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Abstract

This thesis is mainly concerned with conditional inference for contingency tables, where

the MCMC method is used to take a sample of the conditional distribution. One of the

most common models to be investigated in contingency tables is the independence model.

Classic test statistics for testing the independence hypothesis, Pearson and likelihood chi-

square statistics rely on large sample distributions. The large sample distribution does

not provide a good approximation when the sample size is small. The Fisher exact test

is an alternative method which enables us to compute the exact p-value for testing the

independence hypothesis. For contingency tables of large dimension, the Fisher exact test

is not practical as it requires counting all tables in the sample space. We will review some

enumeration methods which do not require us to count all tables in the sample space.

However, these methods would also fail to compute the exact p-value for contingency

tables of large dimensions. Diaconis and Sturmfels (1998) introduced a method based on

the Grobner basis. It is quite complicated to compute the Grobner basis for contingency

tables as it is different for each individual table, not only for different sizes of table. We also

review the method introduced by Aoki and Takemura (2003) using the minimal Markov

basis for some particular tables. Bunea and Besag (2000) provided an algorithm using

the most fundamental move to make the irreducible Markov chain over the sample space,

defining an extra space. The algorithm is only introduced for 2× J ×K tables using the

Rasch model. We introduce direct proof for irreducibility of the Markov chain achieved

by the Bunea and Besag algorithm. This is then used to prove that Bunea and Besag

(2000) approach can be applied for some tables of higher dimensions, such as 3× 3×K
and 3× 4× 4. The efficiency of the Bunea and Besag approach is extensively investigated

for many different settings such as for tables of low/moderate/large dimensions, tables

with special zero pattern, etc. The efficiency of algorithms is measured based on the
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effective sample size of the MCMC sample. We use two different metrics to penalise the

effective sample size: running time of the algorithm and total number of bits used. These

measures are also used to compute the efficiency of an adjustment of the Bunea and Besag

algorithm which show that it outperforms the the original algorithm for some settings.
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Chapter 1

Introduction

1.1 Categorical data and modelling options

Since the early years of the development of statistical methods, part of the effort has been

devoted to providing methods for analysis of categorical data. A categorical variable is

qualitative data that takes a value from one of several possible categories. Categorical

data, part of an observed data set which consists of categorical variables, are common in

many different sciences such as social, medical, biological, behavioural and public health.

There are three types of measurement scale from which categorical variables can be de-

rived: nominal, ordinal and interval. Nominal variables have categories without any nat-

ural order (such as sex or race). An ordinal variable assumes a natural order for different

levels of a variable (e.g. educational level or injury level). Interval variables are created

by categorising a continuous scale (e.g. the level of income or age categories). A primary

aim of the analysis of categorical data, similar to many other statistical procedures, is

to select a model which reasonably describes the data. This is one of the fundamental

tasks of statistical analysis. The best model should be selected from among all possible

models based on mathematical analysis. To continue, notation has to be introduced. The

notation which is used throughout this thesis is described in Table 1.1.

1.1.1 Frequency and contingency tables

Analysis of categorical data generally involves the use of data tables. A univariate categor-

ical variable can be represented through a frequency table which summarizes the number

1
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Table 1.1: Notation of two-way contingency tables

Notation Description

X A categorical variable which is represented in rows of a contingency table

Y A categorical variable which is represented in columns of a contingency table

I The number of rows of a contingency table

J The number of columns of a contingency table

T A contingency table corresponding to the joint categorical random variable (X,Y )

T ′ The transpose of a contingency table, produced by substituting rows and columns

T o The observed table, where o is an abbreviation for observed

tij The frequency for the cell of a contingency table

t.j The marginal total over rows of a contingency table

ti. The marginal total over columns of a contingency table

t·· Grand total over all cells of a contingency table

i A vector contains the marginal total over rows, i = (t.1, t.2, · · · , t.J)

j A vector contains the marginal total over columns, j = (t1., t2., · · · , tI.)
ts The vector of sufficient statistics of parameters in a contingency table

πij The joint probability (X,Y ) occurs in the cell (i, j) of a two-way contingency table

πi. The marginal distribution of categorical variable X, πi. =
∑

j πij

π.j The marginal distribution of categorical variable Y , π.j =
∑

i πij

πj|i The conditional distribution of categorical variable Y given X, πj|i = πij/πi.

S The set of all contingency tables with the same marginal totals as the observed table,

known as the reference set

of occurrences for each level of the categorical variable. For example, suppose that a

simple random sample of 50 students are asked their favourite colour between red, blue

and green. All the answers can be tabulated in the following frequency table, Table 1.2
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Table 1.2: Frequency table of students’ favourite colour example

Favourite colour

Red Blue Green Total

Frequency 14 19 17 50

Proportion 0.28 0.38 0.34 1.00

A contingency table is a tabular representation of categorical data when there are two

or more categorical variables. A two-way contingency table, first introduced by Karl

Pearson in 1904 (Agresti, 1996), can be used to represent the frequency of events in

two dimensions, where rows represent different levels of the first variable and columns

correspond to different levels of the other variable. Each cell of the table contains the

observed frequency for a different combination of the levels of the two categorical variables.

In order to represent more than two categorical variables multi-dimensional contingency

tables can be applied. Let X and Y denote two categorical variables, X with I categories

and Y with J categories. A contingency table with I rows and J columns is called an

I×J table. Classifications of subjects on both variables have I×J possible outcomes. For

example, consider the 50 students classified based on their favourite colour and suppose

their sex was also recorded. The results can be represented in a two-way contingency

table by considering sex in rows and favourite colour in columns, see Table 1.3

Table 1.3: A two-way contingency table for students’ favourite colour example

Favourite colour

Sex Red Blue Green Total

Male 8 11 4 23

Female 11 7 9 27

Total 19 18 13 50

There are two approaches to analysing categorical data: randomisation which compute

statistics based on tables defined by a limited number of discrete values to investigate

the association between the variables. The second is modelling where we can check the

association by modelling a categorical response variable. The following section illustrates

the different sampling methods for contingency tables in the modelling approach.
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1.1.2 Sampling distribution for two-way contingency tables

The observed counts in the cells of a contingency table can be treated as random variables

with non-negative integer values. The probability of observing counts in a table depends

on the assumed sampling distribution. There are three different distributions to represent

this probabilistic behaviour: Poisson, full multinomial, and the product of multinomial

distributions (Agresti, 1990). Throughout this section we focus on two-way contingency

tables.

Poisson distribution

As the frequencies can accept only non-negative integers a simple distribution which has

its mass in this range is the Poisson distribution. This way, we assume that the frequency

of each cell comes from the Poisson distribution with parameter µij, where µij ∝ πij

and each cell is independent of the rest. It should be noted that the joint probability

distribution for a table T with frequencies T = {tij, i = 1, 2, . . . , I and j = 1, 2, . . . , J} is

given by the product of distribution for each cell:

Pr(T ) =
∏
i,j

exp(−µij)µ
tij
ij

tij!
(1.1)

where µij is the expected value of the tij. The Poisson distribution is suitable for sampling

in which the total sample size is not fixed. This happens when we count the number of

events occurring over a period of time (or location). An example of this could be the result

of a new test for all patients who arrive at a hospital for a blood test over the period of

one year. The result could be represented be classification of test results and blood type.

In this case, the sample size is not known before the data collection is completed.

Multinomial distribution

When we sample a fixed number of units of the population a suitable distribution for

the counts of the table is given by the multinomial distribution. Suppose that a simple

random sample of individuals is chosen from the population and each is assigned into one

of I × J categories of a two-way contingency table. Then the probability of observing

table T with counts T = {tij, i = 1, 2, . . . , I and j = 1, 2, . . . , J} follows the multinomial

distribution with probability distribution function as follows:

Pr(T ) =
t..!∏
i,j tij!

∏
i,j

π
tij
ij (1.2)
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where πij are unknown probabilities of a randomly chosen individual belonging to the

category {ij}. The maximum likelihood (ML) estimate for πij is the sample propor-

tion, pij = tij/t... Note that, the multinomial model can also arise as the conditional

distribution of each cell given the total sample size. That is, if tij ∼ Poisson(µij) then(
{tij}

∣∣∣ ∑
ij

tij = t..

)
∼ Multinomial

(
t.. ,

µij∑
ij µij

)
.

Product of multinomial distributions

With fixed sample size, defined by the level of the row factor, the frequencies of the table

cannot be modelled using a multinomial distribution over all cells of the table. This is

because the marginal totals of the table corresponding to a sub-population are not random

but known quantities. Each row of a two-way table is sampled from the corresponding

sub-population. This way, observation of each row of the table is independent, having a

probability distribution with probabilities {π1|i, π2|i, . . . , πJ |i}. Then the counts in each

row follow the multinomial distribution, and the probability distribution for table T, the

entire set of frequencies, is given by the product of the multinomial distributions:

Pr(T ) =
∏
i

(
ti.!∏
j tij!

)∏
j

π
tij
j|i . (1.3)

Similarly to the multinomial case, if we assume the Poisson distribution over cells, the

conditional distribution of the counts on the cells given the row marginal totals ti. produce

the same distribution as given in (1.3).

1.2 Independence in two-way contingency tables

A common question in two-way contingency tables is whether the column variable depends

on the row variable. In the example of students given in Table 1.3 , the question is whether

the favourite colour of students is the same for both males and females; in other words,

whether the favourite colour of students is independent of their gender. In the case of

independence of rows and columns, the sufficient statistics are the marginal totals. In this

case, regardless of the sampling distribution, we have the same inference for the table, as

it implies that the probability distribution of the frequencies conditioned on the values

of sufficient statistics, is given by the hyper-geometric distribution for 2× 2 contingency
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table. In the case of increasing the number of levels of rows or columns, the distribution

will generalise to the multivariate hyper-geometric distribution.

For multinomial sampling with probabilities {πij} the null hypothesis of statistical inde-

pendence is H◦ : πij = πi.π.j for all i and j. In the case of product of independent multino-

mial distributions, independence corresponds to homogeneity of probabilities among the

rows. If the sample size is large enough, the central limit theory can provide an approx-

imation using the normal distribution for computing the probability distribution of the

test statistics for the specified statistical model. The Pearson χ2 and the likelihood ratio

are two possible tests for the independence hypothesis in two-way contingency tables. It

should be noted that for all three sampling assumptions of the contingency tables the

Pearson χ2 test is the same.

1.2.1 Large-sample independence tests

The large-sample approximation has been common for analysing contingency tables for

decades. When the sample size is large enough, one may use classical methods which es-

sentially work based on the chi-square distribution. The well-known Pearson chi-squared

test of independence uses the fact that the expected frequency for cell (i, j) of the contin-

gency table in the case of independence is µij = t..πi.π.j, where πi. and π.j are unknown

marginal probabilities of the joint distribution. The ML estimate of the marginal prob-

abilities are sample marginal proportions π̂i. = ti./t.. and π̂.j = t.j/t... Equivalently the

estimate of the expected frequency is µ̂ij = t..π̂i.π̂.j. Then the Pearson chi-squared statistic

is given by:

X2 =
∑
i

∑
j

(tij − µ̂ij)2

µ̂ij

which asymptotically follows the χ2 distribution with degrees of freedom (I − 1)(J − 1).

The likelihood ratio test produces another test statistic under the null hypothesis of

independence. For multinomial sampling the likelihood of a two-way contingency table is

L(πij|{tij}) =
I∏
i=1

J∏
j=1

π
tij
ij .

Under the null hypothesis of independence, π̂ij = ti.t.j/t.. , whilst in general π̂ij = tij/t...

Hence, the likelihood ratio statistic equals

Λ =

∏
i

∏
j (ti.t.j)

tij

tt....
∏

i

∏
j t
tij
ij

.
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The likelihood-ratio chi-squared statistic is −2 log Λ, usually denoted by G2, and has the

following form

G2 = 2
∑
i

∑
j

tij log

(
t..

tij
ti.t.j

)
,

where G2 for large sample size follows the χ2 distribution with degrees of freedom equal

(I − 1)(J − 1).

When a contingency table contains cells with small expected frequencies, even for a large

sample size, the large-sample approximation is not reliable. In the case of small sample-

size the chi-square distribution does not provide a good approximation for the distribution

of the test. When the sample size is small, all possible combinations of the data can be

evaluated to compute what is known as the exact p-value. The best known example of

an exact test is given by R. Fisher (1934) in which an exact distribution of a table is used

rather than the large-sample approximation.

1.2.2 Conditional tests

The exact tests considered in this thesis are all what are known as conditional tests.

Conditional inference refers to the methods in which the inference is based on the distri-

bution of parameters conditioned on their sufficient statistics (Anderson, 1974). In this

way, the distribution of the parameter is a function of the sufficient statistics. The real-

isation of sufficient statistics is considered as a value for the nuisance parameter in the

modelling. A nuisance parameter is any parameter which is not of immediate interest but

which must be accounted for in the analysis of those parameters which are of interest.

A well-known example of a nuisance parameter is the variance of a normal distribution,

when the mean is of primary interest.

Suppose we want to test the independence assumption between rows and columns in a

two-way contingency table. Conditional inference uses the conditional distribution of the

sufficient statistics under the full model, {tij}, given sufficient statistics for the model

under the null hypothesis. Here, we illustrate that the conditional test for independence

provides the multiple hyper-geometric distribution. We illustrate this for the general case

of I × J contingency tables under multinomial sampling, the result of the conditional

test is the same for the Poisson and product of multinomial sampling. Under the null

hypothesis of independence, H◦ : πij = πi.π.j, the probability function of tij (1.2) simplifies
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to

Pr({tij}) =
t..!∏

i

∏
j tij!

∏
i

∏
j

π
tij
ij

=
t..!∏

i

∏
j tij!

∏
i

∏
j

(πi.π.j)
tij

=
t..!∏

i

∏
j tij!

(∏
i

πti.i.

)(∏
j

π
t.j
.j

)
. (1.4)

Hence, the minimal sufficient statistics based on H0 will be ts = {ti., t.j} and the nuisance

parameters are {πi.} and {π.j}. On the other hand, the statistics {ti.} and {t.j} under

the null hypothesis are independent and follow the multinomial distributions:

{ti.} ∼ Multinomial(t.. , {πi.})

{t.j} ∼ Multinomial(t.. , {π.j}) (1.5)

The joint probability distribution of the sufficient statistics {ti.} and {t.j} is given by:

Pr(ts) =
t..!∏
i ti.!

∏
i

πti.i.
t..!∏
j t.j!

∏
j

π
t.j
.j . (1.6)

Now we need to find the conditional probability distribution of ({tij} | ts). The joint

probability function of {tij} and ts is the same as the probability function of {tij}, (1.4), as

{tij} determines the sufficient statistics {ti.} and {t.j}. Hence the conditional distribution

of the sufficient statistics based on the full model given the sufficient statistics under the

null hypothesis is obtained by (1.4) divided by (1.6):

Pr({tij} | ts) =

∏
i ti.!

∏
j t.j!

t..!
∏

i

∏
j tij!

. (1.7)

This is the called the multivariate hypergeometric distribution. If I = J = 2 this is the

standard hypergeometric distribution. The same reasoning can show that the conditional

test for Poisson sampling results in the multivariate hypergeometric distribution. see

Agresti (1990) for the product of multinomial sampling.

1.2.3 Fisher’s exact test

In the case of having a small sample size, the chi-square distribution is not a valid approx-

imation for the distribution of the test statistic. An alternative method for this is to find

the exact distribution instead of approximation of large samples, known as small-sample
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tests. Fisher’s exact test is one of the small-sample tests of independence for 2×2 contin-

gency tables. Another example is the randomisation test of independence. It should be

noted that for 2× 2 contingency tables, independence is equivalent to H0 : θ = 1, where

θ =
π1|1π2|2
π1|2π2|1

is the odds ratio. The p-value for this test is the sum of certain hypergeometric

probabilities. The notation used to show examples of Fisher’s exact test is as follows. The

cell frequencies are denoted by tij, i, j = 1, 2. Let the contingency tables be denoted by

T =

[
t11 t12

t21 t22

]
(1.8)

and the observed contingency table by T o = {toij}.

Given the marginal totals, t11 determines the other three cell counts with the range of

possible values m− ≤ t11 ≤ m+, where m− = max(0, t1. + t.1 − t..) and m+ = min(t1., t.1).

Fisher (1934) showed that under the null hypothesis of independence the probability of

obtaining any such set of values given the marginal totals follows the hypergeometric

distribution

Pr({tij} | {ti.}, {t.j}) = Pr(t11) =

(
t1.
t11

)(
t2.

t.1 − t11

)
(
t..
t.1

) .

The formula above provides the exact probability for this particular arrangement of the

data, conditional on the marginal totals. Computation of Fisher’s exact p-value depends

on the form of the alternative hypothesis:

One-sided p-value: In the case of a one-sided alternative hypothesis test, say H1 : θ > 1,

for given marginal totals, tables with larger t11 have larger sample odds ratios which

correspond to stronger evidence in favour of H1. Hence, the p-value equals Pr(t11 ≥ to11),

where to11 is the observed value for the first cell of contingency table (Fisher, 1934; Yates,

1934). Similarly, for H1 : θ < 1, the p-value is computed through summation over all

tables in which Pr(t11 ≤ to11).

Two-sided p-value: Two-sided tests are more common than one-sided tests in appli-

cations. For a two-sided hypothesis test, there are four different criteria to compute

p-values.

• The most common approach is to find all tables for which Pr(s) ≤ Pr(to11) and then

computing the p-value as the sum of the probability of the tables.
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• Another way is to consider Pr(to11) for tables that are farther from H0. This is

identical to computing Pr(χ2 ≥ χ2
o), where χ2

o is the observed Pearson statistic

• Another approach computes the p-value as follows

p-value = 2 min[Pr(t11 ≥ to11),Pr(t11 ≤ to11)]

A disadvantage of this method is the possibility of having a p-value greater than 1.

• A fourth kind of p-value takes p-value= min[Pr(t11 ≥ to11),Pr(t11 ≤ to11)] plus the

probability in the other tail that is as close as possible to that one-tail probability.

1.3 Enumeration methods

In this section we illustrate the class of enumeration methods for exact tests in contin-

gency tables. The exact test requires working with all possible tables, called the reference

set, with the same marginal totals as the observed table. The number of possible tables

increases factorially fast as row, column or the total sample size increases and so using

Fisher’s methods becomes difficult as generating all tables is infeasible. In order to solve

this problem, computational algorithms have been proposed. The following sections dis-

cuss two algorithms for computing the exact p-value; the algorithm introduced by Pagano

and Halvorsen (1981) and the network algorithm proposed by Mehta and Patel (1983).

1.3.1 Pagano and Halvorsen’s algorithm

Pagano and Halvorsen (1981) provide a computational algorithm for calculating the exact

significance value for two-way contingency tables. The advantage of this algorithm is that

the computation does not need the enumeration of all tables with the specified marginal

totals, which makes it faster than other algorithms. The p-value is the sum of probabilities

of all tables belonging to the reference set, S, for which the probability of the table is

less than the probability of the observed table, T o, where the probability of each table is

given by (1.7).

In this algorithm the probability of each table is expanded as a product of hyper-geometric

conditional probabilities as follows:
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Pr(T ) =
J−1∏
j=1

I−1∏
i=1

pij (1.9)

where pij is the probability of the value in cell ij given the values in the ”previous” cells

(those in rows, 1, . . . i − 1 or in row i and colums 1, . . . j − 1) . Note that pI. and p.J do

not appear in this expression as they are trivial due to the fact that all tables must have

the same marginal totals as the observed table.

It is reasonably straightforward to show that each conditional probability is hypergeo-

metric and is given by

pij =
J−1∏
j=1

I−1∏
i=1

(
Jj − zij
tij

)(
n− υij − Jj + zij
Ii − rij − tij

)
(
n− υij
Ii − rj

)

where

Ii =
J∑
h=1

tih

Jj =
I∑
g=1

tgj

zij =
i−1∑
g=1

tgj

rij =

j−1∑
h=1

tih

υij =
i−1∑
g=1

Ig +

j−1∑
h=1

Jh −
i−1∑
g=1

j−1∑
h=1

tgh

When enumerating the possible values in cell ij given the values in previous cells, the

bounds are given by lij ≤ tij ≤ uij where

lij = max(0 , υij + Jj − zij + Ii − rij − n)

uij = min(Jj − zij , Ii − rij).
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The overall algorithm is more easily described using linearised indices q = (j−1)(I−1)+i

so that, for example, tij becomes tq. A table is then equivalent to the vector t = (t1, ..., tm)

where m = (I − 1)(J − 1). The structure of the algorithm for enumerating all tables

satisfying the constraints, known as G-algorithm, is shown in Figure 1.

The advantage of this algorithm is that computing the p-value requires enumerating only

some subsets of cells in tables which satisfy the constraints. The following theorem helps

to find a subset of the reference set which is large enough to find the exact p-value.

Theorem 1.1 Suppose that for some T ∈ S there exist d ≤ m such that
∏d

q=1 pq <

Pr(T o), and the cell entries t are t1, t2, . . . , td. Then∑
T∈D

Pr(T ) =
d∏
q=1

pq

where D is the set of all tables ∈ S for which the first d components of the table are

t1, t2, . . . , td.

This theorem helps because all tables in D contribute to the p-value and their total

contribution is
∏d

q=1 pq. Therefore we do not need to enumerate them all individually and

can proceed immediately to considering the next possible value for cell td.

1.3.2 Mehta and Patel network algorithm

There is an alternative algorithm proposed by Mehta and Patel (1983) which extends the

bounds of computational feasibility relative to Pagano and Halvorsen’s algorithm. Before

explaining the network algorithm we need to formulate some notation.

Let T be a I×J contingency table and each cell is shown by tkk′ which is the intersection

of row k and column k′. Marginal totals are defined as follow:

Ik =
J∑

k′=1

tkk′ Jk′ =
I∑

k=1

tkk′ .

The reference set is shown by:

S = {T : T is I × J table,
J∑

k′=1

tkk′ = Ik,

I∑
k′=1

tkk′ = Jk′ .}

Under the null hypothesis, the probability of each table of the reference set is expressed

as a product of multinomial coefficients as follows:
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Figure 1.1: G-algorithm flowchart.
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Pr(T ) =

(∏J
k′=1

Jk′ !
t1k′ !···tIk′ !

)
ω!

I1!···II !
, (1.10)

where ω =
∑I

k=1 Ik. For later use φ is defined as

φ =
ω!

I1! I2! . . . II !
.

A network representation consists of nodes and arcs, constructed in J + 1 stages. At any

stage τ there exists a set of nodes each labelled by a unique vector (τ, I1τ , . . . , IIτ ) where

Ikτ is defined to be
∑k

i=1 tiτ . The range of Ikτ−1, k = 1, . . . , I for these successor nodes is

given by

max

{
0, Ikτ − Jτ +

k−1∑
l=1

(I1τ − I1τ−1)

}
≤ Ikτ−1 ≤ min

{
Ikτ , δτ−1 −

k−1∑
l=1

Ilτ−1

}

where δk′ =
∑k′

l=1 Jl. The length of an arc from a node in stage τ to a node in stage τ − 1

is defined to be equal to

Jτ !

(I1τ − I1 τ−1!) · · · (IIτ − II τ−1!)
.

so that the total length of a path from stage J to stage 0 is the numerator in equation

(1.10). Suppose that T o is the observed table. We aim to identify and to sum all paths

whose lengths do not exceed φ.p(T o). But this is usually computationally infeasible. So

we may use the following alternative method; first, we define the following two items:

SP(τ , I1τ , . . . , IIτ ) = The length of the shortest subpath from node τ to node 0.

LP(τ , I1τ , . . . , IIτ ) = The length of the longest subpath from node τ to node 0.

Let,

PAST =
J∏

k′=τ+1

{
J ′k!

(I1k′ − I1k′−1)! · · · (IIk′ − IIk′−1)!

}

We can enumerate the paths implicitly if either of the following two conditions holds:

(1) PAST × LP (τ, I1τ , . . . IIτ ) ≤ φ× Pr(T o)

or

(2) PAST × SP (τ, I1τ . . . IIτ ) > φ× Pr(T o)

If (1) is satisfied we know immediately that every path is suitable and these paths con-

tribute to the p-value. If (2) is satisfied we know that every path exceeds φ.Pr(T o) and
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they are not suitable so none of these paths can contribute to the p-value and they are

dropped.

1.4 Exact method using Monte Carlo simulation

Bernard (1963) proposed the Monte Carlo approach for computing exact p-values. For

a general log-linear model, enumerating the test distribution has been computationally

infeasible and a Monte Carlo exact test is necessary (Smith et al., 1996). This approach

does not need complete enumeration or asymptotic approximation for computing the exact

p-value. Assume that uo is the value of a particular chosen test statistic for an observed

table T o, which test statistic to use is a decision to be made by the person applying the

test.

We generate a sample of size n of tables from the reference distribution, T (1), T (2), . . . , T (n).

The sequence of statistics for the sampled tables is denoted by u(1), u(2), . . . , u(n), corre-

sponding values for these tables. Assuming uo is a sample from reference distribution, we

have n + 1 random sample from the distribution. If we ignore the possibility of ties, the

rank of uo among all n+ 1 values is drawn from a uniform distribution, U{1, 2, . . . , n}. A

large value of uo compared to the sampled values shows that the observed statistic is not

from the reference distribution. To compute the p-value, the random sample statistics are

ranked. If the rank of observed statistics uo is the q−th largest among u(1), u(2), . . . , u(n),

then the approximate exact p-value is reported as q/(n+ 1). For more detailed discussion

see Besag and Clifford (1989).

Although the Monte Carlo methods is well defined for testing independence, there are

many hypothesis of interest in multi dimensional contingency tables for which the Monte

Carlo test has not been constructed. The Monte Carlo test relies on repeated random

sampling from an exact probability distribution of the test statistic under the null hypoth-

esis. In the absence of a reference distribution, a Monte Carlo Markov chain approach

can be applied which is based on generating samples from the conditional distribution. So

when simple Monte Carlo tests are not available, in some situations an MCMC procedure

can help as an alternative.
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1.5 Markov chain Monte Carlo (MCMC)

In this section we illustrate the Markov chain Monte Carlo (MCMC) approach to analyse

contingency tables. MCMC methods have many applications in statistics; for a general

introduction see Gamerman and Lopes (2006). To perform an exact test the null distri-

bution of an appropriate test statistic is required. For this, we define the concept of move

and degree of a move, then the notation will be introduced. Furthermore we define some

concepts and finally explain how MCMC works.

Definition (Move): A move for an observed table, T o, of dimension I × J ×K is a table

with the same dimension with entries of −1, 0, 1 such that all two-way margins are equal

to zero (Bunea and Besag, 2000).

Definition (Basic Move): The simplest type of move, with the fewest non zero entries,

m is called a basic move which for some i′, i′′, j′, j′′, k′, k′′, where i′ 6= i′′, j′ 6= j′′, k′ 6= k′′

has

mi′j′k′ = mi′j′′k′′ = mi′′j′k′′ = mi′′j′′k′ = +1

mi′j′k′′ = mi′j′′k′ = mi′′j′k′ = mi′′j′′k′′ = −1

and all remaining elements are zero.

Definition (Degree of a Move): If we denote the positive part of a move, m ∈ M , by

m+ where m+
ijk = max(mijk, 0) and the negative part by m−ijk = max(−mijk, 0) then

m = m+ −m−. So the degree of m is defined by deg(m) =
∑

i,j,km
+
ijk =

∑
i,j,km

−
ijk.

Throughout this chapter, we use m as notation for a move. A set of possible moves will

be denoted by M . Each move has a degree which will be denoted by deg(m). A basic

move has the smallest possible degree which is 4, and the set of all basic moves will be

denoted by M4. An example of a three dimensional view of a move in M4 is shown in the

following picture:
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+1

�����������������
−1

�����������������

−1 +1

−1

�����������������
+1

�����������������

+1 −1

All the other moves of higher degrees can be written as linear combinations, with integer

coefficients, of moves from M4 (Aoki and Takemura, 2003).

The difference, D, of two tables in a reference set has the same dimension as the observed

tables but with the marginal totals equal to zero because T and T ∗ have the same marginal

totals.

1.5.1 Markov chains and Metropolis-Hastings

A Markov chain with states S is defined as follows: The process starts in one of these

states and moves successively from one state to another. Each move is called a step. If the

chain is currently in state sk, then it moves to state sk′ at the next step with a probability

denoted by pkk′ , where this probability does not depend upon which states the chain was

in before the current state. The probabilities pkk′ are called transition probabilities. The

process can remain in the state it is in, and this occurs with probability pkk. An initial

probability distribution, defined on S, specifies the starting state. A Markov chain is said

to be irreducible if its state space is a single communicating class, in other words, if it is

possible to get to any state from any state.

When direct methods are not available for generating from a multivariate distribution of

interest, MCMC sampling can often be used. To implement this approach we need meth-

ods for constructing a Markov chain with the required equilibrium distribution. One of

the methods used for this purpose is the Metropolis-Hastings algorithm. The Metropolis-

Hastings method is an MCMC procedure for generating samples from arbitrary multi-

variate distributions:
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Let f(T ) be the desired distribution.

• given current T , generate T1 from some transition proposal distribution: a family of

conditional probability distributions q(T1 | T ) which are defined for all valid T and

T1;

• accept T1 with probability a(T, T1),

a(T, T1) = min
{f(T1)q(T | T1)
f(T )q(T1 | T )

, 1
}
, (1.11)

where it is required that f(T )q(T1 | T ) > 0.

• otherwise, retain T .

When applying Metropolis-Hastings to our problem, T is a table and we propose a new

table T1 by selecting one or more sub-tables of T and by adding a randomly chosen

move from a suitable set changing the cell counts in these sub-tables so that the sufficient

statistics for the nuisance parameters of the model being considered are maintained (Smith

et al., 1996). For example, in the independence model the sub-tables are all tables with

the same dimension and the same two-way marginal totals.

1.5.2 MCMC approach for exact test in contingency tables

One of the problems occurs when using MCMC approach to test no three-way interaction

effect in 2 × J ×K contingency tables is maintaining the irreducibility of the chain. In

testing for no three-way interaction, the sufficient statistics are all margins of the form

tij., ti.k, t.jk in which the conditional distribution f(T ) is given by:

f(T ) ∝ 1∏
ijk tijk!

, T ∈ S.

Let T o =
{
toijk
}
∈ ZIJK ≥ 0 be an I × J ×K contingency table, when the reference set

is:

S ({tij.} , {ti.k} , {t.jk}) =
{
T | tij. = toij., ti.k = toi.k, t.jk = to.jk, tijk ∈ N,

i ∈ (1, . . . , I), j ∈ (1, . . . , J), k ∈ (1, . . . , K)} (1.12)

Our aim is to construct a Markov chain over the reference set of three-way contingency

tables. For any given set of moves M the associated transition is defined as:
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1. Let T ∈ S denote the current state of the chain.

2. Choose m ∈M at random

3. Define Tnew = T +m

4. If Tnew ∈ S, select Tnew as the next state of the chain with probability min
{

1, f(Tnew)
f(T )

}
,

otherwise retain T

It should be noted that because we are using a symmetric transition proposal distribution

q(T | T1) = q(T1 | T ) the acceptance probability in (1.11) has simplified.

Example: To illustrate the method described above, consider the following observed

table, T o

0 1 1

1 1 1

1 0 1

1 0 1

0 1 0

1 1 1

which is a 2 × 3 × 3 table. The two large squares correspond respectively to i = 1 and

i = 2. In each large square, j and k respectively index rows and columns.

Now we choose uniformly a random move fromM, say m1 ∈M and we produce the next

table Tnew using Tnew = T o +m1.

Let suppose that m1 chosen from M is

0 + −
0 0 0

0 − +

0 − +

0 0 0

0 + −

and hence Tnew = T o +m1 is given by:

0 2 0

1 1 1

1 −1 0

1 −1 2

0 1 0

1 2 0

As we observe, Tnew has some negative cells. Since Tnew /∈ S then we retain T o as the

next table sampled. Now suppose we draw the next move m2 ∈M2



1.5. Markov chain Monte Carlo (MCMC) 20

+ − 0

0 0 0

− + 0

− + 0

0 0 0

+ − 0

Tnew = T o +m2 is

1 0 1

1 1 1

0 1 1

0 1 1

0 1 0

2 0 1

As Tnew ∈ S then we keep it as the next state with probability α = min
{

1, f(Tnew)
f(T )

}
.

That is, if α = 1 then Tnew will be chosen for the next state. If α ≤ 1 then number U

should be selected uniformly so that

if U < α→ select Tnew

if U > α→ retain T o

Now, f(Tnew) = k 1
2

and f(T o) = k, so α = min
{

1, f(Tnew)
f(T o)

}
= 1

2
. Now, assume that U

has been selected randomly as 0.23. Then U < α and as a result, Tnew is selected as the

next table. The algorithm will continue by starting the transition proposal process with

Tnew as the current state.



Chapter 2

Algorithms for 2×J×K tables

2.1 Review of Bunea and Besag (2000)

In this chapter first we review the Markov chain Monte Carlo approach for exact tests

introduced by Bunea and Besag (2000) for assessing the goodness of fit of probability

models to observed datasets in 2×J×K tables. The problem with their algorithm for an

arbitrary I in a table of I × J ×K is that the irreducibility of the chain may fail because

it has not been shown that their algorithm can communicate between all tables in the

reference set when I > 2. So, the focus is on I = 2 as it helps to use the known results of

the Rasch model.They also show that, when t.jk are all positive in a 2×J×K contingency

table, it is not necessary to use their algorithm for testing for the absence of three-way

interaction as the ordinary algorithm using basic moves leads to an irreducible Markov

chain. It should be noted that in section 2.1 we do not present any new idea or proof, but

we simply introduce our own version of Bunea and Besag’s algorithm. However, in section

2.2 we offer a new proof for the irreducibility of the Markov chain using the specific set of

moves, known as M∗. Finally, we provide a new proof in section 2.3 that using only basic

moves while tables are allowed to have a single −1 entry can still lead to irreducibility of

the Markov chain over S.

2.1.1 Bunea and Besag’s algorithm

Some definitions are required when introducing this algorithm. The reference set S is

defined as the set of all tables with non-negative entries with the same marginal totals as

21
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the observed table. We also define a new set, S ′, as the space of all 2×J ×K tables with

the same two-way margins as the observed table, having all non-negative entries except

for at most a single −1 (Bunea and Besag, 2000). The set of all moves M∗, for three-way

tables is defined as (Diaconis and Sturmfels, 1998):

M∗ = M4 ∪M6 ∪ · · · ∪M2min(J,K). (2.1)

Bunea and Besag (2000) provide the MCMC algorithm for sampling 2 × J × K tables

which may move outside S into S ′ but later return inside S.

The current state of the chain is shown by T ∈ S and the proposed subsequent state is

shown by Ts. Their modified version of the Metropolis-Hastings algorithm described in

chapter 1 is as follows:

• Start with the observed table, T o, as the current state.

• Randomly choose a basic move, m ∈M4.

• Define Ts = T o +m.

• If the cell entries of Ts are all non-negative then Ts can be the next state with

acceptance probability of P which is defined as follows

P =

{
1,
f(Ts)

f(T )

}
;

if not accepted the current state becomes the next state.

• If Ts has a single −1 entry then we keep on choosing m ∈ M4 to add on, rejecting

any which produce a cell entry less than −1 and continue until all entries of Ts are

non-negative. We then apply the same acceptance test as in the previous bullet

point.

• If Ts has any cell entry less than −1, Ts will be rejected and the current state

becomes the next state.

The algorithm is also described in the following flowchart
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Figure 2.1: Bunea and Besag algorithm flowchart.
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It can be shown that this algorithm defines an irreducible Markov chain for the following

reasons:

(1) Using M∗ in the algorithm introduced in chapter 1 leads to an irreducible Markov

chain. Any two tables in S are connected by a path in S formed by making moves

from M∗

(2) Any move in a path in (1) is decomposable to basic moves in such a way that replacing

it by the basic moves may take the path outside S but not outside S ′.

2.1.2 Rasch model

Consider J categorical variables which are tabulated in the table T . Subject i responds to

item j for j = 1, 2, . . . , J and the answer is coded to tij = 0, 1. For example, the response

for item i can be a disagreement versus agreement with comment j, the failure or success

at performing task j, presence or absence of symptom or feature j, etc. It is often wise

to separate subject (row) effect from item (column) effect in the matrix of response. One

of the earliest models to do this was developed by Rasch (1980), in which he specifies

row and column effect in an additive logistic model for the matrix of responses (Erosheva

et al., 2002).

As an example, when there is a student i with ability θi and question j with difficulty βj

then the Rasch probability of a correct answer is equal to

exp(θi − βj)
1 + exp(θi − βj)

.

Now, when we consider I = 2, we are able to use results for the Rasch model. A key

result of the Rasch model, Bunea and Besag (2000) citing Ryser (1963), is that any two

binary J×K tables with the same row and column totals can be connected by a sequence

of moves of the type depicted in a single layer of basic moves.

The following propositions are the results of Bunea and Besag (2000):

Proposition 2.1 Any m ∈M∗ can be decomposed into basic moves.

Proof we may prove this proposition by taking an arbitrary move in M∗, m ∈ M∗, and

showing that there exists a set of basic moves, by which the move can be constructed. Let

m ∈M∗, then m ∈Mν , where 2 ≤ ν ≤ min(J,K). Here, J is the number of rows and K
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is the number of columns in our table of 2×J×K. Any m ∈Mν can be depicted through

a circuit in a bipartite graph on J and K nodes. A bipartite graph is a graph whose

nodes can be divided into two independent disjoint sets so that each edge connects a node

in one set with a node in the other. Here, one set is j for j = 1, 2, . . . , J corresponding

to the rows and the other set is by k for k = 1, . . . , K corresponding to the columns. A

circuit is a closed walk which means it is a path which doesn’t have a repeated vertex

except for the first and last. Any circuit in the bipartite graph can be identified with a

particular move. For example, consider the following move in a 2× 6× 5 table.

+ −

− +

− +

− +

+ −

+ −

the above move can be represented by the following bipartite graph.

j1
**UUUUUUUUUU k1

j2 k2
ttiiiiiiiiii

j3
**UUUUUUUUUU k3

j4 k4
ttiiiiiiiiii

j5 // k5

\\9999999999999999

j6

where arrows from left to right correspond to + and right to left correspond to −. This

move can be written as follows:

(j1, k2)(k2, j3)(j3, k4)(k4, j5)(j5, k5)(k5, j1)

and is an element of M6. This means that for each of the rows and columns just three

levels have been changed. We make a sub-graph of the corresponding bipartite graph

from those levels, in our example:

j1 // k2

zztttttttttttt

j3 // k4

zztttttttttttt

j5 // k5

[[77777777777777777



2.1. Review of Bunea and Besag (2000) 26

For simplicity of notation we use the new notation of j′ and k′ with ordinal indices of

1, 2, 3, · · · , ν. So, we present the sub-graph by

j′1 // k′1

yyrrrrrrrrrrrrr

j′2 // k′2

yyrrrrrrrrrrrrr

j′3 // k′3

\\::::::::::::::::::

which corresponds to the following move:

+ −
− +

− +

− +

+ −
+ −

Now, this circuit can be divided into the following basic moves each of which involves just

two rows and two columns.

(j′1, k
′
1)(k

′
1, j
′
2)(j

′
2, k
′
2)(k

′
2, j
′
3)(j

′
3, k
′
3)(k

′
3, j
′
1) = (j′1, k

′
1)(k

′
1, j
′
2)(j

′
2, k
′
2)(k

′
2, j
′
1) +

(j′1, k
′
2)(k

′
2, j
′
3)(j

′
3, k
′
3)(k

′
3, j
′
1)

In the same way, we can consider any move m ∈ Mν and produce the corresponding

sub-graph

j′1 // k′1

wwppppppppppp

j′2 // k′2

xxqqqqqqqqqqqq

...
...

xxqqqqqqqqqqqq

j′ν // k′ν

YY33333333333333333333

This sub-graph can be written with the circuit

(j′1, k
′
1)(k

′
1, j
′
2), · · · , (j′s, k′s)(k′s, j′s+1), · · · , (j′ν , k′ν)(k′ν , j′1)

This circuit can be explicitly decomposed by the ν − 1 following basic moves:

(j′1, k
′
1) (k′1, j

′
2) (j′2, k

′
2) (k′2, j

′
1)

(j′1, k
′
2) (k′2, j

′
3) (j′3, k

′
3) (k′3, j

′
1)

...
...

...
...

(j′1, k
′
ν) (k′ν , j

′
ν+1) (j′ν+1, k

′
ν+1) (k′ν+1, j

′
1)
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Hence for any given m ∈M∗, we can find the decomposition, as illustrated, in terms of ba-

sic moves which form the main move. 2

Proposition 2.2 If t
(1)
.jk ≥ 1, for all j and k, then using M4 as the set of moves in the

algorithm described in chapter 1 leads to an irreducible Markov chain.

Proof We need to prove that for a realisation T in which t.jk ≥ 1 and T +m ∈ S, where

m ∈M∗, there exists a sequence of basic moves in M4 which moves T to T +m, while all

intermediate tables produced by T +mi, mi ∈M4 remain non-negative, since a negative

element is equivalent to exiting from S.

We define a new table T ′ from the m and T in the following way:

t′ijk =


+1 if mijk = −1

min(1, tijk) if mijk = 0 and t1jk t2jk = 0

0 if mijk = 1

(2.2)

For the remaining cells undefined yet, we set t′1jk = 1 and t′2jk = 0. So T ′ has binary

entries and t
′

.jk = 1. Considering the above explanation, T ′ corresponds to Rasch table

and so does T ′ + m. T ′ has no negative entries as we define t
′

ijk = 1 when mijk = −1.

Applying the result from Ryser(1963), there is a sequence of basic moves taking us from

T’ to T’+m while preserving non-negativity along the way. As we have tijk ≥ t
′

ijk, the

same sequence of basic moves can be applied to connect T and T +m while staying in S.

�

Example:

For more illustration consider the following 2× 3× 3 table, T .

1 2 2

4 2 3

0 2 1

1 1 3

3 1 2

1 4 5

The marginal sum t.jk is

2 3 5

7 3 5

1 6 6
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Clearly we have t.jk ≥ 1. Now, consider the following move

−1 1 0

1 0 −1

0 −1 1

1 −1 0

−1 0 1

0 1 −1

The corresponding T ′, as defined in (2.2) is

1 0 1

0 1 1

0 1 0

0 1 0

1 0 0

1 0 1

The T ′ has been defined in such a way that t′.jk = 1, for all j and k. This guarantees that

T ′ is a Rasch table. In our example the Rasch table representation of the 2×J ×K table

T ′ is as follows.
k i=1 i=2

j=1

1 1 0

2 0 1

3 1 0

j=2

1 0 1

2 1 0

3 1 0

j=3

1 0 1

2 1 0

3 0 1

Since m ∈M∗, so T ′ +m keeps the row and column marginal sums unchanged, therefore

T ′ + m is a Rasch table as well. Also non-negativity holds in T ′ + m, since we choose

t′ijk = +1 whenever mijk = −1. In our example T ′ +m is

0 1 1

1 1 0

0 0 1

1 0 0

0 0 1

1 1 0

Ryser’s result tells us that we can decompose m into a sequence of basic moves taking us

from T’ to T’+m without creating a negative entry. In our example m ∈M6 and so it can

be decomposed by a sequence of length 2 of basic moves m1 and m2 so that m = m1 +m2

and T ′ +m1 has no negative entries.
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-1 1 0

1 -1 0

0 0 0

1 -1 0

-1 1 0

0 0 0

And m2 is as follows
0 0 0

0 1 -1

0 -1 1

0 0 0

0 -1 1

0 1 -1

It is easily seen that the same two basic moves take us from T to T +m without leaving

S.

2

Proposition 2.3

If T, T +m ∈ S, where m ∈M∗ then there exists a path, using moves in M4, that connects

T to T +m and that does not leave S ′.

Proof If we consider a move, m ∈ M∗, proposition 2.1 tells us that we can decompose

it into a sequence of basic moves. In the proof of proposition 2.1 it has been shown that

the sequence looks like the following circuit

(j′1, k
′
1)(k

′
1, j
′
2)(j

′
2, k
′
2)(k

′
2, j
′
1)

(j′1, k
′
2)(k

′
2, j
′
3)(j

′
3, k
′
3)(k

′
3, j
′
1)

...

(j′1, k
′
ν−1)(k

′
ν−1, j

′
ν)(j

′
ν , k
′
ν)(k

′
ν , j
′
1)

Note that (k
′
2, j

′
1) may cause −1 which will be returned to 0 by (j

′
1, k

′
2), and again (k

′
3, j

′
1)

may cause −1 which will changed to 0 by the next one and this might happen several

times in the circuit.

We write each basic move as

(j′1, k
′
s)(k

′
s, j
′
s+1)(j

′
s+1, k

′
s+1)(k

′
s+1, j

′
1)

Consider two sequential basic moves

(j′1, k
′
s−1) (k′s−1, j

′
s) (j′s, k

′
s) (k′s, j

′
1)

(j′1, k
′
s) (k′s, j

′
s+1) (j′s+1, k

′
s+1) (k′s+1, j

′
1)
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Figure 2.2: The trace plot of the chi-squared statistics computed for the generated tables by

Bunea and Besag’s algorithm (left); Histogram of the computed the chi-squared statistics for

generated tables, where the vertical line is the statistics for the observed table (right).
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The top layers of the basic moves can be represented as follow

+1 -1

-1 +1

+1 -1

-1 +1

As we have shown, the intermediate table could have at worst a single −1 which gets

modified later.

2

Example: By the definition of S ′, we consider the example using the Bunea and Besag’s

algorithm to illustrate how this method works for a specific table with the R software.

Consider the following observed 2× 3× 3 table. We aim to test the hypothesis that there
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is no three-way interaction.

6 2 4

4 6 1

3 1 4

2 4 6

5 3 4

3 7 3

We produced an R function, see appendix A.1, which computes the p-value for the hy-

pothesis of no three-way interaction using Bunea and Besag ’s algorithm. We run the

algorithm which allows moves to go into S ′. Running the algorithm for 100,000 iterations

gives us the estimated p-value= 0.0930, weak evidence of a three-way interaction, and

also Figure 2.2 (left) shows the trace plot of the chi-squared statistics computed for the

generated tables. Figure 2.2 (right) shows the histogram of the computed chi-squared

statistics. The vertical line in the plot depicts the chi-squared statistic for the observed

table.

2.2 Direct proof that M ∗ is a Markov basis

Bunea and Besag (2000) used M∗ as an irreducible set of moves for S but they cite

Diaconis and Sturmfels(1998) which uses a Grobner basis argument which does not easily

generalise to I × J ×K tables with I > 2.

Here, it is shown directly that M∗ is a Markov basis. Since the difference, D, of two tables

is non zero, D 6= 0 and

di.k =
∑
k

dij. = 0 (2.3)

there exist some j and k so that d1jk > 0. We relabel the rows and columns so that:

d111 > 0

and we start to draw a picture of the pattern of cells in D:

+

According to the constraint (2.3), d11. = 0 and so there exists k > 1 so that d11k < 0. By

relabelling columns 2 to K so that column k becomes column 2:

d112 < 0

+ −
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Again, based on the constraint (2.3) d1.2 = 0, there exists j > 1 so that d1j2 > 0.

By relabelling rows 2 to J so that row j becomes row 2.

d122 > 0

+ −

d121 +

Now, consider d121; if d121 < 0, as we already have d111, d122 > 0 and d112 < 0, we have

half a basic move and because d1ij = −d2ij, thus we have found m ∈M4:

+ −

− +

If not then d121 ≥ 0, which gives:

+ −

≥ +

Since the sum of the first two entries in row 2 is positive, there exists k > 2 such that

d12k < 0 to satisfy the constraint (2.3). By relabeling columns 3 to k we have:

d123 < 0 + − d113

≥ + −

The same approach is now applied to d113: if d113 > 0, we have m ∈ M4 based on d112,

d113, d122 and d123. Otherwise d113 ≤ 0 and we have

+ − ≤

≥ + −
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Since, d1.3 = 0 there exist j > 2 so that d1j 3 > 0 and relabelling we have

+ − ≤

≥ + −

d131 d132 +

The same argument applied to d131 and d132 either gives us a move or they are both

greater than or equal to zero. If d131 < 0 then we have found m ∈ M6; if d132 < 0 then

we have found m ∈M4; otherwise d131 ≥ 0 and d132 ≥ 0 and the situation looks like:

+ − ≤

≥ + −

≥ ≥ +

Based on the same argument, in the next step D looks like:

+ − ≤ ≤

≥ + − ≤

≥ ≥ + −

d141 d142 d143 +

d144 must be positive for constraint 2.3 to hold. The same argument is applied to d14t

where t = 1, 2, 3 so:

d143 < 0 =⇒ m ∈M4

d142 < 0 =⇒ m ∈M6

d141 < 0 =⇒ m ∈M8

otherwise d14t ≥ 0 where t = 1, 2, 3.

The same approach can be applied to generalise the argument in top-left m ×m square

of D. If we haven’t found a move in the top left m ×m square of D then we have the

following pattern:
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+ − ≤ ≤ · · · ≤
≥ + − ≤ · · · ≤
≥ ≥ + − · · · ≤

≥ ≥ ≥ + · · · ...
...

...
...

...
...

...

−
≥ ≥ · · · ≥ · · · d1mm > 0

By adding another column there should be − in d1mm+1. Now, we consider all d1jm+1

for j ≤ m. Depending on which one is + there exists a move with different degree,

if none are + there is no move, then d1jm+1 ≤ 0 for j ≤ m so by relabelling rows

d1m+1m+1 > 0. Considering d1m+1k for k ≤ m will provide a move if any d1m+1k is − so

we assume d1m+1k ≥ 0 for k ≤ m which means we haven’t found a move in the top left

(m+ 1)× (m+ 1) square of D.

Here we would start again with (m+ 1)× (m+ 1) top left square. Since m ≤ min(J,K),

there must be a move.

The following two lemmas show that, each time a move is added to D, it gets smaller in

at least eight cells, by adding the move to make the table T# = T +m, and it doesn’t go

out of S. Consequently, there is a path in S from T to T ∗ made by a finite sequence of

moves in M∗.

Lemma 2.4 Suppose that there is some m ∈ M∗ such that: dijk > 0 if mijk > 0 and

dijk < 0 if mijk < 0. Then T# ∈ S where T# = T +m.

Proof If mijk > 0, mijk = +1, and dijk > 0. Hence, t∗ijk ≥ 0 and t#ijk = tijk + 1 implies

t#ijk ≥ 0. On the other hand, if mijk < 0, mijk = −1, and dijk < 0. Therefore

t∗ijk < tijk (2.4)

and so

0 ≤ t∗ijk ≤ tijk − 1 = t#ijk (2.5)

Having 0 ≤ t#ijk provides T# ∈ S.

�

Lemma 2.5 Writing D∗ = T ∗ − T# = D −m:
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• If D∗ = 0 then we have a basic move from T to T ∗.

• If D∗ 6= 0 then
∑
| d∗ijk |≤

∑
| dijk | −8 and so the the size of D, which can not be

negative, decreases by at least 8

Proof When D∗ = 0 then T ∗ = T# so T ∗ = T + m hence there exist a move which

makes connection between two tables. In the case of D∗ 6= 0, since D∗ = D − m,

for every cell d∗ijk = dijk − mijk. When mijk > 0, mijk = +1 and dijk > 0. Hence,

|d∗ijk| = |dijk− 1| = dijk− 1 and so |d∗ijk| = |dijk| − 1. If mijk < 0, mijk = −1 and dijk < 0.

Hence

|d∗ijk| = |dijk + 1| = −(dijk + 1) = |dijk | −1.

Having proved |d∗ijk| = |dijk| − 1 for all cells where mijk 6= 0,∑
ijk

|d∗ijk| =
∑
ijk

|dijk| −
∑
ijk

|mijk| (2.6)

≤
∑
ijk

|dijk| − 8 (2.7)

since m has at least 8 non-zero cells.

�

2.3 Direct justification of Bunea and Besag using only

basic moves

In 2×J×K tables, it is always possible to find a path in S ′ from T to T ∗ using only basic

moves. In this section a direct proof will be given that the Bunea and Besag algorithm

creates an irreducible Markov chain over S. Note that M∗, results from Diaconis and

Sturmfels and the Rasch Model are not used in our proof. The following constraints have

been considered in this proof:

1. t.jk ≥ 0 and ti.k ≥ 0 and tij. ≥ 0.

2.
∑

i t
∗
ijk ≥ 0 and

∑
i t
∗
ijk ≥ 0 and

∑
i t
∗
ijk ≥ 0.

3.
∑

i dijk =
∑

j dijk =
∑

k dijk = 0
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Theorem 2.6 In 2 × J ×K tables, it is always possible to find a path in S ′ from T to

T ∗ using only basic moves using the following Algorithm

(1) If D = 0 then algorithm stops.

(2) Find a positive entry, dijk > 0 in D.

(3) According to constraint (3), there should be a negative cell dijk′ in the same row and

slice as dijk. The constraint also implies one other negative cell in the same column

and slice as dijk located in dij′k. Now, we set a basic move according to these three

mentioned cells in D such that mijk = +1, mijk′ = −1 and mij′k = −1 which implies

that mij′k′ = +1, mi′jk = −1, mi′jk′ = +1, mi′j′k = +1 and mi′j′k′ = −1, where i′ is

the other slice.

(4) Let T ′ = T +m and D′ = D −m.

(5) Different possibilities might happen to ti′j′k′.

• If ti′j′k′ > 0 then T +m ∈ S so go back to step (1) with T = T ′ and D = D′.

• If ti′j′k′ = 0 then T + m ∈ S ′ \ S, (t′i′j′k′ = −1). In this case d′i′j′k′ > 0. So go

back to step (3) with T = T ′, D = D′ and d′i′j′k′ as the positive entry.

We need to prove the following statements.

• If t′i′j′k′ = −1 then d′i′j′k′ > 0.

• All the other cells in T ′ are non-negative.

• The algorithm stops.

Proof • t′i′j′k′ = −1 when ti′j′k′ = 0 and mi′j′k′ = −1 so

d′i′j′k′ = di′j′k′ −mi′j′k′

= t∗i′j′k′ − ti′j′k′ −mi′j′k′

= t∗i′j′k′ + 1

and because T ∗ ∈ S then d′i′j′k′ is always greater than zero.
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• The only cells which need to be considered are t′i′jk, t
′
ijk′ and t′ij′k because the

corresponding cells in m are −1. But the corresponding cells in D are negative

which means:

0 ≤ t∗i′jk < ti′jk = t′ijk + 1⇒ ti′jk ≥ 0

and similarly for tijk′ and tij′k

• Because sign of m matches sign of D for certain in their 6 cells so each time the

move is subtracted from D the cells dijk, dij′k, dijk′ , di′jk, di′j′k and di′jk′ get smaller.

It may cause to increase or decrease the values of the cells, dij′k′ and di′j′k′ so that

| D′ |≤| D | −6 + 2

=| D | −4

Note that | D′ |≥ 0 so that it takes a maximum of b |D|
4
c steps for algorithm to stop.

�

2.4 Conclusion

Bunea and Besag (2000) provided an algorithm using the M∗ introduced by Diaconis and

Sturmfels (1998), to make an irreducible Markov chain over the sample space, defining an

extra space, S ′. The algorithm is only introduced for 2 × J ×K tables using the Rasch

model idea. To prove why the chain is irreducible they have referred to Diaconis and

Sturmfels (1998). We have shown the reason why M∗ is a Markov basis and we have

also proved that the connected Markov chain can be constructed using only basic move

allowing a single −1 in the tables which helps to avoid the need for more complicated

moves of higher degrees.



Chapter 3

Algorithms for 3×3×K and 3×4×K

tables

3.1 Introduction

Diaconis and Sturmfels (1998) introduced a general algorithm for computing a Markov

basis based on the existence of a Grobner basis. Their approach is extremely appealing

as it can be used for any dimension. However, for two main reasons, using their approach

is limited. The more important is the computational complexity of computing Grobner

basis, as the Grobner basis is different for each table not just each size of table. The other

is that it involves many redundant basis elements and a reduced basis lacks symmetry.

Therefore, Aoki and Takemura (2003) suggested using the unique minimal Markov basis

which is defined in the following section.

Before continuing, by introducing Aoki and Takemura (2003)’s minimal Markov basis, we

will prove the following theorem which shows the difference between any two I × J ×K
tables can be made from basic moves.

Theorem 3.1 The difference of two tables, D, can be made from a set of basic moves.

Proof Consider the following constraint

d.jk = di.k = dij. = 0

In section 2.2, direct proof that M∗ is Markov basis, it has been shown that we are always

able to find in the first layer of D a pattern of + and − entries which matches one layer
38
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of a move m ∈M∗. It is also the case that to satisfy the constraint there must be a − in

of the other layers which matches the + in d111.

If we complete the half-move by filling in the opposite signs in the layer where the − was

found, we obtain a move m in M∗. The sign of D matches m in more than half of the

non-zero cells of m. Consequently, the size of D decreases when we make the move.

As we know each m ∈ M∗ is decomposable in to a set of basic moves. Hence, by sub-

tracting each basic move from D we can make the size of D smaller. We can then repeat

the process of finding half a move in M∗ until the first layer becomes zero. The same

argument is applied to the other layers. So by subtracting the sequence of basic moves D

becomes zero.

So it has been shown that D is made from a set of basic moves.

�

3.2 Aoki and Takemura approach

In this section we briefly review Aoki and Takemura (2003) and introduce their minimal

Markov basis for different tables. A Markov basis is defined as follows:

Definition Markov basis

A Markov basis is a set B = {m1, · · ·mL} of I × J ×K integer arrays mL ∈M ,whereM
is the set of all moves, such that for any {tij.}, {ti.k}, {t.jk} and T, T ′ ∈ S, there exist

A > 0, (ε1,mq1), · · · , (εA,mqA) with εs = ±1 and mqs ∈ B such that

T ′ = T +
A∑
s=1

εsmqs and T +
a∑
s=1

εsmqs ∈ S for 1 ≤ a ≤ A.

A Markov basis B is minimal if no proper subset of B is a Markov basis. A minimal

Markov basis is said to be unique if there exists only one minimal Markov basis.

If a Markov basis is obtained, a connected Markov chain over S is easily constructed.

Aoki and Takemura (2003) derived the unique minimal Markov basis, described as a set

of different types of move, for 3× 3×K tables where K = 3, K = 4 and K ≥ 5. Before

introducing the theorems, a brief explanation of different types of move will be given.
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The most elementary type of move, already discussed in the introduction, is the basic

move. Here we use the notation m4(i1i2; j1j2; k1k2) which indicates that the move is made

by choosing two layers, two rows and two columns in which all the non-zero cell entries lie:

mi1j1k1 = mi1j2k2 = mi2j1k2 = mi2j2k1 = +1 and mi2j1k1 = mi1j2k1 = mi1j1k2 = mi2j2k2 =

−1.

One type of move of degree 6, having non-zero cells in only two layers and three rows and

columns, is a 3× 3×K integer array mI
6(i1i2; j1j2j3; k1k2k3) with elements

mi1j1k1 = mi1j2k2 = mi1j3k3 = mi2j1k2 = mi2j2k3 = mi2j3k1 = 1,

mi1j1k2 = mi1j2k3 = mi1j3k1 = mi2j1k1 = mi2j2k2 = mi2j3k3 = −1,

Similarly, there exist mJ
6 (i1i2i3; j1j2; k1k2k3) and mK

6 (i1i2i3; j1j2j3; k1k2) which have non-

zero entries respectively in just two rows and two columns. These moves are called

two-step moves because they can be implemented as as two basic moves, as indicated in

the following graphical representations of moves in M6:
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The next type of move is a move of degree 8, which is a three-step move. For the case of a

general I × J ×K contingency table, there are several versions of such a move. However,

for the 3×3×K case, Aoki and Takemura need only the following type which has non-zero

cells in three layers, three rows and four columns: m8(i1i2i3; j1j2j3; k1k2k3k4) where

mi1j1k1 = mi1j2k2 = mi2j1k3 = mi2j2k1 = mi2j3k4 = mi3j1k2 = mi3j2k4 = mi3j3k3 = 1,

mi1j1k2 = mi1j2k1 = mi2j1k1 = mi2j2k4 = mi2j3k3 = mi3j1k3 = mi3j2k2 = mi3j3k4 = −1,
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The following figure shows a three dimensional view of one such move, indicating how it

can be constructed from three basic moves:
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Finally, Aoki and Takemura require one type of move of degree 10, m10(i1i2i3; j1j2j3; k1k2k3k4k5)

which has non-zero cells in three layers, three rows and 5 columns:

mi1j1k1 =mi1j2k2 =mi1j2k5 =mi1j3k4 =mi2j1k3 =mi2j2k1 = mi2j3k5 = mi3j1k2 = mi3j2k4 = mi3j3k3 = 1,

mi1j1k2 = mi1j2k1 = mi1j2k4 = mi1j3k5 = mi2j1k1 =mi2j2k5 =mi2j3k3 =mi3j1k3 =mi3j2k2 = mi3j3k4 = −1,
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The following three dimensional view of one such move shows that these are four-step

moves constructed from four basic moves:
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The following theorems from Aoki and Takemura (2003) determerine the unique minimal

Markov basis for 3× 3×K tables for the cases K = 3, K = 4 and K ≥ 5.

Theorem 3.2 The set of all basic moves m4(i1i2, j1j2, k1k2) and the three different types

of move of degree 6,

mI
6(i1i2, j1j2j3, k1k2k3),m

J
6 (i1i2i3, j1j2, k1k2k3),m

K
6 (i1i2i3, j1j2j3, k1k2)

constitute the unique minimal Markov basis for 3× 3× 3 tables.

Theorem 3.3 The set of all basic moves m4(i1i2, j1j2, k1k2), the three different types of

move of degree 6

mI
6(i1i2, j1j2j3, k1k2k3),m

J
6 (i1i2i3, j1j2, k1k2k3),m

K
6 (i1i2i3, j1j2j3, k1k2)

and one type of move of degree 8:

m8(i1i2i3, j1j2j3, k1k2k3k4)

constitute the unique minimal Markov basis for 3× 3× 4 tables.

Theorem 3.4 The set of all basic moves m4(i1i2, j1j2, k1k2), the three different types of

move of degree 6,

mI
6(i1i2, j1j2j3, k1k2k3),m

J
6 (i1i2i3, j1j2, k1k2k3),m

K
6 (i1i2i3, j1j2j3, k1k2)
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one type of move of degree 8,

m8(i1i2i3, j1j2j3, k1k2k3k4))

and one type of move of degree 10,

m10(i1i2i3, j1j2j3, k1k2k3k4k5)

constitute the unique minimal Markov basis for 3× 3×K tables for K ≥ 5.

In the following sections, we show that connected Markov chains can be constructed over

S using only basic moves, by allowing the chain to visit tables outside S having up to two

cells containing −1.

3.3 Construction of a connected Markov chain over

3×J×K tables

It will be shown that without using the unique minimal Markov basis introduced by Aoki

and Takemura (2003), we can still construct an irreducible Markov chain over S. This

is done by extending the idea of Bunea and Besag (2000). They allow tables to have at

most a single −1 cell; we must allow them to have at most two.

Theorem 3.5 The Bunea and Besag algorithm applied to 3 × 3 × K tables creates an

irreducible Markov chain on S ′ provided we re-define S ′ to include tables having at most

two negative cells which are −1.

Proof Let T ∈ S ′ have at most a single −1 cell. As before, T ∗ ∈ S, D = T ∗ − T and we

refer to
∑

ijk |dijk| as the size of D.

The idea of the proof is to show that we can always find either a single basic move or a

sequence of two basic moves which, when applied to T , reduce the size of D and leave

T ∈ S ′ and having at most a single −1 cell. We do so by appropriately relabelling rows,

columns and layers and then exhaustively considering possible configurations of positive

and negative cells in the first few rows and columns of D. The consequence is that there

must be a path, made from basic moves, in the re-defined S ′ between any two tables in

S.
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For the first part of the proof we work with general J rather than J = 3 so that we can

use it as the starting point of the proof of the subsequent theorem concerning 3 × 4 × 4

tables.

(1) If T has a negative cell, we bring it to t111 by relabelling rows, columns and layers

and then d111 must be positive; otherwise, find any positive cell in D and bring it to

d111 by relabelling.

(2) The constraint implies a negative cell in row 1 of layer 1 and we bring it to d112 by

relabelling columns 2 to K. The constraint also implies a negative cell in column 1

in layer 1 and we bring it to d121 by relabelling rows 2 to J . Finally the constraint

implies a negative cell in row 1 and column 1 of another layer and we bring it to d211

by relabelling layers 2 and 3. Writing + for a positive cell and − for a negative cell.

the cells we have identified in the first two layers of D look like

+ − −

−

(3) If d122 > 0 then we can make the move

+ − − +

− + + −
and the size of D gets smaller as there are at least five cells where dijk has the same

sign as mijk and at most three where the sign can differ.

Here, the only possible cell in T which might become negative is t222, as it is the cell

which corresponds to the unmatched −. Moreover, if t111 was negative, it ceases to

be. Therefore, having made the move, T ∈ S ′ and has at most one −1 cell. We return

to step (1) with the new T .

(4) Now suppose that d122 ≤ 0 so that D looks like

+ − −

− ≤ 0

The same argument that we used in step (2) applies to d221 and d212. Therefore the

only case which can cause us difficulties is where we also we have d221 ≥ 0 and d212 ≥ 0

so that D looks like

+ − − ≤ 0

− ≤ 0 ≤ 0
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(5) If d222 < 0 then we can simply make the same basic move as we end up with no

negative cells in T and then T ∈ S. The size of D gets smaller because the signs of

at least five cells match. We return to step (1) with the new T .

(6) The only remaining case is where d222 ≥ 0 so that D now looks like

+ − − ≤ 0

− ≤ 0 ≤ 0 ≥ 0

Here, the constraint implies a positive cell in the second row of layer one to keep the

marginal total equal to zero . By relabelling columns 3 to K, we can bring it to d123

so that D looks like

+(+) − (−) −(−) ≤ 0 (+)

−(−) ≤ 0 +(+) ≤ 0(+) ≥ 0 (−)

where the signs in the brackets indicate the move we plan to make.

If d113 < 0 we can make that basic move and the size of D gets smaller because the

signs of at least five cells match. Here the only possible cell which might become

negative is t223 and t111 cannot stay negative. We return to step (1) with the new T .

(7) When d113 ≥ 0, D looks like

+ − ≥ 0 − ≤ 0

− ≤ 0 + ≤ 0 ≥ 0

If d223 < 0 then we can make the basic move with −1 in m121, m113, m211 and m223

and the size of D gets smaller because at least five signs match. The only possible

cell in T which can be left negative is t113. We return to step (1).

(8) When d223 ≥ 0, D looks like

+ − ≥ 0 − ≤ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0

Here, the constraint implies that there is a positive cell in the second column of the

first layer and by relabelling rows 3 to J that cell is d132. D now looks like:

+(+) −(−) ≥ 0 −(−) ≤ 0(+)

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0

(−) +(+) (+) (−)
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Now, if d131 < 0 then we can make the move and the size of D gets smaller and the

only possible cell to remain negative in T is t232. We return to step (1).

(9) When d131 ≥ 0, D looks like

+ − ≥ 0 − ≤ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0

≥ 0 +

If d232 < 0 then we can make the basic move with −1 in m131, m112, m211 and m232

and the size of D gets smaller. The only cell in T which can remain negative is t131

and we return to step (1).

(10) When d232 ≥ 0, D looks like

+ − ≥ 0 − ≤ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0

≥ 0 + ≥ 0

Here, there are no more conclusions in the first and second layer to make. Since there

are only three layers, we can use the constraint to draw conclusions about some cells

in the third layer and the three layers of D now look like

+ − ≥ 0 − ≤ 0 +

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + −

≥ 0 + ≥ 0 −

(11) Here, for J > 3 we can’t make any statement but for J = 3 we can determine the

sign of d133 and D looks like

+ − ≥ 0 − ≤ 0 +

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + −

≥ 0 + − ≥ 0 −

We can see that, with the exception of d311, we have the right pattern of negative

cells in the first and third layers of D to match an M6 move. The corresponding M6

looks like

+ − − +

− + + −

+ − − +
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Therefore, if d311 < 0, we can make that M6 move and the size of D gets smaller as

signs match in at least 11 out of 12 cells. We would then return to step (1).

(12) When d311 ≥ 0, D looks like

+ − ≥ 0 − ≤ 0 ≥ 0 +

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + −

≥ 0 + − ≥ 0 −

The M6 move described before can be decomposed to the two following basic moves.

0 0 0 0 0 0

0 − + 0 + −

0 + − 0 − +

and

+ − 0 − + 0

− + 0 + − 0

0 0 0 0 0 0

If we make the second of these two moves first, it can leave negative cells in t311 and

t322 whereas if we make the other first it can leave the original negative cell in t111

and a further negative cell in t122. Either way when we follow up with the other basic

move, only one negative cell can remain in T in cell t311. The size of D will have

decreased as the M6 move matches D in at least 10 out of 12 cells. We then return

to step (1).

We have shown that there exists a path from T to T ∗ in the re-defined S ′ using only

basic moves. Moreover, the path is finite as the size of D is a non-negative integer which

decreases with each move.

�

Theorem 3.6 The Bunea and Besag algorithm applied to 3 × 4 × 4 tables creates an

irreducible Markov chain on S ′ where S ′ is defined as in Theorem 3.5.
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Proof The proof of Theorem 3.5, as far as the end of step (10), applies to 3 × J × K
tables for J ≥ 3 and K ≥ 3. We start this proof with D which looks like:

+ − ≥ 0 − ≤ 0 +

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + −

≥ 0 + ≥ 0 −

(1) If either d133 < 0 or d311 < 0, we can make the M6 move described at the end of the

proof of Theorem 3.5, leaving at most a single −1 entry in T and decreasing the size

of D. We would then return to step (1) of Theorem 3.5.

(2) Taking d133 ≥ 0 and d311 ≥ 0, D looks like:

+ − ≥ 0 − ≤ 0 ≥ 0 +

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + −

≥ 0 + ≥ 0 ≥ 0 −

Since J = 4, the constraint implies that d143 < 0. Without yet restricting to K = 4,

the constraint implies that we can relabel columns 4 to K so that d134 < 0. Now D

looks like:

+ − ≥ 0 − ≤ 0 ≥ 0 +

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + −

≥ 0 + ≥ 0 − ≥ 0 −

−

If d341 < 0 then we can make the basic move which has −1 in cells m121,m143,m341

and m323; the size of D gets smaller and we create no additional negative entries in

T . We would return to step (1) of Theorem 3.5.

A similar argument applies if d314 < 0.

(3) When d341 ≥ 0 and d314 ≥ 0 then D looks like:

+ − ≥ 0 − ≤ 0 ≥ 0 + ≥ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + −

≥ 0 + ≥ 0 − ≥ 0 −

− ≥ 0
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Here, the constraint and the fact that J = 4 imply that d331 < 0 and so D looks like:

+ − ≥ 0 − ≤ 0 ≥ 0 + ≥ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + −

≥ 0 + ≥ 0 − ≥ 0 − −

− ≥ 0

Now, if d324 < 0 then we can make the basic move which has −1 in m121, m134, m324

and m331; the size of D gets smaller and we create no additional negative entries in

T . We would return to step (1) of Theorem 3.5.

(4) When d324 ≥ 0, D looks like:

+ − ≥ 0 − ≤ 0 ≥ 0 + ≥ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + − ≥ 0

≥ 0 + ≥ 0 − ≥ 0 − −

− ≥ 0

Now, if d344 < 0, we have, in layers 1 and 3, 7 of the negative entries required to

match a move in M8. Those negative entries are in d112, d121, d323, d332, d134, d143 and

d344 and the missing entry is d411. The move in M8 is made from three basic moves:

(i) with −1 in m112, m211, m311 and m322; (ii) with −1 in m323, m332, m122 and m133;

(iii) with −1 in d134, d143, d333 and d344. Implementing the M8 move decreases the

size of D as the signs of at least 12 non-zero entries out of 16 in the move match

D. Implementing the M8 move using basic moves may create temporarily a second

negative entry in T but at the end the only possible negative entry would be in t411.

We would return to step (1) in Theorem 3.5.

(5) When d344 ≥ 0, D looks like

+ − ≥ 0 − ≤ 0 ≥ 0 + ≥ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + − ≥ 0

≥ 0 + ≥ 0 − ≥ 0 − −

− ≥ 0 ≥ 0
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The constraint and J = 4 now imply that d334 ≤ 0 so that D looks like

+ − ≥ 0 − ≤ 0 ≥ 0 + ≥ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + − ≥ 0

≥ 0 + ≥ 0 − ≥ 0 − − ≤ 0

− ≥ 0 ≥ 0

At this point, we now use the fact that K = 4 together with the constraint. We

deduce that d313 < 0 and d333 > 0 which then implies that d233 < 0. D now looks like

+ − ≥ 0 − ≤ 0 ≥ 0 + − ≥ 0

− ≤ 0 + ≤ 0 ≥ 0 ≥ 0 + − ≥ 0

≥ 0 + ≥ 0 − ≥ 0 − − − + ≤ 0

− ≥ 0 ≥ 0

We see that we can make the basic move with −1 in m211, m233, m313 and m331 and

that we create no additional negative entry in T . Enough signs match to ensure that

the size of D decreases and we return to step (1) of Theorem 3.5.

For any configuration of the tables, we have shown that we can find one or more basic

moves which reduce the size of D and leave at most a single negative entry in T and which

temporarily create at most one additional negative entry in T .

�

3.4 Conclusion

As previously mentioned, Aoki and Takemura have found a unique minimal Markov basis

for 3× 3×K tables which includes the different types of move from degree 4 to 10. They

have also found the list of indispensable moves for 3×4×K tables which includes different

types of move from degree 4 to 16.

In this chapter, we have proved the novel result that constructing the connected Markov

chain over S for 3 × 3 × K and 3 × 4 × 4 tables is possible by using only basic moves,

allowing tables to go to S ′, redefined to allow at most two cell entries equal to −1. This

makes implementation easier, than for MCMC using the Aoki and Takemura Markov

bases, as we can avoid producing more complicated moves of higher degree.



Chapter 4

Efficiency of MCMC exact methods

4.1 Introduction

Throughout this chapter we assess the efficiency of MCMC methods introduced in Chap-

ters 2 and 3 for computing the exact p-value. We first use an example of a 2× 3× 3 table

to introduce the methodology proposed by Bunea and Besag (2000). We have extended

their approach to an algorithm which accepts random moves from M6 as well as random

basic moves from M4. It should be remembered that Bunea and Besag (2000) use only

basic moves. We also implement the MCMC method based on the method introduced by

Diaconis and Sturmfels (1998), where moves will be selected from M∗, the set of moves

of different degrees. This comparison needs us to define a measure for the efficiency of

the algorithms. Hence, we introduce two different types of measure of efficiency for the

algorithms by which the efficiency of the algorithms will be investigated.

It also provides a comparison between the efficiency of each algorithm and the alterna-

tives. For algorithms which depend on a parameter the efficiency metric is computed over

the range of parameter values to determine whether there is an optimum value for the

parameter.

The comparison study will be carried out on tables with small, moderate, and large sample

sizes. That is, we choose tables with small, moderate, and large values for cell entries. We

are also interested in evaluating the performance of different algorithms for tables with

larger dimension. For this purpose, we run the algorithms over a table with the larger

dimension of 2× 5× 6.

52
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Bunea and Besag (2000) proved their method only for contingency tables with two layers,

that is 2× J ×K. In chapter 3 we proved the algorithm which only uses the basic moves

to provide an irreducible Markov chain over tables of 3×J ×K where J = 3, 4. Aoki and

Takemura (2003) introduced the list of indispensable set of basic moves which construct

the unique minimal Markov basis over contingency tables of dimension 3 × J × K, for

small J = 3, 4. We will evaluate the performance of algorithm introduced in chapter 3,

as well as Aoki and Takemura’s algorithm on contingency tables of dimension 3 × 3 × 5

and 3× 4× 5.

4.2 Computing efficiency

This section explains the methods we used to compare the efficiency of the algorithm.

The efficiency measure will be computed based on two components: effective sample size;

computational cost.

Effective sample size

A common problem of using MCMC methods is that the values θ(t) generated at iteration

t look much like the θ(t+1) and this similarity continues for all iterations, or in technical

terms there is auto-correlation between the samples. Therefore, the contribution of each

additional sample to the quality of inferences about the posterior density can be small.

Hence, the sampler requires a longer run of the MCMC algorithm to reach a sample size

equivalent to n independent samples.

We can compute the effective sample size from an MCMC sample by considering the

auto-correlation of the generated MCMC samples. The formula for the effective sample

size is given by

Neff =
n

1 +
∑

k ρk
, (4.1)

where ρk is the auto-correlation of lag k (Gamerman and Lopes, 2006) and n is MCMC

sample size. We also need to decide which variable to use to compute the auto-correlation

in (4.1). One option is to use the sequence of indicator values, It, which equals 1 if

the generated table has a probability less than the probability of the observed table and

zero otherwise. Note that it might seem natural to use this indicator, as the p-value

can be obtained by averaging this indicator. We tried this indicator for several examples

along with other measures and we observed that this does not reveal the autocorrelation
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between sequence of generated tables, i.e. a disadvantage of using this indicator is that it

removes much information about the generated table. For this reason we have not used

this metric.

An alternative is to use the probability of the generated table. Instead of the original

probability we prefer to use the logarithm of probability. This way we spread out small

values over a continuous range which suitably reveals the variability. Let us denote the

probability of observing the table generated at time t by πt; ln (πt) is used for the efficiency

analysis.

For a fixed MCMC sample length, we prefer an algorithm that provides a larger effective

sample size for the same cost - the higher the effective sample size, the higher the efficiency.

We denote the effective sample size for the logarithm of the probability of the table by neff .

Note that effective sample size cannot represent the efficiency of the algorithm alone, as

time spent to run an algorithm is a factor to be considered. In simple terms, consider two

algorithms with two different running times for a fixed number of iterations. It is obvious

that for a fixed time period the faster algorithm can produce more MCMC samples. For

this reason, the time of running an algorithm needs to be considered as a cost factor in

measuring the efficiency of the algorithm. We define the effective sample size divided by

the CPU running time of the algorithm as an efficiency measure

effT =
Neff

Running Time
(4.2)

This measure will be computed for several examples later in this chapter.

Cost of an algorithm using number of memory bits

In assessing the efficiency of an algorithm, the cost can be measured by the total number

of bits used in an algorithm. Devroye (1986) shows how this measure can be computed

and used as the cost factor in comparing two algorithms. Devroye (1986) shows how

many bits are needed to generate a discrete random variable. The exact number of bits

required varies depending on what happens in the process, each time we generate a value.

So instead of CPU running time one can use the expected number of bits used in the

algorithm. Devroye (1986) also shows that optimal algorithm and the expected number

of bits depend on both the number of possible values taken by the random variable and

on the probabilities, in a complex way. A simple, close to optimal algorithm for choosing
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from any collection of n equally likely objects gives

C = E[# Bits] = 2m
m

n
(4.3)

where m = dlog2 ne, and n is the number of possible values. We use this calculation as

the basis of counting the cost of choosing random moves. The d e denotes the ceiling

function.

In our case, n is the number of possible moves. So this value varies depending on the type

of move and dimension of the table. For example, assume a table of dimension 2×J×K.

The number of possible basic moves of degree 4 is given by:

n =
1

2!
J(J − 1)K(K − 1) (4.4)

= 2

(
J

2

)(
K

2

)
(4.5)

as we need to select two rows and two columns at random which can happen with J(J −
1)K(K − 1) possibilities. However, if we swap both the rows and columns we get the

same move. Similarly, we can calculate the number of moves of degree 6. This time, it is

necessary to select three rows and three columns, but there exist 3! permutations of rows

and columns which give the same moves:

n =
1

3!
J(J − 1)(J − 2)K(K − 1)(K − 2) (4.6)

= 6

(
J

3

)(
K

3

)
. (4.7)

By induction we can show that for a table of dimension 2× J ×K a move of degree 2m

the number of possible moves is:

n =
1

m!
J(J − 1) · · · (J −m+ 1)K(K − 1) · · · (K −m+ 1) (4.8)

= m!

(
J

m

)(
K

m

)
. (4.9)

We also count the number of times a uniform random number is used to accept or reject

a table. We refer to this cost as Bernoulli Cost and denote it by Cb in this chapter.

The cost of an algorithm in random bit model for generating a Bernoulli sample is between

1 and 2. If the parameter of a Bernoulli distribution, p = 0.5 it only needs one random bit.

For p 6= 0.5 the expected number of bits required is not greater than 2. For illustration

consider a binary expansion of the Bernoulli parameter p = 0.p1p2p3 · · · . For generating

the Bernoulli value it needs to generate binary random bits Bi until the first Bi 6= pi. This



4.3. A case study for 2×J×K tables 56

way, the probability of exiting after i bits is 1/2i. So the expected value for the number

of bits is calculated by

E(#bits) =
∞∑
i=1

i

(
1

2

)i
= 2. (4.10)

For this reason we use C + 2×Cb as the upper bound for the total cost of the algorithm.

So the lower and upper bound for the cost is given by

(CL , CU) = ( C + 1× Cb , C + 2× Cb ).

Now, considering the effective sample size and the cost of an algorithm (the total number

of bits required) we can define a lower and upper bound for the efficiency measure, denoted

by effL and effU respectively. A simple idea is to divide the effective sample size for a

fixed number of MCMC samples by the total number of bits used to run the algorithm.

effL =
Neff

CU
(4.11)

effU =
Neff

CL
(4.12)

4.3 A case study for 2×J×K tables

In this section we aim to compute and compare the efficiency of MCMC methods in

Chapter 2 over a table of dimensions 2 × 3 × 3 . We choose different tables of small,

moderate, and large values for cell entries to compute the p-value and the efficiency

throughout this chapter. We also study how the efficiency of algorithms is affected by the

dimensions of the tables. We first introduce three algorithms: M2BB, M23BB and M23.

Table 4.1: Notation used to represent different algorithms

Notation Description

M2BB Using only moves of degree 4, M4, allowing tables to leave S.

M23BB Using moves of degree 4 and 6, allowing tables to leave S.

M23 Using moves of degree 4 and 6, staying in S all the time.

MMs Using moves from M∗, staying in S all the time.

MMsBB Using moves from M∗, allowing tables to leave S.

Algorithm M2BB uses the Bunea and Besag idea to generate tables using basic moves of

degree 4. We extend this algorithm to enable the generation of moves of degree 6 as well
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as basic moves of degree 4 and we call the resulting algorithm M23BB. M23 is the same

algorithm without possibility to go in S ′ and is equivalent to the method introduced in

Diaconis and Sturmfels (1998). This is followed by an explanation of these algorithms in

more detail and then we apply them to a table of dimension 2× 3× 3. As this table has

small numbers in the cells, with maximum values 5 and total value 50, it will be denoted

by TS. We use this table later in this section along with tables with larger values to

investigate the performance of these algorithms.

TS :

2 2 4

4 1 1

3 1 4

2 4 2

5 3 4

3 2 3

We found the complete reference set for the table TS to compute the exact p-value for

the no three-way interaction model for table TS. This enables us to investigate how the

computed p-value from algorithms M2BB, M23BB and M23 compare to the true p-value.

For this purpose we solved the the system of equations produced for table Ts conditional

on the marginal totals. An R code, shown in Appendix A.2 was used to find the set of

all solution of the system of equations for which the corresponding table does not contain

any negative cell entries. The 216 tables in the reference set are listed in Appendix A.2,

where each row represents a table. The exact p-value is found to be 0.9190594.

In what follows, we will present results of various algorithms applied to a number of

different contingency tables, including TS. The results will be presented mainly as tables.

A short description of the notation used in the tables is given in Table 4.2

M2BB-Algorithm

In this algorithm we use only the basic moves to generate tables of the same dimension

and with the same margins. This algorithm allows the tables to have the proposals from

S ′ (Bunea and Besag, 2000), that is, the proposal can accept tables with cells of −1.

Because we only use the basic moves from M4 the number of possible moves is:

n = 2

(
3

2

)(
3

2

)
= 18

and equivalently the average number of bits required each time a new move is generated

is 8.889. We also consider the cost of the number of bits for generating a Bernoulli sample

which is used in acceptance sampling of MCMC.
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Table 4.2: Notation used to represent results of MCMC samples

Notation Description

(pi, pj) The probability distribution for choosing basic moves, where pi shows the probability

of choosing a basic move of degree i.

p-value The average of the p-values computed for each MCMC chain.

Neff The effective sample size, computed based on logarithm of the probability of the

observed table.

Eff Lower The average of the lower bands for the efficiency of the algorithm

Eff Upper The average of the upper band for the efficiency of the algorithm

Time (Sec) The average of the CPU running time spent for the algorithm

Eff Time The average of the efficiency measure computed based on running time

Cost Lower The average of the lower cost computed for the each algorithms

Cost Upper The average of the upper cost computed for an algorithm

N-bits Total The average of total number of bits used in an algorithm

N-bits Bernoulli The total number of Bernoulli bits counted for during algorithm (Average)

N-bits Sp The average number of bits used while the algorithm is in S ′

N-bits So The average number of bits used, while in S ′ but outside S, making proposals which

would take the chain outside S ′

We produced the R function mcmc.m2bb to produce the MCMC sample based on Bunea

and Besag (2000) which is shown in the Appendix A.1. The algorithm has been applied

over a table of dimension 2×3×3 as an example. The estimated p-value for no interaction

effect is 0.919 ± 3 × 0.0006. The effective sample size is 1008. The efficiency computed

for the algorithm is EffL = 0.00516 with the upper limit of EffU = 0.00537. The result

will be presented in Table 4.3 and Table 4.4 along with results of the other algorithms.

The p-value in Table 4.3 is the average of 100 estimated p-values obtained by 100 times

running an MCMC of sample size 10,000. The value underneath the metric in each

cell shows the standard deviation of the metric. So for a new MCMC run using M2BB

algorithm we have approximately 95% probability for the p-value being in the interval

of 0.919 ± 1.96 × 0.006. The 95% confidence interval for the true p-value is given by

0.919 ± 1.96 × 0.006/
√

100. We also show the average of the effective sample size over

the 100 MCMC runs, as well as the corresponding standard deviation (see the formula

for effective sample size in (4.1)).

The upper and lower limit for efficiency of each algorithm is calculated based on (4.11)

for each MCMC run. The averages and standard deviations of these limits are reported
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in Table 4.3. The average running time and corresponding efficiency are also reported. In

Table (4.4), we report the cost related metrics.

Table 4.3: The efficiency of the algorithms for a table of dimension 2× 3× 3, with small

values for cell entries, TS. The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.00,0.00) 0.919 1,008 0.00516 0.00537 2.68 375.79

0.006 75 0.00040 0.00042 0.06 29.33

M23 (0.01,0.99) 0.924 847 0.01154 0.01487 1.63 520.06

0.025 67 0.00091 0.00118 0.04 41.00

M23 (0.10,0.90) 0.919 856 0.01101 0.01396 1.59 539.01

0.011 81 0.00104 0.00131 0.04 55.41

M23 (0.50,0.50) 0.920 873 0.00896 0.01079 1.54 568.81

0.007 61 0.00063 0.00076 0.02 40.48

M23 (0.90,0.10) 0.919 874 0.00746 0.00869 1.55 563.53

0.006 70 0.00059 0.00069 0.04 46.41

M23 (0.99,0.01) 0.919 887 0.00730 0.00845 1.53 581.08

0.007 68 0.00056 0.00065 0.02 46.18

M23BB (0.01,0.99) 0.920 1,026 0.00720 0.00904 3.36 306.00

0.020 63 0.00049 0.00062 0.09 20.11

M23BB (0.10,0.90) 0.920 1,047 0.00689 0.00852 3.31 316.63

0.009 75 0.00051 0.00064 0.09 25.22

M23BB (0.50,0.50) 0.921 1,050 0.00553 0.00651 3.13 335.11

0.008 65 0.00038 0.00045 0.08 23.15

M23BB (0.90,0.10) 0.919 1,033 0.00453 0.00518 3.04 339.86

0.006 72 0.00037 0.00042 0.08 27.21

M23BB (0.99,0.01) 0.918 1,019 0.00433 0.00491 3.00 339.45

0.006 75 0.00034 0.00039 0.08 27.79

† The second value in each cell is the standard deviation of the metric

Table 4.4: The cost of the algorithms for a table of dimension 2× 3× 3, with small values

for cell entries, TS. The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.00,0.00) 187,703 195,425 179,980 7,722 64,304 26,787

4,861 4,850 4,872 34 3,259 1,690

M23 (0.01,0.99) 56,937 73,385 40,488 16,448

93 167 44 79

M23 (0.10,0.90) 61,344 77,808 44,880 16,464

153 185 152 72

M23 (0.50,0.50) 80,984 97,492 64,476 16,508

235 267 221 72

M23 (0.90,0.10) 100,591 117,157 84,025 16,566

156 184 144 56

M23 (0.99,0.01) 104,984 121,571 88,397 16,587

85 144 50 66

M23BB (0.01,0.99) 113,596 142,573 84,618 28,978 25,947 18,173

2,403 2,872 1,935 470 1,032 959

M23BB (0.10,0.90) 122,944 151,952 93,936 29,008 29,351 19,703

2,545 2,992 2,098 449 1,198 983

M23BB (0.50,0.50) 161,367 189,947 132,788 28,579 44,141 24,202

3,975 4,507 3,443 535 2,036 1,518

M23BB (0.90,0.10) 199,920 228,137 171,703 28,217 60,836 26,859

6,241 6,889 5,593 648 3,630 2,029

M23BB (0.99,0.01) 207,501 235,528 179,474 28,027 64,126 26,942

5,058 5,571 4,545 514 3,032 1,627

† The second value in each cell is the standard deviation of the metric
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Figure 4.1: The p-value estimated based on MCMC sample produced using M23BB algorithm

(left), and the efficiency of the algorithm (right), for contingency table TS
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We extend the Bunea and Besag (2000) algorithm to use M6 as well as M4. The proportion

of moves selected from M4, p can assume values in [0, 1], where p = 0 corresponds to M2BB

algorithm, as it uses only basic moves. In the extreme case when p = 1 the algorithm

chooses the moves only from M6.

Figure 4.1 (left) shows the estimated p-value for the given table. This p-value has been

computed for different proportions, p, of moves chosen from M6. The figure shows that

change of proportion does not affect the estimated p-value significantly. Figure 4.1 (right)

shows the lower and upper values of efficiency of the algorithm for several values of p. It

can be seen that choosing more moves from M6 gradually increases the efficiency of the

algorithm.

Figure 4.2 (left) shows the effective sample size of the generated sample tables as we move

from an algorithm which chooses more basic moves M4 rather than moves of degree 6,

M6. The graph does not reveal any clear pattern for the effective sample size when higher

proportion of moves is selected from M6. Figure 4.2 (right) shows the lower and upper

band for the cost function and shows that cost decreases as we select more moves from

M6.
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Figure 4.2: The effective sample size of M23BB algorithm for several proportions of moves

selected from the moves of degree 6, M6 (left); and the cost of algorithm (right), for contingency

table TS
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For a table of size 2×3×3, an irreducible Markov chain can be achieved, without leaving

S, by choosing moves from M4 and M6. For this reason, we can generate the MCMC

sample by randomly choosing a move from M4 and M6 as they provide the complete

reference set. The proportion of moves selected from M4, p can assume values in (0, 1).

Note that in this algorithm the proposed tables with negative cells are always rejected.

Figure 4.3 (left) shows the p-value computed for different scenarios in terms of the pro-

portion of moves selected from M6. This shows a negligible changes for different values of

p. These are also very close to values computed by other algorithms. Figure 4.3 (right)

computes the efficiency of the algorithm for different proportions of selected moves, p. It

shows that by choosing more moves of higher degree the efficiency of algorithm increases.

Figure 4.4 (right) depicts the effective sample size for different proportion of moves allo-

cated to moves of degree 6. similarly to the M23BB algorithm, changing the proportion

of moves of degree 6 does not affect the effective sample size. Figure 4.4 (right) shows the

number of bits used in the M23 algorithm. We can clearly see that increase of the moves

selected from M6 decreases the cost of the algorithm considerably.
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Figure 4.3: The p-value estimated based on MCMC sample produced using M23 algorithm

(left), and the efficiency of the algorithm (right)
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Figure 4.4: The effective sample size of M23 algorithm for several proportions of moves selected

from the moves of degree 6, M6 (left); and the cost of algorithm (right), for contingency table

TS
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We defer comparison of the algorithms and detailed examination of their relative efficiency

to the next section. This includes applying the algorithms on tables with different sizes,

as well as tables of different dimensions.

4.3.1 Small/Medium/Large tables

In this section we aim to compare the performance of the three algorithms for tables of

different sizes. So we consider three tables of the same dimensions, 2× 3× 3, which vary

in terms of the minimum cell entry and the total of the table frequencies.

Small size table

As a small size table we continue to use TS. Table 4.3 summarises the results from all

three algorithms for our small size table of dimension 2 × 3 × 3. For M23 and M23BB

algorithm we show the efficiency of the algorithm for five different scenarios, based on

the probability of choosing a move of degree 6 (p=0.01,0.1, 0.5, 0.9, 0.99). The M2BB

algorithm shows the higher effective sample size in comparison with the M23 algorithm.

The highest effective sample size is produced by our extended algorithm M23BB.

Table 4.4 compare the cost information of the three algorithms. The cost of algorithm

M23 in terms of number of bits used is lower than the other algorithms. This is due to

the fact that M2BB and M23BB use some bits while they are in S ′. It can be seen that

in our small size table, TS, M2BB and M23BB use about 50% of the total number of bits

making and accepting or rejecting proposals in S; about 30% are used making moves in

S ′ and about 20% in making proposals outside S ′.

The number of bits used for the Bernoulli random generation is smaller for the M2BB

algorithms. This is because in the M23 and the M23BB algorithms a Bernoulli random

bit is required to choose between a random move of M4 or M6. We add the Bernoulli

random bit to the random bit required for moves to compute the cost of the algorithm.

In total, the cost of M2BB and M23BB is more than the cost of the M23 algorithm.

Having focused on the efficiency measure based on bits, M23 is more efficient than the

other methods. Comparing the M2BB and M23BB the efficiency depends on the propor-

tion of times that moves are selected from M4 and M6. So we can find an interval on this

proportion for which M2BB is more efficient than M23BB. In this example the efficiency

of the latter algorithm increases as it becomes more likely to select moves from M6.
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Table 4.5: The efficiency of the algorithms for a table of dimension 2×3×3, with moderate

values cell entries, TM . The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.00,0.00) 0.00026 328 0.00323 0.00345 1.61 203.45

0.00042 37 0.00036 0.00039 0.02 22.56

M23 (0.01,0.99) 0.00031 427 0.00580 0.00749 1.61 266.36

0.00028 42 0.00058 0.00074 0.05 27.63

M23 (0.10,0.90) 0.00036 417 0.00535 0.00679 1.61 260.02

0.00038 46 0.00059 0.00075 0.06 31.24

M23 (0.50,0.50) 0.00041 378 0.00388 0.00467 1.58 239.51

0.00045 40 0.00041 0.00049 0.06 26.89

M23 (0.90,0.10) 0.00043 336 0.00288 0.00335 1.55 217.18

0.00050 38 0.00032 0.00037 0.05 26.61

M23 (0.99,0.01) 0.00040 333 0.00275 0.00318 1.52 219.06

0.00042 35 0.00029 0.00033 0.06 25.15

M23BB (0.01,0.99) 0.00019 439 0.00597 0.00770 1.84 239.36

0.00038 46 0.00062 0.00080 0.05 26.84

M23BB (0.10,0.90) 0.00022 421 0.00540 0.00686 1.81 232.65

0.00036 39 0.00050 0.00064 0.05 22.52

M23BB (0.50,0.50) 0.00025 387 0.00398 0.00479 1.81 214.17

0.00037 40 0.00041 0.00049 0.05 23.56

M23BB (0.90,0.10) 0.00034 336 0.00288 0.00335 1.79 188.27

0.00047 31 0.00027 0.00031 0.07 19.76

M23BB (0.99,0.01) 0.00031 326 0.00270 0.00312 1.77 184.52

0.00056 37 0.00031 0.00035 0.06 22.96

† The second value in each cell is the standard deviation of the metric

Table 4.6: The cost of the algorithms for a table of dimension 2 × 3 × 3, with moderate

values cell entries, TM . The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.00,0.00) 95,191 101,492 88,889 6,302 0 0

31 63 1 31 1 0

M23 (0.01,0.99) 57,069 73,655 40,483 16,586

55 73 46 28

M23 (0.10,0.90) 61,462 78,016 44,908 16,554

150 159 147 32

M23 (0.50,0.50) 80,905 97,345 64,464 16,441

277 284 275 35

M23 (0.90,0.10) 100,342 116,672 84,011 16,330

139 155 131 36

M23 (0.99,0.01) 104,702 121,001 88,402 16,300

57 78 49 31

M23BB (0.01,0.99) 57,065 73,643 40,487 16,578 0 0

64 87 53 33 0 0

M23BB (0.10,0.90) 61,444 77,996 44,892 16,552 0 0

152 164 148 35 0 0

M23BB (0.50,0.50) 80,852 97,287 64,417 16,435 1 0

247 254 244 32 5 2

M23BB (0.90,0.10) 100,341 116,666 84,017 16,324 0 0

147 154 148 33 2 0

M23BB (0.99,0.01) 104,703 121,007 88,399 16,304 0 0

56 73 54 32 0 0

† The second value in each cell is the standard deviation of the metric
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Medium size table

Now we extend our study to see how the algorithms perform over a medium size table.

We use a table of the same dimension as in the previous section. This time the minimum

value for the cells is 10 and the total of the table cell entries is 385.

TM :

20 15 10

10 15 30

10 25 20

25 30 10

15 30 40

50 15 25

Contrary to the small size table, the effective sample size for the M23 is larger than the

M2BB equivalents. On the other hand, the effective sample sizes for the M23 algorithm

are very close to the M23BB. The similarity between the M23 and the M23BB can be

explained by the small number of times that M23BB visits S ′, as indicated by the small

number of bits used in making moves in S ′ or making proposals outside S ′.

The M2BB imposes a lower Bernoulli cost in comparison with the other methods which

gives it advantages when the large proportion of moves are selected from M4. That is,

the M2BB has higher efficiency than the M23 and M23BB for some range of ps. Hence,

it would be beneficial to find a threshold p◦ so that for p < p◦ the M23 and M23BB

outperform the M2BB. Table 4.7 shows that the system time slightly increases as the

algorithms select more moves from M6.

Table 4.5 and Table 4.6 show the results based on 1, 000, 000 MCMC samples.

Large size table

We repeat the analysis for a table with larger entries and total. The table TL is selected

with minimum value 30. The total over the table cells is 1940.

TL :

100 50 40

55 40 110

70 125 130

200 50 120

400 50 30

120 150 100

Table 4.7 and Table 4.8 summarize the outputs of the three algorithms. It can be seen

that the M2BB and M23BB are not likely to move into S ′ or to make proposals outside

S ′. For this reason, the M23 and M23BB perform quite similarly. Effective sample sizes

show the same pattern as for medium size table, i.e. the more moves from M6, the higher
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Table 4.7: The efficiency of the algorithms for a table of dimension 2× 3× 3, with large

values for cell entries, TL. The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.00,0.00) 0.00016 58 0.00058 0.00062 1.69 34.58

0.00022 12 0.00012 0.00012 0.05 6.81

M23 (0.01,0.99) 0.00024 78 0.00109 0.00139 1.61 48.48

0.00021 17 0.00024 0.00030 0.06 10.44

M23 (0.10,0.90) 0.00023 72 0.00094 0.00119 1.66 43.54

0.00018 15 0.00020 0.00025 0.05 9.18

M23 (0.50,0.50) 0.00024 68 0.00071 0.00085 1.58 43.24

0.00026 15 0.00016 0.00019 0.05 9.74

M23 (0.90,0.10) 0.00026 59 0.00051 0.00059 1.59 36.93

0.00024 13 0.00011 0.00013 0.04 7.97

M23 (0.99,0.01) 0.00027 57 0.00048 0.00055 1.50 38.48

0.00035 10 0.00009 0.00010 0.04 7.11

M23BB (0.01,0.99) 0.00014 79 0.00110 0.00140 1.84 42.90

0.00020 20 0.00027 0.00035 0.05 10.64

M23BB (0.10,0.90) 0.00016 73 0.00096 0.00121 1.83 40.02

0.00022 15 0.00019 0.00024 0.05 7.90

M23BB (0.50,0.50) 0.00015 69 0.00072 0.00086 1.80 38.08

0.00021 13 0.00014 0.00017 0.05 7.37

M23BB (0.90,0.10) 0.00017 58 0.00051 0.00059 1.77 33.09

0.00026 14 0.00012 0.00014 0.05 8.11

M23BB (0.99,0.01) 0.00016 55 0.00046 0.00053 1.73 31.71

0.00024 10 0.00008 0.00009 0.05 5.76

† The second value in each cell is the standard deviation of the metric

Table 4.8: The cost of the algorithms for a table of dimension 2× 3× 3, with large values

for cell entries, TL. The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.00,0.00) 94,503 100,118 88,889 5,614 0 0

32 65 0 32 0 0

M23 (0.01,0.99) 56,251 72,012 40,489 15,761

62 81 55 31

M23 (0.10,0.90) 60,651 76,401 44,900 15,750

138 148 134 31

M23 (0.50,0.50) 80,144 95,832 64,456 15,688

217 224 216 34

M23 (0.90,0.10) 99,628 115,261 83,994 15,634

143 151 140 28

M23 (0.99,0.01) 104,020 119,637 88,403 15,617

60 84 50 34

M23BB (0.01,0.99) 56,252 72,018 40,486 15,766 0 0

50 67 45 28 0 0

M23BB (0.10,0.90) 60,628 76,375 44,880 15,747 0 0

131 140 128 31 0 0

M23BB (0.50,0.50) 80,117 95,802 64,432 15,685 0 0

205 213 201 33 0 0

M23BB (0.90,0.10) 99,645 115,279 84,011 15,634 0 0

157 166 153 29 0 0

M23BB (0.99,0.01) 104,020 119,643 88,397 15,623 0 0

60 78 57 32 0 0

† The second value in each cell is the standard deviation of the metric
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the effective sample size, but the cost of the algorithm decreases by choosing more moves

from M6.

In general, there is no considerable difference between tables with moderate and large

cell entries in terms of pattern of efficiency, cost and effective sample size of the algo-

rithms. Finally, the M23 and M23BB algorithms have higher efficiency for some range of

proportion of M6 but they do not fully dominate the M2BB in terms of efficiency.

Overall, comparing the three algorithms for these different tables, we conclude that while

M2BB is sometimes less efficient than the other algorithms, the different in efficiency is

not great and is offset by the fact that it is much simpler to write a single program for

M2BB which works for all tables than for the other algorithms.

4.3.2 Non-irreducible tables

In this section, we check the performance of the algorithms for a specific class of 2× 3× 3

tables for which using only basic moves of degree 4 does not provide an irreducible Markov

Chain. Consider the following table which includes structural zero cells:

Tnir :

3 0 3

0 2 0

0 0 2

1 0 3

6 2 0

0 3 3

For this table, the elements of the reference set will not be connected without accepting

a proposal in S ′. The zeros in the table are arranged so that any basic move must have

a non-zero entry corresponding to one of the zeroes in the second layer. Since every zero

in the second layer matches a zero in the first layer, every basic move would create at

least one negative entry. On the other hand, there is more than one table in the reference

set. We run the algorithms over Tnir to generate 100, 000 MCMC sample. Table 4.9 and

Table 4.10 summarize the results.

We see that running M23 with p6 = 0, the case when we use only basic moves and don’t

leave S, provides a p-value equal to 1, because we can not make a step with M4 and we

only have the observed table, while M23BB and M23 provide p-value equal to 0.15.
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Table 4.9: The efficiency of the algorithms for a table of dimension 2× 3× 3, with small

values for cell entries for which basic moves does not provide an irreducible Markov chain,

Tnir. The number of MCMC sample is N = 100× 1, 000
Algorithm (p4, p6) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.00,0.00) 0.15619 344 0.00109 0.00109 4.32 79.11

0.02931 89 0.00029 0.00030 0.25 21.18

M23 (0.10,0.90) 0.16312 12 0.00131 0.00167 0.17 54.57

0.22368 14 0.00194 0.00232 0.01 81.48

M23 (0.50,0.50) 0.16151 35 0.00376 0.00438 0.17 205.17

0.09501 28 0.00328 0.00379 0.01 177.26

M23 (0.90,0.10) 0.16183 53 0.00794 0.00953 0.25 210.18

0.05759 21 0.00323 0.00388 0.01 84.65

M23 (1.00,0.00) 1.00000 0 0.00000 0.00000 0.21 0.00

0.00000 0 0.00000 0.00000 0.02 0.00

M23BB (0.10,0.90) 0.15705 242 0.00102 0.00118 5.43 43.59

0.04213 66 0.00026 0.00031 0.24 11.77

M23BB (0.50,0.50) 0.15892 337 0.00114 0.00128 5.44 62.88

0.02905 71 0.00031 0.00034 0.23 13.77

M23BB (0.90,0.10) 0.17352 327 0.00092 0.00103 5.23 63.12

0.02817 69 0.00021 0.00027 0.27 14.18

† The second value in each cell is the standard deviation of the metric

Table 4.10: The cost of the algorithms for a table of dimension 2×3×3, with small values

for cell entries for which basic moves does not provide an irreducible Markov chain, Tnir.

The number of MCMC sample is N = 100× 1, 000
Algorithm (p4, p6) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.00,0.00) 311,049 311,644 310,520 562 166,449 135,277

13,102 13,116 13,096 19 6,742 6,542

M23 (0.10,0.90) 5,484 6,531 4,488 1,008

45 43 41 3

M23 (0.50,0.50) 7,495 8,544 6,455 1,045

75 78 73 6

M23 (0.90,0.10) 95,201 105,421 92,099 10,933

172 1783 159 28

M23BB (0.10,0.90) 211,112 244,635 181,332 38,755 71,423 96,377

8,282 9,815 6,754 1,601 2,788 4,132

M23BB (0.50,0.50) 267,203 303,557 230,821 36,886 108,102 116,152

11,033 12,629 9,736 1,472 4,273 5,422

M23BB (0.90,0.10) 332,831 376,927 299,027 35,924 155,276 133,223

14,798 17,002 13,351 1,524 6,623 6,754

† The second value in each cell is the standard deviation of the metric
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4.4 Higher dimension 2×J×K tables

Now we consider the effect of the dimension of the tables on the performance of the

proposed algorithms. We use a table of dimension 2 × 5 × 6, TB, to compute the p-

value and the efficiency of the algorithms. We will apply Besag and Bunea’s idea using

M2BB algorithm. It should be note that M23 algorithm does not necessarily provide an

irreducible Markov chain for TB. To ensure that the Markov chain is irreducible, we must

choose moves from a set of basic moves of degree 4, 6, 8, and 10. Hence, we extend the

M23 algorithm to MMs algorithm, which chooses moves from M∗.

Algorithms of MMs and MMsBB

For a table of dimension 2× 5× 6, an irreducible Markov chain can be achieved without

leaving S by choosing moves from M4 and M6, M8, M10. The proportion of moves selected

from M2k, pk, can assume values in (0, 1) and
∑

k pk = 1. In this algorithm, which we call

MMs, the proposals having negative cells are automatically rejected. The algorithm M23

is a special case of MMs, where p = (p1, p2, 0, . . . , 0).

In the same way, extend M23BB to create the MMsBB algorithm which is allowed to

visit S ′. As before, for this algorithm we will compute the number of bits required when

the algorithm makes moves in S ′ and when it makes proposals outside S ′. The algorithm

M23BB is an special case of MMsBB, where p = (p1, p2, 0, . . . , 0).

4.4.1 A case study for 2×5×6 tables

We have already applied the algorithms for tables of dimension 2× 3× 3. We now work

with the larger dimension 2× 5× 6, chosen because it is clearly larger than 2× 3× 3 but

without being so large that presentation becomes difficult. We will consider two tables

with differing magnitudes of cell entries and the performance of the algorithms will be

evaluated.

An arbitrary table is chosen such that it has some cells with small frequencies, and also
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with 14 cells equal to zero.

TA :

2 3 4 2 0 0

4 4 6 2 1 0

1 1 3 0 4 0

5 4 4 3 2 2

2 2 1 2 0 1

2 3 2 1 0 1

1 0 1 2 1 0

5 0 8 0 1 0

3 1 2 0 1 0

5 0 2 0 1 0

When we apply the M2BB algorithm for TA, the algorithms spend a considerable amount

of time making moves in S ′ and proposals outside S ′. For this reason, it takes a long time

until a sufficient sample is generated. It takes around 3 hours and 20 minutes to generate

only 10 MCMC samples using M2BB. Assuming that time spent for the algorithm linearly

increases, it would take more than a month to generate 100,000 sample. A similar situation

takes place for the MMsBB algorithm. Table 4.11 and Table 4.12 show the result for the

MMs algorithm.

Table 4.11: The efficiency of the algorithms for a table of dimension 2× 5× 6, with small

values for cell entries, TA. The number of MCMC sample is N = 100× 1, 000
Algorithm (p4, p6) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.0,.00,.00,.00)

MMs (.40,.30,.20,.10) 0.30072 70 0.00039 0.00042 2.46 28.67

0.05256 10 0.00006 0.00006 0.05 4.26

MMs (.25,.25,.25,.25) 0.30492 54 0.00031 0.00033 2.48 21.62

0.05693 11 0.00006 0.00007 0.06 4.30

MMs (.10,.20,.30,.40) 0.28527 41 0.00024 0.00026 2.43 16.72

0.06678 8 0.00005 0.00005 0.04 3.18

M23BB (.40,.30,.20,.10)

MMsBB (.25,.25,.25,.25)

MMsBB (.10,.20,.30,.40)

† The second value in each cell is the standard deviation of the metric

As MMs only generates moves over S, in contrast to the other algorithms, it enables us

to compute the p-value. We use three different sets of probability for choosing moves.

The obvious possibility is assign the same chance for each different type of move, that is

p = (0.25, 0.25, 0.25, 0.25). An alternative option, suggested by the outcome for 2x3x3

tables, is to use p = (0.1, 0.2, 0.3, 0.4) which assigns more chance to moves of higher

degree. Finally, as a contrast, we use an allocation of probabilities which gives more

chance to moves of small degrees, that is p = (0.4, 0.3, 0.2, 0.1). Both efficiency measures

suggest p = (0.4, 0.3, 0.2, 0.1) as the arrangement that gives the highest efficiency.
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Table 4.12: The cost of the algorithms for a table of dimension 2×5×6, with small values

for cell entries, TA. The number of MCMC sample is N = 100× 1, 000
Algorithm (p4, p6, p8, p10) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.0,.00,.00,.00)

MMs (.40,.30,.20,.10) 168,318 179,603 157,033 11,285

238 250 232 39

MMs (.25,.25,.25,.25) 163,164 174,142 152,187 10,977

236 250 229 42

MMs (.10,.20,.30,.40) 158,051 168,726 147,376 10,675

232 249 218 34

M23BB (.40,.30,.20,.10)

MMsBB (.25,.25,.25,.25)

MMsBB (.10,.20,.30,.40)

† The second value in each cell is the standard deviation of the metric

We repeat this analysis for another table of dimension 2× 5× 6, this time with moderate

values and only one cell with zero entry. The results of the MCMC algorithms are given in

Table 4.13 and Table 4.14. This time the M2BB algorithm provides results in reasonable

time. Although the efficiency of the algorithms using the Bunea and Besag approach is

much lower than the MMs algorithm, because of the time spent in S, they provide the

p-value.

TB :

2 3 4 2 2 10

4 4 6 2 1 4

1 1 3 0 4 9

5 4 4 3 2 2

2 2 1 2 5 1

2 3 2 1 10 1

1 2 1 2 1 2

5 4 8 1 1 10

3 1 2 16 1 8

5 3 2 12 1 7

4.5 Tables of dimension 3×3×K

In this section we assess the efficiency of MCMC methods introduced in Chapter 3 for

computing the exact p-value for a table of dimension 3 × 3 ×K, where K ≥ 5. We use

an example of a 3× 3× 5 table to investigate the methodology introduced by Bunea and

Besag (2000). We compare them to the results from the MCMC method based on the

method introduced by Aoki and Takemura (2003), where moves will be selected from the

set of indispensable basic moves, described earlier in section 3.2, which from the unique

minimal Markov Basis. We have produced the mcmc.at function in R (see Appendix A.2)

to implement this algorithm. The measures of efficiency are computed for both algorithms.
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Table 4.13: The efficiency of the algorithms for a table of dimension 2 × 5 × 6, with

moderate values for cell entries, TB. The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.0,.00,.00,.00) 0.01642 18 8.18E-06 8.18E-06 32.63 0.56

0.01833 5 2.87E-06 2.88E-06 5.20 0.20

MMs (.40,.30,.20,.10) 0.01764 15 7.81E-04 8.52E-04 0.27 53.88

0.01680 5 2.47E-04 2.70E-04 0.01 17.57

MMs (.25,.25,.25,.25) 0.01826 14 7.50E-04 8.19E-04 0.27 51.54

0.02389 4 2.31E-04 2.53E-04 0.01 15.63

MMs (.10,.20,.30,.40) 0.01771 14 8.01E-04 8.76E-04 0.27 53.40

0.01939 5 2.62E-04 2.87E-04 0.01 17.66

M23BB (.40,.30,.20,.10) 0.01689 16 3.34E-06 3.54E-06 60.94 0.27

0.01544 5 1.12E-06 1.19E-06 7.76 0.09

MMsBB (.25,.25,.25,.25) 0.01642 16 3.07E-06 3.26E-06 73.30 0.22

0.01642 5 1.03E-06 1.09E-06 10.91 0.07

MMsBB (.10,.20,.30,.40) 0.01660 15 3.02E-06 3.21E-06 98.57 0.15

0.01603 4 9.16E-07 9.74E-07 13.00 0.05

† The second value in each cell is the standard deviation of the metric

Table 4.14: The cost of the algorithms for a table of dimension 2× 5× 6, with moderate

values for cell entries, TB. The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6, p8, p10) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.0,.00,.00,.00) 2,231,655 2,232,463 2,230,847 808 1,500,525 721,433

344,424 344,425 344,422 11 231,106 113,432

MMs (.40,.30,.20,.10) 17,268 18,838 15,698 1,570

75 89 70 29

MMs (.25,.25,.25,.25) 16,771 18,322 15,220 1,551

82 90 81 25

MMs (.10,.20,.30,.40) 16,278 17,807 14,749 1,529

75 92 66 29

M23BB (.40,.30,.20,.10) 4,630,247 4,908,295 4,352,198 278,048 1,652,587 874,256

594,578 630,197 558,960 35,619 260,214 124,559

MMsBB (.25,.25,.25,.25) 4,858,858 5,159,274 4,558,441 300,416 2,339,782 2,203,431

651,205 691,360 611,051 40,154 312,682 298,535

MMsBB (.10,.20,.30,.40) 4,698,271 4,997,696 4,398,846 299,425 2,037,754 2,346,350

573,138 609,561 536,714 36,424 246,142 290,824

† The second value in each cell is the standard deviation of the metric

In the Aoki and Takemura algorithm, AT algorithm, we choose different proportion over

the range of parameter values to determine whether there is a trend or optimum value for

the proportion. Below both algorithm are applied over the following table, TD:

TD :

14 12 18 14 18

18 18 10 18 12

12 12 18 16 16

14 10 12 12 22

10 14 10 14 12

16 12 14 18 20

12 10 12 10 12

12 12 12 16 10

14 14 10 20 24

Table 4.15 and Table 4.16 show the results of the MCMC algorithms for the given table.

Estimated p-values using the M2BB and AT algorithms are close, considering the standard

deviation of the p-value. The efficiency measures have been computed based on 100,000
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Table 4.15: The efficiency of the algorithms for a table of dimension 3 × 3 × 5, with

moderate values for cell entries, TD. The number of MCMC sample is N = 100× 1, 000
Algorithm (p4, p6) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.0,.00,.00,.00) 0.01535 84 0.00066 0.00070 2.18 38.48

0.00847 11 0.00009 0.00009 0.11 5.41

AT (.40,.30,.20,.10) 0.96317 127 0.00121 0.00145 2.75 46.29

0.00871 15 0.00014 0.00017 0.06 5.53

AT (.25,.25,.25,.25) 0.96492 139 0.00144 0.00174 2.86 48.77

0.00930 16 0.00017 0.00020 0.06 5.72

AT (.10,.20,.30,.40) 0.96380 147 0.00165 0.00204 2.95 49.88

0.00874 16 0.00018 0.00022 0.09 5.50

† The second value in each cell is the standard deviation of the metric

Table 4.16: The cost of the algorithms for a table of dimension 3× 3× 5, with moderate

values for cell entries, TD. The number of MCMC sample is N = 100× 1, 000
Algorithm (p4, p6, p8, p10) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.0,.00,.00,.00) 120,091 126,395 113,787 6,304 8 1

97 114 90 35 82 8

AT (.40,.30,.20,.10) 88,120 104,893 71,346 16,773

214 223 210 33

AT (.25,.25,.25,.25) 80,042 96,953 63,132 16,911

186 189 189 34

AT (.10,.20,.30,.40) 71,934 88,970 54,898 17,036

131 140 130 33

† The second value in each cell is the standard deviation of the metric

(100 chain of the size 1,000) sample for M2BB and AT algorithm. From this table it is

quite clear that the effective sample size, and consequently efficiency, increases when the

algorithm accepts more moves with higher degrees.

4.6 Tables of dimension 3×4×4

In this section we assess the efficiency of MCMC methods introduced in Chapter 3 for

computing the exact p-value for a table of dimension 3× 4× 4. We use two examples of

3 × 4 × 4 tables to investigate the methodology introduced by Bunea and Besag (2000).

Similarly to the previous section, the Bunea and Besag algorithm will be compared to

Aoki and Takemura approach in which moves are selected from the minimum set of

indispensable basic moves of unique minimal Markov Basis. The measures of efficiency

are computed for both algorithms. In the Aoki and Takemura algorithm we choose a

range of parameter values to determine whether there is an trend or optimum value for

the proportions of different kinds of moves chosen. The algorithms are applied to the
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following tables: TE with small entries and TF with moderate cell entries.

TE :

2 4 4 0

4 1 2 3

1 4 4 0

1 0 3 2

1 1 1 1

1 2 5 1

0 4 1 0

2 6 1 0

3 7 2 2

5 2 5 5

1 3 1 5

0 4 2 5

TF :

12 12 12 14

18 12 14 12

12 18 18 16

12 10 16 14

12 12 12 14

12 14 20 20

10 18 12 12

14 22 12 14

16 24 14 16

20 14 20 24

12 16 12 18

10 18 14 12

Results for TE are shown in Table 4.17 and Table 4.18. For this table with small entries

and some zeros the M2BB fails to provide the p-value due to the long running time, at

least 48 hours. However we can observe the behaviour of the AT algorithm with different

probability settings. Efficiency is higher when a higher proportion of simpler moves is

used.

Results for TF are shown in Table 4.17 and Table 4.18. For this table M2BB provides the

p-value. The efficiency measures show that the M2BB is not much less efficient than AT.

Unlike TE, AT becomes more efficient as the proportions of simple moves decreases.

Table 4.17: The efficiency of the algorithms for a table of dimension 3× 4× 4, with small

values for cell entries, TE. The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6, p8) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.0,.00,.00)

AT (.50,.30,.20) 0.18283 131 0.001413 0.001645 3.53 37.35

0.02788 15 0.000159 0.000186 0.10 4.38

AT (.34,.33,.33) 0.18176 120 0.001423 0.001683 3.58 33.52

0.02751 15 0.000176 0.000209 0.07 4.32

AT (.20,.30,.50) 0.17811 107 0.001461 0.001767 3.63 29.50

0.03399 14 0.000182 0.000221 0.06 3.78

† The second value in each cell is the standard deviation of the metric

4.7 Conclusion

In this chapter we compared the efficiency of various algorithms (M23, M23BB, MMs,

MMsBB and AT) to the efficiency of the Bunea and Besag basic algorithm. We first

computed the efficiency of these algorithm for tables of dimension 2×J×K. As a special
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Table 4.18: The cost of the algorithms for a table of dimension 3×4×4, with small values

for cell entries, TE. The number of MCMC sample is N = 100× 1, 000
Algorithm (p4, p6, p8) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.0,.00,.00)

AT (.50,.30,.20) 80,120 93,411 66,829 13,290

270 312 243 74

AT (.24,.33,.33) 71,257 82,264 58,251 13,006

238 274 219 70

AT (.20,.30,.50) 60,651 73,362 47,940 12,711

281 320 258 74

† The second value in each cell is the standard deviation of the metric

Table 4.19: The efficiency of the algorithms for a table of dimension 3 × 4 × 4, with

moderate values for cell entries, TF . The number of MCMC sample is N = 100× 1, 000
Algorithm (p4, p6, p8) Estimated Neff Eff Eff Time Eff

p-value Lower Upper (Sec) Time

M2BB (1.0,.00,.00) 0.91090 89 0.00082 0.00088 3.44 25.87

0.01603 11 0.00010 0.00011 0.03 5.47

AT (.50,.30,.20) 0.91593 104 0.00104 0.00125 3.71 28.24

0.01701 14 0.00013 0.00016 0.08 3.82

AT (.34,.33,.33) 0.91207 108 0.00118 0.00145 3.77 28.92

0.01606 12 0.00013 0.00017 0.14 3.53

AT (.20,.30,.50) 0.91518 116 0.00142 0.00179 3.85 30.12

0.01626 13 0.00015 0.00020 0.07 3.35

† The second value in each cell is the standard deviation of the metric

Table 4.20: The cost of the algorithms for a table of dimension 3× 4× 4, with moderate

values for cell entries, TF . The number of MCMC sample is N = 100× 10, 000
Algorithm (p4, p6, p8) Cost Cost N-Bits N-Bern N-Bits N-Bits

Lower Upper Total Sp So

M2BB (1.0,.00,.00) 101,262 107,709 94,814 6,447 0 0

35 69 222 35 0 0

AT (.50,.30,.20) 83,478 100,140 66,816 16,661

237 245 235 35

AT (.34,.33,.33) 75,018 91,749 58,287 16,731

317 328 311 34

AT (.20,.30,.50) 64,730 81,554 47,906 16,823

291 287 299 32

† The second value in each cell is the standard deviation of the metric
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case we used three examples of 2 × 3 × 3 tables with small, moderate and large sample

size. In all 2× J ×K examples, results show that the Besag and Bunea method provides

a somewhat less efficient way to generate the tables and compute the p-value. This lack

of efficiency is mostly due to the time (number of bits) that the algorithm spends when

it is out of S. Ignoring the number of bits (or time) spent in computing the efficiency

gives us larger efficiency measures. On the other hand, the Bunea and Besag algorithm

enables us to compute the p-value for tables of different dimension without knowing the

set of indispensable basic moves.

The running time for the Bunea and Besag algorithm is always higher for tables with very

small values (including cells with zero entries). When the number of cells of the table

with small entries increases the Bunea and Besag method would fail to provide a p-value,

as the algorithm spends a considerable amount of time out of reference set S. In practice

we would never be able to reach an acceptable effective sample size.

The modified version of Bunea and Besag, which accepts moves both from M4 and M6

does increase the efficiency when one is able to choose an optimum proportion of each

types of move. Using tables of different sample size and cell values shows that for tables

with small cell entries choosing basic moves of degree 4 increases the efficiency of the

algorithm. For tables with moderate and large cell entries the pattern is totally different,

i.e. choosing moves of higher degree increases the efficiency of the M2BB algorithm.

Having tables with many zero cells causes the algorithm to spend a considerable time

out of the reference set S so that it has very high cost and, sometimes fail to gives a

required sample size in reasonable running time. This problem is more significant when

the dimension of the table increases, as we observed for a table with dimension of 2×5×6

with zero cell entries we could not use the M23BB algorithm.

We used two different approaches for computing the efficiency of the algorithms: one used

the running time as a cost of the algorithm, and the second one counts the number of bits

used as the cost. We observed that these approach do not necessarily lead us to the same

answer when comparing the efficiency of the algorithms. In tables of dimension 2×J×K
the efficiency of the algorithm decreases when the proportion of moves chosen of higher

degree increases. Using the running time efficiency shows a different pattern for tables

with small size cell entries versus tables with moderate and large cell entries. That is,

the running time efficiency increases by choosing more moves of higher degrees, whilst for

tables with moderate and large cell entries the running time efficiency measure decreases

when more moves of higher degree are chosen.
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For tables of dimension 3×J×K we observe a different pattern of efficiency for small cell

entries versus tables with moderate values for cell entries. For small samples it is more

advantageous to choose moves with smaller degrees, whilst for moderate tables choosing

moves of higher degrees increase the efficiency of the algorithm.



Chapter 5

Conclusion

5.1 Inference for contingency tables

There are several different approaches to analysing categorical data when represented

through contingency tables. The most common model to be investigated in two-way con-

tingency tables is the independence model in which row and column variables are assumed

to be independent. We reviewed different types of sampling distribution to represent the

probabilistic behaviour of contingency tables: Poisson sampling, multinomial, and prod-

uct of multinomial distributions. We also reviewed the role of conditional distributions in

making inference about the models in contingency tables.

Many statistical tests on contingency tables rely on large sample distribution theory where

for tables with small sample size the limiting distribution does not provide a suitable

approximation for the test statistic. In this case, the Fisher exact test enables us to

compute the exact p-value for the independence test. The number of possible tables

increases as row and column or the total sample size increases so that using Fisher’s

methods becomes infeasible. Hence, we reviewed another class of methods for computing

the exact p-value, known as enumeration methods. An early example of enumeration

methods was introduced by Pagano and Halvorsen (1981), referred to as the G-algorithm.

We also reviewed the so called Network algorithm introduced by Mehta and Patel (1983)

and explained it with an example. This method helps to compute the exact p-value

without enumerating all possible tables in the reference set. It should be noted that, by

increasing the dimension or sample size of the table even the G-algorithm and the Network

algorithm fail to compute the exact p-value in a reasonable time because there are too
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many tables in the reference set. Also, although we have explained the enumeration

methods as an approach to finding the exact p-value, it has not been the main interest in

this thesis.

The Monte Carlo approach has also been used to compute exact p-value. This approach

does not need complete enumeration, or asymptotic approximation, to compute the exact

p-value. On the contrary, it takes a sample from an exact probability distribution of the

test statistic under the null hypothesis to test the hypothesis of interest and can be applied

in multi dimensional contingency tables. The exact distribution of the test statistic has

received a great deal of attention in studies of the independence model, but there are many

other models for which the distribution of the test statistic is needed to be studied. In

many cases this is not simple. For this reason Monte Carlo Markov chain can be applied

to generate samples from conditional distributions. So when simple Monte Carlo tests are

not available, an MCMC procedure can help as an alternative. The MCMC method has

been the core of the methods we have used throughout this thesis. Hence, this approach

has been explained in more detail in the first chapter.

5.2 Developing MCMC exact methods for three-way

tables

Chapter 2 mainly focused on the specific MCMC approach proposed by Bunea and Besag

(2000) for tables of dimension 2 × J × K. This method uses random basic moves to

generate samples from a reference set. The key idea is to allow tables to be sampled from

a set of all tables with the same two-way marginal totals as the observed table, having all

non-negative entries except for at most a single −1. For the proof of the irreducibility of

this set, they use the Rasch model and they also refer to Diaconis and Sturmfels (1998),

where an irreducible set of moves is defined as M∗. For this reason we have explained

the Rasch model in detail. We also provided a detailed proof for the propositions given

in Bunea and Besag (2000).

We also introduced a direct proof which shows that M∗ is an irreducible Markov basis.

We also provided detailed proof that irreducible Markov chains can be made over S using

only basic moves, allowing at most two negative cells which are −1 and there is no need to

use M∗. These results were used later to prove that the Bunea and Besag approach can

provide an irreducible Markov chain for 3× 3×K and 3× 4× 4 tables. The Bunea and
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Besag approach is also presented in the form of a flowchart to clarify their algorithm. The

R codes for implementing the Besag and Bunea method were produced (see Appendix)

and applied for a sample table of 2× 3× 3 dimension.

Aoki and Takemura (2003) introduced a Minimal Markov basis which contains different

types of move to make an irreducible Markov chain over the space of particular tables and

each particular move has been defined and represented in a three dimensional view. It

has been also clarified that not all types of move of a particular degree are needed in the

Markov basis. We explained the Aoki and Takemura minimal Markov basis in Chapter 3.

The main innovation in Chapter 3 was to construct the irreducible Markov chain for

tables of 3× 3×K and 3× 4× 4 using only basic moves allowing intermediate tables to

have at most two −1s. The proof is based on the property of the difference between two

tables that can be constructed by a number of basic moves for any table of dimension

I × J × K. This way, the Bunea and Besag algorithm has been generalised to higher

dimension tables.

5.3 Efficiency study

In Chapter 4 we investigated the efficiency of the Bunea and Besag algorithm compared

to other MCMC approaches. We used two different approaches to compute the efficiency

of the algorithms. One was the classic way of measuring efficiency using running time

of the algorithm. The second was to compute the cost of the algorithm by counting the

number of bits used during the algorithm. We observed that these two efficiencies do not

necessarily give the same result for some circumstances when comparing the efficiency of

the algorithms.

An innovation in this chapter was the introduction of a modified version of Besag and

Bunea algorithm in which we chose basic moves of all different degrees rather than only

degree of 4. As the chance of choosing moves of different degrees can vary, we chose three

scenarios for the chance allocated to the moves of different degree.

The efficiency was calculated for several settings with a study of the efficiency of the

algorithm for tables of small, moderate, and large dimensions. This was also implemented

for tables with small, moderate, and large sample size. The effect of special zero patterns

on the efficiency of algorithms was also investigated.

Our study shows that the Bunea and Besag method provides a less efficient way of gen-
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erating the tables and computing the exact p-value. The reason for this lack of efficiency

is due to the time (number of bits) the algorithm spends when it is out of S. It should

be noted that having ignored the number of bits (or time) outside S, the Bunea and

Besag algorithm outperforms the other methods. On the other hand, one advantage of

the Bunea and Besag algorithm over the Aoki and Takemura approach is that it enables

us to compute the p-value for tables of different dimension without knowing the set of

indispensable basic moves.

The running time for the Bunea and Besag algorithm is always higher for tables with very

small values (including cells with zero entries). When the number of cells of the table

with small entries increases the Bunea and Besag Method will fail to provide a p-value,

as the algorithm spends a considerable amount of time out of reference set S. Because of

this, in practice we will never be able to reach an acceptable effective sample size. This

problem is more significant when the dimension of the table increases.

The modified Bunea and Besag version accepts moves from M4,M6, . . . ,M2min J,K . This

modified version can outperform the original one if we choose the optimum proportion

for the moves of different degree.

For tables of dimension 3×3×K and 3×4×4 we observe a different pattern of efficiency

for small cell entries versus tables with moderate value for cell entries. For small samples

it is more advantageous to choose moves with smaller degrees, whilst for moderate and

large tables choosing moves of higher degree increases the efficiency of the algorithm.

5.4 Further work

The Bunea and Besag (2000) introduced a method for 2 × J × K. We could prove

that this method also provides an irreducible Markov Chain for tables of 3× 3×K and

3×4×4. Further investigation is necessary to determine whether this method can provide

an irreducible Markov chain for tables of higher dimension. On the other hand, the main

focus throughout this thesis has been on the independence model of contingency tables

of dimension I × J × K. It would be quite useful to expand our study and discussion

to more general types of model of contingency tables. The efficiency study could also be

extended to different types of model.

The efficiency study showed us that the Bunea and Besag algorithm fails to compute

exact p-values in a practical running time for tables with many zero cells. So a further
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development could be obtained by finding an adjustment for the Bunea and Besag algo-

rithm which considers these settings. This suggests a need to create an algorithm which

would reduce the chance of chain to choose samples from outside S.

Aoki and Takemura (2003) found the set of minimal Markov basis for some specific tables.

The efficiency studies showed that the Minimal Markov basis provides a very efficient

method for finding exact p-value. They did not introduce a methodology to find the

minimal Markov basis. It would be highly advantageous if a methodology enabled us to

find the minimal Markov basis for a general contingency table of dimension I × J ×K.
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Appendix A

R Codes

A.1 Algorithms for 2 ×J×K tables

#------------------ A function to produce random number and its counter

myrunif = function(){

assign("N.runif", N.runif+1, envir=.GlobalEnv)

return(runif(1))

}

##------------------ A function to make a list name to apply in Condor

make.list = function(names){

l = list()

for(n in names) l[[n]] = get(n, envir=sys.parent())

l

}

##------------------ A function to Compute test statistics for the produced table

rand = function(xold){

r = length(xold)

J = ceiling(r*runif(1))

u = runif(1)

delta = (1)*(u<0.5)+ (-1)*(u>=0.5)

xs = xold

xs[J] = xs[J] + delta

return(xs)

}

##------------------ A function to produce random number and its counter -------

rbern = function(){

assign("N.rbern", N.rbern+1, envir=.GlobalEnv)

return(rbinom(1,1,0.5))
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}

##------------------ A function to compute c(n); number of bits ----------------

bits = function(n){

m = ceiling(log(n,2))

cn = 2^m*(m/n)

return(cn)

}

##------------- A simpler function to check acceptance of random sample --------

accept = function(pi){

if(pi >= 1) return(TRUE)

assign(’N.rbern’, N.rbern+1, envir=.GlobalEnv)

return(runif(1) <= pi)

}

##------------------ A function to produce random move from basic move sets (M2)

rand.m = function(x0){

n = length(x0)

dim=dim(x0)

m = array(0, dim=dim)

i = sample(1:dim[1],2)

j = sample(1:dim[2],2)

k = sample(1:dim[3],2)

m[i[1],j[1],k[1]] = +1

m[i[2],j[2],k[1]] = +1

m[i[2],j[1],k[1]] = -1

m[i[1],j[2],k[1]] = -1

m[,,k[2]] = -m[,,k[1]]

n.moves = choose(dim[1],2)*choose(dim[2],2)*2

assign("CN", CN+bits(n.moves), envir=.GlobalEnv)

assign("CN.iter",CN.iter+1, envir=.GlobalEnv)

return(m)

}

##------------------ A function to produce random move from M6 -----------------

rand.m3 <- function(x0){

dims=dim(x0)

m = array(0, dim=dims)

i = sample(1:dims[1],3)

j = sample(1:dims[2],3)

k = sample(1:dims[3],2)

m[i[1],j[1],k[1]] = +1

m[i[2],j[2],k[1]] = +1

m[i[3],j[3],k[1]] = +1

m[i[1],j[2],k[1]] = -1
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m[i[2],j[3],k[1]] = -1

m[i[3],j[1],k[1]] = -1

m[,,k[2]] = -m[,,k[1]]

n.moves = choose(dims[1],3)*choose(dims[2],3)*factorial(3)

assign("CN", CN+bits(n.moves), envir=.GlobalEnv)

assign("CN.iter",CN.iter+1, envir=.GlobalEnv)

return(m)

}

##---- A function to produce random move from M4 and M6 with rpoportion p ------

rand.m23 <- function(x0, p2){

if (accept(p2)) {m <- rand.m(x0); dg <- 2}

else {m <- rand.m3(x0); dg <- 3}

return(list(m=m,dg=dg))

}

##-------------------- Function to find the move of degree 2M, wher M = min(J,K)

rand.Ms <- function(x0){

dims = dim(x0)

M = min(dims[1:2])

Mi=floor(runif(1, min=2, max=M+1))

m = array(0, dim=dims)

Ri = sample(1:dims[1],Mi)

Ci = sample(1:dims[2],Mi)

Li = sample(1:dims[3],2)

for (i in 1:M) m[Ri[i],Ci[i], Li[1]] = +1

for (i in 1:(M-1)) m[Ri[i],Ci[1+i],Li[1]] = -1

m[Ri[Mi],Ci[1], Li[1]] = -1

m[,,Li[2]] = -m[,,Li[1]]

n.moves = choose(dims[1],Mi)*choose(dims[2],Mi)*factorial(Mi)

assign("CN", CN+bits(n.moves), envir=.GlobalEnv)

assign("N.rbern", N.rbern+1, envir=.GlobalEnv)

return(m)

}

##--------------Function for MCMC Bunea and Besag algorithm

##------------------------------

mcmc.m2bb = function(x0,n){

stepv = NULL

stepspv = NULL

chisq = numeric(n)

xold = x0

step = 0

stepsp = 0

chisq0 = chisq3ind(x0)

xl = matrix(0, ncol=n, nrow=length(x0))

for(t in 1:n)

{
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if (t%%10000==0) cat(t, "\n")

chisq[t] = chisq3ind(xold)

x = xold

m = rand.m2(x0) #--------------------produce the m as a basic move in M2

xs = x+m #------------ producing subsequent tables by random move

if(any(xs < (-1))) #------------------ have proposal outside S’: reject

{

xl[,t] = xold

next

}

stepsp = 0

while(any(xs<0)) { # In S’\S: need to wait until return to S

stepsp = stepsp+1

m = rand.m2(x0)

xs2 = xs+m

while(any(xs2 < (-1))) { # Outside S’: need to keep trying for move staying in S’

m = rand.m(x0)

xs2 = xs+m

}

xs = xs2

}

stepspv = c(stepspv, stepsp)

##------------------------ Have proposal in S: do Met-Hast accept reject

pi = min(1, exp(sum(lfactorial(xold)-lfactorial(xs))))

if (accept(pi)) xold = xs

xl[,t] = xold

}

return(list(xl=xl, chisq=chisq, stepv=stepv, stepspv=stepspv) )

}

##------------------------------------- Function for MCMC Besag and Bunea method

mcmc.m23bb = function(x0,n,p){

xold = x0

xl = matrix(0, ncol=n, nrow=length(x0))

for(t in 1:n){

if (t%%10000==0) cat(t, "\n")

x = xold

if(all(x>= 0)) where = 1

if(any(x< 0)) where = 2

if(any(x< -1)) where = 3

m = rand.m23(x0,p,where) ## produce the m as a basic move in M2

xs = x+m ## producing subsequent tables by random move

if(any(xs < (-1))){

## have proposal outside S’: reject

xl[,t] = xold

next

}

stepsp = 0

while(any(xs<0)){

# In S’\S: need to wait until return to S

if(any(xs< 0)) where = 2

if(any(xs< -1)) where = 3
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m = rand.m23(x0,p,where)

xs2 = xs+m

while(any(xs2 < (-1))){

# Outside S’: need to keep trying for move staying in S’

if(any(xs2< 0)) where = 2

if(any(xs2< -1)) where = 3

m = rand.m23(x0,p,where)

xs2 = xs+m

}

xs = xs2

}

# Have proposal in S: do Met-Hast accept reject

pi = min(1, exp(sum(lfactorial(xold)-lfactorial(xs))))

if (accept(pi)) xold = xs

xl[,t] = xold

}

return(xl)

}

##-------------- Function for MCMC from move of size 2 and 3 disable to go to S’

mcmc.m23 = function(x0,n,p){

xold <- x0

xl <- matrix(0,ncol=n,nrow=length(x0))

for(t in 1:n){

if (t%%10000==0) cat(t, "\n")

m <- rand.m23(x0,p) ## produce the m as a basic move in M2

x <- xold

xl[,t]<- x

xs <- x+m ## producing subsequent tables by random move

if (any(xs<0)){

x <- xold

}

else{

pi <- min(1, exp(sum(lfactorial(xold)-lfactorial(xs))))

if (accept(pi)) xold <- xs

}

}

return(xl=xl)

}

##--------- compute and plot efficency for camparison of mcmc.M2bb and mcmc.m23

ess = function(x0,n=10000){

assign("N.rbern" , 0 , envir=.GlobalEnv)

library(lattice)

library(coda)

T = mcmc.m2bb(x0,n)$xl

likl = function(x){1/exp(sum(lfactorial(x)))}

P = apply(T, MARGIN=2, FUN= likl)

p0 = likl(as.vector(x0))

logit = log(P)

I = as.numeric(P <= p0)
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Ibar = mean(I)

ne.I = effectiveSize(I)

n.rbern = N.rbern

names(ne.I) = NULL

ne.logit = effectiveSize(logit)

names(ne.logit) = NULL

eff.logit = ne.logit/N.rbern

se.Ibar = sqrt(Ibar*(1-Ibar)/ne.I)

return(list(Ibar=Ibar, ne.logit=ne.logit, se.Ibar=se.Ibar,

eff.logit=eff.logit, n.rbern=N.rbern))

}

##----------- Find the optimum value for the proportion of in algorithm mcmc.m23

OptProp23 = function(x0, n=10000){

prop = seq(0.00,1,0.01)

k = length(prop)

library(splines)

library(lattice)

library(coda)

Ibar = numeric(k)

ne.logit = numeric(k)

ne.I = numeric(k)

se.Ibar = numeric(k)

cost.low = numeric(k)

cost.upp = numeric(k)

ne.I = numeric(k)

n.cn = numeric(k)

for (i in 1:k)

{

assign("N.rbern" , 0 , envir=.GlobalEnv)

assign("CN" , 0 , envir=.GlobalEnv)

output = mcmc.m23(x0, n, prop[i])$xl

T = matrix(output, ncol=n)

likl = function(x){1/exp(sum(lfactorial(x)))}

P = apply(T, MARGIN=2, FUN= likl)

p0 = likl(as.vector(x0))

logit = log(P)

I = as.numeric(P <= p0)

Ibar[i] = mean(I)

ne.I[i] = effectiveSize(I)

ne.logit[i] = effectiveSize(logit)

cost.low[i] = CN + 1* N.rbern

cost.upp[i] = CN + 2* N.rbern

se.Ibar[i] = sqrt(Ibar[i]*(1-Ibar[i])/ne.I[i])

n.cn[i] = CN

}

return(list(prop=prop, Ibar=Ibar,

se.Ibar=se.Ibar, ne.logit=ne.logit, n.cn=n.cn,

cost.low=cost.low, cost.upp=cost.upp

)

)
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}

##--------- Find the optimum value for the proportion of in algorithm mcmc.m23bb

OptProp23bb = function(x0, n=10000){

prop = seq(0.00,1,0.01)

k = length(prop)

library(splines)

library(lattice)

library(coda)

Ibar = numeric(k)

ne.logit = numeric(k)

ne.I = numeric(k)

se.Ibar = numeric(k)

cost.low = numeric(k)

cost.upp = numeric(k)

n.cn = numeric(k)

n.accept = numeric(k)

for (i in 1:k)

{

assign("N.accept", 0 , envir=.GlobalEnv)

assign("CN" , 0 , envir=.GlobalEnv)

output = mcmc.m23bb(x0, n, prop[i])$xl

T = matrix(output, ncol=n)

likl = function(x){1/exp(sum(lfactorial(x)))}

P = apply(T, MARGIN=2, FUN= likl)

p0 = likl(as.vector(x0))

Logit = log(P)

I = as.numeric(P <= p0)

Ibar[i] = mean(I)

ne.I[i] = effectiveSize(I)

ne.logit[i] = effectiveSize(Logit)

cost.low[i] = CN + 1* N.rbern

cost.upp[i] = CN + 2* N.rbern

se.Ibar[i] = sqrt(Ibar[i]*(1-Ibar[i])/ne.I[i])

n.cn[i] = CN

}

return(list(prop=prop, Ibar=Ibar, ne.logit=ne.logit,

se.Ibar=se.Ibar, cost.low=cost.low,

cost.upp=cost.upp, n.cn=n.cn))

}

#-------------------------------------- Diaconis and Sturmlfles Method for 2xJxK

eff.dc = function(x0, n=10000){

library(splines)

library(lattice)

library(coda)

assign("N.bern", 0 , envir=.GlobalEnv)
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assign("CN" , 0 , envir=.GlobalEnv)

output = mcmc.ds(x0, n)$xl

T = matrix(output, ncol=n)

likl = function(x){1/exp(sum(lfactorial(x)))}

P = apply(T, MARGIN=2, FUN= likl)

p0 = likl(as.vector(x0))

logit = log(P)

I = as.numeric(P <= p0)

Ibar = mean(I)

ne.I = effectiveSize(I)

ne.logit = effectiveSize(logit)

cost.low = CN + 1* N.rbern

cost.upp = CN + 2* N.rbern

se.Ibar = sqrt(Ibar*(1-Ibar)/ne.I)

n.cn = CN

return(list(Ibar=Ibar, se.Ibar=se.Ibar, ne.logit=ne.logit, cost.low=cost.low,

cost.upp=cost.upp, n.cn=n.cn))

}

A.2 R codes for complete reference set

#---------------------- Calculation for the exact p-value for tables Ts

#-----------------------------------

i <- 0

x.all <- NULL

for (x5 in 0:10)

for (x6 in 0:10)

for (x8 in 0:10)

for (x9 in 0:10)

{

x1 = -5 + x5 + x8 + x6 + x9

x10 = 9 - x5 - x8 - x6 - x9

x11 = 2 + x5 + x8

x12 = -3 + x6 + x9

x13 = 3 + x5 + x6

x14 = -x5 + 4

x15 = -x6 + 5

x16 = -2 + x8 + x9

x17 = -x8 + 3

x18 = -x9 + 7

x2 = 4 - x5 - x8

x3 = 9 - x6 - x9

x4 = 6 - x5 - x6

x7 = 8 - x8 - x9

x5 = x5

x6 = x6
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x8 = x8

x9 = x9

foo <- c(x1, x4, x7 , x2, x5, x8, x3, x6, x9,

x10,x13,x16, x11,x14,x17, x12,x15,x18)

x.all <- rbind(x.all, foo)

}

ok <- apply(x.all, MARGIN=1, FUN=function(x){all(x>=0)})

ref <- x.all[ok,]

rownames(ref) <-NULL

dim(ref)

x0 <- array(c( 2, 4, 3, 2, 1, 1, 4, 1, 4,

2, 5, 3, 4, 3, 2, 2, 4, 3), dim=c(3,3,2))

fun.foo <- function(x){1/prod(factorial(x))}

ptab <- apply(ref, MARGIN=1, FUN=myprob)

tot.lik <- sum(ptab)

ptab <- ptab/tot.lik

rownames(ptab) <- NULL

p0 <- (1/prod(factorial(x0)))/tot.lik

loc <- which(apply(ref, MARGIN=1, FUN=function(x){all(x==as.vector(x0))}))

ref

sum(ptab[ptab<=ptab[loc]])

#array(ref[1,],dim=c(3,3,2))

#---------------------------------------------------------------------------------------------------

> ref

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18]

[1,] 0 6 3 4 0 0 4 0 5 4 3 3 2 4 3 2 5 2

[2,] 1 6 2 4 0 0 3 0 6 3 3 4 2 4 3 3 5 1

[3,] 2 6 1 4 0 0 2 0 7 2 3 5 2 4 3 4 5 0

[4,] 0 6 3 3 0 1 5 0 4 4 3 3 3 4 2 1 5 3

[5,] 1 6 2 3 0 1 4 0 5 3 3 4 3 4 2 2 5 2

[6,] 2 6 1 3 0 1 3 0 6 2 3 5 3 4 2 3 5 1

[7,] 3 6 0 3 0 1 2 0 7 1 3 6 3 4 2 4 5 0

[8,] 0 6 3 2 0 2 6 0 3 4 3 3 4 4 1 0 5 4

[9,] 1 6 2 2 0 2 5 0 4 3 3 4 4 4 1 1 5 3

[10,] 2 6 1 2 0 2 4 0 5 2 3 5 4 4 1 2 5 2

[11,] 3 6 0 2 0 2 3 0 6 1 3 6 4 4 1 3 5 1

[12,] 1 6 2 1 0 3 6 0 3 3 3 4 5 4 0 0 5 4

[13,] 2 6 1 1 0 3 5 0 4 2 3 5 5 4 0 1 5 3

[14,] 3 6 0 1 0 3 4 0 5 1 3 6 5 4 0 2 5 2

[15,] 0 5 4 4 0 0 4 1 4 4 4 2 2 4 3 2 4 3

[16,] 1 5 3 4 0 0 3 1 5 3 4 3 2 4 3 3 4 2

[17,] 2 5 2 4 0 0 2 1 6 2 4 4 2 4 3 4 4 1

[18,] 3 5 1 4 0 0 1 1 7 1 4 5 2 4 3 5 4 0

[19,] 0 5 4 3 0 1 5 1 3 4 4 2 3 4 2 1 4 4

[20,] 1 5 3 3 0 1 4 1 4 3 4 3 3 4 2 2 4 3

[21,] 2 5 2 3 0 1 3 1 5 2 4 4 3 4 2 3 4 2

[22,] 3 5 1 3 0 1 2 1 6 1 4 5 3 4 2 4 4 1

[23,] 4 5 0 3 0 1 1 1 7 0 4 6 3 4 2 5 4 0

[24,] 0 5 4 2 0 2 6 1 2 4 4 2 4 4 1 0 4 5

[25,] 1 5 3 2 0 2 5 1 3 3 4 3 4 4 1 1 4 4

[26,] 2 5 2 2 0 2 4 1 4 2 4 4 4 4 1 2 4 3
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[27,] 3 5 1 2 0 2 3 1 5 1 4 5 4 4 1 3 4 2

[28,] 4 5 0 2 0 2 2 1 6 0 4 6 4 4 1 4 4 1

[29,] 1 5 3 1 0 3 6 1 2 3 4 3 5 4 0 0 4 5

[30,] 2 5 2 1 0 3 5 1 3 2 4 4 5 4 0 1 4 4

[31,] 3 5 1 1 0 3 4 1 4 1 4 5 5 4 0 2 4 3

[32,] 4 5 0 1 0 3 3 1 5 0 4 6 5 4 0 3 4 2

[33,] 0 4 5 4 0 0 4 2 3 4 5 1 2 4 3 2 3 4

[34,] 1 4 4 4 0 0 3 2 4 3 5 2 2 4 3 3 3 3

[35,] 2 4 3 4 0 0 2 2 5 2 5 3 2 4 3 4 3 2

[36,] 3 4 2 4 0 0 1 2 6 1 5 4 2 4 3 5 3 1

[37,] 4 4 1 4 0 0 0 2 7 0 5 5 2 4 3 6 3 0

[38,] 0 4 5 3 0 1 5 2 2 4 5 1 3 4 2 1 3 5

[39,] 1 4 4 3 0 1 4 2 3 3 5 2 3 4 2 2 3 4

[40,] 2 4 3 3 0 1 3 2 4 2 5 3 3 4 2 3 3 3

[41,] 3 4 2 3 0 1 2 2 5 1 5 4 3 4 2 4 3 2

[42,] 4 4 1 3 0 1 1 2 6 0 5 5 3 4 2 5 3 1

[43,] 0 4 5 2 0 2 6 2 1 4 5 1 4 4 1 0 3 6

[44,] 1 4 4 2 0 2 5 2 2 3 5 2 4 4 1 1 3 5

[45,] 2 4 3 2 0 2 4 2 3 2 5 3 4 4 1 2 3 4

[46,] 3 4 2 2 0 2 3 2 4 1 5 4 4 4 1 3 3 3

[47,] 4 4 1 2 0 2 2 2 5 0 5 5 4 4 1 4 3 2

[48,] 1 4 4 1 0 3 6 2 1 3 5 2 5 4 0 0 3 6

[49,] 2 4 3 1 0 3 5 2 2 2 5 3 5 4 0 1 3 5

[50,] 3 4 2 1 0 3 4 2 3 1 5 4 5 4 0 2 3 4

[51,] 4 4 1 1 0 3 3 2 4 0 5 5 5 4 0 3 3 3

[52,] 0 3 6 4 0 0 4 3 2 4 6 0 2 4 3 2 2 5

[53,] 1 3 5 4 0 0 3 3 3 3 6 1 2 4 3 3 2 4

[54,] 2 3 4 4 0 0 2 3 4 2 6 2 2 4 3 4 2 3

[55,] 3 3 3 4 0 0 1 3 5 1 6 3 2 4 3 5 2 2

[56,] 4 3 2 4 0 0 0 3 6 0 6 4 2 4 3 6 2 1

[57,] 0 3 6 3 0 1 5 3 1 4 6 0 3 4 2 1 2 6

[58,] 1 3 5 3 0 1 4 3 2 3 6 1 3 4 2 2 2 5

[59,] 2 3 4 3 0 1 3 3 3 2 6 2 3 4 2 3 2 4

[60,] 3 3 3 3 0 1 2 3 4 1 6 3 3 4 2 4 2 3

[61,] 4 3 2 3 0 1 1 3 5 0 6 4 3 4 2 5 2 2

[62,] 0 3 6 2 0 2 6 3 0 4 6 0 4 4 1 0 2 7

[63,] 1 3 5 2 0 2 5 3 1 3 6 1 4 4 1 1 2 6

[64,] 2 3 4 2 0 2 4 3 2 2 6 2 4 4 1 2 2 5

[65,] 3 3 3 2 0 2 3 3 3 1 6 3 4 4 1 3 2 4

[66,] 4 3 2 2 0 2 2 3 4 0 6 4 4 4 1 4 2 3

[67,] 1 3 5 1 0 3 6 3 0 3 6 1 5 4 0 0 2 7

[68,] 2 3 4 1 0 3 5 3 1 2 6 2 5 4 0 1 2 6

[69,] 3 3 3 1 0 3 4 3 2 1 6 3 5 4 0 2 2 5

[70,] 4 3 2 1 0 3 3 3 3 0 6 4 5 4 0 3 2 4

[71,] 1 2 6 4 0 0 3 4 2 3 7 0 2 4 3 3 1 5

[72,] 2 2 5 4 0 0 2 4 3 2 7 1 2 4 3 4 1 4

[73,] 3 2 4 4 0 0 1 4 4 1 7 2 2 4 3 5 1 3

[74,] 4 2 3 4 0 0 0 4 5 0 7 3 2 4 3 6 1 2

[75,] 1 2 6 3 0 1 4 4 1 3 7 0 3 4 2 2 1 6

[76,] 2 2 5 3 0 1 3 4 2 2 7 1 3 4 2 3 1 5

[77,] 3 2 4 3 0 1 2 4 3 1 7 2 3 4 2 4 1 4

[78,] 4 2 3 3 0 1 1 4 4 0 7 3 3 4 2 5 1 3

[79,] 1 2 6 2 0 2 5 4 0 3 7 0 4 4 1 1 1 7

[80,] 2 2 5 2 0 2 4 4 1 2 7 1 4 4 1 2 1 6
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[81,] 3 2 4 2 0 2 3 4 2 1 7 2 4 4 1 3 1 5

[82,] 4 2 3 2 0 2 2 4 3 0 7 3 4 4 1 4 1 4

[83,] 2 2 5 1 0 3 5 4 0 2 7 1 5 4 0 1 1 7

[84,] 3 2 4 1 0 3 4 4 1 1 7 2 5 4 0 2 1 6

[85,] 4 2 3 1 0 3 3 4 2 0 7 3 5 4 0 3 1 5

[86,] 2 1 6 4 0 0 2 5 2 2 8 0 2 4 3 4 0 5

[87,] 3 1 5 4 0 0 1 5 3 1 8 1 2 4 3 5 0 4

[88,] 4 1 4 4 0 0 0 5 4 0 8 2 2 4 3 6 0 3

[89,] 2 1 6 3 0 1 3 5 1 2 8 0 3 4 2 3 0 6

[90,] 3 1 5 3 0 1 2 5 2 1 8 1 3 4 2 4 0 5

[91,] 4 1 4 3 0 1 1 5 3 0 8 2 3 4 2 5 0 4

[92,] 2 1 6 2 0 2 4 5 0 2 8 0 4 4 1 2 0 7

[93,] 3 1 5 2 0 2 3 5 1 1 8 1 4 4 1 3 0 6

[94,] 4 1 4 2 0 2 2 5 2 0 8 2 4 4 1 4 0 5

[95,] 3 1 5 1 0 3 4 5 0 1 8 1 5 4 0 2 0 7

[96,] 4 1 4 1 0 3 3 5 1 0 8 2 5 4 0 3 0 6

[97,] 0 5 4 3 1 0 5 0 4 4 4 2 3 3 3 1 5 3

[98,] 1 5 3 3 1 0 4 0 5 3 4 3 3 3 3 2 5 2

[99,] 2 5 2 3 1 0 3 0 6 2 4 4 3 3 3 3 5 1

[100,] 3 5 1 3 1 0 2 0 7 1 4 5 3 3 3 4 5 0

[101,] 0 5 4 2 1 1 6 0 3 4 4 2 4 3 2 0 5 4

[102,] 1 5 3 2 1 1 5 0 4 3 4 3 4 3 2 1 5 3

[103,] 2 5 2 2 1 1 4 0 5 2 4 4 4 3 2 2 5 2

[104,] 3 5 1 2 1 1 3 0 6 1 4 5 4 3 2 3 5 1

[105,] 4 5 0 2 1 1 2 0 7 0 4 6 4 3 2 4 5 0

[106,] 1 5 3 1 1 2 6 0 3 3 4 3 5 3 1 0 5 4

[107,] 2 5 2 1 1 2 5 0 4 2 4 4 5 3 1 1 5 3

[108,] 3 5 1 1 1 2 4 0 5 1 4 5 5 3 1 2 5 2

[109,] 4 5 0 1 1 2 3 0 6 0 4 6 5 3 1 3 5 1

[110,] 2 5 2 0 1 3 6 0 3 2 4 4 6 3 0 0 5 4

[111,] 3 5 1 0 1 3 5 0 4 1 4 5 6 3 0 1 5 3

[112,] 4 5 0 0 1 3 4 0 5 0 4 6 6 3 0 2 5 2

[113,] 0 4 5 3 1 0 5 1 3 4 5 1 3 3 3 1 4 4

[114,] 1 4 4 3 1 0 4 1 4 3 5 2 3 3 3 2 4 3

[115,] 2 4 3 3 1 0 3 1 5 2 5 3 3 3 3 3 4 2

[116,] 3 4 2 3 1 0 2 1 6 1 5 4 3 3 3 4 4 1

[117,] 4 4 1 3 1 0 1 1 7 0 5 5 3 3 3 5 4 0

[118,] 0 4 5 2 1 1 6 1 2 4 5 1 4 3 2 0 4 5

[119,] 1 4 4 2 1 1 5 1 3 3 5 2 4 3 2 1 4 4

[120,] 2 4 3 2 1 1 4 1 4 2 5 3 4 3 2 2 4 3

[121,] 3 4 2 2 1 1 3 1 5 1 5 4 4 3 2 3 4 2

[122,] 4 4 1 2 1 1 2 1 6 0 5 5 4 3 2 4 4 1

[123,] 1 4 4 1 1 2 6 1 2 3 5 2 5 3 1 0 4 5

[124,] 2 4 3 1 1 2 5 1 3 2 5 3 5 3 1 1 4 4

[125,] 3 4 2 1 1 2 4 1 4 1 5 4 5 3 1 2 4 3

[126,] 4 4 1 1 1 2 3 1 5 0 5 5 5 3 1 3 4 2

[127,] 2 4 3 0 1 3 6 1 2 2 5 3 6 3 0 0 4 5

[128,] 3 4 2 0 1 3 5 1 3 1 5 4 6 3 0 1 4 4

[129,] 4 4 1 0 1 3 4 1 4 0 5 5 6 3 0 2 4 3

[130,] 0 3 6 3 1 0 5 2 2 4 6 0 3 3 3 1 3 5

[131,] 1 3 5 3 1 0 4 2 3 3 6 1 3 3 3 2 3 4

[132,] 2 3 4 3 1 0 3 2 4 2 6 2 3 3 3 3 3 3

[133,] 3 3 3 3 1 0 2 2 5 1 6 3 3 3 3 4 3 2

[134,] 4 3 2 3 1 0 1 2 6 0 6 4 3 3 3 5 3 1
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[135,] 0 3 6 2 1 1 6 2 1 4 6 0 4 3 2 0 3 6

[136,] 1 3 5 2 1 1 5 2 2 3 6 1 4 3 2 1 3 5

[137,] 2 3 4 2 1 1 4 2 3 2 6 2 4 3 2 2 3 4

[138,] 3 3 3 2 1 1 3 2 4 1 6 3 4 3 2 3 3 3

[139,] 4 3 2 2 1 1 2 2 5 0 6 4 4 3 2 4 3 2

[140,] 1 3 5 1 1 2 6 2 1 3 6 1 5 3 1 0 3 6

[141,] 2 3 4 1 1 2 5 2 2 2 6 2 5 3 1 1 3 5

[142,] 3 3 3 1 1 2 4 2 3 1 6 3 5 3 1 2 3 4

[143,] 4 3 2 1 1 2 3 2 4 0 6 4 5 3 1 3 3 3

[144,] 2 3 4 0 1 3 6 2 1 2 6 2 6 3 0 0 3 6

[145,] 3 3 3 0 1 3 5 2 2 1 6 3 6 3 0 1 3 5

[146,] 4 3 2 0 1 3 4 2 3 0 6 4 6 3 0 2 3 4

[147,] 1 2 6 3 1 0 4 3 2 3 7 0 3 3 3 2 2 5

[148,] 2 2 5 3 1 0 3 3 3 2 7 1 3 3 3 3 2 4

[149,] 3 2 4 3 1 0 2 3 4 1 7 2 3 3 3 4 2 3

[150,] 4 2 3 3 1 0 1 3 5 0 7 3 3 3 3 5 2 2

[151,] 1 2 6 2 1 1 5 3 1 3 7 0 4 3 2 1 2 6

[152,] 2 2 5 2 1 1 4 3 2 2 7 1 4 3 2 2 2 5

[153,] 3 2 4 2 1 1 3 3 3 1 7 2 4 3 2 3 2 4

[154,] 4 2 3 2 1 1 2 3 4 0 7 3 4 3 2 4 2 3

[155,] 1 2 6 1 1 2 6 3 0 3 7 0 5 3 1 0 2 7

[156,] 2 2 5 1 1 2 5 3 1 2 7 1 5 3 1 1 2 6

[157,] 3 2 4 1 1 2 4 3 2 1 7 2 5 3 1 2 2 5

[158,] 4 2 3 1 1 2 3 3 3 0 7 3 5 3 1 3 2 4

[159,] 2 2 5 0 1 3 6 3 0 2 7 1 6 3 0 0 2 7

[160,] 3 2 4 0 1 3 5 3 1 1 7 2 6 3 0 1 2 6

[161,] 4 2 3 0 1 3 4 3 2 0 7 3 6 3 0 2 2 5

[162,] 2 1 6 3 1 0 3 4 2 2 8 0 3 3 3 3 1 5

[163,] 3 1 5 3 1 0 2 4 3 1 8 1 3 3 3 4 1 4

[164,] 4 1 4 3 1 0 1 4 4 0 8 2 3 3 3 5 1 3

[165,] 2 1 6 2 1 1 4 4 1 2 8 0 4 3 2 2 1 6

[166,] 3 1 5 2 1 1 3 4 2 1 8 1 4 3 2 3 1 5

[167,] 4 1 4 2 1 1 2 4 3 0 8 2 4 3 2 4 1 4

[168,] 2 1 6 1 1 2 5 4 0 2 8 0 5 3 1 1 1 7

[169,] 3 1 5 1 1 2 4 4 1 1 8 1 5 3 1 2 1 6

[170,] 4 1 4 1 1 2 3 4 2 0 8 2 5 3 1 3 1 5

[171,] 3 1 5 0 1 3 5 4 0 1 8 1 6 3 0 1 1 7

[172,] 4 1 4 0 1 3 4 4 1 0 8 2 6 3 0 2 1 6

[173,] 3 0 6 3 1 0 2 5 2 1 9 0 3 3 3 4 0 5

[174,] 4 0 5 3 1 0 1 5 3 0 9 1 3 3 3 5 0 4

[175,] 3 0 6 2 1 1 3 5 1 1 9 0 4 3 2 3 0 6

[176,] 4 0 5 2 1 1 2 5 2 0 9 1 4 3 2 4 0 5

[177,] 3 0 6 1 1 2 4 5 0 1 9 0 5 3 1 2 0 7

[178,] 4 0 5 1 1 2 3 5 1 0 9 1 5 3 1 3 0 6

[179,] 4 0 5 0 1 3 4 5 0 0 9 1 6 3 0 2 0 7

[180,] 0 4 5 2 2 0 6 0 3 4 5 1 4 2 3 0 5 4

[181,] 1 4 4 2 2 0 5 0 4 3 5 2 4 2 3 1 5 3

[182,] 2 4 3 2 2 0 4 0 5 2 5 3 4 2 3 2 5 2

[183,] 3 4 2 2 2 0 3 0 6 1 5 4 4 2 3 3 5 1

[184,] 4 4 1 2 2 0 2 0 7 0 5 5 4 2 3 4 5 0

[185,] 1 4 4 1 2 1 6 0 3 3 5 2 5 2 2 0 5 4

[186,] 2 4 3 1 2 1 5 0 4 2 5 3 5 2 2 1 5 3

[187,] 3 4 2 1 2 1 4 0 5 1 5 4 5 2 2 2 5 2

[188,] 4 4 1 1 2 1 3 0 6 0 5 5 5 2 2 3 5 1
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[189,] 2 4 3 0 2 2 6 0 3 2 5 3 6 2 1 0 5 4

[190,] 3 4 2 0 2 2 5 0 4 1 5 4 6 2 1 1 5 3

[191,] 4 4 1 0 2 2 4 0 5 0 5 5 6 2 1 2 5 2

[192,] 0 3 6 2 2 0 6 1 2 4 6 0 4 2 3 0 4 5

[193,] 1 3 5 2 2 0 5 1 3 3 6 1 4 2 3 1 4 4

[194,] 2 3 4 2 2 0 4 1 4 2 6 2 4 2 3 2 4 3

[195,] 3 3 3 2 2 0 3 1 5 1 6 3 4 2 3 3 4 2

[196,] 4 3 2 2 2 0 2 1 6 0 6 4 4 2 3 4 4 1

[197,] 1 3 5 1 2 1 6 1 2 3 6 1 5 2 2 0 4 5

[198,] 2 3 4 1 2 1 5 1 3 2 6 2 5 2 2 1 4 4

[199,] 3 3 3 1 2 1 4 1 4 1 6 3 5 2 2 2 4 3

[200,] 4 3 2 1 2 1 3 1 5 0 6 4 5 2 2 3 4 2

[201,] 2 3 4 0 2 2 6 1 2 2 6 2 6 2 1 0 4 5

[202,] 3 3 3 0 2 2 5 1 3 1 6 3 6 2 1 1 4 4

[203,] 4 3 2 0 2 2 4 1 4 0 6 4 6 2 1 2 4 3

[204,] 1 2 6 2 2 0 5 2 2 3 7 0 4 2 3 1 3 5

[205,] 2 2 5 2 2 0 4 2 3 2 7 1 4 2 3 2 3 4

[206,] 3 2 4 2 2 0 3 2 4 1 7 2 4 2 3 3 3 3

[207,] 4 2 3 2 2 0 2 2 5 0 7 3 4 2 3 4 3 2

[208,] 1 2 6 1 2 1 6 2 1 3 7 0 5 2 2 0 3 6

[209,] 2 2 5 1 2 1 5 2 2 2 7 1 5 2 2 1 3 5

[210,] 3 2 4 1 2 1 4 2 3 1 7 2 5 2 2 2 3 4

[211,] 4 2 3 1 2 1 3 2 4 0 7 3 5 2 2 3 3 3

[212,] 2 2 5 0 2 2 6 2 1 2 7 1 6 2 1 0 3 6

[213,] 3 2 4 0 2 2 5 2 2 1 7 2 6 2 1 1 3 5

[214,] 4 2 3 0 2 2 4 2 3 0 7 3 6 2 1 2 3 4

[215,] 2 1 6 2 2 0 4 3 2 2 8 0 4 2 3 2 2 5

[216,] 3 1 5 2 2 0 3 3 3 1 8 1 4 2 3 3 2 4

[217,] 4 1 4 2 2 0 2 3 4 0 8 2 4 2 3 4 2 3

[218,] 2 1 6 1 2 1 5 3 1 2 8 0 5 2 2 1 2 6

[219,] 3 1 5 1 2 1 4 3 2 1 8 1 5 2 2 2 2 5

[220,] 4 1 4 1 2 1 3 3 3 0 8 2 5 2 2 3 2 4

[221,] 2 1 6 0 2 2 6 3 0 2 8 0 6 2 1 0 2 7

[222,] 3 1 5 0 2 2 5 3 1 1 8 1 6 2 1 1 2 6

[223,] 4 1 4 0 2 2 4 3 2 0 8 2 6 2 1 2 2 5

[224,] 3 0 6 2 2 0 3 4 2 1 9 0 4 2 3 3 1 5

[225,] 4 0 5 2 2 0 2 4 3 0 9 1 4 2 3 4 1 4

[226,] 3 0 6 1 2 1 4 4 1 1 9 0 5 2 2 2 1 6

[227,] 4 0 5 1 2 1 3 4 2 0 9 1 5 2 2 3 1 5

[228,] 3 0 6 0 2 2 5 4 0 1 9 0 6 2 1 1 1 7

[229,] 4 0 5 0 2 2 4 4 1 0 9 1 6 2 1 2 1 6

[230,] 1 3 5 1 3 0 6 0 3 3 6 1 5 1 3 0 5 4

[231,] 2 3 4 1 3 0 5 0 4 2 6 2 5 1 3 1 5 3

[232,] 3 3 3 1 3 0 4 0 5 1 6 3 5 1 3 2 5 2

[233,] 4 3 2 1 3 0 3 0 6 0 6 4 5 1 3 3 5 1

[234,] 2 3 4 0 3 1 6 0 3 2 6 2 6 1 2 0 5 4

[235,] 3 3 3 0 3 1 5 0 4 1 6 3 6 1 2 1 5 3

[236,] 4 3 2 0 3 1 4 0 5 0 6 4 6 1 2 2 5 2

[237,] 1 2 6 1 3 0 6 1 2 3 7 0 5 1 3 0 4 5

[238,] 2 2 5 1 3 0 5 1 3 2 7 1 5 1 3 1 4 4

[239,] 3 2 4 1 3 0 4 1 4 1 7 2 5 1 3 2 4 3

[240,] 4 2 3 1 3 0 3 1 5 0 7 3 5 1 3 3 4 2

[241,] 2 2 5 0 3 1 6 1 2 2 7 1 6 1 2 0 4 5

[242,] 3 2 4 0 3 1 5 1 3 1 7 2 6 1 2 1 4 4
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[243,] 4 2 3 0 3 1 4 1 4 0 7 3 6 1 2 2 4 3

[244,] 2 1 6 1 3 0 5 2 2 2 8 0 5 1 3 1 3 5

[245,] 3 1 5 1 3 0 4 2 3 1 8 1 5 1 3 2 3 4

[246,] 4 1 4 1 3 0 3 2 4 0 8 2 5 1 3 3 3 3

[247,] 2 1 6 0 3 1 6 2 1 2 8 0 6 1 2 0 3 6

[248,] 3 1 5 0 3 1 5 2 2 1 8 1 6 1 2 1 3 5

[249,] 4 1 4 0 3 1 4 2 3 0 8 2 6 1 2 2 3 4

[250,] 3 0 6 1 3 0 4 3 2 1 9 0 5 1 3 2 2 5

[251,] 4 0 5 1 3 0 3 3 3 0 9 1 5 1 3 3 2 4

[252,] 3 0 6 0 3 1 5 3 1 1 9 0 6 1 2 1 2 6

[253,] 4 0 5 0 3 1 4 3 2 0 9 1 6 1 2 2 2 5

[254,] 2 2 5 0 4 0 6 0 3 2 7 1 6 0 3 0 5 4

[255,] 3 2 4 0 4 0 5 0 4 1 7 2 6 0 3 1 5 3

[256,] 4 2 3 0 4 0 4 0 5 0 7 3 6 0 3 2 5 2

[257,] 2 1 6 0 4 0 6 1 2 2 8 0 6 0 3 0 4 5

[258,] 3 1 5 0 4 0 5 1 3 1 8 1 6 0 3 1 4 4

[259,] 4 1 4 0 4 0 4 1 4 0 8 2 6 0 3 2 4 3

[260,] 3 0 6 0 4 0 5 2 2 1 9 0 6 0 3 1 3 5

[261,] 4 0 5 0 4 0 4 2 3 0 9 1 6 0 3 2 3 4

> sum(ptab[ptab<=ptab[loc]])

[1] 0.9190594

A.3 Algorithms for 3 × 3 × K tables

#-------------------------------------------------------------------------------

#-------------------------------- A function to generate general discrete values

#--------------------------------

rdisc = function(n=1, prop=NULL, levels=NULL){

if (is.null(prop)){

print("probability vector should be specified")

stop

}

K = length(prop)

if (is.null(levels)) levels=1:K

cum.prob= cumsum(prop)

foo = rep(0, n)

for (i in 1:n){

u = runif(1) ;as.numeric(u <= cum.prob)

test = levels[match(1,as.numeric(u <= cum.prob))]

foo[i] = ifelse(is.na(test),K,test)

}

return(foo)

}

#------------------ A function to compute c(n); number of bits ----------------

bits = function(n){

m = ceiling(log(n,2))

cn = 2^m*(m/n)
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return(cn)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#------------------------ Function to generate move of degree 4 for 3x3x4 tables

rand.m4 <- function(x0){

dims = dim(x0)

m = array(0, dim=dims)

i = sample(1:dims[1],2)

j = sample(1:dims[2],2)

k = sample(1:dims[3],2)

m[i[1],j[1],k[1]] = m[i[2],j[2],k[1]] = +1

m[i[2],j[1],k[1]] = m[i[1],j[2],k[1]] = -1

m[,,k[2]] = -m[,,k[1]]

n.moves = choose(dims[1],2)*choose(dims[2],2)*choose(dims[3],2)

assign("CN", CN+bits(n.moves), envir=.GlobalEnv)

return(m)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#------------------------ Function to generate move of degree 6 for 3x3x4 tables

rand.m6 <- function(x0) {

dims=dim(x0)

m = array(0, dim=dims)

Type=floor(runif(1, min=1, max=4))

if (Type==1){

i = sample(1:dims[1],3)

j = sample(1:dims[2],3)

k = sample(1:dims[3],2)

m[i[1],j[1],k[1]] = m[i[2],j[2],k[1]] = m[i[3],j[3],k[1]] = +1

m[i[1],j[2],k[1]] = m[i[2],j[3],k[1]] = m[i[3],j[1],k[1]] = -1

m[,,k[2]] = -m[,,k[1]]

n.moves = choose(dims[1],3)*choose(dims[2],3)*choose(dims[3],2)

}

if (Type==2){

i = sample(1:dims[1],2)

j = sample(1:dims[2],3)

k = sample(1:dims[3],3)

m[i[1],j[1],k[1]] = m[i[1],j[2],k[2]] = m[i[1],j[3],k[3]] = +1

m[i[1],j[1],k[2]] = m[i[1],j[2],k[3]] = m[i[1],j[3],k[1]] = -1

m[i[2],,] = -m[i[1],,]

n.moves = choose(dims[1],2)*choose(dims[2],3)*choose(dims[3],3)

}

if (Type==3){
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i = sample(1:dims[1],3)

j = sample(1:dims[2],2)

k = sample(1:dims[3],3)

m[i[1],j[1],k[1]] = m[i[2],j[1],k[2]] = m[i[3],j[1],k[3]] = +1

m[i[1],j[1],k[2]] = m[i[2],j[1],k[3]] = m[i[3],j[1],k[1]] = -1

m[,j[2],] = -m[,j[1],]

n.moves = choose(dims[1],3)*choose(dims[2],2)*choose(dims[3],3)

}

assign("CN", CN+bits(n.moves), envir=.GlobalEnv)

return(m)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#------------------------ Function to generate move 0f degree 8 for 3x3x4 tables

rand.m8 <- function(x0){

dims=dim(x0)

m = array(0, dim=dims)

i = sample(1:dims[3],3)

j = sample(1:dims[1],3)

k = sample(1:dims[2],4)

m[j[1],k[1],i[1]] = m[j[2],k[2],i[1]] = m[j[1],k[3],i[2]] = m[j[2],k[1],i[2]] = +1

m[j[3],k[4],i[2]] = m[j[1],k[2],i[3]] = m[j[2],k[4],i[3]] = m[j[3],k[3],i[3]] = +1

m[j[1],k[2],i[1]] = m[j[2],k[1],i[1]] = m[j[1],k[1],i[2]] = m[j[2],k[4],i[2]] = -1

m[j[3],k[3],i[2]] = m[j[1],k[3],i[3]] = m[j[2],k[2],i[3]] = m[j[3],k[4],i[3]] = -1

n.moves = choose(dims[3],3)*choose(dims[1],3)*choose(dims[2],4)

assign("CN", CN+bits(n.moves), envir=.GlobalEnv)

return(m)

}

#------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#------------------------ Function to generate move 0f degree 10 for 3x3x4 tables

rand.m10 <- function(x0){

dims=dim(x0)

m = array(0, dim=dims)

i = sample(1:dims[3],3)

j = sample(1:dims[1],3)

k = sample(1:dims[2],5)

m[j[1],k[1],i[1]] = m[j[2],k[2],i[1]] = m[j[2],k[5],i[1]] = m[j[3],k[4],i[1]] = +1

m[j[1],k[3],i[2]] = m[j[2],k[1],i[2]] = m[j[3],k[5],i[2]] = m[j[1],k[2],i[3]] = +1

m[j[2],k[4],i[3]] = m[j[3],k[3],i[3]] = +1

m[j[1],k[2],i[1]] = m[j[2],k[1],i[1]] = m[j[2],k[4],i[1]] = m[j[3],k[5],i[1]] = -1

m[j[1],k[1],i[2]] = m[j[2],k[5],i[2]] = m[j[3],k[3],i[2]] = m[j[1],k[3],i[3]] = -1

m[j[2],k[2],i[3]] = m[j[3],k[4],i[3]] = -1

n.moves = choose(dims[3],3)*choose(dims[1],3)*choose(dims[2],4)
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assign("CN", CN+bits(n.moves), envir=.GlobalEnv)

return(m)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#---------- Function to generate move from M_star for a table of 3x3x4 dimension

rand.ms = function(x0, prop){

dims = dim(x0)

M = max(dims)

Mi=2*rdisc(1, prop, levels=2:M)

if (Mi==4) m = rand.m4(x0)

if (Mi==6) m = rand.m6(x0)

if (Mi==8) m = rand.m8(x0)

if (Mi==10) m = rand.m10(x0)

assign("CN.rbern",CN.rbern+1, envir=.GlobalEnv)

return(m)

}

##------------- A simpler function to check acceptance of random sample --------

accept = function(pi){

if(pi >= 1) return(TRUE)

assign(’CN.rbern’, CN.rbern+1, envir=.GlobalEnv)

return(runif(1) <= pi)

}

##-------------- Function for MCMC from move from M* based on Aoki-Takemura

mcmc.at = function(x0,n, prop){

xold <- x0

xl <- matrix(0,ncol=n, nrow=length(x0))

for(t in 1:n){

if (t%%10000==0) cat(t, "\n")

m <- rand.ms(x0, prop) ## produce the m from M*

x <- xold

xl[,t]<- x

xs <- x+m ## producing subsequent tables by random move

if (any(xs<0)){

x <- xold

}

else{

pi <- min(1, exp(sum(lfactorial(xold)-lfactorial(xs))))

if (accept(pi)) xold <- xs

}

}

return(xl)

}

#--------------------------------------------- Aoki- takemura method for 3x3xK

eff.at = function(x0, n=10000, prop){

library(splines)
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library(lattice)

library(coda)

assign("CN.rbern", 0 , envir=.GlobalEnv)

assign("CN" , 0 , envir=.GlobalEnv)

output = mcmc.at(x0, n, prop)

T = matrix(output, ncol=n)

likl = function(x){1/exp(sum(lfactorial(x))/sum(x0))}

P = apply(T, MARGIN=2, FUN= likl)

p0 = likl(as.vector(x0))

logit = log(P)

I = as.numeric(P <= p0)

Ibar = mean(I)

ne.I = effectiveSize(I)

ne.logit = effectiveSize(logit)

cost.low = CN + 1* CN.rbern

cost.upp = CN + 2* CN.rbern

se.Ibar = sqrt(Ibar*(1-Ibar)/ne.I)

n.cn = CN

eff.logit.upp = ne.logit/cost.low

eff.logit.low = ne.logit/cost.upp

return(list(Ibar = Ibar,

se.Ibar = se.Ibar,

ne.logit = ne.logit,

cost.low = cost.low,

cost.upp = cost.upp,

n.cn = n.cn,

n.bern = CN.rbern,

eff.logit.low = eff.logit.low,

eff.logit.upp = eff.logit.upp))

}


