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Abstrac t 

This thesis is concerned w i t h the simulation of the contrast in X-ray section 
topographs due to the strains induced in sihcon single crystals by various types of 
technologically relevant crystal defect. A general introduction to the field of X-
ray topography is presented, i l lustrating that this technique is well suited to the 
characterisation of defect induced strain in highly perfect crystals. A review of 
X-ray dynamical theory is given, culminating in Takagi's equations for a crystal 
containing a defect. Techniques for simulating X-ray section topographs, based on 
Takagi's equations, are discussed. Computer simulation of section topographs has 
been used throughout this work to deduce the microscopic strains f rom the X-ray 
topographic images. 

The volume of oxygen precipitates i n MCZ silicon was found to increase linearly 
as InT, where T is the annealing temperature of the sample. Results suggest that 
the vast major i ty of precipitates which survive to maturi ty are nucleated at approxi
mately the same time, subsequently growing at the same rate. A n industrial role for 
simulation in conjunction wi th experiment is proposed, in the evaluation of the pre
cipitate depth and the deformation parameter, C, representing the precipitate strain 
magnitude. The technological relevance of these two quantities is discussed. The 
effect of surface relaxation on the structure of images due to precipitates has been 
investigated. The critical depth Zcrit at which the effect of surface relaxation became 
negUgible was found to increase linearly wi th InC. Simulations have been generated 
for crystals containing oxygen precipitate distributions, w i th denuded zones. Char
acteristic image features have been discussed. Studies on precipitate resolvability 
revealed that the critical separation for two precipitates to be just resolved increases 
linearly as InC. 

A n extensive study of intrinsic gettering has been undertaken, in terms of deco
rated dislocations. The strain distr ibution due to precipitate decoration was mod
elled by the cylindrical inclusion model. I t was shown that even for very low precipi
tate strains, precipitate decoration is distinguishable from the associated dislocation 
by section topography. Hence, an industrial role is proposed for simulation, in con
junct ion wi th experiment, in the parameterisation of the strain induced by decorated 
dislocations. To fu l ly explore the use of the cylindrical inclusion model in this way, 
the variation in the inclusion strain magnitude was determined as a function of the 
precipitate strain and density, and the size of the precipitate distribution. I t was 
found that the strain magnitude of the equivalent cylindrical inclusion must increase 
more rapidly relative to the precipitate deformation parameter for low-order reflec
tions than for high-order reflections. Decorated dislocations have been shown to be 
resolvable by section topography even in the most dislocation-rich sihcon samples. 
The industrial usefulness of this characteristic is discussed. A study was made of 
the critical deformation parameter, Cent, for decorated dislocations to be just re
solved, as a funct ion of the separation, «, of the dislocations. For « greater than 
about 45/im, the variation of ln{Ccrit) w i th K, was Unear. For smaller separations, 
the linearity breaks down because of the increasingly important strain contribution 



due to the dislocations. 

The strains induced by oxide films and devices in the sihcon substrates onto 
which they are formed have been investigated. Experimental section topographs 
of oxide edge regions and devices on sihcon have been simulated, and the visibihty 
of the extra set of fringes found in simulations by another worker has been exam
ined. The variation in image strucure w i t h device position on the entrance and exit 
surfaces has been investigated. A n absolute minimum on device width detectable 
by section topography of l / / m has been found. However, this minimum was found 
to depend on device-induced strain, and for values of strain characteristic of con
temporary devices, the minimum detectable device width was found to be at least 
S.bfim. This is above the l imits set by the geometric and other constraints of the 
experimental technique. A thorough study has been made of the cancellation of 
opposing strains due to opposite edges of a device. The total distortion induced by 
the device was found to be minimised by reducing the device width and increasing 
the force per unit length, 5, along the device edges. Quantitative information has 
been obtained on this process. I t was found that the fractional increase in lattice 
parameter at a fixed point, due to device-induced strain, increases hnearly wi th 5, 
w i t h increasing gradient for increasing device width . I t was shown that the narrower 
the device, the faster the relative fall-off in fractional increase in lattice parameter 
w i t h increasing displacement f rom one edge of the device. 
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Chapter 1 

Introduction to X-ray Diffraction 
Topography 

1.1 Background and Relevance of Topography 

X-ray Diffract ion Topography is a well estabhshed tool in the analysis of micro
scopic defects in crystals, and in the analysis of 3-5 lasers and 2-6 IR detectors. 
The technique is of direct relevance to the semiconductor industry, because of its 
apphcations to qucdity control in wafer manufacture. 

X-ray topography is, as wi l l be shown later, closely related on a fundamental level 
to the technique of transmission electron microscopy. However, X-ray topography 
has the advantage of being a non-destructive technique, so that i t can be used 
many times on the same sample, without damaging that sample. In addition, X-ray 
topography can be used to visualise a much larger volume of crystal than is possible 
using the electron technique. Finally, X-ray methods are much more sensitive to 
microscopic strains in crystals, and this confirms X-ray topography in a very specific 
niche for the characterisation of crystal defects. 

1.2 Underlying Physical Processes 

The images due to defects, found in topographs, result f rom two fundamental pro
cesses. These are orientation contrast and extinction contrast. 

Consider a beam of monochromatic X-radiation incident upon a crystal. Fig. 1.1. 
The intensity diflFracted f rom the crystal is allowed to fall onto a photographic film, 
giving a topograph. Now, suppose the crystal contains a region in which the lattice 
planes are misoriented relative to the rest of the bulk, Fig. 1.1(a). I f the Bragg 
condition is satisfied throughout the rest of the crystal, then i t cannot simultane
ously be satisfied in the misoriented region. Consequently, there wi l l be a part of 
the recording film which wi l l show no intensity, due to null diffraction from the 
misoriented region, and this is known as orientation contrast. 

Orientation contrast may also be observed i f the same crystal is subject to poly-
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chromatic radiation. Fig. 1.1(b). I n this case, radiation of different wavelengths wi l l 
diffract f rom the two regions at different angles. Hence, the photographic film wi l l 
show an area of reduced or enhanced contrast, corresponding to the discontinuous 
interface between the two regions. 

Orientation contrast results f rom the presence of discontinuous misorientations 
of sets of lattice planes. Extinction contrast results f rom the elastic distortion of 
the crystal lattice around a defect. The diffraction conditions in the vicinity of the 
defect are different f rom those in the rest of the crystal. So, the intensity scattered 
f rom the defect region is different f rom that sca:ttered by the rest of the crystal, and 
this shows up on the photographic film. 

Let us now consider the structure of the image in a topograph corresponding to 
a specific type of defect, the dislocation. The image can be thought of as having 
three parts; the direct image, intermediary image and dynamical image. These three 
images are formed by distinct, characteristic processes, which are described in detail 
by Authier [ l ] . 

Consider Fig. 1.2. The figure shows an X-ray beam, coUimated by slit 5 i , strik
ing the crystal surface at point A. The direct beam is attenuated very sHghtly as i t 
undergoes diffract ion at each successive Bragg plane. The diffracted waves collec
tively form the diffracted beam, which is allowed to fall onto the photographic film 
via sht S2. 

The direct beam intersects the dislocation at point P, where the lattice planes are 
distorted because of the defect. Lattice planes which would not satisfy the Bragg 
condition in the perfect crystal are able to do so in the distorted region around 
the defect. The high-intensity direct beam is diffracted strongly and strikes the 
photographic film at point 1. The result is a localised dark spot at position 1, and 
this spot is known as the direct image. 

The defect disturbs the flow of energy in the so-called Borrmann fan, ABC, and 
this causes a reduced intensity of radiation to propagate along direction QL, for 
example. The effect of this redistribution of energy across the Borrmann fan causes 
a shadow of low-intensity to fall onto the film around position 3. This is manifest 
as a bright region around position 3, known as the dynamical image. 

When wavefields strike the dislocation, new wavefields are created and propagate 
along line Q M , for example. Such wavefields interfere wi th existing wavefields, and 
the result is a set of bright and dark fringes around position 2 on the film. These 
interference fringes fo rm the intermediary image. 

The direct, intermediary and dynamical images collectively form the defect im
age. The defect image is seen, on a topograph, superimposed on a background 
of alternate bright and dark, parallel, vertical bands, known as the Pendellosung 
fringes. The mechanism of formation of these fringes can be understood in terms of 
dynamical theory, which w i l l be presented in the following chapter. 



1.3 Experimental Techniques 

Next, we w i l l investigate the means by which topographs are obtained experimen
tally. Several thorough reviews have been presented [2,3,4 . 

In order to obtain a topograph, a sample is subject to an X-ray beam, and 
the resulting diffracted beam is allowed to fa l l onto a recording medium, usually 
photographic film. This can be done in one of two ways, illustrated in Fig. 1.3, which 
describes one of the early techniques called the Berg-Barrett method [5], which sti l l 
finds extensive application. 

I n Fig. 1.3(a), the Bragg planes are oriented so that the beam is diffracted away 
f rom the crystal, and therefore only interacts w i t h the surface layer. This is called 
the reflection (Bragg) geometry. In Fig. 1.3(b), the diffracted beam passes through 
the crystal and is allowed to fal l onto a photographic film, via a slit which blocks 
the primary transmitted beam. This is called the transmission (Laue) geometry. 

In both cases, the diffracted beam is allowed to fall onto a photographic film, 
to generate a topograph. The reflection geometry is useful in the study of surface 
effects, whilst the transmission geometry allows the experimenter to probe the struc
ture of the bulk. The work presented in this thesis is associated exclusively wi th 
the transmission geometry. 

The foremost laboratory technique, developed by Lang in the late 1950's, is illus
trated in Fig. 1.4. The Lang technique is desirable because of its high sensitivity to 
both orientation and extinction contrast. I t is common practice to use KQ radiation 
to obtain topographs. This line is in fact a closely spaced doublet, and so the beam 
is coUimated so as to diffract only the stronger Ka^ line. Hence, the problem of 
double-imaging is avoided. 

First of all, let us disregard the arrows of Fig. 1.4. A narrow, colhmated beam 
of radiation is allowed to fall onto the crystal and undergoes diffraction from the 
Bragg planes indicated schematically in the figure. The diffracted beam emerges 
f rom the crystal and is filtered through a sht which blocks the primary transmitted 
beam, before falling onto the photographic film. The image so recorded is a section 
topograph [6 . 

I f the crystal and film are traversed together across the incident beam, indicated 
by arrows in Fig. 1.4, then a projection topograph is obtained [7,8]. This topograph 
represents a projection of the entire crystal. 

Kato and Lang [9] used section and projection topography to study the Pen-
dellosung fringes in topographs of wedge-shaped crystals. They used measurements 
of the fringe spacings to calculate the structure ampHtudes of the reflections. The 
section and projection methods have been discussed by Lang [10], where he assesses 
the relative merits of each. 

One important advantage of section topography is that i t can be used to locate 
the position of a defect i n a crystal. Consider Fig. 1.5. The narrow incident beam 
strikes the defect at point I . The direct image of this point hes at I ' on the film. 
Hence, the ratio of lengths A ' I ' / A ' B ' is equal to A I / A B . Thus, i f the crystal thickness 
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Fig. 1.3: The Berg-Barrett method, (after Tanner). 
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and angle of incidence are known, the depth of the defect can be calculated. It is 
important that the incident beam should be as narrow as possible, in order to 
maximise the accuracy of determination of depth by this method. 

The main advantage of projection topography is that one can image a dislocation, 
for example, across the whole of its length. However, defects at different depths will 
give rise to overlapping images on the topograph, and this hinders the extraction of 
useful information from the topograph. The experimenter would preferentially use 
section topography when the defect density is too high to allow the resolution of 
individual defects by the projection technique. 

The contrast of individual dislocations on projection topographs is not as high 
as on section topographs. However, the diffraction conditions can be fixed so that 
the defect image is still distinguishable from the background. The source shts of the 
incident beam for projection topography need not be as small as for section topog
raphy. So, even though the length of specimen scanned is longer in the projection 
case, the time taken may not be significantly greater. 

A variant of projection topography is the limited projection topograph [11], i l 
lustrated in Fig. 1.6. Only a part of the diffracted beam is allowed to fall on the 
film. In the simple case of Fig. 1.6, only those defects between depths di and d2 wUl 
be imaged. This is useful in the case of crystals which are surface-damaged, with 
interesting defect distributions beneath the damaged layer. In addition, by exam
ining a sample layer by layer, it is possible to resolve defect images which would be 
hopelessly overlapped in a standard projection topograph. In using this method, it 
is crucial to arrange a very narrow incident beam, in order to ensure good resolution 
of sampling depth. 

Both section and the equivalent of projection topography can be undertaken 
using the double crystal method [12,13], illustrated in Fig. 1.7. Here, the direct beam 
undergoes diffraction from a perfect reference crystal, and the resulting diffracted 
beam is then allowed to fall onto the sample crystal. For highest strain sensitivity, 
it is necessary that the lattice planes in the two crystals are parallel and equally 
spaced. It is often found desirable to arrange for the reference crystal to be cut so 
that the Bragg planes are inclined to the crystal surface. Fig. 1.7. In this way, it 
is possible to obtain a diffracted beam from the reference crystal of much greater 
width than the original direct beam. This, in turn, allows a larger volume of sample 
to be investigated. 

The beam diffracted by the sample will be of appreciable intensity only i f the 
Bragg condition is fulfilled simultaneously by both crystals. Suppose the sample 
is rotated or rocked slightly, relative to the reference crystal. Then the intensity, 
I , of the final diffracted beam falls off rapidly with angular deviation, A^, from 
the exact Bragg condition. Plots of I against are called rocking curves, and 
the rocking curve for the double crystal arrangement is very sharp. Fig. 1.7. The 
reference crystal is assumed to be perfect, so that any changes in diffracted intensity 
are due to lattice imperfections in the sample. Because of the rapid variation of I 
with A^, the double crystal method is much more sensitive to small variations in 
lattice parameter than either section or projection topography. The high accuracy 
of the double crystal method was utilised as long ago as 1926 [14], to study the 
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refraction of X-rays in a prism. 

In addition to section and projection topography, the experimenter nowadays 
has at his disposal the technique of synchrotron radiation topography. Tuomi et 
al. [15,16] introduced the idea of using a beam of intense synchrotron radiation 
as the source in topography experiments. The intensity of the diffracted beam 
is recorded in the usual way, on photographic film. The field has been reviewed 
comprehensively by Bowen [17] and by Tanner and Bowen [18]. 

Synchrotron radiation is a highly intense form of electromagnetic radiation, ex
tending from the hard X-ray to the microwave region of the spectrum. This radiation 
is obtained by confining electrons to a roughly circular path, by means of bending 
magnets. The radiation is almost totally plane polarised in the plane of the electron 
orbit. Templeton et al. [19] pointed out that total plane polarisation is prevented 
by the distributions of vertical positions and directions of electrons near the source 
point. However, because of the relativistic speeds of the electrons, the radiation is 
seen in the laboratory frame as a cone, tangential to the electron orbit. 

One of the foremost synchrotron facihties is the storage ring source (S.R.S.) 
at S.E.R.C.'s Daresbury Laboratory. The system is illustrated schematically in 
Fig. 1.8. Electrons are first of all generated, and then accelerated in a 10 MeV 
linear accelerator, before being injected into a 600 MeV booster. The electrons 
are then fed into the main ring, in time with a radio-frequency accelerating field. 
Several beam lines can be built up in the storage ring, to supply several experiments 
each with a different beam. The electrons move in a closed, polygonal path, with a 
bending magnet at each apex of the polygon. At each apex, electrons emit radiation 
as they are accelerated by the bending magnet. Clearly, the beam loses energy each 
time this happens, but this energy is replaced by the action of the electrons passing 
through the r.f. accelerating field. Since electrons travel in bunches in the ring, the 
radiation derived from them is pulsed. 

Synchrotron radiation is continuous, so that each lattice plane may select a par
ticular wavelength for diffraction, and a Laue pattern of spots is observed on the 
resulting topograph. Each spot is in fact a topograph of the sample, and the same 
defect distribution is visible in each. Docherty et al. [20] have studied twin domains 
in crystals, using synchrotron topography. The Laue patterns of topographs which 
they obtained provide a striking illustration of the symmetry relations between the 
twin domains. Hohlwein et al. [21] have developed a double crystal monochromator 
for synchrotron radiation, allowing a selective reduction in bandwidth, whilst re
taining high intensity. The result is an intense beam of well-coUimated, broadband 
radiation. 

Stock et al. [22] have studied a sihcon wafer containing a laser-drilled hole. The 
characterisation of the strain around such a hole requires the simultaneous recording 
of many topographs. The authors developed a multiple slit for use in synchrotron 
topography, to allow the simultaneous recording of up to ten section topographs. 
They successfully used this device to visualise the strain field around a laser-drilled 
hole in a silicon wafer. 

Synchrotron topography has numerous advantages over the conventional labo-
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ratory techniques. Let us consider some of these. 

One of the main advantages of synchrotron topography is the high intensity of 
the direct beam. This has allowed the observation of real-time processes such as 
the deformation resulting from acoustic waves in acoustic wave devices [23], and 
dislocation motion in InP crystals as a result of mechanical deformation [24]. High 
beam intensity allows very good resolution on the final topograph. This will be 
commented upon later. Also, the intensity of the beam means that exposure times 
can be preferentially lower than in the case of laboratory methods; seconds rather 
than hours. 

Next, it is important to note that the synchrotron beam is wide. Hence, projec
tion topographs of whole crystals can be obtained in one exposure. 

Tanner et al. [25] have used the inherent good resolution of synchrotron to
pography to study the motion of magnetic domain walls. They found that for a 
resolution equivalent to that of the Lang method, they could place the specimen ten 
times as far from the recording film as in the Lang case. This is due to the minimal 
beam divergence of synchrotron radiation, and is very helpful, since it allows more 
experimental apparatus to be packed into the space around the sample. 

Hart [26] has used synchrotron radiation to study grain boundaries in LiF sam
ples. The defect images obtained were found to be much wider on synchrotron 
topographs than on Lang topographs. This is because the synchrotron technique is 
much more sensitive to local strain variations. This characteristic is of great impor
tance in the characterisation of lattice defects, since these are visualised by means 
of the strains associated with them. 

The sensitivity of synchrotron topography to variations in lattice strain has been 
used by Chikaura et al. [27] to image microdefects in thinned crystals of silicon. The 
contrast of the defect image is much sharper than in the Lang case. The authors 
proposed that when the wafer is thinned, the strain field around the defect spreads 
because of stress relief at the wafer surface, to an extent detectable by synchrotron 
topography. 

Recently, it has been shown [28] that synchrotron topography in the grazing 
Bragg-Laue geometry is the ideal means of characterising dislocations in the inter
faces of heterostructures. The authors demonstrated that it is necessary to take into 
account surface relaxation in the determination of dislocation depth by this method. 

The aforementioned advantages of synchrotron radiation have been summarised 
in an article describing the European Synchrotron Radiation Facility in Grenoble, 
France [29]. 

I t is necessary to complete the survey of experimental methods by looking at the 
means by which topographs are recorded photographically. 

In order to obtain good resolution, one would use a thin photo-emulsion with 
very small grain size. However, photographic emulsion is a poor X-ray absorber, and 
it is necessary to compensate for this by increasing the thickness of the emulsion. 

Ilford L4 Nuclear Emulsion is taken as the standard for use in X-ray topography. 
This substance contains a high concentration of silver halide, which allows high X-



ray absorption with minimum emulsion thickness. 

Following exposure, the emulsion is made to swell by soaking in water. This 
faciUtates rapid diffusion of developer into the emulsion. Lang [3] and Epelboin et 
al. [30] have shown that the best resolution on the final topograph is obtained by 
developing at low temperature. However, this does necessitate a long exposure time. 
The average size of a developed grain of Ilford L4 emulsion is about 0.25/im . This 
is ideal for topography, since the smallest dislocation image will be of order 1 /xm in 
width. 

After developing, the emulsion is treated with a weak solution of acetic acid, 
prior to fixing. After fixing, the plates are washed in cold, running water and dried 
in warm air, preferably filtered. 

The finished topograph is enlarged to form a micrograph, using a projection 
microscope. The topograph is placed under the microscope and illuminated with 
visible Ught. Hence, an enlarged image of the topograph is recorded on optical 
photographic film. 

Background noise can reduce the visibUity of defect images. A remedy is to 
use longer exposures, so increasing the signal-to-noise ratio corresponding to the 
defect image. Such long exposures will inevitably cause increased blackening on the 
topograph, hindering the visual interpretation of the resulting micrograph. It has 
been found [31] that details which would otherwise have been lost in overexposed 
topographs can be reclaimed by viewing the topograph in reflected rather than 
transmitted Ught. 

1.4 Industrial Applications 

The comment was made earher that X-ray topography finds considerable use in the 
semiconductor industry. In an early paper, Segmiiller [32] illustrated the use of to
pography to study the defects introduced in Ge by basic device manufacturing steps. 
The author illustrated, with the aid of topographs, the generation of dislocations as 
a result of thermal stresses induced during growth. Deposition of an oxide layer onto 
a substrate is a standard industrial technique in the preparation of devices. The 
deposition is done at high temperature so that, upon cooHng, the substrate and the 
oxide layer contract at different rates. This causes the crystal to bend. Segmiiller 
used topography to investigate the bending of a Ge wafer after deposition of a layer 
of Si02- Also, by interpreting the contrast on topographs of antimony-doped Ge 
topped with an epitaxial layer of boron-doped Ge, he analysed the stresses induced 
by the epitaxial layer. 

It has been shown that the presence of defect distributions can have a detrimental 
effect upon the electrical performance [33] and mechanical resilience [34] of crystals 
used for devices. Mechanical working of a Si wafer, for example, by cutting with 
a diamond-blade saw, can introduce serious imperfections into the surface layer of 
the crystal. The strains induced by these imperfections can have a deleterious effect 
upon the electrical properties of the wafer. Auleytner et al. [35] have used X-ray 



section topography to determine the thickness of the damaged layer at the surface 
of such a Si wafer. 

Scott [36] has commented that X-ray topography has played a major role in the 
understanding of defect generation mechanisms, with reference to the developments 
in the growth of GaAs substrates. The author showed a Lang topograph of a Si-
doped GaAs ingot, and he associated specific image features with the process of 
Si segregation during growth. He then used topography to investigate a device-
processed wafer. A combination of topography and device performance analyses, on 
an /n-doped Gai45 wafer with devices built onto it , showed that the variation in 
threshold voltage in the wafer was linked to the variation in crystal defect density. 

A standard industrial method for producing silicon-on-insulator (SOI) wafers is 
the wafer bonding technique, illustrated in Fig. 1.9. The bonded wafer is oxidised to 
form a 1/i Si02 layer on its surface. This wafer is then brought into contact with the 
Si base wafer at 1100°C and a very tight bonding is obtained. The bonded wafer 
is subsequently thinned in order to form the active layer for device preparation. 
During the bonding of the Si02 and Si surfaces, it is possible for voids to form, due 
to incomplete bonding. Such voids render the SOI wafer useless for device purposes, 
since unbonded sihcon is unstable with heat treatment. Abe et al. [37] have detected 
these voids using X-ray topography, and have found that void formation is Hnked 
to the degree of surface roughness of the siUcon base wafer. 

Meieran [38] has reviewed the use of X-ray and other methods in quality control 
in the semiconductor industry. He comments on the appUcation of Lang topography 
in visualising very clearly the presence of surface damage and also of precipitates in 
silicon crystals. As mentioned earlier, section topography can even be used to map 
the spatial distribution of precipitates, which is of great value. 

Sometimes, certain kinds of defect are artificially introduced into the lower por
tion of a crystal, to act as gettering centres. Upon heat treatment, metal contami
nants in the surface layer of silicon will preferentially migrate to dislocation loops, 
and other oxygen-related defects, in the bulk. The dislocation loops here are the 
gettering centres, and their effect is to remove metallic impurities from the surface 
layer, leaving it suitable for device preparation. The metallic contaminants would 
otherwise have a negative effect upon device performance. Falster and Bergholz [39 
have used X-ray topography to investigate the gettering efficiency of oxygen-related 
defects in silicon. Hahn et al. [40] have highlighted the beneficial effect of intrinsic 
gettering on the electrical performance of devices fabricated on Si wafers, in a study 
involving the use of synchrotron radiation section topography. 

The open-wafer process is used in industry to relieve stress in semiconductor 
wafers. The technique involves etching a hole through the wafer, making a cut from 
the outer to the inner edge, and then cleaning the wafer. Tanzer et al. [41] subjected 
ordinary and open wafers to a heat treatment associated with standard industrial 
processing, and took Lang projection topographs of the resulting wafers. They 
found that whereas the ordinary wafers showed widespread dislocation distribution 
and slippage, the open wafers were undamaged except for a very localised area 
around the etched hole. 
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Fig. 1.9: Wafer bonding technique for silicon-on-insulator wafer fabrication, (after 
Abe and Matlock). 



This is an excellent example of the use of topography to illustrate how a well-
defined technique can benefit the semiconductor industry. 



Chapter 2 

Dynamical Theories of X-ray 
Diffraction in Crystals 

2.1 Introduction and Motivation for Dynamical 
Theory 

In 1912, Laue, Fridrich and Knipping [42] discovered the process of X-ray diffraction 
in crystals. This was of importance in two major respects. First of all, it highUghted 
the wave nature of X-rays, and confirmed X-radiation as a part of the electromag
netic spectrum. Secondly, this discovery provided striking evidence of the periodic 
structure of crystals. 

It soon became apparent that X-rays could be used to analyse the structure 
of materials, and an enormous amount of experimental data was built up in the 
following years. This provided the motivation for the development of a theory of X-
ray diffraction in crystals, to account for the experimental results within a consistent 
theoretical framework. So it was that Laue developed a theory of diffraction and 
interference, known as kinematical theory., which we will now consider. 

We imagine the electron content of each atom to be smeared out across the 
atomic volume. Consider scattering from two points within an atom. Fig. 2.1. The 
wave vectors of the incident and scattered waves are k and respectively. The 
phase difference between waves scattered at points O and P is: 

8.=2-K{U.-k)-r„ 

where r_j =0P . 

Hence, the scattered ampUtude for an atom is: 

A = Y , A exp(i<5, ), 

where Ae = amplitude scattered by one electron, 
and j takes values 1 up to z, where z = atomic number. 
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Fig. 2.1: Scattering of radiation from a single atom. 

Fig. 2.2: Scattering of radiation from a periodic array of atoms. 



The atomic scattering amplitude, / , is defined as the ampUtude scattered by an 
atom divided by the amphtude scattered by a single electron. 

Then, from above: 

f = Y, ̂ MiS^) = E exp[i27r(i - A')-! ,]- (2.1) 

Our goal is to calculate the amplitude scattered from a periodic array of atoms. 
The approach is to consider scattering from a unit cell, and then add the contribu
tions due to all unit cells. 

Consider Fig. 2.2. The unit cells have origins with position vectors r^, r^,r^. 
Within a unit cell, the atomic coordinates are given hy R^, R2,-nMt, with respect 
to the origin of that unit cell. The total scattered amplitude is then: 

^ = EE/ 'exp[-27ri(r , - f^) . (5i] , 
i t 

where 6k = I^ — k_. 
Hence, 

A = FKY^ exp[-27rir^.6k], (2.2) 
i 

where the geometrical structure factor, 

F^ = ^ / , e x p [ - 2 7 r i ^ . ^ i ] . (2.3) 
t 

The scattered intensity, 7, is given by: 

/ = A'A, 

so that: 

la I p . (2.4) 

The kinematical theory was able to satisfy the requirements of contemporary 
studies of the atomic structure of crystals. However, flaws soon became apparent. 
For example, the intensity dependence given in equation (2.4) was found to be 
at variance with the relation la \ FK |, obtained empirically. In addition, the 
theory assumes that the ampUtudes of the diffracted waves are small compared to 
the ampUtude of the transmitted wave. This assumption is valid for small crystals 
or mosaic crystals, but not for large, perfect, single crystals, where the diffracted 
amplitude can be appreciable. 

Essentially, the main drawback of kinematical theory is that it fails to take into 
account the interaction of the transmitted wavefield with the diffracted wavefields. 

What was needed was a theory which would allow a dynamic interchange of 
energy between the transmitted and diffracted wavefields. In 1914, Darwin [43 
proposed such a dynamical theory, into which he attempted to incorporate multiwave 
scattering. An alternative theory was presented by Ewald [44] in 1916, in which 
each lattice point is represented by a dipole, which can be set into oscillation by 
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an electromagnetic field within the crystal. The oscillating dipoles themselves emit 
radiation, giving rise to a radiation field. This model proved to be very fruitful 
in the interpretation of experimentally observed scattering phenomena. In 1931, 
Laue [45] introduced a theory based on that of Ewald. Instead of a dipole at each 
lattice point, Laue proposed a localised positive charge. These positive charges sit 
in a continuous distribution of negative charge. The electromagnetic field associated 
with the radiation causes polarisation within this medium, and the polarisation is 
proportional to the local electric field. In the next section, we will pursue this 
approach used by Laue. 

The field of dynamical theories has been extensively reviewed by several authors 
46,47,48,49]. 

2.2 Dynamical Theory for a Perfect Crystal 

2.2.1 Development of the Fundamental Equations 

Using the Laue model, outlined above, the problem reduces to the solution of 
Maxwell's Equations in a periodic medium. 

According to Maxwell's Equations: 

1 dD 
and V x ^ = - - ^ , 

c dt 

(2.5) 

(2.6) 

where magnetic induction, B 
and electric displacement, D_ 

where ^ 

e 
H 

and E 

eE, 
permeability of medium, 
permittivity of medium, 
magnetic field, 
electric field. 

Equation (2.5) then becomes: 

- V x D 
e 

Taking the curl of both sides: 

1 

c dt 

c dt ' 

V X V X P = | - ( V X H). 
c at 
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Using (2.6), this becomes: 

i v . V x ^ ^ f f . (2.7) 

Now, £ = 1 + X) 
where x = dielectric susceptibility. 

Then, making the approximation 

equation (2.7) becomes: 

^ ^ l - X , f o r | x | < 1, 

Y x V x ( l - x ) ^ = - ^ ^ . (2.8) 

In a periodic medium, as specified by Laue, the susceptibiUty is periodic and can 
be expressed in terms of a Fourier series: 

X = l]x/.exp(-27ri4.2:), (2.9) 
h 

where Xh = TTF^h, 

where e = electronic charge, 
A = wavelength, 

m = electron mass, 
c = velocity of light, 

V = unit cell volume, 
and F/i = structure factor. 

The solution of the wave equation (2.8) can be expressed as a Bloch wave: 

£ = X ^ ^ e x p ( - 2 7 r z ^ . r ) . (2.10) 
h 

This solution is a linear combination of plane waves, each with wave vector /Q,, 
and represents the multiwave solution sought after by the pioneers of dynamical 
theory. The wave vectors, are Unked by the Laue equation: 

KK=Ko + h, (2.11) 

where A is a reciprocal lattice vector. Substitution of (2.10) and (2.9) into (2.8) 
gives: 

EiXH-,iIU.D,)Kj, - XH-AK^^-IUm = ( P - ^ . ^ ) ^ , (2.12) 
9 

where k = \k\, and k = wave vector in vacuum. 

Equations (2.12) are the fundamentcd equations of dynamical theory. 
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2.2.2 The Dispersion Surface 

Next we will borrow a concept from kinematical theory, namely the Ewald sphere. 
Consider a sphere of radius k, in reciprocal space, centred on the reciprocal lattice 
point L, Fig. 2.3. Suppose the sphere cuts the point O, so that LO represents the 
wave vector, A^, of the refracted wave in a crystal. The point 0 is then considered 
to be the origin of the reciprocal lattice. Now, each reciprocal lattice point is 
associated with a set of planes in the real crystal lattice, specified by a set of Miller 
indices. Strong diffraction will occur from the lattice planes with Miller indices 
(h, k, I) associated with point H, Fig. 2.3, i f the sphere also cuts the point H. In this 

case, LH denotes the wave vector, Kh, associated with this diffracted wave. The 
sphere described here is the Ewald sphere, and the point L is called the Laue point. 

The fact that the Ewald sphere must cut reciprocal lattice points 0(0,0,0) and 
H{h,k,l) is an embodiment of the Laue equation, (2.11), since any two reciprocal 
lattice points are connected by a reciprocal lattice vector, h. 

Kinematical theory assumes no loss of energy in the incident wave through the 
crystal, and no multiple scattering, i.e. \K^\ = k. However, in reaHty \K^\ — nk, 
where the refractive index, 

n = l + y , 

and Xo = susceptibility of free space. 

Hence, the Ewald sphere must be re-drawn, with radius nk. In fact, in the X-
ray case, the curvature of the sphere is large, so that the probability of more than 
two reciprocal lattice points being cut is small. Hence, we only need to consider 
the refracted wave and one diffracted wave. In this two-beam case, equation (2.10) 
becomes: 

D = exp( -27r i^ . r ) + ^ exp{-2TriKj,.r). (2.13) 

Also, equations (2.12) reduce to: 

a „ a , = h'C\,X7:^ (2-14) 

where a<, = l.{K^,K^-k^l + Xo)}, 

ccH = Y^{K,.KH-k'{l + Xo)}, 

C = 1, for CT - polarisation, 
C = cos26g, for TT - polarisation, 

9B = Bragg angle, 

and Xh, Xh *he h and h Fourier components of the susceptibiUty. 

Equation (2.14) is the equation of the dispersion surface, and its importance will 
become apparent. In the dynamical case, there is no longer a single Ewald sphere 
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H(h.k, 0(0,0,0) 

Fig. 2.3: The Ewald sphere. 

Fig. 2.4: Spheres in reciprocal space, centred upon lattice points O and H. 



associated with an incident wave. The dispersion surface represents the loci of the 
centres of allowed Ewald spheres. 

Consider Fig. 2.4, which shows two pairs of spheres, of radii k and nk, centred 
on the reciprocal lattice points O and H. The Laue point, L, of the kinematical case 
is indicated. Fig. 2.5 shows a magnification of the area around the point L. Here, 
the arcs AB and A'B' correspond to the spheres of radius k, and CD and CD' to 
the spheres of radius nk. 

Equation (2.14) defines a hyperboloid of revolution, whose projection onto the 
paper in Fig. 2.5 is a hyperbola. On the scale of Fig. 2.5, the arcs CD and CD' 
approximate to lines, and these lines are the asymptotes of the hyperbola. Each 
branch of the hyperbola has two parts, corresponding to a- and T T - polarisation. 
Each tie point, P, on the dispersion surface defines a pair of wave vectors, and 
Kf^^ corresponding to an allowed reflection. Tie points on the vertical axis YY' 
correspond to strong diffraction at the Bragg condition. It will be seen that, far 
from the Bragg condition, the cr and TT dispersion surfaces merge with the spheres 
centred on O and H. 

The parameters a,, and a/, in equation (2.14) are in fact the perpendicular dis
tances of the tie point, P, from the spheres of radius nk. I t can be shown that the 
amplitude ratio: 

where i = 1,2 denotes the branch (1 or 2) of the dispersion surface. 

To summarise, the importance of the dispersion surface is two-fold. First of all, it 
enables one to determine the wave vectors, K_g and Kj^, associated with the refracted 
and diffracted waves, respectively. Also, equation (2.15) allows the calculation of 
the amplitude ratio, R, of the diffracted and refracted wave components of the total 
wave field. 

Having discussed the dispersion surface, let us see how the dynamical theory 
describes two well known physical effects. 

2.2.3 Anomalous Transmission 

Consider the rocking curve experiment illustrated in Fig. 2.6, for a thin crystal, (a), 
and a thick crystal, (b). Fig. 2.6(c) is a plot of transmitted intensity, /y, against 
angle of incidence, 6, for the two crystals. In case (a), there is a predictable dip in 
IT around the Bragg condition, corresponding to an increase in diffracted intensity. 
However, in the high-absorption domain of case (b), there is a peak in Ix around 
the Bragg condition. Evidently, there is some mechanism whereby the intensity of 
the refracted beam is not appreciably attenuated in passing through the crystal. 
This effect was first discovered by Borrmann in 1941, and is known as anomalous 
transmission or the Borrmann effect. 

Consider next the equation, (2.13), for the wave amplitude in the two-beam case: 

D = ^ e x p ( - 2 7 r z X , - l ) + ^ e x p ( - 2 7 r i ^ . r ) , 
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Fig. 2.5: The dispersion surface construction, (after Tanner). 



Iq= incident intensity 
Iq= diffracted intensity 
1-,-= transmitted intensity 

Fig. 2.6: Demonstration of Anomalous Transmission. 
(a) thin crystal. 
(b) thick crystal. 
(c) transmitted intensity, / j , vs. angle of incidence, 9, for the two crystals. 

intensity 

atomic 
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Branch 1 Branch 2 

Fig. 2.7: Bloch waves with tie points on opposite branches of the dispersion surface. 



= {^+^exp( -27r iA. r )} . exp( -27rzX-2 : ) - (2-16) 

The corresponding intensity is given by: 

/ = Dl.D, 
= Dl{l +R'^ + 2RCcos{2wh.r)}, (2.17) 

where C is given in (2.14) and R in (2.15). 

Hence, the intenity is maximum, for a—polarisation (C = 1), when A.r = iV, 
and minimum when h.r = (2A^ + l ) / 2 , where N is integral. This means that the 
maxima and minima of the standing wavefield lie either at or half way between 
the atomic planes, since h.r = N corresponds to a plane of atoms. The sign of R 
determines whether maxima or minima occur at the atomic planes. The sign of 
R is opposite for Bloch waves with tie points on opposite branches of the disper
sion surface. Consequently, one Bloch wave will have intensity maxima, while the 
other wUl have minima, at the atomic planes. This is illustrated schematically in 
Fig. 2.7, where the branch 1 wave is taken to have minima at the atomic planes. 
Photoelectric absorption, which plays the major role in attenuation, is very strong 
for the wave whose maxima he at the atomic planes, and very weak for the other 
wave. In the case of Fig. 2.7, the la wave only, at the exact Bragg condition, will be 
appreciably transmitted. Thus, the process of anomalous transmission is accounted 
for by dynamical theory. 

2.2.4 The Pendellosung Effect 

One of the most important phenomena described by dynamical theory is the Pen
dellosung effect [9], mentioned in the previous chapter. Pendellosung fringes are 
clearly visible in Fig. 2.8, which is an experimental topograph of a perfect crystal. 

For a plane wave, of unit amplitude, incident upon the entrance surface of a 
crystal, Fig. 2.9, the boundary conditions are: 

1 = Do,+Do„ 
0 = DH, + D,,, (2.18) 

where i = 1,2 denotes the branch of the dispersion surface. 

The amplitude ratio i?,, equation (2.15), can be written: 

i?. = ^ = 77±( l+7;^)^ , (2.19) 

where T] = deviation parameter, a 
measure of the angular deviation 
from the exact Bragg condition. 

The plus sign in (2.19) corresponds to branch 1 and the minus sign to branch 2 of 
the dispersion surface. 
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Fig . 2.8: Experimental section topograph of a perfect crystal, showing an undis-
torted set of Pendellosung fringes. 
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0 B = Bragg angle 
So_ Sh are unit vectors in the directions of the 

transmitted and diffracted beams, respectively. 

Fig . 2.9: Characteristic diflfrciction geometry for a wave incident on the surface of 
a crystal. 



Introducing a parameter /3, such that 

T] = cot /3, 

and using (2.18) and (2.19), we obtain: 

D,, = -sin I cos I D,, = sin f cos f . ^^.20) 

For a crystal of thickness the^ Bloch. waves at the exit surface. have additional 
phase factors: 

Z).(i) = Do, exp(-27rzi^, .n) + DH, exp ( -27 r i i ^ . .n), (2.21) 

where Z),,. and D^. are the components at the entrance surface, and n is a unit 
vector perpendicular to the surface. 

The boundary conditions at the exit surface are: 

Dl = DoAt)^DM, 
Dl = D,,{t) + D,,it). 

The intensity, 1^, in the diffracted beam is given by: 

h = DtDl 
= {Dh, exp{2TTitKh^ .n) + DH, exp{2mtKh^.n)] x 

[DH, exp{-2TvitKj,^.n) + Dh, exp{-2'iTitK^^.n)}, 
= Dl + Dl + D^.DnA^M^^iiiKH, - KHM + exp[-27rif(^^ - K^,).n]}, 
= Dl + Dl + 2D,,D^, cos[27rt(iG.^ - ^ , J . n ] . 

Substituting for D^^ and Dti2 from (2.20) gives: 

Ih = 2sin^ ^ coŝ  ^ - 2sin^ ̂  coŝ  ^ . cos[2Trt{K_h^ - Kh,)-fk], 

h = ^sm'(3{l-cos[2^t{K,^-K^J.n}. (2.22) 

From equation (2.22), it is seen that there is interference bet-.-̂ een the Bloch wave 
components associated with opposite branches of the dispersion surface, and that 
this interference depends on depth. This process is the mechanism of formation of 
the Pendellosung fringes seen in wedge-shaped crystals and in section topographs. 
The interference beat depends on the difference, {K_h^ — Kjii), between the wave 
vectors. 

Using the relation 
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where A,, = diameter of dispersion surface, 
and substituting for /3, we obtain: 

/ , = i _ ! ! ; f f e M i ± i f ) ! l . (2.24) 

Clearly, from (2.23) and (2.24), the intensity of both the diffracted and transmitted 
beams varies periodically with depth. Furthermore, the period is the same for both 
beams, and is given by a depth: 

This depth has a maximum value for rj = 0, i.e. the Bragg condition. In this case, 
the depth corresponding to one period is called the extinction distance, ^h, given by: 

-1 a = a ; 

Again, the usefulness of the dispersion surface is seen, this time in providing a value 
for the extinction distance. For values of 77 7̂  0, the effective extinction distance is: 

(1 + 7,2)5 

Equations (2.23) and (2.24) illustrate the complementarity of the diffracted and 
transmitted intensities. Photographic plates placed in the two beams will show op
posite contrast. This complementarity serves to underhne the fact that the diffracted 
and refracted waves are really parts of the same wave field. Ewald compared the 
oscillation of energy between the refracted and diffracted waves to the periodic os
cillation of energy between two coupled pendulums; hence the name Pendellosung. 

The Pendellosung fringes seen in X-ray topographs are very similar to the parallel 
bright and dark bands observed much earlier in electron micrographs [50]. This 
similarity highlights the close relationship between X-ray diffraction and electron 
diffraction. In fact, the two processes can be described by the same set of equations, 
as will be shown later. 

2.3 Tcikagi's Theory for an Imperfect Crystal 

2.3.1 Background and Basic Postulates 

In the 1950's and 60's, several theories were proposed to account for electron diffrac
tion in an imperfect crystal. Cowley and Moodie introduced a lamellar theory [51], 
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in which the crystal is divided into a set of thin sheets or lamellae, parallel to the 
surface. They derived the relations between wave functions at successive lamellae, 
and showed how these relations could be used iteratively to obtain the wave function 
at the exit surface. In the column approximation of KiTSch, Howie and Whelan [52], 
the lamellar crystal is divided again into columns, perpendicular to the lamellae. 
The columns must be sufficiently narrow that the part of each lamella within a col
umn may be considered perfect. In this case, the theory is apphed to each column 
individually, to obtain the wave function at the exit surface. Howie and Whelan 
53,54] used this theory to calculate electron micrographs due to dislocations in 

crystals. 

One of the most successful theories of this period was developed independently 
by Takagi [55,56] and Taupin [57]. The theory describes both electron and X-ray 
diffraction within a common mathematical formulation, and is appUcable to both 
perfect and imperfect crystals. 

Takagi proposed that the Fourier components, D^, in equation (2.10) be allowed 
to vary slowly with position. It is then possible to take into account variations in 
the wave field induced by crystal lattice distortions. 

Extending this idea, the wave function in a distorted crystal can be written: 

V'd) = Y.ML)exp{~2irik^.r), (2.25) 

where k^ = Ao + £, (2-26) 
and g is a reciprocal lattice vector. 

The Tpg in (2.25) can be replaced by Fourier components ip'g, based on a local recipro
cal lattice associated with the distortion, provided the exponential term is multipUed 
by a suitable phase factor. Hence, 

HL) = ^V' ; ( r )exp[-27r i5 , ( r ) ] , (2.27) 
9 

where 
S,{r) = kg.r-g.uir,). (2.28) 

The function u(r) represents the displacement of a lattice point due to a distortion. 
Consequently, a point r^ in the perfect crystal is displaced to a point r in the 
distorted crystal, given by: 

r = r^ + u{u). (2.29) 

Takagi defined the wave vector ^ , such that: 

^ = Y 5 , ( i ) = kg- V{g_.u). (2.30) 

Consider a reciprocal lattice vector, gl_, associated with the local reciprocal lattice 
of the distorted region. I t can be shown that: 

5: = £ - Y [ £ . i i ( r , ) ] . (2.31) 
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Combining (2.30) and (2.31), we have: 

Mg = ko+l- (2.32) 

-tpg and Tp'g are now functions of position, so that any small change, A ^ , in k^ can be 
compensated for by multiplying il^g{r) or V'g(r) by a factor exp(27riA^.r), without 
affecting their spatial variation. This is true so long as A^^ is sufficiently smaller 
than any reciprocal lattice vector. The possibiUty of ambiguity in k^ is removed by 
setting 

k^\=nk = n\k\, (2.33) 

where n = mean refractive index, 
and k = wave vector in vacuum. 

Takagi introduced a function called the crystalline field, xiz), defined such that: 

V(r) 
(a), in the electron case, Xeiz) — — ( 2 - 3 4 ) 

E 
where V{r) = electrostatic potential in crystal, 
and E = accelerating voltage of electron, 

(b). in the X-ray case, XX{L) = 5"-"(2l)) (2.35) 

where e = electronic charge, 
A = wavelength, 

m — electron mass, 
c = velocity of Ught, 

and n(r) = density of electrons at point r. 

The periodicity of x enables us to write: 

x(z:) = E x 3 e x p ( - 2 7 r i £ . r ) . (2.36) 
9 

Using (2.29-), the crystalUne field in the distorted crystal is: 

X'{r) = x{r-u{r^)]. (2.37) 

Combining (2.36) and (2.37), we obtain: 

X 'd) = E Xff exp[-27rt-(£.r - g.u)]. (2.38) 
9 

Using the above, we now consider electrons and X-rays separately and derive, 
for each, the appropriate equation for diffraction in a crystal. 
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2.3.2 The Electron Case 

The Schrodinger Equation for an electron in an electrostatic potential V(r ) , given 
by (2.34), can be written: 

V V d ) + 47r2A;2[l + x ' ( r ) ]^( r ) = 0, (2.39) 

where k is defined in (2.32). 

The periodicity of the crystalline potential, V{r), is embodied in the definition, 
(2.38),ofx'(2:). 

Substituting (2.27) and (2.38) into (2.39) gives: 

E i ^ ' V ' ^ d ) + 27riV\.u)i>'^{r) - A^iH^.^M 

+ 4ir'[k'il + Xo)-^Wg{r) 

-f iTT^k'^ E Xg-g'->P'g'{L)}-exp[-27ri(^.r - g_.u) 

9'i^9 
= 0. (2.40) 

The spatial variation of •^'(r) and [g.u) is significant only on a macroscopic scale 
of the order of atomic dimensions. Hence, the first and second terms in the curly 
bracket of (2.40) can be neglected. The remaining terms are also of such macro
scopic variation, and can be taken out of the integral when (2.40) is mutiplied by 
exp[27ri(fc^.r - h.u)] and integrated with respect to r over a unit cell, where h is 
a reciprocal lattice vector. Upon doing this, the only non-vanishing term in the 
summation is for g = h, and we obtain: 

[^•YVUr)] = -i^ik'il + Xo) - MML) - ^-r^k' E XH-H'ML). (2.41) 

For strong diffraction, k=\k^\, so dividing through (2.41) by k gives: 

[S^.VVUr)] = i27rA:/3;,(r)^Ul) " E XH-WML), - (2-42) 

where is the unit vector in the direction of and 

^'K=^H-\^[h.u{r)], (2.43) 

where -
2k^ 

Equation (2.42) is the fundamental equation of electron diffraction in a crystal, and 
includes the equations derived from lamellar theories as a special case. 
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2.3.3 The X-ray Case 

The electric displacement, D, induced by X-rays in a crystaUine medium is given 
by the wave equation: 

V ^ ^ -h AiT^k'^D -t- 47rV x V x £ = 0, (2.44) 

where k is defined in (2.33). 

Furthermore, the electric polarisation, P_, is given by: 

47r£ = x^D, (2.45) 

where x! represents the quantity in (2.35), for an imperfect crystal. 

Expressing D in a form analogous to equation (2.27), we obtain: 

^(r) = E exp[-27rz(^.r - g_.u)\, (2.46) 
9 

where hg is defined in (2.26), and the are associated with a distorted crystal. 
Similarly for P: 

X ' ( r ) ^ ( r ) = 47rP(r) 
= 47r53£^(r ) .exp [ -27ri (^ .r-£ .u)] , (2.47) 

9 

where P^(r) is given by: 

4 < ( r ) = Ex.-.'(r)£;'(2:)- (2.48) 
9' 

After some manipulation, Takagi showed that: 

V x V x P = -47r2E[^ X [ ^ X P;] 
9 

x e x p [ - 2 7 r i ( ^ . I - £ . u ) ] , (2.49) 

and 

9 

X exp[-27ri(^.r - g.u)\. (2.50) 

Substitution of (2.49) and (2.50) into (2.44) gives: 

9 

+ 47r2 E Xf f - f f ' I ^ ' l s} - exp[-27ri(fc^.r - g.u) 
9' 

= 0, (2.51) 

where [ ^ ; , ] , = - ^ [ ^ x [ ^ x 4,]], (2.52) 
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and denotes the component vector of D^f perpendicular to 

I f we multiply (2.51) by exp[2•Ki{k}^.z — h.u)\ and integrate with respect to r over 
a unit cell then, as with the derivation of (2.41) from (2.40), we obtain: 

( 5 a . Y ) ^ = i27rA:^;^ - iirk E Xk-h' [ ^ ' ] / . . (2.53) 

Equation (2.53) is the fundamental equation of X-ray diffraction in a crystal. 

2.3.4 General Formulation of the Diffraction Equations 

I t will be seen that the equations (2.42) and (2.53) are of the same form. Takagi 
showed that, in the two beam case, equations (2.42) and (2.53) reduce to: 

= -iMxvi^H 
dSo 

= -iTrkCxh^'o + i2Trk0'^^'^, 

(2.54) 

where is given by (2.43). 

There are three distinct cases of polarisation: 

1. the electron case, 

2. the X-ray case where both J2^ and are perpendicular to the plane of inci
dence, defined by k^ and kJ^, and 

3. the X-ray case where both D^ and D'^ are parallel to the plane of incidence. 

The polarisation factor, C, in (2.54) is given by: 

C = 1, for cases 1 and 2, 
and C = COS26B, for case 3. 

In the X-ray case, xp'^ and V'/, can be replaced by and D^, respectively. Hence, 
the fundamental equations describing X-ray diffraction in a crystal are: 

^ = -iMxkD!„ + i2^kp',D:^. (2.55) 
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Chapter 3 

Simulation of X-ray Topographs 

3.1 Background and Motivation 

An experimental topograph is a map of the intensity distribution across the beam 
diflJ"racted by the crystal under investigation. As we have seen already, the presence 
of a defect inside the crystal imbues the resulting image with a rich structure. 

A knowledge of the amplitude and phase of the radiation at the exit surface 
is sufficient to allow the calculation of the diffraction processes inside the crystal. 
Unfortunately, the topograph can only provide the modulus of the amplitude and 
not the phase, so that it is impossible to parameterise the defect by reference to the 
topograph alone. Consequently, it is necessary to introduce an elastic strain model 
for the defect, and to use this in conjunction with Takagi's equations (2.55) to 
simulate the diffraction processes within the crystal. The response of the recording 
medium must then be taken into account in order to obtain a simulation of the 
topograph itself. Careful adjustment of the parameters associated with the strain 
model and the crystal itself allows matching of simulation with experiment, and 
hence a direct evaluation of the real physical parameters associated with the defect. 
The simulation process outlined above will be used extensively in the following 
chapters for the characterisation of various crystal defects, and the field of X-ray 
topography simulation has been reviewed thoroughly by Epelboin [58,59]. 

An essential feature of the simulation technique is the solution of Takagi's equa
tions (2.55). Analytical solutions have been established for a perfect, unbent crystal 
in the Laue geometry [56] and in the Bragg geometry [60]. In addition, substantial 
work has been done [61,62,63] to establish specific solutions for the case of a crystal 
bent by a uniform strain gradient. In general, however, it is necessary to integrate 
Takagi's equations by means of an iterative algorithm. The preferred, and widely 
used, method is that of Authier et al. [64]. It is a half-step derivative method, and 
has been shown [65] to be the fastest method of integrating Takagi's equations. 
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3.2 Derivation of the Iterative Algorithm 

The principle will be to impose a regulariy spaced array of points on the Borrmann 
fan and to work out, from point to point, the local values of the wave amplitudes. 
Do and Dh- Fig. 3.1 illustrates how this may be done. 

The wave amplitudes at point P on the exit surface are defined by the diff"raction 
processes in the triangle ABP. A set of characteristic lines is drawn in this triangle, 
parallel to the 5^ and directions. The point of intersection of two characteristic 
lines is called a node, and the spacing of two adjacent nodes in the and 5^ direc
tions is p and g, respectively. The vertical separation of nodal layers is represented 
by the variable ELEM, and the horizontal separation of adjacent nodes by the 
variable TRANSV. 

Let us represent the wave ampUtudes, Do and £)/,, by a continuously differentiable 
function f{x), Fig. 3.2. Provided the variation of / with x is slow, the gradient of 
the curve at B is approximately equal to the gradient of the Une AC, so that: 

/(x + p ) - / ( x ) 
P 

(3.1) 

Rearranging (3.1): 

/ (x + p ) « / ( x ) + p f ^ ) . (3.2) 

Consider Takagi's equations, (2.55): 

^ = -i.kCx-Mr) ...(a) 

^ = -ii^kCxHD'o[r) + 2ii:k0',D',{r) ...(6) 

(3.3) 

Henceforth, we will consider an imperfect crystal, so the primes can be removed. 
In the following derivation, the polarisation factor, C, is set to unity, since the 
TT-component only is taken into account in numerical integration, to minimise the 
computational time. Multiplying (3.3a) by p and (3.3b) by q, and replacing r by 
the oblique coordinates {So,Sh.)i we obtain: 

P-^DO{SO,SH) = 2ADH{SO,SH) ...(a) 
q^^D,,{So,S,) = 2BDO{SO,S,) + 2W{SO,S,)DK{SO.S,), ...(6) 

(3.4) 

where A = -^iTrpkXh, 

B = -^iirqkxh, 

and W{SO,SH) = ^ k P i 
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Fig. 3.1: Regularly spaced array of nodes within the Borrmann fan. 
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Fig. 3.2: Variation af a continuously difFerentiable, slowly varying function of the 
hypothetical variable x. 



where is given in equation (2.43). 
Expressing Do, in the half-step derivative form of (3.1) leads to: 

p ^ D o { S o - ^ , S , ) = DO{SO,SH)-D„{S,-P,S,), 
obo 2 

q ^ D , { S o , S , - ^ ) = D,{So,S,)-D,{S,,SH-q). 

Combining with equations (3.4) gives: 

DO{.SO,SH) = Do{So-p,Sh) + 2ADh{So-lSH) ...(a) 
D^{So,S,) = D , { S , , S , - q ) + 2BDoiSo,S,-l) 

+ 2W{S„,SH-^)DH{SO,SH-^). ...(6) 
(3.5) 

Now, provided / varies slowly with x, we can write: 

p _ f { x ) + f { x + p) 

^^""^2^ - 2 ' 

so that 2f{x + ^) = f{x) + f{x + p). (3.6) 

Assuming that the wave amplitudes Do, Dh. vary slowly in the Takagi equations, 
we may use (3.6) to re-write (3.5) as: 

DO{SO,SH) = D,{SO-P,SH) + ADH{SO-P,S^) + ADH{SO,S,) ...(a) 
Dh{So,S,) = D^{So,S>,-q) + BDo{So,SH-q) 

+ BDoiSo, SH) + W [So, S, - f ) D.iSo, SH - g) 

+ W{SO,SH-^)DH{SO,SH). ...{b) 

(3.7) 

Substituting for Dh{So,Sh) from (3.7b) into (3.7a) gives: 

Do{So,Sf,) = E{C2DO{SO-P,S,) + ACOD,{SO-P,SH) 

+ ABDo{So, SH-q) + ACIDH{SO, - ?)}, 

where Ci = 1 -I- Vl̂ , 
C2 = 1 - W , 

(3.8) 

E 
1 

1 - W -AB' 

and W = i7rkq(3',(^So,S,-^^ 
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Similarly, substituting for Do{So, Sh) from (3.7a) into (3.7b) gives: 

DH{SO,SH) = E{BDO{SO-P,SH) + ABDH{SO-P,S,) 

+ BDoiSo, SH-q) + CiDniSo, - g)}. 

Equations (3.8) and (3.9) can be expressed in matrix form: 

D,{So,Sh) 
= E 

C2 AC2 AB ACi 
B AB B Ci 

DoiSo - p, SK) 
D^{So-p,Sh) 
Do{So,Sk-q) 
DHiSo,SH-q) 

(3.9) 

.(3.10) 

Using equations (3.10), the values of Do and Dh at any point T in the integration 
network, Fig. 3.3, can be calculated, given the corresponding values at R and 5, 
and the value of the term W at point W. 

In practice, a computer program based on equations (3.10) is used to calculate 
the ampUtudes Do and D^ at all points throughout the integration network. The 
intensity distribution of the diffracted beam striking the film may then be calculated, 
using the values of D^ at the exit surface. 

3.3 Integration of Takagi's Equations 

A spherical incident wave is simulated by considering a single point source, .of radi
ation at the entrance surface. Using this model, the amplitude distribution of the 
diffracted beam at the exit surface of a perfect crystal is given by the Jo Bessel func
tion, illustrated in Fig. 3.4. The edges K and M of the curve in Fig. 3.4 correspond 
to the So and 5^ directions. Close to the Borrmann fan edges, the diffracted wave-
field has high intensity and rapid spatial variation. The horizontal step, TRANSV, 
must be sufficiently small to take these effects into account. Too few nodes in the 
region between K and L will have two undesirable effects. First of all, much of the 
intensity in this region will be missed by the simulation program, and the result
ing direct image will be unrealistically bright. Also, the derivation of the previous 
section assumed a slow variation in wave amplitude between successive nodes. If 
TRANSV is too large, this condition will cease to be fulfilled, and the simulation 
program will no longer be reliable. 

A plane wave is modelled by many coherent point sources ranged across the 
entrance surface. In this case, the value of TRANSV must be sufficiently small 
that the variation in phase between two successive nodes is small. In practical 
terms, the integration step should be as small as possible to maximise the accuracy 
of the simulation, and as large as possible to minimise the computation time. For 
each simulation, a compromise between these two considerations must be found. 

Originally, simulations were performed using constant step algorithms (C.S.A.'s), 
in which the integration steps p and q, Fig. 3.3, are constant. This is satisfactory 
for simulation of section topographs where the direct image is not of interest. In 
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Fig. 3.3: Integration network within the Borrmann fan. 
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Fig. 3.4: Schematic variation of the diffracted wave amplitude, | D^ 
exit surface, for a perfect crystal. 
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traverse topographs, most of the contrast arises from integration of the direct im
age. In this case, and others where the direct image is significant, the constant 
horizontal and vertical integration steps of the C.S.A. are not necessarily suflScient 
to accommodate the variation in wave amplitudes near the Borrmann fan edges. For 
these cases, Petrashen [66] proposed a varying step algorithm (V.S.A.), in which the 
steps p and q are reduced near the Borrmann fan edges. Epelboin [67,68] devised a 
V.S.A. in which the integration steps are chosen throughout the Borrmann fan so as 
to reflect faithfully the local variation in wave ampUtudes. Epelboin comments that 
the position of the perfect crystal extinction fringes. Fig. 3.5, given by the zeros of 
the Jo Bessel function, is a guide to the variation in wave ampUtudes. The number 
density of nodes across the exit surface is chosen locaUy to suit the variation in wave 
amplitudes between adjacent zeros of Jo, Fig. 3.6. The integration steps are auto
matically increased in regions of the Borrmann fan where the amplitude variation is 
slow. In this way, it is possible to generate a V.S.A. network with fewer nodes than 
the corresponding C.S.A. arrangement. This combines increased accuracy with de
creased computation time. The simulations in this thesis are exclusively associated 
with section topographs, and the intermediary image is by far the most sensitive 
to such strains, providing the most useful information. Consequently, a C.S.A. has 
been used throughout the simulation work in the following chapters. 

3.4 Simulation of Real Topographs 

To complete this survey of simulation techniques, it is necessary to consider some 
practical aspects which wiU turn the integration method above into a working sim
ulation tool. The network of Fig. 3.3 assumes an infinitesimaUy narrow incident 
beam. Clearly, this is not practical, since experimental section topography utilises 
beams of width in excess of lO^m. The solution is illustrated in Fig. 3.7. Several 
point sources are ranged across the entrance surface, over a distance correspond
ing to the beam width, and each point source gives rise to an elementary section 
topograph. The resultant topograph is a superposition of these elementary contri
butions. It wiU be seen that the greater the required resolution, the greater the 
number of elementary section topographs. In the case of a V.S.A., the situation 
is more complicated, since the distance between two computed points is no longer 
constant. The solution is to increase the array of computed intensities. Intermediate 
points are calculated by interpolation, the distance between two such points being 
equal to the minimum separation of adjacent nodes in the integration network. An 
apodisation process is used to reduce the total number of calculated intensity points 
along the exit surface, to be consistent with the required resolution of the simula
tion. To simulate a traverse topograph, the method. Fig. 3.8, is to add the intensity 
of the section topographs due to a discrete distribution of sources between X and 

The response of the photographic emulsion must be incorporated into the simu
lation process, in order to convert the raw intensity data into a visual representation 
of the finail topograph. Details such as the emulsion thickness, exposure time and 
development temperature should be taken into account. The influence of these fac-
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Fig. 3.5: Schematic representation of the positions of the perfect crystal extinction 
fringes, (after Epelboin). 

Fig. 3.6: The V. S. A. integration network, (after Epelbpin). 
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Fig. 3.7: Simulation of a real section topograph, taking into account finite beam 
width, (after Epelboin). 

The contributions due to all point sources 
between A and B are added. 

Fig. 3.8: Simulation of a real traverse topograph, (after Epelboin). 



tors on image quality has already been discussed in Chapter 1. The photographic 
response is characterised by the relation between the density of grey levels, D, and 
the iUumination, E, defined by: 

E = It, 
where / = intensity of source radiation, 

and t = exposure time. 

The photo-representation program used in the current work is due to Dr. S. 
Cottrell, formerly of Durham University. The relation between D and E was taken 
as linear, as this is a very good approximation for a wide range of iUumination values. 
Only in the representation of the direct image does this Unearity break down. This 
point wiU be considered at length in Chapter 6. The photo-representation program 
selects a range of iUumination values, consistent with the conditions associated with 
each simulation. Deepest black is then associated with the maximum iUumination 
in this range, whilst brightest white is associated with the minimum Ulumination. 
Hence, the response of the photographic film is simulated. 

Various techniques have been used to generate paper prints of simulations. The 
first X-ray topography simulation was produced in 1967 by Balibar and Authier 
69]. The calculation required 24 hours of computation time, and the final image. 

Fig. 3.9, was drawn by hand. 
Subsequently, line printers were used, where different levels of grey were rendered 

by overprinting. Increased sophistication has allowed simulations to be viewed on a 
monitor, and adjusted, prior to printing. 

The simulations in this thesis were performed on a SUN4 workstation. The raw 
intensity data is converted into a simulation of the topograph itself by means of the 
photo-representation program. The simulation may be viewed on a monitor, prior 
to submission to a laser printer as a postscript image file. The printer renders grey 
levels by suitable variation in the size of the black area within each pixell. This is 
iUustrated in Fig. 3.10, which shows a blow-up of part of the simulation in Fig. 4.9 
from the foUowing chapter. 
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Fig. 3.9: The first simulation of an X-ray topograph, for the case of a dislocation, 
(after Balibar and Authier). 
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Fig. 3.10: Blow up of part of a simulation generated on the laser printer used in the 
current work. Levels of grey are defined by the proportion of black in each pixell. 



Chapter 4 

Investigation of the Strain Effects 
Associated with Oxygen 
Precipitates in SiHcon 

4.1 Formation and Growth of Precipitates 

Single crystal silicon, for use in solid-state device manufacture, is grown by two 
standard techniques. These are the Czochralski (CZ) method and the float-zone 
(FZ) method, which have been reviewed thoroughly [70,71 . 

Consider Fig. 4.1, which illustrates the CZ method. The initially polycrystalline 
Si is contained in a, usually quartz, crucible. The charge can be heated above the 
melting point of Si by means of an r.f. coil which encloses the system envelope, 
Fig. 4.1. A single crystal seed, attached to a pull-rod by a chuck, is lowered to the 
surface of the molten Si, whose temperature is adjusted until a meniscus can be 
supported by the seed. The pull-rod is then slowly rotated and lifted, resulting in 
the growth of a cylindrical single crystal of Si. The diameter of the crystal can be 
selected in advance by careful adjustment of the rotation rate of the puU-rod. 

Now consider Fig. 4.2, which illustrates the FZ method. A molten zone is held 
between a vertically mounted seed crystal and a charge rod by surface tension forces. 
The molten zone is moved slowly along the rod, by traversing the system envelope 
with an r.f. coil. The action of traversing the molten zone in this way tranforms the 
Si sample into a single crystal. During the traverse of the molten zone, the opposite 
ends of the Si rod are rotated in opposite senses, resulting in a smooth, cyhndrical 
final crystal. 

Hurle [71] has discussed the relative merits of the two techniques. The advantages 
of the CZ method are: 

(a) , the growing crystal is not in contact with a mould, 
(b) . crystals of different orientations can be grown by suitable selection of the 
orientation of the seed, 

(c) . industrially useful dopants can be added to the melt during growth, 
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Fig. 4.1: The Czochralski (CZ) method of crystal growth. 

r.f. coil 

solid 

molten 

solid 

envelope 

o 

Fig. 4.2: The float-zone (FZ) method of crystal growth. 



(d) . the crystal can be viewed during growth, and 
(e) . it is possible to grow large diameter crystals. 

The main advantage of the FZ method is that the Si melt is' in contact only 
with its own soUd, so that there is no risk of absorption of contaminants from a 
crucible. In addition, the soIubiUty of impurities is higher in molten than in soUd 
Si, so that repeated traversing of the molten zone results in most of the impurities 
being transported to one end of the rod. This end can then be cut off, using a 
diamond saw, leaving a rather pure crystal. 

A feature common to both the CZ and the FZ methods is the incorporation of 
oxygen into the crystal during growth. During the CZ growth of Si, siUcon dioxide 
from the quartz crucible reacts with Si in the melt, according to the reaction: 

Si + Si02 2SiO. 

As a result of this, CZ Si can exhibit oxygen concentrations of the order of 10̂ ^ 
atoms cm""̂ . In the FZ technique. Si also absorbs oxygen from the atmosphere 
surrounding the growing crystal during high temperature heat treatment, although 
the oxygen concentration is typically two orders of magnitude lower than for CZ Si. 
The presence of oxygen in Si can have both harmful and beneficial effects, as wiU 
be pointed out in due course. 

It has been found that by applying a transverse [72,73,74] or vertical [75] mag
netic field to the Si charge during CZ growth, the quality of the resulting crystal 
is enhanced in a number of important ways. This process, known as the magnetic 
Czochralski (MCZ) method, is illustrated for a transverse applied field in Fig. 4.3. 
Hoshi et al. [72] have shown that turbulent convection in Si melts during CZ growth 
can be suppressed upon appUcation of a transverse magnetic field of 2000 gauss. 
They pointed out that MCZ Si is characterised by a lower and more uniform oxy
gen concentration than would be possible by the standard CZ method. In addition, 
they also commented that resistivity variation along the radius of the Si rod was 
more uniform than that found in FZ Si samples. On an industrial level, the advan
tages of the MCZ method are clear. Oxygen concentration can be selected within 
the range 0.5 - 12xl0^^cm~^, defect generation is inhibited and wafer warping dur
ing subsequent heat treatment is also reduced. Hoshikawa [75] has shown that MCZ 
growth in a vertical magnetic field has certain advantages over the standard trans
verse technique, above. The vertical field MCZ method is iUustrated in Fig. 4.4. 
The magnetic field can be generated by a small-size, Ught solenoid. Fig. 4.4, and 
the field strength required to suppress thermal convection is less than for the tran-
verse method. In addition, the rotation conditions of the crystal and crucible can 
be selected independently, to adjust the oxygen concentration in the final crystal. 
To summarise, crystals can be grown by the MCZ method to a higher quaUty than 
would be possible by FZ growth, defining an important industrial niche for the MCZ 
method. 

It has been known for some time [76,77] that Si crystals containing oxygen ex
hibit an infrared absorption peak at the 9fim wavelength. This was explained [76,77] 
by associating the absorption peak with stretching of the Si — 0 bond, in the con
figuration shown in Fig. 4.5. Here, the single oxygen atom acts as an interstitial, 
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Fig. 4.3: The magnetic Czochralski (MCZ) method, in a transverse magnetic field. 
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Fig. 4.4: The magnetic Czochralski (MCZ) method, in a vertically apphed mag
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4.5: Interstitial configuration of oxygen in the silicon lattice, (after Corbett et 



interrupting the normal Si — Si valence bond. This hypothesis was strongly sup
ported by the work of Bond and Kaiser [78], which showed a relative increase in 
lattice parameter in oxygen rich Si samples, consistent with the interstitial config
uration of Fig. 4.5. 

It is crucial to understand how oxygen, incorporated into the Si lattice in this 
way, behaves when the Si crystal is heat treated as part of device processing. At high 
temperatures, it may be expected that the Si — O activation energy is exceeded by 
the thermal vibrational energy, so that oxygen is free to diffuse into the Si lattice. In 
1957, Kaiser [79] presented the first experimental demonstration that oxygen atoms, 
liberated in this way, cluster together to form silicon oxide precipitates. He found 
that, following prolonged heat treatment at lOOCC, the 9//m infrared absorption 
band reduced, whilst the overall oxygen concentration remained constant, consistent 
with oxygen clustering. 

Following Kaiser's discovery of oxygen precipitation in Si, a vast Uterature has 
accumulated on the subject [80,81,82,83,84], motivated in part by the clear industrial 
significance of this process. Patel [85] used X-ray anomalous transmission to show 
a reduction in perfection of Si crystal heated at 1000°C, due to defects induced 
by oxygen precipitates. Bender [86] has commented that these defects can have 
both harmful and beneficial effects on device performance. The undesirable effects 
include the formation of lattice defects in the active device region and wafer warpage 
during heat treatment. On the positive side, device quality is enhanced by wafer 
hardening due to reduced dislocation mobility, and the diffusion of oxygen out of 
the surface layer during heat treatment, leaving a defect-free denuded zone. Oxygen 
precipitates remaining in the bulk are used to remove harmful metallic impurities 
from the active device layer. This process is known as intrinsic gettering and will 
be the subject of the next chapter. 

Section topography has been used successfully to measure the denuded zone 
depth in CZ Si and to determine the distribution and form of oxygen precipitates. 
Recently, the technique of light scattering microscopy (LSM) has been used [87] to 
reveal precipitates smaller than the Umit detectable by X-ray section topography. 
Partanen et al. [87] have used LSM to identify precipitates with volumes down to 
about IxlO^nm-'. 

The size and rate of growth of oxygen precipitates in Si is determined by the 
diffusion of oxygen atoms in the lattice during annealing, and by the duration of the 
annealing. Diffusion-based precipitate growth kinetics has been treated thoroughly 
and rigorously by Ham [88] and Flynn [89j. Wada et al. [90,91] have studied the 
growth kinetics of square-plate oxygen precipitates in CZ Si. They showed that the 
precipitate volume, V, is given by: 

V{T,t) = 8Try/2 \CI-CE 

Cs - CE 
D{T)t (4.1) 

where T, t are the annealing temperature and duration, respectively, C/, CE are 
the initial and equilibrium concentrations of oxygen interstitials, respectively, Cs is 
the oxygen atomic concentration in the precipitate and D{T) is the oxygen diffusion 
coefficient. 
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The diffusion coefficient is a function of temperature, and is given [92] by; 

D = Do exp 
where k = Boltzmann's constant, 

T = annealing temperature. 

DQ is a constant, and is the energy required for a point defect to jump between 
adjacent lattice sites. 

From equation (4.1), it is seen that the precipitate volume is proportional to 
(Dt)^. Wada et al. [90,91] used this relation semi-empirically to investigate the 
nucleation and growth of oxygen precipitates in CZ Si. Messoloras et al. [93] have 
used the diffusion theory of Ham [88], in conjunction with their own infrared absorp
tion measurements, to determine the number density and spherical radii of oxygen 
precipitates in Si. They studied samples with a grown-in oxygen concentration of 
~ IxlO^^cm'^. After heating to saturation at lOSCC, the number density of pre
cipitates was found to be l.lxlO^cm"^ and the spherical radius was 1,359A. Using 
a similar approach, Binns et al. [94] calculated the number density of precipitates 
as a function of the diffusion coefficient, D, and a time constant defining the rate of 
incorporation of oxygen atoms into the precipitates. The theory of diffusion-based 
precipitate growth tends to be expressed in terms of spherical precipitates, which 
remain spherical as they grow. However, various workers have observed oxygen pre
cipitates in Si with square-plate [95], ribbon-Uke [84] and even octahedral [96] form. 
However, it was noted [96] that the difference in volume between octahedral and 
spherical precipitates was small, and that [93] the growth equations for a spherical 
precipitate can be applied with good accuracy to other forms. These studies of pre
cipitate growth are important, since the size of a precipitate determines its potential 
to generate harmful strain-induced defects. 

It is also important to understand the nucleation of oxygen precipitates, as a 
step towards controlling the rate of precipitate formation. Furuya et al. [81] showed 
that latent nuclei, formed at temperatures in excess of 1200°C, change into active 
defect nuclei at temperatures below 800°C, which then grow into oxygen precipitates. 
It was proposed [81] that the latent nuclei are clusters of crystal point defects, 
and that the defect nuclei are tiny oxygen precipitates which grow as a result of 
anneaUng. The results indicated that latent nuclei are unstable during annealing in 
the temperature range 900-1100°C, with a correspondingly low precipitate density 
in the processed sample. Further work [82] showed that the presence of carbon 
in CZ Si enhances the precipitation of oxygen, and was explained in terms of the 
nucleation mechanism outlined above. Carbon atoms attach themselves to latent 
nuclei, increasing their thermal stability in the 1100-900°C temperature range. At 
temperatures below 800°C, oxygen atoms attach themselves to the carbon clusters 
to form the active defect nuclei. Gupta et al. [83] have recently shown that the 
presence of boron in CZ Si can also enhance the precipitation of oxygen. Small 
angle neutron scattering (SANS) showed [83] that oxygen precipitates out of the 
lattice in boron-doped samples at a much faster rate than in the undoped 5i. This 
means that precipitates have a better chance of survival during subsequent heat 
treatment. Bergholz et al. [97] have shown that the overall number density of 
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oxygen precipitates in a CZ Si sample can decrease with annealing time, as large 
precipitates grow at the expense of smaller ones. 

In the following sections, a study has been made of the effect of annealing temper
ature on precipitate size, by means of simulation in conjunction with experimental 
section topography. First of all, it is necessary to describe the operation of the 
computer code which has been used to simulate section topographs of precipitates 
in Si. 

4.2 Simulation Code for a Precipitate 

In the previous chapter, it was shown how a section topograph could be simulated 
by numerical integration of Takagi's equations (2.55) at all nodes of a network inside 
the Borrmann fan. Equations (3.8) and (3.9) give the wave amplitudes Do and D^ at 
point T in the integration network. Fig. 3.3, in terms of the corresponding values at 
point W. A computer program to implement these equations iteratively from point 
to point in an integration network was written by Dr. G. S. Green, formerly of 
Durham University. The program is written in Pascal, based on code originally due 
to Epelboin [58,59], and this program, including the changes made by the current 
author, is presented as GENERAL.? in APPENDIX A. 

In equations (3.9), Dh{So, Sh) is worked out in terms of Do, Dh at the appropriate 
points, some constant terms and some terms dependent on the variable: 

W = i-Kkql^K' {So, 'S''' - I) ' 

— i-wkq 

from equation (2.43). 
Before calculating W, it is necessary to work out Takagi's differential expression, 

given by the term dsh, such that: 

" [A-^(r)]' 

from equation (2.43). 
Eshelby [98] and Teodosiu [99] have studied the spherically symmetric strain 

field due to a point strain centre, and this will be taken as a model for precipitate 
strain distribution in the current work. The validity of this model will be confirmed 
in section 4.3. The strain field due to a precipitate is defined in terms of the 
deformation parameter, C, whose value is directly proportional to the volume of a 
coherent, spherical precipitate. The strain-induced displacement, u(i), due to the 
precipitate is then given by: 

UAL) = —L (4.3) 
r^ 

where r is the radial displacement from the point strain centre. 
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Hence, 

_ ^( d dx d dy d dz 
dxdSk ' dydSk ' dzdSh) 

' h[l].x + h[2\.y + h[Z].z\ 
\ (x2 + y2 + ^2)t ^ • 

The terms x,y,z in (4.4) refer to the experimental a;,y, 2-axes illustrated in 
Fig. 4.6, whose origin is the origin of the integration network. The terms /i[l,2,3 
are components of the diffraction vector, in the x, y, ^-directions so defined. 

The differentials ^ and ^ are represented by the terms shx,shy and 
shz, respectively, and it is seen from Fig. 4.6 that: 

shx = x.Sh, — — sin(dir), 
shy = y.Sh = 0, 

shz = z.Sh = cos(c?zr), (4.5) 

where dir is the angle between the 2-axis and the 5/,-direction. 

Hence, shx and shz give the components of S^. in the x and 2-directions, re
spectively, shy is equal to zero, since planes of incidence are perpendicular to the 
y-axis. 

Carrying out the differential operations in equation (4.4) gives dsh as: 

dsh = ^ Ishx (h[l] - ^H] + shz (h[3] - ^H]] , (4.6) 

where H = h[l].x + h[2].y + h^.z. 

A procedure called DIFFPOINT (APPENDIX B) has been constructed by 
Green to calculate dsh, according to equation (4.6). 

Having found dsh, it is then possible to calculate the term W in equation (2.43), 
and implement equations (3.8) and (3.9). The term /3, equation (2.43) is worked 
out in section a of GENERAL.P (APPENDIX A), using equations (10) and (11) 
of Epelboin's 1985 review [58]. In section /3 of GENERAL.P, the variable Wl 
is set to —7rkq/3h and the real parts of variables cl and c2 are both set to unity. 
Each time DIFFPOINT is called from within the integration procedure, section 
7 of GENERAL.P, the value of dsh is calculated at the appropriate node and 
multiplied by qir. In section 6 of GENERAL.P, the modified dsh is modified again 
to give: 

dsh = qTT—r [h.u] - nkqph, 
oSh 

{ d , \ 
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Fig. 4.6: Illustration of the experimental i , y, z-axes. 
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Xmax 

max max 

Fig. 4.7: Illustration of an imaginary rectilinear box constructed within a crystal 
to contain a precipitate distribution. 



which is the modulus of the required expression for W from (2.43). 
Subsequently, the imaginary parts of cl and c2 are set to dsh and —dsh, respec

tively. These are used in section e of GENERAL.P to calculate Do and D/, by 
a series of complex algebraic operations. The calculated values of Do and Dh. are 
stored in the array elements [̂1,A;5] and ^[2, A;s], respectively, where ks represents 
the ordinal number of a node in a row. The integration procedure has been con
structed by Green so that, ultimately, the values along the exit surface are obtained 
for each plane of incidence. 

The procedure POINT DEE (APPENDIX B) to read the defect paramaters into 
the simulation program has been constructed by Green, with small modifications 
by the current author. In section a of POINTDEF, the deformation parame
ter, C, and the total number of precipitates, prlim, are read in. The code has 
been constructed by the current author so that the precipitates can be confined to 
an imaginary rectilinear box, whose faces are defined by the {x,y,z) coordinates 
Xmin,Xmax,ymin,ymax,Zniin and Zmax, Fig. 4.7. The coordinatcs of each of the prlim 
precipitates are defined in section /3 of POINTDEF, using the variable ranc?om(0), 
which is a random number between 0 and 1. In this way, it is possible to simulate for 
a random distribution of precipitates confined to a specific rectilinear volume within 
the crystal. This is useful in section 4.6, in the study of denuded zones. In the case 
of a single precipitate, prlim is set to unity and the difference between and Xmax 

is set to 0.2fj.m. Each coordinate value is stored in an element of a one-dimensional 
array, where each array corresponds to one of the three coordinate directions. These 
array entries are fed back into the main program when DIFFPOINT is called, for 
each precipitate, in section 7 of GENERAL.P. The parameters of the reflection 
and the crystal are input via procedure SETU P within GEN ERAL.P. A typical 
input data file to be read by POINTDEF is shown in APPENDIX Hi . 

Green has written the procedure CURVE.P (APPENDIX C) to incorporate 
crystal bending into the simulation process. Linear elasticity theory [99] was as
sumed, so that the total dsh value is obtained by adding the dsh contributions due 
to the long range strain due to curvature and the short range precipitate strain. This 
is accomplished by including a single entry in the input data file of APPENDIX Hi 
to indicate the crystal radius of curvature, following the precipitate-specific param
eters. This method has been used [100] to simulate experimental topographs due to 
curved crystals. 

Real crystals exhibit the property of surface relaxation, whereby the crystal 
lattice planes relax at all points along the surface. The result of this is that the 
normal component of strain is zero everywhere along the surface. This has been 
incorporated into the current work via the Method of Images, Fig. 4.8. The strain 
field due to the precipitate, depth z below the crystal surface, is added to that due 
to an image precipitate, distance z above the surface. The result is a cancellation 
of normal strain components at all points along the surface. Surface relaxation is 
incorporated into the simulation process by calling DIFFPOINT a second time 
in section 7 of GEN ERAL.P, and adjusting the z-argument appropriately for the 
image precipitate. The dsh-valnes due to the two precipitates are then added to 
represent the total strain. 
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Fig. 4.8: Method of Images. 



The simulation technique above assumes isotropic elasticity theory, and this 
has been shown to be satisfactory for the simulation of section topographs due to 
hydrogen precipitates in Si [101,102]. 

It has already been pointed out that oxygen precipitates in 5z can take a variety 
of different forms [84,95,96]. However, it was noted that the volume of even the 
octahedral precipitates observed by Yang et al. [96] was very similar to that of the 
equivalent spherical precipitates of diffusion theory [88,89]. In addition, it has been 
shown [93] that the growth equations for a spherical precipitate can be applied 
to precipitates with other forms. Hence, it is suggested that the spherical strain 
model of equation (4.3) can be applied to oxygen precipitates in general, to a good 
approximation. The veracity of this assertion is tested in the following section. 

4.3 Simulation of Experimental Section Topographs 
due to Oxygen Precipitates in MCZ Silicon 

4.3.1 Introduction 

The simulation of section topographs due to precipitates is a comparatively recent 
development. Lefeld-Sosnowska et al. [103] have simulated the effect on image struc
ture of the position of spherical inclusions relative to the Borrmann fan. Green et 
al. [101] have simulated section topographs due to hydrogen precipitates in FZ Si. 
They found that the image height, h, in the experimental y-direction. Fig. 4.6, was 
related to the deformation parameter, C, by the equation: 

h = A InC, (4.7) 

where is a constant. 
In the current work, the simulation technique of section 4.2 has been applied 

104] to experimental section topographs due to oxygen precipitates in MCZ Si. 
The experimental topographs were obtained by Prof Z. H. Mai, Institute of Physics, 
Chinese Academy of Sciences, Beijing, P. R. China, when in Durham under a Royal 
Society academic exchange programme. Wafers of nominal thickness 430)UTn were 
cut from a (001) oriented Si crystal grown by the MCZ method. Section topographs 
were taken after annealing for 18 hours at 450°C, 650°C and 800°C. All topographs 
were taken using MoKai radiation and recorded on Ilford L4, 50/im thick nuclear 
plates. 

4.3.2 Results 

The section topographs of annealed wafers all indicated a low density of defects 
[74], permitting individual defects to be examined. Of the reflections examined in 
the current study, the asymmetric 333 and symmetric 440 reflections were found to 
give the most readily distinguishable contrast from the oxygen precipitates. Fig. 4.9 
shows an example of the excellent matching between simulation and experiment in 
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Fig. 4.9: Simulation vs. experimental section topograph, for an oxygen precipitate 
formed in an MCZ silicon sample annealed for 18 hours at 800°C, imaged using 
MoKai radiation in the 333 reflection. Experimental topograph obtained by Prof. 
Z. H. Mai of the Chinese Academy of Sciences, Beijing, P. R. China. Matching 
was obtained for a deformation parameter, C, of 6.5xl0"^^m'. Also indicated are 
equivalent simulations for C-values of 6x 10"^^m'' and 7xl0"^^m^. 



the case of a sample which was annealed at 800°C and imaged using the 333 reflec
tion, APPENDIX I I . AU the simulations in this section were generated assuming 
the spherically symmetric strain field of equation (4.3), and using the surface relax
ation model outlined in the previous section. Matching was obtained by adjusting 
the entries in the input data file corresponding to the deformation parameter, C, 
and the precipitate position. Equation (4.7) due to Green et al. [101] describes how 
the image height, h, increases with C. The width of the image is determined by 
the depth of the precipitate, given by its z-coordinate. Fig. 4.6. The distance of the 
defect image from the edge of the section pattern is given by the lateral position 
of the defect relative to the Borrmann fan, expressed in terms of the z-coordinate. 
Fig. 4.6, of the defect. The structure of a precipitate image is thus determined 
uniquely by its x, z and C-values. Hence, it is possible to determine unambigu
ously the X, z and C-values associated with a precipitate by matching of simulated 
and experimental topographs. The image of Fig. 4.9 corresponds to a precipitate 
close to the X-ray entrance surface and near the direct beam. Remarkably different 
images can be produced from identical strain centres at different positions in the 
crystal [101,102,103]. The purpose of the two extra images in Fig. 4.9, for C-values 
of 6xl0"^^m^ and 7xl0"^^m^, will be explained shortly. 

Fig. 4.10 shows examples of defect images from samples annealed at different 
temperatures, taken in the 440 reflection, APPENDIX 12. In each case, an excellent 
match can be obtained, provided a different value of the deformation parameter is 
used for each of the three temperatures. 

Fig. 4.11 shows the topograph due to a precipitate which was so large that 
its strain field was no longer spherically symetric, as evidenced by the lack of a 
horizontal axis of symmetry. As the simulation program associates a spherically 
symmetric strain field with the precipitate, it is impossible to obtain matching 
in this case. This result, and its imphcations, will be discussed in section 4.3.3. 
Similar effects were observed in studies of hydrogen precipitates in Si [105], when 
precipitates became very large and began to punch out prismatic dislocation loops. 

Table 4.1 shows corresponding values of C and T for the four cases in Figs. 4.9 
and 4.10. The deformation parameter, C, was found to increase monotonically 
with annealing temperature, T, Fig. 4.12, showing that the lattice surrounding the 
precipitate was in compression. This agrees with the previous deduction of Mai et 
al. [106]. A Unear relation between C and InT was found empirically, Fig. 4.12. 
There is a question as to the reliabihty of this relation, given that data is only 
available for three temperatures. However, the two results for the 800°C case, taken 
for different precipitates and in different reflections, show striking agreement in the 
value of C obtained by comparison of simulation with experiment. This indicates 
that the individual data points are reliable, and supports the conclusion that C 
varies linearly with InT. 

The error bars in Fig. 4.12 were determined by examining pairs of simulations 
with C-values on either side of the best-fit case, and determining the change neces
sary for dujust noticeable difference (JND) in the image. The JND has been assessed 
in terms of the effect of the deformation parameter on the height, h. Fig. 4.9, in the 
simulations over which the Pendellosung fringes are distorted away from their per-
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Fig. 4.10: Simulation vs. experimental section topographs, for oxygen precipitates 
formed in MCZ silicon samples annealed for 18 hours at 450°C, 650''C and 800°C, 
imaged using MoKa^ radiation in the 440 reflection. Experimental topographs ob
tained by Prof. Z. H. Mai of the Chinese Academy of Sciences, Beijing, P. R. China. 
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Fig. 4.11: Section topograph of a very large precipitate, whose strain field has 
ceased to be spherically symmetric. 
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Fig. 4.12: Variation of deformation parameter, C, with annealing temperature, T. 



C(xlO^"m^) T{K) InT 
2 723 6.58 
50 923 6.83 

70 (440) 1073 6.98 
65 (333) 1073 6.98 

Table 4.1: Deformation parameter, C, as a function of anneahng temperature, T, 
for an 18 hour anneal using the 333 and 440 reflections. 

feet crystal configuration. The criterion for a JND has been taken as an increased 
(or decreased) deviation from the perfect crystal configuration of 1mm. A pair of 
simulations corresponding to a JND is shown in Fig. 4.9, together with the original 
simulation of the experimental image. 

4.3.3 Discussion 

Excellent matching of simulation with experiment was found for two different reflec
tions and three different annealing temperatures, Figs. 4.9 and 4.10. This indicates 
that the spherically symmetric strain model of equation (4.3) is, in general, a very 
good approximation for oxygen precipitates in Si. This is an important point, since 
oxygen precipitation is a ubiquitous feature of industrially manufactured Si single 
crystals. 

It was not possible to simulate the topograph of Fig. 4.11, since the precipitate 
had become so large that its strain field was no longer spherically symmetric. Cui 
et al. [105] showed that hydrogen precipitates in Si adopt a spherical form following 
nucleation, since this is the configuration with least associated potential energy. 
They pointed out, however, that as the precipitate grows, it adopts a torus shape in 
order to minimise the total elastic potential energy. It is proposed here that a related 
mechanism might be at work in the formation of the precipitate imaged in Fig. 4.11. 
It might be expected that annealing at a specific temperature for a certain duration 
would generate precipitates with a whole range of sizes and strains. However, the two 
results of Table 4.1 for the 800°C case show a remarkable convergence in precipitate 
strain (and hence size). This is in agreement with the results of Green et al. [101], 
which showed a striking uniformity in the strains associated with a large number 
of hydrogen precipitates in an annealed FZ Si sample. A possible explanation 
is that the vast majority of precipitates which grow to maturity are nucleated at 
approximately the same time, shortly after the onset of heat treatment. Subsequent 
growth of these precipitates would then take place at the same rate, resulting in 
uniformity of precipitate sizes after the end of the treatment. 

The process of early nucleation and subsequent growth proposed above is sup
ported by the results of Gupta et al. [83]. They showed that early nucleation and 
growth of oxygen precipitates in CZ Si is induced by the presence of boron impuri
ties. Various impurities exist in as-grown Si which may affect precipitate growth in 
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C,(xlO^"m^) T{K) ln(C X 10̂ ") i /r(xio*ir-') 
2 723 0.69 13.8 
50 923 3.91 10.8 
70 1073 4.25 9.3 
65 1073 4.17 9.3 

Table 4.2: Corresponding Values of /n(C x 10^°) and 1/T, where C is the precipitate 
deformation parameter and T is the annealing temperature. 

this way. 
Matching of simulation and experiment in Figs. 4.9 and 4.10 generated the results 

of Table 4.1, which are plotted in Fig. 4.12, showing a linear relation between C and 
InT. This implies that the precipitate volume, V, increases Unearly with InT, since 
for a coherent precipitate the deformation parameter, C, is directly proportional to 
V. 

According to the diffusion theory of precipitate growth, the volume, V, of a 
precipitate is related to the annealing temperature, T, and duration, t, by equations 
(4.1) and (4.2). It is important to remember that equation (4.1) was developed 
by Wada et al. [90,91] for a square-plate precipitate. The comment has already 
been made that the growth equations for a spherical precipitate can be appUed 
with good accuracy to other forms of precipitate, and it is of interest to see if the 
spherical oxygen precipitates imaged in Figs. 4.9 and 4.10 follow the functional form 
of equation (4.1). Combining equations (4.1) and (4.2), it is seen that: 

V = Aexp ( — ) , 

where A and B are constants, so that: 

\nV = D-^, (4.8) 

where D is another constant. 
Of course, for a coherent spherical precipitate, C is directly proportional to V, 

so that, on the basis of equation (4.8), it is expected that InC should be inversely 
proportional to 1/T. The values of these quantities, for the values of C and T from 
Table 4.1, are displayed in Table 4.2. The corresponding graph of InC vs. 1/T, 
Fig. 4.13, shows that these two quantities are not, in fact, inversely proportional, 
for the spherical precipitates imaged in Figs. 4.9 and 4.10. Hence, it is clear that 
the equation (4.1) developed by Wada et al. [90,91] to describe the growth kinetics 
of square-plate precipitates cannot be applied to the spherical oxygen precipitates 
in MCZ Si studied here. 
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Fig. 4.13: Variation of InC with 1/T. Deformation parameter, C, is expressed in 
and annealing temperature, T, in K. 



C,(xl0^"m-^) ln{C X 10^") 

20 2 0.69 
40 5 1.61 
60 10 2.30 
80 30 3.40 
90 60 4.09 

Table 4.3: Cri t ical depth, Zcrit, at which the effect of surface relaxation becomes 
negligible as a funct ion of deformation parameter, C. 

4.4 Investigation of the Effect of Surface Relax
ation on Precipitate Images 

The simulated images of section 4.3 were generated assuming surface relaxation. 
I t is of interest to study the influence of surface relaxation on the images due to 
oxygen precipitates w i t h C-values in the range defined by the results of section 4.3. 
Especially significant is the eff'ect of surface relaxation as a function of depth in the 
crystal. 

The simulations of Figs. 4.14, 4.15, 4.16, 4.17 and 4.18 were taken for precipitates 
at different depths, w i th and without surface relaxation, for five different values of 
deformation parameter, C. The crystal and reflection of Fig. 4.10 were assumed, 
and the precipitates were always located in the direct beam. In each case, the 
critical depth, z„,t, at which the effect of surface relaxation becomes negligible was 
determined. The results are displayed in Table 4.3 

The results of Table 4.3 are plotted in Fig. 4.19. The depth at which the ef
fect of surface relaxation becomes negligible increases, as expected, wi th increasing 
deformation parameter. Furthermore, the variation of ZCTU wi th InC is linear. 

Clearly, i t is important that surface relaxation be incorporated into the simula
t ion process, for precipitates close to the crystal surface. Otherwise, the simulation 
program cannot be reliably used in conjunction wi th experiment to assign values to 
the deformation parameter and the precipitate coordinates. 

4.5 Investigation of the Effect of Crystal Curva
ture on Precipitate Images 

4.5.1 Introduction 

Growth of an oxide layer onto the surface of a Si wafer at high temperature has 
become a standard feature of device manufacture. As the wafer is cooled to room 
temperature, the differential thermal expansion coefficients of the Si02 film and 
the Si substrate cause the wafer to bow. The purpose of the current section is to 

41 



440 

z — 5^im 

200fim 

z = 10//m 

z = 20/im 

without surface relaxation w i t h surface relaxation 

Fig. 4.14: Simulations for precipitates at different depths, taken w i t h and without 

surface relaxation; deformation parameter, C = 2 x 10 m . 
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Fig. 4.15: Simulations for precipitates at different depths, taken wi th and without 
surface relaxation; deformation parameter, C = 5 x lO'^^m^. 
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Fig. 4.16: Simulations for precipitates at different depths, taken wi th and without 
surface relaxation; deformation parameter, C = 1 x 10"^^m^. 
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Fig. 4.17: Simulations for precipitates at diflterent depths, taken wi th and without 

surface relaxation; deformation parameter, C = 3 x 10 ^^m^. 
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Fig. 4.18: Simulations for precipitates at different depths, taken wi th and without 
surface relaxation; deformation parameter, C = 6 x l O ' V . 
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Fig. 4.19: Depth at which the effect of surface relaxation becomes negligible, z„u. 

funct ion of deformation parameter, C, where C is measured in m\ • 
as a 



examine the change in image contrast as a result of wafer curvature. The procedure 
CURVE.P ( A P P E N D I X C) has been used to calculate the long range strain induced 
by wafer curvature. The code was wri t ten on the basis of cylindrical curvature of 
the crystal about an axis perpendicular to the planes of incidence of the incident 
radiation. Consider polar coordinates (r, d) relative to the bending axis. The radial 
and tangential components of the strain-induced displacement are given by: 

Ur = 0, 

and UB = (r ro)6, 

where TQ is the radius of the neutral plane, in which the circumferential distance 
between points in the lattice remains unchanged. 

In addition, the crystal was assumed to be isotropic. 

4.5.2 Results 

The simulations of Figs. 4.9 and 4.10 have been repeated, taking into account the 
effect of crystal curvature. Fig. 4.20 shows the simulation of Fig. 4.9, for the asym
metric 333 reflection, for radii of curvature equal to 1000m, 500m and 100m. Even 
for the highest radius of curvature, the effect on image structure is pronounced. The 
central band of the Pendellosung pattern has increased in width and the structure 
of the intermediary image is very different. As the radius of curvature is decreased 
to 100m, the integrated intensity increases, manifest by the washing out of the 
Pendellosung fringes, and the spacing of adjacent Pendellosung fringes decreases. 
Fig. 4.21 shows the simulation of Fig. 4.10(c) for the symmetric 440 reflection, for 
much smaller radii of curvature f rom 100m down to 20m. I t is seen that in the 
symmetric reflection, the eff'ects of wafer bending begin to manifest themselves at 
20m radius of curvature. 

4.5.3 Discussion 

The enhanced diffracted intensity due to a curved crystal in the asymmetric reflec
t ion has been investigated by Meieran and Blech [107]. The effect can be understood 
in terms of Kato's spherical-wave dynamical theory [108,109]. According to this the
ory, the intensity diffracted f rom Bragg planes increases rapidly wi th the curvature 
of the planes. The Bragg planes involved in an asymmetric reflection bend as a 
result of wafer curvature, resulting in enhanced diffracted intensity. The increase in 
diffracted intensity is clearly seen in Fig. 4.20, as the radius of curvature is decreased 
to 100m. However, in a symmetric reflection, the planes remain flat, fanning out so 
that the tota l misorientation is zero. Hence, i t is expected that a curved crystal in 
a symmetric reflection would show no enhanced diffracted intensity. Clearly, this is 
not true for a radius of curvature of 20m in Fig. 4.21. Hart [110] made a study of the 
effect of crystal curvature on the Pendellosung fringe pattern due to a wedge-shaped 
Si crystal. He showed that the strain induced by curvature causes a displacement 
in the Pendellosung fringes and a reduction in the spacing of adjacent fringes. Ex
perimental work by Whi te and Chen [111] showed that such Pendellosung fringe 
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Fig. 4.20: Repetition of the simulation of Fig. 4.9, for the asymmetric 333 reflec
t ion, for a curved crystal w i th different radii of curvature. 
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Fig. 4.21: Repetition of the simulation of Fig. 4.10(c), for the symmetric 440 re
flection, for a curved crystal w i t h different radii of curvature. 



displacements are manifest for curved crystals even in symmetric reflections, and 
this result was reproduced in the simulations of Green and Tanner [112]. The physi
cal origin of these processes can be seen in the ray optics theory of Chukhovskii and 
Petrashen [62,113], which includes second order terms neglected by Kato [108,109], 
and predicts the results described above for symmetric reflections. These effects 
are based on phase changes in the wavefields inside a curved crystal. The simula
tions of Fig. 4.21 clearly indicate the Pendellosung fringe displcicements predicted 
by Chukhovskii and Petrashen's theory [62,113]. In addition, the changes in the 
structure of the intermediary image wi th decreasing radius of curvature illustrate 
the sensitivity of this part of the image to the variation in long range strain induced 
by wafer bending. 

4.6 Image Structure due to a Crystal with De
nuded Zones 

Outdiff'usion of oxygen f rom the surface layers of a Si crystal, upon heating in a 
non-oxygen ambient, is an important and useful step in device manufacture. This 
process results in the formation of a relatively defect free denuded zone beneath the 
crystal surface, which is then ready for device fabrication. The depth of a denuded 
zone formed in this way is typically a few tens of microns. In addition, oxygen 
precipitates left in the bulk act as gettering centres, to remove harmful impurities 
f rom the active device region. The depth of the denuded zone, and the gettering 
efficiency, have been studied by several workers [40,114,115] for different denuding 
treatments, using section topography. 

The means by which a section topograph can be used to determine the denuded 
zone depth is illustrated in Fig. 4.22. Fig. 4.22(a) is an experimental section to
pograph of a crystal w i th a denuded zone at the top and bottom surfaces, and 
Fig. 4.22(b) illustrates the corresponding experimental geometry. Diffracted rays 
incident on the recording film between D and E have been subject to interference 
effects in the part of the crystal containing the precipitate distribution. Conse
quently, the region DE of the film contains information on the defect content of 
the crystal. However, rays in the direct beam which are diffracted between A and 
B propagate through crystal which is essentially perfect. Hence, the region CD 
of the film shows a perfect crystal Pendellosung fringe pattern. These effects are 
clearly seen in the experimental topograph of Fig. 4.22(a). The width , CE, of the 
topograph can be calculated, given the reflection, crystal surface normal and crystal 
thickness. Hence, the thickness of the denuded zone is obtained by measuring the 
ratio of lengths CD/CE f rom the final photographic image. 

Fig. 4.23 shows simulations for a hypothetical crystal, containing a precipitate 
distr ibution w i t h denuded zones of depth 30;im at top and bottom. The precipitate 
density was taken as lO^on"-' , consistent wi th the results of Wada et al. [90] for 
oxygen precipitates in CZ 5 i , formed as a result of a 1050°C anneal. A 300/im 
thick, (001) oriented crystal, imaged in the 440 reflection was assumed. Three 
simulations were performed, corresponding to three different values of deformation 
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Fig. 4.22: Experimental section topograph (a) and corresponding experimental ge
ometry (b) of a crystal containing oxygen precipitates, wi th denuded zones at the 
top and bot tom surfaces. 
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Fig. 4.23: Section topograph simulations for a sihcon crystal containing oxygen 
precipitates, w i t h 30fj,m denuded zones at the top and bottom surfaces. A (GDI) 
oriented Si wafer of thickness 300/im was assumed, and the symmetric 440 geometry 
was taken. Each simulation corresponds to a specific value of precipitate deforma
tion parameter, C. 



parameter, C. A typical input data file is shown in A P P E N D I X H2. 

Several key features are manifest i n the images of Fig. 4.23. First of all, the 
region CD of Fig. 4.22(b) is well defined as a set of undisturbed PendeUosung 
fringes at the extreme left-hand side of the simulation frame. The simulation frame 
w i d t h corresponds to a topograph wid th of 222/im. The wid th of the perfect crystal 
port ion of Fig. 4.23(c) is approximately 7mm on the simulation, corresponding to a 
denuded zone depth of approximately 30/im, as specified in the input data file. 

I t is seen that for a C-value of 1x10-23^3^ individual precipitate images are 
clearly discernible. As the deformation parameter is increased to 5 x l 0 - 2 3 m 3 , the 
precipitate images are more pronounced, but st i l l individually resolvable. However, 
at a C-value of approximately 2xlO -22Tn3, the precipitate images have become so 
large that individual defects are no longer resolvable. This critical deformation 
parameter is two or three orders of magnitude lower than the C-values found for real 
oxygen precipitates in section 4.3. I t is clear that the intermediary and dynamical 
images of precipitates formed during a typical thermal processing of CZ S i , as 
reported by Wada et al. [90], cannot be resolved by section topography. Only 
the more localised direct images show up experimentally. The fact that oxygen 
precipitates in MCZ Si, imaged in Figs. 4.9 and 4.10, are stil l clearly resolved for 
C-values up to 7xl0"^^m3 serves as a good illustration of the perfection of MCZ Si 
relative to CZ Si. 

4.7 Resolvability of Precipitates as a Function of 
Strain 

The resolvabihty of precipitates can be examined more precisely by imaging just two 
precipitates and determining the critical separation for which the two precipitates 
are just resolved. This has been done in the current section, using the simulation 
code of the previous sections, for five different values of deformation parameter, C. 
A moment's consideration of the geometry of Fig. 4.6 confirms that the clearest 
criterion for resolvability is obtained by considering precipitates which are mutually 
displaced in the experimental y-direction. In the current section, the minimum 
y-separation of two precipitates to be just resolved, ( A j / ) c r i t r is determined as a 
function of deformation parameter, C. 

Figs. 4.24, 4.25, 4.26, 4.27 and 4.28 each show, for a particular C-value, simula
tions of a pair of precipitates w i th different separations, ( A y ) . The C-values used 
here correspond to the range found for real oxygen precipitates f rom Figs. 4.9 and 
4.10. For each case, the value of ( A y ) c r i t has been determined by visual inspection. 
The corresponding results are displayed in Table 4.4. 

The results of Table 4.4 are plotted in Fig. 4.29, which shows a Unear relation 
between (At / )cTit and InC. Clearly, i t is the image height, h, in the y-direction which 
determines the resolvability of two precipitate images. Green et al. [101] showed that 
h is given by: 

h = A InC, 
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Fig. 4.24: Simulations for a pair of precipitates w i th different separation, Ay, m 
the experimental y-direction; deformation parameter, C = 5 x IQ-^Om^ throughout. 
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Fig. 4.25: Simulations for a pair of precipitates w i t h different separation, A y , in 
the experimental y-direction; deformation parameter, C = 1 x 10"^^m^ throughout. 
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Fig. 4.26: Simulations for a pair of precipitates with different separation, Ay, in 
the experimental ^/-direction; deformation parameter, C7 = 3 x 10"^^m^ throughout. 
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Fig. 4.27: Simulations for a pair of precipitates with different separation, Ay, in 
experimental y-direction; deformation parameter, C = 4 x lO'^^m"' throughout. the 
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Fig. 4.28: Simulations for a pair of precipitates with different separation, Ay, in 
the experimental y-direction; deformation parameter, C = 6 x lO'^^m^ throughout. 
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Fig. 4.29: Critical separation, Aycrit, for two precipitates to be just resolved, as a 
function of deformation parameter, C, where C is measured in m^. 



C,(xlO'^") ln{C X 10^") 
35 5 1.61 
40 10 2.30 
60 30 3.40 
65 40 3.69 
75 60 4.09 

Table 4.4: Minimum separation, {Ay)cTit, for two precipitates to be just distinguish
able as a function of deformation parameter, C. 

where .A is a constant. 

Hence, the results of this work are in agreement with those of Green et al. [101 . 
In physical terms, this means that increasing the deformation parameter, C, by 
equal increments results in decreasing corresponding increments in image height, h. 

4.8 General Discussion and Industrial Implica
tions 

The integration program GENERAL.P (APPENDIX A) has been used in con
junction with the strain code DIFFPOINT (APPENDIX B) for a precipitate to 
obtain excellent matching with experimental section topographs of oxygen precip
itates in MCZ Si. The results are displayed in Figs. 4.9 and 4.10. Matching was 
possible in all cases studied, except for one precipitate, Fig. 4.11, which had grown 
so large following an 800°C anneal for 18 hours that its strain field was no longer 
spherically symmetric. The enhanced growth of this precipitate relative to others 
corresponding to the same annealing temperature and time may be attributable to 
impurities in the Si. It has been shown that carbon [82] and boron [83] impurities 
in Si can significantly enhance the precipitation of oxygen. Apart from the result of 
Fig. 4.11, striking uniformity of precipitate sizes was found for equivalent samples 
annealed at the same temperature and for the same duration. This is in agreement 
with the results of Green et al. [lOl], and it is proposed that the vast majority of 
precipitates are nucleated at approximately the same time, subsequently growing at 
the same rate. 

Comparison of simulations with experimental images in Figs. 4.9 and 4.10 en
abled the deformation parameter, C, to be determined as a function of annealing 
temperature, T. The results are displayed in Table 4.1. A linear relation was found 
between C and /nT, indicating that the precipitate volume increases at a decreas
ing rate with T. Fig. 4.13 shows a plot of InC vs. 1/T, for the spherical oxygen 
precipitates studied in this work. The non-hnearity of the curve indicates that the 
spherical precipitates studied here do not follow the same growth equation, (4.1), 
as the square-plate oxygen precipitates studied by Wada et al. [90,91]. 

The successful matching of simulation with experiment in Figs. 4.9 and 4.10 
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indicates that the spherically symmetric strain relation of equation (4.3) provides 
an exceUent model of the strain distribution due to reaJ oxygen precipitates in Si. 
The low density of precipitates seen in the topographs pays tribute to the efficiency 
of the MCZ method in producing Si crystals of high quality. Furthermore, a clear 
industrial role is defined for X-ray section topography simulation. Given that in
dividual precipitates can be imaged by the experimental technique, the simulation 
technique can be used to assign values to the deformation parameter and the precip
itate depth in the crystal. These two quantities have a direct effect on the quality 
of wafers for use in device manufacture. First of all, the deformation parameter is 
an indication of the strain associated with a precipitate, and hence its potential to 
generate harmful process-induced defects. Also, the depth of precipitates is impor
tant, since oxygen precipitates in the active device region significantly reduce the 
electrical performance, whilst precipitates in the bulk enhance device yield through 
intrinsic gettering. 

In section 4.4, it was shown that the effect of surface relaxation is enhanced with 
increasing deformation parameter, C. A study was made of the critical depth, z„it, 
at which the effect of surface relaxation becomes negligible, as a function of C. The 
results are displayed in Table 4.3 and are plotted in Fig. 4.19. I t was found that 
ZcTit increases linearly with InC. I f the simulation technique is to be assigned an 
industrial role, then it is important that surface relaxation be incorporated into the 
simulation code, in the manner of section 4.4. This is especially true for near-surface 
studies. Otherwise, the reliability of the data derived from comparison of simulation 
with experiment is seriously questionable. 

In section 4.6, simulations were performed for a CZ Si crystal with an oxygen 
precipitate density of lO^cm""^, consistent with the results of Wada et al. [90], with 
denuded zones of 30/x7n depth at top and bottom. The width of the perfect crystal 
part of the images, Fig. 4.23, was used to calculate the denuded zone depth with 
good accuracy, based only on a knowledge of the reflection indices, surface normal 
and crystal thickness. For a C-value of 2xl0~^^m~^, the precipitates just ceased to 
be individually discernible. Fig. 4.23. This is in stark contrast to Figs. 4.9 and 4.10 
for MCZ Si, where individual precipitates are very well resolved for C-values up to 
7xlO"^^Tn^. This comparison serves to illustrate the comparatively high quaUty of 
Si grown by the MCZ method. 

In section 4.7, the resolvability of precipitate pairs with respect to mutual dis
placement in the experimental y-direction was examined as a function of C. The 
results are displayed in Table 4.4 and are plotted in Fig. 4.29. The critical separa
tion, (Ay ) cr i f , for which precipitates were just resolved was found to increase Hnearly 
with InC. This agrees well with the results of Green et al. [101], which showed that 
the image height, h, in the experimental y-direction increases linearly with InC. 
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Chapter 5 

Intrinsic Gettering of Transition 
Metal Impurities at Dislocations 
in Silicon 

5.1 Background and Context 

5.1.1 Introduction 

During the mechanical and chemical processes involved in 5 i wafer manufacture, 
the wafer comes into contact with a number of transition metcils and their chemical 
solutions. These metals are absorbed into the wafer surface as impurities. The 
diffusivity of transition metals in Si at typical thermal processing temperatures 
is very high, so that these contaminants quickly diffuse from the crystal surface 
into the bulk. The solubility differential between processing temperature and room 
temperature is extremely high for transition metals in Si, so that upon cooling 
they form precipitates throughout the crystal. The presence of transition metal 
precipitates in the active device layer of a Si wafer is highly detrimental to device 
performance. Consequently, modern semiconductor technologies have had to find 
a way of removing transition metals from the surface layers of Si wafers for use in 
device fabrication. 

In 1964, Patel [116] observed dislocation loops in Si samples containing oxy
gen, grown in a quartz crucible, following heat treatment at 1000°C. Transmission 
electron micrographs showed that each dislocation loop was centred upon a dark, un
resolved image feature. Patel suggested that these smaU, dark images corresponded 
to oxygen precipitates which had generated dislocation loops as a stress-relief mech
anism, by the process of prismatic punching, predicted by Seitz [117] in 1950. 

Work in the late 1960's [118,119] and early 1970's [120] showed that Cu impu
rities exhibit a strong tendency to precipitate at oxygen-related defects in Si. In 
1976, Tan and Tice [121] carried out the first detailed experimental observation of 
the punching out of prismatic dislocation loops by oxygen precipitates in Si. They 
showed that the precipitates have a square-plate form and that the dislocation loops 
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are interstitial in nature, exerting a compressive stress on the surrounding lattice. In 
the same year, Maher et al. [122] showed that the oxygen precipitates range in size 
from a few hundred angstroms to a few tenths of a micron, and that the dislocation 
loops have a rhombus shape. Subsequently, Tice and Tan [123] used transmission 
electron microscopy (TEM) to show that dislocation loops punched out by oxygen 
precipitates in Si act as nucleation centres for the precipitation of Cu impurities. 

Tan et al. [124] pointed out that due to outdiffusion of oxygen from the crystal 
surface layers, upon heating in a non-oxygen ambient, precipitate-dislocation com
plexes (PDC's) will form predominantly in the bulk, leaving a defect-free surface. 
Moreover, this allows the removal of transition metal impurities (notably Cu, Fe 
and Ni) from the crystal surface layer, which is then ideal for device fabrication. 
This takes place according to the intrinsic gettering (IG) mechanism outlined below: 

SiOx precipitation punching out of dislocations 
=i> gettering of metallic impurities. 

Gettering of metallic impurities takes place because the free energy of a precipitate-
decorated dislocation is less than that of dispersed metal atoms plus an undecorated 
dislocation. 

There are several alternative mechanisms by which intrinsic gettering can be 
accomplished. For example, Bai et al. [125] have shown that the defects generated 
in a thermally grown Si02/Si interface provide nucleation sites for the gettering of 
Cu impurities. 

Consequently, the initial goal of removing transition metals from the surface 
layer of Si wafers is achieved using intrinsic gettering. 

Precipitation of impurities at crystal defects is a process which is entirely in
ternal, or intrinsic, to the 5 i wafer. Processes which achieve the same effect by 
externally imposed means are termed extrinsic gettering. The most common exam
ple is phosphorus-diffusion, used by Ourmazd and Schroter [126] for the gettering 
of Ni impurities in Si. The diffusion of phosphorus into the Si surface layer results 
in the formation of SiP particles, which promotes the emission of Si interstitials. 
Ni impurities combine with these interstitials to form an epitaxial layer of NiSi2 
on the Si surface. The process of IG has been thoroughly reviewed, both in general 
terms [127] and in terms of transition metal impurities [128 . 

A crucial feature of the IG process is tne heat treatment used to activate i t . 
A typical industrial thermal cycle is illustrated in Fig. 5.1, after Baginski and 
Monkowski [129]. The initial high temperature step causes outdiffusion of oxygen 
from the surface layer, leaving an oxygen-free denuded zone. The second step is a 
600 - 800"C anneal to promote the generation of nucleation sites for oxygen precip
itation. Annealing at temperatures greater than 900°C causes dissolution of these 
nucleation sites. The final, 1000°C step is used to promote growth of oxygen pre
cipitates from the nucleation centres of the previous step. Baginski and Monkowski 
129] have shown that oxygen-related defects generated by the mechanism of Fig. 5.1 

allow the gettering of gold impurities. 
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Fig. 5.1: Typical thermal cycle used to activate intrinsic gettering, (after Baginski 
and Monkowski). 
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Fig. 5.2: Illustration of the model of Rivaud et al. (see text) for the nucleation 
and growth of oxygen precipitates in silicon. 



Rivaud et al. [130] have undertaken studies to understand more precisely the 
nucleation of oxygen precipitates within the Si matrix. Their model is illustrated 
in Fig. 5.2. Oxygen atoms are trapped in lattice vacancy sites, forming precipitate 
nucleation centres. These nuclei grow with subsequent heat treatment, to form 
fundamental precipitates. Precipitates grow by reacting with neighbouring Si atoms 
and the resulting precipitate exhibits a 120% volume increase relative to the matrix. 
This dilation induces a stress in the adjacent Si lattice planes, which is reheved by 
the punching out of prismatic dislocations. 

As well as the previously mentioned transition metals, studies have shown that 
Cr [131] and Fe [132] impurities are very efficiently gettered by oxygen-related 
defects in Si. The latter work showed that the concentration of interstitial Fe 
decreases with annealing time as a result of gettering. 

The relative gettering efficiency for different transition metals has been investi
gated by Falster and Bergholz [39], using the haze method, illustrated in Fig. 5.3. 
A Si wafer containing oxygen-related defects was rubbed with five parallel wires of 
Ni, Pd, Fe, Cu and Co, in two orthogonal directions. Fig. 5.3(a). A heat treatment 
of 1200°C for 30 seconds was imposed, sufficient to saturate the sample thickness 
locally with each transition metal. Certain metals tend to precipitate at the wafer 
surface, following cooling from high temperatures. Regions of the wafer surface dif
fused with such precipitates exhibit haze when viewed in bright, colhmated light. 
Hence, the amount of haze visible for each metal after the heat treatment of the 
sample in Fig. 5.3 is an indication of the relative gettering efficiency. The results 
are illustrated schematically in Fig. 5.3(b). Cu and Ni were found to be the easiest 
to getter, whilst Co and Pd showed progressively decreasing gettering efficiency. 
This is technologically very useful, since Cu and iVi are two of the most common 
contaminants. In addition, this result justifies the use of the Pd-test as a standard 
means of determining gettering efficiency. The gettering efficiency of Fe could not 
be determined by this method, since Fe does not precipitate appreciably at the 
wafer surface. However, Fe gettering efficiency has been determined by a more 
quantitative method [133], in which deep level transient spectroscopy (DLTS) was 
used to measure Fe concentration. In addition to the above results, a general trend 
was observed [39,133] for decreasing gettering efficiency with increased heating time. 
This was attributed to disruption of the defect structure during extended processing. 

Another work [134], has shown that antimony doping of a Si wafer inhibits 
the formation of oxygen precipitates and hence reduces gettering efficiency. This 
undesirable effect was ameliorated to some extent by postannealing the processed 
wafer for a period of up to 48 hours. In general, the size and density of bulk defects 
was found to increase with postanneahng time and with increasing wafer resistivity 
(decreased doping). 

In addition to the gettering properties of oxygen-related defects, it has been 
shown [135,136] that SiOx gettering centres inhibit the motion of dislocations. This 
is a useful means of preventing slip during wafer heat treatment. 

The importance of IG within semiconductor technology can be illustrated by 
two examples. Tan et al. [124] have shown that current leakage from devices is sub
stantially reduced when oxygen-related gettering centres are present in the crystal 
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(a) Before heat treatment (b) After heat treatment 

Fig. 5.3: Illustration of Falster and Bergholz's experiment for determining relative 
gettering efficiency by the haze method. 
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Fig . 5.4: Tanner's cylindrical inclusion model. 



bulk. They showed that IG can be used in this way to increase device yield by a 
factor of five. In addition, Yue and Ruiz [137] showed that the storage time of a 
MOS capacitor is maximised when Si02 PDC's are present at least 25/im below the 
wafer surface. 

Bourret et al. [138] have shown that edge dislocations in CZ Si act as sites 
for the nucleation of oxygen precipitates. They showed that oxygen precipitates 
form a cylindrical distribution along the dislocation core. More recently, Kidd et 
al. [139] have observed dislocations decorated with arsenic precipitates in In-doped 
GaAs samples. Tanner [140] proposed that such precipitate distributions may be 
elastically modelled by an equivalent cylindrical inclusion, whose axis is collinear 
with the associated dislocation. 

5.1.2 Statement of Approach 

The purpose of the current work is to use the cyUndrical inclusion model [140] to 
investigate the elastic properties of dislocations decorated with transition metal pre
cipitates, resulting from the IG process. Also, it is of considerable importance to 
determine whether or not X-ray topography has the sensitivity to detect precipitate 
decoration, and to find out if the decorated dislocation shows significantly differ
ent contrast from the bare dislocation. Although much of the analysis of IG has 
been done using TEM, because of its high spatial resolution, X-ray topography is 
the ideal tool for the current task, because of its high sensitivity to lattice strain. 
Hence, the investigation has been done theoretically, by incorporating the appro
priate strain equations [140] into the X-ray topography simulation program of the 
previous chapter. 

The current author has developed code to calculate the strain due to a cyUndrical 
inclusion, section 5.2, and due to a cylindrical distribution of precipitates, section 
5.4. The precipitate distribution strain may be added to the strain due to the 
corresponding dislocation, according to Unear elasticity theory, in order to obtain the 
strain due to the decorated dislocation. Analogously, the cylindrical inclusion strain 
may be added to the dislocation strain to provide an alternative elastic model of the 
decorated dislocation. In section 5.5, section topograph simulations of decorated 
dislocations were generated, using both the precipitate distribution model and the 
equivalent cylindrical inclusion. Comparison of corresponding images has been used 
to investigate the variation in cyhndrical inclusion strain with precipitate strain. 

5.2 Development of the Strain Code for a Cylin
drical Inclusion 

5.2.1 Strain Equations for a Cylindrical Inclusion 

Kramer and Bauer [141] showed that a fluxoid (magnetic flux line) in a supercon
ducting medium can be elastically modelled by an elastic cylindrical inclusion. They 
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derived the associated stress components in polar coordinates. Ivanov et al. [142] 
subsequently expressed the same equations in Cartesian coordinates. 

Following on from this, Tanner [140] expressed the strain components due to a 
cylindrical inclusion lying along the 2-axis of a Cartesian system, whose origin is at 
the defect line, Fig. 5.4, as: 

T2 - 7/2 
- ^ - -e 

with all other components zero. 

The quantity A in (5.1) is given by: 

A = -e{l + iy)/3{l-u), (5.2) 

where the lattice mismatch parameter, e, is the relative volume change between 
inclusion and matrix, and u is Poisson's ratio. 

The term ^ in (5.1) is the radius of the cyHndrical inclusion. 

5.2.2 Transformation of Coordinates from Experimental 
System to Inclusion System 

In general, the decorated dislocation will lie skew relative to the experimental x, y, z-
axes. In order to obtain the Cartesian system of the inclusion, it is necessary to 
perform two rotations of the x,7/,2-axes, illustrated in Fig. 5.5. First of all, the 
a;,2-axes are rotated by an angle about the j/-axis. Fig. 5.5(a), to generate the 
a, h, c-axes. Then, the h, c-axes are rotated by an angle e about the a-axis, Fig. 5.5(b), 
to generate the s,i,u-axes. Suitable choice of the angles T/) and e allows the u-axis 
to be oriented along any possible direction in three dimensional space. The u-axis 
is then taken as the axis of the cylindrical inclusion, so that equations (5.1) can be 
re-written: 

52 _ 2̂ 

= ^^'(^2 + ^2)2 = 

Points in the integration network of the simulation program are expressed in 
(x, y, z) coordinates. Hence, if 5, t, u can be expressed in terms of x,y, z, the strain 
components (5.3) due to the inclusion can be found at all points in the integration 
network. 
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(b) 

Fig. 5.5: Transformation of the x,2/,2-axes into the a,6,c-axes, (a), and transfor
mation of the a, 6, c-axes into the s, t, u-axes, (b). 

O (xo, yo ZD) 

Fig. 5.6: Definition of the origin of the inclusion relative to the experimental x, y, z-

axes. 



From Fig. 5.5(b): 

s = a, 
t = 6cose —csine, 
u = 6sine-h ccose. 

Expressing equations (5.4) in matrix form: 

/ s \ / I 0 0 
- t 

\ u J 
0 cose —sine 

\0 sine cose 

(5.4) 

(5.5) 

From Fig. 5.5(a): 

a = xcos'^ - zsinV', 
b 
c 

= y, 
= xsinip + z cos tp. 

Expressing equations (5.6) in matrix form: 

/ a \ / costp 0 -sinV' \ 
b 0 1 0 

\ sin'^ 0 cosi/i J 

(5.6) 

(5.7) 

From (5.5) and (5.7), the matrix T for transforming {x,y,z) coordinates into 
{s,t,u) coordinates is given as: 

/ I 0 0 \ / cos V' 0 - sin V' 
T = 0 cos e — sin e 

\0 sine cose J 

( cos V' 
so that, T = 

0 1 0 
\̂  sinV" 0 cosV* 

0 - sin 
(5.8) — sin sin e cos e - cos V' sin e 

y sin i/) cos € sin e cos V' cos e 

Of course, the origin, O', of the inclusion will not necessarily be coincident with 
the origin, O, of the experimental axes. Let the ̂ coordinates of the inclusion origin 
be at the point (x0,y0,20) in x,y, 2-space, Fig. 5.6. The point so defined is the 
origin of the 5, t, u-axes. Fig. 5.6. 

Then the transformation from {x,y,z) to {s,t,u) coordinates becomes: 

/ cos i) 0 - sin 
— sin •0 sin e cos e — cos •0 sin e 

1̂  sin V' cos e sin e cos ̂  cos e 

or, in expUcit form: 

s = cos V'(x - xO) - sin •̂ /'(z - 2O), 
t = - sin V'sin e(x - xO)-I-cos e(?/- yO) 

— cos'0sine(2 — 2O), 
u = sin cos e(x - xO) -I- sin e(y - i/O) 

-|-cos'^^cose(2 — 2O). (5.9) 
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5.2.3 Derivation of Takagi's Differential Expression 

In section 4.2, it was shown how the program GENERAL.P (APPENDIX A), 
together with the procedures POINTDEF and DIFFPOINT (APPENDIX B), 
could be used to integrate Takagi's equations, (2.55), using equations (3.8) and 
(3.9). The term dsh, calculated for a precipitate in DIFFPOINT, represents 
the differential expression ^[h.u{r)] of equation (2.43), which is required in the 
numerical integration of Takagi's equations using (3.8) and (3.9). What is required 
now is a new procedure to calculate the term dsh for the. strain field due to a 
cylindrical inclusion. In addition, a new procedure analogous to POINTDEF is 
needed to read in the inclusion parameters. These new procedures may then be 
used in conjunction with GENERAL.P to simulate X-ray topographs. 

Expressing the quantity dsh from the previous chapter in a manner analogous 
to that of equation (4.4): 

Q 
= ;^[A-«(r)], 

d d 
= s / i s—[/ i ,u , -H htut + h^uJ + sht—[hsUs + htUt + h^u^ 

OS at 

+shu—[hsUs + htUt + / i ^ U i i ] , (5.10) 
ou 

where h represents the reciprocal lattice vector. 

Recalling that e ,̂ = dup/dq, then from equations (5.3), expression (5.10) be
comes: 

dsh = 5 / i s ( / i , e „ -I- /itCt,) -j- sht{h,e,t + htCtt), (5-11) 

where the strain components, ep,, are given by (5.3). 
The next step is to derive expressions for h^, ht, shs and sht. 

* Finding h^ and ht : 

The diffraction vector h has components in the experimental coordinate system 
(x, y, z) of h[l], h[2] and h[3]. These components are worked out automatically 
in procedure POINTDEF from the reflection indices r / [ l , 2 , 3 ] and the surface 
normal components rn[l, 2, 3]. The same mechanism must be incorporated into the 
cylindrical analogue of POINTDEF. h, and ht are obtained by resolving h along 
the s and ^-directions. 

It is necessary to express s and I as vectors in the x, y, 2-system. 

From Fig. 5.5: 

s = a, 

= (cosi/',0,-sini/')- (5.12) 

Uii={tx,t2,tz). 

Then, from Fig. 5.5: 

t.y = cos e, 
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i.e., ( t i , t 2 , t 3 ) . ( 0 , l , 0 ) = cose, 

so that <2 = cose. (5.13) 

Clearly, s.i = 0. 

Then, cos V'— fa s i n = 0, 

so that ti = t^sinip/cosijj. (5-14) 

Also, tl+tl + t l - 1 . 

Hence, using (5.13) and (5.14): 

tan^ V + cos^ e + 3̂ = 1, 
so that tz = isinecosip. 

The negative solution is taken, since the 2-component of t must be negative, 
f rom the geometry of Fig. 5.5. 

Hence, 3̂ = — sine costjj. (5.15) 

Combining (5.14) and (5.15): 

^1 = — sin e sin (5.16) 

Now combining (5.13), (5.15) and (5.16): 

i= ( - s i n e sin •0, cos e , -s ine cos •0). (5-17) 

So, using equations (5.12) and (5.17): 

= / i [ l]cosV'-/ i[3]sinV'; (5.18) 

ht = h.t, 
= —/i[ l ]s in esini/; +/ i[2]cose —/i[3]sinecos-i/;. (5.19) 

* F i n d i n g shs and sht : 

In procedure SETUP w i th in GENERAL.P (APPENDIX A ) , the variables 
shxl and s/ix3, representing shx and shz, respectively, are defined: 

shx\ = - s i n ( d i r ) , 

and shxZ = cos(<fzr). 

Referring to Fig. 5.7, i t is then seen that: 

shx = Sh-x, 

and shz = Sh-k, 

where Sk = {-sm{dir),0,cos{dir)). (5.20) 
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F i g . 5.7: Definit ion of the angle dir in terms of the diffraction geometry. 

far point (xcrit, ycrit, zcrit) 

X ^ 

origin O' (xo.yo^o) 

F i g . 5.8: Boundary coordinates of the cylindrical inclusion axis. 



Similarly, 

shs = s.Sh, (5.21) 

and sht = i.Sh. (5.22) 

Using (5.12) and (5.20), (5.21) becomes: 

shs = — cos Tp sm{dir) — sin ij) cos{dir). (5.23) 

Using (5.17) and (5.20), (5.22) becomes: 

sht = sin sin e sin((i ir) - cos ijj sin e cos{dir). (5.24) 

Hence, equations (5.18), (5.19), (5.23) and (5.24) give, respectively, A,, ht, shs 
and sht. These expressions can be incorporated into equation (5.11) to give dsh at 
all points in the integration network. 

5.2.4 Derivation of Inclusion Orientation 

The dislocation code DISLOC.P ( A P P E N D I X D l ) automatically calculates and 
displays the components of the dislocation orientation vector in experimental space. 
Later, i t w i l l be necessary to align the cylindrical u-axis w i th the dislocation line, by 
suitable choice of angles V' and e. Hence, i t is necessary to express the components 
of vector u in terms of and e. 

From Fig. 5.5(a): 

c = (s inV' ,0,cos^) , (5.25) 

in the x,y,z experimental system. 

Using Fig. 5.5(b): 

c.u - cos e, (5.26) 

s.u = 0, _ (5.27) 

lu = 0. (5.28) 

Let u = {ui,U2,U3). (5.29) 

Using (5.25) and (5.29) in (5.26) gives: 

u i sin V '+ «3 cos i / '= cos e. (5.30) 

Using (5.12) and (5.29) in (5.27) gives: 

l i i cos - U3 sin = 0. (5.31) 

Finally, using (5.17) and (5.29) in (5.28) gives: 

— t i l sin e sin + U2 cos e — sin e cos 1/' = 0. (5.32) 
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From (5.30): 
cos e — cos i(} 

ui = :—• . 
s m ^ 

Substituting for ui in (5.31) then gives: 

cos 
(cos e — U3 cos V")-:—;—•U3sinV' = 0, 

smip 

so that ^3 = cose cos •0. (5.33) 

Substituting (5.33) into (5.31) gives: 

, sin 
ui = cose cos •0 7) 

cos-^ 
= cose sin-0. (5.34) 

Substituting for Ui and U3 into (5.32) gives: 

U2 COS € = cos e sin ijj sin e sin ^ + cos e cos ip sin e cos ip, 

so that U2 = sin e. (5.35) 

Combining (5.33), (5.34) and (5.35) gives: 

u = (cos e sin ip, sin e, cos e cos (5.36) 

Using (5.36), the orientation of the cyhnder axis in experimental space can be 
specified using the angles and e. 

5.2.5 Boundary Conditions of the Inclusion 

Suppose the origin (xO, yO, zO) of the inclusion lies at that point on the cyhndri-
cai axis which is closest to the plane in which y is zero. Let the coordinates in 
experimental space of the opposite end of the cyhnder axis be {xcrit,ycrit, zcrit), 
Fig. 5.8. 

Then, using (5.36): 
zcrit — zO — K cos e cos ip, (5.37) 

where K is a, constant. 

Then, K = (zcrit - zQ)/{cosecos ip). (5.38) 

Using (5.36) again: 

ycrit — yO = K sin e, 

so that ycrit = Ksine + yO. (5.39) 

Similarly, xcrit - xO = K cose sin ip, 

so that xcrit = K cosesinij; + xO. (5.40) 
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Consequently, given (arO, yO, zO) and zcrit, equation (5.38) can be used to work 
out the value of K, which may then be used to work out xcrit and ycrit f rom (5.40) 
and (5.39), respectively. 

The values calculated above can now be used to define the limits on u over which 
the strain field extends. From Fig. 5.9, remembering that the strain field has no 
u-component and neglecting end effects, i t is clear that: 

i f u < 0, then dsh = 0, 

i f u > ucrit, then dsh = 0, 

and i f 0 < It < ucrit then dsh w i l l be given by equation (5.11). 

From equations (5.9): 

ucrit = sin tp cos €{xcrit — xO) + sin e{ycrit — yO) 

+ cos Tp COS e{zcrit — zO). (5-41) 

One problem emerges, in the fact that zcrit = zO for an inclusion in an x - y 
plane. In this case, the constant K of equation (5.38) cannot be used to obtain 
xcrit and ycrit. The problem is solved by specifying the length / of the inclusion, 
to provide an alternative means of obtaining xcrit and ycrit. Consider Fig. 5.10: 

xcrit = xO + lcose, (5-42) 

and ycrit = yO + I sin e. (5.43) 

I t w i l l be noted that i f either or e is equal to 90° or 270°, then the term K wi l l 
be undefined. The remedy is to test both ip and e to see i f any of the four conditions 
above is true, and, i f so, to reduce the unallowed value of -0 or e by 2°. This removes 
the infinity, without significantly altering the orientation. 

5.2.6 Lattice Mismatch Parameter 

I n the strain equations (5.3), the term A is defined by equation (5.2) in terms of 
the lattice mismatch parameter, e. This parameter is defined [140] as the relative 
volume change between the inclusion and the surrounding matrix. 

Hence, 
£ = (V; - V,)IV,, (5.44) 

where V- = volume of unit cell in inclusion, 

and Vfc = volume of unit cell in surrounding matrix. 

The condition > 14 (e > 1) implies an inclusion which places the surrounding 
matr ix in compression, whilst Vi < Vj (e < 1) implies an inclusion which is being 
compressed. 
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u=o (origin) 

u=ucrit 
(far point) 

radial strain 

F i g . 5.9: Limits on the variable u defining the extent of the inclusion strain field. 

cylindrical 
inclusion 

axis 

X 

ycrit 

plane2=const. 

xcrit 

F i g . 5.10: Special case of an inclusion lying in a plane given by 2 = const. 



5.2.7 Expressing the Equations in Computer Code 

The equations of the preceding sections have been combined to form the Pascal 
procedure DIFFCYL ( A P P E N D I X E), whose purpose is to calculate the quantity 
dsh using equation (5.11). The associated procedure CYLDEF (APPENDIX E) 
reads in the cyUndrical inclusion parameters. A l l the parameters have the same 
names as in the preceding sections, except that the lattice mismatch parameter, £, 
becomes vfrac, the inclusion length, I, becomes clength, the term K of equation 
(5.38) becomes cylinc, the term A of equation (5.3) becomes aq// and the coordinates 
of the inclusion origin become {xcylO,ycylO, zcylO). This is done, in each case, to 
avoid ambiguity w i t h other terms. 

Line A of DIFFCYL defines the value of acyl using equation (5.2). Section 
a appHes the 90° and 270° tests for the angles ip and e. Line B works out the 
value of cylinc using equation (5.38). Section P works out the values of xcrit and 
ycrit using equations (5.39), (5.40), (5.42) and (5.43). These values are then used 
in section 7 to work out ucrit, by equation (5.41). The code starting at Une C 
applies the conditions on u l imi t ing the extent of the strain field, and works out an 
expression for dsh f rom equation (5.11), using equations (5.3), (5.18), (5.19), (5.23) 
and (5.24). The final result is fed back to the simulation program GENERAL.P, 
when DIFFCYL is called, to complete the process. 

A typical input data file to be read by CYLDEF is shown in APPENDIX H4. 
The procedure to calculate dsh for a dislocation is DIFFDISL (APPENDIX D l ) 
and the associated procedure to read in the dislocation parameters is DISLOCN 
( A P P E N D I X D l ) . A procedure DISLCALC.P (APPENDDC D2) is used to calcu
late the elastic parameters of the dislocation. A l l the dislocation procedures are due 
to Green. A typical data file to be read by DISLOCN is shown in A P P E N D I X H3. 
In order to simulate for the combined strain field due to a dislocation and cyhndrical 
inclusion, the inclusion-specific parameters of the inclusion input file are added to 
the end of the dislocation input file. 

5.3 Comparison Between Corresponding Dislo
cation and Cylindrical Inclusion Images 

5.3.1 Preliminfiry Comments 

Using the code developed in the previous section, images have been simulated for 
a dislocation and the corresponding cylindrical inclusion. This has been done for 
edge, 60° and screw dislocations, using three different reflection geometries. I t is 
useful for the subsequent work to compare the image structures due to the two defect 
types. In all the simulations of the current chapter, MoKa^ radiation was assumed 
as the source X-radiation. Surface relaxation has not been taken into account, since 
dislocation gettering sites are located in the crystal bulk. 

From equations (5.3) and (5.2) i t is seen that the strain magnitude of the cyUndri
cal inclusion, A^^, depends on the lattice mismatch parameter, e, and the inclusion 
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radius, ^. This strain magnitude was varied by choosing a physically realistic value 
of £, and hence A, as constant and allowing ^ to vary. Rivaud et al. [130] have shown 
that the increase in volume of SiOx precipitates relative to the Si rhatrix is 120% . 
The volume increase for transition metals may be even higher, for example Cu^Si 
precipitates are known [128] to exhibit a high crystallographic misfit. I t is impor
tant to remember that the cylindrical inclusion is an elastic model and not a real, 
physical object. The physically meaningful quantity is the strain magnitude, .4^^, 
so that an arbi trary choice of A can be made and the resulting value of A^'^ is then 
determined by ^. Bearing these points i i i mind, the ratio K / V j in equation (5.44) 
was taken as 155% . Then, f rom equation (5.44), the lattice mismatch parameter, 

e = {V,-V,)/Vt„ 

= 0.55. 

Hence, f rom equation (5.2), taking Poisson's ratio, i/, for Si to be 0.28 [143], i t 
is found that : 

A = -0.33. 

This value of A was used consistently in the generation of all cyhndrical inclusion 
images, so that adjustment of ^ allowed the inclusion strain magnitude to be varied. 

The results for the three different reflections are now presented. In each case, 
a (001) oriented, 500/im thick crystal was assumed. A l l the simulations were per
formed wi th a resolution equivalent to that characteristic of experimental section 
topography. 

5.3.2 T31 Reflection 

In this case, the diffract ion vector, h, lies along the [131] crystallographic direction, 
and a dislocation orientation, /, was chosen in the [Oil] direction, since this gave 
the most characteristic image. The reflection geometry is shown in APPENDIX 13. 
Keeping the dislocation orientation fixed, the Burgers vector, 6, was chosen so that: 

h.b ^ 0, for image contrast, 

b.[ = 0, for an edge dislocation, 

b.[ = ^ , for a 60° dislocation, 

and, 6./ = 1, for a screw dislocation. (5.45) 

A set of I [110] type Burgers vectors to satisfy (5.45) is then given as: 

edge dislocation : b = ^[011 

60° dislocation : b = - [TOl 
2^ J 

screw dislocation : b = 21^^^ • 
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The procedure DISLOCN ( A P P E N D I X D l ) calculated the dislocation orien
tat ion to be (-0.671, 0.224, 0.707) in experimental space. Hence, using equation 
(5.36): 

i> = 316.5°, 

and e = 12.9°, 

for the cylindrical inclusion. 

Upon specification of the defect axis origin, the procedure DISLOCN also cal
culates the coordinates {xcrit, ycrit, zcrit) of the far point. Fig. 5.8. These values 
allow ucrit, Fig. 5.9, to be determined, using equations (5.41). For this and the 
following two reflections, the origin of the defect axis was chosen to give the richest 
possible image structure, to facihtate comparison. 

The results are shown in Fig. 5.11, i n which inclusions characterised by ^-values 
of 0.08, 0.05 and 0.02/im are compared w i t h the corresponding edge, 60° and screw 
dislocations. The input data file for the edge dislocation is shown in A P P E N D I X 
H3 and for the cyUndrical inclusion w i t h a ^-value of O.OS^m in A P P E N D I X H4. 
First of all, i t is clear that the dislocation and inclusion images are very similar in 
general form. This might be considered a potential difficulty, since i t is important in 
the current chapter to identify and parameterise the structural differences between 
images due to bare and decorated dislocations. However, i t wi l l be shown in the 
following sections that such parameterisation can be achieved and used to analyse 
the strain contribution due to the gettered precipitates. 

From Fig. 5.11, i t is seen that the direct and intermediary images due to the 
edge dislocation are more extensive than those due to the 60° dislocation, which are 
in tu rn more extensive than the direct and intermediary images due to the screw 
dislocation. The variation in direct image size indicates a variation in the size of 
the highly distorted, strongly diffract ing region immediately around the dislocation. 
A n analogous variation in image sizes is manifest in the cyhndrical inclusion images, 
as the ^-value, and hence strain magnitude, is reduced f rom 0.08^m to 0.02^m. 
Suppose the cylindrical inclusion were superimposed upon the dislocation, to model 
a decorated dislocation. For a ^-value of 0.08/xm the inclusion strain would dominate 
the dislocation strain, whilst for a value of 0.02/iTn the reverse would be true. Apart 
f rom the above differences, the three dislocation images are quite similar, and it 
is suggested that any result for a decorated edge dislocation wil l also be true for 
decorated 60° and screw dislocations. The accuracy of this assertion is confirmed 
later by the results of section 5.5.3. 

5.3.3 440 Reflection 

I n this case, the diff ract ion vector, h, lies along the [440] direction, and a dislocation 
orientation, {, along the [Oi l ] direction was chosen. The reflection geometry is shown 
in A P P E N D I X 12. Keeping the dislocation orientation fixed and using conditions 
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edge dislocation 60° dislocation 

100/im 

131 

screw dislocation f = 0.08//m 

^ = 0.05/xm 

17 

m 
£ = 0.02Mm 

F i g . 5.11: Comparison of edge, 60° and screw dislocation images wi th pure cyhn
drical inclusion images characterised by three different values of (; 131 reflection. 



(5.45), i t is found that : 

edge dislocation : b = - [ O i l 
2 

60° dislocation : b = ^[101] 

screw dislocation : 6 = - [ O i l . 
2^ J 

The procedure £ > / 5 I 0 C i V ( A P P E N D I X D l ) calculated the dislocation orien
tat ion to be (-0.5, 0.5, -0.707) in experimental space. 

Hence, using equation (5.36): 

i> = 215.3°, 

and e = 30.0°, 

for the cyUndrical inclusion. 

The results are shown in Fig. 5.12. In this case, the variation between dislocation 
images is less marked. The small variations can be attributed to the changes in strain 
distr ibution resulting f rom adjustment of the Burgers vector orientation. Again, i t is 
seen that an inclusion w i t h a ^-value of 0.08/im would tend to dominate the partner 
dislocation, whilst reducing the ^-value to 0.02/im results in a reversal of this trend. 

5.3.4 333 Reflection 

In this case, the diffract ion vector, h, lies along the [333] direction, and a dislocation 
orientation, /, along the [ lOl] direction was chosen. The reflection geometry is shown 
in A P P E N D I X 14. Keeping the dislocation orientation fixed and using conditions 
(5.45): 

edge dislocation : b = ^[TOl] 

60° dislocation : 6 = ^ [ 0 1 1 . 

For this reflection and orientation, i t is not possible to find a Burgers vector to 
satisfy conditions (5.45) simultaneously for a screw dislocation. In this case, any 
Burgers vector, b, to satisfy the relation 

b.L = 1, 

wi l l automatically give rise to the result 

h.b = 0, 

so that there is no contrast due to this particular dislocation. Simulations have been 
performed to confirm that this is indeed the case. 
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60° ' dislocation 

200/im 

440 

screw dislocation ^ = 0.08/xm 

^ = 0.05/im ^ = 0.02fim. 

F i g . 5.12: Comparison of edge, 60° and screw dislocation images wi th pure cylin
drical inclusion images characterised by three different values of (; 440 reflection. 



The dislocation orientation in experimental space, calculated by DISLOCN 
( A P P E N D I X D l ) , was (0.5, 0.5, 0.707). 

Hence, using equations (5.36): 

= 35.3°, 

and e = 30.0°, 

for the cylindrical inclusion. 

The results are shown in Fig. 5.13, where both dislocation images show a magnif
icent set of intermediary fringes. The differences i n the intermediary fringe patterns 
of the edge and 60° dislocation images provide a very good illustration of the phase-
( and hence srain- ) dependence of the intermediary image. 

Again, the variation of ^ has a marked effect on the strength of the cyUndrical 
inclusion image. I n particular, the size of the direct image varies strikingly across 
the range of i f r om 0.08/iTn to 0.02/im. 

Although the overall form of the dislocation and cyUndrical inclusion images 
is very similar, the well-formed dislocation intermediary fringes do not appear in 
the cyUndrical inclusion simulations. I n addition, increasing the ,f-value to 0.08//m 
seems to wash out the intermediary pattern. 

5.4 Development of the Strain Code for a Cylin
drical Distribution of Precipitates 

5.4.1 Statement of Problem 

In order to investigate the applicability of the cyUndrical inclusion model, i t is nec
essary to compare the image due to a dislocation/cylindrical inclusion complex wi th 
that due to a dislocation surrounded by a cyUndrical distribution of precipitates. To 
simulate for the latter case, a method has been devised to construct an imaginary 
cylindrical box, whose axis is colUnear wi th the dislocation, and sprinkle precipitates 
at random throughout the box. In reaUty, the precipitate density wiU vary wi th ra
dial displacement f rom the dislocation core. However, the homogeneous distribution 
implicit in the model above is satisfactory to a good approximation, since the ra
dius of the cyUndrical distr ibution is typically only a few angstroms. A spherically 
symmetric strain field, characterised by the deformation parameter C of Chapter 4, 
was at tr ibuted to each precipitate. The deformation parameter is proportional to 
the volume of a coherent spherical precipitate. In fact, i t is known [128] that Co 
and Ni in Si can form disc- or plate-shaped metal disilcide precipitates. However, 
i t has already been pointed out, in the previous chapter, that the the volume of a 
spherical precipitate is often very simUar to the volume of an equivalent precipitate 
of a different form. I n addition, when the precipitates are sufficiently close packed, 
their strain components cancel in all except the radial directions, and the spherical 
precipitate model is acceptable. 
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F i g . 5.13: Comparison of edge and 60° dislocation images wi th pure cyUndrical 
inclusion images characterised by three different values of ^; 333 reflection. 



Let R* be a random number between 0 and 1, and 9r„d be a random angle 
between 0 and 27r radians. Let the axis of the cyUndrical box be the u-axis of 
Fig. 5.5. Then the cyUndrical coordinates {r,9,u) of any precipitate are given by: 

r = rmax-R*, 

d = 2-K.R*, 

u = ucrit.R*, 

where r^ax = radius of cyUndrical box. 

Hence, the Cartesian coordinates of a general precipitate are: 

s = r.cosie^nd), 

t = r.sin{9rnd), 

u = ucrit.R*. (5.46) 

The {s,t,u) coordinates so defined must then be converted to {x,y,z), to be 
consistent w i t h the integration procedure of GENERAL.P (APPENDLX A ) . 

5.4.2 Derivation of the Trcmsformation Equations 

From Figs. 5.5(a) and 5.6: 

/ X - xQ\ 
y - yO 

\ z - z O J 
Also, f rom Figs. 5.5(b) and 5.6: 

costp 0 sinip \ f 
0 1 0 b 

-sinip 0 cosip J \ c 

0 0 
0 cos e sin e 

\ 0 - s i n e cose 

(5.47) 

(5.48) 

Combining equations (5.47) and (5.48): 

I — xO \ / cos tp — sin V' sin e sin ip cos e ^ 
y - yO = 0 cos e sin e 
z — zO J \ — simp - cos ip sin e cos tp cos e / 

/ 5 
t 

Expressing these equations explicitly: 

X = s cos Tp — t simp sin e + u sin ip cos e 

+xO, 

y = fcose-I-usine-1-j/0, 

and z = -ssinip - t cos Ip sine-\-u cos Ip cose 

+zO. (5.49) 
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5.4.3 Construction of the Strain Code 

The acquisition of (s, t, u) coordinates based on equations (5.46) and the subsequent 
transfer to (x,y,z) coordinates, equations (5.49), is achieved using the procedure 
BOXDEF ( A P P E N D I X F ) . 

In section a of BOXDEF, the defect parameters are read in. The variable C 
represents the precipitate deformation parameter of Chapter 4, whilst ptlim is the 
total number of precipitates. The other variables have been defined in previous 
sections, and specify the orientation, position and size of the cylindrical box. -

Before carrying on with this discussion, it is important to comment on the choice 
of values of the terms ptlim and r^ai- Work by Kidd et aJ. [139] showed that the 
number of arsenic precipitates gettered by an 840/im length of dislocation in In-
doped GaAs varied from 44 without annealing up to 55 for a 6 hour anneal at 
1000°C. For the present work, a characteristic number of precipitates along the dis
location above was taken to be 50. Hence, the value of ptlim used in the simulations 
here was chosen, in each case, to give a number of precipitates per unit length of 
dislocation consistent with Kidd's results. The precise effect of precipitate density is 
investigated in section 5.6. Kidd et al. [139] showed in the same work that gettered 
precipitates were localised to the dislocation core. Maroudas and Brown [136] have 
taken the dislocation core radius to be equal to the lattice parameter of the host 
crystal. Hence, in this investigation, the value of precipitate distribution radius, 
r^axi has been taken as 5A, consistent with Si. 

In section /3, the vjdue of ucrit is calculated in exactly the same way as in 
DIFFCYL ( A P P E N D I X E ) . In section 7, the s,f,'u coordinates of each precipitate 
are calculated from (5.46), where the variables raWom(O) and thetrnd represent R* 
and 9rnd, respectively. Each coordinate variable s,t,u,x,y and z is allocated a one-
dimensional array with ptlim elements. Every time a coordinate value is calculated, 
it is fed to an element in the appropriate array. The variable ptno is the precipitate 
ordinal number. 

The value of dsh for each precipitate is calculated in DIFFBOX ( A P P E N D I X 
F ) which is exactly the same as DIFFPOINT ( A P P E N D I X B) . The total value of 
dsh due to aU precipitates is calculated in section <t> of GENERAL.? ( A P P E N D I X 
A) , which calls upon DIFFBOX. 

5.5 Variation of Cylindrical Inclusion Strain as 
a Function of Precipitate Strain 

5.5.1 Statement of Approach 

What is proposed is essentially a caUbration of the strain magnitude, 4̂̂ ,̂ of the 
cyUndrical inclusion model in terms of the deformation parameter, C, of the real, 
physical precipitates decorating a dislocation. The units of A^"^ are and those of 
C are m^. Using the simulation technique, the inclusion model can be turned into 
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C , ( x l O ' ^ W ) \Ae i , ( x i o ^ w ) 1 Ae 1 /C,(xlO-^m-^) 
1 1.0 3.3 3.3 
2 1.5 7.4 3.7 
5 2.0 13.2 2.6 

20 4.0 52.8 2.6 
40 6.0 118.8 3.0 

Table 5.1: | A(^ \ vs. C for 131 reflection. 

C , ( x l O ' ^ W ) ^ , ( x l 0 V " ^ ) Ae , ( x l O ^ W ) Ae 1 /C, (xlO-^m-^) 
2 1.0 3.3 1.7 
5 1.5 7.4 1.5 
10 2.0 13.2 1.3 
20 3.0 29.7 1.5 
50 5.0 82.5 1.7 

Table 5.2: | Ae | vs. C for 440 reflection. 

a practical tool for defect parameterisation. The three reflections and dislocation 
orientations of section 5.3 are used again here. 

Matching pairs of simulations, corresponding to the cylindrical inclusion model 
and the precipitate distribution model are obtained. Hence, it is possible to obtain 
the variation of Ae with C. 

5.5.2 Edge Dislocation Results 

Simulations for bare and decorated edge dislocations in the 131 reflection are shown 
in Fig. 5.14 for the precipitate distributioii model and in Fig. 5.15 for the cylindrical 
inclusion model. The input data file for a dislocation with precipitate distribution is 
shown in APPENDIX H5 and for a dislocation associated with a cyUndrical inclusion 
in APPENDIX H6. Good one-to-one matching was obtained between Figs. 5.14(b)-
(e) and Figs. 5.15(b)-(e), respectively, and the results are summarised in Table 5.1. 
Note that Ae is a negative quantity, since A < 0 ior an inclusion which places the 
surrounding lattice under compression. This sign convention is taken as understood, 
and it is the magnitude | Ae \ that is presented in Table 5.1. 

Analogous sets of simulations for the 440 reflection are given in Fig. 5.16 for the 
preciptate distribution model and in Fig. 5.17 for the cylindrical inclusion model. 
Again, good matching was obtained between Figs. 5.16(b)-(e) and Figs. 5.17(b)-(e), 
respectively, and the results are summarised in Table 5.2. 

In addition, sets of simulations for the 333 reflection are shown in Fig. 5.18 
for the precipitate distribution model and in Fig. 5.19 for the cylindrical inclusion 
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dislocation C = 1 X 10-22 ^ 3 

100;zTn 

C = 2x 10-22 ^3 C = 5 X 10-22m^ 

131 

mi 

C = 2 X 10-21 ^ 3 C = 4 X. 10-21 

Fig. 5.14: Simulations for bare and decorated dislocations in the 131 reflection, 
where the C-vaJues of precipitate decoration are indicated. 



(a) 

dislocation ^ = 0.01/zm 

100/xm 

^ = 0.015/xm 

131 

f = 0.02 urn 

^ = 0.04tfm £ = 0.06/xm 

Fig. 5.15: Simulations using the equivalent cylindrical inclusion to model the pre
cipitate distribution results of Fig. 5.14, for the Rvalues indicated. 



dislocation 

200/iTn 

C = 2 X 10-22 

C = 5 X 10-22 ^ 5 C = 1 X 10 -21 

440 

C = 2 X 10-21 m^. = 5 X 10-21 m 

Fig. 5.16: Simulations for bare and decorated dislocations in the 440 reflection, 
where the C-values of precipitate decoration are indicated. 



dislocation 

$ - Q.02nm 

440 

^ = 0.03/im 

Fig. 5.17: Simulations using the equivalent cylindrical inclusion to model the pre
cipitate distribution results of Fig. 5.16, for the ^-values indicated. 



(b) 

dislocation C = 2 X 10-22 m^̂  

200/xm 

C = 5 X 10-22 C = I X 10-21 ^ 3 

333 

'I 

C = 2 X 10-21 C = 5 X 10 -21 

Fig. 5.18: Simulations for bare and decorated dislocations in the 333 reflection, 
where the C-values of precipitate decoration are indicated. 



(a) 

. dislocation ^ = 0.008/im 

200/1"! 

(c) 

^ = 0.015/im £ = 0.02MTn 

333 

(e) ( 0 . 

^ = 0.03/im ^ = 0.045/im 

Fig. 5.19: Simulations using the equivalent cyUndrical inclusion to model the pre
cipitate distribution results of Fig. 5.18, for the ^-values indicated. 



C,(xl022m^) ^ , (xl02/ im) \Ae , (x l0^ 'm^) 1 Ae 1 / C , ( x l O - ^ m - i ) 
2 0.8 2.1 1.1 
5 1.5 7.4 1.5 
10 2.0 13.2 1.3 
20 3.0 29.7 1.5 
50 4.5 66.8 1.3 

Table 5.3: | | yg. C for 333 reflection. 

model. Consistently good matching was obtained between Figs. 5.18(b)-(e) and 
Figs. 5.19(b)-(e), respectively, and the results are summarised in Table 5.3. 

For all three reflections, the lowest C, ̂ -values correspond to the situation where 
the precipitate decoration just ceases to be distinguishable from the dislocation. In 
all cases, the critical value of C for distinguishability was between 1 and 2 x 10-22771" .̂ 

I t is interesting to compare this with the much higher values of C (~ 10-i^m^) for the 
oxygen precipitates of the previous chapter. This indicates a usefully high visibility 
of precipitate decoration at edge dislocations. This has important technological 
implications, which will be discussed in section 5.10. 

As the strain associated with the decoration in the 131 reflection was increased, 
the size of the direct image also increased and the disruption to the Pendellosung 
pattern became more pronounced, a characteristic and very useful indication of 
strain magnitude. The increase in direct image size with increasing strain is also 
noticeable in the 440 and 333 reflections. 

For high strains, the precipitate distribution in the 440 reflection (Fig. 5.16) ex
hibits a lumpiness, which is absent in the corresponding cylindrical inclusion images 
(Fig. 5.17). The reason for this is that the precipitate distribution represents a num
ber of discrete strain centres, whilst the cylindrical inclusion is homogeneous. In 
the 333 reflection, the beautifully formed intermediary fringes due to the cyhndrical 
inclusion (Fig. 5.19) become distorted at high strains in the precipitate distribution 
model (Fig. 5.18). This effect can also be attributed to the discrete nature of the 
precipitate distribution strain field. 

The data in Tables 5.1, 5.2 and 5.3 was used to plot graphs of | 1̂̂ 2 | vs. C 
for the three different reflections. The three graphs were drawn separately to aid 
clarity, and are shown in Figs. 5.20, 5.21 and 5.22. The striking feature in each case 
is the linearity of the relationship between | Ae I and C. However, the gradients of 
the straight lines, displayed in Table 5.4, are all different. 

The reason for the variation in gradient of the three straight lines will be ex
plained in section 5.5.4. The important point is that the strain magnitude of the 
cyhndrical inclusion, Ae , is directly proportional to the deformation parameter, 
C, and that the constant of proportionality depends on the reflection. 

At this stage i t is worthwhile to point out that the computational time required 
to generate a simulation using the cyUndrical inclusion model was significantly less 
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(xlO^V) 

120-̂  

100 H 

80-

60 

40 H 

20-

0 10 20 30 40 
C (xlO^^m^) 

Fig. 5.20: Variation of cyUndrical inclusion strain magnitude, | A(,'^l with defor
mation parameter, C, associated with precipitate decoration, for the 131 reflection. 



100-^ 

75 ^ 

(xlO^^m )̂ 

50 H 

25 

30 40 
C(x1022m3) 

r 
50 

Fig. 5.21: Variation of cylindrical inclusion strain magnitude, | A^'^l with defor
mation parameter, C, associated with precipitate decoration, for the 440 reflection. 



(xlO^^m )̂ 

C(x1022 m3) 

Fig. 5.22: Variation of cylindrical inclusion strain magnitude, | ^^2 j ^ j t h defor
mation parameter, C, associated with precipitate decoration, for the 333 reflection. 



Reflection h\ 1 1 vs.C gradient, {xlO ^) 
131 3.32 2.88 
440 5.66 1.60 
333 5.20 1.40 

Table 5.4: Gradient of | A^,"^ \ vs. C curve for different reflections. 

than was possible with the precipitate distribution model. This is a clear advantage 
of the inclusion model, in terms of its possible technological use, in conjunction with 
experimental topography, to parameterise the strains associated with dislocations 
decorated with transition metal impurities. This process would be exactly analogous 
to the matching of simulation with experiment for the single precipitates studied in 
Chapter 4. 

5.5.3 60° and Screw Dislocation Results 

In section 5.3.2 the comment was made that the three dislocation images of Fig. 5.11 
are quite similar in form. Hence, it was suggested that any result for a decorated 
edge dislocation will also be true for decorated 60" and screw dislocations. The 
accuracy of this assertion is now tested. 

Simulations for bare and decorated 60' dislocations in the 131 reflection are 
shown in Fig. 5.23 for the precipitate distribution model and in Fig. 5.24 for the 
cylindrical inclusion model. Good one-to-one matching was obtained between the 
images of Figs. 5.23(b)-(e) and Figs. 5.24(b)-(e), respectively, for the same C, (f-value 
pairs as for the edge dislocation (Figs. 5.14 and 5.15). 

The same process was repeated for screw dislocations, again using the 131 reflec
tion. The results are shown in Fig. 5.25 for the precipitate distribution model and 
in Fig. 5.26 for the cylindrical inclusion model. Good matching was again obtained 
for the same pairs of C,<f-values as for the edge dislocation. 

The conclusion here is that the variation in inclusion strain magnitude, | A(^ |, 
with precipitate strain magnitude, C, is the same for edge, 60° and screw disloca
tions. Moreover, the dislocation images in the 131 reflection showed greater variation 
than in the other two reflections. On the basis of these results, it may be concluded 
that any result for a decorated edge dislocation, in any of the reflections used in 
this chapter, is also true for the corresponding decorated 60° and screw dislocations. 
Henceforth, results will only be taken for edge dislocations. 

5.5.4 Discussion 

An explanation is now off"ered for the variation of the | 4̂̂ 2 | vs. C curves with 
different reflections, pointed out in section 5.5.2. 
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(a) 60° dislocation 

131 

(b) C = lxlO-^^Tr? 

100/im 

(c) C = 2 X 10-22 rn' (d) C = 5 x 10-22m3 

(e) C = 2 X 10-21 (f) C = 4 X 10-2im3' 

Fig. 5.23: Simulations for bare and decorated 60" dislocations in the 131 reflection, 
where the C-values of precipitate decoration are indicated. 



131 

(a) 60° dislocation (b) ^ = 0.01/xm 

lOO^m 

(c) { = 0.015/im (d) ( = 0.02pLm 

(e) { = 0.04/im (f) ^ = 0.06/xm 

Fig. 5.24: Simulations using the equivalent cyUndrical inclusion to model the re
sults of Fig. 5.23, for the ^-values indicated. 



131 

(a) screw dislocation ( b ) C = 1 X 10-22m='^ 

100/xm 

( c ) C = 2 X 10-22 ^ 3 (d )C = 5 X 10-22 

( e ] c = 2 X 10-21 ( f ) C = 4 x l 0 - 2 i m 3 

Fig.'5.25: Simulations for bare and decorated screw dislocations in the 131 reflec
tion, where the C-values of precipitate decoration are indicated. 



131 

(a) screw dislocation (b) ( = Omnm 

(c) ^ = 0.015/im (d) ^ = 0.02/im 

(e) C = 0.04/xm (f) ^ = OMfim 

Fig. 5.26: Simulations using the equivalent cyUndrical inclusion to model the re
sults of Fig. 5.25, for the ^-values indicated. 



(5.52) 

Consider the cylindricaJ inclusion of Fig. 5.27. Let the cylindrical coordinates of 
a general point, P, relative to the inclusion axis be {r,6,u). 

Then: 

5 = rcos^, (5.50) 
and t = rsin^. (5.51) 

Hence, the strain equations (5.3) become: 

_ du^ 2 ^ ~ •ŝ ^̂ )̂ 

= - e « , 
_ diLt 

and 

du, ^ 2̂ 2 cos 9 sin 6 

= et^, 
_ dut 

Using (5.52) and (5.53) in conjunction with Fig. 5.27: 

dur _ 
or 

du, ^ dut . „ 
= -T-cosO + — s m f f , 

or or 
„ ( dug ds dui, dt \ 

\ as or dt Or J 

sine!—— 
\ ds dr dt dr J 

Hence, 

Err = cosO{e,s COS6 + e,t sin^) + sin^(ef,cos^ + e^sin^). 

Substituting for ê .̂ , e^, e^t and ê ^ from (5.52) and (5.53) gives: 

(5.53) 

e„ = r2 
coŝ  ̂ (coŝ  e - sin^ 6) - sin^ (̂coŝ  9 - sin^ 9) + A sin^ 9 coŝ  9] , 

(cos2^ + sin2^)2, 

so that err = - V - (^-54) r2 

The radial strain component, e r̂, for a cylindrical inclusion is given by (5.54), 
where | A^"^ \ is the strain magnitude. The fact that A is equal to -0.33 in the 
previous simulations indicates that the strain induced displacement, Ur, reduces 
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P(r,e,u)f 

Fig. 5.27: Cylindrical polar coordinates based on the inclusion. 

precipitate 

Fig . 5.28: Strain field due to a distribution of precipitates along a straight line. 



with radial displacement, r, as required. Now consider the spherical precipitate 
of Fig. 5.28, where p and r are the spherical and cylindrical radial coordinates, 
respectively. 

The strain field due to the precipitate is given by: 

Q 
Up = -^p. (5.55) 

Now, lir = UpCOS<l>. 
But, r = pcos (f>, 

C , 
so that Ur = — cos S, 

using (5.55). 

Then, ^ = e,, = - ^ c o s 3 , ^ . (5.56) 
dr 

Suppose the line LL' deUneates a precipitate distribution. The total radial strain 
component, [crrltof ^* some specific radius r, due to an infinitely close-packed dis
tribution of point spherical strain centres is then given by: 

r 1 2C 

= r- / cos(^(l - sin̂ (?!i)d̂ !ii, 
Jo 
[ • ^ 1 • 3 

8C 
so that [err]i^^ = - — . (5.57) 

C > 0, so that Ur reduces with radial displacement, r, away from the axis LL', 
as required. 

From (5.54) and (5.57), the ratio of radial strain components of the inclusion 
and the precipitate distribution is: 

{errlyl/[err]^ = Br, (5.58) 

where 5 = - — , 

and is a positive constant, since A < 0. 

Equation (5.58) means that the radial displacement component, Ur, and hence 
the lattice distortion, decreases at a faster rate for the cyhndrical inclusion than 
for the precipitate distribution, with increasing radial displacement, r. Hence, the 
volume of strongly diffracting crystal surrounding a precipitate distribution is inher
ently larger than the diffracting volume associated with the equivalent cylindrical 
inclusion. 
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Work by Miltat and Bowen [144] has shown that the diffracting volume around a 
dislocation depends on the reflection. They pointed out that the diffracting volume 
decreases with increasing diffraction vector magnitude, \ h\, and so is greatest for 
low order reflections. 

Figs. 5.14 and 5.18 demonstrate that this effect also appHes to the precipitate 
decoration around a dislocation. In the 131 reflection of Fig. 5.14, a value of C 
of 2 X 10~̂ ^m~̂  is suflScient to show a marked difference between the decorated 
and undecorated dislocation images. However, in the 333 reflection of Fig. 5.18, 
decoration with precipitates with a C-value of 1 x lO'^^m'' makes very Uttle difference 
to the bare dislocation image. Diffraction is clearly enhanced in the 131 reflection, 
analogous to the results of Miltat and Bowen [144], outhned above. Hence, the same 
effect of decreasing diffracting volume with increasing order of reflection appUes to 
the decorated dislocation itself. 

Hence, it is possible to explain the difference in gradients of the | A^^ \ vs. 
C curves of section 5.5.2 for different reflections. In low order reflections, the 
dislocation-precipitate strain, characterised by the parameter C, gives rise to en
hanced diffraction because of the comparatively large diffracting volume. From 
equation (5.58), the diffracting volume of the cylindrical inclusion model is inher
ently smaller than that of the precipitate distribution model. Consequently, it is 
necessary for the cyUndrical inclusion strain magnitude, | A^"^ |, to increase more 
rapidly relative to C for low order reflections, in order to obtain matching between 
simulations generated by the two defect models. 

The explanation outlined above is borne out, within appropriate error hmita-
tions, by the results of Table 5.4. The | A^'^ \ vs. C gradient for the 131 reflection 
{ \ h\= 3.32 ) is 2.88 x lO^m"^ For the other two reflections, the values of | A | are 
higher and both quite similar, whilst the | A^'^ \ vs. C gradients are both around 
1.5 X lO^m-^ 

5.6 Variation of Strain with Precipitate Density 

The precipitate Hne density has so far been taken as 6.03 x 10'*m"^ of dislocation, 
consistent with the observations of Kidd et al. [139] mentioned in section 5.4.3. The 
purpose of the present section is to investigate the variation in strain of a decorated 
dislocation with precipitate Une density, pp. 

Three values of pp were taken, four times less, three times greater and six times 
greater, respectively, than the value of 6.03 x lO^rn"^ used to generate the images 
of Fig. 5.14. Matching of the resulting images with the corresponding cylindrical 
inclusion simulations is shown in APPENDIX J, and the results are displayed in 
Table 5.5, Table 5.6 and Table 5.7. 

I t is interesting to note that for the lowest precipitate density, it was not possible 
to obtain matching for the images with C equal to 1 and 2 x 10~^^m^, since the 
decorated dislocation was then indistinguishable from its undecorated counterpart. 
The results of Tables 5.5, 5.6 and 5.7, together with Table 5.1 for the original value 
of Pp, are plotted on the same graph in Fig. 5.29. Linear variation of | A(^ | with 
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800 H 

600 H 

A r 
(xloV) 

400 i 

200-^ 

20 30 40 
C (x1022m3) 

5 -1 
pp = 3.62 X 10 m 

Pp = 1.81 X lO^m ^ 

p p = 6.03 X lO'̂ m ^ 

Po = 1.56 X l o V ^ 

Fig. 5.29: Inclusion strain magnitude, \ \, vs. deformation parameter, C, for 
different values of precipitate line density, pp, using the 131 reflection. 



C,(xl0^^m^) Ae , ( x l 0 ^ W ) AC 1 /C , (x l0 -*m-^) 
1 
2 
5 1.0 3.3 6.6 

. 20 2.0 13.2 6.6 
40 2.5 20.6 5.2 

Table 5.5: | A^ \ vs. C for precipitate density, Pp, of 1.56xl0^m ^ in 131 reflection 

C , ( x l O ^ W ) ^ , ( x l O V " ^ ) Ae | ,(xl0^^m^) 1 Ae 1 /C,(xlO-^m-^) 
1 1.5 7.4 7.4 
2 2.5 20.6 10.3 
5 4.0 52.8 10.6 
20 8.5 238.4 11.9 
40 11.0 399.9 10.0 

Table 5.6: | Ae \ vs. C for precipitate density, Pp, of 1.81xl0^m ^ in 131 reflection. 

C , ( x l 0 ^ W ) ^, (x lOV"^) 1 Ae U x l O ^ W ) i .4̂ '-̂  1 /C,(xlO-'^m-^) 
1 2.0 13.2 1.3 
2 3.0 29.7 1.5 
5 5.0 82.5 1.7 
20 10.0 330.0 1.7 
40 14.0 646.8 1.6 

Table 5.7: | Ae I vs. C for precipitate density, pp, of 3.62x10^771"^ in 131 reflection. 
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(5,(xlO-^m-^) Pp,(xlO ^ of dislocation) 

5.6 1.6 
28.8 6.0 
105.0 18.1 
162.0 36.2 

Table 5.8: Gradient, 6, of | A^'^ ] vs. C curve as a function of precipitate density, 
Pp-

W , ( x l O i " m ) ^ r L . , ( x i o ^ w ) ^,(xlO<^m) T r f , ( x l O ^ W ) 

5.0 7.9 0.04 5.0 
7.5 17.7 0.06 11.3 
10.0 31.4 0.08 20.1 
12.5 49.1 0.095 28.4 
15.0 70.7 0.115 41.5 

Table 5.9: Cross-sectional area, T T ^ ^ , of equivalent cyhndrical inclusion as a function 
of cross-sectional area, Trr,^^^,,, of precipitate distribution. 

C is again found, and the gradient, 6, of the | A(^ \ vs. C curve increases with pp. 
Corresponding values of S and Pp are displayed in Table 5.8. 

The variation of 6 with Pp is plotted in Fig. 5.30, and it is found that 6 varies 
linearly with Pp, with gradient equal to 4.97. Hence, the value of A^' required to 
match a specific value of C can be found for all possible precipitate densities, pp, 
for the 131 reflection. 

5.7 Variation of Strain with Radius of Precipi
tate Distribution 

Tanner [140] has commented that the impurity cloud around a dislocation can be 
of significant magnitude. It is of interest, then, to investigate the variation in image 
when the radius, r^an of the precipitate distribution is increased from the value of 
5A used in the previous sections. 

Figs. 5.31(a)-(e) show simulations for a dislocation decorated with a cyhndrical 
distribution of precipitates of radius 5A, 7.5A, lOA, 12.5A and 15A, respectively. 
The T31 reflection was used, C was set to 4 x lO'^^m^ throughout and the vol
ume number density of precipitates was kept fixed at the value used in section 5.5. 
Figs. 5.32(a)-(e) show the dislocation-inclusion images matching the dislocation-
precipitate images of Figs. 5.31(a)-(e), respectively, and the results are displayed in 
Table 5.9. 
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160 H 

140 H 

120 H 

100 H 
5(x10"Vb 

80-

60 

40-

20-

pp (xlO'^ m ̂  of dislocation) 

Fig . 5.30: Variation in the gradient, 6, of the | Ae \ vs. C curves for different 
values of precipitate line density, Pp. 



131 

(a) radius = 5A\ (b) radius = 7.5A 

100 Aim 

(c) radius = 10.4 (d) radius = 12. 

(e) radius = 154 

Fig. 5.31: Simulations for a dislocation decorated with a cylindrical distribution 
of precipitates, for several values of distribution radius. C was taken as 4xl0-^^m^ 
and the 131 reflection was assumed. 



131 

(a) ^ = 0.04^771 (b) ^ = 0.06pm 

lOOpm 

(c) ^ = 0.08pm (tl-.) ^ = 0.095^771 

(e) ^ == O.llopm 

Fig. 5.32: Simulations using the equivalent cylindrical inclusion to model the re
sults of Fig. 5.31, for the ^-values indicated. 



The cross-sectional area, TT^^, of the cylindrical inclusion is plotted as a function 
of the cross-sectional area, Trr^^^, of the precipitate distribution, in Fig. 5.33. From 
the graph, it is seen that the cross-sectional area of the inclusion must increase 
linearly with the cross-sectional area of the precipitate distribution, in order to 
obtain matching between the respective images. Of course, the magnitude, | A^^ |, 
of the inclusion strain field is directly proportional to its cross-sectional area. Hence, 
it can be concluded that the strain magnitude of the equivalent cyUndrical inclusion 
increases linearly with the cross-section of the precipitate distribution, with all other 
parameters constant. 

5.8 Reversal of the Strain Associated with a Cylin
drical Inclusion 

I t is of interest to see how the image due to a cylindrical inclusion changes upon 
reversal of the associated strain. In physical terms, the inclusion of the previous 
sections, which compresses the surrounding lattice, is replaced by an inclusion which 
is compressed by the lattice. 

The new strain field was obtained by the simple expedient of reversing the sign 
of the lattice mismatch parameter, s. In the input data file, the value of the term 
vfrac, representing e, was changed from 0.4 to -0.4. Hence, the value of the term 
A of equations (5.2) and (5.3) changed from -0.33 to 0.33. 

Fig. 5.34 compares simulations generated using the original and reversed strain 
fields, in the 333 reflection of section 5.5.5. Each pair of simulations corresponds 
to a specific value of ^. Simulation pairs with ( equal to 0.08pm and 0.02pm 
show a noticeable difference, but the pair with ^ equal to 0.05pm show very little 
difference, and would effectively be indistinguishable in experimental topography. 
I t is noticeable that the only variation in image structure is in the intermediary 
fringes. This is not surprising, since the intermediary image is an interference effect 
and is highly sensitive to small changes in lattice strain. Moreover, the interference 
character of intermediary image formation provides the explanation as to why some 
^-values induce a divergence between corresponding image pairs, whilst others do 
not. The volume of the strongly diffracting region around the inclusion depends on 
the magnitude and not on the sign of the strain field. This is why the direct images 
are almost identical in corresponding image pairs. 

This study was undertaken using the 333 reflection and geometry of section 
5.3.4 simply because the associated intermediary fringe structure was particularly 
characteristic. However, the same comments made above apply equally well to the 
131 and 440 reflection cases of sections 5.3.2 and 5.3.3, respectively. 
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Fig. 5.34: Comparison of simulations generated using the standard and reversed 
cylindrical inclusion strain fields, for the Rvalues indicated. 



5.9 Resolvability of Two Decorated Dislocations 
as a Function of Strain 

5.9.1 Introduction 

Bourret et al. [138] have studied oxygen precipitation in dislocation-rich CZ 5z sam
ples with dislocation density ~ lO^cm"^. A question may be posed as to the degree 
of distinguishabiUty of such dislocations, in experimental topography, after decora
tion with transition metal precipitates. In particular, it is of interest to know how 
the distinguishabihty changes with increased strain associated with the decorated 
dislocations. 

This question has been addressed in the current section, using the dislocation-
inclusion model to represent a decorated dislocation. The 131 geometry and defect 
orientation of section 5.3.2 have been used throughout, and a mutual displacement 
in the experimental y-direction was assigned to the decorated dislocations. Sim
ulations were performed by calUng the procedure DIFFCYL (APPENDIX E) a 
second time in the integration procedure of GENERAL.P (APPENDIX A), and 
incorporating the ^-displacement in the second execution of DIFFCYL. The val
ues of dsh from the two executions of DIFFCYL were added, and the total was 
fed into the integration procedure. 

The dislocation density of lO^cm"^ quoted by Bourret et al. [138] corresponds 
to a perpendicular separation of adjacent dislocations of approximately 32pm. 

5.9.2 Results 

In the present work, the dislocations were assumed to be mutually perpendicular, 
and the perpendicular separation of adjacent dislocations was assigned the variable 
AC. The following derivation illustrates how to convert from y-displacement. Ay, to 
K. 

From section 5.3.2, the dislocation orientation is given as: 

i = (-0.671,0.224,0.707). 

Let the vector K be perpendicular to u. Since the mutual displacement of 
the dislocations is in the y-direction, geometrical considerations imply that the x-
component of K must be zero. 

Hence, 

K = a(0,0.707,-0.224), 

where a is a normalisation factor and is equal to 1.35. 

Consequently, 
K = \ K \ , 

= aA2/(0,0.707,-0.224).(0,1,0), 

so that K = 0.95A?/. (5.59) 
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Ay, {pm) K, {pm) C c r i t , ( / ^ m ) C,„t,(xl0^im3) ln{C„it X 10^ )̂ 

20 19.0 
30 28.5 0.05 2.9 1.06 
40 38.0 0.09 9.3 2.23 
50 47.5 0.12 16.5 2.80 
60 57.0 0.14 22.5 3.11 
70 66.5 0.16 29.3 ,3.38 
80 76.0 0.20 45.8 3.82 

Table 5.10: Variation of critical deformation parameter, Ccrit, with perpendicular 
separation, AC, of adjacent decorated dislocations. 

For several values of Ay from 20pm to 80pm, series of simulations were obtained 
to find the critical value, ^„it, of ^ for which two decorated dislocations are just 
resolved. The simulations are shown in APPENDIX K and the corresponding results 
are displayed in Table 5.10. 

Relation (5.59) above was used to convert Ay to K and the graph of Fig. 5.20 
was used to convert ^crit to the corresponding Ccr,t, assuming a precipitate density 
of 6.03x10^771"^ of dislocation. Table 5.10 includes entries for a term C'̂ ^ ĵ, equal 
to 10̂ ^ times the value of Ccrit- The results are plotted in Fig. 5.35 which shows a 
Hnear relationship between ln{Cl^^^) and «, for values of K greater than about 45pm. 
This variation will be discussed in section 5.9.3, below. An equivalent graph for any 
other value of precipitate density, Pp, could easily be drawn by re-calculating the 
values of Cent from the original ^cnt, using the graph of Fig. 5.30 relating 6 and Pp. 

It was noted that the bare dislocation images were not distinguishable for values of 
K below 28.5pm. This represents a natural absolute Umit on distinguishability, since 
the resolution of the simulations in this chapter is equivalent to that of experimental 
topography. 

5.9.3 Discussion 

The results of this section have been confined to one reflection and one dislocation 
orientation only. However, several significant and useful results have been obtained. 
For the 131 reflection and defect orientation of section 5.3.2, i t has been shown that 
adjacent dislocations are distinguishable down to a perpendicular separation, K, of 
28.5pm. For this value of K, the dislocations remained resolved when decorated 
with precipitates of C7-value up to 2.9xl0"^^r7a'^. Upon reduction of K to 19.5pm, 
even bare dislocations were no longer resolvable. The result outlined above is of 
considerable technological relevance. The critical /c-value of 28.5pm corresponds to 
a dislocation density of 1.2xl0^cm"^, of the same order of magnitude as that quoted 
by Bourret et al. [138] for dislocation-rich CZ Si samples. The important conclusion 
is that experimental topography should be capable of resolving dislocations with 
decoration of C-value up to 2.9x 10"^^m'' even in the case of samples with very high 
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Fig. 5.35: Variation of ln{C„xt x 10̂ )̂ with perpendicular separation, K, of deco
rated dislocations, where CcrU, measured in m?, is the critical value of deformation 
parameter for which adjacent decorated dislocations are just resolved. 



dislocation density. 

The comments above define a role for X-ray section topography as a test of 
gettering efficiency. Suppose test dislocations in the crystal bulk are imaged by 
section topography prior to a gettering treatment. A topograph of the same dis
location distr ibution after the treatment wi l l show a contribution to the original 
dislocation images due to the strain induced by precipitate decoration. The extent 
of this contribution, parameterised in the previous sections of this chapter, is then 
an indication of the gettering efficiency of the dislocation distribution. 

The linear variation of /n(C^-() w i t h K, for K greater than about 45/im, in the 
previous section is analogous to a result pointed out by Green et al. [101] for the 
case of a single precipitate. They showed that the image height, h, in a plane 
perpendicular to the plane of incidence increases linearly wi th InC, where C is 
the precipitate deformation parameter. Assuming that this Unear relation carries 
through to the decorated dislocation case, i t is to be expected that the quantity 
Ay, and hence K, increases Unearly w i t h /n(C*^jj), for decorated dislocations to be 
resolvable. This linearity breaks down for values of K less than about 45/im, because 
of the increasingly significant strain contribution due to the dislocations themselves. 

5.10 General Discussion and Industrial Implica
tions 

The Cylindrical Inclusion model of Tanner [140] has been shown to be an accurate 
means of simulating section topographs due to dislocations decorated wi th precipi
tates. The computation time to simulate using this model compares very favourably 
wi th that for the corresponding precipitate distribution model. A l l the simulations 
of this chapter were taken wi th a resolution equivalent to experimental topography, 
so that any predictions made can be genuinely considered to apply to the experi
mental technique. 

In section 5.5, MoKa^ radiation in three different reflections was used to generate 
images wi th characteristic structure, f rom which definite results could be derived. 
In this section, the precipitate Hne density was taken as 6.03x 10'*m~^ of dislocation, 
after Kidd et al. [139], and the radius of the precipitate distribution was assumed to 
be bA. I t was shown that precipitate decoration wi th C-value as low as l x l 0 " " ^ m ' ^ 
could be distinguished f rom the host dislocation. Clearly, this represents a very 
small strain magnitude in comparison wi th the C-values of ~ 10"^^m^ found for 
oxygen precipitates in Chapter 4. This indicates a very high visibiHty of precip
itate decoration in X-ray section topography, and identifies a clear technological 
role for topography in the detection and characterisation of precipitate gettering at 
dislocations in Si crystals. 

Investigations showed convergence of the results for edge, 60° and screw dis
locations. I t is concluded that, for the reflections studied here, any result for a 
decorated edge dislocation wi l l also be true for the corresponding decorated 60° and 
screw dislocations. 
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Linear variation of the inclusion strain magnitude, | A^'^ |, wi th precipitate 
strain magnitude, C, was obtained for the 131, 440 and 333 reflections, and section 
5.5.4 explains why the gradients of the corresponding straight lines, Figs. 5.20, 
5.21 and 5.22 are different. This is a combination of the different radial variation in 
displacement field, u ( r ) , for the two defect types, and the difference in the diffracting 
volume activated by different reflections. I t was found that the gradient of the 

A^'^ I vs. C curve is highest for low-order reflections. This result for a decorated 
dislocation has been shown to be in agreement w i th an analogous result of Mi l ta t 
and Bowen [144] for a bare dislocation, which identifies an increase in diffracting 
volume w i t h decreasing diffraction vector magnitude. 

In section 5.6, the gradient, 6, of the | A^^ \ vs. C curve was shown to increase 
linearly w i t h precipitate fine density, pp. The graph of 6 vs. Pp in Fig. 5.30 can 
be used to obtain the | A^^ | vs. C relation for any precipitate density in the 131 
reflection. 

The results of section 5.7 show that for precipitate distributions of varying radius, 
the cross-sectional area of the equivalent cyUndrical inclusion must increase linearly 
as the cross-section of the precipitate distribution, in order to obtain matching of 
simulation pairs. This linear relation is plotted in Fig. 5.33. 

I t has been shown [139] that T E M can be used to determine both the precipitate 
density, pp, and distr ibution radius, r ^ a i , of a precipitate decorated dislocation. 
Having established values of Pp and Trr^^^. as in i t ia l conditions, the linear relations 
of sections 5.5, 5.6 and 5.7 can be used to specify the C-value associated with the 
precipitate decoration. The physical meaning of this is defined wi th reference to the 
C-values obtained for oxygen precipitates in Chapter 4, by matching of simulation 
w i t h experiment. 

The results of section 5.9 indicate that for the 131 reflection and dislocation ge
ometry studied, the minimum perpendicular separation, K , of adjacent dislocations 
for resolvability is 28.5p,m. For this value of K, adjacent decorated dislocations are 
resolved for C-values up to 2.9x 10"'^^m'^. This result is technologically very impor
tant, since i t means that decorated dislocations in dislocation-rich CZ Si, as used by 
Bourret et al. [138], are resolvable by experimental X-ray section topography. The 
critical value, Ccrit, of C for resolvability was determined as a function of K, and 
a linear relation was found. Fig. 5.35, between ln{Ccrtt ^ lO'^^) and K, for /c-values 
less than about 45^m. This relation is explained by extension of a result due to 
Green et al. [101], which defines a Hnear relation between ln{C) and the height, h, 
of the image due to a single precipitate. The linearity between ln{C„it x 10^^) and 
K in Fig. 5.35 breaks down for K less than about 45/xm because of the increasingly 
significant strain contribution due to the dislocations themselves. 

Use of section topography as a test of gettering efficiency has been proposed. 
Topographs of dislocations taken before and after gettering wi l l show an expansion 
and change in strucure of the corresponding dislocation images, due to decoration 
w i t h transition metal precipitates. The extent of this change in the dislocation im
ages, parameterised in the preceding sections, can then be used as a test of gettering 
efficiency. 
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X-ray section topography has received l i t t le attention in the gettering literature, 
on account of the superior spatial resolution of T E M . However, the results of the 
current work define a specific role for section topography, via experiment in con
junct ion w i t h simulation, in the parameterisation of strain effects due to precipitate 
decorated dislocations. 
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Chapter 6 

Investigation of Device-Induced 
Strain in Silicon Substrates 

6.1 Background and Context 

6.1.1 Technological Motivation 

Diffusion of impurities into selective areas of Si wafers, to fabricate devices, induces 
strain i n the Si lattice. When the impur i ty concentration is sufficiently high, misfit 
dislocations are generated in the region of high strain, to reduce the total elastic 
energy. These process-induced defects can have a very detrimental effect on device 
performance. Consequently, the measurement and control of device-induced strains 
is of considerable technological importance. 

Thermal oxidation of a Si wafer is an integral part of device fabrication tech
nology. Formation of a layer of Si02 on the Si surface takes place when the Si 
substrate is heated in oxygen at processing temperatures typically around lOOO^C. 
The thermal expansion coefficients of Si and Si02 differ considerably: 

as. = - 3 . 0 - 4 . 5 X IQ-^R-^ 

and as,02 = 5.0 x 10~^K~K 

This means that, upon cooling the wafer to room temperature, the oxide film con
tracts less than the underlying substrate, giving rise to equal and opposite strains 
in the film and substrate. I f the film has been partially etched away, then the strain 
is especially high near the film edge, w i th the possibility of dislocation propagation 
as in the device case of the previous paragraph. In fact, the case of a device formed 
on the Si substrate by diffusion or ion-implantation is elastically analogous to the 
case of an oxide film, and this similarity wi l l be commented upon later. 

The growth of a silicon-nitride {Si^N^) film on a Si substrate has become a 
standard industrial technique for protecting the active device region f rom oxidation 
[145], but there have been reports [146] of dislocations at the edges of nitride films. 
This is because a Si^N^ film grown by chemical-vapour-deposition (CVD) induces 
a very high compressive stress ( ~ 1 x WNm''^) in the S i lattice. This is of the 
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same order of magnitude as the macroscopic yield stress of Si, ( 1.5xl0^A^m"^ 
at 1050°C; l . l x l 0 ^ i \ r m - 2 at 1100°C ) . I n general, however, the effect of this high 
stress is suppressed by the fact that the Si lattice is much thicker ( ~ 1000 times ) 
than the SijNi film. I n fact, Tamura and Sunami [147] have shown that dislocation 
propagation does not take place provided the film thickness does not exceed 300nm. 

Upon annealing i n oxygen, the Si^N^ surface gradually becomes coated wi th a 
film of Si02, according to the reaction: 

Si3N4 + 3O2 ZSi02 + 2N2. 

I t is interesting to note that the thicknesses of oxide films formed in wet oxygen are 
significantly higher than those formed in dry oxygen. 

The thermal expansion coefficient of Si^N^ ( = 2.5 - 3.8 x IQ-^K''^ ) is 
very similar to that of the Si substrate, so that differential contraction again occurs 
and the SiOa fi^m induces a strain in the substrate via the 5z3A^4 layer. Again, 
i t is technologically very important to monitor and control these strains, since the 
defects which they induce are highly detrimental to device yield. Fabian [145] has 
commented that X-ray topography, w i t h its inherent sensitivity to lattice strain, is 
well suited to this task. 

6.1.2 Blech and Meieran's Strain Equations 

I t has been known for many years that X-ray topographs show enhanced darken
ing [148] and characteristic fringe phenomena [149] associated wi th diffraction f rom 
th in film boundaries on single crystal substrates. In 1967, Blech and Meieran [143 
developed a model to describe the strain induced in the Si substrate by a th in , 
discontinuous surface film. The substrate was assumed to be semi-infinite and elas-
tically isotropic. 

Blech and Meieran's model is illustrated in Fig. 6.1. Let the force per unit length 
along each edge be S, in opposite directions for the two edges. The force exerted on 
the substrate by a length dy of film is Sdy. Consider the stress-induced displacement 
components U Q , VQ, VJQ in the experimental X Q , yo, zo-directions, at a general point, P, 
w i t h polar coordinates (r, (^) relative to the film edge EE'. For an infinite strip, VQ is 
equal to zero f rom symmetry considerations. A symmetric reflection was assumed, 
for which the Bragg planes are parallel to the plane x = 0, so that the component 
can be neglected. 

Assuming the separation, /, of the film edges to be very large, the treatment can 
be restricted to the edge EE' alone. On the basis of this assumption, Blech and 
Meieran's equations can be wri t ten: 

25 cos 

r 

Q^iQ^^ = Jl^:^\{^AB-C)-2AcosH], (6.1) 

du,ldzo = - t ± ^ \ { A B - C ) + 2Asm^<f\, 

25 sin ^ 
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Fig. 6.1: Blech and Meieran's strain model for a th in film deposited on a substrate. 



where A = (1 -h u)/27rE, 

B = 3-41/ , 
C = {l + u)(l-2v)/2TrE, 

and I / , E are Poisson's ratio and Young's modulus, respectively. 

In the late 1960's and early 1970's, Patel and Kato [150,151,152] developed Blech 
and Meieran's model on the basis of Kato's eikonal theory, in order to investigate 
fringe phenomena in X-ray section topographs due to oxide edges on Si substrates. 
The crys ta l / f i lm geometry and reflection geometry assumed by Kato and Patel are 
indicated in Figs. 6.2(a) and (b) , respectively. The film edge is now inclined so that 
the surface normal to the edge makes an angle 6 w i t h the experimental x-axis. 

From Fig. 6.1, 

xo = r sin 4>, 

and ZQ = rcos<l>. 

Hence, equations (6.1) can be re-written: 

duo/dzo = AAS 

duo/dxo = 4AS 

C -AB z _ 2 x | 

2A r2 r4 

C - AB Xo XQZ'^ 

2A 
(6.2) 

The displacement component UQ was directed along the XQ-direction. Now con
sider the stress-induced displacement u, directed along the x-axis of Fig. 6.2(a). 

Clearly, 

X Q = X cos 6 + y sin 6, 

and u = UQCOSS. 

(6.3) 

(6.4) 

From equation (6.4): 
du _ ^duo 

dz dzQ 

From equations (6.3) and (6.4): 

du .duQdxo 
— = cos^-^ — , 
dx dxo ox 

= cos^ 6 
duo 
dxo 

Hence, using equations (6.2), we obtain: 

du/dx = AAScos^S 
C - AB X Q XQZ 

+ 2A r2 
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Fig. 6.2: Crys ta l / f i lm geometry (a) and reflection geometry (b) assumed by Kato 
and Patel. 



du/dz = iAScos6 

where — XQ + 
AB-C 
——— = \ - v = 0.72, for Si, 

^ A S = 2 { 1 + V ) { S I T ^ E ) , 

= 2.56S/TrE_, 

and XQ is given by equation (6.3). 

The stress-induced displacement, u, is directed along the experimented x-axis. 
The reason why the y-component of the original displacement, U Q , has been neglected 
w i l l be explained in section 6.2.1. Equations (6.5) represent Kato and Patel's for
mulation [152] of the strain equations of Blech and Meieran [143]. 

Patel and Kato [153] applied their formulation of the theory to predict the po
sitions of the extra hook-shaped Pendellosung fringes observed previously by other 
workers [149] in experimental topographs. The predictions of their theory agreed 
well w i t h the positions as measured f rom experimental topographs. In a related 
work, Ando et al. [154] used the same theory to predict the intensity contours in 
experimental topographs. Good agreement was obtained, except for those parts of 
the crystal corresponding to the highly distorted region in the immediate vicinity of 
the oxide-edge. I t is seen f rom the equations (6.5) that at the edge itself r is equal 
to zero and there is a singularity in the strain field. This represents a flaw in Blech 
and Meieran's strain model, and explains why good matching was not possible for 
regions close to the oxide film discontinuity. Even disregarding the singularity, the 
eikonal theory ceases to be valid in regions of highly distorted crystal. Consequently, 
Ando et al. [154] introduced an exponentially varying strain-relaxation term to re
duce the strain magnitude locally in the vicinity of the edge. In this way, matching 
was possible, but the authors did not offer a definitive theoretical justification for 
their strain-relaxation term. 

A n alternative means of avoiding the singularity of equations (6.5) was pro
posed by Filscher [155], involving the removal, in the calculation, of a thin lamina 
containing the film edge. This sort of approach has been criticised by Petrashen 
and Shulpina [156] as being inconsistent from a physical point of view. They re
ferred to work by Petrashen [66] which indicated that the required accuracy could 
be obtained by using Takagi's equations, (2.55), rather than Kato's eikonal theory. 
Takagi's equations have the advantage over eikonal theory in that they are valid 
even for highly distorted crystal. Noting the similarity between the strain fields 
due to oxide- and device-edges, Petrashen and Shulpina [156] used Takagi's equa
tions in conjunction w i t h the unmodified Blech and Meieran equations to simulate 
successfully X-ray section topographs of edge regions of heavy boron doping on 5z 
substrates. 

Blech and Meieran's equations assume that the force exerted on the substrate 
is concentrated at the edge itself. In reality, this force wi l l be distributed across 
a region of the substrate. However, Hu [157] has pointed out that, provided the 

C - A B z zxl 

2A T 2 «4 
(6.5) 

82 



elastic modulus of the substrate is greater than that of the film, more than seven-
eighths of the total film force is located wi th in a distance of one film thickness f rom 
the film edge. Young's modulus for Si is known [158] to be UxlO^^Nm''^, and 
for a-quartz [159] to be 1.05xl0^°iVm"2 along the crystallographic c-axis, at room 
temperature. Taking Young's modulus for the Si02 film to be similar to that for 
quartz, i t is seen f rom Hu's result, above, that Blech and Meieran's assumption of 
an edge-concentrated force is well-founded. 

Blech and Meieran's theory assumed that the stress-induced displacement in the 
experimental z-direction, Fig. 6.2, could be neglected. Hence, their treatment of 
stresses was two-dimensional in nature. Isomae [160] has extended the Blech and 
Meieran model to accommodate stress-induced displacement in all three experimen
ta l coordinate directions. However, he found that the stress distribution resulting 
f rom the three-dimensional analysis was very similar to that of Blech and Meieran's 
model, except in the vicinity of a corner where two edges of a rectangular film met. 

More recently, Epelboin [161] has simulated the experimental section topographs 
due to Patel and Kato [153] by numerical integration of Takagi's equations. He 
used an unpublished expression for the lattice displacement, due to S. Mader, which 
contained an additional term to that derived by Blech and Meieran. Based on the 
elastic theory of Timoshenko and Goodier [162], the model included a moment, in 
addition to the force, concentrated at the oxide edge. However, a large number 
of simulations w i t h a wide range of deformation parameters showed that the effect 
of this term was negligible, and below the resolution of experimental topography. 
Hence the strain model used by Epelboin was essentially that of Blech and Meieran. 

For high values of edge-induced strain, Epelboin observed additional fringes in 
the central part of the simulated images. He attributed these to interference between 
wavefields created close to the surface, but noted that such fringes had never been 
observed experimentally. In order to fit the experimental data, he was forced to 
propose that the strain at real film edges is reduced, by lack of adhesion or relaxation 
during cooling, to a level at which the additional fringes are not seen. There is no 
physical explanation for such an assumption, and i t is very unsatisfactory. Earlier 
work by Petrashen and Shulpina [156] strongly suggests that the unmodified strain 
equations of Blech and Meieran can be used to obtain satisfactory simulation of 
section topographs. This approach has been adopted here, in order to re-examine 
the image structure in section topographs of oxide film edges. 

6.2 Transformation of the Strain Equations into 
Computer Code 

The purpose of the current section is to construct a procedure analogous to proce
dure DIFFPOINT ( A P P E N D I X B) to calculate the quantity dsh f rom the strain 
equations (6.1) for an oxide film. 
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6.2.1 Extension of Kato and Patel's Treatment 

I n Blech and Meieran's model [143], the surface film was taken to be very wide, 
so that the treatment was effectively restricted to a single edge. Hence, the equa
tions (6.5) of Kato and Patel's formulation [152] refer to an isolated left-hand edge. 
Fig. 6.2. 

I n the current work, i t is necessary to consider films whose widths are of the 
order of microns. Hence, the strain contibution due to both edges must be taken 
into account. 

I n section 6.1.1, i t was pointed out that when a Si02/Si wafer cools from pro
cessing temperature, the oxide layer contracts less than the underlying substrate. 
Hence, at working temperatures, the film exerts a tensUe stress on the substrate. 
From careful consideration of the geometry of Fig. 6.2 and the associated equations 
(6.5), i t is then seen that the term 5, representing force per unit length along the 
edge, must take positive values. Blech and Meieran [143] have shown that the re
gion of heavy distortion due to edge-induced stress is localised to the immediate 
vicinity of the edge. They found that the elastic response of the Si lattice relaxes 
the lattice planes to their undeformed configuration wi th in a distance of a few tens 
of angstroms f rom the edge itself. 

In equations (6.5), the term XQ represents the perpendicular distance of a general 
point, P, f r om the left-hand edge of Fig. 6.3. Let the perpendicular distance of P 
f rom the right-hand edge of the film be xoi Fig. 6.3. In order to apply equations 
(6.5) consistently to the two edges, i t is seen that the sign of Xo must be reversed 
relative to X Q . In Kato and Patel's formulation [152], the sign convention, embodied 
in equation (6.3), is given as: 

Xo > 0 on L . H . S. of L. H . edge, 

Xo = 0 at L . H. edge, 

Xo < 0 on R. H. S. of L. H. edge. 

For consistency, i t is then necessary to adopt the convention: 

Xo < 0 on L. H. S. of R. H. edge, 

Xo = 0 at R. H . edge, 

Xo > 0 on R. H . S. of R. H . edge. 

The conditions above are mutually satisfied by setting: 

Xo =-{^0 +H cos6), (6.6) 

where H is the separation of the device edges in the experimental x-direction. 

Clearly, the strain induced in the substrate by the two edges is of opposite sign. 
Hence, mirror symmetry means that one may simply reverse the sign of {du/dx)j^ jj 
relative to (du/dx)^ , also replacing XQ by xo-
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Fig. 6.3: Geometry of a film on a silicon substrate. 



Hence, the to ta l x-component of strain becomes: 

{du/dx\^ = Tcos^ 6 Ixg + ^2 x§ + z^) [{xl + z^y ixl + ' 
(6.7) 

where r = 2.56(5/7ri;). 

The z-components of strain are combined in an analogous manner, so that: 

0.72Z f - + 2 {duldz\^ = Tcos6 

Recalling equation (4.4), 

(6.8) 

dsh = J ; - M r ) ] , 
Q 

= shx— [h^u^ - j - hyUy 4- / i^Uj] 

Q 
- | - 5 / l Z / — [/l^Ua. + / l y U j , + h^u^ 

-\-shz~ [/ i j-ti j -1- hyUy + h^u^]. (6.9) 

Now, each plane of incidence is parallel to the plane y = 0. Hence, the diffrac
t ion vector, h, has no ^/-component, so that hy is equal to zero. Consequently, any 
stress-induced displacement in the y-direction of Fig. 6.3 wi l l not make any contri
bution to the value of dsh, given by equation (6.9). This is why displacements in the 
^/-direction were not considered in the derivation of equations (6.5). In addition, the 
vector 5^, defined in Fig. 5.7, has no component in the y-direction. Hence, the direc
t ion cosine, shy, of the angle between the 5\. and y-directions is also equal to zero. 
Here, Blech and Meieran's convention that the vertical component of displacement, 
U;:, is zero is retained. 

Hence, retaining only the non-vanishing terms, equation (6.9) becomes: 

du du 
dsh = shx.h^-z—h shz.h^—, (6.10) 

dx dz 

where du/dx and du/dz are given by equations (6.7) and (6.8), respectively. 

Hence, dsh is defined by equation (6.10), in conjunction wi th (6.7) and (6.8), 
and the sign convention of equation (6.6). 

6.2.2 Development of the Strain Code 

The Pascal procedure DIFFSTRIP ( A P P E N D I X G) has been constructed to im
plement equation (6.10). The perpendicular distances X Q and xo are calculated in 
section a, taking into account the sign convention imphcit in equation (6.6). The 
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term r of equations (6.7) and (6.8), which is defined after equation (6.7), is cal
culated in fine A. Here, the force per unit length, 5, and Young's modulus, E, 
are represented by the terms flnth and ymod, respectively. Also, the separation, 
H, of the film edges in the x-direction, used to calculate xo from equation (6.6), 
is represented by the variable horiz. I n section ^ , the terms du/dx and du/dz 
are calculated according to equations (6.7) and (6.8), and are represented by the 
variables ddx and ddz, respectively. Finally, dsh is evaluated in line B, according 
to equation (6.10). 

The associated procedure to read in the film parameters is STRIPDEF (AP
P E N D I X G). Lengths and angles are input in microns and degrees, respectively, 
and subsequently converted into metres and radians. The term zdispl represents 
the z-coordinate of the film, and is needed to specify whether the film is on the 
entrance or exit surface. The terms xedge, yedge and zdispl specify the orientation 
and position of the film relative to the Borrmann fan. These terms modify the i , y, z 
arguments of DIFFSTRIP when i t is called in section x of the integration proce
dure of GENERAL.P ( A P P E N D I X A ) . I t is important that the singularity of the 
strain field should never coincide w i t h a node of the integration network. This is in 
fact prevented f rom happening by the manner in which the integration procedure 
of GENERAL.P works. For each plane of incidence, the single node at the apex 
of the Borrmann fan is automatically assigned values of wave amphtudes, based on 
the boundary conditions calculated in the integration procedure of GENERAL.P. 
Clearly, since the device-edge occurs at the crystal surface, the possibility of a node 
being located at the singularity is then removed. The code has been configured so 
that the position and orientation of the film on the substrate surface are specified 
by either xedge or yedge, the unused term being set to zero. In some cases i t is 
more convenient to use xedge, whilst in other cases vice-versa. Substrate curvature 
can be incorporated into the model by adding the radius of curvature to the input 
data file, following the film-specific parameters. The radius of curvature is then 
read by procedure CURVEDEF ( A P P E N D I X C), and fed into DIFFCURVE 
( A P P E N D I X C) to calculate the contribution to dsh made by substrate curvature. 
The total value of dsh is then calculated in GEN ERAL.P assuming Unear elasticity 
theory. A P P E N D I X H7 shows a typical input data file to be read by STRIPDEF. 

Hence, a method has been devised to combine the strain equations (6.7) and 
(6.8) w i th numerical integration of Takagi's equations, to simulate X-ray section 
topographs due to surface films on Si substrates. 

6.3 Simulation of Experimental Images due to 
Oxide Film Edges 

6.3.1 Introduction 

In order to test the reliability of the strain code derived in the previous section, pro
cedure DIFFSTRIP ( A P P E N D I X G) was used in conjunction wi th GENERAL.P 
( A P P E N D I X A ) to simulate some of the section topographs obtained experimentally 
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by Ando et al. [154]. They studied a (001) oriented Si single crystal of thickness 
1.33mm, using AgKai radiation in the 220 reflection, illustrated in A P P E N D I X 15 . 
The surface of the substrate was thermally oxidised and the resulting oxide film was 
etched away except for a square island. Fig. 6.4. Initially, section topographs were 
taken at approximately position D, Fig. 6.4, where the orientation of the diffract
ing planes is indicated by the line AA'. Section topographs taken for a number of 
film/substrate geometries showed characteristic hook-shaped fringes in the regions 
associated w i t h the film edge. In a previous work [153], Patel and Kato found a 
direct proportionali ty between the force, 5, per unit length along the edge and the 
film thickness, t. This relationship is illustrated in Fig. 6.5. For the experimental 
case described by Fig. 6.4, the film thickness was 5,100A and the associated S-value 
was 2 0 0 i V m - ^ 

6.3.2 Results 

Ando et al. [154] obtained section topographs for the S'-value quoted above and for 
the film/substrate geometry of Fig. 6.2, w i th values of 6 of 30° and 60°. The values 
of 5, 6 and the film and crystal dimensions quoted by Ando et al. [154] for their 
experiment, were fed into the simulation program of section 6.2, and the resulting 
simulations are compared w i t h the topographs of Ando et al. in Fig. 6.6. Figs. 6.6(a) 
and (b) correspond to the 6 = 30° and 60° cases, respectively. 

I n generating the simulations of Fig. 6.6, the substrate was assumed to be bent, 
w i t h a uni form radius of curvature of 20m, consistent w i th experimental measure
ments [163] of industrially processed wafers. Clearly, this assumption is simplistic, 
since the film only covers part of the substrate, however the approximation is good 
in the region of interest, close to the film edge. Fig. 6.4 is drawn to scale f rom 
the original due to Patel and Kato [153]. The separation, H, in the x-direction of 
opposite edges is 3.3mm and the topographs were taken so that essentially only one 
edge was imaged. The value of yedge was selected so as to give a centralised image 
wi th respect to the simulation frame and, of course, zdispl was set to zero for the 
entrance surface. The horizontal integration step, horiz, was set to 0.29/xTn. 

Very good agreement was obtained between simulation and experiment, both in 
the shape and position of direct and dynamical images and also of the Pendellosung 
fringes. These are extremely sensitive to the phase changes induced by the strain at 
the film boundary and, as Patel and Kato pointed out [153], provide a sensitive test 
of the model. The value of the force, S, per unit length at the film edge of 200Nm~^ 
used in the simulations of Fig. 6.6 is exactly that used by Ando et al. [154] in their 
eikonal model fits to experimental data. On the basis of these results, i t may be 
concluded that Blech and Meieran's equations [143] can be used satisfactorily for 
simulations based on Takagi's theory of diffraction in distorted crystals. 

There is no trace in the simulations of Figs. 6.6(a) and (b) of the additional 
fringes reported by Epelboin [161]. However, Epelboin commented that the visibility 
and extent of the additional fringes depends on the value of force per unit length, 
S, along the edge. For the value of 5 equal to 200A'^m~^ used in the simulations 
of Fig. 6.6, Epelboin found that the additional fringes were only just visible. The 
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Fig . 6.6: Simulation vs. experimental section topographs of an oxide film on a 
silicon substrate for two values of the orientation, 6, of the film edge normal to 
the experimental i-axis. Topographs obtained by Ando et al., for a (001) oriented, 
1330/im thick silicon substrate, imaged in the 220 reflection with AgKa^ radiation. 



positions and form of the extra fringes found by Epelboin are indicated schematically 
in Fig. 6.7. The simulation of Fig. 6.6(a), for 6 = 30°, was repeated for a much 
higher 5-value of SOOA'̂ m" ,̂ and, the resulting simulation is shown in Fig. 6.8(a). 
The horizontal and vertical integration steps of Fig. 6.8(a) were taken as and 
0.59/im, respectively. It is immediately obvious that the hook-shaped fringes are 
closer together and narrower, resulting from the increased strain at the film edge. 
Also, the additional fringes are just discernible, in the form and positions predicted 
by Epelboin [161], Fig. 6.7. Retaining the same value of 5 equal to SOONm'^, 
the vertical and horizontal integration steps were reduced to l/zm and 0.29/^m,. 
respectively. The resulting simulation is shown in Fig. 6.8(b). One set of additional 
fringes is visible at the left-hand edge of the image frame, in approximately the 
position predicted by Epelboin, shown in Fig. 6.7. However, the overall visibility of 
these fringes is not significantly enhanced by decreasing the horizontal integration 
step from 0.59/im to 0.29^Tn. This will be discussed shortly. From Fig. 6.8, it is 
seen that reduction in the integration step results in a decrease in the spacing of 
adjacent hook-shaped interference fringes. The edge-induced strain giving rise to 
the fringes in Fig. 6.8 is exceptionedly high (5 = 800Nm~^), resulting in extremely 
rapid spatial variation of the wave amplitudes in the crystal. The results suggest that 
in order to accommodate this very rapid variation, the horizontal integration step 
should be reduced to a value considerably lower than 0.59/im, used in Fig. 6.8(a). 
However, the fact remains that for the physically realistic 5-value of 200Nm~^, 
excellent matching was obtained between the fringes in experimental and simulated 
images, without recourse to an ultra-fine integration net. Furthermore, the results 
of section 6.4.3 indicate that for physically realistic edge-induced strains, the image 
structure in simulations shows a convergence with decreasing integration step, which 
is already established for the step sizes used in Fig. 6.8. 

6.3.3 Discussion 

The strain code DIFFSTRIP and the integration code GENERAL.? have been 
used to simulate section topographs due to oxide films on Si single crystals. Par
ticularly pleasing is the good matching between the position and form of the Pen-
dellosung fringes of the experimental and simulated images. These fringes are par
ticularly sensitive to the phase changes induced by the strain at the film edge. In 
addition, the value of force per unit length, 5, of 200A'"m~^ used in the simulations 
here is exactly that used by Ando et al. [154] in their eikonal model fits to the 
experimental data. 

The additional fringes of Epelboin have been found in the simulations here, in 
the positions and form predicted by Epelboin [161], but only for very high strains 
(5 ~ 800A''Tn-^) and for a fine integration step {TRANSV < 0.59/im). Epelboin 
commented that the additional fringes were only just visible for S equal to 200 A^m"^ 
and were much more clearly defined for S equal to 400iV77i"^ Epelboin proposed 
a strain-relaxation mechanism to explain the absence of these additional fringes in 
experimental section topographs. However, the results of this work suggest that 
the 5-values used by Epelboin to generate his simulations were too high. Excellent 
matching of simulations with experimental images in Fig. 6.6 was possible for an 
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Fig. 6.7: Schematic representation of the positions of the extra fringes visible in 
the simulations of Epelboin, for very high values of edge strain, (after Epelboin). 
D : direct image. 
1 : fringes corresponding to interference between curved wavefields. 
2 : extra fringes corresponding to interference between newly created wavefields. 

(a) TRANSV = 0.59Mm 

I 1 
100/xm 

220 

{h)TRANSV = 0.29^im 

Fig. 6.8: Simulations for high film edge strain (5 = SOONm-'), for horizontal 
integration step, HORIZ, equal to 0.59fim and 0.29/im, showing the extra frmges 
reported by Epelboin. 



5-value of 200A'̂ m ,̂ in agreement with the results of Ando et al. [154], without 
any need for artificial strain relaxation at the film edge. 

All of the simulations in Figs. 6.6 and 6.8 were generated assuming a photo
graphic resolution of 1 - 2/im, consistent with experimental topography. The visi
bility of the additional fringes did not increase appreciably as a result of decreasing 
the horizontal integration step from 0.59/xm to 0.29/im. The fact that the addi
tional fringes of Epelboin have not been reported in experimental topographs may 
be due to statistical noise reducing the visibility. of the fringes, or the absence of 
experiments on films sufficiently thick to show such an effect clearly. 

6.4 Simulation of Images due to a Device on a 
Silicon Substrate 

6.4.1 Introduction 

The contrast of diffused device structures on a Si substrate has recently been in
vestigated by Loxley [163]. He examined the contrast in X-ray section topographs, 
taken with MoKa^ radiation in the 440 reflection, associated with 50/xm wide de
vices on the exit surface of a 500^m thick, (001) oriented Si wafer. The reflection 
geometry is iUustrated in A P P E N D I X 12. In particular, he studied the effect on 
image structure of device position relative to the Borrmann fan base. 

6.4.2 Results 

Loxley recorded topographs for four device positions relative to the Borrmann fan 
base, illustrated schematically in Fig. 6.9. The corresponding experimental images, 
and their simulations, are also shown in Fig. 6.9. The simulations were generated 
using the experimental parameters stated above. The terms 8, horiz and zdispl 
were assigned values of 0°, 50/im and SQQfim respectively. The value of xedge was 
adjusted to alter the position of the device relative to the Borrraann fan base. The 
characteristics of the experimental and simulated images are in good agreement for 
a value of S equal to 30Nm~^. It is interesting to compare this with the S-value 
of 35Nm~^ used by Petrashen and Shulpina [156] to obtain experiment-simulation 
matching for devices constructed by boron doping of Si. 

As the device moves into the direct beam. Fig. 6.9(b), from a point just outside 
the Borrmann fan. Fig. 6.9(a), the direct image width increases to a maximum. 
When the device Hes inside the Borrmann fan, its outer edge just touching the 
direct beam. Fig. 6.9(c), the direct image extends to roughly the same distance 
from the edge of the section as in (b), but contrast is now absent at the extreme 
left-hand edge. When the device lies inside the Borrmann fan, far from the direct 
beam. Fig. 6.9(d), there is no longer any clear direct image. This is because the 
effective misorientation in the direct beam path is so small that X-rays outside the 
dynamical diffraction range, which form the direct image, are not diffracted. 
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Fig 6 9: Simulation of experimental section topographs obtained by Loxley tor 
several different positions of device on the exit surface relative to the Borrmann fan 
base Topographs were taken using MoK^, radiation in the 440 reflection. 



6.4.3 Convergence Criteria 

In the work above, and in the investigations of the following sections, conclusions are 
drawn from the relative sizes and positions of direct images in simulations. Epelboin 
58,59] has commented that a varying step algorithm (V. S. A.) must be used in order 

to accurately simulate direct images in X-ray topographs. The reason for this is that 
the integration step in a V. S. A. is chosen throughout the Borrmann fan to suit the 
local variation in wave amplitudes. However, if the integration step in a constant 
step algorithm (C. S. A.) is made sufficiently small, then the same accuracy should.be 
attainable. The only drawback is then the correspondingly increased computation 
time of the C . S. A. Of course, the integration program GENERAL.? ( A P P E N D I X 
A ) , used in this thesis, is based on a C. S. A. Consequently, it is important to verify 
the convergence of the results for direct image widths and positions with decreasing 
integration step size. The vertical and horizontal steps, ELEM and TRANSV, 
used to generate the simulations of Fig. 6.9 were 3.0^m and 2.39/im, respectively. 
Fig. 6.10 shows repetitions of Fig. 6.9(a) with all parameters the same except for 
the integration step, ELEM, which was allowed to decrease from the original value 
of 3/iTn to a value of 0.5/im. The overall image structure remains almost identical, 
and the direct image width as measured on the simulation is 10mm in each case. 
Hence, the results indicate a convergence of direct image width, which is already 
estabUshed at the value of ELEM of Sfim used in the simulations of Fig. 6.9. In 
addition to the above observations, it is interesting to note the extra detail at the 
edges of the simulations of Fig. 6.10 with increasing resolution. Enhanced resolution 
allows the simulation program to follow more effectively the rapid spatial variation 
in the wavefields close to the Borrmann fan edges. 

It is known that the size of the direct image of a defect depends on the photo
graphic response of the recording film. The response is characterised by the density 
of grey levels, D, and the illumination, E, defined by: 

E = It, 

where / = intensity of source radiation, 

and t = exposure time. ̂  

The relation between D and E is effectively linear, except at saturation where 
the D vs. E curve flattens out, as expected. Various D vs. E dependences have 
been proposed, and the linear relation between D and E quoted above has been 
adopted in the current work. For each simulation, the gradient of the D vs. E curve 
is calculated by the photo-representation program, according to the properties of 
the commonly used Ilford L4 Nuclear Emulsion. However, the direct image derives 
precisely from the non-linear D vs. E domain at saturation. An important question 
is then defined as to the reliability of the results of Fig. 6.9 with respect to variation 
in photographic response. The reUabiUty can be tested by taking several values of 
D for the same £^-value and determining whether or not the conclusions from the 
resulting simulations agree. This test has been arranged by the simple expedient of 
altering the conversion gradient of the assumed Unear relation between D and E, 
in order to obtain several grey densities for the same illumination. In Fig. 6.10, the 
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Fig. 6.10: Repetition of the simulation of Fig. 6.9(a), for decreasing vertical inte
gration step, ELEM. 



Conversion gradient Acont), (mm on simulation) 

0.3 7 
0.5 10 
1.0 14 

Table 6.1: Convergence values of direct image width, Aconv, for different photo
graphic responses. 

conversion gradient took the default value of 0.51. The results of the first part of the 
test are illustrated in Fig. 6.11 for the same resolutions as in Fig. 6.10, but for two 
different conversion gradients. For each value of conversion gradient, convergence of 
the direct image width. A , was observed to have taken place already at the value 
of ELEM equal to 3/im, although the absolute values of A were different for each 
photographic response. The convergence values of A from Figs. 6.10 and 6.11 are 
displayed in Table 6.1. The important conclusion here is that the step size at which 
convergence occurs is independent of photographic response, despite the difference 
in absolute values of direct image width. 

The second part of the photographic test involves repeating the simulations 
of Fig. 6.9(a)-(d) for different conversion gradients. Fig. 6.12 shows repetitions 
of Figs. 6.9(a)-(d) with gradients 0.4 and 0.7, to compare with the default value 
used in Fig. 6.9. For a gradient of 0.4, the direct image is noticeably fainter than 
previously, but it is seen that all the comments made in section 6.4.2 concerning the 
relative widths and positions of direct images are still applicable. The images for 
a conversion gradient of 0.7 show much heavier contrast, indicating a high level of 
saturation, but the same comments as above still apply. 

The important conclusion here is that the trend for relative sizes and positions of 
direct images is independent of photographic response. This has been demonstrated 
for a wide range of responses, right up to heavy saturation of the recording film. 

6.4.4 Conclusions 

In section 6.4.2, the strain code of DIFFSTRIP ( A P P E N D I X G) together with 
the integration program GENERAL.P ( A P P E N D I X A) were used to simulate the 
experimental results of Loxley [163] for diffused device regions on the exit surface 
of a 52 crystal. The same relative trends in direct image widths and positions were 
observed in both experiment and simulation. In addition, the 5-value of 30Nm~^ 
for best matching was very similar to the value of 35Nm~^ found by Petrashen 
and Shulpina [156] for similar studies of boron diffused device regions on Si. One 
must not pay too much attention to this similarity, since device-induced strain 
is influenced by several different physical factors, but as an order of magnitude 
comparison it is interesting. 

The work of the following sections will be concerned with relative sizes and po
sitions of direct images, rather than absolute values of these quantities. The results 

91 



440 

ELEM = 3//m 

200/im 
I 1 

ELEM = 2/im 

ELEM = lum 

ELEM - O.S/tm 

gradient = 0.3 gradient = 1.0 

Fig. 6.11: Repetition of the simulations of Fig. 6.10, for two different photographic 
responses, characterised by the conversion gradient used to convert from X-ray illu
mination into grey density on the film. 
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Fig. 6.12: Repetition of the simulations of Figs. 6.9(a)-(d), for two different pho
tographic responses, characterised by their conversion gradients. 



of section 6.4.3 indicate that trends in these relative quantities are independent of 
horizontal integration step below 2.39/im, and of the photographic response of the 
recording film. The latter conclusion was found to be true across a wide range of 
photo-responses, right up to heavy saturation of the recording film. 

6.5 Image Structure for Devices on the Entrance 
and Exit Surfaces 

6.5.1 Statement of Method 

Having established the reliability of the integration code, GENERAL.?, and the 
photo-response code, these have been used to study the variation in image structure 
with device position. 

Consider Fig. 6.13, which shows six possible positions of device on the entrance 
and exit surfaces. The device edges were taken to be perpendicular to the planes of 
incidence, so that 6 was set to zero. The device width and crystal thickness were 
taken to be 50/im and SOO/zm, respectively. Simulations were performed, for each 
of the positions (a)-(f) in Fig. 6.13, and the correspondng images are presented in 
Figs. 6.14(a)-(f), respectively. AgKai radiation was assumed, in the 220 reflection, 
and the edge-induced strain was characterised by an 5-value of 200iVm~^ The 
vertical and horizontal integration steps were 5/im and 1.5/im, respectively. The 
corresponding perfect crystal simulation is shown at the bottom of Fig. 6.14. 

6.5.2 Position (a) 

The crystal distortion is strongest immediately to the left of the left-hand edge of 
the device, so that strong diffraction occurs from a region around the top vertex of 
th Borrmann fan. This is why the direct image is seen at the extreme right-hand 
side of the simulation. 

6.5.3 Position (b) 

The strain effect of the left-hand edge is predominantly outside the Borrmann fan. 
The strain induced by the right-hand edge is localised to the left-hand central section 
of the lower part of the fan, with comparatively little distortion at the bottom left-
hand corner. For this reason, the direct image is quite narrow and there is a region 
of lighter contrast at the extreme left-hand edge of the simulation frame. 

6.5.4 Position (c) 

Neither edge of the device is as close to the direct beam as the left-hand edge 
was in position (a). Hence, the distortion in the apex of the Borrmann fan is less 
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Fig. 6.13: Six possible positions of device on the entrance and exit surfaces. 
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Fig . 6.14: Simulations corresponding to the positions of device illustrated schemat
ically in Figs. 6.13(a)-(f), respectively. The device width and crystal thickness were 
set to 50/im and 500//m, respectively, and AgK^^ radiation in the 220 reflection was 
assumed. 



pronounced and less extensive than in case (a). This is the reason why the direct 
image is narrower, and the rest of the Borrmann fan is less influenced by strain-
induced diffraction, than in case (a). 

6.5.5 Position (d) 

The situation is similar to case (b), since the right-hand edge induces the distortion 
giving rise to the direct image. However, in this case, the right-hand edge is closer 
to the direct beam than in case (b), and the direct image is correspondingly wider, 
whilst the rest of the Borrmann fan is less affected by strain-induced diffraction, 
than in case (b). In addition, the heavy distortion is closer to the bottom left corner 
of the fan than in case (b), so that the area of comparatively light contrast at the 
left-hand edge of the simulation is narrower than in case (b). 

6.5.6 Position (e) 

The situation is physically similar to case (a), although it is now the right-hand 
edge which induces strain around the top vertex of the Borrmann fan, resulting in 
a direct image localised to the extreme right-hand side of the simulation frame. 

6.5.7 Position (f) 

The distortion is confined to the bottom left corner of the Borrmann fan, so that the 
direct image is localised to the left-hand edge of the image frame. From simulations 
(b), (d) and (f), it is noticeable how the influence of strain-induced diffraction within 
the whole Borrmann fan reduces progressively as the right-hand edge is shifted, 
relatively, towards the periphery of the fan. 

6.6 Distinguishability of Devices in X-ray Sec
tion Topography 

6.6.1 Introduction 

Unlike extensive oxide films, which can be considered semi-infinite, most devices 
are comparable in size to the X-ray extinction distance and the base width of the 
Borrmann fan. Current semiconductor technology requires the production of devices 
of the order of Ifim in size [164]. The edges of a device induce opposite strains in 
the underlying substrate, so that for a narrow device the total strain tends to zero. 
Hence, the possibility exists that the region of distortion due to a narrow device is 
so small that its presence is not manifested on X-ray topographs. The purpose of 
the current section is to examine the size of device at which this cancelling effect 
becomes significant, and to determine how the distinguishability of a device depends 
on its associated strain. 
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6.6.2 Results 

Fig. 6.15(a) shows a device of width H in the experimented x-direction equal to 
150/im, where the inclination S is equal to 60°. The corresponding simulated X-
ray section topograph, taken assuming AgKa^ radiation in the 220 reflection, with 
a source slit width of 5//m, is shown in Fig. 6.15(b). The value of force per unit 
length, 5, along the edge was taken as 200iVm~^. 

Two distinct images are visible in Fig. 6.15(b), corresponding to the two edges 
of the device. There is a partial reversal of contrast, black to white, between parts 
of the images, resulting from the opposite directions of strain at the two edges. 

The perpendicular separation, VF, of the device edges is, of course, the real device 
width, and is given by: 

W = HcosS, 

= H/2, 

for the geometry of Fig. 6.15(a). Fig. 6.16 shows a series of simulations for an 5-
value of 500iVm~^, over a range of values of W much smaller than that used in 
Fig. 6.15. For a device width, W, of Zfim, the image shows two clearly identifiable 
contributions, equivalent to the images of Fig. 6.15(b). However, upon reducing 
the device width further, these two edge contributions become successively less 
distinguishable. It is seen that for a device width, W, less than about Ifim, the 
image due to the device is effectively indistinguishable from the PendeUosung fringes. 
Hence, the minimum device width for distinguishability is Ifim for an 5-value of 

The resolution of the photo-response program was equivalent to the best attain
able resolution in experimental topography. In addition, the simulations of Fig. 6.16 
were generated using a horizontal integration step, TRANSV, of 0.88/xm. It is im
portant that the value of TRANSV be less than the minimum H-valne in the 
investigation. Otherwise, the true strain profile is not revealed by the simulation 
technique and a false value of minimum detectable device width is obtained. 

Fig. 6.17 shows simulations corresponding to the geometry and 5-value used 
in Fig. 6.16, for device width, W, equal to O.bfim, but for decreasing horizontal 
integration step, TRANSV. It is clear that decreasing the value of TRANSV 
from 0.88/im to 0.29/im makes very little difference to the resulting image. The 
convergence of image structure is established already for the value of horizontal 
integration step of 0.88fim used in Fig. 6.16. 

Sets of simulations similar to the one shown in Fig. 6.16, but for different values of 
force per unit length, 5, are shown in A P P E N D I X L . In each case, a minimum value, 
H^min, of device width for distinguishability was found. The results are summarised 
in Table 6.2. It was noted that the value of 6 equal to 60° consistently gave the most 
clearly identifiable images, no other orientation giving a lower hmit on detectabihty. 

The variation of Wmin with 5 is plotted in Fig. 6.18. The minimum detectable 
device size falls as the lattice deformation within the device, characterised by the 
parameter 5, increases. The dependence of Wmin on S is asymptotic at values of 5 
greater than about SOONm~^, in the particular axperimental conditions chosen. 
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Fig. 6.15: Experimental geometry (a) and simulation (b) for a wide device inclined 
to the x,y-axes at an angle 8 = 60°. 
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Fig. 6.16: Simulations corresponding to the geometry of Fig. 6.15(a), but for 
smaller device widths. Here, W is the perpendicular separation of the opposite 
edges of the device. 
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Fig. 6.17: Repetition of the simulation of Fig. 6.16(f) for decreasing horizontal 
integration step, HORIZ. 
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Fig. 6.18: Variation of the minimum device width, Wmin, for detectabihty in sec
tion topography as a function of force, 5, per unit length of device edge. 



Force per unit length, 5(iVm ^) W™i„,(A"7i) 

50 12 6.0 
100 7 3.5 
150 5 2.5 
200 4 2.0 
250 3 1.5 
300 . 3 1.5 
350 2 1.0 
400 2 1.0 
450 2 1.0 
500 2 1.0 

Table 6.2: Minimum detectable device width, Wmin, as a function of device strain. 

6.6.3 Discussion 

The convergence test of Fig. 6.17 has been used to show that the images of Fig. 6.16 
are independent of horizontal integration step, below the value of 0.88/xm used in 
Fig. 6.16. 

The results of Fig. 6.18 indicate that, for the experimental conditions chosen, the 
minimum detectable device width in section topography is Ifim. However, for S-
values characteristic of real solid-state devices (typically < lOOA^m"^) the minimum 
detectable device width is greater than 3.5fim, from Fig. 6.18. Consequently, it is 
clear that the limit on detectable device width, for real devices, is above the Umits set 
by the geometric and other practical constraints of experimental topography. This 
means that the devices referred to by Dellow et al. [164] would not be visualised 
on a section topograph. Transmission electron microscopy (TEM) would allow the 
visualisation of these small-scale devices, but would not provide information on 
device-induced strain. This will be discussed further in section 6.8. 

6.7 Variation in Lattice Distortion with Device-
Induced Strain 

6.7.1 Introduction 

I t has already been pointed out that the two edges of a device induce equal and 
opposite strains in the underlying substrate. For successively narrower devices, the 
cancelling of the strains due to opposite edges becomes more and more significant. 
Hence, by using sufficiently narrow devices, it should be possible to minimise the 
magnitude and extent of device-induced distortion in the substrate. The technolog
ical relevance of this is well-defined. Reduction of device-induced distortion inhibits 
the propagation of misfit dislocations, which in turn increases device yield. The 

95 



purpose of the current section is to investigate these effects on a semi-quantitative 
basis, using the simulation method of the preceding sections. 

6.7.2 Results 

In the section topograph of a device-edge region, the width of the direct image gives 
an indication of the size of the heavily distorted diffracting volume of crystal in the 
immediate vicinity of the edge. It is expected that increasing the force per unit 
length, 5, along the edge will increase the size of the distortion and hence the width 
of the direct image. It is of interest to see how this result is affected by reducing 
the device width, H. 

In section 6.4.3, it was shown that the current simulation process does not allow 
absolute vdues of physical quantities to be obtained by measurement of the direct 
image in simulations. However, it was also found that information can be extracted 
from the relative sizes of the simulated direct images. In this section, the variation 
in direct image width. A , has been interpreted in terms of the variation in diffracting 
volume with the parameters S and H. 

Consider the device/substrate geometry of Fig. 6.19. The device is located just 
outside the Borrmann fan, with its right-hand edge just touching the direct beam. 
The distortion induced in the Si lattice by the two edges is illustrated schematically 
by the equal effective misorientation contours of Fig. 6.19. Simulations correspond
ing to this system have been generated assuming an SOOfim thick, (001) oriented Si 
substrate, imaged in the 440 reflection, using MoKai radiation. The Bragg angle 
for this case is equal to 21.68°, and the inclination, 6, of the device relative to the 
experimental x, y-axes was taken as zero. Four sets of simulations have been taken, 
for devices of width given by H equal to oo, 50/xm, lO/xm and 2/xm. The H = oo 
case corresponds to an isolated right-hand edge, and was achieved by setting the 
variable horiz to 100,000/iTn in the input data file. Each set of simulations was taken 
for 5-values of 20, 50, 100, 200, 300 and 400^"m~^ The four sets of simulations are 
displayed in Figs. 6.20, 6.21, 6.22 and 6.23. In each case, the direct image is the 
black band at the left-hand edge of the image frame. The fact that a direct image 
is visible at all for the 2/xm wide device, for low values of S, might at first seem to 
contradict the results of Fig. 6.18 for device detectability. However, this is not the 
case. By simple inspection of the images of Figs. 6.20 - 6.23, it is not possible to 
attribute these images unambiguously to a device edge, since any line defect would 
give a similar image structure. The work of section 6.6 was concerned with specific 
identification of a device by its associated section topograph, and so the results of 
Fig. 6.18 stand. The widths of the direct images of Figs. 6.20 - 6.23 were measured 
using a 1mm graduated rule. Now, from the geometry of Fig. 6.19, the width of the 
topograph is 591/im. Also, the simulation frame width is equal to 51mm. Hence, 
1mm on the simulation corresponds to 11.6/xm on the topograph. In this way, it was 
possible to convert the direct image width. A, as measured on each simulation, into 
a corresponding value in /xm on the topograph. No physical significance is attached 
to these absolute values, for reasons already explained, but rather to the relative 
values within each set. The error bars in Figs. 6.20 - 6.23 reflect the fact that the 
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Fig. 6.19: Device/substrate geometry for analytical investigation of device-induced 
distortion. A (001) oriented, 800/iTn thick silicon wafer was assumed, and the 440 
reflection was taken. 
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Fig. 6.20: Simulations for the system illustrated in Fig. 6.19, for several values of 
force, 5, per unit length of device edge, for an isolated right-hand edge. 
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Fig. 6.21: Simulations for the system illustrated in Fig. 6.19, for several values of 
force, S, per unit length of device edge, for a device of width, H, equal to SO/xm. 
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Fig. 6.22: Simulations for the system illustrated in Fig. 6.19, for several values of 
force, 5, per unit length of device edge, for a device of width, H, equal to lO/zm. 
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Fig. 6.23: Simulations for the system illustrated in Fig. 6.19, for several values of 
force, S, per unit length of device edge, for a device of width, H, equal to 2/im. 



A,(mm on sim.) A,(/zm on top.) S,{Nm-') InS 

2.0 23 20 3.00 
4.0 46 50 3.91 
6.0 70 100 4.61 
9.0 104 200 5.30 
9.5 110 300 5.70 
10.0 116 400 5.99 

Table 6.3: Direct image width, A vs. InS for device width, H = oo. 

A,(mm on sim.) A,( / im on top.) S,{Nm-') InS 

2.5 29 20 3.00 
4.5 52 50 3.91 
8.0 93 100 4.61 
8.5 99 200 5.30 
8.5 99 300 5.70 
9.0 104 400 5.99 

Table 6.4: Direct image width, A vs. InS for device width, H = 50/xm. 

measurements with the rule were accurate to ±0.5mm. The results of Figs. 6.20, 
6.21, 6.22 and 6.23 are summarised in Tables 6.3, 6.4, 6.5 and 6.6, respectively. 

The results embodied in Tables 6.3 - 6.6 are plotted in Fig. 6.24, which shows 
the relative variation in direct image width. A, with /n5, for an isolated right-hand 
edge and for three different widths of device. 

A clear trend is observed from Fig. 6.24. The relationship between A and /n5 is 
effectively Unear over the range studied, for the isolated right-hand edge. This is a 
reflection of the fact that as the distorted region expands, further expansion becomes 
increasingly difficult, due to the non-linear increase in elastic potential energy of the 
system. Also, as the region A, Fig. 6.19, expands under device-induced strain, the 

A,(mm on sim.) A,(/xm on top.) S,{Nm-') InS 

2.0 23 20 3.00 
4.0 46 50 3.91 
5.0 58 100 4.61 
6.5 75 200 5.30 
7.0 81 300 5.70 
6.5 75 400 5.99 

Table 6.5: Direct image width, A vs. /n5 for device width, H = lO/xm. 
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Fig. 6.24: Relative variation in direct image width. A, as a function of in5, where 
S is the force per unit length of device edge, for devices of different wfdth. 



A,(mm on sim.) A,(/xm on top.) S,{Nm-') InS 

2.0 23 20 3.00 
4.5 52 50 3.91 
7.0 81 100 4.61 
7.0 81 200 5.30 
6.5 75 300 5.70 
6.0 • 70 400 5.99 

Table 6.6: Direct image width, A vs. InS for device width, H = 2pLm. 

Device width, H{fim) Critical 5-value, Scriti^fn ^) 

10 300 
2 150 

Table 6.7: Critical 5-value for maximum device-induced distortion as a function of 
device width, H. 

region B, Fig. 6.19, is compressed, so exerting an increasingly high restoring force 
on the atoms of region A. 

From Fig.6.24, the linear relation between A and InS begins to flatten out for 
devices of finite width, as the strain effect of the left-hand edge begins to counteract 
the effect of the right-hand edge. For the cases of H equal to lO/xm and 2^m, there 
is a critical ^-value for which the device-induced distortion reaches a maximum, 
before starting to decrease. From Fig. 6.24, this critical value of S reduces with 
device width, since the device-edge strain fields overlap more readily for narrower 
devices. Table 6.7 contains a summary of the critical 5-values for which the turning 
points in distortion occur, for device-widths given by H equal to 10/xm and 2/im. 

To further emphasize the cancelling of strains due to the two edges, simulations 
were obtained in the H = 2/zm case for 5-values up to 800A''m~^ The extra 
simulations are shown in Fig. 6.25 and the complete set of results, including Table 
6.6, is displayed in Table 6.8. 

A new graph for the H = 2/xm case was drawn from the results of Table 6.8, and 
is shown in Fig. 6.26. The trend is clear. Beyond a critical 5-value of 15QNm~^, the 
direct image width. A, decreases roughly linearly with InS, as the total distortion 
due to the device also decreases. As an example, when the force per unit length, 5, 
is 800iVm~^, the total distortion is the same as when 5 is approximately equal to 
70A^m-^ 
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Fig. 6.25: Simulations for the system illustrated in Fig. 6.19, for several values of 
force, S, per unit length of device edge, for a device of width, H, equal to 2//m. 
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Fig 6 26- Variation of direct image width. A, with /n5, where 5 is the force per 
unit length of device edge, for device width H = 2/xm; complete data set. 



A,(mm on sim.) A , ( / im on top.) ^,{Nm-') InS 

2.0 23 20 3.00 
4.5 52 50 3.91 
7.0 81 100 4.61 
7.0 81 200 5.30 
6.5 75 300 5.70 
6.0 70 400 5.99 
6.0 70 500 6.21 
5.5 64 600 6.40 
5.5 64 700 6.55 
5.0 58 800 6.68 

Table 6.8: Direct image width, A vs. InS for device width, H = 2fim; complete 
data set. 

6.7.3 Increase in Substrate Lattice Parameter with Device-
Induced Strain 

The results of section 6.7.2 illustrate qualitatively the variation in lattice distortion 
with device-induced strain. What is proposed now is a more quantitative analysis 
of this distortion, in terms of the variation in substrate lattice parameter. 

Consider a device whose position relative to the Borrmann fan is given by 
Fig. 6.19. The device/substrate geometry in the exit surface is shown in Fig. 6.27. 
First of all, consider the device width, H, to be very large. Then, taking 6 equal to 
zero and applying Kato and Patel's equations, (6.5), to the right-hand edge alone: 

R.H. 

R.H. 

2.56 

2.56 
TTE 

XQZ' 

ZXn 

0.72^ 

- 0.72- (6.11) 

Let us restrict our attention to the lattice distortion at the exit surface (z' = 0). 

Then, from (6.11): 

f d u \ 2.56^/ 0.72 
X' 

(6.12) 

In order to obtain the corresponding strain component due to the left-hand edge, 
it is simply necessary to reverse the sign of the expression on the right-hand side of 
(6.12) and to replace x' by x' + H, so that: 

L.H. 

2.56 
' TTE ' 

/ 0.72 \ 
\ X ' + H) 

(6.13) 
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Fig. 6.27: Device/substrate geometry within the exit surface. 
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Fig. 6.28: Variation of fractional increase, | ^ |, in lattice parameter at a point 
distant 20um from the right-hand edge of Fig. 6.27, with force, 5, per unit length 
of device edge, for devices of different width, H. 



From (6.12) and (6.13), the total strain at a general point is given by: 

du 2.56^/0.72 0.72 \ ,^ , 

The quntity du/dx' is the pure translational strain in the I'-direction and is 
equal to the fractional increase in lattice parameter, ^ ,̂ in the x'-direction. 

The negative sign on the left-hand side of (6.14) merely signifies that the lattice 
distortion decreases with increasing x'. Hence, the fractional increase in lattice 
parameter in the x'-direction, due to device-induced strain, is given by: 

6a/a = n s [ ^ - , (6.15) 

1.84 
where Q = ——, and is a constant. 

irE 

Two points immediately follow from equation (6.15). As the device width, H, 
tends to zero, the fractional increase in lattice parameter also tends to zero. In 
addition, for a very wide device, equation (6.15) becomes: 

I 6a/a nS/x'. 

Hence, for a wide device (i.e. considering only the right-hand edge of Fig. 6.27) 
the fractional increase in lattice parameter at any point P, perpendicular distance 
x' from the device-edge, is proportional to the force per unit length, S, along the 
edge and inversely proportional to i ' . 

Unfortunately, it is impossible to determine | ^ \x' the edge itself, since x' 
is then zero and the right-hand side of equation (6.15) is undefined. The strain-
relaxation terms introduced by Ando et al. [154] and Epelboin [161] do not have 
any theoretical basis, and so it is impossible to use them here to obtain the true 
strain at the device-edge. However, Ando et al. [154] artificially relaxed the strain 
over a distance of 20/xm from the edge, in order to obtain good matching between 
their theory and experiment. Hence, it is_safe to say that Blech and Meieran's 
equations truly reflect the strain-distribution at distances greater than 20/xm from 
the device-edge. 

Consider the test point, P*, at x' equal to 20/xm relative to the right-hand edge 
of Fig. 6.27, on the exit surface. Table 6.9 shows the fractional increase in lattice 
parameter at point P", for the isolated right-hand edge and for devices of width, H, 
equal to 10/xm and 2/xm. 

The values of | y \x' shown in Table 6.9 were calculated from equation (5.15). 
The variation in | y \x' at point P" with 5 is plotted for the H = oo, lO/tm and 2/xm 
cases in Fig. 6.28. The variation is linear in each case, with decreasing gradient for 
decreasing device width. This indicates the increasing extent to which the left-hand 
edge compensates for the strain induced by the right-hand edge. Fig. 6.19, with 
decreasing device width. This is manifest on a larger scale by the reduction in the 
heavily distorted diflPracting volume beyond a certain value of S, illustrated for the 
H = lO/xm and 2/im devices in Fig. 6.24. 
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s, I T I X ' . ( X I O ' ^ ) ; l T l x ' . ( x i n iTU'.(xin 
^ = CO H = 10/xm H = 2/im 

20 3.4 1.1 0.3 
50 8.4 2.9 0.8 
100 17.2 5.7 1.6 
150 25.8 8.6 2.3 
200 . 34.5 11.5 3.1 
250 43.1 14.4 3.9 
300 51.7 17.2 4.7 
350 60.3 20.1 5.5 
400 68.9 23.0 6.3 

Table 6.9: Fractional increase in lattice parameter, at a fixed point, as a function of 
force, 5, per unit length of device edge, for devices of different widths 

x', (fim) ^ ^,,(xl0**);^r = lO/xm ^,,,(xlO«);/f = 2Mm 

20 516.8 172.3 47.0 
30 344.5 86.1 21.5 
40 258.4 51.7 12.3 
50 206.7 34.5 8.0 
60 172.3 24.6 5.6 
80 129.2 14.4 3.2 
100 103.4 9.4 2.0 

Table 6.10: Variation of fractional increase in lattice parameter with displacement, 
x', away from the right-hand edge of Fig. 6.27, for different device widths, H. 

Now consider the variation in | y with x' away from the right-hand edge of 
Fig. 6.27. Matching of simulations with Loxley's experimental results. Fig. 6.9, was 
possible for a device-induced strain characterised by an 5-value of 30A''7n"^ Taking 
this value of S, the results of Table 6.10 were calculated, using equation (6.15). 

The results are plotted in Fig. 6.29, for the cases of H equal to oo, 10p,m and 
2fj.m. I t is immediately obvious that the fractional increase in lattice parameter at 
any point reduces with decreasing device width, H. In addition, it is seen that the 
narrower the device, the faster the relative fall-off in | ^ | i ' with x'. This provides 
some quantitative insight into the process by which the maxima of the A vs. InS 
curves of Fig. 6.24 shift to the left for decreasing device width. 

101 



500 

400 H 

300 4 
5a 

(xlO®) 

200 H 

100 -\ 

20 40 60 
x'(Hm) 

Fig. 6.29: Variation in fractional increase, | ^ |^', in lattice parameter with dis
placement, x', away from the right-hand edge of Fig. 6.27, for different values of 
device width, H. 



6.8 General Discussion and Industrial Implica
tions 

The strain code DIFFSTRIP (APPENDIX G) has been used in conjunction with 
the integration program GENERAL.? (APPENDIX A) to simulate experimental 
section topographs due to oxide film edges, section 6.3, and devices, section 6.4, on 
Si substrates. In each case, good matching was obtained between simulated and 
experimental images. The additional fringes found by Epelboin [161] for very high 
oxide film strains have also been observed here. It was found that the visibihty of the 
fringes was not appreciably enhanced by doubling the resolution of the integration 
network. Consequently, it is suggested that statistical noise in the photographic 
process tends to suppress the visibility of these extra fringes. 

The simulation code was used to simulate the relative variation in position and 
width of direct images in experimental topographs due to Loxley [163], for different 
positions of device relative to the Borrmann fan base. In section 6.4.3, it was shown 
that absolute values of the size of the distortion induced by a device cannot be 
determined by measurement of the direct image width on a simulation. However, 
the relative variation in distortion can be obtained as a function of force per unit 
length, 5, along the device edge, and device width, H. In section 6.5, a study 
was made of the effect on image structure of device position on the entrance and 
exit surfaces. It was found that the proximity of a device edge to the direct beam, 
especially for a device on the entrance surface, strongly affects the strain-induced 
diffraction throughout the Borrmann fan. This is manifest by the extent of the 
disruption to the Pendellosung fringes. 

In section 6.6, simulations were undertaken to determine the minimum device 
width detectable by section topography. Simulations were obtained for several S-
values (APPENDIX L) to determine the minimum detectable device width, W^nin, 

in each case. It was noted that a value of 6 equal to 60° consistently gave the most 
clearly identifiable images, no other orientation giving a lower Umit on detectabihty. 
The results, summarised in Table 6.2, are displayed in Fig. 6.18. With increasing 5, 
the minimum detectable device width decreased asymptotically to a limit of 1/xm. 
However, for 5-values characteristic of real devices (S < lOOiVm"^) the minimum 
detectable device width was at lecist 3.5/xm. For a typical 5-value of SSNm'^, deter
mined by Petrashen and Shulpina [156] for a device built by boron ion-implantation 
on Si, the minimum detectable device width, M^mi„, given by Fig. 6.18, is over G/im. 
For device sizes characteristic of those used in current industrial processes, it is clear 
that X-ray topography cannot be used to image the strains at devices. 

In section 6.7, the effect of the canceUing of strains due to opposite device edges 
was investigated by considering the device/crystal geometry of Fig. 6.19. Relative 
changes in the direct image width. A, allowed conclusions to be drawn concerning 
the effect of the parameters H and S on the total distortion induced by the device. 

It was found that the variation of A with InS was effectively linear for a very 
wide device. However, for narrower devices {H < 10/xm) the A vs. InS curve 
flattens out and reaches a maximum, beyond which A decreases with increasing 
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S, Fig. 6.24. This result is attributed to the increased effect of strain cancellation 
between the two edges with decreasing H and increasing S. The value of 5 to induce 
the maximum distortion decreases with decreasing device width, Table 6.7, due to 
the increased ease with which edge strains may cancel for narrower devices. 

A brief analysis of the effect of H and 5 on the variation in lattice parameter, 
o, is given in section 6.7.3. Of course, Blech and Meieran's equations cease to be 
physically realistic in the region of the singularity at the edge itself. However, at 
a test point 20/xm distant from the edge, Table 6.9 gives the fractional increase 
in lattice parameter as a function of 5, for different device widths. The results 
are plotted in Fig. 6.28, illustrating that the fractional increase, | ^ |, in lattice 
parameter is directly proportional to S, with increasing gradient for increasing device 
width, H. The results of Table 6.10, plotted in Fig. 6.29, show that the narrower the 
device, the faster the fall-off in | ^ | with increasing displacement, xVaway from the 
right-hand edge of Fig. 6.27. These results contribute to the conclusion that lattice 
distortion, and hence detrimental defect propagation, is inhibited by manufacturing 
devices as narrow as possible. 
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Chapter 7 

Conclusions 

The aim of this work has been to study the strains associated with process-induced 
defects in Si single crystals, using simulation of X-ray section topographs. 

Section topographs due to oxygen precipitates in MCZ Si samples treated at 
different annealing temperatures, T, have been simulated. Figs. 4.9 and 4.10. A 
linear relation was found between the deformation parameter, C, representing the 
precipitate strain magnitude, and InT. This indicates that the precipitate volume 
increases at a decreasing rate with T. The curve of InC vs. 1/T, Fig. 4.13, based on 
the results of Figs. 4.9 and 4.10, did not show the inverse proportionality expected 
from the equation of growth, (4.10), for square-plate precipitates. Consequently, it 
is concluded that the growth equation (4.1) is not apphcable to the spherical oxy
gen precipitates in MCZ Si studied here. Matching of simulation with experiment 
enabled values to be assigned to the deformation parameter, C, and the precipi
tate depth. These two quantities are of considerable importance on an industrial 
level. First of all, the deformation parameter denotes the ability of a precipitate to 
generate harmful strain-induced defects. In addition, precipitates in the active de
vice layer significantly inhibit the electrical performance, whilst precipitates in the 
bulk enhance device yield through intrinsic gettering. Given the speed with which 
simulations can be generated on, for example, a SUN workstation, a potentially 
valuable role is defined for simulation, in conjunction with experiment, in wafer 
quality control. 

Striking uniformity in the sizes of precipitates formed in equivalent samples was 
observed, consistent with the results of other workers. This was true except for one 
precipitate, Fig. 4.11, which had grown so large that its strain field was no longer 
spherically symmetric. It is known that carbon and boron impurities enhance the 
precipitation of oxygen in Si, and it is suggested that a localised concentration of 
such an impurity was responsible for the formation of this anomalous precipitate. 
It is proposed that, in general, the vast majority of precipitates which survive to 
maturity are nucleated at approximately the same time, subsequently growing at 
the same rate. 

A study was made of the critical depth, Zcru, at which the effect of surface re
laxation becomes negligible, for precipitate images. It was found that z^rit increases 
linearly with InC, Fig. 4.19. Any industrial application of the simulation technique 
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should incorporate surface relaxation, to ensure that the correct values are assigned 
to physical parameters. 

Simulations have been generated for a CZ Si crystal, containing an as-processed 
density of precipitates, with denuded zones at the top and bottom surfaces. The 
perfect crystal Pendellosung fringes at the extreme left of the image, characteristic 
of an exit surface denuded zone, were clearly seen. Fig. 4.23. The high density 
of precipitate images, unresolved for C-values greater than 2xl0~^^m^, is in stark 
contrast to the images of oxygen precipitates in MCZ Si, Figs. 4.9 and 4.10, which 
were well resolved for C-values up to ~ lO'^^m''. This serves to illustrate the quality 
of MCZ Si relative to CZ Si. 

The critical separation, (Ay)crit, of two precipitates for their images to be just 
resolved was found to increase Unearly with InC, Fig. 4.29. This agrees with a result 
of other workers which showed that the precipitate image height increases hnearly 
with InC. 

I t is well known that oxygen precipitates in the bulk of a Si crystal can generate 
dislocations, which act as gettering sites for the removal of harmful transition metal 
impurities from the active device layer. A study has been made in the current work 
of the strain effects of these dislocation-precipitate complexes. The cyhndrical inclu
sion model was used to represent the strain distribution associated with precipitate 
decoration. 

First of all, it was found that section topography allows precipitate decoration to 
be distinguished from the associated dislocation for values of C as low as 1 x 10"^^m"'. 
Such a high degree of visibility is potentially very useful within the semiconductor 
technology. This result means that section topography simulation, in conjunction 
with experiment, could be used as a test of gettering efficiency and a means of 
parameterising the associated strains. Furthermore, simulations generated using the 
cyhndrical inclusion model require a much smaller computation time than would be 
possible by considering a distribution of precipitates. 

For three different reflections and dislocation orientations, the strain magnitude, 
A^'^ \, associated with the cylindrical inclusion was found to increase hnearly with 

precipitate deformation parameter, C. The gradient, 6, of the linear relation was 
found to be highest for low-order reflections, and an explanation has been offered 
for this. First of all, it is known that the diffracting volume around a dislocation in
creases with decreasing diffraction vector magnitude. The simulations of Figs. 5.14 
- 5.19 show that the same result holds for the precipitate decoration and, by exten
sion, for the decorated dislocation itself In addition, equation (5.58) implies that 
the radial strain associated with the inclusion falls off with radial displacement more 
rapidly than the radial strain associated with the precipitate distribution. Hence, 
the diffracting volume associated with an equivalent cyhndrical inclusion is inher
ently smaller than that of the precipitate disribution which it models. Combining 
the above results, it is seen that j A^'^ \ must increase more rapidly relative to C 
for low-order than for high-order reflections. This is the reason why the gradient, 6, 
was found to be greatest for low-order reflections. 

Part of the motivation for the study of decorated dislocations has been the thor-
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ough calibration of the cylindrical inclusion model, in preparation for its potential 
use as an industrial tool. Figs. 5.30 and 5.33 show, respectively, a Unear increase 
in 6 with precipitate line density, pp, and a linear increase in inclusion cross-section 
with precipitate distribution cross-section. Figs. 5.30 and 5.33, in conjunction with 
Fig. 5.20, allow the application of the cylindrical inclusion model to any possible 
size of precipitate distribution, containing any possible size and density of precif>-
itates, for the 131 reflection studied. Work by other authors has shown that Pp 
and the precipitate distribution size can be determined accurately by TEM. With 
these values as initial conditions, the above simulation scheme in conjunction with 
experiment becomes a feasible possibility for parameterising decorated dislocation 
strain. This has potential industrial applications in the detection and control of 
harmful strain-induced defect propagation. 

I t has been shown that decorated dislocation pairs are resolvable by section 
topography for a perpendicular separation, K, as low as 28.5/xm. For this value of K, 
the decorated dislocations are resolved for C-values up to 2.9xl0"^^m'^. The value 
of K quoted above is characteristic of dislocation-rich CZ Si, so that even in this 
case, section topography can be used to identify individual decorated dislocations. 

A study was made of the critical deformation parameter, CcHt, for adjacent 
decorated dislocations to be just resolved, as a function of K. Above a value of K 
equal to about 45/im, the variation of ln[Ccrit x 10^ )̂ with K was hnear. Fig. 5.35. 
This is an interesting extension of the single precipitate result, quoted previously, 
that the image height increases hnearly with InC. However, for /c-values below 
about 45/xm, the linearity breaks down. Fig. 5.35, as the strain contribution due to 
the dislocations becomes increasingly significant. 

T E M has received considerable attention in the gettering hterature, because of 
its excellent spatial resolution. However, the results of the current work indicate 
that X-ray section topography also has a useful and very specific part to play in 
terms of strain parameterisation. 

The growth of an oxide layer, or the fabrication of a device by ion-implantation 
or diffusion, on a 5^ substrate has become a standard feature of semiconductor 
technology. The strains induced by these processes directly affect device quality, 
through strain-related defect propagation. Section topography is well suited to the 
analysis of these strains, and this has been accomplished in the current work by the 
simulation technique. 

The well known hook-shaped fringes found in section topographs of oxide edge 
regions on Si substrates have been simulated, Fig. 6.6. Simulations by another 
worker have shown that for very high edge strains, an extra set of fringes should 
apppear. The fact that these extra fringes have never been observed experimen
tally WcLS attributed to a relaxation mechanism present in real oxide layers. These 
extra fringes have been observed in the current work, for very high edge strains, 
but reduction of the horizontal integration step from 0.59/xm to 0.29/xm, Fig. 6.8, 
did not appreciably enhance the visibiUty of the fringes. All the simulations were 
performed assuming a photographic resolution equivalent to experimental topog
raphy. Consequently, i t is suggested that statistical limitations, and small oxide 
and device thickness, may be the reason why these fringes have not been observed 
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experimentally. 
Section topographs of a device on the exit surface of a Si wafer, at various 

positions relative to the Borrmann fan base, have been simulated, Fig. 6.9. This 
work was extended to study the effect on image structure of device position on the 
entrance and exit surfaces. I t was demonstrated that maximum disruption to the 
perfect crystal Pendellosung fringes occurred when the device was on the entrance 
surface, close to the direct beam. 

Studies.havei been been undertaken to determine the minimum device width, 
Wmin, detectable by X-ray section topography. WTni„ was determined as a function 
of the force per unit length, S, exerted on the substrate by the device edge. Fig. 6.18. 
Wmin tends asymptotically to 1/xm for high strains, but for strains characteristic of 
contemporary devices {S < lOQNm~^) Wmin is at least 3.5/im. It is clear that the 
minimum detectable device width is above the limits set by the geometric and other 
constraints set by the experimental technique. 

The effect of cancellation of the strains due to opposite device edges has been 
studied. The direct image width. A , in simulation gives an indication of the size 
of the distortion induced in the substrate by the device. For an isolated edge, the 
variation of A with /n5 was roughly Unear, Fig. 6.24. However, for device widths 
of 10/im and 2/xm, the curve flattens out, reaching a maximum beyond which A 
decreases with increasing 5, Fig. 6.24. Furthermore, the 5-value for the turning 
point in A decreases with decreasing device width, H. Clearly, a narrow device 
together with very high edge strain maximises the overlap between the opposing 
strains due to opposite device edges. This in turn minimises the total distortion in 
the substrate, reducing the possibility of undesirable defect propagation. To explain 
these effects on a microscopic level, an analysis was made of the effect of H and 5 on 
the variation in lattice parameter, a. The fractional increase in lattice parameter, 
I Y I) ^ fixed distance from one edge of a device was found to increase hnearly 
with 5, with increasing gradient for increasing device width, H, Fig. 6.28. It was 
also shown. Fig. 6.29, that the narrower the device, the faster the relative fall-off in 
I ^ I with increasing displacement away from the right-hand edge of Fig. 6.27. The 
results of Figs. 6.28 and 6.29 confirm that strain-induced defect propagation may 
be minimised by manufacturing devices as narrow as possible. 

Several areas of further research can be identified. In the current work, intrin
sic gettering was investigated in terms of decorated dislocations. However, oxygen 
precipitates in Si often generate prismatic dislocation loops, as a stress rehef mech
anism. These dislocation loops act as very effective gettering sites for transition 
metal impurities, and are therefore worthy of attention. The strain equations de
scribing a dislocation loop are very comphcated, and the task of transforming them 
into computer code would be substantial. However, having accomplished this, it 
would be a simple matter to use linear elasticity within the simulation technique 
to obtain simulations of section topographs due to dislocation loops decorated with 
precipitate distributions. The technological value of this, as in the cases studied in 
the present work, is in the parameterisation of strain by the use of simulation in 
conjunction with experiment. 

The wafer bonding technique, discussed in Chapter 1, for the production of silicon 
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on insulator (SOI) wafers, is a standard feature of semiconductor technology, on 
account of the perfection of the SOI layer. However, incomplete bonding of the 
base Si wafer and the Si02 surface of the bonded wafer results in the formation 
of voids. These voids render the SOI wafer useless for device preparation, since 
unbonded Si is unstable with thermal processing. It is known that X-ray section 
topography can be used to detect the presence of such voids, because of the strain 
which they exert on the surrounding Si lattice. It would be interesting and useful 
to develop the strain code to simulate for these defects, and to match with the 
corresponding experimental section topographs. In this waŷ  it would be possible 
to gain a quantitative insight into the elastic effect of voids on the underlying Si 
lattice and, by inference, on the 5 0 / layer. 

The integration program used in this work was based on a constant step algo
rithm (C.S.A), so that measurement of direct image sizes could be used to highhght 
general trends, but not to assign absolute values. The reasons for this were discussed 
at length in Chapter 6. I t would be a useful development of the current work to 
devise a varying step algorithm (V.S.A), so that direct image measurements, of the 
kind made in Chapter 6, could be used to assign absolute values to the size of the 
difracting volume induced by a defect. In addition, the computation time required 
to generate a simulation using a V.S.A. would be preferentially shorter than would 
be possible, for the same accuracy, with a C.S.A. 

The integration program used throughout this work calculates the wave ampli
tudes at each point in successive planes of incidence throughout the Borrmann fan. 
Of course, the intensity at any point is simply the square of the amphtude of the 
wavefield at that point. Hence, it would be a simple matter to write the code to dis
play the intensities of the refracted and diffracted wavefields at all points throughout 
a selected plane of incidence. In this way, it would be possible to observe directly the 
redistribution of energy around a crystal defect, and to understand more fully the 
structure of the resulting topographic image. Repeating the process for successive 
planes of incidence, it would then be possible to generate a three dimensional map 
of the energy distribution within the Borrmann fan. 

Comparison of simulation with experiment, to obtain matching, has been per
formed by eye in this work. This is an acceptable option, since the human eye 
allows sensitive discrimination between levels of grey and relative deviations in im
age structure. However, a more objective method of comparison may be available 
by means of a computerised digitiser. The digitiser converts an image into an array 
of small dots, and associates a level of grey with each such point. Application of this 
process to an experimental image and a proposed simulation, in conjunction with a 
suitable statistical comparison of grey levels at all corresponding points, offers the 
possibility of greater reliability and accuracy in the allocation of values to physical 
parameters by the simulation technique. 

The prospect of reduced computational time in generating simulations is always 
an attractive one, especially from the point of view of industrial application of the 
simulation technique. Parallel processing may have a useful contribution to make in 
this respect in the future. Each line in the integration network, parallel to a plane 
of incidence, may be calculated independently. Consequently, by using several PC's 
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in tandem, or even a transputer, the calculated intensity data may be acquired in a 
fraction of the time taken using a single machine. 
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Appendix A 

A computer program called GENERAL.P, written in Pascal, is hsted, to integrate 
Takagi's equations iteratively. 
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program g e n e r a l ( i n p u t , o u t p u t ) ; 

t y p e c a r r a y = a r r a y [ 1 . . 1 2 ] o f r e a l ; 

• i n c l u d e 
• i n c l u d e 
• i n c l u d e 
• i n c l u d e 
• i n c l u d e 
• i n c l u d e 
• i n c l u d e 
• i n c l u d e 
• i n c l u d e 

" g l o b a l s . h " 
" c o m p l e x . h " 
" d i s l o c . h " 
" p o i n t . h " 
" c u r v e . h " 
" r e s u l t s . h " 
" c y l i n d e r . h " 
" s t r i p . h " 
" c y l b o x . h " 

c o n s t p i = 3 . 1 4 1 5 9 ; 
( maxno=5000; 

r e s o l u t i o n = 1 2 5 ; 

v a r i o : i n t e g e r ; 

(• S e t u p r o u t i n e *) 
d e f e c t _ c o d e : i n t e g e r ; 
l a m b d a , t h e t a , a l p h a , a b s o r b , t h i c k n e s s , d e l t a t , w i d t h , k a p p a : r e a l ; 
p , q , d i r , a l t , d v l , d v 2 , p o i n t _ s e p a r a t i o n : r e a l ; 
b e t a , d i e l e p , d i e l e q , q h i o , q h i p , q h i m : c o m p l e x ; 
I m a x t : i n t e g e r ; 

p a t r y , h e i g h t , p z y , p a s : r e a l ; 
a n g , p a r a m , r n , r f : v e c t o r ; 

(• I n t e g r a t i o n r o u t i n e *) 
a s , p l a n e : i n t e g e r ; 
:<dO, ydO, zdO, de p t h , dsh, t o t a l : r e a l ; 
k : i n t e g e r ; 
r l : r e a l ; 

22/1/91 a j h 

(• I n t e g r a t i o n p a r a m e t e r s *) 
e l e m , t r a n s v , s q 2 : r e a l ; 
a p l , a p 2 , x d i s , z d i s , d i z , d i x : r e a l ; 
c , s h x l , s h x 3 : r e a l ; 
x c , y c , z c : l a r r a y ; 
x c s i n g l , z c s i n g l : r e a l ; 

x c u r v e , r a d i u s : r e a l ; 
co3, c o 4 , c o 5 : v e c t o r ; 
g d : v e c t o r ; 
m a x p l a n e , I m i n , l i m b e , I m a x : i n t e g e r ; 
c l , c 2 , a , b , a b : c o m p l e x ; 
da r m a t r i x ; 
c n : c a r r a y ; 
p r n o , p r l i m , i s e e d : i n t e g e r ; 
.xmin, xmax, ymin, ymax, zmin, zmax: r e a l ; 
v f r a c , x s i , p s i , e p s : r e a l ; 
x c y i O , y c y l O , z c y l O , z c r i t , c l e n g t h : r e a l ; 
f I n t h , y m o d , d e l t a , x e d g e , y e d g e , h o r i z , z d i s p l : r e a l ; 
p t n o , p t l i m : i n t e g e r ; 
r m a x : r e a l ; 
x b o x , y b o x , z b o x : z a r r a y ; 
X , y, z : r e a l ; 
t o t b o x : r e a l ; 

24/1/91 a j h " * ) 
24/1/91 a j h 

DNZ 
'** DNZ 
'** CYL 

CYL 
'* STRIP 
'* CYLBOX 
'* CYLBOX 
'* CYLBOX 
•* CYLBOX 

CYLBOX 

(* R e s u l t s p a r a m e t e r s 
d a t a : t e x t ; 



m i n i , m a x i : r e a l ; 
s t o r e l , s t o r e 2 : b i g ; 

d i s l o c a t i o n , p r e c i p i t a t e , c u r v a t u r e , c y l i n d e r , s t r i p , c y l b o x : b o o l e a n , • 
p e r f e c t : b o o l e a n ; 
f a c t o r , f e n , f o u , f i e l d , w l : r e a l ; 
i , l i m i t , i p , k p e r f o , j j , i p l l : i n t e g e r ; 
duml,dum2,dum3>d,e,f:complex; 
p h i : w a v e ; 
r e f l e x : b a r r a y ; 

{ 
p r o c e d u r e d i s l o c n ( v a r d a : m a t r i x ; v a r x c s i n g l , z c s i n g l , d i x , d i z : r e a l ; 

v a r c n : c a r r a y ; p a t r y , q : r e a l ; a , a n g , r n , r f : v e c t o r ) ; e x t e r n a l ; 
(*** 24/1/91 a j h * * • ) 

p r o c e d u r e d i f f d i s l ( v a r d s h : r e a l ; x l , x 2 , a p l , a p 2 : r e a l ; c o 3 , co4, co5 : v e c t o r ; 
c n : c a r r a y ) ; e x t e r n a l ; 

p r o c e d u r e p o i n t d e f ( v a r c : r e a l ; v a r p r n o , p r l i m : i n t e g e r ; i s e e d : i n t e g e r ; 
v a r xmin,xmax,ymin,ymax,zmin,zmax:real; 
v a r x c , y c , z c : l a r r a y ; 

v a r gd: v e c t o r ; a , ang, r n , r f : v e c t o r ) ; e x t e r n a l ; (* RND •») 

p r o c e d u r e d i f f p o i n t ( v a r d s h : r e a l ; x , y , z , s h l , s h 2 , c : r e a l ; g d : v e c t o r ) ; e x t e r n a l ; 

p r o c e d u r e c u r v e d e f ( v a r r a d i u s : r e a l ; v a r g d : v e c t o r ; 
a , a n g , r n , r f : v e c t o r ) ; e x t e r n a l ; 

p r o c e d u r e d i f f c u r v e ( v a r d s h : r e a l ; x , z , s h l , s h 2 , t , r : r e a l ; g d : v e c t o r ) ; e x t e r n a l ; 

p r o c e d u r e c y l d e f ( v a r v f r a c , x s i , p s i , e p s , x c y l O , y c y l O , z c y l O , z c r i t , c l e n g t h ; r e a l ; 
v a r g d : v e c t o r ; 
a, ang, r n , r f : v e c t o r ) ; e x t e r n a l ; (••» c y l ' " ) 

p r o c e d u r e d i f f e y 1 ( v a r d s h : r e a l ; : < , y , z , x s i , p s i , e p s : r e a l ; g d : v e c t o r ) ; e x t e r n a l ; 
C " c y l '•') 

p r o c e d u r e s t r i p d e f ( v a r f I n t h , y m o d , d e l t a , x e d g e , y e d g e , h o r i z , z c i s p l : r e a l ; 
v a r g d : v e c t o r ; 
a , a n g , r n , r f : v e c t o r ) ; e x t e r n a l ; { • ' * 7/2/92 STRl? 

p r o c e d u r e d i f f s t r i p ( v a r dsh : r e a l ; :•:, y, z, f I n t h , ymod, d e l t a , h o r i z , shx, shz : r e a l ; 
gd: v e c t o r ) ;e:<!:ernal; ( ' " 1/2/92 S T R I P '»*) 

p r o c e d u r e b o x d e f ( v a r c : r e a l ; v a r p t n o , p t l i m , i s e e d : i n t e g e r ; v a r p s i , e p s : r e a l ; 
x , y , z : r e a l ; v a r x c y l O , y c y l O , z c y l O : r e a l ; 
v a r r m a x , z c r i t , c l e n g t h : r e a l ; v a r x b o x , y b o x , z b o x : z a r r a y ; 
v a r g d : v e c t o r ; a , a n g , r n , r f ; v e c t o r ) ; e x t e r n a l ; 

p r o c e d u r e d i f f b o x ( v a r d s h : r e a l ; x , y , z , s h l , s h 2 , c : r e a l ; g d : v e c t o r ) ; e x t e r n a l ; 

p r o c e d u r e r e s u l t s ( v a r j j : i n t e g e r ; m a x p l a n e : i n t e g e r ; v a r s c o r e l , s t o r e 2 ; b i g ; 
v a r d a t a : t e x t ; 
v a r m i n i , m a x i : r e a l ; r e f l e x : b a r r a y ; 
k p e r f o , l i m i t , i p , i o : i n t e g e r ) ; e x t e r n a l ; 

) 
p r o c e d u r e t r a p ; 
b e g i n 
end; 
{ 

p r o c e d u r e c m u l t ( a , b : c o m p l e x ; v a r c : c o m p l e x ) ; e x t e r n a l ; 
p r o c e d u r e c a d d ( a , b : c o m p l e x ; v a r c : c o m p l e x ) ; e x t e r n a l ; 
p r o c e d u r e c s u b ( a , b : c o m p l e x ; v a r c : c o m p l e x ) ; e x t e r n a l ; 



p r o c e d u r e c d i v ( a , b : c o m p l e x ; v a r c : c o m p l e x ) ; e x t e r n a l ; 
} 
p r o c e d u r e i n t e g r a t e ; 

v a r duml,dum2,dum3,d,e,f:complex; 
k s , a s , 1 , k : i n t e g e r ; 
X , d e l , d c 2 , t e m p , y , z , x i , z d l , z d 2 , r l , a a : r e a l ; 

"begin (* i n t e g r a t i o n *) ' 
i p : = i p - l ; 
temp:=0; 

( * c o r e ( p l a n e ) ; * ) 
(*begin *) 

i f d i s l o c a t i o n t h e n b e g i n 
a a : = y d O - p l a n e ; 
x d O : = x d i s + a a * d i x ; 
z d O : = z d i s + a a * d i z ; 
ydO:=2; 

end; 
{*end; *) 

y : = p l a n e * p a t r y ; (* ? ? ? ? - *) 
r l : = 1 ; 
f o r k : = l i m b e t o maxno-1 do b e g i n (* b . c . s a t e n t r a n c e s u r f a c e *) 

p h i [ l , k ] . r e : = f i e l d * r l ; 
p h i [ l , k ] . i m : = 0 ; 
r l : = r l * f e n ; 
p h i ( 2 , k ] . r e : = 0 ; 
p h i [ 2 , k ] . i m : = 0 ; 

end; 
d e p t h :=0; 
f o r l : = l m i n t o Imax do b e g i n (* l o o p f o r e a c h l a y e r *) 

depth:=depth+elem; 
x i : = - d e p t h * s i n ( a l p h a ) / c o s ( a l p h a ) + s q 2 ; 
l i m i t : = m a x n o - l ; 
p h i [ 1 , l i m i t ) . r e : =0 
p h i [ l , l i m i t ] .im:=0 
p h i [ 2 , l i m i t ] . r e : = C 
p h i [ 2 , l i m i t ] . i m : = 0 
a s : = 0 ; 
X : = x i ; 
z : =depth-0.5'elem; 

i f d i s l o c a t i o n t h e n b e g i n 
z d l : = d a [ 1 , 3 ] * ( z - z d O ) ; 
z d 2 : = d a ( 2 , 3 ] ' ( z - z d O ) ; 

end; 
f o r k s : = l i m i t t o maxno-1 do b e g i n (* l o o p f o r e a c h node i n a l a y e r *) 

a s : = a s + l ; 
X : = x - t r a n s v ; 
i f d i s l o c a t i o n t h e n b e g i n 

d e l : = d a ( 1 , 1 J ' ( x - x d O ) + z d l ; 
d c 2 : = d a ( 2 , 1 ] • ( x - x d O ) + z d 2 ; 

end; 
i f p e r f e c t t h e n dsh:=0 
e l s e b e g i n 

i f d i s l o c a t i o n t h e n d i f f d i s l ( t e m p , d e l , d c 2 , a p l , a p 2 , c o 3 , co4, co5, cn) ; 
i f p r e c i p i t a t e t h e n b e g i n (•** DNZ a j h «»*) 

t o t a l : = 0 . 0 ; 
f o r p r n o : = l t o p r l i m do b e g i n 
d i f f p o i n t ( d s h , x - x c [ p r n o ] , y - y c [ p r n o ] , z - z c [ p r n o ] , s h x l , s h x 3 , c , g d ) ; 
t o t a l : = t o t a l + d s h 

end; 
d s h : = t o t a l ; 
d s h : = q * p i * d s h ; SectlOn 7 
e n d e l s e dsh:=-0; ^ 

i f p r e c i p i t a t e t h e n temp:=dsh; 
i f c u r v a t u r e t h e n b e g i n 



d i f f c u r v e ( d s h , x - x c u r v e , z , s h x l , s h x 3 , t h i c k n e s s , r a d i u s , gd) ; 
d s h : = q * p i * d s h ; 
end e l s e dsh:=0; 

i f c u r v a t u r e t h e n temp:=dsh; 
i f c y l b o x t h e n b e g i n (**** CYLBOX a j h * * ) - — 

t o t b o x : = 0 ; 
f o r p t n o : = l t o p t l i m do b e g i n 
d i f f b o x ( d s h , x - x b o x [ p t n o ] , y - y b o x [ p t n o ] , z - z b o x [ p t n o ] , s h x l , s h x 3 , c , g d ) , 
t o t b o x : = t o t b o x + d s h 

end; Section c 
d s h : = t o t b o x ; 
d s h : = q * p i * d s h ; 

end 
e l s e 

dsh:=0; 
i f c y l i n d e r t h e n b e g i n { * * CYLIND. INCLUSION a j h • * ) 

d i f f c y l ( d s h , x , y , z , x s i , p s i , e p s , gd) ; 
d s h : = q * p i * d s h 

end e l s e dsh:=0; 
i f s t r i p t h e n b e g i n (** OXIDE STRIP a j h **) 

d i f f s t r i p ( d s h , x - x e d g e , y - y e d g e , z - z d i s p l , f I n t h , y m o d , d e l t a , h o r i z , 
s h x l , s h x 3 , g d ) ; 

d s h : = q * p i * d s h 
end; . 

sectioni X 

i f p r e c i p i t a t e t h e n dsh:=dsh+temp; 
i f d i s l o c a t i o n t h e n dsh:=temp+dsh; 
i f s t r i p t h e n dsh:=dsh+temp; 

end; 
d s h:=dsh+wl; 
c l . i m : = d s h ; 
c 2 . i m : = - d s h ; 
c s u b ( c l , a b , d ) ; 

section 6 

c m u l t ( a , p h i [ 2 , k s + I ) , d u m l ) ;' 
c a d d ( d u m l , p h i [ 1 , k s + l 1 , e ) ; 
e m u i t ( b , ? h i [ l , k s i , d u m l ) ; 
e m u i t ( c 2 , p h i ( 2 , k s 1 , d u m 2 ) ; 
c a d d ( d u m l , d u m 2 , f ) ; 
c m u l t ( c l , e , d u m l ) ; 
c m u l t ( a , f , d u m 2 ) : 
cadd(duml,dum2,dum3) ; 
c d i v ( d u m 3 , d , p h i [ 1 , k s ] ) ; 
c m u l t ( b , e , d u m l ) ; 
cadd(duml,f,dum2) ; 
c d i v ( d u m 2 , d , p h i [ 2 , k s ] ) ; 

end; (* ks *) -
end; (* 1 ') 

(' i f p l a n e = l t h e n w r i t e l n ( ' r a n g e 

section e 

on bottom ' , ( x i - t r a n s v - s q 2 ) ' l e O 6 : 2 : 1 , 
( x - s q 2 ) * l e 0 6 : 2 : l ) ; ' ) (* 24/1/91 a j h ') 

end; (* i n t e g r a t i o n *) 

p r o c e d u r e d i s p l a y ; 
b e g i n 

w r i t e l n ; 
w r i t e l n ( ' SECTION TOPOGRAPH SIMULATION'); 
w r i t e l n ; 
w r i t e l n ( ' w a v e l e n g t h ' , l a m b d a ' l e l O : 1 : 4 , ' Angstrom') 
w r i t e l n ( ' b r a g g a n g l e ' , 1 8 0 * t h e t a / p i : 3 : 2 , ' d e g r e e s ' 
w r i t e l n C p s i z e r o ' , 1 8 0 * a l p h a / p i : 3 :2,' d e g r e e s ' ) ; 

( * w r i t e l n ( ' m u ', a b s o r b : 1 : 4) ; 
w r i t e l n ( ' b e t a ' , b e t a . r e , ' 
w r i t e l n C c h i h + ' , q h i p . r e , 
w r i t e l n ( ' c h i h - ',qhim.re, 
w r i t e l n C c h i o ' , q h i o . r e , ' ' , q h i D . i m ) ; *) 

w r i t e l n ; 

• , b e t a . i m ) ; 
' , q h i p . i m ) ; 
',qhim.im); 
' , q h i p . i m ) ; 



w r i t e l n ( ' s l a b t h i c k n e s s ' , e l e m * l e 0 6 : 1 : 2 , ' m i c r o n ' ) ; 
w r i t e l n ( ' s a m p l e t h i c k n e s s ' , t h i c k n e s s * l e 0 6 : 1 : 1 , ' m i c r o n s ' ) ; w r i t e l n ; 
w r i t e l n C t r a n s v e r s e s t e p ' , t r a n s v * l e 0 6 : 1 : 2 , ' m i c r o n s ' ) ; 
w r i t e l n ( ' t r a n s v e r s e p r i n t e d s t e p ' , p o i n t _ s e p a r a t i o n * l e 0 6 : 1 : 2 , ' m i c r o n s ' 
w r i t e l n ; 
w r i t e l n ( ' s l i t w i d t h ' , w i d t h * l e 0 6 : 1 : 1 , ' m i c r o n s ' ) ; w r i t e l n ; 

( * w r i t e l n { ' a = ' , p a r a m [ l ] : 1 : 3 , ' 1 0 ( - 4 ) m i c r o n s ' ) 
w r i t e l n ( ' b = ' , p a r a m [ 2 ] :1:.3,' 10(-4.) m i c r o n s ' ) , 
w r i t e l n ( ' c = ', p a r a m f S ] : 1: 3,' 10(-4)- m i c r o n s ' ' 

. w r i t e l n C c o s a= ' , ang [ 1] : 1: 2, ' c o s b= ' , ang [2 ] : 1: 2, 
' c o s c = ' , a n g [ 3 ] : 1 : 2 ) ; *) 

w r i t e l n ( ' s u r f a c e ' , r n [ 1 ] : 4 : 0 , r n [ 2 ] : 4 : 0 , r n [ 3 ] : 4 : 0 ) ; 
w r i t e l n ( ' r e f l e c t i o n ' , r f [ 1 ] : 4 : 0 , r f [ 2 ] : 4 : 0 , r f [ 3 ] : 4 : 0 ) ; w r i t e l n ; 
w r i t e l n ( ' i m a g e h e i g h t ' , h e i g h t * l e 0 6 : 1 : 1 , ' m i c r o n s ' ) ; 
w r i t e l n ( ' i m a g e p o i n t s e p a r a t i o n ' , p a t r y / 2 * l e 0 6 : 1 : 2 , ' m i c r o n s ' ) ; w r i t e l n ; 
w r i t e l n ( m a x p l a n e : 5 , ' c a l c u l a t e d p l a n e s o f i n c i d e n c e ' ) ; 

end; 

p r o c e d u r e s e t u p ; 
v a r i : i n t e g e r ; 
b e g i n 

d i s l o c a t i o n : = f a l s e ; 
p r e c i p i t a t e : = f a l s e ; 
c u r v a t u r e : = f a l s e ; 
c y l i n d e r : = f a l s e ; 
s t r i p : = f a l s e ; 
c y l b o x : = f a l s e ; 
r e a d ( d e f e c t _ c o d e ) ; 
i f d e f e c t _ c o d e = l t h e n 
i f d e f e c t _ c o d e = 2 t h e n 
i f d e f e c t _ c o d e = 4 t h e n 
i f d e f e c t code=5 

i f d e f e c t code=6 

i f d e f e c t code=6 

i t 
i f 

i r 
i f 

f d e f e c t code=9 

(' *) 
d i s l o c a t i o n : = t r u e ; 
p r e c i p i t a t e : = t r u e ; 
c u r v a t u r e : = t r u e ; 

Chen b e g i n d i s l o c a t i o n : = t r u e ; 
c u r v a t u r e : = t r u e ; end; 

_ t h e n b e g i n p r e c i p i t a t e : = t r u e ; 
c u r v a t u r e : = c r u e ; end; 

i f d e f e c t _ c o d e = 7 t h e n c y l i n d e r : = t r u e ; 
t h e n b e g i n 

d i s l o c a t i o n : = t r u e ; 
c y l i n d e r : = t r u e 

end; 
t h e n s t r i p : = t r u e ; 

d e f e c t _ c o d e = 1 0 then b e g i n 
s t r i p : = t r u e ; 
c u r v a t u r e : = t r u e ; end; 

d e f e c t _ c o d e = l l t h e n c y l b o x : = t r u e ; 
d e f e c t _ c o d e = 1 2 t h e n b e g i n 

d i s l o c a t i o n : = t r u e ; 
c y l b o x : = c r u e 

end; 
r e a d i n ( d e f e c t _ c o d e ) ; i f d e f e c t _ c o d e = 0 t h e n p e r f e c t : = f a l s e e l s e p e r f e e t : = t r u e ; 
(*rewrite(data,'FILE=output.dat');») 
(* r e w r i t e ( d a t a , ' u n i t = 2 ' ) ; 15 O c t 87 ') 

r e w r i t e ( d a t a , ' o u t p u t ' ) ; 
r e a d i n ( k p e r f o ) ; i o:=0; 
r e a d i n ( l a m b d a , t h e t a , a l p h a , a b s o r b ) ; 
r e a d i n ( q h i o . r e ) ; 
r e a d i n ( q h i m . r e , q h i m . i m ) ; 
r e a d i n ( q h i p . r e , q h i p . i m ) ; 
r e a d i n ( e l e m , t h i c k n e s s , d e l t a t , w i d t h ) ; 
r e a d i n ( p a r a m [ 1 ] , p a r a m [ 2 ] , p a r a m [ 3 ] , a n g ( 1 ] , a n g [ 2 ] , ang [ 3] ) ; 
r e a d l n ( r n ( l ] , r n [ 2 ] , r n [ 3 ] , r f [ 1 ] , r f [ 2 ] , r f [ 3 ] ) ; 
r e a d i n ( h e i g h t , p z y ) ; 



(' *) 
(* Geometry c o n s t a n t s *) 
(' *) 

k a p p a : = p i / l a m b d a ; 
d i r : = ( a l p h a + 2 * t h e t a ) * p i / 1 8 0 ; • 
a l t : = ( a l p h a + t h e t a ) *pi/180-; 
a l p h a : = a l p h a * p i / 1 8 0 ; 
t h e t a : = t h e t a * p i / 1 8 0 ; 

(* I n t e g r a t i o n p a r a m e t e r s *) 

t r a n s v : = e l e m * ( ( s i n ( d i r ) / c o s ( d i r ) ) - ( s i n ( a l p h a ) / c o s ( a l p h a ) ) ) ; 
s q 2 : = 0 . 5 * e l e m * s i n ( d i r ) / c o s ( d i r ) ; 
p : = e l e m / c o s ( a l p h a ) ; 
q : = e l e m / c o s ( d i r ) ; 
d v l : = p i * p / ( 2 * l a m b d a ) ; 
d v 2 : = p i * q / ( 2 * l a m b d a ) ; 
b e t a . r e : = - d e l t a t * s i n ( 2 * t h e t a ) - 0 . 5*qhio . r e * ( c o s ( d i r ) / c o s ( a l p h a ) - 1 ) ;' 
b e t a . i m : = 0 ; . ^ 

I - section q 

section B 
c l . r e : = l - k a p p a * q * b e t a . i m ; 
c 2 . r e : = l + k a p p a * q * b e t a . i m ; 
w l : = - k a p p a * q * b e t a . r e ; , _ _ — — — 
d i e l e p . r e : = d v l * q h i m . i m ; 
d i e l e p . i m : = - d v l * q h i m . r e ; 
d i e l e q . r e : = d v 2 ' q h i p . i m ; 
dieleq.im:=-dv2»qhip.re; 
a : = d i e l e p ; 
b : = d i e l e q ; 
c m u l t ( a , b , a b ) ; 

p o i n t _ s e p a r a t i o n : = t r a n s v * k p e r f o ; 
p a c r y : = p o i n t _ s e p a r a c i o n ' c o s ( d i r ) '2; (' f o r ney.t l i n e ') 

maxplane : = t r u n c ( h e i g h t / p a t ry-fO . 5) ; ( " 22 NOV. 1991 " ) 
ma x p l a n e : =maxplaneH-i; (•* 22 MOV. 1991 " ) 

i f d i s l o c a t i o n t h e n d i s l o c n (da, x d i s , z d i s , di:-:, d i z , cn, p a t r y , q, param, ang, rr., r f ) ; 
i f p r e c i p i t a t e t h e n p o i n t d e f ( c , p r n o , p r l i m , i s e e d , x m i n , xmax,ymin, ymax, 

zmin, 2ma:<, xc, y c , z c , gd, param, ang, r n , r f ) ; 
i f c u r v a t u r e t h e n c u r v e d e f ( r a d i u s , g d , p a r a m , ang, r n , r f ) ; 
i f c y l i n d e r t h e n c y l d e f ( v f r a c , x s i , p s i , e p s , x c y l O , y c y l O , z c y l O , z c r i t , c l e n c t h , 

gd, param, ang, r.-., r f ) ; 
i f s t r i p t h e n s t r i p c e f ( f I n t h , ymod, d e l t a , .--cedge, yedge, h o r i z , z d i s p l , 

g d , p a r a m , a n g , r n , r f ) ; 

i f c y l b o x t h e n b o x d e f ( c , p t n o , p t l i m , i s e e d , p s i , e p s , x , y , z, xcy10, y c y 1 0 , z c y 1 0 , rmax, 

i f w i d t h > t r a n s v t h e n x c u r v e : = - w i d t h / 2 e l s e x c u r v e : = 0 ; 

f e n : - e x p ( a b s o r b * s i n ( a l t ) * t r a n s v / ( 2 * c o s ( t h e t a ) ) ) ; 
f o u : = e x p ( - a b s o r b ' s i n ( a l t ) * t r a n s v / c o s ( t h e t a ) ) ; 

(* I n t e g r a t i o n c o n t r o l p a r a m e t e r s *) 

(** m a x p l a n e : = t r u n c ( h e i g h t / p a t r y + 0 . 5 ) ; 22 NOV. 1991 * * ) 
(*' m a x p l a n e : = m a x p l a n e + l ; " **) 

I m a x t : = t r u n c ( t h i c k n e s s / e l e m + 0 . 5 ) ; 
i f t r a n s v > w i d t h t h e n w i d t h : = t r a n s v ; 
I m i n : - t r u n c ( w i d t h / t r a n s v + 1 . 5 ) ; 



i f ( I m a x t + l m i n ) > ( m a x n o - 1 ) t h e n Imax:=maxno-2 e l s e I r a a x : = l m a x t + l i n i n - l ; 
i f i o = 0 t h e n w r i t e l n { ' I m i n = ' , l m i n , ' Imax = ',Imax,' ' , l m a x - l m i n + 1 , ' l a y e r s ' ) 

l i m b e : = m a x n o + l - l m i n ; 

f i e l d : = l / s q r t ( ( l m i n - 1 ) * c o s ( a l p h a ) ) ; 

d i s p l a y ; 

f o r i : = l t o maxno do b e g i n 
p h i [ 1 , i ] . r e : = 0 ; 
p h i [ 1 , i ] . i m : = 0 ; 
p h i [ 2 , i ] . r e : = 0 ; 
p h i [ 2 , i ] . i m : = 0 ; 

end; 
t r a p ; 

(• D i f f ( d s h ) p a r a m e t e r s *) 

s h x l : = - s i n ( d i r ) ; (* 9/3/88 s h x l : = a b s ( c o s ( d i r ) ) ; •) 
s h x 3 : = c o s ( d i r ) ; (* 9/3/88 s h x 2 : = - a b s ( s i n ( d i r ) ) ; *) 

i f d i s l o c a t i o n t h e n b e g i n 
f o r i : = l t o 3 do b e g i n 

c o 3 [ i l - . ^ c n U l * ( s q r ( c n [ i + 6 1 ) + c n [ i + 9 ] ) ; 
c o 4 [ i ] : = 2 * c n [ i + 3 ] * c n ( i + 6 ] ; 
c o 5 [ i ] : = s q r ( e n [ i + 6 ] ) + c n ( i + 9 ] ; 

end; 
a p l : = d a ( l , 3 ] * a b s ( c o s ( d i r ) ) - d a [ l , 1 1 * a b s ( s i n ( d i r ) ) ; 
a p 2 : = d a [ 2 , 3 ] • a b s ( c o s ( d i r ) ) - d a [ 2 , 1 ) ' a b s ( s i n ( d i r ) ) ; 

end; 
yd0:=2; (* *) 
i p : = 2 ; 
i f 10=0 t h e n w r i t e l n ( m a x p l a n e , ' p l a n e s of i n c i d e n c e ' ) ; 
dsh:=0; 

end; 

(• Main Program ') 
( 

b e g i n 
s e t u p ; 

i f d i s l o c a t i o n t h e n b e g i n 
w r i t e l n ( ' p o s i t i o n o f d i s l o c a t i o n i n f i r s t p l a n s ' ) ; 
w r i t e l n C x = ' , x d i s ) ; 
w r i t e l n ( ' z = ' , z d i s ) ; 

end; 

plane_num := 0; 

f o r p l a n e : = 1 t o maxplane J o b e g i n (* l o o p f o r e a c h p l a n e of i n c i d e n c e ') 
i n t e g r a t e ; 
f a c t o r : = e x p ( - a b s o r b * d e p L h / c o s ( a l p h a ) ) ; 

j j : = k p e r f o ; 
r l : = l ; 
f o r k : = l i m i t Co 4999 do b e g i n 

3 i : = j j + l ; 
r e f l e x ( j j ) : = f a c t o r * r l ' ( s q r ( p h i [ 2 , k ] . r e ) + s q r ( p h i [ 2 , k ] . i m ) ) ; 
r l : = r l * f o u ; 

end; 



r e s u l t s ( j j , m a x p l a n e , s t o r e l , s t o r e 2 , d a t a , m i n i , m a x i , r e f l e x , k p e r f o , l i m i t , i p , i o ) ; 
i f p e r f e c t t h e n p e r f e c t : = f a l s e ; 

end; (* p l a n e *) 

i f d i s l o c a t i o n t h e n b e g i n 
w r i t e l n ( ' p o s i t i o n of d i s l o c a t i o n i n l a s t p l a n e ' ) ; 
w r i t e l n ( ' x = ' , x d O ) ; 
w r i t e l n ( ' 2 = ' , z d O ) ; • • 

end; 

j j : = k p e r f o ; 
f o r k : = l i m i t t o 4999 do 

j j : = j j + l ; 

r e s u l t s ( j j , m a x p l a n e , s t o r e l , s t o r e 2 , d a t a , m i n i , m a x i , r e f l e x , k p e r f o , l i m i t , 200, i o ) ; 

c l o s e ( d a t a ) ; 
end. 



Appendix B 

A procedure POINT.P, written in Pascal, is listed, and represents the strain code 
for a precipitate. 

I l l 



(* *) 
(* 1/12/86 Segment c h e c k e d and comments added *) 
(* 11/1/87 A l t e r e d f o r p o i n t d e f e c t *) 
(* 12/2/87 D i f f p o i n t added *) 
(* 9/3/88 db c o r r e c t e d and o u t p u t added *) 
(* 9/3/88 d i f f p o i n t c o r r e c t e d *) 
(* . • - *) 

{* 25/1/91 a j h *) 
(* 25/1/91 a j h *) 
(* RANDOM a j h *) 

• i n c l u d e " g l o b a l s . h " 
# i n c l u d e " a l g e b r a . h " 
• i n c l u d e " c r y s t a l . h " 
• i n c l u d e " p o i n t . h " 

t y p e i v e c t o r = a r r a y [ 1 . . 3 ] o f i n t e g e r ; 

v a r p r n o , p r l i m : i n t e g e r ; 
x c , y c , z c : l a r r a y ; 
i s e e d : i n t e g e r ; 
x b o t , x t o p , y b o t , y t o p , z b o t , z t o p : r e a l ; 

p r o c e d u r e d i f f p o i n t ( v a r d s h : r e a l ; x , y , z , s h x , s h z , c : r e a l ; g d : v e c t o r ) 

v a r r s q r , t 1 , t 2 , d h d x l , d h d x 3 : r e a l ; 
b e g i n 

r s q r : = s q r ( x ) + s q r ( y ) + s q r ( z ) ; 
t 2 : = g d [ l ] * x + g d ( 2 ] * y + g d [ 3 ] * z ; 
t l : = s q r t ( s q r ( r s q r ) * r s q r ) ; 
d h d x l : = ( g d [ l ] - 3 * x * t 2 / r s q r ) / t l ; 
d h d x 3 : = ( g d [ 3 ] - 3 * z * t 2 / r s q r ) / t l ; 
d s h : = d h d x l * s h x + d h d x 3 * s h z ; 
d s h : = c * d s h ; 

end; 

(* 9/3/88 *) 
(* 9/3/88 *) 

p r o c e d u r e p o i n t d e f ( v a r c : r e a i ; v a r p r n o , p r l i m : i n t e g e r ; i s e e d : i n t e g e r ; 
v a r xmin, :-;max, ymin, ymax, zmin, z m a x : r e a l ; v a r xc , y c , zc : l a r r a y , 
v a r g d : v e c t o r ; a , a n g , r n , r f : v e c t o r ) ; (**' RANDOM a i h •»') 

v a r v : v e c t o r ; 
i , m , n : i n t e g e r ; 
s m , s n , s p : r e a l ; 
g , r , d r , d b : m a t r i x ; 
n p , n q : i v e c t o r ; 

b e g i n 
np [ 1 ] : =2 ; np ( 2 : 
n q [ l ] : = 3 ; n q [ 2 : 
r e a d l n ( p r l i m ) ; 
r e a d l n ( c ) 

:=3; 
:=1; 

no [31 
n q l 3 ] 

r e a d l n (xmin, ;<max) ; 
r e a d l n ( y m i n , y m a x ) ; 
r e a d l n ( z m i n , z m a x ) ; 
i s e e d : = s e e d ( w a l l c l o c k ) ; 
f o r p r n o : = l t o p r l i m do b e g i n 

x c [ p r n o ] : = ( x m i n + ( x m a x - x m i n ) * r a n d o m ( 0 ) ) 
y c [ p r n o ] : = (ymin+(ymax-ymin)*random(0) ) 
z c [ p r n o ] : = ( z m i n + { z m a x - z m i n ) * r a n d o m ( 0 ) ) 

end; {* 

23/1/91 a j h 
RANDOM a j h 
RANDOM a j h 
RANDOM a j h 
RANDOM a j h 
RANDOM a j h 
RANDOM a j h 
.OE-06; 
.OE-06; 
.OE-06 

section a 

(* RANDOM *•) 
(* RANDOM **) 
(* RANDOM '*) 

RANDOM a j h 

section 0 

f * * * * * •( f * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ) 

C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s and 
t r a n s f o r m r f r e c i p t o e l a s t i c i t y 

r n r e c i p t o e l a s t i c i t y 



(* * ) 

c r y s t a l ( g , r , d r , a, a n g ) ; 
v e c r o t ( v , r , r f ) ; 
v e c r o t ( r f , d r , v ) ; 
v e c r o t ( v , r , r n ) ; 
v e c r o t ( r n , d r , v ) ; 

(* *) 
(* C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s *) 
(* db e l a s t i c i t y t o e x p e r i m e n t *) 
(* *) 

(» * ) 
(* E x p e r i m e n t a x e s : *) 
(* -X p r o j o f d i f f r a c t i o n v e c t o r on s u r f *) 
C y p e r p e n d i c u l a r t o i n c i d e n c e p l a n e *) 
(• z i n w a r d p e r p e n d i c u l a r t o s u r f a c e *) 
(* * ) 

sm:=0; sn:=0; sp:=0; 
f o r i : = l t o 3 do b e g i n 

s m : = s m + s q r ( r n [ i ] ) ; 
s n : = s n + r n [ i ] ' r f ( i ] ; 

end; 
f o r i : = l t o 3 do b e g i n 

d b [ 3 , i ] : = r n [ i ] / s q r t ( s m ) ; 
d b [ l , i ] : = r n ( i ] * s n / s m - r f [ i ] ; 
s p : = s p + s q r ( d b [ 1 , 1 ] ) ; 

end; 
sm:=0; 
s p : = s q r t ( s p ) ; 
f o r i : = l t o 3 do b e g i n 

d b [ l , i ] : = d b ( l , i ] / s p ; 
end; 
f o r i : = l t o 3 do b e g i n 

m : = n p ( i ] ; 
n : = n q [ i ] ; 
d b [ 2 , i ] : = d b [ 1 , n ] ' d b L 3 , m ] - d b [ l , m l " d h i l . n ] ; 

end; 

(» 9/3/88 d b [ l , i ] : = r f [ i ] - r n ( i ] ' s n / s m ; 

v e c r o t ( g d , d b . :) ; 

w r i t e l n ; 
w r i t e l n C I n e x p e r i m e n t a l c o o r d i n a t e s d i f f r a c t i o n v e c t o r i s ' ) ; 
w r i t e l n { g d [ l ] ,"' ' , g d [ 2 ] , ' ' , g d [ 3 ] ) ; 
w r i t e l n ; 
w r i t e l n ( ' P O I N T D E F E C T ' ) ; 
w r i t e l n ; 
w r i t e l n ( ' P R E C I P I T A T E COORDS ( m i c r o n s ) ARE : ' ) ; 

f o r p r n o : = l t o p r l i m do b e g i n 
w r i t e l n ( x c ( p r n o ] * 1 E 0 6 , y c [ p r n o ] * 1 E 0 6 , z c [ p r n o ] ' 1 E 0 6 ) ; 

end; 
w r i t e l n ; 
w r i t e l n ( ' S i z e p a r a m e t e r i s ' , c ) ; 
w r i t e l n ; 

end; 

• 25/1/91 a j h • 



Appendix C 

A procedure CURVE.P, written in Pascal, is listed, and represents the strain code 
for a curved crystal. 
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(* *) 
(* 13/3/87 Segment w r i t t e n *) 
(* 17/5/55 db m a t r i x c o r r e c t e d *) 
(* *) 
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ) 

•#include. " g l o b a l s . h " . 
# i n c i u d e " a l g e b r a . h " . 
# i n c l u d e " c r y s t a l . h " 
# i n c l u d e " c u r v e . h " 

t y p e i v e c t o r = a r r a y ( l . . 3 ] o f i n t e g e r ; 

p r o c e d u r e d i f f c u r v e ( v a r d s h : r e a l ; x , z , s h l , s h 2 , t , r : r e a l ; g d : v e c t o r ) 

v a r v l , v 2 , t h e t a , x b a r , v b a r , d h d x l , d h d x 2 : r e a l ; 
b e g i n 

v l : = z - t / 2 ; 
v 2 :=r+z; 
t h e t a : = a r c t a n ( x / ( s q r t ( l - s q r ( x / v 2 ) ) * v 2 ) ) ; 
x b a r : = x / v 2 ; 
v b a r : = v l / v 2 ; 
d h d x l : = ( g d [ l ] * ( l - : < b a r ' ( x b a r - t h e t a ) ) -

g d [ 3 ] * ( x b a r * ( l - s q r ( x b a r ) ) + t h e t a ' ( l - s q r ( x b a r ) ) ) ) * v b a r ; 
d h d x l : = d h d x l - g d [ 3 ] * x b a r * ( l - s q r ( x b a r ) ) ; 

d h d x 2 : = t h e t a * ( g d [ 1 ] - g d [ 3 ] * ( 1 - v b a r ) * x b a r ) ; 
dhdx2:=dhdx2-gd(3] 'vl-:<bar; 

(• t h e t a : = x / ( r + t / 2 ) ; 
r r 

d h d x l 
dhd:<2 

dsh 
end; 

= ( r + z ) / ( r + t / 2 ) ; 
=gd[1]»rr'(cos(theta)-1) - g d [ 3 j " r r • s i n ( t h e t a ) ; 
= g d ( 1 ] ' s i n ( t h e t a l + g d [ 3 ) • ( c o s ( t h e t a ) - 1 ) ; *) 
=dhdxl*shl+dhd;-:2 •3h2; 

p r o c e d u r e c u r v e d e f ( v a r r a d i u s : r e a l ; v a r g d : v e c t o r ; 
a , a n c , r n , r f : v e c t o r ) ; 

1 
corpse n p = i v e c t o r ( 2 , 3, 1) ; 

n q = i v e c t o r ( 3 , 1 , 2 ) ; 
1 
v a r v : v e c t o r ; 

i , m , n : i n t e g e r ; 
s m , s n , s p : r e a l ; 
g, c , d r , d b : m a t r i : : ; 
n p , n q : i v e c t o r ; 

b e g i n 
n D ( l ] : = 2 ; n p [ 2 ] : = 3 ; n D ( 3 ] : = l ; 
n q [ l ] : = 3 ; n q [ 2 ] : = 1 ; nq[31:=2; 
r e a d i n ( r a d i u s ) ; 
w r i t e ( ' R a d i u s of c u r v a t u r e ' ) ; 
w r i t e i n ( r a d i u s : 1 . 3 , ' m e t r e ' ) ; 

« * 
• C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s and * 

t r a n s f o r m r f r e c i p t o e l a s t i c i t y * 
r n r e c i p t o e l a s t i c i t y * 

c r y s t a l ( g , r , d r , a , a n g ) ; 
v e c r o t ( v , r , r f ) ; 
v e c r o t ( r f , d r , V ) ; 



v e c r o t ( V , r , r n ) ; 
v e c r o t ( r n , d r , v ) ; 

»»«.»«*»«*»**»**«***»*«*«*»••*»«*«*»•**»»»**»*«*) 
*) 

• C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s *) 
• db e l a s t i c i t y t o e x p e r i m e n t *) 

*•«•**«*«*****•*************«•**-***********»***•**) 

* E x p e r i m e n t a x e s : 
* X 

*) 
*) 

' y p e r p e n d i c u l a r t o i n c i d e n c e p l a n e *) 
z i n w a r d p e r p e n d i c u l a r t o s u r f a c e *) 

*) 

sm:=0; sn:="0; sp:=0; 
f o r i : = l t o 3 do b e g i n 

s m : = s m + s q r ( r n [ i j ) ; 
s n : = s n + r n [ i ] * r f [ i ] ; 

end; 
f o r i : = l t o 3 do b e g i n 

d b ( 3 , i ] : = r n [ i ] / s q r t ( s m ) ; 
d b ( l , i ] : = r n ( i l ' s n / s m - r f [ i ] ; 
s p : = s p + s q r ( d b [ 1 , 1 ] ) ; 

end; 
w r i t e i n C d b c o r r e c t e d ' ) ; 
sm:=0; 
s p : = s q r t ( s p ) ; 
f o r i : = l t o 3 do b e g i n 

d b [ l , i ] : = d b [ l , i ] / s p ; 
end; 
f o r i : = l t o 3 do b e g i n 

n: = n p [ i ) ; 
n : = n q [ i ] ; 
d b [ 2 , i ] : = d b ; 1 , n l - d b l 3 , m ] - d b ( l , m ] ' d b ( 3 , n 

(* 17/5/88 d b [ l , i ] : = r f [ i ] - r n [ i ] * s n / s m ; *) 

(• 17/5/88 *) 

v e c r o t ( g d , d b , r f ) 

ind ; 



Appendix D 

A procedure DISLOC.P, written in Pascal, is listed in APPENDIX Dl , and rep
resents the strain code for a dislocation. The procedure DISLCALC.P, listed in 
APPENDIX D2, is used to calculate the elastic parameters of the dislocation. 
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APPENDIX Dl 

1/12/86 Segment c h e c k e d and comments added *) 
' 12/2/87 D i f f d i s l p r o c e d u r e added *) 
' 3/11/87 D i s l a l t e r e d t o R e c i p . L a t t i c e i / p *) 

3/11/87 C o r r e c t e d x d i r e c t i o n i n m a t r i x db *) 
' • . - -*) 

• i n c l u d e " g l o b a l s . h " 

t y p e i v e c t o r = a r r a y [ 1 . . 3 ] o f i n t e g e r ; 
c m a t r i x = a r r a y [ 1 . . 3 , 1 . . 3 ] o f complex; 
c v e c t o r = a r r a y [ 1 . . 3 ] o f complex; 
c a r r a y = a r r a y [ 1 . . 1 2 ] o f r e a l ; 

• i n c l u d e " c o m p l e x . h " 
• i n c l u d e " c r y s t a l . h " 
• i n c l u d e " a l g e b r a . h " 
• i n c l u d e " d i s l c a l c . h " 
• i n c l u d e " d i s l o c . h " 

p r o c e d u r e d i f f d i s l ( v a r d s h : r e a l ; x l , x 2 , a p l , a p 2 : r e a l ; c o 3 , c o 4 , c o 5 : v e c t o r ; 
c n : c a r r a y ) ; 

v a r x 4 , d h l x l , d h l x 2 : r e a l ; 
c o l , c o 2 : v e c t o r ; 
i : i n t e g e r ; 

b e g i n 
i f a b s ( x 2 ) > = 0 . l E - l O t h e n b e g i n 

x 4 : = s q r ( x 2 ) ; 
d h l x l : = 0 ; 
d h l x 2 : = 0 ; 
f o r i : = l t o 3 do O e g m 

c o l [ i ] :=:-:l-cn ( i - c ' ! -:-:2; 
co2 [ i ] : =x2 ' 0 0 3 i - ; ; 

t e m p 2 ; = c n [ i i ' x l ; 
-emp2 : = temp2 + c n [ i - 3 ] •'x2 
-emp2:=temp2/ ( s q r ( c o l [ i ] ) -^cn [ i-^91 • ••A ) 
dhl:-:2 : = d h I x 2 + temp2; 
t e m p i : = c o 4 [ i ] * x 2 - c o 2 [ i ] 
t e m p i : =tempi-'-cn [ i ^ 3 ; *:<1 

i i ] ) + c n [ i + 9] • •A) * c o 5 [ i ] ) ; 
d h l : - : l : =dh 1;-: 1-temc 1; 
dhl:-:2 : =dhl:-;2 ̂  (cr. ; i ; •:<1 •rcn i i - ^ 3 ] ' x 2 ) / ( s q r ( c o l [ i ] ) -
d h i x l : = d h l : - : l ^ (cr. ; i - 3 ] ' •:l-co2 [ i ] +co4 [ i 1 ' :-:2) / 

*) 

( ( s q r ( c o l [ i J ) - ^ c n [ i + 9 j ' : - : 4 ) ' c o 5 [ i ] ) ; 
e n d ; 
d s h : = d h l x l * a p l + d h i : - : 2 * a p 2 ; 

e n d ; 
e n d ; 

p r o c e d u r e d i s l o c n ( v a r d a : m a t r i x ; v a r x c , z c , d i x , d i z : r e a l ; 
v a r c n : c a r r a y ; p a t r y , q : r e a l ; a , a n g , r n , r f : v e c t o r ) ; 

{ 
c o n s t n p = i v e c t o r ( 2 , 3 , 1 ) ; 

n q = i v e c t o r ( 3 , 1 , 2 l ; 
} 
v a r b , d i s l , V , g d , b d : v e c t o r ; 

i , j , k, 1, m, n, mn : i n t e g e r ; 
s m , s n , s p : r e a l ; 
b t : a r r a y [ 1 . .21] of r e a l ; 
g, r , d r , db, d c , h : m a t r i x ; 



c c , c : t e n s o r ; 
d , p , s u : c v e c t o r ; 
e l , e m , a 2 , u , v 2 : c m a t r i x ; 
n p , n q : i v e c t o r ; 

p r o c e d u r e i n i t i a l i s e ; 

-begin . -
.• n p t l l ' : = 2 ; np [2 ] •: =3; ^np [ 3 ] : =1; : 

nq [ 1 ] : =3; nq [ 2 ] : =1; .nq [ 31 : =2; 
r e a d l n ( b ( l ] , b [ 2 ] , b [ 3 ] , d i s l [ l ] , d i s l ( 2 ] , d i s l [ 3 ] ) ; 
w r i t e l n C B u r g e r s v e c t o r = ' , b [ l ] :1:3,' ' , b [ 2 ] : l : 3 , ' ' , b [ 3 ] : l : 3 ) , 
w r i t e l n C d i s l o c a t i o n o r i e n t a t i o n ' , d i s l [ 1] : 1:0,' ', d i s l (2 ] : 1: 0,' 

d i s l ( 3 ] : 1 : 0 ) ; 
r e a d i n ( x c , z c ) ; 
w r i t e ( ' p o s i t i o n o f t h e c o r e i n t h e f i r s t p l a n e ' ) ; 
w r i t e l n ( x c : 1 : 3 , ' ' , z c : l : 3 , ' m i c r o n s ' ) ; 
w r i t e l n C e l a s t i c s t i f f n e s s e s ' ) ; 

end; 

begi.i 
i n i t i a l i s e ; 

r « * * * « * 

C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s and 
t r a n s f o r m b c r y s t a l t o e l a s t i c i t y 

r f r e c i p t o e l a s t i c i t y 
r n r e c i p t o e l a s t i c i t y 
d i s l r e c i p t o e l a s t i c i t y 

r * * * * * . 

c r y s t a l ( g , r , d r , a , a n g ) 
v e c r o c ( V , d r , b ) 
b: =v; 
v e : r o t ( v , r , r f ) 
v e c r o c ( r f , d r , V ) 
v e c r o t ( V , r , r n ) 
v e c r o t ( r n , d r , v ) ; 

v e c r o t ( V , r , d i s l ) ; 
v e c r o t ( d i s l , d r , v ) ; 

r * * * * * I 

; a l c u l a t e t r a r . s f c r m a c i o n m a t r i x 
db e l a s t i c i t y t o e x p e r i m e n t 

E x p e r i m e n t a x e s : 
X p r o j e c t i o n o f o p p o s i t e d i r e c t i o n 

t o d i f f r a c t i o n v e c t o r o n t o s u r f a c e 
y p e r p e n d i c u l a r t o i n c i d e n c e p l a n e 
z i n w a r d p e r p e n d i c u l a r t o s u r f a c e 

* * * * * * ^ r * * ̂  

sm:=0; sn:=0; sp:=0; 
f o r i : = l t o 3 do b e g i n 

s m : = s m + s q r ( r n [ i ] ) ; 
s n : = s n + r n [ i ] * r f [ i ] ; 

end; 
f o r i : = l t o 3 do b e g i n 

d b [ 3 , i ] : = r n [ i ] / s q r t ( s m ) 



db(l,i]:=rn[i]»sn/sm-rf[i]; 
w r i t e l n C NEW V E R S I O N ' ) ; 

s p : = s p + s q r ( d b [ l , i l ) ; 
end; 
s p : = s q r t ( S p ) ; 
f o r i : = l t o 3 do d b ( 1 , i j : = d b ( 1 , i 1 / s p ; 
f o r i : = l t o 3 do b e g i n 

m:.=np[i] ; 
• n : = n q [ i ] ; • ' 
d b [ 2 , i l : = d b ( l , n ] * d b [ 3 , m l - d b [ l , m ] * d b [ 3 , n ] ; 

end; 

(* d b [ l , i ] : = r f [ i ] - r n [ i ] * s n / s m ; 

*********************************************** 
* 

T r a n s f o r m d i s l e l a s t i c i t y t o e x p e r i m e n t * 
* 

v e c r o t ( v , d b , d i s l ) ; 
d i s l : = v ; 
sm:-0; 
f o r i : = l t o 3 do s m : = s m + s q r ( d i s l [ i ] ) ; 
s m : = s q r t ( s m ) ; 
f o r i : = l t o 3 do d i s l I i ] :='disl [ i ] / s m ; 
i f d i s l [ 2 ] = 0 t h e n d i s l [ 2 ] : = 1 E - 1 0 
e l s e i f d i s l ( 2 ] < 0 t h e n f o r i : = l t o 3 do d i s l [ i ] : = - d i s l ( i ] ; 
w r i t e l n C d i s l o c a t i o n d i r e c t i o n ' , d i s l [ 1 ] : 1: 3,' ' , d i s l (2 ] : 1: 3, ' 

d i s l [ 3 ] :1:3) 
d i x : = p a t r y * d i s l [ 1 ] / d i s l [ 2 ] ; 
d i z : = p a t r y * d i s l ( 3 ] / d i s l ( 2 ) ; 

,*********< 

C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s 
da e x p e r i m e n t t o d i s l o c a t i o n 
dc e l a s t i c i t y t o d i s l o c a t i o n 

) i s l o c a t i o n a x e s : 
1 l i e s i n p l a n e of i n c i d e n c e 
2 
3 p a r a l l e l t o d i s l o c a t i o n l i n e 

r * * * * * < 

sm:=0; 
f o r i : = l t o 3 do b e g i n 

d a [ 3 , i ) : = d i s l [ i ] ; 
s m : = s m + s q r ( d a [ 3 , i ] ) ; 

end; 
i f ( d i s l [ l ] = 0 ) and ( 3 i s l ( 3 1 = 0 ) t h e n b e g i n 

da 11,1 ] 
da [1,2 ] 
da [1,3 i 

end e l s e b e g i n 
s p : = s q r t ( s q r ( d i s l ( 1 ] ) + s q r ( d i s l 1 3 ] ) ) ; 
d a [ l , 1 ] : = d i s l ( 3 ] / s o ; 
d a [ 1 , 2 ] :=0; 
d a d , 3 ] : = - d i s l [ l l / s p ; 

end; 
f o r i : = l t o 3 do d a [ 3 , i 1 : = d a [ 3 , i 1 / s q r t ( s m ) , 
f o r i : = l CO 3 do b e g i n 

m : = n p [ i ] ; 
n : = n q [ i l ; 
d a ( 2 , i ] : = d a t l , n ] <'da(3,m]-da[l,ml * d a [ 3 , n] 

end; 



t * ) 
• C a l c u l a t e dc=da*db *) 
t * \ 

f o r - i : = l -to 3 do b e g i n 
f o r j : = l to'3- do b e g i n -

d c [ i , j ] : = 0 ; 
f o r k : = l t o 3 do d c [ i , j ] : = d c [ i , j ] + d a ( i , k ] * d b [ k , j ] ; 

end; 
end; 

r *) 
' Read i n e l a s t i c c o n s t a n t s and p r i n t o ut *) 
* * 1 
»«•*****•*******•-»**•***************•********•****) 

f o r i : = l t o 10 do r e a d ( b t [ i l ) ; r e a d l n ( b t [ 1 1 ] ) ; 
f o r i : - 1 2 t o 21 do r e a d ( b t [ i ] ) ; 
f o r m:=l t o 6 do b e g i n 

f o r n : = l t o 6 do b e g i n 
m n : = m + t r u n c ( ( 1 2 - n ) * ( n - l ) / 2 ) ; 
c c ( m , n ] : = b t [ m n ] ; 
c c i n , m ] : = b t [ m n ] ; 

end; 
end; 
f o r i : = l t o 6 do b e g i n 

f o r j : = l t o i do w r i t e ( c c [ i , j ] : 8 : 3 ) ; 
w r i t e l n ; 

end; 
t e n s r o t ( c , c c , d c ) ; 
v e c r o t ( g d , d c , r f ) ; 
f o r i : = l t o 3 do v ! i : : = b ( i ] ' q / 2 ; 
v e c r o t ( b d , d c , v ) ; 
• i e f c a I c ( h , e l , e.Ti, a2 , p, c) ; 
f o r i : = l t o 3 do b e g i n 

s u [ i ) . r e : = 0 ; 
s u [ i J .im:=0; 
f o r k : = l t o 3 do b e g i n 

s u [ i ] . r e :=su [ i ) . re-fgd ( k ] * a 2 ( k , i l . r e ; 
s u [ i ] . i m : = s u ( i ] . im-rgd [ k ] *a2 [ k, i ] . im; 

end; 
c m u l t ( s u ( i ] , p ( i ] , d [ i ] ) ; 

end; 
f o r i : = l t o 3 do b e g i n 

f o r 1:=1 t o 3 do b e g i n 
u [ 1, 1 ] . r e : =0 ; 
u [ i , 1 ] . i m : = 0 ; 
f o r j : = l t o 3 do b e g i n 

u [ i , 1 ] . r e : = u ( i , 1 ] . r e + e m ( i , j ] . r e * h ( j , 1] ; 
u [ i , 1 1 . i m : = u [ i , 1 ] . i m + e m i i , j ] .im»h[j,1]; 

end; 
end; 

end; 
f o r i : = l t o 3 do b e g i n 

f o r 1:=1 t o 3 do c m u l t ( d ( i ] , u [ i , 1 ] , v 2 ( i , 1 ) ) ; 
end; 
f o r i : = l t o 3 do b e g i n 

f o r 1:=1 t o 3 do u [ i , 1 ] . i m : = v 2 [ i , 1 ] . r e ' p [ i ] . r e + v 2 [ i , 1 ] . i m * p ( i ] . i m ; 
end; 
f o r j : = l t o 3 do b e g i n 

c n [ j + 6 ] : - p ( j l . r e ; 
c n [ j + 9] : = s q r ( p ( j ] . i m ) ; 



c n [ j ] : = 0 ; 
c n [ j + 3 ] : = 0 ; 
f o r 1:=1 t o 3 do b e g i n 

c n [ j ] : = c n [ j ] + v 2 [ j , l ] . r e * b d [ l ] ; 
c n [ j + 3 ] : = c n [ j + 3 ] + u [ . i m * b d [ l ] 

end; 
end; 

end; 



A P P E N D I X D 2 

*) 
* 21/11/86 Segment c h e c k e d and comments added *) 

*) 
• k i t i r i r i ( i r * 1 ( i r i ( * i r i r i r i r 1 r i r i c i r i r i t i r i i i r i r i i 1 t * * * i r i r i r i r * i r i t * * * 1 i i r * i r i f i i i r i t i r ^ 

,) 
* R e f e r e n c e s : *) 

- - • • - . ') 
* H i r t h & L o t h e " T h e o r y . o f D i s l o c a t i o n s " .p418 •*) 
* S t r o h P h i l . Mag. 3 D625 (1958) *) 

*) 

# i n c l u d e " g l o b a l s . h " 
• i n c l u d e " c o m p l e x . h " 
• i n c l u d e "newton.h" 

t y p e q u a d r a t i c = a r r a y [ 1 . . 3 ] o f r e a l ; 
i v e c t o r = a r r a y [ 1 . . 3 ] o f i n t e g e r ; 
c m a t r i z = a r r a y [ 1 . . 3 , 1 . . 3 ] o f complex; 
c v e c t o r = a r r a y [ 1 . .3] o f complex; 

p r o c e d u r e d e f c a l c ( v a r h : m a t r i x ; v a r e l , e m , a : c m a t r i x ; v a r p : c v e c t o r ; c : t e n s o r ) , 

v a r i , j,k.,l,m, n , n 2 , i l , i 2 , j l , j 2 , n i , n k , m k , t , k l , k 2 : i n t e g e r ; 
q l , q 2 , q 3 , q 4 , q 5 , q 6 : q u a d r a t i c ; 
q q 2 , q q 3 , q q : c o e f f i c i e n t s ; 
2, dum, duml, dum2, pp, sq, x, y, d e l , aum, z e r o : c o m p l e x ; 
np,nq,mm,nn:ivector; 
b : m a t r i x ; 
d: c r a a t r i x ; 

b e g i n 
np [ 1 ] :=2; n p ( 2 J :=3 n p ( 3 1 : =1 
nq [ 1 ! :=3; n q ( 2 i : = 1 n q [ 3 ! :=2 
mm [ 1 ] : = 1; mm [ 2 j : =6 mm ( 3 1 :=5 
nn f i j : =6; n n [ 2 ] :=2 nn ( 3 1 : =4 
z e r o . r e : = 0 ; z e r o . i m = 0; 

w K w tr K f, * , „ „ » *r «r « « * * * « 

C o e f f i c i e n t s o f ( 1 3 - 8 6 ) H i r t h & L o t h e 

q l [1] =c 1,1] a l [2 ; = 2 * c ( l . 6] ; q l [ 3 ] : = c [ 6 , 6 ] ; 
a2 i 11 =c 6,6] q2 [ 2 : =2"c ( 2 , 6] ; G 2 [ 3 ] : = c [ 2 , 2 ] ; 
q 3 i l ] =c 5,5] q 3 l 2 : = 2 " c ( 4 . 5] ; q 3 [ 3 ] ; =c ( 4,4 ] ; 
q4 [1] =c 1 , 6 ] q4 [ 2 ; = c l l , 2 ] + c ( 6 , 6 ) ; q 4 [ 3 ] : = c ( 6 , 2 ] ; 
q 5 [ l ] =c 1,51 o5 f 2 ; - c [ l , 4 ] + 0 ( 6 , 5 ) ; q 5 [ 3 ] : = c ( 6 , 4 1 ; 
a5 11 ] =c 5, 6] q6 i 2 i = c [ 6 , 4 1 + c ( 2 , 5 ) ; q 6 [ 3 ] :=C[4,21 ; 

C o e f f i c i e n t s o f (13-85) H i r t h 4 L o t h e * 
•k + 

f o r i : = l t o 7 do q q ( i ] : = z e r o ; 
f o r i : = l t o 3 do b e g i n 

f o r i : = l t o 3 do b e g i n 
f o r k : = l t o 3 do b e g i n 

t : = i + j + k - 2 ; 
q q [ t ] . r e : = q q [ t l . r e + q 3 [ i ] • q 2 [ j ] * q l [ k ] + 2 * q 6 [ i ] *q5 [ j ] *q4 ( k ] 



end; 
end; 

end; 

- q 6 [ i ] * q 6 [ j ] ' q l [ k ) - q 5 [ i ] * q 5 ( j ] * q 2 [ k ] - q 4 ( i ] * q 4 [ j ] * q 3 [ k ] 

S o l u t i o n of- (13-85) H i r t h & .Lothe 

f o r i : = l t o 7 do b e g i n 
q q [ i ] . r e : = q q [ i ] . r e / q q [ 7 ] . r e ; 
q q [ i ] . i m : = 0 ; 

end; 
z. r e : =0.1; z . i m : = l ; 
s o l v e ( 6 , q q , q q 2 , z , f a l s e ) ; 
p [ l ] . r e : = z . r e ; 
p [ l ] . i m r ^ a b s ( z . i r a ) ; 
z.im:=-z.im; 
s o l v e ( 5 , q q 2 , q q 3 , z , f a l s e ) ; 
z . r e : = 0 . 5 ; z.im:=0.9; 
s o l v e (4 , qq3, qq2, z, f a l s e ) ; 

( ' s o l v e ( 6 , q q , q q 3 , z , f a l s e ) ; * ) 
p [ 2 ] . r e : = z . r e ; 
p [ 2 ] . i m : = a b s ( z . i m ) ; 
z.im:=-z.im; 
s o l v e ( 3, qq2, qq3, z, f a l s e ) ; 
z . r e : = - z . r e ; 
s o l v e ( 2 , q q 3 , q q 2 , z , f a l s e ) ; 

( * s o i v e (6, qq, q q 3 , z , f a l s e ) ; * ) 
p [ 3 ] . r e : = z . r e ; 
p i 3] . i m : = a b s ( z . i m ) ; 

S o r t s o l u t i o n s ?n i n t o c o r r e c t o r d e r 

z . r e : = - c [ 4 , 5 ] / c i 4 , 4 i ; 
z. i.-n:=sqrt ( a b s (c ( 4 , 4 ] - c i S , 5) - s q r (c (4 , 5 ] ) ) ) / c [ 4 , 4 J ; 
f o r n 2 : = l t o 2 do 
b e g i n 

i f { s q r ( z . r e - p [ n 2 ] . r e ) - s q r ( z . i m - p [ n 2 ] . i m ) 
s q r ( z . r e - p [n 2 • ^ l l . im) - s q r (z . im-p (n2 + l ] . im) ) <0 t h e n 

b e g i n 
dum:=p[n21; 
p ( n 2 ! : = p [ n 2 ^ : i ; 
p [ n2 + l ] :=dum; 

end; 

(* C a l c u l a t e d ( i , k ) = a i k ( n ) ( 1 3 - 8 6 ) H i r t h s L o t h e * 
(' 

f o r n : = l t o 3 do b e g i n 
p p : = p ( n ] ; 
s q . r e : = s q r ( p p . r e ) - s q r ( p p . i m ) ; 
sq.im:=2*pp.re*pp.im; 
d [ l , 1 ] . r e : = c ( l , l ] + 2 * c [ l , 6 ] * p p . r e + c [ 6 , 6 ] * s q . r e ; 
d ( l , l ] . i m : = 2 * c [ l , 6 ] * p p . i m + c [ 6 , 6 ] * s q . i m ; 
d [ 2 , 2 ] . r e : = c ( 6 , 6 ] + 2 * c ( 2 , 6 ] * p p . r e + c [ 2 , 2 ] * s q . r e ; 



d [ 2 , 2 
d [ 3 , 3 
d [ 3 , 3 
d [ l , 2 
d [ l , 2 
d [ 2 , 1 
d [ l , 3 
d [ l , 3 
•d[3,1 
d [ 2 , 3 
d ( 2 , 3 
d [ 3 , 2 

. im: 

. r e : = 

. im: 

. r e : 

. im: 
: = d ( l 
. r e : 
. im: 
:=d[.l 
. r e : 
. im: 
:=d(2 

2 * 0 [ 2 , 6 ] * p p . i m + c [ 2 , 2 ] * s q . i m ; 
c ( 5 , 5 ] + 2 * c [ 4 , 5 1 * p p . r e + c [ 4 , 4 ] * s q . r e ; 
^ 2 * c [ 4 , 5 ] * p p . i m + c [ 4 , 4 ] * s q . i m ; 
c [ l , 6 ] + ( c [ l , 2 ] + c [ 6 , 6 ] ) • p p . r e + c [ 2 , 6 ] * s q . r e ; 
' ( c [ l , 2 ] + c [ 6 , 6 ] ) * p p . i m + c ( 2 , 6 ] * s q . i m ; 
, 2 ] ; 
c ( l , 5 ] + ( c [ l , 4 ] + c [ 5 , 6 ] ) * p p . r e + c [ 4 , 6 ] * s q . r e ; 
( c [. 1, 4 ] +c [ 5, 6 ] )"*pp . im+c [ 4, 6 ] * s q . im;-
,3] ; 
^ c [ 5 , 6 ] + ( c [ 4 , 6 ] + c [ 2 , 5 ] ) * p p . r e + c [ 2 , 4 ] * s q . r e ; 
• ( c [ 4 , 6 ] + c [ 2 , 5 ] ) * p p . i m + c [ 2 , 4 ] * s q . i m ; 
, 3 ] ; 

k * \ 

* S o l v e ( 1 3 - 8 7 ) t o g e t a ( k , n ) - A k ( n ) *) 
* *) 

i : = n p [ n ] ; 
j : = n q [ n ] ; 
f o r k : - l t o 3 do b e g i n 

l : - n p [ k ] ; 
m : = n q [ k ] ; 
c m u l t ( d ( i , 1 ] , d [ j , m ] , d u m l ) ; 
c m u l t ( d [ i , m ] , d ( j , 1 ] , d u m 2 ) ; 
c s u b ( d u m l , d u m 2 , a [ k , n ] ) ; 

end; (* k l o o p •) 
end; (» n l o o p *) 

C a l c u l a t e B i 2 k ( n ) 
and h e n c e 

e l ( i , n ) = B i 2 k ( n ) A k ( n ) 
= L i ( a ) 

( 1 3 - 9 0 ) H i r t h S. L o t h e 

(14) S t r o h 

f o r i : = l t o 3 do b e g i n 
r.i :=nn [ i ] ; 
f o r n : = l t o 3 do b e g i n 

x . r e : = 0 ; 
:<. im: =0; 
f o r k : = l t o 3 dc b e g i n 

n k : = n n [ k ] ; 
.Tik : =mm [ k ] ; 
y . r e : = c [ n i , m k ] + C [ n i , n k ] * p [ n ] . r e ; 
y . i m : = c [ n i , n k ] ' p [ n ] . i m ; 
c m u l t ( y , a [ k , n ] , d u m l ) ; 
c a d d ( x , d u m l , x ) ; 

end; (* k l o o p ') 
e l [ i , n ] : = x ; 

end; (* n l o o p *) 
end; (* i l o o p *) 

r * * * * * 1 r * * * * * * * * * * * * * * * * * * r * * * * * * * < 

C a l c u l a t e e m ( j , k ) = M a i (37) S t r o h 

r * » * * * * * * * * * * * i r * * * * * * * * * * * * * * * * * * * * * * * * 

f o r j : = l t o 3 do b e g i n 
j l : = n p [ j ] ; 
j 2 : - n q [ j ] ; 
f o r k : = l t o 3 do b e g i n 



k l : = n p [ k ] ; 
k 2 : = n q [ k ] ; 
c m u l t ( e l [ j l , k l ] , e l [ j 2 , k 2 ] , d u m l ) ; 
c m u l t ( e l ( j l , k 2 ] , e l [ j 2 , k l ] , d u m 2 ) ; 
c s u b ( d u m l , d u m 2 , e m [ k , j ] ) ; 

end; (* k l o o p *) 
end; ( * j l o o p *) 

d e l . r e : = 0 ; ' ' • 
d e l . i m : = 0 ; 
f o r j : = l t o 3 do b e g i n 

c m u l t ( e l [ 3 , j ] , e m ( j , 3 ] , d u m l ) ; 
c a d d ( d e l , d u m l , d e l ) ; 

end; (* j l o o p *) 
a u m . r e : = d e l . r e / ( s q r ( d e l . r e ) + s q r ( d e l . i m ) ) ; 
a u m . i m : = - d e l . i m / ( s q r ( d e l . r e ) + s q r ( d e l . im) ) ; 
f o r j : = l t o 3 do b e g i n 

f o r k : = l t o 3 do b e g i n 
c m u l t ( e m [ j , k l , a u m , d u m l ) ; 
e m ( j , k ] : = d u m l ; 

end; (* k l o o p ') 
end; (* j l o o p *) 

C a l c u l a t e b [ i , j l = 3 i j 

r « W * » * « « 

(40) S t r o h 

r « * * T» ir « 

f o r i : = l t o 3 do b e g i n 
f o r j : = l t o 3 do b e g i n 

b ( i , j ] :=0; 
f o r k : = l t o 3 do b e g i n 

c m u l t ( a ( i , k l , e m [ k , j ] , d u m l ) ; 
b [ i , j ] : = b ( i , j ] - d u m l . i m ; 

end; (' k l o o p ') 
r n d ; (* j l o o p ') 

e n c ; (' i l o o p ') 

C a l c u l a t e h i i , j j = i n v e r s e of B i j 

f o r i : = l t o 3 do b e a i n 
i l : = n p [ i l ; 
i 2 : = n q [ i ] ; 
f o r j : = l t o 3 do b e g i n 

. j l :=np[ j ] ; 
j 2 : = n q [ j ] ; 
h [ i , j l : = b ( i l , j l j ' b l i 2 , j 2 ] - b [ i l , j 2 ] ' b [ i 2 , i U ; 

end; (* j l o o p ') 
end; {• i l o o p *) 
d e l . r e : = b [ 3 , 1 ] • h ( 3 , i i + b [ 3 , 2 1 * h ( 3 , 2 1 + b [ 3 , 3 ] - h [ 3 , 3 1 
f o r i : = l t o 3 do b e g i n 

f o r j : = l t o 3 do h [ i , j ] : = h [ i , j 1 / d e l . r e ; 
end; (* i l o o p *) 

end; 



Appendix E 

A procedure CYLINDER.P, written in Pascal, is listed, and represents the strain 
code for a cylindrical inclusion. 
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(*************«********«*************************\ 

24/4/91 P r o c e d u r e s f o r c a l c u l a t i n g t h e 
s t r a i n - f i e l d & i n p u t t i n g t h e 
d e f e c t d a t a f o r a c y l i n d r i c a l 
d e f e c t . 

******** ****************************************) 
# i n c l u d e " g l o b a l s . h " 
# i n c l u d e " a l g e b r a . h " 
# i n c l u d e " c r y s t a l . h " 

# i n c l u d e " c y l i n d e r . h " (*** c y l i n d e r * * * ) 

t y p e i v e c t o r = a r r a y [ 1 . . 3 ] o f i n t e g e r ; 

c o n s t p i = 3 . 1 4 1 5 9 ; 

v a r x c y l O , y c y l O , z c y l O , v f r a c , x s i , p s i , e p s , z c r i t , c l e n g t h , d i r : r e a l ; 

p r o c e d u r e d i f f c y l ( v a r d s h : r e a l ; x , y , z , x s i , p s i , e p s : r e a l ; g d : v e c t o r ) ; 
v a r a c y l , s , t , u , e s s , e t t , e s t , e t s , g s , g t l , g t 2 , g t , s h s , s h t : r e a l ; (»' 

t l , t 2 , u l , u 2 : r e a l ; (*" 
x c r i t , y c r i t , c y l i n c , u c r i t , u c r i t l , u c r i t 2 : r e a l ; (*•' 
u t e s t l , u t e s t 2 , p s i t e s t , e p s t e s t : b o o l e a n ; («' 

b e g i n 
a c y l : = - v f r a c * 1 . 2 8 / 2 . 1 6 ; (*** FOR S i ONLY, i . e . nu = 0.28 ' * * ) 
i f p s i = 9 0 . 0 * p i / 1 8 0 . 0 t h e n p s i t e s t : = t r u e ; ' 
i f p s i = 2 7 0 . 0 * p i / 1 8 0 . 0 t h e n p s i t e s t : = t r u e ; 
i f e p s = 9 0 . 0 * p i / 1 8 0 . 0 t h e n e p s t e s t : = t r u e ; 
i f e p s = 2 7 0 . 0 * p i / 1 8 0 . 0 t h e n e p s t e s t : = t r u e ; 
i f p s i t e s t t h e n b e g i n 

p s i : = p s i - 2 . 0 * p i / 1 8 0 . 0 
end; 

i f e p s t e s t t h e n b e g i n 
e p s : = e p s - 2 . 0 * p i / 1 8 0 . 0 

end; 

• line A 

•section a 

c y l i n c : = ( z c r i t - z c y l O ) / ( c o s ( e p s ) ' c o s ( p s i ) ) ; 
u l : = s i n ( p s i ) ' c o s ( e p s ) ' ( x - x c y l O ) ; 
u 2 : = s i n ( e p s ) * ( y - y c y l O ) + c o s ( p s i ) ' c o s ( e p s ) * ( z - z c y 1 0 ) ; 
u:=ul+u2; 
i f z c r i t = z c y l O t h e n b e g i n 

x c r i t :=xcylO c l e n g t h ' c o s ( e p s ) ; 
y c r i t : = y c y l O + c l e n g t h ' s i n ( e p s ) 

end 
e l s e b e g i n 

x c r i t :=xcylO + c y l i n c ' c o s ( e p s ) ' s i n ( p s i ) ; 
y c r i t :=ycylO + c y l i n c ' s i n ( e p s ) 
end; 

lineB 

u c r i t l : = s i n ( p s i ) ' c o s ( e p s ) * ( x c r i t - x c y l O ) ; 
u c r i t 2 : = s i n ( e p s ) ' ( y c r i t - y c y 1 0 ) + c o s ( p s i ) ' c o s ( e p s ) * ( z c r i t - z c y l O ) ; 
u c r i t : = u c r i t l + u c r i t 2 ; 

i f u >= 0.0 t h e n u t e s t l : = t r u e ; 
i f u <= u c r i t t h e n u t e s t 2 : = t r u e ; 
i f u t e s t l and u t e s t 2 t h e n b e g i n 

s : = c o s ( p s i ) * ( x - x c y l O ) - s i n ( p s i ) * ( z - z c y l O ) ; 
t l : = - s i n ( p s i ) * s i n ( e p s ) * ( x - x c y l O ) ; 
t 2 : = c o s ( e p s ) * ( y - y c y l O ) - c o s ( p s i ) ' s i n ( e p s ) * ( z - z c y l O ) ; 
t : = t l + t 2 ; 
e s s : = a c y l * s q r ( x s i ) ' ( s q r ( s ) - s q r ( t ) ) / s q r ( s q r ( s ) + s q r ( t ) ; 
e t t : = - e s s ; 
e s t : = a c y l * s q r ( x s i ) *2 . O ' s ' t / s q r ( s q r ( s ) + s q r ( t ) . ) ; 

section 0 

section 7 

— Une C 



e t s : = e s t ; 
g s : = g d [ l ] * c o s ( p s i ) - g d [ 3 ] * s i n ( p s i ) ; 
g t l : = - g d [ 1 ] * s i n ( e p s ) * s i n ( p s i ) + g d [ 2 ] * c o s ( e p s ) ; 
g t 2 : = - g d [ 3 ] * s i n ( e p s ) * c o s ( p s i ) ; 
g t : = g t l + g t 2 ; 
shs:=-cos(psi)*sin(dir) - s i n ( p s i ) * c o s ( d i r ) ; 
s h t : = s i n ( e p s ) * s i n ( p s i ) * s i n ( d i r ) - s i n ( e p s ) * c o s ( p s i ) * c o s ( d i r ) ; 

. . d s h : = s h s * ( g s * e s s + g t * e t s ) + s h t * , ( g s * e s t + g t * e t t ) 
e n d . • • -

e l s e dsh:=0.0; 
end; 

p r o c e d u r e c y l d e f ( v a r v f r a c , x s i , p s i , e p s , x c y l O , y c y l O , z c y l O , z c r i t , c l e n g t h : r e a l ; 
v a r g d : v e c t o r ; a , a n g , r n , r f : v e c t o r ) ; 

c o n s t p i = 3 . 1 4 1 5 9 ; 

v a r v : v e c t o r ; 
i , m , n : i n t e g e r ; 
sm,sn, s p : r e a l ; 
g , r , d r , d b : m a t r i x ; 
n p , n q : i v e c t o r ; 

b e g i n 
n p [ l ] : = 2 ; n p[21:=3; n p [ 3 ] : = 1 ; 
n q [ l ] : = 3 ; n q [ 2 ! : = l ; n q [ 3 ] : = 2 ; 
r e a d l n ( v f r a c ) ; 
r e a d l n ( x s i ) ; 
r e a d l n ( p s i ) ; 
r e a d l n ( e p s ) ; 
r e a d l n ( x c y l O , y c y l O , z c y l O ) ; 
r e a d l n ( z c r i t , c l e n g t h ) ; 
x s i : = x s i * l . O E - 0 6 ; 
p s i : = p s i * p i / 1 8 0 ; 
e p s : = e p s * p i / 1 8 0 ; 
x c y l O : = x c y l O * l . O E - 0 6 
y c y l O : = y c y l O ' l . O E - 0 6 
z c y 1 0 : = z c y l O ' l . O E - 0 6 
zcrit:=zcrit«l.OE-06 
c i e n g t h : = c i e n g t h ' l . O E - 0 6 ; 

C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s a n d 
t r a n s f o r m r f r e c i p t o e l a s t i c i t y 

r n r e c i p t o e l a s t i c i t y 

w r i t e l n ( r f [ 1 ] , r f ( 2 ] , r f [ 3 1 ) ; 

c r y s t a l ( g , r , d r , a , a n g ) ; 
v e c r o t ( v , r , r f ) ; 
v e c r o t ( r f , d r , v ) ; 
v e c r o t ( V , r , r n ) ; 
v e c r o t ( r n , d r , v ) ; 

(* *) 
(* C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s *) 
(* db e l a s t i c i t y t o e x p e r i m e n t *) 
(* *) 
(*««****************«********•***•*******•**•***•*) 
(* *) 
(* E x p e r i m e n t a x e s : *) 
(* -X p r o j o f d i f f r a c t i o n v e c t o r on s u r f *) 



(* y p e r p e n d i c u l a r t o i n c i d e n c e p l a n e *) 
(* z i n w a r d p e r p e n d i c u l a r t o s u r f a c e *) 
(* *) 
^****************«******»************************j 

sm:=0; sn:=0; sp:=0; 
f o r i : = l t o 3 do b e g i n 

s m : " s m + s q r ( r n [ i ] ) ; 
s n : = s n + r h [ i ] * r f [ i ] - ; 

end; 
f o r i : = l t o 3 do b e g i n 

db [ 3, i ] : = r n [ i ] / s q r t ( s m ) ; 
d b [ l , i ] : = r n [ i ] * s n / s m - r f [ i ] ; (* 9/3/88 d b ( 1 , i ] : = r f ( i ] - r n [ i ] * s n / s r a ; ') 
sp:=-sp+sqr ( d b ( l , i ] ) ; 

end; 
sm:=0; 
s p : = s q r t ( s p ) ; 
f o r i : = l t o 3 do b e g i n 

d b ( l , i ] : = d b [ l , i j / s p ; 
end; 
f o r i : = l t o 3 do b e g i n 

m : = n p [ i ] ; 
n : = n q [ i ] ; 
d b [ 2 , i ] : = d b [ l , n ] * d b [ 3 , m ] - d b ( l , m ] ' d b [ 3 , n ] ; 

end; 

v e c r o t ( g d , d b , r f ) ; 

w r i t e l n ; 
w r i t e l n C I n e x p e r i m e n t a l c o o r d i n a t e s d i f f r a c t i o n v e c t o r i s ' ) ; 
w r i t e l n ( g d ( l ] , ' ' , g d ( 2 1 , ' ' , g d ( 3 ] ) ; 
w r i t e l n ; 
w r i t e l n ( ' C Y L I N D R I C A L INCLUSION'); 
w r i t e l n ; 
w r i t e l n e x , Y , Z COORDS ( m i c r o n s ) NEAR PT. OF INCLUSION ARE : ' ) ; 
w r i t e l n ( x c y l O ' l E 0 6 , y c y l O ' l E 0 6 , z c y l O ' l E 0 6 ) ; 
w r i t e l n ; 
w r i t e l n ( ' R A D I U S OF INCLUSION ( m i c r o n s ) I S : ' ) ; 
w r i t e l n ( x s i ' l . 0 E 0 6 ) ; 
w r i t e l n ; 
w r i t e l n ( ' V A L U E S OF ANGLES P S I , EPSILON ( d e g r e e s ) ARE : ' ) ; 
w r i t e l n ( p s i ' 1 8 0 . 0 / p i , e p s ' I S O . 0 / p i ) ; 
w r i t e l n C ',' ',' ' , ' r e s p e c t i v e l y ' ) ; 
w r i t e l n 

end; 



Appendix F 

A procedure CYLBOX.P, written in Pascal, is listed, and represents the strain 
code for a cylindrical distribution of precipitates. 
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(' 1/12/86 Segment c h e c k e d a n d comments a d d e d 
(' 11/1/87 A l t e r e d f o r p o i n t d e f e c t 
(' 12/2/87 D i f f p o i n t a d d e d 
(' 9/3/88 db c o r r e c t e d a n d o u t p u t a d d e d 
(' -9/3/88 d i f f p o i n t c o r r e c t e d " 

( " " 

# i n c l 
# i n c i 
# i n c l 
# i n c i 

ude " g l o b a l s . h " 
ude " a l g e b r a . h " 
ude " c r y s t a l . h " 
ude " c y l b o x . h " 

t y p e i v e c t o r = a r r a y [ 1 . . 3 1 o f i n t e g e r ; 

c o n s t p i = 3 . 1 4 1 5 9 ; 

v a r x b o x , y b o x , z b o x : z a r r a y ; 

p r o c e d u r e d i f f b o x ( v a r d s h : r e a l ; x, y, z, sh:-:, s h z , c : r e a l ; g d : v e c t o r ) 

v.= r r 3 q r , t l , 12 , dhd:-:l, d h d x 3 : r e a l ; 
Cr:g 1 n 

r s c r : = s q r ( X ) ^ s q r ( y ) - s q r ( z ) ; 
- 2 : ='3d [ 1 j ' x >-gd 12] ' y - a d 13] ' z ; 
-. 1 : =3qrr. ( s q r ( r s c r ) ' r s q r ) ; 
dha:-: i : = ( g d 1 i j - 3 ' :•; -12 / r s q r ) / 1 L ; 
•jho.xJ : = ( g d [ 3 1 - j - z ' r . 2 / r s q r ) / t 1 ; (' 5/3/39 ') 
cis.'.: = d h d ; - ; l ' s h x ^ d h d x i ' s h z ; (' 9/3/38 ') 
:l3r. : = c - d 3 h ; 

;i-;-T:;ure c o : - : d e f ( v a r o : r-e.i i ; v.i r or. .-lo , p" i im, i se-;'":: i nce':;er ; •-•.ir ps 

1, .11, n : i n t e g e r ; 
3 ~ , s n , s p : r e a l ; 
'z, r , d r , d b : m a c r i : - : ; 
r.c, n q : i v e c t o r ; 
r o o x , c h e t r n d : r e a l ; 
pa i t e s c , e p s t e s t : b e ; l e a n ; 
: y 1 i n c, u 1, u 2 , u , :•: c r i t , y c r i t , u c; 
s b o x , t b o x , ubo:-: : z a r r a y ; 
::box 1, ;-:bo;-:2 , zbo:-:i, 2 b o x 2 : r e a i ; 

, u c r i t : r f 

np::; :=2; n p [ 2 ] :=3; n o [ 3 ] : = 1 ; 
n q ; : ] : = 3 ; n q [ 2 i : = 1 ; n q [ 3 ] : = 2 ; 
r e a d l n ( c ) ; — — ^ 
r e a d l n ( p c 1 i m ) ; 
r e a d l n ( p s i , e p s ) ; 
r e a a l n ( x c y 1 0 , y c y 1 0 , z c y l O ) ; 
r e a d l n ( r m a x , z c r i t , c l e n q t h ) ; _ 

p s i : = p s i ' p i / 1 8 0 ; ~ 
e p s ; = e p s * p i / 1 8 0 ; 

• section Q 

x c y 10 
y c y 10 
z c y l O 

= x c y l O * l . O E - 0 6 
= y c y l O ' l . O E - 0 6 
= z c y l O * l . O E - 0 6 



rmax := r m a x ' l E - 0 6 ; 
z c r i t := z c r i t ' l E - 0 6 ; 
c l e n g t h : = c l e n g t h * l . O E - 0 6 ; 

i f p s i = 9 0 . O ' p i / 1 8 0 . 0 t h e n p s i t e s t : = t r u e ; 
i f p s i = 2 7 0 . 0 ' p i / 1 8 0 . 0 t h e n ' p s i t e s t : = t r u e ; 
i f • e p s = 9 0 . O ' p i / 1 8 0 .0 t h e n e p s t e s t : = t r u e ; . 
i f - e p s = 2 7 0 . O ' p i / l S O . 0 t h e n e p s t e s t : = t r u e ; 
i f p s i t e s t t h e n b e g i n 

p s i : = p s i - 2 . 0 ' p i / 1 8 0 . 0 
e n d ; 

i f e p s t e s t t h e n b e g i n 
e p s : = e p s - 2 . O ' p i / 1 8 0 . 0 

e n d ; 
c y l i n c : = ( z c r i t - z c y l O ) / ( c o s ( e p s ) ' c o s ( p s i ) ) ; 
u l : = s i n ( p s i ) ' c o s ( e p s ) " ( x - x c y l O ) ; 
u 2 : = s i n ( e p s ) • ( y - y c y l O ) + c o s ( p s i ) ' c o s ( e p s ) * ( z - z c y l O ) ; 
u: = u l + u 2 ; 
i f z c r i t = z c y l O t h e n b e g i n 

x c r i t : = x c y l 0 r c l e n g t h ' c o s ( e p s ) ; 
y c r i t : = y c y l O ^ c l e n g t h ' s i n ( e p s ) 

e n d 
e l s e b e g i n 

x c r i t : = x c y l O + c y l i n c ' c o s ( r p s ) ' s i n ( p s i ) ; 
y c r i t : = y c y l O + c y l i n c * s i n ( e p s ) 
e n d ; 

u c r i t l : = s i n ( p s i ) 'cos(eps)«(xcrit-xcylO); 
u c r i t 2 : = s i n ( e p s ) ' ( y c r i c - y c y i O ) + c o s ( p s i ) ' c c s ( e p s ) ' ( z c r i t - z c y l O ) 
u c r 1 1 : = u c r i t 1 - u c r i ' 2 ; 

-^section P 

LS-ied: = 3 e e d ( w a l . 
;r p r r i ' j ; = l - ; p c i i m do b e g i n 

c b o x ; = r m a x ' r a n d o m ( 0 ) ; 
t hen r n d : =2 'p i • raridom (0 ) ; 
s c o x i p t n c ; : = r c c x - - O S ( t h e - r n d ) ; 
- b o x I p t P . c ; : =rbGx-3 i n (r h e r . r r i d ) ; 
u D o x i p r n o ; : =uc r ir . • r a n dom (0 ) ,• 
x b o x : : " s b o x l p t r.o [ 'cos ( p s i ) - t bo:-: f c t n o , " s i n ( p s i ) 
:-;box2 ; =UC'-x ipn r . o ; ' a i r M p s i ) ' 0 0 3 ( 6 0 3 ) ^ x : y l O ; 
xoo:-: Ipnn-: ; : ' x c o x 1-xbox2 ; 
ybo:-: [ pr • : = t b'. x | or. r i o 1 'cos (^ps ) - x c o x [ c t n o ) ' s i n 
: o o x i : ^ - j c c x i p : n : . i ' s i n ( p s i ) - u b u x ; c - n o ; ' - ^ 0 3 ( 0 8 1 
zc,ox2 : =ub::x ; cm-:; 'cos ( p s i ) 'cos ( e s s ) i-zcy 10; 
zboy. i p t n o . : = zbc x 1 - z t o x 2 

.section 7 

' s i n (^ros) ; 

(e p s ) 
) ' S i n l e o s ) ; 

r • r » * . 

C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s and 
t r a n s f o r m r e c i o e i a s t i c i t y 

e l a s t i c i t y 

c r y s t a 1 ( g , r , d r , a, a ng ) ; 
v e c r o t ( V , r , r f ) ; 
v e c r o t ( r f , d r , v ) ; 
v e c r o t ( V , r , r n ) ; 
v e c r o t ( r n , d r , V ) ; 

r * * * * * < r * * 1̂  * * V ,*) 

C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s 



db e l a s t i c i t y t o e x p e r i m e n t 

E x p e r i m e n t a x e s : 
-X p r o j o f d i f f r a c t i o n v e c t o r on s u r f • 
y p e r p e n d i c u l a r t o i n c i d e n c e p l a n e * 

- z. i n w a r d p e r p e n d i c u l a r t o s u r f a c e * 
• • - * 

sm:=0; sn:=0; sp:=0; 
f o r i : = l t o 3 do b e g i n 

s m : = s m + s q r ( r n [ i ] ) ; 
sn:=sn+rn[il»rf[il; 

en d ; 
f o r i : = l t o 3 do b e g i n 

d b [ 3 , i ] : = r n [ i ] / s q r t ( 3 m ) ; 
d b [ l , i l : = r n [ i ] * s n / 3 m - r f [ i ] ; 
s p : = s p + s q r ( d b [ 1 , i j ) ; 

e n d ; 
sm:=0; 
s p : = s q r t ( s p ) ; 
f o r i : = l t o 3 do b e g i n 

d b [ l , i ] : = d b [ i , i l / s p ; 
e n d ; 
f o r i : = l t o 3 do b e g i n 

m : = n p ( i 1 ; 
n : = n q [ i ] ; 
• i b l , 2 , 1 i : = d b i :, n j 'dfc: 3,m) -db ( i , m l ' d b l 3, n] 

end; 

(* 9/3/88 d b [ l , i ] : = r f ( i ] - r n ( i ! ' s n / s m ; 

';roc ( q d , d b , r f ) ; 

: e i n; 
• . e l n ( ' I n e:-:oeri.-nencal c o o r d i n a t e s d i f f r a c t i o n v e c t o r i s ' ) 
: e l n ( g d [ l i , ' ' , a d ; 2 1 , ' ' , g d [ 3 ! ) ; 

; e i n ( ' C Y L I N D R I C A l CISTM. OF ? R E C I ? I T A T E ^ ' ) ; 

; r e c l o ir. .ir.es i s ',pr.lirr.): 



Appendix G 

A procedure STRIP.P, written in Pascal, is listed, and represents the strain code 
for an oxide film or device on the surface of a silicon substrate. 
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7/2/92 P r o c e d u r e s f o r c a l c u l a t i n g t h e 

s t r a i n - f i e l d i i n p u t t i n g t h e 

d e f e c t d a t a f o r a n o x i d e s t r i p 

o n a s u b s t r a t e . 

# i n c l u d e " g l o b a l s . h " 
# i n c l u d e " a l g e b r a . h " 
# i n c l u d e " c r y s t a l . h " 
# i n c l u d e " s t r i p . h " 

t y p e i v e c t o r = a r r a y [ 1 . . 31 o f i n t e g e r ; 

c o n s t p i = 3 . 1 4 1 5 9 ; 

p r o c e d u r e d i f f s t r i p ( v a r d s h : r e a l ; x , y , z , f l n t h , y m o d , d e l t a , h o r i z , s h x , s h z : r e a l ; 
g d : v e c t o r ) ; 

v a r xO, c h i O , t a u , dud;-:l, d u d x 2 , dudz 1, d u d z 2 , d d x , ddz : r e a l ; 

o e g m 
xO := x * c o s ( d e l t a ) + y ' s i n ( d e l t a ) ; 
c h i O := -xO - h o r i z ' c o s ( d e l t a ) ; 
t a u := 2 . 5 6 ' f I n t h / ( p i ' y m o d ) ; 
d u d x l 
d u d x 2 
duGz 1 
dudz 2 
ddx 

— section a 
— line A 

= 0 . 7 2 ' ( ( c h i O / ( s q r ( c h i O ) -i-sqr ( z ) ) ) - (xO/ ( s q r (xC) + s q r ( z ) ) ) ) ; 1 
= s q r ( z ) • ( ( x O / s q r ( s q r ( x O ) + s q r ( z ) ) ) - ( c h i O / s q r ( s q r ( c h i O ) ^ s c r ( z ) ) ) ) ; o 
= 0.72«z'((1/(sqr(chiO)+sqr(z)) ) - ( 1 / ( s q r ( x O ) - s q r ( z ) ) ) ) ; seciion p 
= z «( ( s q r ( c h i O ) / s q r ( s q r ( c h i O ) - s q r ( z ) ) ) - ( s q r ( x O ) / s q r ( s q r ( x O ) ^ s q r ( z ! ) ) 1 
t a u ' s q r ( c o s ( d e i - a ) ) • ( d u d x l - d u d x 2 ) ; 
t a u ' c o s ( d e l t a ) ' ( d u d z l ^ d u d z 2 ) ; 
g d l . U - s h x ' d d x - g d d l - s h z ' d d z ; —line B 

- p d e f c/ar 
V .5 r 

: ::-ir.h, ymod, de i t a, 
:d : v e c t o r ; a , .ang , : 

::Ge, y e d g e , n.-. : d i 3 D l : r e 3 l ; 

/ : v e c t o r ; 
, m, n : m t e < j e : 

s.m, s n , sp : r e a l ; 
o , r , d r , d b : m a t r i x ; 
n p , n q : i v e c t o r ; 

b e g i n 
n p i l ] : = 2 ; n p i 2 ] . - 3 
n q l l ] : = 3 ; n q [ 2 ! : = 1 

r e a d i n ( f I n t h ) ; 
r e a d l n ( y m o d ) ; 
r e a d l n ( d e l t a ) ; 
r e a d l n ( x e d g e , y e d g e ) ; 
r e a d l n ( h o r i z ) ; 
r e a d l n ( z d i s p l ) ; 
d e l t a 
x e d g e 
y e d g e 
h o r i z 
z d i s p l 

np i J i 
nq i 3 1 

= 1 ; 
=2; 

d e l t a * p i / l S O ; 
= x e d g e * l E - 0 6; 
= y e d g e * l E - 0 6 ; 
= h o r i z * l E - 0 6 ; 
:= z d i s p l * l E - 0 6 ; 



C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s a n d 
t r a n s f o r m r f r e c i p t o e l a s t i c i t y * 

r n r e c i p t o e l a s t i c i t y * 

c r y s t a l ( g , r , d r , a , a n g ) ; 
v e c r o t ( V , r , r f ) ; 
v e c r o t ( r f , d r , V ) ; 
v e c r o t ( v , r , r n ) ; 
v e c r o t ( r n , d r , V ) ; 

r * * * * * * * * * * * * * * * * * r * * * * * * * * * * * * * * * * * * * * * * * * 

C a l c u l a t e t r a n s f o r m a t i o n m a t r i c e s 
db e l a s t i c i t y t o e x p e r i m e n t 

E x p e r i m e n t a x e s : ' 
-X p r o ] o f d i f f r a c t i o n v e c t o r on s u r f • 
y p e r p e n d i c u l a r t o i n c i d e n c e p l a n e 
z i n w a r d o e r o e n d i c u l a r t o s u r f a c e ' 

3.11 :=0; s n : = 0 ; s p : = 0 ; 
: = i t o 3 do be-j 
= sm-^sqr ( r n i i ; ) ; 
^ s n ^ r n [ i 1 '-Z[i' 

: o r i ; = l t o 3 ao b e c m 
•ib ( 3 , i ! ; = r n i i i / s c r { sm) ; 
u b ! l , i l : = r n ! - i ' s n / s m - r : ( i 1 ; 
3 p : = s p ^ s q r ( c b ; 1, l . ): 

e ri d; 
3m:=0; 

3 p : = s q r t ( s p ) ; 
f o r i : = l t o 3 i o b e o m 

a b i l , i ] : = d b l 1 , i] / s p ; 
en d ; 
f o r i : = l t o 3 do b e o m 

~ ; = n p [ i l ; 
n : = n q [ i ] ; 
ab i 2 , i ) : = d b 1 1 , n j 'db i 3, m j - d b [ 1 , m ] 

X 'sn/sm; 

:c I J , n 1 ; 

v e c r o t ( g d , d b , r i ) ; 

w r i t e l n ; 
w r i t e l n C I n e x p e r i m e n t a l c o o r d i n a t e s d i f 
w r i t e l n ( q d ( 1 1 , ' ' , g d [ 2 ; , ' ' , g d [ 3 J ) ; 
w r 1 r. e 1 n ; 
w r i t e l n ( ' O X I D E S T R I P ' ) ; 
w r i t e l n ; 
w r i t e l n ( ' F o r c e p . u . l e n g t h = ' , f i n c h , ' N/m'); 
w r i t e i n ; 
w r i t e l n ( ' Y o u n g s M o d u l u s = ',ymod,' N/ ( m ' m ) ' ) ; 
w r i t e l n ; 
w r i t e l n ( ' L a y e r a n g l e = ' , d e l t a * 1 8 0 / p i , ' d e g r e e s ' ) ; 
w r i t e l n ; 
w r i t e l n ( ' V a l u e o f xedge = ' , x e d g e ' 1 E 0 6 , ' m i c r o n s ' ) ; 

c t i o n v e c t o r i s ' ) ; 



w r i t e l n ; 
w r i t e l n ( ' V a l u e o f yedge = ' , y e d g e * l E 0 6 , ' m i c r o n s ' ) ; 
w r i t e l n ; 
w r i t e l n ( ' H o r i z . sepn . edges = ' , h o r i z ' l E 0 6 , ' m i c r o n s ' ) ; 
w r i t e l n ; 
w r i t e l n ( ' D e p t h o f Oxide S t r i p = ' , z d i s p l ' l E 0 6 , ' m i c r o n s ' ) 
w r i t e l n 

end; • • . • • 



Appendix H 

A list of input data files, for several types of defect, used to generate the simulations. 

117 



E x a m p l e template of input file H I 

defect-code imperfect crystal code 
kperfo 

A 6f l a /i 
Xo 

Xh 

Xh 

elem t A 6 w 
a b c cos a cos/3 cos7 

rn rf 
height pzy 

prlim 
C 

•^min ^max 

Vmin Vmax 

^min ^max 

where kperfo = apodisation factor, 

A = wavelength of X-radiation, 

QB = Bragg angle, 

Q — asymmetry angle, 

/J, = absorption coefficient, 

X = susceptibility, 

elem = vertical integration step, 

t = crystal thickness, 

A 0 = beam divergence, 

w = source slit width, 

a,b,c = cubic lattice parameters, 

COS(Q;, /3,7) = crystallographic direction cosines, 

rn = surfcice normal indices, 

rf — reflection indices, 

height = image height, 

pzy = ratio of no. of image points in x and y-directions, 

prlim = tctal number of precipitates, 

C = precipitate deformation parameter, 

Xmin = min. allowable x-coordinate of precipitate distribution, 

Xmax = max. allowable x-coordinate of precipitate distribution, etc. 



2 0 
l .Oe+00 

7 . 0 9 3 0 e - l l 19 .8362 15.4282 1.44777737226662e+02 
-3 .170240214074096-06 
-7 .253585846792066-07 -7 .42290983940554e-07 
-7 .422909799182426-07 7.26358588789857e-07 

4 .0000e -06 4 .2400e-04 0.0000 0.0000 
5 .4307e-10 5 .4307e-10 5 .4307e-10 0 .0 0 .0 0.0 

0 0 - 1 3 3 3 
2 .90006-04 1.0 
1 
6 .5E-19 
18 .9 1 9 . 1 
144 .9 1 4 5 . 1 
2 9 . 9 3 0 . 1 

H i : Input data file for a single precipitate, used to generate the simulation in 

Fig. 4.9. 

2 0 
l .Oe+00 

7 . 0 9 3 0 6 - 1 1 21 .6798 -21 .6798 1.447777372266626+02 
-3 .170240214074096-06 
-1 .37779404673066e-06 -1 .59323952096261e-08 
-1 .377794046730666-0 6 -1 .593239520962 616-08 

3 .00006-06 3 .00006-04 0.0000 0.0000 
5 .43076-10 5 .43076-10 5 .4307e-10 0 .0 0.0 0.0 

0 0 - 1 - 4 4 0 
3 .0000e-04 1.0 
860 
2 .0E-22 
- 1 1 9 . 0 119.0 
0 .0 150.0 
30 .0 270 .0 

H 2 : Input data file for a silicon crystal containing a random distribution of pre
cipitates, with denuded zones at the top and bottom surfaces, used to generate the 
simulation in Fig. 4.23(c). 

1 0 
1.06+00 

7 . 0 9 3 0 6 - 1 1 12 .5089 5.0395 1 . 44777737226662e+02 
-3 .170240214074096-06 
- 9 . 3 6 4 50 501684 652e-07 9.20 518104756206e-07 
-9 .205181064848296-07 -9 .36450499985439e-07 

3 .0000e-06 5 .0000e-04 0.0000 0.0000 
5 .43076-10 5 .4307e-10 5 . 4 3 0 7 e - l 0 0 .0 0.0 0.0 

0 0 - 1 - 1 3 1 
2 .00006-04 1.0 
0 .0 0 .5 0 .5 0 - 1 1 
2 .0000e-04 O.OOOOe+00 
16 .6 6 .39 6 .39 0 .0 0 .0 0 .0 16 .6 6 .39 0 .0 0 .0 0.0 
16 .6 0 .0 0 .0 0 .0 7.96 0 .0 0.0 7 .96 0 .0 7.96 

H 3 : Input data file for an edge dislocation, used to generate the corresponding 
simulation in Fig. 5.11. 



7 0 
l.OOOOOOOOOOOOOE+00 
7 .0930000000000E-11 

-3 .1702401676546E-06 
-9 .3645061555406E-07 
-9 .2051822168686E-07 

12 .509 5.040 1.4477773722666E-03 

9.2051802611298E-07 
. -9 .3645042330760E-07 

5.0000000000000E-06 5.OOOOOOOOOOOOOE-04 0.000000 0.OOOOOOOOOOOOOE+00 
5.4307000000000E-10 5 . 4307000000000E-10 5 . 4307000000000E-10 0 0 0 

0 0 - 1 - 1 3 1 
2 .0000000000000E-04 1.OOOOOOOOOOOOOE+00 
0 .55 
0 .08 
316 .5 
12 .9 
200 .0 0 .0 0 .0 
618.0 290 .0 

1 2 / 1 7 / 9 0 -
1 4 : 2 6 : 5 6 
p e n e t r a t i o n d e p t h 4 .7827554872772E-05 

3.4773469270924E-05 

H 4 : Input data file for a cylindrical inclusion with radius, (, equal to 0.08/im, used 
to generate the corresponding simulation in Fig. 5.11. 

12 0 
l.OOOOOOOOOOOOOE+00 
7 .0930000000000E-11 

-3 .1702401676546E-06 
-9 .364S061555406E-07 
-9 .2051822168686E-07 

12 .509 5.040 1.4477773722666E-03 

9.2051802611298E-07 
_ 9.3645042330760E-07 

3.0000000QOOOOOE-06 5.OOOOOOOOOOOOOE-04 0.000000 0 . OOOOOOOOOOOOOE-00 
5.4307000000000E-10 5 . 4307000000000E-10 5.4307000000000E-10 0 0 0 

0 0 - 1 - 1 3 1 
2.000000000000GE-0 4 1 . OOOOOOOOOOOOOE+00 
0.0 0 .5 0 .5 0 - 1 1 
2 .0000E-04 O.OOOOE+00 
16 .6 7 .96 7 .96 0 .0 0 . 0 0 . 0 16 .6 7 .96 0 .0 0 . 0 0 .0 
16.6 0 .0 0 .0 0 .0 6.4 0 .0 0.0 6.4 0 .0 6.4 
4 .0E-22 
52 
316.5 12 .9 
200.0 0 .0 0 .0 
5.0 618 .0 2 9 0 . 0 

12 /17 /90 
1 4 : 2 6 : 5 6 
p e n e t r a t i o n d e p t h = 4 . 7827554872772E-05 

3.4773469270924E-05 

H 5 : Input data file for an edge dislocation decorated with a cyUndrical distribu
tion of precipitates with C-value of M Q - V , used to generate the simulation in 
Fig. 5.14(f). 



8 0 
l.OOOOOOOOOOOOOE+00 
7 .0930000000000E-11 

-3 .1702401676546E-06 
-9 .3645061555406E-07 
-9 .2051822168686E-07 

12.509 5 .040 1 . 4477773722666E-03 

9.2051802611298E-07 
-9 .3645042330760E-07 

3 .0000000000000E-06 5.00000000OOOOOE-04 
5. 4307000000OOOE-10 5 . 4307000000000E-10 

0 0 - 1 - 1 3 1 
2.000000000000OE-04 1 . 0000000000OOOE+00 
0 .0 0.5 0 .5 0 - 1 1 
2 .0000E-04 O.OOOOE+00 
16 .6 
16 .6 
0 .55 
0 .06 
316 .5 
12 .9 
200 .0 
618 .0 

7 .96 7 .96 0 .0 0 .0 
0 .0 0 .0 0 .0 6.4 0, 

,0 1 6 . 6 7 .96 
0.0 6.4 0.0 

0.000000 O.OOOOOOOOOOOOOE+00 
.4307000000000E-10 0 0 0 

0.0 0 .0 

0.0- 0 .0 
290 .0 

1 2 / 1 7 / 9 0 
1 4 : 2 6 : 5 6 
p e n e t r a t i o n d e p t h = 4 . 7827554872772E-05 

3.4773469270924E-05 

H 6 : Input data file for an edge dislocation and associated cyUndrical inclusion of 
radius 0.06/iTn, used to generate the simulation in Fig. 5.15(f). 

10 0 
3.0e+00 

5 . 5 9 4 0 e - l l 8.3763 -
-1 .967712024012246-06 
-1 .227720641077346-06 
-1 .227720641092206-06 

8.3763 7.169202544800286+01 

3 .OOOOe-06 
5 .4307e-10 

0 0 - 1 2 2 
6 .8000e-04 
10 
2 .0E02 
1 .7E11 
30 .0 
0 .0 340 .0 
3300.0 

. 0 .0 

-6 .035828013996656-09 
-6 .035824992280106-09 

3300e-03 0.0000 0.0000 
43076-10 5 .43076-10 0 .0 0 .0 0.0 

1.0 

H 7 : Input data file for an oxide film on the surface of a siHcon crystal, used to 
generate the simulation in Fig. 6.6(a). 



Appendix I 

A set of diagrams representing the reflection geometries studied in this work. 
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a =15.4 
eB=19.8*' 

I I : Diffraction geometry for (001) oriented crystal, imaged using MoKai radiation 
in the 333 reflection. 

12: Diffraction geometry for (001) oriented crystal, imaged using MoKa^ radiation 
in either the 440 or the 440 reflection. 

a = 5.0° 
12.5° 

13: Diffraction geometry for (001) oriented crystal, imaged using MoKa, radiation 
in the T31 reflection. 



a = 15.5° 
68=19.8 

14: Diffraction geometry for (001) oriented crystal, imaged using MoKa^ radiation 
in the 3.33 reflection. 

15: Diffraction geometry for (001) oriented crystal, imaged using MoKa, radiation 
in the 220 reflection. 



Appendix J 

A set of simulations showing matching of the cylindrical inclusion model to the 
associated decorated dislocation, for several values of precipitate Une density, pp. 
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131 

dislocation C = 1x10-22 m̂^̂  

lOOfim 

= 5x10-22 

C = 2x 10-2^ rri^ C = 4 X 10-2im^ 

Dislocation with cylindrical distribution of precipitates, for precipitate line density, 
Pj,, of 1.56xl0'*m-\ in the T31 reflection. 



131 

dislocation 

lOO/xm 

( = O.Ol/im 

^ = 0.02/im ^ = 0.025/im 

Dislocation with cylindrical inclusion, for precipitate line density, Pp, of 1.56x 10 m 
in the 131 reflection. 



131 

dislocation C = 1X10"^^ 

lOO/xm 

2xl0-^^m3! C = 4 X 10" 

Dislocation with cylindrical distribution of precipitates, for precipitate line density, 
Pp, of 1.81x10^771"^ in the T31 reflection. 



131 

dislocation 

I 

( = 0.015/im 

lOO^m 

^ = 0.025^iTn 

0.085/im ( = 0.011/im 

Dislocation with cylindrical inclusion, for precipitate line density, Pp, of 1.81 x lO^m \ 
in the T31 reflection. 



131 

dislocation C = 1x10-22; m .̂ 

C = 2x 10-22 C = 5 X 10-22 

C = 2 X10-2^ C = 4 X 10-21 -.^^ m. 

Dislocation with cylindrical distribution of precipitates, for precipitate line density, 
pp, of 3.62x10^771"^ in the T31 reflection. 



131 

dislocation ^ = 0.02/xm 

100/im 

^ = 0.03/im ( = 0.05/iTn 

^ = 0.1/xm ^ = 0.14/xm 

5 ^ - 1 
Dislocation with cylindrical inclusion, for precipitate Une density, pp, of 3.62x10 m 
in the T31 reflection. 



Appendix K 

A series of simulations for decorated dislocation pairs of different separation, K, 
showing the effect of defect strain on resolvabiUty. 
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131 

bare dislocations ^ = 0.03/im 

lOOfim 

( = 0.05/im ^ = 0.07/im 

^ = 0.09/im ^ = 0.11/im 

Separation, /c, of decorated dislocations is 19.0/im. 



131 

bare dislocations ( = 0.02/im 

lOO/xm 

^ = 0.03fim ( = 0.05/im 

i = 0.07/zm ^ = O.l/xm 

Separation, K , of decorated dislocations is 28.5/im. 



131 

bare dislocations ( = 0.04^m 

100/im 

^ = 0.07/im ^ = 0.09/im 

^ = O.llfim ^ = 0.13/im 

Separation, «, of decorated dislocations is 38.0/xm. 



131 

1« 

bare dislocations ( = 0.05/im 

100/im 

^ = 0.09^im ^ = 0.12/xm 

^ = 0.14/iTn ^ = 0.16^771 

Separation, «, of decorated dislocations is 47.5/im. 



131 

bare dislocations i ^ = 0.06/im 

lOOfim 

n 

( = 0.09/im ( = 0.12/im 

^ = 0.14)iTn ^ = 0.17/im 

Separation, K, of decorated dislocations is 57.0/iTn. 



131 

bare dislocations ^ = 0.07/im 

100/xm 

^ = O. l l^m ( = O.Ufim 

^ = 0.16/iTn ^ = 0.19/im 

Separation, K, of decorated dislocations is 66.5/im. 



131 

bare dislocations ^ = 0.1/xm 

lOO/im 

^ = 0.13/im ( = 0.17/xm 

^ = 0.2/im ^ = 0.23/xm 

Separation, /c, of decorated dislocations is 76.0/xm. 



Appendix L 

A series of simulations to determine the minimum detectable device width, W„ 
for several values of force, S, per unit length of device edge. 
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W = Sum W = 2.5fim 

lOO^m 220 

W = 2/im W = 1.5/im 

W = 1/xm 

Force, S, per unit length = ASONm - 1 



W = 3am W = 2.5iim 

100/xm 
220 

W = 2fiTn W = 1.5/im 

W = 1/xm W = 0.5/im 

Force, 5, per unit length = 400iVm - 1 



W = Ziim W = 2.5fim 

100/im 
220 

W = 2nTn W = l.bum 

W= l/xm 

Force, 5, per unit length = 350Nm - 1 



W = 3.5/im W = 3.0/im 

220 

W = 2.0fim 

W = 1.5/im W = 1.0M"X 

Force, S, per unit length = SOONm - 1 



W = 3.5/im W = 3.0/im 

100/im 220 

W = 2.5/im W = 2.0/im 

= 1.5/xm = 1.0/im 

Force, 5, per unit length = 2bQNm - 1 



W = 3.5/im W = Z.Ofim 

220 

W = 2.5/im W = 2.0^m 

W = 1.5/im W = l.O/xm 

Force, 5, per unit length = 200A^m~^ 



W = 3.5/im W = 3.0/im 

100/im 
220 

W = 2.5/im W = 2.0/im 

= 1.5/im = 1.0/im 

Force, 5, per unit length = 150iVm - 1 



W = 3.5/im W = Z.O^m 

220 

W = 2.5/im W = 2.0/im 

W = 1.5/im W = 1.0 nm 

Force, 5, per unit length = 100A^m ^ 



lOO^m 
220 

W = 5.5^m W = 5.0/im 

W = 4.5/xm W = 4.0/xm 

Force, 5, per unit length = 50iVm -1 



W = S.O^m W = l.bum 

100/i77l 
220 

W = 7.0/im W = 6.5/im 

W = 6.0/xm W = 5.5/im 

Force, 5, per unit length = 25 iVm~^ 
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