1935), Graton & Fraser (1935), Meade 

(1966) and Morrow et al. (1969), i.e. both porosity and permeability decrease 

as sorting becomes poorer, but both porosity and permeability increases as 

grain roundness decreases, and the sand is mainly composed of angular 

grains (Fig. 2.21 b). These conclusions are confirmed by Coskun et al. (1993) 

using well samples, and investigated the effects of depositional texture, 

composition and diagenesis on the porosity and permeability of reservoir 

sands from undisclosed hydrocarbon areas of North America. This study 

illustrates the importance of understanding the depositional and early 

diagenetic history of sediments when modelling and assessing potential 

reservoir sands. 

The basic conclusions of these essentially near-surface studies show 

that the consensus of opinion is that sands have depositional porosities 

averaging somewhere between 40% and 45%, and during early burial and 

compaction there is very little change in the porosity characteristics of sand. It 

also appears from these works that sorting is of first-order importance when 

investigating the porosity and permeability characteristics of sands. Due to 

the fact that sands form the majority of the world's hydrocarbon reservoirs 

there are many recent published studies concerning the parameters 

influencing the porosity and permeability characteristics of sand, and thus 

their reservoir potential. The following discussion summarises some of the 

important papers within this group, the conclusions drawn from these studies, 

and the importance these might have on the present study of early 

compaction. 

Continuing on from the earlier work of Maxwell (1964), who basically 

investigated the influence of depth, temperature and geological age on the 

porosity of quartzose sandstones, Scherer (1987) reviewed thirteen 

parameters to determine their influence on the porosity of sandstones 

undergoing compaction. Scherer (1987) concluded that for basins of average 

geothermal gradients the first-order parameters are age (time of burial), 

detrital-quartz content, maximum depth of burial, and sorting. Second-order 
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SIZE ____. COARSE MEDIUM FINE VERY FINE AVERAGE 
SORTING J. Upper Lower Upper Lower Upper Lower Upper i Lower POROSITY 

Extremely Well Sorted 43.1 42.8 41.7 41.3 41.3 ' 43.5 42.3 43 42.4 

Very Well Sorted 4Q_~8-- ! - 41.5 40.2 40.2 39.8 40.8 41.2 I 41.8 40.8 
- --· ·- ; 

Well Sorted 38 38.4 38.1 38.8 39.1 39.7 40.2 39.8 39 

Moderately Sorted 32.4 I 33.3 34.2 34.9 33.9 34.3 35.6 
! 

33.1 34 -· 
Poorly Sorted 27.1 29.8 31.5 31.3 30.4 31 30.5 34.2 30.7 

Very Poorly Sorted 28.6 25.2 25.8 23.4 28.5 29 30.1 1 32.6 27.9 
- .. . . .. . ·- - -· -· - - .. ---. --

Average Porosity 35 35.2 35.3 35 35.5 36.4 36.7 37.4 

Standard Deviation, percen 6 6.3 5.5 6.2 4.9 5.3 5 l 4.2 

Table 2.2 Porosity (%) of artificially mixed and wet-packed sand (data from Beard & 
Weyl, 1973). 
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parameters include depth-related temperature and median grain size, a 

conclusion agreeing with the experimental work of Beard & Weyl (1973). 

To enable porosity prediction for quartz sands, Scherer (1987) calculated 

function coefficients for the relationship between porosity and the first-order 

parameters for 428 cases. This enabled the production of an equation which 

is valid for sandstones older than 3Ma with little or no cement, no leaching, 

depth of burial in excess of 500m, and little or no shear stresses:-

Porosity = 18.60 + (4. 73 x In Quartz) + (17 .37 I sorting) -

(3.8 X depth X 1 0-3) - (4.65 X In age) (equation 2.1 0) 

where porosity is in percent of bulk volume, detrital quartz in percent of solid

rock volume, depth in metres, age in million years, and sorting is the Trask 

sorting coefficient. 

As a small sideline to the study, Scherer (1987) also investigated the 

effect of pressure on compaction of sands, noting a positive correlation 

between pressure and porosity, as pointed out by Selley (1978) and others. 

For a general guide, it appears that sandstones retain approximately 1.9% 

more porosity for every 1 ,000 psi (6.9 MPa) overpressure during compaction 

(Scherer, 1987). However, care must be taken when applying this rule 

because the influence of pressure upon porosity also depends on the stage 

of compaction at which the overpressure developed. Compaction still appears 

to occur during periods of overpressure, albeit at a much slower rate 

(Scherer, 1987). 

Cementation also plays a very important role in sandstone diagenesis, 

and will be dealt with in more detail in a following section. Scherer (1987) 

noted that cementation may play a very important role in sandstone 

compaction, its effects being quite different depending on the timing of the 

onset of sediment cementation. Cementation will of course reduce sandstone 

porosity along with compaction, but it may also stabilise the sandstone fabric 

thus inhibiting compaction and complicating porosity prediction. Near-surface 

cementation can sometimes be extremely good at reducing all the sandstone 

porosity, thus making compaction of the strata impossible during normal 

burial processes. 

A short discussion of Scherer's (1987) paper is presented by 

Shanmugam & Alhilali (1988), who basically criticise Scherer's model on 

three points. Firstly that the importance of leaching and secondary porosity 

formation was ignored, secondly that the inter-relationship of variables had 

not been recognised, and thirdly that the data we-re biased. Scherer (1988) 

replied that his equation (2.1 0, in the present work) is a model that predicts 
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the compaction-related porosity of sandstones, according to his restrictions, 

and that if other local processes, such as secondary porosity or blanketing 

authigenic clay mineral coatings form around grains, then porosity estimates 

should be adjusted according to local conditions. This statement agrees with 

the observation of the early compaction work by Gretener & Labute (1969) 

who concluded that unique porosity-depth relationships probably do not exist, 

and local processes overprint general trends and thus need to be accounted 

for when predicting porosity. 

The Effect of Time And Temperature. 

In 1988, after studying some of the earlier conclusions of Maxwell (1964) 

and Scherer (1987), Schmoker & Gautier (1988) proposed that sandstone 

porosity should be considered in terms of its time-temperature history, a 

method first proposed by Van de Kamp (1976) as a better alternative to 

depth. Depth is merely a position co-ordinate specifying the present day 

location of a formation within a well. This approach uses the assumption that 

subsurface reactions proceed linearly with time and exponentially with 

temperature, i.e. chemical processes affecting sandstone burial diagenesis 

are considered to be dependent on the time-temperature exposure of the 

formation. Viewing the work of previous authors such as Baldwin & Butler 

(1985}, and working with the fact that a linear porosity-depth model will 

predict a defined depth at which zero porosity exists, which in general is not 

observed in well data, Schmoker & Gautier (1988) concluded that sandstone 

porosity decreases exponentially with increasing depth of burial (i.e. in 

agreement with Athy (1930)). They proposed that the loss of sandstone 

porosity in the subsurface can be represented as a power function of time

temperature exposure:-

Porosity (0) =A (M)B (equation 2.11) 

where A and Bare constants, and M is integrated time-temperature history. It 

is suggested that M can be approximated by a measure of thermal maturity 

such as Lopatin's Time-temperature index (TTl) or vitrinite reflectance (R0 ). 

The use of an exponential equation, rather than a linear equation to 

describe the porosity-depth relation is questioned by Ehrenberg (1989a) in 

his later comment on the paper, stating that the question of an exponential or 

linear trend is far from being resolved. However, it is the opinion of the 

present author that porosity-depth trends for sands are exponential once the 

whole depth range for a sedimentary unit is plotted, a view that is supported 

by a large amount of soil mechanics theory and experimentation. Schmoker & 
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Gautier (1988) do however conclude that this common observance of an 

exponential decrease of sandstone porosity with depth follows as a special 

case from their power function, a case where temperature increases linearly 

with depth (e.g. 34 oC/Km in the North Sea, Burley et al., 1989). This situation 

is approximately correct for most sedimentary basins (Naeser & McCulloh, 

1989; Brigaud et al., 1990). 

Schmoker & Gautier (1988) proposed three advantages of their method 

over the traditional porosity-depth theories used in modelling processes. 

These were that firstly thermal maturity is a useful independent variable by 

which to compare sets of porosity data from differing basins around the world 

which have undergone different sedimentary and diagenetic histories. 

Secondly, they believe that plots of porosity versus a measure of thermal 

maturity establish norms by which unusual porosities within a sandstone 

sequence can be recognised. Thirdly, porosity prediction will be possible 

using their equation. However, Ehrenberg (1989a) pointed out that the latter 

two advantages can also be recognised or modelled using traditional 

porosity-depth methods without the use of a measure of thermal maturity. He 

also showed some disadvantages to Schmoker & Gautiers (1988) method, 

firstly that depth is a precisely measured parameter whereas measurements 

or calculations of maturity indices is beset with a range of uncertainties and 

assumptions. Secondly, Ehrenberg (1989a) pointed out that vitrinite data 

tend·. to vary depending upon who prepares and measures the sample, and 

that TTl values vary depending upon whose method used. The TTl 

calculation of Waples (1980) does not take into account the effect of 

compaction during burial, and it appears that the Arrhenius TTl is preferred to 

Lopatin TTl if comparison of sediments with variations in heating rate is 

desired (Wood, 1988). Schmoker & Gautier (1989a) reply that although depth 

is more easily and accurately determined than indices of thermal maturity, for 

predicting porosity or for developing models of diagenetic processes that 

affect porosity, time-temperature exposure is the more fundamental variable. 

Dykstra (1987) illustrates a method for correcting Lopatin 1S (1971) TTl values 

for sediment compaction. These CTTI values are possibly the correct 

variables to use in the equations of Schmoker & Gautier (1988, 1989b). 

Following an identical theme Schmoker & Gautier (1989b) expanded their 

earlier model to encompass not only sandstone, but carbonates and shales 

too. The authors basically reintroduced their model as before but suggested 

that their data plotted for carbonates and sandstone fall in quite a narrow 

band, and therefore a general porosity-thermal maturity curve can be plotted 
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for both these sediment types, taking modal values for the constants A and B 

in equation 2.11 equal to 30 and -0.33, respectively i.e. for carbonates and 

sandstones:-

0 = 30 (TTI)-0.33 (equation 2.12) 

This curve is analogous to a traditional porosity-depth curve, but it has the 

advantage of describing a temporal model for the compaction of basin 

sediments (Schmoker & Gautier, 1989b). As stated earlier, if temperature 

increases linearly with depth, exponential porosity-depth curves or curve 

segments follow from the more general dependence of porosity upon 

integrated time-temperature history (Ray, 1985; Schmoker, 1985). Using 

equation 2.12 Schmoker & Gautier (1989b) produced five exponential 

porosity-depth curves as shown in Figure 2.22a, which differ significantly 

because they represent porosity evolution in basins with different time

temperature histories (Fig. 2.22b). The decrease of porosity with TTl is 

identical in each basin (equation 2.12), but the decrease of porosity with 

depth varies considerably which shows that any number of porosity-depth 

curves can result from a single porosity-TTl function. The shaded area of 

Figure 2.22a represents the shale compaction envelope of Baldwin & Butler 

(1985). The various sandstone and limestone curves plotted encompass this 

shaded area, leading Schmoker & Gautier (1989b) to conclude that as long 

as near-surface shale compaction is ignored, the loss of shale porosity with 

burial can be treated analogously to that of sandstones and carbonates. In a 

more theoretical sense, chemical compaction laws for sandstones, 

carbonates and shales must all reflect processes that are dependant upon 

time and temperature. Schmoker & Gautier (1989b) stated that, in effect, 

porosity-depth curves are artefacts of burial and thermal histories, and do not 

characterise particular rock types or petrographic facies. The present work 

would tend to disagree with this statement, as here the belief is that differing 

lithologies, especially sand and mud, compact at much different rates and 

amounts in the first few hundred metres of burial. It is only when burial 

approaches a depth of approximately 3 to 3.5Km where exponential 

compaction curves for pure sands and muds appear to approximate each 

other, as shown by Figure 2.22a of Schmoker & Gautier (1989b). Because 

the present study is specifically dealing with near-surface compaction the 

influence of lithology is extremely important. The time factor used in 

Schmoker & Gautierls (1988, 1989b) work plays an important role in near

surface compaction, however, temperature will probably have little effect until 

burial depths increase to 1 D0-200m. 
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Figure 2.22 (A) Exponential porosity-depth curves derived from type curve 0=30(TII)-0.33 
but representing different (hypothetical) basins. Depending on time-temperature history, a 
wide variety of porosity-depth curves can result from a single porosity-Til function. Porosity
depth curves encompass shale compaction envelope (shaded) of Baldwin & Butler (1985). 
(B) Basin models corresponding to five porosity-depth curves of 2.22a. Parallel lines of each 
model depict sedimentary horizons (modified from Schmoker & Gautier, 1989b). 
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Figure 2.23 (A & B) Plots of porosity and Lopatin's time-temperature index versus depth, 
showing increase in TTl during a 60m.y. time span and the concomitant decrease in porosity 
as predicted by the equation 0=30(TII)-0.33 (modified from Schmoker & Gautier, 1989b). 
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An important aspect modelled in Schmoker & Gautier's (1989b) paper is 

the effect of time and temperature on a quiescent basin. They showed that 

basin sediments continue to compact through geological time in response to 

increasing time-temperature exposure, even if the basin is quiescent. If 

porosity is modelled as a function of depth, porosity would not change 

through time in a static basin. However, when modelled as a function of 

integrated time-temperature history (equation 2.12), porosity decreases with 

the passage of time as shown in Figure 2.23a and b, at t=O m.y. and t=60 

m.y. respectively. At t=60 m.y. (Fig. 2.23b), porosity at a depth of 900m has 

decreased from 28 to 20%, and porosity at a depth of 4000m has decreased 

from 8 to 2.5%, all without the addition of extra sedimentary load. 

The time for this porosity destruction, and therefore associated surface 

subsidence, requires tens of millions of years (Fig. 2.23). This time span also 

characterises tectonic driving forces of basin formations, and this model 

therefore shows that passive subsidence of the sediment - water interface 

can thus mimic tectonic processes of basin formation (Schmoker & Gautier, 

1989b). If no sediment is added to this secondary, passively formed basin, no 

isostatic adjustment is required. However, if new sediments are deposited as 

the original surface subsides, isostatic adjustment to the added sediment load 

amplifies the total basin subsidence by a factor of roughly 2.5 (Steckler & 

Watts, 1978). Figure 2.24 compares the subsidence through time in the 

deepest part of the basin, shown in Figure 2.25, for the cases of no sediment 

influx, and of sediment influx keeping pace with subsidence. it shows that with 

continuous sediment influx approximately a thickness of 1 Km can 

accumulate, solely dependant on the increasing time-temperature exposure 

of the underlying sedimentary rocks, rather than on dynamic processes of 

basin development. 

Empirically Derived Porosity-Depth Relationships. 

HsO (1977) derived an empirical relation relating permeability to lithology 

and compaction from sedimentological data (grain size and sorting) and 

reservoir-engineering data (porosity and permeability) from the producing 

zones of the Ventura field, California. His empirical relation is :-
k =C. dm2.e-1.31oeJ (equation 2.13) 

where k is permeability in millidarcys, Can empirical number, dm the medium 

grain size in millimetres, and o0 the sorting expressed in 0 - standard 

deviation. HsO (1977) believed that his equation, which can give an insight 

into the degree of compaction, coupled with a knowledge of the nature of the 
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Figure 2.24 Subsidence of original surface as a function of time for deepest part of 
sedimentary-basin model (Fig. 2.25). Subsidence is caused by increase of TTl with time and 
the concomitant porosity decrease of basin sediments as predicted by the equation 
0=30(Tiit0·33. Solid curve represents sediment starved basin. Dashed curve represents 
case of sediment influx keeping pace with subsidence and isostatic adjustment to added 
sediment load (modified from Schmoker & Gautier, 1989b). 
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Figure 2.25 Surface subsidence of hypothetical, static, sedimentary basin caused by 
increase of TTl with time and the concomitant porosity decrease of basin sediments as 
predicted by the equation 0=30(TTit0·33 (modified from Schmoker & Gautier, 1989b). 
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sedimentary facies may determine whether development of a deep-seated 

reservoir will be profitable. 

Leder & Park (1986) modelled the reduction of porosity in sandstones by 

quartz overgrowth. However, they totally ignored the effects of compaction on 

porosity reduction throughout the burial history of the sediments, producing 

'porosity history' curves which only take the deposition of quartz overgrowth 

cements as the agent of porosity destruction. As stated earlier, mechanical 

rearrangement of grains during early compaction greatly reduces sandstone 

porosity from an initial depositional porosity, which as shown by Pryor (1973) 

and Beard & Weyl (1973) is mainly dependant on sorting. Leder & Park 

(1986) provided a diagram for determining the initial porosity of sands based 

on these earlier works (Fig. 2.26). The research of Leder & Park (1986) is 

very important for the modelling of sandstone porosity and permeability 

during burial, however, it is the opinion of this work ·that ignoring the effects of 

compaction, especially during early burial, introduces significant errors into 

the prediction of sandstone porosity at depth. 

Three sandstone compaction studies are worthy of note at this stage. 

They all investigated the compaction and porosity evolution of specific 

sandstone horizons within hydrocarbon reservoirs, producing their own 

compaction laws and equations. The first study, by Wilson & McBride (1988), 

investigated the compaction and porosity evolution of the Pico and Repetto 

sandstone formations from the Ventura basin in California. The authors used 

the concept of contact index (CI = average number of contacts per grain) and 

tight packing index (TPI = average number of long, sutured, and embayed 

contacts per grain) for assessing the closer packing of sedimentary grains by 

compaction, measured from thin section analysis. This method was first 

proposed by Taylor (1950) in her study of fabric changes with depth in the 

Mesozoic sandstones of Wyoming, and was later defined by Pettijohn et al. 

(1972). Wilson & McBride (1988) concluded that compaction of the Pico and 

Repetto sandstones was more or less entirely the result of overburden 

pressure, with tectonic stresses only contributing to a minor degree within 

local areas. Temperature also appeared to play only a minor role in their 

study of the Pico sandstone, probably enhancing pressure solution by mainly 

increasing the solubility of quartz and feldspar. Their results showed that 

mechanical grain rearrangement of the grains as they slip past one another to 

achieve a closer packing relationship was the major process of porosity loss, 

which achieves its greatest effect at shallow depths, but continues at greater 

depths when projecting corners of grains are removed by pressure solution. 
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Figure 2.26 Porosity and permeability of artificially mixed and wet-packed natural sands 
ft"C)m Brazos River, Texas. S0 is the sorting coefficient of Trask (modified from Beard & Weyl, 
1973). 
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Calculations by Wilson & McBride (19BB) showed that in the deepest 

samples studied, approximately 53% of the initial porosity lost by compaction 

was by grain rearrangement. Equal amounts of porosity (24% of initial 

porosity) were lost by pressure solution and d,uctile grain deformation, 

including bending of micas. Sandstones at depths between 11,300 and 

13,000ft (3,444 and 3,962m) lost a total porosity of 26% by all compactional 

processes, 14% by grain rearrangement, and 6% each by pressure solution 

and ductile grain deformation. An important conclusion of Wilson & McBride's 

(19BB) is that within their study simple grain rearrangement was complete by 

a depth of 4,940ft (1 ,506m), but pressure solution, it's associated grain 

rearrangement, and ductile grain deformation continued at greater depths. 

They also concluded that sands which contained the greatest amounts of 

micas and ductile rock fragments underwent the most compaction. Their 

derived relationship of Cl to depth for samples with less than 1 0% cement is:-

CI = 2.05 x 10-4 x Depth (in feet) + 2.B7 (equation 2.14) 

and means that the sandstone samples from the Montrose and Arbroath 

oilfields examined in the present work should have a Cl averaging around 4.5 

(see Chapter 5). 

Smosna (19B9) used the concept of grain fraction to derive a compaction 

law for Cretaceous lithic arenites and wackes of Alaska's North Slope. He 

defines grain fraction as the volume of constituent grains in a sandstone as a 

percentage of total rock volume, i.e. this is almost the same as solidity, 

explained earlier, except that the latter also includes cement within its 

calculation. The initial porosities of these sands ranges between 35 and 40%, 

approaching an ultimate value of 41%, i.e. equivalent to an initial grain 

fraction of 59% when no matrix or cement is present. There is also no 

evidence of pressure solution of stylolitization, and therefore, all of the 

observed compaction resulted from mechanical processes (Smosna, 19B9). 

Results from thin section analysis showed that a burial depth of 550 to BOOm 

appears to mark a crossover from mechanical compaction by simple grain 

rearrangement to that of ductile deformation. Grain rearrangement during the 

initial shallow burial increases the grain fraction from its initial value.of 59% to 

B3-B5%, i.e. a 25% increase (Smosna, 19B9). Grain fraction is then further 

increased due to plastic grain rearrangement (i.e. bending of mica grains, 

and deformation of lithics such as shale, phyllite and coal), by an additional 2 

to 13% during further burial below BOOm, and the variation in this increase is 

primarily a factor of ductile grain content. Plastic deformation falls off 

significantly below 1 ,OOOm, resulting in the fact that 75% of total compaction 
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occurs due to simple grain rearrangement in the first 550 - BOOm of burial. 

The overall increase in grain fraction appears to be linear with depth, but the 

increase may be logarithmic at shallow depths, although Smosna (1989) 

based this conclusion on very few data points. 

Smosna (1989) also found that for sandstone samples with 15% or more 

matrix, grain fraction never exceeds 83% due to the stabilising effect of the 

cement (also see Scherer, 1987). He also pointed out that microporosity 

exists between clay-sized particles of the matrix, which is also destroyed due 

to compaction with increasing depth. The conclusion follows, therefore, that 

variations in sandstone composition greatly effect the compaction and 

porosity history of the sediments, as illustrated in Figure 2.27. Figure 2.28 

summarises the post-depositional history of the sediments used in Smosna's 

study, emphasising the importance of early compaction, which is dominantly 

mechanical grain rearrangement. From his modelling Smosna (1989) 

proposed the following formula for the prediction of grain fraction (GF):-

GF = 90 + 0.23P- 0.72M + 0.0018d (equation 2.15) 

where P is the volume percent of phyllite rock fragments, M the thin section 

point count of matrix, and d the maximum burial depth in metres. 

The final work continuing this theme is the study of McBride et al. (1991 ), 

where the conclusions from their research into the compaction of the Wilcox 

and Carrizo sandstones of the Texas Gulf Coast basically agreed with those 

of Smosna's (1989) earlier work. They noted that by studying the packing 

indices (i.e. Cl and TPI) and the porosity changes, that sands compact rapidly 

to a depth of approximately 1 ,200m, and then more slowly and variably at 

greater depths. The total rock porosity lost by compaction for individual 

samples ranges from 9 to 31%. In concordance with Smosna's (1989) data, 

McBride et al. (1991) noted that porosity lost by simple grain rearrangement 

amounts to 9 to 27%, a value greater than twice the amount of porosity lost 

by either ductile grain deformation (0 to 8.3%) or pressure so"lution (0 to 

7.3%). 

Pre-Cement porosity (PCP) is used in the study of McBride et al. (1991) 

as an independent gauge of compaction. It is defined as the sum of 

intergranular pores (exclusive of oversize grain dissolution pores) plus the 

volume of all cements. To quantitatively assess compaction McBride et al. 

(1991) used the formula of Ehrenberg (1989b):-
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Figure 2.27 The curve relating grain fraction to maximum burial depth is horizontally 
translated toward a higher grain fraction as a function of sandstone composition. Curve 1, for 
mature sandstones with little or no matrix and cement, is taken from Sclater & Christie (1980) 
and Baldwin & Butler (1985). Curve 2 is for lithic wackes of Smosna (1989), and curve 3 
represents lithic arenites with abundant ductile grains (solid circle only) (modified from 
Smosna, 1989). 
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Figure 2.28 Summary diagram of post-depositional compaction and cementation events 
that affected grain fraction and porosity of Cretaceous sandstones in the NPRA (modified 
from Smosna, 1989). 
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. . . . ((lOOxPCP)-(initial <j> xPCP)) 
<!>lost by compactiOn= 1mt1al <j> -----------

(100- PCP) 

(equation 2.16) 

To estimate initial porosities, McBride et al. (1991) used two methods. 

Firstly, they assumed a constant 45% initial porosity for all sand samples. 

The second method involved using the work of Beard & Weyl (1973) to 

estimate sorting, converting Trask sorting values into phi units, and using the 

nomograph in Leder & Park (1986) (Fig. 2.26) to obtain porosity values. The 

latter method yielded initial porosity values ranging from 36 to 42%, 

averaging 41 %. 

Bloch (1991) argued that although empirically derived porosity prediction 

models have their limitations, they are still the only feasible approach 

available to predict reservoir quality (porosity and permeability) at the predrill 

stage. This technique is identical to that used by Scherer (1987) and Smosna 

(1989), namely the use of multivariate regression equations derived from 

calibration datasets. According to Bloch (1991 ), the most important 

parameters controlling sandstone porosity are composition, sorting, 

temperature history (expressed as vitrinite reflectance or TTl}, and pressure 

history. These parameters are in general agreement with those used by 

Scherer (1987), described earlier. Providing that reservoir quality predictions 

are made using a calibration data set with more or less identical 

sedimentological and diagenetic parameters (i.e. based on samples from 

wells within the close vicinity) then the empirical approach can provide 

accurate estimates of porosity and permeability of buried sandstone units 

(Bloch, 1991 ). Empirical predictions, therefore, are usually basin specific, or 

even play specific, and require at least some understanding of fundamental 

processes affecting reservoir quality of a given sandstone target (Bloch, 

1991 ). This point is illustrated when looking at the porosity versus thermal 

maturity indicators (e.g. TTl) as proposed by Schmoker & Gautier (1988). 

Bloch (1991) showed how vitrinite reflectance values of 0.53% taken at 15% 

porosity in Taranaki basin (New Zealand) vary greatly at the corresponding 

15% porosity in the Yacheng field (People's Republic of China) where vitrinite 

reflectance is of the order of 0.95%. This observation, therefore, is in contrary 

to the conclusion of Schmoker & Gautier (1988) who propose a world-wide 

correlation. It also emphasises the point that empirically derived models are, 

in general, basin specific, a conclusion mentioned in the much earlier work of 

Gretener & Labute (1969). 
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Pittman & Larese (1991) investigated the important question of the effect 

sandstone composition, specifically the amount of lithic fragments, has on the 

compactional behaviour of sands. As shown earlier, lithic fragments are often 

more ductile than quartz or feldspar, and can therefore deform under shallow 

burial pressure, reducing porosities earlier than expected if no lithics are 

present (e.g. Rittenhouse, 1971; Nagtegaal, 1978). Nagtegaal (1978) 

observed that quartz arenites show the highest framework stability, and that 

coarse-grained, well sorted pure quartz arenites have the optimal potential of 

preserving high porosity and permeability during burial diagenesis. Arkosic 

arenites show a similar behaviour to quartz arenites down to a depth of at 

least 3352m (11 ,OOOft) under the influence of basic saline solutions. Lithic 

arenites (those with soft and volcanic lithics) range lowest in framework 

stability because of their susceptibility to plastic deformation and 

mineralogical alteration of the framework constituents, in addition to the 

mechanical compaction and pressure solution potentially operative in nearly 

all sandstones. It follows, therefore, that lithic sandstones have the least 

chances of retaining porosity and permeability at depth (Nagtegaal, 1978). 

Pittman & Larese (1991) used experimental sands, with differing 

percentages of lithic fragments added. They outlined three classes of ductile 

fragments; moderateiy ductile material (slate}, highly ductile shale fragments, 

and extremely ductile weathered basalt material, which they added in 

measured quantities to sand, so that the ratio of sand to lithics is known. 

Experimental compaction of these sediments was then carried out and the 

results of this study are summarised in Figure 2.29. From this figure it can be 

seen that lithic sands which contain weathered basalt loose large amounts of 

porosity during early burial, whereas lithic sands containing slate (a less 

ductile material) compact at a much slower rate, and hence, porosity is 

preserved to a greater depth for such sediments. 

The conclusion follows therefore, that the amount of compaction a lithic 

sand undergoes is related to the volume and type of lithic material (Pittman & 

Larese, 1991 ). The experimental work carried out by Pittman & Larese (1991) 

also showed how the timing of cementation is important when dealing with the 

compactional behaviour of sands. They noted, in concordance with earlier 

work, that early cement often preserves sandstone porosity due to its 

stabilising effect upon the sand pack. They also noted that the early 

development of overpressure produces the same effect, because it reduces 

the effective stress due to the overburden load. 
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Figure 2.29 Compaction model with 50% quartz: 50% lithic well-sorted sands for slate, 
shale, and weathered basalt for comparison. The slate-bearing sand apparently was still 
compacting at the limit of the plot (15,000ft or 4572m). The shale-rich and weathered basalt
rich sands ended up with about the same loss of porosity, although the weathered basalt-rich 
sand lost the porosity at shallower depth (modified from Pittman & Larese, 1991 ). 
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Figure 2.30 Reduction of sandstone porosity by (A) cementation (constant volume 
diagenesis}, and (B) compaction (volume loss equals the porosity reduction) (modified from 
Bj0rlykke, 1988). 
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Cementation Versus Compaction. 

The primary porosity of sandstones can be reduced from 35-45% by two 

methods during burial_ (Fig. 2.30). Firstly it can be reduced by mechanical 

compaction, pressure .solution and isochemical diagenesis as described in 

the previous section. ~ere the loss of porosity is accompanied by a 

corresponding loss in rock volume and stratigraphic thickness (Manus & 

Coogan, 197 4 ). The second method of porosity reduction in sandstones is by 

cementation, as touched on earlier, precipitated from solutions brought from 

outside the sandstone and precipitated in the available pore space 

(allochemical diagenesis). This scenario requires a very high flux of 

porewater which is supersaturated with respect to a mineral phase (Bjmlykke, 

1988). In this case the volume of the sandstone remains unchanged. 

Precipitation of cement requires, 1) a flow of porewater from an area of 

higher solubility with respect to the cementing mineral, or 2) transportation of 

ions by diffusion in stationary porewater due to concentration gradients, or 3) 

dissolution of the locally stable minerals. Diffusion is most important in short

distance transport (<1OOm) in near-surface sediments where sandstone 

porosities are higher, whereas flow overshadows diffusion for longer 

transport distances. As burial depths increase and compaction reduces the 

average porosity, fluid flow becomes more difficult due to the increase in the 

specific surface area of- tne sediment, ·and thus the percentage of water 

influenC'ed by mineral surfaces increases. Diffusion is still important at depth 

in the process of pressure solution where short-distance transport of ions 

from mineral surfaces occurs, and are precipitated on surrounding grains. A 

further problem encountered when dealing with cemented sandstones is the 

source of the cementing material. Do sandstones act as chemically open 

systems during burial diagenesis? i.e. are the cementing materials derived 

from within or outside these sandstones? Immediately after deposition these 

sandstones may be subjected to through-flow or percolation of porewater at a 

relatively high rate, and may, therefore, be subjected to early cementation or 

leaching, depending on whether the porewater is supersaturated or 

undersaturated with respect to the most common silicate or carbonate 

minerals present (Bjmlykke, 1988). Early cementation often occurs this way 

in shallow-marine environments, with the precipitation of calcite cements 

commonly. 

In· the porosity-loss model of Robinson & Gluyas (1992a) they used the 

assumption that sandstones act as open systems with respect to silica. This 

means that the silica incorporated in the quartz cement has been imported 
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from an external source. Evidence for this assumption comes from the 

research of Gluyas & Coleman (1992) who looked at the chemistry and 

petrography of early diagenetic calcite nodules which have escaped quartz 

cementation compared to the surrounding quartz-cemented sandstones. The 

model of Robinson & Gluyas (1992a) incorporated three general features:-

1) The amount of quartz cement increases with depth. This is a 

general trend seen in most sedimentary basins. 

2) Compaction reduces sandstone porosity before cementation. This 

can be argued "by looking at minus-cement porosities, determined 

petrographically, and seeing that they are characteristically less than the 

initial depositional sandstone porosity of 40-50% (e.g. Bloch et al., 1990). 

3) Cementation occurs over a restricted time interval, of the order of 

1 OMa (Robinson & Gluyas, 1992b), so that quartz grows in a sandstone unit 

over a range of temperatures and depths. Evidence for this often comes from 

fluid inclusion studies (e.g._ Burley et al., 1989). 

Calculations and equations within this model are then based on a dipping 

sand bed, where water saturated with respect to quartz enters and moves 

upwards thus crossing isotherms and cooling, leading to supersaturation of 

quartz and eventually precipitation. Robinson & Gluyas (1992a) also 

assumed that once cementation begins compaction is effectively halted, and 

subsequent porosity loss is only by the precipitation of quartz in the available 

pore space. 

The results from this model highlight some interesting observations and 

predictions. Important to the present study is the observation that very little 

quartz cement is precipitated at depths of less than about 1-2Km, even if the 

flow rates or bed dip are extreme (Robinson & Gluyas, 1992a). The other 

predictions are that there should be a relationship between bed dip and 

porosity gradient, as yet unstudied. A more problematic prediction is that for 

beds which dip at shallow angles, characteristic of the majority of sedimentary 

basins, average flow rates of the order of several metres per year to tens of 

metres per year must be sustained over 1 OMa if significant amounts of quartz 

are to be precipitated (Robinson & Gluyas, 1992a). Such flow rates are only 

characteristic of artesian flow through an aquifer with a connection to the 

surface (Giles, 1987), whereas quartz cementation appears to occur in 

sandstones which are at depths of several kilometres within sedimentary 

basins, where a connection to the surface is highly unlikely. As pointed out by 

Robinson & Gluyas (1992a), this problem may be due to the fact that the 

present understanding of water flow within sedimentary basins is poorly 
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understood, and that focused flow through more permeable horizons, such as 

sand units, may play an important role in increasing flow rates. 

It is important, therefore, when assessing the modification of sandstone 

porosity during burial diagenesis to separate the effects of compaction and 

cementation, to deduce how much each individual process contributes to 

porosity destruction. This assessment is made possible by using a diagram 

devised by Houseknecht (1987), which plots the intergranular volume (IGV) 

of samples against cement (Fig. 2.31 ). From this diagram it is then possible 

to graphically show the relative amounts of porosity destroyed by mechanical 

compaction and cementation respectively. However, constraints are placed 

on the results achieved using this diagram as an original depositional 

porosity for sands is plotted as the maximum IGV (synonymous with minus

cement porosity). Houseknecht (1987) choose a value of 40% for sands with 

few ductile grains, and composed of spherical, well-rounded and well sorted 

grains. As shown earlier in this section there are many factors that effect 

initial sandstone porosity, one of the most important being sorting (Pryor, 

1973; Beard & Weyl, 1973). Therefore, Houseknecht's (1987) diagram 

requires some modification if local initial porosity values are known to differ 

from a general average of 40%. This requires some simple rescaling of the 

diagrams axes, and the substitution of the locally derived initial porosity value 

into the governing equations (e.g. Anderson, 1991 ). 

The vertical axis of Figure 2.31 represents the IGV of the sample 

(presuming an original porosity of 40%), and it can also be used to quantify 

the percentage of original porosity that has been destroyed by mechanical 

and chemical compaction. This value can be quantified using the equation:-

Percentage of original porosity destroyed by compaction = ( 
40

- IGV) x 100 
40 

(equation 2.17) 

where IGV is expressed as a percentage of whole rock. 

The horizontal axis of Figure 2.31 represents the percentage of cement 

present within a sample, and can also be used to show the percentage of 

original porosity destroyed by cementation. This value is quantified by a 

similar governing equation:-

f . . I . d d b . cement 1 00 Percentage o ongma porosity estroye y cementatiOn = 
40 

x 

(equation 2.18) 

where cement is the volume of cement present expressed as a percentage of 

whole rock. 

61 



Chapter 2:- Compaction. 

CEMENT(%) ;e 
0 

0 10 20 30 40 
..._, 

40 0 c 
co 0 
(.) -::;) c 0 

""' 
co (/) 

~ '\. .c 
0 

' ,~a (.) Q.l ........ 
Q.l '-

w 30 E 
::;) 
(/) 

:;E :>. 
(/) 

:::J .£) Q.l 
_J '-

0 "0 a. 
Q.l '-> :>. co 

a: 0 ::;) 
'-

<( 20 50 - c 
_J (/) co 
~ Q.l '-

"0 Ol z '-
<( :>. Q.l 
a: :t:: -
<.!) (/) c 

0 a: '- oC5 
w 10 0 c 
f- a. 0 z co :;:; 

c (.) 

co 
Ol a. 
'- E 

0 
0 0 

100 (.) 

0 50 100 

Original porosity destroyed by cementation (%) 

Figure 2.31 lntergranular volume versus cement (IGV/cement) diagram. Designed to 
enable the assessment of compaction and cementation volume loss in sandstones (after 
Houseknecht, 1987). 

100 -

~ 0 

0 
80 - '<t 

II 
e 

Q.l 60 -
E + + + + + + 
::;) + + + + + + 

0 + + + + + + 

> 
+ + + + + + 
+ + + + + .::i; + + + + + + (.) 

40 + + + 
0 - - + + + 

a: + + + + + + 
+ + + + + 
+ + + + + + 

('I') + + + - + + + 

E + + + 
+ + + 

(.) 
20 - + + + 

+ + + 
+ + + 
+ + + - + + + 
+ + + .. 
+ + + 
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The respective effects of compaction and cementation are separated by 

the dashed line on Figure 2.31, which enables a rapid assessment of the 

relative importance of the two processes in porosity reduction. Samples that 

plot to the lower left of this line have been effected to a greater degree by 

compaction, whereas those samples effected by cementation to a greater 

degree than compaction plot to the upper right of the dashed line. 

Both Pate (1989) and Ehrenberg (1989b) observed that Houseknecht's 

(1987) and Wilson & McBride's (1988) method of calculating the percentage 

of original porosity destroyed by compaction and cementation are in error, 

because they ignored the fact that bulk sediment volume is dynamically 

reduced as compaction proceeds (Fig. 2.32). Pate (1989) used the fact that 

when dealing with compaction it is easier to refer to the amounts of solids and 

pore fluids as fractions of the total thickness of a given layer, as proposed by 

Perrier & Quiblier (1974). With the derivation of such equations, Pate (1989) 

redrew Houseknecht's (1987) original figure (Fig. 2.31 }, and produced two 

similar graphs to determine the amounts of porosity destroyed by compaction 

and cementation (Fig. 2.33a and b). These modified figures incorporate the 

reduction in a sediments bulk volume during compaction, and actually 

illustrate that compaction has a greater effect in porosity reduction than would 

be predicted by Houseknecht's (1987) original figure. 

Ehrenberg (1989b) provided the correct formula for calculation of the 

compactional porosity loss of a sandstone:-

( (1 OOx IGV)- ( OPx IGV)) 
COPL= OP- (

100
_ IGV) (equation 2.19) 

where COPL is the amount of original porosity lost by compactional 

processes (expressed as a percentage of the original rock volume), and OP 

is the original porosity after minor compactional rearrangement, equivalent to 

the wet packing technique of Beard & Weyl (1973). 

The amount of original porosity destroyed by cementation, the 

cementation porosity loss (CEPL), is derived by Ehrenberg (1989b) in a 

similar way:-

(
CEM) CEPL= (OP-COPL)x -- (equation 2.20) 
IGV 

where GEM is the present volume of cement. 

Using these equations, Ehrenberg (1989b) suggested some simple 

modifications to Houseknecht's (1987) original diagram (Fig. 2.31 ), shown in 

Figure 2.34. Again this improved figure showed that the dividing line between 
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Figure 2.34 Suggested modification of volume-cement diagram proposed by 
Houseknecht (1987) (Fig. 2.31 ). Amount of original porosity destroyed by cementation is not 
a fixed function of percent cement only, but varies with percent intergranular volume as 
indicated by dotted lines (after Ehrenberg, 1989b). 
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equal amounts of porosity destroyed by compaction and cementation moves 

towards the upper cement axis, resulting in the suggestion that compaction is 

a more important process in porosity destruction. It must be noted however, 

that Ehrenberg (1989b) calculated IGV and CEM as percentages of the 

present rock volume, unlike Pate (1989) who uses original rock volume. 

Secondly, Ehrenberg (1989b) used original porosities that are slightly 

compacted. Both these reasons will mean that Ehrenberg's (1989b) diagram 

(Fig. 2.34) will slightly underestimate the amount of porosity destroyed by 

compaction. 

Houseknecht (1989) and Wilson & McBride (1989) replied to these 

discussions of their work, admitting that they ignored the fact of dynamic 

reduction in bulk volume during compaction. However, Houseknecht (1989) 

believed that his original diagram, although slightly incorrect, is still superior 

to those proposed by Pate (1989) and Ehrenberg (1989b), for a number of 

reasons. Pate's (1989) method requires the data collected by the 

petrographers to be processed through a series of equations before plotting. 

These equations all implicitly assume 40% initial IGV, a problem discussed 

earlier, and introducing possible errors into Pate's (1989) method. The ease 

of plotting IGV versus cement on Houseknecht's (1987) original diagram is 

preserved in Ehrenberg's (1989b) method, but Houseknecht (1989) argued 

that his equations, as like those of Pate (1989), do not allow IGV to be 

reduced below 30%, and are therefore only correct for sands that have 

undergone purely mechanical compaction. Neither method takes chemical 

compaction into account (i.e. sandstones with IGV less than 30%). 

Houseknecht (1989) also pointed out that the error incurred in ignoring bulk 

volume reduction is probably small in comparison to the natural variation in 

sandstone porosity values, as illustrated by the work of Pryor (1973). 

Recent Compaction Modelling. 

As an aside, Waples & Kamata (1993) take a different approach to the 

modelling of porosity reduction in all the rock types discussed in the previous 

two sections, i.e. shale and sandstone, and they also look at the porosity 

reduction in carbonates, explained in the following section. Instead of using 

depth of burial as a function of porosity which lumps together several different 

porosity-reducing processes, some of which require additional factors such 

as time and temperature, they developed an empirical set of equations which 

expresses the reduction of porosity as a function of seven different 

processes. These processes are; repacking of grains from the original 
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inefficient packing mode, crushing of microfossils, ductile flow and 

deformation of grains, pressure solution, welding following pressure solution, 

clay diagenesis (including formation of authigenic clays}, and cementation by 

minerals precipitated from moving fluids. For the modelling Waples & Kamata 

(1993) used six of the above processes in the porosity reduction of 

limestones, chalks, and sandstones, and three in shales. Figure 2.35 

graphically shows how each of these processes effects sediment porosity as 

time elapses. The important point to note from this study is that for sandstone 

and shale, the most effective porosity reducing process during the early 

history of the sediment is mechanical rearrangement of the grains and 

subsequent repacking. This supports the earlier conclusions of Wilson & 

McBride (1988), Smosna (1989), and McBride et al. (1991) (see section 

2.2.2). Apart from this the work of Waples & Kamata (1993) relied on 

previously produced porosity-depth models such as Sclater & Christie (1980) 

or Falvey & Middleton (1981 ), used within existing computer programs. Both 

these models require depth of burial as a factor, just like other models 

explained above. Therefore it still appears that for the porosity evolution of 

sediments to be modelled during burial, depth is the fundamental aspect to 

be included in model equations, and that porosity reduction at specific depths 

is a function of different processes as modelled by Waples & Kamata (1993), 

and the relative importance of these processes changes as depth of burial 

increases. 

Conclusions Concerning the Compaction of Coarse-Grained Sediments. 

1 . The average depositional porosity of sand is -40-45%. 

2. The near-surface compactio"n process is not as complex as that for 

argillaceous sediments, mainly because of the better permeability and 

drainage of such deposits. 

3. Grain rearrangement is the dominant porosity destruction process 

during shallow burial. 

4. Cementation is an important process in compactional studies, both as 

a method of porosity reduction, and as a stabiliser of the sand 

framework. 

2.2.3 Compaction of Carbonate Sediment. 

Compactional studies in the field of carbonate sediments has, in general, 

been concerned with the mechanical and chemical compaction effects of 

overburden pressure seen on a grain to grain, microscopic scale (e.g. 
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Figure 2.35 Porosity reduction by each of seven processes for limestone, chalk, 
sandstone, and shale. All rocks are buried to 2000m at a constant rate for 80m.y., with a 
geothermal gradient of 2°C/1 OOm. Porosity reduction and time are plotted on log scales for 
better resolution. Also shown is total porosity, plotted on a linear scale at the right (modified 
after Waples & Kamata, 1993). 
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Meyers, 1980; Meyers & Hill, 1983; Shinn & Robbin, 1983; Shinn et al., 1983: 

Bhattacharyya & Freidmann, 1984). There has been rather less interest in the 

production of porosity-depth curves for differing carbonate facies, some 

notable exceptions being Fruth et al. (1966), Schmoker & Halley (1982), and 

Halley & Schmoker (1983). 

Meyers (1980) and Meyers & Hill (1983) attempted to quantify the 

amount of compaction that has occurred in Mississippian coarse-grained 

skeletal grainstones and cement-rich packstones, exposed in southwestern 

New Mexico. Petrographic analysis showed that compaction plays an 

important role in the destruction of intergranular pore space in skeletal 

limestones, and that most of the compaction occurs under shallow burial. 

Meyers (1980) suggested that it is likely that the compactional features within 

the Mississippian strata were formed under less than 30m (1OOft) of burial, 

and perhaps as little as a few tens of feet of overburden. 

The mechanical and chemical compaction of fine-grained limestones has 

been studied by Shinn & Robbin (1983), who artificially compacted in-situ 

cores of modern sediment. Their experimental work followed on from 

theoretical work of Enos & Sawatsky (1981) who suggested that due to the 

shape of carbonate mud particles (i.e. being elongate, compared to equant 

particles as found in pelagic ooze) dewatering in the first 1OOm of burial is the 

most important compactional process reducing mud porosity to approximately 

40% from an initial depositional porosity of 70%. Shinn & Robbin (1983) also 

observed a reduction in porosity from an initial value of 65 to 75% to a value 

of 35 to 45% porosity, along with a 50% and greater reduction in core 

thickness for depths of burial as little as 1OOm (328ft). With further 

experiments they predicted that significant mechanical compaction results 

from pressures simulating less than 305m (1 OOOft) of burial. As the load is 

increased to an equivalent depth of more than 3,400m (1 O,OOOft) no 

significant increase in compaction was observed. Chemical compaction 

(pressure dissolution) was detected only in sediment cores compacted to 

pressures greater than 3,400m (1 O,OOOft) of burial. Similar conclusions had 

been made by the earlier work of Fruth et al. (1966) who showed that for mud 

facies, which in concordance with siliciclastic mud has the greatest 

depositional porosity, averaging around 70%, nearly 40% compaction occurs 

for only 100 bars of pressure, a depth equivalent of approximately 1 OOOm. 

However, 30% compaction occurs for less than 50 bars of pressure, i.e. less 

than 500m of burial. 

69 



Chapter 2:- Compaction. 

Schmoker & Halley (1982) attempted to produce a porosity-depth curve 

for carbonate rocks producing a relationship of:
porosity (0) = 41.73.e-z/2498 (equation 2.21) 

where z is burial depth measured in metres. This produces a surface porosity 

of only 41.73%, a value only really valid for coarse-grained carbonates, and 

therefore does not accurately predict the porosity evolution of lime mud with a 

surface porosity of 70% (as measured by the DSDP in the Western Pacific 

(Schlanger & Douglas, 1974). Better curves to describe lime mud porosity 

evolution have been proposed by Hardenbol et al. (1981) (Fig. 2.36). Figure 

2.36 is a summary diagram of porosity-depth trends for differing carbonate 

facies, used in the research of Campbell & Stafleu (1992). 

Recent studies by Doglioni & Goldhammer (1988) and Campbell & 

Stafleu (1992) are the first to investigate how compaction has influenced 

depositional patterns in carbonate platform successions. Doglioni & 

Goldhammer (1988) proposed trat syn-depositional compaction of an 

underlying formation (San Cassiano Formation) produced the wedge-shaped 

geometry of the overlying Raibl Formation. Because the San Cassiano 

Formation changes thickness as it is traced laterally into the basin, 

differential compaction (see section 2.2.5) has occurred to produce an areal 

variation in the basin subsidence during the deposition of the Raibl 

Formation, and thus influencing its stratal geometry. Campbell & Stafleu 

(1992) reconstructed the Djebel Sou Dahar carbonate platform from the High 

Atlas Mountains of Morocco to produce a seismic model of a carbonate 

succession. Decompaction was carried out using the curves shown in Figure 

2.36 to produce a seismic model for carbonate platforms that have not been 

deeply buried. 

Conclusions Concerning the Compaction of Carbonate Sediment. 

1 . Carbonate muds tend to have depositional porosities of 70%, slightly 

less than that of siliciclastic mud. 

2. Carbonate sands have more or less identical depositional porosities to 

siliciclastic sand of 45%. 

3. Near-surface compaction, and the problems of timing are identical in 

carbonate sediments as in their siliciclastic counterparts. 

4. Near-surface cementation can be extremely important, and care is 

needed when assessing the process of compaction and its timing. 
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Porosity (0) 
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Figure 2.36 Plots of porosity versus depth for the lithologic cross-section. Muds and finer 
grained sediments have the highest initial porosities. Porosity rapidly decreases during the 
first 500m of burial. Shales and lime mud follow the same compaction curve over the first 
450m. Porosities in the debris beds and reef mounds are the result of early sea-floor 
diagenesis and are based on measurements from thin sections and photomicrographs. Burial 
curves for other lithologies are based on compaction experiments by (1) Hardenbol et al. 
(1981), (2) Schlanger & Douglas (1974), (3) Fruth et al. (1966), and (4) Schmoker & Halley 
(1982). Also plotted are values of porosity versus depth for ODP leg 101, sites 630, 632, and 
633 (after Campbell & Stafleu, 1992). 

I 
- SURFACE POROSITY = 80% 

Sm - MID-POINT 'AVERAGE' POROSITY = 71% 

1 - BASAL POROSITY = 67% 

Figure 2.37 Diagram representing autocompaction of mud. Porosities vary throughout 
the 5m section, with the average porosity taken at the mid-point thickness. 
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2.2.4 Autocompaction. 

The previous sections have discussed the depositional porosities of 

argillaceous and coarse-grained sediments, which are encountered at the 

sediment - water interface, immediately after the sediment has come to rest 

from suspension. Section 2.1 has also shown that with the increase of 

overburden pressure, compaction occurs, and that this process is dynamic 

throughout sediment burial. It follows therefore, that as soon as a freshly 

deposited sediment is buried slightly, compaction will occur, exclusively by 

grain rearrangement in the first metre of burial, and the porosity of the 

sediment will be reduced. It has been shown that the porosity reduction 

during this very early burial will be more apparent in deep-marine muds than 

in sandstones. Therefore, if we imagine a 5m thick unit of mud (Fig. 2.37), the 

very top of this unit will have a porosity of 80%, but the base will have a lower 

porosity due to compaction by its own overburden. Using the equation of 

Baldwin & Butler (1985), the porosity at the base of the mud unit will be 67% 

(Fig. 2.37). This compaction due to a units own overburden is termed 

autocompaction throughout the present study, and it means that an 

individual unit of sediment has its own porosity-depth profile within it, as 

shown in Figure 2.37. 

At first glance the observation of autocompaction appears relatively 

unimportant, however, the process can drastically reduce the average 

porosity of a sedimentary unit, and this reduction in average porosity plays 

an important role in compactional modelling. Figure 2.37 shows that the 

average porosity taken at a units mid-point for a freshly deposited mud which 

is 5m thick is 71% using the equation of Baldwin & Butler (1985). It should 

also be noted that because the porosity depth profiles for muds are curves, 

the mid-point porosity of a sedimentary unit is not strictly the true average 

porosity for that layer. The true average porosity will be slightly higher than 

the mid-point porosity, however, for thin units (<1Om) the errors are very 

slight (<1% difference) and are therefore regarded as negligible. Average 

porosities are required for many of the modelling equations used in 

backstripping and geohistory analysis explained in section 2.4. 

2.2.5 Differential Compaction. 

The previous sections have illustrated that differing lithologies are 

deposited with different initial porosities, dependant upon many factors, but 

primarily grain size and sorting. Likewise the compaction curves used to 

describe the changes in porosity with depth vary widely for different 
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sediments, especially during early burial (e.g. between sands and muds (Fig. 

2.38)). Therefore, if sand and mud are deposited juxtaposed in any geologic 

setting (e.g. in a channel and interchannel area), upon burial compaction will 

occur. From the compaction curves shown in Figure 2.38 it is apparent that 

during early burial (the first 1OOm) the muds will loose a greater amount of 

porosity and, therefore, the subsequent bed thickness reduction will be 

greater. This will cause the production of topography upon the depositional 

surface (Fig. 2.39a), with the topographic high over the sand and the low over 

the muds. This difference in compactional behaviour is defined as 

differential compaction, and this process is extremely important in 

compactional and facies modelling, along with the production of structure and 

topography upon the depositional surface. It also forms one of the 

fundamental considerations of the present work. Maillart (1991) has shown 

that the amount of deformation of many sedimentary features (e.g. bed dips, 

bed and fault geometries) by differential compaction approaches the scale of 

deformations caused by syn-sedimentary tectonics. 

Differential Compaction Models. 

Collier (1989) modelled differential compaction and its influence upon the 

facies architecture of coal deposits within the Northumberland Basin. He 

pointed out that there are basically two methods by which differential 

compaction may be produced, shown in Figure 2.39a and b. The first method 

is as described in the previous paragraph, namely facies-dependant 

differential compaction governed by the porosity-depth curves of the 

lithologies involved (Fig. 2.39a)._ The second method that may produce 

differential compaction is by a lateral change in the a sedimentary units 

thickness. This is usually achieved by the deposition of a sedimentary unit 

over an incompactible underlying topography (Fig 2.39b). The thicker section 

of sediment will compact and undergo a greater thickness reduction than the 

thinner section, again producing topography on the depositional surface. 

Labute & Gretener (1969) described differential compaction around a Leduc 

reef, where an essentially incompactible reef is surrounded and covered by 

compactible sedimentary layers (Fig. 2.40). From their work they showed how 

structures formed by differential compaction decrease in amplitude upwards 

through the sedimentary section, and there comes a limit to where no_ 

structure is seen in the overlying strata. An identical phenomena is also 

described by Parker Gay (1989), who also introduced the timing aspect of 

compaction. This aspect will be dealt with in section 2.3, but for now the 
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Figure 2.38 Porosity-depth curves for shallow burial , illustrating differential compaction 
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Figure 2.40 Schematic presentation of the development of a differential-compaction 
structure in the presence of an unconformity (after Labute & Gretener, 1969). 
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Figure 2.41 Thinning of strata over structural highs- usually explained by nondeposition, 
erosion, slumping, drape, or dissolution of thinned beds- is shown to be logical and expected 
consequence of compaction of underlying beds contemporaneous with deposition of thinned 
bed (modified from Parker Gay, 1989). 
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question to be asked is does compaction occur during deposition (i.e. syn

depositionally), or is there a time lag between deposition of a unit and the 

occurrence of compaction (both autocompaction and compaction of the 

underlying sequence)? Parker Gay (1989) reported the thinning of beds 

across incompactible basement topographic highs, and therefore concluded 

that compaction may be occurring syn-depositionally. The thinning may also 

be attributed to other processes such as nondeposition, erosion, slumping, 

drape, or dissolution of beds on the crest of a "growing" structural high 

(Parker Gay, 1989). Figure 2.41 illustrates how syn-depositional compaction 

can account for the thinning of beds across a topographic high. 

Collier's (1989) work described how computer modelling can be used to 

show how differential compaction, produced by both methods described 

earlier, may occur and what effect this differential compaction may have on 

subsequent deposition. His modelling used Westphalian coal deposits of the 

Northumberland Basin to illustrate the theoretical computer models, whereas 

the present study is primarily interested in the differential compaction 

occurring in submarine fan deposits. The models of Collier (1989) assumed 

that deposition is periodic and is followed by a period of compaction of the 

underlying mud sequence. Therefore, a sand unit is instantaneously 

deposited in the topographically lowest area of the model, with mud 

deposited in the intervening areas. Compaction of the underlying sequences 

is then calculated and modelled, with bed thicknesses being reduced 

accordingly. A new topography is thus produced at the depositional surface 

and the modelling process begins again. Facies patterns and geometries are 

therefore controlled by compaction-induced topography upon the depositional 

surface, with early compaction in the first hundred metres of burial being the 

prime control upon the production of topography. As shown earlier, it is here 

where the greatest porosity reduction and subsequent bed thickness 

reduction occurs in argillaceous sediments, whereas sandstone see very little 

change in porosity and therefore bed thickness throughout this interval. 

Within the submarine fan environment deposition of sandstone bodies is 

geologically instantaneous, as sands are deposited from turbidity currents 

which may last a matter of days or even hours (Reading, 1986). 

The basic concept dealt with throughout this study therefore, consists of 

the instantaneous deposition of sandstone bodies within a mud rich section. 

Upon compaction of the units within the section, topography can be produced 

upon the depositional surface, and this may directly influence the subsequent 

deposition of a turbidite sand by concentrating the flow within the 
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topographically lowest point on the depositional surface. This general 

process has been modelled by previous researchers working within the 

alluvial environment (Allen, 1978; Bridge & Leeder, 1979; Anderson, 1991 ). 

However, it is believed that the effect of compactionally produced topography 

will be greater within the submarine fan environment due to the much higher 

initial porosities of the muds found there (Fig. 2.2), and therefore, the greater 

amount of bed thickness reduction occurring during early burial. 

The model of Allen (1978) essentially dealt with the stacking pattern of 

channel sand bodies in a zone of influence within which a river may cross a 

coastal plain. The river builds up a suite of alluvium deposits over a series of 

equal time steps, each of which begins with an avulsion. The choice of the 

new site for the river after an avulsion is governed by random number tables 

combined with the rules of avoidance of older, relief-creating sand bodies. 

The relief is caused by two methods, firstly by differential compaction 

between channel sands and overbank argillaceous sediment of buried 

channels, and secondly by the fact that the last channel will have built levee 

deposits to form an alluvial ridge. The new river will tend to avoid areas of 

inherited relief. Within the model the effect of older, buried sand bodies 

creating relief by differential compaction is incorporated by assuming a rule 

that a given sand body may not overlap (i.e. erode) any earlier body whose 

top lies less than a calculated depth below the surface of the alluvial plain. 

This depth depends on the subsidence rate and the period of avulsion 

chosen by the modeller. Apart from this simple rule, Allen (1978) ignored 

compaction within the model, suggesting that this restricts his model to 

alluvial deposition occurring during geologically short periods of time (1 as to 

1 Q6 years). It is the belief of the present work however, that compaction is a 

dynamic process, which will still have a great effect on the surface 

topography even during geologically short time periods. The omission by 

Allen (1978) of the modelling of compaction using porosity-depth 

relationships flaws the model somewhat, as early compaction of overbank 

muds would drastically reduce the bed thickness within this area, and hence 

greatly change the surface topography and subsequent channel position. 

Bridge & Leeder (1979) attempted to address the importance of 

compaction within the models of alluvial deposition, refining earlier models of 

Leeder (1978) and Allen (1978), described above. Using Baldwin's (1971) 

composite curve to define a porosity-depth function for clay-rich sediments, 

and assuming no change in sand porosity for the first 500m of burial, Bridge 

& Leeder (1979) modelled alluvial deposition in a similar way to Allen (1978). 
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However, immediately before avulsion occurs all the layers of sediment below 

the newly deposited horizon are compacted to produce a new topography 

upon the surface of the flood plain. The newly deposited horizon is not 

compacted until it has been loaded. The subsequent channel is then 

positioned in the lowermost area of the flood plain, and if there are more than 

one equally low positions, the channel is placed in the one nearest the 

previous channel. Therefore, stacking patterns can be built up sequentially to 

estimate sand body density, and the interconnectedness of sand deposits. 

Further refinement of the model has been carried out by Bridge & Mackey 

(1993) to more accurately simulate alluvial depositional processes, and to 

predict more aspects of alluvial architecture. 

Differential Compaction and Coal Geology. 

Differential compaction has for a long time been a recognised process 

within coal geology, operative during coal deposition, and producing such 

effects as seam splitting (Fielding, 1984). Many researchers have proposed 

that differential compaction across a delta plain controls sedimentation 

patterns due to the topography produced (e.g. Fielding, 1982, 1984, 1986; 

Ferm & Staub, 1984; Weisenfluh & Ferm, 1984; Harper & Olyphant, 1991; 

Demko & Gastaldo, 1992). The work of Fielding (1982, 1984, 1986) goes into 

slightly more detail than most of these studies, showing how an interplay of 

compactionally controlled subsidence and regional structural development 

may influence channel geometries and coal depositional models. 

Topographic variations of up to 8m are believed to be produced by rapid 

differential compaction of peat, clay and sand-dominated sequences 

(Fielding, 1984). Evidence for this is the presence of thick sedimentary 

sequences directly overlying thick coal and claystone dominated units, with 

only thin subsequent sedimentary sequences found overlying major channel 

sandstones. The combined effect of rapid vertical accretion of channel 

deposits compared to that of the interchannel areas, and the slower rate of 

compactional subsidence of the channel sandstones causes the topography 

of the depositional surface to be such that subsequent sandstone channel 

deposits will be situated above previous, more compactible, muddy 

interchannel deposits. This process produces characteristically diagonally 

offset, vertical stacking patterns of channel sandstone bodies (Fig. 2.42), 

identical to those formed by the alluvial models of Allen (1978) who ignored 

the modelling of compactional effects, and Bridge & Leeder (1979) who 

incorporated compaction into their modelling process. Problems arise with 
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these models however, as mature meandering rivers which have built a flood 

plain will not avulse in such a way to make these models feasible. 

Fielding (1984) pointed out that vertically stacked channel sandstones 

can also be seen on a profile through coal field sequences (Fig. 2.42), thus 

contradicting the compactional model for the build-up of sequences. It is 

believed that in such areas of vertically stacked channels, a structural control 

influences channel deposition, producing structural depressions of less than 

5m relief upon the depositional surface. Fielding (1984), therefore, divided 

the depositional model of coal into three scales, and assesses the controls 

upon sedimentation in each of these:-

1. Large Scale (1OOO's Km2) - Sedimentation controlled by 

the patterns of delta switching. 

2. Medium Scale (1 OO's k.m2) - Sedimentation controlled by 

structurally and compactionally induced subsidence 

patterns. 

3. Small Scale (Km2) - Sedimentation controlled by local 

sedimentary processes, and subsidence patterns. 

(see Figure 2.43). 

These scales provide a valuable way of dividing up large depositional 

systems into units where compactional effects can be recognised, and the 

possible depositional control they exert can be assessed in all scales of 

facies geometry and build-up. 

A similar compactionally controlled depositional arrangement is 

described by Demko & Gastaldo (1992), where thickness changes in the 

Jagger coal seam of approximately 2.3m occur, with the thick coal sections 

overlying the topographic lows of the underlying "Jagger Bedrock" sandstone. 

These topographic lows also appear to influence the thickness of the Blue 

Creek coal, and the siting of thin (<2m) channel sands, approximately 8m 

higher up within the stratigraphic column. Demko & Gastaldo (1992) 

described a depositional model where accommodation space is provided by 

short-term compaction of buried peat bodies, creating topographic lows which 

allow continued accumulation of catastrophic flood deposits that buried the 

clastic swamp vegetation. This process of punctuated loading, compaction 

and subsidence, and recolonization by clastic swamp vegetation continued 

until the buried peat body reached relative compactional stability. 

Thickness changes, and the distribution pattern of the Survant, 

Springfield, and Hymera coals are believed by Harper & Olyphant (1991) to 

reflect the differential compaction of sediments around the underlying Survant 
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sandstone, with thick coals occurring within the compactionally produced 

lows across this sandstone. They also postulated that the deposition of the 

Survant sandstone was influenced by the underlying Silurian reefs present 

within this area of the Illinois Basin. Differential subsidence around the 

Silurian reefs may have been due to differential compaction, as the reefs are 

relatively incompactible compared to the surrounding sediments, or it may 

have been due to differential diagenesis of the rocks (Harper & Olyphant, 

1991 ). However, the important observation in this part of the study is that the 

volumetric change in the Silurian beds surrounding the reefs, by whatever 

process, is not instantaneous, and it may continue under the influence of 

previously added sediments, even during hiatal periods. Harper & Olyphant 

(1991) noted that during hiatal periods (and in the absence of tectonic 

movement), land subsidence would have been caused by the cumulative 

compaction and diagenesis of every underlying Palaeozoic unit. Initially 

during such hiatal periods, compaction of shallow, more compactible, recently 

deposited units (such as muds that flanked Pennsylvanian sandstones) would 

contribute most to subsidence of the land surface. But given the passage of 

time and the rapid physical compaction of shallow buried muds, the thinning 

of deeper older units (such as Silurian rocks around reefs) might have 

become significant again. Such differential thinning of Silurian rocks during 

long hiatuses could have been subtly expressed in the topography of the land 

surface or the sea floor, and areas with the greatest subsidence would have 

captured drainage ways. Chapter 4 of the present work will describe field 

observations and interpretations of differential compaction occurring during 

hiatal periods. The main conclusion to be reached from the work of Harper & 

Olyphant (1991) and the fieldwork described in Chapter 4, is that compaction 

is a temporal process, a fact ignored by most, if not all models that 

incorporate compaction . into their calculations. This conclusion therefore 

raises the important question of the timing and the rate of compaction 

compared to the timing and rate of deposition (i.e. addition of overburden). 

2.3 Compaction as a Temporal Process. 

Many authors point out that compaction is a dynamic process (A thy, 

1930; Hedberg, 1936; Gretener & Labute, 1969; Desmaison & Beaudoin, 

1989; Buryakovskiy et al., 1991 ), but with the exception of the work by Audet 

& McConnell (1992), described in section 2.2.1, the aspect of time in 

compaction studies is mostly ignored. This is probably due to a number of 

reasons, but mainly because it is a difficult concept to incorporate into 
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mathematical compactional models, and it makes formulae complicated and 

difficult to use. On a large scale (observations at the scale of >1 Km) the final 

result is probably more or less identical whether the aspect of time it taken 

into account or not during compactional modelling. However, as the scale of 

observation decreases below 1 Km, then the aspect of time becomes a very 

important variable to consider when looking at the compactional history of a 

sedimentary sequence. 

The two important variables to consider are the deposition rate of the 

sediment (i.e. the rate of addition of overburden), and the compaction rate of 

the sediment being deposited (i.e. Autocompaction, as explained in section 

2.2.3), and the underlying sedimentary strata being loaded. Figure 2.44a and 

b shows the two possible relationships between the rate of deposition and the 

rate of compaction. The first scenario, shown in Figure 2.44a, illustrates the 

situation that arises when the rate of autocompaction and compaction of the 

underlying sequence is equal to the rate of deposition. This means that as a 

sediment is being deposited pore fluid escapes at such a rate that the pore 

fluid pressure is not raised above hydrostatic pressure. This is never strictly 

true as pore fluid pressure must be raised slightly at the initial period of 

loading to start the dewatering process. But providing the equilibration of fluid 

pressure back to hydrostatic is geologically instantaneous, then the rate of 

compaction is essentially equal to the rate of deposition. Therefore, within 

this scenario equilibrium compaction is maintained at all times. This also 

means that the depositional surface remains essentially flat, as the flow of 

deposition will tend to fill any topographic lows, even if they are produced by 

differential compaction of the underlying sedimentary strata. 

Figure 2.44b illustrates the alternative scenario where the rate of 

deposition is greater than the rate of autocompaction, and the compaction of 

the underlying strata. Here sediment is deposited at such a rate that pore 

fluid cannot escape from the underlying sedimentary rocks, possibly due to 

low permeability and lack of flow pathways, causing pore fluid pressure to 

increase to a value above normal hydrostatic pressure for the depth of burial, 

where the sediment is said to be overpressured. If deposition is halted for 

any reason compaction can still occur as pore fluid slowly bleeds out of 

buried strata, as the pore fluid pressure tries to achieve hydrostatic pressure. 

Because no further sediment is being added, as post-depositional 
compaction occurs, any bed thickness reduction in the sedimentary 

sequence will be expressed at the depositional surface. Therefore, if 

differential compaction occurs at this stage, topography will be produced at 
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the depositional surface. The scale of this topography depends on exactly 

how much overpressure has built up during deposition, and remains just after 

deposition has ceased. The greater the amount of overpressure the greater 

the post-depositional compaction, and therefore topography produced, 

providing the hiatus in sedimentation is long enough to allow all the 

remaining overpressure to dissipate, and a state of equilibrium compaction to 

be achieved. Overpressure from the shallow buried section will be the first to 

bleed off, followed by that which has built up in the more deeply buried 

sediment as more time passes. This is the basic process by which Harper & 

Olyphant (1991) believed subsidence occurs in coal swamp deposits during 

hiatal periods, outlined in the previous section. 

Sediment permeability is a major factor in this process, as this dictates 

the speed at which a sediment can dewater. Fine-grained sediments have 

considerably lower permeabilities than coarse-grained sands and will 

therefore take a relatively longer time to dewater and compact (Rubey & 

Hubbert, 1959; Ebhardt, 1968; Magara, 1968, 1976; Bredehoeft & Hanshaw, 

1968; Einsele, 1977; Bishop, 1979; Buryakovskiy et al. 1991 ). Therefore, in 

environments where sand and shale are juxtaposed the relative speeds of 

compaction will vary as well as the amounts of bed thickness reduction. 

When this effect occurs in geologic environments where deposition is 

episodic, the process of post-depositional compaction can play an important 

role in modifying the topography of the depositional surface during hiatal 

periods. 

The modelling of Einsele (1977) showed how the rate of deposition also 

plays an important role in the production of overpressure within loaded 

sediment. Using experimental sedimentation of kaolinite Einsele (1977) 

demonstrated that during rapid sedimentation (2cm I day), conditions of 

under-consolidation (and overpressure) can be generated due to insufficient 

permeability. Earlier research of Bredehoeft & Hanshaw (1968) showed that 

during continuous sedimentation negligible excess pore pressure can be 

created in sediments having a permeability of 1 mD or higher. However, if the 

loaded sediment has a permeability of 1 o-2mD or lower, then pore pressures 

can be raised to a value approaching lithostatic during continuous 

sedimentation. Further modelling by Bishop (1979) demonstrated that near
surface overpressure within shale beds could be produced by rapid burial 

even at shallow depths. Slow burial also produces similar amounts of initial 

overpressure at depth, due to the poor drainage of mud sequences. Rapid 

shale burial also produces an inversion in the density profile throughout the 
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section, meaning that the section has a high density 'cap' which may effect 

the compaction of the less dense sequence beneath, as vertical fluid flow will 

be impeded. 

To summarise, the fact that the quicker the rate of deposition of sediment 

the greater the potential for overpressure to develop, combined with episodic 

deposition which allows overpressure to dissipate during hiatal periods, the 

ideal depositional environment for this process to be occurring and therefore 

modelled, is that of the submarine fan. Within the submarine fan depositional 

environment there is not only the high initial mudstone porosities to allow 

large amounts of differential compaction to occur, but there is also very rapid 

deposition of turbiditj flows, a matter of hours or days (Reading, 1986). By 

definition turbidite deposition is episodic, with flows being deposited within 

submarine channel systems and depositional lobes geologically 

instantaneously, followed by relatively long periods of negligible 

sedimentation, perhaps a fine pelagic rain of mud. Therefore, all the 

ingredients for a differential compactional control upon the topography of the 

depositional surface within the submarine fan environment are present, and 

its possible control upon deposition of flows requires assessing and 

modelling. 

2.4 Simple Modelling of Compaction. 

This section describes the technique used to model the effects of 

compaction upon sedimentary sequences. The first stage of this process 

usually takes a sequence of sediments that requires the removal of layers of 

sediment from the top downwards and the associated decompaction of the 

underlying units. This is then followed by the reverse process of forward 

modelling and re-compaction, to assess if compactional effects of the 

underlying strata directly influence deposition of subsequent sedimentary 

packages. Compaction is one of the processes that requires modelling along 

with other processes such as heat and fluid flow, hydrocarbon generation and 

expulsion, and secondary migration, to allow an entire model of a basin to be 

developed, and thus the potential of hydrocarbon exploration within that basin 

to be assessed. Hermanrud (1993) provided an excellent review of most of 

the historical research into these topics, and how they have provided a more 

complete understanding into the evolution of basins and their hydrocarbon 

potential. 

The process of decompaction (Watts & Ryan, 1976; Steckler & Watts, 

1978), diagrammatically shown in Figure 2.45, is most usually described and 

87 



Chapter 2:- Compaction. 

Sea level 

Figure 2.45 A schematic diagram outlining the decompaction as a layer of sediment is 
removed (after Sclater & Christie, 1980). 
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utilised in the production of burial history curves (geohistory analysis}, which 

essentially graphically shows the accumulation of sediment within a basin, 

and the inferred subsidence of the basin floor. Production of burial history 

curves requires various types of data such as sediment thicknesses, 

lithology, age information and palaeowater depth. Once a sedimentary 

sequence has been divided into its constituent layers a simple stratigraphic 

accumulation curve can be drawn. The layers are usually based on changes 

in lithology which require different compaction corrections, or on the amount 

of age control data for the section, since burial histories are plotted versus 

time. For the present work the modelling consists of dividing a section into 

separate lithologic slices to assess the impact of differential compaction on 

deposition. Therefore, the variable of age can be ignored as the intent is not 

to construct a burial history curve, however, the process is very similar. 

Van Hinte (1978) described a method to decompact a section which then 

allows the construction of the initial thicknesses of the units, providing 

porosity data are known, or can be estimated using porosity-depth 

relationships. The method of Van Hinte (1978) showed that the thickness of a 

unit at the time of deposition (T 0 ) and any time thereafter is related to the 

change in porosity of the sediment during burial (Fig. 2.46). In the derivation 

it is pointed out that the volume of grains does not change during burial 

(assuming no significant diagenesis), but that the volume of the pore space 

decreases during burial. Therefore, the original thickness is related to the 

present-day thickness as follows:-

(1 - <)>N )TN 
To=-----

.(1- <)>o) (equation 2.22) 

where 00 is the original porosity at the time of deposition, and allowing for 

autocompaction, and TN and 0N are the present-day thickness and porosity 

of the unit respectively. 

Initial thicknesses can now be approximately calculated if a porosity

depth function, such as those of Baldwin & Butler (1985), or Sclater & Christie 

(1980) are used to predict the porosity of the unit at depth. Since the units 

present thickness is known, and a depositional porosity can be assumed 

depending on lithology, then once the porosity at depth is calculated, the 

initial thickness of the unit can also be calculated using equation 2.22. This 

approach assumes that all the reduction in a units porosity is due to 

compaction, and the effects of cementation are completely ignored. 

Petrographic work may suggest the amount of porosity destroyed by cement, 
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especially when used in conjunction with the graphs of Houseknecht (1987), 

or the later corrected graphs of Pate (1989) and Ehrenberg (1989b). 

Petrographic work may also show evidence of the timing of cement 

deposition. Thus improvements in calculations, and therefore modelling, can 

be achieved using thin section analysis. Models proposed by Gallagher 

(1989) also allow some correction of burial histories where both compaction 

and cementation are taken into account. 

Using a chosen porosity-depth function and equation 2.22 the 

thicknesses of the units at successive stages of burial can be restored. For 

convenience, the porosity for the middle of each unit is calculated, and this is 

assumed to represent the average porosity of the entire unit. It must also be 

noted that the depth to the middle of a unit changes during burial, and 

therefore requires recalculation at every stage of unloading and 

decompaction. Figure 2.47 shows an example table used to calculate the 

compaction correction during the unloading of a sedimentary pile. The 

present porosities for the units midpoints can be calculated using the suitable 

porosity-depth relationship for each lithologic unit. In the second column from 

the left the uppermost sedimentary unit (unit 7) has been removed, and 

hence, represents the sedimentary sequence just after unit 6 was deposited. 

It is now possible to calculate the average porosity of unit 6, and thus its 

initial thickness using equation 2.22. Working down successively through the 

units it is possible to determine the new average porosities, and therefore 

their thicknesses prior to deposition of unit 7. This process is repeated for 

each unit down the column to determine the total thickness (LT) of the 

stratigraphic section after the deposition of unit 6. The entire process is then 

repeated for each column across the table, starting with the original column 

every time. The original column is used instead of the immediate preceding 

one as the latter will contain small errors due to the use of an approximate 

porosity-depth function, and it is important to lessen the effects of cumulative 

errors. Therefore, to calculate the effects of compaction on unit 5, the next 

step is to go back to the original column and remove units 6 and 7 to 

calculate the original porosity and thickness of unit 5. 

The method described above only provides an approximate answer for 

the amounts of compaction occurring, dependant on the porosity-depth 

function chosen. The accurate method is described by Angevine et al. (1990) 

assuming that porosity decreases exponentially with depth (i.e. the porosity

depth function of Sclater & Christie, 1980), and that the volume of rock grains 

within the unit never changes. If a unit of thickness TN is buried to a depth of 
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dN, then its thickness (T 0 ) at some earlier time when the unit was buried to a 

depth of do can be found using the following relationship:-

do+To dtv+TN 

J (1 - <1> )dz = J (1- <1> )dz (equation 2.23) 
do dN 

Analytical evaluation of these two integrals is possible, to produce a 

transcendental equation which can only be solved using an iteration process 

(Angevine et al., 1990). This produces a very clumsy equation which 

essentially requires a computer to provide a solution, and only improves the 

compaction correction by 3% from the approximate method described above, 

when dealing with units thicker than 1OOm. As the present work is more or 

less completely dealing with units thinner than 1OOm, the approximate 

method will be used throughout the compaction modelling process in 

Chapters 3, 4 and 5. 

Both Perrier & Quiblier (197 4) and Collier (1989) presented formulae to 

model compaction of sedimentary sequences. However, both these methods 

use an exponential porosity-depth function of the form calculated by Sclater & 

Christie (1980}, which requires a variable dependant upon the lithologic 

character of the sediment. The present work will show in the later chapters 

that for early compaction this relationship does not appear to be correct and, 

accordingly, these formulae derived will not correctly model near-surface 

compactional processes. 

Conclusions Concerning the Near-Surface Compaction of Sediments. 
1. Near-surface compaction is much greater in muds (especially those 

with the highest depositional porosities) than in sands, where it is more 

or less absent for depths less than 1OOm of burial. 

2. Environments where sand and shale are juxtaposed are areas where 

differential compaction can occur, creating a possible topographic 

control on the subsequent facies development and geometry. 

3. Equilibrium compaction of muds requires a considerable amount of 

time. Therefore, environments where deposition is episodic possibly 

show the greatest effects of differential compaction, as hiatal periods 

and breaks within sedimentation allow further compaction of muds to 

occur while no further sediment load is added. Thus the topography 

produced on the depositional surface by this process will be greater 

than if only a short time span of mud compaction is allowed. 
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CHAPTER 3:- FIELDWORK- SOUTHERN CALIFORNIA. 

3.1 Introduction. 

This chapter deals with the field data collected during April and May 

1991, in Southern California, during the first year of study. Essentially three 

areas were studied during this period, namely Ridge Basin, within the central 

Transverse Ranges; La Jolla, San Diego, and Wheeler Gorge within the 

Santa Ynez Mountains. The majority of the study was concentrated in Ridge 

Basin because of the excellent exposure within the region, and therefore 

forms the main part of the data within this chapter. However, the latter two 

areas also provide valuable observations and insights into the process of 

early compaction within the submarine environment. 

The basis of the field study was to provide outcrop data of submarine fan 

deposition, comparable in depositional setting to the geophysical data and 

well data from the Montrose and Arbroath oilfields in the North Sea, 

described in Chapter 5. Field data enables an insight into the early 

compactional process within the submarine environment which can then be 

built into the depositional model for the Montrose - Arbroath area (see 

Chapter 5). This allows a greater refinement of the syn-depositional 

compactional process described in Chapter 2, providing valuable information 

on the timing, amount, and possible control upon the depositional 

arrangement and geometry within such environments. 

Section 3.5 concludes the chapter showing how field data have been 

interpreted and used to assess the process of early compaction within the 

submarine fan environment, and how this may affect the depositional model 

for the Montrose - Arbroath area. It outlines possible theories for deposition 

of sediments within the submarine setting and also possible problems that 

can be superimposed upon a model of simple turbidite deposition. 

3.2 Ridge Basin. 
3.2.1 Introduction. 

Ridge Basin is a narrow, fault controlled basin lying forty miles north of 

Los Angeles in the central Transverse Ranges of Southern California, U.S.A. 

(Figs. 3.1 & 3.2). During the late Miocene, and lasting into the Pliocene, an 

extremely thick stratigraphic section, exceeding 13,500m (44,000ft) was laid 

down within the narrow basin as the depocentre migrated northwards. 

Sedimentary facies within the basin are unusually well exposed and 

document a change through time from a marine embayment to a lacustrine 
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Satellite image of Ridge Basin, showing Castaic Lake, and northern Los 
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and alluvial environment. The region is situated between the complex faulted 

transform margin of the Pacific and North American lithospheric plates, and 

therefore allows a good insight into the interplay between sedimentation and 

tectonics. The sedimentary fill of the basin has been extensively studied by 

numerous workers, especially Crowell and Link, who edited the 1982 

geological history of the basin, which forms a comprehensive text book and 

field guide to the area. Other studies have been carried out concerning the 

tectonics, palaeontology, palaeoecology and diagenesis of the region, and 

are all contained within the guide book. 

3.2.2 Tectonics. 

Ridge Basin originated during the Miocene epoch as a stretched and 

sagged crustal wedge within the complex boundary between the Pacific and 

North American plates. The ages of fault movements surrounding the basin 

can be well documented by the overlapping relationships of the sedimentary 

fill. The San Gabriel Fault (Fig. 3.1 ), forming the southwest edge of the basin, 

began its activity about 12m.y. ago, when it formed an early strand of the San 

Andreas transform system, and ceased its displacement 5m.y. ago. On the 

eastern edge of the basin the Clearwater Fault was active around the same 

time ceasing its displacement slightly earlier, approximately 8m.y. ago. This 

activity was followed by successive strands of the Liebre Fault Zone which 

migrated northeastwards, ceasing displacement slightly earlier than the San 

Gabriel Fault, between 6 and 5m.y. ago. At the termination of San Gabriel 

Fault displacement all transform movement was taken over by the present 

day San Andreas Fault system. The switch in active fault traces created the 

'Big Bend' within the San Andreas Fault, forming the northern end of Ridge 

Basin, with the Frazier Mountain Thrust (Fig. 3.3) forming the northwest 

boundary, due to later crustal shortening south of the 'Big Bend'. Uplift and 

erosion in the Pleistocene, continuing to this day, have exposed geological 

relations that allow an unusual documentation of the interplay between 

tectonics and sedimentation, including the timing of fault movements 

(Crowell, 1982a). 

The San Gabriel Fault developed in late Miocene times, approximately 

12m.y. ago and possibly as early as 14m. y. ago, forming the plate boundary 

within the region. The fault is extremely long and can be traced for 130Km 

(80 miles) on the surface, with the type of the displacement varying along its 

length. Throughout the central part of Ridge Basin the fault dips 70° to the 

northeast, whereas at the southern end of the basin, around the town of 
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Figure 3.3 Simplified structural map of Ridge Basin (modified from Crowell, 1982a). 
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Castaic, the fault dips nearly vertically. The amount of displacement along the 

fault is one of controversy, but it appears to amount to at least 351\m {22 

miles) of essentially right {dextral) slip, and possibly as much as 561\m {35 

miles). There is also evidence for a low angle of oblique slip apparent in 

some regions along the fault trace {Crowell, 1982a). Due to the fact that the 

trace of the fault is not perfectly straight around the northern region of Ridge 

Basin, having a gentle eastward arc around a restraining bend bounding the 

Frazier Mountain region, when movement of the fault occurred, it caused the 

squeezing and uplifting of the Frazier Mountain terrane, providing a sediment 

source along the southwest edge of the basin. At the same time, the 

movement of the terrane on the northeast side of the fault trace caused 

stretching of the area around the outside of the bend, causing the plate to 

sag and form the floor of Ridge Basin itself. The mountains to the north of this 

'sag' provided the majority of the sedimentary input for Ridge Basin, and the 

relationship between their deposition and the tectonic activity will be 

described in more detail in the following section. To summarise, Ridge Basin 

originated as a tectonically controlled basin, produced by crustal stretching 

around a releasing bend of a dextral strike-slip fault. 

For 351\m {22 miles) along the San Gabriel Fault there is a strip of 

sedimentary breccia ·forming the southwest edge of Ridge Basin {Fig. 3.3). 

This formation was named the Violin Breccia by Crowell {1954) due to its 

exposure within Violin Canyon. The strip reveals considerable information on 

the nature of the fault's history of displacement, as well as on the origin of 

Ridge Basin itself. The breccia unit is over 11 ,DOOm {36,000ft) thick 

stratigraphically, and it changes facies within a kilometre or so from coarse 

gneissic rubble, into finer beds within the central trough of Ridge Basin 

(Crowell, 1982b). The nature and distribution pattern of Violin Breccia reveals 

that there was continuous, or closely spaced intermittent, rejuvenation of the 

San Gabriel Fault scarp throughout the time of its deposition, i.e. from 12 to 

5m.y. ago. Throughout this period the fault movement was essentially right 

slip with concurrent uplift along the southwest edge of a restraining bend, as 

described above. Sediment was shed from this uplifted region, which was 

intermittently elevated during fault activity, forming talus and small alluvial 

cones passing into the basin over a very short horizontal distance from the 

active fault, accumulating on the North American plate as it moved 

southwards. Therefore, a 'conveyor-belt' mechanism can be imagined, 

controlling not only the deposition of the Violin Breccia but also the major 
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sedimentary fill of the basin, sourced from the mountains to the north and 

northeast (Fig. 3.4) (Crowell, 1982). 

The 'conveyor-belt' system was active during faulting, causing right

lateral (dextral) movement of the basin towards the southeast, and with 

associated uplift and rejuvenation of the sedimentary source area each time 

an earthquake occurred. Slow creep may also have occurred along the fault 

trace. As fault movement continuously occurred, deposits of breccia were 

transported on the American plate towards the southeast, creating 'new' 

regions of basin floor, which provided accommodation space for further 

deposits of breccia from the relatively uplifted fault scarp region. The 

combined mechanism of slow creep and active fault displacement accounts 

for the total of more than 11 ,DOOm (36,000ft) of Violin Breccia, and the 

northwestwards overlap of the sedimentary units within Ridge Basin. Modern 

day analogies to this mechanism can be described, showing that major 

earthquakes probably accompanied horizontal displacements along the faults 

(e.g. the San Andreas Fault). 

Two major fault systems enter Ridge Basin from the east, the Clearwater 

and the Liebre (Figs. 3.1 & 3.3). The Clearwater Fault can be traced for 431\m 

(27 miles) from a western point where it is overlapped by sediments within 

Ridge Basin, eastwards to where it joins the San Andreas Fault. The fault is 

believed to be an oblique and right-slip fault, which is more or less vertical, 

accounting for its straight trace across rugged mountain terrain. Several 

episodes of displacement occurred along the Clearwater Fault, before, 

during, and after deposition of sediments within Ridge Basin itself, which 

overlap the fault at the western end. Fault movement after the deposition of 

the overlapping sediments did not completely cut the thick mass deposited 

within the central part of the basin, and it is represented as local folds and 

minor faults in the sediments (Crowell, 1982a). 

Bordering Ridge Basin on the northwest at least four strands of the 

Liebre Fault Zone are overlapped by successively younger beds of the basin 

sequence (Crowell, 1982a). Individual fault strands within the area were 

therefore active at different times during deposition of Ridge Basin 

sediments, and the coarse conglomerates proximal to the fault show that the 

fault zone played a role in forming the basin margin (Fig. 3.5). Displacement 

along this fault is less well known and documented, although Crowell (1982a) 

proposes a right slip of the order of 8Km (5 miles). The four episodes of 

sedimentary overlap of the fault strands document the northeastern migration 
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of the principal strand of movement on the fault system during the time of 

Ridge Basin sedimentation (Fig. 3.5). 

The Frazier Mountain Thrust System forms the northwestern corner of 

Ridge Basin (Fig. 3.3). This system is made up of a series of thrusts, the most 

conspicuous of these being the Dry Creek Thrust and the Frazier Mountain 

Thrust. Precambrian basement rocks are thrust over Ridge Basin sediments 

by this system, and Crowell (1982a) interprets that the thrusts have originated 

from north-south shortening that has telescoped the rocks to the south of the 

San Andreas. From the map shown in Figure 3.3 it can be seen that both the 

Dry Creek and Frazier Mountain Thrusts have straight faults along their 

eastern edges, and these are believed to be uplifted and rotated segments of 

the San Gabriel Fault (Crowell, 1982a). This would mean that the 

displacement on the system need not exceed 6K.m (3 miles). It therefore 

appears that this thrust system originated and grew as the 'Big Bend' in the 

San Andreas developed during the Pliocene and Pleistocene. 

Ridge Basin is sharply truncated on the north by the active San Andreas 

Fault (Fig. 3.3). The timing and amount of displacement along this fault within 

the area is still poorly constrained. However, it is believed that the fault 

originated around 5 to 6m.y. ago as transform movement upon the San 

Gabriel Fault weakened and died. Therefore, the San Andreas formed the 

northern edge of Ridge Basin during the final stages of sedimentary 

deposition within the basin. 

The Sandberg Thrust (Fig. 3.3) is of little consequence to the overall 

tectonic framework of Ridge Basin. It is poorly exposed, and hence poorly 

studied and understood. It can be traced laterally for 41\m (2.6 miles) and is 

interpreted as a high angle thrust fault which dips steeply to the south at 

depth, beneath Liebre Mountain (Crowell, 1982a). Strands of the San 

Andreas have since dismembered the Sandberg Thrust. 

The Ridge Basin Syncline runs along the axis of the basin, plunging to 

the northwest (Fig. 3.3). Major folding, along with other minor folds and faults 

primarily occurred during the Pleistocene, and was associated with 

compression and uplift of the central Transverse Ranges. 

3.2.3 Stratigraphy. 

The oldest rocks within the Ridge Basin area are Precambrian gneisses, 

diorites, gabbros, amphibolites and anorthosites, which are intruded by 

Cretaceous granitic rocks. These are unconformably overlain by Cretaceous 

and Palaeocene marine sedimentary rocks of the San Francisquito Formation 
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which formed the basement to much of Ridge Basin. Unconformably overlying 

these sequences there is a 13,000 to 14,000m (42,650 to 46,000ft) thick 

section of Miocene to Pliocene, marine and nonmarine sedimentary rocks 

(Fig. 3.5). These units are from oldest to youngest; Mint Canyon Formation, 

Castaic Formation, and the Ridge Basin Group. The Mint Canyon Formation 

is a small tongue of fresh/brackish water sandstones and conglomerates that 

unconformably overlies the San Francisquito Formation in the extreme 

southeast region of Ridge Basin, representing an early phase of subsidence. 

The Castaic Formation unconformably overlies the Mint Canyon Formation, 

and marks the beginning of marine sedimentation within Ridge Basin itself. 

The Ridge Basin Group consists of the Violin Breccia, Ridge Route 

Formation, and the Hungry Valley Formation, and the Ridge Route Formation 

fills the thickest central part of the basin, where it interfingers with the 

laterally equivalent, Peace Valley Formation (Fig. 3.5). 

For this study interest is focused on the Castaic Formation and the 

overlying Marple Canyon Sandstone Member, which is the lowermost 

member of the Ridge Route Formation. The Marple Canyon Sandstone is 

transitional with the Castaic Formation below. The Castaic Formation ranges 

from 520 to 2800m (1700 to 9200ft) thick, and is a late Miocene sequence of 

mudstones interbedded with siltstone, sandstone, and conglomerates, 

containing marine molluscs and foraminifera. The formation is exposed in the 

southern end of Ridge Basin, with a maximum lateral extent of about 1 OKm (6 

miles) measured on a northeast- southwest section. It has an average dip of 

20° to the west, and is contemporaneous with the Modelo Formation of the 

neighbouring Ventura Basin. Thus early workers named the formation 

Modelo, but slight variations of the lithologic character between the two 

formations exist, and hence separate names are now used (Link, 1982a). 

Stanton (1960, 1966) indicates that the basal portion of the Castaic 

Formation in the east of the basin was deposited during a transgressive 

marine event, whereas deposits in the middle part of the basin were 

deposited at water depths between 45 to 90m (150 to 300ft). Benthic 

foraminiferal assemblages suggest moderately deep water and . restricted 

circulation (Skolnick & Arnal, 1959). 

Ridge Basin was born in Castaic Formation times, forming a restricted 

marine basin behind the San Gabriel Fault scarp. The deep end of the basin 

was to the south where it opened into Ventura Basin. Link (1982b, 1983) 

interprets the formation as consisting of slope facies and basin axis turbidites, 

being transitional with the Marple Canyon Sandstone Member above, and 
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laterally interfingering with the Violin Breccia to the southwest (Fig. 3.6). 

Slope facies consist of mudstone interbedded with laterally discontinuous 

sandstone, conglomerate and coquina deposits, interpreted as turbidite-filled 

channels. Slope deposits follow the northwest trend of the basin, and were 

predominant on the northeast and southwest sides of the basin. The turbidite

filled channels locally meander, and exhibit laterally adjacent levee deposits 

(Link, 1982b). Large slide blocks, slump folded strata and breccia beds are 

common within the slope facies. 

Basin axis deposits consist of major channel and interchannel facies plus 

depositional lobe sequences. These deposits are confined to the centre of 

the basin and interfinger laterally with slope deposits to the northeast and 

southwest (Fig. 3.6). Link (1982b) interprets the channel deposits as thinning 

and fining upward sequences that are laterally discontinuous, with the 

interchannel deposits forming inclined wedges of slump-folded strata. 

Depositional lobe sequences are laterally continuous with minor channelling 

and slumping. Palaeocurrent directions to the south and southeast indicate 

that sediment dispersal was along the axis of the basin derived from elevated 

terranes in the north and northeast (Link, 1982b). 

With Ridge Basin being a relatively shallow-marine and symmetrical 

basin, typical submarine fans, such as those described by the models of Mutti 

& Ricci Lucchi (1972), Normark (1978), and Walker(1978), having typical 

upper, middle, and lower regions, did not form during Castaic Formation 

times. Instead, a simple division of slope facies developed around the basin 

margins, with turbidite-filled channels and depositional lobes forming within 

the axis of the basin. 

3.2.4 Depositional Model for the Castaic Formation. 

Link (1982b, 1983) has extensively studied the Castaic Formation, 

proposing the depositional model which forms the basis of the present study. 

His observations and interpretations are often used and corroborated by the 

present work, enabling a full understanding of the depositional history and 

overall geometry of the system to be achieved. 

Castaic Formation and the lower units of the Marple Canyon Sandstone 

Member were deposited in a narrow northwest trending, linear trough (Link, 

1982b). Shallow-marine sedimentation was confined to the margins of the 

basin, and deeper-marine sedimentation occurred on the slopes and in the 

axis of the basin (Fig. 3.6). Slope facies deposits formed along the northeast 

and southwest margins of the basin, across which sediment from the eroded 
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uplands was transported within meandering channel systems, to be deposited 

as thick channel deposits, or depositional lobes within the deeper water basin 

axis (Fig. 3.6). Slope deposits therefore, consist of muddy sediments 

interbedded with turbidite-filled channels, associated slumped levee deposits, 

and thin laterally continuous turbidites produced by over banking of the 

channel system. The slope channels coalesce in the basin axis forming major 

distributary channels that funnelled the sediment south-southeastwards along 

the basin axis to form depositional lobes where sediment spread out and 

became unchannelised. A major progradational sequence is preserved in the 

axis of the basin (Link, 1982b). Depositional lobes were overlain by channel 

and interchannel facies, which were in turn eventually overlain by nonmarine 

fluvial-deltaic sequences as the basin filled. 

To summarise, the depositional model as proposed by Link (1982b, 

1983) for the Castaic Formation and the lower marine section of the Marple 

Canyon Sandstone, consists of a simple two-fold division of facies 

associations. Firstly, slope facies consisting of generally mud-dominated 

sediment, interbedded with turbidite-filled channels occurs around the basin 

margins. Secondly, the basin axis consists of generally sand-dominated 

deposits, in a sequence of depositional lobes overlain by major distributary, 

turbidite channel systems. The following descriptions of measured sections 

will provide greater detail of the facies involved, and illustrates all the aspects 

of the depositional model described. 

3.2.5 Exposure Within Ridge Basin. 

In general, exposure and access of all formations within Ridge Basin is 

excellent. However, although Castaic Lake now covers part of the type area 

of the Castaic Formation (Fig. 3.2), access to good continuous exposures 

along the lakeside cliffs· is still possible. Other good exposures of Castaic 

Formation and the Marple Canyon Sandstone Member occur in roadcuts 

along the Old Ridge Route, which runs sub-parallel to the axis of the basin, 

and the Templin Highway which generally runs perpendicular to the basin 

(Fig. 3.7). 

3.2.5.1 Castaic Lake Exposures. 

Four sections were measured from the cliff exposures on the southwest 

shores of Castaic Lake (Fig. 3.7), starting from the southern end of the lake 

by the coastguard station and moving north for approximately 2k.m (1.25 

miles). These exposures show the general upward progradation from 
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depositional lobe to submarine fan distributary channel deposition a number 

of times throughout the sections (Figs. 3.8 & 3.9). Sections 3 and 4 form the 

most complete exposure of the Castaic Formation within the entire basin, 

showing good examples of both depositional lobe sequences which are 

laterally continuous, and distributary channel and levee deposits which pinch 

out along strike within the outcrop. 

Section 1. 
out 

Section 1 crops"at the southern-most shores of the lake, just north 

of Castaic Dam and the lifeguard station. The section consists of a sequence 

of interbedded sandstones and shales (Fig. 3.8 & Plate 3.1 ). 

Sandstone beds range from 0.1 to 4m (0.3-13ft) thick, averaging 1.2m 

(4ft). The mudstone is massive and completely envelops this predominantly 

sandstone sequence. Mudstone interbeds are up to 1.5m (5ft) thick, 

averaging 0.3m (1ft) (Fig. 3.8). The sands are generally coarse to medium 

grained, moderately sorted, consisting of a graded and loaded basal section, 

with rare parallel laminations above. Cross lamination is extremely rare, and 

occurs on the top of thin sand beds. Shale rip-up clasts are common 

throughout the sand units, along with dish structures and pipe dewatering 

phenomenon. Bouma sequences (Fig. 3.1 0) are also present, most commonly 

represented by the Tab division (Fig. 3.8}, and the beds show extreme lateral 

continuity. Individual beds can be traced along the shores of Castaic Lake 

from section 1, cropping~~gain at the base of section 2, approximately 

400m (0.25 miles) away, before they disappear below the water line of the 

lake. Some evidence for small scale channelling occurs at the top of the 

section, with small scours down-cutting up to approximately 1m (3.3ft) into the 

underlying shale and sandstone sequence. On detailed graphic logs, the 

exposure shows two sequences of thickening and coarsening upward 

packages, although Figure 3.8 does not give a clear representation of this. 

Sandstone deposits are interpreted by Link (1982b, 1983) to be turbidites, 

consisting of facies associations B, C, and D, according to the nomenclature 

of Mutti & Ricci Lucchi (1972) (Table 3.1 ). They can be traced laterally for 

distances greater than 1 km (Link, 1982b). Due to their location within the 

centre of the basin, and more importantly, palaeocurrents to the south

southeast combined with the facies patterns, Link (1982b, 1983) interprets 

these deposits as depositional lobes which formed along the axis of the 

basin. They differ from the channel and interchannel facies (see descriptions 

of sections 3 and 4) by having beds which are more laterally persistent, 
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Figure 3.8 Measured sections 1 and 2, Castaic Lake. 

Plate 3.1 Section 1 , Castaic Lake. 
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Figure 3.10 Sequences of structures and Bouma divisions of a siliciclastic turbidite bed. 
Turbidites range in thickness from several centimetres to a metre or more (After Tucker, 
1981). 
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higher percentages of facies C and D turbidites in contrast to facies B 

turbidites (Table 3.1 ), and show fewer slump-folded strata and channels. 

Coarse Sandstone Irregular, Shale Clasts, 

Am a ted Poor Sarti 

Thick, Channel Fill, 

Lenticular Shale Clasts, 

Dish Structures 

Medium, Complete Bouma 

Sandstone, Minor Continuous Sequence 

Shale 

Fine to Very Fine Thin, Remarkably Bouma Sequence 

Sandstone, Continuous, with Base Missing 

Siltstone Shale Parallel 

Thin to Medium, Beds with Sharp 

Irregular, Upper Contacts 

Discontinuous 

Chaotic Slum 

Laminated, Homogeneous 

Remarkably Texture 

Continuous, 

Parallel 

Table 3.1 Turbidite facies associations (according to Mutti & Ricci Lucchi, 1972) 

Section 2. 

Moving northwest approximately 400m (0.25 miles) around the 
out 

shores of Castaic Lake, section 2 . crops"in a rocky point on the north side 

of a small inlet, and forms the upward continuation of section 1 (Plate 3.2). 

The section also consists of interbedded sandstones and shales, although 

the sands are generally thinner than those seen at section 1 (Fig. 3.8). The 

sandstones of section 1 can be seen croppin~kt the water-line, forming 

the base to section 2. Exposure above this is quite poor, being covered, 

although one small exposure shows that most of the section is extremely 

slumped and contorted. Above the slumped horizon comes a well exposed 

section of laterally continuous thin, interbedded sandstones and shales, 
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which are in turn covered by another highly slumped and chaotically bedded 

sandstone-shale section (Plate 3.2). 

The sands exposed in this section are identical in composition and 

texture to those of section 1, being buff coloured, medium grained, 

moderately sorted, and exhibiting graded bases with some parallel lamination 

apparent. Slumping is much more common in this section than in the first, and 

appears restricted to certain horizons within the section. This phenomenon is 

quite abundant throughout the field area, and will be expanded upon later 

(see section 3.2.6). 

Interpretation of the sediments, facies and overall sequence of sections 1 

and 2 points to the lowest sands being deposited within a depositional lobe 

setting, and above this the turbidites tend to be considerably thinner, with 

thicker interbedded shale sections (section 2). This area possibly represents 

an interlobe depositional environment, with only thin sands deposited at the 

very fringe of a depositional lobe off-set from the lower lobe that produced the 

sands seen in section 1. 

Section 3. 

Moving further northwest about BOOm (0.5 miles) around the shores 

of Castaic Lake an extremely well exposed section of cliff face provides 

excellent exposure of the Castaic Formation, over a large lateral distance of 

around 2.4Km (1.5 miles). Approximately BOOm (0.5 miles) of this exposure is 

accessible by foot along the shore of the lake, whereas the rest of the 

exposure, which is slightly poorer due to scree, can only be reached by boat. 

Numerous sections were measured here to provide a thorough overview of 

the depositional setting of the sediments (Fig. 3.9). Essentially the sediments 

are identical to those seen at previous sections to the southeast of the lake, 

however, there is a general overall trend for the sands to become coarser up 

through the section, becoming pebbly and conglomeratic. Dish structures are 

extremely common along with slumped horizons (Plate 3.3). The turbidites 

around the base of the section are generally facies B and C (Table 3.1) 

showing Bouma sequences (Fig. 3.1 0) of Tab and T abc· Moving up section 

the turbidites tend to be of facies A and B (Table 3.1 ). 

The base of section 3 shows sandstone beds that are laterally 

discontinuous and wedge out along strike. Adjacent to these beds are 

inclined strata of thin bedded sands, silts and muds. These are interpreted to 

be channel-fill deposits with associated inclined levee facies, with 

palaeocurrents indicated to the southeast. The stacking arrangement of the 
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Plate3.2 Section 2, Castaic Lake. Note slumped horizon at top of section. ';; 

Plate 3.3 Dish structures within a turbidite bed, Castaic Lake. 
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channel-levee complexes is interesting as a diagonal off-set pattern is clearly 

visible from section photographs (Plate 3.4). Similar patterns were observed 

by Fielding (1982, 1984), when dealing with the depositional arrangement of 

distributary channels within a coastal/deltaic environment, with associated 

coal deposition. The stacking pattern is interpreted to have resulted from the 

influence of differential compaction upon the depositional arrangement, and 

is further developed in section 3.2.7. The channel-levee complexes could 

either represent small distributary channels within the basin axis, or crevasse 

splay deposits from a larger channel. However, the presence of associated 

levee deposits, and the abundance of at least three channel complexes 

seems to suggest that these deposits are more likely to be small distributary 

channels that crossed the floor of the basin axis depositing small sands lobes 

at their distal ends. Above this section laterally persistent turbidites occur, 

which form regular, horizontally bedded sandstone units averaging 1m (3.3ft) 

thick with thin shale beds between. These shale beds are sometimes loaded 

into and completely cut out in places as the overlying sandstone loads down, 

and through the underlying shale, to rest on the previous sandstone bed, 

creating amalgamation through loading. The section here is interpreted to 

represent a small depositional lobe deposit forming at the end of the small 

distributary channels, similar to those described above. 

The section above the small lobe sequence contains many examples of 

laterally discontinuous sand bodies that exhibit frequent scours and 

amalgamation (Plate 3.5), reaching a maximum thickness of 2m (6.6ft) for an 

individual amalgamated sand section. Plotted on the graphic log the entire 

section appears to thin and fine upwards (Fig. 3.9) suggesting that these 

sands are channel turbidites, forming in a larger channel than those 

previously seen lower in the section. This section is overlain by a thick (7.3m) 

mud section containing a few interbedded, cross-laminated silts and fine 

sands exhibiting Bouma divisions T c-e• interpreted to represent an 

interchannel environment, associated with channel deposition situated 

somewhere to the northeast or southwest of the area. Near the top of the 

interbedded mud and thin sandstone section the deposits become slumped, 

and most likely form a levee deposit with the associated channel section or 

marginal depositional lobe deposit apparent above. This sand section is quite 

thin, being only 2.5m (8ft) thick. There is some suggestion of the beds 

thinning along the outcrop which would indicate that these sands could be 

interpreted as a channel deposit with some scouring apparent in a few 

exposures. However, the thinning of the beds can only be seen in one 
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Plate3.4 Off-set channel deposits, exposed in Section 3, Castaic Lake. 

Plate 3.5 Amalgamation of turbidite beds, Castaic Lake. 
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direction (to the south) and therefore the sands could also be interpreted as 

the distal edge of a small depositional lobe deposit. 

Section 4. 

The sequence exposed here is the upward continuation of section 3, 

measured slightly further around the lake shores (300m). The section exhibits 

excellent lateral exposure, with numerous graphic logs taken to illustrate the 

frequent lateral facies changes, and bed thickness variations within such a 

depositional setting (Fig. 3.9). Turbidites exposed in the cliffs here are 

generally much coarser and conglomeratic than those seen in the lower 

section 3, consisting almost exclusively of facies A with some interbedded 

facies B turbidites (Table 3.1 ). The lower half of the section forms a 

continuation of the facies architecture seen around the top of section 3, 

consisting of laterally discontinuous sandstone beds that exhibit scouring, 

numerous large rip-up clasts and pebble lag deposits. The sands also show 

amalgamation, and local down-cutting in the order of a few centimetres. 

Above this section numerous thick (5m) sandstone units are viewed in 

the cliff face, which are highly laterally persistent and cro~for distances 

greater than 1OOm, until their dip takes them under the water-line of the lake. 

These sands are generally flat based and topped, possessing graded bases 

and some parallel lamination. Plotted on the graphic log (Fig. 3.9) the 

sequence appears to show a cycle of thickening and coarsening upward, and 

combined with the lateral exposure, these deposits are interpreted as 

representing large depositional lobe deposits. Access around the lake further 

north of this point becomes impossible by foot, however photographs of 

further exposures have been taken and clearly show large, major channel 

deposits, that can be seen to wedge out in the outcrop. Such channel 

deposits and their associated levee deposits have been described by Link 

(1982b, 1983), and represent the large basin axis channels that funnelled the 

sediment in a south-southeasterly direction down the length of the basin. 

3.2.5.2 Ridge Route and Templin Highway Exposures. 

Large roadcut sections along the Old Ridge Route and Templin Highway 

expose excellent sections of the Castaic Formation, and the basal portion of 

the Marple Canyon Sandstone Member of the Ridge Route Formation (Fig. 

3.11 ). Old Ridge Route generally runs along the axis of sedimentation within 

Ridge Basin, lying closer to the proposed slope deposit of Link1S (1982b, 

1983) depositional model than Castaic Lake, which is located in the central, 
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Upper Castaic Formation and Lowermost Marple Canyon Sandstone Member 
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Figure 3.11 Measured section, Old Ridge Route. 
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deeper-water region of the basin. However, Templin Highway runs more or 

less perpendicular to this (i.e. sub-parallel to the strike direction), and 

exposes the progradational sequence from basin axis, through to slope 

facies, as interpreted by Link (1982b, 1983) (Fig 3.7). 

The section exposed along Old Ridge Route shows a change from thin 

(1m) bedded turbidites at its base, up to thicker (2-3m) bedded and 

channelised turbidites within the Marple Canyon Sandstone at the top (Fig. 

3.11 ). The sediments involved are more or less identical to those exposed at 

Castaic Lake. However, Link (1982b, 1983) interprets them as being slightly 

more marginal in their depositional setting, i.e. consisting more of a slope 

facies compared to basin axis sediments seen along the shores of Castaic 

Lake. 

· Turbidites along Old Ridge Route fall into two categories :-

i. Thin bedded, laterally continuous, medium to fine grained 

sandstone units, exhibiting some Bouma divisions (Ta-d (Fig. 3.1 0), 

interpreted as facies C turbidites (Table 3.1 ). These units are around 1 Ocm to 

1m in thickness and have sole marks, dish structures and soft-sediment 

deformation structures. 

ii. Thick bedded, coarse to medium grained sandstone turbidites, 

forming thicker sandstone sections due to amalgamation, and often showing 

cycles of thinning and fining upwards in some parts of the sequence. These 

sandstone beds tend not to be laterally persistent and can be seen in places 

to wedge out along strike (Plate 3.6). The sands themselves are generally 

coarse grained with pebble lag deposits at their bases, and showing Bouma 

divisions T a and T ab• being of facies A and B (Table 3.1 ). The units also 

contain numerous mudstone rip-up clasts, groove marks, small scale 

scouring of the order of 1 to 1.5m (3.3 to 5ft), and amalgamation creating 

thick sand sections around 1Om (33ft) thick, as seen exposed along a section 

of Old Ridge Route (Plates 3.7 & 3.8). These sands can be interpreted a 

number of ways, such as submarine channel deposits that carried the 

sediment across a short muddy slope into the basin axis, the marginal edge 

of a lobe deposit, or a large crevasse channel. Depositional lobe sandstones 

tend to be regularly bedded, possessing fairly flat bases and tops (Mutti & 

Ricci Lucchi, 1972). The sands exposed near the top of the Old Ridge Route 

section however are not regularly bedded as seen in the depositional lobe 

deposits exposed in the cliffs of Castaic Lake. As described above there are 

numerous sandstone beds that pinch out within the section, and they contain 

numerous scours and coarse pebble lag deposits, with a general overall 
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Plate 3.6 Major channel exposed along Old Ridge Route. Note how turbidite beds thin 
and pinch-out towards the left of the section. 
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Plate3.7 Basal groove marks of a turbidite bed, Old Ridge Route. 

Flame structures and rip-up clasts in a sandstone turbidite bed, Old Ridge 
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trend for the beds to thin and fine upwards. Therefore, the sands are 

interpreted to represent channel deposition, within a slope environment. 

Because of the greater proportion of facies B turbidites (Table 3.1 ), the lateral 

pinch-out of beds, and the overall sedimentology and bedding patterns (Fig. 

3.11 ), Link (1982b, 1983) interprets these sands as being part of the major 

channels that transported the sediment across the muddy slope deposits into 

Ridge Basin. Once they reached the axis of the basin they were affected by 

the primary axial transport direction, forming depositional lobes at their distal 

terminations, as seen along the shores of Castaic Lake. Some levee deposits 

formed along these channel margins, with overbanking occurring to deposit 

the thinner bedded and laterally persistent turbidites (Facies C and D). 

Templin Highway has numerous isolated roadcuts, and therefore forms a 

discontinuous section up through the Castaic Formation and the Marple 

Canyon Sandstone. The section shows a general transition from thin-bedded 

and fine-grained turbidites of the order of a few centimetres thick, through 

thicker depositional lobe deposits where individual turbidites are of the order 

of 1m (3.3ft) thick, up to thick distributary channel turbidites. This illustrates 

not only a vertical sequence through the basal sedimentary fill of Ridge 

Basin, but also a section running from basin axis deposits southwestwards to 

slope facies deposits at the intersection with Old Ridge Route. 

3.2.6 Discussion of Slumped and Brecciated Horizons. 

Within the Castaic Formation and the Marple Canyon Sandstone, 

numerous intensely folded slump horizons occur which have flat bases and 

tops (Plate 3.9). These were termed "intestinoform folds" by early workers 

within Ridge Basin, notably Crowell (1954) (Fig. 3.12). A few brecciated 

horizons also occur, again with flat bases and tops. These horizons are 

interpreted as being situated at the sediment-water interface at the time of an 

earthquake either on the San Gabriel Fault, or the Clearwater and Liebre 

Fault System (Sylvester, pers. comm., 1991 ). Similar phenomena have been 

viewed at times when man-made lakes have been drained after an 

earthquake, and the sediment at the water interface has shown intense 

folding and contortion. This similarity in deformation, and the fact that later 

erosion by following turbidite flows would lead to these units possessing flat 

tops as now viewed in outcrop, seems to suggest that this process of 1Seismic 

shock deformation! is the driving process in producing such units. 

122 



Chapter 3: California. 

metres 

l! . .ff-Ui..JI SANDSTONE D SHALE 

Figure 3.12 "lntestinoform" slump horizon, Old Ridge Route. 

Plate 3.9 "lntestinoform" slumped horizon, Old Ridge Route. Note flat base and top to 
slumped section. 
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3.2. 7 Compactional Modelling of Outcrop Data. 

The objective of the present work was to assess the early compaction of 

submarine fan deposits, attempting to provide quantitative data, test 

published porosity-depth curves/equations, and build a model of deposition in 

which differential compaction may form a control upon facies location, based 

upon field observations. Throughout the sections of study within Ridge Basin 

various examples of compaction and compaction-related phenomenon were 

viewed and measured. Modelling of these examples would allow an insight 

into the compactional processes involved during their deposition, and provide 

data on the early compaction behaviour of submarine fan sediments. 

Three outcrop examples where the process of compaction can be 

interpreted as playing an important role in deposition were viewed within the 

Castaic and Ridge Route Formations of Ridge Basin. These are: 

• Depositional thickening of sandstone beds across a small, 

shale-filled 'graben' feature- Templin Highway. 

• Off-set stacking of distributary channel deposits- Castaic Lake. 

• Depositional thickening of sandstone beds above a shale-filled 

slump scar- Old Ridge Route. 

Example 1. 

The first, and best, example occurs in a small roadcut on Templin 

Highway (Fig. 3.7) shown in Plate 3.1 0, and diagrammatically in Figure 3.13. 

Bed relationships at this outcrop suggest that differential compaction 

above a small fault 'graben' has caused some thickening of the beds in the 

region directly above the 'graben', which is predominantly filled by shale. The 

bed relationships show that the 'graben' was forming primarily during the 

deposition of shale (shale "a"), and thus received a thicker section (i.e. 2m 

(6.6ft) of shale "a" within the 'graben' equates to 0.5m (1.6ft} either side). The 

subsequent sandstone beds thicken above the greater shale section, 

showing that compaction of the shale was occurring during the deposition of 

the immediately overlying sandstone bed (sand "A") (i.e. within the very first 

few metres of burial). Two further sandstone - shale cycles (shale "b"-sand 

"B"; and shale "c") show depositional thickening above the shale "a'' 'graben', 

making a thickness of 2.5m (8.2ft} above the top of the 'graben'. Above this 

no further thickening of beds can be seen in the outcrop (e.g. sand "C"), and 

overlying sand and shale beds have flat bases and tops. This observation 

essentially shows that differential compaction appears to have ceased after 

only 33% thickness reduction within the shale unit, which would appear less 
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Plate 3.10 'Graben' example of differential compaction, exposed along Old Ridge 
Routeffemplin Highway section. 
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than expected. However, the scale of the example may need to be taken into 

account here. 

Compactional modelling of this outcrop has allowed some insight into the 

very early compactional behaviour of this interbedded sandstone/shale unit. 

Assuming that immediately after deposition, all the beds filling the 'graben' 

feature had flat tops, it is possible to backstrip the beds and then forward 

model them again to observe how much compaction has occurred during the 

early burial to produce the geometry seen in outcrop today. Due to the 

extremely high depositional porosities of submarine deposits (see Chapter 2) 

it is interpreted that depositional slope angles can only be of the order of a 

few degrees (i.e. <5°) before the angle of slope fails and is subsequently 

reduced (e.g. Pickering et al., 1989; Kenter, 1990). Therefore an approximate 

flat depositional surface is maintained at all times. Modelling also allows a 

porosity-depth relationship to be plotted directly from the outcrop 

observations and measurements. 

Backstripping allows the calculation of the true depositional thicknesses 

of the beds, and therefore the amount of loading that occurs during early 

burial (see Chapter 2). However, to perform backstripping three variables are 

needed:- 1) Present day thickness. 

2) Present day porosity. 

3) Initial porosity. 

The present day thickness of the beds is simply measured in the field, or 

from scaled field photographs. Due to deep weathering of the sediment, the 

present day porosity is more accurately estimated from published porosity

depth equations, provided an estimate of maximum burial depth is possible. 

The initial porosity of the bed can also be estimated from published porosity

depth equations, and is measured at the half height of the present day 

thickness of the bed in question, as if the bed had just been deposited at the 

surface, and accounting for autocompaction. Published data on modern near

surface submarine fan sediments also aid in the estimation of initial 

sediment porosities (e.g. Hamilton, 1976; Truyol, 1989). However, to perform 

backstripping on a sequence, a knowledge of the total depth of burial is 

required, not only for porosity estimation but to allow the correct amount of 

sedimentary overburden to be removed. Vitrinite reflectance data published 

in the field guide to the area (Crowell & Link, 1982), is interpreted to show 

that the Castaic Formation and the Marple Canyon Sandstone Member were 

buried to maximum depths of 2 to 31\m (Link & Smith, 1982). For this 

example, therefore, modelling was carried out for a total burial depth of firstly 
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3Km, and secondly 21\m, thus also enabling a comparison of the results, to 

see if an extra kilometre of burial had any great effect on the near-surface 
porosity-depth profile. 

The first stage of the modelling consisted of measuring the bed 

thicknesses of the present day outcrop. These thicknesses were tabulated 

(Table 3.2a & b), one for the bed measurements from the graben centre, and 

another table for the bed measurements from the graben edge. A simple 

routine of backstripping is then carried out using Baldwin & Butler's (1985) 

power law for shale compaction, and Sclater & Christie's (1980) exponential 

law for sandstone compaction (see Chapter 2). Results from this modelling 

provide the approximate thicknesses of the beds at the time of their 

deposition. The tables also provide the complete evolution of all the bed 

thicknesses and porosities during their burial to the present day. 

However, it was found that if the values provided by these calculations 

were plotted for the graben centre and the graben edge, and the throw on the 

bounding faults is kept constant, then the beds filling the graben are not 

deposited with flat tops, one of the assumptions of our modelling. It was 

therefore decided that the values calculated for the graben edge would be 

used as these would contain less error than those calculated for the graben 

centre, because the beds involved are thinner. Taking these values, and 

assuming a constant throw on the faults the history of deposition within the 

graben was constructed for each stage of bed deposition (Fig. 3.14). At each 

stage the porosity of the mid-point of each bed was calculated using the bed 

thickness relations and equation 2.22 (see Chapter 2). Porosities were 

plotted on a porosity-depth plot to produce a porosity-depth profile as . 

described in Chapter 2, constructed from field data. Both profiles calculated 

for 21\m and 31\m total burial more or less agree with each other, showing 

that 1 k.m greater burial· has very little effect on the near-surface porosity 

development of a section. This also illustrates that the estimation of the total 

burial depth need not be precisely accurate to provide good answers which 

still carry a large degree of confidence in their accuracy. 

Porosity-depth profiles plotted for the 'graben• example show a very large 

decrease in the near-surface porosity of the fine-grained muds filling the 

graben (Fig. 3.15). For the first three metres of burial, this decrease is slightly 

greater than that predicted by the Baldwin & Butler (1985) curve. However, 

the decrease in porosity is considerably greater for subsequent burial below 

three metres. 
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A Graben Decompaction - 3 Kilometre Burial. 

3Km Sediments 3000 Thickness 
?? Porosity 

Shale unit ·c· 0.48 2.12 Thickness 
10.40",{, 79.70"k Porosity 

Sandstone unit 'B' 0.1 0.14 0.14 
17.80"k 40.00"k 40.00",{, 

Shale unit 'b' 0.23 0.71 1.04 
10.40",{, 70.90% 77.30"k 

Sandstone unit 'A' 0.5 0.68 0.68 
17.80"k 40.00"k 40.00% 

Shale unit ·a· 0.55 1.56 1.66 
10.40",{, 68.50"k 70.40",{, 

A Graben Decompaction - 2 Kilometre Burial. 

2Km Sediments 2000 Thickness 
?? Porosity 

Shale unit 'c' 0.48 1.99 Thickness 
15.90"k 79.70",{, Porosity 

Sandstone unit 'B' 0.1 0.13 0.13 
23.30"k 40.00"k 40.00"k 

Shale unit 'b' 0.23 0.67 0.86 
15.90",{, 71.20"k 77.50"k 

Sandstone unit 'A' 0.5 0.64 0.64 
23.30"k 40.00"k 40.00"k 

Shale unit ·a· 0.55 1.48 1.59 
15.90",{, 68.8()",{, 70.90"k 

8 Edge Decompaction - 3 Kilometre Burial. 

3Km Sediments 3000 Thickness 
?? Porosity 

Shale unit ·c· 0.48 2.16 Thickness 
10.40"-b 79.80"-b Porosity 

Sandstone unit 'B' 0.1 0.14 0.14 
17.80"-b 40.00"-b 40.00"-b 

Shale unit 'b' 0.23 0.71 1.04 
10.40"-b 70.90"-b 77.30"-b 

Sandstone unit ·A· 0.5 0.68 0.68 
17.80"-b 40.00"-b 40.00"-b 

Shale unit ·a· 0.55 1.6 1.71 
10.40"-b 69.00"-b 70.70"-b 

8 Edge Decompaction - 2 Kilometre Burial. 

3Km Sediments 2000 Thickness 
?? Porosity 

Shale unit ·c· 0.48 1.99 Thickness 
15.90"-b 79.70"-b Porosity 

Sandstone unit 'B' 0.1 0.13 0.13 
23.30"-b 40.00"-b 40.00"-b 

Shale unit 'b' 0.23 0.67 0.86 
15.90"-b 71.20"-b 77.50"-b 

Sandstone unit ·A' 0.5 0.64 0.64 
23.30"k 40.00"k 40.00"k 

Thickness 
Porosity 

1.04 
77.30"k 

0.68 
40.00"k 

1.68 
70.60"k 

Thickness 
Poros_i!y_ 

0.87 
77.80"k 

0.64 
40.00% 

1.6 
71.00"k 

Thickness 
Porosity 

1.04 
77.30"-b 

0.68 
40.00"-b 

1.77 
71.80"-b 

Thickness 
Porosity 

Thickness 
Porosity 

0.68 
40.00"k 

1.82 
72.90"k 

Thickness 
Porosity 

0.64 
40.00"k 

1.72 
73.10",{, 

Thickness 
Porosity 

0.68 
40.00"-b 

1.98 
75.00"-b 

Thickness 
Porosity 

1.97 I 
75.00"k 

Thickness 
Porosity 

Thickness 
Porosity 

1.87 I 
75.20"-b 

Thickness 
Porosity 

2.36 I 
78.80"-b 

Thickness 
Porosity 

Thickness 
Porosity 

0.87 Thickness 
77.80"-b Porosity 

0.64 0.64 Thickness 
40.00"-b 40.00"-b Porosity 

Shale unit ·a· Thickness 0.55 1.48 1.59 1.6 1.72 1.87 I 
15.90"-b 68.80"k 70.90"-b 71.00"-b 73.10"-b 75.20"-b Porosity 

Table 3.2 Decompaction table for (A) 'graben' centre, and (B) 'graben' edge. 
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Figure 3.14 History of depositional fill and compaction within fault 'graben'. 
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Figure 3.15 Porosity-depth profile calculated for fault 'graben', illustrating the difference 
between 2 and 3km of burial. Note the significant difference between the calculated curves 
and the Baldwin & Butler (1985) curve during shallow burial (2-7m). 
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It is important to remember that these results reflect the assumption that 

compaction was the only process occurring during the deposition of the 

sediments filling the graben. Movement/growth on the faults may have 

occurred during deposition of the sediments, hence effecting bed 

thicknesses, and model results. This may be the reason why there is quite a 

large change in the gradient of the porosity-depth profile around three metres 

burial depth. Separation of the contribution to bed thickness by further fault 

displacement or compaction is extremely difficult, due to the lack of specific 

knowledge of when fault displacement occurred. However, bearing these 

limitations in mind, the overall conclusion from the modelling is that the near

surface porosity development of fine-grained argillaceous sediments is one of 

rapid decrease, slightly greater than that predicted by the published porosity

depth profiles of Baldwin & Butler (1985), and other examples described 

previously in Chapter 2. It also highlights the effects of syn-depositional 

compaction in contrast to the bedding arrangements that would be formed by 

post-depositional compaction (see Chapter 5), where onlap patterns of 

bedding onto a pre-existing topography should be seen. 

Example2. 
The cliffs at Castaic Lake provide excellent lateral exposures of 

submarine channel and depositional lobe deposits. Plate 3.4 shows one 

particular outcrop where diagonally off-set channel sandstones are exposed 

near the base of measured section 3 (Fig. 3.9). It is possible to model 

compaction in such an environment, and to see the effects and controls upon 

sedimentation due to the process of differential compaction. Figure 3.16 and 

Table 3.3a & b show the backstripping and forward modelling of such an 

arrangement, using the modelling parameters of 80% and 40% for the 

original depositional porosities for shale and sand respectively, and taking 

into account the effects of autocompaction. Equilibrium compaction is 

presumed to be achieved at the time of deposition of the first channel deposit. 

This means that the mud beneath compacts at the same rate of deposition 

and that simple grain packing and rearrangement occurs in the basal section 

of the channel sand itself, also at the same rate of deposition. 

Modelling shows that only a very slight topography (less than 5cm of 

relief) can be produced upon the depositional surface after shallow burial of 

the area, and this topography may then influence subsequent turbidite 

deposition. However, this topography is only very slight and flow velocities of 

turbidites may be too great (from 50 to 250cms-1 (Reading, 1986)) to be 

influenced by such small slopes of less than 1°. It appears therefore that it is 
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A Castaic Cliffs. Channel Section - Section A 

2Km Sediments 2000 Thickness 
?? Porosity 

Channel3 0.35 0.45 Thickness 
23.30% 40.00% Porosity 

Shale 2 0.53 1.85 1.85 
15.90% 75.90% 75.90% 

Channel2 1.05 1.34 1.34 
23.30% 40.00% 40.00% 

Shale 1 0.7 1.86 1.86 
15.90% 68.40% 68.40% 

Channell 0.21 0.27 0.27 . 
23.30% 39.90% 39.90% 

8 Castaic Cliffs, Channel Section - Section B 

2Km Sediments 2000 Thickness 
?? Porosity 

Channel3 0.7 0.89 Thickness 
23.30% 40.00% Porosity 

Shale 2 0.63 2.02 2.09 
15.90% 73.80% 74.60% 

Channel2 0.14 0.18 0.18 
23.30% 40.00% 40.00% 

Shale 1 0.7 1.91 1.93 
15.90% 69.10% 69.50% 

Channell 0.77 0.98 0.98 
23.30% 39.90% 39.90% 

Chapter 3: California. 

Thickness 
Poros_!!y 

1.34 Thickness 
40.00% Porosity 

2.04 2.31 Thickness 
71.10% 74.50% Porosity 

0.27 0.27 0.27 J 
40.00% 40.00% 40.00% 

Thickness 
Porosity 

0.18 Thickness 
40.00% Porosity 

2.27 2.27 Thickness 
74.10% 74.10% Porosl!Y_ 

0.98 0.98 0.98 I 
40.00% 40.00% 4o.om'o 

Thickness 
Porosity 

Thickness 
Porosity 

Table 3.3 Decompaction table for (A) Section A channel section , Castaic Lake Cliffs, 
and (B) Section B channel section. Castaic Lake Cliffs. 
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possible that relief upon the depositional surface, as produced by differential 

compaction, may only be a minor influence on subsequent deposition within a 

submarine setting, and that the major driving force to the off-set pattern of 

sandstone bodies is the fact that the area with the thickest underlying shale 

section will compact at a considerably greater rate than the neighbouring 

area with a thinner shale section, and a greater percentage of less 

compactible sandstone. From Figure 3.16 it can be seen that there is a 0.71 m 

difference in the thickness of underlying shale beneath the first channel 

sandstone. The second channel deposit forms directly above the thicker 

underlying shale section (Plate 3.4). It is quite probable that the small amount 

of relief (4cm) created on the depositional surface by differential compaction 

of the underlying section, forms a small but considerable trigger to the 

deposition of channel deposits upon the thicker shale section. 

It is also possible that the scale of the example needs to be taken into 

account here. Increasing the scale enables a better visualisation of the 

differential compaction process, as the reductions in bed thicknesses are 

greater, although the resultant bed geometries are similar. The channels 

exposed at Castaic Lake are on average only 1m (3.3ft) thick. If they were 

20m (66ft) thick then the topographic difference produced by differential 

compaction can be in the order of metres. Figure 3.17 shows a similar 

depositional arrangement of a theoretical channel sandstone deposited within 

basinal shale, with a larger scale used here than in Figure 3.16. The scale in 

this example is more relevant to the submarine channels found within the 

Montrose - Arbroath oilfields of the North Sea (see Chapter 5). The diagram 

illustrates that an area underlain by 1OOm of shale is 3 times more 

compactible than the neighbouring· area with 50m of shale overlain by 50m of 

channel sandstone. 

Vertically off-set depositional patterns of channel sands have been 

described in many papers concerning the deltaic environment and associated 

coal deposits (e.g. Brown, 1975; Fielding, 1984; 1986). However, most 

studies do not quantify the differential compaction across such depositional 

environments to reproduce these stacking arrangements in models. 

Depositional porosities are considerably lower in such environments when 

compared with the submarine environment (see Chapter 2), and the 

differential between sand and shale depositional porosities are far less, thus 

producing less differential compaction. 

The argument described above requires compaction to occur almost 

instantaneously with respect to deposition of the overlying sediments, i.e. 
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Differential Compaction Across a Theoretical Channel 

A 8 
100 ----..,----------...-;-.. -. ~~'~· .·.·.·.· .......... ] 100 
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20m Further Burial 

Section A 

I OOm Sh:lle now buried by 20m 

~\=51.5% 

Compacted Thickness (1 - ¢
0
)X

0 
= (1- 0c)Y c 

(0.4 7) 100 = (0.485)Y c 

Yc = 96.9m 

Section B 

50m Shale already buried by 50m Plus an extra 20m 

Compacted Thickness 

0c = 49% 

(0.5)50 = (0.51)Y c 

Yc = 49.0m 

Plus 50m of Sand Channel. Thickness= 99.0m 

Section A Compacts 3.lm 
Section B Compacts l.Om 

0 

With 20m further burial section A compacts greater than section B, producing 2.lm of relief 
upon the depositional surface. 

Figure 3.17 Compactional modelling of a theoretical, 50m thick channel, illustrating the 
scale of relief created by differential compaction. 
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equilibrium compaction is maintained when dealing with near-surface 

compaction related phenomena in a submarine environment. This 

requirement appears to be reasonably feasible when the depositional 

porosities of shale and sandstone within the submarine environment are 

taken into account (80% and 40% respectively at the depositional surface). 

However, the permeability of the sediment is the major control on the rate of 

sediment dewatering. A possible interpretation is that permeabilities are great 

enough to maintain equilibrium compaction at the near surface. However, as 

greater burial occurs, the permeability of shales in particular, is reduced by 

such an amount that equilibrium compaction cannot be maintained during the 

deposition of a turbidite, as pore fluid cannot be expelled at a sufficient rate. 

This results in a time lag between deposition and equilibrium compaction, 

producing topography upon the depositional surface. However, the 

topography will be produced without the addition of overlying sediment, i.e. 

no loading of the section is required for the production of sea-floor 

topography if syn-depositional equilibrium compaction is not maintained. 

Therefore, we are concerned with the balance of two rates; the sedimentation 

rate and the compaction rate of the sediment being loaded and the sediment 

being deposited. As shown in Chapter 2, it is the balance between these 

rates that dictates whether topography upon the depositional surface is 

created or not. 

Example 3. 

The final compaction-related example of outcrop from Ridge Basin 

occurs on Templin Highway near the very top of the marine section within the 

Marple Canyon Sandstone Member. This example again shows the 

depositional thickening of subsequent sandstone beds above a thicker shale 

section that fills an underlying slump scar on the top of a lower sandstone 

bed (Plate 3.11 ). The model here is essentially identical to that of the graben 

example explained in the earlier part of this section, showing that thicker 

sands are deposited above the thicker shale sections, due to the greater 

compaction in this region. 

Each of these three examples of compaction-related phenomenon viewed 

in the field illustrate both the methods of differential compaction, which are 

interpreted by Collier (1989) to control depositional arrangements. The 

methods being facies dependant compaction curves, and differential 

compaction induced by underlying topography. Facies dependant porosity

depth curves provide the controlling process in the diagonally off-set channel 

-sandstone deposits, whereas underlying topography is the controlling factor 
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Plate 3.11 Thickening of sandstone turbidite bed above a minor slump scar filled by a 
thicker shale section, illustrating syn-depositional differential compaction. 
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in both the graben example and the depositional thickening of sandstone 

beds above a slump scar. 

Other Important Processes. 

Throughout the submarine fan deposits viewed in the field it is very 

apparent that loading of sands into the underlying muds is an important and 

widespread process (Plate 3.12). Numerous exposures show how loading of 

overlying sand totally cuts out underlying shale sections, thus creating 

isolated shale units in thick sand sections, with sand loaded down onto the 

tops of previous, underlying sandstone turbidite deposits (Plate 3.13). This 

illustrates that sandstone amalgamation can occur due to large scale loading 

of the underlying shale horizon, as well as by erosion of the overlying shale 

bed during turbidite deposition. If this is the case in all deep sea fan deposits 

then discontinuous shale horizons may be common within thick amalgamated 

sandstone deposits, possibly having implications for reservoir porosity and 

the extent of reservoir connectivity in oil producing basins. 

'Loading out' of shale horizons also greatly reduces the compaction 

potential of the section, replacing a more compactible strata with less 

compactible sand. However, at the same time, it also creates areas where 

differential compaction can occur, as the sections with shale will compact at 

greater rates than the now amalgamated sandstone section. These sections 

may be too small though to affect the depositional arrangement, and the 

scale of the loading may be the controlling factor in the production of a 

compaction differential. 

Slumping is another very important process within the submarine 

environment, and undoubtedly occurs within all tectonic settings whether they 

be strike-slip, passive continental margin, or extensional basin settings. 

Ridge Basin is slightly unique due to its close proximity to a major strike-slip 

system, and was therefore, presumably regularly affected by seismic shocks 

during Castaic Formation and Ridge Route Formation deposition, producing 

slumped horizons such as those examined in section 3.2.6 (Plate 3.9). 

Slumping (Plate 3.14) will cause rapid dewatering of sediment, probably 

reducing porosities to lower values than expected for the present burial 

depths. A subsequent reduction in the potential for differential compaction will 

result. 

Summary Conclusions. 

A general observation of the submarine fan deposits of Ridge Basin 

illustrates that siliciclastic environments offer a scale at which the 

assessment of compactional control upon depositional arrangement and 
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Plate3.12 Basal loading structures of sandstone turbidite bed, Old Ridge Route. 

Plate 3.13 Basal loading of sandstone turbidite bed, cutting out a continuous shale bed 
and creating amalgamated units. 
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geometry is difficult to measure and quantify. Differential compaction control 

of major distributary channels is extremely difficult to assess due to the vast 

amount of exposure, both lateral and vertical, that would be required. Often, 

areas with excellent exposure only show one major channel system, and not 

the full stacking geometries. However, insights into the compaction process 

within the submarine environment can be gleaned from smaller scale 

outcrops, as described above. 

The overall view from field outcrops within Ridge Basin appears to show 

that near-surface compaction has the ability of controlling the depositional 

thickness of turbidite units. If it is assumed that the depositional surface 

remains flat, the requirement is that compaction occurs syn-depositionally. 

However, the observations made here do not enable the differentiation 

between a flat or undulating depositional surface to be made. The second 

example of differential compaction across small distributary channels 

suggests that the depositional surface may exhibit topographic variations. 

Scaling-up the example to major channel systems, it may be presumed that 

the topography can be in the order of several metres, and therefore, has the 

ability to control deposition of subsequent turbidity currents. The timing of 

when one channel ceases to be active and deposition switches to another 

area may rely on a large volume turbidity current breaching the levees, if 

present, and creating a crevasse splay onto interchannel muds. Channel 

switching may now occur at this point, partly due to topographic differences in 

the depositional surface, and enhanced due to the greater compaction 

potential of the interchannel area, as explained in earlier sections. 

In summary, Ridge Basin offers the opportunity to assess the 

development of sub-surface structure, and its influence on deposition in deep 

water siliciclastics, by careful analysis and reconstruction of small-scale 

phenomenon involving rapid changes in lithology. 

3.3 La Jolla, San Diego. 
3.3.1 Introduction. 

Eocene rocks in the San Diego area form an eastward thinning wedge of 

continental margin deposits extending from Oceanside, California southward 

to the Mexican Border (Lohmar et al., 1979) (Fig. 3.18). The northwest 

trending palaeoshoreline, which marks the featheredge of this wedge, is 

located 20 to 301\m east of the present coastline. With deep basins located 

immediately offshore at this time, the rocks were deposited on a narrow shelf 

with a steep slope into the basin. They grade rapidly westward from non-
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Oceanside 
0 KM 5 N 

t 

Mexican Border 

Figure 3.18 Location map of La Jolla, southern California, and Black's Beach (marked as 
Study Section). 
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marine strata into mudstones with bathyal assemblages of benthonic 

foraminifera (Lohmar et al., 1979). 

The north -south oriented sea cliffs between Torrey Pines State Reserve 

and Scripps pier, marked as study section on Figure 3.18, form an oblique 

section through an Eocene submarine canyon and the apex of the associated 

fan, according to the interpretation of Lohmar et al. (1979). Shelf edge 

deposits exposed along the cliffs represent five different sedimentary 

environments: 

1. submarine canyon head, 

2. lower slope, 

3. inner fan channel, 

4. channel margin, and 

5. inner fan. 

Exposures further inland expose slope deposits which accumulated 

adjacent to this channel system. 

Lohmar et al. (1979) suggest that the canyon was probably cut into the 

shelf edge during a lowstand in global sea level in early Eocene times. 

During a rapid marine transgression, beginning in the late early Eocene, the 

canyon eroded headward into the drowned shelf deposits. Fine-grained deep 

water deposits filled the canyon as sea level reached a high stand in middle 

Eocene times. At the equivalent time a small delta began to prograde across 

the shelf from which conglomeratic sands were shed from the delta front as 

sea level began to fall again at the end of the middle Eocene. These deposits 

were funnelled into the canyon where they scoured into the earlier deep 

water canyon fill. 

The canyon itself enclosed ari anastomosing network of large channels 

which emptied into a deep ocean basin at the edge of a very narrow shelf. 

According to Lohmar et al. (1979), regional facies relationships, sedimentary 

environments interpreted along the sea cliffs, and palaeobathymetries of 

foraminifera faunas suggest that the continental slope was located 20 to 

30Km from the middle Eocene shoreline, at water depths ranging from 200 to 

1500m. 

The objective of the present study was to examine the northern 

submarine canyon wall, which is exposed south of the glider port forming the 

back of Black's Beach (Fig. 3.19), where post-depositional modification of the 

stratal relationship of the sediments has occurred. 
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3.3.2 Stratigraphy. 

Within the present study area, outlined above, there are only two main 

facies recognised (Fig. 3.20) :-

i. the Ardath Shale, and 

ii. the Scripps Formation. 

The Ardath Shale is a heterogeneous unit, that is characterised by 

channel-fill deposits of mudstone, siltstone, shale, and some fine-grained 

sandstone. It forms a wedge shaped deposit that wedges out to the northern 

end of the section, and thickens to the south. The Scripps Formation is a 

channelised, conglomeratic, coarse sandstone unit that forms the majority of 

the fill of the canyon. The sands within the deposit are coarse-grained and 

amalgamated, commonly possessing conglomeratic basal lag deposits. This 

formation has been interpreted by Lohmar et al. (1979) as being deposited at 

the apex of an inner fan channel, and reaches a maximum outcrop thickness 

of 1OOm towards the southern end of the cliff section, where the erosive base 

enters the subsurface. 

3.3.3 Section Description. 

The present study concentrates on the northern canyon wall, exposed in 

the cliffs immediately behind Black's Beach, because the submarine canyon 

edge is exposed here, and post depositional rotation of beds is interpreted to 

have occurred. Throughout the exposed cliff section, approximately 6,000m 

(20,000ft) long, the Ardath Shale has a regional dip of 4° to the south (Fig. 

3.19). Immediately south of the northern canyon edge at b~ach level, a small 

outcrop of Ardath Shale can be seen within the canyon itself, with the coarse 

sandstone and conglomerate canyon fill of the Scripps Formation above. The 

angle of dip within this area of Ardath Shale is extremely variable, but is 

considerably greater than that of the regional dip of the area as described 

above, averaging around 15°, with a maximum approaching 30° towards the 

south (Plate 3.15). 

Due to the very high initial porosities of deep sea muds it is interpreted 

that this greater angle of dip is not produced by depositional processes, as 

slumping would reduce the angle of slope (Kenter, 1990). If the shale was 

deposited within the canyon after its initial incision, then the angle of dip 

would be expected to be very shallow at the time of deposition (e.g. 0 - 4\ 
. d" ~ve..- riJ. ( Therefore, post-depositional changes m 1p must" occu~ by some process or 

processes) to account for the current situation viewed in outcrop. There are a 

few possibilities that account for the increased dip, such as, (1) compaction of 
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EOCENE STRATIGRAPHIC RELATIONSHIPS 
ACROSS THE DEPOSITIONAL STRIKE 

POMERAOO CGL 

STADIUM CONGLOMERATE 

NE 

UPPER CRETACEOUS & BASEMENT 

Figure 3.20 Regional stratigraphic relationships of the Eocene units along a southwest to 
northeast transect across the San Diego Embayment (After May & Warme, 1987) . 

Plate 3.15 Close-up of northern canyon edge, Black's Beach, La Jolla. Note area of 
mud with increased dip, immediately to the south of the canyon edge. 
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the shale, induced by the overlying canyon fill, (2) post-depositional rotation 

of the sediments, or (3) slumping and sliding of the canyon wall down onto 

the canyon floor. 

Post-depositional rotation of the sediments appears improbable, as it is 

unlikely to produce the present day configuration of the sediments viewed in 

outcrop. For the shale mass to rotate a large bulk of sediment would be 

required to be displaced from beneath thus allowing the shale to 'slump' into 

the hollow below. The displaced sediment would, therefore, have slumped or 

slid by some mechanism to the south of the section, into the slightly deeper 

part of the canyon. It should also be possible to view these sediments in their 

present position, approximately 1OOm (330ft) further south of the exposed cliff 

shown in Figure 3.19. This area is unfortunately badly exposed and masked 

by landslide debris, however, there appears to be very little evidence of 

sediment slumping within the canyon to support such a theory of post

depositional rotation. Post-depositional slumping would also induce a variety 

of tectonic structuressuch as minor folding and faulting within the sediment, of 

which there is no evidence. The mechanism of such an evacuation of a mass 

of sediment from beneath a shale deposit also seems highly problematical, 

and therefore improbable. 

Alternatively, it is possible that this area of shale with an increased angle 

of dip may simply be a slide block of former canyon wall sediment, slid from 

the north into the canyon once it has been incised. This theory requires a 

mass of canyon wall to have slid more or less intact down into a pre-existing 

valley. Throughout the mass of steeply dipping shale there are numerous 

small scale extensional faults with an offset of approximately 1 Ocm each, but 

there is little conclusive evidence to suggest that this area of mud has slid 

into its present position. A slide block would be expected to show evidence of 

some sort of break up and dislocation of beds within its mass, especially 

along its basal contact, and it is apparent from the outcrop that this does not 

exist. The bedding pattern also appears not to conform to such a pattern that 

would be produced by a large slide block. A block of canyon wall sediment 

would tend to rotate backwards as it slid into the canyon, so that the beds 

would dip down to the north, a situation completely different ~fllthat which is 

seen in outcrop at the present day. It is highly likely that this shale was 

deposited within the canyon during the highstand of sea level in middle 

Eocene times (Lohmar et al., 1979) (see section 3.3.1 ). 

An alternative interpretation is that the area of mud is in its original 

depositional position, and post-depositional compaction induced by the 
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overlying sedimentary deposits results in the present angle of dip viewed in 

the field today. 

3.3.4 Compaction Modelling. 

Mathematically modelling mud compaction within the canyon is possible 

if an original depositional porosity for the mud is assumed, and equilibrium 

compaction occurs throughout the section, i.e. compaction is complete at the 

end of deposition. The mud is loaded only by the canyon fill above, 

dewatering it and compacting the sediment beneath. The angle of bedding 

and thickness reduction of the mud from horizontal to its present position 

within the canyon is easily measurable in the field or from scaled 

photographs of the exposures. 

As can be seen from Figure 3.21 the mud contained within the canyon 

has undergone a thickness reduction of 3.90m to 1.65m (i.e. 58% reduction). 

Putting these values into the equation 2.22 (see Chapter 2):-

(1-<J>o)To = (1-<J>c)Tc 

along with an estimate of the original depositional porosity of the mud, 

accounting for autocompaction, a value can be calculated for the present day 

compacted porosity. This value is 33.3% compacted porosity and can now be 

used in a porosity-depth equation to estimate the maximum burial depth of 

the mud within the canyon wall. Taking the compacted porosity value and 

placing it into Baldwin & Butler's (1985) power law equation for shale 

compaction (see equation 2.2 in Chapter 2) a value of 460m for the maximum 

burial depth is calculated. However, using exactly the same values in Sclater 

& Christie's (1980) porosity-depth equation for shale:-

-In(~J 
z = ---'--'---- (equation 3.1) 

c 

where c = 5 x 1 o-4 m-1, a maximum burial depth slightly in excess of 

1 .5Km is obtained. 

According to May & Warme's (1987) figure 2-6 a burial depth of 

approximately 160 to 180m for the outer shelf/slope environment of the 

Scripps Formation is shown, based upon stratigraphic patterns from 2 well 

exposed dip sections and other exposures of the area. This diagram 

however, is a representation of the present day situation, and therefore does 

not reflect the maximum burial depth of the Scripps Formation. Thus, the 

complete thickness of the blanketing Stadium Conglomerate is not shown, 

and we can therefore only estimate a minimum depth of burial (160-180m) for 
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the sediments within the canyon. The estimation of minimum burial depth 

however does appear to suggest that the maximum burial depth estimate 

calculated using the Baldwin & Butler (1985) porosity-depth equation is 

probably closer to the true figure than the 1.51\m of burial predicted by the 

Sclater & Christie (1980) equation. The latter estimate would require over a 

kilometre of erosion and uplift to produce the outcrop pattern of the present 

day, which appears unreasonable due to the lack of deposits derived from the 

area. 

To test the calculations thin sections from the vicinity have been 

examined to provide an estimate of the compacted porosity. Due to the 

impossibility of point counting mud porosity, samples from the adjacent sands 

were taken and point counted to provide an estimate of the compacted 

porosity of the sand which has been buried to the equivalent depth (Plate 

3.16). A consistent porosity of approximately 33% was calculated for these 

sands, some of which is presently filled by authigenic and pore filling clay 

deposits. Sclater & Christie's (1980) equation (3.1 above) appears to work 

very well for the compaction of sands as there is no large decrease in sand 

porosity at the near-surface (see Chapter 2). Therefore using this equation, 

with c = 3x1 0-4 for sands, a maximum burial depth of 630m is calculated. This 

figure is considerably closer to that of the one calculated using Baldwin & 

Butler's (1985) porosity-depth equation for the mud within the canyon. 

Calculations carried out here, therefore, appear to reinforce the 

arguments of Chapter 2. That is that mud porosity is destroyed very early 

during burial, and that Baldwin & Butler's (1985) power law curve describes 

this porosity evolution much better than that of other published porosity-depth 

equations, such as Sclater & Christie (1980). Modelling here also assumes 

that the mud through which the canyon is cut has already fully compacted 

before the deposition of the mud, sandstone and conglomerate within the 

canyon itself. This basic assumption makes the modelling much simpler as it 

means that the point of intersection on the canyon wall where the mud was 

initially deposited is fixed, and the bed 'rotates' around this point upon 

compaction (Fig. 3.21 ). Small errors within the calculations will be introduced 

due to this presumption, and the true thickness reduction of the mud within 

the canyon will be very slightly under estimated. However, the amount of 

differential compaction between the basal part of the canyon wall and the 

point at which the mud within the canyon intercepts the canyon wall will be so 

slight and insignificant, the errors introduced by ignoring this fact will not 

greatly effect the final results. 
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Figure 3.21 Close-up of northern edge of the submarine canyon, and mud compaction,. 
Black's Beach, La Jolla. 

Plate 3.16 Photomicrograph of turbidite sand from canyon edge, Black's Beach, La 
Jolla. Field of view 3.3mm. 
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3.4 Wheeler Gorge, Santa Ynez Mountains. 
3.4.1 Introduction. 

Wheeler Gorge is situated between the Santa Ynez and Topatopa 

Mountains, seven miles north of Ojai, in Ventura County, California (Fig. 

3.22). Upper Cretaceous rocks are exposed within the gorge below Highway 

33, forming a continuous section of 475m running north - south. These rocks 

are more or less vertically bedded, and young to the southwest, consisting of 

black shale, thin arkosic sandstones/siltstones, with thick conglomeratic units 

and classic turbidites in the middle of the section (Fig. 3.23). Since deposition 

the rocks of this area have undergone a complex tectonic history, accounting 

for their vertical bedding at present, and they have also been metamorphosed 

to quite a high degree (greenschist facies), rendering porosity and 

permeability measurements meaningless. 

3.4.2 Section Description. 

Various authors have interpreted this sequence as consisting of 

submarine channel deposits and basin plain muds (Walker, 1975, 1985; 

Nelson et al., 1977). Walker (1975, 1985) published geological maps and 

graphic logs of the entire exposed section within the area, and in the latter 

paper proposed a channel - levee - interchannel model for the deposition of 

the sediments within Wheeler Gorge (Fig. 3.24). Walker's (1985) model 

proposes that the lower mudstone sequence is probably basin plain, or 

possibly interchannel deposition laterally far removed from any channel 

influence. This is followed by a gradual incision and lengthening towards the 

west of a coarse clastic channel into the basin plain environment, producing 

the coarse conglomerates at the start of the northern road tunnel. Two further 

conglomerate and coarse sandstone deposits are found moving up the 

section, which generally thin and fine upwards, representing episodes of 

channel cutting and filling (Plate 3.17). Within this general channel 

dominated sequence Walker (1985) proposes lateral channel migration 

superimposed upon the overall aggradation pattern of the channel - levee 

profiles, producing a vertical pattern of channel - levee complexes with the 

main channel systems offset from previous channels below (Fig. 3.24). Such 

offset produces the thick mud deposits on top of the conglomerates, 

interpreted as a levee deposit associated with a channel somewhere to the 

east of Wheeler Gorge. 

Channel - levee - interchannel complexes provide excellent analogues 

for the Palaeocene submarine channels of the Montrose and Arbroath 
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Figure 3.22 Location map of Wheeler Gorge, southern California. 
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Plate 3.17 Thinning and fining upward channel sections within Unit 3, Wheeler Gorge. 
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oilfields (see Chapter 5). Forward modelling of the depositional arrangements 

of these complexes can provide valuable information on the influence of 

differential compaction on the geometry and spatial distribution of facies. A 

model can then be developed utilising these principles for the Palaeocene 

section of the Montrose - Arbroath area of the North Sea. The following 

section illustrates how modelling of a depositional arrangement such as that 

seen at Wheeler Gorge can be used to provide data on the influence of 

differential compaction. Other examples are contained in Chapter 5. 

3.4.3 Compaction Modelling of the Wheeler Gorge Section. 

Simple backstripping of Walker's (1985) channel - levee - interchannel 

model for Wheeler Gorge deposition (Fig. 3.24) has been performed in an 

identical manner to the 'graben' example in Ridge Basin (see section 3.2.7). 

This modelling demonstrates how differential compaction of the sediments 

may cause the major avulsion after the deposition of the first three coarse 

channel sections, accounting for the lateral channel migration proposed by 

Walker (1985). 

Figure 3.24 was divided into 4 vertical sections evenly spaced across the 

model, and each section was accurately measured and divided into individual 

sedimentary units. Simple decompaction of each section was then carried out 

using the exponential relationship for the change in unit porosity with depth 

for sands and sand/shale units:-

(equation 3.2) 

where c=3x1 o-4 for sands and 4x1 o-4 for sand/shale units. The 

depositional porosity for sands (00 ) is taken as 40%, and for sand/shale units 

60%. Shale units were decompacted using the Baldwin & Butler (1985) power 

law equation (equation 2.2, Chapter 2). Once the thickness of each section 

was ascertained using the various decompaction methods described, forward 

modelling of the entire section was carried out, showing how the model builds 

up in time, and thus estimating topography immediately before deposition of 

the following channel - levee complex. Results of the decompaction are 

shown in Table 3.4, and the forward modelling is shown in Figure 3.25. 

Burial greater than that shown in the section is ignored at this stage, and 

it is assumed that the model, as drawn by Walker (1985), represents the 

depositional arrangement immediately after deposition of the capping 

mudstone unit. Figure 3.25 shows that after deposition of the channel 

complex number 4, avulsion of the channel system to the right-hand side 

occurs. This avulsion appears to be partly controlled by topography as this 
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SECTION 1 
Units 1 ,2,3 Shale 85 Thickness 

54% Porosity 
Unit 4 Shale 31 41.6 

48% 61% 
Unit 5 Sh/S'st 28 29.2 

57% 59% 
Unit 6 Sh/S'st t8 18.7 

56% 58% 
Unit 7 Shale 58 62.5 

42% 46% 

Sum of Thickness 220 152 

SECTION 2 
Unit 1 Shale 33 Thickness 

61% Porosity 
Unit 2 Sh/S'st 19 19.4 

59% 60% 
Ul'lft'3 Sh/S'st 24 24.5 

59% 59% 
Unit 4 Sandstone 37 37.2 

39% 39% 
Unit 5 Sandstone 43 43.3 

38% 39% 
Unit 6 Sandstone 24 24.2 

38% 38% 
Unit 7 Shale 40 41.1 

42% 43% 

Sum of Thickness 220 189.7 

SECTION 3 
Unit 1 Shale 11 Thickness 

67% Porosity 
Unit 2 Sh/S'st 22 22.1 

60% 60% 
Unit 3 Sh/S'st 38 38.2 

59% 59% 
Unit 4 Sandstone 28 28 

39% 39% 
Unit 5 Shale 4 4.1 

48% 48% 
Unit 6 Shale 36 36.5 

46% 47% 
Unit 7 Shale 81 81.7 

43% 43% 

Sum of Thickness 220 210.6 

SECTION 4 
Unit 1 Shale 10 Thickness 

67% Porosity 
Unit 2 Sandstone 43 43.1 

40% 40% 
Unit 3 Sandstone 42 42.1 

39% 39% 
Unit 5 Shale 23 23.4 

47% 48% 
Unit 6 Shale 32 32.4 

45% 46% 
Unit 7 Shale 70 70.6 

42% 43% 

Sum of Thickness 220 211.6 

Thickness 
Porosity 

29.9 Thickness 
60% Porosity 
19.2 19.5 
59% 60% 
66.5 71.1 
49% 53% 

115.6 90.6 

Thickness 
Porosity 

24.7 Thickness 
60% Porosity 
37.4 37.6 
40% 40% 
43.4 43.6 
39% 39% 
24.2 24.4 
39% 39% 
41.9 43 
44% 46% 

171.6 148.6 

Thickness 
Porosity 

38.7 Thickness 
60% Porosity 
28.2 28.4 
39% 40% 
4.2 4.8 

51% 57% 
37.7 41.1 
49% 53% 
83.3 86.7 
44% 46% 

192.1 161 

Thickness 
Porosity 

42.4 Thickness 
40% Porosity 
25.6 32.2 
52% 62% 
34.4 37.5 
49% 53% 
73.3 76.3 
45% 47% 

175.7 146 
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Thickness 
Porosity 

75.6 
55% 

75.6 

Thickness 
Porosity 

43.9 
40% 
24.5 
39% 
45.3 
48% 

113.7 

Thickness 
Porosity 

7.2 
71% 
45.3 
57% 
89.4 
48% 

141.9 

Thickness 
Porosity 

43.6 
60% 
79.6 
49% 

123.2 

Thickness 
Porosity 

0 

Thickness 
Porosity 

24.8 
40% 
50.2 
53% 

75 

Thickness 
Porosity 

46.8 
59% 
90.1 
48% 

136.9 

Thickness 
Porosity 

89.1 l 55% 

89.1 

Thickness 
Porosity 

55.5 I 58% 

55.5 

Thickness 
Porosity 

100.6 I 
54% 

100.6 

Thickness 
Porosity 

0 

Table 3.4a-d Decompaction tables for Wheeler Gorge depositional model. 
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area forms a slight topographic low within the section (Fig. 3.25). Thickness 

measurements originate from the base of the diagram, a practise that will 

induce errors in calculations, as a thicker mudstone basal section will form 

greater topography after deposition of section 4, and thus a greater control 

upon the successive channel deposition. A second, major driving factor of the 

avulsion however, is that the right-hand side of the section is entirely 

underlain by highly compactible muds compared with the stacked channel 

section to the left, which will be significantly less compactible. Any deposition 

upon this mudstone will induce a greater percentage of compaction in this 

section, and a greater amount of relief will therefore be produced at a quick 

rate, thus perpetuating deposition of coarse-grained channel sediments in 

this area. 

The modelling has not taken into account any erosion at the base of the 

channel sections, although this undoubtedly does occur (e.g. deposition of 

the initial channel sequences). However, erosion seems to have little effect 

on the overall compactionally produced relief. Indeed, the only effect erosion 

does have is to introduce greater quantities of sand into the certain sections, 

and thus enhances the differential compaction between channel and 

levee/interchannel area, because of increased loading and the addition of 

more incompactible sediment to certain areas. Erosion probably enables the 

onset of the major avulsion to occur, thus activating the greater compaction of 

the mud section and preferred deposition in this area. 

This simple modelling of a schematic depositional model therefore 

illustrates how differential compaction has the capability of controlling facies 

geometries and distributions, and can thus be used as a predictive tool to 

locate possible other coarse-grained channel deposits. 

3.5 Conclusions. 
Field data and subsequent modelling have allowed many important 

insights into the near-surface compactional process, and the effects the 

process has on further deposition. Unfortunately, the scale at which 

observations of compactional processes in a submarine fan environment 

could be made was significantly less than had first been anticipated. Stacking 

patterns of major distributary channels were not evident, even though 

exposure in Ridge Basin was excellent. However, observations and 

measurements were possible from smaller examples of differential 

compaction, allowing a certain degree of assessment of the influence of 

compaction on submarine fan deposition. Fieldwork also highlighted the 
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extreme variability of near-surface processes within the submarine fan 

depositional environment, and the problems these may introduce into the 

future modelling of the Montrose and Arbroath oilfields (Chapter 5). 

For modelling of outcrop data to be carried out, various assumptions had 

to be made: 

• The porosity-depth curves of Baldwin & Butler (1985), and 

Sclater & Christie (1980) are adequate for describing the 

porosity evolution of muds and sands, respectively, at depths 

greater than approximately 500m. 

• Immediately after deposition in a submarine fan environment, 

tops of beds are horizontal. 

The first assumption is discussed in detail in Chapter 2. The latter 

assumption is likely to be true, as sea-floor topography will be subdued by 

deposition, and the high initial porosities of the sediments are unable to 

maintain any appreciable slope (i.e. <5°) (Kenter, 1990). 

Field exposures show the extreme importance of an understanding of the 

compaction rate when considered against the rate of deposition and loading 

within the modelling process. This is the most fundamental question within 

the present study, as it controls the topography of the sea-floor, and any 

depositional influence that this might have. Exposures within Ridge Basin 

illustrated that differential compaction occurred syn-depositionally, producing 

thickened sandstone beds where greater amounts of compaction had 

occurred in the underlying sequence. 

One of the implications of syn-depositional compaction is that pore fluid 

is lost from the underlying sediment at the same rate of loading. Once 

deposition has ceased, pore fluid pressure in the underlying section has 

already attained an equilibrium state with the amount of overburden, resulting 

in the depositional surface (sea-floor) remaining flat. With a flat sea-floor, the 

major control on subsequent deposition may be the underlying compactibility 

of the sediment, maintaining the likelihood of future channel deposits upon 

underlying shale sections and producing off-set channel sand bodies. 

However, the exposures used in the modelling were relatively small when 

compared to the size of submarine fan channels, which range from tens of 

metres in width up to a kilometre in scale. Therefore, the question of scale 

needs to be developed and understood. It is possible that thin beds viewed in 

outcrop have the ability to dewater and compact syn-depositionally because 

of their high initial porosities, combined with the short distances over which 

pore fluid must be expelled, so that pore fluid pressure remains in equilibrium 
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with the amount of overburden. Also aiding pore fluid expulsion is the 

frequent interbedding of sandstone beds, which, due to their higher porosity 

and permeability with respect to the muds, can act as carrier beds for 

expelled pore fluids. This may not follow for larger depositional episodes, 

especially where sand-rich, submarine channels are adjacent to laterally 

equivalent, thick, mud-rich, overbank sediments. Due to the thickness of the 

mud, and the inherent low permeability, accentuated because of the absence 

of regularly interbedded sands, pore fluid may require a longer period of time 

to equilibrate to the amount of loading, and will not reach an equilibrium state 

during the period of loading. Therefore, once deposition has ceased, post

depositional compaction will occur, resulting in topography on the 

depositional surface, due to differential compaction between the channel and 

overbank facies. 

However, although the argument between syn- or post-depositional 

compaction cannot be adequately resolved using the scale of observations of 

the fieldwork described, bed relationships within the Castaic Formation of 

Ridge Basin have shown that large amounts of near-surface compaction 

occur in the submarine environment. The amount of compaction appears to 

be greater than that proposed by most of the published porosity-depth curves 

and equations, mainiy because these are based on data from deeper buried 

sediments. Near-surface compactional behaviour of sediments is important 

however, when considering the creation of a control for the subsequent 

distribution of facies. Knowledge of near-surface processes is required if 

compactional control on sediment distribution is to be modelled. This 

knowledge can be best obtained from fieldwork specifically looking at the 

bedding relationships. 

More generally, it appears that both slumping and basal loading are 

widespread processes throughout submarine deposition, and these can effect 

the near-surface compactional behaviour of the sediments, as explained in 

section 3.2.7. These processes also need to be taken into account therefore, 

within any modelling of submarine fan deposition. Fieldwork and subsequent 

compaction modelling at Wheeler Gorge also illustrates that erosion at the 

base of a submarine channel is another important factor to consider when 

assessing sediment deposition and distribution. However, sediments exposed 

at Wheeler Gorge are interpreted to be proximal in composition with respect 

to those of the Castaic Formation of Ridge Basin (see section 3.2.5). Higher 

flow velocities, and associated greater erosion effects, are more likely in a 

proximal setting compared to a distal environment. Exposures of turbidites in 
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Ridge Basin show evidence of only little basal erosion occurring, with only 

minor shale rip-up clasts being present towards the bases of these beds. 

Fieldwork has therefore highlighted many important aspects of the 

submarine depositional process, and near-surface differential compactional 

phenomenon, such as instantaneous compaction and sedimentation, off

setting of sand bodies due to the relative compactability of the underlying 

sequence, sedimentary loading within a sand/shale dominated sequence, 

and the problem of erosion at the base of submarine channel deposits. Much 

of the data collected, and ideas formulated, are taken forward and are 

combined into the model for submarine channel deposition within the 

Palaeocene section of the Montrose - Arbroath area of the North Sea 

(Chapter 5). 

163 



• 
Chapter 4:- Sacramento Mountains- New Mexico. 

4.1 Introduction. 
The following sections deal with the fieldwork, and subsequent modelling 

of differential compaction occurring around carbonate buildups, and over 

submarine channels, within the Sacramento Mountains of south-central New 

Mexico. At first glance this appears to be a strange choice of field area for the 

present research, which is primarily interested in siliciclastic depositional 

systems. However, the carbonate systems provide a complimentary dataset 

to that of the Californian fieldwork of Chapter 3. In particular, information 

concerning the timing and rate of compaction has been accumulated from this 

work. 

Section 4.1.1 summarises the background of compaction modelling in a 

channelised geological setting, and then outlines the advantages and 

objectives of studying compaction of a carbonate system. Further sections 

deal with the descriptions of stratal patterns, the implications these patterns 

have concerning compaction, and the modelling of compaction and pore 

pressure within the present study area (Fig. 4.1 ). 

4.1.1 Siliciclastic Environments Versus Carbonate Environments. 

Research into differential compaction and its control upon depositional 

architecture within siliciclastic systems has been an area of study for some 

years (e.g. Brown, 1975; Bridge & Leeder, 1979; Parker Gay, 1989; 

Anderson, 1991 )(see Chapter 2). This research has basically looked at 

channel stacking patterns, especially within the alluvial environment (e.g. 

Anderson, 1991 ). The present research has focused on submarine fan 

systems due to the greater potential for differential compaction to occur 

because of the higher mudstone depositional porosities present in marine 

environments (see Chapters 2 & 3). However, theoretical modelling of 

differential compaction is limited by two fundamental problems: (1) very little 

data concerning the near-surface porosity - depth profile, and (2) a poor 

understanding of the exact timing and rates of compaction with respect to the 

rate of deposition (see sections 2.2.5 and 2.3). 

Attempts to isolate the effects, processes and possible role of differential 

compaction within a submarine fan system at outcrop are hindered by some 

major practical problems. Specifically these are: (1) the extremely large scale 

of submarine channel bodies (around 11\m in width) compared to that of 

decent exposure (a few hundred metres at best), and (2) the relatively low 
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slope angles (commonly 1 - 2°) developed by differential compaction over 

such wide areas. Observations at outcrop of submarine fan deposits are 

limited to the scale of outcrop exposure of specific areas, and this is generally 

small compared to the scale of the channel system. Therefore studies of 

discontinuous exposures are limited in the amount of information that they 

provide concerning compaction, particularly information about the relative 

timing of compaction and deposition, and the precise mechanisms of 

differential compaction. 

However, that is not to say that such outcrops are totally devoid of useful 

information for modelling compaction, it is more a question of the scale of the 

information that they provide. Field observations showed many small scale 

compactional effects, such as the importance of basal loading and the 

occurrence and influence of sediment slumping and soft-sediment 

deformation. Thesedata will all help to improve the modelling of submarine fan 

deposits at a fine scale in Chapter 5. On the larger scale, however, for the 

reasons given above and those discussed below, a better insight into 

compaction processes and their relative timing, is gained from carbonate 

settings. 

The study of differential compaction in a carbonate platform system, 

particularly those punctuated by offshore pinnacle build-ups, offers several 

advantages over a clastic submarine fan environment, ·that allows 

compactional phenomena to be viewed at the outcrop scale. These 

advantages reflect: 

(1) the development of relatively rigid, uncompactible 

buildups, against and over which compaction of flank and 

blanketing strata can be quantitatively evaluated, 

(2) the role of early cementation which tends to inhibit 

compaction in the buildups, and is often quite selective in 

location, 

(3) the high original porosities of carbonate mudstones 

(up to 75%}, 

(4) the high depositional angles of flank strata to carbonate 

platforms and build-ups (up to 40°) compared to 

surrounding and overlying strata, 

(5) the close and quantified relationship between 

depositional fabric and slope angle (i.e. Kenter, 1990), 

and, 
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(6) the highly variable nature of carbonate sedimentation 

rates, and the potential for platform sedimentation to be 

abruptly shut-down by environmental change, and/or a 

rapid relative sea-level rise to develop 'drowning' 

unconformities (i.e. Schlager, 1989), or subaerial 

exposure. 

Some of these advantages are shared by the submarine fan environment 

over other siliciclastic environments such as alluvial deposits (e.g. 3 above). 

However, combination of these advantages makes the flanks of carbonate 

platforms and buildups a near ideal setting to examine the timing and 

processes of differential compaction, and to observe its possible influence on 

sedimentation. This chapter therefore aims to draw conclusions derived from 

field observations, specifically concerning the exact timing and processes of 

near-surface compaction, and to quantitatively show the effects of 

differential compaction. 

4.2 Porosity and Compaction of Carbonate Strata. 

Compaction of carbonate strata reflects several important variables, 

namely depositional fabric (mud versus grain support), amount of lime mud 

and clays present, grain size and nature of grain contacts, original porosity 

and fluid content and early marine diagenesis, particularly the degree of 

cementation. Providing there is no near-surface cementation/dolomitisation, 

near-surface compactional processes are dominantly mechanical, and reflect 

the packing of grains to a more organised structure. This is very important in 

uncemented grainy and clay-rich sediments and is intimately involved in the 

dewatering of sediments, particularly important in carbonate mudstones 

where original porosities can be high (e.g. up to 75%). Experimental studies 

on cores of modern lime muds (e.g. Shinn & Robbin, 1983) have 

demonstrated compaction of up to 50% under burial pressures that are 

equivalent to burial depths of less than 1OOm (328ft), with an accompanying 

porosity decrease from 65-75% to 35-40%. 

Porosity-depth curves for carbonate strata have been proposed by many 

authors, including Hardenbol et al. (1981 ), Schmoker & Halley (1982) and 

Baldwin & Butler (1985). Data from modern sediments were used by Hamilton 

(1976), and have been followed by many studies carried out by the Ocean 

Drilling Program (ODP), particularly around the Bahamas (e.g. Lavoie, 1988). 

Mechanical compaction of limestones is only hindered where there has 

been significant early marine cementation, particularly apparent in 

167 



• 
Chapter 4: New Mexico . 

packstones, grainstones and reefal build-ups. Shinn et al. (1983) examined 

the Mississippian Muleshoe Mound of the Sacramento Mountains (which 

forms a part of this study) and concluded that the abundance of early marine 

cements severely inhibited its early mechanical compaction as compared to 

the Permian Scorpion Mound, a few kilometres north, where, at some 

intervals, early marine cements were nearly absent. 

4.3 Location and Geological Setting. 

The Sacramento Mountains are located within south-central New Mexico, 

USA, running approximately north-south along the eastern edge of the 

Tularosa Basin (Fig. 4.1 ). Fieldwork was carried out in an area 5 to 10 miles 

south of Alamogordo, along the western facing scarp of the Sacramento 

Mountains within Otero County. The western escarpment, is the uplifted 

footwall block of a major westerly-dipping Tertiary extensional fault, and 

exposes a thick sedimentary sequence from Precambrian to Cretaceous in 

age. The exposures of generally easterly dipping Palaeozoic sediments are 

spectacular, yet relatively undeformed . These strata are composed of a 

stacked succession of carbonate platforms, separated by major 

unconformities (Pray, 1961 ). Exposures of the Mississippian platform are 

generally excellent, often particularly so adjacent to Waulsortian buildups, 

many of which built depositional relief in excess of 1OOm (328ft} (Plate 4.1) 

(Laudon & Bowsher, 1941, 1949; Pray, 1961 ). It is these buildups and their 

related strata which have been the focus of considerable interest since their 

discovery and subsequent description by Laudon & Bowsher (1941, 1949) 

(e.g. Pray, 1958, 1961, 1965, 1969; Schaefer, 1976; Bolton et al., 1982; 

Shinn et al., 1983; Jackson & DeKeyser, 1984a, b; Bowsher, 1986; Ahr, 

198~; Kirkby et al., 1993) 

From the point of view of the present study, work was focused on the 

Mississippian strata between Muleshoe Mound in the north, and a point about 

half a mile south of Dog Canyon (Fig. 4.1 ). The area of study encompasses 

two well exposed Mississippian bioherms (namely Muleshoe and Sugarloaf 

Mounds}, along with at least three other poorly exposed bioherms. Excellent 

exposure occurs throughout this) area along both dip (north-south) and strike 

(east-west) sections, providing 1valuable bed thickness, palaeocurrent, and 

facies data. 

168 



~~-] 

~ 

0> 
c.o 

• 

Plate 4.1 General view looking east towards the western escarpment of the 
Sacramento Mountains, Otero County, New Mexico. 

0 
~ 
0> 

% .... 
~ 
z 
CD 
:E 
~ 
CD 
)( 

a· 
!=> 



Chapter 4: New Mexico. 

4.4 Stratigraphy. 
This study deals exclusively with Mississippian strata, which have an 

overall stratigraphic thickness averaging around 100 to 150 metres (300 to 

400 feet) within the area of interest. These strata basically consist of marine 

limestones and minor shales, which vary greatly across the region due to 

both facies changes around bioherms, and later erosional events. 

In particular, attention is focused on the stratigraphic relationships 

developed between the Mississippian Lake Valley Formation and the 

overlying Rancheria Formation. These formations form two mutually 

compensating wedges (Laudon & Bowsher, 1941, 1949; Pray, 1961; Lane, 

1974) (Fig. 4.2). The lower Lake Valley wedge has the external geometry of a 

basinwards thinning 'bank' (sensu Mitchum et al., 1977), reflecting internal 

depositional thinning but also, and more importantly, its erosional truncation 

towards the south (Fig. 4.2). The palaeobathymetry of this lower wedge was 

subsequently filled by the succeeding and opposing Rancheria wedge, which 

has the external form of a slope front fill (sensu Mitchum et al., 1977). This 

second wedge correspondingly thins northwards across its precursor (Lane, 

197 4). Of particular relevance to the present study, north of the Dona Ana 

'slopebreak' (Fig. 4.2) the Lake Valley and Rancheria Formations are 

separated by a major hiatus. This hiatus is demonstrated by the absence of 

the conodont zone fossil Apatognathus scalenus-Cavusgnathus (Lane, 197 4, 

1982). Section 4.7 will expand on the presence of this hiatus, and how it 

effected both the processes of compaction and deposition. 

A brief description of the stratigraphy of this region follows, but the reader 

is recommended to read Pray (1961) for a fuller description of the 

Sacramento Mountains geology. 

4.4.1 Mississippian Formations. 

Laudon & Bowsher (1941, 1949) first described and measured the 

Mississippian rocks of southern New Mexico, setting up much of the present 

stratigraphic framework. Slight modifications of the earlier work by a variety of 

workers has since divided the Mississippian strata into four formations; the 

Caballero, Lake Valley, Rancheria, and Helms Formation (Fig. 4.3). The Lake 

Valley Formation has been split further into six members by Laudon & 

Bowsher (1949), and it is within this formation that the extremely large 

bioherms occur. Hence, this study is restricted to the upper part of the Lake 

Valley and the overlying Rancheria Formation, both of which have been 
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Chapter 4: New Mexico. 

effected by differential compaction during and after deposition, over and 

around the 'giant' bioherms. 

4.4.1.1 The Lake Valley Formation. 

The Lake Valley Formation is well developed throughout the central 

region of the Sacramento Mountains, reaching a thickness of approximately 

120 metres (400 feet) and consisting largely of crinoidal limestones, with 

minor calcareous siltstones and shales (Pray, 1961 ). Stratigraphic 

relationships within the Lake Valley Formation are complex, owing to lateral 

and vertical variations in lithology and thickness. The thickness changes are 

caused both by variation of depositional thickness and by subsequent erosion 

along unconformities either during or subsequent to Mississippian time. 

Laudon & Bowsher (1949) subdivided the Lake Valley Formation into the 

Andrecito, Alamogordo, Nunn, Tierra Blanca, Arcente and Dona Ana 

Members, listed in ascending order. However, as biohermal growth has so 

greatly affected the Lake Valley stratigraphy of this area of the Sacramento 

Mountains, it is easier and more convenient to describe the stratigraphy of 

the six members as pre-biohermal, biohermal and post-biohermal members 

(Fig. 4.3). It is also important to note that type sections for the six members 

are only developed within the inter-mound areas, away from bioherm growth 

and influence. 

Pre-Bioherms/ Strata. 

Only the Andrecito, the basal member of the Lake Valley Formation, is 

unaffected by major biohermal growth. It consists largely of calcareous shale, 

marl, thin-bedded argillaceous limestone, well-sorted crinoidal calcarenites, 

and minor quartz siltstone (e.g. see summary by Ahr, 1989). According to 

Pray (1961 ), the unit thins significantly towards the south over a distance of 

5Km, from a thickness of 6 to 10 metres (20 to 35 feet) in the northern 

Sacramento Mountains to approximately 2.5 to 3 metres (8 feet) in the south 

of the region (e.g. Fig 4.2). The base of the Andrecito Member is a clearly 

marked disconformity, commonly with observable low angular discordance 

particularly in the north. Distinguishing characteristics of the member are 

relatively even bedding, the presence of quartz silt or very fine-grained sand, 

and the trace fossil Zoophycos, which serves as an index fossil for the 

member in this region. 
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Biohermal Strata. 

Pray (1961) states that nearly all the bioherms occur within the 

Alamogordo, Nunn, and Tierra Blanca Members of the Lake Valley 

Formation. The Alamogordo Member usually forms a well exposed ledge of 

medium-grey cherty calcilutite (lime mudstones), around 1.5 to 3 metres (5 to 

1 0 feet) in thickness. However, in typical inter-mound regions it can reach a 

thickness of 4.5 to 12 metres (15 to 40 feet). The Nunn Member consists of 

friable or poorly cemented crinoidal limestone with minor amounts of marl. Its 

exposure is typically poor throughout the Sacramento Mountains, with the 

unit's thickness varying greatly throughout the area depending on the 

proximity to the mound facies (e.g. Fig 4.2). 

The Tierra Blanca Member is composed of crinoidal calcarenites and 

calcirudites forming the upper member of biohermal strata (packstones and 

grainstones). The limestone is well cemented, and in the northern mountains 

usually forms a resistant cliff around 30 metres (1 00 feet) high around the 

area of the mound facies. However, in the inter-mound areas it can attain 

thicknesses of nearly 60 metres (200 feet). In the present study area the 

facies is very thin (<4m) between the mounds. 

In area north of Alamo Canyon within the Sacramento Mountains (Fig. 

4.1) there is a significant thickening of the Mississippian section after the 

Andrecito, but before the Arcente (DeKeyser, 1978) (Fig. 4.2). The section 

here consists of thick Tierra Blanca encrinites, and is interpreted to have 

been the site for skeletal carbonate accumulation that, along with growth of 

tabular Waulsortian reef clusters, created a sedimentary prism that had a 

definite slope break by the end of Tierra Blanca time (Meyers, 197 4; Ahr, 

1989). This is the Tierra Blanca Shelf of Meyers (1975), and it represents 

evolution of a ramp into a shelf by depositional processes during relative 

tectonic stability. The slope break was formed by passive deposition as there 

was no inherited slope break from Caballero-Andrecito times to shape the 

Tierra Blanca Shelf (Ahr, 1989). 

The bioherms within the study area first appeared in Alamogordo times, 

and their growth continued episodically during Nunn and Tierra Blanca times. 

The core facies of light grey massive limestone generally consists of 

aphanitic calcite (lime mud) and sparry calcite, with a subordinate amount of 

skeletal fossil constituents, of which fenestrate bryozoans are the most 

common (Pray, 1961 ). According to Lees & Miller (1985) this represents type 

0 Waulsortian facies, characteristic of their fourth phase of mound growth. 

Flank facies to the bioherms have a simpler lithology, consisting of relatively 
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pure crinoidal packstones and grainstones. These beds dip at very steep 

angles (>30°) close to the mounds where the transition from mound facies to 

flank facies is abrupt. However, flank facies become thinner, and more 

distinctly bedded away from the core facies, and grade into the inter-mound 

strata as described above. 

The formation of the bioherms and their subsequent growth, associated 

with the production and trapping of large amounts of carbonate mud remain-· 

somewhat enigmatic. Their core facies are dominated by bryozoans, crinoids 

and large brachiopods. Fenestrate bryozoans have certainly aided local 

buildup of core facies, however, some bioherms only contain accessory 

amounts of bryozoan debris, and therefore another buildup mechanism is 

necessary (Pray, 1961 ). It has been interpreted (Pray, 1961) that the 

bioherms grew below the zone of wave abrasion, but some managed to grow 

into more turbulent, shallow waters. This interpretation is also supported by 

the large amount of crinoid debris found in the flanking facies. Equally the 

distribution of the flank facies, especially surrounding Muleshoe Mound, 

illustrates the influence of currents during mound growth. Flanking facies of 

Muleshoe Mound is notably asymmetric, with thick flank debris exposed to 

the south of the mound, but relatively thin to absent flank debris to the north, 

suggesting currents were directed from the north towards the south of the 

basin at this stage (i.e. basinwards) (compare Figures 4.4 & 4.5). 

The ecology of crinoids and crinoidal growth, especially the stalked 

variety, as found within the study area, suggest that the bioherms grew at a 

water depth of around 1 00 metres (330 feet) or deeper, as crinoids are rarely 

found in shallow waters due to the damaging effects of wave energy on their 

growth (Clarkson, 1986). 

Post-Biohermal Strata . . 

The Arcente Member and the Dona Ana Member were deposited after 

the major period of biohermal growth, and they largely fill the depositional 

topography between the 'giant' mounds. The Arcente is composed of fine

grained, near-black lime-mudstones and interbedded shales. Away from the 

bioherms it has a maximum thickness of 60 metres (200 feet), whereas near 

to the bioherms its thickness commonly averages around 20 metres (66 feet). 

Locally the Arcente abruptly thins and pinches out against the bioherms (e.g. 

Muleshoe Mound, Fig. 4.6 and Plate 4.2), having the overall effect of 

subduing topography created by biohermal growth. The change from grain to 

mud-supported fabrics from the Tierra Blanca to the Arcente is interpreted to 
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Figure 4.5 Field drawing of the northern flank of Muleshoe Mound, illustrating 
clinoformed package of the Dona Ana (From Hunt & Allsop, 1993). 
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Chapter 4: New Mexico. 

Plate 4.2 View of the southeastern flank of Muleshoe Mound, from which the field 
drawings and stratal restorations of Figure 4.22 were interpreted. 
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reflect a decrease of water energy, associated with the development of a 

stratified water column, normally anoxic towards its base (Meyers, 1975). 

Within the Arcente, there is a prominently weathering limestone package 

which can be traced throughout the region, and therefore forms a useful 

marker horizon. This package is informally referred to as the Hackberry beds, 

with the Arrow beds of the Arcente above (Fig. 4.6 and Plate 4.2). North of 

Sugarloaf Mound (Fig. 4.1) the Hackberry beds are typically located 1 0-12 

metres (33-39 feet) above the base of the Arcente, and up to 18 metres (59 

feet) below the base of the Dona Ana (see Fig. 4.6 and Plate 4.2). In contrast, 

south of Sugarloaf Mound the Dona Ana Member rests either directly on top 

of the Hackberry beds, or only a few metres above them. 

Above the Arcente, the Dona Ana Member reflects a return to clear seas 

and profuse growth of crinoids. In certain areas of the platform the base of 

the Dona Ana is abrupt, and marked by several gravity flow deposits which 

may be up to 2m (6.5ft) thick. In these areas, there is often evidence for 

deformation (e.g. folding) of the Arcente prior to Dona Ana deposition. In 

contrast, elsewhere the transition from the Arcente to the Dona Ana is 

gradual (i.e. 375m (1230ft) north of Muleshoe Mound). 

The Dona Ana tends to be thickest and coarsest in the proximity (<21\m 

away) of the 'giant' mounds, although it thins immediately adjacent to them 

(<1OOm thick) due to differential compaction (see section 4.7). At its thickest 

part, the Dona Ana forms a cliff of 46m (150ft), however, it more usually forms 

a 20-30m (66-1 OOft) high cliff in the vicinity of the bioherms. Lithologically, the 

Dona Ana is dominated by crinoidal packstones and grainstones, with 

abundant bryozoans. Short lived bioherms also formed during this time, 

however, these are considerably smaller than their predecessors, and form 

within two widespread levels of the Dona Ana. The most important of these 

are the bioherms which grew from the uppermost flanks of the 'giant' mounds 

during early Dona Ana times (Muleshoe and Sugarloaf Mounds, see Figures 

4.4 & 4.7, and Plates 4.2 & 4.3). More widespread and distinctive low-energy 

mounds developed in the palaeobathymetric lows. The second 5-1 Om (16-

33ft) thick Dona Ana biohermal level is frequently clinoformed, and dominated 

by mudstones and wackestones interbedded with graded crinoidal 

grainstones (i.e. northern side of Muleshoe Mound, Fig. 4.5 and Plate 4.4). 

Adjacent to the 'giant' mounds this biohermal package is erosionally 

truncated by the uppermost package of the Dona Ana, informally referred to 

here as the Apache beds. 
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View of the southeastern flank of Sugarloaf Mound, showing the abundant 

Clinoforms in the Dona Ana, exposed on the northern side of Muleshoe 
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The Apache beds are found in the topmost section of the Dona Ana, 

forming a distinctive and prominent pale yellow to white weathering cliff. 

These beds are composed of coarse-grained and often normally graded, 

thick-bedded crinoidal sands, with occasional lithoclasts. In the central part of 

the platform, between Muleshoe and Sugarloaf Mounds, these bioclastic 

sands form discrete "haloes" around the 'giant' bioherms (e.g. Plate 4.2). 

However, within Dog Canyon (Fig. 4.1 ), bioclastic sands of the Apache beds 

are contained within several spectacularly exposed NW-SE trending, 

erosionally based channels (Fig. 4.8 and Plate 4.5). 

The upper surface of the Dona Ana has long been recognised as a major 

subaerial exposure surface in the northern part of the platform (Meyers, 1973, 

1975, 1989), and also locally across Muleshoe and possibly Sugarloaf 

Mounds. This surface is a major sequence boundary, and its formation was 

immediately preceded on the platform by the deposition of the Apache beds. 

These are interpreted to have been deposited during the 'falling stage' of 

sea-level, immediately prior to the formation of the sequence boundary at the 

top of the Lake Valley Formation. 

4.4.1.2 The Rancheria Formation. 

In the area of interest the basinal Rancheria wedge is composed of two 

quite different lithofacies; dark, almost black (but light-grey weathering) lime 

mudstones with interbedded (<<5%) rippled lime-silt packstones and 

grainstones of the Deadman Member, and brown, well-sorted skeletal and 

peloidal packstones-grainstones of the Joplin Member. Both members are 

characterised by exceptional preservation of sedimentary structures which 

indicate deposition by turbidity and/or density flows below storm wavebase on 

an anoxic, and mostly abiotic sea-floor (Yurewicz, 1975, 1977). 

The Deadman Member represents approximately 90-95% of the 

Rancheria Formation. It largely filled the palaeoslope basinwards of the Lake 

Valley wedge, and thins rapidly towards the Lake Valley 'slopebreak' in 

Deadman Canyon (Yurewicz, 1975, 1977; see Fig. 4.2), and also in Dog 

Canyon (Hunt & Allsop, 1993). The lime mudstones and intercalated peloidal 

sands of this lower package are considered by Yurewicz (1975, 1977) to 

onlap the Lake Valley wedge in Deadman Canyon. However, relationships in 

Dog Canyon, 3Km to the north, cast some doubt upon this interpretation. In 

the east of Dog Canyon, the Deadman Member has a parallel bedding 

relationship with the Apache bioclastic sands which descend relatively 

steeply (5-1 0°) basinwards, over the erosionally truncated Lake Valley strata. 
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Here, the Deadman Member thickens basinwards across the erosional Lake 

Valley 'slopebreak' through internal bed thickening and divergence (Hunt & 

Allsop, 1993). 

The upper Joplin Member of the Rancheria Formation gradually thins and 

fines northwards over the Lake Valley wedge, from 14-16m (46-52ft) in the 

east of Dog Canyon, to a feather edge between Alamo and Marble Canyons 

(Figs. 4.1 & 4.2) (Pray, 1961; Meyers, 1973). This may reflect the 

sedimentary bypass of much of the Lake Valley wedge or, alternatively, a 

quite different source area for the Rancheria wedge, possibly further to the 

southwest. The base of the Joplin Member is normally abrupt and is locally 

erosional. Crinoidal and peloidal grainstones are the dominant microfacies of 

the Joplin Member. These bioclastic sands also contain occasional ooids and 

beds with abundant micritized molluscan fragments, the first unequivocally 

shallow-water grains within the Mississippian succession. The lime sands 

form beds up to 1.5m (5ft) thick, and are frequently trough cross-bedded, with 

normally graded tops. They are interpreted to have been deposited by high

density turbidity and/or density currents which bypassed much of the Lake 

Valley wedge. 

4.5 Depositional Model. 
This section provides a brief account of the deposition of the Lake Valley 

and Rancheria Formations, including the 'giant' mounds found within the 

study area shown on Figure 4.1. This section only aims to give background 

information to the reader unfamiliar with carbonate systems. A more 

comprehensive depositional history is provided by Pray (1961 ), Yurewicz 

(1975) and Ahr (1989). Further detailed description relevant to the present 

study is provided in section 4.6, concerning stratal patterns. Figure 4.2 shows 

a diagrammatic section of the Lake Valley and Rancheria Formation deposits, 

running north - south along the Sacramento Mountains. This section is based 

upon conodont faunal units (numbered F.U.1 to F.U.1 0), and shows where 

certain units are missing, and, hence the location of the major omission 

surfaces. This is also illustrated by the schematic chronostratigraphic 

diagram for Muleshoe Mound, shown in Figure 4.9. Of particular note is the 

unconformity that exists between the Dona Ana Member and the Rancheria 

Formation. Here a complete conodont faunal unit is missing (Apatognathus 

scalenus-Cavusgnathus), and this has major implications for compaction 

modelling around this area, an important point that is considered in the 

following sections. 
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Biohermal Formation. 

Bowsher (1986) proposed that the Alamogordo bioherms were located 

upon topographic undulations on the surface of the Andrecito Member, at the 

base of the Lake Valley Formation. These undulations, he suggested, were 

created by submarine erosion, producing relief of 3 to 12 metres (1 0 to 40 

feet). The Andrecito can be seen to dip away from the core facies in a radial 

pattern, suggesting that topography on the Andrecito surface was a possible 

control upon bioherm positioning and growth, as proposed by Bowsher 

(1986). Alternatively, it is possible that the Alamogordo mounds founded on 

calcarenite pods in the underlying Andrecito (e.g. see Ahr, 1989). The control 

on mound initiation in the Alamogordo is most likely to be a combination of 

both these processes. 

As the bioherms grew, flank debris was shed radially from the buildups 

as excess material was shed into the surrounding low energy environments. 

Occasional slope failure along the edges of the mounds also occurred. Within 

the inter-mound areas, relatively condensed sedimentation of the 

Alamogordo, Nunn and Tierra Blanca Members occurred to produce the 

regionally recognised facies associated with these members. 

The development/growth of the bioherms themselves is problematical. 

Mounds in the Sacramento Mountains do not show the classical four growth 

stages as observed in their European counterparts (Lees & Miller, 1985). 

Muleshoe Mound, being exceptionally well exposed, provides a conceptual 

framework for the study of less well-exposed, or subsurface Waulsortian 

mounds (Kirkby et al., 1993). This is particularly true when considering the 

other 'giant' bioherms within the Sacramento Mountains, such as Sugarloaf 

Mound, where the same growth stages as those identified at Muleshoe 

Mound, outlined below, can also be recognised (Kirkby et al., 1993). 

Muleshoe Mound is divisible into four distinct growth stages, each being 

bounded by unconformities (Kirkby et al., 1993; & in prep.). These are 

believed to be significant, although the stages that they delineate do not 

show a systematic change of microfauna as noted from other Waulsortian 

mounds (e.g. Lees et al., 1985; Lees & Miller, 1985). The stages consist of a 

start-up phase, a build-up phase, followed by two build-out phases, the first 

being symmetrical and the second being asymmetrical. 

Kirkby et al. (1993) have suggested that regional factors controlled 

mound geometry and facies, due to the fact that other mounds within the 

surrounding region (e.g. Sugarloaf Mound) exhibit similar patterns of mound 

growth and hiatus. They interpret that lower mound developing during open 
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marine circulation with no terrigenous influx, in relatively deep or quiet water, 

with episodic higher energy events. The upper mound formed in low to 

moderate energy, current-influenced water, with at least episodic influx of fine 

terrigenous clay and silt. The internal phases of the upper mound are 

interpreted to reflect growth to some accommodation level, progradation, with 

increasingly asymmetric progradation towards the deeper basin towards the 

south, as sea-level fell, or water quality declined (Kirkby et al., 1993). 

Post-Biohermal Sediment Deposition. 
The main phase of mound growth was terminated in Arcente times, 

possibly due to a change in the water chemistry (possibly becoming 

dysaerobic) (Meyers, 1975; Kirkby et al., 1993). As discussed (section 

4.4.1.1 ), the Arcente is a thick mud wedge representing a marked reduction in 

the hydrodynamism. Topography was generally smoothed by the deposition 

of mudstones, when conditions for bioherm growth were unfavourable. The 

Arcente facies is characterised by the trace fossil chondrites. There is a slight 

facies variation in the vicinity of the mounds, interpreted to reflect better 

oxygenated conditions in their immediate vicinity. 

With renewed increase in hydrodynamism, skeletal sediments were shed 

from the mounds, forming the Dona Ana Member. Calcareous siltstones are 

still present, especially near the base of the unit, but there is an increase in 

the amount of pack- and grainstones towards the top of the member. Obvious 

clinoforms can also be seen on the north and south sides of Muleshoe Mound 

and Sugarloaf Mound within the Dona Ana (Fig. 4.5 and Plate 4.4) where it 

forms an apron deposit to the mounds themselves. On a regional scale the 

Dona Ana Member can be seen to thin both to the south and the east, where 

large bioherms become uncommon. All the evidence suggests that the 

positive topography of the mounds still remained during this time, and that 

they acted as point sources of crinoidal debris, with crinoid 'gardens' growing 

on the relief of the giant antecedent mounds and their flanks. 

As stated earlier, the uppermost part of the Dona Ana shows a change in 

facies forming the Apache beds, which are lithoclastic and generally have an 

abrupt base. The facies forms an apron deposit to the mounds which still 

have positive topography at this time. Towards the south in Dog Canyon, the 

Apache beds form a series of channel and lobe deposits of crinoidal pack- to 

grainstone (Plate 4.5). In this area there is a major slopebreak, and a marked 

change in the palaeocurrent directions (Fig. 4.1 0). The channels are 

interpreted as representing an area where the sediment is taken into deeper 

water to the south. After the deposition of the Dona Ana Member, platform 
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sedimentation is temporarily shut down as the platform was subaerially 

exposed. 

Due to exposure and sedimentary bypass the Deadman Member of the 

lower Rancheria Formation is deposited as a northward thinning wedge of 

sediment which onlaps against, and tends to fill, the depositional topography 

developed by the earlier progradational packages and associated bioherms. 

Therefore, there is a large time gap in sedimentation which increases towards 

the north of the area, where the Deadman Member is absent. Evidence for 

this hiatus is provided by conodont faunal assemblages (Fig. 4.2). The 

platform is then interpreted to have been rapidly transgressed and drowned, 

following which relatively deep water sediments of the Rancheria were 

deposited. Therefore, the Joplin Member forms a second northward thinning 

wedge across the top of the Deadman Member, and locally forms an angular 

unconformity with the Dona Ana Member beneath (e.g. the south side of 

Muleshoe Mound, Fig. 4.6 and Plate 4.6). In particular, three local 

unconformities are the focus of the present study. 

With the depositional setting introduced, section 4.6 discusses the stratal 

relationships of the study area in greater detail. It is from these relationships 

that the timing of compaction can be deduced, and because of their 

importance they are discussed in some depth. Subsequently, section 4.7 

discusses the implications of the stratal relationships in terms of compaction. 

4.6 Stratal Patterns. 
The following sections deal with the stratal relationships between the 

Waulsortian mounds, the 'postbiohermal' members of the Lake Valley 

Formation and the Rancheria Formation at Muleshoe and Sugarloaf Mounds. 

Similar relationships can be viewed on either side of the mounds, however, 

the southern flanks generally show much better exposure, and therefore 

particular attention is paid to these areas. Interest is focused on:-

1) sea-floor bathymetry inherited from the main biohermal 

phase, 

2) geometry and stratal patterns of the Arcente and Dona 

Ana with respect to each other and the mounds, 

3) their internal stratal patterns and sedimentology, and 

4) the relationships of all these strata to the overlying 

Rancheria Formation. 
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Chapter 4: New Mexico. 

A further section deals with the compacted geometry of the channelised 

Apache bioclastic sands exposed on the northern side of Dog Canyon (Fig. 

4.8 and Plate 4.5). 

4.6.1 Muleshoe Mound: Southeastern Flank. 

Muleshoe Mound initiated within the Alamogordo Member, and built a 

broad, relatively massive, mud-rich mound which had a depositional relief of 

35m (115ft). This start-up phase thinned laterally, and possessed no distinct 

flank facies (Kirkby et al., 1993). Unconformably overlying the lower mound is 

a 70m (230ft) thick upper, heterogeneous mound which consists of a further 

three growth phases: an aggradational phase, a symmetrical progradational 

phase, and an asymmetric progradational phase (Kirkby et al., 1993) 

developing an overall depositional relief for the mound of 1 00-130m (330-

430ft). The aggradational phase (stage 2, labelled Nunn in Figs. 4.4 & 4.9) is 

characterised by the building of a narrow, steep-sided, bell-shaped mound, 

and is associated with the areal restriction of growth towards the crest of the 

antecedent Alamogordo mound. 

In stages three and four (both progradational), relatively massive facies 

of the mound core ar~ separated into 5-20m (16-66ft) thick clinothems by thin 

shale partings, and pass downslope into well-bedded crinoidal packstones of 

the mound flank (Fig. 4.6 and Plate 4.2). The passage between core and 

flanking facies is abrupt, and occurs over a few metres, a feature common to 

other Waulsortian mounds (see Miller, 1986). In the third growth stage, core 

facies extend down to within a few metres of the adjacent sea-floor. 

Consequently, flank facies are restricted to the 'toe' of the buildup and 

volumetrically represent only a minor component of mound growth (<1 0%). 

Above the major megabreccia, which marks the boundary between stages 

three and four, there was a fundamental change in the pattern of mound 

accretion (Kirkby et al., 1993). In stage four, clinoforms flatten out and 

shallow upwards as the boundary between core and flank facies climbs in a 

basinwards direction (i.e. to the south) from the adjacent sea-floor (Fig. 4.6 

and Plate 4.2). In this stage, crinoidal flank facies represent up to 40% of 

mound growth, and form a distinctive 'tail' on the southern side of Muleshoe 

Mound. 

Relationships between the core and flank facies of the mound have been 

rotated by differential compaction. Differential compaction of flank strata was 

contemporaneous with bioherm development (Kirkby et al., 1993) and also 

post-dated it. Geopetal fabrics on the southern side of the mound indicate 
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that stage four flanking strata have typically been steepened by some 8-1 oo 
(localities 5 & 9, Fig. 4.11 ). Unconformities localised above earlier bioherms, 

1 and the thinning of strata above megabreccia clasts within flanking strata to 

stages three and four, marked as A and B respectively on Figure 4.11, 

indicate that most of this differential compaction and rotation of flank strata 

was early and syn-depositional. 

Stratigraphic and textural studies of both Muleshoe and Sugarloaf 

Mounds led Pray (1965) to conclude that they were subject to intense syn

depositional marine cementation. His view, controversial at the time, has 

been supported by the subsequent diagenetic studies of Meyers (1973, 

1975), Meyers et al. (1982) and Shinn et al. (1983). They confirmed that the 

abundant (up to 90%) cloudy radiaxial cements, specific to the mound cores, 

were syn-sedimentary and precipitated from normal marine waters. 

Importantly, these and other cements impaired compaction of the mounds, as 

compared to the adjacent strata (Shinn et al., 1983). 

Arcente. 
In Muleshoe Canyon (Fig. 4.1 ), the thickness of the Arcente is antithetic 

to that of Muleshoe Mound, being thickest furthest from the mound and 

pinching-out against it. Although dominated by mudstones, the Arcente is far 

from a homogenous package, and is separated in two by the Hackberry beds 

(Figs. 4.6 & 4.12, and Plate 4.2). For example, 400m (1300ft) southeast of 

Muleshoe Mound (Fig. 4.12), the Hackberry beds, 9.2m (30ft) thick, are 

positioned 13.9m (46ft) above the top of the Tierra Blanca, and 17.7m (58ft) 

below the base of the Dona Ana. Here, the Arcente becomes increasingly 

calcareous from a limestone-shale ratio of 1 :8 at its base, to a ratio of 1 0-20:1 

within the Hackberry beds. The limestone-shale ratio then gradually 

decreases over the next 12m (39ft) above the Hackberry beds (i.e. the Arrow 

beds) where a value of 1:0.7-1.2 is typical, compared to an average ratio of 

1:4 in its upper 5.7m (19ft) (Fig. 4.12). Such lithological changes will have 

exerted a strong control upon fluid migration pathways within the Arcente. 

Northwards towards Muleshoe Mound, the Hackberry beds steepen 

progressively from a sub-horizontal attitude to dip up to 30° off-mound (Fig. 

4.11 and Plate 4.2). These beds diverge and fan away from Muleshoe Mound 

(Fig. 4.11) as the lower package thins by on lap against the palaeobathymetry 

of the mound. There is also a change of bedding style and facies in the 

uppermost exposures of the Hackberry beds (locations 41 to 47, Fig. 4.11 

and Plate 4.2). Here beds are lensoid and nodular, with scoop-shaped bas·es 
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0.3-0.4m (1ft) deep developed over horizontal distances of 1-2m (3.3-6.6ft). 

Lime mudstones still predominate, but are interbedded with 20-SOmm thick 

encrinite calciturbidites (<1 0% volumetrically), derived from the bioherm. The 

top surfaces of these beds are also frequently marked by a 2-3mm thick hash 

of fenestellid bryozoans, indicating that more oxygenated conditions 

prevailed in the immediate proximity of the mound. 

The external geometry of the uppermost package of the Arcente (the 

Arrow beds, Fig. 4.6 and Plate 4.2) can be ascertained by comparing the top 

of the Hackberry beds with the base of the Dona Ana (e.g. Fig. 4.13). These 

boundaries are near-parallel where the Hackberry beds are sub-horizontal, 

but become closer as beds steepen towards Muleshoe Mound, defining a 

northwards tapering wedge on its southeast flank. Unfortunately, the internal 

stratigraphic relationships of this wedge are difficult to ascertain due to the 

paucity of its exposure. The base of the Dona Ana does not appear to be 

erosional on the southern side of the mound, implying that the wedge-shaped 

geometry of the Arrow beds is depositional, and results from its internal 

thinning. Two possibilities exist to explain this geometry; either 1) the Arrow 

beds lap-out against the Hackberry beds and the mound, or 2) they diverge 

and fan-out from the upper slope. The latter scenario appears to be the most 

likely as there is no facies change or evidence for a break in sedimentation 

above the Hackberry beds, factors which would favour onlap of the Arrow 

beds onto the Hackberry beds. 

Dona Ana. 
The Dona Ana has a wedge shape on the southern flank of Muleshoe 

Mound which is synthetic to that of the underlying Arcente; it thins towards 

the main bioherm (Figs. 4.6 & 4.13, and Plate 4.2). This wedge shape is a 

reflection of depositional thinning, but more importantly, post-depositional 

erosional truncation of the Dona Ana, intimately related to differential 

compaction of the underlying Arcente wedge. 

On the southern flank of Muleshoe Mound, the Dona Ana can be 

separated into four stratal packages (Hunt & Allsop, 1994). The first of these 

is characterised by the re-establishment of bioherm development on the 

uppermost flanks of the main mound (Fig. 4.11 and Plate 4.2). This 

demonstrates that the depositional relief developed during Tierra Blanca 

times was not entirely filled by the Arcente. The first lens-shaped package of 

the Dona Ana is generally recessively weathered, and thins both towards, 

and away from the main mound (Fig. 4.11 and Plate 4.2). 
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Foreslope and overlying strata to the bioherm of this package are 

dominated by lensoid bedded crinoidal wackestones and packstones, which 

contain abundant geopetal structures. Geopetal fills within this level are 

progressively rotated, and generally steepen towards Muleshoe Mound (Fig. 

4.11 ), thus allowing the separation of depositional and post-depositional dips. 

The geopetals are crucial to the reconstruction of the sea-floor bathymetry at 

the beginning of Dona Ana times. The relationships of the geopetals to 

bedding have allowed a restoration of strata, indicating that these strata had 

depositional dips of 3-6° (subsequently steepened up to 30°, Fig. 4.11 ). This 

depositional dip explains their thinning to 2m (6.6ft) some 400m (1300ft) 

further to the southeast (Fig. 4.12). 

The second stratal package which forms the main cliff section is much 

lighter and comprises up to 70% of the Dona Ana on the southeastern flank 

of Muleshoe Mound (Figs. 4.11 & 4.13, and Plate 4.2). It is dominated by 

crinoidal packstones and grainstones, and sharply overlies the first package 

of the Dona Ana, into which it is often erosive and channelised. Strata within 

the base of this package thin and lap out towards the mound (Fig. 4.13), 

which reflects the filling of depositional topography inherited from the first 

. package of the Dona Ana. Erosional scours at the base of the bedded sands 

within this package define broad channel-like bodies. In contrast, the third 

package of the Dona Ana is characterised by clinoforms of mudstones and 

wackestones (Fig. 4.5 and Plate 4.4), often silicified and interbedded with 

crinoidal packstones and grainstones (Fig. 4.12). These strata are sharply 

overlain by the Apache beds, the uppermost package of the Dona Ana. 

All four stratal packages of the Dona Ana steepen considerably as 

Muleshoe Mound is approached, paralleling relationships seen in the 

underlying Arcente (Figs, 4.11 & 4.13, and Plate 4.2). Furthermore, these four 

packages are all truncated and overlain with angular unconformity by the 

Rancheria Formation adjacent to Muleshoe Mound. 

Rancheria. 
In Muleshoe Canyon the Joplin Member of the Rancheria Formation rests 

on progressively older strata as Muleshoe Mound is approached, and 

eventually laps-out onto the Tierra Blanca of the mound. In contrast to the 

underlying Lake Valley strata, the Rancheria remains relatively flat-lying 

adjacent to the mound (Figs. 4.6 & 4.13, and Plate 4.2), implying that the 

erosion, and most of the rotation of the Arcente and Dona Ana preceded its 

deposition. 
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In the southeastern end of Muleshoe Canyon the Joplin Member normally 

rests abruptly onto the Deadman Member of the Rancheria (up to 3m (1Oft) 

thick, Fig. 4.12). However, within 200m (660ft) of the mound it rests either on 

the Deadman Member or one of the upper two packages of the Dona Ana. 

This reflects the erosional, scoop-shaped base of this member near to the 

mound. Within the Joplin Member, bioclastic sands are often channelised, 

with well developed lateral accretion surfaces (Fig. 4.13). The Joplin Member 

is mostly thickly bedded, with some internal trough cross-stratification, 

although channel-like scours with high width to depth ratios are also 

developed (Hunt & Allsop, 1993) (Fig. 4.13). 

4.6.2 Sugarloaf Mound: Southeastern Flank. 

Sugarloaf Mound, 3.2Km south of Muleshoe Mound (Fig. 4.1) is the most 

basinward 'giant' bioherm on the platform. Its unique palaeogeographic 

position, facing the open ocean, makes for several important differences with 

the southern flank of Muleshoe Mound. These allow for contrasts to be drawn 

concerning the compaction of the Arcente wedge. 

Alamogordo - Tierrl! Blanca. 
The growth history of Sugarloaf Mound appears to be similar to that of 

Muleshoe Mound, and can also be subdivided into four growth packages 

(Hunt & Allsop, 1994). The differences in the growth patterns of the two 

mounds and the overlying strata reflect the different palaeogeographic 

position of the two mounds on the platform, plus the difference in the 'cut' of 

the present day exposure. 

The mound 'starts-up' in the Alamogordo and subsequently builds up and 

out in three distinct stages of the Tierra Blanca. The most obvious contrast 

between the southern flanks of Sugarloaf and Muleshoe Mounds is the more 

symmetrical nature of the fourth growth stage (contrast Fig. 4.11 & 4.14). 

Sugarloaf Mound lacks the spectacular development and basinward 

progradation of bioclastic flank facies, with the associated climbing 

progradation of core facies. The transition from core to flank · facies is 

reflected in the upper surface of Sugarloaf Mound which changes downslope 

from being convex to concave-up at this boundary. 

Arcente. 
The Arcente section has an overall wedge shape which thins by onlap 

against the antecedent palaeobathymetry of Sugarloaf Mound. The Arcente is 
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Chapter 4: New Mexico. 

considerably thinner on the southern side of Sugarloaf Mound due to the 

much reduced thickness of its uppermost package, the Arrow beds (<2m 

(6.6ft), see Fig. 4.14, and Plates 4.3 & 4.7). The thickness of the Arrow beds 

appears to reflect the palaeo-oceanographic setting of the southern side of 

Sugarloaf Mound. It seems that Sugarloaf Mound acted either as a sediment 

'dam' behind which the Arrow beds accumulated, or as a 'breakwater• which 

dampened northwards directed currents generated in the open ocean to the 

south (i.e. storm currents). In this latter scenario the Arrow beds accumulated 

in the calmer lee of the mound. 

Although deformed, the upper surface of the Arcente, which in this region 

approximates to the top of the Hackberry beds, gradually steepens towards 

Sugarloaf Mound (Fig. 4.14 and Plate 4.3). The Hackberry beds define a 

series of asymmetric, southerly verging folds which decrease in amplitude off

mound, towards the south. Internal deformation and flow within the underlying 

Arcente mudstones and shales is interpreted to have accommodated this 

deformation. The important point to note is that this deformation is not 
reflected in the overlying Dona Ana foreslope strata (Fig. 4.14 and Plate 4.3), 

thus suggesting that the deformation of the Arcente preceded the deposition 

of the Dona Ana sediments. 

Dona Ana. 
The Dona Ana exposed on the southern flank of Sugarloaf Mound is 

divisible into four stratal packages, and rests with local angular unconformity 

on the deformed Hackberry beds of the Arcente, marked on Figure 4.14. 

Each stratal package is bounded by surfaces of non-deposition and/or 

erosion, and is positioned further basinward of the antecedent Sugarloaf 

Mound than its precursor (Figs. 4.14 & 4.15, and Plates 4.3 & 4.7). 

The Dona Ana is marked by the spectacular basinwards progradation of 

a 'secondary• bioherm from the mid-upper flanks of Sugarloaf Mound (Figs. 

4.14 & 4.15, and Plate 4.3) (Hunt & Allsop, 1993). This bioherm forms the first 

stratal package of the Dona Ana, and also part of the second stratal package, 

with the division of the 'secondary• bioherm possible on the · basis of 

progradational geometry (Fig. 4.14, and Plate 4.3). These stratal packages 

are interpreted to be separated by a non-depositional hiatus. The first stratal 

package is characterised by the apparent sub-horizontal to descending 

clinoform progradation of core facies over their flanking strata. Within the 

core facies, clinoforms dip at up to 80°, and are slightly convex-up, but 

become concave-up as they flatten out and rapidly pass into flank strata (Fig. 
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4.14 and Plate 4.3). Flanking strata are only a minor component of this first 

stage of the bioherms growth (<1 0%), and these thicken and fan-out 

downslope from the toe of the core facies, suggesting upper slope bypass. 

Across this first stage of the bioherm's growth, geopetal structures shallow 

from 65-76° in the oldest core facies to 38-40° in the youngest (Fig. 4.14). 

These geopetal fabrics show that the bioherm rotated clockwise as it grew. 

The second stratal package of the Dona Ana records the continued 

growth of the 'secondary' bioherm, and is characterised by the basinwards 

progradation of core facies over their flanking strata. In this package 

clinoforms are concave-up and progressively flatten-out individually from core 

into flanking facies, and they also collectively thin towards the south (Fig. 4.14 

and Plate 4.3). The change of the bioherm's progradational geometry reflects 

the more significant development of flanking facies in this second biohermal 

stratal package, and is similar to the geometric change seen between stages 

three and four of the Tierra Blanca at Muleshoe Mound (e.g. compare Figs. 

4.11 & 4.14, and Plates 4.2 & 4.3). Foreslope strata of this second biohermal 

package fill the sea-floor topography of the deformed Hackberry beds. At the 

toe-of-slope, foreslope strata are strongly lithoclastic and grain-supported. 

This is believed to reflect continued upper slope bypass, and the 'plucking' of 

core-type mudstone nodules from the core - flank transition by crinoidal 

gravity-flows derived off Sugarloaf Mound. 

Downlapping of the third Dona Ana stratal package onto its precursor 

represents the demise of the 'secondary' bioherm, and followed the 

deposition of a major toe-of-slope unit that marks the boundary between the 

second and third packages (e.g. Fig. 4.14 and Plate 4.3). In this third 

package, clinoforms downlap asymptotically onto the adjacent sea-floor, 

where their base climbs slightly in a basinwards direction (Fig. 4.14 and Plate 

4.3). Here, the boundary between the second and third stratal packages (and 

termination of the 'secondary' bioherm) is recorded by the change from 

lithoclastic packstones and grainstones to mud-supported depositional 

fabrics. This change reflects the change from a bypass to an accretionary 

foreslope, and is probably due to shallowing of the slope and a change in the 

pattern and/or the type of grain production after the death of the bioherm 

(Hunt & Allsop, 1994). 

The fourth stratal package of the Dona Ana is formed by the Apache 

beds. These strata are exposed as a southwards thickening wedge around 

the antecedent Sugarloaf Mound, and are dominated by lithoclastic crinoidal 

grainstones. These bioclastic sands are interpreted to have bypassed across 
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and eroded clinoform topsets and the front of the 'secondary' bioherm, along 

with the topsets to clinoforms of the third Dona Ana stratal package. The 

distribution of the Apache beds reflects erosion and sedimentary bypass 

adjacent to Sugarloaf Mound, not post-depositional erosional truncation (as 

at Muleshoe, see section 4.6.1 ). 

Rancheria. 
The Rancheria Formation comprises both the Deadman and Joplin 

Members, and these onlap and overstep the antecedent topography of the 

'secondary' Dona Ana bioherm and Sugarloaf Mound. The base of the 

Deadman Member rests on a thin (0.1-0.3m (0.3-1ft)) sub-horizontal bed of 

the Apache bioclastic sands, and does not rest with angular unconformity on 

to the eroded clinoforms of the Dona Ana as it first appears (e.g. Figs. 4.14 & 

4.15, and Plates 4.3 & 4.7). Deadman Member sediments attain a maximum 

thickness of 5.5m (18ft), and are divisible into two stratal packages separated 

by an erosional unconformity (D1 and D2, Fig. 4.15 and Plate 4.8) (Hunt & 

Allsop, 1993). The lower D1 package has a parallel relationship with the 

underlying Apache beds, and is cut-out by a scoop-shaped erosional 

unconformity towards the north. This erosion surface locally exhumed the 

Dona Ana, and is marked by a thin black chert horizon (1 0-25mm thick) 

developed in the top of the D1 Deadman package and the Dona Ana. By 

analogy to other surfaces, this silicification suggests that a significant non

depositional hiatus separates the D1 and D2 stratal packages. 

The upper D2 stratal package of the Deadman Member fills the saucer

shaped depression eroded into D1 (Figs. 4.14 & 4.15, and Plate 4.8). Its lens

shape reflects both depositional thinning, where it laps-out northwards 

against the exhumed and eroded foreslope of the 'secondary' Dona Ana 

bioherm (Fig. 4.14 and Plate 4.3), and post-depositional erosional truncation. 

For example, towards the south, the D2 stratal package drapes the erosional 

palaeobathymetry of D1 (Fig. 4.14 and Plates 4.3 & 4.8). These draping 

strata are subsequently planed-off to a sub-horizontal surface on which the 

overlying Joplin Member lies, developing a local angular unconformity. 

Towards Sugarloaf Mound, the 'secondary' Dona Ana bioherm and the Joplin 

Member are separated by an erosive angular unconformity. This angular 

unconformity reflects the steep original depositional dips of core facies in the 

second Dona Ana stratal package, which were exposed through erosion of 

their topsets. In contrast, the dips of core facies in the first Dona Ana 
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Plate 4.8 Close-up of the southeastern flank of Sugarloaf Mound, showing the 
truncation surface between the D1 and D2 sequences of the Deadman Member. 

Plate 4.9 Close-up of the stratal relationships around the Dona Ana channel, W1 , 
exposed on the northern flank of Dog Canyon. 
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biohermal stratal package are not depositional, and were rotated during 

deposition (see earlier Dona Ana section). 

4.6.3 Dog Canyon. 

The Lake Valley and Rancheria Formations crop-out in imposing cliff 

exposures within Dog Canyon (Fig. 4.1 ). In its final few kilometres this canyon 

cuts a south-westerly course through the Sacramento Mountains and affords 

two spectacular north-easterly trending strike sections (0.51\m apart) through 

the Lake Valley platform (Fig. 4.8 and Plate 4.5). To the south, cliffs along the 

western escarpment of the Sacramento Mountains between Dog and 

Deadman Canyons expose a comparable dip section (Fig. 4.1 ). 

Arcente - Dona Ana. 
The rocks of the Arcente and Dona Ana Formations both form easterly 

thinning wedges in Dog Canyon, and are separated by a depositional hiatus. 

The base of the Dona Ana is abrupt, and mostly has a parallel relationship 

with the Arrow beds (<3m (1Oft) thick). Several thick gravity flow deposits 

typically form the basal 3-5m (1 0-16.5ft) of the Dona Ana, both debrites and 

lithoclastic high-density turbidites. These redeposited beds locally erosionally 

truncate and also onlap anticlinal structures developed within the Arrow and 

Hackberry beds (Fig. 4.8 and Plate 4.5). The anticlines clearly formed 

positive features on the sea-floor. As on the southern flank of Sugarloaf 

Mound, the Arcente was deformed either prior to, or during the deposition of 

the Dona Ana. 

On the northern side of Dog Canyon (e.g. Fig. 4.8) packages at the base 

and top of the Dona Ana frequently have only a limited lateral continuity, 

resulting in a complex stratigraphy. In contrast, its middle portion is 

characterised by several light-weathering redeposited beds which can be 

traced continuously over 1.5km (e.g. Fig. 4.8 and Plate 4.5). These are 

overlain by a mudstone-dominated level of similar, or greater continuity, 

which contains in situ Tabulate corals with a well-preserved delicate 

branching morphology. These corals suggest calm and clear-water 

conditions, whilst glauconitic grains and abundant silicification points towards 

low rates of deposition. This coralline level is overlain by the Apache beds, 

which here comprise up to 50% of the Dona Ana, and are significantly thicker 

than at Sugarloaf Mound, 1.1 1\m to the north-west (e.g. compare Figs. 4.8 & 

4.14, and Plates 4.5 & 4.3). 
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In strike section along the northern side of Dog Canyon, the Apache beds 

have the external geometry of a lens, with a tail extending towards the east. 

To the west they pinch-out against the mid-upper slope of the Dona Ana 

wedge, across which they are interpreted to have bypassed. The central part 

of the !ens of the Apache beds is shown in Figure 4.8 (Plate 4.5). Here, two 

levels of bioclastic sands are distinguished, the lower of which has a sheet

form and is overlain by orange-weathering mudstones and wackestones. In 

the upper level, bioclastic sands are contained within several conspicuous 

light-weathering channels (Fig. 4.16). These are up to 15m (49ft) thick, 75m 

(246ft) wide (Figs. 4.8 & 4.16, and Plate 4.9), and contain elongate crinoidal 

stems with a strong preferred NW-SE trend, which helps constrain the 

orientation of the channels (Fig. 4.17). 

At least one of these Dona Ana channels (E1, Fig. 4.8 and Plate 4.5) has 

well-developed lateral accretion surfaces, where channelised crinoidal 

grainstones pass laterally over a constraining raised-lip into levee facies. 

These levees are dominated by bryozoan-rich wackestones, and downlap 

onto older strata (Fig. 4.8). A particularly salient feature of the channels is 

their external geometry, which is lens-shaped in cross-section (e.g. Figs 4.8 & 

., 4.16, and Plates 4.5 & 4.9). These channels have a concave-up base and 

convex-up top. The geometry of their lower surface is largely depositional, 

and reflects their scoop-shaped erosive base, and the aggradation and 

lateral accretion of their fill. In contrast, their convex-up top is thought to be a 

post-depositional geometry, developed through differential compaction 

between channel axis and interchannel facies (see section 4.7.3). 

On the southern cliff section of Dog Canyon the channels of the Apache 

beds appear to have coalesced, with a less well-defined interchannel area 

between two thicker channel sections. It appears possible that the channels 

fed a lobate fan/apron deposit to the south, and the exposures of the 

southern cliffs are an intermediate stage, as the channels began to loose their 

individual identity. 

Rancheria. 
Exposures of the Rancheria Formation are of great importance within 

Dog Canyon, with respect to differential compaction. However, there is a 

pronounced variation in the style of compaction-related deformation of the 

Rancheria on the northern and southern sides of the canyon, and they will 

therefore be described in separate sub-sections. 
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Figure 4.17 Palaeocurrent data collected from the Dona Ana channels, exposed on the 
northern side of Dog Canyon, and the 'tube' structures, exposed on the southern side of the 
canyon. Note the close relationship between both sets of data. 
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Northern Cliffs of Dog Canyon. 

The Rancheria is composed of the Deadman and Joplin Members, and 

these both thicken towards the east in Dog Canyon. The Deadman Member 

generally has a parallel relationship with the top of the Dona Ana, except 

above pre-existing channels (and their erosionally truncated levees) at the 

top of the Apache beds (e.g. Fig. 4.8 and Plate 4.5). Gentle anticlinal 

structures developed in the Rancheria section are centred over the 

antecedent Dona Ana channels. These anticlines decrease in amplitude 

through the Deadman Member into the Joplin Member (Figs. 4.8 & 4.16, and 

Plate 4.5). On close inspection, the Deadman Member consists of three 

stratal packages that are locally separated by erosional unconformities. 

These stratal packages are called D1, D2 and D3 from oldest to youngest. 

There appears to be an association between the development of the 

unconformities within the Deadman Member, the anticlinal structures within 

the Rancheria and the antecedent channels of the Dona Ana (e.g. Fig. 4.8 

and Plate 4.5). This possibly reflects the differential compaction of the 

Apache beds during both deposition and subsequent burial of the Rancheria, 

and are discussed and modelled in more detail in section 4.7.3. 

Strata in the lower package of the Deadman Member (D1) have a 

concordant relationship with the convex-up top surface of the Dona Ana 

channels (Figs. 4.8 & 4.16, and Plate 4.9). Concentrating on the W1 channel 

(Fig. 4.16 and Plate 4.9), and specifically its western flank, the D1 stratal 

package dips west and is divided in two by a prominent level of dark

weathering peloidal grainstones. Their base is erosive and cuts-out several 

mudstone beds towards the axis of the underlying W1 channel (Fig. 4.18 and 

Plate 4.1 0). In turn, these peloidal sands are onlapped eastwards by basinal 

mudstones, which form the upper unit of the D1 stratal package (Figs. 4.16 & 

4.18, and Plates 4.9 & 4.1 0). The D1 package is here locally separated from 

D2 strata by a scoop-shaped erosional unconformity, similar to the feature 

seen at the same stratigraphic level on the southeast flank of Sugarloaf 

Mound (compare Figs. 4.15 & 4.16, and Plates 4.8 & 4.1 0). An erosion 

surface truncates the D1 stratal package 20m (66ft) east of the W1 channel 

axis, and extends to the eastern margin of the W2 channel (Fig. 4.8, and 

Plate 4.5). The D1 strata were completely eroded from above the W1 and W2 

channels, whose upper surface was exhumed and silicified. This silicification 

also extends up the D1 erosional unconformity, and marks the top surface of 

the D1 stratal package in the adjacent parallel bedded strata (Fig. 4.8). It also 

suggests that there was a depositional hiatus after the erosion of the D1 
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Plate 4.10 Close-up of the stratal relationships of the Deadman Member above the 
Dona Ana channel, W1 , exposed on the northern flank of Dog Canyon. 
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stratal package. The selective erosion of this D1 package, combined with the 

internal stratal relationships seen above the pre-existing W1 and W2 

channels is believed to indicate that the Dona Ana had begun to compact 

differentially (See section 4.7.3). 

Strata of the D2 package onlap and drape the erosional topography ·at 

the D1 stratal package over the western end of the W1 channel and the 

eastern wing of the W2 Dona Ana channel (Figs. 4.8 & 4.18, and Plate 4.1 0). 

The D2 stratal package is dominated by dark lime-mudstones, but is locally 

coarser within the depressions cut into the D1 stratal unit above the W1 and 

W2 channels. Here, lime mudstones are interbedded with 30-40mm thick, 

normally-graded, current-rippled, dark bioclastic and peloidal sands, up to 

very coarse sand grade, and whose bases are frequently loaded. These 

sands were funnelled into the 1Channel-like1 structures cut into the D1 

package. 

Like D1, D2 strata are also deformed into anticlinal structures centred 

over the axis of the pre-existing Dona Ana channels. Further to this, 

individual beds within the D2 stratal package thin as they are traced over the 

earlier W1 channel, suggesting early, syn-depositional differential 

compaction and subsidence over the W1 and W2 channels. The presence of 

syn-sedimentary boudinage (Plate 4.11) within units of the D2 package also 

support the view that the underlying Dona Ana channels were compacting 

differentially during their deposition. 

An angular unconformity locally separates the D2 and D3 stratal 

packages over the western and eastern margins of the antecedent W1 and 

W2 Dona Ana channels. This lies directly above the D1-D2 erosional 

unconformity (Figs. 4.8, 4.16 & 4.18, and Plates 4.9 & 4.1 0). Elsewhere, the 

D2 stratal package has a parallel relationship with the third, and strongly 

lithoclastic stratal package of the Deadman Member (D3), which is typically 

0.5-1 m (1.6-3.3ft) thick (Fig. 4.8). 

The Joplin Member has a sharp, parallel basal contact with the D3 stratal 

package of the underlying Deadman Member (Fig. 4.8 and Plate 4.5). 

Southern Cliffs of Dog Canyon. 

In contrast to the near-parallel contact between the Joplin Member and 

the Deadman Member on the northern side of Dog Canyon (Fig. 4.8), the 

contact above the channels on the southern side of the canyon has an 

unusual erosional relief. The western escarpment to the Sacramento 

Mountains exposes the continuation of relationships exposed on the south 
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Plate 4.11 Syn-sedimentary boudinage within the Deadman Member, exposed 
immediately above, and across the top of the Dona Ana channel, W!, northern flank of Dog 
Canyon. 

Plate 4.12 Irregular contact between the Deadman and Joplin Members, southern flank 
of Dog Canyon. Photograph is looking up to the base of the Joplin Member. 
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side of Dog Canyon. Here, the contact between the Deadman and Joplin 

Members is irregular and unusual, with 'tube-like' structures cut into the 

Deadman Member, and filled by bioclastic and peloidal sands of the Joplin 

Member. 

In areas between the 'tube' structures the Deadman - Joplin Member 

contact is also complex. On the scale of 1Om (33ft) or more it is sub

horizontal, although at a smaller scale the contact is characterised by 

irregular troughs (<2m (6.6ft) across, and <0.8m (2.6ft) deep) and pedestals 

(<0.3m (1ft) high by 0.2m (0.7ft) wide) cut into the Deadman Member (Plate 

4.12). The irregular relief (e.g. overhangs) and bioturbation of this surface 

suggests that the Deadman Member was at least partially lithified. However, 

there are several locations where flame-like projections of the Deadman 

Member penetrate up to 0.5m (1.6ft) into the Joplin Member (Plate 4.13). 

Alternatively, the latter structures suggest that the Deadman Member was in 

part unlithified, and could therefore become liquefied when loaded. 

The 'tube' structures locally represent up to 20% of the Deadman - Joplin 

Member contact, and are filled by erosively based, cross-bedded and 

normally-graded bioclastic sands of the Joplin Member (Fig. 4.19 and Plate 

4.14). There is a strong preferred orientation to the 'tubes' both individually, 

and as a set, and this is near-identical to that of the antecedent Dona Ana 

channels (Fig. 4.17) (Hunt & Allsop, 1993). The 'tubes' have a cylindrical 

external form, with high length to width ratios of 40:1 or greater. Their top 

surface is typically located just below the 'normal' Deadman- Joplin Member 

contact. In cross-section they have a circular, ellipsoidal (with the long axis 

horizontal), or more rarely a U-shaped profile. Widths of 0.1-0.5m (0.3-1.6ft), 

and depths of 0.1-1 m (0.3-3.3ft) are typical. However, larger ones also exist 

(such as shown in Figure 4.19 & Plate 4.14), and these provide the best clues 

as to the origin of the structures. Frequently the 'tubes' narrow upwards 

towards the 'normal' Deadman - Joplin Member contact, and their side walls 

are often corrugated (Fig. 4.19 and Plate 4.14). These corrugations appear to 

have resulted from preferential erosion of less-well cemented beds of the 

Deadman Member. The corrugations often correspond to individual graded 

beds in their fill. A similar origin is envisaged for ellipsoid 'tubes' which 

appear to have "tunnelled" laterally into softer beds of the Deadman Member. 

The morphology of most 'tube' structures is quite similar (as discussed 

above), however, there are some notable exceptions within the larger 'tubes'. 

The largest of these are up to 2.4m (8ft) wide and extend to 3m (1Oft) below 
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Plate 4.13 Flame structure of Deadman Member into overlying Joplin Member. 
However, also note rip-ups of Deadman Member contained in the Joplin Member, suggesting 
patchy cementation of the Deadman package. 
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Plate 4.14 Large 'tube' structure, filled with sediment of the Joplin Member, and cut into 
the Deadman Member, southern flank of Dog Canyon. 
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Figure 4.19 'Tube' structure exposed at the Deadman-Joplin contact, southern flank of 
Dog Canyon. 
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the sub-horizontal Deadman - Joplin Member contact. Two different types of 

'tube' are recognised:-

1) 'tubes' with discrete "feeder" pipes, and 

2) composite 'tubes'. 

The ellipsoid 'tube' illustrated in Figure 4.19 (Plate 4.14) is an example of 

type 1. It shows corrugated side walls, with a maximum width of 2.4m (8ft), 

with its top and base 1.7m (5.6ft) and 2.85m (9.4ft) respectively below the 

Deadman- Joplin Member contact (Fig. 4.19 and Plate 4.14). This 'tube' was 

"fed" via a vertical corrugated pipe which widens downwards. The pipe has a 

parallel orientation to the 'tube', and is interpreted as being the modified 

remnant of a neptunean dyke. It is thought that there was a suite of V-shaped 

neptunean dykes which developed parallel to the axis of the underlying Dona 

Ana channels (NW-SE). These dykes are believed to have originated as 

extension fractures, formed through stretching of the Deadman Member over 

the differentially compacting Dona Ana channel. This mechanism is described 

in further detail in section 4. 7 .3. 

Composite 'tubes' tend to have a more complex external geometry due to 

the "tunnelling" and lateral extension of their component 'tubes' into less-well 

cemented beds of the Deadman Member (Fig. 4.20 and Plate 4.15). These 

comprise of vertically stacked, and partially amalgamated 'tubes' (e.g. Fig. 

4.20 and Plate 4.15). Their varying cross-sectional profiles are thought to 

reflect the differential cementation of the Deadman Member. Like the pipe fed 

'tubes' described above, the composite 'tubes' are also interpreted to have 

initiated as neptunean dykes, but formed in areas where there were 

significant contrasts between the cementation of beds within the Deadman 

Member. 

Many of the mid-sized and larger 'tubes' (widths >0.3m (1ft)) are 

bioturbated on their side and overhanging upper walls, and so is the irregular 

Deadman - Joplin Member contact in the inter-tube areas. Importantly this 

bioturbation indicates that:-

1) the 'tubes' are not cut and fill structures, but were open 

features on the sea-floor, 

2) the relief of the contact in inter-tube areas formed an 

irregular sea-floor bathymetry, and therefore, 

3) the Deadman Member must have been at least partially 

lithified to support such an irregular erosional relief (Figs. 

4.19 & 4.20, and Plates 4.14 & 4.15). 
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Plate 4.15 Composite 'tube' structure made of numerous, individual 'tube' filled 
deposits, consisting of Joplin Member sediment, cut into the Deadman Member, southern 
flank of Dog Canyon. 
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Figure 4.20 Composite 'tube' structure exposed at the Deadman-Joplin contact, southern 
flank of Dog Canyon. Note the separate 'tubes' compared to Figure 4.19. 
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The bioturbation does not, however, have a uniform density and tends to form 

in discrete clusters surrounded by areas of unbioturbated sediment. It is 

associated with the excavation of two types of dwelling structures, Trypanites 

and Gastrochaenolites. Both Trypanites and Gastrochaenolites have a single 

and simple un-lined chamber which was open to the sediment surface (Plate 

4.16). These types of domiciles are common to hard and firmground surfaces 

respectively (Pemberton et al., 1992). 

The Trypanites borings and Gastrochaenolites burrows in the Deadman 

Member are contemporaneous with the trace fossil Palaeohelminthodia found 

in flaggy, upper stage plane beds of the Joplin Member. The latter trace fossil 

is typically included within the deep-water Nerites ichnofacies (Pemberton et 

al., 1992) which agrees with the sedimentological observations of the 

Deadman and Joplin Members. These suggest that the sea-floor was far 

below storm-wavebase and mainly anaerobic, with occasional dysaerobic 

intervals probably associated with the passage of turbidity currents. These 

currents are thought to have washed in short-lived, but ultimately doomed, 

opportunistic organisms which bioturbated the upper surface of the Deadman 

Member. 

The Trypanites and Gastrochaenolites association of domiciles, 

considered with the unusual erosional topography of the Deadman - Joplin 

Member contact, strongly suggests that the Deadman Member was either 

wholly or partially lithified. In contrast, the preferential excavation of certain 

beds, development of corrugations, and occasional flame structures indicates 

other beds remained uncemented/lithified. From the evidence described 

above it clearly appears that the Deadman Member was differentially 

cemented. 

4. 7 Compaction Phenomena. 

The following sections deal with the process of differential compaction, 

specifically the effects it produces, the timing, and the rate at which 

compaction appears to proceed. In order to achieve this, the effects of 

differential compaction are described and modelled for both Muleshoe and 

Sugarloaf Mounds. These two examples show contrasting bedding 

relationships produced by differential compaction, which mainly reflects 

differences in the timing of compaction. Also described and modelled is the 

effect of differential compaction that occurs across the Dona Ana bioclastic 

channels within Dog Canyon, providing interpretations for both the north and 

south cliff sections. 
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Plate 4.16 Burrows and borings within the mudstone of the Deadman Member along the 
contact of the 'tube' structures, and filled by Joplin Member sediment. 
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All the examples viewed in the field illustrate how compaction varied both 

spatially and temporally, and how this variety contributed in the development 

of differing bed geometries and arrangements. It is also apparent that the 

effects of differential compaction are most obvious at hiatal surfaces when 

sedimentation was relatively condensed, such as occurs at the base of the 

Joplin Member of the Rancheria. It therefore follows that the process of 

differential compaction is intimately associated with the local development of 

angular unconformities. Examples of this fact are described from all three 

areas mentioned above. 

4.7.1 Differential Compaction Around Muleshoe Mound. 

A. Introduction. 
The southern flank section of Muleshoe Mound offers continuous 

exposure of the Arcente, Dona Ana and Rancheria deposits, which facilitates 

compactional modelling and bed restorations. Compactional modelling is 

primarily concerned with the development of the angular unconformity 

between the Dona Ana and the overlying Joplin Member of the Rancheria 

Formation. On the southern side of Muleshoe Mound, Dona Ana beds dip at 

very steep angles as the bioherm is approached (Fig. 4.11 and Plate 4.2). 

The Dona Ana is then truncated with angular unconformity by the overlying 

Joplin Member of the Rancheria Formation, with the angle of unconformity 

increasing, then decreasing again, towards the mound. The boundary 

between the Dona Ana and the overlying Joplin Member represents a 

significant hiatus, as evidenced by conodont biostratigraphy (Fig. 4.2) (e.g. 

Lane, 197 4; 1982) and the abundant phosphate fragments within the basal 

units of the Joplin Member. 

A combination of quantitative data and qualitative observations are used 

to constrain the compaction of the Arcente muds and limestones surrounding 

Muleshoe Mound. Quantitative data consist of geopetal measurements, and 

bed thickness information. These data are obtained directly from field 

measurements, and also from the use of scaled field photographs and line 

drawings, divided into equally spaced measured sections. Qualitative data 

consist of field observations of stratal relationships (see section 4.6.1) and 

depositional fabrics. These data help in the constraining of the depositional 

profile at each time stage (e.g. deposition of the Hackberry beds, end of the 

Arcente, etc.), and the timing of compaction throughout the burial process. 
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Most importantly, quantitative data allows the interpretation of:-

• the original thickness of the Arcente; 
• 

• 
the present day compacted thickness of the Arcente; 

the original position of the top Hackberry beds surface; 

• the deflection of the Rancheria from an original sub-horizontal 

attitude. 

Combination of these points with qualitative field observations allows:-

• 
• 

• 

the reconstruction of the original Arcente thickness; 

the assessment of the time evolution of deposition and 

compaction; 

the removal of the effects of total burial compaction; 

by making some relatively simple assumptions. 

B. Qualitative Data. 
Stratal relationships facilitate division of strata on the southern flank of 

Muleshoe Mound into separate time increments, from which the influence and 

timing of compaction can be assessed at various stages of burial. For each 

increment, the relationships between the mound and flank deposits, the 

Arcente, Dona. Ana and Rancheria Formation can be reconstructed. It is 

possible, therefore, to remove the effects of burial compaction, and view the 

early compaction evolution of the Arcente for each time increment from 

reconstructions of the beds at each stage. 

Geopetal data combined with bedding information and depositional 

fabrics allows the reconstruction of original bed orientations and dips. The 

geopetal data presented on Figure 4.11 illustrate that, in general, geopetal 

dips reflect the dip of bedding at the same point within the Arcente and Dona 

Ana and, therefore, geopetal information can be directly related to bed 

attitude at the time of deposition, showing that a large amount of bed rotation 

has occurred within the Arcente and Dona Ana deposits since. 

Stratal relationships show that the bedding of the Dona Ana is 

concordant to the bedding of the underlying Arcente, however, dips 

measured along the silt layers within the lower part of the Dona Ana 

approach a maximum of 40° very close to the margin of the mound, and 

shallow to 13° about 75m (246ft) from the mound edge (Fig. 4.11 ). The 

change in dip is mimicked by the underlying Arcente (Fig. 4.11 and Plate 

4.2). It is proposed that differential compaction of the underlying fine-grained 

Arcente muds and limestones has produced the exaggerated dip within this 

region. Differential compaction occurs because of the abrupt thinning and 
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pinch out of the Arcente muds against the flank and mound facies (Fig. 4.11 

and Plate 4.2). Therefore, the main control on the post-depositional dips of 

the Dona Ana section is the local thickness of the underlying Arcente section. 

Some compaction would have occurred within the flank beds of the mound 

beneath the Arcente, but this would have probably been relatively minor due 

to the coarser nature of the sediment, and the fact that it was derived from the 

bioherm itself which is highly cemented at a very early stage (Shinn et al., 

1983). Indeed, differential compaction can be seen in a small (6 metre) 

section of the flank facies units where a small anticlinal structure has formed 

over a large block of megabreccia shed from Muleshoe (Fig. 4.11 and Plate 

4.17). This structure does not affect the top surface of the Tierra Blanca flank 

facies, suggesting that the pore fluid was expelled during early burial, and the 

majority of compaction in the flanking beds had taken place before the 

deposition of the overlying Arcente wedge. 

At this point it is instructive to consider two end-member models for the 

deposition, stratal relationships, and pore fluid pressure development of the 

southern Muleshoe Mound section. These models are based on the relative 

timings of deposition and compaction. Each model produces differing stratal 

relationships, and can therefore be assessed by comparison with the 

qualitative field data. The implications for porosity-depth evolution and pore 

fluid pressure evolution are quite different. Figure 4.21 a illustrates a situation 

where the depositional rate of the Dona Ana is matched by the compaction 

rate of the underlying Arcente. During deposition, equilibrium compaction is 

maintained by pore fluid loss throughout the Arcente section, and hence, 

pore fluid pressure remains hydrostatic. This results in the Dona Ana having 

a wedge shape synthetic to that of the Arcente, with individual beds 

fanning/diverging and thickening away from the mound. Older Dona Ana beds 

dip more steeply than younger beds due to the greater progressive 

compactional rotation. At the end of Dona Ana deposition no further 

compaction of the Arcente occurs as pore fluid pressure is already 

hydrostatic. This results in a flat depositional surface on the top of the Dona 

Ana, with no subsequent angular unconformity being produced between the 

Dona Ana and the Rancheria. 

Figure 4.21 c depicts the depositional arrangement and pore fluid 

pressure history for a situation where the deposition rate of the Dona Ana is 

greater than the compaction rate of the Arcente. In this scenario the Dona 

Ana develops a wedge shape due to the post-depositional rotation of the 

beds and erosional truncation by the subsequent Rancheria Formation. 
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Plate 4.17 Small anticlinal structure above megabreccia clast, within the flank strata on 
the southeastern side of Muleshoe Mound. 
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Internally, beds are parallel and generally steepen towards the mound. 

However, older beds do not dip more steeply as in the previous model. 

Compaction only attains an equilibrium condition after Dona Ana deposition, 

and it is during this stage of 'compactional catch-up' when bed rotation 

occurs, with the development of a compaction-induced post-depositional high 

developed over the mound itself. Subsequent erosion will create an angular 

unconformity at its base between the rotated beds of the Dona Ana and the 

Rancheria Formation (as shown in Fig. 4.21 c). One implication of this model 

is that deposition of the Dona Ana will induce near-surface overpressure in 

the Arcente, with no compaction occurring during Dona Ana times. Once 

deposition is halted, compaction of the Arcente will occur as overpressured 

pore fluids 'bleed off', until a state of hydrostatic pressure and equilibrium 

compaction has been achieved. 

The final model shown in Figure 4.21 b represents a mid-point example 

between the two previous models. Here, the deposition rate of the Dona Ana 

is only temporarily greater than the compaction rate of the Arcente. This 

means that during deposition of some rapidly deposited strata no 

accompanying compaction of the Arcente occurs, with the development of 

near-surface overpressure. With a slight hiatus in, or slowing of deposition, 

compaction 'catch-up' begins and pore fluid pressures equilibrate to 

hydrostatic, with the associated bed rotation. The reequilibration of pore fluid 

pressure will have an exponential decay curve, meaning that immediately 

when sedimentation stops the compaction rate of the Arcente will be greatest, 

but this will diminish progressively as pore fluid pressure nears hydrostatic. 

Internally therefore, beds show a divergence and thickening away from the 

mound, but they also have younger strata onlapping against rotated older 

strata. Again, older strata dip more steeply than younger strata, and 

compaction is complete and in a state of equilibrium at the end of Dona Ana 

deposition. The implication here is that overpressure is only temporarily 

induced in the Arcente muds, hence affecting compaction rates during Dona 

Ana deposition. 

Observations of the stratal relationships on the southern flank of 

Muleshoe Mound are most similar to model 4.21 c, in fact strikingly so, 

although elements of model 4.21 b may also be seen. Therefore, it is 

interpreted that deposition of the Dona Ana was greater than the rate of 

Arcente compaction for most of its deposition. However, there were times 

when compaction proceeded at a greater rate than Dona Ana deposition, 
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producing internal onlap. During the hiatus following Dona Ana deposition it 

is therefore interpreted that bleed off occurred. 

The present day dip and deflection of the top Rancheria surface from an 

inferred horizontal position reflects the total burial compaction of the Arcente 

after deposition of the Rancheria Formation. It is important to firstly correct 

Arcente bed thicknesses for this burial compaction before modelling the 

compaction due to the Dona Ana deposition. 

C. Methodology. 

Field observations were made on photomosaics of the exposed sections, 

plotting stratal relationships, dip and strike of beds, depositional fabric 

information, bedding style, presence of fauna, and geopetal information (e.g. 

Fig. 4.11 ). The exposed section of the southern cliffs of Muleshoe Mound was 

divided into twelve equally spaced sections, approximately 12m (39ft) apart 

(Fig. 4.22). For each section the present day thicknesses for the depositional 

units were recorded, after being corrected for perspective variations of the 

topography (see Table 4.1 ). No assumptions are made when measuring the 

present day thicknesses of the Arcente, the Rancheria, and the height of the 

Hackberry beds above the Tierra Blanca flank strata. 

However, three basic assumptions are required for the compactional 

modelling of the outcrop. Firstly, the inference of a 4° slope on the top 

surface of the Arcente allows the reconstruction of the original depositional 

surface immediately after the end of the Arcente deposition, and prior to 

loading by the Dona Ana. Secondly, the reconstruction of the top Rancheria 

surface to horizontal is required to enable the removal of the effects of burial 

compaction during and after Rancheria times. Finally it is assumed that the 

point at which the Arcente and Rancheria impinges northwards onto the edge 

of the mound itself, represents a fixed point about which differential 

compaction rotates the bedding surface. The combination of these three 

assumptions allows the measurement of:-

• The deflection of the Rancheria from an original horizontal 

attitude. 

• The original Arcente thickness. 

• The original height of the Hackberry beds, assuming that the 

Arcente compacts evenly throughout its thickness. 

• The amount of differential compaction of the Arcente, if a 

uniform thickness of 25m of Dona Ana is deposited on top. 

Table 4.1 shows all sets of data concerning Muleshoe Mound. 
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As stated above, no assumptions are made when the present day 

thicknesses of units are measured, although, some justification must be made 

for the assumptions which allow the restoration of stratal relationships during 

early burial. It is presumed that the top Rancheria surface was horizontal 

immediately after deposition. This appears to be a reasonable assumption 

with the interpretation of the Joplin Member being deposited by high-density 

turbidity and/or density currents, which would tend to fill the lowest 

topographic areas first, and generally smooth all topographic variations. 

Unfortunately there are no geopetals within the Joplin Member to back up this 

assumption, but sedimentary structures such as cross-bedding can be seen 

to be rotated from their original position. Therefore, to calculate the 

compacted thickness of the Arcente post-Dona Ana deposition, the 

measurements must be corrected for the additional compaction that has 

occurred during and after the deposition of the Rancheria Formation. 

Likewise, it is assumed that the top Arcente surface had a dip of 

approximately 4° immediately after its deposition. This assumption is 

supported by two sources of data. Firstly, the geopetals measured within the 

Arcente and Hackberry beds (Fig. 4.11) show that a dip of 6°, decreasing to 

3°· was present on this surface, and therefore 4° is a good average. 

Secondly, taking the work of Kenter (1990), it can be assumed that the 

maximum angle of dip for a freshly deposited lime mudstone is approximately 

4° (Fig. 4.23). Using this angle of deposition as a first approximation the top 

surface of the Arcente wedge can be drawn by simply rotating it around the 

point at which it impinges upon Muleshoe Mound, akin to the top Rancheria 

surface (Fig. 4.22). 

Finally further calculations, explained below, are based on the loading of 

the Arcente by an even 'blanket' of Dona Ana measuring 25m (82ft) thick. 

This assumption is based on the relationships seen at other mounds, 

especially the small mound exposed on the southern cliff section of Muleshoe 

Canyon (Plate 4.18). At this location it can be seen that the Dona Ana 

approximately remains the same thickness right the way across the top of the 

mound. However, this does not follow for other mounds (e.g. Sugarloaf 

Mound), and it is apparent that in general all mounds are different in their 

stratal relationships. Indeed, at Muleshoe Mound the Dona Ana can be seen 

to coarsen as the mound is approached suggesting that Muleshoe Mound 

acted as the sediment source area. Therefore, it is difficult to constrain the 

original thickness of the Dona Ana section any better. Bed relationships tend 

to form the only argument for this assumption, and these in turn are 
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Plate 4.18 Minor mound located in the cliffs to the south of Muleshoe Mound. Note how 
the Dona Ana package thins over the mound, and is also deformed into an anticlinal structure 
due to differential compaction. 
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supported by geopetal data, demonstrating the large scale rotation of the 

Dona Ana beds. Finally, the absence of clinoforms on a cliff scale (as seen at 

Sugarloaf Mound) illustrate a different style of loading the Arcente by the 

Dona Ana. Small clinoforms are only seen within the mounded unit of the 

Dona Ana at Muleshoe Mound (Fig. 4.5 & Plate 4.4). 

D. Calculations. 

Table 4.1 shows the primary data- measured from field photographs, and 

bed thicknesses corrected for total burial compaction~ The second part of 

Table 4.1 illustrates how this data have been used to calculate porosities and 

pore fluid pressures through a series of simple mathematical calculations. All 

calculations use the original or compacted Arcente thickness, and therefore, 

these are the first in the second half of the table. 

The Rancheria deflection represents the distance from the assumed 

horizontal depositional surface to the present day top surface of the 

Rancheria. This distance is added to the present day compacted thickness of 

the Arcente, providing the corrected compacted Arcente thickness, allowing 

the thickness of the Arcente immediately before the deposition of the 

Rancheria Formation and effects of burial compaction to be calculated. In 

turn, it also allows the calculation of the percentage of Arcente compaction by 

Dona Ana deposition to be calculated. Percentage compaction is calculated 

by the following formula:-

Initial thickness - compacted thickness 
I .. I h" k XlOO mt1a t 1c ness 

(equation 4.1, Weller, 1959) 

Further assumptions are required concerning the depositional porosities 

and the porosity-depth profile of lime muds, so that the original porosity and 

the compacted porosities of the Arcente can be calculated during progressive 

burial. Firstly, it was assumed that the original depositional porosity of a lime 

mud was 70% at the depositional surface, and that the porosity-depth profile 

approximated a straight line for the first 50m (164ft) of burial. These values 

reflect the curve presented by Hardenbol et al. (1981) (Fig. 4.24). Secondly, 

because of autocompaction, the porosity at half-height depths for any 

thickness of Arcente are taken to represent the average porosity of the unit. 

For a linear porosity-depth profile this assumption is true. Therefore, average 

depositional porosities for the Arcente can be estimated, varying due to the 

change on thickness across the 12 measured stations (Table 4.1 ). 
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!!TABLE 1- ~-Data. II 

Section no. 1 2 3 4 5 6 7 8 9 

Roncherio Deflection (m) 1.30 2.48 4.97 5.53 5.78 5.90 5.90 5.90 6.09 

Roncherio Thickness (m) 2.86 3.79 3.79 4.97 4.60 4.22 4.60 4.78 5.34 

Present Dono Ana Thickness (m) 5.77 10.98 14.72 15.21 15.95 16.63 18.04 19.94 23.56 

Dono Ana thickness (m) 25.00 25.00 25.00 25.00 25.00 25.00 25.00 2500 25.00 

Compacted Arcente Thickness (m) 9.32 9.38 9.69 12.73 13.11 14.78 16.58 18.26 18.07 

Original Arcente Thickness (m) 10.80 17.20 22.48 26.96 28.20 30.12 32.61 35.40 37.64 

Present Height of Hackberry beds (m) 6.46 7.64 6.99 9.10 10.G7 8.19 11.85 
Original Height of Hackberry Beds (m) 

-
11.35 16.19 13.G7 17.88 20.47 16.92 22.79 

··--

[IT ABLE 2- Calculated Data. II 

Section no. 1 2 3 4 5 6 7 8 9 

Original Arcente Thickness (m) 10.80 17.20 22.48 26.96 28.20 30.12 32.61 35.40 37.64 
Compacted Arcente Thickness (m) 9.32 9.38 9.69 12.73 13.11 14.78 16.58 18.26 18.07 
Roncherio Deflection (m) 1.30 2.48 4.97 5.53 5.78 5.90 5.90 5.90 6.09 

Corrected Compacted Arcente Thickness (m) 10.62 11.86 14.66 18.26 18.89 20.68 22.48 24.16 24.16 

% Compaction by Dono Ana Deposition 1.70 31.00 34.80 32.30 33.00 31.30 31.10 31.80 35.80 

Arcente Depositional Porosity (%) 69.58 69.34 69.11 68.92 68.88 68.80 68.70 68.60 68.50 

Calculated Arcente Compacted Porosity 69.06 55.54 52.63 54.11 53.54 54.56 54.60 53.99 50.92 

Compaction Ratio 

Basal Arcente Fluid Pressure 
Prior to loading_ (psi) 
Matrix Stress (psi) 
Dono Ana Porosity (%) 

Basal Arcente Fluid Pressure After 
Loading and Pore Fluid Bleed-off (psi) 

1.02 1.45 1.53 1.48 1.49 1.46 1.45 1.47 1.56 

Hydro 15.95 25.39 33.19 39.81 41.64 44.47 48.15 52.27 55.57 
Litho 23.26 37.14 48.66 58.47 61.18 65.40 70.88 77.03 81.98 

7.32 11.75 15.47 18.67 19.55 20.93 22.74 24.76 26.41 
42.00 42.00 42.00 42.00 42.00 42.00 42.00 42.00 42.00 

Hydro 52.59 54.42 58.56 63.87 64.80 67.44 70.10 72.58 72.58 
Litho 146.29 160.04 169.50 177.19 179.32 182.78 187.22 192.05 195.40 

Table 4.1 Primary data (Table 1) measured from Figure 4.22, for the southeastern 
flank of Muleshoe Mound. Table 2 illustrates the calculated data concerning the differential 
compaction and pore fluid pressure of the Arcente, prior and post loading by the Dona Ana 
sediments. Table 3 shows the calculations concerning compaction and pore fluid pressure of 
the Arcente for 5m increments of Dona Ana sedimentation, followed by total burial 
comoaction of the present dav. 

10 ll 
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Compaction After 5m of Dona Ana Deposition 

Burial Depth (m) 

Basal Arcente Fluid Pressure Hydro 
After 5m Dona Ana (psi) Litho 
Matrix Stress (psi) 

Pore Pressure (assuminQ no fluid loss) (psi) 

lcom12action After 10m of Dona Ana DeQosition I 
Burial Depth (m) 

Basal Arcente Fluid Pressure Hydro 
After 10m Dona Ana (psi) Litho 
Matrix Stress (psi) 
Pore Pressure (assumlnQ no fluid loss) (psi) 

Compaction After 15m of Dona Ana Deposition 
Burial Depth (m) 

Basal Arcente Fluid Pressure Hydro 
After 15m Dona Ana (psi) Litho 
Matrix Stress (psi) 
Pore Pressure (assuming no fluid loss) (psi) 

- -- ----- -

Compaction After 20m of Dona Ana Deposition 
Burial Depth (m) 

Basal Arcenfe Fluid Pressure Hydro 
After 20m Dona Ana (psi) Litho 
Matrix Stress (psi) 
Pore Pressure (assuming no fluid loss) (p_si) _ 

Compaction After 25m of Dona Ana Deposition 
Burial Depth (m) 

Basal Arcente Fluid Pressure Hydro 
After 25m Dona Ana (psi) Litho 
Matrix Stress (psi) 
Pore Pressure (assuminQ no fluid loss) (psi) 

Total Burial Compaction 
Original Arcente Thickness (m) 
Compacted Arcente Thickness·(m) 
Total% Compaction (Total Burial) 
Arcente Depositional Porosity(%) 
Calculated Arcente Compacted Porosity 
Compaction Ratio 

1 
15.80 

23.33 
47.87 
7.32 

40.55 

20.80 

30.71 
7247 
7.32 

65.15 

25.80 

38.09 
97.07 
7.32 

89.75 

30.80 

45.47 
121.67 
7.32 

_114.35 

35.80 

52.86 
146.27 
7.32 

138.95 

10.80 
9.32 . 
13.70 
69.58 
64.75 
1.16 

2 3 4 5 
22.20 27.48 31.96 33.20 

32.78 40.57 47.19 49.02 
61.77 73.31 83 15 85.86 
11.75 15.47 18.67 19.55 

50.02 57.84 64.48 66.31 

27.20 32.48 36.96 38.20 
40.16 47.96 54.57 56.40 
86.40 97.97 107.82 11054 
11.75 15.47 18.67 19.55 
74.65 8250 89.15 90.99 

32.20 37.48 41.96 43.20 
47.54 55.34 61.95 63.78 
111.03 122.62 132.49 135.22 
11.75 15.47 18.67 19.55 
99.28 107.15 113.83 115.67 

37.20 42.48 46.96 48.20 
54.92 62.72 69.33 71.16 
135.65 147.27 157.17 159.90 
11.75 15.47 18.67 19.55 
123.91 131.80 138.50 140.35 

42.20 47.48 51.96 53 20 
62.31 70.10 76.72 78.55 
160.28 171.93 181.84 184.58 
11.75 15.47 18.67 19.55 
148.53 156.46 163.18 165.03 

17.20 22.48 26.96 28.20 
9.38 9.69 12.73 13.11 

45.50 56.90 52.80 53.50 
69.34 69.11 68.92 68.88 
43.78 28.34 34.18 33.06 
1.83 2.32 2.12 2.15 

6 7 8 9 

35.12 37.61 40.40 42 64 

51.85 55.53 59.65 62.96 
90.09 95.58 101.74 106.71 
20.93 22.74 24.76 26.41 
69.16 7285 76.98 80.29 
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66.62 70 29 74.41 77.72 
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20.93 22.74 24.76 2641 
118.53 122.24 126.40 129.74 

50.12 52.61 55.40 57.64 

74.00 77.68 81.80 85.10 
164.16 169.68 175.87 18087 
20.93 22.74 24.76 26.41 
143.22 146.94 151.11 154.46 

55.12 57.61 60.40 62.64 

81.38 85.06 89.18 92.48 
188.84 194.38 200.58 205.59 
20.93 22.74 24.76 26.41 
167.91 171.64 '---175.82_ ~79.18 

30.12 32.61 35.40 37.64 
14.78 16.58 18.26 18.07 
50.90 49.20 48.40 52.00. 
68.80 68.70 68.60 68.50 
36.42 38.44 39.13 34.39 

2.04 1.97 1.94 2.08 
-

10 11 
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49.01 5006 
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Using the original Arcente thickness (X0 ), the compacted Arcente 

thickness (Y c), and the original depositional porosity (00 ) it is possible to 

calculate the compacted porosity (0c) of the Arcente using the formula of Van 

Hinte (1978) (see also Chapter 2):-

(1- <l>c)Yc 
Xo=-~~ 

(1- <l>o) 
(equation 4.2) 

A second useful calculation to assess the amount of compaction 

occurring is the compaction ratio as described by Truyol (1989), using the 

compacted porosity and the original porosity (0c and 00 , respectively):-

Compaction Ratio= ~ 1 - <l>c~ 
1 - <!>o 

(equation 4.3) 

Work by Truyol (1989) show that compaction ratios of 1.5 to 2.0.are typical of 

fine-grained muds within 25 to 30m (80 - 1OOft) of burial. 

Calculations concerning pore fluid pressures are all presented in Table 

4.1 for the base of the Arcente section at each measured station. Hydrostatic 

pore fluid pressures are simply calculated using the burial depth and a 

standard pressure gradient, dependant upon the salinity of the pore fluid 

(based on ODP data for the Bahamas, e.g. Lavoie, 1988). Lithostatic pore 

pressures however, require a more complicated calculation:-

Lithostatic pressure= [[( <1>-PI) + ((1- <!>)pm)] x d~~th] x 14.223 

(equation 4.4) 

where, 0 is the average porosity, Pt is the fluid density, Pm is the matrix 

density, and the answer is converted into pounds per square inch per metre 

(psi/m). Assumptions have to be made concerning the fluid density, 

dependant upon the salinity, and the matrix density of freshly deposited lime 

mudstones. The estimates are based on ODP (Ocean Drilling Program) data 

from the Bahamas (e.g. Lavoie, 1988). 

Utilising Terzaghi's (1925) equation:

S=a+P (equation 4.5) 

where, S is the total stress (or overburden stress), a is the matrix stress (or 

effective stress) and P is the pore fluid pressure, it is possible to evaluate the 

matrix stress (a) from the variables already calculated. At the initial stage of 

the Arcente deposition, with no Dona Ana yet deposited, pore fluid pressure 

(P) is hydrostatic and can be calculated. The total stress (S) can only achieve 
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a maximum value equal to the lithostatic pressure before geologically 

instantaneous dewatering occurs, and hence subtracting the hydrostatic 

pressure from the lithostatic pressure it is possible to calculate the maximum 

matrix stress for the Arcente. 

Further calculations can be made showing the change in maximum pore 

fluid pressure during the addition of the Dona Ana, utilising the matrix stress 

previously evaluated. Table 4.1 shows the calculations for the addition of an 

extra 5m of Dona Ana sediment at each stage. Firstly a new burial depth is 

calculated, always presuming no pore fluid is expelled from the Arcente, and 

therefore no compaction or bed thickness reduction has occurred. The new 

hydrostatic pressure is then evaluated as before. Lithostatic pressure is 

recalculated as before, but the effect of the addition of the Dona Ana 

sediment is built into equation 4.4, hence requiring an estimation of the Dona 

Ana depositional porosity. Estimates are based on the work of Meyers & Hill 

(1983). Matrix stress stays exactly the same as no compaction of the Arcente 

has occurred. A simple subtraction of the matrix stress from the recalculated 

lithostatic pressure (i.e. rewriting equation 4.5) provides an estimation of the 

maximum pore fluid pressure (P, in equation 4.5). 

Similar calculations are made for every addition of 5m of Dona Ana 

sediment, recalculating lithostatic pore pressure at each stage, and therefore, 

estimating the maximum pore fluid pressure evolution at the base of the 

Arcente during Dona Ana deposition. These results can be plotted on a 

pressure depth graph to outline the pressure 1Windowl in which pore fluid 

pressures existed for the Arcente during Dona Ana times, with the maximum 

pore fluid pressure representing the scenario of no compaction or pore fluid 

loss from the Arcente during Dona Ana deposition. As stated earlier (section 

4.6.1 ), stratal relationships suggest that this is a fair approximation. 

E. Results and Implications. 
The following section attempts to outline the compaction history of the 

Arcente, along with the prediction for the limits of the pore pressure 

development within the basal section of the unit. 

The calculations show that the Arcente underwent approximately 31 to 

36% (an average of 33.4%) bed thickness reduction after the deposition of 

25m (82ft) of Dona Ana. Column 1, the closest section to the mound, is 

ignored in these calculations as it appears to provide anomalous results. 

Three reasons are postulated for this anomaly: 
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1. There is poor exposure here and the exact position of the 

Arcente - Dona Ana contact is difficult to place. 

2. Satellite bioherm growth has occurred within the Dona Ana and 

may complicate the compaction history in the area. 

3. Results may reflect early cementation of the Arcente in this 

region, as pore fluids would have been expelled in this direction 

through the porous and permeable Hackberry beds. 

However, 33% compaction at such a shallow depth of burial appears to be 

extremely large, especially as Fruth et al. (1966) report that experimentally, 

30% compaction of carbonate mud occurs after 30bars confining pressure, 

equivalent to a burial depth of approximately 300m (984ft) at hydrostatic 

pressure (1 bar equals 14.5psi). The more recent work of Shinn & Robbin 

(1983) appears closer to the calculated values, as they report 50% 

compaction of lime sediments for 1OOm (328ft) of burial. 

Bed thickness values allowed the calculation of compacted porosities for 

the Arcente, and these are plotted on a porosity-depth diagram (Fig. 4.25), 

showing a very rapid decrease in carbonate mud porosity. Indeed, a 

decrease much greater than that proposed by published porosity-depth 

curves for carbonate rocks (e.g. Hardenbol et al., 1981; Schmoker & Halley, 

1982). However, compaction ratios calculated average 1.51 for the southern 

flank of Muleshoe Mound, a similar figure to that found by Truyol (1989) for 

the shallow burial of fine-grained sediments. 

To model the pore fluid pressure history for the Arcente calculations were 

made for 5 stages during the deposition of the Dona Ana, allowing no pore 

fluid release from the Arcente. Hence the values represent a maximum value 

for the pore fluid pressure. Calculations are based on a formation fluid 

density of 1.04g/cm-3, equivalent to a fluid salinity of 36,000mg/l Cl- at 20°C, 

and a mud density of 2.60g/cm-3, which have been estimated on the basis of 

ODP data from the Bahamas (Schlumberger, 1972; Lavoie, 1988). The 

modelling also assumes that the Arcente formed a sealed unit during Dona 

Ana times. Figure 4.26 illustrates the fluid pore pressure 'window' within 

which the fluid pressure at the base of the Arcente must have been during the 

deposition of the Dona Ana. Bedding patterns, particularly in the lowermost 

stratal package of the Dona Ana, suggest some compaction of the Arcente 

occurred syn-depositionally, although this appears to be only a very small 

percentage of the total compaction, the majority of which can be 

demonstrated to have occurred post-depositionally. Any syn-depositional 

compaction of the Arcente means that the pore fluid pressure lies to the left of 
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Station 4, Southeastern Flank, Muleshoe Mound 
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Figure 4.25a-c Porosity-Depth profile for the Arcente at: (A) station 4, (B) station 7, and (C) 
station 11 , of the southeastern flank of Muleshoe Mound (see Figure 4.22) . Porosity evolution 
is believed to follow a path similar to the Baldwin & Butler (1985) curve until the Dona Ana is 
deposited. At this point, a situation of no porosity-loss is shown (i.e. zero compaction) , until 
the end of Dona Ana deposition, when pore fluid pressure bleeds-off during the hiatus, and 
Arcente porosity is reduced by compaction to a point on/close to the Baldwin &. Butler (1985) 
curve. 
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Station 7, Southeastern Flank, Muleshoe Mound 
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Station 11, Southeastern Falnk, Muleshoe Mound 
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Figure 4.26a-c Pressure-Depth plot for the Arcente at: (A) station 4, (B) station 7, and (C) 
station 11 , of the southeastern flank of Muleshoe Mound (see Figure 4.22) . Dark arrows show 
the pore fluid pressure evolution, which is hydrostatically pressured until the Dona Ana is 
deposited. The yellow envelope of the graph illustrates the maximum possible pore flu id 
pressure (i.e. no compaction during Dona Ana deposition). Pore fluid pressures are 
interpreted to lie somewhere within this envelope, and can never attain lithostatic pressure. 
The thicknesses t1 and t2 represent the Arcente (red) and Dona Ana (yellow) before and after 
compaction , respectively. 
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Hydrostatic, Lithostatic and Maximum Pore Fluid Pressure Paths 

Station 7, Southeastern Flank, Muleshoe Mound, 

Sacramento Mountains, New Mexico 
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Hydrostatic, Lithostatic and Maximum Pore Fluid Pressure Paths 

Station 11, Southeastern Flank, Muleshoe Mound, 

Sacramento Mountains, New Mexico 
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the maximum pore fluid pressure line on Figure 4.26 (i.e. somewhere in the 

pressure 'window'). Figure 4.26 also illustrates that the maximum pore fluid 

pressure within the Arcente never reached lithostatic pressure, the point at 

which the sediment will 'fail' and catastrophically dewater. This point is also 

supported by the fact that no sedimentary structures are apparent within the 

exposures of the Arcente to suggest that rapid dewatering had occurred in 

the sediments surrounding Muleshoe Mound. 

The production of overpressure allows a qualitative assessment of the 

relative rates of deposition and compaction (Fig. 4.27). During the deposition 

of the Dona Ana the rate of compaction must have been considerably less 

than the rate of deposition, reflecting the low permeability of the Arcente 

muds. Possibly only slow dewatering and compaction of the Arcente occurred 

at this early stage of burial, until a more effective seal was formed. As more 

Dona Ana was deposited the compaction rate of the Arcente became 

appreciably less than the rate of deposition. This is interpreted to represent 

either an improvement in the sealing of the Arcente, or a more rapid 

deposition of the Dona Ana, resulting in progressively larger amounts of 

overpressure building up within the Arcente (Fig. 4.28a-b), as described 

earlier. Once deposition ceased at the end of the Dona Ana, compaction 

rates exceeded the deposition rates and pore fluid began to bleed off in an 

attempt to attain equilibrium compaction and hydrostatic pore fluid pressure 

(Fig. 4.28c). It was during this period, when the compaction rate had risen 

relative to the deposition rate, which was effectively zero, that the majority of 

the 33% compaction of the Arcente occurred as overpressure was reduced by 

dewatering, and the Dona Ana beds were rotated due to thickness variations 

approaching the mound. Rates of dewatering were greatest immediately after 

deposition ceased due to the greater pore fluid pressure gradients after Dona 

Ana deposition, and compaction rates gradually decreased along with the 

decrease in pressure gradients (Fig. 4.27). This story is slightly complicated 

as compaction proceeded at a lower rate than the rate of pore fluid pressure 

build-up during a 'forced regression' (Fig. 4.27) when pore fluid pressure built 

once more. Compaction 'catch-up' occurred immediately after this episode as 

the overpressured pore fluids bled off (Fig. 4.27). The effects of sea-level on 

compaction rates and pore fluid pressures will be discussed in more detail 

later. 

Pore fluid would have flowed at a slow rate, with the overpressure acting 

as the driving force to dewatering. Flow pathways can probably be separated 

into three groups depending upon the position of pore fluid within the 
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Figure 4.28a-e Interpreted depositional history and pore fluid pressure development, for the 
southeastern flank of Muleshoe Mound. 
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Arcente. Firstly, pore fluid within the Arrow beds, the uppermost section of the 

Arcente, would probably have been forced upwards into the more permeable 

grainstones of the Dona Ana. This pathway will have provided the fastest 

route for fluid expulsion, and therefore represents the fastest region of 

compaction. Secondly, pore fluid near the base of the Arcente section may 

have been forced down into the flank sediments of Muleshoe Mound, where 

permeabilities would have probably been greater than the lime muds within 

certain coarser horizons. At this point fluid flow would most likely have been 

oblique, climbing up bedding towards the mound itself, to be expelled at the 

upper mound contact with the Arcente. Finally, the slightly more grainy units 

within the Hackberry beds may also have provided more permeable flow 

pathways that would have expelled pore fluid in a horizontal direction towards 

Muleshoe Mound. Pore fluid within these central parts of the Arcente section 

probably required the longest periods of time to be expelled, and hence, were 

the main contributing factors to the slow compaction rates of the Arcente. 

After a 25 to 30° bed rotation of the Dona Ana had occurred during the 

period of non-deposition, erosion of the topographically high areas took place 

during subaerial exposure, resulting in the formation of the sequence 

boundary. Loading _of the Arcente was re-established by the Rancheria 

Formation (Fig. 4.28c-d), mainly consisting of the later Joplin Member in the 

proximity of Muleshoe Mound, and containing no lithoclasts of the underlying 

Dona Ana. The reintroduction of sedimentation created the local angular 

unconformity between the Dona Ana and the Rancheria Formation (Fig. 

4.28d). Unlike the Dona Ana, it is impossible to separate the amount of 

Arcente compaction that occurred during this stage from the total amount of 

compaction seen today. It is also impossible to compare the compaction rate 

of the Arcente to the deposition rate of the Joplin Member, and propose 

overpressure or its absence within the Arcente section at this time. Therefore, 

from this point only total burial compaction can be assessed (Fig. 4.28e). The 

final part of Table 4.1 shows the calculations where between 45 and 57% 

compaction (an average of 51% compaction) of the Arcente has occurred. 

Compacted porosities are calculated as before, but burial depth is uncertain 

(Estimates of the thickness of sediments above indicate a minimum depth of 

2Km). Compaction ratios for total burial average 2.06. Bed rotation occurred 

further during subsequent burial as the top surface of the Joplin Member is 

rotated from its presumed original horizontal attitude (Fig. 4.28e). However, 

the amount of rotation at this stage is an order of magnitude less than that 

which occurred due to loading by the Dona Ana. 
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4.7.2 Differential Compaction Around Sugarloaf Mound. 

Superficially, Sugarloaf Mound provides a similar example of differential 

compactional control upon stratal relationships as seen at Muleshoe Mound. 

A similar angular relationship between the base of the Rancheria Formation 

and the underlying Dona Ana can be seen, with the beds of the Dona Ana 

becoming increasingly older as the mound is approached (e.g. Fig. 4.15). 

However, the angular relationship is a result of the depositional dips of 

clinoformed Dona Ana strata, being truncated by the Apache beds and 

Rancheria deposits. Therefore, the two 1giant1 mounds show a very different 

bedding relationship between the Lake Valley Formation and the overlying 

Rancheria Formation. The relationship between the Arcente and the Dona 

Ana is also significantly different compared to Muleshoe Mound, which 

probably provides the reason as to why stratal patterns differ. The main 

difference concerns the exact timing of compaction within the Arcente 

Member surrounding Sugarloaf Mound. 

Exposures of the flanking strata to Sugarloaf Mound are complicated by 

the 1Secondaryl Dona Ana bioherm, and the large clinoforms of the Dona Ana 

(Fig. 4.14 and Plate 4.3). The underlying Arcente Member is thinner here, 

and only fills a small part of the depositional topography created by the 

bioherm, unlike Muleshoe Mound. Also, the topmost section of the Arcente, 

the Arrow beds, is considerably thinner (<2m (6.6ft)) with the Dona Ana 

deposited very close to the top of the Hackberry beds. The major contrast 

between the Arcente - Dona Ana contact is that at Sugarloaf Mound the 

Arcente muds are deformed and folded (Fig. 4.14 and Plate 4.3). Importantly, 

there is discordance between the bedding of the Arcente and the overlying 

Dona Ana units, with the Dona Ana beds downlapping onto the top surface of 

the deformed Arcente muds (Fig. 4.11 and Plate 4.2). This contrasts with the 

exposures of Muleshoe Mound where the bedding between the Arcente and 

Dona Ana units is concordant. 

The angle of unconformity between the Dona Ana and the overlying 

Deadman Member of the Rancheria Formation does not appear to be 

increased by differential compaction of the Arcente mud. Dips within the 

Dona Ana beds are depositional, reflecting their deposition as clinoforms that 

have been eroded (Fig. 4.29c-d). Their offlapping relationship means that the 

individual units of the Dona Ana young away from the mound. There is no 

indication of post-Dona Ana bed rotation due to differential compaction of the 

Arcente Member. This contrasts with Muleshoe Mound where bed rotation 

occurred during the hiatus in sedimentation at this level, leading to the 
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Figure 4.29a-e Interpreted depositional history and pore fluid pressure development, for the 
southeastern flank of Sugarloaf Mound. 
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conclusion that the compaction of the Arcente muds at Sugarloaf Mound 

occurs in a different fashion and time to that at Muleshoe Mound. 

The stratal relationships suggest that at Sugarloaf Mound the Arcente 

muds had fully autocompacted to an equilibrium condition prior to Dona Ana 

deposition (Fig. 4.29a). During the initial stage of bioherm growth loading of 

the Arcente occurred to the south of Sugarloaf Mound by the satellite 

bioherm. Its growth is interpreted to have created higher pore fluid pressures 

in the underlying region of the Arcente, as the bioherm growth and loading of 

the Arcente exceeded the rate of pore fluid bleed off during this early stage. 

However, as loading increased the process is interpreted to have continued 

until pore fluid pressures reached the point at which catastrophic dewatering 

occurred (Fig 4.29b). This sudden dewatering of the Arcente probably 

occurred as pore fluid flowed horizontally away from the mound in a 1Wave

like1 action, deforming the bedding within the Arcente into a series of 

asymmetric folds (Fig 4.29b). Further satellite bioherm growth and 

progradation in the Dona Ana developed clinoforms which prograded and 

downlapped onto the deformed Arcente, which had now reached equilibrium 

compaction and hydrostatic pore fluid pressure (Fig. 4.29c-d). The Apache 

beds are only developed to the south of the flank strata, and probably 

represent the remnant depositional topography and sedimentary bypass after 

progradation (Fig. 4.29e). They eroded the topsets of the Dona Ana 

clinoforms, producing the angular relationship (Fig. 4.7). Finally, the 

Rancheria Formation was deposited, and eroded the uppermost section of 

the satellite bioherm, producing the angular relationship in this area (Fig. 4.7) 

Differences in the stratal patterns between Muleshoe and Sugarloaf 

Mounds can be attributed to the different compactional behavior of the 

Arcente section at both locations. It appears that at Sugarloaf Mound the 

Arcente had mainly dewatered prior to loading and there was no production 

of large amounts of near-surface overpressure during the deposition of the 

later stratal packages of the Dona Ana (Fig. 4.29a-c). In contrast, at 

Muleshoe Mound the Arcente section had failed to dewater at a rate equal to 

that of deposition of the Dona Ana sediments and had, therefore, built up 

near-surface overpressure. Indeed,· the Arcente section may not have 

autocompacted at a rate necessary to achieve equilibrium pore fluid 

pressures during its own deposition at Muleshoe Mound. There is also a 

major difference in the style of the loading of the Arcente between the two 

mounds. At Sugarloaf Mound, the Arcente is 1point-loaded1 by the satellite 

bioherm, creating a pressure wave of pore fluid away from the mound. In 

250 



Chapter 4: New Mexico. 

contrast, the Arcente surrounding Muleshoe Mound has a broad load of Dona 

Ana effectively blanketing the entire surface, therefore not producing a 

pressure wave of pore fluid away from the mound. 

It is proposed that the local thickness of the Arrow beds may play an 

important role in the compactional behavior of the Arcente section. The Arrow 

beds may have formed a temporary 'seal' to the section, hindering the 

expulsion of pore fluid and thus producing under-compaction and near

surface overpressure in the Muleshoe Mound region. This in turn may reflect 

the difference in the palaeogeographic location of the two mounds, with 

Sugarloaf Mound being closer to the open ocean in the south, and having 

only a very thin section of Arrow beds. Pore fluid flow within the Arcente muds 

may have been easier due to the lack of "confinement" of the Arcente section 

at Sugarloaf Mound, contrasting with the same section on the platform that 

was "baffled" by numerous large and small buildups. 

4.7.3 Differential Compaction Above Dona Ana Channels- Dog Canyon. 

A. Introduction. 
Unlike the previous two examples, where the emphasis has been on the 

differential compaction of the Arcente muds and its specific timing, the 

following section deals with the compaction of the Apache beds within the 
'• 

topmost section of the Dona Ana. As described in section 4.6.3 the Apache 

beds on the northern cliff section of Dog Canyon form lens-shaped channel 

cross-sections (Fig. 4.8 and Plate 4.5). The underlying Arcente beds are also 

folded and deformed as at Sugarloaf Mound, and therefore, using that 

location as an analogy, it is assumed that the compaction of the Arcente 

section had very little effect on the deposition of the Dona Ana and the 

overlying Rancheria Formation in the area. Hence, the present study 

concentrates on the deposition and compaction of the Dona Ana, the 

overlying Deadman Member (D1 to D3), and the Joplin Member. It 

investigates the production of topography above the channels, the 

development of unconformities within the Deadman Member, and the 

formation of the 'tube' structures on the southern side of Dog Canyon. 

B. Qualitative Data. 

Compactional modelling of the Dog Canyon channels is slightly more 

difficult and subjective than the earlier examples. The reason is that unlike at 

Muleshoe Mound, where the bioherm is early cemented and therefore 

incompactible, making it simple to reconstruct the original surface of the 
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Arcente section with very few assumptions, no such reconstruction can be 

made for the exposures in Dog Canyon. Here, there is no "reference point" of 

zero compaction about which beds can be rotated to their original 

thicknesses. Therefore, with all horizons having been compacted during their 

subsequent burial, estimation of their original depositional thickness is 

extremely difficult. The same problem was encountered for the modelling of 

Ridge Basin sediments in Chapter 3, where vitrinite reflectance data aided 

estimation of the maximum depth of burial. In the present case, Meyers & Hill 

(1983) show that similar coarse-grained skeletal grainstones were deposited 

at 42% original porosity, and have compacted to 27% porosity. Thesedata 

provides the best estimates for compacted porosities of the Dona Ana 

channels, and will be used throughout the subsequent modelling. 

C. Methodology. 
Modelling of the channel sections is generally similar to the modelling of 

Muleshoe Mound (see section 4.7.1 ). Figure 4.30 shows channel W1, which 

was divided into ten equally spaced sections. To allow calculations to be 

carried out several assumptions have to be made:-

• The Arcente - Dona Ana contact approximates a horizontal 

• 

• 

• 

• 

• 

surface. 

The Dona Ana channels were original deposited with flat tops . 

The Dona Ana deposits consist of a lower sandy horizon, a 

middle mud dominated section, and topped by sand dominated 

channels. 

The average compacted porosity of the channel sands is 27%, 

and can be estimated by comparison with the study of Meyers & 

Hill (1983). 

The average depositional porosity of the channel sands is 42% 

(Meyers & Hill, 1983). 

Sands compact according to the equation of Sclater & Christie 

(1980); lime muds compact according to the curve of Hardenbol 

et al. (1981) 

• Section 7 formed the thickest original section of the Dona Ana. 

The first assumption permits the present thickness of the Dona Ana sand, 

the Dona Ana mud, the Apache beds, and the Deadman Member to be 

measured (i.e. the primary data). Assuming that the Apache beds were 

deposited as flat-topped channels with interchannel areas enables the 

construction of a horizontal line to represent the compacted position of the 
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original depositional surface. The line forms a tangent to the present day 

channel top because of the differential compaction that has occurred due to 

the change in thickness of the muddy Dona Ana section immediately 

underlying the channels, and due to the change in facies from coarse-grained 

channel deposits to fine-grained interchannel muds (Fig. 4.30). 

The porosity estimates from the work of Meyers & Hill (1983) allow the 

calculation of the original depositional thicknesses of both the basal sand 

section, and the Apache beds. Further, their porosity estimates enable an 

estimation of the compacted mud porosity at the same depth of burial, 

assuming the sands compact according to Sclater & Christie (1980), and the 

lime muds compact according to the curve of Hardenbol et al. (1981 ). Taking 

section 7 as the thickest, it is now possible to calculate the original thickness 

of the mud unit for all the other measured sections. Hence, the percentage 

compaction of the mud unit can now be assessed. 

D. Calculations. 

Table 4.2 shows the primary data taken from field photographs and line 

drawings of channel W1. Calculation of original thicknesses are made 

possible using equation 4.2, and compaction ratios from equation 4.3 (see 

section 4.7 .1 ). The original mud unit thickness is calculated by subtracting 

the original basal sand thickness and the original channel sand thickness 

from the decompacted thickness of section 7. Percentage compaction of the 

mud is then assessed using equation 4.1. 

E. Results and Implications. 

The original thickness of section 7 is 28.55m (94ft), and therefore 

represents the thickness of the Dona Ana blanket at this location. Correcting 

all the mud thicknesses to produce a flat topped and based Dona Ana 

section, provides the estimates for the mud unit thickness, from which the 

percentage compaction can be assessed. Percentage compaction of mud 

ranges from 46-61% with an average of 54.53%. The compaction ratio for the 

mud deposited at 70% porosity and compacted to 29% porosity is 

approximately 2.3. 

Estimates for the percentage compaction of the muddy section of the 

Dona Ana, and the interchannel areas are very close to those calculated for 

the Arcente section compaction at Muleshoe Mound (i.e. 54% compaction 

compared to 51%). However, care is needed as the modelling of the Dog 

Canyon channels is only one end-member to several possibilities, with a 
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number of assumptions having to be made. Most of the assumptions 

explained above can be justified using published research, and changes in 

the values assumed make little difference to the final calculation. However, 

taking section 7 as the total thickness of the Dona Ana means that all mud 

thicknesses are corrected to produce an even 'blanket' of Dona Ana. 

Changes are made in the mud thickness because it is this unit where most 

errors in thickness estimation and compactional modelling will occur. Further 

to this is the fact that the Dona Ana mud unit is not purely fine-grained mud 

like the Arcente, but contains some coarser-grained beds within it, thus 

affecting its compactibility. 

Compactional modelling provides useful information on the amount 

sediments compact when buried. Often it is somewhat harder to understand 

at what time, and at what rate, this compaction has occurred. However, the 

Apache bed channels exposed in Dog Canyon provide unique evidence that 

begin to answer the questions concerning the timing of compaction. The 

evidence comes in the form of small scale angular unconformities (exposures 

up to 1Om (33ft) across), where angular differences of <1 oo are developed 

within the overlying Deadman Member. These unconformities usually, but not 

always, separate the three stratal packages of the Deadman Member (D1 to 

D3), described in section 4.6.3. 

As stated earlier in section 4.6.3 the lowermost D1 stratal package is 

parallel with the convex top of the buried channel. The following dark

weathering peloidal grainstone eroded the top of the D1 strata forming a 

subtle angular unconformity (Fig. 4.18 and Plate 4.1 0). It is therefore 

postulated that the D1 stratal package was deposited at a rate slightly greater 

than the rate of underlying compaction, hence producing near-surface 

overpressure. As deposition stopped compaction of the buried section 

occurred in an attempt to achieve equilibrium compaction. A product of this 

differential compaction was bed rotation within the D1 stratal package, and 

the slight doming of the top surface of the Apache bed channels. Deposition 

of the dark-weathering peloidal grainstone eroded the topography of the 

depositional surface, producing the angular unconformity (Figs. 4.16 & 4.18, 

and Plates 4.9 & 4.1 0). Sedimentation temporarily stopped again, with 

compaction occurring post-depositionally creating topography over the 

channel deposits. When sedimentation began again, the deposited beds 

onlapped the peloidal grainstone from the east, and eventually covered the 

entire section, forming the upper section of the D1 stratal package (Figs. 4.16 

& 4.18, and Plates 4.9 & 4.1 0). 
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Sedimentation rates during D1 deposition overall appear to have been 

greater than compaction rates, and therefore once deposition of D1 had 

ceased compaction 'catch-up' occurred in the underlying section. This 

created significant topography on the depositional surface, with the 

palaeotopographic highs situated above the Apache bed channels (Fig 4.31 ). 

In the region of channels W1 and W2 it appears that the topography 

produced by differential compaction created instability within the sediment 

which subsequently slumped, leaving behind a scoop-shaped slump scar. 

Silicification along the scoop-shaped slump scar shows that there was a 

significant break in sedimentation between the deposition of the D1 and D2 

stratal packages. Deposits of the D2 stratal package filled the erosional 

topography (Figs. 4.16, 4.18 & 4.31, and Plate 4.9). Field evidence of syn

sedimentary boudinage (Plate 4.11) developed within the D2 stratal package 

suggests that some differential compaction was occurring during deposition 

of D2, creating a stretching effect of the beds as they rotated due to 

underlying differential compaction across the channel axes. However, 

differential compaction also occurred post-D2 deposition, once again creating 

topography over the channels. This was finally eroded by, or prior to the 

deposition of the D3 stratal package creating another angular unconformity 

(Figs. 4.16 & 4.18, and Plates 4.9 & 4.1 0). 

Concordant with the exposures around the Muleshoe Mound area, the 

observations made in Dog Canyon support a model of near-surface 

compaction occurring syn-depositionally to a small degree, but with 

depositional loading occurring at a greater rate than underlying compaction. 

This created a substantial amount of near-surface overpressure. Excess pore 

pressure dissipated during a hiatus in sedimentation, as the pore fluids 

attempted to reach a value equivalent to hydrostatic pressure. During periods 

of pore pressure dissipation bed rotation occurred, and a small angular 

unconformity could be created due to erosion of the topography produced on 

the depositional surface, or by the onlapping of this topography. 

Stratal patterns on the southern side of Dog Canyon differ significantly, 

but still show evidence of differential compaction. Section 4.6.3 describes the 

unique 'tube' structures found within the Rancheria Formation of the southern 

cliffs of Dog Canyon, and the western escarpment of the Sacramento 

Mountains, running south to Deadman Canyon (Fig. 4.1 ). Within this region 

there appears to have been differential near-surface cementation of the 

Deadman beds which cover the Dona Ana section. Once deposition of the 

Deadman beds ceased, differential compaction occurred across the 
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underlying Apache bed channels with the associated production of 

topography across the channel sections (Fig. 4.31 ). Due to the cementation 

of the Deadman beds in this region, the extension over the channels resulting 

from differential compaction was accommodated by a series of neptunean 

dykes aligned parallel to the underlying channels (Fig. 4.31 d). The dykes 

formed open fractures on the sea-floor, and defined the course of the earlier 

channels. Turbidite deposits of the Joplin Member scoured the dykes, 

enlarging them by eroding the less cemented beds within the Deadman 

section. The introduction of turbidites also temporarily improved the 

oxygenation level of the sea water (from anaerobic to dysaerobic) allowing 

opportunistic organisms ( Trypanites and Gastrochaenofites) to bioturbate the 

Deadman beds, including the neptunean dykes (Plate 4.16). 

4.8 Conclusions. 
The field outcrops viewed in the Sacramento Mountains of New Mexico 

provide a considerable amount of information concerning differential 

compaction and the overall process of sediment compaction. Importantly, the 

outcrops provide unique data concerning the exact timing of compaction, and 

some clues as to the speed at which this compaction may have occurred. 

Therefore, the understanding of the compactional process is greatly 

enhanced, enabling the refinement of forward modelling techniques of 

compactional effects within other depositional systems (e.g. submarine fan 

deposition, see Chapters 5 & 6). 

With regards to differential compaction, evidence appears to show that 

large amounts of bed rotation, and sea-floor topography can be produced 

provided that compaction occurs post-depositionally. If compaction occurs 

syn-depositionally any sea-floor topography is subdued more or less 

instantaneously, resulting in an essentially flat sea-floor (in most clastic and 

bioclastic settings). However, outcrop data from Muleshoe Mound suggest 

that this may not generally be the case. Stratal patterns surrounding 

Muleshoe Mound illustrate that the depositional rate of the Dona Ana section 

is greater than the compaction rate of the underlying Arcente mud. Bed 

relationships within the lower stratal packages of the Dona Ana show 

evidence for a small amount of syn-depositional compaction. However, this 

only forms a very small proportion of the total amount of compaction 

appropriate to the applied load. 

A necessary requirement of post-depositional compaction is that near

surface overpressure must have been developed within the Arcente section. 
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Overpressure will be reduced when the rate of compaction is greater than the 

rate of sedimentation, leading to the fact that the effects of compaction are 

expressed greatest at hiatal surfaces or condensed sections. This in turn 

produces angular discordances and unconformities through erosion, and/or 

once sedimentation begins again. The outcrops at Muleshoe Mound and 

exposures across the channel deposits in Dog Canyon illustrate this process. 

Mathematical calculations allow the limits of the amount of overpressure to be 

quantified and assessed, hence outlining a pore pressure envelope within 

which pore fluid pressure existed during the loading of the Arcente by the 

Dona Ana. 

What is the cause of the delay in compaction of the underlying 

sedimentary section? At this shallow depth of burial (0-100m (328ft)), 

sediment compaction essentially consists of mechanical grain rearrangement 

and a large amount of dewatering concurrent with porosity destruction. The 

permeability of the sediment is therefore the main control upon the speed at 

which a sediment may dewater, and thus the speed of compaction. 

Permeability is also reduced along with porosity during compactional grain 

rearrangement, thus as burial and compaction proceed the ability for the 

sediment to compact, and the rate at which compaction occurs will slowly be 

reduced. It therefore follows that the deeper within the sedimentary column, 

the less favourable the sediment characteristics become with respect to 

dewatering and the inherent compaction involved. Thus the length of time 

needed for these sediments to compact to an equilibrium state increases. 

When a hiatus in sedimentation occurs, as is interpreted between the 

Deadman Beds of the lower Rancheria Formation and the Joplin Beds of the 

upper Rancheria Formation in Dog Canyon, compaction still occurs within the 

sedimentary section, providing it has been loaded at a rate greater than the 

rate at which it can compact during deposition. This happens especially 

within the deeper buried sedimentary sequences, and if the resulting 

compaction is differential, topography will be created upon the depositional 

surface by bed rotation. The local thickness of the Arrow beds may also play 

an important role in the compaction of the Arcente, forming a seal to 

dewatering. Where these beds are thicker, such as surrounding Muleshoe 

Mound, the seal is more effective than in areas where the Arrow beds are 

thin, around Sugarloaf Mound for example. 
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Sea-Level Effects on Near-Surface Compaction. 

Variations in relative sea-level may also have an effect on pore fluid 

pressure, and hence compaction rate. The magnitude of this effect depends 

upon the rate, amplitude and direction of the fluctuation in sea-level, 

combined with the prior condition of the strata in terms of equilibrium 

compaction. This is an extremely important observation as it adds a 

sequence stratigraphic context to compaction, a link not previously made. 

Near-surface overpressure may be produced/accentuated by a rapid fall 

in relative sea-level, as the component of the overburden represented by the 

sea water column is removed. Such a mechanism has been proposed to 

account for the widespread, contemporaneous redeposition of pelagic 

sediments across western Europe in the upper Cretaceous (Hilbrecht, 1989). 

The amount of overpressure induced is a function of the rate and amplitude 

of the sea-level fall (Hilbrecht, 1989). During the sea-level fall, overpressure 

will be induced in the sediment as the water column is gradually reduced, and 

compaction will be restricted. Compaction will recommence in strata that were 

previously in a state of disequilibrium compaction, once sea-level has 

reached its lowest point, or when the rate of fall is equal to or less than the 

rate of compaction. Sediments which were previously in a state of equilibrium 

compaction before the fall in sea-level will dewater, however, this will not be 

related to compaction as overburden has been removed from the section. 

Immediately after the fall in sea-level dewatering, and hence, compaction 

rates will be increased due to the greater pore fluid pressure gradients. 

Rises in sea-level may also have a similar effect, causing an increase in 

the rate of compaction. In strata that were previously in a state of equilibrium 

compaction, the compaction rate can increase to match that of the rising sea

level. However, compaction rates can only keep up with the rate of sea-level 

rise until the rate of rise exceeds the rate of sediment dewatering. If the latter 

scenario occurs then pore fluids become overpressured, delaying 

compaction. Subsequently, compaction rates will be temporarily accelerated 

once the rate of sea-level rise has fallen below that of dewatering. 

Both falling and rising sea-level can therefore induce compaction, and in 

any scenario where the resultant compaction occurs differentially bed rotation 

may occur. Across shallow-water carbonate shelves, compaction-induced 

subsidence will therefore be most apparent if sea-level fall exposes the 

platform, after rapid progradation over wedge-shaped basinal sediments. 

During the lowstand the shelf is deformed by the differential compaction of 

the basinal sediments, and the topography induced may be onlapped when 
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the shelf is subsequently transgressed. The upper surface of the Cassian 

dolomites of the Triassic Sella platform, Northern Italy (e.g. Doglioni & 

Goldhammer, 1988) is an example of where unconformities develop in such a 

way (Fig. 4.32). Here, the highstand systems tract (HST) progradation of the 

Cassian Dolomite was greater than the compaction rate of the underlying San 

Cassiano Formation, a wedge-shaped mudstone package. During the falling 

stage and lowstand systems tract (LST) the platform top was rotated by 

differential compaction as the San Cassiano Formation dewatered in an 

attempt to achieve equilibrium compaction. At the same time, the Durrenstein 

Formation lowstand wedge was deposited, and the platform was arched into 

a gentle anticline (Fig. 4.32). The succeeding Raibl Formation (transgressive 

systems tract) thins by onlap across the toplap strata of the deformed 

platform (Fig. 4.32). 

Likewise, the VP2 sequence boundary in Apache Canyon, Sierra Diablo 

platform (Fig. 4.33) is also developed along basinwards rotated toplap strata 

(Fitchen & Starcher, 1992). In this example the VP1 HST strata, whose toplap 

strata were originally deposited sub-horizontally, prograded over and filled 

the erosional relief of the Hueco Group. Subsequent differential compaction 

rotated the toplap strata in a basinwards direction (Fitchen & Starcher, 1992). 

Compaction-induced subsidence created two important features. Firstly, it 

provided the accommodation space in which the VP2 LST and TST are 

developed (Hunt et al., 1994). Only poor development of both these 

sequences in a more basinward location would have occurred without the 

differential compaction. Secondly, it induced fractures within the top of the 

VP1 platform as beds attempted to rotate, and hence controlled Karst 

development at this location. The VP2 TST strata finally onlap the rotated 

HST toplap strata. As on the southern flank of Muleshoe Mound, the 

sequence boundaries were 11enhanced 11 through differential compaction. 

Similar deformation of the shelf-top can also be developed when 

platforms are drowned. A possible example seen on seismic of this type of 

unconformity occurs across the margins of an isolated Miocene platform, 

offshore Sarawak (Epting, 1989). Topsets of the platform's final 

progradational phase are domed upwards above the margins of its initial 

build-up phase, over which they prograded. These are onlapped by basinal 

sediments of the following drowning succession, and downlapped by the 

terminal buildup phase (Fig. 4.34) (interpreted from Epting, 1989). This 

example illustrates how compaction catch-up occurred during times when 

carbonate sedimentation was temporarily shut-down, both during the LST, 
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Chapter 4: New Mexico. 

and when the platform was temporarily drowned in the TST. On the deep 

water flanks of carbonate platforms, reduced sedimentation rates may 

coincide with lowstands of relative sea-level, when the platform is exposed. 

The drowning of the shelf by rapid relative sea-level rises and environmental 

changes can also shut-down or severely impair carbonate sedimentation. 

These times can also be associated with the development of compaction

induced topography, as is seen above the Apache bed channels in Dog 

Canyon. 

To summarise, during the HST, rapid progradation leads to dis

equilibrium compaction of low permeability basinal mudrocks. During the 

falling stage of sea-level, the LST and the TST, compaction catch-up occurs 

in the overpressured muds, providing that rates of compaction are greater 

than the rate of sea-level fluctuation. During this time, the combined effects of 

both increased rates of underlying compaction, and reduced sedimentation 

rates can cause the development of 'enhanced' unconformities, particularly if 

the underlying mud is wedge-shaped, and therefore differential compaction 

and bed rotation occurs. 

4.9 Summary. 
Incremental restoration of stratal relationships on the flanks of two 

carbonate buildups and across a bioclastic submarine channel complex in the 

Sacramento Mountains, New Mexico, demonstrate:-

• Temporal and spatial variations in the attainment of 

'equilibrium' compaction (i.e. when overburden is entirely 

supported by matrix grains in the underlying strata, and 

pore fluid pressure is hydrostatic). 

• The development of sea-floor topography during a non

depositional hiatus as a result of differential compaction. 

• The influence of compaction-induced topography on 

subsequent patterns of sedimentation. 

These and other observations are significant as they imply that compaction of 

lime mudstones up to 50-60% occurred with only shallow burial (<50m 

(164ft)), a figure markedly different from that obtained from published 

compaction curves for carbonate rocks (see Hardenbol et al., 1981; 

Schmoker & Halley, 1982; Baldwin & Butler, 1985). This discrepancy is 

attributed to a disparity between the rates of overburden accumulation and 

formation dewatering. 
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The results of this part of the present work suggest that porosity 

variations within the shallow subsurface (here <130m (427ft)) reflect a 

complex interplay between rates of dewatering and sedimentation, relative 

sea-level changes and also load distribution. They suggest that a simple, 

predictable relationship between the depth of burial and porosity (as 

apparently implied by idealised porosity-depth curves) may be unlikely at 

shallow depths of burial (i.e. <1OOm (328ft)). 

The conclusion follows that the delay in compaction interpreted from the 

fieldwork in the Sacramento Mountains of New Mexico, is probably due to the 

permeability characteristics of the buried sediments and the sealing capability 

of mud horizons, especially the Arcente muds in the case of Muleshoe 

Mound. This conclusion is likely to hold true for other sedimentary settings 

such as submarine fans, where the pelagic muds are loaded at a very high 

rate by turbidite deposits that are laid down in a matter of hours/days (i.e. 

geologically instantaneous) (Reading, 1986). Near-surface pore pressure will 

therefore be increased due to this rapid loading, with the muds compacting at 

a slower rate relative to turbidite sand deposition. Subsequently topography 

will be created on the depositional surface during times of non-deposition due 

to muds compacting post-depositionally to a greater amount than the coarse

grained channel deposits, and the fact that turbidite deposition upon 

submarine fans is intermittent. Differing mud types will probably compact at 

different rates, some compacting quickly, while others may compact relatively 

slowly. The slower the rate of compaction of the mud the greater the 

topography produced post-depositionally during a hiatus in sedimentation, 

allowing dewatering, grain packing and equilibrium compaction to be 

attained. 

Field data, observations, stratal reconstructions and modelling of the 

Mississippian deposits of the Sacramento Mountains of New Mexico have 

allowed important insights into the process of compaction. For the modelling 

of siliciclasic deposition in the submarine fan environment these insights will 

provide a greater control upon the production of topography at the 

depositional surface by gravitational differential compaction. A qualitative 

assessment of compaction rates with respect to depositional rates can also 

be attempted, and built into the modelling process. 

266 



Chapter 5: North Sea - Montrose and Arbroath Oilfields. 

5.1 Introduction. 
This chapter aims to apply the principles of compaction, and differential 

compaction, to the Arbroath and Montrose oilfields (Blocks 22/17 and 22/18 

of the U.K. North Sea). This chapter includes a stratigraphy of the fields and 

the general area, the facies and their geometries, a depositional model for 

the reservoir section, along with a basic history of field development. Data 

consist of a detailed seismic survey, mainly covering the Arbroath oilfield to 

the south, but also overlapping the southeastern section of the Montrose 

oilfield. Well dataare available from both oilfields, comprising of 20 deviated 

wells drilled from the platform at Arbroath, and· a similar 26 deviated wells 

from the platform at Montrose. A further 4 vertical wells are present within 

this area. A few wells contain cored sections of the reservoir interval, and 

these have been included in the present study. 

Combination and analysis of all the available datasets hav€ allowed a 

detailed model of sediment deposition, distribution, geometry and 

sedimentology to be formulated. This has further allowed a model upon which 

the influence of compaction, especially differential compaction, can be 

assessed and modelled. Additional data, interpreted from fieldwork in both 

California and New Mexico (see Chapters 3 & 4) have enabled a detailed 

model of compactional control and influence upon deposition, facies 

geometry and distribution to be formulated for the Montrose- Arbroath area. 

5.2 Field Stratigraphy. 
The Montrose and Arbroath fields are located approximately 130 miles 

(208Km) east of Aberdeen, and are situated toward the south-central part of 

the Forties-Montrose High (Fig. 5.1 ). The Forties-Montrose High is an 

important structural feature, 50 miles (801\m) long within the Central Graben, 

that extends from Block 21/10 and the Forties Field in the north, to Block 

22/24 and the Marnock discovery in the south. Development of this horst 

feature, which has an approximate NNW to SSE trend, and plunges towards 

the south, can be related back to the Carboniferous, where the horst area 

formed part of a larger positive Carboniferous block of Variscan tectonic 

origin (Crawford et al., 1991 ). During the early stages of the opening of the 

Atlantic, in late Permian times, the development of the North Sea graben 

system began, along with the formation of the Forties-Montrose High. The 

high itself is bounded on the east and west by normal faults (Fig. 5.1 ). 
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Chapter 5: Montrose - Arbroath. 

Likewise, its north and south ends are also bounded by normal faults with an 

approximate east-west trend, however these faults are believed to be defined 

by probable Carboniferous (Variscan) features which were rejuvenated in the 

late Permian period (Crawford et al., 1991 ). Movement on all the bounding 

faults reached a maximum during the Triassic, but still continued into the 

Jurassic. Due to the complete absence of any Carboniferous and Jurassic 

section in the Montrose - Arbroath area, combined with a regional thinning 

seen in the Zechstein, Triassic, Cretaceous and Palaeocene sections, it is 

suggested that the area was a dominant, positive feature from the Palaeozoic 

through to the Tertiary (Fig. 5.2) (Crawford et al., 1991 ). 

Both wells 22/18-1 and 22/18-4 penetrate Devonian age sediments in the 

Montrose- Arbroath area, these being the oldest rocks penetrated (Fig. 5.2 & 

5.3). They consist of a siltstone/shale sequence with infrequent intercalations 

of thin, fine sandstone beds. As stated before, no Carboniferous strata are 

present in the area. Combined with the fact that no derived clasts of 

Carboniferous origin have been identified in the Permian siliciclastic section 

it has been suggested that the Montrose-Forties horst was a positive feature 

during Carboniferous times, resulting in non-deposition (Fig. 5.3) (Crawford 

et al., 1991 ). The Permian is represented by rocks attributed to both the 

Rotliegendes Formation and the Zechstein Group. The Rotliegendes 

Formation comprises shales interbedded with tight and porous sandstones 

deposited in an, as yet, undetermined environment (Fig. 5.3). The overlying 

Zechstein is represented by a carbonate section composed entirely of 

amorphous micritic dolomites, sometimes vuggy with vugs open or fully 

dolomite cemented. The depositional environment of the Zechstein has 

proved difficult to interpret, but the absence of any evaporites in this region, 

coupled with the presence of the sometimes thick, massive dolomite beds 

with thin shale beds suggest that the Montrose - Arbroath area was positive 

in Zechstein times (Crawford et al., 1991 ). 

Throughout the Triassic the area remained positive, resulting in the 

subaerial exposure of the Zechstein section, and the creation of karstic 

porosity and microporosity in some areas, with coeval cementation elsewhere 

(Crawford et al., 1991 ). The Triassic is thin, approximately 122m (400ft) thick, 

and is represented by continental red beds of mudstone and siltstone (Fig. 

5.3). Tectonic activity at periods throughout the Triassic is evidenced by the 

presence of conglomerates, composed of boulders and pebbles of the same 

red beds, deposited along the Forties-Montrose High fault scarp (Crawford et 

al., 1991 ). Drilling has so far shown that sediments belonging to the Jurassic 
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System are absent in the Montrose - Arbroath area, and Lower Cretaceous 

sedimentation is represented only by a thin sequence of Aptian to Albian 

chalk-marls. Chalk of the Upper Cretaceous is of the order of 300m (1 OOOft) 

thick (Fig. 5.3) (Crawford et al., 1991 ). 

Chalk sedimentation is represented throughout the area by the Ekofisk 

Formation, continuing into the Early Palaeocene (Fig. 5.3). The majority of 

the Palaeocene interval however, is represented by mass flow deposits of the 

Montrose and Moray Group (Fig. 5.3 & 5.4) (Mudge & Copestake, 1992). 

These begin with resedimented chalk conglomerates/breccias and 

sandstones of the Maureen Formation, which are of variable thickness (up to 

60m (200ft)). The overlying Andrew Member of the Lista Formation (Fig. 5.4), 

is approximately 30 to 107m (1 00 to 350ft) thick, and represented by shales 

and turbidite sandstones (Fig. 5.3). Overall the Andrew Member sequence 

exhibits a general coarsening, and sometimes thickening, upwards trend. 

Sandstone units reach a maximum thickness of approximately 30m (1OOft). 

Likewise, the overlying Forties Member of the Sele Formation, the beginning 

of the Moray Group, preserves a similar tendency to coarsen and thicken 

upwards. The Forties Member is 90 to 180m (300 to 600ft) thick, consisting of 

a turbidite sand sequence, where the beds reach a maximum thickness of 18 

to 21m (60 to 70ft). This section was termed the Forties Sandstone Member 

by Carman & Young (1981 ), and formed the upper part of the Forties 

Formation of Deegan & Scull (1977). Underlying this sandstone dominated 

section there is a mudstone dominated interval, with thin turbidite interbeds 

which was previously considered as the Forties Shale Member by Carman & 
Young (1981 ), which in turn formed the lower part to the Forties Formation 

(Deegan & Scull, 1977). However, recent revision of the Lower Palaeogene 

lithostratigraphy by Mudge & Copestake (1992), relegates the Forties 

Formation of Deegan & Scull (1977) to member status, and separates the 

sand from the underlying mud dominated section. The sand dominated 

section becomes the Forties Member, and the lateral equivalent muds are of 

the Sele Formation (Fig. 5.4). The underlying shale dominated section is, in 

fact, the Lista Formation, which forms the lateral equivalent to the Andrew 

Member (Fig. 5.4). 

Towards the close of the Palaeocene, subsidence, which was previously 

centred on the Central Graben, became widespread. A marine transgression 

over the Moray Firth delta system cut off the sediment supply to the Forties 

submarine fan complex, resulting in the deposition of grey to black, 

sometimes laminated mudstones of the Sele Formation. Tuffaceous 
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siltstones and mudstones of the Balder Formation record the close of 

Palaeocene deposition. The overlying Eocene to Recent deposits consist of 

undifferentiated mudstones and siltstones up to 2450m (8000ft) thick. 

5.3 Geophysics. 
A comprehensive seismic survey was undertaken in 1985, mainly 

concentrating on the Arbroath Field which the survey completely covered, but 

also covering the majority of the Montrose Field, especially its southern area 

(Fig. 5.5). The 1985 survey consists of 850Km of seismic data with a 

dominant northeast to southwest line orientation, and 250m (820ft) line 

separation (Fig. 5.5). Previous seismic data did not allow the picking of the 

top Forties Member which could only be mapped by isopaching downwards 

from the top Balder Ash Formation which forms a distinct continuous reflector 

across the entire region. However, the 1985 seismic survey allowed the more 

accurate picking of the top Forties Member facilitated by reprocessing of the 

data by Amoco, and including horizontal velocity analysis (Crawford et al., 

1991 ). 

Due to the variable nature of the quality of the Forties sandstone seen in 

the early wells, some work was carried out to see if the seismic data could 

define the lateral distribution of the cleanest sands. This work concluded that 

the definition of the lateral distribution of the uppermost shaley sands was 

beyond the resolution of the seismic data (Crawford et al., 1991 ). 

Figure 5.6 shows a section of seismic line, illustrating that the strongest 

and most continuous reflectors on the section are identified as the 

Palaeocene Balder Ash/Sele Shale composite, and the Top Maureen/ Ekofisk 

event. Upper zero crossings were correlated for both events. 

The Balder Ash reflector is a composite response produced by both the 

Balder Ash and the Sele Formation, due to the close proximity of these two 

reflectors to each other (19-26m (62-84ft)). Individual seismic responses from 

these horizons mutually interfere leaving the top Sele Formation reflector 

indiscernible (Crawford et al., 1991 ). The top of the Forties Member has been 

picked on the next upper zero crossing after that of the Balder Ash. Within 

the field boundary this pick is unequivocal across varying lengths of the line 

between sharply defined zones of discontinuity. These interruptions are 

interpreted as small slump faults in some cases and facies boundaries in the 

Forties Sandstone in others (Crawford et al., 1991 ). 

Within the Forties Member and the underlying Lista Formation no field

wide continuous events are seen on the seismic sections. Small scale faults 
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Figure 5.5 Index map for 1985 seismic coverage. 
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Figure 5.6 Interpreted seismic line showing Balder Ash/Sele composite (Top 
Paleocene) , and Top Maureen/Ekofisk (Top Chalk) . Sandstone channel complex is also 
identified. 
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Chapter 5: Montrose - Arbroath. 

do appear as mentioned above, but there is no suggestion of regional or 

local faulting causing localised displacements of the reservoir (Crawford et 

al., 1991 ). 

5.4 Oilfields. 

The following sections describes the petroleum geological setting of the 

Montrose and Arbroath oilfields, namely the trap, reservoir and source of the 

two fields. 

5.4.1 Trap. 

Oil in both the Montrose and Arbroath oilfields is trapped by dip closure 

of the Forties Member, which in turn is sealed by the overlying Sele 

Formation muds. Crawford et al. (1991) states that structures formed at top 

Palaeocene level in early Eocene times, and as similar structures can be 

mapped at the top Danian horizon, they are probably of tectonic origin. 

Second-order relief has then been added to them by differential compaction 

occurring between the sand and shale rich sections of the Forties Member, 

which forms the reservoir to the oilfields. The structures themselves are 

broadly defined as qomal anticlines with gently dipping (1-2°) non-faulted 

limbs. Later sections of this chapter will illustrate how the top Palaeocene 

structural highs are related to the lithofacies of the Forties Member, and the 

implications this may have regarding individual field geometry, and 

additionally, the separation between the Montrose and Arbroath oilfields. 

The structural features have a maximum relief of approximately 70m 

(230ft) and an areal extent of 6 by 81\m, and are filled to their spill points. 

The oil-water contacts are variable, being deepest (8265ft subsea at 

Arbroath, 8318ft subsea at Montrose) where the sandstone package is thick 

and clean towards the centre of the fields. They are shallowest where the 

sandstones are argillaceous and of lower permeability, generally towards the 

field perimeters (Crawford et al., 1991 ). The original reservoir pressures in 

both the fields are of the order of 3700psi, indicating a normal (i.e. 

hydrostatic) pressure gradient. 

5.4.2 Reservoir. 

The productive interval of both the oilfields lies entirely within the 

topmost section of the Forties member (Fig. 5.4 & 5.7). Here, the section is 

sand dominated, consisting of massive, stacked sands. Oil-bearing 

sandstones do not extend down into the mudstone dominated section of the 
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WELL 22/17- T3 

-r----·!Co I'OOIT 

-_ _ _ __ .. I'OOIT 

&<li --LITHc--sc. IMt -

IlL 2. 3. 

Upwards lncreaslnc;~ Gamma. 
Interval of fining upwards. 
Channel abandonment 

Constant low Gamma. 
Interval of repetetlve, multlstorey 
channel sand deposition. 

Constant high Gamma. 
Interval of lower fan/pelagic 
shale deposition. 

Figure 5. 7 Interpreted well log for the Arbroath well 22117-T3, showing massive, 
stacked, amalgamated sands of the Forties Member. Interpretations are based on those of 
Hill & Wood (1980) (see Fig. 5.38) . De.fl:J.s ;, Pul . 
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underlying Lista Formation, and they are not known in the Andrew Member 

sandstones below. 

The Forties Member of the Sele Formation (Fig 5.4) is composed of a 

sequence of sandstones and mudstones which overall show a general trend 

of coarsening and thickening upwards (Fig. 5.7). It is similar to the underlying 

Andrew Member of the Lista Formation, although the latter is significantly 

thinner with more interbedded shale present compared to the Forties 

Member. Often dividing these two sand dominated sections in this region, is 

a unit of grey-green Lista Formation shale, which has been termed the 

Balmoral Member by Mudge & Copestake (1992) (Fig. 5.5). 

Throughout the Montrose and Arbroath oilfields the Forties Member 

varies in thickness from 60m (200ft) to 120m (400ft), and generally shows 

increasing sand content upwards. Bed thickness also shows a wide variety, 

but often the thickest beds, defined by shale breaks, attain a thickness of 18-

24m (60 - 80ft) (Fig. 5.8). However, as the core log shows (Fig. 5.8), these 

sections are represented by several amalgamated events. In both oilfields, 

seismic data appear, to show that the sands have a sheet-like geometry, 

though the individual thickness and lithofacies, interpreted form wireline logs 

and core data, varies throughout the area. Structural highs occur where the 

events are represented by thick amalgamated sand sequences, often with 

granule/pebble lag deposits at the base of the events. This is usually the 

thickest section of the deposit which becomes thinner and mud-rich towards 

the perimeter of the field area. 

Sorting of the reservoir sands is typically poor, with the grain size varying 

from very fine to medium or even coarse grained. The sands are friable with 

angular to sub-angular grains (Plate 5.1 ). The average sandstone is 

composed of grains of monocrystalline quartz (42 to 60%) and feldspar (4 to 

16%), rock fragments (trace to 30%), the majority of which are mudstone 

intraclasts, mica (<2%), chert and occasionally glauconite (Plate 5.1 ). Zircon 

and tourmaline occur as heavy mineral traces with the absence of epidote 

(Lowrey, 1985; Crawford et al., 1991 ). The latter feature is important as it 

suggests that the sands have their provenance in the Orkney-Shetland 

Platform area (Knox et al., 1981 ). Plagioclase dominates the feldspar 

component with only minor amounts of orthoclase and microcline present. 

Orthoclase shows high degrees of alteration, whereas plagioclase and 

microcline are fresh (Plate 5.2). Diagenesis occurs late in the paragenetic 

sequence, and has resulted in the precipitation of quartz, calcite, kaolinite 

and chlorite cements (Plate 5.3). Throughout the Montrose - Arbroath area, 
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CORE LOG 

WELL 22/17-T3 

Section Measured in Feet 

Figure 5.8 Core log for the Arbroath well 22/17-T3, illustrating amalgamation of 
sandstone beds. 
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Plate 5.1 Photomicrograph of Forties sand, showing fine to medium grain size, and 
angular to sub-angular grain shape. Quartz predominates (Q) , with minor amounts of 
feldspar (F) and rock fragments (R) . Sample is taken from well 22/17-T4 at a measured 
depth of 101 02.90' (Field of view is 3.3mm). 

Plate 5.2 Photomicrograph illustrating the alteration of orthoclase feldspar grains (0), 
and the oversized pore spaces (P) left behind. Sample is taken from well 22/17-T1 at a 
measured depth of 1 0227' (Field of view is 1.5mm). 
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Plate 5.3 Photomicrograph illustrating cementation within the Forties sand. Quartz 
overgrowths (Q) , kaolinite (K) and chlorite (C) are present. Sample is taken from well 22/17-
T6 at a measured depth of 11735' (Field of view is 1.5mm). 

280 



Chapter 5: Montrose- Arbroath. 

none of these cements are interpreted to be a significant porosity occluder. 

However, their effect is mainly to reduce the permeability of the reservoir 

sands by blocking pore throats (Crawford et al., 1991 ). 

The sediments of the Forties Member are interpreted to have been 

deposited by turbidity currents, and to have accumulated in a prograding 

submarine fan setting (Fowler, 1975; Crawford et al., 1991 ). Section 5.5.4 of 

this chapter will elaborate further on the depositional model for the area, and 

the implications of differential compaction upon such a model. However, it is 

possible to see from the well logs and the cored sections that the base of the 

section is dominated by pelagic mudstones (Lista Formation). Thin turbidite 

sands are gradually introduced, which show an overall trend which thickens 

and coarsens upwards (Forties Member of the Sele Formation). The 

culmination of the Forties Member shows a thick sequence of stacked 

turbidite sandstones with a typical 'box-car' log motif (Fig. 5.7). Crawford et 

al. (1991) suggest that the sands were deposited in stacked mid-fan 

channels, with the deposition of the sands concentrated in these channel 

areas (now the zones of structural highs) where the turbidity currents were 

strongest (see section 5.6 for further information). 

Core data show that porosities throughout the reservoir are commonly 

in the range of 23-25%, and permeabilities are commonly 70 to 90md. 

However, permeabilities range from less than 1 md to 2000md, and show a 

tendency to increase upwards through the section (Fig. 5.9). 

5.4.3 Source. 

Oil at Montrose and Arbroath has been 11typed 11 to an Upper Jurassic 

Kimmeridge Clay source which is mature (present day vitrinite reflectances 

are greater than 1.3%) within the Central Graben area to the west of the 

fields in Blocks 22/16, 22/21 and 22/22 (Crawford et al., 1991 ). In these 

blocks the Kimmeridge Clay is 30 to 305m (1 00 to 1 OOOft) thick, and has an 

average total organic carbon (TOC) content of 8%, composed predominantly 

of amorphous, marine, type 1 kerogen. It is believed to have reached peak oil 

generation (vitrinite reflectance = 1.0%) 1 0 to 20 million years before present 

(Crawford et al., 1991 ). Migration through the Jurassic and Cretaceous 

sections is thought to have followed normal fault systems and over 

steepened beds which mark the edge of the Forties-Montrose High. Once 

within the Tertiary section the oil followed a more gently inclined route 

through the Maureen and Andrew Members of the Lista Formation, to be 

trapped in the thick sands of the Forties Member, and sealed beneath the 
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mudstone section of the Sele Formation. Hydrocarbon migration is 

interpreted to have been driven by buoyancy pressure, to concentrate 

hydrocarbon deposits in any structural culmination/high. Lateral migration 

need only to have been 1 0-16Km (6-1 0 miles) from mature source rock to 

trap (Crawford et al., 1991 ). 

5.5 Depositional Model. 
Discoveries of oil, gas and gas condensate in sandstones of Tertiary age 

have been made in an area stretching from 56° 1 O'N in the Central North Sea 

(Quadrants 29 and 30) northwards to 60° 50'N in the Viking Graben 

(Quadrants 2 and 3), and extending westwards into the Outer Moray Firth 

(Quadrants 15 and 21) as well as onto the East Shetland and Western 

platforms, and eastwards into Norwegian waters (Fig. 5.1 0) (Bain, 1993). 

Since oil was first discovered in the UK North Sea in 1969 by the Montrose 

Well 22/18-1, some 1 06 Tertiary discoveries have been made in the area up 

to the end of 1990 (Bain, 1993). 

These discoveries fall into many different groups, defined by their 

stratigraphic age, their depositional environment, and their structural setting 

and development. The present study, concentrating on the Montrose and 

Arbroath oilfields, is therefore mainly interested in the Palaeocene and 

Eocene sandstone reservoirs that were primarily deposited within a 

submarine fan environment. Numerous papers concerning. the oil and gas 

fields of the Tertiary section of the North Sea are given in the volumes edited 

by Woodland (1975), llling and Hobson (1981 ), Brooks and Glennie (1987), 

Spencer et al. (1987), Abbots (1991 ), and Parker (1993). These references 

are a valuable source of information concerning the depositional models, 

geometries and styles of the various Tertiary fields, which often form 

analogue models to the two oilfields of the present study. 

Detailed study of the literature (e.g. Fowler, 1975; Hill & Wood, 1980; 

Crawford et al., 1991 ), combined with interpretation of the well logs and 

cored sections of the Montrose and Arbroath wells, along with seismic 

interpretation and sequence stratigraphic studies (e.g. Harding et al., 1991; 

Milton et al., 1991; Vining et al., 1993; Galloway et al., 1993; Armentrout et 

al., 1993; Hartog Jager et al., 1993) show that the oilfields of the present 

study were deposited within a large submarine fan system. It is also apparent 

that all the submarine fans in the Palaeogene of the North Sea are 

channelised, with channels continuing near to the fan fringe (Hartog Jager et 

al., 1993). 
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It is important, therefore, that this chapter reviews the broad aspects of 

submarine fan depositional systems and models, and also those models 

proposed for other Palaeocene and Eocene oil and gas fields of the North 

Sea. Finally, a depositional model can then be proposed for the Montrose -

Arbroath oilfields upon which compactional modelling can be based. 

5.5.1 General Submarine Fan Models. 

Submarine fans have been of great interest throughout the world 

because of their potential to form hydrocarbon reservoirs (Walker, 1978; 

Stow, 1985). With the advent of sophisticated deep-tow geophysical 

instruments such as side-scan sonar and Gloria, combined with high 

resolution seismic data, there have been many detailed studies of modern 

fans, world-wide (e.g. Shepard & Buffington, 1968; Shepard ,et al., 1969; 

Normark, 1970, 1978; Piper, 1970; Normark et al., 1979; Damuth et al., 

1983a, 1983b; Graham & Bachman, 1983; Barnes & Normark, 1984; Alonso 

et al., 1991 ). 

Problems begin to arise, however, when these studies and models 

concerning modern fans are compared to the models proposed for ancient 

submarine fan deposits (e.g. Mutti & Ricci Lucchi, 1972). Even at the level of 

classifying certain areas of the fan problems occur. For example, the lower 

fan of Normark (1970) (Fig. 5.11) would be classified as part of the basin 

plain in the scheme of Mutti & Ricci Lucchi (1972) (Fig. 5.12). Figure 5.12 

also shows how the deposits of ancient fans are recognised by their facies 

associations and vertical sequences of facies, as first proposed by Mutti & 

Ghibaudo (1972) and Mutti & Ricci Lucchi (1972). 

The model illustrates that the inner fan is characterised by conglomerate 

and coarse sandstone facies (facies classes A and B (Fig. 5.13, Pickering et 

al., 1989)) in large channels, cut into fine-grained deposits (facies class E). 

The middle fan consists of packets of sandstone with minor amounts of 

conglomerate (facies classes A and B) arranged into thinning- and fining

upwards sequences, alternating with packets dominated by facies classes C, 

D, and E. Finally the outer fan, which has few or no channels, possesses 

parallel-sided turbidites arranged in thickening- and coarsening-upward 

sequences. 

Recently, submarine fan models from both the modern and ancient 

record have been undergoing considerable redefinition and interpretation. 

Due to the high degree of variability in the morphology and scale of modern 

fans (Pickering, 1982; Barnes & Normark, 1984; Stow et al., 1984) there 
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Figure 5.11 Submarine fan model of Normark (1970, 1978) emphasizing growth by 
successive addition of suprafan lobes on the middle fan. The middle fan region is stippled. 
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Figure 5.12 Submarine fan moel of Mutti & Ricci Lucchi (1972) based on relationships 
observed in ancient deposits. Facies classes are those of Pickering et al. (1989) (see Fig. 

5.13). 
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FACIES 
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Figure 5.13 Facies classification scheme for deep-water sediments, according to 
Pickering et al. (1982). Facies classes are defined on the basis of grain size (Facies Classes 
A-E), internal organisation (Facies Class F) and composition (Facies Class G). Facies 
groups are distinguished mainly on the basis of internal organisation of structures and 
textures. Individual facies are based on internal structures, bed thicknesses and composition. 
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seems little reason to erect a single universal model to encompass all fan 

types (Pickering et al., 1989). Side-scan sonar is also helping in the 

understanding of the depositional processes occurring on modern fans, 

particularly imagery of meandering and braided channels (Garrison et al., 

1982; Damuth et al., 1983a; Belderson et al., 1984; Kastens & Shor, 1985). 

Deep-sea drilling, mainly concentrated on the Mississippi Fan, is further 

modifying and aiding these ideas (Bouma et al., 1986). 

Likewise, in the study of ancient fans, many of the early models 

suggested by Mutti & Ricci Lucchi (1972), Ricci Lucchi {1975) and Walker 

{1978) are found to be oversimplified, and do not reflect the complex nature 

of many ancient submarine fan deposits. The facies sequences of such 

deposits reflect a complex interaction between sediment texture, rate of 

sediment supply, tectonic regime, sea-level rises and falls, and fan 

processes such as channel switching and mass wasting (Stow et al., 1984; 

Bouma et al., 1985; Mutti, 1985; Mutti & Normark, 1987; Pickering et al., 

1989). It has also been shown by various authors that many ancient fan 

deposits do not show the abundance of simple thinning- and thickening

upward sequences implicit in the published models (Hiscott, 1981; Chan & 

Dott, 1983; Mclean & Howell, 1984). Hiscott (1981) not only questions the 

presence of such asymmetric 'cycles', but also illustrates how such 'cycles' 

are difficult to explain in terms of known fan processes. 

Thickening-upward cycles have usually been attributed to basinward 

progradation of suprafan depositional lobes (Mutti & Ghibaudo, 1972; Mutti & 

Ricci Lucchi, 1972; Walker & Mutti, 1973; Mutti, 1974; Ricci Lucchi, 1975; 

Walker, 1978; Ghibaudo, 1980), although minor thickening-upward trends 

may result from deposition of thicker sand units in primary depressions on 

the fan surface (Mutti et al., 1978). However, deep-sea fan processes favour 

vertical aggradation rather than progradation (Hiscott, 1981 ), a fact that is 

echoed by the work of Normark et al. (1979). Their detailed study of the Navy 

Fan indicates that channels do not gradually prograde across their 

depositional lobes, but shift abruptly along the marginal depression at the 

edge of the lobe. Subtle lateral shifts in the site of turbidity-current deposition 

have now been accepted as the likely method for producing thickening

upward cycles, and have been termed compensation cycles (Fig. 5.14) {Mutti 

& Sonnino, 1981; Mutti, 1984; Ricci Lucchi, 1984). The process of differential 

compaction may also form a control to compensation cycles, a fact previously 

ignored, and will be addressed in later sections of the present chapter. 
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FLOW 

Figure 5.14 Block diagram illustrating the origin of compensation cycles (CC} by lateral 
shifts in the thickest parts of successive turbidites, resulting in a smoothing of bottom 
topography, and in formation of thickening-upward cycles (From Pickering et al., 1989}. 
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Nilsen (1980) points out that meandering or braided thalweg channels on 

the floors of inner-fan channels do not appear to produce thinning-upward 

cycles. Instead, such cycles have been attributed to changes in the 

longitudinal gradient and shallowing and widening of channel cross-sections 

during progressive abandonment (Ricci Lucchi, 1975). Alternatively, they 

may be produced by the bypassing of currents over or around 

topographically high sand deposits (Martini & Sagri, 1977; Ricci Lucchi & 

Valmori, 1980), or by the plugging of a channel by a large flow, followed by a 

progressive thinning as subsequent flows are diverted to a new channel 

system (Walker, 1978; Hiscott, 1980). Work on the modern Indus Fan (Kolla 

& Coumes, 1987), however, suggests common fining-upward sequences are 

present throughout the channel fills of the upper and middle fan segments. 

Many of the problems in relating ancient submarine fan and modern 

submarine fan depositional models and the depositional processes involved, 

originate , in the scale of observations available from either setting (Normark 

et al., 1979; Shanmugam et al., 1985; Mutti & Normark, 1987; Pickering et 

al., 1989). A further complication is the fact that most modern fans have been 

largely inactive since the last rise in sea level, and are presently blanketed 

by hemipelagic mud (facies class E). With regards to scale, even 

exceptionally good outcrop shows features that are still beyond the resolution 

that can be attained with available ship-board deep-sea imagery (Fig. 5.15). 

Even deep-tow instrument packages only have a maximum resolution of 2-

3m (6.5-1 Oft) vertically and 1 0-20m (33-66ft) horizontally (Normark et al., 

1979). 

Classification of deep-water depositional systems has therefore proved 

extremely difficult, with numerous models proposed for submarine fan 

deposition, interpreted for both the ancient and modern systems (e.g. 

Normark, 1970, 1978, 1980; Nelson & Nilsen, 1974; Mutti & Ricci Lucchi, 

1972, 1975; Walker, 1978, 1980; Nilsen, 1980; Stow, 1981, 1986; Howell & 

Normark, 1982; Barnes & Normark, 1984; Bouma et al., 1985; Stow et al., 

1985; Mutti, 1985; Heller & Dickinson, 1985; Surlyk, 1987; Shanmugam & 

Moiola, 1991 ). With so many different models proposed, Reading & Richards 

(1994) have attempted to classify all deep-water, basin margin turbidite 

systems by way of their grain size and feeder system. They propose 12 

classes: mud-rich, mud/sand-rich, sand-rich, and gravel-rich 11point-source 

submarine fans 11
; mud-rich, mud/sand-rich, sand-rich, and gravel-rich 

11multiple-source submarine ramps11
; mud-rich, mud/sand-rich, sand-rich, and 

gravel-rich 11 linear-source slope aprons~~. Ancient and modern turbidite 
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systems can be subsequently classified (Fig 5.16 & 5.17), although their 

precise, individual position in the scheme may be altered by changes in 

tectonics, climate, supply, and sea level (Mutti, 1985). 

Reading & Richards (1994) classify the Forties-Montrose Fan system as 

a multiple source ramp, lying between mud/sand-rich to sand-rich. Recent 

studies by Anderton (1993) have shown that the Palaeocene ramp systems, 

equivalent to the Maureen Formation, Andrew and Forties Members (Fig. 

5.4), represent the composite stratigraphic record of a complex association of 

these two systems. Table 5.1 lists the characteristics of both deep-water 

basin-margin systems. 

Mud/sand-rich multiple-source systems (Fig. 5.16) are generally fed by a 

mixed sand-mud delta that may prograde directly across a gently sloping 

shelf, or may feed the basin via multiple slope valleys. Sedimentation may be 

active during periods of either rising or falling sea level. These systems are 

distinguished from fan systems by the presence of several feeders that are 

active more or less simultaneously, and from slope aprons by the presence of 

portions of slope apron between the discrete channel lobe systems. The 

Forties Fan (Knox et al., 1981; Stewart, 1987; Whyatt et al., 1991) forms the 

sandier end of the spectrum in the class, building 130Km into the Central 

Graben with a width of 80Km. Amalgamated sandstones, 50-1OOm thick, 

formed in 2.5-3Km wide channels, and were separated by 500m wide 

interchannel areas where shales were deposited (Reading & Richards, 

1994). 

Sand-rich ramps (Fig 5.17) are difficult to distinguish from the sandier 

mud/sand-rich ramps, but the lack of silt and mud inhibits the development of 

levees and discrete channels, resulting in the deposition of sheet-like sand 

bodies (Reading & Richards, 1994). They are fed along a broad front by 

sandy deltas or coastal plains with a relatively narrow shelf. Multiple 

channels linked to river and distributary channels cut the slope and divide the 

sediment inflows so that penetration into the basin is limited. The distal ramp 

and basin plain receive little sediment. The Palaeocene Montrose Group 

(Fig. 5.4) forms a belt that extends for more than 350Km but penetrates less 

than 30Km into the basin. 

5.5.2 Submarine Fan Processes. 

Two processes of extreme importance to the present study are flow 

stripping and lobe switching, both of which predominantly occur in the 

middle fan environment. Both processes are well known on certain modern 
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Figure 5.16 Depositional model for a mud/sand-rich, multiple-source ramp system (From 
Reading & Richards, 1994). 
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Figure 5.17 Depositional model for a sand-rich, multiple-source ramp system (From 
Reading & Ri.chards, 1994). 
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stratigraphic trap in proximal 

ramp channels. 
2) Updip pinch-out of 

channel and/or ramp-lobe 
sands 

Reservoir definition, 
delineation, and quality; seal 

Potentially important; 
highstand and lowstand 

Linear-belt 
1-50km 

-Small 
Moderate 

Close 
Sand-rich clastic 
shoreline/shelf 

Reworking or direct access 
to shelf clastics; low

effici 

Multiple, laterally migrating 
braided to low-sinuosity 

channels 
Sand-rich turbidity current 

flows forming low-relief 
lobes and sand sheets 

Hemipelagics 

Channels 
Channelised lobes 

Broad, sheet-like to low
relief lobate sand-body 
geometries dominated 

internally by channelised 
sandstone units 

Good 
Good 

Structural 

Combined structural and 
stratigraphic traps of ramp 

sandstone 

Trap requires structural 
component; seal integrity 

Not important; highstand 
and lowstand; major 

floodin events 

Table 5.1 Depositional characteristics for mud/sand-rich and sand-rich, multiple-source 
submarine ramps (From Reading & Richards, 1994). 
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fans, especially Navy Fan (Normark, 1970; Hess & Normark, 1976; Normark 

et al., 1979; Piper & Normark, 1983; Bowen et al., 1984). These individual 

processes are important to the present study in terms of sediment deposition 

and distribution, and to the understanding of differential compaction within 

submarine fan depositional systems. 

On Navy Fan, Normark et al. (1979) noticed sharp channel bends at the 

apices of abandoned lobes, indicating that aggradation of the depositional 

lobe eventually forces the channel to switch to a new course along one of the 

marginal depressions at the edge of the lobe (Fig. 5.18). A new lobe 

develops at the mouth of the new channel. This is the process of lobe 

switching (Normark et al., 1979). Subsequent turbidity currents that travel 

down the channel system are therefore forced to negotiate a series of sharp 

bends. On submarine fans such as the Amazon Fan, these sharp bends may 

also be produced due to the natural meandering of the channel system 

(Damuth et al., 1983a). Thin sand-rich flows are able to remain in the 

channel as they pass down the submarine fan system. However, thicker mud

rich turbidity currents are unable to do so (Bowen et al., 1984). In this 

scenario the upper part of the turbidity current may flow straight over the 

crest of the levee on the outside of the bend, resulting in: 

1) Formation of a flute-shaped scour at the levee crest, 

2) deposition of a mud turbidite on top of the former, but now 

abandoned lobe, and 

3) the deposition of the remainder of the turbidity current just 

around the bend of the channel, due to the momentum loss 

caused by the stripping of the upper part of the turbidite flow. 

Piper & Normark (1983) call this process flow stripping, and it enriches the 

deposited sand load in the channel, illustrated in Figure 5.19. Timbrel! (1993) 

proposes flow stripping as a major process, possibly controlling the 

depositional arrangement of the Balder Formation in Quadrant 9 of the U.K. 

North Sea (Fig 5.20a & b). 

Lobe switching develops a depositional history of the submarine fan 

system, which may be interpreted from seismic data or wireline log 

correlations. Figure 5.21 schematically illustrates such a correlation of 

wireline logs, and the depositional history this depicts. Depositional histories 

for many modern fans have been described, mainly using shallow seismic 

data, but occasionally aided by Gloria data and other deep-tow geophysical 

tools. Examples of these include the Navy Fan (Piper & Normark, 1983), the 

Rhone Fan (Droz & Bellaiche, 1985; Pickering et al., 1989), the Amazon Fan 
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Figure 5.18 
1979). 

Development of depositional lobe pattern on Navy Fan (From Normark, 

/ 
/ 

I 
/ 

/ 

\ '\ 

Thalweg 

_ _ _ Overspilling 
- - Turbidity Current 

Erosion of Levee Crest 
by Larger Flows 

Figure 5.19 Illustration of flow stripping (From Piper & Normark, 1983). Channel 
curvature causes eventual splitting of the initial flow into two parts. Loss of momentum by 
overbank spill results in deposition of sand just beyond the channel bend. 
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\ 
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/ 

Shales may compact 
50 to 70% in thickness. 

/ 
\ 

Tnick sands may be deposited 
JUSt around bends due to flow 

stripping (Piper & Normark. 1983) 

Edge of channel 

Figure 5.20a Resultant sequences from constructional channel model. a) Lowstand wedge 
deposition; b) hemipelagic shale deposition; c) continued lowstand wedge .deposition -
younger sands deposited on flanks, sand injection sills ('wings') may form at <1OOm burial; d) 
burial to approximately 5500ft - in an aggradational model, a well and sidetrack will find the 
same time markers; e) schematic plan view of predicted reservoir depositional geometry 
'string of pearls' (From Timbrel!, 1993). · 
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..... ·.· 
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. .. ::. 

Figure 5.21 Hypothetical model showing lateral switching of suprafan lobes (1-3) in plan 
view (upper diagram) and facies distribution in cross section (lower diagram). Stippled area 
denotes sandstone and black area represents mudstone in the cross-section. Logs show 
expected SP of GR (left) and resistivity (right) responses. The offset stacked suprafan lobes 
with mudstone blankets would develop excellent stratigraphic traps (From Walker, 1978). 
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(Fig. 5.22) (Damuth et al., 1983a, 1983b), and the Mississippi Fan (Weimer, 

1989). Weimerls (1989) study of the Mississippi Fan identifies and maps 17 

different channels and distributary channels, which have deposited sediment 

within the fan system from the late Pliocene to the Pleistocene (Fig. 5.23). 

His work also illustrates that, taken separately, each channel acts as a point 

source of sediment, whereas the combined picture of all the channels and 

their distributaries shows that the fan actually has a linear source (Reading, 

1992). 

The depositional histories of submarine fan deposits are extremely 

important to the present study, as it is in this area of submarine fan 

deposition where the process of differential compaction may influence 

subsequent depositional locations and geometries (Allsop & Swarbrick, 1992; 

Allsop et al., 1992). There are essentially two possibilities for differential 

compaction to control deposition depending on the rate at which compaction 

occurs with respect to deposition, outlined in section 2.3, Chapter 2. 

Either scenario illustrates how differential compaction can influence the 

locations and geometries of turbidite sand deposits, as described in modern 

fan settings (e.g. Damuth et al., 1983a; Weimer, 1989). In simple terms the 

process favours deposition of sand above the previous mud, and encourages 

the off-setting of subsequent sand bodies, a phenomena often described in 

both modern and ancient systems (Heritier et al., 1979; Damuth et al., 1983a; 

Weimer, 1989; Berg & Royo, 1990; Kulpecz & Van Geuns, 1990; Hall & Link, 

1990; Imperato & Nilsen, 1990; Whyatt et al., 1991; Timbrel!, 1993; Newman 

et al., 1993; Jenssen et al., 1993; o~connor & Walker, 1993). Sections 5.5.4 

and 5.6 will attempt to show how the present study envisages this process 

working within the submarine fan depositional system of the Montrose and 

Arbroath area of the North Sea. 

5.5.3 Similar Field Models. 

As mentioned before submarine fan deposits commonly form 

hydrocarbon reservoirs throughout the world (Walker, 1978; Stow, 1985), 

mainly due to their relationship to basinal, organic rich mud rocks, the 

common occurrence of thick, high porosity sandstones within the channel 

and lobe deposits, and mud rocks often blanketing such deposits, producing 

the perfect source, reservoir, and seal arrangement. For this reason there 

are many papers in the literature concerning depositional models for 

submarine fans, although there is a wide variety of models due to the 

differences mentioned in the previous sections (i.e. basin size, tectonic 

299 



Chapter 5: Montrose- Arbroath. 

WEST EAST 
3 4 

------------------- 4.5 

G 2 1 ~ ~ =r1fTn --':""-::- -=--- 4 £Z2"-I ~ . --------
-.-- .... -- - .. -· - --- ---- ... --. -~~ -~,._. 

5 

iUJ 1 
Q 2 
fD 3 

IEJ 4 
I[J 5 
0 6A 
0 68 
0 6C 

4 

:>--;;::::::;::::::;:::r_L.LLJ.!1_-:::s_:::-_-"_~_ ~~-~~-.-; . 
4 

5 

J 1 3 6C? 68 6A 4 5 4.5 

~'''.c~,~:C~ 
5.5 

Youngest 

I K 
Relative 
Channel 

Age 5.5 

! 
Oldest 4.5 

L 
4 5 

5.5 
25Km 

Figure 5.22 Line drawings traced from original seismic profiles showing stratigraphic 
relationships between major channel-levee systems on middle Amazon Fan. Numbers 1 
through 6C over channel axes indicate relative age of each major channel-levee system (in 
order of increasing age). Heavy lines and shading patterns show lateral extent of levee 
sequence associated with each channel. Black area beneath each channel axis represents 
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reflector (From Damuth et al., 1983). 

300 



w 
0 

27° 

goo 89° 131 88° 87° I CHANNELS 
APPRO X. 

AGE 

1 7 (a-c) 
-0.025 Mo 

16 (a-g) 

15 (a-h) -0.065 Ma 

14 (R ,b) 

13 (a- f) 
-0.50 Ma 

1 2 (a-h) 

BASE OF MODERN •/"\ ~ 
SLOPE (EDGE OF 

11
b 

SALT FRONT) 
11 (o- I) 

10 (n··z.A-E) 
- 1.2 fAn 

U (n -<f) 

u (n-c) 

7 (a-a) 

6 (o-1) -2.1 Mo 

5 (a-e) 

4 (a-c) 

3 

616 ·1 2 
1 (a,b) 

~ EROSIONAL CANYON 

• DSDP SITE 

EXPLORATION WELL 

161 26° 

·,:-, I \ 

' \ ' 
' I 

50 km 

615 

goo 89° 88° 87° u 14. 

Figure 5.23 Composite map of the 17 channel-levee systems identified in the Mississippi 
Fan (From Weimer, 1989). 

0 
::r 
O.l 
"0 

~ 
CJ1 

~ 
0 
~ 
"" 0 
(j) 
(1) 

)> 
"" cr 
0 
O.l 
5-



Chapter 5: Montrose - Arbroath. 

setting, and sediment supply). The following section summarises the 

important papers relating to the Montrose - Arbroath area of the North Sea, 

resulting in the proposal for a depositional model for the area. 

Many of the fields of similar stratigraphy and depositional style from the 

North Sea are Tertiary in age, e.g. the Frigg Field (Heritier et al., 1979), the 

Forties Field (Walmsley, 1975; Hill & Wood, 1980; Carman & Young, 1981; 

Kulpecz & Van Geuns, 1990), the Nelson Field (Whyatt et al., 1991) the 

Balder Formation, Block 9 (Timbrel!, 1993), the Gryphon Oil Field (Newman 

et al., 1993), and the Balder Field, Norway (Jenssen et al., 1993). However, 

studies of other oilfields with submarine fan reservoirs, particularly in 

California, also bear some similarities to the oilfields of the present study, 

e.g. the Yowlumne Field (Berg & Royo, 1990), Midway-Sunset Field (Hall & 

Link, 1990), and the Arbuckle Field (Imperato & Nilsen, 1990). Depositional 

models and processes within the papers describing these fields can also 

provide excellent insights for the present study. 

5.5.3.1 North Sea Sequence Stratigraphy. 

Many regional studies of the sand development and sequence 

stratigraphy of the Palaeogene and Cenozoic fill of the Central and Northern 

North sea have been published (e.g. Parker, 1975; Sutter, 1980; Rochow, 

1981; Knox et al., 1981; Morton, 1982; Stewart, 1987; Vining et al., 1993; 

Anderton, 1993; Galloway, et al., 1993; Armentrout et al., 1993; Hartog Jager 

et al., 1993; Morton et al., 1993). This section will deal with the recent 

understanding of the sequence stratigraphy and sand distribution for these 

areas, concentrating particularly with the Palaeocene, but also providing a 

broad overview of the Palaeogene Period. 

Regionally, Stewart (1987) developed a seismic stratigraphic framework 

for the Palaeogene sediments of the Central North Sea, using unconformities 

to separate the stratigraphy into ten mappable depositional sequences (Fig. 

5.24). Biostratigraphic correlation of the ten sequences enabled Stewart 

(1987) to produce a chronostratigraphy for the area (Fig. 5.25), in addition to 

a coastal onlap curve (Fig. 5.26), the latter having major significance 

concerning the regional sea-level and subsidence pattern of the North Sea. 

Galloway et al. (1993) provides a detailed study of the sequence 

stratigraphy of the Cenozoic fill of both the Central and Northern North Sea 

Basin. They divided the region into four tectonosequences, the Palaeocene, 

the Eocene, the Oligocene and the Miocene, which when combined record 

the regional structural evolution of the basin and adjacent source areas. 
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central North Sea {From Stewart, 1987). 
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Each tectonosequence contains a number of depositional episodes, which 

are stratigraphic sequences, which accumulated during distinct episodes of 

sediment influx and accumulation (Galloway et al., 1993). As a general rule, 

each tectonosequence begins with deposition concentrated within the basin 

centre, in or near the axial troughs. Sediments of subsequent sequences 

extend up onto one or both basin margins, onlapping older stratigraphic units 

(Galloway et al., 1993). 

The Palaeocene tectonosequence was initiated by large-scale uplift of 

the British Isles, related both to the opening of the Atlantic and Thulean 

volcanism. The uplift was also accompanied by tilting to the southeast 

(Hartog Jager et al., 1993). Uplifting was a result of rejuvenation of faulting, 

inversion, with greater regional uplifting of the sandstone-rich Shetland and 

Scottish source areas (Galloway et al., 1993). Depositional responses in the 

basal Maureen episode include the reworking of chalk and the introduction of 

coarse siliciclastic material into the basin (Johnson, 1987; Stewart, 1987). By 

early Thanetian time (approximately 60Ma), the combination of the drainage 

patterns from the Shetland and Scottish uplands (a source area of about 

45,000Km2) focused the bulk of sediment supply into the NW Moray Firth 

Basin. Sand deposition during the lower Andrew, upper Andrew and Forties 

depositional sequences, was concentrated in a prograding sand-rich braid 

delta system, which built south and eastward along the axis of the Moray 

Firth, and also in a succession of extensive delta-fed submarine aprons that 

spilled out of the Moray Firth and into the Viking and Central troughs. 

Galloway et al. (1993) uses the term apron for shelf or delta-fed submarine 

systems, restricting the use of the term fan to point-sourced, toe-of-slope, 

and basin-floor depositional systems, that commonly show a radial sediment 

distribution and facies organisation. Sutter (1980) illustrates the Late 

Palaeocene palaeogeography, showing the extent of the Moray Firth delta, 

and the basinal deposits (Fig. 5.27). 

Further seismic mapping and decompaction of the Moray Firth braid

delta front show that its approximate original depositional thickness indicates 

a platform relief in the order of 300m (980ft), and prodelta slope angles of 3-

50 (Galloway et al., 1993). Combination of the substantial bathymetry, and 

the steep depositional slope to the delta front would efficiently trigger, and 

accelerate, high-density turbidity currents which would deposit sediment 

further southeast in the basin (Fig. 5.27). Additionally, at this time, subsidiary 

drainage axes prograded smaller braid delta and associated sandy slope 

apron systems into the East Shetland (Ninian apron) and Forth Approaches 
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(Gannet apron) basins. The Shetland Platform appears to have been largely 

a high-energy bypass shelf locally traversed by seismically imaged small 

erosional channels (Galloway et al., 1993). 

During late Thanetian time (56.5-57Ma), braid-delta progradation was 

forced eastwards due to the effects of ongoing inversion and eastward tilting 

of the inner Moray Firth basin, reworking older braid-delta deposits (Milton et 

al., 1991 ). Also, the slope apron system became inactive as sand 

remobilisation from the delta front diminished (Galloway et al., 1993). The 

result was the deposition of the Dornoch and Beauly/Balder sequences, 

which consist chiefly of sandy braid-delta deposits fronted by muddy, basinal 

muds in the axial trough. Several possible reasons exist for the decrease of 

sand remobilisation including: 

• reduced bathymetric relief of the delta front as the basin-floor 

apron aggraded. 

• a decrease in seismic activity as a trigger for large-scale slope 

failure. 

• decreasing rate of supply of sediment from the source area to 

the braid-delta system (Galloway et al., 1993). 

Extensive progradation of the Beauly sequence braid-delta into the East 

Shetland Basin, and contemporary retrogradation of the youngest delta lobes 

in the Moray Firth depocentre suggests that sediment supply was diverted 

northward. A strike-fed shore zone system prograded across the Shetland 

Platform, between the two deltaic depocentres, to the bounding faults of the 

Viking Graben (Galloway et al., 1993). 

The Beauly/Balder episode was, in part, a response to the terminal 

Palaeocene collapse of the Scotland/Shetland uplift and the North Sea 

Basin. The episode ended with transgression and submergence of the basin 

margin with widespread deposition of a transgressive sediment blanket 

culminating in the Balder tuff marker, forming a condensed section (Galloway 

et al., 1993). Foundering of the depositional shelf margins and tectonic 

adjustments associated with the plate boundary reorganisation that initiated 

opening of the Norwegian Sea resulted in considerable mass wasting of the 

depositional slope that fronted the deltaic headlands and inter-deltaic shore 

zone. Mounded, chaotic slump and debris flow lobes form a basinal apron 

deposit that extends into the Viking trough. As transgression proceeded, 

discrete turbidite mounded forms (e.g. the Balder fan and the Gryphon fan) 

and protofans (lower Frigg sands of Brewster (1991 )) were fed by localised 

submarine channel systems (Galloway et al., 1993). These channel systems 

307 



Chapter 5: Montrose - Arbroath. 

later became conduits for submarine sediment bypass during the subsequent 

early Eocene depositional episode. A seismically defined channel complex in 

the inner Moray Firth, suggests the evolution of a transgressive estuarine 

system in the coastal embayment. Tidal and wave reworking of late 

Palaeocene sediments here supports the assumption of high marine energy 

flux throughout this time (Galloway et al., 1993). 

Looking in more detail at the submarine fan sedimentation throughout 

the Palaeogene Period of the North Sea it is possible to recognise four 

'second-order sequences' (Vail et al., 1977) on regional seismic data. These 

are the Andrew, Forties, Frigg/Tay and Alba sequences (Hartog Jager et al., 

1993). In sequence stratigraphic terms a sufficiently large relative fall in sea

level, eustatically or tectonically induced, can initiate deposition of a 

submarine fan system (Fig. 5.28). The relative fall in sea-level results in 

erosion of the hinterland and shelf, incision of rivers, and possibly the 

excavation of canyons across the shelf and slope (Hartog Jager et al., 1993). 

Over the hinterland, shelf and slope areas, an unconformity will be created, 

corresponding to a Type I sequence boundary (Van Wagoner et al., 1987). 

The eroded sediment bypasses the shelf and is deposited in the deep marine 

realm as a submarine fan. Subsequent sea-level rise causes the trapping of 

sediment on the shelf (which gradually back-fills incised valleys) and causes 

flooding of the pre-existing shelf area. The ideal pattern of facies 

development can generally be found where a clear slope break occurs, with a 

relatively abrupt transition from shallow to deep water. Where the transition is 

more gentle, a relative sea-level fall can cause rapid progradation of the 

shelf, as seen in the Palaeocene 'Ninian' shelf sequence in the East Shetland 

Basin (Hartog Jager et al., 1993). Throughout the Tertiary, in both the 

Central and Northern North Sea, phases of repeated shelf progradation and 

erosion with associated submarine fan deposition can be recognised on 

regional seismic data. 

Hartog Jager et al. (1993) have compiled the Palaeogene sequences for 

the Central and Northern North Sea based on log interpretation of shelf/slope 

progradational cycles, seismic stratigraphic studies, and extensive 

biostratigraphy (both palynology and micro-palaeontology) (Fig. 5.29). The 

four second-order sequences each contains a submarine fan system in its 

basal part, named after its sequence, with the upper sections formed by a 

clay-rich interval which can generally be correlated across the entire deep 

basin. These are the Lista, Sele, Horda and Hutton Clay formations (Hartog 

Jager et al., 1993). 
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Figure 5.28 Sequence stratigraphy: two conceptual sequences are shown in both depth 
and geological time. The depth section shows the relationship of different systems tracts, 
whereas the temporal relationships of the systems tracts are shown in the lower section. The 
vertical striped areas are condensed intervals or depositional hiatuses. The relationship of 
the systems tracts to relative sea-level is shown (SB=sequence boundary) (Modified from 
Vining et al., 1993). 

my a Stratigraphy 
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Forties Fan 
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Sequence Boundary Shelf D Hiatus [ill 
Higher Order Sequence Boundary --- · Submarine Fan • 

Maximum Flooding Surface ·-··---· Basinal Shales D 

Figure 5.29 Palaeocene(Eocene sequences (From Hartog Jager et al., 1993). 
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Seismic facies analysis by Hartog Jager et al. (1993) has enabled the 

mapping of the facies distributions, showing the shelf, slope and basin 

environments, with the sand and mud-prone areas indicated (Figs. 5.30a, b & 

c). Further regional seismic and sedimentological data, including 30 seismic 

data, allowed Hartog Jager et al. (1993) to build up a picture of the 

geometries of the Tertiary submarine fans. Their observations, summarised 

in Table 5.2, show a range in fan types from widespread sand-rich 'sheet-like' 

fans, to narrow isolated channel complexes encased in shale. 

±±~+++++1 Clay-Rich Systems up to 1OOm deep channels) 

-- 1 Intermediate (0.5-

2Km wide, tens of 

metres deep) 

1 
Unchannelised 

Medium 

i 
High (amalgamated 

chan 

Table 5.2 Internal geometries within various submarine fans in the North Sea Palaeogene 

(from Hartog Jager et al., 1993). 

The Andrew and Forties Fans ('Sheet-like7. 

The Andrew Fan is more extensive than the younger Forties Fan, 

although both are centred over the Outer Moray Firth and Central Graben 

(Hartog Jager et al., 1993). The time-equivalent fan systems active in the 

Viking Graben were somewhat smaller. Overall, the Andrew Fan displays a 

giant wedge-shaped geometry, which exceeds 700m (2000ft) at its thickest 

point. The seismic facies of both the Andrew and Forties fan systems 

consists of discontinuous, sub-parallel reflectors (Hartog Jager et al., 1993). 

Figure 5.29 shows that the Andrew Fan may be divided into three units, 

which ideally fine upwards. The base of each of these units is a third-order 

sequence boundary, and is marked by the sudden appearance of massive 

channelised sands in the basin (Hartog Jager et al., 1993). Subsequently, the 

fan becomes less channelised, with a greater amount of fine overbank 
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Figure 5.30a,b,c Facies maps of a) Upper Palaeocene, Forties sequence; b) Lower 
Eocene Frigg/Tay sequence; c) Middle-Upper Eocene, Alba sequence (Modified from Hartog 
Jager et al., 1993). 
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deposits forming, presumably due to sea-level rise and a decrease in sand 

supply to the fan. 

The Forties Fan shows a similar overall wedge shape in cross-section, 

however, it is smaller in volume and thinner, reaching a maximum thickness 

of 411 m (1350ft), than its predecessor. Variations in thickness are generally 

related to the distance from the source area, the presence of local palaeo

highs and salt activity. Log correlations and biostratigraphic studies have 

shown that the Forties Fan system can be divided into two third-order 

sequences, each marked by the widespread deposition of massive channel 

sands (Hartog Jager et al., 1993). Well logs indicate that massive stacked 

channel complexes can be found in both the basal and upper parts of the fan 

system, although these are not usually visible on 20 seismic data. The 

stacked channel complexes do, however, occur right up to the fan fringe, as 

seen in the Cod Field (Kessler et al., 1980) and the Everest Field (Thompson 

& Butcher, 1990). 

Forties Fan channels appear to be 2.5-31\m wide, 50-100m thick and 

separated by interchannel areas of approximately SOOm width, within the 

Montrose - Arbroath area (Whyatt et al., 1991 ). The gentle bi-directional 

downlap seen on cross-sections of the channels in the area also suggests 

that the sand dies out gradually. 

The controls on the thalweg of the central channel complex in these 

systems are poorly understood (Hartog Jager et al., 1993). Three main 

possibilities exist; pre-existing relief, an erosional feature, or confinement by 

stable muddy levees. In the upper reaches of the fan systems incision of the 

channels can be seen, however, this generally dies out in a basinward 

direction with little or no erosion occurring at the base of channel complexes. 

Hartog Jager et al. (1993) point out that to produce the middle fan aspect of 

these systems on logs and in core, the sand-rich nature of the fan as a whole 

and its overall 1Sheet-like 1 geometry, requires both a large number of 

channels and a high degree of channel switching. Flow stripping, as 

described in section 5.5.2, will produce such a phenomenon with rapid 

abandonment of the distal portions of the original channel complex, and new 

channel formation, probably aided by differential compaction of the former 

fine, muddy, overbank deposits. 

Thickness variations seen within the Andrew and Forties fans indicate 

that the directions of channels have sometimes been influenced by 

underlying faults (Hartog Jager et al., 1993). These may have affected the 

topography of the Palaeocene sea-floor in two ways: either as a result of 
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higher subsidence rates on the hanging wall (due to differential compaction) 

or as a result of syn-sedimentary reactivation. The fans can be seen to thin 

over major basement highs, such as the Forties-Montrose High in the Central 

Graben. Also, in the Gannet area, syn-sedimentary salt movement has 

produced the thickening of the fans in the rim synclines, and its thinning or 

disappearance over the apex of the salt structures (Armstrong et al., 1987). 

The Frigg and Tay Fans (Mounded). 

Both the Frigg and Tay fans, whose distributions are shown in Figure 

5.30b, show an upward increase in mounding on regional seismic data, 

reflecting the evolution from basin-floor, sheet-like fans, to slope fans (Hartog 

Jager et al., 1993). 

The Alba and Rogaland 'Fans' (Isolated Channel Complexes). 

These type of fans form by the persistent vertical stacking of turbidite 

channel complexes, resulting in linear, massive sand fairways which pass 

rapidly into fine overbank muds in a lateral direction. Differential compaction 

across such channel complexes can form characteristic mounded geometries 

on seismic sections, approximately 1-2Km in width (e.g. the Forth Field). 

The best examples of this type of fan are the Alba Fan (Middle to Upper 

Eocene) and parts of the Rogaland Fan (lowermost Eocene) (Hartog Jager et 

al., 1993). Both fans were deposited after minor relative sea-level falls, 

during an overall transgressive regime. In both cases deposition of the sands 

took place towards the end of a major uplift phase, with hinterland relief lower 

during the Eocene (Hartog Jager et al., 1993). 

Evolution of Submarine Fans Through Space and Time. 

The work of Hartog Jager et al. (1993) has shown that the Tertiary fans 

of the North Sea show a wide variation in geometries, ranging from wedge

shaped fans (Andrew Fan) to linear fans (Alba Fan). However, throughout all 

the fans a large amount of channelling is extremely common. Fan geometry 

will be determined by several factors, some of which having already been 

discussed in earlier sections of the present work, include: 

• Elevation of the source area. 

• Depth of the basin. 

• Composition of the shelf sediments. 

• Quantity of sediment supplied to the deep basin. 

• Sand/mud ratio within the turbidites. 
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• Basin floor topography. 

Many of these factors are inter-related. 

Hartog Jager et al. (1993) recognise the evolution of individual fans from 

an initial 'sheet-like' geometry to a more mounded and channelised 

geometry, as shown by log correlations and seismic data. They also propose 

that the . evolution can be directly explained in terms of sequence 

stratigraphy. During the Lowstand Systems Tract, a relative sea-level fall 

initiates deposition of a larger scale of sediment which also has a high 

sand/mud ratio. This promotes the formation of sheet-like basin-floor fans, 

whose channels switch frequently, and whose levees are easily breached, 

resulting in large areas with a middle fan aspect, as seen in the Andrew and 

lower part of the Forties Fan (Hartog Jager et al., 1993). At the start of the 

Transgressive Systems Tract, accommodation space increases, and 

increasing amounts of sediment become trapped on the shelf. The proportion 

of bed load in this shelf sediment will be relatively large, and the last stage of 

deep-sea fan deposition will involve relatively mud-rich sediment. This will 

cause the stability of levees to increase, and the position of channel 

complexes to become fixed, resulting in a situation of the most massive 

submarine fan sands being deposited (e.g. Alba Field) during a period when 

the actual overall sand supply is decreasing (Hartog Jager et al., 1993). 

The evolutionary sequence of individual fans described above can also 

be ascribed to the complete Palaeogene sequence of submarine fans in the 

North Sea (Fig. 5.31 ). The scale on which this occurs can be interpreted as a 

first-order mega-sequence, punctuated by second-order sequences which 

represent the individual fans (Hartog Jager et al., 1993). This Palaeogene 

mega-sequence can also be interpreted in terms of eustasy (Hartog Jager et 

al., 1993), and it is at this point where the similarities between the models of 

Mutti (1985) and the submarine fans of the North Sea becomes clear 

(compare Fig. 5.31 taken from the North Sea with Figs. 5.32 & 5.33 (Mutti, 

1985)). 

Unfortunately Hartog Jager et al. (1993) neglect Mutti's (1985) 

submarine fan models based on sea-level, sand supply, and the position in 

the basin where deposition accordingly occurs (Figs. 5.32, 5.33, & 5.34). 

According to Mutti (1985), the Andrew and Forties fans partly represent a 

Type I, but mainly a Type II depositional system, with the Rogaland Fan 

probably representing the Type II to Type III depositional system above. The 

Frigg/Tay fan system represents the reintroduction of a Type II depositional 

sequence, which is subsequently overlain by the Alba Fan representing the 
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Figure 5.31 Schematic change in fan geometry through the Palaeocene and Eocene 
(From Hartog Jager et al., 1993). 
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Figure 5.32 Three main types of turbidite systems recognised by Mutti (1985). The 
systems differ from one another mainly in terms of where sand is concentrated. 
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Mutti, 1985). 
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Figure 5.34 Changing character of sequence boundaries from the basin margin into the 
deeper parts of the basin. In this hypothetical example, the sequences are complete and 
show an evolution from Type I to Type II to Type III systems (From Mutti, 1985). 
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Type III depositional system. The relative sea-level curve shown in Figure 

5.29 illustrates that both the Rogaland and Alba fans (Type III} are deposited 

during periods of relatively high sea-level compared with the underlying fans 

that form the Type II depositional sequences. Mutti's (1985) three types of 

depositional sequences can also be recognised on a smaller scale for the 

individual fans, although here the full sequence (Fig. 5.34) is not always 

developed. 

5.5.3.2 North Sea Oil and Gas Fields. 

The Frigg Field. 

The Frigg Field (Fig. 5.1 0), one of the world's largest offshore gas fields, 

represents one of the early discoveries within the Palaeocene/Eocene 

submarine fan deposits of the Viking Graben. However, even at this early 

stage in development of such plays, it was noted that the structure of the 

reservoir was mainly submarine fan depositional topography enhanced by 

draping and differential compaction of the sands and muds (Heritier et al., 

1979). 

The overall lobate shape of the structure on seismic sections and maps 

(Fig. 5.35}, combined with various sedimentological evidence suggested 

submarine deposition, and Heritier et al. (1979) noted that differential 

compaction in such an environment favours the vertical off-setting of clastic 

deposits, with new sediment being deposited above the shaley section on the 

flank of former thick sandy deposits (Figs. 5.36 & 5.37). They propose that 

the main structure represents the upper part of the fan and the apex its 

feeder channel. Lobes represent outer channels and levees in the middle 

part of the fan, whereas the low areas between lobes are formed due to the 

compaction of the more shaley beds between the channels (Heritier at al., 

1979). 

A complex history of deposition within the area resulted in the present 

field geometry, structure and extent of reservoir facies. The control on 

deposition began as a structural control, with sands being deposited on the 

southeastern flanks of the Frigg and East Frigg late Cretaceous anticlines 

(Heritier et al., 1979). However, subsequent depositional control resulted 

from a combination of the initial topography of the developing submarine fan, 

and the differential compaction between channel sands and their muddy 

levees/interchannel areas. 
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Figure 5.35 Seismic structure of Frigg Field at top of Frigg sand (From Heritier et al., 
1979). 
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Figure 5.36 Differential compaction across a submarine fan channel-levee complex 
results in the production of a pseudo-levee (Modified from Heritier et al., 1979). 
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The Forties Field. 

The Forties Field (Fig. 5.1 0) was discovered in 1970, within Palaeocene 

sandstones of the Forties Formation (Walmsley, 1975) (now redefined by 

Mudge & Copestake, 1992, and reduced to member status). Early work, 

particularly by Hill & Wood (1980), proposed that the facies relationships and 

associations, and the sedimentological structures present, characterised 

deposition in the middle to lower fan area of a submarine fan environment, as 

described by Walker (1978). They also described the log patterns seen in 

various wells throughout the field, and an interpretation of these patterns 

based on the submarine fan model (Fig. 5.38). Hill & Wood (1980) also 

proposed a correlation of sequential, and specific, depositional events based 

on the log patterns described in Figure 5.38, of the 50 development wells that 

had been drilled at that time, and which were closely spaced across the 

reservoir. However, subsequent studies, including the present one, have 

found log pattern correlation extremely difficult (see section 5.5.4), and often 

incorrect and misleading. Kulpecz & Van Geuns (1990) point out that the 

abrupt vertical and lateral changes in the facies make log correlation too 

difficult if based on log pattern alone, and additional information, such as 

biostratigraphy and pressure data, may help with correlation. 

The depositional model interpreted for the Forties Field by Kulpecz & 

Van Geuns (1990), incorporates the switching of feeder channels to control 

sandstone distribution and geometry of the reservoir, with channel separation 

aided by differential compaction. Stacking arrangements are therefore 

controlled by palaeotopography, upon which differential compaction has 

some influence. They also note that clay drapes separating channel bodies 

are sometimes pressure barriers, and therefore control sand body 

connectivity throughout the reservoir, along with fluid flow. Hence, pressure 

data can also be used to aid well correlation. This means that to understand 

the precise nature of the reservoir, and the recoverability of hydrocarbons 

from the play, an accurate model for submarine fan deposition is required, 

along with a knowledge of the processes such as differential compaction, that 

combine to control sand body geometries and stacking patterns. 

The Nelson Field. 

The Nelson Field, of Blocks 22/11 and 22/6a, represents the same 

Palaeocene sand reservoir as the Forties Field, but is located 5Km to the 

northwest, and 251\m north-northwest of the Montrose and Arbroath Fields 

(Whyatt et al., 1991) (Fig. 5.1 0). For this reason Nelson Field provides an 

excellent analogue for the present study of the Montrose - Arbroath area. 
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Figure 5.38 Characteristic log patterns seen in the Forties Member, Forties Field. An 
interpretation of the preferred depositional location within a submarine fan complex is shown 
below each pattern. Facies types seen in the cores are shown to the right of the lithology. 
Depths are in metres (true vertical depth below rotary table) (Modified from Hill & Wood, 
1980). 
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However, due to the fact that Montrose - Arbroath were discovered before 

Nelson, the depositional model for the latter is based on data concerning the 

Montrose- Arbroath area, discussed in the following section. 

It is important to note, however, that Whyatt et al. (1991) believed that 

the structure at top Forties level within the Nelson area had two origins. 

Firstly, the presence of flat-lying seismic events above the level of the 

Eocene, whilst significant structure exists below, indicates basin inversion at 

the end of Eocene times. Secondly, isopach maps of the Upper Forties 

member (now Forties Member (Mudge & Copestake, 1992)) indicated that 

sea-floor topography at the end of fan sedimentation may have shown 

variations of at least 50m (164ft) (Whyatt et al., 1991 ). Comparisons to the 

Indus Fan (Kalla & Coumes, 1987) and Amazon Fan (Damuth et al., 1988) 

are made, where channel-levee complexes may have 1 00-200m (330-660ft) 

of topographic relief above the fan surface. Whyatt et al. (1991) conclude 

that burial compaction will suppress the relief, but differential compaction will 

work to enhance the overall structural expression of the channel bodies 

(Figs. 5.39a & b). 

Finally, Whyatt et al. (1991) propose that the reservoir of the Nelson 

Field was deposited in a submarine channel system, with no evidence of lobe 

deposits throughout the region. This interpretation differs from the earlier 

models concerning the Forties Field (e.g. Hill & Wood, 1980) which lies in an 

up-fan direction to the Nelson Field. Later models for the Forties Field (e.g. 

Kulpecz & Van Geuns, 1990) acknowledge the fact that the majority of the 

thick sands forming the reservoir are almost exclusively submarine channel 

deposits. 

The Balder Formation, Quadrant 9. 

Due to the many recent discoveries of hydrocarbon accumulations within 

the Palaeocene/Eocene sections of the Central and Northern North Sea (e.g. 

Nelson, Gryphon and Forth (see Fig. 5.1 0)), many recent publications have 

proposed depositional models for the reservoirs of these fields, and for the 

specific area of the North Sea (e.g. the Viking Graben, Beryl Embayment, 

etc.). The majority of these fields have combination traps with elements of 

both structure and stratigraphy playing a role. As seen earlier with the Nelson 

Field, these models often provide analogues for the present study. This is 

particularly true for the Balder Formation of Quadrant 9, interpreted by 

Timbrel! (1993). 

The sedimentology within the Balder Formation of Quadrant 9 is identical 

to that of the Palaeocene section of the Montrose - Arbroath area, with 
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Figure 5.39a,b Nelson Field, a) top Forties Member depth structure map, and b) structural 
cross-section of the Palaeocene sequence (Modified from Whyatt et al., 1991 ). 
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stacked, amalgamated sands which are structureless apart from water

escape dish structures. Of extreme importance is the presence of differing oil 

- water contacts (OWC) in the wells of the area, showing that the reservoir 

sands are poorly interconnected and that the reservoir is partitioned (Figs. 

5.40 & 5.41 ). Figure 5.42 also illustrates the off-set stacking pattern of the 

channel sands in this area slightly further downslope, and the problematic 

correlation of the wells this creates. Timbrel! (1993) points out that the wells 

can only be accurately correlated by 11desandingll them (i.e. removing the 

sand sections from the well logs) and using biostratigraphic information. 

A great advantage of Timbreii 1S (1993) study over the study of the 

Montrose - Arbroath area, is the existence of not only a large number of wells 

in the area, but also the availability of new 30 seismic survey data. Ttlegdata 

has shown that the thickness of sand within ~sand fairways! varies greatly, 

with the sand forming pods, strung down the fairway. The data has also 

shown that the fairways meander sharply, presumably due to a low angle of 

the depositional slope, with similar dimensions to those of modern submarine 

fan channels. The key points concerning the sand fairway geometry are:-

• The sands have a remarkably consistent character. They may be 

classified as generally massive and structureless high-density 

turbidites. 

• The sandbodies are proven to be diachronous by quantitative 

biostratigraphy and detailed correlations of tuff marker beds. 

~There is considerable evidence for 11ateral stacking! of sandbodies 

within a depositional fairway, implying that the topographic expression 

of 10ider1 sandbodies strongly influenced the location of subsequent 

turbidite flows. 

• Very sharp lateral sandbody limits have been observed from well and 

sidetrack data and they appear to be distributed within channels. 

• Possible levee facies has been noted on seismic and in Sedgwick 

Field wells. 

• Location of the very thick 81 facies class (Fig. 5.13) stacked 

sandbodies can be correlated with large bathymetric lows at Top Sele 

level. 

• In contrast to the above, the location of moderately thick 81 sandstone 

bodies does not appear to be strongly controlled by palaeobathymetry 

at Top Sele level. However, the position of pre-existing sandbodies 

has had considerable influence. 

324 



Legend 

<&]) Undrilled 
u Appraisal 

Required 
Q Field or 

·· Discovery 
0 Km 5 -==--==-, .. 

13a 

Chapter 5: Montrose - Arbroath. 

Figure 5.40 Block 9/18a, 9/19 Tertiary discoveries and prospects (From Timbrel!, 1993). 
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• Reservoir thickness may vary markedly along a sandstone fairway 

giving target sands a 'string of pearl' or pod-like nature. 

• Seismic data show that several channel fairways appear to meander 

with a high degree of sinuosity indicative of a relatively low 

depositional slope. 

(Timbrel!, 1993). 

On a regional scale, the geological model for the Quadrant 9 area shows 

that the high-density turbidity currents have no single point-source, 

comparable to the modern fans such as the Rhone, Magdalena, Amazon and 

Navy Fans (Timbrel!, 1993). However, these modern fans do not appear to 

provide exact analogues to the Balder Formation, and Timbrel! (1993) 

proposes two end-member models for the deposition of the Balder sands. 

The two models consist of an erosive model and a constructive model, and 

both are described below. 

The Erosive Model. 

Figure 5.43 illustrates an erosive gully depositional model, akin to the 

model of Surlyk (1987). Gully erosion by turbidity currents occurs during a 

lowstand in sea-level, and are subsequently filled by stacked turbidites. The 

bases of such deposits are highly erosive, with many mudstone clasts ripped

up into the sandbody. Also apparent is that the sands must be younger than 

the containing mudstones, with biozones being cut out by the gully erosion. 

This fact is untrue for the Balder Formation, as no biozones are missing 

between the sands and shales surrounding the fairways and detailed 

biostratigraphic correlation is possible between the two facies. Therefore it 

appears that the erosive model does not fit the well and seismic data for the 

Balder Formation (Timbrel!, 1993). · 

The Constructional Model. 

This model consists of a line-source of sediment, and can essentially be 

classified as a 'prograding slope' type model (Fig. 5.44) such as the 

submarine ramp model of Heller & Dickinson (1985). Timbrel! (1993) 

proposes the Valencia margin of northeast Spain, documented by Field & 

Gardner (1990) and Alonso et al. (1991 ),as a better example of this model. In 

this area, submarine canyons incise the shelf break where axial gradients are 

2.4° to 7.5°, but constructional channel-levee complexes are present where 

the gradients shallow to 0.4° to 1.9° (Timbrell, 1993). Field & Gardner (1990) 

see the channel-levee complexes as forming the main facies of the margin, 

the slope section being characterised by a series of 'shoe-string' sands 

encased in fine-grained levee deposits. Alonso et al. (1991) illustrate how the 
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Figure 5.43 Erosive trubidite model, sandstone gully/canyon development (From 

Timbrel!, 1993). 
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Figure 5.45 Representative sparker profile of unit A showing the stratigraphic distribution 
of channel-levee complexes 1-5 and apron deposits (a) in the Ebro base-of-slope. The top of 
the Miocene (reflector M), the middle Quaternary (reflector R), and the Pliocene-Quaternary 
boundary (reflector G) are also indicated (From Alonso et al., 1991 ). 

329 



Chapter 5: Montrose- Arbroath. 

channel-levee complexes overlie each other, having stratigraphically different 

ages, and as before, showing a typical vertical off-set pattern (Fig. 5.45). 

For the Balder Formation of Quadrant 9 the constructional model 

appears to fit the data better, with erosive submarine canyons and gullies 

occurring in areas of higher gradient (e.g. in the Forth Field area (Timbrel!, 

1993)), with constructional complexes occurring downslope to this. Problems 

with the model do exist, such as no convincing levee deposits have been 

found in the area. Another problem is the pod-like nature of the sandstone 

reservoir bodies. Timbrel! (1993) proposes that flow-stripping (Fig. 5.19), as 

defined by Piper & Normark (1983), is a possible depositional control to the 

sandbodies. The resultant depositional model is shown in Figures 5.20a & 

5.53b. An alternative mechanism to flow stripping is lateral accretion, 

however, there are no convincing outcrop examples of this from the 

submarine environment (Timbrel!, 1993). 

Numerous other North Sea oil and gas fields exhibit similar depositional 

patterns that have been affected by differential compaction at some stage 

during their deposition. The effects of differential compaction are noted in the 

descriptions of the reservoirs depositional development, but often only play 

a minor role. Examples include:-

• The Cod Field (Kessler et al., 1980). 

• The Miller Field (McClure & Brown, 1992; Garland, 1993). 

• The Everest Field (O'Connor & Walker, 1993). 

• The Gryphon Field (Newman et al., 1993). 

• The Balder Field, Norway (Jenssen et al., 1993). 

• The Alba Field (Newton & Flanagan, 1993). 

Also noteworthy in this section are various examples of submarine fan 

sandstone reservoirs from the Californian oilfields. Similar techniques of log 

correlation based upon biostratigraphic data and pressure data have been 

used to at:tempt to accurately define the depositional models for these fields. 

Observations show that very little erosion occurs at the base of the 

submarine channels, and pods of sand are located within the meanders 

(Yowlumne Field (Berg & Royo, 1990)), as seen in the Balder Formation of 

Quadrant 9 (Timbrel!, 1993). The study of the Midway-Sunset Field by Hall & 

Link (1990) relies entirely on well log data, as no seismic data exist for the 

area. They show that through detailed well log correlation, it is possible to 

define a lower section of depositional lobes, followed by an upper section of 

submarine channel deposits, akin to Mutti's (1985) Type II or Type III 
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deposits (Figs. 5.32 & 5.33). The channels are vertically off-set, with no levee 

deposits. 

Almost identical relationships are seen in the Arbuckle Field (Imperato & 

Nilsen, 1990), however, levee deposits are more common here as the fan 

system is dominantly muddy. Importantly, Imperato & Nilsen (1990) note that 

the Arbuckle Field consists of six intervals separated by shale marker 

horizons, each of which contain numerous channel-levee complexes. Fluid 

communication within a single interval can be proven, but fluid 

communication between intervals does not occur, producing a partitioned 

reservoir. 

5.5.4 Montrose- Arbroath Model. 

5.5.4.1 Geological Model. 

The combination of seismic data, well data, and sedimentology, derived 

from core data, makes it possible to show that the sediments of the Montrose 

- Arbroath area were deposited within submarine fan channel complexes, by 

high-density turbidity currents. Well log motifs clearly show the depositional 

pattern (Fig. 5.7). Detailed seismic mapping, combined with the calibration of 

seismic facies analysis to core sedimentology, reveals that there are 

approximately three sandstone fairways running NNW-SSE (Fig. 5.46). 

lsochores of the Forties Member are thickest within these fairways. In the 

Montrose - Arbroath area the channels are 2.5-3Km wide, 50-1OOm thick and 

are separated by interchannel areas around 500m wide, and 15-30m thick 

(Whyatt et al., 1991 ). 

The basic depositional model for the North Sea during early Palaeocene 

time shows that a prograding sand-rich braid delta system built along the axis 

of the Moray Firth area (Sutter, 1980; Galloway et al., 1993) (Fig. 5.27). Local 

variations in sea-level, combined with seismic activity due to Thulean 

volcanism, initiated deposition of submarine fan deposits within the Central 

and Viking Graben regions (Hartog Jager et al., 1993). Sediment was shed 

from the delta front, forming a mud/sand-rich, multiple-sourced submarine 

ramp (Figs. 5.16 & 5.17) (Reading & Richards, 1994). As shown by Hartog 

Jager et al. (1993), the precise nature and geometry of the submarine fan 

deposits depended upon many factors including the precise scale of sea

level fluctuation. Sheet-like fans, such as the Andrew Fan, occurred during 

the Lowstand Systems Tract, and the subsequent Forties Fan was deposited 

during the Transgressive Systems Tract, as accommodation space began to 

increase (Hartog Jager et al., 1993) (see section 5.5.3.1 ). 
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ARBROATH FIELD - Index Map 
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Figure 5.46 Index map for the Arbroath Field illustrating well location, division of region 
for use with maps of Appendix 1, and the general locations of the 3 submarine channels. 
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Channel complexes within the Montrose - Arbroath area are interpreted 

to be analogous to those described by Timbrel! (1993) for the Balder 

Formation of Quadrant 9. Core log evidence appears to show little erosion at 

the base of individual flows, with only minor rip-up clasts being present near 

the base of these deposits (Fig. 5.8). It is therefore interpreted that the 

channel complexes were not initiated by erosion, and are generally of the 

constructional type, as described by Timbrel! (1993). Further evidence to 

support this interpretation comes from the work of Weimer (1989); Berg & 

Royo (1990); Hartog Jager (1993); Newmann et al. (1993), where little 

erosion is reported at the base of submarine fan channels. For the Montrose 

- Arbroath area some underlying topographic variation in the top Lista 

Formation controlled the initial channel deposition. This control could quite 

possibly have been some small-scale structural control (Birch, pers. comm., 

1993). Subsequent flows were focused within the channel complex, possibly 

due to minor growth of levees. Flow stripping is also believed to have played 

an important role in the depositional location of the thick sand deposits, and 

may also explain the separation between the Montrose and Arbroath oilfields. 

Figure 5.47a-f illustrate the proposed depositional model for the Montrose

Arbroath area which was used for the modelling, and the assessment of 

compactional control upon deposition. 

5.5.4.2 Seismic Data. 

As shown earlier, Figure 5.6 illustrates part of a typical seismic section 

across the Arbroath Field, indicating the important horizons to be picked. 

Using well information and vertical seismic profiles (VSP) the present study 

picked all the horizons and correlated them across the entire area of seismic 

coverage (Fig. 5.5). This allowed the mapping of the entire Arbroath Field, 

plus part of the Montrose Field, in time (TWTT), along with the position of 

faults, especially within the lower half of the stratigraphic section. Depth 

conversion is then possible using interval velocities from well log information. 

However, the present study recognised at an early stage that the 

resolution of the seismic data was well below that required to model 

differential compaction on a useful scale. The only purpose for the seismic 

data therefore, was to produce a field map, and this was deemed not to be 

required. 
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Figure 5.47a-f Interpreted depositional model for the Montrose and Arbroath oilfields. 
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5.5.4.3 Well Correlation. 

The Arbroath oilfield was selected for modelling primarily due to the more 

recent and better quality well data available, plus the greater seismic 

coverage. For the twenty deviated wells (22/17-T1 to T20) and the one 

vertical well (22/18-1) (Fig. 5.46) a detailed correlation was carried out. 

Correlation lines were primarily based on biostratigraphic data, available for 

a selection of the wells (T1 to T8) (Table 5.3) and core data for wells T1-T6. 

In addition to this certain wells had Repeat Formation Test (RFT) pressure 

data which was built into the biostratigraphic data for well correlation. This 

allowed a further number of wells to be correlated. Finally, all the wells were 

correlated using log character, primarily the gamma ray log, allowing the 

greater division of certain units, plus the enlargement of the correlation to 

encompass all the Arbroath wells. Core data also aided the assessment of 

the correlation for certain wells. 

Facies correlations within a turbidite environment are extremely difficult 

when using log character alone, and are therefore often incorrect (Whyatt et 

al., 1991; Armentrout et al., 1993). However, with a fully integrated approach, 

using all available data sources, errors in correlation can be minimised and 

greater confidence i~ the depositional facies geometries can be obtained. 

The present study has attempted this integrated approach as it is of prime 

importance that a detailed picture of facies development and geometry is 

developed, so that the effects of differential compaction can be assessed. 

Table 5.4 shows the correlation depths as true vertical depth below sea level 

(TVDSS) for the Arbroath wells, and Figure 5.48 graphically illustrates a 

correlated cross-section. Depths are with respect to the present day. The 

object of this study is to remove the effects of burial compaction, enabling the 

estimation of original depositional thicknesses of chronostratigraphic units. 

Depositional patterns, differential compaction, and sea-floor topography can 

then be assessed at each chronostratigraphic stage, with relatively few 

assumptions, outlined below. The effects of differential compaction and sea

floor topography on the stacking patterns of subsequent horizons and facies 

can be interpreted, enabling a qualitative assessment of the control on 

deposition provided by compaction. 

For each well an estimation of the percentage sand and mud was 

recorded at every correlated horizon (Table 5.5), at each time noting whether 

the sand was at the top or bottom of the horizon in question. Estimations are 

based on the gamma ray/composite log for each chronostratigraphic unit. 

Finally, the present day unit thickness was also calculated (Table 5.5). These 
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8147.6 8078.4 8130 8120.1 8289 8267 8132.7 
8137.2 8120.5 8052 8134.9 8126 8293 N.l. N.l. 
8178 8159.11 8090 8154 8135.5 8314 8284 8151.4 

8204.5 8200.9 8142.5 8200 8162.4 8347 8302.7 8188.7 
N.l. N.l. 8107.5 8213.8 8178 8408 N.l. N.l. 

8233.5 N.l. 8168.5 8226 8186 8433 8302.7 8207.4 
8277.5 8264.4 8186 8257.5 8265 8445 8354.7 8263.4 
8314 N.l. 8213 8297.7 8309 8468 8389.6 8375.3 
8330 8334 8246 8344 8360 8468 8424.5 8413 
8480 N.l. 8330 8362 8395 8484 N.l. 8468 
8556 8453 8460 8402 8412 8490 8546 8468 
N.l. 8478 8506 8462 8494 8510 8546 

8656 8660 8560 8500 8598 8574 8670 I 8600 
Table 5.3 Biostratigraphic events for the Arbroath Field. Depths are TVDSS, and the events key is given below. 

Key to Biostratigraphic Events. 
1. Prasinophycean Association. 16. Ulmipol/enites spp. - Nyssapol/enites krutschii 0 

::;,-

4. Apectodinium augustum Association. Association. Ill 
"0 

3. /naperturopollenites spp. - Caryapollenites 17. Apectodinium augustum- Apectodinium ro ..... 

veripites Association. summissum Association. 
()1 

$: 
5. Apectodinium homomorphum Association. 18. Pre-Apectodinium Association. 0 

~ 
9. Decrease in Caryapollenites spp. 19. Alnipollenites verus- Platycaryapol/enites ..... 

0 

12. Lejeunecysta spp. Association. platycaryoides Association. 
en 
(1) 

I 

13. Pediastrum spp. - Glaphyrocysta spp. 21. Areoligera cf. senonensis sensu RRI :x> ..... 

Association. Association. rr ..... 
0 

w 14. Pteris spp. Association. 
Ill 

w s-
en 

15. Caryapollenites veripites- Caryapol/enites 
simplex Association. 
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Field wells. Correlation horizons are those shown in Table 5.3, plus extras based on wireline 
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Figure 5.48 Graphical representation of the correlation of the Arbroath Field wells. 
Symbols represent the correlation horizons shown in Table 5.4. 
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parameters are all important during the decompaction stage of modelling as 

explained in section 5.6. 

5.6 Modelling. 
It is possible to broadly subdivide the compaction effects that occur 

within the Montrose - Arbroath area on the basis of the scale at which they 

occur. Three scales of compactional effects are seen, namely:-

• Mega-Scale - Observable on regional seismic data, and 

occurring over distances ranging from 500m 

and above. 

• Meso-Scale - Observable through well correlation, and 

occurring at the scale of submarine channel 

systems. 

• Small-Scale - Observable only at outcrop, and occurring at 

the scale of individual turbidites. 

The following sections will deal with each scale in turn, with special interest 

directed at meso-scale compaction effects as a control upon deposition. 

Small-scale compaction effects are unobservable at the Montrose - Arbroath 

area, and are therefore dealt with in a qualitative way. 

5.6.1 Mega-Scale Compaction Effects. 

The Forties-Montrose High has certainly influenced sedimentation within 

the Central Graben from Permian times onwards. The deepest stratigraphy 

penetrated by drilling (e.g. 22/11-1, 22/17-1 on the high; 22/23b-1 in the 

adjacent basin) demonstrates the contrasting stratigraphy both on and off the 

high. Over the horst, Tertiary and Upper Cretaceous section rest 

unconformably on Triassic and Permian strata. Lower Cretaceous and 

Jurassic rocks are absent, as well as the Zechstein evaporite, although 

Zechstein carbonates are present. In the adjacent basinal areas, in addition 

to the Lower Cretaceous and Jurassic sections present, the Triassic and 

Upper Cretaceous sections are considerably expanded in thickness relative 

to the high. Using the regional cross-section across the Montrose - Arbroath 

area from Ziegler (1982) (Fig 5.49), and bed thicknesses measured from 

regional seismic data (CNST86-29), the amount of compactional drape 

expected over the basement high at top Palaeocene level has been 

evaluated. 

Assumptions concerning lithologies, present day thicknesses and 

porosities for each stratigraphic level are detailed in Table 5.6. Compaction 
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Original Porosity= Porosity immediately post Palaeocene deposition. 

Thicknesses measured in metres. 
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Table 5.6 Decompaction table for the mega-scale modelling of the Palaeocene section 
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of muds is modelled using the curve of Baldwin & Butler (1985), and 

compaction of sands by Sclater & Christie (1980). Chalk compaction was 

modelled using a porosity-depth relationship derived from velocity data (Fig. 

5.50). Finally, it was assumed that there has been no differential subsidence 

between the basin and high below the base Triassic. 

Modelling of the post-Palaeocene compaction across the horst reduces 

the gross thickness of the top Palaeocene to base Triassic section due to 

compaction by 620m in the basin. In comparison, a corresponding reduction 

in section over the Montrose - Arbroath area basement high of 446m is 

calculated. The contrast between these figures of 174m compares with actual 

relief, measured from an ENE-WSW regional seismic line (CNST86-29) 

across the same area, of approximately 120 to 170m. 

Since the Forties-Montrose High trends approximately NNW-SSE, the 

above observations from adjacent basins across the high only explain 

structural relief across the bounding normal faults, and not along the strike of 

the structural high. There, NW-SE trending seismic data show segmentation 

of the high apparently controlled by ENE-WSW trending extensional and/or 

oblique slip faults. However, there is significantly less throw on this set of 

faults in comparison with those which bound the horst. Consequently a 

further explanation for structure along the crest of the horst is required to 

explain the field traps, including an explanation for the separation of the two 

oil accumulations. Compaction effects occurring on a smaller (meso-) scale 

are the most likely explanations (see following section). 

5.6.2 Meso-Scale Compaction Effects. 

The initial stage of modelling consisted of taking a single well correlation 

(Table 5.5) and estimating the present day porosity for each horizon. Each 

chronostratigraphic unit had to be separated into its individual sand and mud 

components, and the average porosities of each component was assumed to 

be the porosity at the mid point (see section 2.4, Chapter 2). 

The next stage involves the removal of the post-Palaeocene section from 

above the oilfield, and the consequent decompaction of each horizon. Firstly, 

the average porosities must be estimated. As before, Baldwin & Butler's 

(1985) power law is used for muds and Sclater & Christie's (1980) 

exponential equation is used for sands. At these shallower depths of burial 

porosity estimation is extremely difficult, and usually highly variable. 

However, fieldwork in both California (Chapter 3) and New Mexico (Chapter 

4) has shown that these equations appear to work well for the modelling 
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Figure 5.50 Porosity-depth curve derived from well log evidence for chalk. 
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process at shallow burial depths (i.e. 0-1 OOm). Figures obtained using these 

mathematical methods often equate quite closely with those produced by 

mechanical tests of real sediment. For example, compaction ratios measured 

from shallow boreholes (Truyol, 1989) closely match those calculated using 

the equations above (see modelling of Muleshoe Mound, Chapter 4). 

Once porosities have been evaluated, the unit's new thickness can be 

calculated using the equation of Van Hinte (1978), and summing the 

component sand and mud parts together. Similar calculations can then be 

carried out for the progressive removal of each horizon (Tables 5.7 & 5.8 

show an example of the method for well T15). Once the uncompacted 

thicknesses for all the chronostratigraphic horizons are known it is a simple 

task of rebuilding the stratigraphy unit by unit on the base map over the 

Arbroath Field, plotting the thicknesses at the well locations and contouring 

the area. This allows a qualitative assessment of the role of compaction 

during deposition of the reservoir section. Taking results of fieldwork into 

account, the timing of compaction can also be qualitatively assessed, and the 

resulting depositional topography can be interpreted. 

The results form a series of contour maps (Appendix 1 ), which not only 

show the topographic development of the Arbroath area, but also illustrate 

the isopachs of each separate time horizon along with the distribution of sand 

within each unit. The contour maps allow the assessment of topographic 

control upon subsequent deposition, as well as any control provided by the 

proximity of buried sand bodies. Contour maps of the depositional surface 

topography are based on the thickness of sediment in each well above the 

top chalk horizon (Top Maureen). Some wells (i.e. T1-T7, T9, T11-T11Z, 

T16, T18) have been drilled deep enough to locate this horizon accurately. 

For the remaining wells, the depth to the top chalk horizon was obtained from 

the seismic data. A suitable interval velocity for the overlying sections was 

determined from the wells that did intercept the top chalk horizon, which was 

used to calculate the depth to the same horizon for the shallower penetrating 

wells. 

To carry out the assessment of topographical and compactional control 

upon sedimentation the contour maps were divided into an even grid (1 Ocm x 

5cm) (Fig. 5.46). It was then possible to take the initial depositional surface 

(Unit 19) and define the most likely depositional sites (MLDS) upon that 

surface (i.e. the topographically lowest areas). This was firstly done for the 

uncompacted surface, followed by the compacted surface (Appendix 2). The 

depositional sites (OS) were interpreted from the chronostratigraphic units 
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isopach maps, and the number of matches between the presumed MLDS and 

the actual OS was calculated. Depositional sites that did not match with the 

MLDS on the uncompacted surface were scrutinised in terms of their 

compactional geometry, and their capacity for compaction by looking at the 

amounts of underlying sand. It was possible to look at not only the total 

amount of sand underlying these areas but also the immediately underlying 

sand concentration from the preceding unit {Appendix 1 ). Finally, an 

assessment of the depositional characteristics of each chronostratigraphic 

unit was outlined, both in terms of topography and compaction {Appendix 2), 

with the results outlined below. 

RESULTS. 

A general view of the resulting contour patterns for the Arbroath area 

shows that subsequent depositional units fill the topographic lows of the 

preceding topography, as would be expected. Also, the overall sand 

distribution increases as the younger units are deposited (e.g. compare the 

sand percentage map of unit 18 to that of unit 1 ). Most isopachs pick out the 

channelled nature of the depositional units, particularly from unit 17 and 

younger. However, it is more important to look at the sand concentration 

maps, as these pick out the channelised nature of the deposits much clearer, 

and illustrate how the sand fairways have formed through time. Particularly 

clear channels are picked out from unit 18 onwards (Fig. 5.51 ). Three 

channels appear to be delineated running generally northwest-southeast, 

and have been described as the northern, middle and southern channels in 

the descriptions of the topographic surfaces and the following isopachs in 

Appendix 2 (Fig. 5.46). Two general statements concerning the sand 

distribution can be made:-

1 . Sand concentrations are high where a chronostratigraphic 

units isopach is thin. 

2. Sand concentrations are high where the underlying topography 

is low angle or sloping, especially on the lower, northern sides 

of slopes, where turbidi!Y flow velocities will be initially slowed. 

It is also worth noting that the topography of the depositional surface 

remains essentially the same from the time immediately after the deposition 

of unit 17 up to the deposition of the top of the Forties Member. The deep 

topographic low in the south-western corner of the area is probably due to 

the lack of data and well control in this area. 
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Figure 5.51 Submarine channels of the Arbroath Field evident from the sand percentage 
map of chronostratigraphic unit 18. 
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Figure 5.52 Northern submarine channel of the Arbroath Field illustrated by the 
chronostratigraphic sand percentage map of unit B. 
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There is also a strong correlation, especially in the older units, between 

the previous unit's sand component and the succeeding unit's isopach. Often 

where high percentages of sand are found in a deposited unit the succeeding 

unit is generally thinner in this region, illustrating how the compaction 

qualities of the underlying sediments may influence sedimentation. 

Results, outlined in Appendix 2, show that compaction greatly enhances 

the possible depositional area for each unit. There is a strong correlation 

between the MLOS of the compacted depositional surface and the following 

depositional sites (on average 67% of MLOS match with the OS). Whereas, 

the correlation between the depositional sites and the MLOS of the 

uncompacted depositional surface is not as good, being only 44% of MLOS 

matching the actual OS. The channelised sands are generally fixed in their 

position, but on close inspection a horizontal off-set in sand distribution can 

be seen occurring at certain stages in the depositional buildup of the 

Arbroath region. For example, the northern channel, running along T15-T9-

T5-T17-TB-T13-T3, is the main channel used by the turbidites, especially 

during the early phases of growth. Unit B is probably the first horizon to 

clearly define the channel (Fig 5.52), and deposits moderately thick sands in 

the T15, T5 and T17 area. Further sands of units 17 and 16 are also 

deposited in the same location, however, these are becoming successively 

thinner. Unit A, which marks a return of thick sedimentation in this area 

shows a clear horizontal off-$et of its sand deposition to the northeast (T9 

area) from the underlying sand deposits (Figs. 5.53a & b). Further off-setting 

of sand deposits occurs between the deposition of unit 15, unit 14 and unit 13. 

The depositional build-up of the Arbroath region is discussed in more detail 

below. 

Arbroath Depositional Development. 

The top surface of unit 19 is taken as the starting point to modelling as 

this correlation crosses all the wells of the area. This correlation comes only 

just above the top of the Andrew Member, and therefore documents all the 

Forties Member depositional history (Fig. 5.4). 

19 Depositional Surface - Lista Isopach Deposition. 
The Lista unit is relatively thin and mud-rich, but deposits sands in both 

the northern and southern channels, with a probable levee separating the 

two channels where the isopach is thickest around the T20-T16-T2-T3 

region. Sands are found in small lobate deposits in both channels, in the 

north, around the T5-T9-T17 area on the southern slope and following low 
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Figure 5.53a,b Off-setting of successive submarine channel deposits from unit 16 to unit A. 
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area of a major topographic high in the depositional surface, and in the south 

channel around the T1 0-T6 area, again on the southern slopes of a minor 

topographic high. In general, sand deposition is enhanced by compaction of 

the unit 19 depositional surface, especially in the southern channel. 

Lista Depositional Surface - 18 Isopach Deposition. 

Sands are found pushing into the very northern ends of both the northern 

(T15 area) and southern channels (T19-T14 area). They are probably 

confined due to the compactional topography of the top Lista surface, which 

creates a low-lying ridge running east-northeast from T14 to T9 that forms a 

barrier across which the majority of sand does not cross. Further mud 

deposition tends to fill topographically low areas upon the depositional 

surface. 

18 Depositional Surface - 8 Isopach Deposition. 

The northern channel becomes well defined at this stage, showing high 

sand concentrations around T15-T5-T17-TB area, and is confined by the 

topographic highs at T9 in the north and T20-T16-T2 in the south. As before, 

a large proportion of the sand content is deposited on the initial ridge area of 

T5, however, more sand crosses the compactionally lowered ridge and spills 

into the southeastern corner of the area, where it appears to pond in the 

T11Z-T11-T7 area. Mud deposition fills and generally smooths the 

topography of the depositional surface. 

8 Depositional Surface- 171sopach Deposition. 

Once again the northern channel is dominant, with a possible levee built 

up along the middle channel of T20-T16-T2, with additional sands deposited 

into a developing southern channel around the T19-T14 area where the 

isopach is thin. Northern channel sands are initially concentrated in the T15 

area behind an ever decreasing ridge. However, as unit 17 is relatively thick 

most of the sediment, including large amounts of sand breached the lowered 

saddle between T16 and T5 to be deposited in the topographic low area of 

T3-T13-T18-T11Z-T11, which is lowered further by compaction, providing 

greater accommodation space for thicker sediment accumulation. Hence, the 

unit 17 isopach is thickest in this region, and both the sand concentration and 

isopach is off-set to the north from the thick sands deposited in a similar 

position in the preceding unit B. 

17 Depositional Surface- 16 Isopach Deposition. 

The southern channel appears to become dominant during this phase, 

with thicker and sandier sediment deposited within it than the northern 

channel which still shows some use, although the isopach is extremely thin 
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(<18m). Southern channel sediment can be interpreted as running along 

T19-T14-T1 0-T12-T1, with larger concentrations of sand found around the 

T4-T18 area in a lobe-shaped deposit. It appears that sand was fed down the 

southern channel, which was an initial low-lying area, but was compactionally 

enhanced due to very low amounts of underlying sand. Turbidites were fed 

towards the T 4 area where they became temporarily dammed by a significant 

ridge running northeast from T 4, through T3 to T13. Sands were banked 

against this high region as the isopach map shows, with only small amounts 

spilling over into the southeast corner. 

16 Depositional Surface - A Isopach Deposition. 
The northern channel becomes the focus of sedimentation during the 

deposition of unit A, with very thick and sandy deposits found in the northern 

channel around T15-T9-T5-T17-T8-T13. Sediment was partly controlled by 

topography, filling low areas, and being trapped behind a major ridge 

between T 4-T3-T13, but deposition was also controlled by compaction of 

underlying sand bodies. The northern channel, outlined by unit A, is off-set to 

the northeast to flow nearer the T9 region than the previous channel outlines 

of units 16, 17 and B. Differential compaction across the northern channel 

prior to unit A deposition results in topography being created around T5, 

which forces turbidite flow towards this area. Only minor, thin sands are 

found in the southern channel. 

A Depositional Surface - 15 Isopach Deposition. 
As topography upon the depositional surface has generally been 

smoothed due to unit A deposition the southern channel becomes the major 

carrier of sediment as it forms one of the lowest areas in the region. Thick 

sands are found along T14-T12-T1, and are banked against a southern high 

area around T 4. Some sand does manage to spill over into the southeastern 

corner, which also forms a low topographic area. A minor sandy levee 

deposit also forms on the northern side of the channel along the line of T20-

T16, and can be clearly seen on the isopach map. Minor sands are found in 

the northern channel, and are now off-set to the south from the underlying 

thick sands of unit A. compaction of the depositional surface after unit A 

deposition shows that the low in topography on the northern edge of the 

region has migrated to the west resulting in the sands being deposited in the 

T15 area rather than around T9 as before. 

15 Depositional Surface - 14 Isopach Deposition. 
Deposition of unit 14 is mainly controlled by topography and the fact that 

the northern channel is the main axis of sediment supply. An east-west ridge 
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has developed in the north of the region running from T16 and through T5, 

mainly due to differential compaction across the thick underlying sands. 

Therefore, sands of unit 14 are trapped behind this ridge and off-set to the 

north, back around the T9 area. Minor sands make it over the ridge, and are 

generally deposited on the north facing up-slopes of the topography. Mud 

deposition fills previous topographic low areas, particularly the area around 

T17 and TB. However, due to the muddy nature of the sediment the small 

circular hollow still remains and grows as compaction continues. 

14 Depositional Surface- 131sopach Deposition. 

Following on from unit 14, thick sands are deposited in the northern 

channel, again slightly off-set to the south by the immediately underlying 

sands. Unit 13 also shows that sand is partially banked against the small 

ridge in the north (T15 region), but as this is a thick unit the majority of the 

sediment makes it over the ridge to be deposited in the topographically low 

area of T17-T3-T13-T11Z-T11. Minor sediment is present in the southern 

channel, and this is very sandy around T10-T12-T1-T4, but is also very thin 

(<22m, compared with 50m in the northern channel). No definable levee 

deposits are forming at this stage, possibly due to the fact that the channels 

are separated by a north to south trending area of high topography running 

up from T 4 through T2 to the northern ridge at T16 to T5. The two channels 

are quite firmly entrenched either side, but topography is generally subdued 

after the deposition of unit 13, with a low embayment area beginning to form 

along the line of T20-T16-T2, which widens after compaction. 

13 Depositional Surface- 12 Isopach Deposition. 

Unit 12 is extremely sandy, especially where the isopach is thin. Both the 

northern and southern channels are defined by the sand deposition, and 

thick overbank muds are present in the topographically low area of T20-T16-

T2. However, due to these sediments being mud it is not long before 

compaction makes this area a prime site for deposition once more. Once 

again the northern channel has high concentrations of sand banked behind 

the significant northern ridge running from the T5-T17 area southeatwards. 

As before, this ridge is created by differential compaction across the 

underlying channel sands of unit 13, displacing unit 12 sands to the 

northeast. Also major sands are found along the length of the southern 

channel, ponded against the northern slopes of the high region just south of 

T1 and T 4. Sediment has also spilled over the minor saddle in the north

south ridge into the low area of the southeast corner of the region. 
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12 Depositional Surface - 9 Isopach Deposition. 

For the first time the middle channel begins to accumulate sandy turbidite 

deposits, as unit 9 deposits sand along T20-T16, an area underlain by very 

low amounts of sand, and therefore, compactionally enhanced. This sand is 

banked against the main north-south ridge through the region, although thin 

amounts of sandy sediment make it over the high into the low southeast 

corner of the region. Some thin sediment may also have come down the 

northern channel to add to this deposit. 

9 Depositional Surface - 5 Isopach Deposition. 

Both the southern and middle channels are operative during this period 

of sedimentation, which is becoming increasingly sandier. The region is the 

topographically lowest, especially with the combined effects of differential 

compaction of a relatively underlying sand starved section, compared to that 

underlying the northern channel. High concentrations of sand are found 

banked against the high ridges in both the southern (T12-T1 area) and 

middle channels (T2 area). Further sand is found in the deep topographic low 

at the head of the southern channel around T19 and T14. Southern channel 

sands lie off-set to the northeast from the previous underlying sand bodies of 

units 12 and 13. 

5 Depositional Surface - 3 Isopach Deposition. 

Unit 3 deposition continues the trends begun by the previous unit. Once 

again the southern and middle channels are the main conduits of sandy 

turbidites, banking sediment against the topographic high ridges of the 

depositional surface. The middle channel deposits all its sand against the 

western slopes of the ridge in the T16-T2-TB area, while the southern 

channel deposits sand in the deep topographic low, on the western slopes of 

the high region south of T1 and T 4, and over the saddle in the low southeast 

corner of the Arbroath region. All these sands tend to be thin, with mud 

deposition generally filling the remaining topographically low areas of the 

depositional surface. 

3 Depositional Surface - 4 Isopach Deposition. 

Unit 4 is a very thin sand rich section, and therefore has little effect on 

the overall topographic shape of the Arbroath area. As before, it appears to 

show that the middle and southern channels are the active sites of 

sedimentation, with the northern channel has remained dormant for some 

period of time. This is presumably due to the large amounts of sand 

deposited earlier in the northern channel, now effectively damming the 

channel from further sediment, especially after the effects of differential 
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compaction. Once more unit 4 deposits high concentrations of sand on the 

slopes of the topographic high regions, now slightly displaced upstream 

(northwestwards) after the deposition of unit 3. Therefore, the sands of the 

middle channel are found around T20-T16, and the sands of the southern 

channel around T1 0-T12-T1. Sands also spill into the low southeast corner of 

the region in the T18-T7-T11Z-T11 area. 

4 Depositional Surface - 1 Isopach Deposition. 

Topography is the main contributing factor to the deposition of unit 1, 

although compaction undoubtedly enhances the topographic variations in 

certain areas. The reason topography may form the main control to 

depositional patterns at this stage may be due to the fact that most areas 

have high sand percentages close to the depositional surface making early 

compaction more difficult and less significant than before. Unit 1 again shows 

widespread sand distribution, especially where the isopach is generally 

thinner. Sands appear to be found in the southern channel, especially 

deposited on the upslope to the high region around T1 and T 4. Further thin 

sands (<6m) are found in the northern end of the northern channel around 

T15 and TS, where they have probably been trapped by the topography. The 

northern channel has therefore become favourable for deposition once again 

as other areas have been filled. This is probably why the middle channel 

mainly receives a thin overbank mud section. Mud-rich areas appear to fill 

topographically low areas, and generally smooth topographic variations. 

1 Depositional Surface - Forties Isopach Deposition. 

The final submarine fan deposition of the area appears to flow 

exclusively down the middle channel although slightly displaced to the 

southwest relative to previous units such as 3 and 4. Therefore, sand is 

generally found along T20-T16-T2, but it also overlaps with the northeastern 

edge of the southern channel at T1 and T 4. Deposition continued along the 

length of the middle channel, tunnelling sediment into the low southeast 

corner, to deposit thin sands around T3-T13-T18-T7-T11 Z-T11. Thicker mud 

deposition generally filled topographically low areas in the top unit 1 surface, 

especially around T17-T8 and T10-T12. 

5.6.3 Small-Scale Compaction Effects. 

As small-scale compaction effects can only be viewed on the scale of 

single turbidite beds and less, only submarine fan deposits examined in field 

outcrops can help in the understanding of compactional processes. However, 

355 



Chapter 5: Montrose - Arbroath. 

petrology of core samples can also be carried out to see compaction effects 

on the grain to grain scale. 

Petrography has shown many compaction effects between grains, 

notably concave-convex contacts between quartz grains (Plate 5.4), bending 

of mica flakes (Plate 5.5) and sutured contacts (Plate 5.6). Further to this, 

studies of the core from the Montrose and Arbroath wells illustrated many 

examples of sandstone injection features, along with widespread dish 

structures, both created by extremely rapid dewatering under the influence of 

compaction. 

5. 7 Conclusions. 
Differential compaction can be modelled at various scales throughout the 

Montrose - Arbroath area, and is responsible for many features, including the 

field's geometry, location, and depositional development. Depositional 

models for the Montrose - Arbroath area and other related fields have been 

described by many authors (e.g. Walmsley, 1975; Heritier et al., 1979; Hill & 

Wood, 1980; Carman & Young, 1981, Kulpecz & Van Geuns, 1990; Crawford 

et al., 1991; Whyatt et al., 1991; Timbrel!, 1993; Newman et al., 1993; 

Jenssen et al., 1993) allowing the development of a concise and thorough 

depositional model for the region to be established (section 5.5.4). The 

model basically consists of a series of channels (Fig. 5.46) fed from a 

prograding delta source, through which turbidite flows are funnelled, 

depositing their sand load, mainly by flow-stripping, in discontinuous pods. It 

is also apparent that sand is often deposited when turbidite flow encounters 

variations in slope upon the depositional surface, particularly depositing sand 

on the upstream side of regions where the local gradient increases. 

Fieldwork has illustrated that basal loading of sandy turbidites is extremely 

common, and often helps in the amalgamation of beds. Evidence suggests 

little erosion occurs during turbidite flow in this particular regime of the 

submarine fan, and therefore basal loading becomes an important process in 

minimising the amount of shale beds within a sand sequence, and greatly 

effecting the overall compactability of that sequence. 

Starting with the largest scale at which compaction has been modelled 

for the Montrose- Arbroath area it is possible to recognise the significance of 

differential compaction around the Forties-Montrose High on the 

development of the fieldsr~tructure. Indeed, the structure of the Montrose 
< I 

and Arbroath oilfields owe'their origin primarily to differential compaction 

across the horst, generatlr{g structure upon the top Palaeocene surface 
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Plate 5.4 ConcavO"-convex quartz grains (Q) produced by compaction on a grain to 
grain scale. Sample comes from Arbroath well 22/17-T4 at a measured depth of 10374' 
(Field of view is 1.5mm). 

Plate 5.5 Bending of mica flake (M) due to compaction around a more rigid quartz 
grain (Q). Sample comes from Arbroath well 22/17-T4 at a measured depth of 10319.1 0' 
(Field of view is 1.5mm). 
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Plate 5.6 Sutured contacts between compacted quartz grains (Q) . Sample comes from 
Arbroath weii22/17-T3 at a measured depth of 9355' (Field of view is 1.5mm). 
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orthogonal to the axis of the horst. Further to this, contrasts in lithologies 

within the reservoir section of the submarine fan system have resulted in 

enhanced relief at the top reservoir level due to the differential compaction of 

the underlying muds and sands. This process has ultimately led to the 

separation of the two hydrocarbon accumulations, as the intervening region 

between the Montrose and Arbroath oilfields consists of a relatively mud-rich 

Palaeocene section, as compared to the sand-rich, channelised Palaeocene 

sections of the fields themselves. During progressive Tertiary burial, 

structure has therefore developed by differential compaction. 

Moving down a scale of compactional modelling, and looking at the 

development of the submarine fan channels themselves, the present study 

has assessed the relationship between facies organisation and the 

differential compaction of the underlying section. This has been achieved 

through detailed fieldwork and the development and correlation of the 

Arbroath depositional model. 

Detailed modelling of the Arbroath Oilfield has allowed the development 

of the depositional surface through time to be evaluated. In addition to this it 

has also been possible to show individual isopachs of chronostratigraphic 

units, plus the concentration of sand within each body. A simple assessment 

has then been performed, matching the following chronostratigraphic isopach 

to the preceding compacted topography of the depositional surface. In 

general three sand fairways (Fig. 5.46) are operative during the deposition of 

the Forties Member, and the timing of sedimentation within these channels 

varies not only due to sediment supply, but also due to the topographic 

expression of the channels at each successive time stage. Topography is 

greatly effected by differential compaction between sand-rich channel bodies 

and mud-rich overbank/levee areas. The abandonment of the northern 

channel from unit 12 until unit 1 deposition is a good example of this, as early 

deposited, thick sands produce a topographic ridge once differential 

compaction has occurred to effectively block the channel. 

A second example is the fact that a middle channel does not exist until 

the youngest sediments are encountered. The area formed levee deposits 

early in the depositional history of the area, and it is not until differential 

compaction between the northern sand-rich channel, and to some degree the 

southern sand-rich channel has occurred, that the middle channel becomes a 

favourable site for turbidite flow and deposition. This type of model is 

reminiscent of Walker's (1985) channel - levee - interchannel model for the 

Wheeler Gorge sediments (Chapter 3). 
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Fieldwork can refine the compaction-driven model for deposition in the 

Montrose - Arbroath area. Data derived from New Mexico (Chapter 4) 

illustrates the importance of the precise relationship between the compaction 

rate and the deposition rate of sediment. From the evidence of the 

depositional surface maps and the isopachs for the various 

chronostratigraphic units of the Arbroath region, it appears that the majority 

of compaction occurs post-depositionally, enhancing topography upon the 

depositional surface and increasing the area of most likely depositional sites 

(MLDS). 

It is therefore proposed that upon sedimentation little compaction of the 

underlying section occurs, especially as turbidite flows are deposited 

geologically instantaneously and far outstrip the compaction rate. During the 

following break in rapid sedimentation, when deposition rates are extremely 

low, compaction rates are now faster than deposition, and compaction catch

up occurs in the underlying sequences producing enhanced topography on 

the depositional surface due to differential compaction. This process is 

demonstrated by the rotated beds of the Dona Ana exposed on the southern 

side of Muleshoe Mound, where differential compaction between the mound 

and the underlying Arcente muds has the greatest effects at periods where 

sedimentation is low to absent (see Chapter 4). Rotation of beds is 

interpreted to have occurred in the Arbroath area, although the scale of the 

rotation will be significantly less than that seen around Muleshoe Mound 

because of the lower angle of slopes over which differential compaction, 

created by lateral facies changes, can occur. In summary, a period of 

topographic smoothing by deposition is followed by a period of compaction, 

which, because of the differing lithologies involved, produces enhanced 

topography to influence subsequent deposition. 

The general view of the Arbroath depositional development during the 

Forties Member period consists of an interplay between three submarine 

channels. Initial deposition occurred within the northern channel, especially 

around the T15-T5-T9-T17-T8 region. Larger amounts of sediment were fed 

along this channel, and more importantly, they became sandier as time 

passed. In turn, this was related to the sediment supply from the Moray Firth 

delta. 

A southern channel also began to develop as less sediment was 

funnelled down the northern channel. Differential compaction of the northern 

channel began to create a ridge in the T5-T9 region because of the high 

proportion of sand contained within it relative to the thick, mud-rich overbank 
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deposits that occurred within the area of T20-T16-T2 and westwards. At 

some stages both the northern and southern channels were operating as 

sediment conduits, and the isopach maps suggest that a muddy levee 

section developed between the two channels along the line of T20-T16-T2. 

Eventually, due to the low topography of the region, the southern channel 

took over as the main sediment transport system, depositing thick sands 

along the line of T19-T14-T1 0-T12-T1-T 4. High topography on the 

depositional surface south of T1 and T 4 was the main control upon sand 

deposition. However, large turbidite flows often made it across the 

topography enabling the development of thick sands in the topographic low 

area of T3-T13-T18-T11Z-T11-T7. 

Near the end of Forties Member deposition, as submarine fan 

development began to dwindle, differential compaction within the Arbroath 

region created a middle channel region along the line of T20-T16-T2-T8-T3-

T11Z-T11. Both the northern and southern channels created topographically 

higher areas due to the sand-rich nature of the deposits within them, whereas 

the middle channel line was nearly exclusively underlain by mud-rich 

overbank and levee deposits. Therefore, the final channel deposits of 

turbidite sand are found within the middle channel. Figure 5.54 illustrates the 

interpreted development of the Arbroath Oilfield, showing the influence of 

differential compaction on channel location and deposition. A cross-section 

constructed across the oilfield (Fig. 5.55) also clearly indicates the interplay 

of deposition within the three channels and differential compaction. 

The assessment of the Arbroath area therefore illustrates the strong 

control of compaction upon facies organisation, development, stacking 

patterns and geometry. The majority of compaction occurs post

depositionally, resulting in the production of topography on the depositional 

surface. As the effects of the topography become greater through time 

channels are required to switch their position, locating themselves in the 

topographically lowest area. 
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Mud covers both Northern and Southern Channels. 

Figure 5.54 Interpreted stratigraphic development of the Arbroath Field. 
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Chapter 6: Conclusions. 

The conclusions arising from the present study have been outlined at the 

end of the relevant chapters. This final section will summarise the 

conclusions, showing the inter-relationship of the various aspects of the 

present work. 

Firstly, Chapter 2 illustrates the principle that because of the high initial 

mud porosities encountered in a submarine fan environment, the effects of 

differential compaction based on lateral and vertical facies changes will be 

greatest as compared to similar effects in the alluvial or deltaic environment, 

for example. It has also been shown that the rate of compaction of a 

sedimentary unit is extremely important with respect to the production of 

topography on the depositional surface. If compaction occurs syn

depositionally, at a rate equal to deposition, then once deposition ceases or 

is halted no further compaction occurs, and the depositional surface remains 

flat. However, if compaction proceeds at a rate slower than that of deposition, 

then once deposition ceases or is halted, compaction of the underlying 

sequences may occur with no further addition of load (sediment). Post

depositional compaction, such as described, can therefore create topography 

on the depositional surface which may influence subsequent deposition. 

Hence, depositional control may be emphasized due to intermittent 

deposition, especially true for deposition in the submarine fan environment, 

where turbidite deposition is not only episodic, but is extremely fast, and is 

believed to outstrip the rate of underlying compaction. 

In order to test compaction, and differential compaction theories for the 

submarine fan environment, Ridge Basin in southern California was studied 

(Chapter 3). Exposure in the area provided evidence suggesting that a 

certain degree of differential compaction occurs syn-depositionally. This is 

most likely due to the very high initial depositional porosities of the muds 

(Approximately 80%). Exposures also showed that slumping and loading of 

beds is another important aspect to be noted when modelling differential 

compaction of submarine fan deposits. Overall, however, it was concluded 

that exposures of submarine fan deposits provide only limited data 

concerning compactional control on deposition due to the low angle of facies 

changes and the large lateral dimensions of submarine channel complexes 

over which these facies changes occur. The scale of observation was 

therefore a major hindrance, with the outcrop scale being below what was 

required for such modelling. 
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Carbonate environments, however, may provide outcrop scale evidence 

of differential compaction due to the steep angles over which facies changes 

may occur. This is especially true in areas where early-cemented carbonate 

buildups have developed. The Sacramento Mountains of New Mexico 

(Chapter 4) provides excellent exposure of such buildups and their flanking 

strata. 

Data collected from Muleshoe Mound_conclusively shows that differential 

compaction occurred post-depositionally, with a large amount of associated 

bed rotation. Using the incompactible mound as a reference frame, the 

reconstruction of the flanking beds, and hence the calculation of the amount 

of early compaction was possible. Calculations showed that early compaction 

is extremely rapid, accounting for approximately 50% bed thickness reduction 

in mudstone beds. This figure is considerably greater than what may be 

expected when using proposed porosity-depth curves or functions (e.g. 

Baldwin & Butler, 1985; Audet & McConnell, 1992). The main conclusion 

arising therefore, is the fact that although proposed curves such as Baldwin 

& Butler's (1985) work well for porosity-depth data taken from burial depths of 

greater than approximately 300m, it appears that they completely under

estimate the amount of near-surface compaction that occurs in muds. The 

discordance most likely arises from the fact of the general lack of near

surface porosity data, and therefore calculated curves are falsely distorted 

due to the bias produced by the large volume of deeper porosity data. 

A·_ further implication of post-depositional compaction is the production 

of overpressure at very shallow depths. Essentially, if a mudstone unit is 

loaded and not allowed to compact, the pore fluid will support some of the 

weight of the overburden, and hence become overpressured. Modelling of 

Muleshoe Mound also enabled the calculation of the limits for the near

surface overpressure of the pore fluids within the Arcente mud section. 

Results show a large amount of overpressure may be generated due to 

under-compaction depending on the balance between the two rates of 

deposition and dewatering of the sedimentary pile. Numerous factors are 

involved in the rate of dewatering such as the permeability of the mud, the 

presence/absence of fluid pathways which enable pore fluid to escape, which 

is also probably related to the frequency of the interbedding between 

sandstone and mudstone beds. Finally, it is also shown in Chapter 4 how the 

variation in relative sea-level may also effect compaction rates of mudstone 

units, in turn effecting the amount and relative position of accommodation 
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space available for subsequent deposits. This aspect alone appears to form 

an excellent subject for further research. 

Finally, Chapter 5 attempts to combine the conclusions concerning near

surface compaction gained from fieldwork with the interpreted depositional 

model for the Montrose and Arbroath oilfields of the North Sea. The 

depositional model for the area is relatively well documented, generally 

consisting of a series of sandstone-rich submarine fan channel complexes 

and mud-rich overbank and interchannel deposits. Such deposits also 

account for the Forties and Nelson fields in the area, and similar types of 

deposits also account for other oilfields, both in the North Sea and other 

hydrocarbon provinces. Seismic data across the Montrose - Arbroath region 

defines the location of the submarine channels. However, the internal 

organisation and overall relative ages of the channels is beyond the 

resolution of the seismic data, and therefore the present study relies on 

detailed well correlations, especially throughout the Arbroath field. Well 

correlation is extremely difficult in turbidite environments, however, as much 

data as possible was used to achieve the correlation for the present study 

(e.g. biostratigraphy, RFT pressure data, core logs, etc.). Backstripping of the 

correlated wells was performed, which further allowed the sequential 

reconstruction of each chronostratigraphic unit. Contour maps and cross

sections provided a picture of how the stratigraphy of the area evolved, 

hence allowing a qualitative view of the control of deposition provided by 

differential compaction. 

Utilising the conclusions derived from fieldwork it is possible to conclude 

that sand-rich turbidite deposits developed in the channels with relatively 

small amounts of compaction of the underlying sediments occurring during 

their deposition. During the subsequent hiatus in deposition, differential 

compaction modified the topography of the depositional surface, resulting in 

the off-setting of individual sand-rich turbidite flows within the channels (e.g. 

deposits in the northern Arbroath channel). Further, to this differential 

compaction also controlled which channel was active at every stage of 

turbidite deposition within the Montrose - Arbroath region. This is especially 

illustrated by the presence of the middle channel in the Arbroath field. 

Topography dictated the location of the northern and southern channels in 

the region through most of the Forties Member time. However, the eventual 

differential compaction between these sand-rich areas and the mud-rich 

central region, finally led to the evolution of the central channel which 
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became active and sand-rich during the very final stage of the Forties 

Member deposition. 

Differential compaction on a larger scale can also be seen to effect the 

Palaeocene section of the region. The underlying topography of the Forties

Montrose High provides the framework across which differential compaction 

occurs due to the lateral changes in thickness of sedimentary units across 

the high. Structure created by the differential compaction enhances the 

structural relief of the submarine fan channels, emphasizing their topography 

on the top Palaeocene surface, and making such deposits prime reservoirs 

for hydrocarbons, and therefore ideal targets for large hydrocarbon 

accumulations. 

Although the present study can only qualitatively assess the role of 

differential compaction in the Montrose - Arbroath region, it highlights the 

importance of near-surface compaction effects, and the relative timing of 

sediment compaction with regards to deposition. Near-surface compaction 

also appears to account for a much greater destruction in porosity than 

suggested by published porosity-depth curves. It is suggested that 

differential compaction in the submarine fan environment provides a major 

control on the areal development, distribution and geometry of submarine fan 

channel systems. The collection of reliable near-surface porosity data from 

such environments would provide a much clearer picture than is possible to 

define at this stage The present study also suggests that near-surface 

overpressure would be detected in submarine fan deposits immediately after 

the deposition of a turbidite flow. The overpressure is likely to account for 

sedimentary features such as sandstone injection dykes, formed when the 

bleed-off of overpressure is extremely rapid and localised along certain areas 

of weakness (e.g. fault planes). Greater study of modern submarine fans, 

utilising both geological and geophysical techniques will hopefully provide a 

greater database for such a model of deposition, and the controls exerted on 

that deposition, especially differential compaction. 
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Sand 0/o - Unit 18 
57.40 

D ABOVE 100 

D 91. 100 

i'l 82- 91 
57.39 

D 73- 82 (l) 

!<\·"(\] 64- 73 "0 
::J 57.38 n::nrl 55- 64 -:;:::; - 45- 55 C':l 

_J - 36- 45 57.37 - 27- 36 - 18- 27 - 9- 18 57.36 - 0- 9 -BELOW 0 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit 8 
57.40 

D ABOVE 81 

D 72- 81 

D 63- 72 57.39 

[J£] . 54- 63 (l) 

L':;.;_·;i 45- 54 "0 
::J 57.38 

lt~t1f:WJ 36- 45 -:;:::; - 27- 36 C':l - 18- 27 
_J 

57.37 - 9- 18 - 0- 9 - -9- 0 57.36 -BELOW -9 

1.325 1.350 1.375 1.400 



Sand 0/o - Unit 17 
57.40 

D ABOVE 95 

D 86- 95 57.39 
D 76- 86 

~ 66- 76 
Q) 
-o 

!?tfrYtl 57- 66 ::::l 57.38 _. - 48- 57 ~ - 38- 48 .....J - 28- 38 57.37 - 19- 28 - 10- 19 - 0- 10 57.36 -BELOW 0 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit 16 

D ABOVE 
57.40 

65 

D 58- 65 

D 52- 58 57.39 
D 46- 52 . 
D 39- 46 Q) 

-o 
IEJ 32- 39 ::::l 57.38 ....... - 26- 32 ·~ 

ctl - 20- 26 .....J - 13- 20 57.37 - 6- 13 - 0- 6 -BELOW 0 57.36 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit A 
57.40 

D ABOVE 94 

D 85- 94 57.39 
D 76- 85 

D 68- 76 Q) 

D 60- 68 -o 
.2 57.38 

EB1 51- 60 :.;::::; - 42- 51 ctl 
....J - 34- 42 57.37 - 26- 34 - 17- 26 - 8- 17 57.36 -BELOW 8 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit 15 
57.40 

D ABOVE 95 

D 86- 95 
57.39 D 76- 86 

D 66- 76 Q) 

D 57- 66 -o 
::::l 57.38 

Ilk' I 48- 57 
_. 
:.;::::; - 38- 48 ctl - ....J 

28- 38 57.37 - 19- 28 - 10- 19 - 0- 10 57.36 -BELOW 0 

1.325 1.350 1.375 1.400 



Sand 0/o - Unit 14 
57.40 

D ABOVE 110 

D 100- 110 

D 90- 100 57.39 
l·:t\1 80- 90 

~ 70- 80 
(1) 

"0 
e·t'1 60- 70 ::J 57.38 -IIIII 50- 60 ~ 

co - 40- 50 _J - 30- 40 57.37 - 20- 30 - 10- 20 -BELOW 10 57.36 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit 13 

D 
57.40 

ABOVE 100 

D 90- 100 

D 80- 90 57.39 
D 70- 80 

D 60- 70 Q) 

-o 
f*i:tJjl 50- 60 ::J 57.38 - 40- 50 

.-t= 
cu - 30- 40 _J - 20- 30 57.37 - 10- 20 - 0- 10 -BELOW 0 57.36 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit 12 
57.40 

D ABOVE 100 

D 89- 100 
57.39 D 78- 89 

[£'ill 67- 78 (1) 

I¥M:tl 56- 67 "0 
::J 57.38 

!Ill 44- 56 -~ - 33- 44 co 
_J - 22- 33 57.37 - 11- 22 - 0- 11 -BELOW 0 57.36 

1.325 1.350 1.375 1.400 

Sand o/o - Unit 9 
57.40 

D ABOVE 104 

D 96- 104 57.39 D 66- 96 . 

D 80- 88 (1) . 

ltWi.#';j 72- 80 "0 
::J 57.38 - 64- 72 -~ - 56- 64 co 
_J - 46- 56 57.37 - 40- 48 - 32- 40 - 24- 32 57.36 -BELOW 24 

1.325 1.350 1.375 1.400 



Sand 0/o - Unit 5 

I I ABOVE 98 
57.40 

D 91- 98 

D 84- 91 57.39 
D 78- 84 

~ 72- 78 Q) 

ll1-~j 65- 72 
"0 
:J 57.38 - 58- 65 -:.;::; 

Ill 52- 58 til 
...J - 46- 52 57.37 - 39- 46 - 32- 39 -BELOW 32 57.36 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit 3 

D 
57.40 

ABOVE 94 

D 85- 94 

D 76- 85 57.39 
D 68- 76 

~ 60- 68 Q) 
"0 

-~:1 51- 60 :J 57.38 - -42- 51 :.;::; - 34- 42 
til 

...J - 26- 34 57.37 - 17- 26 - 8- 17 - BELOW 8 57.36 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit 4 
57.40 

D ABOVE 100 

D 90- 100 

D 80- 90 57.39 

~ 70- 80 
Q) 

D 60- 70 "0 
m.lJ 50- 60 :J 57.38 . -- 40- 50 

:.;::; 
til - 30- 40 ...J - 20- 30 57.37 - 10- 20 - 0- 10 

57.36 - BELOW 0 

1.325 1.350 1.375 1.400 

Sand 0/o - Unit 1 
57.40 

D ABOVE 99 

D 90- 99 57.39 
D 81- 90 

D 72- 81 
Q) 
"0 

D . 63- 72 :J - 57.38 

~ 54- 63 
:.;::; 
til - 45- 54 ...J - 36- 45 57.37 - 27- 36 - 18- 27 - 9- 18 57.36 -BELOW 9 

1.325 1.350 1.375 1.400 



Sand 0/o- Forties 
57.40 

! I ABOVE 105 

D 98- 105 

D 90- 98 
57.39 

D 82- 90 a.l 
r:;-.:~:::J 75- 82 "'0 

::l 57.38 
~ 68- 75 ..... . :.;::::; - 60- 68 (1j - 52- 60 

.....J 
57.37 - 45- 52 - 38- 45 - 30- 38 57.36 -BELOW 30 

1.325 1.350 1.375 1.400 



Top 19 (compacted) 
57.40 

D ABOVE 210 

D 202- 210 
57.39 

D 195- 202 

k:itJ 188- 195 (J) 

f&'*7Vil 180- 188 "0 
:::l 57.38 

ltt,'cl 172- 180 -:;::; - 165- 172 ro 
-' - 158- 165 57.37 - 150- 158 - 142- 150 - 135- 142 57.36 -BELOW 135 

Scale: Cumulative thickness (m) 1.325 1.350 1.375 1.400 

Top Lista (compacted) 
57.40 

D ABOVE 210 

D 202- 210 57.39 
0 195- 202 

D 188- 195 (J) 

j;sg;~,! 180- 188 "0 
:::l 57.38 

11'3,11 172- 180 -:;::; 
~ 165- 172 ro 

-' - 158- 165 57.37 - 150- 158 - 142- 150 - 135- 142 57.36 -BELOW 135 

1.325 1.350 1.375 1.400 

Top 18 (compacted) 
57.40 

D ABOVE 217 

D 210- 217 
57.39 D 203- 210 

D 196- 203 <l) 

j;l£'L<) 189- 196 "0 
:::l 57.38 

JR¥t:rt~1 182- 189 -·.;::; 
~ 175- 182 ro 

-' - 168- 175 57.37 - 161- 168 - 154- 161 - 147- 154 57.36 -BELOW 147 

1.325 1.350 1.375 1.400 

Top B (compacted) 
57.40 

D ABOVE 232 

D 225- 232 

[2ZJ 219- 225 57.39 
~ 212- 219 

hEh;;! 205- 212 
<l) 
"0 

tJlt%'.¥t! 198- 205 :::l 57.38 -Mil 192- 198 :;::; 
ro - 185- 192 -' - 178- 185 57.37 - 171 - 178 - 165- 171 - 158- 165 57.36 -BELOW 158 

1.325 1.350 1.375 1.400 



Top 17 (compacted) 
57.40 

D ABOVE 232 

D 225- 232 57.39 
D 217- 225 

El 210- 217 Q) . 
"0 

it£~::~>1 202. 210 ::l 57.38 - -195- 202 :.;= - 188- 195 
ro 

_I - 180- 188 57.37 - 173- 180 - 165- 173 - 158- 165 57.36 -BELOW 158 

1.325 1.350 1.375 1.400 

Top 16 (compacted) 
57.40 

D ABOVE 248 

D 240- 248 57.39 

D 231- 240 Q) 
lkXM.>j 223- 231 "0 

r•1 214- 223 ::l 57.38 -- 206- 214 
:.;= 
ro - 197. 206 

_I - 189- 197 
57.37 - 180- 189 - 172- 180 57.36 -BELOW 172 

1.325 1.350 1.375 1.400 

Top A (compacted) 
57.40 

D ABOVE 254 

D 247- 254 57.39 
D 241- 247 

~ 234- 241 
Q) 

"0 
IFT35,'J 228- 234 ::l 57.38 -- 221- 228 :.;= 

ro - 214- 221 _I - 208- 214 57.37 - 201- 208 - 195- 201 - 188- 195 57.36 -BELOW 188 

1.325 1.350 1.375 1.400 

Top 15 (compacted) 
57.40 

D ABOVE 260 

D 254- 260 57.39 
[2i] 247- 254 Q) 

~ 240- 247 "0 
r&§tttzj 234- 240 ::l 57.38 -- 228- 234 

:.;= 
ro - 221- 228 _I - 214- 221 57.37 - 208- 214 - 202- 208 57.36 - 195- 202 -BELOW 195 

1.325 1.350 1.375 1.400 



Top 14 (compacted) 
57.40 

D ABOVE 272 

D 264- 272 

LJ . 256- 264 57.39 
ld.tt~~n 248- 256 

Q) 

~ 240- 248 "0 . 

IRl 232- 240 .2 57.38 - 224- 232 :.;::; 
ctl - 216- 224 ....J - 208- 216 57.37 - 200- 208 - 192- 200 -BELOW 192 57.36 

1.325 1.350 1.375 1.400 

Top 13 (compacted) 

D 
57.40 

ABOVE 300 

D 290- 300 

D 280- 290 57.39 
M 270- 280 
lt%CX;j 260- 270 Q) 

"0 
mJ 250- 260 ::l 57.38 -- 240- 250 :.;::; - 230- 240 

ctl 
....J - 220- 230 57.37 - 210- 220 - 200- 210 -BELOW 200 57.36 

1.325 1.350 1.375 1.400 

Top 12 (compacted) 
57.40 

D ABOVE 298 

D 289- 298 

D 281- 289 57.39 
Giiill 272- 281 

Q) 
l~it\1] 264- 272 "0 
~ 255- 264 ::l 57.38 -- 246- 255 :.;::; 

ctl - 238- 246 ....J - 229- 238 57.37 - 221- 229 - 212- 221 
57.36 -BELOW 212 

1.325 1.350 1.375 1.400 

Top9 (compacted) 

D 
57.40 

ABOVE 304 

D 296- 304 

G 288- 296 57.39 
j)((:;t;;j 280- 288 

K~tt*~~t"1 272- 280 Q) 
"0 - 264- 272 ::l 57.38 -- 256- 264 :.;::; - 248- 256 
ctl 

....J - 240- 248 57.37 - 232- 240 - 224- 232 -BELOW 224 57.36 

1.325 1.350 1.375 1.400 



Top 5 (compacted) 

D ABOVE 318 
57.40 .~ --~- .... --

D 313- 318 

D 307- 313 57.39 
D 302- 307 

ESJ 297- 302 Q) 

lt:t'£t=l 291- 297 '0 
:::::l 57.38 

Bl 286- 291 -:.;:; - 281- 286 ctl 
_J - 275- 281 57.37 - 270- 275 - 265- 270 - 259- 265 57.36 - 254- 259 -BELOW 254 

1.325 1.350 1.375 1.400 

Top 3 (compacted) 
57.40 

D ABOVE 329 

D 322- 329 

D 315- 322 57.39 

~ 308- 315 Q) 

~ 301- 308 '0 

B 294- 301 :::::l 57.38 -- 287- 294 
:.;:; 
ctl - 280- 287 _J - 273- 280 

57.37 - 266- 273 - 259- 266 57.36 -BELOW 259 

1.325 1.350 1.375 1.400 

Top4 (compacted) 
57.40 

D ABOVE 329 

D 322- 329 

D 315- 322 57.39 

~ 308- 315 Q) 

li:iL>Jl 301- 308 '0 

R:tl\M 294- 301 
:::::l 57.38 ...... 

:.;:; - 287- 294 ctl - 280- 287 
_J - 273- 280 

57.37 - 266- 273 - 259- 266 57.36 -BELOW 259 

1.325 1.350 1.375 1.400 

Top 1 (compacted) 
57.40 

D ABOVE 338 

D 332- 338 57.39 
D 325- 332 

k¥/cl 318- 325 Q) 

@«>s,l 312- 318 
'0 

:::::l 57.38 .. 306- 312 
...... 
·.;::; - 299- 306 ctl 
_J - 292- 299 57.37 - 286- 292 - 280- 286 - 273- 280 57.36 -BELOW 273 

1.325 1.350 1.375 1.400 



Top Forties (compacted) 

D 
57.40 

ABOVE 336 

D 330- 336 

D 324- 330 57.39 
~ 318- 324 

~ 312- 318 Q) 
"0 - 306- 312 :::J 57.38 -- 300- 306 ~ - 294- 300 
ro 
-' - 288- 294 57.37 - 282- 288 - 276- 282 -BELOW 276 57.36 

1.325 1.350 1.375 1.400 



Top 19 (compacted) 

D ABOVE 210 

D 202- 210 
. D 195- 202 

~ V' 188- 195 

~ 180- 188 

~ 172- 180 

~ 165- 172 - 158- 165 - 150- 158 - 142- 150 - 135- 142 -BELOW 135 

Scale: Cumulative thickness ( 

Top Lista (compacted) 

D ABOVE 210 

D 202- 210 

D 195- 202 

Q 188- 195 

D 180- 188 

~ 172: 180 - 165- 172 

II§ 158- 165 

IIIli 150- 158 - 142- 150 - 135- 142 -BELOW 135 

Top 18 (compacted) 

D ABOVE 217 

D 210- 217 

D 203- 210 

D 196- 203 

~ 189- 196 

~ 182- 189 - 175- 182 - 168- 175 - 161- 168 - 154- 161 - 147- 154 -BELOW 147 



Top 8 (compacted) 

D ABOVE 232 

D 225- 232 

D 219- 225 

~ 212- 219 

IW<~Y'"I 205- 212 

l.liiD 198- 205 - 192- 198 - 185- 192 - 178- 185 - 171- 178 - 165- 171 - 158- 165 -BELOW 158 

Top 17 (compacted) 

D ABOVE 232 

D 225- 232 

D 217- 225 

h%<:%1 210- 217 

k'%;~,j 202- 210 

Bl 195- 202 

Ill 188- 195 - 180- 188 - 173- 180 - 165- 173 - 158- 165 -BELOW 158 

\ . ..) 
-~ .. }::>'<-

00; \...0 

Top 16 (compacted) 

D ABOVE 248 

D 240- 248 

~ 231- 240 

IS'!J 223- 231 

~ 214- 223 - 206- 214 - 197- 206 - 189- 197 - 180- 189 - 172- 180 -BELOW 172 

, . ..: 
-~-voe 

-:_;-· 
'--o"d; . 



Top A (compacted) 

D ABOVE 254 

D 247- 254 

D 241. 247 

D 234. 241 

I•~'""' I 228. 234 

IBl 221. 228 - 214. 221 - 208. 214 - 201. 208 - 195. 201 - 188· 195 -BELOW 188 

Top 15 (compacted) 

D ABOVE 260 

[ ____ I 254- 260 

D 247- 254 
JiAtJ Pj 240- 247 

l:i*ifr"'J 234- 240 - 228- 234 - 221- 228 - 214- 221 - 208- 214 - 202- 208 - 195- 202 -BELOW 195 

f:J;'-.J::>e 
'--o" 

Top 14 (compacted) 

D ABOVE 272 

D 264. 272 

D 256- 264 

Ji:jj,);j 248. 256 

&&•'1%51 240- 248 - 232. 240 - 224. 232 - 216. 224 - 208. 216 - 200- 208 - 192. 200 -BELOW 192 



I VtJ I v \'-'VIIIf.JdL,;lt:U) 

D ABOVE 300 

D 290- 300 

D 280- 290 

D 270- 280 

P%t&l 260- 270 

~ 250- 260 - 240- 250 - 230- 240 - 220- 230 - 210- 220 - 200- 210 -BELOW 200 

Top 12 (compacted) 

D ABOVE 298 

D 289- 298 

LJ 281- 289 

D 272- 281 

li'4¥?4 264- 272 - 255- 264 .. 246- 255 - 238- 246 - 229- 238 - 221- 229 - 212- 221 -BELOW 212 

Top 9 (compacted) 

D ABOVE 304 

D 296- 304 

D 288- 296 

!Sittithl 280- 288 

15.'!\1 272- 280 

Ill 264- 272 - 256- 264 - 248- 256 - 240- 248 - 232- 240 - 224- 232 -BELOW 224 



Top 5 (compacted) 

D ABOVE 318 

D 313- 318 

D 307- 313 

D 302- 307 

j.k%:}<'1 297- 302 
f-t:.~z~l 291- 297 

~ 286- 291 - 281- 286 - 275- 281 - 270- 275 - 265- 270 - 259- 265 - 254- 259 -BELOW 254 

...... :.: 

·'-vee 
0~ "0 

Top 3 (compacted) 

D ABOVE 329 

D 322- 329 

CJ 315- 322 

~ 308- 315 

[€1JiJ<<fl 301- 308 - 294- 301 - 287- 294 - 280- 287 - 273- 280 - 266- 273 - 259- 266 -BELOW 259 

Top 4 (compacted) 

D ABOVE 329 

D 322- 329 

li2l 315- 322 

~ 308- 315 

tmtw1 301- 308 - 294- 301 - 287- 294 - 280- 287 - 273- 280 - 266- 273 - 259- 266 -BELOW 259 

·'-vee 
0~ "0 

--



Top 1 (compacted) 

0 ABOVE 338 

D 332- 338 

D 325- 332 

D 318- 325 

!liN<) 312- 318 

Ell 306- 312 - 299- 306 - 292- 299 - 286- 292 - 280- 286 - 273- 280 -BELOW 273 

Top Forties (compacted) 

0 ABOVE 336 

0 330- 336 

D 324- 330 

D . 318- 324 

I~Y~~~Jl 312- 318 

~]l 306- 312 - 300- 306 - 294- 300 .. 288- 294 - 282- 288 - 276- 282 -BELOW 276 

.~,J::,e 
r-r·~ \ ,,, 

~-



Appendix 2. II 



C3-C6 

07-08 

TOP UNIT 19 SURFACE- DEPOSITION OF LIST A ISOPACH. 

Minor high topographic area. 

Area lowered further by compaction, 
makina 86 a MLDS. 
Area lowered and smoothed making 
C3 a MLDS. 

Low saddle area around T3 on an I Saddle area is lowered making the 
east-west ridge, between highs at T13 entire area a MLDS 
and T4 

Low 

V. Low 
(<32%) 

V. Low 

V. Low 

V. Low 
{<7%) 

!-G-eneral Observations I 
The Lista unit is a relatively thin, mud-rich isopach (>60% mud), and tends to be sandier where the isopach is thinner 

(<1Om). Sands are deposited within the northern channel around T5, T9 and T17 on the southern slope of the locally high 
area. Another sand concentration forms in the southern channel around T1 0 and T6, again on the southern slope of minor 
high topography, within a small east-west embayment. The thickest part of the Lista isopach may therefore represent a 
levee deoosit alona the line of T20-T16-T2-T3 seoaratina the two channels. 



32m 
(Moderate) 

A4 and A8 

84-86 

07-08 

E3-E6 

E8 

23 16 13 (57%) 26 15 (65%) A5-A7, 87-
89, C7-C9, 
E2, E9-E1 0. 

I Both these areas are relatively low Area lowered further by compaction, 
I 

Moderate 
lying at either ends of a MLOS, with and making the slopes less steep. (54-63%) 
A8 lying on an easterly up-slope. isopach of unit 18 wedges out against 

this sl 
I Northern edge of a moderate Area lowered to a gentle slope, Low 

ic hi h area. makin 86 a MLOS. 
I Moderate flat region. Lowered to form a low-lying saddle V. Low 

on makin the area a MLOS. 
I Slope area at E3 up to high area at I Similar geometry after compaction, but Variable E6-
E6. E3 is lowered to become a MLOS. E3 (<54%-

<32% 
I Moderate to low slope region. I Lowered to become a MLOS. V. Low 

I 

I 

A4 and A8, 
84-86, 07-
08, E3-E6, 

E8. 

Low 
(<16%) 

Low 

Low 

V. Low 
(<12%) 

Low 

I General Observations I 
The unit 18 isopach is thickest around T5, T17 and T8 area and tends to form a ridge flanking the southern channel 

along T20-T16-T2. Sand percentages for unit 18 show that they tend to flow mainly along the southern channel of T19, 
but only just reach T14. therefore the isopach ridge is mainly mud-rich and possibly formed as a levee. Sand also just 
shows in the northern part of the northern channel around T15. Sand in both cases is deposited within fairly low lying 
reaions, generallv on the northern uo-slooe side of minor toooaraohic hiahs. 



A3-A4 I Fairly low lying areas, north of minor I Compaction lowers and flattens this 
high. area, creating a low flat region where 

most of unit B is deposited behind the 
T16 high. Damming of high at T16 and 
T5 12robabl~ constrain unit B. 

C5-C6 I The southern edge of T16 high region Creates an easterly slope into the 
that slo es south to south-east. to o ra hie low area at C7-C1 0. 

C10 I Low area, close to MLDS. Lowered to form a MLDS. 

04-010 I Low area at 04 which rises over a Saddle height is greatly reduced by 
saddle region in the middle, dropping compaction, making the extremities of 
to a similar low area at T1 0. The 04-05 and 010 MLDS. Therefore, the 
saddle forms across a north-south overall width of the saddle is reduced 
ridge, on the northern side of a high as well as lowered. 
area around T 4 in the south of the 
re ion. 

E2-E5 1 Western slope from the topographic Slope is lowered and its steepness is 
high at T 4, where E2 is close to a reduced making E2-E3 a MLDS. 
MLDS. but E5 is auite hiah. 

I 
Moderate 
(50-63%) 

I Low 

Low 
3~ 

V.Low 
(<36%) 

Low 
(<50%) 

A3-A4, C5-
C6, C10, 04-
010. E2-E5. 

I 
Moderate 
(<64%) 

I Moderate 

I Moderate 

I 
Low 

(<36%) 

Moderate 
(<45%) 



I General Observations u--- - - ---- ~ 

Unit B shows the northern channel extremely well with the sand% map, which is only slightly off-set from the thick on 
the isopach map. It illustrates that the northern channel is confined by the northern highs at T16 and T9, and therefore the 
sand banks upon the northern edge of this high region. Sediment which breaches across the ridge by the saddle between 
T16 and T5 banks against the southern high around the T 4 area, forcing the sediment to spread east and west. Sediment 
preferentially spreads east into the topographically low areas where sand is ponded. 



08-010 

E8-E9 

Eastern edge of moderate/low area, 
close to beina a MLOS. 
Moderate ridge area running ENE from 
the high area around T 4, and 
separating two low areas at T8 and 
T11Z. 
Low area on south-eastern slope from 
high area and ridge around T 4. 

Greatly reduced ridge height, with 
lesser gradients and larger MLOS 
either side 

Slope is lowered into a MLOS with 
E10. 

V. Low 
(<36%) 

V. Low 
(<40%) 

Variable, N
S (<18-
81%) 

Variable 
E8-E9 

I General Observations --- - I 
The unit 17 isopach shows a ridge area running down the middle channel line of T20-T16-T2. Where the isopach is 

thinner, especially in the northern side, sand is concentrated in the northern channel around T15. Being a thick unit, more 
sediment was able to breach the lowered saddle area between T16 and T5, so that not only was sand dumped where 
gradients increased at T15, but also made it over into the southeast corner of the region around T3, T13, T18, T11 Z and 
T11. Here, the sands lay slightly off-set from the thick sands of unit 8 below. Also, where the isopach is thin along the 
southern channel, sands are aaain found around T19 and T14. 



TOP UNIT 17 SURFACE- DEPOSITION OF UNIT 161SOPACH. 
t ···········•ilik~;:~;;;;;;; }I}········· ~~:•;;;;:• :l:t x l••w;;::;;;:;;;;;w:;;;::;:;:;t:;:;:;;J! Kloiofi·••• •••I mHAAw;;;;;;a H? •• Ktx xi ( 1 ±xAxAidAKiX(I••(n&Axsmxri:A\1 

03-06 

E3-E5 

Low area in the west, sloping up to the 
east to the top of a fairly high ridge 
area at 06. An embayment into the 
ridae occurs alona this line. 

The area is lowered making 03-05 a 
MLOS, along with widening the 
embayment into a now lowered ridge. 

Northeast slope area from a high at E5l Slope is lowered. 
to a low at E3. 

V. Low 
(40-<32%) 

Low 
(38-<10%) 

I General Observati-ons ] 

The isopach of unit 16 is rather curious, and appears to pond as a lobe shape behind the high southern ridge area 
from T 4-T3-T13, spilling slightly into the western low around T1. Again sand concentrations are higher where the isopach 
is thin, showing both the northern and southern channels very well. The northern channel sand body is slightly dammed 
by the small ridge between T16 and T5, but some sand is deposited over the other side into the minor low around T17 
and TB, where the unit is <18m thick. The southern channel also appears to be outlined as well, running along T19-T14-
T10-T12-T1, with larger concentrations of sand found around T4and T18 in a lobe shaped deposit. Here, the isopach is 
slightly thicker, and the sand may be dammed by the southern ridge of T4-T3-T13, with small amounts overspilling into 
the southeast corner. The southern channel sands appear to sit over the low area within the total %sand concentration of 
the Arbroath area. 



TOP UNIT 16 SURFACE- DEPOSITION OF UNIT A ISOPACH. 

m:z,iJ.~G:Jx21.i1tz··~m····~rrz··~m•••••••••z:v.: GT?~J?Wumzv0mnmiP:M!:u1~~mr=A••~~~~:w~am•••••••••TSI• ~9mtJ~9t~a n 

A7-A10 

87-810 

Low area behind the minor northern 
ridge between T5 and T16. 

Minor high area at 87 where the ridge 
is encountered, which lowers towards 
the east. The area also slopes south 
into the MLDS at C7-C9. 

The area is lowered and flattened, 
along with the lowering of the ridge 
area, resulting in the eastern end (A9-
A10) becomina a MLDS. 
The area is lowered by compaction, 
resulting in the flattening and widening 
of the MLDS. 

High 
(>63%) 

High 
(58-<72%) 

Variable 
A7-A9 

(58-<6%) 

Variable 
87-810 

(46-<6%) 

~1 General Observations I 

Unit A differs from other chronostratigraphic units as it has the greatest percentage sand where the units is thickest. It 
therefore appears that unit A flowed down the northern channel of T15-T9-T5, before spilling over the compactionally 
lowered northern ridge between T5 and T16, to fill the small low area around T17 and T8. Sediment was probably trapped 
in this area by the major east-west ridge between T 4-T3-T13, resulting in the filling of the major topographic low areas of 
the Top unit 16 surface. Minor amounts of sand also flowed down the southern channel, found in the T12 to T4 area. 
However, the isopach of unit A is, in general, less than half the thickness here than it is in the northern channel. 



TOP UNIT A SURFACE- DEPOSITION OF UNIT 151SOPACH. 
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A1-A3 

83-84 

04 

E2-E3 

Low southwest slope area toward the 
T19 reaion. 
Moderate area forming an embayment 
up into the central high area. 

Moderate/high area on the northwest 
slope to the high at T1 and T 4, but still 
directly connected to the low regions 
of C1-C3. 01-03. 
Same low/moderate northwest slope 
area as described for 04. 

General Observations 

The area is lowered and the slope is 
lessened makina A 1 a MLOS. 
Area greatly lowered, with the 
smoothing of topography around T6 
and T20. 
Slope is lowered. 

Slope is greatly lowered making E2 a 
MLOS. and lowerina E3. 

Low 

Low 
(<50%) 

V. Low 
(<40%) 

v. Low 

A1-A3, 83-
84, 04, E2-

E3. 

V. Low 

V. Low 
(<17%) 

Low 

Sand percentages appear to show the northern channel again, with a possible sandy levee along the line of the 
middle channel of T20-T16 where the isopach is considerably thicker. However, the southern channel appears to be the 
main depositional area with the isopach being thick along with the sand percentage, especially into the south. It appears 
that the sand is banked against the southern high area around T 4, and spills east and west to fill the topographic low 
areas in the SE and SW corners. 



TOP UNIT 15 SURFACE- DEPOSITION OF UNIT 141SOPACH. 
t flriAAfri'RflbitdA h'AAAKgAfh#L : : KihA4: > .±XWXW;;AA'hiA :• •nk~X~MX;;:;X~L 

Southern facing gentle slope area, into I This area is steepened as the low area 
the narrow low area of C7-C9. of C7-C9 is lowered and widened. 

[General Observati-ons I 
Generally unit 14 is controlled by topography, filling the hollow which is widened by compaction around T8, and 

banking the sediment against the ridge of T4-T3-T13. The sand percentages of unit 14 mainly show the northern channel, 
with the sand lost early as the first ridge (T20-T16-T5) is crossed. The topographic low around T8 is mainly mud filled, 
with sand deposited on the flanks of the further high at T 4, and minor sands spilling over the south ridge into the SE 
corner. Some minor sand is also seen in the southern channel around T19. but the isooach is verv thin here (<8m). 



87-89 

C8-C10 

09-010 

TOP UNIT 14 SURFACE- DEPOSITION OF UNIT 131SOPACH . 
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High region around T5 and T17, 
forming the peak of the north area, 
with the ridge running SSW from here 
to the T 4 area. This region is just on 
the south sl · 
Moderate embayment area on the 
main SSW ri 
Southeast dipping slope area from the 
embayment described above (T13 

to low at E10 (T11 

Compaction lowers the area of the 
southern slope into the minor low that 
still exists around T8. The isopach 
wedges out against this slope. 

Compaction lowers the embayment 
makina C8 a minor MLOS. 
Area lowered making 01 0 a MLOS. 

General Observations 

Moderate 
(68-52%) 

Low 
(44-52%) 

Moderate 
to High 

(50-80%) 

Variable 
N-S 

Both the isopach map and the map of sand concentration show more or less identical patterns for unit 13. The 
northern channel is excellently outlined from T15-T5-T17-T8 and spilling over into the T3-T11 area. It appears that 
sediment within the northern channel was able to overcome the small ridge in the north, and spill over into the embayment 
which was compactionally enhanced. Some sand was trapped by the northern high, but large amounts made it across as 
well, to become deposited around T3, T13, T18, T11 Z and T11. A thinner area of deposition is also found in the 
southwest corner around the line of the southern channel, where the section is also very sandy. It therefore also appears 
that the southern channel was also operative at this stage with slightly less sediment supplied to it. However, this sandy 
sediment was fed down T1 0-T12-T1-T 4 and ponded against the southern high region just south of T1 and T 4, forming a 
lobate deoosit. 



83-86 

C4-C6 

TOP UNIT 13 SURFACE- DEPOSITION OF UNIT 121SOPACH. 
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Low gentle slope region up to the east, I Compaction lowers the slope 
to the ridge at T15. considerably, making A2 and A3 

MLDS. 
Similar gentle slope region as 
described above, sloping down to the 
west, to the MLDS at 81-82. Forms 
the northern edae of an embavment. 
Low gentle slope region along an 
embayment into the main ridge, up 
from the MLDS at C3 (T6 region) up to 
the T2 area. 

Compaction reduces the slope and 
widens the MLDS area. 

Compaction lowers and widens the 
embayment. 

Low 
(56-<44%) 

V. Low 
(<44%) 

Variable 
83-86 

(<10-60%) 

Moderate 
(<30-60%) 

[Gene-ral Observations · -uu -u 1 

The unit 12 isopach shows the middle channel well. But, here the unit is generally mud-rich suggesting a possible 
levee. However, this area is one of the lowest regions, and the mud-rich nature probably represents the filling of this low 
area by early or late mud deposition. Sand concentrations again appear to be highest down the length of the northern 
channel where the isopach is thin. These sands are found slightly off-set further north than those of the underlying unit 13 
(i.e. off-set channel sands), banked behind the easterly ridge running from T5, T17 area, SE towards T13. As before, high 
proportions of sand are also found right across the entire southern region which appears to suggest flow down the 
southern channel. Sands are then ponded against the southern high area just south of T1 and T 4. Some sand spills over 
the saddle between T 4 and T3 into the SE rea ion around T11 Z and T11. 



A1-A4 

83-85 

C4-C5 

Low slope to the west, with 
approximately 50m relief. 

Similar slope region as described 
above, sloping down to the west, 
therefore low at 83, becoming 
moderate to high at 85. 

Slope of embayment into the main N-S 
ridge, with approximately 45m of relief. 

Compaction lowers the slope but 
steepens it to approximately 60m 
relief. with A 1-A2 becomina a MLDS. 
Compaction significantly reduces the 
entire slope making 83 a MLDS, and 
widening the embayment into the main 
N-S ridge. The isopach of unit 12 

nches out aaainst this sl 
Compaction lowers and widens the 
embayment. 

Variable 
A1-A4 

V. Low 
(<48%) 

V. Low 
(<48%) 

Low for 
unit 12 

V. Low 
(<33%) 

Variable 
N-S 

[General Observations I 
Sediment distribution for unit 9 appears to show that both the nothern and middle channels were operating at these 

times. The isopach is thickest within the middle channel where it ponds in the main low embayment area around T6 and 
the west. Sand percentages show how sand is deposited in the NW corner of the middle channel around T20 and T16. 
Some sand may also have made it over the high ridge where mud is deposited, and is dumped in the SW corner around 
T3, T13, T11 and T11 Z. However, this may have been added to by sand travelling down the northern channel where the 

ach is considerablv thinner 



TOP UNIT 9 SURFACE- DEPOSITION OF UNIT SISOPACH. 

[General Observations- -, 

The deposition of unit 5 can be explained completely by topographic control. From 81-82 there is approximately 50m 
of relief once compaction has occurred, which is the entire height of the main ridge in this area. as unit 5 is only 54m thick 
at its maximum it was ponded and restricted by this topography. The area of deposition is also very low for total %sand 
below, and is moderate for sand immediately below in unit 9. Therefore, the area was very compactible during loading. It 
appears that the southern channel was the main axis of sediment, with sand percentages being fairly high here. Sand is 
often found where the isopach is thinnest, once sediment made it over the initial barrier. Therefore, high concentrations of 
sand are found on the northern flanks of the southern high region around T1 and T 4. Sand concentrations are also high 
around T17 and T13 on the flanks of minor high areas, suggesting sediment also came down the northern channel, with 
minor sands possibly coming down the middle channel too. 



C9-C10 

09-010 

TOP UNIT 5 SURFACE- DEPOSITION OF UNIT 3 ISOPACH. 
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Low, flat area behind high point at 
T5/T17 
Edge of the flat area as described 
above, which slopes down to theSE 
corner where E9 is a MLOS. 

Compaction lowers the area, which 
remains flat. 
Compaction lowers and steepens this 
slope area. 

Moderate 

Low 
(49-60%) 

High 

High 
(65-84%) 

[General Observations I 
Sand concentrations again are best where the isopach to unit 3 is thin. Sediment appears to have come down the 

southern channel where sand has formed in three patches. Firstly, it has deposited on the initial downslope, followed by 
deposition on the upslope, and finally once it has made it over the main ridge to be deposited in the low of the SE corner. 
The middle channel also appears to have been operative, with high sand concentrations found in the T16-T2-T8 area, 
deposited on the southern flanks of the high region around T5 and T17. The high regions on the unit 5 surface almost 

r to form natural levees for unit 3 deoosition. 



TOP UNIT 3 SURFACE- DEPOSITION OF UNIT 41SOPACH. 
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Low area close to the large MLDS on 
the western side of the Arbroath 

General Observations 

Compaction lowers the area, making it 
closer to the MLDS. 

Unit 4 is another difficult section to explain. Sand percentages tend to be higher where the isopach is thin. The 
thickest part of unit 4 which lies around T19 and T14, is generally mud-rich and fills a topographically low area. Unit 4 is 
only thin and therefore has little effect on the overall topographic expression of the Arbroath region. Sand generally 
appears to have been funnelled along the southern and middle channels, and have been deposited on upslopes and 
downslopes of the topography, with the majority being deposited on the upslopes as flow velocities are presumably 
slowed. 



TOP UNIT 4 SURFACE- DEPOSITION OF UNIT 11SOPACH. 
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General Observations 

Topography is the main contributing factor to the deposition of unit 1, although compaction undoubtedly enhances the 
topographic variations in certain areas. The reason topography may form the main control to depositional patterns at this 
stage may be due to the fact that most areas have high sand percentages close to the depositional surface making early 
compaction more difficult and less significant than before. Unit 1 again shows widespread sand distribution, especially 
where the isopach is generally thinner. Sands appear to be found in the southern channel, especially deposited on the 
upslope to the high region around T1 and T 4. Further thin sands (<6m) are found in the northern end of the northern 
channel around T15 and T5, where they have probably been trapped by the topography. Mud-rich areas appear to fill in 
topographically low areas, rather than forming levees. 



TOP UNIT 1 SURFACE- DEPOSITION OF FORTIES ISOPACH. 
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81 I Low, flat area close to MLOS. I Area is lowered by compaction. 

04 I Low slope area of southern ridge, I Compaction lowers the slope. 
close to the MLOS. 

E2-E3 I Similar low slope area as 04. I Compaction lowers and widens the 
I slope area, making E2 a MLOS. 

87-810 I High region around T17, and part of I Compaction lowers the ridge and 

I the northeast slope area from this high smoothes the slopes. 

C7-C9 I Minor low, circular area with the high I Compaction lowers the area, making 
located to the east in C1 0. C7-C8 a MLOS. 

V. Low 

Low 
(49-56%) 

Moderate 

I (60-70%) 

Low 
(<46-66%) 

81, 04, E2-
E3, 87-810, 

C7-C9. 

High 
72-91 

High 

Variable 
87-810 
72 

I General Observations ------u- - - --] 

Sand percentages are again higher where the isopach to the Forties unit is thin, keeping in mind that the unit is very 
thin anyway. Sand mainly comes down the middle channel of T20-T16-T2, but also overlaps with the southern channel. 
May just be the lateral off-setting of the southern channel due to previous sand flows along it. The isopach high area 
around T17 and T8 may form a small levee region, accentuating already slightly higher topography. However, generally 
mud-rich, isopach thick regions fill the topographically lowest regions in the Top unit 1 surface. These are possibly 
overbank deposits from the sand-rich turbidites, or they are later oelaaic mud sedimentation. 


