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ABSTRACT 

THE POSSffiLE EFFECTS OF CLIMATE CHANGE ON THE 
SPATIAL AND TEMPORAL VARIATION 

OF THE ALTITUDINAL TEMPERATURE GRADIENT AND 
THE CONSEQUENCES FOR GROWTH POTENTIAL 

IN THE UPLANDS OF NORTHERN ENGLAND 

Thesis submitted for the degree of Doctor of Philosophy (PhD) 
Date of Submission: July 1994 

Nicholas Pepin 

Department of Geography, University of Durham 

This thesis studies the potential impacts of lapse rate changes on the altitudinal 
thermal resource gradient in Northern England and hence of climate change on upland 
climate. 

The extreme marginality of the Pennine uplands in terms of climatic potential for 
plant growth is explained by reference to the maritime climate. Because the ground-based 
temperature lapse rate controls the altitudinal thermal resource gradient, the variation of daily 
temperature lapse rates by season and airflow is described, using 22 stations ranging from 
8 to 847 metres above sea-level. Multiple regression models developed for each airflow in 
each month successfully describe surface temperature variation in most cases. 

Such models are used as a basis upon which to describe altitudinal variations in 
growing season parameters such as accumulated temperatures and frost frequency, for the 
present climate. Airflow scenarios, basedon the regression models, describe the effects of 
changes in relative frequencies of airflow patterns. The altitudinal gradient in, and absolute 
values of, growing season parameters depend strongly on relative frequencies of Atlantic 
westerlies and more blocked conditions. 

Assuming the annuallOOO d°C (degree-day) isotherm to represent the altitudinal limit 
to agricultural cultivation, individual annual elevations between 1801 and 1990 vary by over 
300 metres. Extreme sensitivity to the circulatory pattern is also illustrated. Effects of 
temperature variability within airflows are at least as strong as those of mean conditions in 
many cases. 

The use of General Circulation Model output (UKHI 2 times C02) leads to strong 
changes in climatic potential. For example, few areas retain an annual temperature 
accumulation below 1000 d°C. Changes in frost parameters are also marked. Other climatic 
and non-climatic factors would have to be considered to predict land-use change. Preliminary 
analysis suggests that changes in other climatic elements (e.g. windiness or precipitation) will 
complement the effects of a temperature increase. 
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INTRODUCTION 

1.1 Introduction 

Over the last few decades it has become apparent that mean global temperatures 

have risen steadily, amounting to an increase of about 0.5°C between 1900 and 1990 

(Mintzer 1992). Such fluctuation of climate can be expected as a property of any 

variable and chaotic system such as the atmosphere. However, scientists have suggested 

that this warming trend is the start of a more rapid phase of climate change caused by 

anthropogenic emissions of "greenhouse gases" such as carbon dioxide and methane, 

enhancing the natural greenhouse effect which keeps the Earth warmer than it would 

otherwise be. The context is complicated by the supposition that natural climate 

fluctuations might also be related to variations in solar output (Tavakol 1979, Hoyt 

1980) and that without anthropogenic warming there may be a cooling. In any case, the 

detailed response of the atmosphere to forcing mechanisms is complex, involving 

changes in air-sea interactions. Computer models of the atmospheric system have been 

developed to predict the effects of increases in the carbon dioxide content of the 

atmosphere on global scale climate. These General Circulation Models (GCMs) are 

commonly constructed on a coarse spatial resolution and it is extremely difficult to 

predict changes in climate within an individual region (i.e. mesoscale climate variation) 

or at an individual location from the global scale models, an important drawback since 

temperature change will be temporally and spatially variable. 

This thesis investigates methodologies for examining temporal and spatial 

eli mate variation on the mesoscale so that the local effects of climate change and 

fluctuation can be examined. Only by relating the climate of a region to the sequence 

of airflow patterns, can the influence of changes in the general circulation on that area 

be understood. Then it is sensible to speculate about detailed local effects of climate 

change. 

A commonly neglected aspect of climate change studies is how the effect of 

altitude on climate elements is likely to alter. The ideas behind lapse rates are discussed 
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in Chapter 2 and the thesis concentrates on this aspect, investigating possible changes 

in the lapse rates of air temperature in Northern England should airflow patterns 

change. 

In the maritime environment of Northern England, altitude is the major influence 

on surface temperature variation and, as a direct result, on variation in land use with 

altitude in. upland areas. The region is used as an example, showing that a full 

understanding of the effects of climatic fluctuation and change requires detailed 

knowledge of the local relationships between airflow and weather on a daily basis. 

Through analysis of spatial and temporal variation of the altitudinal temperature 

gradient, the extreme sensitivity of the area to future climatic forcing is illustrated. At 

present much of the upland area within Northern England is marginal in agricultural 

terms. If, for example, global warming were to occur, it is agreed that the greatest 

benefits would be realised at the northern limits of cultivation in countries such as 

Iceland and N. Finland (Parry 1990). Northern England has a similar climate and can 

also be expected to benefit. The strong altitudinal influence on temperature means that 

the area is especially interesting in this context, as will be explained below. 

1.2 Climate Change and the Pennine Uplands of Northern England 

This thesis seeks to examine the possible effects of climatic change and 

fluctuation with regard to possible changes in the temperature resource, i.e. changes in 

accumulated temperatures, the occurrence of frost and growing season indices relevant 

to agriculture. 

The year 1990 was the warmest on record in global terms (Parker & Jones 

1991), but local climate changes are much more subtle and less easy to identify. 

Despite the recent deluge of models simulating possible global warming (Houghton et 

al. 1990), the environmental consequences of these climate changes were until recently 

discussed only in global terms but there are now many attempts to model local response 

of the biosphere to global change, such as the response of specific forest types to global 
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warming in the Pacific region of North America (Urban et al. 1993) and the effects of 

climatic change on milk yields in the Great Plains (Klinedinst et al. 1993). Applications 

of models to mountain regions and to the Pennines in particular are few. This is partly 

due to the lack of a sufficiently high spatial resolution in General Circulation Model 

(GCM) output, critical for mountain areas (Brazel & Marcus 1991), and partly because 

those researchers interested in mountain climates and those interested in climatic change 

have only recently come together. Barry (1992a) reviews the present state of mountain 

climatology and asks for more research into the likely responses of mountain areas to 

climatic change, like his earlier work (Barry 1990). Studies comparing change in 

mountain areas with that in surrounding lowlands are few because of the lack of data 

for the uplands. In Britain the lack of observing stations above 400 m has hindered 

research into the climate of often remote and inaccessible uplands (Taylor 1976). 

Worldwide research projects include Doesken et al. (1989) comparing changes in the 

Rockies and Great Plains, llko (1991) working in the Alps, and Bucher and Dessens 

(1991) in the Pyrenees. Divergent trends in upland and lowland climate have been 

suggested for the Rockies (Doesken et al. 1989), and also for Britain, especially if the 

general circulation in the Atlantic were to become more progressive (Mayes 1991, 

Lumb 1993). Day-time lapse rates would steepen so that the beneficial effects of global 

warming might be less evident in the mountains where the daily temperature range 

would also decrease (Karl et al. 1993). 

The consequences of the above climate changes in Northern England are 

unclear. The marginal character of much of the English uplands ensures that little 

activity other than sheep farming is possible in many areas at present, but this could 

change with a warming trend postulated by many authors (Wigley et al. 1985, Jones 

et al. 1986, Parker & Jones 1991). The lack of warmth is the major constraint on the 

distribution of many species and the cultivation of many crops. Spring and early 

summer are the most critical times of year. In March and April temperatures can hover 

for days around 6 oc (the critical temperature for plant growth) and thus small spatial 

differences in exposure and/or elevation can lead to considerable contrasts in the 

progress of vegetation. Lapse rates in the prevailing polar maritime air masses are 

particularly steep in spring, when the air is heated from below by the rapidly warming 
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land surface, so that elevation can be crucially important. Taylor (1967a) and Davis 

(1972) illustrate the marked spatial variation in spring warmth and frost risk in Britain. 

Theoretically there should be a similar period at the end of the growing season (usually 

October and November) when differences in temperature are as critical. This is not in 

general the case because: 

1: autumn frosts are less of a problem for vegetation than spring frosts. 

2: lapse rates in October and November are generally shallower because air 

passing from sea to land is cooled and the sun is at a lower altitude than in 

March and April, encouraging greater stability. Therefore the altitudinal 

decrease in mean temperature is less at the end of the growing season, reducing 

the contrast between upland and lowland sites. 

The result is that at high altitudes the shortening of the growing season m 

autumn is less marked than delay in its starting in spring. 

The maritime environment means that small changes in mean temperature will 

have marked consequences for upland growing season (see section 1.3). Manley (1942) 

illustrated this by reference to possible changes in mean temperatures at Great Dun Fell 

(847 m), one of the highest summits in the Pennines. An increased frequency of calm, 

anticyclonic weather and drier summers is shown to be enough to account for a rise in 

the treeline to over 800 m, even without any general rise in lowland temperatures. On 

the other hand, persistent snowdrifts would be found on the Great Dun Fell summit if 

the mean annual temperature were to fall by 4 oc. Much of this decrease could be 

accounted for by an increase in the frequency of polar air outbreaks alone. In cold years 

such as 1879 and 1888, temperatures were estimated by Manley to be 2-3°C below 

normal and almost cold enough to initiate permanent snowbeds. 

Great environmental changes in the Pennines have occurred in the past, many 

connected with only slight changes in climate. There is controversial evidence of late 

Neolithic and early Bronze age (3000-2000 BC) occupation of the Pennine plateau up 
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to an elevation of 800 m (Lamb 1982), although this may have been seasonal. Climatic 

change is not the only documented cause of subsequent environmental deterioration. 

The onset of peat formation following extensive tree-clearance by hunter-gatherers 

encouraged further deterioration of the forest resource. Nevertheless, the climate is 

thought to have been warm and dry enough around the climatic optimum or 

Hypsithermal period (5000 BC) to support trees and cultivars to much higher altitudes 

than at present, possibly on all land except the highest summits of the Pennine plateau 

above 800 m. 

Work concerned with changing altitudinal limits to cultivation in the past was 

carried out by Parry (1972, 1975, 1976) in the Lammermuir hills in South East 

Scotland, essentially a similar environment to the study area. He was concerned 

particularly with the response of oat cropping to climate change in a marginal area and 

used the 1150 d °C isotherm above a baseline of 4.4 oc as the critical limit for oat 

cultivation. At this level the possibility of a harvest failure would be 1 in 10. 

Substantial changes over time in the altitude of this limit were identified. Parry cites 

reports from the 1280s that farmers were complaining that too little land was available 

for grazing, due to tillage up to high altitudes. The upper limit of cultivation is shown 

to have reached 425 m in the mid-13th century, though this limit fell by stages until it 

was 200 m lower in 1600 (Parry 1978). Moreover, Parry (1976) shows that if 

accumulated summer temperatures decreased linearly with altitude, the risk of harvest 

failure would increase quasi-exponentially. Wigley (1985) also shows that for a linear 

decrease in mean temperature, the change in frequency of an extreme event, such as 

the crossing of a climatic threshold (e.g. accumulated temperatures falling below a 

critical level), will change exponentially. Thus climatic "risk" is extremely sensitive to 

climate variation. One cold year may not lead to farm abandonment but a run of bad 

years would be problematic. All the great famines of history were the result of a run 

of bad years. The disastrous harvest of 1879 occurred after five years of below average 

yields and led to a peak in emigration in the 1880s as English agriculture suffered a 

complete collapse (Lamb 1982). In contrast, a run of warm years reflecting a change 

in mean climate could lead to an increase in agricultural potential, especially in cool 

temperate regions such as the Pennines where temperature is a limiting factor (Parry 
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et al. 1988). Additionally, many plant species exhibit their northern limits in the region. 

These can be delimited by isotherms of mean air temperature in the summer months. 

Iversen (1944) mapped the limits of holly, ivy and mistletoe according to the 12.5°C, 

l3°C and 15.8°C isotherms of July mean temperature. The limited thermal resource 

characteristic of Northern England (as compared with the continent) means that climatic 

change of any description could have far-reaching environmental consequences should 

the limits of many warmth-loving plants be extended to cover the region (Beerling & 

Woodward 1994). 

The thesis shows that the Pennine area is highly sensitive to climate change. It 

is in maritime uplands that the first effects of climatic change are likely to be realised, 

through shifting vegetation patterns and changing altitudinal zonation. Sensitivity to 

variations in the general circulation and the air-mass types affecting the region is 

pronounced, as implied in Manley's (1942) comparison of the climatic potential of wet, 

cool and cloudy westerly summers with warmer, drier and sunnier anticyclonic ones 

(section 1.3). A change in airflow patterns alone is expected to have a pronounced 

effect on the altitudinal variation in growth potential. 

1.3 The Environment of Northern England 

The study area includes the whole of Northern England north of a line running 

approximately from Barrow-in-Furness to Bridlington. The high Pennine region, from 

the Tyne valley in the north to Stainmore in the south and from the Vale of Eden in the 

west to Durham in the east, has been described as "England's Last Wilderness" 

(Bellamy & Quayle 1989). This area of high, undulating, often bleak and treeless, 

moorland is the most extensive above 400 metres OD in England (all altitudes for 

British sites in this thesis are above Ordnance Datum (OD) as measured at Newlyn, 

Cornwall). Despite modest summit altitudes (the highest point is under 900 m at the 

summit of Cross Fell - Plate 1, Appendix 1) the whole area has a wilderness quality 

and exhibits a harsh tundra-like landscape more akin to the montane zones of the 

Pyrenees and Alps than to the landscape of similar medium altitude areas ( < 1000 m) 

on the near continent. The latter include the densely wooded Morvan park in Burgundy 
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and parts of the Massif Central. Even in Central Norway, birch scrub appears here and 

there above 1000 m and pine ascends to over 800 m on account of the warmer summers 

(Manley 1952). 

At only 500 m in Upper Teesdale the treeline is reached and the tundra ecotone 

is apparent (Manley 1952) (Plate 2). The upland area is dominated by hardy grasses, 

heather and arctic and alpine plants. There are many reasons why the Pennine treeline 

is so low at present compared with treelines in other upland masses (see Taylor 1965, 

Tranquillini 1979, Leffler 1981). Not all the reasons are climatic. The low treeline and 

rapid decline in apparent potential for agricultural cultivation and tree growth in 

Northern England mean that the area exhibits a steep gradation in habitats according 

to altitude, equivalent to latitudinal differences over the whole of Britain. For example, 

many tree species are presently confined to low altitude areas but could migrate to 

higher altitudes, their upper limits being defined by parameters such as accumulated 

temperatures (Beerling 1993, Beerling & Woodward 1994). The effects of even slight 

climate change are likely to be evident in such a sensitive area. Great environmental 

changes have occurred in the past in the British uplands (Lamb 1982), as were 

considered in section 1.2. Anthropogenic influences on upland environments have been 

influential but the major reasons for the marginal nature of much of the Pennine area 

for agriculture and tree growth are climatic. 

The high Pennines possess a sub-Arctic climate due to their position on the 

globe where the mid- to high-latitude westerlies are strong. The pronounced maritime 

climate, with cool windy summers and mild wet winters (for the latitude), is largely due 

to the influence of the North Atlantic which warms Britain in winter and has a cooling 

effect in summer. One of the major features of a maritime climate, as well as a subdued 

annual temperature range (Driscoll & Yee Fong 1992), is a relatively steep lapse of air 

temperature with altitude. The rate of decrease of temperature with altitude is 

commonly referred to as the lapse rate. Lapse rates in the unstable maritime air 

crossing Britain from the Atlantic are among the steepest in the world (see Table 2.1). 

This is especially so for air of polar origin (Harding 1978, 1979a) which is warmed 

from beneath as it moves south towards the British Isles. 
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It is the steep lapse rates in maritime air and the small seasonal swing m 

temperature characteristic of an oceanic location which together combine to contribute 

to a dramatic decrease in the length and quality of the growing season with altitude 

(Manley 1945a). This rapid decline is given by many authors as the explanation for the 

low British treeline (Bilham 1938, Pearsall 1950), although to be strictly accurate other 

influences of topography, drainage and lack of shelter are contributory factors. 

Figure 1.1 illustrates characteristic temperature curves for maritime and 

continental locations (after Pearsall 1950). Both show an annual temperature trend 

typical of the temperate zone in the Northern hemisphere (case A), but the annual 

temperature range is much greater at the continental location. A decrease in mean 

temperature of X°C (as would be experienced by an increase in altitude) is represented 

by curve B and leads to a greater decrease in the area above the critical temperature 

threshold for growth, represented by the dotted lineD, in the maritime case where the 

annual march of temperature is rather flat. The length of the growing season is defined 

as the period when mean temperatures are above the threshold (the arrows alongside 

the x-axis represent this period) and this also shows a greater decrease for a given drop 

in temperature in the maritime case. Thus given similar lapse rates, the decline in the 

length and strength of the growing season with altitude is more rapid at the maritime 

location. 

The primary reason for the marginal nature of much of the Pennines is therefore 

the lack of real summer warmth (Parry 1976). In a more continental climate the length 

of the growing season and, in particular, accumulated temperatures during the growth 

period, are often higher despite bitterly cold winters. The very high heat resources of 

parts of the Chinese agricultural plain (Guoyu 1991) and the Great Plains of the USA 

are good examples. Screen temperatures above 20°C in the high Pennines are rare, 

occurring on 23 days in 1989 at Widdybank Fell (513 m) in one of the best summers 

on record, but on only 5 days in a cool, wet summer such as 1985. The number of 

"summer days", defined by Perry (1968) as days with a maximum temperature of 25°C 

or above, is extremely low in Northern England, even in low-lying areas. Substantial 

increases in the mean annual number of "summer days" may occur, however, with 
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relatively slight global warming in such areas. 

It is useful here to introduce the concept of climatic marginality. Near to the 

boundaries of successful cultivation there are areas which in a good or average year 

would experience enough warm weather for crop growth, but in a poor year would not. 

These areas are referred to as marginal. Areas where the climate nearly always falls 

short of requirements are defmed as sub-marginal. Land may change category as the 

climate alters, either beneficially or detrimentally. In the Pennines a large amount of 

sub-marginal and marginal land occurs at relatively modest altitudes (see Chapter 18). 

Manley suggests that much of the uplands are climatically marginal from his work using 

Moor House (560 m), Great Dun Fell (847 m) and Widdybank Fell (513 m) as 

reference stations (1935, 1936, 1942, 1943, 1952, 1980). 

In a wet and cloudy summer month, such as July 1936, the loss in a theoretical 

crop yield in the uplands will be far greater proportionally than at low altitudes. In such 

a month the aggregate deficit in mean temperature will usually be greater on high 

ground than at sea-level (Manley 1952). In a dry and warm anticyclonic month with 

little wind the temperature on high ground approaches more closely that of the lowlands 

(Harding 1979a, Tabony 1985). Thus two or three weeks of warm dry weather at the 

right time are beneficial in the lowlands but proportionately more beneficial in the 

uplands. The contrast between potential upland yields in different years can therefore 

be marked, reflecting a much greater variation in accumulated temperatures from year 

to year and increasing risk for the upland farmer (see Parry 1976). 

Although summer temperature is the main limiting factor for widespread crop 

development in the Pennines, there is also a lack of insolation due to incessant 

cloudiness (especially in wet summers dominated by frequent depressional activity), 

frequent waterlogging due to high rainfall, and lack of shelter from strong winds. All 

these detrimental factors are exacerbated in summers dominated by a progressive 

westerly flow from the Atlantic. Were this maritime flow to be reduced in frequency 

through anticyclonic blocking, the uplands would benefit through decreased lapse rates, 

more solar radiation, less rainfall and less wind. The marginal nature of much of the 
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Pennines is therefore strongly linked with the maritime influence, the character of the 

seasons being greatly influenced by the airflow pattern across the British Isles. The 

work in this thesis examines the response of the Pennine environment to changes in 

general circulation patterns and warming trends simulated by GCMs. There would be 

a pronounced effect on the temperature resource, especially if spring and summer 

temperatures were to increase. It can be assumed that cooling trends would have a 

reverse effect. 

1.4 Structure and Aims of the Thesis 

The question addressed is whether there is likely to be marked change in the 

temperature resource and its altitudinal variation in the Pennine area, assuming certain 

climate changes. These changes may be in the temperatures associated with certain 

airflows or in the airflow patterns themselves. It is important to stress that the thesis 

does not attempt to predict land-use change (see Hulme et al. 1993b) in the Pennines, 

merely to show the sensitivity of maritime uplands to climate fluctuation and airflow 

changes, past, present and future. 

The main aims of the thesis are: 

1. to describe and model the temperature field in the Pennine region and account 

for its temporal and spatial variation. This involves the creation of a detailed 

climatic database for the North of England; 

2. to analyse, in particular, the spatial and temporal variation of the altitudinal 

temperature gradient in the study area; 

3. to use the above knowledge to relate the climate of the area to the circulation 

pattern occurring and provide a bridge between global scale circulation 

(simulated by GCMs) and local scale climate; 

4. to develop parameters describing "growth potential" in the Pennines and 
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surrounding area and account for their changing relationship with altitude; 

5. to examine evidence for past changes in "climatic potential" parameters; 

6. to examine possible future changes in "climatic potential" parameters and 

develop scenarios for change applicable to high quality GCM data. 

With these aims the thesis is divided into three main sections. 

Part 1 (Chapters 1-4) contains chapters on the relevant literature concerning 

lapse rates of temperature, the physical background to mountain climatology and 

temperature prediction, a description of data sources and methods of analysis. 

Part 2 (Chapters 5-9) begins by describing the temporal variation of the 

altitudinal lapse rate between Durham in the lee of the Pennines (102 m) and 

Widdybank Fell (513 m), one of the few reliable upland stations, and examining the 

physical factors behind this variation. Estimates of the gradient of air temperature and 

hence the growth potential gradient based on two stations alone can be misleading 

(Harrison 1974) and so, in Chapter 6, the analysis is extended spatially to include other 

stations. Chapter 7 is an attempt at generating a physical model to account for the 

spatial temperature field in the Pennines. Although the energy balance equations make 

intuitive sense, the wide variation in apparent solar efficiency which results suggests 

that a statistical approach to modelling the temperature field would be more useful. 

Chapter 8 describes the development of a multiple regression model of surface 

maximum, minimum and mean air temperatures. The variation in coefficients between 

airflows and different months of the year is considerable but appears to make 

climatological sense, and R2 values for the regressions are acceptable in the majority 

of cases. The final chapter in Part 2 uses the regression model to describe the altitudinal 

zonation in the Pennine area based on temperature data. The altitudes of certain 

strategic isotherms are defined. A comparison of the Pennines with more continental 

mountain ranges such as the Pyrenees (Del Barrio et al. 1990) and the Polish Tatra 
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(Niedzwiedz 1992) completes this description. 

The remainder of the thesis (Part 3) is concerned with application of the 

regression models developed in Chapter 8 to description of the altitudinal variation in 

growth parameters and simulation of change in these parameters associated with 

greenhouse forcing. 

Chapters 10-12 are concerned with the definition of suitable parameters. Typical 

rates of change of growing season length, strength (as measured by accumulated 

temperatures), frost occurrence, probability and length of the frost-free period with 

altitude are described, based on data from 26 stations for a sample six year period 

(1985-1990). 

Chapters 13-15 introduce the importance of the general circulation in 

determining surface climate. Scenarios are constructed for each airflow type which is 

assumed in tum to dominate the circulation for a whole year. Interesting contrasts in 

the altitudinal variation of growth and frost parameters between these uni-directional 

airflow scenarios illustrate the importance of the airflow effect. Critical altitudinal 

thresholds are defined as theoretical upper limits to widespread cultivation. Evidence 

for past change in limits is evaluated on the timescale of instrumental records. The 

Durham temperature series (1801-present) is invaluable, allowing tentative 

reconstruction of altitudinal limits to growth back 190 years (Chapter 15). 

Up to this point the climate scenarios are developed using expected mean 

conditions for each airflow. However variability is inherent in any real climate. 

Chapters 16-17 introduce variability in the form of a calculated standard deviation of 

daily temperatures, allowing a more accurate simulation of the range of variation of 

expected growth parameters and frost accumulation totals for each airflow component. 

The GCM output from two high resolution models is used in Chapter 18 to 

simulate possible effects of greenhouse forcing on growth potential at all altitudes. 

Simulations for a world in which carbon dioxide concentrations are twice the present 
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value are used, derived from UKHI (United Kingdom Met. Office High Resolution 

Equilibrium Experiment) (Viner & Hulme 1992) and GISS (Hansen et al. 1984) models. 

These are compared with arbitrary temperature increases ( + 1 o C, + 2 o C and + 4 o C), · 

warm and cold analogues, and the control situation, in terms of the amount of marginal, 

sub-marginal and cultivable land and the altitudinal movement of the critical 1000 doc 

isotherm. Considerable changes in the temperature resource of large areas of land, 

predicted to occur by 2050 for the doubled C02 simulations, are on a much larger scale 

than the changes experienced in the past. It must be stressed that the changes in climate 

potential predicted cannot be used to show potential land use change per se, as other 

factors must be taken into account (slope, edaphic, economic, etc.). Other climatic 

elements are discussed in Chapter 19. 

In the conclusion the startling predictions in Chapters 18 and 19 are put into 

perspective and the methodology used evaluated. The extent of possible change and the 

apparently high sensitivity of the Pennine area to climate change are surprising and 

perhaps alarming. 

There are also lessons to be learnt in the use of present day statistical models 

of the climate of a region as an aid to prediction of mesoscale climate change through 

the downscaling of coarse resolution GCM output. The methodology in this thesis can 

be applied to altitudinal gradients of any climate element (not just temperature) and 

could be applied when the differentiating factor was not altitude but say distance from 

the coast on a flat plain. The only assumption is that the spatial distribution of the 

climate element examined remains constant for an individual airflow in the future 

climate, i.e. local climate relationships are assumed to remain unaltered for all airflow 

scenarios. The methodology could be used to estimate changes in freeze-thaw cycle 

frequency for geomorphological applications, frost probabilities, water stress, drought 

severity or irrigation requirements, or to estimate changes in any climatic index which 

is dependent on surface weather observations. 
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LITERATURE REVIEW: LAPSE RATES 

2.1 Introduction 

The first half of the thesis describes how a statistical model was constructed to 

describe the spatial variation of surface temperature under contrasting airflow types. 

The altitudinal variation is of fundamental importance and the temporal and spatial 

variation in temperature lapse rates is analysed in detail over the whole region. This 

review concentrates therefore on studies concerned with the investigation of lapse rates 

throughout the world and the influence of individual factors on lapse rates measured 

between ground-based stations. Other literature, including that concerning temperature 

modelling (energy balance models and statistical approaches), climatic change, synoptic 

climatology, quantification and evaluation of growth potential is discussed in the 

relevant chapters. 

2.2 Studies of Temperature Lapse Rates 

Many authors have investigated variations in the lapse rate of air temperature, 

both in the free atmosphere and using ground-based data in mountainous regions. The 

rate of decrease (or occasionally increase) of temperature with altitude determines the 

stability of the air mass and hence associated weather creation in mountain areas, and 

so is very important. Detailed knowledge of lapse rates is required in many research 

areas, enabling investigation into the energetics of mountain areas (energy balance), the 

variation of climatic parameters (such as those representing agricultural potential) in 

mountains, temperature prediction per se, climatic reconstruction, ecological 

considerations and hydrological or glaciological studies in mountain areas. Lapse rates 

derived from numerous world-wide studies are listed in Table 2.1. 

A critical lapse rate to bear in mind is the dry adiabatic lapse rate (DALR) 

(-9.8°C/km), the rate at which unsaturated air will cool if forced to ascend, without 

loss of heat to the immediate surroundings. Environmental lapse rates are in most cases 

less than this due to the effects of condensation, upland heating and sporadic 
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temperature inversion formation (see Chapter 3). 

Table 2.1: Examples of mean lapse rates (°C Ian-1
) of mean daily temperatures 

calculated over hundreds of metres. 

REGION SEASON LAPSE RATE AUTHOR 
oc km-1 

Great Annual 8.5 Harding 1978 
Britain 

II Spring 10 II 

II Winter 6-7 II 

Mt.Fuji February 6.1 Yoshino 1966 

II November 5.4 II 

Austrian Alps Winter 5.75 Hann 1906 

II Summer 7.45 II 

Colorado Winter 3.95 Doesken et 
Rockies al. 1989 

Himalayas September 5-6 Reiter & Heu -
berger 1960 

French Alps July 6.4 De Saussure 
1788 

Nepal May 6.55 Lambert & 
August 5.4 Chitrakar 

December 4.7 1989 

Pakistan July 10 (arid) Brazel & 
India Marcus 1991 

II II 8 (humid) II 

W.Virginia July 6.61 Pielke & 
December 5.23 Mehring 1977 

Tatra Mts Annual 4.8 Niedzwiedz 
1992 

Ahaggar Mts January 5 Yacono 1968 

II July 8 II 
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Lapse rates were measured in the Alps as early as 1788 by De Saussure (Barry 

1978) but one of the earliest detailed studies of lapse rates on mountain slopes was that 

ofHann (1906) who calculated the following mean values between Kolm Saigurn (1600 

m) and Sonnblick (3106 m) in the Austrian Alps: 

Winter 

Summer 

-4.9°C/km (2 am) -6.6°C/km (noon) 

-6.0°C/km (2 am) -8.9°C/km (noon) 

The lapse rate in this case was greatest by day and in summer, 

a pattern repeated in many other mountain ranges. 

2.2.1 Diurnal Variation in Temperature Lapse Rates 

The diurnal variation in lapse rate has been widely illustrated in Britain (Smith 

1952, Harding 1978, Johnson 1985). Lapse rates of daily maximum temperature are 

considerably steeper than rates for daily minimum temperatures in the same area. This 

is because temperatures at night are less related to absolute altitude and can fall 

exceptionally low in valleys where cold air collects as a result of katabatic flow. 

Therefore local topography can allow temperature inversion formation at night, leaving 

ridge sites relatively warm (Pedgley 1979) and reducing (even inverting) the lapse rate 

below that recorded during the day. 

In Balquhidder Glen in Scotland mean lapse rates in 1983 were -l0.2°C/km for 

maximum temperatures but only -7.3°C/km for minimum temperatures for this reason 

(Johnson 1985). Similarly, in Wales a mean lapse rate of -6.rC/km hides a strong 

diurnal variation (Smith 1950, 1952). Because of the relative increase in minimum 

temperatures on ridge sites and the increased influence of the ambient air at high 

altitude, diurnal temperature range usually decreases with altitude. Linacre (1982) 

shows a decrease in diurnal temperature range between 750 m and 3400 m from a 

detailed analysis of global data, supported by a simultaneous increase in windiness and 

cloud cover. 
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2.2.2 Seasonal Variation in Temperature Lapse Rates 

There is also a strong seasonal variation in mean temperature lapse rates in most 

mountain areas (Yacono 1968, Barry 1973, Harding 1979a, Green & Harding 1980, 

Lambert & Chitrakar 1989, Pepin 1990, Eden 1991). In general, lapse rates in 

temperate latitudes are steeper in summer because of the increased solar input, longer 

days and a reduced tendency for temperature inversion formation. Barry (1973) found 

summer lapse rates to be steeper than winter ones when examining a climatic transect 

in the Colorado Rockies. In West Virginia the steepest mean lapse rate of -6.61 °C/km 

was recorded in July, while the shallowest (-5.23°C/km) was recorded in December 

(Pielke & Mehring 1977). The example of Hann (1906) in the Alps has already been 

mentioned. In the Polish/Slovak Tatra Mountains intense radiation inversions reduce 

mean lapse rates in the winter months (Niedzwiedz 1992). The mean annual rate is 

reduced to only -4.8°C/km because of winter temperature inversions. 

A similar seasonal fluctuation in mean lapse rate was discovered in the sub

tropical Ahaggar mountains. The mean rate reached -8°C/km in July, but was only 

-5°C/krn in January (Yacono 1968). In the Nepalese Himalaya the seasonal fluctuation 

in lapse rate is strongly modified by the monsoon. Mean lapse rates peak in May at 

-6.55°C /km when the solar radiation input is strongest (Lambert & Chitrakar 1989). 

By August the mean rate has fallen to -5.4 °C/km because of excessive cloud and rain, 

releasing latent heat in the mountains. There is evidence of a slight increase in lapse 

rate in September and October with the retreat of the monsoon. Reiter & Heuberger 

(1960) recorded mean lapse rates of nearly -6°C/km in the autumn of 1954. By 

December the rate has fallen to -4.7°C/km (Lambert & Chitrakar 1989), presumably 

due to the influence of winter temperature inversions. At this subtropical latitude the 

reduction in mean lapse rate in winter is less marked than further north. A mean winter 

lapse rate of only -3.95°C/km was recorded by Doesken et al. (1989) in the continental 

Rockies of North America at latitude 40°N. 

In maritime areas of Northern and Western Europe the maximum lapse rate 

occurs in spring. Harding (1978, 1979a) showed this to be true for Britain and the 
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Northern Pennines in particular. The spring maximum, also found in Southern Norway 

(Green & Harding 1980), was shown to be related to great instability created in the 

prevailing polar maritime air masses as they moved south and warmed from beneath 

at this season. Polar maritime air is the dominant air mass influence in Northern Britain 

(Manley 1952). Mean lapse rates of over -10°C/km in the Pennines in spring are 

amongst the steepest in the world. This steep decrease in temperature in the maritime 

uplands is often accompanied by a deterioration in the weather, i.e. increased cloud 

cover, wind and precipitation (Ballantyne 1983). Lapse rates tend to be steep in 

unsettled weather since the air is well-stirred in its lower layers. The unsettled nature 

of the climate of North-West Europe is therefore also conducive to the creation of steep 

lapse rates. 

2.2.3 Synoptic Controls on Temperature Lapse Rates 

The lapse rate of air temperature on any one particular day is strongly controlled 

by the synoptic conditions, namely the air mass type present and the local airflow 

direction. The latter will interact with local topography in certain cases (see section 2 

e). Weather observations on Cairn Gorm summit in the Grampians (Barton 1987) 

suggest the occurrence of shallow lapse rates under the influence of anticyclonic 

conditions in early summer. In winter, anticyclones can produce temperature inversions 

of up to 15°C between Cairn Gorm (1245 m) and Braemar (330m). On the other hand, 

lapse rates are steep for easterly flows of polar continental air, the summit recording 

extremely low minima on such occasions. Omond (1910), in a similar study of Ben 

Nevis, reported 205 cases of lapse rates exceeding -10.5°C/km between August 1890 

and July 1903, occurring predominantly on sunny afternoons with dry south-easterly 

airflow between April and June. In this case the lapse rate was derived by comparison 

with Fort William to the north-west of the summit. The lee effect of the mountain 

massif is partly responsible for such steep lapse rates under the influence of south

easterly flow. Nevertheless, certain airflows tend to produce higher lapse rates than 

others because of variations in associated stability. 

In general, lapse rates are steeper for cold unstable northerly airflows than for 
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stable southerly flows (in the Northern hemisphere). This is because southerly flow is 

usually cooled from beneath as it moves north, gaining stability. Thus Yoshino ( 1966) 

showed mean lapse rates on Mt.Fuji in Japan to be related to wind direction. Mean 

rates were steepest (-6.1 °C/km) in February due to the frequent outbreaks of polar 

continental air in this month, whereas they were shallowest ( -5.4 °C/km) in November. 

Lapse rates on the western side of Britain were shown to be greater than in the east due 

to a contrast in prevailing air-masses (Birse 1971). 

In the USA, present day terrestrial lapse rates can be shown to be positively 

correlated with the frequency of arctic air outbreaks. Thus mean lapse rates increase 

from south to north (Wolfe 1990) and increase at high altitude. The problem with 

Wolfe's work is that lapse rates are derived with reference to places at sea-level on the 

Pacific coast at a similar latitude. Thus coastal/inland influences on temperature are also 

included in the derivation of the lapse rate, although these should largely cancel out 

when mean annual (not seasonal) lapse rates are examined. The values of mean annual 

lapse rates calculated are surprisingly low, i.e. many are between -2 and -3 oc /km. 

This means that paleoaltitudinal estimates of fossil assemblages derived using a 

terrestrial lapse rate estimate of -5.5°C/km are in error (i.e. too low) (Axelrod 1966). 

In Britain a contrasting decrease in lapse rate from south to north (Harding 1978) was 

said to be related to a decrease in solar radiation, which appeared therefore to more 

than compensate for the increase in the frequency of polar air masses from south to 

north. 

2.2.4 Weather Differences Affecting Lapse Rates 

The mean lapse rate on Hawaii was shown to be -5.46°C/km (Blumenstock & 

Price 1967). However, individual monthly means ranged from -1.85°C/km to 

-10.93 °C/km, depending on cloudiness and exposure to the trade winds. Thus lapse 

rates in the tropics can be extremely variable, despite subdued air-mass contrasts. 

Airflow direction is important in this case as it determines whether air is ascending or 

descending a particular slope. In general, where air is descending mean lapse rates 

derived from ground stations will be steeper. This produces the classic fohn effect over 
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a mountain range with warmer conditions on the lee side of the range. In the high 

country of Kashmir and Ladakh in northern India mean lapse rates in July were shown 

to be steeper on the arid north-facing slopes of Ladakh than on the humid south-facing 

slopes of Kashmir, exposed to the monsoon (Brazel & Marcus 1991). Thus the arid 

Ladakh region benefits from fohn effects in summer with lapse rates reaching 

-10°C/km (as opposed to only -8°C/km on the windward slopes). 

It is difficult to reconcile this with Birse's (1971) findings for Great Britain. 

Since prevailing winds are westerly one would expect the mean lapse rate to be less 

steep on the windward westerly-facing maritime slopes than on the more continental 

easterly-facing lee slopes. However, mean lapse rates are steepest in the western 

maritime uplands. Similarly, in a study in Oregon/Washington, mean lapse rates were 

steeper in the marine Cascade range than in the more continental Wallowas and Steens 

inland (Price 1978). This is possibly due to the increased cloud and rain at high altitude 

in the Cascades which depresses surface temperature and the treeline to 1700 m. 

Therefore weather contrasts can complicate ground-based lapse rate comparisons. 

2.2.5 The Influence of Topography and Relief on Lapse Rates 

Extensive plateaux become warm in summer as the effect of the horizontal 

advection of cold air is reduced compared with an isolated summit. Intense solar 

heating can increase lapse rates near the ground in the free-air above the plateau in 

summer as the high land becomes warmer than the surrounding air (Flohn 1953, 

Tabony 1985). These steep free-air lapse rates go part of the way to explaining the high 

ground-based lapse rates recorded on arid plateaux in summer as in Tibet and Ladakh 

(Brazel & Marcus 1991). Steep lapse rates are also found on occasion at high elevations 

in arid environments because of the increased solar radiation input. A good example is 

the increase in mean lapse rate from -4.5°C/km at elevations below 1000 m to 

-7.0°C/km between 4000 and 5000 min the Columbian Andes (Snow 1975). The lapse 

rate in temperature in the Northern Pennines was shown by Harding (1979a) to be 

positively correlated with the simultaneous gradient in sunshine hours. Solar radiation 

input greatly influenced the temperature lapse rate, even at relatively low altitudes 
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(below 1000 m). 

The effects of local topography, the type of ground surface and landform on 

lapse rates have been illustrated by many authors (Richardson 1954, Oliver 1960, 

Hastenrath 1968, Ludecke & Kuhle 1991). The mean lapse rate is -7.3°C/km in South 

Wales (Oliver 1960) but actual values depend on the local topography. Topographical 

effects on temperature are also illustrated by Richardson (1954) and Reynolds (1956) 

in the Northern Pennines and the Wirral respectively. A lapse rate based on two ground 

stations alone can therefore be highly temporally variable and unrepresentative of lapse 

rates in a larger area (Harrison 1974) because of local exposure effects. Many of the 

lapse rate studies described in this review have involved unrepresentative surface 

stations which have led to contradictory or inconsistent results. Clearly, a mean lapse 

rate derived from an analysis of numerous stations is superior to a lapse rate calculated 

from two stations alone. 

Examples of locally steep lapse rates have been illustrated over subtropical 

desert surfaces when solar input is strong (Hastenrath 1968), and at high altitude in the 

Himalayas. On the north face of K2 local lapse rates reached -13.8°C/km in one 

location, contrasting temperatures above a glacier and immediately below (at a neve 

camp). On the other hand, a rate of -4.4 oc was recorded nearby on Mt.Everest over 

a height difference of 750 metres (Ludecke & Kuhle 1991). 

A good example of extreme local differences in ground-based lapse rates is 

given by McCutchan et al. (1982), who investigated the influence of aspect and 

elevation on temperature and other meteorological variables on an isolated conical 

mountain in New Mexico. Because San Antonio Mountain (3325 m) is surrounded by 

the free-air, it is largely free from the plateau effects mentioned by Tabony (1985) and 

provides an excellent open-air laboratory for investigating the variation of temperature 

with altitude. On ten days in September and October 1981 temperatures at screen level 

were recorded on all sides of the mountain. Local mean lapse rates varied from a 

positive value ( +2.51 °C/km) indicating temperature inversion at 11.00 MST (Mountain 

Standard Time) on the upper north-west slope, to a very high -25.38°C/km on the 
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lower part of the same slope. Lapse rates above -10°C/km were common, especially 

during the day on the south-facing slopes of the mountain (exposed to the sun). The 

mean lapse rate reached -11.4 °C/km on the north-east slope at 11.00 MST for no 

apparent reason. 

2.2.6 Summary 

The studies above illustrate the wide variation in temperature lapse rates 

according to the time of day, season, air-mass, airflow direction (whether up or down 

slope), weather differences, absolute altitude, aspect, local topography, and the type of 

climate (factors such as aridity and cloudiness). Tabony (1985) summarises lapse rate 

variation well by listing three major controls: 

a. diurnal and seasonal modifications in the free-air lapse rate 

b. topography (both local and large scale effects) 

c. changes in climate and state of the ground surface (spatial inhomogeneity in 

weather). 

2.3 The Importance of the Free-Air Lapse Rate 

Perhaps the single most important influence on a ground-based lapse rate is the 

lapse rate in the free-air, which, although not the same as the former, is critically 

important. Free air lapse rates show great variation, partly because any mountain range 

will alter the energetics of the immediate surrounding atmosphere, often creating its 

own distinct mountain atmosphere (Ekhart 1948). The decrease of temperature with 

altitude is not the same as the lapse rate in the free air because the mountain itself can 

act as a heat source (Yeh 1982, Chen et al. 1985). Studies comparing mountain-top 

temperatures with those in the free air at a comparable altitude are numerous (Hann 

1913, Peppler 1931, Eide 1948, Samson 1965, McCutchan et al. 1982, McCutchan 

1983, Richner & Phillips 1984) and in none of these studies has the temperature 

22 



difference between the two exceeded more than 4 oc at any time. Mountain tops are in 

general cooler than surrounding air at the same elevation, except around midday in 

summer when the sun heats the layer of air close to the mountain. Thus Eide (1948) 

found a mean difference of -2.5°C between mountain and free-air temperatures on 

Gaustatoppen (1792 m). The difference increased with increasing wind speed. This was 

supported by the work of Richner & Phillips (1984) in the Alps, who found an increase 

in the mountain temperature deficit below the free-air with increasing wind speed. 

Under calm conditions on summer afternoons the mountain top became 2°C warmer 

than the free air. The studies of McCutchan et al. (1982) and McCutchan (1983), in 

New Mexico and California respectively, also show mountain summits to be warmer 

than the adjacent free-air by day and colder by night. 

The relative warmth of upland plateaux on calm cloud-free summer days 

(compared with the free-air at the same altitude) can be considerable (Flohn 1953, 

Tabony 1985) and leads to the concept of the mass elevation effect, stating that mean 

temperatures on the surface of a large upland massif will be higher than at the same 

altitude on an isolated peak which is more influenced by advection of cold free-air. This 

idea has been used by de Quervain (1904) to explain the elevated tree-lines and snow

lines in extensive mountain areas compared with isolated mountain ranges. In incised 

upland valleys extreme maximum temperatures can be very high for the altitude on 

calm sunny occasions. A good example is the temperature of over 30°C recorded at 

Braemar (in a valley) in summer at an altitude of over 300 metres above sea-level 

(Manley 1978). The mass elevation effect, however, is not always present and the 

contribution of sensible heat to the mountain atmosphere is generally only effective in 

summer. Thus Borisov et al. (1958) found that in the snow-covered Tien Shan 

mountains ground temperatures were less than free air temperatures. They describe an 

average ground temperature deficit of 1.8°C, even in summer, between 4700 and 7000 

m on Pobeda Peak. 

2.4 Lapse Rates of Weather Elements Other Than Temperature 

Direct solar radiation has been shown to increase with altitude (Harding 1979b, 
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Lowry 1980, Olecki 1989). The increase is 5 wm-2 per 100 metres increase in altitude 

on clear days in the Polish Tatra (Olecki 1989). Thus solar radiation intensity increases 

from 1000 to 1090 wm-2 for an altitudinal increase of 1800 metres. Diffuse radiation 

decreases with altitude under clear skies (Dirmhirn 1951) but increases with overcast 

conditions. Altitudinal variation in both direct and diffuse radiation in the Alps depends 

on season and cloudiness (Sauberer & Dirmhirn 1958). Net radiation usually decreases 

with altitude, despite the increase in solar radiation, because of the extremely high 

albedo in many mountain areas (Voloshina 1966, Budyko 1974), associated with the 

more frequent snow cover. 

Soil temperatures decrease with altitude but are less temporally variable with a 

subdued inter-(and intra-)diurnal variation, especially at depth. This means that the 

lapse rate of soil temperature is more steady than the equivalent air temperature lapse 

rate, with soil temperatures responding only slowly to changes in air temperature. The 

work of Harrison (l975), Green & Harding (1979), Nadelhoffer et al. (1991) and 

Morecroft et al. (1992) on altitudinal soil temperature gradients is discussed in Chapter 

3. 

Wind speed was found to vary with altitude in hilly terrain in a complex way 

in a study of the Lancashire Pennines at altitudes between 230 m and 350 m (Lawrence 

1960). The sheltering effects of topography were found to be of much more importance 

than absolute altitude, complicating any straightforward altitudinal increase in wind 

strength. Nevertheless, in mid-latitudes mean wind speeds normally increase with 

elevation as the prevailing westerly airstream becomes stronger. This is not the pattern 

in the tropics because the trade winds decrease in strength at high altitude (Barry 

1992b). If a temperature inversion lies just above the highest summits then a very steep 

increase in wind speed can be experienced towards the summits due to a vertical 

squeezing of the air column (Pedgley 1979). 

Numerous studies of altitudinal precipitation gradients have shown an increase 

in totals up to and including the highest summits, at least in temperate latitudes. Osborn 

(1984) shows a mean increase of 0.2 mm/metre in arid Arizona, whereas Ballantyne 
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(1983) finds much steeper increases in the wet maritime region of North-West Scotland. 

In the tropics the gradient in precipitation can be reversed with a decrease above a 

certain altitude. Parts of the tropical high mountain belts of Africa and South America 

are extremely arid because they lie above most of the convectional rainfall (Lauer 

1975). 

Associated with the rapid decrease in temperature and increase in precipitation 

in the British uplands is a strong increase in both the frequency and the depth of snow 

cover, especially during the spring months (Manley 1939). On the highest summits 

snow cover occurs on average on over 100 days per annum whereas 20 days is a more 

typical figure in the adjacent lowlands. 

2.5 Conclusions 

The fact that temperature lapse rates are so spatially and temporally variable 

means that to reduce temperatures to sea-level using a fixed lapse rate (often assumed 

to be -6.5°C/km) in description of the surface temperature field of a mountainous area 

can be highly misleading (Pielke & Mehring 1977). Surface temperature models in 

mountain areas must take the temporal and spatial variation of lapse rate into account. 

This variation is examined in this thesis for Northern England. Additionally, the 

relationship between instantaneous lapse rates and synoptic conditions is of the utmost 

importance if one is to assess the effects of circulation changes on temperature regimes 

in both upland and lowland areas. Because lapse rates vary between (and indeed within) 

airflow types, the influence of any change in relative airflow frequencies on surface 

temperatures will be altitudinally selective, i.e. the pattern of temperature changes will 

be different at 300 m from that at sea-level. It is theoretically possible for lowland areas 

to experience warming while neighbouring uplands experience the opposite. 
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AIR TEMPERATURE AND ITS PREDICTION 

3.1 Introduction 

The thesis is concerned with the spatial and temporal variation of temperature 

in northern England and its relevance for derivation of indices describing potential for 

agricultural growth in the region. The dominant effect of altitude on temperature is 

especially important and is described through analysis of lapse rates. In order to 

understand lapse rate variation, the fundamental physical controls of temperature must 

be appreciated, especially in their relationship to the altitudinal influence. Important 

controls are discussed in this chapter but such physical concepts are also referred to in 

the construction of a physical temperature model (Chapter 7) and in the analysis of 

lapse rate variation (Chapters 5, 6 and 8). 

3.2 What is Temperature? 

The atmosphere is made up of gases and therefore must obey the gas law 

relating its pressure, density and temperature: 

P/(Txp)=constant-----(1) 

where P = atmospheric pressure, T = temperature & p = density. 

At a given atmospheric pressure, cold air will be denser than warm air. Air that 

rises will expand and cool, while air that subsides will warm through compression. This 

process is adiabatic if there is no interchange of heat between the air concerned 

(usually a hypothetical parcel) and its surroundings. 

The temperature of the atmosphere depends on the average kinetic energy of its 

molecules, which in tum depends on the speed of the molecular motion. Potential 

energy is available for conversion into kinetic energy through the adiabatic process and 
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represents the potential of air at a given level in the atmosphere to sink to the earth's 

surface and warm (dry adiabatically to a potential temperature at 1000 mb). As total 

energy must remain constant due to the first law of thermodynamics, air temperature 

must decrease with altitude since potential energy increases. 

The Celsius scale (commonly used to represent air temperatures) is fixed 

according to the behaviour of water. At a temperature of absolute zero (0 K or -273°C) 

there is no kinetic energy present. There is no upper limit to temperature. 

Heat can be defined as "energy in the process of being transferred from one 

object to another because of the temperature difference between them" (Ahrens 1991, 

p 53). Temperature change in a substance depends on the amount of heat energy 

absorbed. The ratio of the amount of heat energy absorbed to the corresponding 

temperature rise is the specific heat capacity and varies according to substance (Table 

3.1). 

Table 3.1: Specific heat capacities for various substances- measured in calories required 
to raise 1 gramme of the substance by 1 °C. 

SUBSTANCE SPEC HEAT CAPACITY caUgoC 

Water 1 

Mud 0.6 

Ice (0°C) 0.5 

Sandy Clay 0.33 

Dry Air 0.24 

Dry Soil 0.20 

Sand 0.19 

Source: Ahrens (1991). 

Heat can be transferred by three mechanisms, those of convection, conduction 

and radiation, and so in many cases the adiabatic assumption, used when considering 

rising or falling air, is a gross simplification. Nevertheless, the use of this assumption 
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leads to interesting conclusions. 

3.3 The Atmospheric Response to Heat Input and Consequences for Lapse Rates 

of Temperature 

The heat energy responsible for changes in air temperature originally comes 

from the sun, 150 million km from the earth. The sun acts as an engine, powering the 

energy flows in the earth's atmosphere. The sun radiates heat energy outwards in all 

directions at a rate normally assumed to be the solar constant (- 1300 W/m2
). Radiation 

from any source is proportional to the fourth power of the absolute surface temperature 

of that source in Kelvin (the Stefan-Boltzmann equation): 

E=5. 67 xlo-8 xT4 •••••• w m-2 --- ( 2) 

As the sun is so much hotter than the earth it emits much more radiation. 

However, only one two-billionth of the total solar output is received by the earth. This 

radiation has little direct effect on the air (about 3% is absorbed in the stratosphere and 

18% is absorbed by various gases and water droplets in the troposphere). What passes 

through the atmosphere, hits the ground surface and warms it. Air above the surface 

is heated primarily by conduction from below but air is such a poor heat conductor that 

this process only warms a very small layer of air near the ground. With strong solar 

input the temperature near the ground is much higher than that one or two metres 

above. The heated air near the surface therefore expands, becomes less dense and rises, 

transferring heat energy to the rest of the atmospheric boundary layer through 

convection. Thus air is heated from below. primarily through convection. and not 

directly from the sun. Although a mountain surface also warms the air at high altitude, 

especially when conditions are calm, the air temperature observed is more strongly 

influenced by that the advection of colder free-air at the same elevation. Temperatures 

are lower despite the air being 'nearer to the sun'. De Saussure (1796) was the first 

mountain meteorologist to explain this cause of cold at high altitude (Barry 1978). 
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In an adiabatic atmosphere for which the ideal gas laws are satisfied, the rate 

of decrease of air temperature with height, the lapse rate, is expected to be -9.8°C/lan 

(Mcilveen 1991). This rate, known as the dry adiabatic lapse rate (DALR), assumes 

that air would rise without condensation occurring. In reality such steep gradients are 

rarely obtained due to saturation. As air rises and cools, its capacity to hold moisture 

(its saturation vapour pressure) decreases and the air soon becomes saturated. Further 

ascent will bring about condensation, thus releasing latent heat. Emissions of latent heat 

are greater at high temperatures, so that the saturated adiabatic lapse rate (SALR) is 

lower at high temperatures. In the low troposphere it can be as low as -5°C/km. 

Because condensation often occurs with the ascent of air over a mountain range, lapse 

rates on the upwind side of a range are usually lower than on the leeward side. 

Relatively higher temperatures for a given altitude are produced on the leew~rd side. 

Superadiabatic rates occur in the first few metres above a heated surface, 

especially when the solar input is strong and rates of -100°C/km are common. Oke 

(1987) describes extremely high rates recorded near Rye in Sussex, the highest rates 

occurring near the ground surface by day in calm weather in spring. -205°C/km was 

attained in the layer of air between 1 and 15 metres above the ground. The steepest 

gradient attained in the air layer 47-107 metres above the ground was -42°C/km, well 

over four times the DALR. 

Temperature can, in certain cases, increase with height. If this occurs a 

temperature inversion has formed. The inversion layer within which temperature 

increases with height separates air above and below since no air can rise through the 

inversion. Air is trapped under the inversion until heating by the sun (or other means) 

allows the removal of the inversion through mixing (see Plate 3). The most common 

cause of a temperature inversion is excessive radiation loss on calm and cloudless 

nights. Temperatures in valley bottoms often fall below those on mountain slopes. 

Examples of severe local contrasts in resulting minima are given by Richardson (1954), 

Waco (1968), Bootsma (1976) and Harding (1978). Thermal belts (Chickering 1884, 

Dunbar 1966) occur where mean temperatures are higher on slopes than in the valleys 

below or on the summits above. In northern England radiation inversions are most 
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common in winter when nights are long enough to allow excessive cooling. Cold air 

can become trapped in canyons or bowl-like depressions. The latter are often referred 

to as frost hollows. The most famous example of a frost hollow is a dry valley in the 

Chiltems near Rickmansworth (Hawke 1944), but locally, the Houghall frost hollow is 

well-known (Manley 1952). A strong wind is required to disperse the stagnating pool 

of cold air and therefore inversions are most likely when conditions are calm (Austin 

1957). 

Because of the tendency towards topographically induced temperature inversions 

the mean lapse rate will be lower in a region with incised topography, where 

anomalously low temperatures occur in sheltered valleys at night or in winter. Manley 

(1978) describes data from Deeside to illustrate the severity of winter inversions. At 

Braemar (300m) in an incised upland valley, night-time minima have fallen to -27°C, 

while minima at sites 100 metres above the valley floor were more than 10°C higher 

on the same occasion. 

Other causes of negative lapse rates include warming of air at a high level 

through descent and compression. Such a high-level inversion is common in 

anticyclones where the air is subsiding. Summer temperature inversions are rarely low 

enough to affect temperatures below 800 metres. It is relatively rare for the summits 

of the Lake District and Pennines to poke through a high-level inversion level in an 

anticyclone, even in winter (Pedgley 1979) when upper-level inversions are at their 

lowest. If an inversion does sink low enough, rapid heating can be observed in cloud

free air immediately above, e.g. at Moor House (560 m) on 13 Jan 1940 (Manley 

1947). 

Finally, advective cooling over a water surface in spring can also produce an 

inversion (Catchpole 1966), although the local synoptic situation is often critical 

(Trilsbach 1988). 
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3.3.1 Factors Affecting Lapse Rates: A Summary 

It is useful to summarise the variation in lapse rates by reference to physical 

factors which vary according to season. Other factors relate to the airflow type and 

weather experienced at the different elevations. 

3.3.1 i) Solar Radiation 

An increased radiation receipt in summer encourages steeper lapse rates, 

especially near a heated surface. This is seen clearly on a diurnal basis within the 

boundary layer. The vertical temperature gradient near the ground surface is positive 

at night but strongly negative by day (Oke 1987). In a similar way, lapse rates are often 

less steep in winter than in summer, because of the shorter days and lower amounts of 

insolation. For similar reasons lapse rates are generally steeper on sunlit slopes (Brazel 

& Marcus 1991) unless anabatic winds redistribute warm air upslope (Pedgley 1979). 

3.3.1 ii) Wind 

Increased wind speeds keep the air well stirred and, whilst distributing heat 

upwards from the surface layers, also increase ventilation from the free-air at higher 

altitudes, so that lapse rates are often steep on windy days. Under calm conditions, air 

may become trapped by topography and at night a temperature inversion may form. If 

moving air is forced downslope by topography, however, it will warm dry 

adiabatically. Such fohn winds create high temperatures in the lowlands to the lee of 

the mountains, with steep lapse rates on the lee slope. 

3.3.1 iii) Cloud 

Increased cloud cover per se decreases the lapse rate by day but increases it by 

night by preventing direct solar radiation from heating the ground and by reducing 

longwave radiation loss respectively. However, increased cloud in mountain areas can 

lower day-time maxima in comparison with those in cloud-free lowlands, increasing 
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the lapse rate. Such deterioration in weather in the uplands of northern England is 

common. 

3.3.1 iv) Air-mass 

Air flowing from north to south in the northern Hemisphere is inherently 

unstable, passing from a cold to a warm surface. It will therefore have a steeper lapse 

rate than air moving from south to north. Arctic air masses gain considerable heat as 

they move south over the north Atlantic towards Britain. In an analysis by Craddock 

(1951), the sensible heat gain was 36 cal cm-2hr-1 and was supplemented by latent heat 

gain through condensation. 

Steep lapse rates occur on windy days and on days of scattered cloud cover 

which builds up preferentially in upland areas. Both conditions may be satisfied when 

polar maritime airstreams cross Northern England from the north-west or west (Manley 

1952). In spring, as the air warms from below, the lapse rate can be especially steep. 

Alternatively, when there is an inversion aloft the increase in wind speed with altitude 

can be strong, air being squeezed over the mountains as over a weir (Manley 1945). 

This situation also favours steep lapse rates. Steep lapse rates by day also occur when 

the lowland station lies in a sheltered valley. The valley sides reflect back solar 

radiation, increasing air temperature but decreasing longwave radiation loss (Pedgley 

1979). 

3.4 Temporal Variation in Air Temperature 

The air temperature at any location fluctuates on many timescales. Most 

noticeable are daily and annual cycles. The daily temperature signal can often be 

approximated by a sine wave with highest temperatures occurring slightly after solar 

noon. The exact time of the daily maximum temperature depends on whether the sky 

remains cloud-free all afternoon, and in mid-latitudes is later in summer than in winter. 

The minimum temperature usually occurs around dawn. A nomograph for predicting 

air temperature at any time of day, given the daily maximum and minimum and the 
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hours of daylight, was developed by Linacre (1992) based on the work of Walter (1967) 

and Evans (1980), assuming no change of cloudiness or wind direction. The minimum 

temperature was assumed to occur at sunrise and the maximum at 2.30 pm solar time 

(Linacre & Hobbs 1977). Parton and Logan (1981) developed a model predicting air 

or soil temperature at any time of day in the American Prairies. The diurnal 

temperature fluctuation was represented by a sine wave in daylight hours and an 

exponential decay function during the night, the lowest temperature occurring at dawn. 

In northern England, the daily temperature signal is often unclear in winter due 

to the absence of significant solar input (noon solar elevation is only 11 o at 55°N on 

22 December) and temperature changes are often the result of advective influences, 

especially the replacement of polar by tropical maritime air. The latter air mass gains 

its warmth from the warm North Atlantic current. Air temperature sometimes increases 

during the evening and night because of its warm-air advection! For the rest of the year 

temperature is more strongly related to variation in insolation with the time of day. 

By day, in summer, cloudiness reduces solar input and decreases au 

temperature. However at night, cloudiness decreases radiation loss from the earth and 

usually increases air temperature. The reduction in radiative loss through cloudiness is 

also significant by day in winter when insolation receipt is weak. Cloudy conditions 

usually lead to lower diurnal and annual temperature ranges. 

There is a lag effect between insolation receipt and temperature response because 

it takes time for heat energy to be transferred to the air. The lag of surface temperature 

behind solar radiation over an ocean surface is about two months, while over land it is 

only one month (Manley 1952). Therefore in spring the sea is relatively cold and in the 

autumn, relatively warm. Study of the seasonal fluctuation in air temperature shows that 

warming is delayed in coastal regions (Prescott & Collins 1951, Trenberth 1983). In 

northern England this is especially true near the east coast, the North Sea remaining 

cold well into early summer. 

On daily and weekly time scales air temperature fluctuates due to the advective 
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effects of moving air. In Britain northerly winds will generally be colder than southerly 

winds. Air from the east is warm in summer and cold in winter since it originates over 

the Eurasian continent. The annual temperature range is greater over cloud-free, dry 

areas remote from the sea. The concept of an air mass (Belasco 1952) is useful here 

(see Figure 4.11). Air masses develop within regions of high pressure where air 

stagnates, such as the polar regions, the Eurasian high pressure cell, or the Mid

Atlantic subtropical anticyclone. Surface temperatures in these air-masses are modified 

according to the trajectory followed. If the air is cooled from below it becomes stable, 

inhibiting cloud development. Air temperature often remains relatively high, however, 

since the air has originated from a warm region. A good example is a stable southerly 

flow over northern England. Air that crosses the North Sea in spring and summer will 

also be cooled, leading to depressed temperatures along the eastern coastal strip 

(Catchpole 1966). Sea-breezes develop along all coasts in summer, encouraged by local 

temperature contrasts (Brittain 1978). 

Wind speed as well as direction can affect the temporal variation of temperature. 

High wind speeds prevent extreme temperatures from occurring, increasing 

temperatures at night and decreasing them by day. Occasionally increased wind speeds 

will lead to accentuated advection if there is a steep local temperature gradient. For 

example, temperatures could fall if a polar Arctic outbreak became stronger in winter. 

High wind speeds also accentuate evaporation (Penman 1948) and may increase the 

latent heat flux relative to the sensible heat flux, decreasing air temperature. 

3.5 Spatial Variation in Air Temperature 

At any one time air temperature will vary from place to place, although the 

variation is usually smoother than for other climatic elements (Hopkins 1977). 

Latitude is fundamentally important because it relates directly to solar radiation 

input. Within the study area there is only a slight variation in latitude, but lowland 

areas in the south of the area, e.g. the Vale of York, will be slightly warmer than 

lowland areas in the north of the region, especially Northumberland. At a latitude of 
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55 oN, the seasonal variation in the amount of incident solar radiation is among the 

largest in the world (Driscoll and Yee Pong 1992). The annual temperature range is as 

small as it is simply because of the advection of warm air over the North Atlantic. 

Temperature may also vary with longitude. Although longitude is an indirect 

factor (it has no direct influence on temperature) it is often a proxy for varying 

continental and oceanic influences. In Europe, for example, temperatures decrease to 

the east in winter but increase in summer (Wallen 1970). Longitude has a dramatic 

influence on temperature when there is a marked discontinuity at the surface such as 

a land/sea boundary. Because Britain is an island, sea-surface temperatures (SSTs) are 

particularly important in determining a climate which is much less extreme than annual 

variations in solar radiation would suggest (Lumb 1961). The islands are bathed by the 

warm North Atlantic current in winter and cooled in summer, and have as a result one 

of the most benign climates for the latitude in the world. Moreover, the oceanic 

influence increases the role of altitude in decreasing surface temperature. 

3.6 Other Site Factors which Influence Air Temperature 

The aspect of a site controls the amount of incoming solar radiation received, 

especially in winter when solar elevation is low. South-facing slopes warm up more 

rapidly and can often support land-use that would normally be seen at a lower altitude, 

because of the high radiation receipts (Linacre 1992). In east-west orientated valleys, 

such as the Valais of Switzerland, the contrast between the sunny south-facing slope 

(adret) and the shady north-facing slope (ubac) can become very marked (Grunow 

1952). West facing sites receive direct insolation in the afternoon and evening and 

maximum soil and air temperatures can be high (Oke 1987). East facing sites warm up 

earlier in the morning but cool earlier in the day. Maximum temperatures (and perhaps 

minima) will occur later on west facing slopes and are greater. 

Exposure also influences air temperature. Sheltered sites receive less solar 

radiation due to shade from surrounding hills, but lose less longwave radiation for the 

same reason (Pedgley 1979). Exposure to a certain direction will influence the 
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temperature response to an outbreak of air from that direction. Hurry (1969) reviews 

local temperature differences in Glen Nevis, concluding that airflow direction is critical 

since it determines where fOhn effects occur. In sheltered areas the lack of air 

movement encourages temperature extremes and the lag of temperature behind solar 

radiation is reduced. Exposure is quantified in Chapter 4 at all sites referred to in this 

study. 

Topography can influence temperature indirectly through the creation of weather 

contrasts. One example is the influence of a ridge of high land at right-angles to the 

surface flow. The air will be compressed as it flows over the ridge and the wind speed 

will increase over the high ground, lowering air temperature, especially if there is an 

inversion aloft. As the air descends the ridge it will be compressed and warm. Such 

fOhn winds are a common cause of high temperatures in winter in the lee of the 

Pennines, when surface flow is westerly (Manley 1952, Lockwood 1962, Webb & 

Meaden 1993). If precipitation occurs over the hills latent heat is released and warming 

may be even more rapid. The Helm wind is a similar downslope wind flowing from 

east to west down the steep Pennine escarpment (Manley 1945b). However, the 

steepness of the escarpment means that the descending air has little time to warm and 

the violent wind is cold. 

Numerous local factors influence surface air temperature. One is soil type. Well

drained sandy soil has a low specific heat capacity and the diurnal temperature range 

is likely to be high, increasing the risk of ground and air frost. Chalk areas are also 

usually well-drained and dry valleys often act as frost hollows. Thus lapse rates of air 

temperature will be influenced by altitudinal changes in soil properties (Taylor 1967b). 

In Britain, an increase in the extent and thickness of surface peat can lower the thermal 

conductivity of upland soils. The altitudinal gradient of soil temperature is largest in 

early summer (May and June) and smallest in early winter, since the waterlogged and 

well-insulated upland soils take longer to respond to seasonal changes in insolation 

(Harrison 1975). Green & Harding (1979) found the summer gradient in soil 

temperature to be considerably steeper than the winter gradient from analysis in Wales 

(-1 °C/km in winter, rising to -6°C/km in summer). 
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Much energy is used in the British uplands in evaporation over waterlogged 

peaty surfaces (Calder 1990). Indeed, air temperature can never rise far above 32°C 

over a waterlogged or water surface, because of the evaporative effect (Priestley & 

Taylor 1972). Any increase in latent heat flux will reduce air temperature since the 

sensible heat flux must be reduced. This effect is noticeable over an irrigated surface 

in desert country (Oke 1987). Night-time temperatures can, in contrast, be higher due 

to the large specific heat capacity of water. 

Related to the amount of evaporation is the humidity of the air. Because the 

specific heat capacity of moist air is greater than that of dry air, temperature extremes 

are subdued when the air is moist. A good example is given in the comparison of mean 

daily maximum and minimum temperatures in the east and west of the U.S.A. In the 

eastern states of Alabama and Georgia, the mean daytime maximum in July is around 

30°C and the minimum around 20°C, whereas in the western states of California and 

Arizona, at the same latitude, maxima over 40°C and minima below woe are common 

in the same month despite a similar pattern of potential insolation receipt (Ahrens 

1991). Cloud cover is also greater in humid areas and direct insolation will be reduced. 

Convective formation of clouds can be seen as a negative feedback as it reduces 

incident radiation, causing cooling. Convective cloud development is common in 

summer and in upland areas it may be the major cloud source. The timing of the daily 

maximum temperature may alter, as in the high mountain country of Colorado, where 

summer maxima often occur before noon before cloud build-up occurs (Barry 1973). 

The state of the ground surface can be important. Air temperatures will be 

depressed over a deep snow cover, the high albedo reducing net radiation. This is most 

noticeable in late winter and spring when solar elevation is fairly high and the potential 

for warming is likewise high. Dewey (1977) investigated the influence of snow cover 

on air temperatures in North America. The cooling effect was strongest in spring but 

negligible in winter. Snow also insulates the ground surface and soil temperatures may 

remain quite high, although very low night-time temperatures often occur above the 

fresh clean powder snow, especially when skies are clear (Pennell1992). Temperatures 

below -W°C have been recorded under such circumstances in the Pennines after a 
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heavy snowfall. 

Large urban areas also affect air temperature through alteration of the heating 

and cooling rates in the boundary layer (Lee 1979). The urban area acts as a great 

storage heater so that towns and cities usually experience higher temperatures than the 

countryside. This urban "heat island" effect is especially strong at night and when 

conditions are calm (Chandler 1965). Such heat-island effects are negligible in the 

upland regions of northern England. 

The forecaster takes all the above factors into account when attempting to 

predict daily temperature maxima or minima, or the temperature at any time of day. 

With information gathered from previous measurements, the forecaster can usually 

make an intelligent guess at future air temperatures given synoptic conditions, the time 

of year, and an understanding of local factors. 

3. 7 Why is Air Temperature hnportant? 

Air temperature controls heating and air-conditioning costs and clothing 

requirements. It influences leisure activities and tourism, sporting activity (especially 

water sports and skiing), food and drink consumption, and much economic activity 

including agriculture in particular through controls on plant growth. A useful index is 

that of accumulated temperatures, usually measured in degree days or degree hours 

(Shellard 1959) (Chapter 10). This index can be used or modified to represent the 

potential for crop and other plant growth, or any other application which relates to 

cumulative air temperature. 

Temperature also controls respiration, photosynthesis, germination and 

reproduction and is therefore fundamental to plant and animal life. Plant and animal 

physiology is concerned with the relationship of species' functions to the external 

controls of temperature, moisture and sunlight. When studying the relationship with 

temperature, many scientists use the Q10 rule, stating how much faster a reaction will 

occur for a 10°C increase in temperature (Fitter & Hay 1981). For some plants the 
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increase can be as much as a factor of 5. Sutcliffe (1977) shows that most living 

organisms function best at an optimum temperature Topt• represented in Figure 3.1. 

Either side of this optimum, reactions are reduced and development is slower. 

Threshold temperatures at which plant activity begins, range from 4.6°C to 6°C 

depending on plant type. As temperature increases the respiration rate will increase as 

does production of new plant matter. At high temperatures, however, certain enzymes 

begin to break down causing irreparable damage, so that growth rate decreases. 

Productivity is therefore highest over an optimum temperature range. The average earth 

surface temperature of 15°C lies within this optimum temperature range for many 

species. 

In northern England the temperature during spring IS important for sheep 

farming as well as for plant cultivation. Cold wet weather can be extremely dangerous 

to sheep and young lambs, causing hypothermia and even death. April is an especially 

critical period (Starr 1981) as lambing is taking place. Low temperatures reduce grass 

growth and this can cause shortages for grazing, especially early in the season. 

3.8 Conclusions 

The physical factors and processes influencing spatial and temporal variations 

in air temperature (especially those influencing lapse rates) have been described. These 

physical processes form the basis of the modelling in Chapter 7 which attempts to 

explain in more detail temperature change recorded at a particular place. 
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DATA SOURCES 

4.1 Introduction: Data Availability 

In Northern England, climatic data for recent years are recorded at over forty 

locations. However, the lengths of the climatic records vary, hindering spatial 

comparison. The time of observation at all locations must be similar to allow inter

station comparison. 

The data used in this thesis consist of surface meteorological observations from 

26 locations in the study area, recorded between 1 January 1985 and 31 December 

1990. Additionally, the climatic record extending back to 1801 at Durham Observatory 

is used as well as data from two high resolution global circulation models. Available 

climatic data for northern England are listed in Table 4.1. Years for which data are 

available for temperatures, sunshine and wind direction are indicated. All records 

continue until the present day unless indicated otherwise. 

Table 4.1: Climatic data in northern England. 

LOCATION GRID REF ALT TEMP SUN WIND 

AMBLES IDE NY 378042 90 1964- 1964-** 1964-

APPLEBY NY 685205 150 1970- - 1970-

ASP ATRIA NY 154423 64 1979- 1979- 1979-

CARLISLE NY 382603 26 1961- 1963- 1962-71 

CARLTON-IN NZ 509039 103 1983- c 1983-
CLEVELAND 

CARLTON-IN SE 065847 270 1976- c 1976-
COVERDALE 1992-

DURHAM NZ 267415 102 1847- 1882- 1847-

ESKMEALS SD 091935 8 1956- 1979-87 1961-

GREAT DUN NY 711322 847 1964- 1965-73 1968-
FELL 
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Table 4.1: continued 

WCATION GRID REF ALT TEMP SUN WIND 

HARTBURN NZ 407185 31 1958- 1958- -

HAYDONBR NY 839646 82 1985- c 1985-

HIGH CLOSE NY 338053 175 1981- - -

HOUGHALL NZ 279404 37 1989- c 1989-

KESWICK NY 251262 100 1975- 1975- -

KIELDER NY 632935 201 1951- - -

LEEMING SE 306890 32 1945- 1945- -

LW ETHER NZ 169289 162 1971- c 1971-

NENTHEAD NY 781441 470 1987-91 - -

NEWCASTLE NZ 258648 35 1967- 1967- 1967-

REDESDALE NY 834955 235 1970- 1970- -

SHAP NY 556121 249 1988- - -

SUNDERLAND NZ 380566 56 1974- 1974- 1980-

WARCOP NY 734197 244 1985- - -

WHASDYKE SD 434979 165 1981- - 1981-

WIDDYBANK NY 817295 513 1968- 1968- 1968-

WYCLIFFE NZ 120141 120 1989- - -

CASTER TON SD 6379 100? 1990- c 1990-

HAMSTERLEY NZ 1156 120 1993- - 1993-

HIGH NY 834479 400 1992- c 1992-
HAYRAKE 

LEVENS SD 8886 7 1992- c 1992-

MOOR HOUSE NY 758328 560 1941-70 1941-70 -

NR SAWREY SD 3796 78 1989- 1990- -

NEWTONRG NY 492310 171 1960-* 1960-* 1960-* 

OUSTON NY 777259 250 1976- - -

PATELEY SE 1467 155 1983- 1993- 1993-
BRIDGE (c) 
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Table 4.1: continued 

LOCATION GRID REF ALT 

ROWLANDS GL NZ 164583 56 

WESTGATE NY 9138 335 

*Data missing at Newton Rigg, 1983-1991. 
** By rough estimation 

TEMP SUN WIND 

1990- c 1992-

1993- c 1993-

Four figure grid references are given where the exact site is unknown. None of these 
stations were used in the analysis. Sites listed after Wycliffe were not used, but are 
listed for reference. 

Daily maximum and minimum temperatures are widely recorded, and often wet 

and dry bulb temperatures at 0900 hrs GMT. Sunshine data are less common but cloud 

cover data are available as a proxy at stations marked with a "c". Wind directional data 

are also uncommon due to the difficulty of measurement. The period chosen for 

detailed analysis was 1985-1990, data being available at 22 locations for all of this 

period. Data at another four sites (Houghall, Nenthead, Shap and Wycliffe Hall) was 

available for part of the six-year period. These sites were not used in the bulk of the 

analysis. Climatic data for the last seventeen stations listed in Table 4.1 were 

unavailable between 1985 and 1990. 

The 22 meteorological stations used in the description of the present baseline 

climate of northern England are shown on Figure 4.1. There are two contrasting types 

of station. The first are official climatological reporting stations, which report to the 

Meteorological Office, often more than once a day and always at 0900 hrs GMT. The 

other sites are run by enthusiastic amateurs, many of whom also send data to the 

Meteorological Office. The data are often more complete, although this depends on the 

dedication and enthusiasm of the observer. Data accuracy is likely to vary much more 

at such locations. Although nearly all observers use a standard observing code and 

practice issued by the Meteorological Office, local biases in the data are only 

discovered after talking with the observer concerned. 

Some locations recorded data to a lower scientific accuracy than others, namely 

High Close and (in the earlier part of the period) Keswick. At the latter station daily 
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maximum and minimum temperatures were only recorded to the nearest degree 

Centigrade (not to the nearest tenth of a degree). Missing data is another problem. 

Many official stations do not take recordings at weekends and on bank holidays. For 

example, at Great Dun Fell people work only during office hours, and at Carlisle 

during the last two years of the period this was also the case. Fortunately, methods used 

in analysis do not require a continuous daily record so the consequence of sporadic 

missing data is not serious. 

4.2 Recording Procedures 

Maximum and minimum temperatures were recorded at 0900 hrs GMT. The 

maximum was relevant to the period running from 0900 hrs the previous day to the 

time of observation and would be "thrown back" to the previous day. Minima were 

relevant to the period from 0900 hrs the previous day to 0900 hrs on the actual day and 

were assumed to have occurred in the early hours of the morning. 

Atmospheric temperature is measured by a mercury-in-glass thermometer in a 

Stevenson screen. The screen is painted white to reflect radiation and faces north, so 

that when the door is opened the sun does not shine onto the instruments (in the 

Northern Hemisphere). The screen has louvred sides to allow free air movement. The 

thermometer is placed to record the temperature of the ambient air in the shade at a 

height of 1.5 metres above the ground. Detailed reviews of instrumentation and 

recording procedures can be found in most text books (Linacre 1992). Stevenson 

Screens should stand above a grass surface although this was not always the case in 

practice. 

A climatic record should be temporally homogeneous with few changes in 

observing style or at the site. Urbanisation has contributed to the recorded increase in 

surface temperatures over the last century at many sites (Houghton et al. 1990). Such 

locations are said to contain heterogeneous climatic records. The urban sites, such as 

Newcastle and Sunderland, are likely to have experienced the largest changes between 

1985 and 1990 although in no case is this thought to be considerable. Changes of 
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observer or observing practice are less easy to discover although comparison of the data 

with a nearby location known to be homogeneous can help. 

The most serious problem is the lack of meteorological stations at high or even 

moderate altitude (Taylor 1976). Extrapolation of upland conditions from those in the 

lowlands is commonly carried out because of the lack of quantitative information on the 

former (Harrison 1974). The mean altitude is 167.8 m. Only two locations (Widdybank 

Fell: 513 m and Great Dun Fell: 847 m) are above 300m above sea-level and these are 

not necessarily representative of the large amount of land above this elevation. Great 

Dun Fell, as an exposed summit site, is hardly representative of a wide area. The lack 

of high altitude stations is shown in Figure 4.2. The median altitude is only 102.5 m, 

illustrating the positive skewness of station altitudes. 

Wet and dry bulb temperatures at 0900 hrs GMT are widely available, and are 

used in the surface energy balance model of Chapter 7. Sunshine duration is recorded 

at a few locations. Summer sunshine before 0900 hrs GMT is attributed to the previous 

day although it would be more useful to have an estimate of sunshine from sunrise to 

sunset. Wind and airflow data were recorded at certain stations, allowing each day to 

be assigned to a particular wind direction or airflow type (see section 4. 7), enabling 

spatial comparison of data for varying airflows or synoptic situations (Barry 1967). 

Wind direction was only available at four locations at 0900 hrs GMT and these values 

are only loosely representative of airflow over the whole region. 

4.3 Choice of Data and Data Storage 

Two locations were chosen as broadly representative of the lowland and upland 

environments in Northern England: Durham Observatory (102 m), to the east of the 

Pennines, and Widdybank Fell (513 m), a moorland station in Upper Teesdale. 

Preliminary analysis of the altitudinal temperature lapse rate concentrates on these 

locations, i.e. a simple comparison of lowland and upland climatic conditions (Chapter 

5). The climatic record at Durham is one of the longest and most reliable in the 

country, running from the 1840s to the present day. Research has attempted to 
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Figure 4.2. The Distribution of Station Altitudes (Metres above Sea-level) 
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reconstruct the record back to the early 19th century (Manley 1941). The record is 

therefore important for studies of climatic change, especially since there has been very 

little urbanisation in the vicinity of the observatory during the last two centuries 

(Kenworthy 1985). The data have been published in daily format in annual reports back 

to 1962 and before that exist in manuscript form back to the tum of the century. 

Widdybank Fell was chosen to represent the upland environment, it being the 

highest elevation station for which continuous daily data are available. The record goes 

back to 1968, before the Cow Green Reservoir was constructed. The climate of the 

high Pennines is almost completely represented by this station as observations at Moor 

House (560 m) used by Manley (1942, 1980) have now ceased. A detailed description 

of Durham and Widdybank Fell, and less detailed descriptions of the other twenty-four 

sites, are given in section 4.4. 

When choosing a number of stations with simultaneous records for analysis, a 

compromise is required between choosing a few stations over a long period and many 

stations over a shorter period. A period of six years in length, although fairly short, did 

allow use of data from twenty-two stations, providing a detailed picture of climate 

variation throughout the north of England. A period of six years would contain days 

influenced by most types of synoptic situation at most seasons and a sample size of 

2191 daily weather cases was assumed to be adequate to show enough of the variability 

of the local climate as well as of mean conditions. There is a trade-off between the 

amount of climate data required to be representative and that which would be practical. 

Daily maximum and minimum temperatures, sunshine duration and wind 

direction (if available) were input to a personal computer. Wind direction was used to 

classify each day into an airflow category (section 4. 7). The statistical program used 

for most of the work is STAT A (Hamilton 1990, 1992). 

Wind direction was classified into eight principal directions: north, north-east, 

east, south-east, south, south-west, west and north-west (Figure 4.3). Raw data had 

invariably been recorded to the nearest 10°, measured as a clockwise veer from north, 
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with the final zero removed, e.g. 09 signified an easterly wind blowing from 090°, 00 

represented calm, and 36 a wind from due north. 

A more comprehensive data set containing variables such as wind speed, wet 

and dry bulb temperatures, snow cover, the state of the ground surface and cloud cover, 

was constructed using data from Durham and Widdybank Fell. This was used for 

temperature modelling in Chapter 7. Cloud cover was measured in eighths or oktas, 0 

representing a totally clear sky and 8 an overcast one. The ground was recorded as 

snow covered if it was thought that snow was covering more than half of the ground 

surface at 0900 hrs GMT on the day of observation. Snow depth refers to the depth of 

even snow lying at the time of observation. 

4.4 Descriptions of Station Sites 

Site characteristics of the Durham and Widdybank Fell stations are described 

along with those of the other sites. Photographic plates of Durham and Widdybank: are 

given in Appendix 1. 

Durham (102 m) 

The observatory is situated near the summit of a slight hill, 0.86 km to the 

southwest of Durham Cathedral, and south of the River Wear (Plate 4). Although the 

site is within the limits of Durham City, it is essentially suburban. There has been very 

little urbanisation in the immediate vicinity of the observatory during the last century 

(Manley 1941), although there has been development of housing to the north and west 

at Neville's Cross. Between 1985 and 1990, there was very little new construction in 

the area. 

Although the site itself is open and well-exposed, the ridge of land on which the 

observatory is situated is surrounded by much higher hills. The foothills of the Pennines 

rise to the west within ten miles, reaching 300 m at Tow Law. The Magnesian 

Limestone escarpment of East Durham rises to the east between Durham and the coastal 
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plain. The area is in the lee of the Pennines, sheltered with respect to prevailing 

westerly airstreams. The observatory is approached from the south by a tarmac road 

running uphill between open fields. The Stevenson Screen is located on the lawn to the 

south of the observatory building (Plate 5). The sunshine recorder is situated on a 

parapet on the observatory roof at first floor level. Trees to the north-east may cut off 

early morning sunshine in mid-summer. Evidence of this was found in the sunshine 

record when compared with astronomical values of daylength (Pepin 1990), and with 

other locations. Wind direction is measured by a Dines Pressure Tube anemograph on 

the observatory roof at a height of 16 metres (Goldie 1992). 

Widdybank Fell (513 m) 

This upland station is situated on the gentle slopes of Cow Green Reservoir in 

Upper Teesdale (Plate 6). The river Tees is one of several rivers flowing east from the 

"High Pennine" massif. In its upper reaches it flows north-west to south-east and in 

1970 was dammed to form Cow Green Reservoir. Widdybank Fell is a lip of high land 

separating the bowl-like depression containing Cow Green Reservoir from the lower 

part of Upper Teesdale. Therefore the site is similar to Durham, i.e. it is on a hill but 

surrounded by much higher hills. The area around the reservoir can trap cold air, 

escape routes being to the north-west around Tyne Head (552 m) and over Cauldron 

Snout to the south (Manley 1943). The presence of Cow Green reservoir to the west 

will moderate temperatures when the wind blows from across the water (Gregory & 

Smith 1967). The high Pennine escarpment rises to over 800 m to the west and north

west of Widdybank Fell, meaning that the site lies a full300 metres below the summits 

of Great Dun Fell and Cross Fell and is somewhat sheltered by the escarpment. There 

is a complete absence of trees and substantial vegetation; the major species are heather, 

grasses and alpine flora. Mean wind speeds are likely to be high, there being a lack of 

shelter. 

The aspect of Widdybank Fell is to the west. Hills to the west may reduce late 

evening sunshine. Despite the presence of higher land all around the location daily 

sunshine totals on cloudless days seem to be at least as high, if not higher, than at 
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Durham. In summer the advantage of Widdybank Fell's position with respect to 

Durham is noticeable as sunshine totals can top 15 hours on cloudless days at 

Widdybank but not at the lowland station (Pepin 1990). 

The other twenty-four sites are described briefly below. 

Ambleside (90 m) 

The site is within the urban area of Ambleside and the area is very sheltered, 

the high fells of the Lake District rising to the west and the Kirkstone Pass rising to the 

east. Aspect is westerly since the site is on a steep rise to the east of the town centre. 

Appleby (150 m) 

Situated near the east bank of the river Eden in the suburbs of Appleby, the 

residential garden site is well sheltered. The house lies to the west of the Stevenson 

screen and at a lower level. Thus the aspect is westerly, although the house provides 

shelter in this direction. The Pennines rise to the east and the Lakeland Fells to the west 

of the Vale of Eden. 

Aspatria (64 m) 

Again this site is in the back garden of a private house. The house is to the 

south-east of the Stevenson screen and is the end of a terrace, meaning that the site is 

open to the north and east. The countryside around the station is essentially undulating 

with a slight rise towards the south and east. The foothills of the Cumbrian fells to the 

south-east are the only high land within 12 kilometres of the site. 

Carlisle (26 m) 

The site is well to the north of the city, at the headquarters of Royal Air Force 

(RAF) Carlisle. The site is on part of the flat estuarine plain of the River Eden near the 
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Solway Firth. It has a slight southerly aspect with a low ridge to the north. The site is 

on open grassland, the nearest buildings being over 10 m to the south. It is therefore 

more open than the sites at Appleby and Aspatria. 

Carlton-in-Cleveland (103 m) 

Another back garden site, the aspect is north-westerly with the North Yorkshire 

Moors escarpment rising to 400 m a few kilometres to the south-east. Land falls away 

gradually to the north towards the River Tees and the urban area of Middlesbrough. 

Carlton-in-Coverdale (270 m) 

Despite an altitude of 270 metres, the station is well sheltered, on the south-east 

facing side of Coverdale in the Yorkshire Dales. The dale runs from south-west to 

north-east so the aspect is south-easterly. Because of the shelter the possibility of a frost 

hollow effect at night and in winter appears to be strong. High land rising steeply to 

the north shelters the site from the coldest airflows and the Pennines to the west may 

reduce cloudiness over the station. The site is on a steep slope with the house at a lower 

level to the south. Land falls away steeply below the house to the river, 70 metres 

below. 

Eskmeals (8 m) 

One of the two coastal sites in the study, this is the lowest site and the only one 

within two kilometres of the Irish Sea. It is exposed to onshore winds from the west 

(Brittain 1978) while the high mountains of Cumbria rise to the east. 

Great Dun Fell (847 m) 

Extremely exposed at an altitude of well over 800 m, it is the only mountain 

summit site in the study (Plate 7). Land falls steeply away from the station in all 

directions but especially to the south and west, falling over 600 metres to the relative 
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shelter of the Eden valley. Because of the extreme exposure, there is little vegetation 

apart from short grasses grazed by sheep. The nearest higher land is Cross Fell, 50 

metres higher and 3.1 kilometres to the north-west. The descent towards Upper 

Teesdale to the east is more gradual than the descent to the Eden Valley. The site is run 

by air traffic control personnel based at the radar station at the mountain summit, and 

is unattended at weekends and during holiday periods. 

Hartburn Grange (31 m) 

Hartbum is surrounded by fairly flat arable farmland, unusual for the North of 

England. The Tees Valley lies to the south and east, land falling gradually in this 

direction. The station is only 16 kilometres from the east coast. 

Haydon Bridge (82 m) 

This is another sheltered site in a school playground. The Stevenson screen is 

on a grass bank and is surrounded by hedges. Below the bank to the south is a tarmac 

play area. The aspect is southerly. High land rises immediately to the north, the site 

being in a valley bottom and the River Tyne passing within a kilometre of the station. 

Westerly winds tend to be funnelled along this west-east valley because it is the only 

break in the Pennine barrier at such a low altitude (Sherwood 1993 - pers comm). 

High Close (175m) 

The High Close area forms a miniature col between higher land to the west and 

east. The terrain falls steeply south and south-westwards to Langdale and northwards 

to Grasmere. The site is on the south-facing side of the pass and is exposed to air 

movement, although higher fells surround the area. Due to the south-facing location, 

insolation levels are expected to be high. Temperatures are recorded by Youth Hostel 

wardens in the middle of an evergreen bush and are recorded to a lower scientific 

standard than at most of the other sites (to the nearest 1 °C). The results must therefore 

be treated with caution. 
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Houghall (37 m) 

The site on the flood plain of the river Wear is extremely sheltered and at an 

altitude of only 37 m. The screen is administered by the agricultural college and is well 

known for occupying a frost-hollow where low minimum temperatures and high 

maximum temperatures are common (Manley 1943). Data for this study were only 

available for 1990 and the station is only referred to for a small part of the thesis. The 

aspect is slightly to the east. 

Keswick (100m) 

This is one of the most sheltered locations with high mountains surrounding the 

station on all sides. The Skiddaw range rises steeply to the north and east, sheltering 

the garden site from northerly airflows. This range also cuts off early morning summer 

sunshine. Mountains rise less suddenly across the valley to the west and south, beyond 

Keswick. The southerly aspect, combined with the extremely sheltered surroundings, 

leads to an anomalously warm site for the altitude. Maxima are often the highest in 

Cumbria. Surprisingly, minimum temperatures also seem to be high for such a sheltered 

location. The urban influence of Keswick is likely to be negligible as the well-wooded 

site is rural in character. 

Kielder Castle (201 m) 

This site is in a valley bottom in Kielder Forest to the north-west of Kielder 

Reservoir. The upland basin is surrounded by forested hills in all directions, especially 

to the north and west where the land rises to the Scottish Border. The aspect is 

southerly since the castle is on a spur of land about 10 metres above the valley bottom. 

The site is a well-known frost hollow and experiences some extraordinarily low 

minima. 
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Leeming (32 m) 

The landscape around the site has virtually no local relief as Leeming is situated 

within the Vale of York. The station, as part of the R.A.F. complex, is one of the few 

locations in northern England where radiosondes are commonly used to investigate 

upper air patterns. Leeming is representative of the lowland plain to the north of York. 

Low Etherley (162 m) 

This is another garden site but is fairly open, on a ridge leading east from the 

Pennines. Land slopes away to the north and south. There is slight shelter to the west 

as land rises to about 300 m before falling towards Teesdale. The aspect of the site is 

northerly. 

Nenthead {470 m) 

The screen stands on a steep south-west facing slope of an incised valley in the 

Pennines. Land rises steeply in all directions but especially to the east at Killhope Cross 

(over 600 m) and to the north. It is a relatively sheltered location considering the high 

altitude. The land falls to around 430 m in the valley of the Nent so the site is not a 

valley bottom location. The aspect is strongly south-westerly and the farm buildings are 

situated to the south and east of the screen. The land on the other side of the valley 

rises to 600 metres. 

Newcastle (35 m) 

This is an urban site located on the roof of the Newcastle Weather Centre in 

Portman Road. The area contains many car parks and disused warehouses in various 

states of decay. The city centre lies less than a mile away to the south-west and the 

river Tyne a similar distance to the south. Land rises gradually to the north, peaking 

around the Town Moor (100 m). The site is unusual in that the screen is at least 10 

metres above ground level. 
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Redesdale (235 m) 

The open grassland site on the south-west side of Redesdale faces to the north 

and east. Hills rise to over 400 metres towards the Scottish border to the north and 

west, offering some shelter. The site is the furthest north in the study. 

Shap (249m) 

The site is in an upland valley, with a south-easterly aspect. High land rises 

immediately to the west as part of the Cumbrian fells. The automatic weather station 

is used to give information about the state of the A6 road at Shap. 

Sunderland (56 m) 

An urban site near the east coast (on the roof of Sunderland University 

Geography Department), it is similar to that at Newcastle. The roof is at least 10 

metres above the ground and conditions will be largely representative of the disturbed 

boundary layer. There are some higher buildings to the east in the city centre. Despite 

the shelter on the macroscale afforded by the Pennines, the local area is quite exposed, 

land falling away rapidly to the east towards Sunderland city centre and the North Sea 

coast, just over a kilometre away. The coastal influence is very strong and moderates 

temperature extremes. 

Warcop (244 m) 

Another automatic weather station, it is situated on the lower slopes of the 

Pennine escarpment rising above the Vale of Eden. The aspect is strongly ·south

westerly and the screen is located on part of the military firing range (moorland in 

character) near the village of Warcop. 
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Whasdyke Farm (165 m) 

This is a privately run station in a field on a sheep farm. The surrounding 

topography is gently rolling, falling slightly to the north and rising behind the farm to 

the south. The area around the farm is a neck of relatively high land around 150-200 

m above sea-level, separating Windermere in the west from Kendal in the east. The 

Cum brian mountains rise to the north and the Coniston fells rise to the west (on the 

other side of Windermere). There is an open exposure to the north and east at the micro 

scale. 

Wycliffe Hall (120 m) 

The site lies on the south side of the River Tees to the west of Darlington in an 

area of subdued topography. The river valley runs from west to east and at this point 

is approximately 25 metres below the station. The aspect of the site is northerly. On 

the macroscale the lower Tees valley is sheltered by the Pennines to the west. 

4.5 Quantification of Site Characteristics 

Station location, elevation and exposure will be quantified since these site 

characteristics influence surface temperature. These site attributes are referred to at 

places in the thesis. 

4.5.1. Altitude 

Altitude above mean sea-level in metres is one of the most important site 

attributes and was calculated from the site's grid reference on a Landranger 1:50 000 

Ordnance Survey map. Values ranged from 8 metres above sea-level at Eskmeals to 847 

metres above sea-level at Great Dun Fell. All altitudes are measured with respect to 

mean sea-level Ordnance Datum (OD) at Newlyn, Cornwall. 
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4.5.2. Location 

Longitude and latitude define station location and are easy to quantify using six 

figure grid references. An imaginary origin was placed at the bottom left hand corner 

of the grid square SD of the national grid system (Figure 4.4). The longitude of a site 

was measured as the number of kilometre (km) grid squares to the east of this origin 

and latitude as the number of kilometre grid squares to the north. For example, Durham 

would have a longitude of 126.7 and a latitude of 141.5 since the grid reference is NZ 

267415. 

4.5.3. Exposure 

The exposure of a site depends on the scale of study. An example of an 

exposure calculation for a digital terrain model is given by Lapen & Martz (1993). The 

method used involved comparison of surrounding grid altitudes with the altitude of the 

site in question. Station exposure in this study was estimated by comparing spot heights 

at certain prescribed distances from the station with the station altitude itself. An 

exposed location would be surrounded by points of a much lower altitude whilst the 

opposite would be the case for a sheltered location. It is always possible that the chosen 

spot heights (measured with respect to the central site) will be unrepresentative, e.g. 

the summit of an isolated hill on an otherwise flat plain, although the sample becomes 

more representative when many spot heights are chosen. 

Spot heights were calculated using Ordnance Survey 1:50 000 Landranger maps 

with a contour interval of ten metres, at distances of 0.25 km, 1 km, 5 km and 10 km 

from each station. This was done for transects radiating north, north-east, east, south

east, south, south-west, west and north-west. Thus thirty-two spot heights were 

calculated in relationship to each site. The heights were then converted to relative 

elevations by subtracting the height of the meteorological station. Relative heights were 

summed to give the exposure (Table 4.2) at each of the four distances and a total 

exposure value (all 32 spot heights). The total exposure 'extotal' can be divided by 
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Table 4.2: Exposure calculation at 0.25, 1, 5 and 10 km. A positive value shows that 
the site is sheltered. 

STATION ex0.25 ext exS exlO extotal 

AMBLSD -75 415 1170 2200 3710 

APPLEBY -19 35 337 1277 1630 

ASP ATRIA 6 -6 109 318 427 

CARLISLE 2 -44 -43 113 28 

CARLTON 18 151 477 339 985 

CARLTON 40 90 355 495 980 

DURHAM -101 -199 -131 269 -162 

ESKMEALS -13 7 489 656 1139 

GT DN FL -276 -1051 -2671 -3616 -7614 

HARTBURN -11 3 -9 156 139 

HAYDON B 69 299 849 941 2158 

HIGH CLS -170 -397 915 2000 2348 

HOUGHLL 33 169 464 699 1365 

KESWICK 143 770 1463 1135 3511 

KIELDER 7 447 967 1168 2563 

LEEMING 5 6 71 279 361 

LWETHER -53 -35 -149 -101 -338 

NENTHEAD -80 265 250 10 445 

NEWCSTL 3 -10 272 255 520 

REDESDLE 15 30 235 195 475 

SHAP 45 245 580 80 950 

SUNDLD -45 -52 -130 -98 -325 

WARCOP -10 -10 590 945 1515 

WHSDYKE 2 35 -30 600 607 

WIDDYBNK -38 -114 466 296 610 

WYCLIFFE -33 19 215 954 1155 
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thirty-two to estimate the average deviation of the spot heights from the station altitude. 

Exposed sites have a negative extotal, such as Great Dun Fell (-7614). On the 

other hand, a sheltered site surrounded by high mountains records a high value, e.g. 

Keswick (3511). Most locations record a positive value for total exposure, confirming 

the tendency for stations to occupy valleys and lowland sites (Taylor 1976, Manley 

1952). The only exposed ridge/hill-top sites appear to be Durham, Great Dun Fell, Low 

Etherley and Sunderland. 

Exposure at the four different scales varies widely and may even change sign. 

The sum of the eight values calculated at a distance of 0.25 km from the station 

represents local exposure (ex0.25). These values remain unaffected by larger scale hill 

and mountain ranges. In some cases ex0.25 is very different from the overall exposure. 

Durham for example is a hill-top site, recording a value of -101 at the local scale (0.25 

km). Because of high hills surrounding Durham the overall exposure is still only -162 

which is almost negligible (an average deviation of 5.1 metres). High Close records a 

value of -170 for local exposure but 2348 for total exposure, largely due to the limited 

exposure (2000) at the 10 km scale. Exposures at different distances will be contrasting 

when a site is on a hill, but surrounded by higher hills, or in an upland depression. 

Exposure at different scales was found to be important in Chapters 16 and 17 when the 

variability of temperature was investigated. 

Exposures to different directions will also be contrasting. A good example is 

given by Warcop which is very sheltered to the north and east but exposed to the south 

and west. When air flow is from a certain direction it is exposure to that particular 

direction which is often more influential than overall exposure. Table 4.3 gives total 

exposure values for each of the eight principal wind directions. 
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Table 4.3: Exposure to different compass directions. Values are calculated by summing 
relevant elevation anomalies at all scales for the direction concerned. 

place ·N NE E SE s sw w NW 

AMB 920 920 805 365 30 -25 390 305 

APP 235 610 580 3 140 140 7 -85 

ASP -119 -63 147 457 195 -1 -91 -98 

CLI -37 37 23 26 23 36 -48 -32 

CRC -104 -7 498 298 383 109 -76 -116 

CRY 60 -180 -50 140 265 360 150 235 

DUR -123 -158 -48 7 32 -53 97 84 

ESK 41 204 519 438 13 -25 -27 -24 

GDF -878 -628 -698 -593 -1288 -1548 -1533 -448 

HTB 48 -32 -60 10 -1 21 66 -87 

HAY 437 92 -21 257 427 327 162 477 

HGH 770 630 455 -325 -110 523 145 260 

HGL 57 83 168 169 187 97 307 297 

KSW 695 1010 505 250 -30 580 305 196 

KIE 611 471 406 111 106 421 206 231 

LEM 10 21 37 -9 33 92 101 76 

LWE 15 -263 -113 -33 -63 50 177 -108 

NHD -265 120 320 110 235 55 20 -150 

NWC 50 17 -15 -8 73 215 83 105 

RDS 85 -40 -55 -50 170 170 235 -40 

SHP -25 -20 135 -20 200 245 215 220 

SUN -104 -141 -142 -126 146 54 39 -51 

WAR 635 775 690 -95 -160 -85 -165 -80 

WHS 697 325 -65 -95 -160 -40 100 -155 

WID 153 -126 -212 33 243 -32 328 223 

WYC 107 -63 -41 110 270 420 192 160 
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Exposure to the north will be relevant when winds are northerly. When the 

situation is calm the total exposure, especially at the microscale (0.25 km), is expected 

to be more useful. 

4.6 The Creation of a Digital Terrain Model of Northern England 

A digital terrain model (DTM) of Northern England was developed, showing 

the relief of the area in considerable detail. The relief information is used as a 

background upon which to plot predicted spatial distributions of climate variables such 

as temperatures and their changes. Such results are produced later in the thesis. 

A grid spacing of 5 km was chosen. Altitudes were measured to the nearest 5 

metres (unless more accuracy was required as in some very flat areas) taken from the 

Ordnance Survey 1:50 000 Landranger Series. Contours on these maps are shown to 

the nearest 10 metres and the altitude at a certain point would be interpolated between 

two contours by eye. Figures 4.5 a) and b) show the DTM. The map is split into an 

eastern and a western section to allow spot altitudes to be easily read. If the data point 

fell in the ocean, the altitude was assigned as missing (.). In this way the coastline can 

be discerned. Of 800 spot altitudes, 85 were assigned as missing. Latitude ranges from 

80 to 200 (in steps of 5) and longitude from 0 to 155 (also in steps of 5). 

The 5 km resolution allows identification of many of the relief features of 

Northern England. The graphs in Figure 4.6 highlight points above specific altitudinal 

thresholds, ranging from 100 to 800 m. The relief shown in a few cases is summarised 

below. Numbers refer to those on the graphs: 

Below 100m: 

Below 200 m: Also 

1 Solway Firth 
2 Eastern Low lands 
3 Vale of York 
4 Cumbrian Valleys 

1 Tyne Gap 
2 Vale of Eden 
3 Central Lake District Valleys 
4 Lower North Yorkshire 
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F1gure Ll.S. A Digital Terrain Model for Northern England 

The Grid Resolution is 5 km by 5 km: Elevations are given in Metres 
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Below 300 m: Also 

i 
Above 400 m: 

Above 700 m: 

1 Wensleydale 
2 Teesdale 
3 North Tynedale 

1 Stainmore 
2 Alston Block 
3 Askrigg Block 
4 Cumbrian Fells 
5 Kielder Summits 

1 Cross Fell 
2 Scafell and Helvellyn Massifs 

Nearly all major relief features are shown, including the High Pennine block to 

the south and east of Alston. The model is better at showing the smooth relief of the 

Pennines and N.E England than the incised Lake District topography. 

A histogram of grid altitudes (Figure 4.7) shows that the data is positively 

skewed with more pixels with lower altitudes, (skewness is 1). Individual altitudes 

range from 820 m to sea-level, and so all but the highest summits of the Lake District 

(over 900 m) are included in the DTM. The cumulative altitude function is graphed in 

Figure 4.8. 50 % of the pixels record an altitude less than 170 m. The curve is 

composed of a series of ascending steps since some altitude values are repeated. We can 

estimate from this graph the amount of land above or below a certain altitude and this 

is done in Chapter 10 when critical climatic limits are defined by altitude. The 

cumulative altitude function is fairly smooth with little evidence of extensive plateaux 

at any particular elevation. Below 100 m the curve becomes straighter, suggesting that 

there is just as much land near 100 m as at sea-level, evidence for slope convexity at 

low altitudes. Table 4.4 summarises the cumulative altitude function. 
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F1gure ~.7. Frequency H1stogram of Digital Terrain Model Grid Altitudes 
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Figure 4.8. The Cumulative Altitude Function for the Digital Terrain 
Model Grid Altitudes (Metres above Sea-level), Representing. the 
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Table 4.4: The cumulative altitude function for land area in northern England. 

Cumulative Function (i.e. proportion Altitude (metres) 
below this level) 

10 % 35 

25 % 80 

50% 170 

75 % 320 

90 % 445 

33 % 100 

55 % 200 

73 % 300 

95 % 530 

10 % of the land sampled by the DTM is below 35 m. Areas at high altitude are 

extremely limited. Only 10 % of land is above 445 m and only 1 % above 670 m. The 

marked skewness of the altitudes is also illustrated in a quantile plot (Figure 4.9 a). In 

Figure 4.9 b) the plot is compared with the normal distribution, using an inverse 

normal function. The tendency towards concavity of slope profiles with less land at high 

altitude is shown. This must not be confused with the concavity of the graph itself. In 

Figure 4.9 c) the altitude variable is transformed using square roots and the plot 

becomes more linear, i.e. the square root of altitude corrects most of the skewness. 

4. 7. Wind and Airflow Classification 

In climatological analysis it is often found useful to group together days with a 

similar airflow or synoptic situation (Lamb 1972, O'Hare & Sweeney 1993), allowing 

comparison of the properties of different airflows or weather types. For example, 

certain airflows are expected to have stronger lapse rates than others, e.g. north

westerly polar maritime airflows in spring or cold easterly flows in winter, while 

temperature inversions in certain areas form only under certain synoptic situations 

(Trilsbach 1988). A synoptic or airflow classification allows investigation of such 
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trends. Attempts at synoptic and airflow classification relevant to Northern England are 

described below. The relationship between surface wind direction, airflow movement, 

synoptic situation and season is also investigated. 

The simplest classification of daily circulation data, and that most frequently 

used in this study, is based on a two-way tabulation of month of the year and local 

wind direction. 108 combinations are possible since there are 9 possible wind directions 

(including calm) and 12 calendar months. Using the surface wind direction at Durham 

recorded at 0900 GMT, the number of days in each category ranges from 49 for south

westerlies in January to 1 for north-easterlies in August (Table 4.5). 

Table 4.5: Surface wind direction at Durham (1985-1990). 

MNTH CLM N NE E SE s sw w NW 

J 13 13 2 13 7 42 49 26 21 

F 15 13 7 13 4 26 45 28 18 

M 15 9 7 2 7 33 48 37 28 

A 20 25 22 22 2 23 30 19 17 

M 16 30 30 15 6 22 33 19 15 

J 19 32 22 13 8 28 22 16 20 

J 14 22 10 8 4 32 26 34 36 

A 14 21 1 7 3 37 39 26 38 

s 21 15 6 3 3 23 45 32 32 

0 35 4 5 11 7 37 44 30 13 

N 32 12 11 5 2 30 30 27 31 

D 26 5 10 6 5 34 43 34 23 

Use of this classification assumes that surface wind direction at Durham 

Observatory at 0900 hrs GMT is representative of airflow over Northern England in 

general. This assumption is largely (but not completely) true (see Figure 4.10 for a 

histogram of wind direction at Durham). When wind direction at Durham was 
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compared with that at Low Etherley (at higher altitude) and Whasdyke Farm (on the 

western side of the Pennines) there were sometimes contrasts in direction. One possible 

measure would be the average wind direction derived from the three places. This would 

be a vector mean since simple addition of wind direction values would be misleading. 

Use of Durham surface wind directions leads to unequal sample sizes (Table 

4. 5). Any analysis performed separately for each wind direction/month category is more 

reliable for the categories with many daily cases. Confidence limits for parameters 

associated with north-easterly flow in August, for example, will be very wide as there 

is only one case. Analysis for progressive airflows (south-westerlies and westerlies) is 

nearly always of higher accuracy than for blocked conditions which are less common 

(especially easterlies and south-easterlies). From April to June, north-easterlies, 

easterlies and south-easterlies are more frequent than at other times of year. Also 

notable are the high frequency of northerlies in summer and frequent calm conditions 

in autumn and early winter. Lamb (1950) identified tendencies for certain airflow 

patterns to occur at certain times of year. Even in this six-year sample the frequencies 

of winds from each direction suggest trends in their variation throughout the year 

similar to Lamb's findings. This classification appears to have validity and is used in 

much of the analysis. 

Limitations with the above classification are listed below: 

1: The calendar month is essentially arbitrary and is of no l.I}eteorological 

significance. It would thus be just as appropriate to use natural seasons (Lamb 1950), 

i.e. periods of the year which often show similar airflow tendencies. It was found 

impractical to calculate natural seasons for a sample of only six years. 

2: Surface wind direction is a poor indicator of airflow direction at upper levels 

and hence the steering of weather types. Winds back towards the ground due to friction 

such that there is an average deflection of 30° from the 500 mbar level to the ground 

surface coupled with a decrease in wind speed (Marshall 1954). This is described by 

the Ekman spiral (Ekman 1902). Thus when the upper airflow is westerly, surface 
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winds are often from the south-west or south. Deflection can be more than 30° where 

friction is very influential as in mountainous regions. Data on upper air winds is 

relatively sparse on a daily scale, apart from inference from 500 mbar pressure charts. 

However, the use of surface winds can be justified by noting that surface conditions are 

nearly always best related to surface wind direction. 

3: Airflows from a given direction vary substantially in character, depending on 

the synoptic situation. For example, a north-westerly flow could be cyclonic, with polar 

maritime air flowing across the North of England associated with a cyclone to the north 

or north-east over the North Atlantic or the northern North Sea. However, a north

westerly flow could also be anticyclonic, flowing around a high pressure cell to the 

west of the British Isles. It may be necessary to differentiate between cyclonic and 

anticyclonic airflows and between differing air masses. Notably, a south-westerly flow 

could either be tropical maritime (Tm) air or returning polar maritime (Pmr) air. 

Despite these limitations, the use of a classification based on local surface wind 

direction is extremely useful when attempting description of spatial temperature 

variation, as will be illustrated in forthcoming chapters. It would be possible to develop 

other equally suitable classifications although any classification must be applied to the 

local area rather than England as a whole. 

Synoptic pressure charts can be used for classification. This process is subjective 

and leads to a multitude of classification systems. Classifications based on Northern 

England will be different from those using the whole British Isles. The most famous 

synoptic classification is that of Lamb (1972), published in Climate Monitor. The 

frequencies in each class are shown in Table 4. 6 for 1985-1990. The classification is 

a combination of airflow direction and isobar curvature. Values are substantially 

different from the corresponding wind direction frequencies in Table 4.5. 
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Table 4.6: Lamb Classification (1985-1990): Aggregated by airflow direction, i.e. 
northerly includes CN AN and N. The heading U includes pure C, A and U. 

MON u N NE E SE s sw w NW 

JAN 55 6 7 16 3 18 16 54 3 

FEB 50 10 6 24 7 10 21 33 4 

MAR 59 7 2 5 5 14 21 46 18 

APR 80 16 9 20 5 11 4 25 2 

MAY 60 19 7 24 12 11 14 14 8 

JUN 79 21 9 13 2 11 6 24 6 

JLY 81 4 3 - 6 5 9 54 18 

AUG 64 17 1 1 2 11 19 57 7 

SEP 64 10 4 2 2 10 17 51 11 

OCT 71 2 1 18 13 20 14 38 6 

NOV 70 15 9 6 11 12 15 30 5 

DEC 65 8 2 5 9 10 31 44 5 

The problem with the Lamb classification is that it may not be representative of 

conditions within northern England which are not necessarily the same as conditions 

over the whole of the British Isles. This is especially true when conditions are cyclonic. 

For example, a depression over Central England could result in an easterly flow over 

Northern England and a westerly one in the South of England leading to quite different 

weather conditions, especially in winter. The presence of marked air-mass transitions 

when fronts lie across the country can also lead to distinct temperature differences. 

Such subtleties are missed if the general Lamb classification is used. Lamb was more 

concerned with the steering of weather systems in the upper air than with surface 

winds. Because of this it is inappropriate to use a synoptic classification developed for 

the whole of the British Isles, such as Lamb (1972) or Jones et al. (1993), for a local 

climatic study (Shaw 1962, Smithson 1970). Any classification of airflow or synoptic 

situation is somewhat subjective and results will be affected slightly by the decision to 

use one classification instead of another. 
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The use of surface wind direction alone, is shown to separate contrasting fields 

of temperature very efficiently. However, air-mass type and synoptic situation are also 

influential for surface lapse rates and in creating a distinctive spatial temperature 

distribution. Contrasts in air-mass are part of the reason for temperature contrasts 

according to wind direction, as certain air-mass types are almost invariably associated 

with certain surface wind directions. For example, polar maritime air approaches from 

the north or west, while both returning polar maritime and tropical maritime approach 

from the south-west. Tropical continental air approaches Britain from the south or 

south-east. Differences between airflows are often explained by reference to air-mass 

contrasts although it is important to realise that air-mass type and airflow direction are 

not synonymous. 

The concept of air-mass is subjective since there is a continuum of air mass 

types, as opposed to discrete categories (Belasco 1952). Air mass type can be estimated 

by trajectory analysis, following isobars back to a source region which is usually one 

of the Arctic, Eurasian continent (especially in winter), Mediterranean!N.Africa or the 

Atlantic (Figure 4. 11). Air from the Atlantic subtropical high pressure cell is described 

as tropical maritime (Tm). Tropical continental (Tc) air originates from the Sahara or 

Mediterranean and is rare. Polar continental (Pc) air originates from the Eurasian high 

pressure cell and approaches Britain from the east. The use of the word 'Polar' is 

confusing since air from the true polar regions is called arctic Maritime (Am) or 

continental (Ac). The source regions are the Arctic Ocean and Greenland respectively. 

Polar maritime air (Pm) originates from the North Atlantic and is a less severe form 

of arctic maritime air. It is the most common form of air mass in the uplands of 

Northern England and has a characteristically steep lapse rate in its lower layers. The 

dividing line between arctic and polar air-masses is very subjective, the former usually 

referred to as a more 'severe' form of the latter, having a short sea-track south. To 

complicate matters further, polar maritime air that is taken far south of Britain before 

returning north behind the cold front of a depression is called returning polar maritime 

(Pmr), and acquires some of the characteristics of tropical maritime air. For a 

discussion of the air-mass types in more detail see Manley (1952). Distinctions between 

air-masses often become blurred when excessive modification has taken place. Because 

66 



Ft.~ lite 4 .I[ Trajectories of principal air masses a/feel mg !he Briush Isles So \HCf. ·. ~err'/' ( 1q7b). 

I 
Jojy 

/ 
/ 

r) 



of these problems a completely successful air-mass classification was thought to be 

difficult to obtain and thus wind direction was more frequently used for classificatory 

purposes. 

4.8 Summary 

This chapter describes the large amount of climatic data used for this study, 

originating from 26 climate stations. The period of analysis is 1985-1990. Site 

descriptions are given for each location and the characteristics of the site (altitude, 

location and exposure) are quantified. A digital terrain model (DTM) of northern 

England is described as a backdrop before which spatial variation in climatic variables 

is analysed. Finally, ideas concerning classification of the data into days with similar 

airflow influences are discussed. 
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THE DURHAM-WIDDYBANK FELL TEMPERATURE GRADIENT: 
AN EXAMPLE OF A ALTITUDINAL TEMPERATURE LAPSE RATE 

5.1 Introduction 

This chapter examines the particular upland-lowland temperature contrast 

between two meteorological stations on the eastern slope of the Pennines, the lapse rate 

between Durham Observatory (102 m) and Widdybank Fell (513 m). These locations 

were chosen due to the wide availability of data and to allow expansion of previous 

work (Pepin 1990, 1992). Widdybank Fell is the only upland site on the Pennine 

plateau apart from the unrepresentative summit site of Great Dun Fell (847 m). Durham 

was assumed to represent the eastern lowlands. Data were analysed for 1985-1990, 

providing a long enough period to include most weather-types. 

The lapse rate of maximum temperatures is investigated since maxima recorded 

at Widdybank and Durham are more representative of altitude and less dependent on 

local factors than minima. Local topography is known to be much more influential 

when daily minima are concerned (Harding 1978) so that prediction of frost is a more 

complex process (Bootsma 1976, Lengerke 1978). 

5.2 Analysis and Data Handling 

Daily maximum temperatures (°C), sunshine hours and wind direction (to the 

nearest 10°) were input to a computer file for 1985-1990 for Durham and Widdybank 

Fell. The 2191 daily cases were classified according to month and wind direction as 

described in Chapter 4. The temperature difference for each day was calculated by 

subtracting the maximum temperature at Widdybank from that at Durham. Differences 

varied from 8. r C on 17 Oct 1989 to -5.3 o C on 3 Dec 1989. The average difference 

over the six year period was 3.88°C, recorded over a height difference of 411 metres. 

This is equivalent to a mean lapse rate of -9.44 °C/km, only slightly less than the 

DALR (Dry Adiabatic Lapse Rate), surprisingly high compared with the global average 

of -6.5°C/km (Barry 1992, Linacre 1992). 
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One slight statistical problem must be born in mind when examining lapse rate 

variation. When calculating a temperature difference, errors become additive (Alonso 

1968). Thus the error for a calculated lapse rate is larger than the errors for the 

individual temperatures. 

Table 5.1 shows the average difference in maximum temperature for each month 

and airflow direction (measured by local wind direction at Durham). Column totals 

indicate the overall seasonal variation and row totals variation between airflow types. 

Table 5.1: Maximum temperature differences CC) between Durham and Widdybank 
Fell, by month and wind direction. 

oc JAN FEB MAR APR MAY JUN 

CALM 3.02 3.89 4.51 3.58 3.07 3.08 

N 2.98 4.13 4.69 3.74 2.90 3.06 

NE 3.95 3.96 4.41 3.18 2.02 2.56 

E 3.61 4.25 4.05 3.81 1.75 1.32 

SE 2.61 4.30 3.91 1.65 2.98 2.77 

s 3.23 3.28 4.40 3.89 3.38 3.61 

sw 3.58 3.91 4.54 4.52 4.25 4.58 

w 3.86 4.77 5.23 5.14 4.82 4.82 

NW 3.45 4.43 4.91 4.62 4.29 4.42 

TOTAL 3.42 4.06 4.70 4.02 3.28 3.44 

JUL AUG SEP OCT NOV DEC TOTAL 

CALM 2.59 3.72 4.05 3.19 3.14 3.02 3.37 

N 3.48 3.77 4.10 3.43 3.70 3.33 3.51 

NE 2.99 2.20 3.93 3.52 3.95 3.85 3.07 

E 2.32 2.94 1.13 2.96 4.64 4.14 3.05 

SE 4.05 5.87 3.43 3.21 2.50 3.28 3.35 

s 3.73 4.42 3.90 3.49 2.62 3.33 3.60 

sw 4.80 5.03 4.36 4.08 3.77 3.20 4.17 

w 4.82 5.09 5.25 4.36 4.39 3.91 4.70 

NW 4.65 4.50 4.92 4.12 3.97 3.26 4.36 

TOTAL 4.05 4.49 4.42 3.72 3.61 3.40 3.88 
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A plot of the mean temperature difference for the twelve calendar months 

exhibits a strong seasonal variation (Figure 5.1). A six-monthly cycle with maxima in 

March and September and minima in June and December/January suggests a 

relationship of temperature difference with solar elevation. Maximum differences in 

temperature are recorded around the equinoxes and minimum differences around the 

solstices. 

In summer there is a positive correlation between sunshine amount and daily 

maximum temperature, because of the receipt of solar radiation under clear skies. In 

winter this correlation is non-existent, or slightly negative (Catchpole 1966), because 

of the lower receipt of solar radiation under clear conditions compared with the rapid 

loss of heat radiated from the ground. A clear sky in winter can lead to more heat loss 

by outgoing longwave radiation than is gained by solar input, even in the -short daytime 

period. 

Correlations between maximum temperature and sunshine hours were examined 

at both Widdybank and Durham. As expected a pronounced seasonal variation was 

evident with high positive correlations in summer and insignificant correlations in 

winter (Figure 5.2). Correlations were often lower at Widdybank, especially in winter 

(i.e. more negative). The difference between the two correlations is shown to peak in 

winter and reach a minimum in summer (Figure 5. 3). Taking the correlation between 

maximum temperature and sunshine hours as a proxy for the 'heating power of the 

sun', then for almost all of the year this power is less at Widdybank. In summer the 

sun leads to efficient heating of the mountain environment due to the increased amount 

of solar radiation and shorter optical air mass (Lowry 1980, Olecki 1989). This is 

supported by the observation that mountain temperatures are higher than those in the 

free air on summer afternoons while for the rest of the year the opposite is so (Peppler 

1931, Richner & Philips 1984). On the contrary, in winter, spring and autumn the 

'heating power of the sun' appears to be reduced at higher altitudes. 

The following hypothesis was put forward to explain the seasonal cycle in lapse 

rate in Figure 5 .1. 
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F1gure 5.1. Mean Differences in Dally Maximum Temperature between 

Durham (102m) and Wlddybank Fell C513 m) by Month (1985-1990) 
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Figure 5.2. Monthly Correlat1ons between Daily Maximum Temperatures 
and Sunsh1ne Hours at Durham and W1ddybank Fell 
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Figure 5.3. Monthly Differences In the Max1mum Temperature/ 
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Assuming that there is a threshold angle of elevation that the sun must attain 

before the net effect of a clear sky induces warming at screen level, this angle must be 

greater in an upland area. The difference between the two correlations (Figure 5.3) is 

an indirect measure of the difference in the 'power' of the sun at the two altitudes. It 

could be envisaged that around the equinoxes the critical solar elevation is exceeded 

during the middle part of the day at Durham but not at Widdybank. This being the 

case, temperature differences would be larger in March/ April and August/September, 

i.e. just after the vernal equinox and before the autumnal equinox (Figures 5.1 and 5.4) 

and the peaks in the lapse rate at these seasons would be supported. It would be 

expected that temperature differences in winter, when a clear sky means more longwave 

exitance (especially at high altitude), would be extremely large, since Widdybank Fell 

suffers from a relative heat deficit under clear skies. However, the nocturnal tendency 

for cold air to sink, creating temperature inversions, reduces the mean lapse rate 

dramatically (Manley 1943, Hennessy 1979). 

Figures 5.5 and 5.6 show the seasonal variation of the temperature gradient for 

days with more than 75% of the total possible sunshine and for sunless days 

respectively, as measured by sunshine duration at Durham. As the above hypothesis 

depends on the difference in efficiency of solar input the seasonal trend in the 

difference should be more discernable for sunny and calm days than for sunless or 

windy ones. In Figure 5.5 the seasonal trend is extremely clear and the temperature 

difference decreases markedly near the summer solstice (especially June), suggesting 

that the sun is powerful enough to heat the upland atmosphere at this time. The 

temperature gradient is strongest near the equinoxes. In Figure 5. 6 the seasonal trend 

is less clear, notably at mid-summer when the temperature difference remains high 

under cloudy conditions. The stronger seasonal signal for sunny days supports the solar 

hypothesis. 

The assumption that the number of sunshine hours used in the correlations (n) 

represents the proportion of the time throughout the twenty-four hour day that the sky 

is clear is not always upheld. This is especially problematic in winter, when the amount 

of sunshine in the (relatively short) daylight period is not a good estimate of the 
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Figure 5.4. Differences in Daily Maxima between Durham and 
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Figure 5.5. Monthly Mean Differences 1n Daily Maxima Cbetween Durham and 
Widdybank Felll on Days Recording more than 75% of Possible Sunshine 
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Figure 5.5. 
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proportion of time with overcast skies. Even during daylight hours the index sun 

hours/length of possible daylight (n/N) is not a perfect measure of the percentage of 

time that the sky is clear. Whether the sun is shining indicates only whether the sky is 

clear at a specific point in the sky (moveable in time). If solar elevation is low then, 

for a given amount of cloud cover, sunshine duration will be less than if the elevation 

was high because solar rays, having to pass through more of the atmosphere, are more 

likely to meet cloud in their path (Figure 5. 7). This is especially true when there are 

numerous cumulus clouds of convective origin. On a day typified by fair-weather 

cumulus, looking towards the horizon it appears that cumulus clouds cover most of the 

sky in its lower layers (Figure 5. 8). In reality, there are no more clouds per unit area 

but because we are looking obliquely they appear to be on top of one another. Hence 

rays from a low elevation sun would very rarely reach the observer. In reality extensive 

cumulus clouds are uncommon when the sun is low in elevation, since such clouds are 

convectional in origin. 

Taking sunshine hours to represent the proportion of time that the sky is clear, 

it must be assumed that any clouds are distributed randomly. Yet clouds often form and 

remain in distinct positions in the sky, especially in mountainous areas where 

orographic influences are strong. For example, evening sunshine at Widdybank may be 

reduced because of the build up of clouds over high land to the south-west. The 

position of the sun at different times of day relative to favoured areas of cloud· 

development is therefore important. It has been shown by Hoyt (1977) that cloud cover 

estimates taken from the ground and recorded sunshine levels do not always agree. This 

is only partly due to projection problems experienced by observers (Malberg 1973). 

Since sunshine hours are only a proxy for the state of the sky, the correlations between 

maximum temperatures and sunshine hours only provide a general seasonal picture. 

5.3 Physical Interpretation of the Annual Cycle in Lapse Rate 

A possible physical explanation of the two peaks in the temperature difference 

around the equinoxes requires that the critical elevation of the sun above the horizon 

needed to create warming is lower at Durham than Widdybank, i.e. the first heating 

72 



Ftqut-e S 7 \he ~lahoft~k[p M~YI Uo\ld Co~er Ql\d ~\u\~~~~ Duro.hal\ ·. \~e qfe_cJ ef SalaJ l:\Q.vo.ha11 

Sun 

({"(I~"" £ ~ :__~ ~::}" ""I ( c~ '-"~ \ ""<- ) '--'-J 

' . 

A 

~ ~ QtW, ll\ 
':.un\igllt 

\IJ~tt\ ~e ~utt i~ ut 0. hiq~ t\J.~QnmdJ) 
1 

.lf is M\l!'e £ilo.\v, -m ~hi~ fu grou.l\d (~lVeti QYI tve~ QumbuhOf1 of CiOLtct COver)
1 

Cl~ 1'-l:~~mt.o.d in -1'\\is Qi(lqrUM. \~tLils btc.cr.use the sun's ruys pas3 throlL~h a Sl\\0.\lu thiCKl\1~~ of ~Cl-t1Khull~ doud~ 
utma~pk.ne ~MiKH wu~ of JooktK~ oJ iVt ts IS tn!lt u 9tve.~ Stle ~ cloud ~.Vtll co.st a Qo_r~n )~QQOw wlun w ~UYI ·u 

t()w \.)\ tv& s\\~. \~u.s -IKe t-e\oJ·1vK)~LP be~K c\ol!d-c~~IJer u.rLcl SIJJ\~~u\Q ~u,o_-\ial'l dJ.rr.cls O\'\ ~G\ar ~uvuhatt (p). 
\~e \UIVO..hne vf. nt.Q ~tlr~ U l~l\~~eu Ll'l fhu SiMp11flQct chaFum. 





effects of the sun in spring are experienced in lowland areas. The change in air 

temperature at the ground can be assumed to relate to the net irradiance at the surface 

Qn (this is discussed in Chapter 7). Soil heat storage is ignored in the following 

discussion. 

For albedo cr , solar irradiance Qs , counter-radiation Q1d and terrestrial 

emittance Q1u , net irradiance Qn can be calculated by the formula: 

(Linacre 1992) 

Now: 

where D = diffuse radiation, Qd = direct radiation, and p. = solar elevation. 

The expression Q10 - Q1d represents net upwards longwave exitance. As altitude 

increases Q1u - Q1d increases (Fliri 1971), a increases (especially when there is upland 

snow cover), and Qs increases due to a small increase in Qd (Harding 1979, Olecki 

1989). Diffuse radiation D increases with elevation under cloudy conditions (Dirmhirn 

1951), but decreases when the sky is clear because of the lower depth of atmosphere 

above. Therefore Qs is more dependent on Qd [sin p.] at high altitude. The temperature 

contrast between shady and sunny areas is greater than in the lowlands because of the 

dependence on direct radiation. In mid-summer there may be potential for a net 

warming of the upland atmosphere (Flohn 1953), but in winter there is a considerable 

upland heat deficit, moderated by katabatic flow and temperature inversion formation. 

When net irradiance (Q0 ) is zero, there is a radiation balance. Estimating a 

representative value of sa for such a case: 
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Thus: 

and: 

In an upland area Q10-Q1d is greater than in the lowlands and D is less. Hence 

the numerator of the right hand expression is larger. Qd will increase with altitude by 

about 1-2 %/km, due to a reduction in the path length of the solar beam but will almost 

certainly be offset. by the decrease in 1-a. Thus the denominator of the right hand 

expression will be similar or smaller. Thus the critical solar elevation required for a 

radiation balance appears to increase in the uplands, supporting the hypothesis. 

Table 5.2 presents plausible energy budget parameters for Northern England 

given various solar elevations. The critical elevation is always higher in the upland 

case. Paradoxically, critical solar elevation depends on the actual solar elevation and 

increases as the actual solar elevation decreases. The values in Table 5.2 are obtained 

with reference to a physical energy balance model developed to evaluate solar efficiency 

at the upland and lowland sites (Chapter 7). 

All units are W/m2 but any common unit would be acceptable as long as the 

units of D, Qd, Q1d and Q1u are identical. Given the relationship between critical solar 

elevation and Qd, Q1d, Q1u and D, it would be theoretically possible to calculate the 

amount of time that the sun is above or below the critical elevation, i.e. the time for 

which actual solar elevation is larger or smaller than the critical elevation required. 

This would require use of complicated mathematical integration. 
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Table 5.2: Plausible values for energy balance components: an upland/lowland 
comparison. 

SOLAR 10° 100 20° 20° 35° 35° 
ELEVATION 

PARAMETER UPLAND LOWLAND UPLAND LOWLAND UPLAND LOWLAN 
D 

QiW/m2
) 50 49.5 200 198 400 395 

Q,u(W/m~ 305.5 323.8 305.5 323.8 352.8 373.2 

Q,d(W/m~ 208 232 208 232 268 292 

ALBEDO 0.3 0.2 0.3 0.2 0.3 0.2 

D(W/m2
) 25 29.7 50 59.4 60 79 

CRITICAL >90° >90° 26.5° 16.2° 8.8° 3.3° 
ANGLE-DEG 

In conclusion, the peaks in the altitudinal temperature gradient at the equinoxes 

may have a physical explanation. Summer differences are slightly reduced because of 

heating in the upland atmosphere, while winter differences are drastically reduced by 

temperature inversion formation. The significance of the albedo term in the calculations 

cannot be ignored. Snow cover is therefore likely to have a considerable influence on 

the upland/lowland temperature contrast. 

5.4 Airflow Influences on the Altitudinal Gradient 

The seasonal fluctuation in mean lapse rate is but a background upon which 

larger daily fluctuations of the altitudinal temperature gradient occur. Under calm 

conditions the seasonal pattern is fairly clear, since solar influences are strong (Figure 

5.4). The seasonal variation in lapse rate is modified depending on airflow direction 

(measured by local surface wind direction). For some airflows a six-monthly cycle is 

still seen, suggesting that the overall seasonal variation in lapse rate is not significantly 

affected by changes in relative frequencies of airflow types over the course of the year 

(Lamb 1950). The effects of a certain airflow on temperature vary spatially. For 

example, the cooling effect of a north-easterly flow in spring and summer due to the 

North Sea is found to reduce the average temperature gradient between Durham and 
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Widdybank Fell by inducing an element of temperature change related to distance from 

the east coast. Durham experiences relative cooling and the altitudinal gradient in 

temperature is reduced. 

The Widdybank/Durham temperature difference, like any single ground-based 

lapse tate, is therefore not purely controlled by altitude, being modified by advective 

effects expressed through longitude and latitude (i.e. position in space). Advective 

effects depend on airflow direction, this determining what is happening to the air 

between the two stations. It is important to separate the strictly altitudinal causes of 

temperature variation from effects such as the dynamic modification of an airflow by 

a mountain range. Examples of the latter include trapping of air on one side of the 

range, temperature inversion formation and fOhn effects. All these effects are airflow

dependent. Some airflow effects are more likely to occur at certain times of year, 

especially those related to the land/sea temperature contrast and stability (e.g. 

temperature inversion formation). A division of daily data into 108 categories, each 

representing a particular wind direction in a particular month, is therefore useful, since 

airflow and seasonal effects can then be separated. 

The contrast between different airflow types has already been shown in Table 

5.1. A graph showing the average differences for each airflow type (Figure 5.9) 

exhibits a regular pattern with westerlies consistently giving steeper gradients than 

easterlies, and southerlies and northerlies giving intermediate values. 

To understand the effects of airflows requires knowledge of the synoptic 

conditions likely to be associated with each airflow. Importantly, the effects of an 

airflow vary spatially and so position in space can be used as a proxy for the age of an 

airflow. In seeking to explain the magnitude of the temperature gradient, the 

modification of the airflow between the two stations concerned can be viewed as 

occurring between 'snapshots' of the airflow taken at the two stations. With northerly 

and southerly flows which arrive at both Durham and Widdybank Fell simultaneously, 

this concept is less helpful. We must look 'upstream' to assess the effects of that 

airflow on temperature. The distance to the sea in the direction from which the airflow 
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Figure 5.9. Mean Differences in Daily Max1ma Cbetween Durham and Widdybank 
Fell) Acc?rding to Airflow Direction, as Measured by Durham Wind Direction 
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has come is especially important (i.e. the upwind fetch). 

5.5 Summary 

Since both Widdybank Fell and Durham possess unusual climatic characteristics 

related to certain airflow directions, the recorded temperature gradient is not 

representative of the Pennines as a whole. Theoretically, altitudinal causes of the 

temperature difference (free air and solar effects) should remain relatively constant over 

space. Airflow effects (expressed spatially through latitude, longitude and distance from 

the sea) will cause the temperature gradient to vary depending on which stations are 

used. An altitudinal gradient based solely on two locations is often misleading (Harrison 

1974) since only part of the gradient may be due to altitude. 

The investigation is therefore extended to include other stations in the study 

area. Comparison of numerous ground-based lapse rates will lead to the separation of 

the altitude effect from secondary airflow influences on temperature which are 

essentially local, differentiating lee and windward slopes. Examples of altitudinal lapse 

rates will be calculated using stations to the north, south, east and west of the Pennine 

plateau, aiming to provide a more representative picture of the altitudinal influence on 

temperature. 
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SPATIAL VARIATION IN THE ALTITUDINAL 
LAPSE RATE OF MAXIMUM TEMPERATURE 

6.1 Introduction 

The temperature gradient examined in Chapter 5 is just one example of a lapse 

rate in the Pennines. The following discussion focuses on ten additional ground-based 

lapse rates in the hope that certain seasonal and spatial trends in lapse rate can be 

identified. · 

6.2 Seasonal Analysis of Ground-Based Lapse Rates 

Analysis of the local Durham/Widdybank Fell temperature gradient showed that 

it was steepest with westerly (downslope) flow at any season and around the equinoxes. 

Other lapse rates were examined, using Great Dun Fell (847 m) and Widdybank Fell 

(513 m) as high altitude reference points. Again, daily data from 1985 to 1990 inclusive 

were used. 

Table 6.1 lists mean lapse rates (°C/km) between Great Dun Fell, Widdybank 

Fell and four other stations; Durham to the east, Warcop to the south, Aspatria to the 

west, and Haydon Bridge to the north (Figure 6.1). A local comparison with Appleby 

in the Vale of Eden (Plate 8) was included as representative of the lapse rate on the 

Pennine escarpment (Plate 9). The elevation difference between Appleby and Great Dun 

Fell is nearly 700 metres although the distance between the two sites is only 12.38 km. 

Advective effects should be negligible for this comparison. 

Rates are negative as temperatures decrease with increasing altitude. The DALR 

(see Chapter 3) is -9.8°C/km. Comparison of a lowland station with Widdybank Fell 

and then Great Dun Fell yields a slightly different picture. Figures 6.2 and 6.3 show 

the seasonal variation in lapse rate on all slopes using Great Dun Fell and Widdybank 

Fell as the upland stations respectively. The lapse rate contrast between slopes is greater 

when Widdybank is used. 
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Figure 5.2. Monthly Variation of Temperature Lapse Rates involving 
Great Dun Fell (847 m) as the Upland Reference Point 
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Figure 5.3. Monthly Variation of Temperature Lapse Rates involving 
Widdybank Fell (513 m) as the Upland Reference Point 
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Table 6.1: Mean lapse Rates in 1985-1990 (°C km-1
). G=Great Dun Fell, 

W=Widdybank Fell. 

STATION JAN FEB MAR APR MAY JUN 
PAIR 

G-DUR -7.36 -8.32 -10.42 -9.73 -8.74 -8.83 

G-WAR -7.06 -7.78 -8.86 -8.82 -7.99 -7.93 

G-ASP -7.10 -8.08 -9.21 -8.75 -8.70 -8.28 

G-APP. -6.86 -7.95 -10.16 -9.96 -9.56 -9.70 

G-HAY -7.59 -8.43 -10.52 -9.71 -9.10 -8.88 

W-DUR -8.32 -9.88 -11.44 -9.78 -7.98 -8.37 

W-WAR -7.99 -8.70 -8.29 -7.40 -6.54 -6.36 

W-ASP -7.62 -9.02 -8.89 -8.11 -8.17 -7.71 

W-APP -7.19 -9.01 -10.28 -10.19 -10.39 -10.39 

W-HAY -8.33 -9.86 -11.25 -9.65 -8.70 -8.49 

G-W -5.96 -6.35 -9.46 -9.67 -8.92 -9.04 

JUL AUG SEP OCT NOV DEC MEAN 

-9.36 -10.15 -9.95 -8.21 -7.91 -7.14 -8.87 

-7.88 -8.08 -7.99 -7.69 -7.01 -6.55 -7.79 

-7.87 -8.25 -7.69 -7.54 -7.38 -6.27 -7.92 

-9.45 -9.21 -9.18 -8.01 -6.59 -6.01 -8.57 

-9.25 -9.50 -9.33 -8.39 -7.70 -6.64 -8.77 

-9.85 -10.92 -10.75 -9.05 -8.78 -8.27 -9.44 

-6.73 -6.65 -6.95 -7.88 -7.25 -7.88 -7.36 

-7.13 -7.24 -6.95 -7.73 -7.66 -6.93 -7.75 

-9.97 -9.17 -9.37 -8.60 -6.42 -6.34 -8.95 

-9.44 -9.68 -9.65 -9.05 -8.28 -7.59 -9.16 

-8.92 -9.37 -8.77 -7.49 -6.77 -5.54 -8.05 
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6.2.1 Eastern Slope 

The temperature contrast between Widdybank Fell and Durham (to the east of 

the Pennines) was described in Chapter 5. Rates exceed -10°C/km in March and 

August/September. The mean for March reaches -11.44 o C/km! 

Comparison of Great Dun Fell with Durham again shows peaks in the lapse rate 

in spring and late summer. There are characteristic peaks near the equinoxes, in March 

(-10.42°C/ km) and August/ September (-10.15 and -9.95°C/km). For the average 

lapse rate to exceed the DALR, superadiabatic lapse rates must commonly form. Rates 

remain moderately high throughout summer but fall rapidly in winter. The mean rate 

in May is reduced to -8.74 °C/km and although the reduction is not as dramatic as in 

the Widdybank case (-7.98°C/km), it is still noticeable and is due to a longitudinal 

decrease in temperature superimposed on top of the altitudinal decrease, because of the 

cooling North Sea influence. Air flowing from sea to land will not vary substantially 

in temperature from the sea-surface temperature. The difference between the two 

temperatures varies according to the flux of sensible heat above the ocean surface 

(Cayan 1980). Onshore airflows will therefore be relatively cool in summer and warm 

in winter. This cooling effect of the cold surface waters off the north-east coast in 

spring and summer produces a characteristic type of weather called the Haar (Catchpole 

1966), depressing daily maximum temperatures at Durham. This is the reason for 

decreased lapse rates on the eastern slope in May and June. The winter trough in lapse 

rate can be explained by the relative warmth of Great Dun Fell in winter, temperature 

inversions commonly forming below summit level. 

6.2.2 Western Slope 

Comparison was also made between Great Dun Fell and Aspatria to the west in 

Cumbria. A striking similarity is seen with Warcop (described in the next section). The 

lapse rate peaks in March (-9.21 °C/km) and then gradually decreases until December 

(-6.2rc /km). The simple pattern of spring maximum and winter minimum is similar 

to that described by Harding (1978, 1979) for Great Britain, and Green & Harding 
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(1980) for Southern Norway. The steeper lapse rates of late summer, present on the 

northern and eastern slopes, are absent. Aspatria experiences a cooling coastal influence 

in summer which is likely to decrease lapse rates at this season. The northern and 

eastern slopes show steeper lapse rates than the western slope all year, even in May and 

June (although the difference is least during this period). Prevailing winds being south

westerly, fOhn effects on lee slopes are the most likely explanation of this. This 

contradicts the findings of Birse (1971), who states that the maritime western slopes of 

Britain have steeper mean lapse rates than the more continental eastern ones. 

Comparison of Aspatria with Widdybank Fell produces yet another different 

seasonal lapse rate cycle. Strangely, the shallowest lapse rates to the west of the 

Pennines occur in September, and rates are low throughout late summer. The influence 

of the Irish Sea in reducing summer temperatures at Aspatria is possibly contributory 

to the shallow mean rates recorded during this typically progressive period of the year 

(Lamb 1950). 

6.2.3 Southern Slope 

Although Warcop is almost due south of Great Dun Fell, like Appleby it is 

situated in the Vale of Eden. We may expect the seasonal variation in lapse rate to be 

similar to the local escarpment rate (section 6.3 e). The distance between Warcop and 

Great Dun Fell is 12.71 km (very similar to the distance between Appleby and Great 

Dun Fell) and the elevation difference is just over 600 metres. On average the southern 

slope experiences much shallower lapse rates than the other slopes, presumably 

associated with more stable conditions and in contradiction to findings that mean lapse 

rates are steeper on sunlit slopes (McCutchan et al. 1982). Rates average -8°C/km from 

May to September, decreasing to less than -7°C/km in December. Southerly airflows, 

which affect the slope directly, are cooled from below as they move north, increasing 

stability. It is also possible that gusts of warm air rise up the south-facing slope by day 

initiated by solar heating, increasing the temperature at Great Dun Fell compared with 

Warcop (Pedgley 1979). There is a marked spring maximum in the lapse rate which 

reaches -8.86°C/km in April (this 1s, however, a relatively low value for April). 
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Superadiabatic lapse rates are absent on the southern slope. Lapse rates depend on the 

local climatic characteristics of both upland and lowland sites. If Appleby were to 

record higher maxima in summer due to increased shelter and its urban nature, this 

would explain the high lapse rates recorded (over -10°C/km). Warcop station is sited 

at 244 m on a military firing range and has a much more open exposure. This would 

explain the lower lapse rates. 

The comparison of Warcop with Widdybank Fell yields even more unusual 

results (Table 6.1). The distance between the two locations is 12.84 km and the 

elevation gain is only 269 m. Lapse rates are low, especially in summer (-6.36°C/km 

in June). Unusually, the February gradient (-7.99°C/km) is the steepest! A peak in 

lapse rate in February (rather than March) and in early winter, and lower rates in 

summer (between -6 and -7°C/km from May to September), are incoherent with the 

other examples and may arise due to local influences. The comparison is unusual in that 

high land rises to about 700 m between the two sites and the overall lapse rate is thus 

an average of those on the south-facing and north-facing slopes. The ridge of high land 

acts as a climatic barrier, allowing relatively cold or warm air to become trapped on 

one side of the ridge leading to contrasting temperature regimes at the two locations. 

When Widdybank is affected by colder air the apparent "lapse rate" increases. In 

February, a month often characterised by calm anticyclonic weather, temperature 

inversions are likely in the Upper Teesdale basin (Manley 1943). 

This contrast in calculated lapse rates between Great Dun Fell and Widdybank 

Fell when both are compared with Warcop arises because the exposed former station 

is unlikely to suffer from trapping of cold air whereas this often occurs at Widdybank .. 

In the summer there is also the possibility that the area around Widdybank Fell acts as 

a high plateau, with increased daily maxima resulting from warming of the upland 

atmosphere (Flohn 1953, Tabony 1985). 

6.2.4 Northern Slope 

This is calculated using Haydon Bridge in the Tyne valley to the north. The 
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distance from Great Dun Fell is 34.74 km and the elevation difference is 765 m. The 

pattern of lapse rate variation is similar to that on the southern slope when Great Dun 

Fell is used as the upland station. The rate peaks in March (-10.52°C/km) and is lowest 

in December (-6.64°C/km). The northern slope rate is always steeper than the southern 

counterpart. There is limited evidence of a decrease in rates in May and increase in late 

summer, similar to the pattern on the eastern slope. Advective cooling from the east is 

a slight influence at Haydon Bridge, as at Durham. Comparison of Haydon Bridge with 

Widdybank Fell shows a similar pattern in lapse rate, with -11.25 o C/km recorded in 

March and -7.59°C/km in December. 

6.2.5 A Local Comparison: The Pennine Escarpment 

Lapse rates calculated over the western Pennine escarpment (Figures 6.4 a and 

6.4 b) are obtained by comparing the upland sites with Appleby. The escarpment lapse 

rate increases in summer, averaging nearly -10°C/km between March and September. 

The escarpment experiences the highest lapse rates amongst all those studied from April 

to July, i.e. during the period when solar radiation input is high, suggesting a 

steepening of the local lapse rate in response to solar heating. In March, -10.16°C/km 

is one of the highest mean lapse rates in the world. Steeper rates may be found over 

arid deserts at low levels in daytime due to the intense heating of the ground surface 

(Hastenrath 1968) but only in the lowest few metres. In winter the escarpment rate falls 

to -6.01 °C/km (December), presumably due to temperature inversion formation in the 

Vale of Eden which is aided by drainage of cold air from the Pennine escarpment 

(Manley 1943). 

Temperature comparison between Appleby and Widdybank Fell (Figure 6.4 b) 

is also representative of the local Pennine escarpment lapse rate, although Widdybank 

Fell lies considerably east of the Pennine watershed, complicating the comparison. The 

mean rate in both May and June is -10.39°C/km, falling to -9.97 oC/km in July. From 

November to January the rate is below those on the other four slopes, suggesting that 

local rate on this steep slope is strongly influenced by solar input, and less dependent 

on advection. 
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Figure 5.4. Monthly Variation of the Day- Time Lapse Rate on the Pennine 

Escarpment, 1nvolving Appleby as the Lowland Reference Point 
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In conclusion, the steep lapse rate on the western Pennine escarpment is 

primarily a summer phenomenon. The lapse rate on individual days in winter may be 

as steep as in summer, i.e. -10°C/km or more, as mean monthly rates disguise daily 

variation. A few days with pronounced temperature inversions in winter would reduce 

the average figures dramatically. 

6.2.6 The Upper Air Lapse Rate (between 513 and 847 m) 

The lapse rate between the two upland locations, Great Dun Fell (847 m) and 

Widdybank Fell (513 m), gives an idea of air mass stability above 500 m. Although it 

is not equal to the lapse rate in the free air between these two altitudes, it is a good 

approximation. A pronounced seasonal variation in upper-air lapse rate is revealed 

(Figure 6.5). From November to February the shallow rates between -5 and -7°C/km 

are less steep than those at lower altitudes, indicating that lapse rate decreases with 

increasing altitude (Figure 6.6 a). This pattern suggests the presence of temperature 

inversions in winter in the altitudinal range of 500 to 900 m, depressing mean lapse 

rates at high altitude. In December a mean upper-air rate of -5.54 °C/km is only just 

over half of the DALR and anomalously low rates remain until February. 

In summer the lapse rate between Great Dun Fell and Widdybank Fell averages 

-8 to -9°C/km, i.e. slightly below the DALR. The highest values occur at the beginning 

and end of this period, i.e. in March (-9.46°C/km), April (-9.6rC/km) and September 

(-8. 7rC/ km). The decrease of the upper air lapse rate is rapid as autumn approaches, 

the mean for October being only -7.49°C/km. Solar heating increases the upper-air rate 

in summer, and summer lapse rates increase with altitude (Figure 6.6 b). The mean 

lapse rate between Great Dun Fell and Widdybank Fell is fairly low (-8.05°C/km), 

suggesting that on an annual basis the winter trend for lapse rates to decrease with 

altitude is dominant. Generally, temperatures at Great Dun Fell are higher than would 

be expected from a linear model between temperature and altitude. 
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Figure 6. 5. Monthly variation of the Upper Air Lapse Rate 
between Widdybank Fell and Great Dun Fell 
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6.3 Summary of Seasonal Lapse Rate Variation 

The above analysis shows that the lapse rate behaviour described in Chapter 5 

(relating to Durham and Widdybank Fell) is not representative. The unusual nature of 

the original comparison is explained in part by the influence of the North Sea in 

depressing Durham maxima in early summer and increasing them in late summer and 

early autumn. Of the eleven lapse rates listed in Table 6.1, only those involving the 

station on the eastern side of the Pennines (i.e. Durham) show the trough of lapse rate 

in early summer (May and June). 

In winter the southern and western slope rates are similar (Figure 6.2). In 

summer the southern slope has the shallowest lapse rates. Rates on the northern and 

eastern slopes are steeper due to lee effects all year although the difference is minimal 

in May and June when typically the circulation becomes less dominated by westerly 

flow (Lamb 1950) and the Haar cools the eastern regions. Lapse rates on all slopes 

peak in March due to the instability of polar maritime air (the most common air mass) 

at this time, and the shallowest lapse rates are experienced in winter due to temperature 

inversions. 

Using Widdybank Fell, instead of Great Dun Fell, as the upland reference 

station (Figure 6.3) decreases the recorded lapse rates in summer, especially on the 

southern and western slopes (even to below winter rates). This is evidence of an upland 

heating effect in summer (Flohn 1953, Tabony 1985). This heating spreads to the east 

in July and August through fohn effects, increasing lapse rates on the northern and 

eastern slopes, but not on the southern and western slopes. All lapse rates decrease as 

winter approaches and temperature inversions begin to form. 

The local escarpment rate remains extremely high throughout the summer 

(Figures 6.4 a and 6.4 b) as well as the upper air lapse rate above 500 m (Figure 6.5). 

The latter is reduced dramatically in winter. 

It would be foolish to attempt to describe the variation in mean lapse rates using 
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a few stations because results are not representative. The mean lapse rate is described 

later using data from 22 stations. The result will be less dependent on the exposure of 

individual stations (Chapter 8). 

6.4 Airflow Effects 

The lapse rate between any two locations also varies daily. The direction of 

surface airflow is critical since it determines the relationship between the flow of air 

and the topography of the inter-station transect. Weather contrasts will be maximised 

when the airflow is parallel to the inter-station transect. For example, considering the 

eastern slope of the Pennines between Great Dun Fell and Durham, weather contrasts 

between the two sites are likely to be greatest for westerly and easterly airflows. In 

such cases the airflow reaches one station considerably before the other and can 

undergo modification between the two. When airflow is perpendicular to the inter

station transect differences in weather still occur because the weather experienced at 

each station depends on topography upwind, which will be different in each case. 

Most ground-based lapse rates are expected to vary systematically according to 

airflow direction. This is tested for the four directional, one local and one upper air 

lapse rates discussed earlier. Surface wind direction is used to classify airflow direction 

despite discrepancies between surface and geostrophic winds (Marshall 1954). Surface 

winds at Durham and at Low Etherley (a location not used to generate lapse rates) are 

used in tum to classify wind direction. The sensitivity of results to slight changes in the 

airflow classification can then be assessed. 

6.4.1 Durham Surface Winds 

Figure 6. 7 a shows the variation of the four lapse rates (using Great Dun Fell 

as the upland reference station) according to surface wind direction recorded at 

Durham. The lapse rate on the southern slope exceeds -8°C/km for westerly, northerly, 

north-easterly and easterly flows, whereas the rate is lowest for southerly flows. This 

rate is steeper for cross-slope and downslope winds than for upslope winds. 
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a. The Effect of Airflow Direction on Lapse Rates 
on Four Slopes of the Pennines 
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The pattern is stronger on the eastern slope. Steepest lapse rates occur with 

downslope westerly winds (over -10°C/km) and shallowest rates for upslope north

easterly and easterly winds. The physical reasons behind this are easy to explain. As 

air ascends it will expand and cool and often lose excess moisture through 

condensation. The air therefore cools at the Saturated Adiabatic Lapse Rate (SALR) 

which, although dependent on temperature, is much less than the DALR. On 

descending a slope the air warms at the DALR. Therefore the lapse rate is steeper on 

the lee slope. Even if no condensation occurs, air can be forced downwards by an 

inversion aloft and it will still warm at the DALR (Lockwood 1962, Beran 1967). In 

some cases there can be a temperature inversion on the windward slope (Pedgley 1979), 

air trapped by topography. Superadiabatic lapse rates will then be measured on the lee 

slope when an improvement in weather accompanies the downward air movement. 

Clouds may dissipate in the lee of the hills, allowing solar heating to increase 

temperatures further in the lowlands. Harding (1979) showed that there was a positive 

correlation. between the ground-based lapse rate on the eastern slope of the Pennines and 

the upland deficit in sunshine hours for this reason. 

Lapse rates recorded on the western slope vary in reverse to those on the eastern 

slope, with steepest rates occurring under downslope easterly winds. For northerly, 

north-easterly, easterly and south-easterly flows the western slope rate is the steepest 

of the four, reaching -8.88°C/ km for north-easterlies. Predictably, the lowest rates are 

for south-westerly airflows (-7.52°C/km) and calm conditions (-7.14 oc /km). The lapse 

rates on the northern slope are very similar to those on the eastern slope. 

The local escarpment rate between Appleby and Great Dun Fell exhibits a strong 

relationship with wind direction, peaking for downslope northerly flow (-9.44 °C/km). 

The rate is lowest for southerly (upslope) flow (-8.06°C/km). In between these two 

extremes the change of gradient with airflow direction is regular (Figure 6.7 b). The 

contrast between downslope northerly and upslope southerly flows is reinforced by 

contrasts in stability. Northerly flows are usually moving from a cold to a warmer 

surface. Heating from below increases the lapse rate in the free air in the lowest air 

layers. The opposite is true for southerly flow which is cooled from below as it moves 
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north. 

Lapse rates on all four slopes and on the Pennine escarpment fall below -8 °C/ 

km under calm conditions. This is a strong indication of the presence of temperature 

inversions below Great Dun Fell. The upper air lapse rate between Widdybank Fell and 

Great Dun Fell is represented in Figure 6. 7 c. All rates are below the DALR. The 

steepest occur with north-westerly and westerly airflows, presumably in polar maritime 

air flowing downslope. The lowest rates occur under north-easterly airstreams (-7. 22 o C 

/km) and for calm conditions (-7.43°C/km). It is possible that north-easterly flows can 

sometimes allow trapping of the air by the Pennine ridge which runs from north-west 

to south-east. On occasions air escapes over the ridge as the violent Helm wind 

(Manley 1945b). Low lapse rates would be explained by the trapping of cold air in the 

Widdybank area. 

Using Widdybank Fell instead of Great Dun Fell as the upland location produces 

broadly similar results (Figures 6.8 a and 6.8 b). Again, lapse rates on both northern 

and eastern slopes are similar, peaking for westerly airflows. The figure of -11.44 oc; 

km for westerly flows can only arise from a combination of descent at the DALR and 

a substantial warming due to a simultaneous weather improvement. In contrast, upslope 

north-easterly and easterly winds record rates below -8 °C/km. Rates on the southern 

slope are almost a mirror image of those on the northern and eastern slopes. Downslope 

north-easterlies produce a mean rate of -9.22 °C/km, possibly reinforced by a dispersion 

of cloud in the Eden Valley. Strangely, northerly airflows only record a mean rate of 

-7.51 °C/km, not that different from upslope southerly winds (-6.7rC/km). The 

western comparison with Aspatria, however, shows a strong pattern, opposite to that 

on the eastern slope. 

Finally, the local escarpment rate (Widdybank Fell versus Appleby) is displayed 

in Figure 6.8 b. A very strong pattern emerges with high rates (-10.96°Cilcrn) for 

downslope north-easterlies and shallow rates for the largely upslope southerlies 

(-8.07°C/ km). The pattern of change between the two extremes is remarkably uniform. 

All four slope lapse rates and the local escarpment comparison are low under calm 
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conditions, rates falling between -6 and -8°C/km. 

6.4.2 Low Etherley Surface Winds 

Wind direction at Low Etherley was classified into sixteen classes (as opposed 

to eight). The graph of the upper-air lapse rate variation according to wind direction 

is reproduced (Figure 6.9). Because of the greater number of airflow classes the curve 

is less smooth than in Figure 6. 7 c. However, results are similar. Lapse rates are 

steeper for airflows between south and north with a westerly component, than for calm 

conditions and airflows between north-north-east and south-south-east. Despite a change 

in the airflow classification, there is little overall change in the upper-air lapse rate 

pattern. Similarly, the four other lapse rates are steepest when winds are downslope and 

shallowest for upslope winds (Figure 6.10). There is slightly more irregularity in the 

four graphs (Widdybank Fell is the upland station) but the main trends are the same as 

in Figure 6.8 a). This is reassuring, indicating that use of surface winds at either 

Durham or Low Etherley gives a reasonable indication of macroscale airflow direction 

over northern England. 

6.5 Conclusions 

The spatial and temporal variation of the altitudinal temperature gradient in 

Northern England has been investigated, using two upland and five lowland stations: 

1. the four lapse rates representative of conditions to the north, east, south and west of 

the Pennines show different relationships with season and airflow direction; 

2. seasonal and airflow contrasts are very strong for a local lapse rate measured over 

the steepest part of the Pennine escarpment. Airflow direction is crucial, since in nearly 

all cases descending air produces a steeper lapse rate than ascending air. The local 

escarpment rate is less affected by horizontal advection; 

3. local climatic influences at each lowland station ensure that the lapse rate on each 
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Figure 5.9. The Variation of the Upper Air Lapse Rate CGreat Dun Fell 
-Widdybank Fell) According to Airflow Direction Measured at Low Etherley 
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slope shows a unique seasonal fluctuation and relationship with airflow direction. It is 

difficult to obtain knowledge about the mean altitudinal effect on temperature in 

Northern England from ground-based temperature gradients alone. 

Changes in the relative frequencies of airflow types would have contrasting 

effects on temperature in different locations. Increased westerly flow, for example, 

would increase mean lapse rates on the eastern slopes of the Pennines and reduce them 

in the west. The upper air lapse rate (between Great Dun Fell and Widdybank Fell) 

gives a good indication of contrasts in the free-air lapse rate between different airflows, 

and hence air-masses. However, there is still a topographical influence which affects 

any ground-measured rate. 

A multiple regression analysis will be performed to extract the mean altitudinal 

effect on temperature using data from all stations available (Chapter 8). Once the 

seasonal variation and airflow contrasts in the mean altitudinal effect on temperature are 

known, this knowledge can be used to compare the upland/lowland temperature 

resource gradient under different circulation scenarios at different seasons. 

Before this regression analysis is attempted the physical factors behind air 

temperature variation are examined. An energy balance model (EBM) is developed in 

the next chapter (Chapter 7) based on the response of surface temperatures recorded at 

Durham and Widdybank Fell to net radiation input. 
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THE DEVELOPMENT OF A PHYSICALLY -BASED TEMPERATURE 
MODEL TO INVESTIGATE DAILY RADIATION FLUXES AND THE 

SURFACE ENERGY BALANCE BASED ON METEOROLOGICAL DATA. 

7.1 Introduction 

The balance between continuous longwave radiation output and the periodic 

incoming shortwave input from the sun controls temperature fluctuation at the earth's 

surface, along with advective influences. The relationship between net irradiance (the 

net energy received at the earth's surface) and surface temperature fluctuation is not 

simple because of the variable partitioning of heat energy between the atmosphere and 

the ground, the variation of surface albedo and advection. Net irradiance can be 

calculated using astronomical parameters and sunshine data. If this could be related with 

surface temperature response, then a method for predicting surface temperature change 

has been achieved. 

This chapter therefore describes a model to calculate net irradiance at the earth's 

surface which can then be related to surface and boundary layer temperature response. 

Through the development of a physical model one learns to appreciate the factors which 

influence air temperature at screen level. Such factors were outlined in Chapter 3 and 

discussed further in Chapter 5 when deriving a critical solar elevation required for net 

heating. 

Numerous energy balance models have estimated latent and sensible heat fluxes 

and soil flux at many sites (Davies 1967, Linacre 1968, Polavarapu 1968, Le Drew 

197 5, Rayer 1987). The work in this chapter concerns the generation of a model 

requiring only meteorological surface data (such as that recorded at a climate station). 

Sloping surfaces are not considered, although the energy balance of a surface depends 

on aspect (Oliver 1991). 

The six years of daily meteorological observations are used. This includes 

temperature maxima and minima, sunshine hours, wet and dry bulb temperatures (0900 

GMT), wind speed and direction, snow cover, the state of the ground surface and cloud 
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cover. The model was developed using data from Durham Observatory (102 m) and 

Widdybank Fell (513 m). The model is listed, written in the STATA language, m 

Appendix 4. 

7.2 Model Description 

The basic energy balance equation is described by 

Rn=H + S + G ---- (1) 

where Rn is net radiation, H is latent heat, S is sensible heat, and G is soil flux. 

There are essentially four stages to the process of calculating net radiation from 

meteorological data. 

1. Calculation of daylength and noon solar elevation, given the day of the year. This 

describes the path of the sun in the sky. 

2. Calculation of the transmissivity of the solar beam path, through estimation of water 

vapour and aerosol distribution in the air. 

3. Use of 1 and 2 to derive net solar irradiance over the daylight period. 

4. Calculation of net irradiance by subtraction of longwave radiation from 3. 

7 .2.1 Calculation of Daylength 

The declination of the sun is calculated by 
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d=23.45x(sin(0.986x(day-80)xcv}) ----(2) 

This varies from 23.45°N on June 22 to 23.45°S on December 22. A positive 

value represents a declination to the north of the equator. The days of the year are 

numbered from 1 to 365. Leap years were treated as though they had 365 days. 0.986 

or (360/365) enters the equation because the number of days in a year does not equal 

the number of degrees in a complete rotation. The conversion factor of 2*'1'/360 (cv) 

converts degrees into radians. 

Noon solar elevation, p., is calculated by adding 35° to the declination. The 

latitude is assumed to be 55°N. 

If x = - tan A * tan d, where A = latitude and d = declination, then the 

daylength (dy) is given by 

dy=(arccos(x))/7.5 ----(3) 

Linacre (1992) 

tan A is equal to (sin(55*2*'lr/360))/(cos(55*2*'1r/360)). Equation 3 can be 

rewritten as 

dy=(-~/2+arctan(x/lfl-x2 )))/(2x~x7.5/360) ----(4) 

The model assumes that solar input during daylight varies in the form of a half 

sinusoidal curve with end points at sunrise and sunset, equidistant from solar noon. To 

calculate the instantaneous noon solar irradiance the transmissivity of the solar beam 

at that time must be calculated, requiring knowledge of water vapour and aerosol 

distribution in the air. 
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7 .2.2 Calculation of Transmissivity of the Solar Beam 

The mean of daily maximum and minimum temperatures is used to compute the 

mean daily air temperature: 

The altitude of a location will be defined as alt. Assuming that altitude (in 

metres) and mean daily temperature are known, one can define the Penman constants 

used in his equation for evaporation calculation (Penman 1948, McCulloch 1965). The 

Penman equation in its most general form as 

evaporation=Cl (net irradiance) +C2 (aerodynamic term) --- (6) 

C1 and C2 depend on altitude and air temperature. The two constants add up to 

1 and are defined by 

Cl=ll/ (ll+y) : C2=y I (!l+y) ---- (7) 

where .1 = the gradient of the saturation vapour pressure curve against temperature and 

'Y = the psychrometer constant. Both are measured in millibars/°C (Monteith & 

Unsworth 1990). 

C1 is approximated by 

Cl=O. 42+ (0. OllxTmean) + (3x10 5 xal t) ---- (8) 

Rouse et al. ( 1977) 

94 



C2 is then calculated by subtracting C1 from 1. Figures 7.1 and 7.2 show values 

of the two constants using daily data from Durham for 1985 (altitude = 102m). C1, 

which reflects the importance of net irradiance in col).tributing to evaporation, varies 

from about 0.4 in winter to over 0.6 in summer. C2, which represents the importance 

of wind speed and humidity in evaporation, varies from 0. 6 in winter to below 0.4 in 

summer and is perfectly inversely related to C 1. At higher altitude C 1 increases and C2 

decreases given a similar air temperature (Ripley 1963). Hence net irradiance is more 

important at high altitude in causing evaporation. 

~can be calculated using the following equation (Monteith & Unsworth 1990): 

/1 = ( ( ( -12 I 5 ) X ( T mean) + 2 5 0 1 ) X 18 X ( 6 . 1 X exp [ ( 17 . 2 7 X T mean) I 
( T mean+ 2 3 7 ) ] ) ) I ( 8 . 3 14 X ( T mean+ 2 7 3 ) 2 ) - - - - ( 9 ) 

where Tmean is air temperature in oc (Appendix 2). 

T mean is used as an estimate of a representative daily temperature (not the dry 

bulb temperature at 0900 hrs). ~varies from just below 0.5 when temperatures are ooc 
to around 1.5 when Tmean is 20°C. By equation 7: 

y=(lliCl)-!1 ----(10) 

0.67 mbar°C1 is given as an approximation to 'Y in the literature (Monteith & 

Unsworth 1990). When values are plotted for Durham, an increase in 'Y with 

temperature is experienced, from 0.6 in winter to 0.8 in summer. Increasing altitude 

would increase C1 and decrease the 'Y. This is consistent with reality, since: 

y=(CPP)I(eL) ----(11) 
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where P= atmospheric pressure, L= latent heat of vaporisation (2448.8 J g·1
), 

e=density of water vapour/density of dry air, and CP = specific heat of dry air at 

constant pressure (Slayter & Mcilroy 1961). 

Vapour pressure can be estimated from wet and dry bulb temperatures for 9 am 

GMT. Figure 7. 3 shows the saturation vapour pressure curve plotted against air 

temperature. An exponential function was employed to describe this relationship: 

satvap(e
8

) =6 .1x(exp( (17 .27xT) I (T+237))) ---- (12) 

Saturation vapour pressures can be calculated by substituting mean daily 

temperature from equation 4 into equation 12. A parcel of air at point X on Figure 7.3 

has dry bulb temperature T 0 and wet bulb temperature T w· The slope XY has gradient 

equal to -'Y. Y is the saturation vapour pressure at the wet bulb temperature. The 

vapour pressure e is the vapour pressure at W, which in turn is the saturation vapour 

pressure es at the wet bulb temperature minus the amount represented by YW. Thus: 

e= ( 6 . 1 x ( exp ( ( 17 . 27 xT w) I ( T w+2 3 7) ) ) ) - ( y ( TD- T w) ) ---- ( 13) 

Absolute vapour pressure can therefore be expressed in terms of 'Y and wet and 

dry bulb temperatures. Calculated pressures for Durham vary from below 4 mbar in 

midwinter to nearly 20 mbar (hPa) on the most humid summer days. 

Relative humidity Hr at 9 am is calculated by dividing the vapour pressure e by 

the saturation vapour pressure at the dry bulb temperature: 

Hr=el(6.lxexp((17.27xTD)I(TD+237))) ----(14) 

Specific humidity, representing the amount of water vapour in the air Hs is 
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Figure 7.3. Saturat1on Vapour Pressure Versus Temperature, Durham (1985) 
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calculated by 

H 
8
= ( 0 . 6 2 2 e) I ( ( 1 0 0 0- e) + ( 0 . 6 2 2 e) ) ---- ( 15) 

Monteith & Unsworth (1990) 

Hs is given in grammes of water vapour per gramme of air (see Appendix 3). 

The amount of precipitable water w in an air column is 

W= (H
8
X1000) I ( 500g) ---- ( 16) 

Rayer (1987) 

where g is the acceleration due to gravity (9.81 m s-2
) and 1000 represents the pressure 

of the air column in millibars. Units of ware g cm-2
• Hs must be in grammes of water 

vapour per kilogramme of air. w represents the amount of water which would be 

condensed from an air column, varying from 0.5 to 2.5 g cm-2 at Durham. 

The transmissivity of the solar beam after absorption by water vapour T w is 

calculated by 

'tw=0.896-(0.0636xlog[wx .1 ]) ----(17) 
Sln~ 

(Rayer 1987) 

At noon transmissivity is greatest since p. reaches its maximum. At Durham 

noon transmissivity peaks in spring (from March to May) with high solar elevations and 

relatively low temperatures. Values approaching 0.9 are frequent. In December values 

frequently fall below 0.8 because of low solar elevations. 

Transmissivity of the solar beam due to aerosols T8 is approximated by 
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~a=exp(-0.1cosec~) ----(18) 

Rayer (1987) 

T8 approaches 0.9 in summer but falls to 0.6 in winter. 

Overall transmissivity r of the solar beam at noon is calculated by 

~=~ X~ ---- ( 19) w a 

7.2.3 Calculation of Solar Input 

Instantaneous solar irradiance at solar noon (I.J is given by 

Im=Sx~xsin~ .... W m-2 ---- (20) 

Mcilveen (1991) 

where S is the solar constant (1353 W m-2
). 

If the daily receipt of solar radiation is assumed to follow a sinusoidal curve 

then the total potential irradiance during daylight (lp) is given by 

Ip= (2/1t) xdyx3600xim .... J m-2 ---- (21) 

The result is expressed in watts * seconds (or joules). 

Equation 21 gives the total potential solar input on a cloudless day with a 

transmissivity of r. Solar input will never reach this value due to cloudiness. Solar 
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irradiance consists of direct solar radiation from the sun itself and a diffuse component 

(modelled here as 0.36 * IP) which comes from all sections of the sky. The latter does 

not depend on cloud cover. 

The total shortwave radiation received (IJ can be expressed as: 

Linacre (1992) 

where {3 is the proportion of the time during the daylight period that the sky is clear. 

{3 is estimated by dividing recorded sunshine hours n by daylength dy (also known as 

N). This relationship was first investigated by Angstrom (1924). It is only approximate 

because of the incorrect assumption that the rate at which solar insolation is received 

is constant throughout the day. If this was the case two hours of sunshine around noon 

would lead to a similar amount of solar input as two hours in late afternoon. When the 

day is totally overcast It = 0.36 * IP, and the total energy input is solely composed of 

diffuse radiation. 

An alternative formula for estimating the actual total irradiance It using the daily 

temperature range at screen level and the value of IP was developed by Cengiz in 1981 

using data from Missouri. 

It= (0. 048IP)- (3. 5 (Tmax-Tmin)) 
+ ( 0 . 0 2 9 X I PX ( Tmax- Tmin) ) + 2 4 ---- ( 2 3) 

This estimate, based on temperature range (a proxy for irradiance), is compared 

with the astronomical value of 11 (calculated from equation 22) in Figure 7.4 for the 

Durham data. The astronomical estimate is nearly always greater since not all solar 

irradiance is used to heat the air. There is, however, a strong positive correlation 

between the two measures, which is reassuring. The difference between the two 
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Figure 7.4. Two Est1mates of It notal Irradlance), Durham (1985) 

ru 
-l---1 

ru 
0 3.0e+07 
,--< 

ru 
u 
rl 

E 
0 
c 
0 
L 

-l---1 
(Jl 2.0e+07 <r: 

OJ 
c \'J 
·rl c::: 
(Jl ~ 

=:) '--.._ 
J 

GJ 
-l---1 

ru 
E 10e+07 
·rl 
.u 
(Jl 

w 
GJ 
u 
c 
ru 
·rl 

D 
ro 0 
L 
L 

f--1 0 

+ 
++ 

+ + + ++ 
+ + 

+ + + 
+ 

+ ++ + 
+ + -It: .f'" 

+ ++ -tr + + + 
-~'' +~ + + * 
-4t. i- ! + + * -It- + ++ 

+ ++~.t++ ++ 

+ + * ++ + + + + 

,.t 

++ 

+ 

++ + + .t~ + 
++ + +:\:+;f' + 

+ -It- .... , ++ + +t + + 

+ +++.p- + ++ 
+-t .... ++ + 

++ + +++ t- + 
++-lr:lj...l to 
*~ +":t'"+ + 
.:ttt+:+ 

+ 

S.Oe+05 

+ 

+ 

+ 

-t 

+ + 
+ + ++ 
+ 

+ + + 
+ + + 
+ + + 

+ + + + 
+ 

+ 
+ + + 

+ + 

+ 
++ 
+ 

+ + + + 
-+ 

+ 

+ 
+ 

+ + 

1.0e+07 
J/m2 

+ 

+ 

+ + + 
+ 

+ + 
+ + 

+ + 
+ 

+ .p-
+ + 

+ + 
+ 

+ 

+ 

+ 

1.Se+07 

Irradiance Estimate using Cengjz Equat1on 

+ + 

+ + 

2.0e+07 



estimates relates to the efficiency of the solar radiation in producing temperature rise. 

Temperature change should be related to net irradiance Ineu as this takes the 

albedo and longwave radiation loss into account: 

I = ((1-a) I ) -E ---- (24) net t t 

7 .2.4 Estimation of Net Irradiance 

For estimation of Ib, incoming solar irradiance absorbed at the surface after 

reflection back to the atmosphere, the albedo (a) was assumed to be 0.2, unless there 

was snow cover on the ground, when it was assumed to be 0. 7. Hence a simple step 

function was used to parameterise albedo (Linacre 1992). 

Values of Ib in J m-2 for each day are shown for Durham in Figure 7. 5 for 1985. 

Values exceed 20 MJ m-2 in mid-summer but only just remain above zero in mid

winter. 10 MJ m-2 is a good estimate of Ib in spring or autumn. 

To obtain the net radiation flux one must calculate longwave radiation loss. 

Cloud cover C is calculated using 

C=8 (N-n) /N ---- (26) 

Linacre (1992) 

This varies between 0 on a cloudless day and 8 on a totally overcast one. The 
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number of sunshine hours is assumed to be linearly related to cloud cover, whereas in 

reality this is not so (see Chapter 5 for a discussion on the relationship between cloud 

cover and sunshine duration (Hoyt 1977)). 

Downward longwave radiation from a clear sky is estimated by 

E =208+ (6 XT ) ---- (27) d mean 

Monteith (1973) 

Cloud will increase Ed (Paltridge & Platt 1976). Edc in the presence of cloud is 

calculated as 

where C represents cloud cover in oktas. 

The loss of longwave radiation upwards Eu is estimated by assuming that the 

earth radiates as a black body at its absolute temperature in Kelvin, with an emissivity 

of 0.97: 

Eu=O. 97 X ( ( Tmean+27 3) 4 ) x5. 67 X (10-8)) •••• W m-2 
---- (29) 

Net longwave radiation over the 24 hour period is 

Values of~ at Durham vary between about 8-9 MJ day-1 in winter to 2 MJ day-1 

in summer, although the inter-diurnal range of variation is considerable at any season. 
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~ is lower in summer because the increase in Edc with temperature outweighs the 

increase in Bu. ~decreases with increasing cloud cover, highlighting the insulating 

effect of cloud layers. 

A simpler estimate of net longwave radiation ~ depends on surface temperature 

and cloud cover: 

Et= (107- ( (Tmax+Tmin} /2}- (9C}} x24x3600 .... J m-2 
---- (31) 

Linacre (1992) 

The mean temperature of the day is used as the temperature input. 

The two estimates of~ are reassuringly very similar for the Durham data. Both 

were used in turn to give alternative estimates of net irradiance Inet· 

I =I -E ---- (32) net b t 

The computer model used to calculate Inet is listed in the STAT A language in 

Appendix 4. 

The estimate of Ioet using equation 31 is referred to as Inet<I>· Values approach 

18 MJ day-1 in summer. 

A graph of net irradiance Inet(2J at Durham, based on the calculations of net 

longwave exitance in equations 27-30, is shown in Figure 7.6. Daily data were used for 

1985-1990. The graph is bounded by two envelopes: one for totally overcast conditions 

and the other for cloudless days. In June there is a great difference between net 

irradiance for clear and overcast days, although values are always positive. If skies are 

cloudless, positive values of net irradiance are simulated from early March to mid

October. Much is the same on cloudy days although the magnitude is less. From mid-
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October to late February net irradiance is negative on cloudy days and is even more 

strongly negative on cloudless occasions. A clear sky allows more longwave radiation 

loss than is gained by the weak solar input. Noon solar elevation is only 11-12° at the 

winter solstice in Durham. A comparison of the two estimates shows that loooJ is 

consistently smaller than Inet<tJ· It appears that Linacre's equation underestimates 

longwave exitance, leading to a slightly larger estimate of ~et· This is especially true 

when net irradiance is negative. The difference is usually slight. In the following 

analysis Inet(2J is employed as it is based on a more detailed analysis of the individual 

radiation components. 

7.3 Comparison of the Above Model with other Energy Balance Models (EBMs) 

Validation of any simple energy balance model involves comparison with others 

such as Davies 1967, Idso et al. 1969, Cowley 1978, Katsoulis & Leontaris 1981. 

Many of these models use solar radiation input It to estimate net radiation Inet· There is 

a strong linear relationship between the two. Figure 7. 7 shows the relationship between 

It and Inet for the above model. Values have been converted toW m-2 since other models 

expressed the relationship in these units. The best-fit line is: 

Inet= (0. 74xit) -41.5 .... W m-2 ---- (33) 

The constants a and b in the equation Inet = a(IJ + b have been measured 

empirically in numerous studies (Table 7.1): 
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Table 7.1: Values of a and bin the equation relating solar with net irradiance. 

Author Year a b Area Crop 

Davies 1967 0.612 28 W.Africa Grass 

Davies 1967 0.617 24 World Grass 

Monteith & 1961 0.600 65 England Grass 
Szeicz 

Fritschen 1967 0.730 83 Arizona Various 

Berland 1970 0.630 40 World Various 

Hu & Lim 1983 0.620 9 Malaysia Grass 

Pepin 1993 0.74 41.5 England Grass 

The effect of the type of surface on a and b is considerable (Monteith & Szeicz 

1962). The values for the model created in this chapter are listed in the bottom line and 

agree fairly closely with others, although a is fairly high. Idso et al. (1968) related a 

to albedo 

a=(l-a)/(l+P) ----(34) 

a represents albedo and {J .a heating coefficient. Pavlov (1962) noted that 

a=0.81-(1.39a)+(0.45a 2 )-(0.34a 3 ) ----(35) 

An albedo of 0.2 would give a value of 0.547 for a. Finally, Linacre (1968) 

produced the equation: 

Inet=[0.93x(1-a)It] -0.14 .. . cal cm-2 min-1 ----(36) 

Ine/11 is the radiation efficiency and is generally about half, although it decreases as 11 
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decreases .. 

Another commonly investigated relationship is that between 11 and n/N, 

described by Prescott ( 1940): 

Ie/Xe=[5[a+b(n/N)]+(l-5)a•] ----(37) 

where o = 0 if n=O, and o = 1 if n>O (discussed by Cowley (1978)). X1 represents 

the extra-terrestrial sky irradiance and is calculated from astronomical tables (Linacre 

& Hobbs 1977). Monthly means of X1 were obtained for 55°N and values of I/X1 are 

plotted against n/N for the Durham data (Figure 7.8). 

The relationship between I/X1 and n/N is described by 

Ie/Xe=[0.480(n/N)]+0.24 ----(38) 

a and b again compare well with others in the literature (Table 7.2). 

Table 7.2: Values of a and b in the equation relating I/X1 with n/N. 

Author Year Location a b 

Prescott 1940 Canberra 0.25 0.54 

Penman 1948 England 0.18 0.55 

Nkemdirim 1970 Scotland 0.20 0.51 

Cowley 1978 England 0.24 0.55 

Hanna & Siam 1981 Eskdalemuir 0.19 0.62 

Katsoulis et al. 1981 Athens 0.30 0.68 

Rao & Bradley 1983 Oregon 0.23 0.52 

Pepin 1993 England 0.24 0.48 
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The temperature model produced in this chapter predicts relationships similar 

in magnitude to other models, supporting its validity. 

7.4 Calculation of Apparent Heat Capacity at Durham 

Relating estimated net irradiance to temperature change at Stevenson screen level 

allows an investigation into the efficiency of solar heating. Temperature change on any 

day was estimated by subtracting the daily minimum temperature from the daily 

maximum. The minimum was assumed to occur at dawn and the maximum to occur a 

few hours after solar noon, when 65.5% of the daily insolation had been received (after 

60% of the daylight period). If daylength is 10 hours then the maximum temperature 

is assumed to occur 6 hours after dawn or one hour after solar noon. It is the case that 

e1t/S r1t · Jo sin(x)dx/}
0 

Sln(x)dx = 0.655 ----(39) 

The heat lost (EtJ between dawn and the time of the afternoon maximum is 

Etc= (0. 6/24) xdyxEt .... J m-2 ---- (40) 

Any diurnal change in the rate of longwave radiation loss (Gruber & Chen 1988) 

was ignored. The net heat gained during this period of temperature increase can be 

expressed as: 

In is over 10 MJ m·2 on clear summer days but is usually marginally negative 

between mid-November and mid-January. The apparent heat capacity of the air, 1/;, is 

calculated by dividing the heat input In by the temperature range experienced. Dividing 
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the figure by (3600 * daylength * 0.6) the rate of heat input required in watts m·2 for 

a temperature increase of 1 oc is obtained: 

w=In/ ( (Tmax-Tmin) X (3600x0. 6xdy)) .••. w m-2 
---- (42) 

1/; for Durham is shown for 1985 in Figure 7. 9. The reason for such variation 

m 1/; is that variable amounts of In are lost to the ground (soil heat flux) or in 

convection. Convection increases the boundary layer extent which effectively increases 

the heat capacity, air being heated to a greater height above the ground. Advection will 

also subtract or add heat energy. Finally, evaporation (the latent heat flux) uses a 

considerable proportion of net irradiance in certain cases. 

On average greater energy input is required in summer when the upward extent 

of the boundary layer is larger. This is a natural response to higher amounts of 

available solar energy. The development of summer convection redistributes heat energy 

from screen level to the upper air. In contrast, very low values of 1/; occur in winter. 

Because of the virtual absence of solar radiation net irradiance is always negative, and 

yet temperatures do not systematically decrease throughout the winter months. 

Advection of heat energy is necessary to sustain temperatures, made possible by the 

transport of warmer air from the tropics to higher latitudes by extra-tropical 

depressions. The latent heat flux is also reduced. In summer, increased evaporation will 

increase 1/;. 

The scatter in 1/; is considerable at any season. Many values fall near zero in 

winter, whereas in summer there are instances when over 50 W m-2°C1 are required. 

The largest value is 73.1 W m-2oc-'. Assuming the heat capacity of dry air to be 1004 

J kg-toe-' and the mass of air to be 360 kg m-3 (equal to a boundary layer height of 300 

metres), the rate of heat input theoretically required for a 1 oc increase in screen 

temperature on any day of the year is plotted in Figure 7 .10. This varies from around 

10 W m-2oc-' in summer to 25 W m-2oc-' in winter. Lower rates are required in 

summer as the period of potential heating is longer. 1/; is nearly always higher than the 
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Figure 7.10. Theoretical Rate of Heat Input Required per deg C, 
Assuming 350 kg Air/m2 and a Heat Capacity of 1004 J/kg deg C 
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theoretical rate because not all of heat input goes into heating the air (sensible heat). 

The loss to the soil is only a small proportion of the total heat energy, averaging around 

10% of the net radiation flux (Rider & Robinson 1951, LeDrew 1975). The mean 

apparent heat capacity, Ytmean• is 16.84 W m-2°C1
, although the seasonal variation is 

much larger, mean values ranging from 29.41 W m-2°C1 in May to -1.63 W m-2oc-1 

in December. 

t/; was also calculated for Widdybank Fell (513 m), but for 1990 (Figure 7.11), 

and was found to be consistently higher than at Durham. Exceptionally high values of 

t/; occur at both locations, but especially at Widdybank Fell, when the apparent rate 

required exceeds 100 W m-2oc-' on a few occasions. These may be occasions with snow 

cover. The type of snow is important (Pennell 1992). Much radiant energy is used in 

melting the snow (McKay & Thurtell 1978, Ohmura 1982), depressing temperature 

response to irradiance (Dewey 1977). Another reason for inefficient conversion of solar 

energy into temperature change is strong advection of cold air associated with northerly 

winds. 

The great variety of values of t/; in Figures 7. 9 and 7.11 can be explained by 

reference to the following factors: 

1. Albedo is parameterised very simply as a step function. In reality this is simplistic. 

For example, the type, age and depth of snow all affect its albedo. Changes in surface 

albedo will mean that actual irradiance absorbed, Ib, will not be as calculated in the 

model. 

2. Advection is not taken into account. It would be rare for air to be still enough for 

a long enough period that all net radiation over the course of a day goes into heating 

one particular air pocket. Conditions approximate to this ideal in sheltered hollows and 

resulting changes in temperature can be amazingly rapid. Otherwise air movement 

decreases heating or cooling rates by replacing air with colder or warmer air. t/; is high 

on days with strong winds. 
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3. Convection, if it occurs, increases the apparent heat capacity by redistributing heat 

upwards from screen level. This explains the seasonal trend in 1/;, with a peak in 

summer. For similar reasons 1/; is expected to be high for unstable airstreams. 

4. Not all net radiation is used in heating the air. Partitioning between air and soil is 

crucial. Melting of snow and evaporation of water from the ground surface requires 

heat energy. The state of the ground surface should therefore enter the model. Humidity 

and wind speed are required to estimate the cooling effects of evaporation. 

5. The lag between radiation input and temperature response causes more variation in 

1/;. Analysis of annual temperature variation at Durham and Widdybank Fell shows an 

approximate lag of one month between maximum radiation inputs around the summer 

solstice and the highest temperatures in late July (Pepin 1992) (Chapter 10). There is 

also a lag on a shorter timescale and it is difficult to know for which period of the day 

net radiation input and temperature change should be compared. 

6. Humidity will affect 1/; since humid air has a higher heat capacity than dry air. 

7. Isobaric warming and cooling is assumed (constant pressure). Pressure changes, 

however small, will affect 1/; since the heat capacity of dry air at constant volume is not 

the same as the heat capacity of dry air at constant pressure. 

If it were possible to take all possible factors into account, temperature changes 

might be estimated directly from radiation estimates derived solely from astronomical 

parameters and meteorological data. This is not practical and, alternatively, the apparent 

heat capacity must be predicted from sunshine, snow cover, cloud, humidity, air 

quality, state of ground, absolute temperature and wind data. The effect of altitude on 

1/;, is implied by comparing Durham and Widdybank Fell. Net longwave exitance 

usually increases with altitude (Fliri 1971) as does direct solar radiation (Harding 

1979b, Lowry 1980, Olecki 1989). However net irradiance values usually decrease and 

the efficiency shows a similar decrease (Voloshina 1966). The precise form of this 

decrease is little known. 
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7.5 Variation in Apparent Heat Capacity (if;) at Durham (Lowland) and 

Widdybank Fell (Upland) 

The apparent rate of heat input required (yY m-2oC1) at Durham for each day 

between 1985 and 1990 (if;) was plotted against actual temperature range achieved on 

the same day (Figure 7.12). The graph is bounded by two envelopes which indicate 

extreme temperature ranges achieved given a certain rate of heat input. For example, 

if the apparent heat capacity is 50 W m-2oc-1
, then the daily range will fall between 

zero and approximately 6°C, the higher value suggesting a rate of heat input of 300 W 

m-2• Data points in region A show evidence of advective warming as negative net 

radiation still leads to a temperature increase. In many cases with negative net radiation 

the daily minimum does not occur at dawn and the maximum does not occur just after 

solar noon, as assumed in the calculations. This throws doubt on the validity of these 

cases. 

Similar data plotted for Widdybank Fell (513 m) are shown in Figure 7 .13, for 

1990 only, due to restricted data availability. Temperature ranges are lower and if; is 

higher, especially in a few exceptional cases (one value over 150 W m-2°C-1
). Greater 

cloudiness, higher wind speeds, higher humidity and more frequent snow cover are 

expected to lead to lower diurnal temperature ranges given a similar net radiation. 

Altitude will increase if; on average, and this is supported by a decrease in mean daily 

temperature range with altitude in many areas up to 3000 m (Linacre 1982). 

The next section attempts to predict if; from given meteorological controls. 

7.5.1 Wind Direction 

if; is plotted against wind direction at Durham in Figure 7 .14. Wind direction is 

expressed as a clockwise veer from north to the nearest 10°, divided by 10. The scatter 

of -./; is disappointingly large within each wind direction class, showing that many 

variables other than wind direction are important. 
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Figure 7.13. Apparent Heat Capacity,~, versus Daily Temperature Range 
Widdybank Fell (1990) 
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Figure 7.14. Apparent Heat Capacity,~, versus Wind Direction 
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It may be expected that the more southerly the airflow the lower the mean value 

of 1f, since in the northern hemisphere winds from the south are usually relatively 

warm. In Durham 1f is often highest for north-easterly airflows, because of cold air 

advection from the North Sea. In Figure 7.14, the effects of wind direction were 

averaged over the whole year whereas advective effects of a particular airflow can vary 

according to season. Separate graphs are shown for mid-season months in Figure 7.15. 

In January 1f clusters around zero, values being more strongly negative when 

winds have an easterly component. Large negative values imply negative net radiation 

(usual in winter) with little surface temperature response. In the other three months 1f 

is always positive since net radiation is positive during the day. Strong advection of 

cold air may account for higher values for winds between north and east in April and 

from a more northerly direction in July. Airflows with a southerly component show low 

values of 1f as do calm conditions. In summer, some westerly winds also seem to be 

associated with advective cooling, although the contrast between airflows is not very 

marked. There is little pattern in October although a few high values of 1f occur, 

especially for easterly flows. In the spring months the contrast in solar efficiency 

between southerly airflows and northerly ones is at its strongest, perhaps due to the 

strong meridional temperature gradient at this season (Lamb 1950, Manley 1952). 

Table 7.3 summarizes 1f at Durham by wind direction and month. Some figures 

are less reliable, based on only 1 or 2 days' data. 

The seasonal increase in 1f is dominant, summer (April to August) values 

approximating 25-28 W m-2oC1
• These values are slightly less than those of Bagnall 

(1982), who pointed out that the dividend of monthly mean I/T values in Australian 

cities is about 30 W m-2oc-1
• Values fall well below this in winter because of lack of 

insolation and the importance of warm-air advection. Because temperature rise is 

calculated by subtracting the daily minimum temperature from the daily maximum, this 

value will be positive even if temperatures decrease throughout the day. Temperatures 

in winter are not strongly affected by time of day. Maximum temperatures often occur 

at night. Air mass is a more important predictor of surface temperature than insolation 
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Table 7.3: Apparent Heat Capacity (1/;) at Durham (1985-1990), W m-2oc-1• 

wind JAN FEB MAR APR MAY JUN 

CALM -3.83 3.91 12.15 19.53 21.45 22.80 

N -4.85 7.93 21.37 25.91 28.66 27.30 

NE -4.37 4.57 23.36 32.02 28.66 32.37 

E -6.29 6.58 15.10 31.67 26.89 26.50 

SE -7.43 3.22 18.82 27.78 26.32 23.62 

s -2.60 4.91 13.58 20.82 20.90 22.74 

sw -0.43 6.47 17.34 20.50 28.40 27.04 

w -0.14 9.71 20.40 26.10 36.62 32.92 

NW -3.60 9.61 16.59 26.52 25.35 26.55 

MEAN -2.50 6.84 17.20 25.20 27.40 26.90 

JLY AUG SEPT OCT NOV DEC MEAN 

21.47 20.59 13.53 8.30 1.02 -3.14 10.30 

32.30 28.54 20.80 10.80 -1.57 -5.78 21.05 

28.13 70.58 15.96 16.22 -0.21 -5.61 22.06 

24.88 32.03 18.57 15.54 -1.03 -3.95 17.79 

24.05 13.70 12.97 11.64 4.60 -4.10 12.78 

23.60 22.09 14.80 10.66 2.06 -2.06 11.83 

28.86 26.69 18.28 12.03 1.08 -3.11 13.86 

29.59 27.99 21.15 13.03 1.36 -3.19 16.68 

28.14 25.93 18.05 11.71 0.81 -5.64 15.57 

27.48 25.78 17.80 11.48 0.95 -3.51 15.12 

and attributing all the temperature rise to solar influences leads to low, but erroneous, 

values of 1/;. 

Advection causes 1/; for some wind directions to differ markedly from the 

seasonal average, e.g. north-easterlies and easterlies in spring and summer. Mean 
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values over 30 W m·2°C1 are recorded in April and June (for north-easterlies), 

indicative of cold-air advection. Occasionally, south-westerlies and westerlies show high 

apparent heat capacities (e.g. in May and June), the reason for which is unclear. The 

extreme value of 70.58 W m-2 oC-1 for north-easterly flow in August is based on one day 

only and is unreliable. Annual mean capacities are 22.06 W m·2°C1 for north-easterly 

flow, and 11.83 W m-2oC-1 for southerly flow. Values on calm days average 10.30 W 

m·2oc-1
, highlighting the effectiveness of solar input when conditions are calm. Mean 

values of 1/; for southerly airflows are much less than for northerly ones. 

A northerly wind component (n) was derived to represent the "northerliness" of 

an airflow. This consisted of the magnitude of the meridional vector of the surface wind 

(i.e. in the north-south plane): 

n=cos [ (7t/18) xw] ---- (43) 

where w is the surface wind direction. n ranges between 1 for a northerly wind and -1 

for a southerly wind. Values for easterlies and westerlies are zero. The northerly 

component is used in the multiple regression in section 7.6 (for predicting 1/;). 

1/; was also examined at Widdybank: Fell (513 m) for 1990. The overall average 

is 22.65 W m·2 °C1 as opposed to 13.78 W m-2 oc-1 for Durham (in that year), because 

of the windy exposed nature of Widdybank: with higher humidities and wind speeds, and 

greater cloud cover. Values of 1/; associated with calm conditions average 22.31 W m·2 

oc-1, higher than the mean for Durham, presumably an effect of altitude. It is 

surprising that efficiencies under calm conditions in 1990 do not appear to be much less 

than on other occasions, at least at Widdybank: Fell. 

7.5.2 Wind Speed 

1/; is plotted against mean daily wind speed in Figure 7 .16. Wind speed was 

measured in knots at an effective height of 16 metres (Goldie 1992). As wind speed 
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increases, solar efficiency (proportional to 111/;) first decreases at low wind speeds due 

to the increased importance of advection and evaporation. However, at the highest wind 

speeds 1/; appears to drop. Individual values are extremely irregular. The strongest 

winds occur as gales from the Atlantic and are also the strongest contributors to 

advection of warm air in winter. Highest wind speeds at Durham are always recorded 

in winter (December to February), usually from a westerly or south-westerly direction 

(Pepin 1993), and this would explain the tendency towards lower values of 1/; at the 

highest wind speeds. 

7 .5.3 Snow Cover 

The presence of snow cover should increase 1/; for three reasons: 

1. The high albedo will reduce the proportion of irradiance contributing to temperature 

rise by reflecting 70-80% of the incident solar energy back to the atmosphere (the 

variation in albedo is only crudely accounted for in this model); 

2. Net irradiance will be used to melt snow as well as to heat the ground and air 

(Aguado 1985). Melting and subsequent evaporation of surface meltwater require 

absorption of latent heat; 

3. Snow insulating the ground surface will reduce heat transfer from ground to air. Air 

temperatures over snow cover will be depressed (Dewey 1977). 

1/; was calculated at Durham for occasions of snow cover and occasions without 

(Figure 7 .17). Required heating rates are lower than expected when there is a snow 

cover (snow depth is greater than zero). This is because snow cover occurs in winter 

when the apparent solar efficiency is already high. Table 7.4 gives mean values of 1/; 

for days with and without snow cover, for the whole year and in certain months (to 

eliminate seasonal effects). 
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Figure 7.17. Apparent Heat Capacity, lp, versus Snow Depth, 

Durham 1985-1990 
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Table 7.4: Mean (x) and standard Deviation (s) of 1/; for days with and without snow 
cover (Durham), W m-2 oC-1• 

Period With Snow Cover Without Snow Cover 

-n X s n X s 

Annual 101 1.22 10.20 2090 15.79 14.09 

Jan-Mar 88 1.82 10.69 452 8.21 11.40 

January 40 -5.93 7.70 146 -1.56 3.47 

Statistical significance testing of mean differences using the two-sample t-test 

shows that the mean efficiencies are different at the 5% level, even when January 

values alone are considered. The 95% confidence interval for the difference in January 

means is 4.37 +/- 1.65. For a discussion see Siegel (1988). Thus the presence or 

absence of snow cover in January accounts for a significant difference in ,j;. The 

contrasting sizes of the two groups do not aid comparison. Part of the contrast in the 

means in the annual case could be due to the seasonal contrast in the two groups of 

days, those with snow cover only occurring in winter. The January comparison 

eliminates this cause and yet there is still a significant difference (at 5%). 

Similar analysis was carried out for Widdybank Fell for 1990 where the number 

of days with snow cover was a larger proportion of the total. The two group means are 

significantly different at the 5% level for annual readings and for those in January

March (but only just). However, January means for days with snow cover and those 

without are not significantly different at the 5% level. 

7.5.4 Solar Elevation (Season) 

Noon solar elevation varies systematically from around 11 o at the winter solstice 

to nearly 60° in mid-summer. Solar elevation can therefore be used as a proxy for 

season. It has already been remarked that the seasonal variation in 1/; is strong, peaking 

in summer because of the convective extension of the boundary layer and increased 

evaporation. Figure 7.18 shows a strong positive correlation between solar elevation 
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Figure 7.18. Apparent Heat Capacity,~. versus Noon Solar Elevation 
Durham C1985-1990) 
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and 1/;. Such seasonal variation swamps variation due to wind speed and direction. 

7.5.5 Relative Humidity 

A negative relationship between relative humidity and 1/; is supported by Figure 

7.19. When relative humidities are low the value of 1/; tends towards 20 W m·2oC-1• As 

humidities increase, 1/; decreases but there are also some extremely high values, i.e. 

variability increases. Nearly all negative values occur when relative humidities are 

above 0. 7. The negative relationship is formed because of the strong inverse 

relationship between relative humidity and noon solar elevation. Relative humidities are 

consistently higher in winter when 1/; happens to be low anyway. 1/; may be expected to 

increase with increasing relative humidity because of the greater heat capacity of moist 

air, all other things being equal. A decrease in evaporation rate at high humidities could 

outweigh this. A decrease in 1/; with increasing humidity occurs because the seasonal 

variation in 1/; swamps that due to relative humidity. 

7.6 Regression Analysis to Predict 1/; from Meteorological Elements 

A multiple regression model was developed to predict 1/; from wind speed (u), 

noon solar elevation (p,, representing the time of the year), relative humidity (rh) and 

the northerly wind component (n). One problem is the existence of collinearity between 

solar elevation and relative humidity (correlation of -0.47) and between wind speed and 

solar elevation (less serious). This explains why the coefficients of all three factors are 

positive in the multiple regression equation (i.e. that of humidity has changed sign). All 

four factors are significant, together producing a corrected R2 value of 0.67. The 

equation is as follows: 

w=(0.726~)+(0.471u)+(10.09rh)+(1.310n)-21.44 ----(44) 

This equation implies a decrease in apparent solar efficiency (increase in 1/;) of 0. 726 

W m·2°C1 for a 1 o increase in noon solar elevation, a decrease of 0.471 W m·2°C1 for 
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an increase in wind speed of 1 knot, a decrease in efficiency of 10.09 W m·20C"1 for 

an increase in relative humidity of 1%, and a decrease in efficiency of 1.31 W m-2oc-1 

for an increase in the northerly component of 1. The constant of -21.44 is physically 

meaningless, referring to completely dry still air with a solar elevation of zero. 67 % 

of the variation in solar efficiency is explained by reference to season, relative 

humidity, wind speed and direction. 

7. 7 Conclusions 

In this attempt to predict the efficiency of the conversion of net irradiance into 

surface temperature response at Durham, 33% of the variation in 1/; is left unexplained. 

The physical temperature model allows estimation of net radiation when a solarimeter 

is not available. Examination of the factors which govern the transfer of this net 

radiation to heating of the ambient air aids prediction of surface and ground temperature 

response to radiation fluxes. The mass of values of 1/; in Figures 7.9 and 7.11 shows 

that the conversion of net radiation flux into temperature change on an individual day 

is not simple. However, the use of the regression equation predicting solar efficiency 

from meteorological factors allows conversion of net radiation estimates to temperature 

change. The effect of altitude in decreasing solar efficiency is as expected. 

Further refinement of the physical model would require inclusion of evaporation 

estimates from equation 6 (Penman 1948), partitioning of the remaining sensible heat 

flux between the soil and the air, and a numerical estimation of advection (Mcilveen 

1991). This physical approach has told us much about temperature response to 

irradiance at a single location but little about contrasts in temperature from place to 

place. Additionally, it is inappropriate in mid-latitudes to relate absolute temperature, 

rather than daily temperature range, to net irradiance (see Walter 1969, Bagnall 1982). 

However, the model allows one to focus on the physical controls of air temperature and 

the varying response to different forcing factors at high and low altitude. 
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REGRESSION MODELS FOR ESTIMATING DAILY MAXIMUM AND 
MINIMUM TEMPERATURES IN THE NORTH OF ENGLAND 

8.1 Introduction 

As intimated at the end of chapter 6, the lapse rate analysis is extended here 

through use of multiple regression to investigate spatial patterns in surface air 

temperature using 22 stations. The fundamental influence of location (as measured by 

latitude, longitude and altitude) is stressed. Regression analysis is based on correlation 

between variables. If coefficients in the regression equations are to have physical 

meaning, the correlations must make physical sense and care must be taken to avoid 

collinearity (strong correlations between controlling variables). 

Temperatures nearly always decrease with altitude in the free air because of 

increasing distance from the effective heat source (De Saussure 1796, Barry 1978). 

Temperature decrease with altitude at ground level is strongly influenced by the 

temperature of the free air at similar levels and also decreases (McCutchan 1983, 

Richner & Phillips 1984). Temperature also decreases with increasing latitude because 

of the decrease in incoming solar radiation. Temperatures may decrease or increase 

with increasing longitude, depending on the effects of the local land-sea configuration 

and continentality effects. The regression analysis is based on these relationships and 

attempts to separate the effects of each in accounting for the spatial variation of surface 

temperature. 

8.2 Multiple Regression Analysis 

Multiple regressions of daily maximum and minimum temperatures on altitude, 

latitude and longitude were calculated for each calendar month using data from 1985 

to 1990 inclusive: 
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Max(X)VMin(~=(axalt)+(bxlat)+(cxlng)+constant ----(1) 

Data from the 22 climate stations listed in Chapter 4 were used. Altitude ranges 

from 8 m (Eskmeals) to 847 m (Great Dun Fell). The altitude of Great Dun Fell is an 

outlier, the next highest value being 513 m (Widdybank Fell). Longitude and latitude 

were derived from six-figure grid references (Chapter 4). Latitude ranges from 84.7 

(Carlton-in-Coverdale) to 195.5 (Redesdale) and longitude from 9.1 (Eskmeals) to 

150.9 (Carlton-in-Cleveland). The number of days used in each regression is variable 

(Table 4.5), individual totals ranging from 1 for north-easterly flow in August to 49 for 

south-westerly flow in January. In general the regressions for progressive airflows 

(westerly and south-westerly directions) are expected to be much more stable than those 

for flows with an easterly component because of the greater frequency of observations 

in the former case. 

8.3 Results: Maximum Temperatures 

8.3.1 Seasonal Effects 

Table 8.1 gives regression coefficients in each month, along with the constant 

term and R2
, which describes the goodness of fit of the regression. Values of the 

altitudinal coefficient (a) are in oc/km while values of the latitudinal (b) and 

longitudinal (c) coefficients have been multiplied by 1000 and are in °C/1000 km. 

The altitudinal coefficient (representing the mean lapse rate) is plotted against 

month in Figure 8.1. Values range from -9.48°C!lrni in March to -6.85°C/Irnl in 

December. The peak in altitudinal temperature gradient in spring is supported by 

Manley (1942, 1943), Harding (1979a) and Green & Harding (1980), and is usually 

attributed to the high frequency of unstable polar maritime air at this season. 
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Figure 8.1. The Monthly Variation of the Altitudinal Coefficient 
CRepresentative of Lapse Rate) in the Multiple Regression Equations 
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Table 8.1: Altitudinal, latitudinal and longitudinal coefficients in the monthly 
regressions of daily maximum temperatures. 

a b c const R2 

J -7.30 -0.21 2.13 6.43 0.935 

F -8.55 0.23 0.85 7.00 0.942 

M -9.48 0.13 4.46 9.12 0.932 

A -8.89 -2.97 -1.57 12.22 0.899 

M -8.00 -6.86 -7.37 17.17 0.805 

J -8.23 -7.41 -2.46 19.07 0.782 

J -7.80 .-6.35 7.46 20.12 0.813 

A -8.86 -2.36 11.72 18.30 0.910 

s -8.51 -4.10 10.13 16.61 0.928 

0 -7.65 -2.97 4.28 13.90 0.936 

N -7.37 -0.74 0.83 9.14 0.920 

D -6.85 -0.94 2.69 8.15 0.927 

YEAR 

a is only -6.85°C/km in December and -7.30°C/km in January. The altitudinal 

decrease in temperature is shallower in winter because of the influence of temperature 

inversions. Valley bottoms are often colder than slopes at higher elevations. The 

variation of temperature with altitude can on occasions become curvilinear, with a 

turning point at the inversion (Figure 8.2). Under such conditions cloud can be trapped 

by the inversion, with cloud-free conditions above (Manley 1947). In areas where 

inversions form regularly, the altitudinal band which benefits from relatively high 

temperatures is known as a "thermal zone" (Chickering 1884, Dunbar 1966) and can 

be of great importance for fruit growers. 

The mean altitudinal effect on temperature is also reduced between May and July 

when solar input is strong. Heating of upland plateaux in high summer has been 

documented for high altitude areas such as the Himalayas (Yeh 1982, Chen et al. 
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1985), Rockies (Barry 1973, Tabony 1985) and the Altiplano of South America (Flohn 

1953). The heating of the upland atmosphere is noticeable under calm and cloud-free 

conditions. Higher levels of solar radiation received at high altitude (Lowry 1980) can 

lead to surprisingly high summer temperatures, especially at the ground surface {Turner 

1958). The importance of calm sunny weather in upland areas must not be 

underestimated in terms of the potential for agricultural cultivation at high altitude, 

especially in maritime areas such as Britain (Manley 1942). 

Figure 8.3 plots a, b and c against month. b is nearly always negative, 

indicative of an increase in temperature from north to south. Values range from 

+0.13°C/1000 km in March to -7.41 oC/1000 km in June. The meridional temperature 

gradient is therefore strongest in summer and weakest in late winter (February-March), 

when the altitudinal effect is strongest. The meridional gradient in solar radiation is 

greatest in winter so it is unexpected that isotherms run more nearly east-west in 

summer. Winter temperatures in northern England bear little relationship to solar input 

because of widespread advection of warm air from the Atlantic. Latitude therefore 

becomes unimportant. 

c fluctuates widely throughout the year. A negative value implies a decrease in 

temperature from west to east. Throughout winter (from October to March) c is weakly 

positive, averaging around +rC/1000 km, there being a slight increase in temperature 

of about 0.5°C between the west and east coasts. The width of northern England is 

assumed to be 250 km. From April to June c turns negative, falling to -7.37°C/1000 

km in May. Sea surface temperatures are relatively cold in early summer, especially 

so off the east coast. Additionally, easterly winds are common at this season. Under 

such circumstances cold air advection from the east causes a strong reduction of 

temperatures in the east of the region. From July to September c becomes positive, 

reaching + 11. 7rC/1000 km in August. Associated with this increase is a warmer sea 

surface off the east coast coupled with a reestablishment of a more westerly circulation 

in many years. 
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8.3.2 Airflow Effects 

Airflow direction is extremely important in explaining spatial temperature 

distribution on any one occasion. The three coefficients are plotted against wind 

direction (Figure 8.4) for nine further regressions. Values of a are shown in Figure 8.5, 

varying from -6.89°C/km for south-easterly flow to -8.73°C/km for both westerly and 

easterly flows. Mean lapse rates are steeper when flow is from the west or east, i.e. 

across the Pennine range. Airflows perpendicular to the relief trend therefore undergo 

more temperature modification than airflows parallel to a mountain range. Fohn effects 

are more likely to develop in the former case, distinguishing windward and lee slopes. 

Meridional airflows are associated with a shallower altitudinal gradient in 

maxima, especially those from the south and south-east. Warm air moving north will 

often be cooled from below, creating a weak lapse rate in its lower layers. Southerly 

flows consistently show a lower altitudinal coefficient than northerly flows. 

Additionally, southerly and south-easterly flows are often associated with stable 

anticyclonic conditions. 

a is also low when conditions are calm, showing that upland areas benefit in 

such conditions. On windy days wind speeds can increase dramatically with altitude, 

reducing maxima further at high elevations. Under calm conditions this is not so and 

in winter, temperature inversion formation below the highest mountain summits is 

possible (Pedgley 1979). 

b is always negative but is weakest for southerly and south-westerly flows. It 

appears that advection of warm air in winter prevents a strong meridional temperature 

gradient from developing. b is highest under easterly flows. Calm conditions also allow 

the development of a considerable gradient ( +4.33°C/ 1000 km). 

The longitudinal coefficient c (Figure 8.4) varies from nearly -20°C/1000 km 

to over + l0°C /1000 km. Temperature increases with longitude for winds between 

south and north-west. These airflows are often associated with progressive cyclonic 
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Figure 8.5. Variation of the Altitudinal Coefficient in the Daily Maxima 
Regressions According to Airflow Direction 
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flow, depressions passing from west to east over Britain. A decrease of temperature 

with longitude is experienced under northerly and easterly flows, common under 

blocked regimes. The cold advection of air from over the North Sea by north-easterly 

flow encourages a decrease of 5 oc between the west and east coasts. Even steeper 

gradients are probable between April and June when the sea is cool relative to the land. 

8.3.3 Combined Seasonal and Airflow Effects 

Seasonal changes in a, b and c are different for differing airflows. 108 multiple 

regressions were calculated, one each for the nine wind classes in each month. Three 

regressions were considered less reliable as there was no data for Great Dun Fell. The 

effects of leaving a data point out of a regression are investigated in section 8.6. 

Table 8.2 gives the altitudinal coefficient, a, in each regression. Underlined 

values were derived from 21 stations only. Altitudinal (a), latitudinal (b) and 

longitudinal (c) coefficients are given in Appendix 5. 

Table 8.2: The altitudinal coefficient, a, (°C km-1
) for each airflow in each month. 

a c N NE E SE 

J -5.78 -8.43 -10.48 -6.87 -6.87 

F -7.76 -10.17 -9.12 -9.09 -10.20 

M -10.27 -9.15 -8.03 -7.81 -8.88 

A -7.01 -9.30 -8.74 -10.25 -9.73 

M -7.09 -7.69 -7.61 -7.35 -3.59 

J -7.00 -7.39 -7.92 -11.25 -7.01 

J -4.81 -7.87 -7.47 -6.57 -4.15 

A -9.44 -7.95 -6.56 -8.20 -8.72 

s -8.28 -8.38 -7.68 -7.01 -7.20 

0 -6.26 -7.32 -9.04 -8.48 -8.51 

N -7.51 -8.12 -8.84 -9.07 -8.37 

D -6.00 -9.23 -8.42 -10.46 -6.87 
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Table 8. 2: continued 

a s sw w NW MEAN 

J -7.03 -7.76 -7.72 -7.63 -7.30 

F -7.44 -8.29 -8.86 -8.77 -8.55 

M -9.33 -9.18 -9.80 -9.99 -9.48 

A -7.52 -8.87 -9.80 -9.45 -8.89 

M -7.74 -9.37 -8.74 -8.74 -8.00 

J -8.48 -8.62 -9.07 -9.21 -8.23 

J -7.89 -9.18 -8.41 -8.30 -7.80 

A -8.62 -9.38 -9.46 -8.54 -8.86 

s -8.41 -8.28 -9.46 -9.21 -8.51 

0 -7.45 -7.86 -8.57 -7.97 -7.65 

N -6.41 -6.89 -7.42 -8.13 -7.37 

D -6.17 -6.42 -7.99 -5.67 -6.85 

8.3.3 i) Altitudinal Coefficient 

The seasonal variation in altitudinal coefficient varies according to airflow. a is 

plotted against month in Figure 8.6 using the wind direction class as the symbol. The 

solid line represents the mean altitudinal gradient in each month with equal weighting 

for each wind direction (different from the values shown in Figure 8.1). Lapse rates 

over -l0°C/km are shown for some easterly and northerly flows in winter. Such 

superadiabatic lapse rates may be related to instability developed over the North Sea in 

cold polar continental air. Values for south-easterly flow (4) are extremely irregular. 

In May, -3.59°C/km is exceptionally low and the value in July is only -4.15 °C/km. 

These rates are based on very few observations. 

Easterly flows (3) show steep lapse rates in spring and early summer, with 

-11.25°C/km in June and -10.25°C/km in April. From July to November mean lapse 

rates are below -9°C/km. North-easterly flow (2) behaves unusually, in that a 
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Figure 8.6. Variation of the Altitudinal Coefficient in the Daily Maxima 
Regressions According to Month and Airflow Direction 
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superadiabatic rate is experienced in January but values from May to September are 

below -8°C/km. Instability of north-easterly flows in winter probably arises due to 

warming of intensely cold air leaving Eurasia. Warming of surface layers will increase 

the lapse rate with intensely cold air aloft. In contrast, air in summer from Eurasia and 

Scandinavia is cooled as it moves towards northern England, leading to greater stability. 

In summary, superadiabatic lapse rates seem likely with blocked conditions in winter, 

spring or early summer. 

Northerly flows (1) are similar to north-easterlies in that they show steepest 

lapse rates in winter and early spring. Cold arctic air moving south in winter and spring 

will warm and develop instability. By summer, long hours of sunshine in the Arctic 

mean that the air is not much colder than polar maritime air and northerly outbreaks 

become relatively stable. 

Not all airflows show steepest lapse rates in winter. The normal pattern for 

southerlies (5), south-westerlies (6) and westerlies (7) is for winter rates to be shallower 

than spring and summer ones. For example, rates for southerly (5) flow peak in March 

and between June and September. Southerlies are often associated with tropical 

maritime air. In summer this appears to become unstable as it is heated rapidly. The 

December rate is only -6.17°C/km. Air moving north is often subject to cooling from 

beneath and temperature inversion formation is possible, especially if the flow is weak. 

The annual cycle of lapse rates for south-westerlies (6) peaks in March-May and July

August with a slight decrease in June. Westerlies (7) show the double peak and trough 

pattern with peaks at the equinoxes and troughs at the solstices (described in Chapter 

5). The trough in summer is weak. Lapse rates are usually steep with westerly flow, 

i.e. higher than the monthly average. Because south-westerlies and westerlies are the 

most common airflows the "double peak and trough" pattern extends to the mean 

monthly lapse rates (solid line in Figure 8.1). North-westerlies (8) are usually 

associated with unstable polar maritime air and the steep rate (nearly -10°C /km) in 

March is expected. 

Calm conditions (0) are associated with some interesting results. In late autumn 
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and winter (when solar input is low), a is also low, because of the tendency for 

radiation inversions. Since daily maxima are being used to derive the lapse rate, the 

effects of inversions must last throughout the day on many occasions to account for 

this. Calm conditions produce some of the lowest rates, including -5. 78°Cikm in 

January. Mid-summer values are also low, e.g -4.81 °Cikm in July, indicating the 

effectiveness of heating in the upland atmosphere under calm conditions with a strong 

radiation input. Advection of the free air is limited when conditions are calm and high 

maxima occur. 

The variation of a in Figure 8.6 is summarised in Table 8.3: 

Table 8.3: Annual trends in mean lapse rates for differing airflows 

Wind Annual Lapse Rate Cycle 
Direction 

NINE Peak in winter- more stable in summer 

ElSE Very irregular. Some extremely high and low values. 
Superadiabatic rates most common with easterlies in winter and 
spnng 

s Stable, especially in winter 

sw Less stable than southerlies. Winter minimum 

w Consistently high lapse rates, especially around the equinoxes. 
Lower at the solstices 

NW Peak in spring -trough in winter 

CALM Shallow rates due to temperature inversion in winter and 
upland heating in summer. Spring and autumn have higher 
lapse rates 

8.3.3 ii) Latitudinal Coefficient 

Results for the latitudinal coefficient, b, are shown in Figure 8. 7. The latitude 

effect is more negative in summer than winter. This is unusual since the increase in 

daylength with latitude in summer may be thought to decrease the meridional 
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Figure 8.7. Var1ation of the Latitudinal Coefficient in the Daily Maxima 
Regressions According to Month and Airflow Direction 
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temperature gradient. Instead continental influences ensure that the gradient is stronger 

in summer. Duncan (1991) compared the Central England Temperature series with a 

record of similar length at Edinburgh. Temperature differences were greatest in 

summer, indicating a stronger latitudinal temperature gradient. The south of England 

is more continental than the north and the coldest winters at sea level occur in the 

south-east midlands (Manley 1952). Therefore from November to March b is sometimes 

weakly positive such as for south-easterly (4) flow in February. In such cases, 

proximity to the continent is the important factor. Southerlies (5) are associated with 

positive values of b from September to April. 

The steepest latitudinal temperature gradients are associated with easterly flow 

(3), especially in summer (e.g. -26°C/1000 km). This gradient only applies within the 

study area. Calm conditions also encourage steep temperature gradients between May 

and July when solar input is strong. If summer conditions were to become more 

frequently anticyclonic, with much more continental air from the east or even north

east, the latitudinal temperature gradient would increase, southern England becoming 

considerably warmer than the north. Alternatively, progressive summers with winds 

from the south-west or west (Lumb 1993) would increase the latitudinal temperature 

gradient. 

The latitudinal effect for westerlies (7) is positive in March but negative all the 

rest of the year (weaker than -5°C/1000 km). South-westerlies (6) show the most 

negative values in summer but from October to April b is positive or negligible, 

suggesting an increase in temperature in the north under outbreaks of tropical maritime 

or returning polar maritime air. Northerly (1) flow on the other hand is associated with 

steep negative gradients, reaching nearly -l0°C/1000 km between May and August. 

North-westerlies (8) are anomalous as values of b reach their most negative in winter. 

Finally, calm (0) conditions allow a marked latitudinal decrease in summer 

maxima, bin June reaching -15.9°C/1000 km. Values from November to February are 

negligible or weakly positive. The continental nature of the southern part of the region, 

low daytime maxima occurring under calm conditions in winter accounts this. 
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It is reassuring that b shows regular patterns with wind direction. However, 

altitude accounts for most of the variation in maximum temperature and b (along with 

c) explains only a small proportion of the overall variation. 

8.3.3 iii) Longitudinal Coefficient 

The longitudinal coefficient (c) (Figure 8.8) shows a much more consistent 

relationship with wind direction. Westerly (7) and south-westerly (6) flows consistently 

produce the strongest west-east temperature increases, while north-easterly (2) and 

easterly (3) flows produce the strongest west-east temperature decreases. Daytime 

maxima increase away from the onshore coast (to the west if winds are easterly and to 

the east if winds are westerly). The pattern of c associated with each airflow direction 

over the course of the year is very marked even though longitude is relatively 

unimportant in explaining temperature variation as a whole. 

Calm conditions (0) are associated with a negative gradient (temperature increase 

to the west) in the early part of the year but a positive gradient from July onwards, 

reflecting the fact that the North Sea is cooler than the land from February to July, but 

warmer from August to January. The east of the region is relatively cold in spring and 

warm in late summer and autumn. The seasonal variation in c is subdued for calm 

conditions relative to other airflows because the longitudinal effect depends solely on 

horizontal advection, controlled by airflow movement. 

Northerlies (1) show negative values of c, i.e. a temperature decrease to the 

east, except in November and December when the North Sea is relatively warm. In 

May and June values approach -20°C/1000 km, equivalent to a decrease of 5°C from 

the west to the east coast. North-easterlies (2) have a more pronounced effect. The 

gradient in May reaches -38.5°C/1000 km, equivalent to a 10°C difference between 

the west and east coasts. Easterlies (3) show a similar pattern. Advective cooling in the 

north-east is therefore one of the major features supported by Figure 8.8 (see Caton 

1957, Catchpole 1966). 
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F1gure 8.8. Variation of the Longltudinal CoeffiClent in the Da1ly Maxima 
Regressions According to Month and Airflow D1rect1on 
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South-easterlies (4) are unusual in that they show a sudden change from negative 

values of c in May and June to positive ones in July and August. Southerlies (5), south

westerlies (6), westerlies (7) and north-westerlies (8) show positive longitudinal 

coefficients with higher maximum temperatures in the lee of the Pennines. The steepest 

gradients are seen in late summer (especially July, August and September) and the 

shallowest in winter when air crossing the cold land surface has little opportunity to be 

warmed. The increase from west to east is less for north-westerlies (8) than for the 

other progressive airflow directions. Values peak at + 12.4°C/1000 km in July as 

opposed to +21.7°C/1000 km for south-westerlies in the same month. 

Whatever the wind direction, from November to January c is negligible. 

Westerlies produce the highest values in December and January but these are still low, 

e.g. +4.9°C/1000 km in December. 

8.3.3 iv) The Success of the Regressions 

Figure 8.9 assesses the overall success of the 108 multiple regressions by 

presenting R2 values, i.e. the proportion of temperature variation explained by altitude, 

latitude and longitude combined. Values over 0.9 (90% explanation) are common, 

especially from September to April. During these eight months even the worst R2 values 

are around 0.8 (for calm conditions). Local temperature inversions are the problem, 

meaning that local factors need to be taken into account. From May to August R2 is 

often poorer. Solar input is extremely important but is local in its effects. On a day of 

intermittent cloud cover, wherever the sun shines maximum temperatures will be raised 

considerably above those of neighbouring stations. This local heating is most important 

when air is calm and when the circulation is slack (often south-easterly flow). Hence 

the low R2 for these categories in May, June and July. In spring and autumn even R2 

values for calm conditions are above 0.9. Highest values are associated with south

westerly (6) and westerly (7) airflows, especially in winter. 

Further development of equations with poor R2 would need to concentrate on 

local factors such as aspect and exposure. The inclusion of a continentality factor could 
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be useful. 

For a particular airflow estimates of average daily maximum temperatures at any 

location can be produced by applying the appropriate regression. The constant term 

represents temperature at sea level at zero latitude and longitude. In the model this 

location is in the southern Irish Sea. 

8.4 Results: Minimum Temperatures 

A similar analysis to that for maxima was performed for minimum 

temperatures. Results were less satisfactory because minima are more dependent on 

local factors such as exposure and aspect, especially when conditions are calm (Hawke 

1944, Harding 1978). 

8.4.1 Seasonal Effects 

Table 8.4 gives values of a, band c, the altitudinal, latitudinal and longitudinal 

coefficients in each month. As in Table 8.1, a is given in °C/km and b and c in 

°C/1000 km. 

a is lower (less negative) than in the maximum temperature regressions, 

indicating shallower night-time lapse rates and increased stability. The formation of 

temperature inversions by night encourages this. a in November is only -5.08°C/km, 

the long nights being conducive to stability. a is plotted against month in Figure 8.10. 

Compared with values for maximum temperatures (Figure 8.1), the steepest rate in 

March (-6.96°C/km) is approximately equal to the shallowest rate for maximum 

temperatures seen in December (-6.85°C/km)! The peak in lapse rate in March is the 

same as for maxima and there is again a secondary peak in August, although this is not 

as strong as that for maximum temperatures. The lowest values of a are experienced 

in late autumn and winter. Air-mass character is likely to be an important influence on 

lapse rate (Manley 1952), as the critical solar elevation theory discussed in Chapter 5 

is unlikely to be important at night. 
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Figure 8.10. The Monthly Variation of the Altitudinal Coefficient 
(Representative of Lapse Rate) in the Multiple Regression Equations 
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Table 8.4: Altitudinal, latitudinal and longitudinal coefficients in the monthly 
regressions of daily minimum temperatures. 

a b c const R2 

J -6.04 -2.88 -5.69 2.33 0.770 

F -6.27 -2.89 -3.62 1.95 0.768 

M -6.96 -5.80 -2.45 3.52 0.841 

A -6.47 -5.19 -2.33 4.93 0.810 

M -5.90 -10.36 -3.36 8.49 0.726 

J -6.20 -7.62 -2.56 10.37 0.738 

J -5.67 -8.66 -1.47 12.76 0.707 

A -6.18 -6.62 0.35 12.10 0.771 

s -5.83 -8.17 0.76 9.89 0.639 

0 -5.51 -7.89 -0.87 8.46 0.601 

N -5.08 -4.66 0.68 3.77 0.595 

D -5.76 -5.72 -1.64 3.98 0.718 

YEAR -5.85 -6.18 -2.01 6.88 0.725 

Figure 8.11 shows a, b and c plotted against month. The rate of decrease of 

minimum temperature with latitude ranges from -10.36°C/1000 km in May to -2.88°C 

/1000 km in January. The latitudinal gradient is therefore strongest between May and 

September, and weakest in winter, broadly similar to the pattern for maximum 

temperatures. 

The longitudinal coefficient, c, is not very important in explaining minimum 

temperature, except perhaps in January and February (when the latitudinal coefficient 

is less important). c reaches -5.69°C/1000 km in January, representing a decrease in 

minima of about 1.4 oc from the west to the east coast. By February, c has fallen to 

-3.62°C/1000 km and it remains around -2.5°C/1000 km from March to June. The 

influence of the North Sea surface temperature on c is negligible, unlike for maximum 

temperatures. From August to November c fluctuates around zero but by December it 
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Figure 8.11. Monthly Variation in Altitudinal, Latitudinal and 
Longitudinal Coefficients: Daily Minima Regressions 
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has again turned negative. 

Examining R2 values, the inclusion of longitude is often superfluous. The 

adjusted R2 value is higher if longitude is excluded, except in January and February. 

Values vary from 0.841 in March to 0.595 in November. The success of the regression 

model largely depends on the strength of the altitudinal coefficient, the other two 

factors being less helpful. 

8.4.2 Airflow Effects 

Regressions were performed for each wind direction. The altitudinal coefficient 

is plotted in Figure 8.12. 

The mean lapse rate under calm conditions is less than for all other airflows 

(-4.07°C/km), due to the tendency for temperature inversion formation on calm nights, 

caused either by intense longwave radiation loss or trapping of cold air by topography. 

Again, the steepest lapse rates are associated with easterly (3) and westerly (7) 

airflows, similar to the pattern for maximum temperatures, although absolute values are 

less. Southerlies (5) and northerlies (1), being parallel to the relief trend, lead to more 

stable conditions. Figure 8.13 shows altitudinal (a), latitudinal (b) and longitudinal (c) 

coefficients plotted against wind direction. b is negative ranging from -11.11 °C/1000 

km for calm conditions to -5.13°C/1000 km for south-westerly flows. The steep 

meridional temperature gradient for calm conditions reflects changes in night length. 

Although minimum temperatures usually occur at night, it is the changing influence of 

net radiation totals (which vary primarily with latitude) which contribute to this steep 

gradient. The latitudinal temperature gradient is also strong for winds with an easterly 

component and is probably associated with the cloud-free nature of such air. 

Progressive airflows with winds from between south and north-west tend to be cloudy, 

which decreases any latitudinal temperature gradient. 

c is positive for north-westerly (8), northerly (1) and north-easterly (2) flows, 
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Figure 8.12. Variation of the Altitudinal Coefficient in the Daily Minima 
Regressions According to Airflow Direction 
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Figure 8.13. Variation of the Altitudinal, Latitudinal and Longitudinal 
Coefficients in the Daily Minima Regressions According to Airflow 
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indicative of an increase in minimum temperatures with longitude for these airflows. 

The gradient is 3.5rC/1000 km for north-westerly flow. For all other airflows c is 

negative, especially for southerlies (-7.08°C/1000 km). Longitude contributes little to 

the final regression. Values of R2 range from around 0.7 to only 0.42 for calm 

conditions (local site variables are influential in the latter case). 

8.4.3 Combined Seasonal and Airflow Effects 

The analysis for all airflows in all months shows that different airflows have 

different seasonal trends in coefficients. 

8.4.3 i) Altitudinal Coefficient 

Values of a are given in Table 8.5. Altitudinal, latitudinal and longitudinal 

coefficients are listed in Appendix 6. Underlined figures are based on 21 stations. 

Table 8.5 : The altitudinal coefficient, a, (°C km-1
) for each airflow in each month. 

a CALM N NE E SE 
'r 

J -3.64 -5.88 -4.63 -6.87 -5.35 

F -3.73 -6.24 -7.20 -7.95 -7.92 

M -5.16 -6.85 -4.80 -7.94 -8.73 

A -5.20 -6.22 -6.71 -7.15 -8.56 

M -3.90 -6.05 -5.38 -6.95 -4.01 

J -5.26 -6.16 -6.84 -7.49 -4.07 

J -3.57 -6.49 -4.63 -4.90 -2.33 

A -4.12 -5.32 -7.70 -5.78 -3.50 

s -4.67 -5.03 -4.44 -7.32 -4.60 

0 -3.51 -4.79 -5.29 -6.22 -6.60 

N -4.36 -5.35 -6.61 -6.07 -6.01 

D -3.98 -7.01 -5.83 -7.13 -7.07 
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Table 8.5: continued 

a s SW w NW MEAN 

J -6.05 -6.57 -7.16 -5.53 -6.04 

F -6.43 -6.27 -6.59 -7.02 -6.27 

M -7.58 -6.80 -7.78 -6.94 -6.96 

A -5.17 -6.89 -5.86 -7.09 -6.47 

M -4.19 -6.81 -7.37 -6.46 -5.90 

J -5.61 -6.82 -6.36 -5.87 -6.20 

J -4.68 -6.47 -6.04 -6.81 -5.67 

A -5.63 -7.29 -7.07 -6.59 -6.18 

s -5.93 -5.83 -7.06 -6.23 -5.83 

0 -5.90 -5.90 -5.98 -7.86 -5.51 

N -5.79 -5.85 -5.64 -3.83 -5.08 

D -6.80 -5.80 -7.04 -4.02 -5.76 

a is plotted against month in Figure 8.14, the number indicating wind direction 

class (as in Figures 8.6 to 8.9). The line connects the median altitudinal coefficients for 

each month (different from the mean coefficient shown in the table). Because altitudinal 

temperature gradients are always negative, steepest lapse rates appear at the bottom of 

Figure 8.14 and the shallowest at the top. The most noticeable feature is that calm 

conditions (0) have very shallow lapse rates of minima, averaging only -4°C/km due 

to frequent temperature inversions, especially between October and February. 

Some wind directions are associated with unusual seasonal patterns in lapse rate. 

Northerlies (1) are most stable from August to November. The graph for north

easterlies (2) is very irregular as rates are based on only a few observations. Easterlies 

(3) have high lapse rates, especially early in the year. South-easterlies (4) show a large 

variation, being most unstable from February to April (a greater than -8°C/ km). a is 

only -4°C/km in May and -2.33°C/km in July, as a summer heat source develops over 

the uplands. From October to December south-easterlies are again associated with steep 
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Figure 8.14. Variation of the Altitudinal Coefficient 1n the Daily M1mma 
Regress1ons According to Month and Airflow Direction 
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lapse rates of minimum temperature. 

Southerlies (5) appear to be more stable in summer. South-westerlies (6) show 

little seasonal change, a remaining between -6 and -7°C/km. Westerlies (7) also have 

uniformly high lapse rates. The pattern is similar to that for maxima, suggesting 

relatively little diurnal change in lapse rate for westerly flow. Finally, north-westerlies 

(8) show remarkably high stability in winter, the reason for which is unclear. Overall, 

north-westerly flows favour shallow lapse rates in winter, south-easterlies in summer 

and calm conditions all year. 

8.4.3 ii) Latitudinal Coefficient 

The latitudinal effect, b, is shown in Figure 8.15. As for maxima, summer 

gradients are consistently stronger (more negative) than winter ones. The pattern 

between wind directions is more subtle for minimum temperatures because of local 

effects. b is invariably strong for calm conditions with temperatures at night related to 

parameters such as daylength. breaches -20°C/1000 km in March and September. In 

winter the shallowest meridional gradients in minimum temperature are associated with 

blocked anticyclonic conditions (airflow between north and south-east). The main trends 

in b are listed in Table 8.6: 

Table 8.6: The seasonal cycle in the latitudinal coefficient for different airflows 

Airflow Type Seasonal Cycle of Latitudinal Coefficient 

North negligible in winter, negative in summer 

East negligible in winter, 
strongly negative in summer 

South steeper gradient in summer 

West moderate gradient throughout the year 

Overall, b shows double peaks in May and September, but values remain 

strongly negative throughout the summer. 
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Figure 8.15. Variation of the Latitudinal Coefficient In the Daily Minima 
Regressions According to Month and Airflow Direction 
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8.4.3 iii) Longitudinal Coefficient 

The longitudinal effect (c) is plotted in Figure 8.16. Values are negative apart 

from in autumn when the North Sea is relatively warm. Northerlies (1) and north

westerlies (8) favour higher minima to the east of the Pennines, especially in autumn. 

Values of c for north-easterlies (2) are also usually positive, even between January and 

March. However, in April and May c turns negative. Southerly airflows encourage c 

to be negative all year whereas south-westerlies (6) and westerlies (7) produce a 

decrease in minima to the east in winter but not in summer. Westerly flows are likely 

to be cloud-free in the east, leading to lower minima in the lee of the Pennines in 

winter. Calm conditions produce unremarkable values of c. 

The effects of altitude, latitude and longitude are weaker than in the maximum 

temperature regressions because of local temperature variation due to factors such as 

aspect and exposure. Wide variations in minima can occur within a small area (Waco 

1968). It is important whether a site is in a frost pocket or north-facing, for example. 

8.4.3 iv) The Success of the Regressions 

Figure 8.17 shows R2 for all regressions. A low R2 means that local influences 

are important. The range in R2 is much greater than for maximum temperatures and it 

falls below 0.1 in a few cases. Values between 0. 7 and 0. 9 (indicating reasonable 

success) are common, especially between February and June. There is a sharp drop in 

R2 values during September, followed by a slow recovery. Local influences on minima 

are most noticeable in autumn (Manley 1952), solar elevation being relatively low and 

the air calm. All R2 are below 0. 7 in September; the highest is for westerlies (0. 701). 

Mean autumn values are around 0.5! 

R2 for calm conditions are universally poor, nine months recording values below 

0.5. Easterly and south-easterly flows show low R2 in summer, values for south

easterlies falling below 0.1 in July and August. In this case there seems to be absolutely 

no relationship between the three macroscale site variables and minimum temperature. 
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Figure 8.16. Variation of the Longitudinal Coefficient in the Daily Minima 
Regressions According to Month and Airflow Direction 
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Figure 8.17. R2 in the Oail y Minima Regressions 
According to Month and Airflow D1rection 
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Westerlies and south-westerlies show the most consistent R2 values, although even these 

drop in September. 

The root-mean-square error (Figure 8.18) in a regression takes into account the 

sample size of the regression and the amount of temperature variability. Errors peak in 

September and there is a gradual decrease throughout the autumn. Worst errors are 

connected with calm conditions, southerly and easterly flows in summer, and with 

south-easterlies at any season. 

8.5 The Development of Circulation Indices and Their Relationship with Regression 

Coefficients 

Coefficients derived from an analysis of temperatures recorded during a 

historical month, can be related to the airflow patterns experienced during that month 

through use of circulation indices which were derived for each month between January 

1985 and December 1990 (Figure 8.19). Murray & Lewis (1966) assessed daily weather 

patterns through calculation of indices representative of progressiveness, southerliness, 

meridionality and cyclonicity in the circulation pattern and used these to relate 

circulatory characteristics to weather parameters, i.e. winter temperatures with 

progressiveness. Indices, similar to those of Murray and Lewis, were created for the 

Durham wind data. 

To measure southerliness, wind directions were assigned scores as follows: 

Wind direction 

Value 

S SW/SE 

+2 +1 

W/E NW/NE 

0 -1 

N 

-2 

Scores were summed over the month concerned and divided by the number of 

days in that month. A completely southerly month would record an S index of +2 and 

a completely zonal one (i.e. constant westerly flow), an index of zero. 

Similarly to measure westerliness, wind directions were assigned scores as 
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Figure 8.18. The Root Mean Squared Error in the Daily Minima 
Regressions According to Month and Airflow Direction 
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follows: 

Wind direction 

Value 

W NW/SW 

+2 +1 

N/S NE/SE 

0 -1 

Finally, to measure meridionality, categories were assigned as follows: 

Wind direction 

Value 

N/S 

+2 

NE/SE/SW /NW 

0 

W/E 

-2 

E 

-2 

Calculated indices in Figure 8.19 vary between -2 and +2. Long-term trends 

are hard to identify. Values greater than 1 are occasionally recorded but those below 

-1 are not, illustrating the predominance of southerly and westerly winds. 

The variation of the three indices by month is shown in Figure 8.20. 

Westerliness (Figure 8.20 a) peaks in winter and late summer (August/September) with 

a distinct trough between April and June. The building of the Scandinavian anticyclone 

to the north and east of Britain in spring means that eastward progress of Atlantic air 

is often temporarily checked. Another period with a tendency towards blocking is 

October. There are extreme variations in the westerly index in any month. In February 

1986 the index fell below -0.5, a month uncharacteristically dominated by easterly 

airflows. In May 1986 the movement of depressions from west to east continued and 

the westerly index was unusually high. 

The southerly index is shown in Figure 8.20 b. From April until July there is 

a tendency for more northerly outbreaks. In contrast, values are positive from August 

to March (but with no pronounced peak in any individual month). Some very high 

southerly indices are recorded during January(> 1). 

Meridionality (Figure 8.20 c) shows an erratic variation, peaking in summer 

(especially during June). A lack of meridionality is seen for February when major 

airflows are zonal. There is a large inter-annual variation in meridionality. 
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Westerly Circulation Index vs Mont~: 1985-1990 Southerly CirculatJon Index vs Month: 1985-1990 
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8.5.1 Correlations between Circulation Indices and Regression Coefficients 

The three circulation indices can be correlated with regression coefficients in the 

regressions of mean temperature against altitude, latitude and longitude. The mean 

temperature regression was obtained by taking the average of the maximum and 

minimum temperature regressions, described in sections 8.3 and 8.4 respectively. These 

correlations are useful since they describe relationships between the spatial distribution 

of mean temperature and the circulation pattern. On an annual timescale seven out of 

fifteen correlations are significant at the 10% level. At the 1% level there is a positive 

correlation between the latitudinal coefficient and southerliness (0.393). In strong 

southerly flow the meridional temperature gradient becomes indistinct (less negative). 

The strongest correlation is positive, between the longitudinal coefficient and 

westerliness (0.556), i.e. under progressive conditions the east is warmer than the west. 

Finally, a positive correlation (0.427) between the southerly and westerly indices is 

significant (at 1 %). This is not surprising since prevailing winds are south-westerly. 

The altitudinal coefficient is negatively correlated with westerliness at the 10% level. 

Mean lapse rates would therefore increase under a progressive scenario. Other 

significant correlations on an annual basis include those between the westerly index and 

latitudinal coefficient, the southerly index and longitudinal coefficient, and the westerly 

and meridional indices (negative). 

In certain months different relationships become important. For example, the 

strongest January correlation is the negative one between the altitudinal coefficient and 

westerliness (-0.862). As there are only 6 years in the sample, a correlation in an 

individual month has to be above the thresholds in Table 8. 7 to be significant. Those 

significant at 1% include those between the longitudinal coefficient and westerliness in 

May (0.957) and between the meridional and westerly indices in November (-0.918). 

The former correlation indicates that a more progressive circulation dominated by 

westerly flow would increase the longitudinal coefficient and thus benefit temperatures 

in the east of the region. This relationship is also significant in January, February, 

April and between May and August. In autumn the relationship is weaker, presumably 

because the warmer North Sea eradicates the need for heat advection from the west. 
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Table 8. 7: Threshold values of r required for significance. 

Significance Level Critical r Critical r 
(n=70) (n=6) 

10% 0.1982 0.7293 

5% 0.2352 0.8114 

1 % 0.3059 0.9172 

A few correlations are unstable, switching sign between different months, 

suggesting that a larger sample is desirable. Relationships between airflow indices and 

spatial temperature distribution according to latitude are important in winter. Both 

meridional and southerly circulations increase the latitudinal coefficient (weaken the 

north-south temperature gradient) in December and January, whereas increased 

westerliness does the opposite in December. The effects of increased meridionality are 

unclear. 

In summary, increased progressiveness increases mean lapse rates, especially 

in winter, while an increased southerly bias, as suspected to be occurring in recent 

years by Murray (1993), decreases the north-south temperature gradient (see Figure 

8.21 a). Increased progressiveness would favour the east of the country. Any warming 

would be amplified by lee effects of the Pennines. The correlation between the westerly 

index and longitudinal coefficient for all months between 1985 and 1990 is shown in 

Figure 8.21 b. Numbers represent month. The correlati<?n turns negative in December 

(12) and January (1), presumably because of a cooling effect of the land in mid-winter. 

The latitudinal temperature gradient is expected to weaken on an annual scale, 

under a more progressive circulation. This is a negative feedback process since the 

decreased north/south temperature gradient, initiated by increased zonality, is equal to 

a weakening in the latitudinal temperature contrast which drives the zonal circulation. 

Overall effects of increased meridionality (i.e. blocking) on temperature gradients are 

unclear, specific effects depending on the season. The effects of changes in airflow 

direction will be investigated in more detail using uni-directional airflow scenarios in 
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Chapter 13. 

8.5.2 Correlations between Circulation Indices and Mean Temperatures 

Mean temperatures recorded at any location can be related to progressiveness, 

southerliness and meridionality (Kozuchowski & Marciniak 1988, Jones et al. 1993). 

By examining the spatial variation of such relationships one analyses the sensitivity of 

temperature to changes in the general circulation. 

Mean monthly temperatures at each location are correlated with westerliness in 

each month using historical data. Most locations show strong positive correlations 

between mean daily temperature and westerliness in January and February when the 

contrast between mild Atlantic air and cold continental air is great. By April only 

stations in the east of the region show this relationship. In Sunderland it remains until 

May, due to the coastal cooling effect. Some Cum brian stations record a negative 

relationship between mean daily temperature and westerliness in July, westerly Atlantic 

air often leading to cool weather. 

Mean monthly temperatures are correlated with wind indices at four locations 

in Table 8. 8. 

Most significant correlations with westerliness occur from January to March 

while southerliness is important in April and September. Meridionality is of no use 

when attempting to devise an index related to mean monthly temperatures. The 

relationships listed in Table 8.8 show that a decrease in westerly flow could lead to 

colder winters at all sites, while changes in southerly flow would be most critical in 

spring and autumn. As there are numerous possible correlations, one would expect a 

few to be significant even if there were no relationships at all between circulation 

indices and temperature. Thus it is sensible to concentrate on the relationships 

significant at 1%, i.e. southerliness in January, April and September, and westerliness 

in February. 
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Table 8.8: Strong correlations between mean monthly temperatures and circulation 
indices. 

Month Place Index r Signfce 
Level 

January Durham w 0.787 10% 

January Durham s 0.954 1 % 

January Ambleside w 0.824 5% 

January Ambleside s 0.966 1 % 

January Gt Dun Fell s 0.920 1 % 

January Eskmeals w 0.841 5% 

January Eskmeals s 0.972 1 % 

February Durham w 0.956 1 % 

February Ambleside w 0.958 1 % 

February Gt Dun Fell w 0.898 5% 

February Eskmeals w 0.892 5% 

March Durham w 0.795 10% 

March Ambleside w 0.840 5% 

March Gt Dun Fell w 0.910 5% 

March Eskmeals w 0.797 10 % 

April Durham s 0.900 5% 

April Ambleside s 0.938 1 % 

April Gt Dun Fell s 0.778 10% 

April Eskmeals s 0.842 5% 

June Gt Dun Fell s 0.739 10% 

September Durham s 0.809 10% 

September Ambleside s 0.926 1 % 

September Eskmeals s 0.857 5% 
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8.6 Robustness of the Regressions 

Generally, the effects of removal of individual data points are insignificant, 

meaning that most equations are fairly robust. 

As an example the regression for maximum temperatures under westerly flow 

in July will be used: 

X=(-0.00841alt}-(0.00353lat} 
+ (0. 01906lng} +18 .111 .... r 2=0. 870 ---- (2} 

The influence of an individual point on regression coefficients can be analysed 

in many ways (Belsley, Kuh & Welsch 1980). The simplest measures are dfbetas. 

These can be produced for each point in the data set and for each coefficient (in this 

case altitude, latitude and longitude). The dtbeta coefficient expresses how the 

coefficient concerned varies when the data point concerned is removed, i.e. they 

measure the differences between the regression coefficients when each observation is 

included and excluded, the difference being scaled by the estimated standard error of 

the coefficient. 

In Table 8.9, which shows dtbetas for the above example, the first three 

columns list dtbetas for altitude, latitude and longitude. Belsley, Kuh & Welsch (1980) 

suggest that a critical threshold value for dtbetas deserving special attention is: 

abs(dfpeta}=2//Tn} ----{3} 

where n is the number of data points. 

In this case the threshold is 0.43 since n=22. Bollen & Jackman (1990) suggest 

a threshold of 1, meaning that inclusion of the data point has shifted the coefficient by 
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at least one standard error. Using the more conservative threshold, notable dfbetas are 

underlined. Overall there are few points with great influence (all dfbetas are below 1). 

Table 8.9: Measures of influence of individual stations in the regression of daily 
maxima for westerly flow in July. 

Place DFalt DFlat DFlng leverage Cook's 
dist 

Ambleside -0.13 -0.22 -0.27 0.13 0.05 

Appleby -0.01 -0.05 -0.04 0.05 0.01 

Aspatria 0.01 -0.01 0.04 0.18 0.00 

Carlisle 0.14 -0.17 0.17 0.17 0.02 

Carlton-in -0.00 -0.02 0.03 0.21 0.00 
Cleveland 

Carlton-in 0.12 -0.30 0.14 0.18 0.04 
Coverdale 

Durham -0.03. 0.03 0.12 0.11 0.01 

Eskmeals 0.35 0.42 0.62 0.27 0.19 

Gt Dun Fl 0.07 -0.00 -0.00 0.66 0.00 

Hart bum 0.05 0.03 -0.10 0.16 0.01 

Haydon Br -0.11 0.25 0.00 0.11 0.03 

Hgh Close -0.00 0.38 0.52 0.13 0.14 

Keswick -0.31 -0.05 -0.93 0.13 0.25 

Kielder 0.03 0.46 -0.11 0.25 0.07 

Leeming 0.00 0.01 -0.01 0.22 0.00 

Lw Ether 0.00 -0.01 0.08 0.08 0.00 

Newcastle 0.13 -0.21 -0.19 0.17 0.03 

Redesdale -0.08 -0.54 0.00 0.25 0.09 

Sunderland 0.06 -0.09 -0.14 0.17 0.01 

Warcop -0.08 0.07 0.02 0.06 0.01 

Whasdyke 0.00 0.04 0.03 0.13 0.00 

Widdybank -0.14 0.01 -0.01 0.20 0.01 
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Observations at Kielder Castle and Redesdale strongly affect the latitudinal 

coefficient. Kielder increases it (dtbeta is positive), whereas Redesdale decreases it. The 

longitudinal coefficient is most strongly affected by Keswick. The anomalous warmth 

of Keswick (in the west of the study area) decreases the coefficient. Eskmeals has the 

opposite effect. There are no individual observations which notably affect the altitudinal 

coefficient, showing that the equation is robust. 

Robustness is also analysed through indices such as leverage and Cook's 

Distance. Leverage (column 4) describes the influence of one particular point in 

contributing to the regression equation. If a point is an outlier, lying far away from the 

rest of the data, it has high leverage. In Figure 8.22 mean July maxima under westerly 

flow are plotted against altitude. Great Dun Fell (point 9) has high leverage because it 

is an outlier, explaining the value of 0.66 in Table 8.9. The addition of Great Dun Fell 

does not in this case significantly alter the regression coefficients (despite having high 

leverage). Cook's distance (Cook 1977) estimates the overall influence of each point 

on results. The distance depends on the size of the residual and leverage. 

An accepted cutoff for notable values of Cook's distance is: 

c= 4 In ---- ( 4 ) 

In this case the threshold is 0.182. Thus Eskmeals and Keswick have a 

significant effect. Great Dun Fell has a low Cook's distance, despite high leverage, 

while the leverage for Keswick is low. The same regression is shown below, omitting 

Keswick and Eskmeals: 

X=(-0.00840a1t)-(0.004651at) 
+(0.020121ng)+18.126 .... r 2 =0.921 ----(5) 

The altitudinal coefficient has barely changed and the biggest change is in the 
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Figure 8.22. July Mean Daily Maxima Under the 
Influence of Westerly Flow versus Altitude 
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latitudinal coefficient. Temperatures predicted for this new regression differ by less than 

a tenth of a degree and so the original regression was fairly robust. 

The same is true for the majority of the other regressions, showing that the data 

are remarkably well-behaved. Occasionally, significant changes in the latitudinal and 

longitudinal coefficients occur when certain points are removed. This occurs because 

altitude accounts for the "lion's share" of the temperature variation, with latitude and 

longitude "scrabbling about" for the remaining variation. 

Robustness measures are shown below for the north-easterly regressiOn of 

maximum temperatures in August. This is expected to be the least robust since it is 

based on data from one day only. Dfbetas exceed 1 for Redesdale (latitude) and 

Widdybank Fell (altitude). Because no value exists for Great Dun Fell, Widdybank Fell 

has a strong influence, decreasing the altitudinal coefficient (i.e. increasing the mean 

lapse rate). Great Dun Fell was masking the effect of Widdybank Fell. When the 

regression is recalculated without Redesdale and Widdybank Fell (Cook's distance is 

greater than 0.18 for these stations) the change in coefficients is small. 

Table 8.10: Measures of influence of individual stations in the regression of daily 
maxima for north-easterly flow in August. 

Place DFalt DFiat DFing leverage Cook's 
dist 

Ambleside -0.10 -0.19 -0.23 0.13 0.04 

Appleby 0.01 -0.02 -0.02 0.06 0.00 

A spa tria 0.20 -0.14 0.46 0.18 0.09 

Carlisle 0.17 -0.17 0.17 0.19 0.03 

Carlton-in -0.02 -0.08 0.15 0.21 0.01 
Cleveland 

Carlton-in 0.04 -0.05 0.02 0.24 0.00 
Coverdale 

Durham -0.04 0.05 0.16 0.11 0.01 

Eskmeals 0.11 0.10 0.15 0.29 0.01 
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Table 8.10: continued 

Place DFalt DFiat DFing leverage 

Gt Dun Fl 

Hartburn -0.16 -0.08 0.25 0.18 

Haydon Br 0.17 -0.36 -0.00 0.11 

Hgh Close -0.12 0.26 0.35 0.13 

Keswick -0.19 -0.04 -0.72 0.13 

Kielder 0.04 0.15 -0.04 0.26 

Leeming 0.09 0.14 -0.12 0.23 

Lw Ether -0.05 0.02 -0.15 0.08 

Newcastle 0.10 -0.12 -0.11 0.19 

Redesdale 0.44 1.08 -0.01 0.28 

Sunderland 0.06 -0.07 -0.11 0.18 

Warcop -0.17 0.06 0.02 0.10 

Whasdyke 0.07 -0.27 -0.22 0.13 

Widdybank -1.01 0.03 -0.03 0.58 

The new regression is: 

X=(-0.00658alt)-(0.02979lat) 
-(0.02721lng)+23.386 .... r 2 =0.803 ----(6) 

leading to a change of less than 0.1 oc in predicted temperatures. 

Conclusions concerning robustness are listed below: 

Cook's 
dist 

0.03 

0.06 

0.08 

0.17 

0.01 

0.01 

0.01 

0.01 

0.35 

0.01 

0.02 

0.05 

0.28 

1. Great Dun Fell, as an outlier, has great leverage, although the effect on the 

altitudinal coefficient is often small; 
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2. Eskmeals, Sunderland and Carlisle show significant effects, especially under calm 

conditions. These stations are influenced by coastal circulations which create locally 

enhanced spatial temperature gradients. The coastal influence can on occasion affect the 

latitudinal and longitudinal coefficients since temperatures at the coastal stations do not 

fit in with inland spatial temperature variation; 

3. Keswick and Kielder Castle sometimes have a strong influence, especially on the 

longitudinal and latitudinal coefficients respectively; 

4. the regressions appear fairly robust and the original equations can be used for further 

work in the rest of the thesis. Altitudinal coefficients are especially robust. 

8. 7 The Use of Regression Models to Describe Spatial Temperature Variation: An 

Overview 

Many authors have used multiple regresswn to study spatial temperature 

distributions. Although regression is widely used, the intricacies of statistics involved 

are not easily understood (see section 8.5). When more controlling variables are added 

unusual changes can occur in the coefficients of existing controlling variables, 

especially if the regression is poor or if there is collinearity (significant correlation 

between controlling variables). In this case collinearity between altitude, latitude and 

longitude is not serious (Table 8.11), no correlations being significant. 

Table 8.11: Collinearity matrix for altitude, latitude and longitude (22 stations). 

22 Stations Altitude Latitude Longitude 

Altitude - 0.020 -0.049 

Latitude 0.020 - 0.048 

Longitude -0.049 0.048 -

Temperature varies relatively smoothly in space (Hopkins 1977), at least when 

compared with rainfall which has a very spotty distribution (Sharon 1972, 1974). A 
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smooth spatial pattern leads to high inter-station coefficients when the inter-station 

distance is small (Yamamoto 1980), whereas a more spotty distribution, such as rainfall 

from scattered convective clouds, shows low inter-station correlation. Multiple 

regression is usually more successful for describing smooth fields such as temperature. 

Despite this, multiple regression models of rainfall have been successful (Gregory 1965, 

Kutiel 1988). 

Many statistical temperature models in the USA are based on regression. A fine 

example is the analysis of Pielke & Mehring (1977) of surface temperatures in the 

mountains of West Virginia, using data from 1958 to 1973. The regression of mean 

temperature on altitude was stronger in summer, air-mass contrasts being less marked. 

In winter the formation of temperature inversions weakened the relationship between 

temperature and altitude. A linear temperature/altitude relationship is the backbone of 

this type of model. Hennessy (1979) suggested fitting a polynomial function to describe 

a curved trend in the altitude/temperature relationship. Konovalov et al. (1991) also 

found the variation of temperature with altitude to be curvilinear in their numerical 

estimation of meteorological variables in mountainous areas in Russia. Landform type 

will affect the temperature/altitude relationship. Thus Hess (1969) developed separate 

regression equations for convex and concave landforms in the Polish Carpathians. 

The temptation to use more and more complex controlling variables to increase 

the coefficient of determination (R2
) can lead to controlling factors with no physical 

meaning. This is the case for White & Smith (1982) who produced maps of climatic 

properties in Britain (including temperature) based on multiple regression equations. 

Regressions of maxima based on spatial variables are more successful than those 

of minima. The latter are highly spatially variable and can be strongly affected by local 

topography (Harding 1978). Nearly always, lapse rates of maxima with altitude are 

steeper and better defined than those of minima (e.g. Lambert & Chitrakar 1989), 

especially when conditions are calm and conducive to temperature inversion formation 

(Austin 1957, Trilsbach 1988). Airflow within incised topographic canyons can become 

uncoupled from that at the mesoscale (Sommers 1976). This decreases the accuracy of 
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interpolated temperature values based on regression. 

More complex statistical models attempt to take local temperature variation into 

account. Walts and Pochop (1977) related temperatures between known locations in an 

attempt to extrapolate temperature predictions to new points using second order 

polynomials. McCutchan (1976) simulated diurnal temperature variation through 

harmonic analysis. A bias condition function, specific to the location, took time of day, 

synoptic situation and elevation into account. In a later paper (McCutchan 1979) the 

diurnal cycle of temperature in mountainous terrain in California was described by 

Fourier analysis and found to be largely independent of site factors such as elevation, 

aspect and slope. The only two inputs needed to explain 93.6% of the temperature 

variation were the mean daily temperature and diurnal temperature range. 

In simple regression models it is difficult to include effects of local influences. 

Examples include coastal sea-breezes (Brittain 1978), reservoirs (Gregory & Smith 

1967), urban areas (Chandler 1965), incised topography (Waco' 1968), sea fret 

(Catchpole 1966), local cloud (Caton 1957) and lee effects (Lockwood 1962). All of 

the above are relevant in northern England, especially coastal effects. 

Attempts have been made by authors to include such local influences. Running 

et al. (1987) included slope and aspect effects and cold-air drainage in their spatial 

extrapolation of meteorological data for estimation of evapotranspiration and 

photosynthesis. In this case the regression model was used to simulate a background 

climate, which in turn was used to simulate changes in plant growth. Examples of 

regression baseline climates used in modelling are numerous, e.g. Urban et al. (1993). 

8.8 Limitations of Regression Models in Northern England 

Coastal influences complicate the spatial temperature distribution and often result 

in an enhanced spatial temperature gradient in the immediate coastal strip. Temperatures 

at coastal stations do not fit in with the spatial pattern of maxima and minima inland 

(section 8.5). 
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A related problem is that regression reqmres relationships between the 

controlling variables and the predictand to be linear. A curvilinear trend, such as an 

increase in temperature gradient as one approaches the coast or at high altitude, IS 

modelled badly and will reduce R2
• 

Despite these inadequacies, the multiple regressions are applied to the analysis 

of growing season variation with altitude in the second half of the thesis. It is important 

to include Great Dun Fell as it has an altitude of 847 m. It is debatable whether the 

altitudinal temperature decrease is linear up to and including this altitude. Great Dun 

Fell records higher temperatures than would be expected from a purely linear 

relationship and influences the altitudinal coefficient, reducing it in some cases. 

Regression diagnostics, however, shows that the influence is not large. 

8.9 Conclusions 

This chapter has described 108 regression equations which predict daily 

maximum and minimum temperatures at any location from altitude, latitude and 

longitude, for any airflow in any month. R2 values are good, especially for maxima. 

Altitude is the dominant effect. All three coefficients showed systematic variation with 

airflow and season, although different airflows showed different seasonal cycles in 

coefficients. The analysis of robustness showed up the influence of coastal stations 

(Eskmeals, Carlisle and Sunderland) and Great Dun Fell. 

Results from the regressions in this chapter will be used to define a baseline 

climate. This is summarised in Chapter 9 which draws from the regression model to 

provide a detailed description of climate in northern England, with special reference to 

the decrease of temperature with altitude. The resulting altitudinal zonation of climate 

in the Pennines is described and compared with that in other mountain ranges. 
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ALTITUDINAL ZONATION OF MEAN TEMPERATURE 
IN THE PENNINE UPLANDS: SOME COMPARISONS 

WITH OTHER MOUNTAIN RANGES 

9.1 Introduction 

The multiple regression models described in the last chapter describe the spatial 

variation of temperature in northern England under variable airflow conditions. This 

chapter uses results from these regressions to describe the altitudinal zonation of 

temperature resources in the Pennines, offering comparisons with other mountain 

ranges, and concludes the discussion and evaluation of the regression models. 

9.2 Regressions of Mean Temperature 

Mean daily temperature regressions can be predicted using the average of the 

maximum and minimum temperature regressions. The coefficients in the mean 

temperature regressions are simply the mean of the coefficients in the relevant 

maximum and minimum temperature regressions (Chapter 8). Setting latitude and 

longitude to their mean values, one can derive a temperature representative of a given 

altitude. 

Table 9.1 and Figure 9.1 show predicted mean monthly maximum, mean and 

minimum temperatures for a range of altitudes. At sea-level, mean temperatures are 

often 6°C higher than at 800 m in the same month. The horizontal lines in Figure 9.1 

represent threshold temperatures of ooc and 6°C, the freezing point and the threshold 

for plant growth respectively. There is a contrast in the amount of time that 

temperatures are above these thresholds according to altitude (section 9.4). 

152 



Figure 9.1. Pred1cted Monthly Maximum, Mean and Minimum Temperatures at a 
Range of Altitudes <Sea-level to BOO m), using Multiple Regression Models 
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Table 9.1: Predicted mean monthly temperatures (°C) at representative altitudes. Winter 
= December to March inclusive. 

Month Sea- 100m 200 m 400 m 600 m 800 m Great 
level Dun 

Fell 

Jan 4.04 3.37 2.70 1.37 0.03 -1.30 -1.60 

Feb 4.19 3.45 2.71 1.23 -0.26 -1.74 -2.08 

Mar 6.03 5.21 4.39 2.74 1.10 -0.55 -0.95 

Apr 7.89 7.12 6.35 4.81 3.28 1.74 1.39 

May 11.28 10.58 9.89 8.50 7.11 5.72 5.42 

Jun 13.54 12.82 12.09 10.65 9.21 7.77 7.44 

Jly 15.70 15.03 14.35 13.01 11.66 10.31 9.96 

Aug 15.10 14.35 13.59 12.09 10.59 9.08 8.67 

Sep 12.89 12.17 11.45 10.02 8.58 7.15 6.75 

Oct 10.61 9.95 9.29 7.98 6.66 5.34 5.01 

Nov 6.16 5.54 4.92 3.67 2.43 1.18 0.88 

Dec 5.67 5.04 4.41 3.15 1.89 0.63 0.32 

Annual 9.43 8.72 8.01 6.60 5.19 3.78 3.43 

Winter 4.98 4.27 3.55 2.12 0.69 -0.74 -1.08 

9.3 Variation of Lapse Rates in the Mean Temperature Regressions 

The variation of the altitudinal coefficient in the maximum and minimum 

temperature regressions has been analysed in detail, so this section is brief. 

Lapse rates of mean temperatures are steep by global standards, ranging from 

-8.22°C/km in March to -6.23°C/km in November (Figure 9.2). In a cool cloudy 

summer, in which a succession of Atlantic depressions cross northern England from 

west to east, lapse rates will be steep, as suggested by high values of the altitudinal 

coefficient under westerly flows. Manley (1952) quotes examples of such cool and 

cloudy summer months, including August 1946 when mean monthly temperatures were 
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Figure 9.2. Monthly Variation of the Altitudinal Coefficient 
(Representing Lapse Rate) in the Regressions of Maximum, 

Mean and Minimum Temperatures 
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-1.6°F below normal at Penrith but -2.rF below at Moor House (560 m). Within the 

data period studied here, August 1985 was such a month dominated by westerlies, with 

steep mean temperature lapse rates. The benefit in upland areas is proportionally greater 

in calm settled anticyclonic weather, especially in summer when mean temperatures at 

high altitude can approach those in the lowlands more closely (Tabony 1985, Flohn 

1953). Given calm cloud-free conditions, upland heating is often considerable, 

especially on plateaux, and low mean temperature lapse rates are recorded for calm 

conditions. Shallow lapse rates also occur under "blocked" synoptic conditions (usually 

easterly or south-easterly flow). In June 1940 (an anticyclonic month), temperatures 

were 6. rc warmer than average at Moor House but only 4. rc warmer at Penrith 

(Manley 1952). At any season there is benefit for the uplands in times of anticyclonic 

weather because of temperature inversion formation. Other anticyclonic months include 

March 1933 and December 1935 (Manley 1942). Lapse rates of mean temperature are 

also different for northerly and southerly flows, the latter being more stable. The 

temperature contrast between the two airflows increases at high altitudes. 

The circulation pattern is a critical control of upland temperatures. The major 

cause of low air temperatures in mountains is the advection of free air. In Colorado, 

the advection of cold air at the 700 mb level at Niwot Ridge ( > 3000 m) prevents 

summer air temperatures from rising very high (Barry 1973, Le Drew 1975). Cold air 

advection is also experienced at Great Dun Fell, especially in windy weather, often 

associated with a strong zonal (westerly) circulation. 

Steep lapse rates (Harding 1979a), especially in moist westerly airflows, can 

allow snow to fall above 400 m as late as May. Severe falls in April, during the 

lambing season, are common. The recent fall of several em at 300m on 14 May 1993 

is testimony to the sometimes rapid altitudinal te~perature decrease in spring. Spring 

temperatures are extremely variable. Because solar input is strong, calm anticyclonic 

conditions produce maxima over 20°C, even above 500 m (e.g. 20.7°C on 30 April 

1990 at Widdybank Fell). On the other hand the steep lapse rates under some conditions 

cause low temperatures. Above 200 m the predicted mean temperature for March is 

lower than for December (Table 9.1). The number of months with mean temperature 
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greater than 6°C (assumed to be critical for grass growth) varies from 9 at sea-level to 

4 at Great Dun Fell. This rapid decline in growth potential underlies the rapid transition 

to tundra-like ecosystems above 300 m (see Chapter 10). 

9.4 Climatic Zonation in Northern England 

The elevations of annual and monthly isotherms will be derived to define 

ecological zones in the Pennines. The isotherms include ooc (the freezing limit), 6°C 

(the growth limit) and woe (the timberline limit in summer) (Hollermann 1985). The 

seasonal fluctuation in isotherm elevations aids definition of altitudinal zones relevant 

to physical processes. The classification used is similar to that of Del Barrio et al. 

(1990), which was undertaken for the Pyrenees. In their study rc was taken as the 

growth threshold (instead of 6°C). The three critical altitudina~ limits from their study, 

reproduced here (Figure 9.3), are: 

1. the ooc mean winter air temperature (MWAT) (December to March inclusive); 

2. the mean annual ooc isotherm (MAAT); 

3. the woe July isotherm (MJAT). 

Above the ooc MW AT isotherm, most winter precipitation is assumed to fall 

as snow and permanent winter snow cover is expected (Rijckborst 1967, Garcia-Ruiz 

et al. 1985). The lower limit of individual frosts is below this. The woe MJAT 

isotherm approximates to the upper forest limit or treeline (Tranquillini 1979, 

Hollermann 1985, Leffler 1981) as well as the lower limit of active solifluction. Above 

the ooc MAAT isotherm, freeze-thaw cycles are common. 

The situation in any one month will be represented by six isotherms (Figure 9.4) 

including the three of Del Barrio et al. (1990) and listed in Table 9.2. Many isotherms 

occur at elevations above the highest Pennine summits, especially in summer, and are 

therefore theoretical. 
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Isotherms 1n Northern England: Altitudinal Zonation 

I 
300C _J 

2000 

1000 

0 

:'r! - '1000 
I 

2 3 4 5 6 7 8 9 10 11 12 

Montll of tr1e Year: Jan= 1 Dec= 12 

maxO 

meanO 

m1nO 
max5 

mean6 

mean10 



Table 9.2: Monthly elevations of critical isotherms (metres above sea-level). 

Month MMAX MMEAN MMIN MMAX MMEAN MMEAN 
0 0 0 6 6 10 

Jan 900 606 248 78 -294 -894 

Feb 830 565 204 129 -244 -784 

Mar 1001 734 369 368 4 -483 

Apr 1317 1027 629 642 246 -275 

May 1960 1623 1164 1210 760 184 

Jun 2175 1875 1479 1446 1044 490 

Jly 2550 2329 2030 1781 1439 846 

Aug 2137 2008 1822 1459 1210 678 

Sep 1985 1798 1523 1280 961 403 

Oct 1812 1612 1336 1027 701 93 

Nov 1236 989 634 422 26 -616 

Dec 1203 899 538 327 -52 -686 

Annual 1595 1336 985 856 485 -81 

Winter 939 696 337 221 -143 -702 

Column 4 lists the ooc isotherm of mean minimum temperature (MMINO). 

Above this altitude nocturnal frost is a significant hazard. This level will be defined as 

the frost limit. Mean minima fall to freezing at 204 m in February. The lapse rate is 

-6.2rC/km. Freeze-thaw processes will be common above this level in this month, i.e. 

in most upland areas. MMINO rises to over 2000 min July, implying that frosts would 

occur down to this level in mid-summer if the uplands were high enough. 

Between the ooc mean minimum and ooc mean temperature (MMEANO) 

isotherms, daytime temperatures above freezing offset the frost accumulation at night. 

This zone applies to much of the Pennines in winter. Precipitation is expected to be 

snow when mean temperatures fall below ooc (i.e. above MMEANO). This limit will 

be called the snow limit and occurs at 565 min February {Table 9.2). The land above 
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this is expected to be snow-covered. The highest passes in the Pennines top 600 m, 

including Hartside (589 m) and Killhope (626 m), and rise above the snow limit in 

February. From November to April MMEANO lies below 1000 m (below the highest 

summits in the region). 

The isotherm of ooc mean maximum temperature (MMAXO) indicates the limit 

to the permanent ice zone (the ice limit), above which temperatures remain constantly 

below freezing. Freeze-thaw processes are commonest between the ice and frost limits. 

The ice zone extends down to 830 m in February but only 939 m for winter as a whole 

(December to March inclusive). The Pennines do not have a well-defined ice zone and 

only the highest summits such as Cross Fell are subject to severe freezes. In July the 

theoretical ice limit is 2329 m! Many Alpine passes and Pyrenean peaks are above this 

elevation but are snow-free in summer; in Britain there would be permanent ice at this 

level because of the maritime climate. 

Annually, MMEANO averages 1336 m, i.e. the snow limit is equivalent to the 

height of many Scottish summits. Ben Nevis (1406 m) in western Scotland lies above 

this level. Although the snow-line depends on precipitation as well as temperature, one 

conservative estimate of the present-day climatological snow-line is the annual MMAXO 

altitude (1595 m). Average day-time temperatures below freezing would allow little 

snow melt. There is much debate about the existence of permanent snow beds on 

sheltered parts of Ben Nevis (1406 m) and Cairngorm (1245 m). The latter summit lies 

just below the proposed snow-line. Manley (1952) estimated the height of the present 

snow-line to be 5300 ft (1615 m) in Scotland and 5900 ft (1798 m) in Cumbria. In the 

Pennines it may be higher because of slightly greater continentality. The 1595 m (5233 

ft) estimate derived from the data is slightly lower than Manley's estimates. Between 

the frost and ice limits the mean maximum is above freezing and the mean minimum 

below. Thus freeze-thaw cycles are likely to be strong. This zone covers much of the 

Pennines in winter (337-939 m) and remains on high summits in spring. 

The 6°C mean temperature isotherm (MMEAN6) represents the theoretical_limit 

to plant growth. In winter, MMEAN6 occurs at negative altitude and no net growth 
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occurs anywhere. By March MMEAN6 has risen to 4 m. April is the most critical 

month for growth with this growth limit at 246m. By May MMEAN6 has risen to 760 

m. Thus sustained grass growth is not likely on the highest summits until June! In the 

autumn the decline of MMEAN6 with altitude is much more rapid, falling from 701 m 

in October to 26 m in November. Thus the delay in growth with altitude is more 

marked in spring than in autumn. Largest contrasts between upland and lowland occur 

in April and May. In mid-summer (July) growth would be expected up to 1439 m. 

However, there is no effective growing season at this level. Plants could not flourish 

with mean temperatures of 6°C in the warmest month only. 

The 6°C maximum temperature isotherm (MMAX6) indicates the sporadic 

growth limit. Temperatures above 6°C are expected at the warmest part of the day. In 

July MMAX6 falls at 1781 m, low compared with the Pyrenees where pastureland is 

found above this altitude. In the French Alps, the village of St. Veran in the Pare du 

Queyras (based on pastoral farming) is sited at over 2000 m. In winter MMAX6 falls 

to only 78 min northern England. Coastal areas may experience sporadic grass growth 

throughout the winter, with mean daily maxima remaining above 6°C. 

The lboc July isotherm (MMEAN10) is representative of the climatological 

treeline (Del Barrio et al. 1990). Although variations in treeline elevation occur due to 

exposure, drainage, aspect and soil type (Taylor 1965), summer mean temperatures 

control limits to tree growth as tree-ring studies have shown (Bednarz 1984). In the 

Pennines MMEANW rises to 846 min the warmest month (July). A mean temperature 

of woe in one month alone is not sufficient for tree growth and the woe isotherm for 

June to September inclusive should be considered. Taken for these months, MMEANW 

falls at around 600 m, approximating the height of the present treeline (Plate W). 

Where exposure is great or drainage is poor the treeline is depressed below this level, 

as on many steeper slopes and in wetter parts of Cumbria (Plate 11). Evidence of tree 

growth at 800 m during the Climatic Optimum (5000 BC) implies that mean summer 

temperatures (between June and September) were at least W°C. A temperature 

difference of at least + 1.4 oc between then and now is postulated. Taylor (1965) gives 

evidence of treelines in Wales above 600 m during the Climatic Optimum and relates 
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changes in the treeline to changes in the continentality of the climate. He suggests that 

the depression of the present treeline is due to an increased maritime influence. 

On Figure 9.4 the frost limit (MMINO) is usually at least two hundred metres 

above the sporadic growth limit (MMAX6), apart from in spring. Between March and 

June the difference is negligible. In May the frost limit falls below the sporadic growth 

limit! Thus frost occurring within the sporadic growth zone can be a problem at this 

time, causing damage to young plants. Apart from the relative depression of the frost 

limit in spring, the spacing of the isotherms remains fairly constant throughout the year. 

9.5 Comparison of the Pennines with the Pyrenees: A Continental Mountain Range 

In comparison with other mountain ranges the altitudinal decline in the 

temperature resource is extremely steep in northern England. The unexpectedly low 

treeline (Pearsall 1950) is a result of the steep decrease in accumulated temperatures 

with altitude (see Chapter 10). In the Central and Eastern Pyrenees the woe July 

isotherm (MMEANW) falls at 2438 m (Del Barrio et al. 1990), derived using stations 

between oo 30' W and 2° 30' E. This is 1600 metres higher than in the Pennines, 

suggesting that summer temperatures are at least woe warmer at an equivalent altitude 

in the Pyrenees (assuming a conservative mean lapse rate of -6.25°C/km). Higher 

summer temperatures are encouraged by the lower latitude of the Pyrenees but also by 

increased continentality with clearer summers characterised by much more insolation. 

The timberline falls between 2000 and 2400 m, slightly lower than MMEANW in July, 

since one month alone with a mean temperature of woe is insufficient for tree growth. 

In winter the mean ooc isotherm (MMEANO) occurs at 1694 m. Stable winter 

snow cover is therefore characteristic of the upper montane forest belt between 1694 

and 2438 m. The difference between the timberline and the winter snow limit is 744 

m. In Northern England the equivalent winter MMEANO (December to March) falls 

at 696 m, lower than in the Pyrenees by 1000 m. The difference between the July 

MMEANlO and winter MMEANO isotherms is only 150 m (20% of the difference in 

the Pyrenees) and the zone characterised by stable winter snow cover and summer 
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growth present in the Pyrenees is severely restricted in northern England. The limit of 

stable winter snow cover (696 m) lies above the Pennine timberline and the marginal 

nature of the Pennines is therefore due not to cold winters but to cool and cloudy 

summers. Global warming scenarios in which winters become milder but summers 

experience little change (Houghton et al. 1990, 1992) could increase the maritime 

nature of northern England and do little to improve upland cultivation. If Pyrenean 

snow cover above the snow limit (1694 m) were to melt in milder winters, this could 

only increase the length of the growing season. Pfister (1985) shows that a change in 

weather "types" will have contrasting effects on snow cover at differing altitudes. 

Milder winters dominated by westerly airflows would increase snow at high altitudes 

but allow more rain (and snow melt) at low levels. Anticyclonic conditions with 

pronounced temperature inversions would maintain winter snow cover in the lowlands 

but permit melt above the inversion, especially on south-facing slopes. 

The mean annual ooc isotherm (MMEANO) falls at 2726 m in the Pyrenees. 

Although this is high there is still land above this limit, whereas the Pennines are not 

high enough to reach this zone ( > 1336 m). Therefore the Pyrenees possess a wider 

range of habitats due to the much wider range in altitude. Del Barrio et al. (1990) 

calculate the length of the vegetative growth period (VGP) at important sites, i.e the 

period for which mean temperatures are above 7°C. At Goritz (2160 m) the VGP is 

128 days and the mean temperature during this period is 10. 8°C. Using rc in the 

Pennines mean VGP is only 105 days at 800 m (interpolated from Figure 9.4). Great 

Dun Fell (847 m) records a shorter (and colder) growing season than sites above 2000 

m in the Pyrenees! Growing conditions on the summit are approximately equal to those 

at 2500 m in the Pyrenees. 

9.6 Comparison with the Tatra Mountains 

Another comparison is made with the Tatra (near the border of Poland and 

Slovakia). Although the Tatra are further south than the Pennines, the latitudinal 

difference is small. The Tatra are approximately at the latitude of Northern France. A 

recent study by Niedzwiedz (1992) and numerous articles by Hess (1965, 1969, 1974) 
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ensure that climatic data are now available up to the highest summits (above 2000 m). 

The highest climate station is Lomnicky Stit (2635 m). 

Hess divided the mountains into five zones according to mean annual 

temperature (Table 9.3). 

Table 9.3: Mean annual air temperatures in the Polish Tatra. 

Mean Annual Level of Level of Life Zone 
Temperature Isotherm/ Isotherm Class 

;oc N slope: m S slope:m 

-2 2200 2350 Snow line 

0 1850 2050 Sub-Alpine 

2 1550 1650 Timberline 

4 1150 1200 Agricultural 
Limit 

6 650 700 Lowland 

Source: Hess (1974). 

The -2°C isotherm of mean annual temperature (MMEAN-2) was taken by Hess 

to represent the snow-line. This falls above 2000 m in the Tatra, in comparison with 

the estimate of 1595 m in the Pennines. Differences in aspect appear important in the 

Tatra with a difference in 150 metres between north and south facing slopes. The ooc 
isotherm (MMEANO) was defined by Hess as the limit of the sub-alpine zone. 

MMEANO, at around 2000 m, is lower than in the Pyrenees (2726 m) but higher than 

in the Pennines (1336 m), despite severer winters than both mountain ranges. The ooc 
mean winter air temperature isotherm falls below 700 m because of intense temperature 

inversion at low levels (Niedzwiedz 1992). Stations below this altitude in the Tatra 

record mean January temperatures as low as -5 °C! 

In the Tatra, a mean annual temperature of 2°C is coincident with the treeline 

(both occurring at 1600 m), while the agricultural and mixed forest limit falls at 1200 
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m (coincident with a mean annual temperature of 4 °C). Mean annual temperatures in 

treeless parts of the Pennines are higher than this showing that mean annual temperature 

alone is not a good indicator of potential for tree and plant growth. The woe July 

isotherm in the Tatra (at 1650 m) is a better indicator of the natural treeline. Warmer 

summers in the Tatra raise the treeline to more than twice its respective altitude in 

northern England (846 m) whereas mean annual temperatures are similar at sea-level 

in both regions at 9°C. Hess (1969) developed the following regression equation for 

mean annual temperature in the Tatra: 

Ta=9. 2- (0. 0048al t) ---- (1) 

The lapse rate of -4.8°C/km is much lower than values in northern England 

(Chapter 8). The shallow rate, along with warmer summers, raises life zones in the 

Tatra above those in the Pennines, despite severer winters. The growing season 

becomes negligible at 2500 m but it is still 190 days at 844 m. 

Contrasts between the Pennines and Tatra are due to continentality effects 

(warmer summers and shallower lapse rates in the latter range). For the Tatra the 

World Meteorological Organisation (WMO) predicts a rise of 100m in life zones under 

a warming of 1 oc (WMO 1986), yet an increase in westerly flow (see section 8.5), as 

postulated by Niedzwiedz (1992), may lower life zones because of a reduced annual 

temperature range. The comparison with the maritime Pennine climate is informative. 

9. 7 Other Comparisons 

The mountain station of Fanaraken (approximately 2000 m) in southern Norway 

exhibits greater continentality than northern England. Temperatures on the summit are 

about woe lower than on Ben Nevis in winter but only slightly lower in summer. The 

altitudinal difference is 600 metres. Temperatures at the same altitude are higher than 

in northern England in summer, leading to a slightly higher treeline (Manley 1949). 

The contrast in altitudinal zonation between continental and maritime mountain ranges 
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is also evident within Washington state, USA (Price 1978). The timberline is almost 

1000 m higher in the continental Wallowas than in the maritime Cascades (2700 m 

compared with 1700 m). Contrasts in zonation due to continentality are not confined 

to the temperate zone. Life zones are consistently higher on dry subtropical mountains 

than on wetter equatorial ones (Messerli & Winiger 1992). Thus rice cultivation reaches 

its highest elevations in the Himalayan system (2700 min the Jumla valley) and not in 

equatorial areas such as Indonesia, where it only reaches 1400 m (Uhlig 1978). 

9.8 Conclusions 

This chapter has illustrated the altitudinal zonation of the temperature resource 

in northern England, the Pyrenees and the Polish Tatra. Differences in the relative 

altitudes of critical isotherms and in the rate of change in the temperature resource with 

altitude have been identified. 

In summary, major causes of the marginal nature of the British uplands include: 

1. low summer temperatures. The mean temperature of the warmest month 

barely reaches 10°C above 800 m; 

2. a steep altitudinal decrease in temperature, especially in spring. 

Other known reasons for marginality include: 

3. windy conditions due to exposure to the Atlantic westerlies; 

4. cloudy conditions and a lack of insolation, even in summer; 

5. high precipitation, leading to poor drainage and waterlogging, exacerbated 

by a lack of evaporation. 

The second part of the thesis will explore the consequences of the steep 
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altitudinal decline in temperature in more detail. 

a. The altitudinal variation in "environmental potential" is described by examining the 

altitudinal variation of growing season length and strength (measured by accumulated 

temperatures) and frost risk (Chapters 10-12). 

b. The temperature resource under the influence of each airflow type is simulated to 

examine the altitudinal decline of growth potential under different synoptic influences 

(Chapters 13-14). The relationship with the circulation pattern is important since effects 

of changes in relative frequencies of airflows on growth conditions can then be 

described. 

c. Past variation of growth parameters within the region is examined, using a time 

series from Durham University Observatory ( 180 1-1990) and effects are extrapolated 

to the uplands (Chapter 15). 

d. The variability of daily temperatures around a mean value for each airflow is 

introduced, allowing a more accurate determination of growth and frost parameters 

(Chapters 16-17). 

e. Temperatures associated with different airflows are modified under global warming 

scenarios, derived from GCM output data (Chapter 18). Warming radically alters the 

growth potential and temperature resource, illustrating the sensitivity of the Pennines 

to climatic change. 
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THE ALTITUDINAL VARIATION OF ACCUMULATED 
TEMPERATURES IN THE NORTH OF ENGLAND 

10.1 Introduction 

The thesis is not concerned with attempts to predict the effects of future climatic 

change on agriculture (and hence land use) per se. It is immediately apparent that to do 

so it would be necessary to model changes in climatic factors other than temperature, 

such as windiness, precipitation and insolation, as well as the influence of edaphic, 

topographic, social and economic factors. Nevertheless, indicators based on temperature 

can be used to illustrate the sensitivity of maritime uplands (such as the Pennines) to 

climatic fluctuation. 

This chapter investigates the variation in growing season quality with altitude 

over a sample six year period (1985-1990). The rapid decrease in accumulated 

temperatures with altitude is a fundamental characteristic of a climate dominated by 

steep lapse rates and maritime air. Low summer temperatures are the restricting factor 

for cultivation and tree growth in many parts of northern England. Later in the thesis 

this is used as a baseline upon which the results of recent GCM (General Circulation 

Model) temperature simulations are placed. The methodology shows how global scale 

GCM model output can be applied to illustrate changes in climate within a small area 

through the use of synoptic climatology. 

The relationship of the chosen parameters to changes in airflow frequencies is 

important since it is only when the synoptic climatology of an individual area has been 

fully described that it is possible to speculate about the local effects of climate change. 

Climate is composed of day to day variations in weather: it is airflow variations that 

control that weather. Variations in airflow frequencies can be predicted for future global 

warming scenarios (Hulme et al. 1993) and so it is important to relate such airflow 

variations to resultant temperature change. With more detailed information on other 

climatic indices (e.g. the number of freeze-thaw cycles for weathering applications, or 

the accumulated temperatures and precipitation required for a specific crop), similar 
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methodology could be used to show the change in the expected spatial distribution of 

the indices under the influence of climate change. 

10.2 Estimation of Growing Season Strength 

Daily maximum and minimum temperatures were obtained at 26 locations in 

northern England (for a description of these sites and a map see Chapter 4). Most of 

the high altitude stations are sited in the Alston massif (Great Dun and Widdybank 

Fell), Northumberland (Kielder and Redesdale), or the Upper Eden valley (Warcop and 

Shap). The bias towards lowland localities and accessible sites was discussed in Chapter 

4. The chosen data period (1985-1990) includes cold winters (1985, 1986), cool 

summers (1985), mild winters (1989, 1990) and warm summers (1989, 1990). At four 

locations (Houghall, Nenthead, Shap and Wycliffe Hall) data were only available for 

part of the period and these locations have been omitted from some analyses. 

Growing season strength is measured by accumulating daily mean or maximum 

temperatures above a critical threshold. The actual threshold temperature and the 

temperatures used to calculate the excess depend on the application concerned. 

Various forms of accumulated temperatures have been used in scientific study 

(Thorn 1954, Shellard 1959). For example, accumulated temperatures were related to 

potential for crop growth by Petr (1991) in the Czech Republic and by Carter et al. 

(1991a) in Europe. Heat resources were evaluated by Guoyu (1991) for China and the 

United States and were found to be among the highest in the temperate zone. 

Accumulated temperatures were used by Hess et al. (1984) to evaluate the spatial 

variation of "thermal potential" in the Carpathians. In many crop and forestry models, 

limits set to species were defined by accumulated temperatures. Changes in accumulated 

temperatures predicted from GCMs were used to predict changes in species' 

distributions (Carter et al. 1991b, Botkin & Nisbet 1992, Urban et al. 1993). 

Accumulations below a threshold have also been used to represent winter severity in 

the USA (Assel 1980) and heating requirements (Aceituno 1979). Specific examples are 

listed in Table 10.1. 
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Table 10.1: Growing season calculations based on accumulated temperatures. 

APPLICATION PLACE THRES TEMPER- CRITICAL AUTHOR 
-HOLD ATURE VALUE 

General U.S.A >6°C Mean 1000 Dept of 
Crops Daily Ag 

Heating U.S.A < l8°C Mean N/A American 
Estimates Daily Engineer 

Cotton South >60°F Mean 1900 Ahrens 
U.S.A 15.5°C Daily (1991) 

Wheat Indiana >40°F Mean 2100 Ahrens 
4.5°C Daily (1991) 

Peas North >40°F Mean 1100 Ahrens 
U.S.A 4.5°C Daily (1991) 

Oats Lam mer- >4.4°C Mean 1050- Parry 
mmr Daily 1250 (1981) 
Hills 

Mountain Oregon >6°C Maximum 183 Urban et 
Hemlock Daily al.(l993) 

Ponderosa Oregon >6°C Maximum 600 Urban et 
Pine Daily al.(l993) 

General Britain >6°C Maximum N/A Shellard 
Crops Daily (1959) 

In the first example mean daily temperatures in excess of 6°C are summed to 

obtain an annual estimate of growth potential. Mean monthly temperatures could be 

used if daily temperatures were unavailable but would lead to serious differences in the 

calculated value. 

A threshold· of 6°C was taken in this study to represent the lower limit for 

realistic plant growth. This is the most widely quoted figure by British authors (Scott 

1884, Manley 1952, Taylor 1967b). An accumulation of 1000 degree days (d 0 C) above 

6°C was taken to be a lower limit for profitable agricultural cultivation. Parry (1978) 

used the 1150 doc isopleth as critical for oat cultivation in the Lammermuir Hills but 

the threshold temperature was lower (4.4 oq and he considered land between 1050 d°C 
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and 1250 d°C to be marginal. The limit chosen here is somewhat arbitrary. However, 

the method is more important than the absolute accumulated temperature limit chosen. 

Daily mean temperatures were calculated by taking the arithmetic average of 

daily maxima and minima. 6°C was subtracted to obtain the degree days contribution 

for that particular day. Negative values were ignored and positive values were summed 

to give the total growing season strength for each of the six years (Table 10.2). Days 

with missing data would by default record an accumulation of zero with the software 

used. To allow for this, annual totals were corrected by multiplying them by k 

where: 

k=365/number of days with data ----(1) 

k is always greater than or equal to unity. In most cases corrections are 

negligible but at Great Dun Fell corrections are very important since temperatures are 

unavailable at weekends. If missing data are concentrated at a certain season an 

anomalous result occurs because of the implicit assumption that the missing days have 

a degree day contribution equal to the average daily contribution over the whole year. 

Cases where this leads to incorrect accumulations are mentioned in the text. 

Table 10.2: Growing season strength in degree days, calculated using actual mean daily 
temperatures. 

Place 1985 1986 1987 1988 1989 1990 alt 

Ambl 1222 1169 1268 1403 1554 1532 90 

App 1324 1169 1259 1337 1357 1332 150 

Asp 1292 1195 1291 1392 1586 1558 64 

Clsle 1366 1268 1354 1485 1709 1672 26 

CClv 1378 1291 1337 1406 1638 1665 103 

CCov 1028 935 994 983 1233 1236 270 

Dur 1289 1222 1281 1385 1534 1557 102 
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Table 10.2: continued 

Place 1985 1986 1987 1988 1989 1990 alt 

Esk 1371 1268 1372 1440 1676 1730 8 

GDF 417 251 379 314 600 530 847 

Htbn 1312 1188 1227 1333 1514 1567 31 

Hay 1316 1240 1271 1376 1553 1550 82 

Hghcl 1045 1014 1091 1161 1281 1574 175 

Hughl - - - - - 1369 36 

Kes 1558 1437 1513 1563 1654 1739 100 

Kield 911 774 937 1006 1200 1236 201 

Leem 1411 1339 1421 1494 1710 1775 32 

Lweth 1164 1070 1108 1178 1394 1462 162 

Nent - - 1061 792 978 982 470 

Nwcs 1425 1345 1371 1484 1695 1735 35 

Rdsd 927 802 869 927 1053 1067 235 

Shap - - - 1015 1130 1159 249 

Sund 1405 1319 1346 1515 1736 1812 56 

War 1122 951 1071 1109 1320 1213 244 

Whas 1169 1115 1227 1297 1474 1434 165 

Wid 675 594 667 711 874 842 513 

Wy - - - - 1586 1310 120 

Most locations report their coldest year in 1986, accumulated temperatures 

ranging from 251 d°C at Great Dun Fell, to 1437 d°C at Keswick. The warmest years 

are 1989 and 1990. Sunderland on the east coast reports 1812 d°C in 1990 and Great 

Dun Fell manages 600 d°C in 1989 (over twice the amount recorded there in 1986). 

The inter-annual variation in accumulated temperatures is over 100% at this high 

altitude. The figure of 1574 doc for High Close in 1990 appears anomalously high and 

results because of the correction process, required to compensate for missing data. 
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10.3 The Linear Relationship between Accumulated Temperatures and Altitude 

Figure 10.1 plots growing season strength against altitude between 1985 and 

1990. A critical accumulation of 1000 d°C will be taken as the lower limit for 

successful agricultural cultivation in a particular year. In a bad year, such as 1986, 5 

or 6 stations record temperature accumulations below 1000 doc (including Kielder 

Castle, Redesdale and Carlton-in-Coverdale), whereas in 1989 only 3 stations 

(Nenthead, Widdybank Fell and Great Dun Fell) fall below, the first station only 

slightly so. Values for Nenthead are unavailable for 1985 and 1986. 

In 1985 Keswick and Warcop exhibit higher accumulated temperatures than 

expected given the altitude. The Warcop value is misleadingly high due to the 

correction process. Keswick shows high accumulations in all years, suggesting that local 

factors are important. The extremely sheltered south-facing location means that the site 

is warm. Straight lines are fitted to the relationship between accumulated temperatures 

and altitude. Subsequent analysis suggests slight curvilinearity, upland stations 

producing higher accumulations than would be expected from a linear relationship, 

although the lack of high altitude stations makes the curved trend difficult to 

substantiate. 

In 1988 there is very little correlation between altitude and growing season 

below 100 m. This may be a consequence of summer cooling at coastal locations, 

associated with a reduced diurnal temperature range and lower mean temperatures 

(Linacre 1982). 

Linear regressions summanzmg the relationship between growmg season 

strength and altitude are shown. The altitude at which the regression line crosses 1000 

doc is a crude estimate of the critical altitudinal limit to crop growth in that year. 

Microclimatic variations due to topography will elevate or depress this limit in many 

areas. This theoretical limit is listed in the first column of Table 10.3, and varies from 

236 m in 1986 to 463 m in 1989. This variation is similar in magnitude to the 200 

metre decline in the cultivation limit described by Parry (1978) for the Lammermuir 
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Figure 10 .1. Growing Season Strength, Measured by Annual Accumulated 
Temperatures (deg-days), versus Altitude, 1985-1990: Modelled by a 

Linear Relationsh1p Us1ng 22 Stations in Northern England 
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Hills (from 425 to 225 m). Therefore, inter-annual variation is considerable within this 

six-year period. Considerable areas of land between 236 and 463 m will be suitable for 

agricultural development in warm years such as 1989, but not in colder years such as 

1986. This large amount of "marginal" land includes much of Upper Teesdale, Upper 

Weardale, the Shap/Brough area and Upper Eden Valley, and large areas in Kielder 

Forest and the North Yorkshire Moors (Figure 10.2). 

Table 10.3: Linear regressions between growing season strength and altitude. 

critical alt gradient constant 
(metres) (d°C/metre) (d°C) 

1985 317 1.29 1409 

1986 236 1.37 1323 

1987 295 1.31 1386 

1988 328 1.51 1495 

1989 463 1.44 1667 

1990 453 1.57 1711 

average 351 1.42 1499 

The gradient, shown in the second column of Table 10.3, indicates the 

characteristic drop in degree days per unit increase in altitude. This varies from 1.29 

d°C/m in 1985 to 1.57 d°C/m in 1990. The rate is steeper in warmer years such as 

1989 and 1990, although the percentage change in growing season with altitude may 

be steeper in cooler years. The third column gives the constant term, representing 

predicted growing season strength at sea level. This varies by nearly 400 d°C between 

years. 

If the mean growing season strength over the six year period is related to 

altitude, the gradient of the regression line is 1.42 doc per metre, the predicted 

growing season at sea-level is 1499 d°C, and the critical altitude is 351 m (for an 

accumulation of 1000 d°C). This altitudinal limit will have fluctuated dramatically in 

the past, especially as it varies between 236 m and 463 m in such a short period. 
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Figure 10.2. Marginal Land Cbetween 235 and L153 Metres above Sea-level) 
Derived by Extrapolation of 1000 deg day Cultivation Limits in Fig. 10.1 
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Many studies have illustrated such systematic changes in growing season length 

or strength over many timescales and in contrasting regions of the world. Davis (1972) 

examined the variation in the onset of spring in Britain. The first day of spring, defined 

by maximum temperatures, was found to be related to: 

1. ice cover in the Baltic and the Iceland area; 

2. the sea temperature pattern in the North Atlantic; 

3. the circulation at 500 mb; 

4. atmospheric circulation indices. 

Moran & Morgan (1977) investigated change in growing season indices in 

Wisconsin, finding that fluctuations in the length and strength of the growing season 

were not necessarily correlated with changes in mean annual Northern Hemisphere 

temperature. Skaggs & Baker (1985) carried out a similar study using five rural 

Minnesota stations with data from 1899 to 1982. A general warming trend was 

discovered. Suckling (1989) used a climate departure index (CDI) to study the 

variability of growing season length in the south-eastern USA. The 1980s had a greater 

climate variability with unusual spring and autumn freeze dates. There are numerous, 

often contradictory, findings concerning historical fluctuation in growing season 

parameters, because of the contrasting indices used to define growing season. The 

fluctuation of the theoretical cultivation limit created for this study will be examined 

over the last two centuries by referring to the Durham meteorological record 

(Kenworthy 1985) (Chapter 15). 

10.4 The Use of an Exponential Model to Relate Growing Season Strength with 

Altitude 

r2 for the linear regressions between altitude and accumulated temperatures 

varies from 0.895 (1988) to 0.806 (1987). If an exponential function is fitted, r2 
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increases in most cases to over 0.9. Consideration of a simple annual temperature 

curve, represented by a sine-wave (Figure 10.3), suggests that, given a constant rate 

of increase in mean annual temperature, the area bounded by the curve and a certain 

critical threshold temperature will increase at a non-linear rate. Mathematical proof of 

this is given in section 10.5, supporting the idea that an exponential regression is more 

appropriate to model the altitudinal decrease in accumulated temperatures. 

The exponential relationship is as follows: 

growing season (g) =g
0
xe <-kxal ---- ( 2) 

g0 is the predicted growing season at sea-level, a represents altitude in metres 

and k is a coefficient. Thus: 

ln g = (ln g
0
)- (kxa) ---- (3) 

Growing season values need to be transformed using natural logarithms. The 

logarithm of growing season strength is then regressed against altitude using a straight 

Table 10.4: Exponential regressions between growing season strength and altitude. 

YEAR ln g0 go k critical r2 

d°C altitude 

1985 7.3 1480.3 -0.0015 261 0.905 

1986 7.27 1436.6 -0.0019 191 0.927 

1987 7.282 1453.9 -0.0014 267 0.855 

1988 7.382 1606.8 -0.0018 264 0.945 

1989 7.454 1726.8 -0.0013 420 0.926 

1990 7.466 1747.6 -0.0014 399 0.903 

average 7.366 1581.3 -0.0016 286 0.945 
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line with gradient k and intercept equal to ln g0 • In Table 10.4 values of ln g0, g0, k 

and the new cultivation limit using exponential regression are given for 1985-1990. 

Curves are shown in Figure 10.4, each year on a separate graph as in Figure 

10.1. In general, r is higher for the exponential function. Values for the four stations 

with incomplete data (Houghall, Nenthead, Shap and Wycliffe Hall) are included in the 

analysis. The low r of 0.855 (in 1987) is partly due to the anomalously high residual 

belonging to Nenthead in that year which arises due to missing data. Otherwise r is 

always above 0.9. Thus an exponential relationship more accurately describes the 

altitudinal decrease in accumulated temperatures than a linear relationship. The lack of 

high altitude stations means that the robustness of the regressions is fairly low (section 

10.6). Predicted values of sea-level growing season strength, g0 , vary from 1436.6 d°C 

in 1986 to 1747.6 d°C in 1990. Accumulations are higher than in the linear model 

because of the increased growing season gradient simulated at low altitude. k varies 

from -0.0013 in 1989 to -0.0019 in 1986. There is no strong relationship between k and 

the linear gradient. For example, the linear gradient is steeper in 1989 than in 1986, 

but this is not so for k. 

Critical altitudinal limits to cultivation in the exponential model are lower than 

in the linear model, ranging from 191 m in 1986 to 420 m in 1989. The amount of 

variation is still large and critical altitudes interpolated using this exponential model are 

40-60 metres lower than equivalent linear limits. The difference is represented on 

Figure 10.5, which shows both exponential and linear regressions for the average 

growing season strength between 1985 and 1990. The critical cultivation limit (an 

accumulation of 1000 d°C) in the exponential regression is 286m whereas in the linear 

case it is 351 m. It is at very low and very high altitudes that the exponential model 

predicts higher temperature accumulations than the linear model. The exponential model 

takes into account the extra warmth experienced at lowest altitudes, often due to coastal 

influences, and the relative (not absolute) warmth on the highest summits. This may be 

the result of temperature inversions (Hennessy 1979), or the heating of upland plateaux 

in summer (Tabony 1985). 
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Figure 10.4. Growing Season Strength, Measured by Annual Accumulated 
Temperatures Cdeg days), versus Alt1tude, 1985-1990: Modelled by 

an Exponential Relationship 
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10.5 An Analytical Investigation into the Altitudinal Decline in Growing Season 

Strength: Linear or Exponential? 

The shape of the altitudinal decline in growth potential, as measured by 

accumulated temperatures, will be approached analytically. The annual temperature 

fluctuation is represented as a sinusoidal curve with amplitude A equal to the annual 

temperature range and mean temperature m equal to the mean annual temperature 

(Figure 10.3). The area of the curve (R) above the critical threshold, marked as d, is 

representative of growing season strength. The length of the growing season is marked 

as I. 

As the critical temperature threshold is altered the area R will change. The same 

effect is obtained if the annual temperature curve is moved (i.e. mean annual 

temperature m is changed) or if the amplitude A (mean annual temperature range) is 

altered. 

The annual temperature curve can be described by: 

t=(A/2)x[sin((2~/365)x(x-91.25-l))]+ m ----(4) 

where A = amplitude, m = mean annual temperature, I = the lag in the minimum 

point of the curve in days after December 31, and x = the day of the year (between 

1 and 365). 2* _pi/365 is a factor allowing conversion from days in the year to radians. 

For any day in the year (a given value of x) the expected mean temperature can be 

obtained if I, A and mare known. 

For example: Let A = 10°C, m = 9°C and I = 22 days. 

On 22 Jan {x=22) the expected temperature ts 4°C. On 22 Apr (x=l12) the 

temperature expected is 8.89°C. 
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To obtain the beginning and end dates of the growing season, equation 4 is set 

equal to 6°C: 

x=(365/2x)xarcsin([2x(6-m)/A]+91.25+1) ----(5) 

The value of x produced is typically the start day of the season (a). To obtain 

the last day (b), which is equidistant from the warmest day of the year (a sine curve 

is symmetrical), the following equations are used: 

warmest day(w)=l+(365/2) ----(6) 

Therefore: 

b= 2 (1 + ( 3 6 5 I 2 ) ) -a = 2 w- a ---- ( 7 ) 

The length of the growing season in days is equal to b-a. 

Notes: - if b > 365 the last day of the growing season will fall in January of the 

following year; 

- if m-(A/2) > =6, the length of the growing season is 365 days since the curve never 

dips below 6°C; 

-if m+(A/2) < =6, there is no growing season since the curve never rises above 6°C. 

Accumulated temperatures Tacc during the growing season are obtained by 

calculation of the area under the sine curve between a and b, minus area B (Figure 

10.3). 
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Thus: 

Tacc= Jab (A/2) x [sin ( (21t/365) x (x-91. 25-1))] +m dx 

-6 (b-a) ---- ( 8) 

The area B [ =6(b-a)] represents the area between a and b below the threshold 

and must be subtracted from the integral to get the required area R. 

=(365/27t)xA/2f:21t/365[sin((27t/365)x(x-91.25-1))] dx 

+ m (b-a) -6 (b-a) 

=(365A/47t)x[-cos((27t/365) (x-91.25-1))] ~ + (m-6)x(b-a) 

=(365A/47t)x[-cos((21t/365)x(b-91.25-1)) 
+cos((27t/365.)x(a-91.25-1))] + (m-6)x(b-a) ---(9) 

Once A, a, b, I and mare known the annual temperature accumulation can be 

calculated. This can be done for each station using historical temperature data. 

Alternatively, arbitrary values of A, I and m can be created. In the following section, 

expected accumulated temperatures at each location are derived through Fourier 

analysis. 

10.6 Fourier Analysis of Recorded Temperature Data 

The Fourier curve (i.e. the sine curve representing annual variation in mean 

temperature) was extracted at each station using mean daily temperatures recorded for 
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all years between 1985 and 1990. 

The yearly march of temperature was modelled by a sine curve with a phase lag 

c/>, plus a constant m: 

y=m+((A/2)sin(t+~)) ----(10) 

where tis the day of the year. 

A sine wave with a phase lag is obtained by the addition of a cosine and sine 

wave: 

y=m +(A/2)x[cos~sin«+sin~cos«] ----(11) 

If bl = (A/2)*cos(c/>) and b2 = (A/2)*sin(c/>): 

phase=~=arctan[b2/bl] ----(12) 

Such a curve was fitted by regressing mean daily temperatures against the sine 

and cosine of the Julian date. Sin(day) and cos(day) were generated from the day 

number, which varied between 1 and 365. Leap years were treated as any other 

calendar year. 
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Table 10.5: Fourier analysis of mean daily temperatures, 1985-1990. 

Place high low amp phase r2 nns error 
(oC) 

Amblsd 14.76 2.63 12.1 -19.7 0.706 2.765 

Applby 14.50 2.15 12.4 -20.7 0.674 3.043 

Asptra . 14.57 3.21 11.4 -24.2 0.671 2.810 

Clisle 14.68 3.23 11.5 -25.0 0.669 2.840 

Crlclv 15.07 3.02 12.0 -26.0 0.672 2.977 

Crlcov 13.43 1.51 11.9 -26.1 0.682 2.874 

Durham 14.69 3.01 11.7 -26.2 0.696 2.726 

Eskmls 14.84 3.88 11.0 -28.4 0.684 2.631 

Gtdnfl 9.30 -2.20 11.5 -30.4 0.676 2.815 

Hartbn 14.58 2.93 11.6 -26.4 0.676 2.847 

Haydon 14.63 2.99 11.6 -24.6 0.665 2.922 

Hghcls 13.64 2.54 11.1 -23.4 0.695 2.598 

Houghl 13.95 4.31 9.6 -12.4 0.606 2.786 

Kswick 15.37 3.95 11.4 -20.7 0.693 2.686 

Kieldr 12.93 1.54 11.4 -23.4 0.670 2.870 

Leemng 15.45 3.10 12.4 -24.7 0.690 2.928 

Lwethr 14.13 2.22 11.9 -25.8 0.686 2.848 

Nenthd 12.34 1.39 10.9 -22.2 0.662 2.774 

Nwcstl 15.13 3.70 11.4 -27.5 0.689 2.715 

Rdsdle 12.66 1.44 11.2 -25.6 0.679 2.724 

Shap 12.89 2.93 10.0 -24.1 0.587 2.895 

Sundld 15.06 4.11 11.0 -29.9 0.682 2.640 

Warcop 13.58 2.34 11.2 -26.1 0.648 2.925 

Whasdy 14.35 2.73 11.6 -23.8 0.693 2.735 

Widdyb 11.68 0.02 11.7 -27.4 0.686 2.786 

Wyclfe 14.71 2.97 11.7 -23.3 0.701 2.616 
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The phase lag in the annual curves varies between -12.39 days (the minimum 

temperature is expected on Jan 12) at Houghall, to -30.38 days at Great Dun Fell. The 

figures refer to the occurrence of the minima in days after Jan 1. Houghall data are 

unreliable because of the extremely short time period. Stations in the north-east 

experience a longer temperature lag behind solar radiation input than those in the north

west (Figure 10.6). The lag also increases towards the coasts, reaching nearly 30 days 

at Sunderland on the east coast and over 28 days at Eskmeals on the west coast. More 

surprising is the increase in lag at high altitude, illustrated in Figure 10.7 a. The 

mountain summit of Great Dun Fell records the longest lag, unexpected at high altitude, 

where traditionally the response to solar heating is thought to be extremely rapid due 

to the strong dependence of temperature on direct solar radiation. The relationship 

between phase lag and altitude is complex because both mountain stations (high altitude) 

and coastal stations (low altitude) show large lags, but for contrasting reasons. 

There is a strong relationship between station exposure and lag (Figure 10.7 b). 

The outlying value of Great Dun Fell distorts the graph somewhat but phase lag 

decreases with increasing shelter (a higher exposure value). All stations with a short lag 

are sheltered inland sites where a lack of air movement encourages rapid response to 

solar heating. Phase lag is plotted against the distance from the nearest coast in Figure 

10.7 c. One may expect the phase lag to decrease with increasing distance inland, 

because surface temperatures lag less behind solar radiation input in continental areas 

{Trenberth 1983). The actual relationship is not strong because of the effect of high 

altitude stations inland. The altitudinal effect outweighs any continental effect. If 

stations above 200 m are highlighted, they nearly all fall in the same region of Figure 

10.7 d, confusing the relationship between phase lag and continentality. 

Both phase lag and amplitude of the annual temperature signal are used as 

measures of continentality (Driscoll & Yee Fong 1992, Trenberth 1983, Prescott & 

Collins 1951) and the two should be correlated (Figure 10.7 e). Inclusion of the four 

stations with incomplete data (marked as 0) produces unusual values but when these are 

omitted (Figure 10.7 t), there is a weak negative relationship (phase lag increases as 

amplitude decreases). 
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Figure 10. 7. Relationships between Phase Lag 
Signal and Environmental 

in the Annual 
Factors 
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Table 10.6 lists starting and ending dates of the growing season (the period for 

which mean temperatures are 6°C or above) together with growing season length and 

strength for all locations (obtained from equations 5-9). 

Table 10.6: Growing season parameters obtained via Fourier curves. 

Place Start End Season Season 
Day Day Length Strength 

Amblsd 84.2 320.2 236.0 1267.3 

Applby 89.5 316.8 227.4 1193.2 

Asptra 84.5 329.0 244.5 1274.8 

Clis1e 84.7 330.2 245.5 1295.2 

Crlclv 86.5 330.6 244.1 1347.2 

Crlcov 102.9 314.3 211.5 981.9 

Durham 87.9 329.6 241.7 1281.2 

Eskmls 81.3 340.5 259.2 1373.8 

Gtdnfl 147.2 278.6 131.4 282.5 

Hartbn 89.0 328.7 239.7 1256.8 

Haydon 86.6 327.6 241.0 1269.5 

Hghcls 92.3 319.6 227.4 1072.5 

Houghl 62.6 327.2 264.6 1254.1 

Kswick 71.5 334.9 263.3 1473.0 

Kieldr 101.9 309.8 207.9 902.7 

Leemng 83.5 331.0 247.4 1418.5 

Lwethr 95.3 321.2 225.9 1135.5 

Nenthd 104.2 305.2 200.9 801.9 

Nwcstl 81.5 338.4 256.9 1409.7 

Rdsdle 105.9 310.3 204.4 854.9 

Shap 92.5 320.7 228.2 970.3 

Sundld 79.7 345.2 265.4 1432.4 

Warcop 96.7 320.6 223.9 1050.8 
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Table 10.6: continued 

Place Start End Season Season 
Day Day Length Strength 

Whasdy 88.8 323.9 235.1 1204.2 

Widdyb 120.1 299.6 179.5 650.2 

Wyclfe 85.2 326.3 241.2 1281.8 

As altitude increases, mean annual temperature decreases at a rate of 

6.85°C/km, the first date of the growing season gets later by 79.3 days/km, the last 

date of the growing season gets earlier by 68.4 days/km, and accumulated temperatures 

Table 10.7: Regression of growing season parameters against altitude. 

Parameter Gradient Constant r2 error 

max temp -0.00689 15.17 0.879 0.475 

min temp -0.00681 3.72 0.854 0.522 

mean temp -0.00685 9.45 0.916 0.386 

start day 0.0793 77.84 0.836 6.522 

end day -0.0684 334.32 0.836 5.624 

season -0.148 256.48 0.884 9.943 
length 

season -1.385 1387.02 0.879 95.56 
strength 

above 6°C decrease by -1.385 d°C/m (Table 10.7). The delay in the start of the 

growing season in spring (with increasing altitude) is more rapid than the foreshortening 

in autumn. Thus the season is shifted to slightly later in the year at high altitude. Steep 

lapse rates in maritime air in spring are associated with the steep decrease in growth 

potential. For example, the first date of the growing season occurs around 20th March 

at Sunderland near the coast, whereas the equivalent date is 27th May at Great Dun Fell 

(847 m). 
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r for all relationships in Table 10.7 is high (mostly well above 0.8). Over 80% 

of the variation in mean temperature, growing season length and strength is thus 

accounted for by altitude alone. 

The length of the growing season is defined as the period of time over which 

the annual temperature curve is above the threshold (b-a in Figure 10.3). Length is 

plotted against altitude in Figure 10. 8. There is a strong negative relationship. At sea

level a growing period of 256.5 days (over 8.5 months) is expected, falling to about 

130 days (just over 4 months) at Great Dun Fell (847 m). 

Growing season strength, derived from integration of the Fourier curve above 

the threshold (equation 9), is plotted against altitude in Figure 10.9. An annual 

accumulation of 1000 doc is expected at 278 m. In order to reduce the expected 

accumulation to 500 doc one must move up to 638 m. The altitude at which the 

accumulation would become zero, assuming a linear decrease, would be 998 m (i.e. 

approximately 1000 m). In reality temperatures commonly exceed 6°C at much higher 

altitudes than 1000 m in Scotland, as recorded on Caimgorm (Barton 1987) and Ben 

Nevis (Omond 1910). One of the disadvantages of the Fourier approach therefore is that 

it is possible for temperatures (especially during the day and at sites with a large diurnal 

temperature range) to exceed the threshold while the mean temperature signal remains 

below. 

10.7 Application of Fourier Analysis to Examination of the Relationship between 

Growing Season Strength and Altitude 

Arbitrary Fourier curves with set values of amplitude and mean temperature can 

be used to define the expected relationship between growing season strength and 

altitude. Two families of curves were created with amplitudes of 10°C and 20°C, 

representative of maritime and continental climates respectively. Accumulated 

temperatures were calculated for curves differing in mean temperature by 1 °C. m was 

increased in 1 oc steps from ooc to 15 oc in the maritime case (A= 10°C) and from 

-8 oc to 20°C in the continental case (A =20°C). 
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Figure 1 0.8. Growing Season Length, Predicted From Four1er Analysis, 
versus Altitude 
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F1gure 10.9. Growmg Season Strength, Predicted From Four1er Analysis, 
versus Altitude 
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The change in growing season length as mean temperature increases is shown 

in Figure W.W. The critical threshold is 6°C. A constant change in mean temperature 

can be assumed to be representative of changing altitude (assuming a constant lapse 

rate). When the mean annual temperature is 6°C the growing season is 182.5 days in 

length, irrespective of amplitude. The rate of change of growing season length with 

change in mean annual temperature is steeper in the maritime case, accounting for the 

rapid decrease in growth potential in the maritime uplands of Western Europe. In 

continental climates the effect of a given change in mean temperature on growing 

season length is less and mean annual temperature can stray further above or below 6°C 

before the growing season extends throughout the year or ceases to occur. respectively. 

Thus maritime areas are more sensitive to global climate change (changes in mean 

annual temperature). The rate of increase in growing season length is very steep in the 

upper and lower portions of each curve. If A=10°C the change in growing season 

length between mean annual temperatures of W and 11 oc is over 70 days. 

The variation m growing season strength (measured by accumulated 

temperatures above 6°C) in relation to a constant rate of change of mean annual 

temperature is shown in Figure W.11. Given any mean annual temperature, annual 

temperature accumulation is higher in a more continental climate because of the warmer 

summer. With mean annual temperatures at 6°C, the difference between the maritime 

(A= W°C) and continental (A =20°C) cases is over 500 d °C. As mean annual 

temperature rises above 6°C, the amplitude (representing continentality) of the 

temperature signal becomes less influential and the relative benefits of a continental 

climate diminish. At a mean temperature of 16°C both amplitudes create an annual 

degree-day accumulation of 3650 d°C. Mean annual temperature can be extremely low 

in a climate with a large annual temperature range and there is still an annual 

accumulation above 0 d°C. For example, in parts of Siberia the mean annual 

temperature range approaches 60°C and a mean annual temperature as low as -20°C 

would still produce a little growth in the short summer period with mean temperatures 

peaking at woe. 

It follows that the rate of decrease in growing season strength with decreasing 
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Figure 10.11. Change in Growing Season Strength as Mean Annual 
Temperature Changes, Given Two Contrasting Signal Amplitudes 
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mean annual temperature is steeper in a maritime climate, especially when mean annual 

temperature is above the critical growth threshold. Thus the altitudinal decline in 

growing season strength is more rapid in parts of western Europe than in mainland 

Europe, despite similar mean annual temperatures. As mean annual temperature 

continues to decrease towards the threshold. the rate of decrease in growing season 

strength also decreases. supporting an exponential (or at least a form of non-linear) 

relationship between altitude and growing season strength. The decrease in mean 

temperature with altitude is assumed to be linear. 

10.8 Robustness of the Growing Season/ Altitude Regression 

It is helpful to examine the robustness of individual regressions of accumulated 

temperatures versus altitude. Figure 10.12 shows five different regressions using the 

same data (mean accumulated temperatures over the six years versus altitude). Linear 

(1) and exponential (2) models have been described previously. The calculation of the 

dfbeta for altitude (DFalt), leverage and Cook's distance (Table 10.8) highlights the 

strong influence of Great Dun Fell. 

Table 10.8: Robustness measures for the growing season strength/ altitude regression. 

Place DFalt leverage Cook's 
distance 

Ambleside 0.01 0.05 0.00 

Appleby -0.00 0.05 0.00 

A spa tria 0.03 0.06 0.00 

Carlisle -0.02 0.07 0.00 

Carlton-in- -0.08 0.05 0.03 
Cleveland 

Carlton-in- -0.06 0.06 0.01 
Coverdale 

Durham -0.02 0.05 0.00 

Eskmeals 0.02 0.08 0.00 
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Figure 10.12. Five D1fferent Regression Models of Mean 
Annual Accumulated Temperatures (deg days) versus Alt1tude (1985-1990) 
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Table 10.8: continued 

Place DFalt leverage Cook's 
distance 

Great Dun F1 2.83 0.66 3.68 

Hartburn Gr 0.16 0.07 0.04 

Haydon Br -0.00 0.06 0.00 

High Close -0.00 0.05 0.01 

Keswick -0.20 0.05 0.13 

Kielder -0.09 0.05 0.10 

Leeming -0.12 0.07 0.02 

Low Etherley 0.00 0.05 0.00 

Newcastle -0.10 0.07 0.01 

Redesdale -0.20 0.05 0.14 

Sunderland -0.15 0.06 0.04 

Warcop 0.01 0.05 0.00 

Whasdyke Fm -0.00 0.05 0.00 

Widdybank -0.22 0.20 0.03 

Omission of Great Dun Fell produces regression line number 3, with a gradient 

of -1.72 d °C/m, as opposed to -1.42 d °C/m for the original regression. This change 

highlights the strong influence of the relatively high accumulated temperatures at Great 

Dun Fell in reducing the altitudinal gradient in accumulated temperatures. Robust 

regression (4) and a regression on weighted data in inverse proportion to altitude (5) 

give slightly different results. The remarkable warmth of Great Dun Fell raises 

questions about its representativeness. It is possible that the exposed nature of the 

station increases accumulated temperatures recorded because of the increased advection 

of relatively warm free air, especially in winter. It is therefore postulated that this 

relative warmth is widespread at high altitude. A mathematical approach (section 10.5) 

has already suggested the increased suitability of an exponential relationship between 

growing season strength and altitude. The steep gradient of -1.72 d °C/m, obtained 
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without Great Dun Fell, is considered to be too high. 

10.9 Limitations of the Use of Accumulated Temperatures to Indicate Growth 

Potential 

a) The use of a 6°C threshold temperature is simplistic. Studies of plant physiology 

indicate that different threshold temperatures are relevant for different crops. In the 

Pennine uplands there is little arable farming and the main land use is sheep grazing. 

The grass upon which sheep feed does not grow in a normal year until late April or 

even May. It would be useful to know the critical threshold temperature(s) for this 

grass, in order to create a more realistic set of growth conditions. 

b) Growth indices using accumulated temperatures (e.g. Primault 1969) usually 

implicitly assume that the response of plant growth to temperatures above the threshold 

is linear, i.e. the rate of growth is proportional to the excess above the threshold. A 

few authors have developed more complex indices based on relationships between 

growth rate and temperature. The response of growth rate to a wide range of 

temperatures is not usually linear (Figure 10.13 a) but can be represented by an 

asymmetric bell-like curve (Figure 10.13 b) (Sutcliffe 1977). Three cardinal 

temperatures, i.e. the minimum (Tmin) and maximum (Tm.J temperatures at which 

growth can occur, and the optimum range of temperature over which the highest growth 

rate is maintained (TorJ can be defined. Tmax for most plants is over 35°C and in 

northern England growth rates usually increase up to the highest temperatures recorded 

(around 30°C). Thus the linear relationship can often be assumed when considering 

growth in a temperate climate. Tmin is below zero for most plants and for many alpine 

species can be less than -rc (Larcher 1975). Tort for alpines is often in the range 10-

200C. 

Methods for dealing with the complex relationship between plant growth rate 

and temperature are variable. Tyldesley (1978) represented a plant growth/temperature 

curve as a series of straight line segments. Accumulated temperatures relevant to an 

individual plant could be calculated using given formulae. The example given concerned 
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the sporulation of a wheat fungus. Utaaker (1968) weighted temperature excess above 

the critical threshold according to the relative respiration rate at that temperature 

compared with that at woe. Accumulated temperatures calculated in this manner for 

Norway spruce (Picea aries) showed that the decrease in "growth potential" with 

altitude was steepest in spring. One warm day in spring was seen to have a larger 

beneficial effect than a week of warm weather in autumn. 

Another method involves fitting a logistic S-shaped curve to growth rate 

variation (Figure W.13 c). Plant response, after a poor start, increases rapidly in the 

central temperature range and then slows as higher temperatures are reached. The 

turning point A is half way between T min and T opt- The dotted part of the curve is often 

irrelevant in northern England since heat stress is virtually unknown, especially in the 

uplands. Hence the logistic approximation is suitable. 

c) Using a threshold temperature, below which growth is assumed to cease, tells 

us nothing about the periods of time for which temperatures are above or below the 

threshold. The amount of time with temperatures above the threshold on a daily basis 

can vary, given a similar mean daily temperature, depending on diurnal temperature 

range. A mean daily temperature of 6oe may be calculated from a daily maximum of 

woe and a minimum of 2°e. The temperature would be above the critical threshold 

for about half of the day (probably during daylight). Any analysis based on degree days 

alone would assign no growth to that day because of the mean temperature of 6°e. A 

similar problem is evident when mean monthly maxima or minima are used. A mean 

daily maximum of 5 oe over a month may conceal several days when the maximum 

temperature rose above 6°e. The overall accumulated degree day figure would be 

negative. In any cumulative analysis. fluctuation above and below the threshold on a 

timescale less than the unit of analysis (in the last example the month) is ignored. The 

final accumulation is the sum of all positive excesses above the threshold and deficits. 

Negative values will often cancel out some positive contributions, leading to an 

erroneous answer as only positive values above the threshold should contribute to the 

result (Thorn 1954). 
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10.10 Conclusions 

There is a wide inter-annual fluctuation in growing season strength in northern 

England. In the linear model, growing season strength decreases by between 1 and 1.5 

d°C per metre increase in altitude. Taking 1000 d°C as the critical limit for tree and 

plant growth, land between 236 and 463 m is referred to as marginal because 

accumulations only exceed 1000 doC in some years. Calculations using a digital terrain 

model (DTM), described in Chapter 4, show that approximately 30% of the land in 

northern England lies between these altitudes (Figure 10.2). The variation of over 200 

metres in the theoretical cultivation limit between years is on the same scale as the 

decline in critical cultivation altitudes over 300 years within the Lammermuir Hills, 

documented by Parry (1978). Thus, the study area is extremely sensitive to small inter

annual changes in mean temperature. 

In the exponential model land between 191 and 420 m is marginal (about 35% 

of the total land area). This model appears to perform slightly better than a simple 

linear model and leads to lower limits. Both linear and exponential models of the 

altitudinal decrease in growing season strength lead to large amounts of marginal land. 

It is therefore interesting but not crucial to decide which is the more realistic. The 

absence of many high level stations makes this difficult since evidence for the 

exponential trend is based largely on observations at Widdybank Fell and Great Dun 

Fell (section 10. 7). A mathematical approach suggests superiority of the exponential 

relationship (section 10.5). 

Accumulated temperatures are only one indicator, although probably the single 

most useful measure, of what may be loosely termed "climate potential". Therefore the 

following two chapters concentrate on the length of the growing season and frost 

occurrence respectively. 
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OTHER MEASURES OF GROWTH POTENTIAL 

11.1 Introduction 

In Chapter 10 "growth potential" was estimated by accumulating the excess of 

daily mean temperatures above 6°C. The problem with the use of degree days, 

however, is that calculations are sensitive to the time period of measurement and the 

length of the growing season is ignored. It may be important whether the period of time 

with temperatures above the threshold is continuous or interrupted. 

11.2 Calculation of Growing Season Length 

In calculating the length of the growing season, growth was assumed to occur 

if the daily maximum temperature rose above 6°C. A binary categorical variable was 

created for each station equal to 1 (signifying a "growing day") if the daily maximum 

temperature was above 6°C, and 0 otherwise. For each year from 1985 to 1990, days 

were numbered from 1 to 365 (1 to 366 in 1988) and the following indicators of growth 

occurrence were calculated: 

a. first growing day; 

b. last growing day; 

c. total number of growing days; 

d. first consecutive growing day in spring; 

e. last consecutive growing day in autumn (i.e. all days between d and e are growing 

days); 

f. number of consecutive growing days (calculated as (e-d)+l). 

Mean values calculated over six years are shown in Table 11.1 for a few 

locations. 
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Table 11.1: Growth indicators (1985-1990). 

Place a b c d e f 

Amb 7 Jan 30 Dec 313 1 Apr 16 Nov 229 

App 8Jan 29 Dec 305 12 Apr 18 Nov 222 

Dur 7 Jan 29 Dec 315 31 Mar 19 Nov 234 

Esk 2Jan 31 Dec 332 24 Mar 22 Nov 244 

GDF 12 Mar 9 Dec 191 7 Jun 24 Sep 110 

Htbn 8Jan 29 Dec 314 5 Apr 15 Nov 225 

Kield 8Jan 29 Dec 289 19 Apr 14 Nov 211 

Nwc 7 Jan 29 Dec 315 15 Apr 19 Nov 219 

Sund 3 Jan 30 Dec 322 4 Apr 19 Nov 230 

Wid llJan 27 Dec 245 7 May 23 Oct 170 

The mean date of the first growing day is nearly always near the beginning of 

January, as growth occurs sporadically throughout the winter. For a similar reason, the 

last growing day is nearly always near the end of December. In many years dates are 

similar at many locations, e.g. Jan 9 and Dec 30 in 1986 and Jan 1 and Dec 31 in 

1988. Great Dun Fell is an exception, the first growing day not occurring on average 

until March 12. The relevance of the first and last growing days is limited since after 

the first growing day there is always a return to cold conditions. The first and last dates 

with maxima above 6°C would be more meaningful in a continental climate with a 

large seasonal variation in temperature. In northern England days with maxima over 

6°C occur throughout the winter, especially in lowland and coastal areas. 

Table 11.2 lists regression coefficients for indicators c to f against altitude 

(Figure 11.1). 
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Table 11.2: Regression parameters for growth indicators c, d, e and f against altitude. 

Indicator Gradient Constant r 
c -0.157 325.3 0.971 

d 0.083 86.9 0.880 

e -0.066 326.4 0.922 

f -0.149 240.5 0.937 

The constant term represents the predicted value of the growth indicator at sea

level. The total number of growing days (c) decreases with altitude (Figure 11.1 a). r2 

for the linear regression is very str.ong (0.971). The total number of growing days 

ranges from 332 at Eskmeals on the west coast (equivalent to 11 months) to 191 at 

Great Dun Fell Gust over 6 months). Most lowland areas record about 300 growing 

days per annum. There is a mean decrease of one day for every 6.4 metres rise in 

altitude. The number of consecutive growing days (f) must be used to define the length 

of the continuous growing season. The average date of the first consecutive growing 

day (d) is plotted against altitude in Figure 11.1 b). At sea-level, dates at the end of 

March or in early April are expected. This is delayed to late April at 200m, early May 

at Widdybank Fell (513 m), and early June at Great Dun Fell (847 m). There is a two 

month contrast between Great Dun Fell and sea-level. A similar relationship is shown 

for the mean date of the last consecutive growing day (e) (Figure 11.1 c) which occurs 

in late September at Great Dun Fell, late October at Widdybank Fell and mid

November in lowland areas. The rate of change is one day per 15 metres, less than the 

rate of one day delay per 12 metres at the beginning of the consecutive growing season. 

The total number of consecutive growmg days (f) decreases from 244 at 

Eskmeals (a growing season of 8 months) to 110 days at Great Dun Fell (below 4 

months). Thus the length of the growing season is more than halved at Great Dun Fell 

in comparison with sea-level. The relationship (Figure 11.1 d) is strong with r equal 

to 0.937 and a gradient of 1 day per 6-7 metres. The number of consecutive growing 
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days (f) is usually about 90 days fewer than the total number of growing days (c). 

Values may show a considerable range between years. Regression lines for f, 

the number of consecutive growing days plotted against altitude, are slightly different 

in each year (Figure 11.2). The altitudinal decrease in season length was twice as steep 

in 1990 as in 1985. Thus conditions in 1990 were beneficial in lowland areas but not 

at Great Dun Fell. The variation in the altitudinal gradient of growing season length is 

related to synoptic patterns. 1985 was a year with a wet cool summer but devoid of 

cold snaps in spring and autumn. As a result the length of the growing season was 4.5 

months at Great Dun Fell, a better than average figure, but the season failed to reach 

8 months at coastal locations. In 1990 a mild winter at low levels extended the season 

beyond 9 months at Sunderland while cold snaps in early June and September at Great 

Dun Fell reduced the season to 99 days. The altitudinal gradient in season length was 

very steep in 1990. 

An alternative approach would be to calculate the period of the year when daily 

maximum temperatures are expected to be above 6°C from a seasonal curve of mean 

maxima, extracted by Fourier analysis (Conrad & Pollak 1950). Using this method, a 

number of stations give the consecutive growth period as 365 days because mean daily 

maxima never fall below 6°C (Eskmeals, Haydon Bridge, Keswick, Newcastle and 

Sunderland). The Fourier method overestimates growing season length due to its 

reliance on mean daily maximum temperatures. 

11.3 The Conversion of Growth Occurrence to the Probability of Growth 

The occurrence of growing days around the calendar year can be converted to 

probabilities that express the chance on that calendar date that the maximum 

temperature will be above 6°C. It is possible that on any calendar date growth occurs 

in any number of years between 0 and 6. For each day a variable was created, 

consisting of the number of years in which growth occurred, divided by 6. Growth in 

all six years leads to a value of 1 and no growth, to a value of 0. The variable, a crude 

estimate of growth probability, was averaged within five day bands (pentads) to provide 
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Figure 11.2. Annual Linear Regressions C1985-1990) of the Length 
of the Consecutive Growing Season versus Alt1tude 
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stability. Figure 11.3 plots this estimate for four locations; Great Dun Fell, Widdybank 

Fell, Appleby and Sunderland. Great Dun Fell shows low probabilities of growth (near 

zero) from December to March and a short period with high growth probability from 

mid-June to mid-August. By September the probability has fallen to 0.9 (90%). Lines 

on Figure 11.3 join the median values in each month. At Widdybank Fell the 

consecutive growing season (with growth probability equal to 1) lasts over 4 months. 

Probabilities of maxima over 6 o C in winter fall to about 0. 2 (20%). Sunderland is sited 

on the coast and has a period of over six months when the growth probability is 1. 

Probabilities in November and December are still high due to the warming influence 

of the North Sea. Even in mid-winter probabilities are over 50%. Finally, Appleby 

exhibits a long consecutive growth period but low probabilities in winter, typical of an 

inland valley site. 

Inter-diurnal variability often masks any smooth annual trend in growth 

probability. This can be eradicated by smoothing. Robust locally weighted regression 

with Cleveland's (1979) tricube weighting function was used, variously called lowess 

or loess (Hamilton 1992). The bandwidth, which controls the amount of smoothing, 

was set at 0.5, i.e. half the "data length" (six months). Thus when a probability is 

derived for a particular date, values up to three months either side of that date affect 

the result. Smoothing on one year's data (running from day 1 to 366) means that the 

probability on day 366 can be very different from the probability on day 1! At 

Sunderland there is a considerably higher growth probability at the end of December 

than at the beginning of January. A solution is to replicate the data and place copies 

fore and aft, thereby creating three identical years. The smoothed curve for the middle 

year will "wrap round", with the probability on day 366 connecting smoothly to that 

on day 1. 

Resulting growth probability curves are shown for all locations, using a similar 

probability scate, in Figure 11.4. Four curves are irregular, being based on less than 

six years data (Houghall, Nenthead, Shap, Wycliffe Hall). Growth probabilities 

approach 1 during summer at all sites. Probabilities at Great Dun Fell are considerably 

lower than at other locations for much of the year, falling to 0.1 in mid-winter. Figure 
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Figure 11.4. Curves of Growth Probability for all 25 Stations 
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11.4 could be especially useful for prediction as growth probability can be interpolated 

for any calendar date. 

Growth probability curves for a selection of stations are shown in Figure 11.5 

along with the original data. The discussion below applies to Great Dun Fell. Maximum 

growth probability of 0.944 is recorded on August 3 and the minimum of 0.068 is 

recorded on February 3. By coincidence these extremes appear six calendar months 

apart. The curve does not have to be symmetrical or even smooth as a few kinks in 

Figure 11.4 indicate. Temperature singularities (Lamb 1950) may be to blame. To 

calculate the amount of time that the growth probability function is above or below 

certain thresholds is possible. Table 11.3 gives examples at Great Dun Fell and 

Ambleside. The bracketed figures represent the proportion of a year of 366 days. 

Table 11.3: Periods above growth probability thresholds. 

Days above threshold 

Prob Threshold Great Dun Fell Ambleside 

10% 312 [0.85] 366 [1] 

25 % 245 [0.67] 366 [1] 

50 % 178 [0.49] 366 [1] 

75 % 112 [0.31] 262 [0.72] 

90 % 56 [0.15] 185 [0.51] 

95 % - [0] 153 [0.42] 

99 % - [0] 103 [0.28] 

99.9% - [0] 51 [0.14] 

85% of the year at Great Dun Fell has a probability of growth over 0.10 (10%) 

but less than half the year ( 49%) has a growth probability over 50%. The probability 

function never reaches 0. 95 in summer and there is no period applicable to the last 

three probabilities in the table. At Ambleside growth probability is always above 0.5. 

The lowest value (0.608) is recorded on January 15 and the highest (0.999+) on July 
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Figure 11.5. Smoothed Growth Probability Curves at Four Sites 
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24/25. Probabilities remain above 0.999 for 51 days (14% of the year) and over half 

the year is associated with probabilities above 0.9. The curve is subjective, especially 

with regard to extreme values, since the smoothness of the curve depends on the 

bandwidth chosen. If bandwidth is decreased there is less smoothing and extreme 

probabilities are amplified. 

A useful way of plotting the II growth probability function II is against days away 

from the winter solstice (Figure 11.6) (Beck 1992). The variable plotted on the x-axis 

varies from 1 at the winter solstice to 183 at the summer solstice. The value for both 

equinoxes is around 91. This x-axis variable is a proxy for noon solar elevation, in tum 

a proxy for solar radiation input. The year is plotted as a curve which forms a closed 

loop. For the growth function the loop must be followed anticlockwise. A marked lag 

in growth probability behind solar forcing is shown. Growth probabilities in spring are 

much lower than corresponding values in autumn and the curve exhibits hysteresis. The 

area enclosed by the curve relates to the lag in maxima behind solar radiation. If lag 

is non-existent the loop simplifies to a linear relationship between day value and growth 

probability. 

Many stations show evidence of pointedness at the summer solstice, indicating 

uniformly high growth probabilities at this time (e.g. Ambleside). In contrast, at Great 

Dun Fell, growth probability increases a fair amount after the summer solstice. At 

Sunderland the lowest probability (below 0. 7) is delayed until well after the winter 

solstice. There is a large contrast between probabilities on the rising and falling limbs 

at 50 days from the winter solstice. The two upland localities show similar patterns at 

both solstices. Lowland sites exhibit a steeper change in growth probability per day at 

the winter solstice than at the summer solstice. Growth probability at the autumnal 

equinox can be nearly as high as at the summer solstice (e.g. at Sunderland) and the 

probability at the vernal equinox almost as poor as at the winter solstice (e.g. Great 

Dun Fell and Sunderland). Slight kinks in the Great Dun Fell graph in April and 

September may be connected with temperature singularities (Lamb 1950). 
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11.4 Conclusions 

This chapter has illustrated the altitudinal gradient in growing season length in 

northern England, concentrating on the occurrence of growing days with maxima above 

6°C. The total number of (consecutive) growing days shows a strong negative 

correlation with altitude, although actual dates of the first and last (consecutive) 

growing days often do not show such a close fit with altitude. The graphic techniques 

employed here will be used in the following chapter to investigate frost probability. 

Then growth and frost probabilities will be compared. 
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_MEASURES OF FROST RISK 

12.1 Introduction 

Previous chapters introduced the concepts of growing season strength and 

length, describing their altitudinal variation within northern England. The third climatic 

measure to be investigated is the risk of frost. The growing season itself is sometimes 

defined as the interval between the last "killing" frost of spring and first "killing" frost 

of autumn . because the most serious threat to agricultural development in many areas 

is low minimum temperatures occurring in spring and autumn. The length of the frost

free period has often been used as an indicator of growth potential (Hess et al. 1976). 

Vedin (1990) examined changes in the frost-free period in Northern Sweden using air 

threshold temperatures of 3 oc and 0°C, taking account of the fact that ground minima 

are always lower than air minima. Nkemdirim & Venkatesan (1985) examined the frost

free season in Canada, east of the Rockies, delimiting three regions. The length 

decreased from east to west. The frost-free period was also used to define growing 

season length in Wisconsin (Moran & Morgan 1977), Minnesota (Skaggs & Baker 

1985) and the south-eastern USA (Suckling 1989). 

In temperate environments fluctuations of air temperature around freezing point 

are also of interest as they control freeze-thaw processes. Freeze-thaw cycles may 

increase in frequency up to a certain altitude but then decrease above this as 

temperatures fall consistently below freezing. This is the case in the Rockies (Fahey 

1973) and Carpathians (Hess et al. 1976). 

At very high altitudes in the tropics frost can occur on every night of the year 

and there is no frost-free period. At intermediate altitudes, such as the higher parts of 

the Nilgiri Hills in Southern India, radiation frost is restricted to the dry season. Frost 

is feared by tea cultivators above 1800 m from October until April (Lengerke 1978). 

Frost is also common in dry subtropical mountains where there is a large diurnal 

temperature range. For example, frost frequency increases from 39 per annum at 

Tamanrasset (1376 m) to 114 per annum at Asekreme (2706 m) in the Ahaggar 
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mountains of the Sahara (Yacono 1968). In temperate mountains such as the Pennines 

the total frost frequency will increase with altitude but at least there is a clearly defined 

frost-free season, although this may be short. Frost is extremely common at high 

altitudes in northern England, especially during winter, but also in spring and autumn, 

depending on altitude. 

Because frost can be extremely damaging for agriculture, and is relevant for 

prediction of road icing (Rayer 1987, Lindqvist 1992), there have been many attempts 

to predict frost in mountain areas. Unfortunately, this is made difficult by the fact that 

the altitudinal increase in frost occurrence encouraged by lower ambient air 

temperatures is often offset by nocturnal tendencies for cold air to collect in valleys. 

Minimum temperatures are extremely variable, depending on topographical influences 

(Harding 1978). Bootsma (1976) estimates climatological freeze risk in hilly terrain and 

finds topography to be extremely important. Waco (1968) shows how incised 

topography in the Santa Monica Mountains of Southern California leads to isolated 

areas prone to radiation frost while upper slopes remain frost-free. Favoured frost

hollows can experience temperatures 10°C lower than immediate surrounding areas 

even in the normally cloudy and windy British climate. Hawke (1944) cites the example 

of the Rickmansworth frost hollow in the Chilterns. The occurrence of low minima in 

valley bottoms means that thermal belts form on the valley slopes above, where frosts 

are less frequent than on summits above and in the valleys beneath (Chickering 1884). 

The thermal belts of the Appalachians in North Carolina are exploited by fruit growers 

(Dunbar 1966). 

It follows that the frost-free period is highly dependent on local topography and 

landform as well as absolute altitude (Hess et al. 1984). Thus relationships between 

frost parameters and altitude are less precise than the relationships involving growth 

parameters in Chapters 10 and 11 and the regressions for minimum temperatures in 

Chapter 8 are relatively poor. 
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12.2 Definition of Frost Parameters 

An air frost was said to occur if the daily minimum temperature was ooc or 

below. As temperature at the ground surface is usually below that of the air at screen 

level, a damaging ground frost can occur when the air minimum remains above 0°C. 

Thus the frost risk at the ground is underestimated when using air temperatures. 

For each year from 1985 to 1990 the following indicators of frost occurrence 

were extracted: 

a. first autumn frost; 

b. last spring frost; 

c. total number of frosts; 

d. length of frost-free season (calculated as (a-b)-1 in days). 

Average values are shown in Table 12.1 for a variety of locations. 

Table 12.1: Mean frost dates at a selection of locations (1985-1990). 

Location a b c d 

Amb 19 Oct 23 Apr 55 179 

App 2 Oct 14 May 79 140 

Dur 6 Nov 20 Apr 52 199 

Esk 3 Nov 27 Apr 44 190 

GDF 2 Oct 27 May 154 127 

Htbn 10 Oct 5 May 59 157 

Kield 19 Sep 2 Jun 108 108 

Nwc 23 Nov 11 Apr 30 225 

Sund 30 Nov 27 Mar 25 247 

Wid 22 Oct 19 May 96 155 
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The date of the first autumn frost (a) is usually in October or November. At 

mild coastal locations the first frost may be delayed, the most marked effect being seen 

at Sunderland where the first frost is expected on 30 November. At Great Dun Fell, 2 

October is the likely date (almost two months earlier). Appleby also expects its first 

frost on 2 October while Kielder Castle records its first frost on 19 September! The 

altitude of Kielder is only 201 m, compared with 847 mat Great Dun Fell, and severe 

frost hollow characteristics are shown at this site. The relationship between the date of 

the first autumn frost and altitude is poor, the regression having an r of 0.01. 

Increasing altitude has no discemable effect in bringing forward the average date of the 

first autumn frost. 

Frosts in late spring can damage young crops. Late frosts are a serious problem 

in northern England until June (Manley 1952) (Table 12.1). The last frost at Great Dun 

Fell is expected on 27 May and at Widdybank Fell on 19 May. In the Kielder frost 

hollow, 2 June is likely. In many lowland locations, especially near the coast, the frost 

risk recedes quickly. At Durham the last frost is expected around 20 April and at 

Sunderland on 27 March. Thus the relationship of the last spring frost with altitude is 

stronger than the relationship in autumn. The increase in frost risk with altitude is more 

strongly defined than in autumn, although r is still low (0.352). 

The above dates are the average first and last frosts recorded over six years. 

Frosts will have occurred earlier in autumn and later in spring. Extreme dates of 

occurrence (Table 12.2) show that the frost risk is still above zero outside the average 

dates of first and last frosts. The period between extreme frosts in Table 12.2 is 

therefore shorter than the average frost-free period (d) shown in Table 12.1. 

Extremely early frosts have occurred in August at Great Dun Fell and Kielder. 

As a result, the totally frost-free season at Great Dun Fell is reduced to 69 days. At 

Kielder the period is 78 days. Frosts surveyed over a longer period would reduce these 

figures even more. The Kielder season is extremely short compared with Sunderland 

(190 days) and the frost-free period increases by 275% between Great Dun Fell and 

Sunderland. "Spring" frosts have occurred on 13 June at Kielder and Widdybank Fell. 
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Data for Great Dun Fell are missing on this occasion so the latest recorded frost date 

is 7 June. It is impossible to correct for missing data. 

Table 12.2: Extreme frost dates (1985-1990). 

Location First/ Autumn Last/Spring Frost-Free 

Amb 11 Sep 4 May 129 

App 10 Sep 12 Jun 89 

Dur 23 Oct 30 Apr 175 

Esk 30 Oct 10 May 172 

GDF 16 Aug (7 Jun) 69 

Kield 31 Aug 13 Jun 78 

Sund 3 Nov 26 Apr 190 

Wid 2 Oct 13 Jun 110 

Figure 12.1 shows frost occurrence plotted against the calendar date at six 

locations. Sporadic frosts occur in August and September at Great Dun Fell, Kielder 

and Appleby. The only frost-free month is July. The mean frost-free period, taken from 

column d of Table 12.1, varies from 247 days (8 months) at Sunderland to 108 days 

(less than 4 months) at Kielder Castle. This is plotted against altitude in Figure 12.2 a. 

r2 is poor (0.223) because of the short period at Kielder and long periods at Sunderland 

and Newcastle. Frost free periods of 6 months are common at low altitude, decreasing 

to about 4 or 5 months in frost hollows. The relationship of frost-free period with 

altitude is much weaker than that of the consecutive growing season (Chapter 11) 

because the period is based on minimum temperatures which are more strongly related 

to topography than to absolute altitude (Harding 1978). 

The relationship between total frost occurrence (c) and altitude is strong (Figure 

12.2 b) with r2 equal to 0. 735. At sea-level the expected annual frost frequency is 41. 

This rises by one day for just under 8 metres altitudinal increase. Great Dun Fell 

records a mean of 154 frosts per annum, about 50 more than Kielder. The increase in 
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Figure 12.1. Frost Occurrence Around the Year at S1x Locations (1985-1990) 
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F1gure 12.2. Relationships between Frost Parameters and Altitude 
CMetres above Sea-level) 

a. Length of the Frost-free Period v Altitude b. Total Annual Frost Frequency v Altitude 
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total frost occurrence is about threefold from sea-level to 800 m. Coastal locations 

record few frosts. Sunderland records an average of 25 and Newcastle only 30. At high 

altitude the length of the frost-free season is similar to that in lowland frost hollows but 

the total number of frosts is much higher. In winter the temperature at 800 m in the 

free air is likely to be below 0°C, resulting in advection frost on windy nights. At 

lower elevations clear calm nights are required for an air frost to occur. This radiation 

frost may occur well into spring or in autumn if the air is calm and the sky is clear. 

Lowland frosts are therefore more sporadic and do not occur on all nights throughout 

the winter. 

12.3 Calculation of Frost Probability 

In an examination of frost risk in Florida by Waylen (1988), frost probability 

curves were derived showing the frost probability on each day of the year. A similar 

approach is followed here. Dividing the number of frosts recorded on each calendar 

date between 1985 and 1990 by six produces a crude estimate of the probability of frost 

on that date. Figure 12.3 shows such probabilities (averaged by pentad or five day 

period) at four localities; Great Dun Fell, Kielder Castle, Sunderland and Widdybank 

Fell. Lines connect median monthly frost probabilities. At Great Dun Fell the frost 

Table 12.3: Mean monthly frost probabilities (multiplied by 100). 

J F M A M J J A s 0 N D 

Amb 39 44 28 14 01 00 00 00 02 03 27 24 

App 54 51 39 18 04 01 00 00 07 08 35 40 

Dur 39 46 31 14 00 00 00 00 00 04 19 21 

Esk 30 34 23 11 01 00 00 00 00 02 24 22 

GDF 89 88 89 68 28 06 00 01 04 13 69 75 

Kie 58 60 49 40 15 03 00 01 12 18 47 48 

Sun 25 25 15 02 00 00 00 00 00 00 06 10 

Wid 60 71 58 41 05 01 00 00 00 05 34 41 
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Figure 12.3. Occurrence of Frost (Minima<=O deg C) by Pentads, 
Expressed as a Frost Probability 

:g a. Great Dun Fell 

~ 1.00 ~ 0 
~ I~-~ 
0 

"' "' 
"' CD 

"' 
E 

~ 0.50 

. 
~ 

0 

"' g 
'

Q_ 

~ 0.00 

" L 
~ 

r- I 
1 

1,,' i'hWOO I 

Day of tne Year 

'" 0 
c. Sunderland 

'-
0 
~ 0.40 
'-

0 
o• 

"' • 0.30 

"' co 

"' 
E 

E o.2o 

. 
~ 

~ 0.10 

g 
'
Q_ 

~ 0.00 
0 
'-
u. Day of the Year 

----, 
355 

355 

~ 

0 
b. Kielder Castle 

'-
0 

0.80 u .. 
'-

0 

"' ~ 
0.50 .;, 

OJ 

~ 
E 

i' 0.40 

. 
~ 

;; 0.20 

"' 0 
0 
'-

Q_ 

"' 
0.00 

0 

'-
l4 Day of the Year 

"' 0 
d. WJddybank Fell 

'-
0 

1.00 .. 
'-

0 

"' ~ . 
"' ro 
~ 

ii 0.50 
"= 
. 
~ 

g 
0 

i' 
a. 

~ 
0 
'-
u. Day of tne Year 

L1nes connect Mean Monthly Values 

j~ 



probability approaches 1 in winter. Mean probabilities are 0.88 in February and 0.89 

in January and March (Table 12.3). Peak winter probabilities range from 0.89 at Great 

Dun Fell to 0.25 at Sunderland. Probabilities fall to zero in July. 

Great Dun Fell (Figure 12.3 a) has a short frost-free season between mid-June 

and mid-August. Kielder Castle (Figure 12.3 b) is sited in a frost hollow and although 

winter probabilities range between 0.6 and 0.8, the major feature is the extremely short 

frost-free season. By September the frost probability is approaching 0.2. By contrast, 

Sunderland (Figure 12.3 c) has a six month frost-free period and peak winter frost 

probabilities are below 0.4. Finally, the graph for Widdybank Fell (Figure 12.3 d) 

shows winter probabilities above 0.5 but a longer frost-free season in summer than 

Kielder, even though Kielder is 300 metres lower. 

Cleveland's smoothing procedure (1979) is used to eradicate inter-pentad 

variability and derive a smooth representation of frost probability variation around the 

year. Results using a bandwidth of six months are shown in Figure 12.4. Four curves 

are irregular due to missing data (Houghall, Nenthead, Shap and Wycliffe Hall). Nearly 

all the curves approach zero in July and August, although this limit is not reached 

unless the period between the first and last extreme frosts (Table 12.2) is greater than 

the bandwidth. 

More detailed curves are shown for selected stations in Figure 12.5. Frost 

probability at Great Dun Fell reaches a maximum of 0. 876 on February 3 and a 

minimum of 0.019 on August 5. A smaller bandwidth would widen the extreme 

probabilities recorded. In this case the greatest frost probability occurs on the same date 

(February 3) as the lowest growth probability (Chapter 11). The curve for Kielder 

Castle reaches a maximum of 0.551 on January 23 but only falls to 0.033 (3.3%) on 

July 24, higher than at Great Dun Fell on the same date. An isolated frost in July 

appears more likely at Kielder than on Great Dun Fell when using this wide bandwidth. 

Table 12.4 compares frost probabilities at Great Dun Fell and Ambleside. 

Bracketed figures represent the proportion of a year of 366 days. 
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Figure 12.4. Curves of Frost Probability for all 25 Stations 
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Figure 12.5. Smoothed Frost Pr'obabili ty Curves at Three S1 tes 
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Table 12.4: Proportions of the year with frost risk above certain thresholds. 

Period of days above threshold 

Threshold Great Dun Fell Ambleside 

75 % 96 [0.26] - [0] 

50 % 171 [0.47] - [0] 

25 % 237 [0.65] 108 [0.30] 

10% 287 [0. 78] 203 [0.55] 

5% 315 [0.86] 241 [0.66] 

2% 356 [0.97] 278 [0.76] 

1 % 366 [1] 299 [0.82] 

0.5% 366 [1] 319 [0.87] 

At Great Dun Fell 47% (nearly halt) of the year has a frost probability over 

50%. At Ambleside only 30% of the year has a probability over 25% and the risk 

never reaches 50%. Kielder Castle has figures (not shown) similar to Great Dun Fell. 

The presence of Kielder reservoir a few kilometres to the south-east does not reduce 

the frost hazard, despite the fact that modification of air temperatures near a reservoir 

is likely (Gregory & Smith 1967). 

The frost probability function is plotted against days away from the winter 

solstice in Figure 12.6. Vertical scales of individual graphs are not comparable. The 

loop must be followed clockwise unlike the growth probability function. Again, graphs 

show marked hysteresis, with greatest frost probabilities occurring after the winter 

solstice, especially at Sunderland and Widdybank Fell. Frost probability at the vernal 

equinox is much greater than at the autumnal equinox. The curve for Great Dun Fell 

is fairly symmetrical with similar changes in probability around both solstices. Frost 

probability at the autumnal equinox is nearly as low as at the summer solstice and that 

at the vernal equinox is nearly as high as at the winter solstice. The difference in 

probability between the equinoxes is over 0.5. 
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The curve for Kielder is also symmetrical and fairly flat throughout winter and 

summer. The lowest frost probability is relatively high (3.3% ). The loop for Sunderland 

is pointed in summer and has a flat bottom, indicative of a long frost-free period. It is 

not until October that the probability starts to rise substantially. By the winter solstice 

the probability is still less than 15% but it reaches almost 20% by the end of January. 

By May, probabilities are again negligible. The loop for Widdybank Fell shows a 

strong lag behind solar forcing. The rate of change of frost probability is greater at the 

winter solstice than at the summer solstice. 

12.4 A Comparison of the Growing and Frost-Free Periods 

This section combines the growth and frost probability functions. Serious 

problems for agriculture occur when the probability of growth and frost risk are 

simultaneously high. In this situation fresh growth can be damaged by frost. If the 

consecutive growing season [indicator fin Chapter 11] is longer than the average frost

free period [indicator d in Chapter 12] there will be days within the growing season at 

risk from frost. An estimate of the number of days at risk (risk days) is gained by 

subtracting the average frost-free period from the average consecutive growing season. 

Figure 12.7 a shows the number of "risk days" plotted against altitude. There 

is a tendency for a decrease in risk day frequency with altitude because minima are 

often less severe (compared with maxima) at high altitudes. At Great Dun Fell the 

number of risk days is -20. The only other locations with negative risk were Newcastle 

and Sunderland, both urban locations near the coast. Growth is therefore less likely to 

be disturbed by frost in coastal localities (not surprising) and on Pennine summits 

(surprising). Many lowland sites show around 50 risk days in an average year although 

inter-annual variability is high. Durham recorded 23 risk days in 1985, a year in which 

the frost free season was nearly as long as the period of continuous growth. Overall, 

minima were relatively high and maxima were relatively low in this unsettled cloudy 

year. A reduced diurnal temperature range, often associated with an increase in altitude 

(Linacre 1982), will decrease the number of risk days. In 1990 Durham recorded 55 

risk days (more than twice the amount in 1985). Figures at Great Dun Fell are -9 in 
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Figure 12.7. The Number of 'Risk Days' Related to Environmental Factors 
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1985 but 2 days in 1990. Houghall only recorded data in 1990 and 222 risk days 

suggest that the site has an extreme frost problem. Even Kielder recorded only 106 such 

risk days in 1990. It is ironic that Houghall agricultural college appears to be sited 

where there is an extremely high risk to frost-sensitive plants. 

Risk days are plotted against station exposure in Figure 12.7 b). As shelter 

increases so does the number of risk days. Great Dun Fell, which is very exposed, has 

a frost-free period longer than the consecutive growth period, while Kielder, which is 

sheltered, has over 100 risk days. Even without Great Dun Fell (an outlier with very 

low exposure) there is quite a strong relationship between exposure and risk days. 

Dividing the number of "risk days" by the length of the consecutive growing 

season gives the proportion of the growing season at risk (Figure 12.7 c). This 

decreases with altitude. The proportion of the season at risk at Kielder Castle 

approaches 0.5 (50%). Typical values range between 0.2 and 0.3. At upland locations 

values are lower despite shorter growing seasons. At Great Dun Fell and Sunderland 

the risk is non-existent. Figure 12.7 d relates the proportion of the season at risk with 

exposure. Sheltered areas have a greater proportion of the consecutive growing season 

at risk from frost as expected. Data for Houghall in 1990 is not shown but 79% of the 

season at risk in this case. In comparison, at Kielder the figure was only 46%. The 

above proportions are conservative since they are based on the average (not the 

shortest) frost-free period. Additionally, when deriving the above proportion it is 

implicitly assumed that the whole frost-free period falls within the consecutive growth 

period (if the latter is longer). This is often, but not always, true. 

Growth probability and frost risk are superimposed on one graph for Great Dun 

Fell in Figure 12.8 a. Between November and April frost probability is greater, 

whereas from May to October the opposite is true. The difference between the two 

probabilities is represented by the third curve. This third curve is, however, not the 

best indicator of overall risk. Problems for agricultural cultivation are greater when 

both growth and frost probabilities are high. Table 12.5 lists the possible combinations 

of frost and growth probability and resultant overall risk: 
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Figure 12.8. Combination of Growth and Frost Probab1li ties: Great Dun Fell 

c 

" 0 

;; 

D 

"' D 
0 
L 
Q_ 

.5 

-.5 

-1 

~ 0.20 
0 
c 

"' 
~ 

~ O.lS 

''· 

a. Smoothed Growth and Frost Probability Curves 
versus Day of the Year 

Day of tne Year 
Tnird Curve=the Oi fference[Growth-FrostJ 

c. Smoothed Condi tiona] Probability Curve for 
Occurrence of both Growth and Frost 

Probaoi 11 tiesl~vergeol ov 1enta 

ol 

0 

0 

0 

0 10 1 o ] o ol I o 

355 

J 

005 till 
I 1- I I 

~ ooo -1~ , o 7 c 1~ 
0 1 365 
iJ Day of the Year 

"' "' 
-
";; 
-g .2 
L 
0. 

0 

c 
0 

"' u 

b. Multiplication of Smoothed Growth and Frost 
Probability Curves 

iAn Jhoex lof R!>latJve Rd;k o mag21 

I J 
" :>: 

~ 1 r 
3 355 

Day of the Year 

"' 0 
L 

d. Smoothed CondltJonal ProbabJlity Curve lor Occurrence 
of ootn Growtn ana Frost, wrappea Rouna from Dec to Jan 

;;; 0.20 
0 0 
c 
"' 0 

c ·- "' ~ ~ o lS ,_ 
"' ,.. 

"' 
"' 0 

" 0 " 
"' 0 :ii '-

" 0 ,; c 
- " (J) 0 

a: 

0 "' a 

" "' - L - " 
"' 0 > 

CO L 
0 " 0 u 
L 
0. 

0.10 

0 05 

0.00 

0 

0 
Nooa~i 1 it les Alveradled y Peh tao 

0 0 

0 0 

0 

0 

J_ 
365 

Day ol tne Year 

based on 1985-1990 bandwJdth=O.S 



Table 12.5: Combinations of frost and growth probabilities and overall risk: 

Frost 
Probability 

High 

Low 

+ - high risk, o - medium risk, - - low risk. 

Growth Probability 

High Low 

+ 0 

0 

The two probabilities could normally be multiplied to obtain an overall risk 

estimate (Figure 12.8 b) but since the two probabilities are not independent, conditional 

probabilities provide better results. The multiplied probability peaks at the end of April 

and at the end of October (roughly the changeover periods of the growth and frost 

probabilities in Figure 12.8 a). The daily risk appears to exceed 20% at the beginning 

of May but the autumn peak is lower. Conditional probabilities for each day of the year 

were derived by creating categorical variables for both growth and frost occurrence and 

setting the conditional probability equal to 1 if both growth and frost occurred on the 

same day. The conditional probability was averaged over the six years and then over 

pentads to reduce short-term variability and is smoothed over a year in Figure 12.8 c, 

peaking at 0.057 in early December. A curve which "wraps round" from December to 

January (see section 11.3, p 195) (Figure 12.8 d) has the highest probability of 0.046 

in November, although late April and early May is also a critical period (the probability 

reaches 0.039). Because growth and frost are dependent and their occurrences are 

negatively correlated, the conditional probabilities in Figure 12.8 dare much lower than 

the erroneous values derived through multiplication (Figure 12.8 b). Nevertheless, 

peaks in late spring and late autumn are shown in both cases. 

12.5 Conclusions 

Frost risk in northern England has been evaluated. Although the total number 

of frosts shows an increase with altitude, the length of the frost-free period is not 

strongly correlated with altitude. The risk of frost during the consecutive growing 

season decreases with altitude because of a reduced diurnal temperature range. 
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Therefore coastal and mountain areas are the least prone to damaging frosts during the 

growing season. 

Following chapters (13-14) attempt to predict how probabilities of growth and 

frost would change if the circulation pattern over Britain were to alter. Changes in the 
\ 

relationships of the probabilities with altitude are examined. The relative lengths of the 

consecutive growth period and frost-free period will change, depending on airflow type. 

Thus changes in the circulatory pattern will alter the thermal potential of the Pennine 

area. Relatively small changes could have great environmental effects since there is 

much marginal land. 
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THE DEVEWPMENT OF AIRFWW SCENARIOS TO PREDICT CHANGES 
IN THE TEMPERATURE REGIME AT DIFFERING ALTITUDES FROM 

CHANGES IN THE CIRCULATION PATTERN OVER THE BRITISH ISLES 

13.1 Introduction 

Smith (1965) has predicted the general effects on agriculture of changing 

weather in each season. Problems would occur if winters were longer and springs were 

colder and therefore later. Warmer summers would be beneficial, especially in upland 

areas. Such weather changes must be related to changes in the circulation pattern if the 

underlying processes are to be understood. Future climate change will involve changes 

in the relative frequencies of weather types as well as changes in conditions associated 

with individual weather types. It is therefore necessary to understand the effects of 

contrasting synoptic situations on the upland temperature regime. 

The contrast between the two components of climate change is illustrated by 

Perry & Barry (1973) for the British Isles, using "weather types" devised by Lamb 

(1972). The weather experienced in Britain at any one time depends on the airflow 

pattern and the time of year. Perry & Barry separate changes in air temperature 

between 1925-35 and 1957-67 into those due to changes in the frequency of weather 

types (between-type climate change) and those due to warming or cooling of specific 

weather types (within-type climate change). They found that for every month, apart 

from January, most temperature change was due to changes within weather types. 

Despite this result (which may have arisen partly because of classification problems) 

the variation in frequency of weather-types around the year is critically important in 

determining surface climate. 

There is considerable evidence (contrary to Perry & Barry 1973) to show that 

the majority of climatic change is connected with between-type climate change. 

Analysis by Sowden & Parker (1981) suggests that most inter-decadal temperature 

variability can be accounted for by circulation changes. Even within airflow types most 

long-term variability is assigned to subtle changes in airflow direction which would not 

be picked up by the airflow classification. For example, warming in westerly flows is 
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attributed to an increasing southerly bias. A few significant changes, however, cannot 

be accounted for in this manner, namely warming trends for both westerly and 

anticyclonic days in October, significant at 1%. 

The most well-known attempt to describe airflow patterns in a quantitative 

manner is that of Murray & Lewis (1966), who devised indices of progressiveness, 

southerliness, cyclonicity and meridionality based on airflow direction. The importance 

of similar indices in determining the surface temperature field in the Pennines was 

discussed in Chapter 8. Examples abound of the use of such indices to relate observed 

surface weather to circulation patterns. January and July temperatures in Europe are 

strongly correlated with changes in the circulation pattern (Kozuchowski & Marciniak 

1988). Weather anomalies over Britain are related to circulation tendencies by Perry 

(1969). Mean temperatures are strongly correlated with indices of progressiveness and 

southerliness in different ways depending on season. The strongest correlations are 

positive between temperature and progressiveness in winter and positive between 

temperature and southerliness in spring and autumn. Evidence for such correlation is 

examined for England and Wales back to 1781 (Kington 1976). A good example of an 

extreme month is August 1912 which is both the coldest and the most cyclonic in the 

record. In northern Scotland airflow direction (as measured by PSCM indices) is 

crucially important in determining weather contrasts between western and eastern coasts 

(Mayes 1991). Murray (1990) relates the climate of Skye to airflow types. 

As a result of such relationships, changes in the mean pressure pattern over 

Europe alone could cause significant climatic changes. For example, if the circulation 

were to become more zonal (with increased progressiveness), as suggested by Lumb 

(1993), western coasts of Britain would become even milder and wetter while the east 

would become drier. Glasspoole (1954) produces evidence of an increase in westerlies 

during the first half of this century, relating this to a 5-10% increase in precipitation 

in western regions of Britain, especially in winter. Murray (1993) gives evidence that 

southerly synoptic types have increased in frequency over Britain since 1980, especially 

in spring and autumn, explaining part of the warming trend in these seasons. Long-term 

trends in Lamb's catalogue of daily weather types are analysed using principal 
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components analysis by Briffa et al. (1990). There is a recent decline in westerly types 

and increase in pure cyclonic and anticyclonic types (up to 1987), suggesting a trend 

towards more variable weather with concentrated wet and dry spells. Warmer autumns 

are suggested, with an increase in southerly types, supporting Murray's view (1993). 

A critical consequence of a change in the circulation pattern may be contrasting 

effects at differing altitudes, due to a steepening or lessening of mean free-air lapse 

rates. This idea has been largely uninvestigated, however, at least in Britain. Pfister 

(1985) in his study of snowlines in Europe makes this important point for snow cover. 

A more westerly winter circulation would bring more rain at lower altitudes, 

accompanied by snow melt, while heavy snow would fall at higher altitudes. A more 

anticyclonic circulation with frequent temperature inversions could maintain lowland 

snow cover but permit melt on higher south-facing slopes above the inversion. Thus the 

altitudinal variation in snow cover depends largely on airflow patterns. The frequency 

of blocking anticyclones in the vicinity of Britain, as examined by Sumner (1959), is 

important in determining altitudinal trends in climatic elements. 

Temperature differences between individual weather types are necessary if 

between-type change is to be influential. In the newest GCMs these differences must 

be simulated along with within-type changes related to greenhouse forcing. Hulme et 

al. (1993) illustrate the ability of a GCM control simulation to emulate local "synoptic 

climatology" over Britain for the UKHI Met Office model (Viner & Hulme 1992). 

According to the GCM temperature differences between weather types become 

insignificant in summer, although winter contrasts are good. 

Changes in airflow character and frequency will occur together and statistical 

methods are required to separate the resultant effects of each (Comrie 1992). This 

usually involves examination of each weather type separately as a first stage. This 

chapter concentrates solely on the potential effects of changes in airflow frequency 

(between-type climate change) on temperature parameters. Thus climate is viewed as 

a result of mixing fixed conditions associated with various wind patterns. 

212 



13.2 The Use of Uni-directional Airflow Scenarios 

The effects of changes in relative airflow frequencies on the temperature 

resource in northern England is modelled by examining each airflow separately. 

Assuming one airflow direction (or weather type) to persist over the region continually 

for a whole year, and that the temperature distribution conforms to that predicted for 

the particular airflow in Chapter 8, the effects of this airflow on temperature can be 

analysed. Spatial distribution of surface temperature will change according to month, 

so an approximate seasonal cycle associated with the airflow in question must be 

modelled. The scenarios will be called uni-directional wind scenarios since they 

examine the seasonal temperature cycle for one airflow type in isolation. There are a 

number of objections to this: 

1. The dominance of one airflow at the expense of all others for a year is 

unrealistic. The circulation of the atmosphere is complex. 

The use of one airflow alone gives an idea of the contribution of that airflow 

type to surface climate, relative to other airflows. The use of airflows in isolation 

provides examples of extreme cases. The real climate is due to a combination of many 

airflows and will be more moderate. 

2. Airflows will change character if they persist over one region. 

This is known to be true in some cases. In anticyclonic conditions with calm 

surface winds, temperatures are likely to rise progressively in summer and fall in 

winter. A northerly outbreak of polar air will often intensify with time, lowering 

surface temperatures further. The opposite occurs if the strength of the northerly flow 

declines or if arctic air is gradually replaced by another airflow (not possible in the uni

directional scenarios). Temperatures may increase or decrease with the persistence of 

many airflows but it is thought best to simulate the temperature of an individual airflow 

throughout the year by using the present mean temperature distribution. A possible 

exception is the calm scen.ario. Conditions will eventually depart markedly from those 
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experienced under anticyclonic conditions in each individual month (described by the 

regression equations) because of the continued absence of horizontal advection. Surface 

temperature would be strongly controlled by radiation input and it is likely that winter 

temperatures would drop progressively lower at this high latitude (55°N). In the 

persistent Siberian anticyclone at a similar latitude, temperatures as low as -50°C are 

recorded, although this is in a continental location. In summer a positive net radiation 

balance would encourage a progressive rise in temperature. 

3. Airflows do not fall into discrete categories described by surface winds. 

There are two slightly different issues here. The first concerns the validity of 

using surface wind direction to classify airflow types and the second concerns whether 

it is possible to determine discrete airflow types. First, wind direction at the surface 

will differ from that in the upper air by around 20-30° because of the effects of surface 

friction (Ekman 1904). However, surface temperature is more strongly related to 

surface wind direction than to upper air direction, because of the directional influences 

of surface features (e.g. coastlines and topography). Second, the division of airflows 

into classes, although subjective, allows a comparison of conditions under airflows with 

a broadly similar character. 

4. The spatial temperature distribution for an airflow will change over time, i.e. 

temperature fields described by regressions based on 1985-1990 are inadequate. 

This is valid and scenarios produced in this chapter ignore within-type climate 

change. Nevertheless, we can speculate about the effects of changes in relative airflow 

frequencies alone on the future temperature resource of the region. 

Despite such objections, the uni-directional scenario approach is useful because 

it tells us about the comparative influences of different airflows on climate by 

examining airflow influences in isolation. The scenarios describe the extreme cases of 

dominance by one airflow alone. The real climate varies between such extremes. 
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13.3 Temperature Prediction Under Individual Airflow Types 

The multiple regression equations predicting daily maximum and mimmum 

temperatures from altitude, latitude and longitude for each wind direction in each month 

of the year (108 cases), using data from 1985-1990, and described in Chapter 8, were 

assumed to describe the expected temperature distribution for individual airflows, e.g. 

a westerly flow in January. To simulate constant westerly flow the temperature 

distribution in each month was assumed to be controlled by the appropriate equation. 

Altitude accounts for most of the temperature variation in all equations (Chapter 

8). Setting station latitude and longitude to their mean values (130.6 and 80.2 

respectively), the expected mean monthly maximum, minimum and mean temperatures 

for any altitude can be derived: 

X=(axalt)+(bx130.6)+(cx80.2)+k ----(1) 

where X =the predicted mean temperature, a, b and care the altitudinal, latitudinal and 

longitudinal coefficients from the relevant equation, and k is the appropriate constant. 

Expected mean temperatures were derived by averaging expected maxima and minima. 

13.4 Results 

Predicted mean temperatures at sea level are given in Table 13.1 overleaf. 

Growing season strength for a particular airflow is calculated from: 

T =nx(x-6)-----(2) ace 

where n is the number of days in the month and x is the simulated mean temperature. 

This crude figure ignores temperature variability around the predicted mean (see 
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Table 13.1: Expected mean temperatures at sea-level (0 C). 

oc CALM N NE E SE 

JAN 1.95 2.32 1.32 0.54 0.93 

FEB 2.37 2.57 2.29 0.90 0.53 

MAR 4.17 5.06 2.78 5.16 3.90 

APR 7.58 6.35 6.79 6.03 6.68 

MAY 11.93 9.78 11.10 11.33 11.29 

JUN 14.28 12.02 13.18 15.27 13.40 

JLY 17.10 15.62 15.76 16.03 16.94 

AUG 14.68 12.78 15.37 13.03 17.88 

SEP 12.12 11.23 11.15 13.52 12.08 

OCT 9.19 9.88 9.50 11.28 11.40 

NOV 5.69 4.46 6.18 5.49 7.82 

DEC 4.19 3.17 4.58 5.02 5.03 

s sw w NW MEAN 

JAN 4.99 5.45 5.43 3.07 4.04 

FEB 5.27 5.92 5.13 3.51 4.19 

MAR 7.18 6.58 6.79 5.52 6.03 

APR 10.29 9.53 8.42 7.55 7.89 

MAY 11.95 12.14 11.67 10.27 11.28 

JUN 14.11 14.44 13.27 12.97 13.54 

JLY 16.10 15.86 15.36 14.87 15.70 

AUG 15.99 15.68 15.22 15.14 15.10 

SEP 13.75 14.03 13.29 11.95 12.89 

OCT 11.72 10.92 10.66 9.83 10.61 

NOV 7.48 8.15 6.50 4.03 6.16 

DEC 6.87 6.37 6.72 4.02 5.67 

Chapter 16 for a stochastic approach). In the above case the contribution is negative. 

Results for sea-level and 800 m are shown in Figures 13.1 and 13.2 respectively. 
I' 
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Figure 13.1. Predicted Grow1ng Season Strength (Accumulated Temperatures) 
for Uni-directional Wind Scenarios at Sea-level: Monthly Accumulations 
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Figure 13.2. Predicted Growing Season Strength (Accumulated Temperatures) 
for Uni-directional Wind Scenarios at BOO Metres above Sea-level: 
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Accumulated temperatures associated with calm conditions (wind =0) at sea-level 

are negative between November and March inclusive and, compared with other wind 

directions, are low in winter and high in summer. The July accumulation is over 350 

d°C. South-easterly flow (4) shows an extreme seasonal variation with accumulations 

in July and August above 300 d°C, while values in January and February are below 

-150 d°C. Accumulations for northerly flows (1) are usually at least 100 d°C lower 

than those for southerly flows (5) in the same month. Westerlies (7) show a subdued 

seasonal variation. 

Figure 13.2 shows similar data for 800 m above sea-level. Accumulations are 

usually negative from November to April inclusive. Calm conditions (0) give relatively 

high temperature accumulations, especially in summer (e.g. July). From January to 

March values are below -200 doC despite frequent temperature inversions. 

Accumulations for northerly (1) airflows are low, especially in the second half of the 

year. Southerlies (5), by contrast, give much higher accumulations with positive 

accumulations in six months (nearly 200 d°C in July). Easterlies (3) show a larger 

seasonal fluctuation in accumulated temperatures than westerlies (7), which although 

mild in winter, barely contribute 100 d°C in summer due to steep lapse rates 

characteristic of maritime air. South-easterly accumulations are the most extreme, 

ranging from -350 doC in February to nearly 300 d°C in July! 

13.5 Derivation of Growing Season Strength for Uni-directional Airflow Scenarios 

13.5.1 Annual Accumulated Temperatures, Gy: One Estimate of Growing Season 

Strength 

Figure 13.3 and Table 13.2 show annual accumulated growing season strength 

for each airflow at certain altitudes, i.e. accumulated temperatures for the uni

dir~tional wind scenarios. The results assume that one airflow direction (e.g. westerlies 

or easterlies) dominates the region for the whole year. Negative accumulations in 

months with mean temperatures below 6°C are included, reducing this annual 

accumulation (Gy). A constant westerly flow, associated with extreme progressiveness 
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Figure 13.3. Predicted Annual Growing Season Strength, Gy, for Uni
directional Wind Scenarios at Various Altitudes: Annual Accumulations 
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in the circulation, would produce a growing season strength of 1425.6 d°C at sea-level, 

falling to below 1000 d°C at 167 m and below 0 d°C at 800 m. The steep decline 

arises partly because of strong negative contributions in winter. 

Table 13.2: Simulated annual growing season strength, GY, (including negative values) 
for uni-directional wind scenarios. 

alt 0 100 167.8 200 400 800 

Calm 1026.0 816.0 673.2 606.0 186.0 -655.2 

N 721.2 458.4 280.8 196.8 -327.6 -1375.2 

NE 865.2 607.2 433.2 349.2 -166.8 -1198.8 

E 978.0 698.4 508.8 418.8 -140.4 -1258.8 

SE 1112.4 872.4 709.2 631.2 150.0 -812.4 

s 1645.2 1398.0 1231.2 1152.0 657.6 -328.8 

sw 1623.6 1353.6 1170.0 1083.6 543.6 -535.2 

w 1425.6 1143.6 952.8 861.6 297.6 -829.2 

NW 948.0 680.4 499.2 412.8 -121.2 -1190.4 

Mean 1262.4 1005.6 830.4 747.6 232.8 -796.8 

At 800 m above sea-level, accumulations are always negative because of mean 

annual temperatures below 6 oc. The rate of decrease in annual growing season strength 

Gy with altitude depends on the lapse rates simulated. Steep lapse rates in westerly and 

north-westerly airflows encourage a large difference in accumulated temperatures 

between 800 m and sea-level. At sea-level, wind direction has an important effect on 

Gy, there being a variation of over 200% between 1645.2 d°C (for southerly flow) and 

721.2 d°C (for northerly flow). For northerly, north-easterly and easterly winds annual 

totals are below 1000 d°C, even at sea-level. The high altitude (800 m) value for 

westerly winds is surprisingly severe (-829.2 d°C). This is lower than GY for south

easterly winds at the same altitude (not the case at sea-level). The relative warmth of 

southerly winds is enhanced at 800 m because they commonly have a shallow lapse rate 

and the strong temperature contrast between southerly and westerly winds at 800 m is 
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largely absent at sea-level. Since winds from between these two directions will be 

extremely common in a climate dominated by an Atlantic circulation, greater sensitivity 

of temperature and growing season parameters to wind direction is suggested at high 

altitude. Variability in the upland temperature resource would increase in a climate 

dominated by streams of maritime Atlantic air (both polar and tropical) approaching 

from between west and south. Finally, calm conditions are associated with a higher 

annual temperature accumulations at 800 m than expected, due to the influence of 

temperature inversion formation at low levels. 

13.5.2 Warm Season Accumulated Temperatures, GP 

Figure 13.4 and Table 13.3 list annual accumulated temperatures when negative 

contributions from months with mean temperatures below 6°C are ignored. The 

resulting annual accumulation (Gp) depends on warmth in the warm season alone. The 

period of positive temperature accumulation (above 6°C) is 10 months at sea-level 

under southerly winds but only 3 months at 800 m under northerly airflows. 

Table 13.3: Simulated annual growing season strength, GP, for the warm season for 
uni-directional wind scenarios. 

Alt 0 100 167.8 200 400 800 

Calm 1376.2 1253.7 1170.4 1131.2 912.6 518.5 

N 1094.1 960.0 876.6 837.0 589.8 183.6 

NE 1258.4 1106.7 1022.4 982.2 735.6 313.6 

E 1362.2 1227.6 1136.4 1093.2 825.6 320.0 

SE 1518.4 1377.6 1296.4 1257.9 1049.4 675.5 

s 1697.0 1490.0 1363.2 1312.0 1019.2 472.8 

sw 1642.0 1429.6 1304.8 1245.6 890.4 344.4 

w 1467.0 1238.3 1125.6 1071.7 759.0 245.2 

NW 1243.2 1078.0 965.3 915.6 633.6 211.5 

M~n 1384.2 1225.7 1122.8 1073.8 804.6 316.8 

219 



D 

Figure 13.4. Predicted Warm Season Growing Season Strength, Gp, 
for Uni-directional Wind Scenarios at Various Altitudes 
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Southerly winds are associated with the highest growing season strength (nearly 

1700 d °C) at sea-level. At very high altitudes, however, south-easterly flows produce 

a higher value of GP. Warm, stable (and often anticyclonic) air from the continent 

blows into the region from the south-east and shallow lapse rates ensure that this air is 

warmer than southerly air at 800 m. The relative warmth of south-easterly flows at high 

altitude is clear in Figure 13.4. 

The threshold of 1000 doc (the theoretical cultivation limit in Chapter 10) is 

exceeded at 400 m under both southerly and south-easterly flow. On the other hand, 

warm season temperature accumulations GP for south-westerly and westerly winds 

deteriorate more rapidly with altitude. At 800 m the accumulation for south-westerly 

flows is only half of that for south-easterlies, whereas at sea-level the south-westerly 

accumulation is higher. Temperature accumulations for different airflows do not stay 

in relative proportion as altitude increases because of the contrasts in lapse rates. The 

altitudinal decrease in GP is not linear because the number of months with mean 

temperatures above 6°C (months that contribute to the warm season accumulation) also 

decreases. 

Noitherly and north-westerly winds lead to cold seasons at sea-level. At 100 m 

a harvest could fail if northerly winds were to prevail throughout the year (assuming 

a critical accumulation to be 1000 d°C). Under a scenario dominated by polar maritime 

air from the north-west, the 1000 d°C elevation falls below 167.8 m (the mean altitude 

of the stations). 

The altitudinal decrease in growing season strength is steeper when lapse rates 

are high. Thus in the westerly scenario the predicted growing season strength at 800 

m is only 16.7 % of that at sea-level (Table 13.4). 
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Table 13.4: Ratio and difference of annual growing season strength, GP, at 800 m 
compared with sea-level. 

Airflow Scenario Difference( do C) Ratio (800/sea-1) 

Calm 857.7 0.377 

N 910.5 0.168 

NE 944.8 0.249 

E 1042.2 0.235 

SE 842.9 0.445 

s 1224.2 0.279 

sw 1297.6 0.210 

w 1221.8 0.167 

NW 1031.7 0.170 

Mean 1067.4 0.229 

The mean ratio of GP at 800 m to GP at sea-level is 0.23 but the variation in this 

ratio (Figure 13.5) between different airflows is considerable, from 44.5% for south

easterly flow to 16.7% for westerly flow. This is because south-easterly flows have the 

shallowest temperature lapse rates. Even in northern England lapse rates would be 

lowered under the constant influence of continental air. The relative effectiveness of 

change in growing season strength with altitude under maritime conditions has already 

been illustrated by Manley (1945a). A particular location such as northern England is 

only oceanic or maritime in its climate because of the prevailing airflow~ present. Thus, 

if air from the continent were to dominate northern England the Pennine climate would 

become more similar to that of nearby continental uplands (e.g. Central Norway). The 

eastern seaboard of North America, although in close proximity to the ocean, has a 

continental climate because of prevailing westerlies bringing air to the region from 

inland. Moreover, the deterioration of accumulated temperatures with altitude is less 

rapid under such conditions than on the more maritime Pacific coast due to shallower 

mean lapse rates (Wolfe 1990). 
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Figure 13.5. Warm Season Growing Season Strength, Gp, at BOO Metres 
above Sea-level as a Proportion of that at Sea-level, ·for Uni-

directional Wind Scenarios 
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The ratio between GP at 800 m and sea-level for northerly windsis low, partly 

because absolute accumulations are low anyway. For westerlies and north-westerlies the 

ratio is also low, but with higher absolute accumulations. Finally, calm conditions 

would have benefits in upland areas, the ratio being 0.377. At 800 m the calm scenario 

allows a temperature accumulation of 518.5 d°C, more than double the accumulation 

for westerlies (245.2 d°C) and bettered only by south-easterly winds. 

The contrasting effects of airflows at differing altitudes such as these have not 

really been taken into account in scenarios regarding local climate change. Changes in 

accumulated temperatures will not be coincident at differing altitudes. Hence the pattern 

of temporal change at the 400 m level will be different from that at sea-level, a similar 

change in airflow types having contrasting effects at high and low altitudes. 

The absolute difference in the simulated warm season temperature accumulation 

(Gp) between sea-level and 800 m is shown in Figure 13.6. This is largest for south

westerly and westerly flows, despite a similar GP ratio as northerly flow. Annual 

temperature accumulations GY, which include negative winter contributions (not shown 

in tabular form), are also shown as the upper line in this diagram. ForGY the benefit 

of calm conditions is even more marked with a simulated drop of only 1681.2 d°C 

from sea-level to 800 m, compared with an average difference of over 2000 d 0 C. 

Frequent temperature inversions in winter anticyclones are responsible. Airflows 

perpendicular to the Pennines (i.e. westerlies and easterlies) have an enhanced overall 

lapse rate (Chapter 8), creating a larger altitudinal contrast in annual growing season 

strength. 

13.6 Generation of 1000 d°C Cultivation Limits for Uni-directional Wind Scenarios 

Using the uni-directional wind scenarios described above one can interpolate the 

elevation at which 1000 doc are expected. The annual total (Gy) includes the influence 

of winter conditions and so is less useful than GP when considering temperature 

accumulations relevant to the growing season. Both accumulations are examined here, 

illustrating the differences in results. When using annual totals (Gy), critical "cultivation 
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Figure 13.5. Absolute Differences in Warm Season CGp) and Annual CGy) 
Growing Season Strengths between BOO Metres above Sea-level and Sea

level for Uni-directional Wind Scenarios 
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limits" are low because of low annual accumulations. The linear variation of Gy with 

altitude is shown in Figure 13.7. Winds from between north-west and east record 

accumulations below 1000 d°C at sea-level (e.g. only 721 d°C for constant northerly 

winds). For calm conditions the interpolated critical altitude only rises to 12 m. Table 

13.5 lists elevations of the interpolated 1000 doC limits for all the uni-directional wind 

scenarios. 

Table 13.5: Critical altitudes (m) at which the predicted degree day accumulation (Gy 
or GP) is 1000 d°C. 

Airflow scenario Crit level (yearly total-Gy) Crit level (warm season 
total-GP) 

Calm 12 320 

N <0 70.2 

NE <0 185.7 

E <0 269.6 

SE 46.8 452.8 

s 261.4 414 

SW 231.0 338.2 

w 150.9 245.8 

NW <0 146.9 

Mean 254.8 

For a south-easterly flow the critical elevation at which GY equals 1000 d°C is 

46.8 m. Under westerly flow this limit reaches 150.9 m. Highest limits occur for mild 

southerly (261.4 m) and south-westerly (231.0 m) flows. There is a fair amount of 

variation in the 1000 doc cultivation limit between different airflows. In terms of the 

proportion of land above or below this limit, only 32.9% of land lies above 261 m (the 

southerly airflow cultivation limit) but in the poorer scenarios all the land is unsuitable. 

The gradient in degree days varies from -2.82 d°C/m for westerlies (the simulated lapse 

rate is steep) to -2.10 d°C/m for calm conditions. These gradients are steeper than 

those in Chapter 10. This is because Gy is used instead of a daily temperature 
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accumulation Gct. 

As stated previous! y, GY is less useful than GP in calculations relating to changes 

in growing potential. When warm season accumulations (G") alone are used, however, 

linear interpolation can only be used locally (i.e. between values immediately above and 

below 1000 d°C in Figure 13.8) to derive a cultivation limit, as the simulated decrease 

of G" with altitude is not linear. Calculation of interpolated critical 1000 doc limits (in 

the right hand column of Table 13.5) for GP is derived from local linear interpolation. 

Limits are comparable with those calculated from the baseline climate data for 1985-

1990 in Chapter 10, G" being a better approximation to a daily temperature 

accumulation. The variation between uni-directional scenarios is large, from 70.2 m for 

northerly flow to 452.8 m for south-easterly flow. In the first case only 23.2% of the 

land in northern England is below the limit. This is restricted to low lying areas around 

the Tyne, Tees and the Solway Firth. In the south-easterly scenario, however, 90.1% . 
of the land is suitable for cultivation using the same thermal criterion, including most 

of Stainmore and lower slopes of the Pennines. The 1000 doc limit for the calm 

scenario is fairly high at 320 m. Despite colder winters, summers would be fairly 

warm. Although the highest altitudinal limit is recorded in the south-easterly scenario, 

the highest temperatures at sea-level are associated with southerlies because of the 

steeper altitudinal decrease in G" for the latter airflow. South-westerly and westerly 

simulations lead to low cultivation limits (e.g. 245.8 m for westerly flow) due to steep 

lapse rates. Polar maritime air, which would be present in the north-westerly scenario, 

lowers the 1000 doc elevation to below 150 m, illustrating the effectiveness of 

maritime air-masses in increasing the altitudinal gradient of "growth potential" (Manley 

1945a). 

Theoretical cultivation limits for the uni-directional wind scenarios above will 

be compared with limits calculated from the 1985-1990 data. Using a linear model of 

degree days versus altitude (Chapter 10, section 3), the 1000 d°C limit varied from 236 

m in 1986 to 463 m in 1989. The 1986 value is within the range of values simulated 

for the uni-directional wind scenarios. However, the limit in 1989 (and the value of 453 

m in 1990) are both slightly above the limit for the warmest airflow (452.8 m), 
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Figure 13.8. Variation of Warm Season Growing Season Strength, Gp, 
with Altitude, in all Uni-directional Wind Scenarios 
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confirming that 1989 and 1990 were both exceptionally warm. Certain airflows are 

required to be warmer than the average conditions expected (derived from 1985-1990) 

in 1989 and 1990 to account for the extremely high cultivation limits experienced. 

An exponential model was also used to describe the variation of growing season 

strength with altitude and was supported by mathematical theory (Chapter 10, section 

4). Cultivation limits interpolated using this model were lower than in the linear case, 

varying between 191 m and 420 m. Reassuringly, these values are well within the range 

70-453 m specified for the individual uni-directional wind scenarios, although they lie 

near the upper end of the range (especially the warm years of 1989 and 1990). 

13.7 Complex Wind Scenarios 

A mix of airflows in any month could be simulated to make the scenario more 

realistic. To calculate predicted mean monthly temperatures under a combination of 

wind directions requires a weighted average of the two or more appropriate regression 

equations. For example, to simulate the mean temperature in a month with n days of 

northerlies and e days of easterlies (the month has m days (n+e=m)) the resulting 

equation is: 

X= .!2 [an (al t) +130. 6bn+80. 2cn+kn] 
m 

+~ [ae(alt) +130.6be+80.2ce+ke] ----(3) 
m 

The subscript n applies to the coefficients a, b and c and constant k, in the 

northerly regression and subscript e to the equivalent coefficients in the easterly 

regression. If n=e the result simplifies to: 
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x=!2 [an+ae] al t+!2 [bn+be] 130.6 
m m 

+!2 [cn+ce] 80. 2+!2 [kn+ke] ---- (4) 
m m 

In this special case the new coefficients are simply the average of the 

coefficients from the two relevant regressions. A calculation could be carried out for 

any combination of winds in any proportions, although it becomes more complicated 

for three or more wind directions. Using weighted averages for the coefficients in the 

relevant regression equations, it is theoretically possible to generate the predicted 

temperatures for any combination of winds. A mean scenario for a calendar month is 

calculated by deriving the average of the altitudinal coefficients (lapse rates) for all nine 

airflow types (including calm) and this leads to the same results as the bottom row of 

Table 13.3. 

13.8 Conclusions 

The relationship between growing season strength and changes in the circulation 

pattern has been illustrated. The sensitivity of accumulated temperatures in the uplands 

to changing airflow patterns is greater than in adjacent lowland areas, with a wider 

percentage variation between the airflow scenarios at 800 m. The contrast in the 

altitudinal gradient of growing season strength between maritime and continental 

airflows arises because of the contrast in lapse rates (Chapters 5, 6 and 8). A more 

continental influence (such as in the south-easterly scenario) would be beneficial to 

upland areas, while increased progressiveness (associated with a more zonal westerly 

circulation) would be detrimental. Maps of the change in growing season strength for 

maritime and continental scenarios are given in Chapter 18. 

The uni-directional wind scenarios created in this chapter are used to investigate 

the influence of the circulation on growing season length and frost occurrence in 

following chapters. 
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THE RELATIONSHIP OF THE LENGTH OF THE FROST-FREE PERIOD 
AND GROWING SEASON TO THE CIRCULATION PATTERN 

OVER THE BRITISH ISLES 

14.1 Introduction 

In the previous chapter mean daily temperatures simulated in different airflow 

scenarios were used to calculate growing season strength (Gr) at all altitudes for nine 

uni-directional wind scenarios. The other indices of "climatic potential", such as the 

number of (consecutive) growing days and frost occurrence (Chapters 11 and 12), 

cannot be simulated directly for these scenarios. Such parameters must first be related 

to mean daily temperature. If frost probability can be predicted from mean daily 

temperature it is then possible to determine the effects of a change in mean daily 

temperature on frost occurrence. The first section examines relationships between mean 

daily temperature, growing days and frost occurrence using logit regression. 

14.2 Logit Regression: Relating Growing Days and Frost Occurrence to Mean Daily 

Temperature 

Frost occurrence and the occurrence of growing days can both be described by 

categorical variables with two outcomes, those of occurrence (1) and non-occurrence 

(0). As mean daily temperature decreases, a frost (minimum < ooq is more likely and 

a growing day (maximum > 6°C) less likely to occur. An S-shaped curve, produced 

by logit regression (Hamilton 1992), is most appropriate to model such binary 

variables. 

Logistic curves show the occurrence of growing days for representative sites in 

Figure 14.1. The probability of a day with a maximum above 6°C rises steeply from 

zero when the monthly mean daily temperature is ooc to nearly 1 when the mean daily 

temperature is 6°C. The curve is only a model so there is the slightly erroneous 

probability of a non-growing day when the mean temperature is 6°C! Subtle differences 

arise between different locations. Eskmeals shows an above zero probability of a 

growing day at a mean daily temperature of ooc whereas High Close and Great Dun 
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F1gure 14.1. Logist1c Curves Relating Growth Occurrence (Maximum>=5 
deg C) with Mean Daily Temperature for Representative Locations 
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Fell do not. The logistic curve for Great Dun Fell is steep due to the small diurnal 

temperature range experienced. A site with a large diurnal temperature range (such as 

Kielder) will show a shallower logistic curve. Thus small changes in the mean 

temperature of a particular airflow will alter growth probabilities at a faster rate at 

exposed sites with a small diurnal temperature range. The rate of change of growth 

probability also depends on absolute temperature; a decrease in mean daily temperature 

from 6°C to 5 oc usually has less effect on growth probability than the equivalent 

decrease from 4°C to 3°C. 

The logit function Lis defined by coefficients a and b, where L=ax+b. xis 

mean daily temperature CCC). The probability of a frost or growing day at any mean 

daily temperature is: 

probability (P) 1/ (1+e-L) ---- (1) 

where L is the logit function. If L equals zero the probability is 0.5. At a mean 

temperature of 0°C, L = b and the probability of growth is: 

probability (P) 1/ (1+e-b) ---- (2) 

b will be negative for the growth probability as the probability of a growing day 

should be extremely low when x is 0°C. b, representative of the probability of a 

growing day when x =0°C, is listed in Table 14.1. At Great Dun Fell a value of 

-5.85 corresponds to a growth probability of 0.0029. In contrast, b is -3.23 at Kielder, 

corresponding to a probability of 0.038 (3.8 %). This is more than ten times that at 

Great Dun Fell, illustrating the effect of an increased diurnal temperature range. 

a, the coefficient of mean daily temperature, is related to the rate of increase in 

growth probability when mean daily temperature increases above 0°C. a is high at 

exposed locations such as Great Dun Fell (1.594), High Close (1.681) and Warcop 
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Table 14.1: Regression coefficients (a and b) in the logistic growth probability function. 

place a b r X(°C) 
(L=O.S) 

Durham 1.428 -4.36 0.73 3.40 

Eskmeals 1.215 -3.33 0.68 3.15 

Great Dun Fl 1.594 -5.85 0.81 3.98 

Haydon Br 1.211 -3.51 0.70 3.31 

High Close 1.681 -6.73 0.75 4.3 

Houghall 1.477 -3.63 0.54 2.8 

Kielder 1.225 -3.23 0.69 3.04 

Nenthead 2.669 -10.29 0.85 4.04 

Sunderland 1.767 -6.69 0.76 4.07 

Warcop 1.957 -7.09 0.80 3.88 

Wycliffe HI 1.268 -3.32 0.65 3.01 

(1.957). The value of 2.669 for Nenthead relates to the dramatic increase in probability 

above 0°C, suggesting that this site is unusual in some way. Sheltered sites such as 

Kielder, Wycliffe Hall and Haydon Bridge have low values of a. 

To calculate the mean daily temperature xc for which Lis 0.5: 

xc=(O.S-a)/b ----{3) 

The growing day probability corresponding to a logit of 0.5 is 0.622. Values of 

the xc range from 2.8°C at Houghall to 4.3°C at High Close. Kielder requires a mean 

daily temperature of only 3.04°C. 

The success of the logistic curves can be assessed by the pseudo r2 value, which 

represents the proportion of variation in growth occurrence explained by mean daily 
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temperature. r2 is relatively high in most cases, ranging from 0.54 at Houghall to 0.85 

at Nenthead. Nearly all values are above 0.7. 

Logistic curves were also derived relating frost probability to mean daily 

temperature (Figure 14.2). a is negative, indicating a decrease in frost probability with 

increasing mean temperature, and b is positive, meaning that frost probability at a mean 

daily temperature of ooc is nearly equal to 1. b varies between 5.46 at Eskmeals 

(probability= 0.996) to 2.52 at Hartburn Grange (probability=0.926) (Table 14.2). 

Frost probability decreases rapidly above ooc at Great Dun Fell (a = -1.472) and 

Eskmeals (-1.534), as expected of such exposed summit and coastal locations. Frost 

probabilities were calculated for a mean daily temperature of soc (as well as 0°C). 

Houghall shows a high probability of 0.47 (47%)! This is followed by 32.7% at 

Wycliffe Hall and 31.2% at Kielder. The corresponding probability for Great Dun Fell 

is only 0.023 (2.3%). 

The mean daily temperature for which Lis 0.5 ranges from 3.93°C at Houghall 

to 1.90°C at Newcastle and Warcop. This difference of 2°C in mean daily temperature 

given a similar frost probability means that great local variations in frost risk occur. 

2 oc can be the difference between mean temperatures of two consecutive months, 

especially in a maritime climate (Manley 1952)! 

Pseudo r2 is often lower than for growth curves, averaging between 0.6 and 0.7. 

The worst value is 0.39 at Houghall (caused by insufficient data), while the best is 0.8 

at Great Dun Fell. The success of the model at the upland summit suggests a stronger 

dependence of frost occurrence on mean daily temperature there. 
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Figure 14.2. Logistic Curves Relating Frost Occurrence CMinimum 
<=0 deg C) with Mean Da1ly Temperature for Representative Locations 
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Table 14.2: Regression coefficients (a and b) in the logistic frost probability function. 

place a b r prob X(°C) 
(x=5°C) (L=0.5) 

Durham -0.941 2.80 0.61 0.130 2.44 

Eskmeals -1.534 5.46 0.74 0.099 3.23 

Great Dun Fl -1.472 3.59 0.80 0.023 2.10 

Hartbum Gr -0.800 2.52 0.56 0.185 2.53 

High Close -1.241 3.76 0.67 0.080 2.63 

Houghall -0.580 2.78 0.39 0.470 3.93 

Kielder -0.736 2.89 0.56 0.312 3.25 

Nenthead -1.398 4.06 0.71 0.051 2.55 

Sunderland -1.483 3.55 0.72 0.021 2.06 

Warcop -1.440 3.24 0.74 0.019 1.90 

Wycliffe HI -1.096 4.76 0.67 0.327 3.89 

14.3 Use of Logistic Curves to Estimate the Total Number of Growing Days and 

Frosts in the Uni-directional Wind Scenarios 

14.3.1 Growing Days 

The mean daily temperatures predicted in Chapter 13 for individual airflows will 

be converted to the number of growing days or frosts expected per annum, using the 

logistic curves. Durham (102 m) and Great Dun Fell (847 m) are used as examples. 

Predicted mean daily temperature and the associated frost and growth probabilities for 

each airflow in each month at Durham are represented in Figure 14.3. The top two 

graphs relate to probability of a growing day. Figure 14.3 a shows the simulated 

growing day probability for each airflow. This is then converted into the number of 

growing days expected per month (Figure 14.3 b). Numbers represent wind direction. 

There is a large variation in winter growth probabilities according to airflow, 
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Figure 14.3. Simulated Number of Growing Days and Frosts for Uni-direct
ional Wind Scenarios using Logistic Curves: Durham Monthly Accumulations 
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especially between January and March. Mean daily temperatures often fall between ooc 
and 6°C in these months and resultant contrasts in growth probability are great. For 

example, the January growth probability is 1% for easterly and south-easterly flows 

(mean temperatures below freezing), but 90% for south-westerly and westerly flows 

(mean temperatures are 4.6°C). The number of growing days expected in January 

therefore varies from 0.3 to 28.1, depending on airflow. From December to March, 

winds between north-west (8) and south-east (4) produce low probabilities. Easterlies 

and south-easterlies are coldest in January and February while northerlies and north

westerlies are coldest in November and December. Between May and October wind 

direction becomes irrelevant, all airflows being associated with maxima above 6°C. 

Calm conditions produce low growth probabilities (10%) in January and February. The 

importance of mild airflows from the south and west at Durham in encouraging growing 

days to occur throughout the winter must be acknowledged (Figure 14.3 b). 

The annual total number of growing days (GT) for the uni-directional airflow 

scenarios is shown in Table 14.3 and Figure 14.4. 

Table 14.3: Annual growing days (GT) and frosts (FT) at Durham and Great Dun Fell 
for uni-directional wind scenarios. 

Wind direc- Growdays Growdays Frosts Frosts 
tion Durham GDF Durham GDF 

Calm 286.8 184.8 76.8 164.4 

N 280.8 165.6 82.8 184.8 

NE 276.0 163.2 86.4 186.0 

E 291.6 178.8 80.4 181.2 

SE 280.8 182.4 85.2 174.0 

s 355.2 213.6 18.0 130.8 

sw 358.8 190.8 14.4 139.2 

w 357.6 174.0 16.8 170.4 

NW 303.6 146.4 62.4 190.8 

Mean 337.2 180.0 36.0 172.8 

232 



Figure 14.4. The Simulated Annual Total of Growing Days and Frosts 
for Uni-directional Wind Scenarios at Durham and Great Dun Fell Number of Months 
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The annual number of growing days predicted for Durham ranges from 276 for 

north-easterly flow to 358.8 for south-westerly flow. The contrast between continental 

north-easterly flow and mild Atlantic air from the south and west is 70-80 growing days 

per annum. The difference in the annual total occurs due to winter differences. 

Simulated temperatures are the mean for the particular airflow. Unfortunately 

this can lead to bias. For example, if the mean is near 6°C growth probability is likely 

to be overestimated, and if the mean is well below 6°C the probability is likely to be 

underestimated, because the simulation ignores exceptionally mild and cold spells 

(Hamilton 1987). When temperature thresholds are involved the simulation of extreme 

conditions can be as critical as that of mean conditions (see Chapter 16). 

Mean daily temperatures predicted for Great Dun Fell were also converted to 

frost and growth probabilities for each airflow. There is less contrast in winter growth 

probabilities and wind direction is largely irrelevant. Between November and March all 

the simulated mean temperatures are below ooc and growth is negligible. Between May 

and October growth probabilities are high, mean daily temperatures being above 6°C. 

Only in April is there a significant contrast, between zero growth probability for 

easterly flow (mean temperature of -1.29°C) and a growth probability of 0.878 under 

southerly flow (mean temperature of 4.91 °C). Annual totals (GT) range from 163.2 

growing days for north-easterly flow to 213.6 days for southerly flow (Figure 14.4). 

Numbers are lower than at Durham but the range between airflow types is also less, at 

only 50 days (compared with over 80 at Durham). 

To conclude, the contrast in the annual number of growing days GT between 

mild airflows from the south and west. and continental air from between east and north. 

is great in lowland areas. but less significant in the uplands. Durham gains extra 

warmth in the lee of the Pennines due to fohn effects in westerly flows. At Great Dun 

Fell monthly contrasts in the number of growing days are more influential than 

contrasts due to airflows, although the latter becomes important in April. 
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14.3.2 Frosts 

Frost probabilities associated with the uni-directional wind scenarios are shown 

for Durham in Figures 14.3 c and d. Between January and March frost probability 

depends strongly on airflow. In January frost probability is 17.2% for westerly and 

17.9% for south-westerly flow, but 94.5% for south-easterly and 95.1% for easterly 

flow. Similar contrasts arise in February and March. Winds between north-west (8) and 

south-east (4) have high frost probabilities in winter. Frosts are uncommon between 

May and October inclusive (Figure 14.3 d) in all airflow types. Predicted variation in 

winter according to airflow is considerable, e.g from 5 to 30 days in January. The 

circulation pattern is therefore important in controlling winter frost occurrence in 

lowland areas. 

Cumulative annual frost days (FT) (Table 14.3 and Figure 14.4) vary by 500% 

between airflows. North-easterlies will produce 86.4 frosts per annum, whereas south

westerly flow would produce only 14.4. This illustrates the dramatic reduction in frost 

associated with mild southerly and westerly winds. The contrast between the southerly, 

south-westerly and westerly airflows and others is strong, the next lowest annual total 

being 62.4 for the north-westerly scenario. Advection of mild air from the Atlantic 

prevents frosts, explaining why the growing season is much longer in lowland areas 

facing southern and western coasts, such as Galloway, Dyfed, Cornwall and even north

western Scotland (Bilham 1938, Taylor 1967a). Sub-tropical plants can flourish as far 

north as Inverewe on the north-western coast of Scotland (Manley 1952) due to the lack 

of frost. 

Annual frost totals (FT) at the summit of Great Dun Fell are much higher than 

at Durham. Simulated daily temperatures below freezing for all airflows in winter mean 

that advection frost is inevitable from November to March. Exceptionally mild 

conditions which occasionally occur are not simulated. By April, the frost probability 

falls to 0.026 for southerly flow but is still 0.996 for easterly flow. A month later the 

highest probability is only 0.119 (for north-westerly flow). April is therefore the only 

month when there is a large variation in frost probability according to airflow. The 
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circulation in April is thus critical for both growth and frost occurrence in the uplands. 

Likewise, in November there is a well-marked contrast in frost probabilities between 

0.382 for south-westerly flow and 0.996 for northerly flow. 

Overall, there is less dependence of frost occurrence on airflow direction at 

Great Dun Fell than at Durham. Annual totals FT (Table 14.3) vary from 190.8 days 

for north-westerlies to 130.8 days for southerlies and 139.2 days for south-westerlies. 

The annual frost total for westerlies (170.4 days) is almost as high as for other wind 

directions, due to relatively steep lapse rates simulated. The recorded frost frequency 

at Great Dun Fell averages 154 days between 1985 and 1990 so the scenarios are fairly 

realistic. The variation in FT between wind scenarios amounts to 60 days, much less 

than at Durham (in both absolute and relative terms). 

Because the effect of airflow direction appears subordinate to the annual 

fluctuation in air temperature at Great Dun Fell when evaluating frost and growth 

probabilities, one may expect changes in the general circulation pattern alone to have 

less influence on annual frequencies of frosts and growing days at high altitude. The 

effect of a change in the circulation is moderated by the advective effect of the free air 

which is largely independent of wind direction. Small temperature changes which arise 

due to changes in relative airflow frequencies would be more significant in terms of 

growth and frost occurrence in lowland areas for most of the year. Absolute changes 

in temperature are likely to be similar at Great Dun Fell but the significance of these 

changes is less. The increased sensitivity of the lowlands contrasts with the impression 

obtained when the percentage variation in accumulated temperatures was examined 

(Chapters 10 and 13) which was greater in upland areas. Thus. the sensitivity of the 

climatic environment to changes in the circulation pattern increases or decreases with 

altitude. depending on the parameters under investigation. Although synoptic (Qetween

~) causes of variation in accumulated temperatures are increasingly important at high 

altitude, variation in the occurrence of growing days and frosts becomes less dependent 

on synoptic controls and more dependent on season in the uplands. 
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14.4 The Conversion of Growing Days and Frosts to the Number of Consecutive 

Growing Days and the Length of the Frost-free Period Respectively. 

14.4.1 Growing Days 

The total number of frosts or growing days is not the most useful climatic 

indicator. The length of the consecutive growing season (the number of consecutive 

growing days) and length of the frost-free season, discussed in Chapters 11 and 12, are 

more useful. Unfortunately, there is no direct way of calculating these quantities for the 

scenarios. However, the length of the consecutive growing season can be related 

statistically to the total number of growing days and the frost-free period to the total 

number of frosts, using data from 1985-1990. Then the number of growing days (GT) 

can be converted to a corresponding number of consecutive growing days (Gc), and 

likewise for frosts. 

The relationship between the number of consecutive growing days Gc and the 

total number of growing days GT is modelled well by linear regression (Figure 14.5 a): 

Gc=(0.948GT)-67.8 .... r 2 = 0.968 ----(4) 

This equation is based on mean values of Gc and GT derived for 22 locations in 

the study area. The intercept should be zero because if there are no growing days there 

is, by definition, no growing season. The negative constant obtained indicates 

underestimation of Gc at low values of GT. The lowest number of growing days is about 

200 (Great Dun Fell) so this is not a serious problem if extrapolation beyond the range 

of the data used to develop the regression is not attempted. Gc is expected to increase 

much more rapidly as GT approaches 365. There is little evidence, however, of a 

curved trend in Figure 14.5 a. 

The relationship between Gc and GT at an individual location is subtly different, 

depending on station altitude and exposure. Adding local exposure (Chapter 4) to the 
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regression increases R2 slightly to 0.971. Separate equations can then be produced for 

each location. 

Gc=(0.894Gy)+(0.0071)-51.86 ----(5) 

I represents exposure at the local scale and is high in sheltered locations. For 

a given value of GT , Gc is higher in a sheltered location. At Great Dun Fell (1 = 

-1051): 

Gc=(0.894Gy)-59.22 ----(6) 

while at Durham (1 = -199) : 

Gc=(0.894Gr)-53.25 ----(7) 

Gc is about six days longer at Durham than at Great Dun Fell for a given 

number of grow days GT due to increased shelter. 

The predicted length of the growing season (Gc) at Durham varies from 193.5 

days for constant north-easterly flow (just over 6 months) to 267.5 days for south

westerly flow (nearly 9 months) (Table 14.4). The length of the season at Great Dun 

Fell is shorter, ranging from 71.7 days for north-westerly flow to 131.7 days for 

southerly flow. The difference between these two extremes amounts to over 2 months 

and in percentage terms the difference is more significant than at Durham. At Durham 

there is an appreciable contrast between airflows running clockwise from north-west to 

south-east (yielding seasons of around 200 days) and the values of over 260 days 

predicted for southerly, south-westerly and westerly airflows. At Great Dun Fell the 

contrast is less extreme, with 103.8 days simulated for south-easterly flow, 131.7 days 

for southerly flow and 111.4 days for south-westerly flow (Table 14.4 and Figure 
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14.6). 

One drawback to this approach is the assumption that the relationship between 

GT and Gc remains constant, irrespective of airflow. A mild airflow may allow sporadic 

growing days to occur in winter but this would not increase Gc unless the extra days 

were immediately before or after the original growing season. 

Table 14.4: The length of growing and frost-free seasons at Durham and Great Dun 
Fell for uni-directional wind scenarios. 

place Growing Growing Frost-Free Frost-Free 
Season Season Period Period 
Durham GDF Durham GDF 

Calm 203.1 106.0 154.2 104.7 

N 197.8 88.8 144.1 70.5 

NE 193.5 86.7 138.1 68.5 

E 207.4 100.6 148.2 76.5 

SE 197.8 103.8 140.1 88.6 

s 264.3 131.7 252.8 161.0 

sw 267.5 111.4 258.8 146.9 

w 266.4 96.3 254.8 94.6 

NW 218.2 71.7 178.3 60.4 

Mean 248.2 101.7 222.6 90.6 

14.4.2 Frosts 

Similar techniques were used to predict the length of the frost-free period (Fe) 

from the total annual number of frosts (FT) (Figure 14.5 b): 

F c= ( - 0 . 9 2 6 F T) + 2 3 3 . 9 . . . . r 2 = 0 . 6 6 - -- - ( 8 ) 
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Figure 14.5. Simulated Lengths of the Consecutive Growth Period and 
Frost-Free Period for Uni-directional Wind Scenarios at Durham 
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r is only 0.66 and there is evidence of a curvilinear trend, Fe decreasing less 

rapidly as FT continues to increase. This is common sense since further frost occurrence 

in a region of already high risk is just as likely to be realised in increased winter 

frequencies as in more unseasonal frosts which reduce the length of the frost-free 

period. At Great Dun Fell, Fe still averages more than four months despite a mean FT 

of 154. An exponential model was fitted but r still remained low, at 0.69 (Figure 14.5 

c): 

ln Fe= 244.7xe-o.oosGFT ----(9) 

Adding station altitude and micro-exposure to the linear regression, however, 

increased R2 to 0.87: 

Fe=(-1.676FT)+(0.105alt)-(0.109micro)+261.2 ----(10) 

Thus: 

Fe= (-1.676FT) +282 .92 ---- (11) (Durham) 

Fe =(-1.676FT)+380.22 ----(12) (Great Dun Fell) 

The constants in equations 11 and 12 represent the expected frost-free period 

when there are no frosts, extrapolated from the observed data. This should be equal to 

365/366 days. The Great Dun Fell value is near this but that for Durham is well below, 

highlighting the inaccuracies in extrapolating regression equations outside the range 

upon which they were developed. 

Fe at Durham {Table 14.4 and Figure 14.6) ranges from 138.1 days (about 4.5 
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months) for north-easterly flow to 258.8 days (about 8.5 months) for south-westerly 

flow. The variation of 120 days between airflows is large. The frost-free period is not 

as long as the consecutive growing period (Fe < Gc) in all scenarios. The difference 

is greatest for northerly and easterly airflows. Thus there is a greater risk of frost at 

Durham during the growing season in the scenarios in which the circulation is 

dominated by northerly and easterly surface flow. Increased anticyclogenesis over 

Scandinavia is one cause of more frequent northerly and easterly surface flows, 

especially in spring (Lamb 1950). According to the above analysis, frost risk during the 

growing season would increase for such a scenario with Fe becoming much shorter than 

Ge. 

At Great Dun Fell Fe ranges from 60.4 days (2 months) for north-westerly flow 

to 161 days for southerly flow. This percentage variation of 267% is greater than the 

variation in Ge. The growth period (Gc) is often longer than the frost-free one (Fe) 

although the difference between the two is less than at Durham. Thus there is less 

relative frost risk during the consecutive growing season at the mountain summit. Under 

mild southerly and south-westerly flows Fe is longer than Gel 

14.5 The Calculation of 'Risk Days' for the Uni-directional Wind Scenarios 

Mean daily temperatures for the uni-directional wind scenarios of Chapter 13 

were converted into probabilities of growth and frost using logistic curves, enabling the 

length of the growing season (Gc) and frost-free period (Fe) to be simulated. There is 

a wide variation in both Ge and Fe between airflows. At Great Dun Fell, the frost-free 

period is longer than the growth period for southerly and south-westerly flows, while 

for all other airflows the opposite is true. In Durham the growing season is always 

longer than the frost-free period, although the difference is reduced for maritime 

airflows from the south and west. Frost is therefore likely to be present during the 

growth period, especially in the lowlands towards the beginning and end of the growing 

season. 

The number of 'risk days' were calculated for each scenario by subtracting Fe 
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from Gc (as in Chapter 12). A negative result means that there is no frost risk during 

the consecutive growing season (Table 14.5). 

Table 14.5: Number of risk days at Great Dun Fell and Durham for uni-directional 
wind scenarios. 

scenario riskdays riskdays risk days risk days 
Great Dun Durham ·tGc /Gc 

Fell GDF Durham 

Calm 1.3 48.9 0.0123 0.2408 

N 18.3 53.7 0.2061 0.2715 

NE 18.2 55.4 0.2099 0.2863 

E 24.1 59.2 0.2396 0.2854 

SE 15.2 57.7 0.1464 0.2917 

s -29.3 11.5 - 0.0435 

sw -35.5 8.7 - 0.0325 

w 1.7 11.6 0.0177 0.0435 

NW 11.3 39.9 0.1576 0.1829 

Mean 11.1 25.6 0.1091 0.1031 

The highest number of risk days is 59.2, for easterly flow at Durham. Dividing 

the number of risk days by the length of the consecutive growing season gives an 

estimate of the proportion of the season at risk (columns 4 and 5). This varies from 

zero to 29%, the latter figure applying to south-easterly flow at Durham. 

14.6 Conclusions: An Assessment ofthe Sensitivity of Climate Potential in Northern 

England to Circulation Changes 

Changes in the relative frequencies of airflow types alone have important effects 

on growth and frost parameters in northern England. Changes in growing season length 

and frost risk do not necessarily mirror accompanying changes in growing season 

strength, discussed in Chapter 13. 
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For example, it has been shown that westerly and south-westerly airflows would 

encourage a rapid altitudinal decrease in growing season strength, accumulated 

temperatures at 800 m falling to 17% of those at sea-level (Table 13.4). The decrease 

was associated with steep lapse rates simulated for westerly flows. Work in this chapter 

has shown that in the westerly scenario the frost-free period becomes longer than the 

consecutive growth period, and despite the steep altitudinal reduction in accumulated 

temperatures. the upland growing season would be frost-free. On the other hand, larger 

upland temperature accumulations under blocked conditions (e.g. the south-easterly 

scenario) coincide with the frost-free period becoming shorter than the growth period 

(Fe < Gc). The number of risk days is 15.2 at Great Dun Fell for south-easterly flow. 

This is ironic since it is this airflow that experiences the highest warm season 

accumulated temperatures at 800 m. Despite high accumulated temperatures. continental 

air (in the south-easterly scenario) leads to a short frost-free period relative to the 

growth period. 

These two examples show how parameters measuring growing season strength, 

length and frost risk must be examined together to gain an overall picture of changes 

in "climate potential" associated with each airflow type. 
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THE GROWING SEASON IN THE DURHAM 
METEOROLOGICAL RECORD 1801-1990 

AND IMPLIED ALTITUDINAL LIMITS TO CROP GROWTH 

15.1 Introduction 

Previous chapters describe potential changes in the altitudinal variation of 

growing season strength, length and frost occurrence which would be experienced were 

airflow frequencies to alter. Each airflow scenario represents the influence of one 

airflow in isolation and in this way relative characteristics of airflow types are 

compared, although such an approach tells us little about recorded temporal changes in 

the relevant parameters which result from a combination of airflow changes. Extreme 

sensitivity of the growth and frost parameters to changes in airflows is suggested. To 

help assess whether such inter-annual contrasts are likely to occur, this chapter uses 

climatic data from Durham Observatory to illustrate the inter-annual variation in 

growing season strength in the region recorded over the last two centuries. By relating 

the historical variation of growing season strength to extrapolated cultivation limits, 

using relationships developed in Chapter 10 between growing season strength and 

altitude, small changes in mean annual temperature are shown to have had marked 

effects on the environment of northern England. 

15.2 Data Sources 

Temperature records from Durham Observatory (102 m) belong to one of the 

longest continuous meteorological time series in Britain. Daily data extend back to 1847 

but mean monthly temperatures were reconstructed by Manley back to 1801 

(Kenworthy 1985, Cox 1993a). The Durham record is the only reliable temperature 

series for the whole of the 19th and much of the 20th century in north-eastern England. 

The nearest comparable series is that constructed by Manley (1946) for Lancashire. The 

Radcliffe Observatory record in Oxford extends further back, to 1815, but is less 

relevant to the Pennines. Unlike Oxford, there has been relatively little urbanisation in 

the vicinity of Durham Observatory in the last two centuries and the record is fairly 

homogeneous, after changes in instrumental exposure and observing practice have been 
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taken into account. Manley carried out corrections to screen temperatures, necessitated 

by changes in the location of thermometers (Manley 1941, Kenworthy 1985) and these 

are accounted for in the data. Recent articles concerning the Durham record include an 

analysis of variations in temperature and rainfall (Harris 1985), the use of smoothing 

methods (Cox 1993b) and a comparison with data from the nearby village of 

Heighington (Pepin 1994). 

15.3 Calculation of Growing Season Strength 

An immediate problem is that many subtly different methods can be used to 

calculate accumulated temperatures, depending on the data available: 

1. Annual accumulated temperatures (Gd), obtained from summing daily excesses 

of mean temperature above 6°C, reflect temperature variation on a daily timescale. 

These were related to altitude in Chapter 10 for the recent period. 

2. The annual accumulated temperatures (Gy) calculated usmg mean monthly 

temperatures are lower than Gd, because winter months (when mean temperatures are 

below 6°C) contribute negative values to the annual total, cancelling out some of the 

positive accumulation. 

3. The sum of accumulations within months with mean temperatures above 6°C 

(Gp) approaches the daily value Gd more closely. 

4. The sum of April to October accumulations (Gw) is approximately equal to GP 

in most years and is easier to calculate. 

The four different estimates are summarised in Table 15.1, calculated at Durham 

for 1985 to 1990. 
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Table 15.1: Comparison of different accumulated temperature measures (d 0 C) (1985-
1990). The threshold temperature is 6°C. 

YEAR Gd Gy Gw Gp 

1985 1288 777.45 1219.40 1219.40 

1986 1222 762.85 1097.90 1166.90 

1987 1282 872.35 1182.85 1188.85 

1988 1385 1171.65 1270.30 1310.60 

1989 1533 1343.20 1392.50 1432.70 

1990 1556 1383.35 1365.20 1450.70 

MEAN 1378 1052 1255 1295 

Daily data are unavailable during the early years of the Durham record and 

mean monthly temperatures (yielding GY, Gw or GP) must be used to calculate growing 

season strength. Accumulated temperatures for a month with n days are estimated as 

n(m-6) where m is the mean monthly temperature. The result is negative if m < 6, i.e. 

if the mean monthly temperature is below 6°C. Leap years were treated as ordinary 

years. GY, Grand Gw were calculated over the 190 years of the record. GP and Gw are 

more indicative of growth potential, concentrating solely on the effective growing 

season. Gy also depends on winter conditions. 

15.4 The Historical Variation in Growing Season Strength 

15.4.1. Introduction 

Any data series which are based on a temporal (or spatial) progression can be 

smoothed to identify possible trends in data structure. Good reviews of time-series 

analysis (Conrad & Pollak 1950, Holloway 1958, Lewis 1960, Chatfield 1975) make 

the point that the approach is full of traps. For example Lewis (1960) illustrates that 

when moving averages are used for smoothing, a random set of numbers can produce 

apparent periodicities. This Slutsky-Yule effect is often a valid objection to be raised 

when a "trend" is identified. 
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A good example of time-series analysis is given by the Uppsala record in 

Sweden which dates back to 1722. Bergstrom (1990) smoothed the wind records, 

showing that westerly winds were more frequent in the early 18th century. This would 

explain the cooler summers and milder winters experienced at this time. Anomalous 

years in the record are shown to affect filtered time series in unusual ways, especially 

when running means, rather than medians, are used (Barring & Mattsson 1992). This 

is because running means are not resistant to outliers. The influence of extreme 

observations on smoothing results should be an important area of concern. 

15.4.2 Smoothing of Accumulated Temperatures 

Gy (section 15.3) is shown in Figure 15.1, smoothed usmg cubic splines 

connecting running medians (Hamilton 1992). The resulting curve depends on the 

method used and is somewhat arbitrary (Chatfield 1975). Cubic splines are based on 

numerous locally-weighted regression curves calculated at intervals along the series 

(Cox 1993b). The resulting curve is therefore largely resistant to outliers. There is a 

large inter-annual variation in Gy. Temperature accumulations in the warmest years are 

more than five times those recorded in the coldest years. The lowest annual total (255.5 

d°C) occurred in 1879 at the end of a cold period, and has been connected with 

disastrous harvests reported at this time. In East Anglia com was still being gathered 

in at Christmas (Lamb 1982). The 1879 summer Central England Temperature (CET) 

was only 13. r C (Manley 197 4), more than 1. 5o C below the 1961-1990 average 

(15.37°C) (Parker, Legg & Folland 1992). The Durham record is therefore consistent 

with this. Other poor years evident in Figure 15.1 include 1816 (270.1 d°C), which has 

been nicknamed the 'year without a summer' due to the influence of the eruption of Mt. 

Tambora in 1815 (Lamb 1982). The highest annual accumulated temperature occurred 

in 1990 (1383.4 d°C). The warmth of the last two years in the record is striking. 1989 

appears as the third warmest and 1990 as the warmest year. The smoothed curve 

indicates cold periods at the end of the 19th century and in the late 1960s and 1970s, 

along with a warm period around 1950. A recent increase in warmth is shown. These 

trends are also shown in other analyses (Perry & Barry 1973, Manley 1974, Parker, 

Legg and Folland 1992) and it is reassuring that the Durham record is in agreement. 

246 



c.n 
>
ro 
D 
I 

QJ 
QJ 

L 
Ol 
QJ 

0 

.c 

..!--' 

Ol 
c 
QJ 

L 
-W 

Ul 

c 
0 
c.n 
ro 
QJ 

Ul 

01 
c 
r-1 

3: 
0 
L 

(_:J 

ro 
::J 
c 
c 
·:::t 

Figure 15.1. Time Series of Annual Growing Season Strength, Gy, 
at Durham C1801-1990) 
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Gr (Figure 15.2) is more representative of warmth in the growing season since 

it is not affected by winter weather. Accumulations above 1500 d°C are common, 

especially in the 1930s and 1940s. Other warm seasons are evident in the first half of 

the 19th century, e.g. 1826 and 1846. These two summers were also very warm in the 

CET series, 1826 being the hottest summer in the record (Manley 1974). 1989 and 

1990 warm season accumulations were less outstanding, with values around 1400 d°C, 

confirming that it is largely mild winters that led to increased high GY values in 1989 

and 1990. 

Annual values of Gy and Gr were also smoothed using a running line least

squares smoothing method with Cleveland's (1979) tricube weighting function, 

variously known as 'lowess' and 'loess'. The amount of smoothing was controlled by 

setting the bandwidth b, which could vary between 0 and 1. The larger the bandwidth 

the more the smoothing. If b were equal to 1, the time-series would be fitted by simple 

linear regression (Computing Resource Center 1992). 

Annual temperature accumulations (Gy) are smoothed usmg three different 

bandwidths. With b equal to 0.8 (152 years) there is a steady increase in Gy from 

around 800 d°C in 1800 to almost 1000 d°C in 1990 (Figure 15.3 a). Using a reduced 

bandwidth of 0.5 (90 years) produces a sharp upturn in the last decade (Figure 15.3 b). 

The low bandwidth of 0.2 (38 years) makes the recent increase appear dramatic (Figure 

15.3 c). Warm periods appear around 1800, 1830-40, 1910 and in the 1940s. These 

trends must be treated with caution since production of spurious oscillations in 

smoothing analysis is common (Burroughs 1980). 

Gr is smoothed using lowess (Figure 15.4). Most values fall above 1000 d°C, 

the assumed critical limit to cultivation in Chapter 10. A bandwidth of 0.8 is associated 

with a levelling off of the curve over the last 20 years, a feature not evident in other 

graphs. A bandwidth of 0.5 produces a decrease throughout the 19th century, followed 

by an increase to around 1300 d°C in the 20th century. With a bandwidth of 0.2, the 

warming in the 1930s and 1940s, cooling in the 1960s and a recent increase in warmth 

are shown. The early part of the 19th century appears to have been warmer than the 
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Figure 15.2. Time Series of warm Season Growing Season Strength, Gp, 
at Durham (1801-1990) 
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Figure 15.3. Time Series of Annual Growing Season Strength, Gy, at 
Durham (1801-1990), Smoothed by 'Lowess' at Three Different Bandwldths 
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Figure 15.4. Time Series of Warm Season Growing Season Strength, Gp, at 
Durham (1801-1990), Smoothed by 'Lowess' at Three Different Bandwidths 
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latter part. Comparison with Figure 15.3 c suggests that at the beginning of the 19th 

century warmer summers were often offset by colder winters. 

15.5 Comparison of Historical Growing Season Strength with the Theoretical 

Accumulated Temperatures Derived in the Uni-directional Wind Scenarios of 

Chapter 13 

Growing season strength can be predicted specifically for Durham (102 m) for 

the uni-directional wind scenarios in Chapter 13 using the regression equations for each 

airflow type in each month (Table 15.2). For example, the warm season temperature 

accumulation (Gr) would be 1018.8 d°C in the north-easterly scenario. Annual 

accumulated temperatures (Gy) would be 512.4 d °C. 

Table 15.2: Durham temperature accumulations (d 0 C) for uni-directional wind 
scenarios. 

Airflow Scenario Predicted GP Predicted GY 

Calm 1224.3 765.6 

N 912.6 414.0 

NE 1018.8 512.4 

E 1102.2 552.0 

SE 1362.9 810.0 

s 1476.0 1372.8 

sw 1490.4 1406.4 

w 1302.4 1209.4 

NW 1112.3 723.6 

Mean 1217.3 988.8 

Accumulated temperatures are similar to those predicted at 100 m (Tables 13.2 

and 13.3) since Durham has a similar elevation. Accumulations are lower than those 

predicted for 100m under easterly flow because longitudinal and latitudinal coefficients 
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are negative at Durham. In contrast, accumulations for south-westerly and westerly 

flows are higher than the value for 100 m. An accumulation of over 1300 d°C is 

predicted under the westerly scenario for Durham, compared with 1238.3 doc at 100 

m. 

Gy varies between 414 doc for constant northerly flow and 1406.4 d°C for 

constant south-westerly flow at Durham. In the historical climate record, 186 out of 190 

annual values (nearly 98 %) fall within these limits. Gy averages 853.04 d°C and 

ranges from 255.5 to 1383.35 d°C. The four historical Gy values falling outside the 

scenario extremes are all lower than 414 d°C, occurring in the 19th century (Table 

15.3). 

Table 15.3: Historical values of GY and GP falling outside predicted extremes for uni
directional wind scenarios. Figures in parenthesis represent these extremes. 

Gy (414-1406.4 d°C) Gp (912.6-1490.4 d°C) 

Year Value Higher Year Value Higher 
/Lower /Lower 

1816 270.1 L 1816 867.0 L 

1860 339.5 L 1846 1501.7 H 

1879 255.5 L 1860 906.5 L 

1892 365.0 L 1888 859.9 L 

1892 891.6 L 

1933 1502.1 H 

1949 1512.2 H 

1959 1540.7 H 

Two values occur in well-known cold years (1816 and 1879). 1860 and 1892 

also appear as cold in the CET series. ForGy to fall below the predicted accumulation 

under the northerly scenario, certain airflows must have been associated with colder 

conditions than those recorded for 1985-1990. In other words, within-type climate 

change is necessary to account for this climatic variation (Barry 1967, Perry & Barry 
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1973, Comrie 1992). Fluctuations in growing season strength at Durham are too large 

to be explained by reference to circulation changes alone. Gy never exceeds 1406.4 

d°C, the accumulation associated with the south-westerly scenario and the highest value 

is 1383.4 d°C (1990). 

Historical GP values will also be compared with predicted extremes (912.6 d°C 

for the northerly scenario and 1490.4 doC for the south-westerly scenario). GP varies 

between 859.9 and 1540.7 d°C. Thus values rise above and fall below these limits. The 

four years below (all in the 19th century) include 1816, 1860 and 1892, but not 1879. 

The four years above are mostly in the 20th century but include the hot summer of 

1846, referred to as exceptional by the Durham Chronicle on Friday 19 June of that 

year: 

It is so melting hot this week 
that, though our readers flout us, 
The truth we must in conscience speak, 
We've scarce our wits about us (Kenworthy 1985, p 23). 

Warmer and colder conditions than those recorded in 1985-1990 for individual 

airflow types are required to account for the historical fluctuation of GP. Within-type 

climatic change (with reference to the 1985-1990 base period) is thus necessary to 

explain the extremely warm and cold years. 

15.6 Seasonal Variations in Accumulated Temperatures 

Seasonal accumulated temperatures have been smoothed using a bandwidth of 

0.5 (Figure 15.5). In spring (March-May) total accumulated temperatures average 

around 100 d°C but are negative in a few years. The lowest value is -121.5 doc (in 

1837). In the warmest springs, the accumulation nears 300 d°C. The last three decades 

of the 19th century were dominated by cold springs, as was 1800-1810. The warming 

trend over the last two centuries is illustrated by counting the number of springs with 

negative temperature accumulations in each decade (Table 15.4). 
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Table 15.4: The number of springs with negative accumulated temperatures in each 
decade (1801-1990). 

Decade N of neg years 1891-1900 2 

1801-1810 - 1901-1910 -

1811-1820 3 1911-1920 1 

1821-1830 - 1921-1930 -

1831-1840 2 1931-1940 -

1841-1850 1 1941-1950 1 

1851-1860 3 1951-1960 1 

1861-1870 - 1961-1970 -

1871-1880 2 1971-1980 -

1881-1890 4 1981-1990 -

The relative absence of years with negative spring accumulations in the 20th 

century is marked. This will have benefits in upland areas since the importance of 

warmth early in the year should not be underestimated (Taylor 1967a). 

Summer (June-August) accumulations (Figure 15.5 b) show reduced percentage 

variability, ranging from 526 doC in 1888 to 976 doC in 1826. 700-750 doC is typical, 

although the best summers exhibit nearly twice the warmth of the worst. Little temporal 

trend can be seen, in contrast to other seasons. 

Autumn (September-November) accumulated temperatures exhibit a steady 

increase since the 1870s. Mean values of around 250 doc in the 1870s increase to about 

300 doc in the 1980s. Accumulations below 200 d°C were common in the 19th and 

early 20th centuries, but there have been only two such seasons since 1950 (1952 and 

1975). 

Winter (December-February) values increase gradually throughout the record. 

A cooling in the 1960s and 1970s is shown. Despite recent warming, all values are well 
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below zero because a mean temperature above 6°C for the three winter months is 

extremely unlikely. 

In conclusion, spring and autumn have become milder, possibly leading to an 

earlier start to the growing season and a later finish. Winters have also become milder 

but summer temperatures show little change. A change in spring warmth will have the 

most benefit, especially in upland areas where the delayed rise of temperature in spring 

is a major feature of the maritime climate. One warm day in spring is said to be worth 

a week in late summer or autumn for this reason (Utaaker 1968). 

Examination of April temperatures tells an interesting story. Conditions in April 

are critical for growth and frost occurrence and in upland areas the month is marginal 

in growing terms. Mean accumulated temperatures at Durham are below 50 d°C 

(Figure 15.6), negative accumulations occurring in a third of years. Contrasts in frosts 

and growing days are at their greatest, especially in the uplands, depending on the 

circulation pattern (Chapter 14). April is also the month when lambing occurs in 

northern England and the effect of weather on growth of spring grass is especially 

important. If April is cold, grass growth will not begin until May and lambs require 

imported hay. Cold April weather can also cause fatalities among young lambs, 

especially if conditions are also wet (Starr 1981). 

The smoothed graph of April accumulated temperatures shows little evidence of 

a historical increase, although a warming trend between 1900 and 1960 may be 

postulated. The smoothed curve lies almost at the same level in 1990 as in the middle 

of the 19th century. The reasons behind this are unclear. Increased advection of cold 

air drawn from the North Sea would explain low temperatures, especially in the north

east, especially if low sea surface temperatures (SST) were involved. Any explanation 

for sea-surface temperature variation must be connected to changes in SSTs outside 

British waters. A change in oceanic circulation would also account for some 

temperature changes within individual airflow types. These are necessary to account for 

the temporal variation in growing season strength since 1801. 
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Figure 15.5. Smoothed April Accumulated Temperatures at Durham, 1801-1990 
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15.7 The Application of Linear and Exponential Models of the Altitudinal Decline 

in Growing Season Strength to the Calculation of Critical Cultivation Limit 

Altitudes 

Fluctuations in growing season strength (as illustrated for Durham) will result 

in shifting altitudinal limits for agricultural cultivation and plants. When growing season 

strength averaged over 1985-1990 was regressed against altitude, the gradient of the 

resultant line was -1.42 d°C/m, the predicted sea-level growing season was 1499 d°C, 

and the critical altitude (at which 1000 d°C is expected) was 351 m (Chapter 10). 

Removal of Great Dun Fell increased the gradient to -1.72 d °Cim. The cultivation limit 

is expected to have fluctuated widely in the past, especially as it varies between 236 m 

and 463 min the sample period (1985-1990). Assuming the gradient of -1.42 d°C/m 

to be representative of the rate of decrease of accumulated temperatures with altitude 

in an average year, the elevation of the 1000 d°C cultivation limit can be estimated for 

any year back to 1801, by referring to GP in the Durham record. GP is used as the best 

approximation to Gd, the daily temperature accumulation. 

The estimated limit is given by: 

crit level(c)=l02+((Gp-l000)/l.42) ... . m ----(1) 

Because GP is on average only 94% of Gd (Table 15.1), 940 doC could be used 

as an equivalent limit to 1000 doc. In this case critical altitudes would be 42 metres 

higher than the figures quoted below. The 1000 d°C critical limit, c, varies from 3.3 

min 1888 to 482.8 min 1959 (Figure 15.7). 90% of northern England in the digital 

terrain model falls between these elevations and is expected to have experienced an 

accumulation greater than 1000 doc in some years but not in others. c is dependent on 

the value chosen for the altitudinal gradient in accumulated temperatures. Assuming a 

gradient of -1.57 d°C/m (the steepest recorded between 1985 and 1990), c ranges from 

12.8 m to 446.4 m. Using a gradient of -1.29 d°C/m (the shallowest recorded between 

1985 and 1990) c ranges from -6.6 m to 521.1 m (over 95% of northern England falls 
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Figure 15.7. Extrapolated 1000 Degree Day Cultivation Limit Altitudes, 
1801-1990, Assuming a Linear Decrease of 1.L12 Degree-Days per Metre 
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between these elevations). The limit falls below sea-level in 1888! Uncertainty in the 

gradient accounts for an error in the upper critical cultivation limit of nearly 80 metres 

and of 20 metres in the lower limit. However, these errors are small when compared 

with the inter-annual variation in the cultivation limit (from near sea-level to nearly 500 

m), suggesting that the model is not overly sensitive to the gradient chosen. 

An exponential model relating accumulated temperatures and altitude was 

discussed in Chapter 10, although the lack of high altitude stations meant that relative 

merits of the linear and exponential models were difficult to evaluate. The gradient of 

the exponential curve derived for the 1985-1990 mean growing season (Table 10.4) can 

also be used to estimate the critical 1000 d°C limit back to 1801. Assuming a curve: 

In (g) has a gradient of -0.0016/m. The critical limit c is therefore: 

c=102+(ln(Gp/1000))/0.0016 ... . m ----{3) 

where Gr is the historical growing season strength. 

If G" is greater than 1000 doC at Durham, c will be above 102 m. Estimates of 

c using the exponential model vary from 7.7 min 1888 to 372.1 min 1959 (Figure 

15.8). Values are more conservative than in the linear case but still encompass more 

than 80% of the land in northern England within their range. Using a low gradient 

(0.0013), c varies between -14.1 m and 434.5 m. Using a steep gradient (0.0019), 

values range from 22.6 m to 227.5 m. Interestingly, the upper limit is more variable 

than the lower. It is also to be noted that the change in critical limits is not linearly 

related to changes in k because of the exponential nature of the model. Limit altitudes 

are more sensitive to k than in the linear model. Differences in the 1959 limit exceed 

200 m due to uncertainty in the rate of exponential decline in growing season strength 
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Figure 15.8. Extrapolated 1000 Degree Day Cultivat1on Limit Altitudes, 
1801-1990, Assuming an Exponential Decline of Degree-Days with Altitude 
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with altitude. For this reason use of the linear model is to be preferred. extrapolated 

limits being Jess sensitive to the gradient chosen. 

15.8 Critical Cultivation Limit Altitudes in the Uni-directional Wind Scenarios 

Theoretical annual temperature accumulations for the airflow scenarios could be 

used to predict critical cultivation limit altitudes if the relationship between growing 

season strength and altitude had been defined. Predicted accumulated temperatures at 

Durham are listed in Table 15.2 for the uni-directional wind scenarios. Assuming the 

annual temperature accumulation to be 912.6 d°C in a year of constant northerly flow, 

the linear model relating growing season strength and altitude (gradient = -1.42 

d °C/m) produces a cultivation limit of 40.5 m and the exponential model (gradient = 
-0.0016/m) an altitude of 44.8 m (Table 15.5). Estimates assume that accumulated 

temperatures at Durham for each airflow are representative of those at 102 m. 

Critical limit altitudes extrapolated using both linear and exponential models 

(gradients of -1.42 d°C/m and -0.0016/m respectively) (Table 15.5 overleaf) are shown 

on Figure 15.9. The contrast between airflow scenarios is strong. 

Extrapolation of cultivation limits using linear and exponential models of 

altitudinal growing season decline outside the period on which the models are based 

may lead to inaccuracies since the extrapolation assumes that relationships defined for 

1985-1990 remain unchanged. 

To eradicate the dependence of the limits on the historical accumulated 

temperatures at Durham, estimates for an airflow scenario can be gained directly from 

the relevant monthly regressions. Mean temperatures were described for each airflow 

type in each month in Chapter 8. Setting latitude and longitude to their mean values, 

representative accumulated temperatures were calculated for given altitudes (Table 

13.3). 1000 d°C limits were interpolated for each uni-directional wind scenario using 

this information (Table 13.5). These regression limits are listed again in the last column 

of Table 15.5. The westerly and south-westerly regression limits are lower than limits 
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Figure 15. 9. Extrapolated 1000 Degree Day Cultivation Limit Altitudes 
for Uni-directional Wind Scenarios, Assuming Both Linear and 

Exponential Declines 
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based on extrapolation from Durham data in this chapter. The overall range in limits 

between airflows is less for the regression limits (by 24.3 m). 

Table 15.5: Critical altitudes (m) (1000 d°C accumulation) for uni-directional wind 
scenanos. 

Airflow Linear Exponential Regression 
Scenario Critical Critical Limit 

Limit Limit 

Calm 260.0 228.5 320.0 

N 40.5 44.8 70.2 

NE 115.2 113.6 185.7 

E 174.0 162.8 269.6 

SE 357.6 295.5 452.8 

s 437.2 345.3 414.0 

sw 447.4 351.4 338.2 

w 315.0 267.1 245.8 

NW 181.1 168.5 146.9 

Mean 255.0 224.9 254.8 

Nevertheless, the variation in regression 1000 d°C cultivation limits according 

to airflow is still wide, illustrating the sensitivity of the Pennines to changes in relative 

airflow frequencies, even when each airflow remains unchanged with respect to 1985-

1990. About 70% of northern England in the study area lies between 70.2 and 452.8 

m (the extreme altitudes). The advantage of the limits in the right hand column of Table 

15.5 is that they are interpolated instead of extrapolated and depend on temperatures 

at all sites, not just at Durham. The simple regression limits are therefore to be 

preferred. 

15.9 Summary of Results 

a) There IS a wide variation m annual accumulated temperatures at Durham 
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between 1801 and 1990. An inter-annual variation of over 500%, between 255 d°C and 

1384 doc, is shown for the annual accumulation (Gy), while the variation in warm 

season accumulations (Gp) is over 200%. The pattern of variation agrees with other 

time-series such as the CET index (Manley 1974). The warmth of 1989 and 1990 is 

largely due to mild winters in these years, GP being unremarkable. Spring, autumn and 

winter show more consistent warming trends than summer. Uni-directional wind 

scenarios, based on multiple regressions of mean daily temperature for different airflow 

types, create a range in predicted accumulated temperatures from 913 doC to 1490 d°C 

for GP and 414 doc to 1406 d°C for Gy. Nearly all historical temperature 

accumulations fall within these limits. GY has been lower than 414 d°C in four years, 

while Gr has fallen both above and below the predicted extremes. Changes within the 

character of airflows are therefore necessary to account for this variation. 

b) Temporal variation of the theoreticallOOO d°C cultivation limit was extrapolated 

back to 1801 by using Durham accumulated temperatures and assuming the 

relationships between growing season strength and altitude defined in Chapter 10 to 

remain constant. The inter-annual variation in limits is extremely large, 90% of 

northern England falling between the extreme altitudes recorded. The choice of the 

gradient between growing season strength and altitude when using a linear model did 

not have undue influence on extrapolated cultivation limits. 

c) The application of the above methodology to simulated temperature 

accumulations in the uni-directional wind scenarios of Chapter 13 showed that critical 

cultivation limits varied by over 400 metres between different airflows. Extreme 

sensitivity of temperature accumulations to airflow types is demonstrated. Small changes 

in the circulation pattern connected with global climate processes may have dramatic 

consequences for growing season strength in the study area with an equally strong 

influence on the altitudinal zonation of the Pennines. Of particular interest is the 

contrast between the northerly scenario (air from the Arctic) and the south-easterly 

scenario (continental air). 
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15.10 Problems Encountered and Areas for Further Research 

Extrapolation using regression equations outside the range upon which they are 

based is undesirable because relationships defined between growing season strength 

(accumulated temperatures) and altitude for 1985-1990 cannot be assumed to hold for 

all time. Because of this, contrasting values of the gradient between growing season 

strength and altitude were tested to illustrate the effect of temporal change in the 

growing season/altitude relationship. Differences in cultivation limit elevations due to 

changes in the gradient were considerably less than the range between wind scenarios, 

at least when the linear model was employed. This is reassuring but does not eradicate 

the problem. 

High or low cultivation limits in individual years are not as important as any 

temporal trend in the 1000 d°C limit. It would require more than one failed harvest to 

lead to crop abandonment and more than one good year to encourage crop development 

at higher altitudes. The probability of runs of good or bad years could be investigated 

(Parry 1976). 

It is unrealistic to assume that lapse rates and temperatures within airflow-types 

remain constant. Changes in climate processes will alter airflow character as well as 

encourage variations in relative airflow frequencies. For example, a cooling of westerly 

flows may occur due to a diversion of Atlantic ocean currents, reducing warm-air 

advection in winter. Work is required to assess the effects of such changes in airflow 

quality. With changes within airflow properties, i.e. within-type climate change, which 

has been shown to be necessary to explain the range of climatic behaviour present at 

Durham, the consequences for "climatic potential" in the High Pennines could be 

marked. It is significant that the actual cultivation limits in the Lammermuir Hills were 

observed to fall by 200 metres in around 300 years (a mean rate of 2 metres every 3 

years), at a time when the rate of climatic change was slower than predicted for the 

near future (Parry 1978). 

Subsequent work could attempt to analyse possible changes in mean temperature 
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and lapse rates within airflows. Such expected changes could soon be extracted from 

GCMs (Viner & Hulme 1992). The most recent GCMs are attempting to estimate 

changes in airflow quality which can then be combined with the predicted changes in 

relative frequencies to produce a realistic climatic scenario. Unfortunately, such data 

are as yet unobtainable. The effects of arbitrary changes within airflows are examined 

in Chapter 18 using recent GCM data. 

Before attempting this, the next chapter introduces the concept of internal 

variability of airflows. Up to the present, airflows have been treated as invariable, 

possessing a constant surface temperature, i.e. the temperature on a day with a 

particular airflow in a particular month has been simulated as invariable. In reality there 

will be a random variation of mean daily temperatures around this expected value in 

any airflow. It is more realistic to think of mean daily temperatures under the influence 

of a particular airflow as forming a normal Gaussian distribution around the mean value 

predicted for the airflow. 
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THE SIMULATION OF CLIMATIC VARIABILITY TO IMPROVE 
ESTIMATES OF ACCUMULATED TEMPERATURES 

16.1 Introduction 

Previous climate scenarios are based on the prediction of mean temperatures for 

each airflow type. All airflows show fluctuation in daily temperatures around the mean 

and many climatic indicators, including accumulated temperatures, will be affected by 

such variability. The range of climatic behaviour expected in a particular airflow is 

particularly important when converting the simulated mean temperatures into the length 

of the growing or frost-free season (Chapter 14). For example, the number of growing 

days and length of the growing season are underestimated when the mean temperature 

is well below 6°C, because warm spells are not simulated. Likewise when the mean 

temperature is above 6°C the temperature will nonetheless fall below the threshold on 

cold days .. Inter-diurnal temperature variability will be simulated for each airflow to 

allow such cases to be taken into account. 

16.2 Estimates of the Variability of Mean Daily Temperature (u) 

Standard deviations (u) of mean daily temperatures in each month were 

calculated for each location. The standard deviation of mean daily temperatures (u) falls 

consistently between 2°C and 4°C. a reaches 3.78°C at Carlisle in December, whereas 

the lowest value (not including Houghall, Nenthead, Shap and Wycliffe Hall) is 2.09°C 

at Sunderland in July. These calculated deviations represent the variability of mean 

daily temperatures within the relevant month. u shows a strong relationship with altitude 

in many months (Table 16.1), although the sign of the relationship is inconsistent. 
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Table 16.1: Relationship of standard deviation (a) of mean daily temperatures (0 C) with 
altitude (metres above sea-level): a = a(alt) + b. 

Month Mean a b r GDF Dur 
u 

Jan 3.05 -0.00062 3.310 -0.476 2.78 3.25 

Feb 3.28 - - -0.015 3.28 3.28 

Mar 2.79 - - -0.196 2.79 2.79 

Apr 2.91 0.00058 2.876 0.642 3.37 2.94 

May 2.57 0.00091 2.407 0.642 3.18 2.50 

Jun 2.77 - - 0.333 2.77 2.77 

Jly 2.41 0.00087 2.230 0.742 2.97 2.32 

Aug 2.48 - - 0.056 2.48 2.48 

Sep 2.51 - - -0.020 2.51 2.51 

Oct 2.57 - - 0.057 2.57 2.57 

Nov 2.86 - - -0.222 2.86 2.86 

Dec 2.97 -0.00112 3.259 -0.636 2.31 3.14 

The final two columns represent a extrapolated to the relevant altitudes for Great 

Dun Fell (847 m) and Durham (102 m). In seven months no systematic change of a 

with altitude was found and mean values were assumed to be representative at all 

altitudes. In some summer months (e.g. July) a increases strongly with altitude (Figure 

16.1 a). There is greater temperature variation at high altitudes, a increasing from 
l 

2.3 oc at sea-level to nearly 3 oc at Great Dun Fell. a also increases with altitude in 

April and May. Points marked with '1' on the July and December graphs are for the 

stations with missing data. These were ignored when calculating regression lines. In 

December and January there is a distinct decrease in temperature variability with 

altitude (Figure 16.1 b). Temperature inversions occur frequently in winter, causing a 

greater variability of temperature at low altitudes. Such areas experience mild 

conditions on days with no inversion but cold temperatures on days with inversions 

(Figure 16:1 c). Above the inversion, temperatures will be less variable. The gradients 

of all regression lines are slight (Table 16.1). The steepest gradient (December) is 
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-0.00112°C /m. a is thus expected to be 3.26°C at sea-level, 3.14°C at Durham, but 

only 2.31 oc on Great Dun. Fell. 

16.3 Simulation of Daily Time Series 

The mean daily temperature (p.) and the standard deviation (o) of mean daily 

temperature in an airflow scenario can be used to generate a random series of daily 

temperatures. Stochastic simulations are often used in climate impact studies (e.g. Chia 

1991). By perturbing the parameters of a stochastic model in a way consistent with 

results of GCM experiments, the streams of synthetically generated data can be 

regarded as climate change scenarios (Woo 1992). The problems behind this type of 

approach are discussed by Mearns (1989). For example, it is difficult to relate 

randomly generated temperature, precipitation and insolation data so that they make 

physical sense when compared, e.g. insolation should vary inversely with precipitation. 

In Table 16.1 a can be used to estimate the expected variability of daily 

temperatures. All airflows in a particular month will be assumed to show similar 

variability (this assumption is dropped later). Assuming inter-diurnal temperature 

variability to remain fairly constant in future climates, a will range from 2.5°C in 

summer to over 3 oc in winter. In some months a is expected to decrease or increase 

with altitude. 

In Chapter 13 mean daily temperatures were predicted for any airflow in any 

month at a given altitude, e.g. the predicted sea-level January mean daily temperature 

is 4.04 oc (Table 13.1), assuming all airflows to show equal weighting. To improve this 

scenario a time series of mean daily temperatures will be generated with a mean (p.) of 

4.04 oc and a equal to that expected for sea-level (3.31 °C). A computer program 

developed to produce normal or Gaussian random numbers with a mean of zero and a 

standard deviation of one [N(0,1)] was used (Hamilton 1992). 31 cases were simulated 

(a month's figures). Ten random simulations are shown (Figure 16.2). Values simulated 

by the program (y) were transformed by: 
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Figure 16.2. Ten Random Number Simulations w1 th a Mean of Zero 
and a Standard Deviation of One 
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Yc=~+(axy)=4.04+(3.31y) ----(1) 

where f.1. was the scenario mean and a the scenario standard deviation. This produces 

a time series applicable to the scenario in question: 

Yc=[N(4.04,3.31)] ----(2) 

The actual mean x and standard deviation s in the random series are different 

to those expected since each series is only a sample of values from the original 

distribution. In a longer series, x and s should tend towards f.1. and u respectively. 

Table 16.2: Two random daily temperature series for sea-level: relevant parameters and 
resulting accumulated temperatures. n represents the number of growing days. 

I Run A Run B 

Mth X s n doC X s n d°C 

Jan 4.59 3.80 12 29.3 3.58 2.27 4 2.5 

Feb 4.73 3.77 12 27.6 3.74 2.25 5 2.8 

Mar 6.49 3.21 17 50.5 5.64 1.92 15 18.8 

Apr 8.37 3.31 23 84.8 7.49 1.98 24 52.5 

May 11.68 2.77 31 176.1 10.95 1.66 31 153.5 

Jun 14.00 3.18 31 240.0 13.16 1.90 31 214.8 

Jly 16.07 2.56 31 312.2 15.39 1.53 31 291.1 

Aug 15.51 2.85 31 294.8 14.76 1.70 31 271.6 

Sep 13.30 2.88 31 219.0 12.54 1.72 31 196.2 

Oct 11.03 2.95 29 156.6 10.25 1.77 30 132.0 

Nov 6.63 3.29 18 52.3 5.76 1.96 16 20.6 

Dec 6.21 3.75 17 52.9 5.22 2.24 14 16.5 

Tot 1696 1373 
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Table 16.2 shows the results of two runs of the program_ for sea-level. A series 

was generated for each month using values of J.l. and a from previous scenarios and 

Table 16.1 respectively. 

n is the number of days recorded with mean temperatures above 6°C, i.e. 

growing days. Accumulated temperatures (d°C) in months with less than 31 days have 

been corrected to allow for this. Accumulated temperatures vary between the two runs, 

from 1696.01 oc in run A to only 1372.81 oc in run B. The difference between the two 

runs is entirely due to random variation. Both totals are realistic daily accumulations 

(GJ for northern England. In previous scenarios accumulations were based on mean 

monthly figures (Gp) (Chapter 13). However, when using this approach, if the standard 

deviation of a weather element can be estimated. a daily temperature accumulation can 

be simulated using mean monthly figures alone. This approach could be applied to the 

early years of the Durham record but many samples would be required to reduce the 

high variability of results. 

The number of growing days (n) varies according to the series. In January n is 

12 in run A but only 4 in run B (Table 16.2). Results from ten simulations are shown 

in Table 16.3. The runs described in Table 16.2 are runs 1 and 9. In run 1 the sample 

mean is above J.l., whereas the opposite is the case in run 9 (run B). The sample 

standard deviation is very low (i.e. much lower than a) in run 9, whereas it is above 

that predicted in run 1. 

The most extreme individual daily values are typically about two real standard 

deviations (a) away from the mean, although in run 10 the minimum daily value was 

more than 3 standard deviations lower (-3.139*a), and is an outlier on Figure 16.2. 
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Table 16.3: Values of x and s for 10 runs of random numbers: real mean (p.) = 0, real 
standard deviation (a) = 1. Runs 1 and 9 were described in Table 16.2. 

Run No Mean(x) St Dev(s) Min Max 

1 (A) 0.165 1.149 -1.972 2.122 

2 -0.371 0.993 -2.000 1.884 

3 0.174 1.008 -2.506 2.042 

4 -0.408 1.083 -2.097 1.999 

5 -0.124 0.805 -1.839 1.650 

6 -0.130 0.906 -2.412 1.561 

7 -0.031 1.010 -2.191 2.426 

8 -0.083 1.079 -1.825 2.130 

9 (B) -0.139 0.687 -1.852 1.160 

10 -0.165 1.188 -3.139 2.025 

According to the Central Limit Theorem, the mean of the simulation means (x) 

should approximate to the true mean (p.) as all simulations are samples from the true 

population, individual observations are independent and are drawn from a parent 

population which is normal. The standard deviation of the sample means sx is: 

sx=o/ (n) 0 • 5 ---- (3) 

where n = 31. In January: 

sx=3. 31/ (31) 0 · 5 = 0. 59 ---- (4) 

One method of determining the expected annual temperature accumulation would 

involve calculating accumulated temperatures in as many simulations as practical and 

taking the mean result. Alternatively, knowledge of normal distributions can be used 
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to predict this accumulation analytically. 

16.4 An Analytical Approach to Improve Estimates of Accumulated Temperatures 

To calculate the probability that a single daily temperature will rise above the 

threshold (6°C), the threshold temperature must be converted to a z-score, where: 

z=(x-~)/a ----(5) 

For January sea-level mean daily temperatures, p. is 4.04 oc and a is 3.31 °C. 

Thus: 

z=(6-4.04)/3.31 0.592 ----(6) 

The probability of 6°C being exceeded on any one day is therefore 0.277 (from 

tables of the standard normal random variable). 8.59 growing days are therefore 

expected in a month of 31 days. Figure 16.3 shows an imaginary normal distribution 

with mean p. and standard deviation a. The vertical line represents the z-score 

corresponding to a temperature of 6°C (the threshold). The shaded area to the right of 

the line represents the probability of 6°C being exceeded. Table 16.4 shows growth 

probabilities in all months, calculated in this way. 
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Table 16.4: Probability of a mean daily temperature above 6°C at sea-level, assuming 
normality. 

Month p. u z(6) p(>z) np 

Jan 4.04 3.31 0.592 0.277 8.59 

Feb 4.19 3.28 0.552 0.291 8.12 

Mar 6.03 2.79 -0.011 0.504 15.62 

Apr 7.89 2.88 -0.656 0.744 22.32 

May 11.28 2.41 -2.191 0.986 30.57 

Jun 13.54 2.77 -2.722 0.997 29.91 

Jly 15.70 2.23 -4.350 1.000 31.00 

Aug 15.10 2.48 -3.669 1.000 31.00 

Sep 12.89 2.51 -2.745 0.997 29.91 

Oct 10.61 2.57 -1.794 0.964 29.85 

Nov 6.16 2.86 -0.056 0.522 15.66 

Dec 5.67 3.26 0.101 0.460 14.26 

The annual total growing days simulated at sea-level is 266.8. This compares 

with 130.8 days at 800 m. According to hazard theory (Thorn 1954, Pitman 1993) the 

average expectation of temperature, given that temperatures are above the threshold, 

is: 

E (xJx~z) = [ 1/ {f21t) ] xe (-z
2

/
2 l I prob (x~z) ---- (7) 

This assumes the distribution to be standard normal, i.e. x = N (0, 1). 

Otherwise, the result (derived by inserting a value for z) is the z-score of the average 

expected temperature. This is multiplied by a and added to J.l. to provide an estimate of 

the mean excess temperature: 
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T ex = (Ex a ) + IJ. ---- ( 8 ) 

By definition, Tex is greater than 6°C. As p. increases, Tex tends towards the 

mean of the distribution (p.) since z becomes increasingly negative and more and more 

observations rise above the threshold. If Tex is known the expected degree day 

accumulation is: 

T =n p(T -6) ----(9) ace m ex 

where nm is the number of days in the month and p the probability that x > 6°C. The 

computer program used to generate T ace is listed in Appendix 7. 

Table 16.5 gives monthly results at sea-level and 800 m. 

Table 16.5: Tex and Tacc for mean temperature scenarios. 

Month Tex oc Tacc doC Tex oC Tacc doC 
sea-level sea-level 800 mOD 800 mOD 

Jan 8.04 17.53 6.87 0.12 

Feb 8.06 16.74 7.05 0.24 

Mar 8.24 34.97 6.75 0.09 

Apr 9.13 69.99 7.61 4.64 

May 11.37 164.05 8.44 35.07 

Jun 13.57 226.28 9.13 68.02 

Jly 15.70 300.70 10.76 136.68 

Aug 14.68 269.08 9.55 99.09 

Sep 12.91 206.77 8.43 49.63 

Oct 10.82 144.07 7.97 24.80 

Nov 8.34 36.68 7.13 1.41 

Dec 8.48 35.41 6.78 0.24 
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In summer Tex approaches p. at 800 m. Tacc at sea-level ranges from over 300 

d°C in July to only 16.74 d°C in February. At 800 m Tacc is negligible between 

November and April. March yields a disappointing Tacc value due to a low u (only 

2. 79°C) and steep lapse rate. Annual total accumulated temperatures reach 1535.28 d°C 

at sea-level but only 420 d°C at 800 m. 

The above figures are better than those in Chapter 13 since they are based on 

daily (as opposed to monthly) temperature data. Variability of temperature within a 

month has been taken into account and results are sensitive to u. 

16.5 Individual Airflow Scenarios 

Figure 16.4 a shows predicted mean excess temperatures above 6°C, Tm for 

all airflows in each month. Every airflow within a particular month is assumed to show 

a standard deviation of daily temperatures equal to that listed in Table 16.4. As p. 

increases, Tex tends towards the simulated mean (p.). The dependence of Tex on u is 

shown in Figure 16.4 b which plots Tex against z. The graph exhibits banding according 

to month (represented by number), all airflows in a particular month having similar a. 

Changing a alters the curve between z and Tex- Given a negative z-score, T.x is lower 

if a is smaller. The opposite is true when z is positive. 

Figure 16.5 presents sea-level results for all airflows. a is determined by month 

alone, e.g. all March airflows have a standard deviation of 2. 79°C. Figure 16.5 a 

shows p. (numbers represent wind direction) and a for all scenarios. Figure 16.5 b 

shows simulated T.cc values. These are nearly always greater than zero, even in winter, 

most airflows showing a small probability of a growing day. 

Table 16.6 shows results for sea-level and 800 m accumulated over the year for 

each airflow type (similar to the uni-directional wind scenarios in Chapter 13). Sea-level 

Tacc varies between 1191 d°C for northerly flow and 1818.72 doC for southerly flow, 

a 152.7% variation. 
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F1gure 15.5. S1mulated Parameters for Mean Oail y Temperature Simulations 
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Table 16.6: Simulated Tacc at sea-level and 800 m for uni-directional wind scenarios 
(Tacc is an estimate of GJ. 

Wind Tacc doC Tacc doC 800m/sea-I Difference 
sea-level 800 mOD Ratio 

Calm 1468.68 598.32 0.407 870.36 

N 1191.00 295.92 0.248 895.08 

NE 1355.40 412.44 0.304 942.96 

E 1479.00 418.92 0.283 1060.08 

SE 1601.16 738.60 0.461 862.56 

s 1818.72 580.92 0.319 1237.80 

sw 1788.96 450.48 0.252 1338.48 

w 1618.08 353.28 0.218 1264.80 

NW 1342.92 301.56 0.225 1041.36 

Mean 1535.28 420.00 0.274 1115.28 

At 800 m Tacc is much lower, ranging from 738.6 d°C for south-easterly flow 

to 295.92 d°C for northerly flow (i.e. by 249.6%). The absolute difference between 

airflows is 442.68 d°C, less than the 627.72 doc contrast at sea-level. At high altitude 

the absolute difference in growing season strength between airflows decreases but the 

relative (percentage) variation is much greater. Calculating Tacc at 800 m as a 

percentage of that at sea-level produces similar results to Chapter 13, values ranging 

from 46.1% for continental south-easterly flow to 21.8% for westerly flow. The 

contrast in the rate of altitudinal decline in "growth potential" between continental and 

maritime airflows is marked. 

16.6 The Influence of Temperature Variability (u): A Sensitivity Analysis 

The above results are affected by the selection of a. It is simplistic to assume 

that the variability of temperature within any one airflow is the same as that within the 

month as a whole and errors in a are likely. A sensitivity analysis of the influence of 

a on Tacc was undertaken to assess the importance of such errors. 
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In any month some airflows will be inherently more variable than others. For 

example, south-westerly flows may be extremely variable because of the alternating 

influences of tropical maritime and returning polar maritime air-masses. u was derived 

for all airflows at Durham and Great Dun Fell in each season from the data. Results, 

to the nearest 0.25°C, are listed in Tables 16.7 a and b. 

South-easterly flow in spring at Great Dun Fell is highly variable, temperatures 

having a standard deviation of 4.75°C. This falls to 4.50°C in summer. In winter 

westerly flows are associated with a wider temperature variation than easterly ones, 

possibly due to the contrast between polar and tropical maritime air. Winter is the most 

variable season at Great Dun Fell and spring at Durham. 

Table 16.7 a): Actual standard deviations of mean daily temperatures at Durham (°C), 
(1985-1990). 

Airflow Spring Summer Autumn Winter 

Calm 2.50 2.75 2.75 2.75 

N 2.00 2.00 1.50 1.75 

NE 2.00 2.25 2.00 1.75 

E 1.75 1.50 1.75 1.75 

SE 2.25 3.50 1.00 2.50 

s 3.00 2.75 2.50 3.00 

sw 2.50 2.25 2.50 3.50 

w 2.25 1.75 2.25 2.75 

NW 2.50 2.50 2.25 3.00 

Mean 2.75 2.50 2.50 3.25 
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Table 16.7 b): Actual standard deviations of mean daily temperatures at Great Dun Fell 
(°C), (1985-1990). 

Airflow Spring Summer Autumn Winter 

Calm 3.25 2.25 2.50 3.25 

N 2.50 2.50 1.75 1.25 

NE 2.50 2.50 2.50 1.25 

E 3.25 2.75 2.00 1.50 

SE 4.75 4.50 1.00 3.50 

s 3.50 3.00 2.25 2.50 

sw 2.75 2.25 2.50 2.50 

w 2.25 2.25 2.50 2.25 

NW 2.75 2.00 2.50 1.75 

Mean 3.00 2.75 2.75 2.75 

Figure 16.6 plots sea-level Tacc using the actual recorded standard deviations for 

each airflow at Durham, against Tacc derived using monthly estimates of u (Table 16.1). 

There is little difference in the values, especially in summer. In winter differences arise 

when the mean daily temperature is close to 6°C. A mean temperature near the 

threshold increases the sensitivity of Tacc to u. In Figure 16.7 a, which shows the 

number of growing days at sea-level for all airflows using the two estimates of u, the 

greatest change is from 28.97 to 22.1 growing days for south-easterly flow in 

November. A similar graph for 800 m (Figure 16.7 b) illustrates a marked change in 

growing days for south-easterly flow in September and October. 

A formal estimate of the sensitivity of Tacc to changes in u is obtained by 

dividing the change in Tacc by the change in u: 

sensitivity (s) =11Taccl11a ---- (10) 

Sensitivity ratios (s) were derived for sea-level and 800 m. Mean values were 
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Figure 16.6. Accumulated Temperatures, Tacc, Simulated for Sea-level 
Using Two Different Standard Deviation Estimates 
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4.92 d°CI°C at sea-level rising to 5.40 d°C/°C at 800 m, suggesting that high altitude 

accumulated temperatures are more sensitive to change in climatic variability. 

Maximum sensitivities are 12.29 d°C/°C at sea-level for south-westerlies in December 

and 26.82 d°C/°C at 800 m for southerlies in April. At sea-level (Figure 16.8 a) in 

summer ~Tacc is negligible. An increase in variability would result in similar 

accumulated temperatures. In spring and autumn ~Tacc is linearly related to ~a. At 800 

m (Figure 16.8 b) a similar relationship holds although in winter there is little variation 

in Tacc· Presumably this is because mean temperatures at 800 m fall below the growth 

threshold. 

Figure 16.8 c plots sensitivity at sea-level against that at 800 m for each airflow 

in each month. Numbers represent month. 

Table 16.8: Monthly mean values of s (d°CfOC), the sensitivity of Tacc to changes in 
u. 

Month Lowlands (0 m) Uplands (800 m) 

January 7.01 0.41 

February 6.72 0.54 

March 10.61 0.62 

April 9.33 5.45 

May 1.24 11.47 

June 0.25 9.46 

July 0.00 3.31 

August 0.03 5.75 

September 0.35 10.20 

October 2.35 10.95 

November 10.32 2.17 

December 10.87 1.18 

Both sensitivity ratios are positive, showing that increased variability in surface 

temperature always leads to increased accumulated temperatures. This is not obvious 
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from consideration of temperature distributions. More variable temperatures lead to 

wider extremes and in summer the warmer days outweigh the cooler days which would 

also arise. In winter, some of the warmer days rise above 6°C. Higher accumulated 

temperatures occur at both sea-level and 800 m under increased variability. 

January sensitivity of Tacc to a is higher in the lowlands (mean monthly values 

of s are given in Table 16.8 and are shown in Figure 16.9) reaching 7.01 d°C/°C. 

Upland sensitivity is low because 6°C is well above temperatures experienced. By 

March, sensitivity in the lowlands has peaked at 10.61 d°C/°C, mean daily 

temperatures being close to 6°C. Individual airflows show ratios as high as 12 d°C/°C, 

this being a definite upper limit. Upland sensitivity in March is only 0.62 d°C/°C, but 

rises in April as conditions become warmer. By Mays reaches 11.47 d°C/°C at 800 

m although sea-level sensitivity has fallen,. The most sensitive month is March at sea

level, April at intermediate altitudes, and May in the uplands. 

Throughout the summer upland sensitivity remains high, only falling to 3.31 

d°C/°C in July. By Septembers has risen again to 10.20 d°C/°C and 10.95 d°C/°C 

is recorded in October. In the lowlands the autumn peak occurs in November and 

December. The most sensitive upland periods occur later in spring and earlier in 

autumn. Any increase in temperature variability associated with climate change 

(Houghton et al. 1990) will have a greater effect on growing season strength in upland 

areas because sensitivity is greater at 800 m from May to October. 

Mean sensitivities for individual airflow types at sea-level and 800 m are shown 

in Table 16.9 overleaf. 

Northerly flows are associated with great sensitivity in the uplands. Similar 

trends are seen for north-easterly and easterly flows. Temperature variation within such 

polar and arctic air-masses is therefore critically important in the uplands and in a 

climate dominated by a blocked (meridional) circulation, growing potential in the 

uplands would be extremely sensitive to changes in temperature variability. Under 

continental air-mass influences from the south-east, the sensitivity is less. A larger 
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annual swing in mean temperature means that variability within this airflow is less 

important. Sensitivity at 800 m peaks at 7.09 d°C/°C for southerly flows. The only two 

airflows for which sensitivity is higher at sea-level are westerlies and north-westerlies, 

because polar maritime air often produces temperatures near 6°C in winter at sea-level. 

Table 16.9: Mean values of s (d°C/°C) at sea-level and 800 m for each airflow. 

Airflow Lowlands (0 m) Uplands (800 m) 

Calm 5.01 4.23 

N 4.44 6.87 

NE 4.20 5.90 

E 4.22 5.72 

SE 3.82 4.03 

s 5.22 7.09 

sw 5.33 5.72 

w 5.73 5.48 

NW 5.38 4.66 

Mean 5.87 4.77 

16.7 Conclusions 

The simulation of accumulated temperatures using a time series of daily mean 

temperatures derived from a specified normal distribution allows a more accurate 

estimate of growth potential. This accounts for inter-diurnal variability in air 

temperatures. Parameters such as the number of frosts or growing days, which formerly 

required a logistic function to relate their probability to mean daily temperature 

(Chapter 14), can be simulated directly. 

Annual accumulated temperatures can be calculated given a mean and standard 

deviation for the daily temperature series as long as the distribution is normal. In 

Britain this assumption usually holds true. Slight skewness in the distribution (positive 
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in summer and negative in winter) could occur due to relatively infrequent spells of hot 

or cold weather. For a particular airflow, however, temperatures are likely to be 

normally distributed. Another assumption, which is less valid, is that successive daily 

temperatures are mutually independent. Cold and warm spells tend to occur (Hamilton 

1987), successive days recording above or below normal temperatures. The probability 

distribution of temperature on day n depends in part on the temperature recorded on the 

previous day (Jolliffe 1990). Useful results were obtained using this assumption, despite 

possible inaccuracies. 

The growth estimates produced (Tacc) estimate Gd, the sum of daily temperature 

excesses above 6°C, and not GP or Gy, as in Chapter 13. Results for uni-directional 

wind scenarios confirm previous findings, showing that the circulation pattern is 

important in controlling the altitudinal gradient in growth potential. In the uplands the 

percentage variation in accumulated temperatures between airflows is greater and the 

environment is more sensitive to synoptic changes. Continental air from the south-east 

and calm anticyclonic conditions benefit the uplands through increased stability, 

decreased lapse rates and higher temperatures. Maritime air has the opposite effect, 

reducing Tacc at 800 m to around 20% of that at sea-level. 

Regional predictions concerning possible benefits of global warming in upland 

areas depend therefore on the relative influences of continental and maritime airflows. 

Effects shown in this chapter will be magnified if airflows themselves change character, 

in terms of either mean temperature or variability. Many GCMs forecast changes in 

temperature variability as well as mean temperature increases (Houghton et al. 1990), 

and there is evidence that absolute temperatures and temperature variability are related 

in many climates (Rind 1991). Changes in variability could be at least as influential as 

changes in mean temperatures, especially when temperatures are close to a critical 

threshold. 
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THE SIMULATION OF CLIMATIC VARIABILITY TO IMPROVE 
FROST ACCUMULATION ESTIMATES 

17.1 Introduction 

Simulation of climatic variability using normally-distributed random data will 

be used to investigate frost parameters in this chapter. A logistic function was used in 

Chapter 14 to relate frost occurrence with mean daily temperature. The relationship was 

site-dependent and of variable strength, R2 varying from 0.39 at Houghall to 0.8 at 

Great Dun Fell. An alternative method involves assuming that consecutive daily minima 

are normally distributed and independent of one another. Once the standard deviation 

(a) of daily minima is known, this is combined with the mean to create a time series 

of daily minima. This is similar to the procedure employing daily mean temperatures 

(Chapter 16). 

Values of a in the original data were examined and it was assumed that 

variability would remain constant in a future climate, despite changes in mean minima. 

Recorded values of a were used as the simulated standard deviation, as in Chapter 16. 

17.2 Variability of Daily Minimum Temperatures (u) 

The standard deviation of daily minimum temperatures within each month was 

calculated: a ranged from 4.51 oc at Carlisle in December to 1.89°C at Sunderland in 

July. The extreme values correspond with those for mean daily temperatures. Since 

mean temperatures depend in part on minima, this is not surprising. Relationships 

between a, altitude and exposure (on three spatial scales) were examined. In all months 

(except from April to June) there is a relationship with one parameter, although this is 

sometimes weak (Table 17.1). Micro-exposure (on a scale of 250 metres or less) is 

most influential in five months, whereas altitude is influential in July, November and 

December, and local exposure (on a scale of 1 km) in September. The total 

(macroscale) exposure was never the most important site factor. 
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Table 17.1: Relationship of standard deviation of daily minima ( u) ( 0 C) with station 
altitude (metres above sea-level) and exposure: a = a (alt or exp) + b. 

Month Mean a b indep r u at u at 
u GDF Dur 

Jan 3.53 0.00248 3.59 micro 0.497 3.53 3.53 

Feb 3.78 0.00201 3.83 micro 0.432 3.78 3.78 

Mar 3.27 0.00177 3.31 micro 0.555 3.27 3.27 

Apr 3.01 - - texp 0.125 3.01 3.01 

May 2.65 - - alt 0.194 2.65 2.65 

Jun 2.85 - - local 0.183 2.85 2.85 

Jly 2.36 0.00057 2.27 alt 0.432 2.75 2.33 

Aug 2.63 0.00139 2.66 micro 0.429 2.63 2.63 

Sep 3.20 0.00065 3.19 local 0.488 3.20 3.20 

Oct 3.22 0.00214 3.27 micro 0.497 3.22 3.22 

Nov 3.36 -0.00131 3.58 alt -0.516 2.47 3.45 

Dec 3.55 -0.00139 3.78 alt -0.594 2.60 3.64 

The final two columns show a extrapolated to the altitudes of Great Dun Fell 

(847 m) and Durham (102 m). When altitude was not the controlling factor the mean 

standard deviation was assumed to be representative of all sites. Figures 17.1 a), b) and 

c) show the strongest relationships. Stations represented by "1" were not included to 

calculate the regression line, being based on less than six years of data. 

In March (Figure 17.1 a) a increases with micro-exposure, i.e. at sheltered sites 

temperature variability increases due to frequent air stagnation. High Close shows the 

lowest variability, a being only 2.59°C. At the other extreme, Kielder (prone to low 

minima and frost hollow effects) shows a standard deviation of 3.72°C. 

In September (Figure 17.1 b) there is a weak relationship between a and local 

exposure, sheltered locations such as Keswick and Kielder showing great variability. 

Appleby and Kielder have standard deviations of around 4.00°C, whereas Great Dun 

278 



u 

Ol 
QJ 

D 
I 
c 
0 
rl 

-'-' 
ro 
·rl 

> 
QJ 

0 

D 
L 
m 
D 
c 
m 
..w 

U1 

Figure 17.1. Relationships between the Standard Deviation of M1nimum 
Daily Temperatures and Environmental Factors 

a. Standard Deviation v Micro-exposure in March b. Standard Deviation v Local Exposure in September 

4.00 
1985-1990 ior 26 Stations in N.Eng!and 4.00 

!985-1990 for 26 Stations in N.EngJano 

0 

3.50 0 0~ 
~ 

0
0 I 

3.50 l dl 

0 

0 
/ 

0 0 

3.00 3.00 

t represents unrelii!!Ole stat 10n: AOJ r2:0.273 

. 2.50 
I reoruents unreiJeDte station. AOJ r]:0.200 2.50 

-400 -200 0 200 -1000 -500 0 sao 1000. 

MJcro Exposure-Positive Value is Sheltered Local Exposure-PosJtJve Value JS Sheltered 

c. Standard Deviation v Altitude 1n Decemoer 

5.00 
1985-1990 tor 26 Stations in N.EnglaM 

4.00 

3.00 

1 repr-est'nts lJnreliaDh! stetlon AOJ r2:~:0.320 

2.00 

0.0 200.0 400.0 600.0 800.0 

Altitude-Metres above Sea-level 



Fell (a very exposed summit site) has a value of 2.50°C. Newcastle and Sunderland 

record low variability in minima because of the moderating influence of the North Sea. 

The strongest relationship of a with site factors in any month is the inverse one 

with altitude in December (Figure 17.1 c). Minima are strongly influenced by 

temperature inversions, especially in December when nights are long. In lowland areas 

minima vary considerably between nights with and without surface inversions. Above 

the inversion level temperatures are less variable, being independent of its formation. 

Upland areas are frequently above the inversion level in mid-winter so a decreases with 

altitude. 

Generally, inter-diurnal variation in minima is greatest m winter when 

temperature inversions are common. a averages 2.36°C in July but rises to 3.78°C in 

February. In most months a increases with increasing exposure values. The relationship 

with altitude is negative between August and March. However, there is a weak 

altitudinal increase in a between April and July. The absence of a strong relationship 

suggests that it is an altitudinal increase in the variability of daily maxima which 

underlies the strong positive summer correlations between altitude and a of mean daily 

temperature. 

17.3 Simulation of Daily Time Series 

Using the same ten random number simulations in Figure 16.2, daily time series 

of minimum temperatures were created for sea-level using the mean (J.J.) predicted for 

the relevant scenario and the standard deviation (a) from Table 17 .1. In each run the 

predicted number of frosts (minima below 0°C) is shown in Table 17.2. 

Corrections are required in months of less than 31 days. With these necessary 

corrections, annual frost frequencies vary from 29.1 days (run 3) to 74.9 days (run 4). 

The mean annual number of frosts simulated is 49.3. No frosts occur in June, July and 

August and only one frost occurs in both May and September (run 10). The largest 

number of frosts simulated within a single month is 16 in January (run 4). 
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Table 17.2: The number of frosts at sea-level simulated in ten time-series. 

Number of Frosts Simulated per Month (Minima < 0 deg C) 

Run J F M A M J J A s 0 N D T 

1 12 13 6 4 0 0 0 0 0 0 5 6 46 

2 14 14 11 7 0 0 0 0 0 0 9 11 66 

3 7 7 5 2 0 0 0 0 0 1 3 5 30 

4 16 16 13 7 0 0 0 0 0 0 12 13 77 

5 10 12 7 2 0 0 0 0 0 0 5 7 43 

6 12 13 8 3 0 0 0 0 0 1 5 7 49 

7 .8 9 6 4 0 0 0 0 0 0 6 6 39 

8 14 14 10 4 0 0 0 0 0 0 9 10 61 

9 12 13 4 2 0 0 0 0 0 0 3 4 38 

10 13 14 8 6 1 0 0 0 1 1 8 8 60 

Table 17.3 shows the first simulation in more detail. 

Table 17.3: Frost occurrence and severity in run 1. 

Month X (°C) S (°C) p. CC) q (oC) n SV (°C) d°C 

Jan 2.08 4.06 1.50 3.53 12 -5.46 25.56 

Feb 1.90 4.34 1.28 3.78 11.7 -6.17 31.59 

Mar 3.11 3.76 2.57 3.27 6 -3.88 13.62 

Apr 4.57 3.46 4.07 3.01 4 -1.87 4.56 

May 7.31 3.05 6.87 2.65 0 - -

Jun 9.64 3.27 9.17 2.85 0 - -

Jly 11.88 2.61 11.51 2.27 0 - -

Aug 11.69 3.02 11.26 2.63 0 - -

Sep 9.41 3.68 8.88 3.20 0 - -

Oct 7.89 3.70 7.36 3.22 0 - -

Nov 3.81 4.11 3.22 3.58 4.8 -3.84 12.50 

Dec 3.72 4.34 3.10 3.78 6 -4.35 14.94 
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The sample mean x is greater than p. and the sample deviation s is greater than 

u. sv indicates the severest frost simulated (-6.17°C in February). The final column 

shows the 'frost degree days' or accumulation of daily minimum temperatures below 

freezing. This has been used as an index of winter severity as by Assel (1980) and 

gives an idea of likely frost damage. 

The annual frost accumulation amounts to -99.16 d°C. The expected 

accumulation could be calculated by repeating the process as many times as possible 

and taking the mean accumulation. This will approach the true accumulation, assuming 

the minima to be normally distributed (Central Limit Theorem). 

17.4 An Analytical Approach to Improve Frost Accumulation Estimates 

A quicker method to calculate the expected frost frequency and accumulation 

involves using standard normal distributions (Table 17.4). 

Table 17.4: Probability of a minimum daily temperature less than ooc in each month 
at sea-level, assuming normality. 

Month n p. (oC) U (°C) z(O) p(<z) np 

Jan 31 1.50 3.53 -0.425 0.336 10.41 

Feb 28 1.28 3.78 -0.339 0.367 10.28 

Mar 31 2.57 3.27 -0.786 0.216 6.71 

Apr 30 4.07 3.01 -1.352 0.088 2.65 

May 31 6.87 2.65 -2.592 0.005 0.15 

Jun 30 9.17 2.85 -3.218 0.001 0.02 

Jly 31 11.51 2.27 -5.070 0.000 0.00 

Aug 31 11.26 2.63 -4.281 0.000 0.00 

Sep 30 8.88 3.20 -2.775 0.003 0.08 

Oct 31 7.36 3.22 -2.286 0.011 0.35 

Nov 30 3.22 3.58 -0.899 0.185 5.54 

Dec 31 3.10 3.78 -0.820 0.206 6.38 
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The method is similar to that used in the previous chapter to calculate expected 

growth accumulation (see section 16.4). Again the critical frost temperature (0°C) is 

converted into a z-score. z will be negative since all predicted mean minima are greater 

than 0°C. The probability of frost at sea-level in January is 33.6% (using tables of the 

standard normal random variable). This is converted to the expected monthly frost 

frequency by multiplying by n, the number of days in the month. The mean annual 

number of frosts predicted for sea-level is 42.6 by this method. 

Fex' the mean frost temperature, will be below ooc and frost accumulation Face 

is negative. Monthly results are shown in Table 17.5 for sea-level and 800 m. The 

mean annual frost accumulation at sea-level is -92.16 d°C. Most occurs between 

November and April and the summer months only contribute -0.59 d°C! 

Table 17.5: Fex and Face in each month (see also Table 17.4). 

Month Fex oC Face oC Fex oc Face oc 
sea-level sea-level 800 mOD 800 mOD 

Jan -2.34 -24.32 -4.42 -113.49 

Feb -2.59 -26.68 -4.84 -113.57 

Mar -1.87 -12.52 -4.04 -102.91 

Apr -1.39 -3.69 -2.85 -55.11 

May -0.83 -0.12 -1.50 -9.70 

Jun -0.77 -0.01 -1.26 -2.64 

Jly -0.42 -0.00 -0.88 -0.15 

Aug -0.56 -0.00 -0.87 -0.22 

Sep -0.96 -0.08 -1.50 -4.20 

Oct -1.10 -0.38 -1.75 -9.72 

Nov -1.95 -10.82 -2.31 -44.01 

Dec -2.13 -13.58 -2.73 -60.73 

Fex is always negative although during the summer it approaches 0°C. It never 
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approaches the mean minimum temperature at sea-level because the probability of frost 

never reaches 1. At 800 m, however, Fex approaches the mean minimum in winter as 

frost probabilities are over 0.95. Face at sea-level reaches -26.68 d°C in February but 

this is negligible compared with Tacc in Chapter 16. In contrast, at 800 m the winter 

frost accumulation Face is larger than summer growth accumulation Tacc! From January 

to March -329.97 d°C of frost compare with 303.79 doc of growth between June and 

August. Equivalent figures at sea-level are -63.52 (Face) and 796.06 (Tacc). The 

simulated high and low altitude climates could not be more contrasting in terms of the 

relative magnitudes of winter frost and summer growth. 

All results are sensitive to a. Using mean standard deviations in months when 

no relationship of a with altitude was found could lead to errors. Additionally, different 

airflows show different inter-diurnal variability and should also have different values 

of a. 

17.5 Annual Frost Accumulations Under Differing Airflow Influences 

As for the growth accumulation Tacc• predicted frost frequencies and frost 

accumulations were calculated for each airflow in each month, assuming a to be 

determined by month alone. Figures 17.2 a and 17.2 b show frost frequency at sea-level 

and 800 m respectively. The frequency varies rapidly over the year, especially at 800 

m. In winter, upland frost frequencies are high, ranging from 30.1 days for easterly 

flow to 23.59 days for southerly flow in January. Frequencies remain high until March 

or even April and then only fall slowly. Even in May, 13.06 frosts are expected with 

a north-westerly flow. July is the only frost-free month. Sea-level frequencies reach 

21.89 days for north-easterlies in January. Otherwise values are low, mostly below 1 

frost per month between May and October. Wind direction has a greater influence on 

winter frost frequencies at sea-level than at 800 m where air frosts occur anyway, due 

to the advection of the free air. Only in April and May is airflow direction critical at 

800 m. 

Table 17.6 lists annual frost frequencies and accumulations for each airflow at 
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sea-level and 800 m, assuming the airflow to dominate for the whole year (as in uni

directional wind scenarios). 

Table 17.6: Frost frequencies and accumulation Face (d 0 C) at sea-level and 800 m for 
uni-directional wind scenarios. 

Wind Frost n Frost n Face Face Ratio 
Sea-level 800 mOD Sea-l vi 800 mOD 800m/Sea 

Calm 75.36 153.72 213.46 565.92 2.65 

N 67.92 187.20 175.20 777.60 4.44 

NE 68.40 170.04 195.72 696.00 3.56 

E 59.76 175.32 164.88 802.68 4.87 

SE 63.60 163.56 183.00 828.72 4.53 

s 29.64 125.64 60.24 406.92 6.75 

sw 26.76 128.52 51.12 387.84 7.59 

w 29.28 145.80 56.28 459.12 8.16 

NW 63.24 186.60 ·155.88 692.04 4.44 

Mean 42.60 152.52 92.16 516.48 5.60 

At sea-level the annual frost frequency averages 75.36 under calm conditions. 

This is the highest figure out of all airflows because of the tendency towards low 

minima on calm "radiation" nights. Colder airflows such as northerly flow produce 

67.92 frosts per annum, while milder flows such as south-westerlies only produce 

26. 76, leading to a threefold variation in frequency. There is a large contrast between 

mild winds between west and south and the other airflows. At 800 m calm conditions 

do not produce the highest frequency. This is achieved by northerly flows (187.2) and 

then north-westerly flows (186.6), illustrating the severity of polar maritime air at this 

elevation. 

Frost accumulations (Face> at 800 m are not correlated with frequencies. 

Surprisingly, south-easterlies produce the severest frost accumulation (-828.72 d 0 C), 

despite shallow lapse rates. An invasion of continental air would therefore increase frost 
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risk in winter as well as increase summer growth accumulations (Chapters 13 and 16). 

Severest conditions are experienced between January and April, the latter month 

recording -140.88 d°C! Severe winter and spring frosts would combine with the 

improved growing season, producing uncertain environmental consequences. The 

smallest frost accumulations occur for airflows from between south and west, with 

annual totals around -400 d °C. At sea-level, all accumulations are relatively low, being 

highest for calm conditions (-213.48 d 0 C) and lowest for south-westerly flow (-51.12 

d °C). The frost risk would become negligible at sea-level under a progressive zonal 

circulation dominated by southerly and westerly flows, but would worsen to over -200 

doc under anticyclonic conditions. The sensitivity of results to a is similar to the 

previous chapter. 

17.6 Conclusions 

Under a continental south-easterly scenario the growth accumulation at 800 m 

would be high, at 738.6 d°C (46.1% of the sea-level value). However, frost 

accumulation would also be high (-828.72 d°C) and more than four times that at sea

level. The bulk of this occurs in winter but considerable accumulations occur in March 

and April. The more continental climate represented by the south-easterly scenario 

would include a severer frost regime as well as improved summer warmth because of 

increased diurnal and annual temperature ranges. With frosts on 163.56 days the 

growing season would be shortened but also strengthened. In contrast, an increase in 

mild oceanic weather types decreases frost occurrence but also lowers summer 

accumulated temperatures to between 580.92 doC (southerly) and 353.28 d°C 

(westerly). Incorporation of temperature variability has substantiated the results of 

Chapters 13 and 14, showing that daily variation is just as important as changes in 

mean conditions. 

The next chapter employs climatic output from recent GCMs to alter the mean 

temperatures of airflow types. Using the altered temperatures, new estimates of 

accumulated growth and frost are interpolated over the study area. Changes in climate 

are related to "potential" for crop growth. In all scenarios, 3 oc is used as an estimate 
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of the standard deviation of daily temperatures. Sensitivity analyses in Chapter 16 have 

shown that an error of 1 oc in estimating CJ leads to an error of 12 degree-days (d 0 C) 

per month at the most, at the most sensitive seasons. Possible errors from this source 

are small, compared with the accumulations involved. 
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THE USE OF GCM SCENARIO OUTPUT TO ILLUSTRATE 
EFFECTS OF FUTURE CLIMATE CHANGE ON 

ACCUMULATED TEMPERATURES AND FROST RISK 

18.1 Introduction 

There is much speculation about the possible effects of climatic change on land

use in the UK and Europe using recent GCM predictions (Hulme et a!. 1993b). The 

airflow scenarios developed in this thesis are now compared with such GCMs. Current 

estimates of future temperature change are converted into attendant changes in climatic 

potential (measured by accumulated temperatures, frost frequency and frost 

accumulation). 

Previous research has been concerned particularly with possible agricultural 

changes in marginal regions (Parry et a!. 1988) and the response of grain crops to 

warming (Nuttonson 1955, Nield eta!. 1979). Notable studies includean investigation 

into a northward shift in grain maize limits in the Northern Hemisphere (Parry et al. 

1990, Carteret al. 1991a) and a shift of sunflowers into southern Britain (Carteret al. 

1991 b). Shifts in natural species distributions will be complicated by mountains which 

restrict latitudinal movement by acting as physical barriers to migration, often 

remaining unsuitable for cultivation despite increased warmth. Mountain regions are 

useful for studying the responses of ecosystems to climate change since many "climatic 

zones" (representative of those over a wide latitudinal range) exist in a small area. 

Warming or cooling will cause these altitudinal zones to shift either up or down slope. 

The shifting of altitudinal belts has been used as evidence of past climatic change 

(Messerli & Winiger 1992). The Pennines are especially interesting because they lie 

close to the present northern limits of grain cultivation in western Europe. The lack of 

summer warmth causes much land to be marginal (Parry 1976) and effects of warming 

supported by time-series analysis (Manley 1974, Parker & Jones 1991, Parker et al. 

1992), and that predicted by GCMs, are likely to be considerable in northern England. 

Most recent climate models predict that warming will occur in Britain over the 

next half-century (Houghton eta!. 1992). However, many scenarios are not particularly 
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impact-orientated (Robinson & Finkelstein 1991). Accumulated temperatures are 

extremely useful as a measure of growing season strength and temperature thresholds 

are also important for assessment of climatic risks, e.g. frost probability. Such variables 

are rarely simulated directly as GCM output and must be calculated from temperature 

predictions. 

Theoretical altitudinal limits to cultivation in the northern Pennines vary 

considerably between uni-directional airflow scenarios (Chapter 13). There is therefore 

great sensitivity in response to between-type climate change. Within-type changes are 

also considered in some of the following scenarios (see Lamb 1972, Comrie 1992, 

Hulme et al. 1993a). 

18.2 The Construction of Future Climatic Change Scenarios 

Changes in "climate potential" for five scenarios will be compared: 

a) The control situation, as described by the regression models of Chapter 8 and 

associated with the altitudinal zonation described in Chapter 9. 

b) Warm and cold analogues. Temperatures experienced during an exceptionally warm 

year (1989) and a cold year (1986) are used to represent the variability inherent in the 

present climate. 

c) Uni-directional airflow scenarios, as introduced in Chapters 13 and 14. These 

simulate the cumulative annual effect of a sustained airflow from one direction, without 

any change in the quality of that airflow from that between 1985 and 1990. Airflow 

temperatures are defined by the appropriate regressions in Chapter 8. Such simulation 

of climate differences due to variation in airflows makes sense because changes in the 

circulation pattern have occurred in the past (Briffa et al. 1990, Mayes 1994) and are 

predicted for the future (Lumb 1993, Murray 1993). 

d) Arbitrary warming scenarios, whereby a constant temperature increase is applied 
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to the control climate. The three figures applied are + 1 °C, +2°C and +4°C. The 

biggest increase approaches that suggested by many GCMs. Arbitrary temperature 

increases have been applied to investigate effects of temperature change on European 

agriculture (Carter et al. 1991 a). 

e) Two GCM simulations; the UKHI (United Kingdom Meteorological Office High 

Resolution GCM Equilibrium Experiment) (Viner & Hulme 1992) and GISS (Goddard 

Institute for Space Studies) (Hansen et al. 1984) GCMs. Both are equilibrium climate 

models and simulate mean temperatures for a control (baseline) climate (1 * C02) and 

for a world in which the carbon dioxide content is twice present levels (2 * C02). 

UKHI is a high resolution experiment to study the equilibrium response of climate to 

C02 doubling (Viner & Hulme 1992), and is being developed by the Hadley Centre, 

part of the British Meteorological Office. Models of this type are widely quoted in 

climate impact studies (Mitchell et al. 1990, Carteret al. 1991b, Warrick & Barrow 

1991, Hulme et al. 1993b). 

Because simulated control climates (1 * C02) do not provide an accurate 

baseline for the Pennine region, the difference between the 2 * C02 and 1 * C02 

simulations is used to estimate temperature change to be applied to the baseline 

(control) climate, described here by ground station data. 

18.3 Definitions of Climatic Potential 

The same procedure for calculation of "climate potential" (accumulated 

temperatures and frost parameters) is followed in all scenarios. First, the mean 

temperature (for growth parameters) or mean minimum temperature (for frost 

parameters) is calculated for each month for each cell of a digital terrain model 

(Chapter 4), covering the whole of northern England at a resolution of 5 by 5 

kilometres. Mean monthly temperatures are calculated directly for the control and 

airflow scenarios from the appropriate regression equations in Chapter 8. Continental 

arid maritime airflow scenarios are created using appropriate south-easterly or westerly 

airflow regressions in each month respectively. 
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Mean monthly temperatures are then interpolated to all 800 grid points using the 

equations. Grid temperatures are converted into expected accumulated temperatures Tacc· 

Tacc can be calculated accurately if the mean and standard deviation of the expected 

mean monthly temperature is known (Chapter 16). Assuming a to be 3°C leads to the 

results discussed below. 

Twelve individual monthly Tacc values are summed, giving the annual total for 

each grid point. A map is then drawn of annual growth potential. A categorical variable 

L was created, based on annual Tacc values. 

Table 18.1: Categorisation of annual accumulated temperatures, Tacc· 

Land Potential Category (L) Tacc range of values(d°C) 

1 <500 

2 500-749 

3 750-999 

4 1000-1199 

5 1200-1399 

6 1400-1599 

7 1600-1799 

8 1800-1999 

9 2000-2499 

10 >2500 

Classes 1 to 3 are sub-marginal, accumulated temperatures being below the 

critical limit of 1000 d°C, assumed necessary for cultivation (Chapters 1 and 10). Class 

4 is marginal, because although Tacc is above the critical 1000 d°C, it is below 1200°C 

and may show deficiencies in colder years. Classes 5 and above are non-marginal. 
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18.4 Methods Involved in Individual Scenarios 

Before results are discussed, equations and methods used to construct individual 

scenarios are outlined. 

The south-easterly uni-directional wind scenario is chosen to represent the 

continental airflow scenario. A warmer summer and colder winter result. Mean 

lapse rates are shallower and the uplands benefit in relative terms. Conversely, 

the westerly scenario is chosen to represent the most maritime situation. Steeper 

lapse rates and a reduced seasonal swing in temperature result. 

1986 is taken to be the cold analogue. Mean monthly temperatures are calculated 

using the multiple regression equations appropriate to that year. The warm 

analogue is represented by the year 1989. The use of past conditions to represent 

variability is common (Lamb 1982, Webb & Wigley 1985, Barry 1990). 

The three arbitrary scenarios are self-explanatory, illustrating the response of 

the area to set increases in temperature. 

Monthly temperature corrections for the GISS 2 * C02 scenario are given by 

Houghton et al. (1992), calculated from the global sensitivity to doubling carbon 

dioxide and are listed below: 

Winter Spring Summer Autumn 

+4.5°C +3.5°C +3.5°C +3.75°C 

Warming is expected to be concentrated in winter (December-February). The 

mean increase is 3.81 °C. 

Temperature corrections for the UKHI 2 * C02 scenario are calculated by taking 

the arithmetic mean of the difference between control and perturbed simulation 

temperatures for two grid squares relevant to the study area, 49 and 63 in the 

291 



European window, (Viner & Hulme 1992) (Table 18.2). Grid square 49 covers 

the area north of the Tyne and square 63 most of the Pennine region and much 

of Central England. The dimensions of a grid square are 250 km by 250 km. 

Table 18.2: Corrections to mean temperatures (°C) in the UKHI 2 * C02 scenario. 

Grid JAN FEB MAR APR MAY JUN 
Square 

49 +7.82 +7.07 +5.89 +3.52 +3.93 +2.51 

63 +6.55 +6.53 +5.58 +3.30 +4.24 +2.93 

Mean +7.19 +6.80 +5.74 +3.41 +4.09 +2.72 

JLY AUG SEP OCT NOV DEC 

49 +2.17 +2.99 +3.15 +3.25 +3.62 +4.71 

63 +2.86 +3.45 +3.77 +3.39 +3.09 +4.45 

Mean +2.52 +3.22 +3.46 +3.32 +3.36 +4.58 

The 2 * C02 scenario is not fixed in time, depending on the rate at which 

carbon dioxide increases in the future. The global mean temperature rise for a 

doubling of C02 (the climate sensitivity) can be related to the spatial change in 

that particular climatic element to provide a local estimate of climate change. 

In order to convert such estimates to a prediction fixed in time the output can 

be linked with output from the STUGE model (Sea-Level and Temperature 

Under the Greenhouse Effect) (Viner & Hulme 1993). 

In both GCMs, predicted temperature increases are greater in winter than in 

summer, in line with other models (Schlesinger & Mitchell 1985). Accumulated 

temperature increases will not be as strong as they would be if warming were 

concentrated in summer. The annual temperature range is predicted to decrease 

and the climate may become more maritime. 

One of the major problems in simulating mesoscale climatic change from 

macroscale GCMs is that of downscaling predictions so that they are relevant to a local 
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area (Giorgi & Mearns 1991, Roback et al. 1993). It is important that regional scale 

climatic features are included within the scenarios. In the UKHI model there are only 

two grid squares relevant to the whole of the study area and the mean temperature 

change predicted for these squares is applied over the detailed baseline climate. This 

could be unrealistic as the amount of warming is not expected to be similar in all areas. 

18.5 The Control Climate 

The control situation (Figure 18.1) represents the present climate (Chapters 10-

12). Numbers represent L, the land potential category (Table 18.1). Out of 715 land 

pixels, with altitudes ranging from sea-level to 847 m, 553 (74.6 %) are class 4 or 

above and can be considered as cultivable land. 169 (22.8 %) of pixels are marginal 

(class 4) and 188 (25.37 %) of pixels are class 3 or below (sub-marginal). The sub

marginal land includes most of the high Pennines, Yorkshire Dales, Kielder Forest and 

Cumbrian Fells. Higher parts of the Vale of Eden, Tyne Gap and much of Kielder are 

classified as marginal. A large amount of land has accumulated temperatures too low 

for agricultural production, in part explaining the large areas of uncultivated moorland. 

18.6 Results for Climate Change Scenarios: Accumulated Temperatures 

Maps drawn for other scenarios (Figure 18.2) show surprising contrasts in the 

relative amounts of cultivable, sub-marginal and marginal land. Results are compared 

in Table 18.3. Figures are derived from 741 pixels, including values interpolated for 

the 26 climate stations. Station values are omitted on the maps. 

Column 1 lists the scenarios. This is followed by mean annual accumulated 

temperatures above 6°C (T"cJ, the maximum and minimum pixel accumulations and the 

ratio R between these two. The second half of the table lists percentages of land in sub

marginal (column 6), marginal (column 7), non-marginal (column 8) and cultivable 

categories (column 9). Cultivable land includes marginal but not sub-marginal land. The 

percentage of cultivable land which is marginal is given in the far right hand column. 

This figure gives an idea of the fragility of the agricultural resource base. Percentages 
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Figure 18 .1. Land Potential, as Measured by Accumulated Temperatures, 
Gd, in Northern England for the Control Climate 
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do not always add up to 100 due to rounding errors. 

Table 18.3: Scenario results based on 741 pixels. Tacc is measured in d°C. 

Scenario Mean Tacc Max Tacc Min Tatt Max/Min 

Control 1175.8 1589.6 387.0 4.11 

SE 1326.9 1713.1 711.0 2.41 

w 1198.0 1743.4 311.3 5.60 

1986 1052.1 1462.7 301.5 4.85 
(Cold) 

1989 1317.5 1759.6 495.2 3.55 
(Warm)· 

+1°C 1414.3 1867.9 519.7 3.59 

+2°C 1677.2 2168.7 675.8 3.21 

+4°C 2270.0 2824.8 1058.2 2.67 

GISS 2193.1 2750.2 984.3 2.79 

UKHI 2287.1 2871.3 970.4 2.96 

Table 18.3: continued: Figures below are percentages. 

L (1-3) L (4) L (> =5) L (> =4) L(4/> =4) 
sub-mgl marginal non-mgl cultivable 

25.4 22.8 51.8 74.6 30.6 

5.3 22.5 72.2 94.7 23.8 

28.1 . 17.7 54.3 71.9 24.6 

38.2 28.5 33.3 61.8 46.1 

14.2 19.3 66.5 85.8 22.5 

8.6 15.3 76.1 91.4 16.7 

2.0 5.8 92.2 98.0 5.9 

- 0.5 99.5 100.0 0.5 

0.1 0.5 99.3 99.9 0.5 

0.1 0.5 99.3 99.9 0.5 
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Most scenarios lead to an increase in the amount of cultivable land. Given a 

circulation dominated by continental south-easterlies, 94.7% of the land becomes 

cultivable, illustrating the relative benefit of such an airflow in the uplands. T.cc would 

increase to 711 d°C on the highest summit in the grid and to over 1700 d°C in lowland 

areas. The increase is greatest in the uplands due to the decrease in lapse rates. The 

ratio between the highest and lowest accumulations of 2.4 is the lowest among all 

scenarios. In contrast, a westerly regime decreases the amount of cultivable land, 

although the amount of marginal land (class 4) also decreases to 17.7%, illustrating the 

steepening of the altitudinal gradient in Tacc· This accompanies steep lapse rates in 

maritime airflow. The ratio between Tacc at sea-level and the highest summit rises to 

5.6. 

The cold analogue, not surprisingly, causes a decrease in cultivable land to 

around 60%. Mean Tacc is only 1052.1 d°C. In contrast, the warm analogue leads to 

85.8% of land being cultivable. These two cases illustrate the contrast between good 

and bad years. The risk is too great for widespread agricultural development in many 

areas, because of this inter-annual variation. Extreme inter-annual contrast will be even 

greater, the two analogues being taken from a six-year period. 

Changes accompanying arbitrary temperature increases are surprising. An 

increase of 1 oc would increase cultivable land to 91.36% of the total, with only 7% 

of this being marginal. Tacc exceeds 1800 d°C in the warmest areas. A 2°C increase has 

even more dramatic effects, confining sub-marginal land to 2% of northern England. 

This confirms Manley's suggestions (1942) concerning the rapid changes in upland 

environment which would be associated with small fluctuations in mean temperature. 

An increase of 4 oc would eradicate all sub-marginal land and allow cultivation up to 

the highest summits, assuming other climate factors (other than temperature) to be 

favourable. There would be enough warmth on the summit of Cross Fell to grow grain 

crops such as oats, which require an annual accumulated temperature sum of 1000 d°C 

(Parry 1975, 1981). 

Both 2 * C02 GCM scenarios, expected to apply to the year 2050, produce 
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similar results to the +4 oc increase in temperature. Virtually all sub-marginal and 

marginal land is eradicated with the exception of the highest areas above 800 m (0.5% 

of the land area is still marginal). The mean Tacc is over 2000 d°C in both cases, values 

approaching 3000 doc in the warmest areas. This is comparable with present day 

values in parts of central Europe. 

R represents the percentage decrease in growing season strength between sea

level and the highest summits. The contrast between the continental and maritime 

scenarios has already been mentioned. R in other scenarios falls between these two 

extremes. Because of higher accumulated temperatures in GCM scenarios R falls to 

between 2.5 and 3.0 in these cases. 

The above results cannot be turned into a prediction of land-use change (Rossell 

1992, Hulme et al. 1993b). They show a change in only one climatic parameter 

(accumulated temperatures), albeit one important for plant and crop growth. Attendant 

changes in frost occurrence are discussed in section 18.7. 

The change in accumulated temperatures can be measured by comparing climate 

potential categories (L). Table 18.4 shows the percentage of pixels that increased, 

decreased or stayed the same (in terms of L) for each scenario (compared with the 

control scenario). For the two GCMs and the +2°C and +4°C arbitrary scenarios all 

pixels increased, most by more than one category. Many increased by three or more 

categories, equivalent to at least a 600 d°C increase in Tacc· The mean increase is 

calculated by comparing the mean Tacc for the scenario with that for the control (1175.8 

d°C). Increases of 1000 doC are normal for the +4°C scenario and the two GCM 

simulations. 
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Table 18.4: Changes in L -the climate potential category, in each scenario. % up 
represents the percentage of pixels for which L increased. 

Scenario %up %down %same % upl % up2 % up3+ 

SE 71.4 - 28.6 70.2 1.2 -

w 20.9 8.1 71.0 20.9 - -

1986 - 57.1 42.9 - - -

1989 69.2 - 30.8 69.2 - -

+1°C 96.1 - 3.9 74.1 22.0 -

+2°C 100.0 - - 3.9 44.1 52.0 

+4°C 100.0 - - - - 100.0 

GISS 100.0 - - - 0.3 99.7 

UKHI 100.0 - - - 0.3 99.7 

Changes represented by the UKHI and GISS scenarios appear unrealistically 

large but they illustrate the extreme sensitivity of the climatic resource in this marginal 

area to warming. Many other factors (edaphic, topographic, economic, political etc.) 

will reduce the efficiency of the conversion of this increase in "climate potential" to 

land-use change. Changes in farming methods and, more importantly, active attempts 

at conservation of upland ecosystems are both likely to delay the spread of agricultural 

cultivation. Additionally, much land will remain unsuitable for cultivation in other 

ways, especially in areas with highly acidic soils and/or steep slopes. Changes in 

precipitation are also important since waterlogging is a problem in many areas. It is 

unlikely that warming will increase this problem, unless rainfall undergoes a similar 

increase to temperature, because of increased evapotranspiration (Warrick & Barrow 

1991). Wind exposure and lack of solar radiation are other climatic constraints which 

will also alter. Results on possible responses of such elements to C02-induced change 

are even more scarce than that on temperature (Houghton et al. 1990, 1992) but will 

be briefly discussed in Chapter 19. 
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18.7 The Frost Hazard 

Frost risk is expected to decrease in warming scenarios, especially since minima 

are predicted to increase at a faster rate than maxima (Cao et al. 1992, Karl 1993). 

However, changes in frost risk are not always positively correlated with those in 

accumulated temperatures, as in the continental scenario of Chapter 14. In this case 

annual accumulated temperatures increased but frost risk also increased. Calculations 

of annual frost frequency (in days) and annual frost accumulation were carried out for 

the control, continental and maritime airflow, GCM and + 1 oc scenarios. Regression 

models for minimum temperatures (Chapter 8), upon which the scenarios are based, are 

less satisfactory than those for mean temperatures because a linear relationship of 

minima with altitude ignores the effects of temperature inversions (Pielke & Mehring 

1977, Hennessy 1979) and topography (Manley 1943, Harding 1978). R2 was lower and 

results (Table 18.5) are therefore to be treated with caution. Face represents the frost 

accumulation (accumulated temperature deficit below 0°C). 

Table 18.5: Frost hazard based on 741 pixels. 

Scenario Mean Max Min Max/ Freq 
Face doC Face doC Face doC Min (days) 

Control -141.2 -560.9 -52.2 10.75 64.5 

SE -295.1 -890.2 -125.1 7.12 93.1 

w -96.1 -505.4 -28.1 17.99 48.7 

+1 oc -86.9 -411.9 -27.6 14.92 44.6 

UKHI -5.0 -58.4 -0.8 73.0 4.1 

Max Min Freq Freq Freq Freq 
Freq Freq <30(%) 30-60 60-90 >90 

162.5 31.2 - 54.0 31.9 14.2 

170.1 52.2 - 2.4 49.9 47.6 

157.3 19.2 21.6 51.6 20.4 6.5 

135.4 18.6 24.0 55.2 17.6 3.2 

35.7 0.8 99.7 0.3 - -

298 



The control situation is represented in Figures 18.3 (frost frequency F
0

) and 18.4 

(frost accumulation Face). As for accumulated temperatures, pixels were categorised 

according to their Face and Fo values (Table 18.6). 

Table 18.6: Categorisation of annual frost frequency, F0 , and accumulation, Faa· 

Frequency F
0 

range Accumulation Faa range 
Category (days) Category (d°C) 

1 0-14.9 1 <50 

2 15.0-29.9 2 50-99 

3 30.0-44.9 3 100-199 

4 45.0-59.9 4 200-299 

5 60.0-74.9 5 300-399 

6 75.0-89.9 6 400-499 

7 90.0-119.9 7 500-599 

8 120.0-149.9 8 600-799 

9 150.0-179.9 9 800-999 

Much of the highest land in the Pennines and on the Cum brian fells experiences 

more than 90 frosts per annum. The total rises above 150 in the worst areas. A 

frequency of 162.5 days is extrapolated for Great Dun Fell. Much of the lowlands show 

a mean frequency of less than 60 days (class 4 or below). Frost accumulations (Face) are 

shown in Figure 18.4. The -100 doC isotherm lies at approximate! y 100 metres above 

sea-level and accumulations rise to -500 d°C on Great Dun Fell (category 7). 

Maps of frost occurrence and accumulation for other scenarios are shown in 

Figures 18.5 and 18.6 respectively. Given a 1 oc increase the mean annual number of 

frosts decreases by approximately 20 and the average frost accumulation falls to 62% 

of the original value. Frost occurrence and severity are extremely sensitive to small 

temperature changes, frost being essentially an extreme event (Parry 1976, Wigley 

1985). 
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F1gure 18 .3. Annual Frost Occurrence for the Control Climate 
1985-1990 period Occurrence Extrapolated from M1n1ma 

200 -lu. 5 6 6 6 5 
6 5 4 6 5 5 6 6 5 5) 4 4 4 ~0 
5 4 4 

4 3 4 4 4 

180 ---1 .:l 
4 3 4 4 4 4 - l ~0 i(l~ S - 3 4 4 4 4 3 ~~ 0.1\f\.U'M 
3 3 4 4 4 4 
3 3 4 3 3 

150 ---1 3 3 3 4 4 3 
3 3 3 3 3 3 4 4 4 

60 QQ~ S r r ().1\IWVY\ QJ 1 33 3 

3 3 3 4 4 4 4 
"0 3 3 4 4 4 
::J 

1L10 3 3 4 4 4 1-J 4 
· rl 

4 4 4 3 .1-J 3 4 4 4 
m 3 3 4 4 4 4 4 4 3 
_j 

4 ® 4 4 4 4 3 3 3 

120 ---1 ~ 4 4 4 4 4 3 3 3 3 
3 3 3 3 3 3 4 

4 3 3 3 3 3 4 4 
3 3 3 3 3 4 4 4 

100 ---1 3 3 3 
3 34~ 3 3 3 4 4 5 5 

4 3 3 3 3 4 5 4 
4 4 4 3 3 4 3 3 3 3 3 4 4 

ao 1 .:l 'I .:l 3 4 3 3 4 3 4 3 3 3 3 4 (5 

I 
0 50 100 150 

Lo ng itude 

1=1 to 15 days, 2[16-30], 3[31-L15J 7[91-120J etc 



OJ 
D 
::J 

-+--' 
. r-1 

-+--' 
ru 
_j 

Figure 18 .4. Annual Frost Accumulation for the Control Climate 
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Figure 18.5. Annual Frost Occurrence in Northern England: Four Scenarios 
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Figure 18.6. Annual Frost Accumulation in Northern England: Four Scenarios 
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The continental (SE) and maritime (W) scenarios reveal startling differences. In 

. the continental case the mean annual frost frequency increases to 93.1 days (equivalent 

to over three months). However, the increase in the highest value to 170.1 days is less 

than the increase in the lowest value, suggesting that the most rapid increase in frost 

occurrence would be in agriculturally productive lowland areas. The ratio between 

summit and sea-level frost accumulations falls to 7.12, despite an accumulation of 

-890.2 doc on the highest summit. Only half of the land records an annual occurrence 

of less than 90 days. A continental scenario therefore increases frost risk and doubles 

the mean annual frost accumulation, despite simultaneously increasing accumulated 

temperatures in the growing season. Consequences for plant-life are unclear. In 

contrast, the maritime (W) scenario results in a mean annual frost accumulation of less 

than -100 d°C and a mean frequency of 48.7 days. Both figures are similar to the 

+ 1 oc scenario. In terms of frost risk, the maritime scenario would be beneficial, 

especially in the lowlands. 

R2 is higher in the westerly equations (Figure 8.18) and thus the maritime 

scenario is more reliable. The south-easterly equations are poor because of the tendency 

for temperature inversions, especially when conditions are anticyclonic. In summer, R2 

falls very low and there is little confidence in frost predictions at this time. Fortunately, 

summer frosts do not contribute much to the annual total (on average only 2.4% of 

frosts occur between May and October), so poor summer predictions have little 

influence on annual results. 

The UKHI 2 * C02 scenario is obtained by adding the following temperature 

corrections to mean minimum temperatures (Table 18.7). Corrections are the average 

of those over grid squares 49 and 63. 

Predicted warming is greater in winter, especially between January and March. 

Because of this, the predicted minima are lowest in November and April for the UKHI 

2 * C02 scenario. This is highly unrealistic as a "coreless" winter with mean minimum 

temperatures remaining fairly constant throughout five or six months is predicted. The 

only locations which experience such "coreless" winters are in polar latitudes where 
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there is a complete absence of insolation for part of the year. 

Table 18.7: Corrections to mean minima ( 0 C) in the UKHI 2 * C02 scenario. 

Grid JAN FEB MAR APR MAY JUN 
Square 

49 +8.36 +7.76 +6.31 +3.96 +4.18 +2.76 

63 +6.60 +6.22 +5.60 +3.23 +4.29 +3.06 

Mean +7.48 +6.99 +5.96 +3.60 +4.24 +2.91 

JLY AUG SEP OCT NOV DEC 

49 +2.97 +3.05 +3.46 +2.87 +3.48 +4.64 

63 +3.10 +3.39 +3.81 +3.39 +2.77 +4.15 

Mean +3.04 +3.22 +3.64 +3.13 +3.13 +4.40 

The frost risk in the UKHI 2 * C02 scenario becomes negligible in lowland 

areas, totals rising to 35.7 days per annum on the highest summits (such as Great Dun 

Fell). Mean frost frequency is 4.1 days per annum and the mean accumulation is only 

-5 d°C! Due to such low figures, 99.7% of pixels record a frequency of less than 30 

days and the ratio between the highest and lowest accumulation soars to 73. Frost 

becomes restricted to upland areas by 2050 and even in these areas there are sharp 

decreases. Freeze-thaw processes, which at present are a major geomorphological force 

in Britain, are likely to become less important as freezing temperatures become 

infrequent. Because warming is concentrated in mid-winter, the length of the frost-free 

period may remain relatively constant, meaning that sporadic spring and autumn frosts 

will still be a problem, perhaps even more so due to the largely frost-free winter. 

18.8 The Comparison of Frost with Accumulated Temperatures 

Monthly mean frost accumulation Face and growth accumulation Tacc for the 

control and UKHI scenarios are shown in Figure 18.7, allowing comparison of the two. 

From April to October Tacc is well above Face in both the control and the UKHI 

scenarios. In the UKHI scenario this is the case for the whole year. Monthly 
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Figure 18.7. Simulated Frost and Growth Accumulations for Control 
and UKHI 2 * C02 Scenarios: Monthly Mean Values over the Grid 
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accumulated temperatures remain above 100 d°C, even in winter, remarkably high 

compared with the control situation, and frost accumulations are negligible. Under the 

control climate Face exceeds Tacc from January to March and is similar in November and 

December. 

Figure 18.8 shows frost and growth accumulations for the five contrasting 

scenarios. Figures given are mean values over the digital terrain model. The control 

situation is again shown (on the top left hand graph) and UKHI on the bottom right. In 

the south-easterly scenario Face exceeds Tacc from December to April. There is a 

relatively short but warm summer with a sudden increase in Tacc in July and August. 

The late summer peak increases the annual growth accumulation. In contrast, the 

westerly scenario shows smoother seasonal transitions with moderate Tacc values in 

summer and values similar to Face throughout the winter. Face for the + 1 oc scenario is 

very similar to that under the westerly scenario although Tacc is much higher. 

18.9 Conclusions 

This chapter has applied the results of different climate scenarios to a study of 

change in "climate potential" in northern England. "Climate potential" is represented 

by accumulated temperatures above 6°C, frost occurrence and frost accumulation 

(below 0°C). Changes in all three parameters are considerable. If the scenarios are 

accurate, changes in land-use due to movement in altitudinal limits to cultivation 

upslope may result by 2050. This highlights the fragility of upland ecosystems, which 

would be "squeezed" onto less land. 

One of the most detailed and successful climatic impact assessments was the 

MINK study carried out for the Great Plains States of Missouri, Iowa, Nebraska and 

Kansas (Rosenberg 1993). Different studies concentrated on agriculture, forestry, water 

resources and the economy. The assumed spatial homogeneity in proposed climate 

change was largely valid because of the absence of any marked topography within the 

study area (this was the major reason for the choice of the area in the first place). In 

contrast, the effects of altitude and topography are shown to be considerable in this 
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Figure 18.8. Simulated Growth and Frost Accumulation for Five 
Scenarios: Monthly Mean Values over the Grid 
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study and will alter in a changed climate, changing the spatial temperature distribution. 

The effects of global warming on changes in free-air lapse rates and altitudinal 

temperature gradients calculated from ground-based stations (Schlesinger & Mitchell 

1985) have not been considered here, except implicitly in the contrasts between airflow 
' 

scenarios. A lapse rate change will alter the altitudinal gradient in growth potential and 

changes in the uplands may be more or less marked than in the lowlands. There is 

already tentative evidence that increased lapse rates associated with more progressive 

conditions (Lumb 1993) are limiting the benefits of recent warming in the Scottish 

mountains (McClatchey 1993). Lapse rates are now being calculated in GCMs, albeit 

tentatively, by comparing 850 mb temperatures with those at ground level in both 

control and 2 * C02 simulations. Data from the UHKI model could be considered in 

this way to investigate the possible lapse rate changes and their relationships with 

changing daily airflow patterns. At present the data required for such an investigation 

are unavailable due to practical restrictions concerning the GCMs themselves. Predicted 

changes in lapse rates within individual airflow types under conditions of increased 

carbon dioxide will, however, be an important area for future study as information 

becomes available. Such lapse rate changes will have profound effects on the altitudinal 

component of climate in the study area and so will be an important focus for future 

work. 
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PREDICTED CHANGES IN CLIMATE ELEMENTS OTHER THAN 
TEMPERATURE FOR THE UKHI MODEL AND EFFECTS 

ON THE PENNINE ENVIRONMENT 

19.1 Introduction 

The temperature regime is only one, albeit a very important, component of the 

climatic environment. GCMs are also concerned with predicting changes in other 

weather elements. Although this thesis is not primarily concerned with other climatic 

variables, GCM predictions for net radiation, cloudiness, wind direction components, 

humidity and precipitation are examined in this penultimate chapter, considering the 

probable effects of changes in such elements on the environmental changes predicted 

to occur in northern England as a result of temperature change. The environmental 

response to temperature change will be moderated by changes in other climatic 

(precipitation, insolation and windiness) and non-climatic (edaphic, topographical, social 

and economic) factors and so it is important to assess whether such changes are likely 

to complement the temperature effects or reduce them. 

19.2 Predicted Changes in Weather Elements in the UKHI GCM 

Mean monthly changes in weather parameters (other than air temperature) were 

calculated for grid squares 49 and 63 of the UKHI (United Kingdom High Resolution) 

General Circulation Model. Differences exist between change in each grid square, 

showing that predicted climate change is not spatially homogeneous. The expected 

changes in six elements are discussed below with special reference to whether such 

influences are likely to support or oppose the changes in "climate potential" predicted 

for the UKHI model. 

Predicted changes in net surface radiation are shown in Figure 19.1 for each 

grid square and as a mean value. A change is calculated by subtracting the baseline (1 

times C02) monthly mean from the 2 times C02 value. Increases in net radiation are 

expected, especially in summer in grid square 63 and in winter in grid square 49. It is 

not clear whether increases are due primarily to increased solar input, a decrease in 
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Figure 19.1. Predicted Monthly Changes in Net Surface Radiat1on for 
Grid Squares ~g and 53 between the 1 t1mes C02 and 2 t1mes C02 
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albedo or a decrease in longwave radiation loss. An increase in direct insolation would 

be most beneficial in agricultural terms. An increase in net radiation will increase air 

temperature (Chapter 7) but only an increase in solar radiation will provide more 

energy for photosynthesis. In July there is a decrease simulated for square 49 (the 

northern part of the region). This is the time when solar radiation input is most 

important in upland areas, temperatures being warm enough for plant growth. The 

increase in winter net radiation simulated is likely to be associated with increased 

advection of mild air and increased cloudiness (thereby reducing the mean longwave 

radiation loss). Square 49 shows an increase of over + 10 W/m2 in January. Smallest 

increases in net radiation occur between October and December in both grid squares. 

As seen in Chapter 7, the relationship between net radiation and temperature 

change is complex, because of the variation in solar inefficiency, if;. if; generally 

increases with altitude. The increase of 10 W/m2 simulated for January could be 

expected to lead to an additional warming of 0.66°C, assuming if; to be 15.12 W/m2 °C 

(the mean value at Durham). This appears a sensible estimate. More direct solar 

radiation is required in upland areas, incessant cloudy conditions meaning that there is 

a large sunshine deficit. Unfortunately, increases in net radiation are predicted to be 

smallest in mid-summer when they would be most beneficial and it is largely increased 

winter cloudiness which accounts for the net radiation increases. 

Changes in cloudiness (Figure 19.2) will be connected with changes in net 

radiation, extra cloud cover increasing net radiation in winter and at night and 

decreasing it by day in summer. The predicted change in cloudiness is similar in both 

grid squares with a rapid increase in winter, especially in January and February. More 

frequent and vigorous winter depressions would account for this. The increase in winter 

cloudiness would decrease frost risk and fit in with the increase in net radiation 

simulated at this time. In summer, changes are less distinct. In grid square 63 (the 

south of the region) summer cloudiness is expected to show a weak decrease, 

suggesting a shifting northward of depression tracks such that the climate would become 

very slightly more influenced by the high pressure belt to the south (the Azores high). 

Changes are, however, likely to be minimal. The summer north-south gradient in 
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cloudiness would be enhanced over the region with southern areas experiencing more 

sunshine at a time when it is most required. 

An examination of airflow components (Figures 19.3 and 19.4) is extremely 

useful since it indicates predicted trends in the circulation pattern. The mean x-wind 

component, representing the strength of zonal flow (i.e. westerliness), exhibits an 

increase throughout the year in square 63 except in August and September. The strong 

increase in zonal flow in winter supports the view that winter storminess over Britain 

will increase (Lumb 1993) with stronger and more frequent depressions. In summer the 

increase in zonal flow is weaker and blocking becomes more frequent in late summer 

in the south of the region. 

Chapters 13 and 14 were concerned with analysing the effects of such airflow 

changes on the spatial distribution of temperature in northern England. The tendency 

toward blocking in late summer would favour greater warmth at the end of the growing 

season, especially in the uplands. This would be beneficial in cool areas where crops 

often do not ripen until late in the year (Manley 1952). Anticyclonic blocking would 

also be associated with a decrease in cloudiness and more insolation, especially in the 

uplands. Increased westerliness favours a smaller annual temperature range with milder 

winters, and steep lapse rates in most months. Changes in the y-wind component 

representative of southerliness (meridionality) are more irregular with decreases 

predicted for April and July-August, meaning that more northerly outbreaks are 

favoured at these times of year. The April singularity, whereby air flows south over 

Europe associated with an increasing meridional temperature gradient (Lamb 1950), is 

therefore likely to strengthen. In winter, southerliness is expected to increase, i.e. the 

advection of mild Atlantic air from the south (and west) is expected to be concentrated 

in winter. Increased southerliness will allow frost occurrence and accumulation to 

decrease. Frost would become a rarity in lowland areas (Chapter 17). 

The increase in absolute humidity in the 2 * C02 simulation is uniform 

throughout the year, varying from 10 to 18 kg water/kg air (Figure 19.5). Higher air 

temperatures will encourage higher absolute humidities. Not surprisingly the increase 
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Figure 19.5. Predicted Monthly Changes in Absolute Humidity for Grid 
Squares 49 and 53 between the 1 times C02 and 2 times C02 
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in both is predicted to be less in the north of the region (square 49). Higher humidities 

do not necessarily encourage increases in monthly precipitation. However, there does 

appear to be a parallel increase in precipitation, especially in the north of the region 

(square 49) in winter (Figure 19.6). The January increase of around 40 mm (1.5 inches) 

is substantial. Wetter winters suggest an association with increased cyclogenesis and a 

more mobile zonal circulation. Increase in summer rainfall is less distinct, especially 

between July and September when decreases appear possible. The enhanced .role of 

convection may be outweighed by the tendency for anticyclogenesis building up from 

the Azores or southern Europe in summer, connected with a displacement of depression 

tracks to the north. An enhanced seasonal variation in rainfall with a winter maximum 

(as seen presently in the Mediterranean) is therefore supported. 

It is reassuring that the model predictions for individual weather elements fit in 

well with one another, suggesting a more mobile zonal winter circulation with more 

frequent (and stronger) depressions crossing over, or to the north of, the region. Thus 

precipitation will increase, especially in upland areas. Airflow will have stronger 

westerly and southerly components and wind speeds are likely to increase, along with 

cloudiness and net radiation. Under this more unsettled winter regime, frost risk will 

decrease substantially, and although winter temperature will be higher at all altitudes, 

it is lowland areas which will reap the greatest benefit from these changes. 

In summer, especially during August, increases in zonality are less distinct and 

an increase in anticyclonic blocking, building up from the south, will decrease rainfall 

and cloudiness and increase insolation. Such changes are predicted for square 63 only, 

and thus meridional gradients in late summer rainfall, insolation and cloudiness may 

increase. The increase of northerly outbreaks in April and July/ August does not easily 

fit in with the other predictions. Any anticyclonic blocking in late summer will increase 

accumulated temperatures especially in the uplands, which will gain the greatest benefit 

from these. summer changes. 
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19.3 Summary of the Consequences of These Simulated Changes 

All the simulated changes in weather elements for the summer season 

complement the effects of increased warmth predicted for the Pennine uplands. 

Relatively drier and warmer summers with increased insolation and reduced 

precipitation and cloudiness are predicted, especially in the south of the region and such 

conditions have a proportionally greater benefit in the uplands (Manley 1942). Lapse 

rates are likely to decrease under a blocked influence, as temperatures on the plateau 

approach more closely those at low levels (Tabony 1985). An increase in insolation is 

often cited as beneficial for further agricultural expansion in this maritime upland 

environment (Manley 1952) and the reduction in summer precipitation is unlikely to 

lead to water stress, except perhaps on well-drained south-facing slopes used for pasture 

(Bell, pers comm 1993). Increased winter precipitation will reduce summer water stress 

by raising up the surface water table, although in lowland areas irrigation may be 

required in exceptional years, as is normal in many parts of southern and eastern 

England at present (Penman 1948, Pearl et al. 1954). On the other hand, problems of 

waterlogging on plateaux during the growing season may be reduced. 

Increases in westerly and southerly flow components are expected to be 

concentrated in winter. However, slight increases are predicted during some summer 

months. Westerly flows are associated with the steepest lapse rates (Chapter 8) and thus 

any increased zonality will cause the altitudinal gradient in temperature resources to 

increase (Chapters 13, 18). Under an increased zonal flow, areas sheltered from the 

west are likely to see the greatest benefit. For example, the north-eastern lowlands 

would experience a greater increase in climate potential than the lowlands of Cumbria. 

Because increases in westerliness are indistinct in summer, it is unclear whether the 

growing season in the uplands would suffer. Late summer may see a decrease in 

westerliness which would increase upland growing season strength. The other factor is 

that of wind speed. Increased windiness would make it difficult for development of 

widespread upland cultivation even if conditions were warmer and drier, because of 

exposure. Unfortunately, no details are given in the UKHI model of wind speed 

changes but since strongest winds usually come from the south and west, mean· speeds 
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are expected to increase in winter and show little change in summer. Cloudiness is 

expected to show a modest decrease in summer which would be beneficial, increasing 

insolation. 

No predictions are given for snow cover and changes in surface runoff. The 

occurrence of discrete events, such as freeze-thaw cycles and frost, is also difficult to 

predict under the 2 * C02 scenario (Chapters 14, 17). Often it is frequencies of extreme 

events which are more important than changes in mean values of precipitation, 

insolation, cloudiness and wind components. Nevertheless, this investigation into 

changes in weather elements other than temperature has shown that the benefits of 

temperature increases are likely to be complemented by decreased cloudiness, 

precipitation and windiness and increased insolation in late summer (July-September) 

in upland areas if more anticyclonic blocking were to occur as predicted. Opposite 

changes are predicted for winter when a stronger zonal circulation is predicted. The 

milder, wetter conditions will lead to a reduction of frost in lowland areas. Upland 

areas could remain bleak although this has little impact on cultivation in the growing 

season. 

A strong distinction can be drawn between the effects of a mobile zonal westerly 

circulation (increases in precipitation, cloudiness, wind speed and decreases in 

insolation, especially in the uplands) and the opposite effects of a more blocked 

anticyclonic circulation. The contrast between the two is reinforced at high altitudes. 

Thus growing season accumulated temperatures Tacc are strongly correlated with other 

climate factors. A continental influence would benefit all relevant weather elements 

simultaneously, supporting predictions concerning changes in land suitability (using Tacc) 

in Chapter 18. 
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SUMMARY 

Note: Numbers refer to the chapter in which the point is discussed 

Introduction 

1.1 The maritime environment of northern England, with steep lapse rates in the 

prevailing polar maritime air masses and a subdued seasonal temperature fluctuation, 

means that small changes in temperature can produce marked changes in the growin.g 

season. There is a rapid altitudinal decrease in "climatic potential" for cultivation, 

resulting in a Jow treeline and much marginal land. The lack of summer warmth 

prevents widespread agricultural cultivation (Parry 1976). 

1.2 Numerous analyses of global temperature data illustrate a steady temperature 

increase of about 0.5°C between 1900 and 1990 (Manley 1974, Parker et al. 1992, 

Mintzer 1992). This warming trend is expected to continue due to anthropogenic 

emissions of greenhouse gases, such as carbon dioxide, which enhance the natural 

greenhouse effect. The context is complicated by the supposition that natural climate 

fluctuations are also related to solar output variations (Tavakol 1979) and that without 

anthropogenic influences there would be a cooling. 

1.3 The thesis examines the altitudinal decrease in climatic pptential in northern 

England, illustrating the sensitivity of relevant parameters to airflow variations and 

climate change. Due to 1.1 and 1.2, effects of climate changes may be pronounced. 

Relevant literature on lapse rates is reviewed, factors behind the variation of air 

temperature are discussed, and data sources are described in Chapters 2-4. 

Lapse Rate Analysis 

5.1 The temporal and spatial variation of ground-based lapse rates is examined using 

data from 7 meteorological stations. The lapse rate is important since the altitudinal 

310 



temperature decline controls that in climatic potential. The rate between Durham (102 

m) and Widdybank Fell (513 m) shows a strong seasonal fluctuation, peaking at the 

equinoxes. A solar hypothesis is outlined to account for this. There are also lapse rate 

variations according to airflow direction, the rate increasing under downslope (westerly) 

airflow. 

6.1 Examination of lapse rates on several slopes of the Pennines shows that each rate 

has different relationships with season and airflow direction. Lapse rates tend to peak 

in spring, due to the instability of polar maritime air at this season, and are shallowest 

in winter, due to temperature inversion formation. Lee slope rates are steeper than 

windward ones due to fohn effects. Air mass affects ground-based lapse rate through 

stability contrasts, but air-mass type is difficult to separate from airflow direction since 

the two are strongly linked. Radiosonde data for the free-air are unavailable on a scale 

relevant to surface climate (in the lowest 1000 metres of the atmosphere) so it is not 

possible to compare free-air and ground-based lapse rates empirically in the region. 

7.1 Net radiation estimates can be used to predict air temperature. A physical model 

relating surface temperature change with net radiation shows solar efficiency (net 

radiation/temperature change) to be extremely variable. Efficiency can be predicted 

from solar elevation, wind speed, wind direction and relative humidity, leaving 33% 

of its variation unexplained. 

8.1 Mean lapse rates are calculated for each airflow in each month for daily maximum, 

mean and minimum temperatures using multiple regression involving twenty-two 

stations, against altitude, latitude and longitude. The statistical models are highly 

successful and robust, especially for maxima. Minima show a poorer relationship with 

altitude because of topographical influences. Altitude accounts for most of the 

temperature variation in the successful regressions. 

9.1 The regression models are used to describe the spatial variation of temperature in 

northern England under varying conditions. Altitudinal zonation in the Pennines, based 

on the varying altitudes of critical isotherms of mean temperature, is described and 
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compared with the Pyrenees and Polish Tatra. Differences exist in the relative 

elevations ·Of isotherms between the three mountain ranges. Summer isotherms are 

extremely low in northern England, explaining the low treeline and marginal nature of 

the uplands. 

The Present Climate 

10.1 "Climatic potential" is described by several parameters, all based on temperature: 

annual accumulated temperatures above 6°C (Tacc) (growing season strength); the length 

of the growing season (number of growing days per annum and the dates of the first 

and last growing days); frost occurrence/frequency and accumulation below ooc (Face>· 

10.2 The variation in growing season strength (annual accumulated temperatures above 

6°C) is described for 1985-1990 within the study region. A wide inter-annual 

fluctuation is shown. Mean growing season strength varies from around 415 d°C at 

Great Dun Fell (847 m) to 1577 doc at Keswick (100m), an anomalously warm site. 

The altitudinal gradient in T ace can be modelled well by both linear and exponential 

relationships. Positive skewness in station altitudes means that it is difficult to decide 

whether the linear or exponential model is preferable. Both lead to similar results. A 

deductive approach suggests superiority of the exponential relationship. Taking 1000 

doc (degree-days) to be a critical accumulation for cultivation, iand between 236 and 

463 metres above sea-level is considered as marginal (about 30% of the land area of 

northern England), since accumulations exceed 1000 doc in some years but not in 

others (using the linear model). 

11.1 Growing season length shows a negative correlation with altitude. The total 

number of (consecutive) growing days is strongly correlated with altitude, although 

dates of the first and last growing days are more variable. Mean growing season length 

is 244 days at Eskmeals (8 m) but only 110 days at Great Dun Fell. The presence or 

absence of growing days (days with maxima of 6°C or above) is used to construct a 

growth probability curve relative to day of the year. 
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12.1 A similar process is undertaken for frost occurrence (minima of ooc or below). 

The relationship of frost occurrence and probability with altitude is weak, minima being 

less dependent on altitude than maxima. The frost-free period averages 69 days on 

Great Dun Fell, but rises to 190 days at Sunderland, near the east coast. 

12.2 A comparison of growing and frost-free seasons shows that frost during the 

growing season is more likely at low elevations. Coastal and mountain areas are least 

prone to damaging frosts during the growth period, having fewer "risk days". 

13.1 "Uni-directional airflow scenarios" are created from the multiple regression 

equations to simulate the effects of a sustained airflow from one direction. Because 

different lapse rates are simulated for each airflow, the effects of a particular airflow 

are altitudinally selective. Airflows are assumed to retain their 1985-1990 

characteristics. The sensitivity of Tacc to the circulation pattern (airflow type) is high in 

upland areas, there being a wide percentage variation in accumulated temperatures 

between airflow scenarios. A continental influence (south-easterly flow) increases Tacc 

at high altitude while a more maritime (westerly) influence has the opposite effect, 

steepening the altitudinal gradient in growing season strength. 

14.1 The occurrence of growing days and that of frost are related to mean daily 

temperature using logit regression so that changes in growing season length and the 

frost-free period can be determined in each airflow scenario. Changes in these 

parameters do not mirror those in Tacc· For example, despite high accumulated 

temperatures in the south-easterly scenario, the frost-free period becomes short relative 

to the growth period and the risk of frost damage becomes great. Frost occurrence is 

lowest in the south-westerly and westerly scenarios, although growing season length at 

high altitude is relatively poor. Many parameters must be examined to gain an idea of 

the changes in climatic potential associated with each airflow type. Changes in the 

circulation pattern alone are shown to have far-reaching effects on many indices 

measuring climatic potential. _ 

16/17.1 Introduction of the daily variability of temperature within airflows allows a 
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more accurate estimation of climatic potential. Once the mean and standard deviation 

of daily temperature are obtained, parameters such as the number of frosts or growing 

days can be simulated directly for that scenario, assuming that observations are 

normally distributed and independent. 

The Past Climate 

15.1 Past variation in climatic potential is analysed by examining annual variations in 

accumulated temperatures at Durham back to 1801. There is an inter-annual variation 

of over 500%, between 255 and 1384 d°C for annual accumulations (above 6°C). 

Spring, autumn and winter show more consistent warming trends over the 190 year 

record than summer. Extrapolation of 1000 d°C cultivation limits back to 1801, 

assuming the linear and exponential relationships between growing season strength and 

altitude described in 10.2, produces a wide inter-annual variation in elevations. About 

90% of northern England falls between the extreme elevations recorded. Application 

of the above methodology to simulated temperature accumulations in the uni-directional 

wind scenarios shows cultivation limits to vary by over 400 metres between different 

airflows. Thus climatic potential is extremely sensitive to between-type climate change, 

small circulation changes causing large changes in the amount of marginal land. 

The Future Climate 

18.1 Contrasts between airflows in the altitudinal gradient of climatic potential will 

increase if airflows themselves experience within-type climate change. This is 

investigated by using General Circulation Model (GCM) output in which all airflows 

undergo warming. 

18.2 The two GCMs examined are GISS (Goss Institute for Space Studies) (Hansen et 

al. 1984) and UKHI (United Kingdom Meteorological Office High Resolution 

Equilibrium Experiment) (Viner & Hulme 1992). Both simulate surface climate for a 

doubled carbon dioxide concentration (assumed to be representative of 2050). For 

comparison, effects of continental (south-easterly) and maritime (westerly) airflow 
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scenarios and arbitrary temperature increases are also analysed. 

18.3 Annual temperature accumulations (Tacc), interpolated over a 5 * 5 km digital 

terrain model of northern England, are extremely high in the GCM doubled carbon 

dioxide scenarios. Sub-marginal ( < 1000 d°C) and marginal (1000-1200 d0 C) areas are 

largely eradicated, and there is enough warmth at the highest elevations for some 

cultivation (e.g. oats). Frost is unusual in lowland areas in both GCM simulations. 

18.4 Such considerable changes in climate potential will not necessarily result in rapid 

land-use change due to the restrictions of other climatic (precipitation, windiness, lack 

of insolation) and non-climatic (soils, slopes, drainage, economic) factors. The extreme 

sensitivity in upland areas to changes induced by global warming illustrates the fragility 

of the present mountain environment. The contrast between continental and maritime 

airflow scenarios is small compared with changes predicted by the GCMs. 

18.5 Changes in lapse rates and temperatures within individual airflows are being 

simulated in the latest GCMs. At present the required data are unavailable, but they will 

become so in the near future and the effects of such changes could be investigated in 

a sequel to this thesis. 

19.1 Predicted change in other weather elements forecast in the UKHI model 

(precipitation, net radiation, cloudiness, airflow components and humidity) is described. 

The changes are likely to complement the effects of increased temperature. Decreased 

precipitation, cloudiness and a more blocked circulation, predicted for late summer, will 

be beneficial for upland cultivation. For winter a stronger zonal flow is suggested, 

leading to greater precipitation, cloudiness and higher net radiation, as well as increased 

warmth. Lowland areas would benefit most, with frost occurrence being substantially 

reduced. 

Conclusions 

The thesis methodology and the statistical methods employed (regression, Fourier 
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analysis, significance testing) have been applied to the analysis of variations in climatic 

potential based on temperature. Temperature data are widely available and it is fairly 

certain that temperatures will increase under greenhouse forcing. Moreover, 

temperature is the main limiting factor for agricultural expansion in much of the region 

under the present climatic regime. It would be equally possible, however, to apply the 

methodology to analyse any climate-based index or phenomenon, e.g. water deficit, 

winter snow pack, evaporation, freeze-thaw weathering, air pollution, wind resources 

and indices relevant to mountain ecology. 

The use of synoptic climatology (examining the relationship between surface 

climate and circulation patterns) helps to explain past changes in the climatic 

environment and to convert GCM predictions concerning circulation change into local 

or regional climate changes. This is especially so in mountainous areas where the role 

of altitude is crucial, lapse rates of all weather elements varying according to airflow 

type. Response to particular circulation changes is altitudinally selective and altitude is 

the differentiating factor. In flat areas a similar methodology could be applied but the 

differentiating factors in response to airflows would be latitude, longitude or distance 

from the coast. Unless a strong relationship is found, results will be less satisfactory. 

The techniques employed in the thesis are equally applicable to other mountain and high 

altitude regions, although they are not restricted to such areas. 

It is expected that the methodology would be less useful in the tropics where in 

many areas air-mass contrasts are subdued and variation in airflow patterns throughout 

the year is less influential. In low latitudes the diurnal cycle of weather dominates the 

climate, with local convective regimes being more important than the migration of 

synoptic scale pressure systems and changes in air-mass, at least in many areas. 

Changes in precipitation are predicted to be considerably more important (but less 

predictable) than those of temperature in the tropics (Houghton et al. 1990, Mitchell et 

al. 1990). Such changes will be primarily related to changes in local weather conditions 

on a sub-synoptic scale. 

In contrast the methodology Is likely to be useful m polar and sub-polar 
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latitudes, especially near the limits of extensive sea-ice. In such areas wind direction 

(and hence airflow type) is extremely important in affecting surface climate conditions 

through advective influences, especially in summer. For example, a strong dependence 

of mean temperatures on airflow direction is experienced at Churchill on the fringe of 

Hudson Bay, offshore winds bringing relatively high summer temperatures (Hare & 

Hay 1974). Most polar areas, with the exceptions of Greenland and Antarctica, are at 

low altitude and so distance from the coast or sea-ice boundary is the usual 

differentiating factor. It is easiest to assume that relationships between the spatial 

distribution of weather elements and airflow type remain constant in a future climate, 

but this is not necessary since within-type climate change can be incorporated into the 

study. 

In conclusion, the use of synoptic climatology is most useful: 

a) in mountainous areas; 

b) where air-mass contrasts are great and the influence of the pressure pattern is 

important; 

c) where advective effects are strong, i.e. at a sea-ice boundary or on a coastline. 

In such areas future climatic changes due to changes in the general circulation 

pattern are likely to be strong, as illustrated by the strong inter-diurnal variability of 

climate elements in such areas at present. 

An area which would be interesting to investigate is the Rocky Mountain area 

of the United States. This temperate mountain range is well-endowed with 

meteorological stations and is sited in a continental climatic regime, providing a 

contrast with Northern England. The contrasts between polar, tropical and maritime air

masses from the Pacific are well documented (Barry 1973, Court 1974) and are 

expected to result in a wide variation of lapse rates. Subjects of interest include the 

response of the mountain snow pack (its accumulation, depth, spatial and temporal 

variation) to circulation changes, the potential for agricultural development on the lower 

slopes of the Colorado Front Range under conditions of global warming, the viability 

of solar and wind energy as natural resources in such a semi-arid high altitude 
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environment, and the effects of global warming upon the diversity of mountain species 

(Grabherr et al. 1994) and migration of existing species into high altitude areas 

(Beerling & Woodward 1994). Relevant indices to be analysed include accumulated 

temperatures, effective precipitation, cloudiness, water deficit, solar radiation receipt, 

snow accumulation, frost frequency and freeze-thaw cycles, runoff and wind chill. 

The methodology has importance in its own right and could be applied to any 

area other than northern England, any time period or for any application, within the 

limits discussed above. 
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APPENDIX 2 
CALCULATION OF THE SATURATION VAPOUR PRESSURE GRADIENT 

The saturation vapour pressure at temperature Tis given by: 

e (T)=e xexp(-'AMIRT)----(1) s 0 w 

where eo is a constant (at least over a restricted temperature range), A is the latent heat 
of vaporisation of water (2511. 6 * 103 J /kg), Mw is the molecular weight of water 
( = 18), R is the molar gas constant, which is 8.314 Jmot1K 1

, and T is the absolute 
temperature in Kelvin. By differentiating with respect to T it can be shown that 

Note that~ is the gradient of the saturation vapour pressure/temperature curve. Now: 

e
8

(T) =e
8

(T*) xexp [Ax (T-T*) I (T-T1)] ------ (3) 

where A = 17.27. T* = 273 K (e.(T*) = 6.1 hPa), and T' = 36 K. Thus 

e s ( T) =6 . 1 xexp [ ( 17 . 27 x ( T- 27 3) ) I ( T- 3 6) J --- ( 4) 

Converting T in Kelvin to T in Celsius the equation becomes 

es(T) =6 .1xexp [ (17 .27xT) I (T+237)] ---- (5) 

A varies only slightly with temperature and can be approximated by 

[ ( -1215) xT] +2501 .... Jg- 1
---- (6) 

with T in Celsius. Thus we derive equation 9: 

!J.= ( [ (-1215) xT+2501] x18x (6 .1xexp [ (17 .17xT) I 
( T+ 2 3 7) ] ) ) I ( 8 . 314 X ( T+ 27 3) 2 ) ----- (7) 
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APPENDIX 3 
DEFINITION OF SPECIFIC HUMIDITY 

Specific Humidity can be expressed as a function of total air pressure p and 
vapour pressure e. For the vapour component, 

e=xx(R/Mw)xT-----(8) 

where x is the absolute humidity. Thus: 

X (gm-3 ) =M e/RT--- (9) - w 

The dry air has pressure p - e and therefore, by the equation of state, has a 
density of 

Pa=Ma(p-e)/RT----(10) 

where Ma = 29 gmoi-1
• The density of moist air is the sum of the dry air and vapour 

densities. Thus 

p= [ (Mwxe) +Max (p-e)] /RT---- (11) 

Thus specific humidity can be defined as 

shumid~x/p~(exe)/[(p-e)+(exe)]----(12) 

where E = 0.622 = Mw/Ma. This is equivalent to equation 15 assuming the total air 
pressure p to be 1000 mbars. 
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APPENDIX 4 
FILE SHOWING EQUATIONS TO ESTIMATE DAILY NET IRRADIATION 

AND SURFACE ENERGY BALANCE CALCULATIONS ASSUMING ISOBARIC 
WARMING/COOLING. 

The model requires daily values of maximum temperature, mtmmum temperature, 
sunshine hours, day number, wet bulb, dry bulb, wind direction and snow cover. 

Lines preceded by an asterisk (*) are comment lines and do not form part of the 
running model. The model is written in Stata language. 

*Define the conversion factor from degrees into radians 
macro define convfact=2* _pi/360 
*Calculate the noon solar elevation for each day of the year 
gen decl=23.45*sin(0.986*(day-80)*%convfact) 
gen solar=35 +decl 
*Calculate the daylength 
macro define mitanA =-sin(55* %convfact)/cos(55* %convfact) 
gen x= %mitanA *(sin(decl*%convfact)/cos(decl*%convfact)) 
gen daylngth =abs(( -_pi/2) +atan(x/sqrt(l-x*x)))/(%convfact*7 .5) 
*Generate expression for mean daily temperature 
gen meanD=(maxD+minD)/2 
*Define station altitudes 
macro define altD = 102 
*Calculation of Penman constants 
gen const1D=0.42+(0.011 *(meanD))+(3*(10A-5)*%altD) 
gen const2D= 1-const1D 
*Calculate gradient of saturation vapour pressure curve (against temperature). The mean 
*daily temperature is used. 
gen satvapD=6.1 *exp((17.27*meanD)/(meanD+237)) 
gen satvap9D=6.1 *exp((17.27*dryD)/(dryD+237)) 
gen satgradD = ((( -12/5)*(meanD) +2501)*18*satvapD)/(8.314*((meanD+ 273t2)) 
*Calculate psychrometer "constant" 
gen psychroD = ( satgradD/ const 1 D )-satgradD 
*Calculate vapour pressure at 9 am 
gen vapD =(6.1 *exp((17.27*wetD)/(wetD+237)))-(psychro*(dryD-wetD)) 
*Calculate relative humidity 
gen rhumidD=(vapD)/(6.1 *exp((17.27*dryD)/(dryD+237))) 
*Convert this to specific humidity 
gen shumidD=((0.622*vapD)/((1000-vapD)+(0.622*vapD)))*1000 
*Calculate the overall transmissivity of the solar beam 
*Calculate the amount of precipitable water. Note 9.81 is acceleration due to gravity 
gen wD=(shumidD*l000)/(500*9.81) 
*Expression for transmissivity due to water vapour 
gen transwD=0.896-(0.0636*log(wD*(1/sin(solar*%convfact)))) 
*Expression for transmissivity due to aerosols 
gen transa=exp[-0.1 *(1/sin(solar*%convfact))] 
*Overall transmissivity 
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gen transD =transwD*transa 
*Hence calculate the maximum potential instantaneous solar irradiance at noon 
gen maxiradD= 1380*(transD)*sin(solar*%convfact) 
*Calculate total potential (clear-sky) irradiance for the daylight period 
*Assume a sinusoidal variation in the irradiance curve 
gen iradDp = (2/ _pi) *day lngth *3600*maxiradD 
*Estimate proportion of time the sky is clear 
gen skyD=sunD/daylngth 
*Linacre's (1992) estimate of actual total irradiance, including diffuse and direct 
*components 
gen iradD=iradDp*(0.36+0.64*skyD) 
*Calculate daily temperature range at screen level 
gen rangeD=maxD-minD 
*Assume minimum to occur at dawn 
*Alternative formulae for total irradiance 
gen iradD2 = (0.048*iradDp)-(3.5*rangeD) +(0.029*iradDp*rangeD) + 24 
*Calculate total incoming radiation that is absorbed at the ground surface, allowing for 
*albedo 
gen iradDb=iradD*(1-0.2) 
replace iradDb = iradD *( 1-0. 7) if snow D = = 1 
*Estimate average cloud cover 
gen cloudD = 8*( daylngth-sunD)/daylngth 
*Calculate downwards longwave radiation for cloudy sky 
gen QldcD =(208+(6*((maxD+minD)/2)))*(1 +(0.0034*(cloudDA2))) 
*Estimate black-body radiation loss upwards 
gen QluD=0.97*((((maxD+minD)/2)+273)A4)*5.67*(10A-8) 
*Estimate net longwave exitance over 24 hours 
gen exitD2 = (QluD-QldcD)*24*3600 
*Alternative formula for net longwave exitance over the 24 hour period (Linacre 1992) 
gen exitnceD=(107-(meanD)-(9*cloudD))*24*3600 
*Calculate net irradiation at the earth's surface 
gen netiradD = iradDb-exitnceD 
*Alternative estimate of net daily irradiation*/ 
gen netirdD2 = iradDb-exitD2 
*Calculate total heat input Goules) during the time of temperature increase from the 
*minimum at dawn to the maximum (0.6*daylength) after dawn 
gen heatD=((iradDb*0.655)-(exitnceD*daylngth*0.6/24)) 
*Hence calculate the apparent heat capacity of the air (1/;)- i.e. rate of heat input 
*required per temperature increase of 1 oc: Units = wm-2°C1 

gen acapacD=(heatD/rangeD)/(3600*daylngth*0.6) 
*In reality some of this heat goes into heating the ground, and the remainder is lost due 
*to convection (heats the air) or through evaporation. Advection can also add or take 
*away heat. 
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APPENDIX 5 
ALTITUDINAL,LATITUDINAL AND WNGITUDINAL COEFFICIENTS 

FOR ALL WIND DIRECTIONS IN ALL MONTHS:MAXIMA 

month= month of the year January=! 
December= 12 

wind =wind direction 

KEY TO WIND: 0 = calm 1 =N 2=NE 3=E 4=SE 
5=S 6=SW 7=W 8=NW 9=mean for month 

alt22=altitudinal coefficient (°C per kilometre) 

lat22=latitudinal coefficient CC per kilometre) 

lng22=longitudinal coefficient (°C per kilometre) 

r2 =coefficient of determination in regression 
(alt lat lng) 

a b c 
month wind alt22 lat22 lng22 r2 

1 9 -7.30 -0.00021 0.00213 0.935 
1 0 -5.78 -0.00298 0.00427 0.767 
1 1 -8.43 -0.00523 -0.00232 0.907 
1 2 -10.48 -0.00152 0.00144 0.724 * 
1 3 -6.87 0.00081 -0.00208 0.831 
1 4 -6.87 -0.00204 -0.00217 0.870 
1 5 -7.03 0.00322 0.00073 0.929 
1 6 -7.76 0.00215 0.00357 0.930 
1 7 -7.72 -0.00340 0.00690 0.937 
1 8 -7.63 -0.00649 0.00222 0.872 
2 9 -8.55 0.00023 0.00085 0.942 
2 0 -7.76 0.00066 -0.00377 0.898 
2 1 -10.17 0.00066 -0.00869 0.930 
2 2 -9.12 -0.00216 -0.00786 0.912 
2 3 -9.09 0.00110 -0.00555 0.908 
2 4 -10.20 0.00704 -0.00294 0.929 
2 5 -7.44 0.00176 -0.00030 0.910 
2 6 -8.29 -0.00074 0.00611 0.915 
2 7 -8.86 -0.00190 0.00553 0.947 
2 8 -8.77 0.00093 0.00012 0.922 
3 9 -9.48 0.00013 0.00446 0.932 
3 0 -10.27 -0.00344 -0.00515 0.926 
3 1 -9.15 -0.00136 -0.00467 0.914 
3 2 -8.03 -0.00116 -0.01058 0.891 
3 3 -7.81 -0.02206 0.01102 0.668 * 
3 4 -8.88 -0.00342 -0.00359 0.955 
3 5 -9.33 0.00298 0.00407 0.908 
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3 6 -9.18 0.00251 0.00949 0.924 
3 7 -9.80 0.00041 0.00969 0.927 
3 8 -9.99 0.00019 0.00144 0.910 
4 9 -8.89 -0.00297 -0.00157 0.899 
4 0 -7.01 -0.00480 -0.00120 0.742 
4 1 -9.30 -0.00486 -0.01156 0.907 
4 2 -8.74 -0.00204 -0.02178 0.908 
4 3 -10.25 -0.01281 -0.01659 0.934 
4 4 -9.73 -0.00756 -0.01162 0.740 
4 5 -7.52 0.00126 0.00833 0.827 
4 6 -8.87 0.00135 0.01253 0.894 
4 7 -9.80 -0.00056 0.01165 0.903 
4 8 -9.45 -0.00213 0.00538 0.882 
5 9 -8.00 -0.00686 -0.00737 0.805 
5 0 -7.09 -0.01027 -0.00372 0.683 
5 1 -7.69 -0.00637 -0.02020 0.766 
5 2 -7.61 -0.01598 -0.03849 0.860 
5 3 -7.35 -0.01761 -0.02623 0.822 
5 4 -3.59 -0.00922 -0.01154 0.463 
5 5 -7.74 -0.00258 0.00730 0.827 
5 6 -9.37 -0.00305 0.01339 0.850 
5 7 -8.74 -0.00120 0.01436 0.852 
5 8 -8.74 -0.00238 0.00411 0.740 
6 9 -8.23 -0.00741 -0.00246 0.782 
6 0 -7.00 -0.01593 -0.00276 0.535 
6 1 -7.39 -0.00579 -0.01838 0.763 
6 2 -7.92 -0.01056 -0.02622 0.815 
6 3 -11.25 -0.01969 -0.02460 0.750 
6 4 -7.01 -0.00439 -0.00294 0.629 
6 5 -8.48 -0.00579 0.00738 0.795 
6 6 -8.62 -0.00350 0.02292 0.895 
6 7 -9.07 -0.00352 0.01335 0.865 
6 8 -9.21 -0.00160 0.00873 0.822 
7 9 -7.80 -0.00635 0.00746 0.813 
7 0 -4.81 -0.01194 0.00142 0.319 
7 1 -7.87 -0.00766 -0.01130 0.765 
7 2 -7.47 -0.01372 -0.01480 0.803 
7 3 -6.57 -0.02509 -0.01499 0.752 
7 4 -4.15 -0.00285 0.01489 0.370 
7 5 -7.89 -0.00723 0.00335 0.768 
7 6 -9.18 -0.00247 0.02170 0.915 
7 7 -8.41 -0.00353 0.01906 0.870 
7 8 -8.30 -0.00279 0.01237 0.833 
8 9 -8.86 -0.00236 0.01172 0.910 
8 0 -9.44 -0.00565 0.00633 0.790 
8 1 -7.95 -0.00639 -0.00750 0.836 

8 2 -6.56 -0.02435 -0.02729 0.793 * 
8 3 -8.20 -0.00018 -0.00374 0.837 
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8 4 -8.72 -0.00038 0.02700 0.911 
8 5 -8.62 -0.00245 0.01547 0.921 
8 6 -9.38 0.00096 0.02065 0.921 
8 7 -9.46 0.00189 0.01772 0.931 
8 8 -8.54 -0.00588 0.00992 0.850 
9 9 -8.51 -0.00410 0.01013 0.928 
9 0 -8.28 -0.00654 0.00551 0.908 
9 1 -8.38 -0.00473 -0.00543 0.868 
9 2 -7.68 -0.01016 -0.00372 0.836 
9 3 -7.01 -0.02622 -0.01461 0.700 
9 4 -7.20 -0.00238 0.00764 0.893 
9 5 -8.41 0.00221 0.01287 0.906 
9 6 -8.28 -0.00324 0.01637 0.937 
9 7 -9.46 -0.00159 0.01460 0.947 
9 8 -9.21 -0.00635 0.01060 0.904 

10 9 -7.65 -0.00297 0.00428 0.936 
10 0 -6.26 -0.00626 0.00012 0.905 
10 1 -7.32 -0.00100 -0.00624 0.831 
10 2 -9.04 -0.00882 -0.00202 0.913 
10 3 -8.48 -0.01061 -0.00750 0.904 
10 4 -8.51 -0.01310 -0.01347 0.912 
10 5 -7.45 0.00246 0.00748 0.909 
10 6 -7.86 -0.00022 0.00845 0.919 
10 7 -8.57 -0.00357 0.00905 0.951 
10 8 -7.97 -0.00184 0.00294 0.910 
11 9 -7.37 -0.00074 0.00083 0.920 
11 0 -7.51 0.00026 -0.00004 0.866 
11 1 -8.12 -0.00487 0.00118 0.870 
11 2 -8.84 -0.00737 0.00061 0.917 
11 3 -9.07 0.00137 -0.00218 0.875 
11 4 -8.37 -0.00479 -0.00253 0.799 
11 5 -6.41 0.00267 -0.00128 0.881 
11 6 -6.89 0.00068 0.00370 0.889 
11 7 -7.42 -0.00119 0.00323 0.881 
11 8 -8.13 -0.00409 0.00098 0.887 
12 9 -6.85 -0.00094 0.00269 0.927 
12 0 -6.00 0.00080 -0.00034 0.730 
12 1 -9.23 0.00363 0.00243 0.833 
12 2 -8.42 -0.00229 0.00240 0.907 
12 3 -10.46 0.00162 -0.00043 0.902 
12 4 -6.87 0.00106 -0.00080 0.824 
12 5 -6.17 0.00051 0.00352 0.898 
12 6 -6.42 0.00116 0.00337 0.916 
12 7 -7.99 -0.00210 0.00494 0.951 
12 8 -5.67 -0.00841 0.00108 0.805 

* only 21 stations 
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APPENDIX 6 

ALTITUDINAL,LATITUDINAL AND LONGITUDINAL COEFFICIENTS 
FOR ALL WIND DIRECTIONS IN ALL MONTHS:MINIMA 

month= month of the year where January= 1 
December= 12 

wind=wind direction where O=calm 1 =N 2=NE 3=E 4=SE 
5=S 6=SW 7=W 8=NW 9=mean for month 

alt22 =altitudinal coefficient (°C per kilometre) 

lat22 =latitudinal coefficient (°C per kilometre) 

lng22 =longitudinal coefficient (°C per kilometre) 

r2=coefficient of determination in alt lat lng regression 

a b c 
month wind alt22 lat22 lng22 r2 

1 9 -6.04 -0.00288 -0.00569 0.770 
1 0 -3.64 -0.01065 -0.00806 0.392 
1 1 -5.88 0.00012 0.00769 0.642 
1 2 -4.63 -0.00070 0.01330 0.288 
1 3 -6.87 -0.00039 0.00143 0.727 
1 4 -5.35 -0.01042 -0.00965 0.430 
1 5 -6.05 -0.00101 -0.01125 0.736 
1 6 -6.57 -0.00104 -0.00926 0.807 
1 7 -7.16 -0.00668 -0.00563 0.831 
1 8 -5.53 -0.00432 0.00344 0.690 
2 9 -6.27 -0.00289 -0.00362 0.768 
2 0 -3.73 -0.01089 -0.00415 0.270 
2 1 -6.24 0.00140 0.00209 0.590 
2 2 -7.20 0.00211 0.00289 0.800 
2 3 -7.95 0.00112 -0.00026 0.777 
2 4 -7.92 0.00040 0.00053 0.793 
2 5 -6.43 -0.00521 -0.00569 0.696 
2 6 -6.27 -0.00279 -0.00987 0.795 
2 7 -6.59 -0.00220 -0.00207 0.787 
2 8 -7.02 -0.00281 0.00164 0.815 
3 9 -6.96 -0.00580 -0.00245 0.841 
3 0 -5.16 -0.01756 -0.00107 0.629 
3 1 -6.85 -0.00845 0.00213 0.751 
3 2 -4.80 -0.00947 0.00828 0.359 
3 3 -7.94 -0.01943 -0.00757 0.831 
3 4 -8.73 -0.00533 -0.00340 0.727 
3 5 -7.58 -0.00358 -0.00838 0.736 
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3 6 -6.80 -0.00383 -0.00471 0.819 
3 7 -7.78 -0.00567 -0.00067 0.879 
3 8 -6.94 -0.00250 -0.00033 0.812 
4 9 -6.47 -0.00519 -0.00233 0.811 
4 0 -5.20 -0.00683 -0.00361 0.651 
4 1 -6.22 -0.00201 0.00225 0.825 
4 2 -6.71 -0.00290 -0.00230 0.775 
4 3 -7.15 -0.00732 0.00181 0.829 
4 4 -8.56 -0.02837 -0.00949 0.784 
4 5 -5.17 -0.00633 -0.00879 0.529 
4 6 -6.89 -0.00602 -0.00464 0.736 
4 7 -5.86 -0.00159 0.00073 0.776 
4 8 -7.09 -0.00539 -0.00245 0.843 
5 9 -5.90 -0.01036 -0.00336 0.726 
5 0 -3.90 -0.01747 -0.00516 0.394 
5 1 -6.05 -0.00815 -0.00017 0.686 
5 2 -5.38 -0.01449 -0.00557 0.722 
5 3 -6.95 -0.01481 -0.01221 0.695 
5 4 -4.01 -0.01868 -0.00544 0.432 
5 5 -4.19 -0.01073 -0.00846 0.373 
5 6 -6.81 -0.00680 -0.00120 0.818 
5 7 -7.37 -0.00303 0.00513 0.861 
5 8 -6.46 -0.00953 0.00060 0.713 
6 9 -6.20 -0.00762 -0.00256 0.738 
6 0 -5.26 -0.01303 0.00305 0.581 
6 1 -6.16 -0.00532 -0.00390 0.777 
6 2 -6.84 -0.00934 -0.00049 0.761 
6 3 -7.49 -0.01068 -0.01490 0.685 
6 4 -4.07 -0.00454 -0.01025 0.330 
6 5 -5.61 -0.00904 -0.00683 0.531 
6 6 -6.82 -0.00545 -0.00010 0.804 
6 7 -6.36 -0.00989 -0.00058 0.755 
6 8 -5.87 -0.00264 0.00449 0.794 
7 9 -5.67 -0.00866 -0.00147 0.707 
7 0 -3.57 -0.01238 -0.00274 0.407 
7 1 -6.49 -0.00942 -0.00049 0.856 
7 2 -4.63 -0.00964 0.00302 0.524 
7 3 -4.90 -0.01966 -0.00793 0.450 
7 4 -2.33 -0.00953 -0.00411 0.094 
7 5 -4.68 -0.00988 -0.00973 0.449 
7 6 -6.47 -0.00233 0.00047 0.787 
7 7 -6.04 -0.00519 0.00165 0.724 
7 8 -6.81 -0.00877 0.00283 0.825 

8 9 -6.18 -0.00662 0.00035 0.771 

8 0 -4.12 -0.'00890 -0.00361 0.313 

8 1 -5.32 -0.00568 0.00847 0.639 
8 2 -7.70 -0.00455 0.01824 0.842 
8 3 -5.78 -0.00876 -0.00401 0.581 
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8 4 -3.50 -0.00905 -0.01037 0.083 
8 5 -5.63 -0.00837 -0.00274 0.663 
8 6 -7.29 -0.00680 0.00146 0.853 
8 7 -7.07 -0.00424 -0.00116 0.853 
8 8 -6.59 -0.00554 0.00195 0.815 
9 9 -5.83 -0.00817 0.00076 0.639 
9 0 -4.67 -0.01419 0.00263 0.405 
9 1 -5.03 -0.01016 0.00534 0.474 
9 2 -4.44 -0.01831 0.01205 0.324 
9 3 -7.32 -0.02274 -0.00196 0.482 
9 4 -4.60 -0.01631 -0.00990 0.314 
9 5 -5.93 -0.01038 -0.00354 0.585 
9 6 -5.83 -0.00438 -0.00304 0.676 
9 7 -7.06 -0.00681 -0.00140 0.701 
9 8 -6.23 -0.00610 0.00674 0.669 

10 9 -5.51 -0.00789 -0.00087 0.601 
10 0 -3.51 -0.01187 0.00018 0.247 
10 1 -4.79 -0.00577 0.01450 0.558 
10 2 -5.29 -0.01054 0.00232 0.343 
10 3 -6.22 -0.00502 0.00288 0.700 
10 4 -6.60 -0.00185 0.00108 0.608 
10 5 -5.90 -0.00103 -0.00399 0.664 
10 6 -5.90 -0.01083 -0.00159 0.587 
10 7 -5.98 -0.00548 -0.00231 0.676 
10 8 -7.86 -0.01138 0.00236 0.748 
11 9 -5.08 -0.00466 0.00068 0.595 
11 0 -4.36 -0.00843 -0.00208 0.360 
11 1 -5.35 -0.00766 0.01137 0.576 
11 2 -6.61 -0.00280 0.00807 0.721 
11 3 -6.07 0.00003 0.00187 0.671 
11 4 -6.01 0.00674 0.02381 0.590 
11 5 -5.79 -0.00597 -0.00474 0.616 
11 6 -5.85 -0.00424 -0.00658 0.703 
11 7 -5.64 -0.00544 -0.00090 0.606 
11 8 -3.83 -0.00509 0.01047 0.463 
12 9 -5.76 -0.00571 -0.00164 0.718 
12 0 -3.98 -0.00410 0.00518 0.425 
12 1 -7.01 0.00153 0.01092 0.799 
12 2 -5.83 -0.00313 0.00496 0.629 
12 3 -7.13 -0.00267 0.00527 0.655 
12 4 -7.07 -0.01708 -0.00432 0.723 
12 5 -6.80 -0.00582 -0.00662 0.794 
12 6 -5.80 -0.00697 -0.00691 0.688 
12 7 -7.04 -0.00499 -0.00268 0.851 
12 8 -4.02 -0.00744 0.00227 0.305 
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APPENDIX 7 
COMPUTER ROUTINE FOR CALCULATING Tex AND Tacc 

*Starred lines are comments. The model is written in Stata language. 

*File to calculate expected degree day accumulation T ace for airflow scenarios 
*Input is the mean and standard deviation of mean daily temperatures 
*The mean (avtp) and standard deviation (stdev) of daily temperatures for each airflow 
*are contained in a file. The example given below is for sea-level 
*Calculate the z-score for the growth threshold of 6°C 
gen zg=(6-avtp0)/stdev0 
*Convert this to· probability of a single daily temperature being greater than 6°C 
gen cmnorprg = normprob(zg) 
gen norprg = 1-cmnorprg 
*Calculate the average temperature above zg, assuming a standard normal distribution 
gen aveexczg =(l/sqrt(2* _pi))*(exp(-(zgA2)/2))/norprg 
*Convert this to a temperature relevant to actual distribution 
gen aveexcg = (aveexczg*stdevO) + avtpO 
*Mean excess over 6°C is: 
gen excessg =aveexcg-6 
*Expected number of growing days in month 
gen days=norprg*31 
*Corrections for months with less than 31 days 
replace days=norprg*30 if month= =4 l month= =6 l month= =9 l month== 11 
replace days=norprg*28 if month= =2 
*Calculate accumulated temperatures for scenario 
gen cugrowth =days*excessg 
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