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The methods of two dimensional electrical resistivity image reconstruction using an equally spaced linear 

surface array have been developed and applied to investigate geological, archaeological and environmental 

problems. The techniques explored consist of data collection methods, reconstruction algorithms and the 

image presentation methods. A complete or primary data set which contains all linearly independent 

measurements of apparent resistivity is collected by multiplexing two, three or four electrode 

configurations on a linear array placed on the ground surface. A two dimensional resistivity image in the 

subsurface is then reconstructed from the measurements by the Born procedure or by the methods of 

regularised least squares and presented as grey scale or pseudo-colour images. The use of a complete data 

set has two advantages: (1) any other data sets obtainable on the linear array can be synthesised from it 

through a process of superposition; (2) it is likely to produce a better image than a conventional pseudo­

section data set in the presence of noise. In comparison to the regularised non-linear least squares 

algorithms, the Born inversion is fast, taking several minutes on an ordinary PC computer if the sensitivity 

matrix is pre-inverted. It is also not so sensitive to the resistivity changes along the strike direction and 

therefore can be applied to image the cross-section of three dimensional structures. It is, however, a 

perturbation method with the ability only to reconstruct the relative variations of resistivities and is limited 

by its lack of resolution when resistivity structure is complicated or resistivity contrast is high. Also it is 

relatively sensitive to noise in the data. The algorithms of the regularised non-linear least squares plus 

various spatial smoothers normally produce better results than Born inversion if the initial model is not far 

away from the true solution and a proper degree of smoothness constraints is imposed on the image for the 

problem at hand. The initial model may be constructed from a priori knowledge or estimated from the 

corresponding apparent resistivity pseudo-section while the smoothness constraints are introduced by 

smoothness functions and regulated by the regularisation parameter A. Experiments indicate that among 

the various choices of smoothing functions, the zero-order regularisation function plus weighted spatial 

averaging smoother seem to be the most efficient in maintaining the stability of the iteration while being 

able to have a relatively good resolution. Experiments indicate that the choice of regularisation A is critical 

for the success of the regularised non-linear least squares algorithm. Although the experiments have 

demonstrated that good results may be obtained by choosing A automatically either as a minimizer of data 

residual or generalised cross-over functions, or even as a constant value, in general it is context dependent 

and thus needs in practice to be selected by experiment. 

The possibility of using genetic algorithms and neural network methods to reconstruct an electrical 

resistivity image is also explored. Initial numerical experiments suggest that although the genetic 

algorithms or neural network methods may be applied to process the data over 2D resistivity structures in 

the future, currently their use in practice is severely limited by the high cost of computation. 
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Chapter 1 Introduction 

During recent years there has been an increasing demand for new or improved methods for imaging 

subsurface structures for applications where conventional methods are inadequate. Examples of these 

applications are water pollution monitoring, site assessment for storage of nuclear and toxic wastes, 

enhanced oil recovery, mineral exploration, hydrogeological investigation, guidance for tunnel 

construction or mining and archaeological prospecting (see Table 1.1 ). In archaeology, detailed 

subsurface images are important for planning site conservation and excavation. In environmental 

engineering, the knowledge of detailed distribution or movement of pollutants is essential before any 

cleansing or remedial procedures can be applied. In selecting sites for the disposal of high-level nuclear 

and toxic chemical wastes, the subsurface characteristics of the site must be established with a high 

degree of confidence and here the level of spatial resolution desired is substantially greater than that 

commonly required for routine engineering investigations (Olsson et al., 1992). 

Tomography, which has been so successful in medical diagnostics, is one such technique that has the 

promise to satisfy the demands mentioned above. Tomography is norma'lly referred to as the 

reconstruction of an image from its line integrals. More broadly, it can 'also refer to any reconstruction 

of an image of some physical property (e.g. density, velocity, resistivity, etc.) from the measurements of 

emanations (e.g. radiation, wave motion, static field, etc.) that have passed through the region to be 

imaged (Bates et al., 1983). In geophysics, seismic waves and high-frequency electromagnetic waves 

are such emanations and the corresponding tomography methods are termed 'seismic tomography' and 

'electromagnetic tomography' respectively. Using seismic waves and varying the depths of transmitter 

in one borehole and receiver in another, an image of velocities may be constructed from collected data 

(Dines and Lytle, 1979; McMechan, 1983). Considerable research has been conducted in seismic 

tomography owing to its potential for commercial applications and its ability to obtain relatively high 

spatial resolution. The most widely applied technique is traveltime tomography based on the straight-

ray or curved-ray tracing algorithm where the transmission of seismic waves is approximated as a 
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straight line or curved line and the data arc the measurements of travel time from transmitter to receiver 

(Dines & Lytle, 1979; Ivansson, 1986; Dyer & Worthington, 1988; Bregman et al., 1989). Clearly 

seismic tomography only works where targets have adequate velocity contrasts. It may not function if 

the subsurface structures lack such contrasts; for example, seismic tomography cannot provide 

information about the salinity of ground water. 

If geologic targets have an electrical conductivity contrast as often is the case in mineral prospecting 

and water pollution monitoring, cross borehole electromagnetic tomography is an alternative approach. 

The transmission energy can be the high frequency continuous electromagnetic (EM) wave or a pulsed 

radar signal (Daily, 1984 and Olsson et al., 1992). The disadvantage of the technique is that the decay 

of the signal is high if the medium is highly conductive (e.g. moist soil, water and clay, etc.) and hence 

the depth of penetration is very limited, in comparison with seismic tomography. 

Applications 

Reservoir 
characterisation 
&EOR 
monitoring 
Hydraulically 
fracture zones 
characterisation 

Ground water 
pollution 
monitoring 

hnaging 
shallow buried 
targets 

Examples of these applications which may require a solution with a higher 
spatial resolution than that obtainable from conventional geophysical 
methods 

Problem Nature of Material Scale & Methods 
Area the Target Context Depth 

Low velocity Steam & oil, Large & Cross-hole seismic 
Oil Exploration &low porosity of the deep & high frequency 

resistivity sediments EM tomography 

Dump site Low resistivity, Water filled Intermediate High frequency EM 
evaluation & low velocity & fracture zones or small & (radar), electrical 
environmental high dielectric mostly resistivity & seismic 
monitoring, constant shallow tomography 
ground water 
exploration 
Environmental Variation in Various Small to Ground radar, 
monitoring -resistivity, pollutes intermediate -electrical resistivity 

dielectric & shallow & EM tomography 
constant 

Archaeological Variation in Walls, ditches, Small to Ground radar, 
prospecting & resistivity, tunnels & pipe intermediate electrical resistivity 
civil dielectric lines, etc .. & shallow & seismic 
engineering constant & tomography 
applications velocity 
e.g. pipe line 
locating. 

Note: EOR-Enhanced Oil Recovery 
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Chapter 1 Introduction 

The development of ground-penetrating radar (GPR) technology for detection and location of buried 

objects has gained considerable attention in recent years. Application areas of interest include detection 

of underground artefacts of both civil and military significance as well as high resolution mapping of 

shallow soil and rock structures (Davis & Annan, 1989). Ground-penetrating radar profiling is similar 

in concept to sonar and seismic reflection, except that it is based on EM energy reflection. A short 

pulse of high frequency (e.g. -lOOMHz) EM energy is transmitted into the ground, generating a 

wavefront that propagates downward. Some of the energy is reflected when there is a change of 

dielectric permittivity within the medium whereupon it returns to the surface. Most GPR data are 

gathered by single channel reflection and are not suitable for tomography. Only in last few years has 

multi-channel GPR data collection been introduced enabling conventional seismic data processing 

methods, such as filtering, migration and possibly, tomography, to be applied (Jol & Smith, 1991; 

Fisher et al., 1992). One limitation of GPR is that the reflection of a radar wave strongly depends on 

the water content because the dielectric constant of water is more than 10 times that of most dry 

geological materials (i.e. 80:4-8). The high attenuation rate of radar signals in conductive materials 

such as clay and water limits its depth penetration. Like seismic reflection survey, GPR works best 

when the subsurface structures are in layers or quasi-layers. 

Electrical resistivity surveying is another simple and cost-efficient alternative for applications where 

resistivity contrast exists. It has better depth penetration than GPR when the subsurface moisture is 

high while the equipment is· also cheaper and much simpler to operate. Although conventional 

resistivity techniques used in geophysical exploration are very crude when regarded as imaging 

methods, recent progress in electrical resistivity tomography, especially in medical physics, has shOwn 

that potentially a better image, in terms of spatial resolution, of subsurface structures may be achieved. 

Electrical resistivity tomography or ERT is a method for producing an image of the electrical resistivity 

distribution in a volume from discrete measurements of voltage or current made within or on its surface 

by passing current through the volume. The development of ERT mainly stems from two branches: in 

medical diagnosis and in geophysical imaging. A review of progress in those two areas is given: 
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Electrical resistivity tomography in medical diagnostics is referred as 'electrical impedance 

tomography', BIT, or 'applied potential tomography', APT. Although electrical resistivity surveying 

has been routinely employed in geophysical prospecting for a long time, the first success of resistivity 

tomography seems to have been in medical diagnostics where the measurements can be made around 

the surface of the region to be imaged. In recent years, intensive research has been carried out in this 

area and consequently a significant amount of progress has been made which has been documented in 

special issues of Clinical Physics and Physiology Measurements (Brown et al., 1987; Brown et al., 

1988). 

Early attempts at medical BIT imaging were based on current, rather than voltage measurements. The 

aim was to construct a system where current may flow in a parallel or fan beam form (e.g. Schomberg 

1980; Kim et al., 1983). The underlying assumption is that the current flows along raylike paths and 

so reconstruction algorithms applicable to X-ray and other tomographic modalities could be applied. 

There are two fundamental problems with this approach. Firstly, these methods require the 

measurement of current or voltage at active electrodes. The effect of contact resistance will produce 

significant errors and may well make reconstruction impossible (Wexler et al., 1985; Barber, 1989), 

and secondly, the passage of current flow is strongly dependent on the distribution of resistivity and 

generally does not follow any straight line or predictable path. Hence it seems inappropriate to perform 

resistivity image reconstruction by standard algorithms which assume that the measurement is a line 

integral of the image like X-ray tomography, as demonstrated by Bates et al. (1980) 

In recognising such problems, Barber and Brown ( 1984) developed a resistivity tomography system 

where voltage, instead of current, is measured. The system employs an encircling array of 16 

electrodes. When a 50kHz, 1-5mA current is passed between two adjacent electrodes the voltages are 

measured between remaining adjacent pairs of electrodes (see Figure 1.1 ). A whole data set is collected 

by driving the current dipole around the object in turn. The algorithm is designed to image the relative 

changes of resistivity and requires collecting a set of voltage data Vref before the resistivity change 

occurs and another set of voltage data V dar after the change takes place. As shown in Figure 1.1, the 
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12 

4 

X 

(a) (b) 

!Figure 1.1 The backprojection method for an encircled array of 16 electrodes: (a) 
equipotentials produced by a current dipole; the shaded area represents the area into which 
backprojection of voltage V occurs; (b) the distance measures in the weighting function 
where r is the distance from the centre of circle to the pixel and d is the distance from the 
current dipole to the pixel (after Barber, 1990). The diameter of the circle is in 1 unit. 

normalised voltage difference g = ( V dat - V ret ) I V,e1 is then weighted and backprojected along the 

equipotentials to form a dynamic image of resistivity in an anatomical section, i.e. if there are m 

equipotential lines passing through point (x, y) for the whole data set, a pixel value c(x, y) is 

1 m 
c(x,y) =-2, W.t(x,y)g.t 

m .t=I 

(1.1) 

and 

(1.2) 

where w.t (x,y) is the weight for a pixel at (x, y) at a distance of r from the circle centre and a 

distance d from the current dipole, g A: is the k th normalised voltage which has an equipotential line 

passing through the pixel at (x, y) and c(x,y) is the relative change of conductivity at (x, y). The 
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algorithm is fast because the weighting function can be calculated ahead of reconstruction. However, 

the weighting function is purely empirical and the processes of backprojection are more heuristic than 

being rigorously based on physical principles. For example, the changes of boundary voltage with 

respect to the references are not necessarily only related to the resistivity within the equipotential zones 

to which they belong and therefore one may ask why the backprojection is along the equipotential line 

and not into the entire region. The geometry of the region to be imaged is required to have circular 

symmetry. Despite its evident success, the rigorous physical base behind the algorithm is still not fully 

understood (Barber, 1989) and it may therefore be difficult to extend the algorithm to applications with 

other geometries. This may explain why the results were less encouraging when this algorithm was 

modified to image subsurface resistivities from data gathered by a linear electrode array on a flat 

surface (Powell et al., 1987). 

A variety of reconstruction algorithms involving iterations have also been proposed. Wexler et al. 

(1985) and Wexler (1988) described an iterative algorithm where no sensitivity matrix (Jacobian 

matrix) is calculated. Firstly with an initial resistivity distribution and a given pattern of current on the 

surface (the Neumann boundary condition) , the distribution of current flow J within the object is 

computed by a finite element method (FEM). Then a solution for the potential distribution V within the 

object is computed from measured voltage data on the surface, or Dirichlet boundary condition and 

assumed resistivity distribution. If the initial guessed resistivity distribution is the solution, there 

should be 

J = -aVV (1.3) 

according to Ohm's Law in point form, where a is the conductivity and V is a gradient operator. 

Wexler et al. (1985) argued that the computed current flow and potential distribution within the object 

will not be consistent initially, i.e. J + aVV :1: 0, because the initial guess of conductivity distribution 

is usually not correct. The resistivity image can then be estimated by minimising the difference between 

those two current distributions, i.e. J and -aVV. Wexler (1988) showed that a new estimate for the 

conductivity of the i th element is 
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- ~J.lfoVVdQ 
0; cr. = ---::-....:._ __ _ 

' ~JvvoVVdO 
(1.4) 

0; 

where the integrations are over the volume Q; occupied by the i th element and the summations are 

over all the applied current patterns. The process is repeated until it is convergent. Such an approach 

has shown some encouraging results (Wexler, 1988) but its convergence speed is very slow. Yorkey et 

al. (1987) also proposed an iterative algorithm which combined the fmite element method with a 

modified Newton-Raphson technique where the FEM is used to compute the voltage boundary data 

from a model and the Newton-Raphson method is used to modify the model parameters to minimise the 

errors between observed and computed data. The final resistivity distribution of the model is the 

reconstructed image. 

Several of these algorithms have been compared by Yorkey et al. (1987) on synthetic data under the 

assumption that both current and resistivity distributions are confmed within a 2D sheet-like region. 

They conclude that iterative algorithms with a correct sensitivity matrix (Jacobian matrix), such as 

Yorkey's algorithm (Yorkey et al., 1987), can achieve the best results. Recent progress in this area can 

be found in Barber(1989), lder et al. (1990), and Hua et al. (1991, 1993). In general, it appears that 

the algorithms in medical science are currently developing in two directions: the first is the 

backprojection algorithm devised initially by Barber et al. and the other is the iterative algorithm which 

nonnally involves a different kind of forward modelling and function minimisation or optimisation 

methods. The backprojection algorithm has been proved to be very fast because the reconstruction is 

simply a process of multiplying nonnalised voltages by pre-calculated weights so that it can be 

implemented in a real-time image tomography system. It also has the advantage of not being very 

sensitive to the variation of surface shape of the target volume compared with iterative methods 

(Barber, 1989). The disadvantage is that this algorithm can only reconstruct the image of resistivity 

changes, not the absolute values of resistivity distribution and hence cannot be used in situations where 
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there is no change in resistivity during data collection or when an absolute resistivity image is required. 

On the other hand, iterative algorithms can construct an image of an absolute resistivity distribution but 

require accurate forward calculation of the boundary data within 1%-2% which could only be achieved 

with high cost computation, for example, by FEM (Barber, 1989). The problem of ill-posedness in the 

inversion is another difficulty for iterative algorithms, as it will be discussed in Chapter 5. 

~ .® IR!~~~~IiT\!~iFV iF©M©@IR!b\~IFOV ~INI @~©~IFOVS~rc~ 

When compared to impedance tomography in medical science, the development of electrical resistivity 

tomography in geophysics has been limited in its scope. Resistivity tomography in geophysics differs 

from impedance tomography in medical diagnostics both in physical scale and measuring angular 

coverage. Geophysical applications require sampling on a larger physical scale than medical 

applications and hence to achieve sufficient received-signal levels over practical distances much lower 

frequencies such as 0.5-lOHz and stronger currents have to be used. Generally, the region to be imaged 

in geophysics is not accessible through 3600 and hence the angular coverage of measurements available 

here are much less than in the case of anatomical studies, especially when only a surface electrode array 

can be deployed. However, significant progress has been made (Noel & Walker, 1990; Daily & Owen 

,1991; Barker, 1992; Shima, 1992; Ramirez, et al., 1993) 

Resistivity survey methods have been used to investigate subsurface structures since the beginning of 

this century. Applications include mineral and hydrothermal prospecting, groundwater location, 

contamination monitoring and archaeological evaluation (Young & Droege, 1986; Zohdy & Bisdorf, 

1990; Bevc & Moriison, 1991 ). The early presentation of resistivity data was not much more thaiJ. a 

tabulation of measured apparent resistivities while later the data were interpreted by curve matching 

(e.g. Keller & Frischknecht, 1966; Orellana & Mooney, 1966) and model fitting through trial and error 

or nonlinear inversion (e.g. Van Nostrand & Cook, 1966; Inman, 1975). The development of the filter 

method in fast forward modelling (Ghosh, 1971a, b) was significant, since it enabled 10 forward 

modelling or nonlinear inversion to be routinely and quickly carried out on calculators or personal 

computers. However, in general these techniques are only suitable for layered earth models and 

consequently, it was difficult to interpret any but simple subsurface structures. 
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Attempts to invert surface potential data to arbitrary 20 subsurface resistivity structures can be traced 

back to Alfano's work (1959). Later, Pelton et al. (1978) proposed an inexpensive inversion algorithm 

based on least-squares optimisation and a precalculated forward modelling data bank. Although this 

algorithm is computationally efficient, it is impossible to fit arbitrary 2D resistivity structures to 

information in a limited data bank. In fact the algorithm assumed that the structure to be recovered is a 

single 20 prism lying immediately below a single layer of overburden. Dines and Lytle (1981) 

developed an algorithm for imaging core samples immersed in a saline bath using an encircling 

electrode array. Tripp et al. (1984) formulated a more general iterative algorithm of nonlinear 

inversion using a subsurface model based on the resistance network for forward modelling and 

nonlinear least-squares as a search method. Here the geometry of the model must be specified in 

advance and the algorithm is only suitable for dipole-dipole electrode configurations. Tong and Yang's 

(1990) algorithm is similar to Tripp et al.'s but incorporates topographic modelling into their finite­

elements forward modelling and is suitable for general collinear 4-electrode configurations, i.e. any 

collinear configuration which transmits current through the subsurface by a pair of electrodes and 

measures the potentials on another pair. Shima (1990, 1992) developed an algorithm where the 

forward modelling was conducted by the alpha centres method (Stefanescu 1970) and data were 

collected using a pole-pole electrode array. The algorithm is fast but may suffer from its inaccuracy in 

forward modelling for arbitrary 2D structures. Daily and Owen (1991) employed Yorkey et al.'s 

(1987) algorithm in cross-borehole resistivity inversion where resistivity and electrical currents are 

assumed to be distributed only within a 2D sheet. A recent progress has been to impose smoothness 

constraints on the reconstructed resistivity images (e.g. Sasaki, 1992). A different approach was 

described by Barker (1992) where the iterations were based on Zohdy's (1989) technique, not the 

conventional nonlinear least squares method. Although the algorithm is fast and has provided some 

successful results, the underlying assumption that the apparent resistivities in the Wenner pseudosection 

are related to the true resistivities of a forward model by the depth investigation may make the 

algorithm unstable for complicated 20 structures. This arises because the 'depth of investigation' is not 

only a function of electrode spacing but also a function of resistivity contrast. 
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As stated above, nearly all algorithms for resistivity imaging are iterative and follow similar strategies. 

An initial resistivity distribution is assumed and from this starting model the boundary data are 

calculated by forward modelling. The computed boundary data are then compared with the actual 

measurements and the differences are used to adjust the model until the boundary data eventually best 

fit the observed data. The final model is then taken to be the reconstructed field section. This process 

is normally carried out through nonlinear least-squares function minimisation (optimisation) methods. 

Given the complex nonlinear relationships between a resistivity distribution and the potential data on 

the ground surface, it seems justified to employ iterative algorithms. However, experience suggests that 

the success of iterative algorithms largely depends on the accuracy of both forward modelling and the 

initial model structure. The former is due to the inherent ill-conditioned problem of resistivity 

inversion, i.e. a small data error can cause a large fluctuation in the reconstructed image. The latter is 

due to the fact that most function minimisation techniques devised so far are local search methods 

which can be trapped at a local rather than global minimum. To achieve higher accuracy in forward 

modelling requires a finer mesh to be employed, for example, by FEM. Using such a mesh to 

characterise the subsurface will result in a large number of cells, rapidly leading to an increase in 

computing time. It is also not yet clear how to carry out the global search (Press et al., 1989; p274). 

Another disadvantage is that in most cases an iterative algorithm requires use of major computing 

facilities. 

In addition to the iterative algorithms mentioned-above, Noel & Walker (1990) proposed a non-iterative 

algorithm using a linear electrode array with dipole-dipole electrode configurations. The measured 

voltages are first normalised by reference voltages calculated for a assumed uniform half space and are 

then backprojected into the equipotential zones in a similar manner to Powell et al.'s (1987) and Barber 

& Brown's (1984) backprojection algorithm. The algorithm has achieved some success (Noel & Xu 

1991), but it suffers the same problems as Barber & Brown (1984)'s algorithm mentioned before in 

relation to image artefacts arising from structures with appreciable resistivity contrast. Therefore, the 

algorithm may not work well with complex 2D structures. A similar backprojection algorithm was also 

proposed by Shima (1992) in which the weighting function was estimated from the linearized Jacobian 

Matrix and the same weakness as mentioned above would be expected. 
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Chapter 1 introduction 

The aims of this study are to develop electrical resistivity tomography techniques for geological and 

archaeological investigation using a linear electrode array placed on the ground. The study includes the 

development of suitable field data collection methods, reconstruction algorithms and image presentation 

and processing methods. 

Chapter 2 will describe how to collect a large dataset of linearly independent voltage measurements on 

a linear array of electrodes and how to transform such data sets into others. Chapter 3 discusses some 

problems arising from the practical implementation of field data collection methods, such as roll-along 

data collection mode, the effect of spacing error and topography on the measurements and some 

considerations on the design of multielectrode switching systems. Chapter 4 introduces a fast 

reconstruction algorithm based on Born inversion. The nonlinear algorithms, including the method of 

regularised nonlinear inversion algorithms and the potential application of genetic and neural networks 

are explored in Chapter 5. The image presentation and processing methods are discussed in Chapter 6 

while the results of numerical and field experiments are discussed in Chapters 7 and 8. Finally Chapter 

9 presents a summary of the achievements of this research and possible future work. 
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Chapter 2 Data Collection 

Design of an efficient data collection method comprises an important part of the electrical 

resistivity tomography method. It is known that the effective resolution in any tomographic 

method is largely limited by the measurement geometry and the error distribution in the available 

data (e.g. Natterer, 1986). The measurement geometry is also referred to as angular coverage of 

the data since it is a measure of the angle from which the object can be 'viewed' by transmitter 

and receiver. Almost all medical tomography systems have a measuring geometry of up to 360° 

because the transmitter and receiver can be placed around the object, enabling the data to be 

collected by scanning around the object with transmitter-receiver (e.g. Figure 1.1). In 

geophysical tomography, the 

choice of the measuring 

geometry is much wider, as 

shown by the samples in 

Figure 2.1. In the case of 

borehole to borehole and 

borehole to surface 

measuring, the angular 

coverage of data may 

o : Transmitter or Receiver 

(Q) (b) 

figure 2.1 Angular coverage of measurements: (a) on the 
surface; (b) borehole to borehole and borehole to surface. 

approach 360°. On the other hand, if measurements are confined to the ground surface, then the 

angular coverage with respect to the target may be at most up to 180°, resulting in an 

information deficient system. This chapter will describe how, using a surface linear array of 

equally spaced electrodes, potential data can be obtained with limited measurement geometry for 

use in ERT imaging. 

In electrical resistivity surveying, the current and potential electrodes are to be arranged in a 

certain pattern which is called an electrode configuration; for example a current dipole and a 
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potential dipole. Although the line source or other electrode configurations may also be suitable 

for ERT, the discussion here will be confined to colinear 4-electrode configurations which have 

wider practical application. Electrical resistivity survey using colinear 4-electrodes involves 

passing current through the earth between a pair of electrodes (C]. & C2) while measuring the 

potential difference arising between a second pair (JP]. & JP2). If one or two of the electrodes are 

fixed at a great distance from the others (which are mobile), then measurements are regarded as 

employing a 'three electrode' or 'two electrode' configuration, respectively. The primary aim of 

this chapter is to explore how to make best use of the limited measurement geometry to collect a 

large series of data which contains all linearly independent measurements of apparent resistivity 

on such an array using two, three or four electrode configurations. From this primary data set, it 

is shown that any other value for apparent resistivity on the array can be synthesised through a 

process of superposition. 

Resistivity data acquisition using a colinear array of four electrodes with different configurations 

has been investigated by many researchers (see, Keller & Frischknecht, 1966; Telford et al., 

1990). Most of the data collection methods developed so far are specifically intended for vertical 

sounding or horizontal profiling. Although the pseudosection method (see Edwards, 1977) can 

provide some information regarding the 2D distribution of resistivity, data from such 

conventional resistivity surveys may still be too sparse to be suitable for tomographic processing 

and therefore it becomes necessary to develop a routine which ensures a larger set of linearly 

independent data being collected. 

The advent of resistivity meters electronically multiplexed to large electrode arrays has been a 

significant recent development in the field of resistivity surveying (Griffiths & Turnbull, 1985; 

Van Overmeeren & Ritsema, 1988; Noel & Walker, 1990). These systems expand the choice of 

electrode measuring configurations and the number of data that can be collected in a realistic time 

although, hitherto, their main application has been to the automation of conventional 

pseudosection surveys (e.g. Griffiths eta/, 1990). However, this interesting development raises 

some fundamental questions: 
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ll. What is the relationship between electrode spacing, length of array and desired resolution? 

2 What is the maximum number of linearly independent apparent resistivity data that can be 

obtained using an array of N electrodes? 

3 In which sequence should the electrodes be connected to the resistance meter to ensure that 

the resulting dataset is both complete and contains independent items? 

~ How can one dataset (with one pattern of measurement electrodes) be transformed into 

another (with a different pattern) while maintaining the status of independence and 

completeness? 

§ How can the data be collected more efficiently when the array is moved along a traversing 

line while ensuring completeness? 

6 What are the relative merits of different datasets when used as inputs to the ERT inversion? 

Questions 1-4 are addressed in this Chapter and questions 5 and 6 will be discussed in Chapters 3 

and 7 respectively. 

2.2 MEASUREMENT GEOMETRY 

Measurement geometry (i.e. scanning or projection geometry) is one of the predominant factors 

which determines the number of data and the amount of information available for image 

reconstruction. By comparing the measurement geometry of ERT to that of ray based 

tomography (i.e. the tomography where the paths of emanations can be approximated as lines or 

beams), we may gain some insight into the data collection problem of ERT. In ray based 

tomography that employs X-rays or seismic waves, the importance of sampling geometry is 
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clearly indicated by Radon's theorem which implies that the data from all projection geometries 

around the object to be imaged should be collected if an image of a structure described by a 

continuous function is to be reconstructed (see Herman, 1980; Natterer, 1986). The maximum 

angular coverage of the projection is 3600. InERT, there is no direct analogy to the concept of 

projection because the path of current flow is itself a function of resistivity distribution but we 

may define each transmitter-receiver position around the target region as one projection (or 

measurement) geometry and the potential datum associated with each such position as one 

projection. In this way the principle of data acquisition in ray-based tomography may be applied 

to ERT, i.e. the maximum angular coverage of potential data is also 360° when the region to be 

imaged can be encircled by electrodes and all projections (potentials) are collected by scanning 

the region with measuring electrodes. Since the electrical field of a point source fills the whole 

space of the medium, for each source location all potential data on the boundary should be 

collected rather like the fan-beam configuration used in X-ray tomography. 

Clearly the best measurement geometry for electrical resistivity surveying in the field can only be 

achieved through borehole to borehole and borehole to surface measuring schemes where the 

angular coverage of projections may approach 360°. Another advantage of such a configuration 

is that the secondary field due to resistivity structures is strong because of the short distance 

between the target and transmitter or receiver. This explains why most ERT as well as other 

geotomography methods are developed for boreholes. However, boreholes are expensive to drill 

and therefore are not always available. In some archaeological investigations, drilling may be 

forbidden bec-ause it may destroy the underground remains. In this case, an ERT method based 

on a linear electrode array on the surface is attractive. The disadvantage with this method is that 

the projection geometry is severely limited (angular coverage< 180°), resulting in an information 

deficient system where the reconstruction is fundamentally underdetermined. This will make an 

already ill-posed inversion problem even worse, as will be demonstrated in the later chapters 

involving tomography algorithms. 
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In principle, the maximum angular coverage of potential data with a linear electrode array on the 

surface may be achieved by injecting current through each electrode in turn and collecting 

potential data from the rest of the electrodes. The electrode array should extend to infinite 

distance and electrodes should be closely spaced although, of course, it is impossible to carry out 

such a data collection. Firstly, the electric field of a point source, especially the secondary field 

due to a resistivity anomaly, decays rapidly with distance. Thus for a specific region the useful 

length of the electrode array is limited. For the same reason, the choice of electrode spacing will 

depend on the burial depth and dimensions of objects of interest, as will be discussed in section 

2.3. Secondly, the potential field produced by a point current source is known to be symmetric 

and additive. It is symmetric in the sense that interchange of the positions of the current and 

potential electrodes does not change the measured value of potential. It is additive because the 

total potential field from several current sources is equal to the sum of the fields generated by 

individual current sources. Consequently such a potential data set may contain values which are 

redundant since they can be superposed or they arise from interchange of the positions of current 

and potential electrodes and hence it may not be necessary to collect all data over a linear array 

for each current injection. The situation is further complicated by the fact that the data can be 

gathered by several different configurations of measuring electrodes, for example, a dipole-dipole 

or a Wenner configuration. There is then a question as how many electrode configurations have 

to be applied to collect all those data and if more than one of the configurations are applied, 

whether- the data from different electrode configurations are linearly independent. This will be 

discussed in sections 2.4 to 2.6. It will be shown that in general, the potential data should be 

collected by scanning the measuring electrodes over a linear array in a-way similar to X-ray 

tomography so that a larger number of data, or 'projections', can be gathered. 

To scan over a linear array with current sources and potential electrodes is also justified by the 

fact that this approach can generate a more isotropic current distribution within the region of 

interest, as argued by Noel and Xu (1991 ). The currents flow through the region with different 

direction for each location of current electrodes and therefore the measurements may provide 
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some information about anisotropy properties of the resistivity distribution. This possibility has 

yet to be explored. 

Another interesting discussion of data collection methods for resistivity survey was given by 

Stevenson (1934) and Vozoff (1960). They pointed out that in the determination of an 

underground resistivity distribution it is not sufficient simply to generate a number of data equal 

to the number of unknowns. They indicated that there must be a certain relation between the 

number of dimensions desired of the solution and the number of dimensions of the collected data. 

For instance, the horizontal layered earth is a lD problem and thus only one full dimension of 

information is needed. The example of such a full dimension of information is the pole-pole data 

set collected with the current source at a fixed point while the potential electrode moves from near 

the cwTent source to 'infinite' distance or a conventional vertical resistivity curve with electrode 

spacing expanded from relatively small to very large distance. A 2D resistivity structure requires 

'two dimensions of information' which can be obtained from resistivity sounding curves for 

different current sources locations on a traverse line crossing the strike of the target, i.e. one 

dimension of information is the curve and the 2nd is the locations of current source. This 

arsument seems to coincide with the projection and projection geometry problem mentioned 

above. 

2.3 ELECTRODE SPACING AND RESOLUTION 

As mentioned above, one of the basic problems arising in data collection using a linear electrode 

array is the choice of array parameters which include the interelectrode spacing and the total 

number of electrodes. For a given target region, important questions are: 

1) What line density of the electrodes should be used? 

2) How many electrodes should be applied? 

3) What is the relationship between those parameters, the spatial resolution and depth of 

investigation? 
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Questions 1) and 2) are closely related to sampling theory and therefore in principle may be 

treated rigorously while question 3) is complicated and rather difficult to deal with. 

The fundamental theory in sampling is Shannon's sampling theorem which deals with band­

limited functions (see Jerry, 1977 for a review). In practice, most functions are not band-limited 

in the strictest sense, for example, the apparent resistivity sounding curve over a layered earth 

model does not have a clear cut-off frequency in its amplitude spectrum when it is transformed 

into the frequency domain by the Fourier transform method (see Ghosh, 197la). Nevertheless if 

its amplitude spectrum is negligible for frequencies higher than a high frequency fc• the function 

is said to be a fc-band-limited and Shannon's sampling theorem can be applied. According to 

Shannon's sampling theorem, a set of data sampled at a rate of twice the highest frequency in the 

function is enough to represent that function. Data from a sampling rate more than this produces 

no extra information. If the band-limit value fc of a apparent resistivity function is known, the 

interelectrode spacing a should be 

a< 1/(2/c) (2.1) 

However, it is very difficult, if not impossible, to obtain the band-limit value fc of apparent 

resistivity functions for general 2D structures because there is no analytical formula available for 

such functions and one must anticipate that the apparent resistivity function on the ground varies 

with underground resistivity distribution as well as electrode configuration-applied. 

In practice, an empirical estimate of the interelectrode spacing may be adequate. The choice of 

spacing is determined by the dimension of the objects to be imaged and the depth of the zone of 

interest. The spacing should not be so large as to 'overlook' the objects and also not so small that 

there is insufficient depth penetration. For an equispaced linear array with about 20 electrodes, 

Acworth and Griffiths (1985) suggested that the interelectrode spacing a can be chosen such that 

Dl3<a<2D/3, where Dis the anticipated depth to the zone of interest. This estimation is close to 
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the result obtained using the concept of 'depth of investigation' (e.g. Roy & Apparao, 1971; 

Barker, 1989) 

Alternatively, the spacine a may be estimated by equation (2.1) where the band~limited or cut-off 

frequency fc may be inferred through numerical modelling, i.e. the apparent resistivity sounding 
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figure 2.2 Resistivity models used to generate apparent 
resistivities for Fourier spectral analysis where all 
distances are expressed relative to the horizontal 
dimension (1 unit) of the object. The interelectrode 
spacing is 1/4 unit. 

curves for 2D resistivity models are calculated by the finite difference method (or the finite 

element method) and their amplitude spectra are analysed by the fast Fourier transform. This 

was explored by the two models shown in Figure (2.2) where the horizontal dimension of the 

target is measured in one unit (e.g. metre or centimetre) and the 41- electrodes are equispaced at 

1/4 unit intervals. The apparent resistivities from two different electrode configurations, cCCPP 

and cCPPC as defined in the next section, are computed and their corresponding amplitude 

spectra are shown in Figure (2.3). Although the spectra decay rapidly with increasing frequency, 

it is still difficult to determine the cut~off frequency because of the uncertainty in the choice of a 

proper zero level for the spectra. If the zero level of the' spectra is taken as w-3, the cut-off 

frequency fc is about 2.0, which implies that the interelectrode spacing should be about 4 times 

-19-



Chapter 2 Data Collection 

smaller than the horizontal dimension of the objects to be imaged. Several similar models were 

explored from which it seems that the band-limitfc is associated with several factors: 
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Figure 2.3 Amplitude spectra of apparent resistivities from model 
1 and model 2 in Figure 2.2. Electrode configuration: (a}=cCCPP 
and (b}=cCPPC. 
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1) fc decreases with target buried depth; 

2) fc increases with resistivity contrast; 

3) fc is related to specific electrode configurations used in the data set; 

Although such modelling may never be exclusive, loosely speaking, the fc value is about 0.5 to 2, 

and hence the interelectrode spacing should about 1 to 1/4 of the horizontal dimension of the 

smallest target of interest, given typical geological resistivity contrasts. 

In its strictest sense, Shannon's theorem implies that the sampling of surface potentials is canied 

out from negative infinite to positive infinite distances because the Fourier transform requires to 

do so. In practice a limited number of sampling points within a relatively short distance may be 

enough because both the field of a point current source and the secondary field due to the buried 

objects decay rapidly with increasing distance. The useful length of the array will be limited by 

the measuring accuracy of the instrument and the natural sources of noise. Experience suggests 

that it may be adequate to have about 16 to 30 electrodes for an equispaced linear array. With a 

larger linear array the potential field, for instance, from a dipole-dipole configuration, will be too 

small to be detectable. 

~.4 IEliECTIR!OIDIE CONfiGlBIR!ATION 

As mentioned in the introduction to this chapter, electrical resistivity survey using a colinear 4-

electrode array employs a pair of electrodes for current injection and another pair for potential 

mea8urements. The actual electrode layouts are said to be 'thiee electrode' or 'two electrode' 

configurations if one or two of the electrodes are fixed at a great distance from the others. Given 

a pair of current electrodes and a pair of potential electrodes and 4 specific positions on a line, 

this section discuses how many electrode configurations are possible and whether the voltage data 

obtained from those configurations are linearly independent. 
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Two measuring electrode configurations 

In this case, there are two electrodes placed at the area under investigation while the remaining 

two electrodes are sufficiently 

Cal C2 <>--- oo 
00---<> P2 

distant to be regarded as at PI Cl 

infinity. The two possible (b) C2 <>--- oo- Cl PI -- 00--C> P2 

v v configurations, read from left to )7///?///7?>>>>>>>>>>>>>>>>>>7??///?//7 
right as 'CJID' and 'Jll'C', for such 

an array are shown in Figure 2.4 

in which the current and potential 

!Figure 2.~ Two measuring electrode configurations in a 
linear array of N electrodes: (a) the C!Pl configuration 
and (b) the IP>C configuration 

electrodes are simply interchanged. However, according to the reciprocity theorem, the measured 

potentials will be identical and hence there is only one independent measurement for this 'pole-

pole' coru"iguration. 

Three and four measuring electrode configurations 

Figure 2.5 shows that there are six possible electrode connections for either case of three or four 

(1) c p p c c p p 
p c c p p c c 

(2) p c p c p c p 
c p c p c p c 

(3) c c p c p p c 
p p c p c c p 

' " ' 'V 9 " 'Y 
7>>>>777>7777>~ ???>>>»>>>>>>>>>' 

(B) (b) 

-

Figure 2.5 Three pairs of electrode configurations for (a) three measuring 
electrodes and (b) four measuring electrodes in a linear array of size N. If 
the configurations are read from left to right, they are CPP(PCC), 
PCP(CPC) and CCP(PPC) for three measuring electrodes, and 
CCPP(PPCC), CPCP(PCPC) and CPPC(PCCP) for four measuring 
electrodes where the configurations in brackets are reciprocal ones. 

measuring electrodes of which half are again reciprocal and can thus be ignored. Moreover, it 

can be shown that only two of these remaining data are completely independent since the third can 
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always be created by superposition; for example the possible voltage data from 3-electrode 

configurations at positions 1, 2 and 3 shown in Figure 2.5(a) are 

Vepp=Un-UJ3 

Vpcp=U2rU23 

Vcep=Un-U23 

(2.2) 

(2.3) 

(2.4) 

where Uij is the potential at the j th position produced by the current source at the i th position, 

Vepp• Vpep and Veep are the voltage data measured by ClP'lP', lP'ClP' and CCJP' configurations 

respectively. Considering that U12=U2Jt then 

(2.5) 

Therefore, there are two linearly independent data which can be collected using 3-electrode 

configurations at any location on a linear array of three. A similar relation to equation {2.5) for 

4-electrode configurations was given by Carpenter {1955) and Carpenter & Habberjam (1956) 

who showed that there are also only two independent data from three configurations on a colinear 

electrode array of four. 

In fact, the configurations discussed here are only the combination patterns of transmitter­

receiver, without considering the intervals between electrodes as a variable. The conventional 

electrode configurations used for field surveys can be taken as special- cases of the above 

configurations. For example, the Wenner array is a special case of the CPPC configuration 

where 4 electrodes are equally spaced. In the next section, we will discuss how to multiplex such 

possible patterns to a linear array with N electrodes and how to ensure that the collected data are 

not linearly dependent, i.e. any of them cannot be created from the data set by superposition. 
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Suppose that a linear array of N electrodes has been set up on the ground surface with equal 

interelectrode spacings. The questions now are 

1 How many independent (not linearly correlated) data can be collected over such array? 

2 How can the electrode configurations mentioned above be multiplexed to the linear array 

to enable such an independent data set to be gathered? 

2.§.1 Two meatmrnng electrod12 oonf~guratiomJ 

As shown in Figure 2.4, consider now the situation in which current electrode 'C' is migrated 

along a array of N electrodes while potentials are recorded on the remaining electrodes. There are 

in total N positions for 'C' and for each such 'C' position there are (N-1) positions for potential 

electrodes '.IP'. This provides a total of N(N-1) measurements of which equal numbers arise from 

'CP' and 'PC' geometries. Bearing in mind the reciprocity referred to above, we conclude that the 

maximum number of independent measurements S 12
> is 

S
<2> _ N(N -1) 
N -

2 
(2.6) 

This dataset is listed in Table 2.1. For the convenience of later discussion, we shall introduce the 

Table 2.1 The data set of pole-pole configuration with a N 
electrode array 

c 

1 
2 
3 

N-2 
N-1 

Electrode 

2, 3, 4, 
3, 4, 

4, 

5, 
5, 
5, 

-Position 

p 

• • • I 

... ' 

... ' 
N-1, N 
N-1, N 
N-1, N 

N-1, N 
N 

Note: C--current electrode P--potential electrode 
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concepts of the Complete Dataset and Complete Data Space. A Complete Dataset is defined as 

a series of measurements (with a given electrode configuration) which consists of only 

independent data and from which any other dataset (with different configurations) can be created 

by superposition. Otherwise the dataset is said to be Incomplete. By implication, such a 

complete dataset is not unique. In terms of linear algebra, a complete dataset with m linearly 

independent data is a vector in an m-dimensionallinear space, IR.m. All such vectors form a space 

JJ?.m which may be called a Complete Data Space. The dataset shown in Table 2.1 is one such 

complete data set for the pole-pole configuration over a linear array of N electrodes. A complete 

data set can also be referred to as a Primary Dataset. 

It must be pointed out that a resistivity measurement is a discrete sampling of the continuous 

voitage function which is stimulated on the traversing line. Tne dataset is 'complete' in the sense 

that any other measurements at those discrete locations with a similar configuration can be 

superposed, i.e. no more independent data can be collected over the specific linear array. As 

mentioned above, the potential distribution on the surface is not a strictly band-limited function 

and extends to infinite distance. Thus the complete dataset here is in general incomplete if the 

interelectrode spacing is not short enough and the length of the array is small. Nevertheless the 

concept of such a complete dataset is useful because in practice any ERT data have to be 

sampled with specific electrode spacings and a limited length of array. 

2.§.2 Three and four measuring electrode configurations 

The extraction of complete and independent datasets from all possible systems of 3 or 4 

electrodes multiplexed to a large array is a challenging and complex task. However, the problem 

becomes tractable when it is recalled that any 3- or 4-electrode dataset can be decomposed into a 

series of pole-pole measurements whose complete data space is known. Thus, by establishing and 

examining the matrix which transforms pole-pole measurements into the data set of 3- or 4-

electrode systems it is possible to gain some insight into the complete data spaces for these 

electrode configurations. 
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The pole-pole data set in Table 2.1 can be arranged into a vector 1f. according to rows, i.e.: 

(2.7) 

where U;j is the potential at the j th position due to the current at the i th position. For any data 

seth, there always exists an m-by-n matrix A (denoted as A e Mm,n)• such that 

Ax=b (2.8) 

where n= N(N-1)12, JR..n is the complete data space of pole-pole array and Rm is a space which 

contains any other data set. The only possible entries for matrix A are 0, + 1, -1. 

Two observations can be made from equation (2.8). First, the space /Rm is spanned by the 

column vector of A, i.e. vector b is a linear combination of the column vectors of A with the 

coefficients of X; (x; e x). The vector set of all linearly independent column vectors in A is a 

basis which spans Rm. To construct a matrix A, which transforms x into a complete data vector 

in JR.m, is to construct a basis for Rm. Therefore, the following relation exists 

m = rank(A) (2.9) 

This means that the maximum number of independent data from three or four electrode 

configurations can-be obtained by checking the rank of the superposition- matrix A. -secondly, the 

matrix A is a linear mapping operator from Rn to Rm where Rn is the domain space of A and Rm 

is the range space of A. For a linear mapping operator, the dimension of the range space never 

exceeds the dimension of domain space, i.e. 

(2.10) 
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This implies that the number of independent data from three or four electrode configurations will 

be less than, or at most equal to, that of a pole-pole configuration. It is clear that if A = l, then 

x=lb. Thus, the column vector set of identity matrix lis a basis which spans the complete data 

space of the pole-pole configuration. 

Equations (2.8), (2.9) and (2.10) can serve as a general guide to constructing the complete data 

set, or at least to evaluate the dimensions of the complete data space IR.m. For example, the 

following procedures can be employed to search for complete data sets for three or four electrode 

configurations in a multielectrode array. 

(1) Design a procedure in which, when current is driven through each electrode in turn, the 

data are collected from all electrodes excluding those supplying cwTent. In such a case, 

the number of the collected data k may be larger than the number of pole-pole data n. 

(2) Construct the mapping matrix AeMk,n according to the foregoing procedure and the 

sequence of pole-pole data in x. Matrix A can be automatically generated. 

(3) Detennine the rank of A to evaluate the number of independent data in b, i.e. the 

dimension of data space Rm where m=rank(A)Smin(k,n). This may be done by the 

Singular Value Decomposition (SVD) method. 

(4) Delete the (k-m) degeneracy data in b and the corresponding-rows in A. Then b is the 

complete data set and A contains the basis for Rm. 
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Special difficulties may arise in step ( 4) when the number of electrodes is large in the 

multielectrode array. In this case, the data set contains a considerable number of redundancies, 

making it hard to separate the independent data because the only information from step (3) is the 

number of redundant data, not the information on which data are actually linearly dependent 

Therefore, it may be desirable to start the above procedures with a small multielectrode array, say 

6 or 7 electrodes, to establish the primary relationship between JR.n and /Rm. Then the relationship 

can be extended into a multielectrode array with more electrodes and verified by the above 

procedures. Experience also suggests that a good strategy to collect the complete data set is to 

i.------<>--C ===::~===-P-P -~-----, 
'i/ Q v 'i/ 
I I I I I I I o o o o I II I I I I 

3 5 N 

(a) (b) 

IFigum 2.6 A encircled array (a) and a linear array in circulation (b). 

drive a certain electrode configuration through the multielectrode array in 'circulation', i.e. the 

current and potential electrodes scan from the first electrode to the last electrode and then return 

to the first electrode (see Figure 2.6). In this case, the redundant data can be easily identified. 

As an illustration, suppose there is a multielectrode array with 6 electrodes which are numbered 1 

to 6 from left to right. A current pair CC is driven through the array and the data are collected 

from the rest of the electrodes as the sequence shown in Table 2.2(a). The configuration can be 

referred as 'circulating dipole-dipole' (or cCCJPP) for it is exactly the dipole-dipole array in 

circulation. The total number of data in Table 2.2(a) is 18 which is three more than the number 

of independent pole-pole data. The 18-by-15 matrix A can be generated according to Table 2.2 

(a), equations (2.7) and (2.8). The rank of A is 9 which indicates that half of the data are linearly 
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dependent By examining Table 2.2(a) we recognise that the data are collected from CCJP>JP>, 

JP>JPliCC, JP>CCJP> and CJPJPC linear measuring electrode configurations. The redundant data are 

1~19J~® ~.2 The data sets for circulating dipole-dipole configuration with a multielectrode array 
of six electrodes 

(a (b) 

Electrode Position Electrode Position 

c c p p c c p p 

1 2 3 4, 4 5, 5 6 1 2 3 4, 4 5, 5 6 
2 3 4 5, 5 6, 6 1 2 3 4 5, 5 6, 6 1 
3 4 5 6, 6 1, 1 2 3 4 5 6, 6 1 
4 5 6 1, 1 2, 2 3 4 5 6 1 
5 6 1 2, 2 3, 3 4 
6 1 2 3, 3 4, 4 5 

simply those from the reciprocal configurations (i.e. IPIPCC and CPIPC). After removing the data 

from JPJP>CC and CIPIPC electrode configurations, the rest of the data shown in Table 2.2 (b) form 

a complete data set. The matrix A corresponding to Table 2.2 (b) is 

and rank(A) = 9. 

0 1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 

0 0 1 -1 0 0 -1 1 0 0 0 0 0 0 0 

0 0 0 1 -1 0 0 -1 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 -1 0 -1 I 0 0 0 0 

0 0 0 0 0 0 0 1 -1 0 -1 I 0 0 0 

-1 1 0 0 0 0 0 0 1 0 0 -1 0 0 0 

0 0 0 0 0 0 0 0 0 0 I -1 -1 I 0 

0 -1 I 0 0 0 0 0 0 0 0 I 0 -1 0 

0 0 -1 I 0 0 0 0 0 0 0 0 0 1 -1 

The Singular Value Decomposition method is applied to evaluate the rank of the A matrices in 

Table 2.2 and the results are shown in Figure 2.7, which indicate that two matrices have the same 

rank, i.e. both of them contain only 9 independent row or column vectors, despite the fact that 

they have different dimensions. 
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Singular Values 

s 
4 

3 

2 

~ of mBtrlx A In TBbla 2(B) 

~ of mBtrlx A In Tabla 2(b) 

2 3 4 S 6 7 8 9 10 II 12 13 14 15 

IndaM Numbers 

figure 2.7. Spectra of mapping matrices 

The relationship between the dimension of space Rm and the number of electrodes N in the 

multielectrode array can be derived from Table 2.2: there are a total of N pairs of positions for 

CC and for each CC position there are (N-3) receiver pairs (PP). The total number of data is 

N(N-3) and half of them are redundant, i.e. the dimension m = N(N-3)/2 denoted as 

s<;> = N(N- 3) 
2 

(2.11) 

Equation (2.11) is a general formula for four electrode configurations and has been verified with 

different N and different circulating configurations. 

Similar procedures can be applied to three_electrode configurations and the maximum number of 

independent data s~> is found to be 

s~> = (N+l)(N-2) 
2 

where again N is the number of electrodes in the array. 
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1f~lQJI® 2.~ Comparison of the number of independent data for different measuring 
configurations with a N~electrode array 

Number of Electrode Arrangements Number of No. of Data 
Measuring Independent Less Than 
Electrodes Original Reciprocal Mr Data Pole-pole 

2 CP PC 1 N(N-1)/2 

CPP PCC 
3 PPC CCP 2 (N+1) (N-2) /2 1 

PCP CPC 

CPPC PCCP 
4 CCPP PPCC 2 N(N-3)/2 N 

CPCP PCPC 

4 Wenner Array (N-1) (N-2)/6 (N+1) (N-1) /3 

Note: 1) M1 is the number of independent arrangements. 
2) N is the number of electrodes in the multielectrode array. 
3) Number of data from Wenner array is the number of data in pseudosection (truncate to integer). 
4) C--current electrode; P-potential electrode. 

Table 2.3 summarises these results and presents for comparison the number of data for a Wenner 

array connected in pseudosection mode. It Number of 
Independent de!a 

shows the pole-pole data set is largest for 
120 

all N but that contains only one more 100 

datum than is possible using three 80 

electrodes. The Wenner pseudosection has 6o 

the lowest number of data and the 40 

difference with respect to the number of the 20 

0 primary pole-pole data set increases as -
4 

N2 (see Figure 2.8). 

Complete data set of 
pole-pole array 
Complete data set of 
four electrode array 

Wenner pseudosectlon 

8 12 16 

Number of electrodes 

Figure 2.8. Comparison of number of 
independent data in different data sets 

The following examples will show some 

possible procedures to collect complete data sets for three and four measuring electrode 

configurations in a linear array of N electrodes. 
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The two scanning procedures shown in Table 2.4, namely circulating CJPIP and circulating pole-

dipole, can be employed to collect the complete data sets for three measuring electrode 

configurations. The circulating pole-dipole array is similar to that used by Bristow (Bristow 

1966). 

11'~~1® 2.~ The complete data sets-for three measuring electrode configurations 
in a linear array of N electrodes: (a) complete data set from circulating C~l?; (b) 
~omplete data set from circulating pole-dipole. 

C1 

1 
2 
3 

N-3 
N-2 
N-1 

C1 

1 
2 
3 

N-2 
N-1 

Electrode 

2, 3, 4, 
3, 4, 

4, 

Electrode 

2 3, 3 4, 
3 4, 

(a) 

Position 

P1 P2 

5, ... , N-1, N 
5, • • • I N-1, 1 N 
5, o • • I N-1, 1 N 

N-2, N-1, 1 N 
N-1, 1 N 

1 N 

(b) 

Positi"o:h 

P1 P2 

4 5, • • • I (N-1) N, 
4 5, • • • I (N-1) N, N 1 
4 5, • • • I (N-1) N, N 1 

(N-1) N, N 1 
N 1 

lExampie 2: Complete data set for four electrode configurations 

The complete data set for four measuring electrode configurations can be collected by either 

circulating dipole-dipole (cCCPP), circulating PCPC (cPCPC) or circulating CPPC (cCPPC) as 

shown in Table 2.5. Circulating dipole-dipole configurations have been successfully used to 
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collect complete data sets in both medical APT (Powell et al. 1987) and geophysical ERT (Noel 

& Walker 1990). The circulating PCJPC or CJP>lP'C, however, may achieve better signal to noise 

ratio because the signal is stronger than that from circulating dipole-dipole when the length of the 

multielectrode array is large. 

Tmbl® 2.~ The complete data sets for four measuring electrode configurations 
in a linear array of N electrodes: (a) circulating dipole-dipole (cCCIPIP); (b) 
circulating PCPC (~CIP~); (c) circulating CPPC (cCIPIPC). 

Cl C2 

1 2 
2 3 
3 4 

(N-3) (N-2) 
(N-2) (N-1) 

P2 

1 
1 
1 

1 
1 

Cl 

1 
2 
3 

N-3 
N-2 

Cl 

2 
3 
4 

. 
N-2 
N-1 

2 

(a) 

Electrode 

3 4, 4 5, 5 6, 
4 5, 5 6, 

5 6, 

(b) 

Electrode 

3, 4, 5, 6, • • • I 

4, 5, 6, • • • I 

5, 6, • • • I 

(c) 

Electrode 

Position 

Pl P2 

• • • I (N-1) N, 
... , (N-1) N, N 1 
• • • I (N-1) N, N 1 

(N-1) N, N 1 
N 1 

Position 

Pl 

N-1, 
N-1, 2 
N-1, 2 

N-1, 2 
2 

Position 

Pl P2 

3,3 4,4 5, ... , 
3 4,4 5, • • • I 

4 5, • • • I 

(N-2) (N-1) 
(N-2) (N-1), (N-1) 1 
(N-2) (N-1), (N-1) 1 

(N-2) (N-1), (N-1) 1 
(N-1) 1 
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The above procedures are by no means the only ones which can be employed to collect complete 

data sets for three or four measuring electrode configurations. The complete data sets are 

essentially nonunique due to the nonuniqueness of the bases of the complete data space. For 

example, the separations between CC in circulating dipole-dipole can be one or two or three 

interelectrode spacings. Nevertheless, the complete data sets are equal in the sense that they have 

the same number of independent data and can be mapped from one to another. 

It is desirable to transform one data set into another, such as the data set of a Wenner 

pseudosection, for the convenience of alternative interpretations or presentations. Apparent 

resistivity curves obtained from other configurations can be transformed into Schlumberger 

apparent resistivity curves if the data are collected over a layered earth (Patella 1974; Kumar & 

Das 1977; Koefoed 1977; Banerjee & Sengupta 1987). For data collected over arbitrary 20 

structures, however, there is no such simple transformation. In fact the data set from 

conventional configurations is normally incomplete in the sense described above and hence 

generally it cannot be transformed into another data set. In the following discussion, we shall 

assume that the data set to be transformed is complete. 

A complete data set can be transformed into another in the same complete data space or into a 

data set in its subspace. To transform a pole-pole complete data set into any other data set is 

fairly simple and straightforward. However, data transforms within or between the complete data 

spaces of four or three electrode configurations can be difficult because of their complex 

relationships. 

If xe Rn is a complete pole-pole data set and be Rml and ce Rm2 are any other two data sets, 

there must be two operators,AeMmJ.n and BeMm2,n• such that 

Ax=b (2.13) 
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!Bx=c (2.14) 

If there is another operator KeMm2,ml such that 

KA=!B (2.15) 

then 

Kb=c (2.16) 

Therefore, data set b can be transferred into data set c if there is a linear operator K which can 

satisfy equation(2.15). 

It is obvious that if there is a operator A.'eMn,ml such that A A' = l, then operator K can be 

constructed from equation (2.15) as 

K=J!JA' (2.17) 

where A' is the pseudo-inversion of the rectangular matrix A. The pseudo-inversion can be 

accomplished by Singular Value Decomposition (SVD) or QR factorisation methods. In the SVD 

method, matrix A is decomposed as (Press et a/1989) 

A=UAVT 

where AeMm,n' UeMm,n is a column-orthogonal matrix and VeMn,n is an orthogonal matrix, 

A=diag{A.;} (i=1,2, ... ,n) contains the singular values. After zeroing the small 'A.;'s, the pseudo­

inversion can be obtained as 

A'= v A-1 ur (2.18) 
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where A-1 =diag{l/A1, 1/A.:z, ... , 1/A.p, 0, 0, 0,} ("-i,t::, i=l, 2, .. , p and ps;m) 

Pseudo-inversion algorithms such as SVD have the advantage of generality, but suffer from their 

complexities and higher memory demands, compared with normal inversion methods, such as 

Gauss-Jordan elimination or LU decomposition. For all examples mentioned above, there is yet 

another algorithm which can construct transform operator IX from equation (2.17) without using 

the SVD or QR algorithms. 

Suppose the data set to be transformed is a complete dataset, i.e. rnl=rank(A) in equation (2.13), 

and the corresponding pole-pole data set xis arranged as equation (2.7). Then, for all complete 

data sets illustrated in the previous section, the last rnl column vectors of matrix A happen to be 

independent By partitioning mau·ix A and lB as 

A = [F ml(n-ml)• Gm1m1l 

B = fQm2(n-m1)• Rm2m1l 

then the transform matrix K will be 

K = R G-1 (2.19) 

where G-1 can-be-obtained by Gauss-Jordan elimination -or-LU decomposition. This method is 

rather heuristic, but does work with the examples mentioned above. 

2.7 SUPERPOSITION EXPERIMENTS ON SYNTHETIC AND FIELD DATA 

The transformation has been evaluated on both synthetic and field data. Test results with noise 

free and noisy synthetic data are shown in Table 2.6. The test was performed on the two layered 

earth model where the first layer is 1 ohm-m, 1m thickness and the second layer is 10 ohm-m. All 
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computations were carried out in double precision. To simulate limitations of the accuracy and 

precision in measuring instruments, in some data sets the data were truncated to 3 decimal places 

which has the effect of introducing a random error in the electrical potential of about 1-6% 

depending on the data set (see Table 2.6). The transformation, as shown in Table 2.6, is exact 

with noise-free data and is limited by inaccuracy in the source data. The noise in field data may 

be amplified during transformations, for example, from cJPClPC to cCCl?lP electrode 

configurations. 

'iJm[gl® 2.6. Largest relative errors (in %) in data transformation for a linear array of 1 0 
electrodes with 1 meter interelectrode spacing. 

l!JJaW! §et Largest Relative lErmrs 
(No.of data) 

Output CPP2 CCPP 
Input ( 44) (35) 

CPPl 5xlo-14 1x1 o-13 
( 4 4) 

tCCPl 1.4 6.0 
( 4 4) 

tCCPP 6.0 
("35) 

tPCPC 16.0 
(35) 

Note: 1) CPP 1 : c1rculat1ng pole-dipole data set. 
CPP2: circulating CPP data set. 
CCPP: circulating dipole-dipole data set. 
PCPC: circulating PCPG data set. 

PCPC 
( 35) 

lxlo-13 

4. 8 

4. 7 

5.0 

2) prefix t means the data are truncated to 3 decimal places. 

Wenner 
(12) 

2xlo-4 

0.3 

1.1 

0.7 

A comparison of actual Wenner pseudosection data derived from field sounding to the superposed 

transformations over the same structure-is shown in Table 2.7. The two data sets, one Wenner 

dataset (57 data) and one complete dataset of cCCPP configuration (170 data), were collected by 

the same linear array over the Hett Dyke at Hamsterly near Durham, using a linear array of 20 

electrodes equispaced with 5m interval. Then the dataset from cCCPP configuration was 

transformed into a Wenner dataset. The results, as indicated in Table 2.7, are quite encouraging 

for there is only 1.5% difference on average between measured and transformed data. 
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It should be pointed out that in general the transform cannot be conducted if the data set to be 

converted is incomplete. Thus, the transformation can be used as an indirect method to diagnose 

whether a data set is complete or not. 

l&JI9l~® 2.1 A comparison of the Wenner pseudosection data from practical sounding over a 
dyke and those calculated from transformation of circulating dipole-dipole (cCCIP'ij:il) data over 
the same structure. 

No. Measured Transformed %Error No. Measured Transformed %Error 

1 14.1200 14.4948 -2.62 30 4.7300 4.7987 -1.44 
2 13.5000 13.8995 -2.92 31 4.6400 4.6450 -0.11 
3 12.8300 13.0805 -1.93 32 4.8200 4.8971 -1.59 
4 11.5600 11.7594 -1.71 33 4.1000 4.1938 -2.26 
5 10.0600 10.2472 -1.84 34 3.9200 3.9768 -1.44 
6 9.3300 9.3972 -0.72 35 4.3000 4.3197 -0.46 
7 9.5500 9.4364 1.20 36 4.7800 4.9046 -2.57 
8 9.6600 9.4706 1.98 37 4.6800 4.7581 -1.65 
9 10.5800 10.8145 -2.19 38 4.1800 4.1705 0.23 
10 7.6000 8.4720 -10.85 39 3.1800 3.2731 -2.89 
11 8.8500 8.7115 1.58 40 3.0800 3.1129 -1.06 
12 8.6100 8.4610 1.75 41 3.3300 3.3381 -0.24 
13 8.9000 8.9129 -0.14 42 3.5100 3.5371 -0.77 
14 9.1800 9.3530 -1.87 43 3.1100 3.1774 -2.14 
15 9.0300 9.1277 -1.08 44 3.3500 3.3632 -0.39 
16 9.5700 9.5773 -0.08 45 3.5400 3.6759 -3.77 
17 9.6200 9.6722 -0.54 46 3.6100 3.6542 -1.22 
18 7.6300 7.7490 -1.55 47 3.5600 3.5809 -0.59 
19 6.9400 7.0539 -1.63 48 3.2500 3.2156 1.06 
20 6.4400 6.5276 -1.35 49 2.5600 2.6624 -3.92 
21 5.8800 5.9614 -1.37 50 2.4500 2.4566 -0.27 
22 5.4200 5.4936 -1.35 51 2.7900 2.9247 -4.71 
23 5.8800 5.9270 -0.80 52 2.8800 2.8967 -0.58 
24 6.5500 6.6411 -1.38 53 2.8600 2.8529 0.25 
25 5.8200 5.8645 -0.76 54 2.8400 2.8337 0.22 
26 4.6500 4.7125 -1.34 55 2.6600 2.6291 1.17 
27 4.6100 4.6385 -0.62 56 2.3600 2.3494 0.45 
28 4.9300 4.9959 -1.33 57 2.3500 2.3498 0.01 
29 4.9200 4.9369 -0.34 Average Error 1.51 
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It has been demonstrated that the complete dataset can be collected by a technique different from 

conventional methods with a colinear multielectrode array. This complete data set contains much 

more independent data than that obtained during a Wenner pseudosection survey. Those 'extra' 

independent data may be important for resolving complex 20 structures. The complete data sets 

are generally non unique, but can be transformed from one to another or into the data set within its 

subspace. Although, with calculated voltage data, the errors resulting from such transformations 

may be governed only by machine accuracy, the error in transformations with field data is limited 

by noise in the data. For calculated data, one complete data set may have no significance over 

another if each of them can be transformed from one into another. In practice, different data sets 

may have different advantages and disadvantages in terms of signal to noise ratio and their 

suitability for hardware multiplexing or image reconstruction. In certain circumstances, it may 

be desirable to collect some redundant data besides the complete data set as a basis for error 

checking or noise reduction through stacking. For simple layered earth models (lD structure), 

intuitively we. know that the data collection techniques described here may have 110 advantage 

over traditional methods of vertical resistivity sounding. In this case, the actual independent data 

only depend on electrode spacing, not the position on the ground surface because there is no 

lateral variation of resistivity distribution. Such a data space is degenerate. 
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This chapter will address some practical problems related to ERT field data collection using a 

linear surface array. First, as discu&sed in the previous chapter, the number of data to be collected 

is large and hence the speed of survey may become a problem even using automated switching 

methods. Secondly, in a field survey, it is generally a requirement that a linear array can be rolled 

along the traversing line in order to cover a broader area and there is then a question of how to 

ensure that the data gathered from adjacent sections are complete with minimum redundancy. 

Thirdly, for a long traversing section the reconstructions are normally carried out separately and 

there may be some difficulties in joining such images to form an entire traverse section because the 

images may be inconsistent due to the non-uniqueness of inversion. Finally, the effects of 

topography and electrode spacing error on measurements need to be considered if they are 

significant 

The· data collection could be speeded up by using a 'parallel' data collection system in which all 

desired potentials over a linear array are gathered simultaneously. The problem then is that the 

system will be expensive, complex and also not be entirely suitable for large arrays. A 

compromise may have to be made between the conventional multi-electrode switching system and 

the parallel data collection system and this will be discussed in section 3.2. The procedure for 

collecting complete data sets over a traversing line is presented in section 3.3 and problems arising 

from joining two adjacent ERT sections are discussed in section 3.4. The effects of topography 

and electrode spacing error on the measurements are raised in section 3.5. 
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Several multielectrode switching systems have been developed to reduce the manpower cost of 

resistivity surveys but their fitness for ERT data collection varies in terms of flexibility for various 

&YGTEY 

"""""" 3 communlcmlon lines 

lrr;=======f==:;=~====== TONEXT 
UNIT 

ELECTRODE 

(a) 

0 0 0 EI.£CTRODE 

(b) 

4 communbtlon lines (RS-485) 

(C) 

Figure 3.1: Layout of multielectrode switching systems: (a) with 7-core cables, showing one 
unit (after Griffiths et al 1990); (b) with 26-core cables (after Van Overmeeren & Ritsema, 
1988), (c) with 8-core cables. 
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electrode configurations, suitability for different investigation depths and the efficiency of field 

operation, etc .. For example, the Wenner offset multielectrode system introduced by Barker (1981) 

can provide high quality data for rapid vertical sounding but may not be usable for ERT surveys 

because of its fixed electrode configuration and interoelectrode spacings. In contrast, a computero 

controlled multielectrode array with individually addressable electrodes appears to be more 

flexible. One example of such a system was presented by Griffiths & Turnbull (1985) and 

Griffiths et al. (1990), in the form of a microprocessor-controlled resistivity traversing or MRT 

system (Fisure 3.l(a)). The MRT employs 20 equally spaced electrodes which are linked by SOm 

reel-mounted sections of 7-core cable with one electrode per reel. A software-controlled relay card 

together with a small rechargeable battery pack is also mounted on each reel. It is therefore 

possible to connect any desired set of four electrodes to the resistivity meter (by sending commands 

to W,ven relay card through 3 commWlication lines). For medium to large imaging depths, the 

MRT system seems to be efficient. For shallow imaging, however, the large number of reels with 

long sections of cable, appears to be unnecessary and inefficient. In such a case, the multielectrode 

systems presented by Van Overmeeren & Ritsema (1988) and by Noel & Walker (1990) seem 

more efficient. The former employs 26-core (seismic) cables, one electrode per line spaced at 2m 

intervals (Figure 3.l(b)). Through a computer-controlled relay card, the artay can be scanned with 

any desired four electrode combination without using long communication lines. The cable is more 

heavy in terms of per unit length. than the that of MR T system but the overcij.l weight of the cables 

may be bearable because of the short· length of the array. The system presented by Noel & Walker 

functions similarly to the MRT system mentioned above but is lighter and easier to deploy. The 

main array is expanded by small control boxes-which are linked by 5m sections of- 8-core cable. 

Each control box houses four addressable switch units and hence another four single cables are 

employed to connect them to four electrodes separately (see Figure 3.1(c)). 

The use of multielectrode switching systems has increased the speed of data collection. However, 

published systems still operate in a serial mode in which only one voltage datum between a pair of 
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electrodes is measured in each current injection cycle. If the techniques stated in Chapter 2 are 

employed, the data gathering process is still rather tedious because of the large number of 

measurements; for example, there are about three times more measurements for a complete dataset 

(170-190) of a 20-electrode array than for the equivalent Wenner pseudosection (57). It is 

therefore desirable to explore possible methods of increasing the data collection speed. 

One solution would be to use a 'parallel' data collection system in which all desired potentials over 

a linear array are collected simultaneously within each cycle of electrical current injection. With 

such an approach, a complete data set for anN-electrode array requires only up to (N-1) sequential 

current injection cycles, instead of N(N-1 )12 or N(N-3 )12 in the serial mode, and hence the data 

collection is about N/2 times faster. For instance, it normally takes about 30 to 60 minutes to 

collect a complete data set for a 20-electrode array using an ABEM SAS 300B Terrameter 

resistivity meter linked to the experimental Geoscan unit PA-7 while the same task may only take 

about 3 to 6 minutes to finish with a parallel data collection system. This will be very significant 

for an array with large number of electi"O<i~s or for applications which require monitoring rapidly 

changing resistivity targets. The major drawbacks are: i) it requires multi-measurement channels 

and hence increases the complexity and cost of the instrument; ii) it requires one line per electrode 

and therefore the system may be feasible for shallow investigations but not suitable for 

intermediate to deep sounding due to the heavy weight of the multi~ore cable needed. It seems that 

the use of a parallel system is only justified for a short array and for those applications where the 

speed of the data collection is critical, e.g. to monitor the dynamic changes of the ground water 

during a pumping test. 
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Alternatively, the data collection system may be implemented in a multi-channel or serial scanning 

mode in which a single channel resistivity meter quickly scans over the whole array through the 

addressable multiplexers to obtain all desired data within each current injection cycle. The 

hardware design of the system would be similar to a conventional multi-electrode switching system 

except that the ND converter and the relay cards should have a higher speed. The time for a single 

scan ~ is detennined by the nwnber of voltage channels nc (any desired combination of a pair of 

I ~ 
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figure 3.2: Comparison of signal sampling of resistivity surveying: 
(a) a sampling cycle in a conventional serial mode and (b) part of 
sampling cycle in a 'serial scanning' (or multi-channel scanning) 
mode. SP:::self potential; IP= induced-polarisation. 
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potential electtodes fonns one voltage channel), the sampling time for each chwmel ts and the 

response time of the control unit tc which includes the response time of the relay card and the time 

for command transmission through the serial communication, i.e. 

(3.1) 

(see Figure 3.2 (b) for an illustration). The conversion time of a dual-slope type of NO converter 

is about 1-50ms while the relays normally have a response time of lms to 4ms. Modern 'flash' 

AID converters with conversion times as low as lJ.LS are readily available but they may not be 

accurate enough. 

As an example, suppose that a linear array consists of 20 electrodes and hence there are 19 voltage 

channels. If the sampling time for each channel t s is 1 Oms (the number of sampling points depends 

on AID speed) and response time of control unit t c is also 1 Oms. The maximum time needed for a 

single scan would _b~ 380n1s. Wi!Nn eaf_h current injection cycle, each voltage channel has to be 

sampled 4 times, twice for self-potential (SP) and twice for signal (see Figure 3.2 (a)). The total 

scanning time for each cycle would be 1.52s. Therefore a current injection cycle of 4s to 5s would 

be enough for such an implementation. The total time of data collection for the whole data set is 

then determined by the. total current injection cycles and in the 20 electrode-array case,. this should 

be less than ·1 0 minutes. 

Perhaps one drawback of such an implementation· is that the data sampling-intervals- may be too­

small to be accurate in comparison with conventional sampling which integrates the signal over a 

rather longer time interval (e.g. lOOms) by using voltage (or current) to frequency conversion (V-F) 

which averages out part of noise. Similar effects may be achieved in the multi-chwmel scwming 

mode by recursive sampling (as in seismic data acquisition), i.e. for a given signal, say SP, the 

sampling starts from the first channel, scanning over the whole channels, and then returns to the 
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first chrumel and the sc2nnine is repeated sgain and so on with data being averaged to reduce noise. 

Clearly the slow response of multiplexers and the AID converter will be the main obstacle here. 

Roll-along work mode is a field operating procedure in which the first one of transmitters or 

receivers of the array are placed ahead of the array on the traversing line to fonn a new array 

position once they are not required to scan the original section. It has been applied to conventional 

resistivity pseudo-section and seismic data collection. The idea is to keep continuous coverage of 

apparent resistivities for the adjacent sections with minimal redundancy of data when the whole 

array is traversing across the section. The same idea can be introduced to collect the complete data 

sets across the traversing section. 

Suppose that the whole array is moved one electrode position each step along the traversing line. 

For the new array positions it is necessary to collect those new data required to fonn the next data 
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Figure 3.3: An illustration of 'roll-along' method: (a) the array before traversing and its 
current-potential (C-P) positions for complete data set; (b) the array after traversing one 
electrode spacing and its C-P positions involved with last electrode; (c) the number of new 
data need to be collected after each traversing step. 
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set. A careful examination shows that after each array movement only the linearly independent 

potential data involved with the new electrode position should be collected. As an illustration, 

Figure 3.3 presents examples of the traversing for two, three and four measuring electrode 

configurations, i.e. if the number of electrodes in the array is N, the number of data involved with 

the new electrode position is (N-1), 2(N-2), 2(N-3) for two, three and four electrode configurations 

respectively. The total new data arising from m steps of array movement should be 

S~2> = m(N -1) 

s~> = 2m(N- 2) 

S~4> = 2m(N- 3) 

(3.2) 

(3.3) 

(3.4) 

where S~2)' s~>, S~4) are the number of new data for two, three and four electrode configurations 

respectively. 

The roll-along collection of a complete dataset can be operated as follows. After the d~ta within 

the initial coverage of the array are gathered, the first electrode is moved forward, being placed 

ahead of the last electrode of the initial array. Then a new array is formed and the new data 

involving the last electrode are collected. This process is repeated again and again until the 

traversing line covers the whole section desired. The data set is then said to be complete over the 

section with a linear array, or referred as a traversing complete data set. The total number of data 

equals the data in the initial scan plus those obtained during the traversing: 

s~> = N(N- 1) +m(N-1) 
2 

s~> = (N +l)(N - 2) +2m(N -2) 
2 

s'tj> = N(N- 3) + 2m(N- 3) 
2 
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When the whole section cannot be recovered in a single reconstruction, for example, due to the lack 

of computing resources or simply because the reconstruction algorithm is not designed for the long 

section, then we are faced with the problem of how to join the sections together. The resistivity 

image sections to be joined may be adjacent or partly overlapping. 

The section joining for reconstructed resistivity images could be difficult because the images to be 

joined may be inconsistent due to the non uniqueness of the inversion as will be discussed in the 

following chapters. This may give rise to the edge effects due to lack of data coverage on the two 

sides and hence may cause the same feature to vary from image to image. Thus a joined image 

may produce some artefacts which are difficult to interpret and this potential problem must be 

recognised in designing an image-joining algorithm. 

For adjacent images the simplest joining method is to add the images side by side. If the 

background values of the adjacent images do not change smoothly, they should be adjusted, for 

example, by trend surface fitting or dithering. 
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It may be argued that the central zone of the image may be better determined than other parts and if 

such centre zones are overlapped for different image sections, a simple averaging operation within 

these zones could improve the quality of the joined image. Such overlaps may happen in the 

traversing section where data are collected by the roll-along method mentioned above. Note that 

for each roll-along step of array movement, there is a complete data set corresponding to the new 

array coverage. Using such complete data sets one can reconstruct a series of images which 

1--- ARRAY 2 

.... 1 ... ~-------ARRAY 1 

CENTRE ZONES · 

.. I 

Figure 3.4 An example of two partly overlapped images joined by averaging their centre zones. 

overlap with one electrode spacing interval (see Figure 3.4) and then the whole image section may 

be joined by averaging the overlapped central parts. Clearly the success of such an operation will 

depend on the stability of the reconstruction. 
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A small perturbation of electrode position (dx,dy,dz) will result in a change of measured potential 

SV, i.e. 

av av av 
BV==-dx+-dy+-dz ax ay az (3.8) 

For a colinear array on a flat-earth, both dy and dz are zero and hence if the subsurface is 

homogeneous, then for a pole-pole electrode configuration we have 

(3.9) 

where x=a is the electrode spacing. The relative error of voltage caused by electrode spacing 

errors for four electrode configurations is more complicated but it has the general form 

sv = _!_[ av11 dx _ av12 dx _ av21 dx + av 22 dx J 
V V a 11 a 12 a 21 a 22 

. ~I ~ ~ ~ 

= _ _!__ [dxll - dxl2 - dx21 + dx22] 
G 2 2 2 2 
- - Xu ~12 X21 X22 - . 

(3.10) 

where again the subsurface is assumed to be homogeneous, v = vll - vl2 - v21 + v 22 • vij is the 

potential produced at the j th position by current at the i th position and xii is its corresponding 

electrode spacing. The geometry coefficient G = (1 I x 11 )- (1 I x 12 )- (1 I x 21 ) + (1 I x22 ). For 
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example, if a dipole-dipole configuration is planted on a linear array as shown in Figure 3.5, the 

relative error due to the spacing error dx is 

ov l 
dx 

=-2.25-
(2n+l)(n+2) dx ~ a 

2n(n+1) a dx 
::= --

a 
(n ~ 10) 

(n = 1) 

-= (3.11) v 

where a is the inter-electrode spacing and n is the distance (measured in terms of a) between 

current and potential dipoles. 

~I a I,.. na 
--=:ja 

dx~ r-
c c p p 

" ~ " " ~ " "' "' '\ '\ ~ ~ "' ~ "' " 
Flgure3.5 Adipole~dipolearray with on~ electrode mis-placed. 

It seems that an accuracy of 1/100 inter-electrode spacing or better is necessary for field work. 

For medium to large scale geological prospectiiig the spacing error sl:lotild not be a problein 

because the electrode spacings are large and the accuracy of modern surveying to a precision of 

1/1000 is readily attainable. For small scale problems like archaeological investigation, however, 

there may be practical difficulties and the electrode array must be carefully planted to keep the 

errors to a minimum. 

-51-



Chapter 3 Approaches to The Practical Implementation ofERT Surveying 

The algorithms for resistivity reconstruction normally assume that the ground surface is flat. If 

field resistivity survey is carried out on an irregular surface, the terrain effect may need to be taken 

into account. Fox et al. (1980) suggested that if the finite element method is used to compute the 

response of a resistivity survey then the terrain effect can be modelled with a flat~earth model by 

filling the area occupied by air with high resistivity materials (103 -105 
Qm) (see Figure 3.6). 

The field data with topographic effects are then compensated by multiplying with the terrain-

correction coefficients which are calculated as 

(3.12) 

where p{, p; are potentials of the homogeneous earth with a flat surface and the actual terrain 

surface, respectively. In ERT the topographic effects can be compensated before the 

reconstruction using the above 

method or, alternatively, the 

topography is directly 

incorporated into the 

reconstruction by a mesh shown 

in Figure 3.6 if finite difference 

or finite element forward 

modelling methods are employed 

in the reconstruction process 

(see Chapter 5). 

1------i--t-t--t+-H-H-1--HI\--'H+ air -H--Jii'+t-t+++t+H----t----l 
~ I IJ 

Figure 3.6 Finite elements (or finite difference) modelling 
of topographic effects with flat surface by assigning high 
resistivities to the area of air (after Fox et aL, 1980). 
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It is known that for slopes of less than 10° terrain effects are insignificant and they are smaller if 

the spread of the array is parallel, rather than normal, to the strike of a 2D terrain structure (Fox et 

al. 1980). In such cases it may not be necessary to apply terrain corrections. 
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~. ~ ~INI1~©1Ql!IJ©1~©1Nl 

This chapter describes a Born procedure for imaging arbitrary 20 resistivity structures from the data 

gathered using a linear array of electrodes at the ground surface. The algorithm is based on a 

sensitivity relation which links the variation of resistivity to the deviation of surface potential data. In 

this formulation, a procedure similar to Born inversion in seismology is applied to compute the 

weighting coefficients for each current source-potential location. The resistivity measurements are then 

weighted and summed to produce an image of subsurface resistivity which can be computed within 

minutes on a desktop PC. 

The work presented here is the further development of the early researth on a simple backprojection 

algorithm for electrical resistivity tomography or ERT (Noel & Walker 1990, Noel & Xu 1991). 

Instead of computing the weighting coefficients by a simplified but inaccurate analytical weighting 

function, one step Born inversion is applied where the current distribution is assumed_to.be distributed 

within a homogeneous half space and resistivity anomalies are perturbations from this reference 

medium. Given a linear array of equally spaced electrodes on the ground surface, all independent 

potential data are collected using _the methods described in Chapter 2 and then they_ are multiplied by the 

pre-calculated weighting coefficients, forming a subsurface resistivity image. Numerical and field trials 

on geological and archaeological structures have· shown thar this ·algorithm can aehleve moderate 

resolution. 

The resistivity image reconstruction starts from a sensitivity operator which relates the subsurface 

resistivity distribution to the surface potential distribution induced when current flows within the 

medium. The direct current field may best be described by Ohm's law and Maxwell's equations. In the 

conducting medium it is found experimentally that current density Jr is related to electric field IE by the 

following expression (Ohm's law): 
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(4.1) 

where a is the conductivity, a = 1/p, and p is the resistivity. The electric field lE is related to the 

density of electric charge q by one of Maxwell's equations: 

(4.2) 

where e0 is the dielectric permittivity. 

Substituting equation (4.1) into equation (4.2): 

(4.3) 

where r is any point in the medium, r c is the current source point and I is current strength. 

Combining equation (4.3) with the expression for the point charge potential in a half space, the total 

potential U(r p) on the ground is 

where 

U0(rp) = 

Ua(rp) = 

dv= 

(4.4) 

the potential electrode position. 

the primary potential in a homogeneous half space with resistivity p0• 

the potential due to variation of resistivity. 

the variable of volume integration. 
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the half space. 

lln-11= norm or length of a vector Jr. 

Equation ( 4.4) is the boundary integration expression of potential due to the point source of d.c. current 

in a half space and similar results have been obtained by others (Vozoff 1960; Keller & Frischknecht 

1966; Eskola 1979; Snyder 1976; Hohmann & Raiche 1988; Li & Oldenburg 1991 ). 

Let 4U{Jrp) ~ U{rp)- U0(rp) <~Ua(rp)}. Equation (4.4) then can be rewritten as 

(4.5) 

This is a nonlinear equation which relates the changes of resistivity to the deviations of potential on the 

ground, i.e. it is a sensitivity relation. If changes of resistivity are small, the current field may be 

approximated by J0, the current field produced by a point source I in a uniform half space with 

resistivity p0: 

(4.6) 

Then equation (4.5) can tie lineariZed by Born approximation, a well~known procedure in seismology 

(Cohen & Bleistein 1979). 

Suppose the resistivity distribution being imaged is 2-dimensional and the electrodes are equally spaced 

on the ground in a line perpendicular to the 20 structures. We divide the half space into small cells 

(Figure 4.1) and assume the resistivity is constant within each cell and varies from cell to cell. Thus Vp 

= 0 within each cell and on the discontinuous boundaries between cells, V p becomes 

V P = (pii - Pi,j-t )i + (pii - PH.i )k (4.7) 
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where n and lk are the unit vectors of the X, Z axes and there is no change of resistivity in the Y 

p.1. 
1- 1 

&2:. 
I p "1 Pq pij+1 1]-

p. 1. 
I+ J 

~!eJtYre> ~.41 Rectangular discretization grid. 

direction. We substitute equations (4.6) and (4.7) into equation (4.5) and approximate the surface 

integrations in the X-Z plane by summations. Equation (4.5) then becomes 

AU,.(rp)= ~S~i ·Vp11 
II 

which can be re-arranged into 

where 

§~ = Szll-'fi+S~i-i)k 

Sil = (Szil-' - Szil) + (S:JCi-lj - Sxii) 
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(xc, 0, 0): position of current source 

(xp, 0, 0): position of potential electrode 

(x, y, z): point on boundary of cell 

Since the sensitivity coefficients Sij are calculated on a discrete mesh, exact reciprocity will not be 

found numerically. In this work, reciprocal elements are averaged. The above formulation is derived 

for a pole-pole electrode arrangement and the sensitivity relationship for other configurations can be 

superposed from it as explained in Chapter 2. 

If there are M independent potential data and N cells in the half space, equation (4.8) can be rearranged 

as 

where 

Au= §JP 

Au = [AUni]: vector of potential deviations. 

S = [S;j]: sensitivity matrix. 

P = [Pjl: vector of resistivity. 

i = 1, ~ ... ~, M_ancij = 1,2, ... , N 

(4.9) 

If there is a matrix B such that BS :;::;. I where I is_unit matrix, the distribution of resistivity may_ be 

recovered from the surface potential data as 

(4.10) 

where P is the recovered resistivity distribution. 
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If we define each independent source-potential measurement as one 'projection', the inversion model 

can be conceived as tomographic inasmuch as the resistivity structure JID is being 'projected' onto the 

surface potential L\nn through a sensitivity operator §. The question now is how to find an operator lR 

to backproject Ann to form a reconstructed image of JID. 

Since the sensitivity matrix § is a rectangular matrix in general, the operator lB has to be a pseudo 

inverse of§. This can be accomplished by the Singular Value Decomposition (SVD) method (Jackson, 

1972; Jupp & Vozoff, 1975; Press et al., 1989), i.e. them by n matrix§ can be decomposed as 

(4.11) 

where U is an m by n column-orthogonal matrix, Vis ann by n orthogonal mauix and A= diag{~} 

(i=l, 2, ... ,n) where~ are the singular values. After zeroing the small ~·s, the operator lB is 

(4.12) 

where A-1 = diag{l/J\.1, 11~, 11~, ... , 11~, 0, 0, .... ,0} <"-i-:~; 0, t<n ). ~is the threshold where any 

singular value smaller than .~ is zeroed in the process of constructing B. The threshold is a variable 
A 

which controls the· distortion and resolution of the reconstructed resistivity image P. Normally, a 

higher threshold will lead to less distortion but lower resolution or vice versa and for noisy data several 

trials may be needed to choose it. In our work, the threshold value '-t is taken as 

'-t = A.max<0.5 - 10)x1o-4 

depending on the noise level in the potential data. 

It may be desirable to normalise the potential data and the estimated resistivity distribution in equation 

(4.10) by p0, the resistivity of a uniform half space (i.e. reference resistivity): 
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(4.13) 

A A 

where l?n = lF I Po and LlUll0 = AUll/p 0 • Resistivity Po may be estimated from apparent resistivities 

measured with small electrode spacings. In fact, numerical tests have shown that the algorithm is not 

highly sensitive to the choice of Po (see Chapter 7). 

This algorithm in general can only reconstruct the relative variations of resistivities, not their absolute 

values, because equation (4.13) is underdetermined and linearized from equation (4.5). Fortunately, for 

most geological or archaeological applications this information may be sufficient when presented as a 

grey scale or pseudo-colour image. However, it is not surprising that there may be some negative 
A 

elements of vector 1Pn which have no meaning in physics although, mathematically, there is no reason 

why all such elements should be positive because the algorithm cannot fully recover the original image 
A 

JP>n and hence 1P'
0 

is not equal to JPl
0

• This difficulty may be overcome by formulating equations (4.5)--

(4.13) with resistivity p in a logarithmic scale or by the following transformation which may be 

understood as a change of coordinate origin: 

A A b 
Pnti =pni + (i=1,2, ... ,N) (4.14) 

where Pni and P111; are the elements of vector Po before and after transformation respectively and 

b = 2lmin {pnJI. This transform will not change the visual image which can only show the relative 

variations of resistivities because the transform does not change its dynamic range. 
·- -- -

The operator Bin equation (4.13) is only related to geometry parameters of the array and the discrete 

mesh applied and hence can be computed in advance. Therefore the algorithm works fast even on 

ordinary desktop computers. 

4.3 DISCUSSION AND CONCLUSION 

A fast algorithm which can reconstruct subsurface resistivity images from surface potential and which 

can be implemented on microcomputers has been developed. The algorithm is based on the 

perturbation of a sensitivity relation between resistivity and surface potential data; a Born 
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approximation. To achieve better determinacy and resolution, all independent data over a 

multielectrode array may be collected as described in Chapter 2. The algorithm may fairly reveal the 

geometries of resistive inhomogeneities but cannot estimate their absolute values. High noise level in 

the potential data may result in a strong distortion of the reconstructed image and hence good quality 

data are required. Care should also be taken to reduce the spacing errors especially when interelectrode 

spacings are small, such as in the case of archaeological investigations. In a further development, 

iterative refinement may be necessary in order to optimize the results of what is a highly nonlinear 

problem. Although nonlinear iterative methods may ultimately give superior results, they currently 

suffer from high cost of computation and dependence on the initial model so that the relative merits of 

iteration and noniteration have yet to be determined. 
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In the previous chapter I presented a linearized, one-step algorithm which can recover 2D 

resistivity structures with moderate resolution. The algorithm is fast but can only recover the 

relative variations of a resistivity distribution. However, for such a highly nonlinear problem it 

may be necessary in some cases to employ an iterative method to recover the absolute resistivity 

values or to enhance the resolution of reconstructed images. This chapter describes several 

nonlinear algorithms which may be employed to reconstruct subsurface resistivity structures from 

surface potential data. The algorithms considered here are of two types: i) iterative algorithms 

involving model fitting by nonlinear function minimisation or optimisation and ii) neural network 

methods in which lhe nonlinear properties of the reconstruction are learned from 'experience', i.e. 

examples and memorised by the network. In the iterative algorithms, I will discuss the 

fundamental problem of nonuniqueness in resistivity image reconstruction and hence demonstrate 

the need to incorporate extra information, such as smoothness constraints, in order to stabilise the 

iterations. The main focus will be the nonlinear least squares method with various smoothing 

constraints but the possibilities of using genetic algorithms are also discussed. The initial model 

from which iteration starts can be constructed from a priori knowledge or from the output of the 

algorithm described in Chapter 4. For the neural network methods, only an introduction is given 

simply to show its potential for resistivity image reconstruction. 

The use of non-linear least squares methods to invert resistivity data over a 2D structure has been 

investigated by several researchers. In the early development the subsurface structures were only 

inverted as a small number of resistivity cylinders, probably due to the limitation of computer 

resources at that time (e.g. Pelton et al., 1978; Trip et al., 1984). Consequently it was difficult to 

image any but simple structures. More recent developments are to invert the data over a more 

dense mesh, aiming to produce an image which is comparable to a tomographic image in terms of 

-62-



Chapter 5: Nonlinear Algorithms 

spatial resolution (e.g. Shima, 1990; Barker, 1992; Sasaki, 1992; Shima, 1992). Such inversion is 

known to be unstable and the method of regularisation is then introduced (Sasaki, 1992). 

However, most of the investigations were focused on the borehole-to-borehole geometry and the 

limitations of using surface data alone have not yet been fully investigated. In the method of 

regularisation the influence of different smoothing or regularisation functions and the regularisation 

parameter on the reconstructed image needs to be investigated. In the following sections, the 

regularised non-linear least squares methods for inverting surface potential data over a 2D 

structure are presented and then various choices of smoothing functions are discussed. The 

strategies for selection of a suitable regularisation parameter, including the automated selection 

methods, are described. The effects of the smoothing functions and regularisation parameter will 

be evaluated in Chapter 7. Numerical and field experiments indicate that the regularised non-linear 

least squares methods normally produce better results than the Born procedure if certain conditions 

are satisfied (see Chapters 7 & 8). 

The genetic algorithms and neural network methods have recently been introduced to process 

geophysical data, mainly seismic data (e.g. Stoffa & Sen, 1991; Murat & Rudman, 1992). Some 

of their advantages are: i) they are fully non-linear algorithms; ii) they may have better approaches 

for treating the local convergence problem which occurs in conventional non-linear least squares 

methods. It is therefore interesting to explore their usefulness in electrical resistivity image 

reconstruction. 
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Iteration algorithms require to perform forward calculation of voltages or apparent resistivities 

from an assumed resistivity model and current source locations. There are several numerical 

techniques for modelling the direct current response of a 2D resistivity distribution, including finite 

element methods (Coggon, 1971), network analogies (Madden, 1972; Tripp, et al., 1984), finite 

different methods (Dey & Morrison, 1979), the alpha centre method ( Stefanescu, 1970), and the 

integration equation or finite boundary element method (Vozoff, 1960; Okabe, 1981 ). Each 

technique has its own relative advantages and disadvantages. The finite difference method (FDM) 

implemented by Dey and Morrison (1979) is applied here on the account of its speed and low 

memory demands. 

The mathematical problem to be solved is Poisson's equation in the region of interest, subject to the 

Neuman boundary conditions. Taking the divergence of equation ( 4.1) we have 

where 

-V •(p-1VU) = /o(x- x' )o(y- y' )o(z- z') (5.1) 

t7 a · a · a k th ct· h · • ct k v =-a 1 +-J +- , e gra tent operator w ere 1, J an are unit vectors 
lX dy az 

p (x,z) = 

U(x,y,z) = 

I= 

O(x- x') = 

along the Cartesian axes; 

the resistivity distribution where the strike direction is along y; 

the potential distribution; 

current strength of point source at the position of (x',y',z'); 

delta function. 
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The electric field generated by a point source in a 2D resistivity structure is 3D. To avoid the 

difficulty of solving a 3D problem numerically, equation (5.1) is reduced to 2D in the wave number 

domain by Fourier transformation along the strike direction (Dey & Morrison, 1979; Hohmann, 

1988): 

1 A k2 
A 

-Vo[ VU(x,ky,z)]+ Y U(x,ky,z)=IO(x-x')8(z-z') (5.2) 
p(x,z) · p(x,z) 

A 

where ky is wave number and U (x, kY, z) is the potential in the Fourier transform domain. 

Approximating the partial derivatives by partial differences over the x-z plane (see the discrete 

mesh Figure 4.1), equation (5.2) becomes 

A A 

GllJ=§ (5.3) 

where G is an m-by-m matrix (m=number of nodes) and is a function of the geometry and the 
A 

resistivity distribution p(x;,zj), vectorU contains the potential at each node (in transform domain) 

corresponding to the current strength and the position of point source § (e.g. Dey & Morrison, 

1979). Therefore 

(5.4a) 

After solving equation (5.4a) for several different wave numbers, the potential U(x,y,z) is obtained 

by inverse Fourier transformation of U(x, ky, z). Mathematically, (5.4a) can be rewritten as 

U=G-1S (5.4b) 
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where lU = F-1iJ, G-1 = F-1(;;-t and J?-1 is inverse Fourier transform operator. 

There are two main factors which affect the accuracy of FDM: the choice of wave numbers ky and 

the number of cells between electrodes in the mesh (see Figure 4.1). With a higher density mesh 

and fine sampling of ky, FDM produces more accurate potentials but also demands more 

computing resources. 

~.2.2 ~1111\f~li'~i@lll 

The forward modelling equation (5.4b) which relates resistivity distribution p (x,z) to potentials 

can be explicitly rewritten as 

(5.5) 

where A is an operator and vector p contains the discrete model parameters (i.e. resistivities) Pi· 

(i=1,2, ... ,M). The forward problem is, as stated in equation (5.5), a process of computation of 

unknown potentials from a known resistivity distribution p(x,z). The inversion is the reverse 

process of forward modelling, i.e. for a known set of potential data, the question is how to relate 

them to unknown resistivity distribution. The process can be stated as 

p=BU (5.6) 

where B is the 'inverse' operator of A. It seems that the resistivity image p can be reconstructed 

from boundary potentials U if operator B can be constructed. However, the nonlinear relationship 

between resistivity distribution and potentials (see equation 5.1) means that operator A (and hence 

B ) is a function of the resistivity image p. Therefore the inverse operator B normally cannot be 
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constructed explicitly without approximation. To deal with this difficulty, the following 

approaches may be applied: 

(1) Perturbation method 

The nonlinear relationship can be linearized by the perturbation method and hence operator A is 

not a function of!!). Then operator 1$ can then be constructed from the (pseudo) inversion of A. 

The algorithm stated in Chapter 4 is one example of such an approach. 

(2) Model fitting by nonlinear function minimisation or optimisation 

In this approach the inverse operator :B is not constructed explicitly. Instead, the field data are said 

to be inverted if one can find a resistivity model which fits the data. For simple 2D structures with 

a few parameters, model fitting can be carried out by a llial-and-error method (e.g. interactive 

modelling). If the 20 structures are complex and the model has tens or hundreds of parameters, as 

in the case of elecllical resistivity image reconstruction, it can be very difficult to perform the llial-

and-error method because of the complex coupling between parameters. Thus a more systematic 

procedure such as optimisation has to be applied. 

Suppose that there are N measurements 

U obs _ [Uobs Uobs 11'!bs Uobs ]T 
- 1 • 2 • ·~j • ... , N (5.7) 

where T signifies the transpose. One can also calculate the N potentials Upre (predicted data) from 

. d . . . d' 'b . esl [ est est est est ]T thr h fi d d ll' an estimate resisUvtty 1stn unon p = p1 , p2 , p3 , ••• , p M oug orwar mo e mg. 

Upre _ [Upre uJ''e Upre Upre]T 
- I '"""2 ' 3 ' ... , N (5.8) 
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If the observed data li.Jobs are closely matched by the predicted data uvre, the resistivity distribution 

jp)es1 is said to be the reconstructed image. The match normally will be not exact because of the 

noise in the data and also because the model used is only an approximation to the real earth 

structures. The closeness, or goodness of the match can be measured by the distance of the two 

data sets, i.e. the length (or norm L, denoted as II .. ·II> of the misfit, or error, vector e 

( obs pre • J 2 J ,N)• ei = ui - ui , t= , , ,... . 

or 

(5.9) 

(5.10) 

where the 4_ norm is the familiar Euclidean length. Therefore the resistivity reconstruction now 

is a function minimisation or optimisation problem. In general, the model parameter values that 

minimise £ 1 will not be the same as those which minimise E2 • The former is less affected by 

outlying data points than the latter because the £ 2 function puts relatively more weight on larger 

errors than E1 does. However, the least squares norm, £ 2 , is used most frequently because it 

implies that the data obey Gaussian statistics and hence a whole range of statistical procedures are 

available. The standard procedure for minimising the E2 function (5.10) is the method of 

nonlinear least squares. 

There are at least two problems with such approaches. First, the predicted errors or data residual 

alone are not a good measure of fitting goodness because the resistivity tomography is 

underdetermined (and also ill-posed), i.e. there are more unknown parameters than the independent 

measurements. Therefore many resistivity distributions may fit into equation (5.1 0) equally well 
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(non uniqueness). Some extra constraints must be applied to restrain the possible solution. 

Second, the error function E 2 may have many minima but the optimisation methods, such as the 

nonlinear least squares search, can only find the local minimum in the vicinity of the initial model, 

being unable to 'see' the whole error surface. The reconstruction will be successful if the initial 

guess is close to the true solution. Global optimisation methods, such as genetic algorithms, may 

be needed when the error function E2 is complicated. These problems will be discussed in the 

following sections. 

(3) Neural networks 

The progress in artificial intelligence, for example involving neural networks, may provide a 

different approach to the electrical resistivity reconstruction problem. Several types of neural 

network may be applied to the ERT inversion. A simple method is that the nonlinear properties of 

the reconstruction are learned (from 'experience') and memorised in a pre-designed neural-like 

network. The reconstruction is then a one-step computation where the measured data is the input 

and the image is the output of the network. Only a simple discussion will be given to show the 

possibility of such an approach. 

5.3 NONliNEAR lEAST SQUARES 

5.3.1 Formulation 

Nonlinear problems can be linearized successively and be solved by linear equation methods 

through successive iterations. Let p A: = [p tit p u, .. ., p A:M ]T be an estimate of the model 

resistivitieS (parameters) for the k th iteration and let ur = [uf;', u:;e, ... , U~6 ]T be the 

corresponding potential data. The model response Upre can be linearized by perturbing it about Pt 

with the first-order Taylor expansion: 
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= ur +J(p-p,.) 

=Ur"+J5p 

(5.11) 

where op = p- P.t is the parameter correction vector and J is the N-by-M Jacobian matrix of 

partial derivatives with elements: 

au!''e 
J .. =-·-

11 apj 

Then the error vector e is 

e = Uobs -UP"' 

= uobs -<ur +J op) 
=e.t -J 5p 

where e.t = uobs- ur is the misfit or error vector at the k th iteration. 

(5.12) 

(5.13) 

If pis a model parameter vector which minimises equation (5.10), the gradient of~ with respect 

to model parameters will be 

that is 

(5.14) 
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Substituting equation (5.13) into (5.14) and carryins out the gradient operation gives 

(5.15) 

If (.UT .]'f1 exists, the correction step is 

(5.16) 

Notice that op = p-pt and let p = Pt+l' The equation (5.16) can then be rewritten as 

(5.17) 

where k=O, 1, 2, 3, ... , K. This is the iteration procedure for solving the nonlinear problem of 

(5.10). Starting from an initial estimate Po of the resistivity distribution, one can apply forward 

modelling described in section 5.2.1 to compute model response ur. Then the error 

eo = uohs - ur is computed and used to generate correction steps for each of the model 

parameters. The new estimate p 1 of model parameters is obtained through equation (5.17). From 

this new estimate of model parameters, one can again compute another new estimate of model 

parameter in the same fashion and so on. This process will produce a model parameter series 

{pA:} which may converge to the nonlinear least squares problem (5.10). The nonlinear least 

squares method is also referred as a search method because it searches through the model space 

that contains all possible resistivity models to find one which best fits the data. 

One difficulty in carrying out such an iteration is to compute the partial derivatives in Jacobian 

matrix J since the model response UPre is not an analytic function of model parameters. A 

technique first proposed by Rodi (1976), which incorporates the computation of partial derivatives 
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into the forward modelling procedure, is used here. Because the source § in equation (5.3) is 

independent of model parameters, differentiating the equation gives 

(5.18) 

Therefore 

(5.19a) 

where ~1 is the inverse Fourier transform operator. Such an approach has two advantages. First, 

the computation is relatively fast compared with the method of difference approximation because 

matrix (;-t has already been calculated by forward modelling. Second, the partial derivatives are 

computed as accurately as the electric potential since equation (5 .19a) is an exact analytic 

formulation with the exception of the finite difference approximation. 

In practice, the fitting errors and image parameters are usually scaled (or weighted); for example, 

the misfit can be scaled as e A: = (uobs - uf'e) I uobs and the resistivity can be represented in terms 

of a logarithm to ensure a non-negative value, i.e. P; = ln P; and p = [p10 p2 , • .. , PM ]T. Then 

equation (5.19a) becomes 

au_ au_ F-l[G" -1 aa u" J --p.---p. -
api I apj I apj 

(5.19b) 

and the elements of matrix J will be 
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(5.20). 

The iteration in procedure (5.17) is very unstable in practice because ERT is an ill-posed and 

underdetennined problem. The ill-posedness implies that small changes in the observed data may 

cause correspondingly large variations in the reconstructed image. Consequently, the images may 

exhibit fluctuations with a roughness that is physically implausible. The underdetermined nature 

of the problem, for instance due to the overparameterization, means that the image reconstructed 

from procedure (5.17) is not unique, as mentioned in section 5.2.2. A closer examination may gain 

some insights into the problem so that certain remedial procedures can be applied to stabilise the 

iteration. 

The N-by-M Jacobian matrix .:U in equation (5.17) can be decomposed by the method of singular 

value decomposition (SVD) (see chapter 2) 

(5.21) 

where uru = vrv = ll:, A= diag(rt) and Tl; is the singular value of J (i=l,2,3, ... ,M). 

Substitute equation (5.21)into procedure (5.17) 

(5.22a) 

(5.22b) 
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where A-1 = diag(l/ 11;). Then the effect of underdeterminacy and ill-posedness on the stability 

of iterations can be seen more clearly through the analysis of equation (5.22b). 

The overparameterization means that the image is divided into more cells M than there are degrees 

of freedom in the measured data N (i.e. the number of independent data). In other words, the 

linearized iterative equation (5.15) is underdetermined and the N-by-M matrix Jf is singular, i.e. 

there are at least M-N singular values which are zero (or negligible). The solution to equation 

(5.15) is not unique because there are llo~7"11 11 -:t 0 such that (.JfT Jf)op7ul1 = 0 (e.g. Press et al, 

1989, p54). The general solution is 

M-N 
opgen ::: op + L ll;OP7wl (5.23) 

i=l 

where 8!!» is a non-null solution constructed by the pseudo inverse (i.e. setting 1 I 'l'ti = 0 for each 

zero singular value in equation (5.22b)), and ai is any scalar. One particular solution may be 

chosen by setting ll; = 0 for all i. If so, the iteration will result in an image solution vector p with 

minimum length IIPII· 

The ill-posedness of electric resistivity inversion implies that there may be some very small, but not 

zero, singular values besides those near zero 11i 's due to the overparameterization. Those small 

singular values will lead to the very unstable iterations because if a singular value approaches zero, 

its reciprocal in equation (5.22b) approaches infinity. A small change in ek, for example the 

deviation due to data noise, will produce a large correction step op. This will be reflected in the 

reconstructed image as geologically unrealistic, high wave number fluctuations. 
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It may be argued that whilst the ill-posedness is the intrilisic problem of resistivity inversion, the 

under determinacy can be overcome by re-meshing the image space with a coarser mesh. It is 

partly true that the reduction of the number of unknowns may make iteration (5.22b) more stable 

because it may remove the singularity of J due to overparameterization. However, the question is 

that usually little is known for the features under the reconstruction and hence a coarse mesh may 

suppress the significant structure which the image contained. Furthermore, for the nonlinear 

problem of ERT, it cannot be assumed that N measurements imply that N local values of the image 

can be recovered by the inversion. This can be shown evidently if the integral equation (4.5) is 

discretised over a 20 (i.e. x-z plane) mesh with exactly N cells and rewritten as 

N 

oU(xpi) = LJl K(x,z,xp,)Op(x,z)dxdz (i=1,2,3, ... ,N) (5.24) 
j=l t:.Si 

where 

the integration area of jth cell. 

K( ) 1 +J .. J(x,y,z)cose d . 
x,z,xpi =- II II y, forr,rp;andJseeequation(4.5). 

21t -oo r-rpj 

e : the angle between J(x ,y ,z) and V p. 

Equation (5.24) is also an iterative procedure with the current distribution J(x,y,z) and resistivity 

p(x,z) being updated at each iteration. According to the integral mean value theorem, equation 

(5.24) may be rewritten as 

N 

OU(xpi) = LOPi JJ K(x,z,xp, )dxdz (i=l ,2,3, ... ,N) (5.25) 
j=l /lSi 
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where the Sp i are clearly mean values of resistivity weighted with respect to the kernel 

K(x, z,xp;) over the cell/lSi namely 

JJ K(x,z,xP; )Sp(x,z)dxdz 
- 6S 
Bpi=~j~~--------------

JJ K(x, z, xP; )dtdz 
(j=l ,2,3, .. ,N) (5.26) 

ASJ 

Therefore, under the best conditions where there are no degeneracies in equation (5.24), the N 

measurements can determine N mean values of the image in this sense. Clearly, this mean value 

representation is difficult to interpret in terms of the usual point to point, or spatial (algebraic) 

averaging description of an image. 

However, if it is known a priori that the true resistivity distribution is smooth enough, in principle 

the data may have contained sufficient information to reconstruct the image. More specifically, 

one may design a mesh such that the term Bp(x,z) in equation (5.26) may be taken as one value 

op j for each cell and hence be removed from the integration, i.e. op j = op j. The iterative 

procedure (5.24) may converge to the true image. In practice, it is difficult to design such a mesh 

without a priori knowledge of subsurface structures. 

Alternatively, the image may be represented by overparameterizing and the reconstruction is solved 

by the method of least squares mentioned above. The solution image will be nonunique but one 

may single out a solution by imposing extra constraints or a priori knowledge on it. For example 

it may be argued that the image should be 'simple' or 'smooth', or comply in part with borehole 

data. The smoothness constraints will also suppress the oscillations due to the ill-posedness and 

hence stabilise the iteration as will be shown in the next section. 
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As stated in the above section, the ill-posedness and the under determinacy of electric resistivity 

tomography will cause the iterative reconstruction to be unstable and the solution image to be non­

unique. The underlying problem is that although the potential data provide information about the 

resistivities, the information is not sufficient to determine them uniquely. Some extra information 

must be added to constrain the image being reconstructed. This extra information, which 

quantifies the expectations about the character of the image that are not based on the actual data, is 

called a priori information (Jackson, 1979). For instance, one would expect the resistivities 

recovered to be non-negative. 

One of the commonly accepted expectations about the reconstructed image (or solution) is that it 

should be 'simple' or 'smooth', especially for the overparameterised inversion problem (deGroot­

Hedlin & Constable, 1990). The smoothness constraint can be incorporated into the definition of 

the object function to be minimised (as it will be stated later) , or be applied as a simply 20 low­

pass filtering on the image within each iteration. The two methods can be applied collectively. 

The former is known as a regularisation method and the latter can be referred to as the spatial 

smoothing filter method. 

Regularisation 

In the method of regularisation, the misfit or error function has the general form (Phillips, 1962; 

Tikhonov, 1963) 

(5.27) 

where S(p) is the roughness (or the reciprocal of the smoothness) constraint imposed on image p, 

for instance, the first derivative of p. The regularisation parameter A. (>0) which regulates the 

balance between the data residual and image roughness, emerges as a Lagrange multiplier in the 
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misfit function. The inversion process is then to minimise the misfit function subject to the 

roughness ll§(p)ll2 
being also minimised. Following the proposal by Tikhonov (1963), the 

roughness can be constructed by taking a linear superposition of spatial derivatives, i.e.: 

(5.28a) 

or in matrix notation 

(5.28b) 

where lDl1 and [)2 represent the first- and the second-order spatial difference operators, 

respectively. For simplicity suppose the constraint function §(p) contains only one term, i.e. 

(5.29) 

where[) can be a difference operator of zero-, first-order or second-order. Following the same 

steps described in above section, it is shown that the iteration procedure for problem (5.14) in such 

case is 

Different choices of operator D lead to different regularising characteristics. Higher order 

operators imply stronger constraints on the roughness of the reconstructed image. Most frequently 

used operators are zero-, first- or second-order. 

Alternatively, the function §(p) may take the form 
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§(p)= Dop (5.31) 

where <5p is the step size of parameters mentioned in the above sections. The corresponding 

iteration procedure will be 

(5.32) 

In the special case in which Dis a zero order difference operator, equation (5.32) becomes 

(5.33) 

where I is the identity matrix. The procedure (5.33) is well known as the damped least squares 

method (DLS) or 'Marquardt-Levenberg' method. Clearly the DLS method takes the total length of 

the step size of each iteration as the constraints, i.e. minimising data error subject to the 'size' of the 

IIBPII2 
being also minimised. 

The first-order spatial difference operator for a 2D image can be constructed in several ways. One 

method is to decompose it into two operators: 

(5.34) 

where the operators D x and D, difference the image of laterally adjacent cells and of vertically 

adjacent cells, respectively. For a lx X 1
2 

mesh with lx cells in x-direction and 1
2 

cells in z-direction 

and if cells are numbered in columns first, the row vectors of the two operators may take the form 

respectively: 

d~ =(0, ... ,0,-a.i,O, ... ,O,a.i+l, ,0, ... ,0] (5.35) 
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dl~ =[o, .... o, -f31, f31+" o, ... ,o] (5.36) 

where i,j = 1,2,3, ... ,/x xlz. The coefficients a.; and f31 can simply be set to 1. Alternatively, as 

suggested by deGroot-Hedlin & Constable (1990), one may set f31 = 1 but a;= llz; I & (i.e. 

depth-to width ratio of the cell) and this is equivalent to increasing the roughness penalty as a 

function of depth because although the horizontal scale of the cells is the same, the vertical scale of 

the cells is increased along the z-axis (see figure 4.1). 

The underlying reason that the regularisation method works is that it increases the values of 

diagonal elements of matrix (.JJT J) and hence removes the effect of the zero or very small singular 

values. As an example, let us evaluate the simplest case of zero-order regularisation. Because 

(JT .JJ +Ali)= (VA2VT +A. H)= V(A2 +All)VT, equation (5.33) becomes 

(5.37) 

i.e. even when 11; ~ 0 there is no danger of division by zero. A similar reason also holds for 

equations (5.30) and (5.32) where the matrix (lDT.D) usually has non-zero elements in off-diagonal 

positions as well. 

Spatial Smoother 

A spatial smoother (or ft.lter) also can be applied to suppress the oscillation of the reconstructed 

image. The smoothing operation can be carried out after the image has been constructed or during 

each iteration. The two types of spatial smoothers which will be considered are: the spatial 

average operator (i.e. localised average) and median filter. 
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The spatial average operator§" is linear and may be different in terms of the size of window and 

the weighting method applied-a given cell value is replaced with a weighted average of the 

surrounding cells and itself. A 3-by-3 window, weighted by the areas of cells, will be tested. At 

the edges and the corners of the image, the size of averaging window will be reduced where the 

unsampled cells are excluded. 

The median smoother §m is similar to the averaging smoother, except that it is nonlinear in the 

sense that the value of the central cell is replaced by the median (not any linear average) of the 

neighbouring values and itself. A median filter smoother has two distinguishing advantages: it does 

not destroy high-contrast boundaries as an averaging smoother would and it is not affected by 

isolated spikes that may appear in the reconstructed image due to the ill-posedness and under 

determinacy. The 2D median smoother tested here is accomplished by a two-pass, lD (i.e. row or 

column) median filter which is easy to implement 

Incorporating a spatial smoother§ into the iterative procedures (5.30) and (.5.32) results: 

(5.38) 

(5.39) 

where the spatial smoother Scan be either s. or Sm. The differential operator Jl) can be zero, ftrst 

or second-order and the corresponding iterative procedures are referred as zero-order, first-order 

or second-order regularisation, respectively. The zero-order regularisation in equation (5.39) is 

also known as the damped least squares method, as has been mentioned above. 
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m.~H~nr~ftion IP~rl:llmetter A. 

The success of regularised (or snwothness-constrained) least squares methods depends not only 

on the choice of smoothing function but also on the choice of regularisation (or damping) 

parameter A. which determines the amount of smoothness constraints to be incorporated in each 

iteration. A large A. may lead to a stable but also excessively smoothed image whilst a too small 

A. may cause the iteration to be unstable. Phillips (1962) argued that any f.. which makes the 

misfit smaller than or equal to the data noise should be acceptable. The difficulty is that the exact 

amount of noise in the data is usually not known in practice. For the method of damped least 

squares, Marquardt (1963) proposed an elegant method to change').. in each iteration, i.e. in the k 

th iteration, if the fitting error is decreasing compared with the k-1 th iteration, the ').. is decreased 

by a factor a and otherwise it is increased by a factor of 13 where a<l and 13> 1. The success of 

Marquardt method depends on the initial A. as well as the factors a and 13. It is difficult to select 

suitable values for these parameters without experiments because they are context dependent. 

Intuitively one may choose the regularisation parameter f.. which leads to reduce the data residual 

in each iteration. This can be achieved by a lD search operation after each iteration (Constable et 

al., 1987). The A. is selected as a minimizer of the misfit function E(A.): 

(5.40) 

where Uobs is the measuring data vector and U pre (A.) is the calculated data in current iteration. 

This method will be evaluated in Chapter 7. 

The disadvantage of above strategy is that it does not take into account the roughness penalty in 

selecting A. • A more general approach is the method of Generalised Cross-Validation (GCV) due 
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to Golub et. al (1979). In this method, the parameter A. is selected as the minimizer of the GCV 

function V(A.), defined by 

where !I is an identity matrix and xA. is the regulruised least squru·es solution to the linear least 

squares problem 

min {iiAx- ll)ll
2 + A.IIILxll

2
} 

X 

Accordingly, the GCV function for regularised non-linear least squares procedures (5.30) or (5.32) 

may be defined as 

(5.41) 

where .Jr is the Jacobian matrix and Dis the difference operator. 

The function V(A.) can be viewed as a weighted version of equation (5.40) where the weight 

function is a measure of complexity of model structure: if A. is too small, the resultant model may 

not be smooth enough and this reflects on the V(A.) function as its weight function 

1/trace(l- J(JT J + A.DTD)-1 JT) approaches infinity, and vice versa. Although the GCV 

method is most frequently used in the linear least squares method, it may also be applicable to non-

linear least squares problems (e.g. O'Sullivan & Wahba, 1985) and this will be tested in Chapter 7. 

-83-



Chapter 5: Nonlinear Algorithms 

~.~ • .PJ [Q)i®©QJJ®®B©ril 

One may question whether the regularisation method is justified for electrical resistivity 

tomography. For example, one may argue that oscillatory structures may actually be present in the 

target structures and hence the smoothness constraints may remove desired features in the 

reconstructed image. However, it may also be argued that the signature of any such structures 

would be close to data noise because of the low-pass filtering characteristics of the earth. This can 

be evidently shown in the 2D apparent resistivity pseudosection where the data change is usually 

much smaller than the parameter change in the model. In other words, the oscillatory structures 

may exist but the observed data are simply not accurate enough to resolve them. To ensure that 

only real structure is recovered, therefore, suppression of oscillatory components by smoothing is 

essential. 

Another problem is that there is no guarantee that the iterative method described in the sections 

above will converge to the 'true' image. As mentioned above, the least squares method is a 

linearized, local search algorithm and hence has the potential danger of being trapped into a local 

minimum or even a maximum (c.f. Menke, 1989, p157). The global search strategy may need to 

be considered. 

During recent years, considerable progress has been made in developing global optimisation 

algorithms, for example, simulated annealing, and currently in artificial intelligence, genetic 

algorithms and neural network studies. These methods are truly nonlinear (i.e. no successive 

linearized steps as the methods are based on local gradient information). Although the algorithms 

are still under development, they may have some potential for ERT detection problems in the 

future. 
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Genetic algorithms (GA) are optimisation algorithms based on Darwinian models of natural 

selection, evolution, and the mechanics of genetics. The initial development was made by Holland 

(1975) and recent progress has been summarised by Davis (1987) and Goldberg (1989). Some 

pioneer experiments in applying GA to solve seismic inversion have been carried out recently (e.g. 

Stoffa and Sen, 1991 ). Genetic algorithms start with a population of likely solutions (or models, or 

images) to the problem to be solved. The basic idea behind GA is that large and complex solutions 

can be represented by simple binary strings. These strings are analogous to chromosomes in 

natural genetics and their components are called genes. The strings can then be manipulated using 

genetic operators, such as crossover and mutation, to generate new strings (i.e. new solutions). For 

GA to improve the solutions, it is necessary to reject the worst and to keep the best. This is again 

an analogy to the 'survival of the fittest' law, which only allows an organism that adapts best to a 

natural environment to survive. The environment in GA is played by the objective function to be 

optimised and the fitness is measured by an objective function value. 

As summarised by Davis (1987), the GA requires five components: (1) a GA representation of the 

problem; (2) a method for creating an initial population; (3) a function (playing the role of the 

environment) verifying the fitness of each individual in the population; (4) GA operators for 

changing a gene's contents in a chromosome; (5) some constants, such as the size of population, 

probabilities of crossover and mutation. The next sections will follow this line to formulate a GA 

for electrical resistivity tomography. 

5.4.1 Representation-Image coding 

For image vector p ""[pp p2 , ... , PM ]T where Pi is the resistivity Pi or In Pi, if the p1 is bounded, 

i.e. Pmin :s; Pi :s; Pmax, it can be represented as a binary string with d bits 
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(bi=Oorl, j=l,2, ... ,d) (5.42) 

and the mapping relation from p: to p1 is 

d 

P =p. +pmaJI. -pmin ~b.2d-j 
I nnn 2d -l ~ J 

J=l 

(5.43) 

The resolution (or precision) of the mapped coding is (pmaJI.- pmin) I (2d -1). For example, if 

p1=8 and is known within the range of [2, 17], its representation as a 4 bits binary string would be 

0110 and the resolution is 1. Clearly higher resolution requires a longer binary string. Each such 

string can be taken as an individual 'chromosome', or alternatively in our work, all such strings for 

the image are concatenated into a single long string. The latter approach is more easy to program. 

The initial population of images can be generated by randomly assigning 0 or 1 to each bit of the 

string. If the size of population is Q, the population is 

P(t) = {p~(t), p; (t), ... , IPQ(t)} (5.44) 

where t denotes the generation (i.e. t=O) and the binary string p~(t) = b1(t)b2 (t) ... bMxd(t) 

represents the k th image at the t th generation. The total length of the string is M X d where M is 

the number of cells and d is the length of string coded for the image parameter of each cell. 

5.4.2 Objective function 

The objective function, which plays the role of environment, can be any measure of the goodness of 

model fitting stated above. In fact because no derivative information is needed in GA the choice of 

objective function is more flexible compared with the algorithms based on local gradient 
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information. However, GA is designed to find the chromosome with maximum fimess and hence 

the minimisation problem has to be transformed into the maximisation. This can be accomplished 

by the reciprocal transform if the misfit is known to be non-zero or a simple linear relation such as 

(5.45) 

where Emax is the maximum possible fitting error, ek is the fitting error between observed data and 

predicted data (through the model associated with the image string), A. is the regularisation 

parameter and I[)p t is the spatial difference of the kth image within the population of the current 

generation. The norm 11 ... 11 can be L1 or 4.. 

In each generation, one can apply equation (5.45) to evaluate each image within the current 

population and obtain a fitness data set [fitness~> fitness2 , • .. , fitnessQ] where Q is the size of 

population. 

Reproduction is a process of selecting the images within current population and using crossover 

and mutation operators to generate a new population. It includes three actions: selection, crossover 

and mutations. 

The selection is a stochastic sampling based on the relative performance (fitness) of the individual 

image. The probability of selection for the k th individual at the t th generation ~k (t) is defined as 

P/(t) = [itness"(t) 

'Lfitness1(t) 
1=1 

(5.46) 
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Then the pseudo-procedure for the selection can be 

lf}me®dYr® e®l~tl@n 
oogirn 

P,:;;li'tJafl©1©>1ii7il[O, 1] {uniform random number generator over 0 to 1} 
1/li'@M ~:;;:~ ~@ ©l 

~~ P/'(t)~P, ~ffil®liil ®®l®©ft !M&l~® HJ~(t) 

Mliilto~ ~li'il om~$?!® ll'b~~ ~®®li'il ~®~~~~eldl 

®fi'llldl 

The crossover is an operation whereby a pair of strings (chromosomes) exchange part of their 

components with some probability ~. After the images have been paired via the selection, a 

random test is carried out to see whether the crossover should occur. If it is true, first the 

crossover position in the string is randomly selected, say the kth bit from left, and then all 

characters after this position are swapped between the two (parent) strings, producing two new 

(child) strings. For example, if there are a pair of 7 bits binary strings A, B and a random test 

indicates the crossover position is 4 from left, the crossover will generate two new strings C and D 

as 

A = a1a2a3a4 a5a6a1 } 

B = b1b2 b3b4 b5b6b7 

crossover 
{
c = ala2a3a4b5b6b1 

D = b1 b2 b3 b4 a5a6a1 

where a; and b; is 0 or 1. A simple pseudo-procedure for crossover is 

procedure crossover 
begin 

select parent1 
select parent2 

P, :::random[0,1] 

if~~ P, then 
begin 

{use selection procedure to pick up two strings 
from current population} 

{uniform random number generator over 0 to 1} 

{crossover} 

k::random[1, ~1] {/=the length of string}. 
child1:::.flrst k characters of parent1+1aet (1-k) character of parent2 
child2::!1irst k characters of parent2+1aet (1-k) character of parent1 
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{no changs} 

Crossover is the driving force behind GA. It takes the 'genetic materials' from currently high 

performance individuals as the building blocks to produce future generations and hence ensures 

that the population evolves towards a better version. Clearly such a swapping process is simply an 

exchange of 'genetic materials' within the current population but cannot create the new 'genetic 

materials' which the population does not possess. For instance, if the population contains only two 

individuals A=100101 and B=000110, the simple crossover stated above will never be able to 

produce any string with the second and third positions (from left) being 1, i.e. any string like 

* 11 *** where * represents 0 or 1. Mutation is such an operation to add diversity to the population. 

It is simply the alteration of a randomly selected bit in the string subject to a specified probability 

Pm. In the above example if the randomly selected bit happens to be the second, the mutation 

operation will create structures like *10***. A simple pseudo-procedure for mutation can be 

procedure mutation 
begin 

select parent 
P, :.:random[O, 1] 

1g Pm :=:: P, then 
begin 

{use selection procedure to pick up one string} 

{uniform random number generator over 0 to 1} 

{mutation occurs} 

k~random[1, ~ {/= the length of string} 
child<= change the kth bit of parent(i.e.1 to 0, 0 to 1) 

end 
else 

child:::parent 
end 

end 

{no change} 

If crossover and mutation are taken as a recombination of images from current population to 

produce next generation population, the main pseudo-procedure for GA can be 
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fPlli'©«:OOIUlli'® ~~ 
~~0~ 
~:5@ 

8111o~i~i ifi>(R) 
®~~~lUI~~® ~(~) 

w~o~® (~®li'liiiilDiiil~~D@~ 8~ ~@~ ~li'IUI®) 

OO@Diiil 
@®~®©~ ~{~) 

~:5~<¢-II 
li'®©@l1llil~Diiil® ~(U) 

®Y't§l~I!Jllalt® ~(t) 

®liil©l 
®111l©l 

{compute the fitness for each individual} 

The tennination condition can be a pre-specified misfit value, maximum number of generation 

(iteration) or standard deviation of fitness of the population. The population size Q, crossover 

probability ~ and mutation probability Pm are important constants which normally have to be pre-

specified. Large populations have more diverse images and hence GA is more likely to succeed but 

the computing cost for each generation (iteration) will be high. Higher mutation probability will 

also produce more diversity in the population but GA may never be able to converge if it is too 

high. Goldberg (1989) suggest that Q ~50,~::::: 0.6 and Pm::::: 0.001 toO.Ol. These constants 

should be tuned for each problem. 

There are several points that should be noticed. Firstly GA manipulates the coding string of image 

parameters, not (directly) the parameters themselves. Secondly GA produces a group (population) 

of possible (optimal) solution images, not a smgle one. Thirdly there is no guarantee that GA will 

find the global minimum although it frequently outperforms other more direct search methods such 

as gradient descent on simulated difficult problems and has shown good efficiency and robustness 

(e.g. Goldberg, 1989). Furthermore GA is much slower compared with local search methods such 

as least squares methods. One pertinent aspect is that GA is an implicitly parallel algorithm where 

individuals can be evaluated simultaneously and hence it may be tailored to run fast on parallel 

computers. 
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Neural networks, which aim to imitate some of the functions of the brain using its nerve structure, 

comprise one of the fastest developing fields of artificial intelligence (AI). The basic idea is that 

the brain can be modelled by inter-connected units which serve as model neurons (i.e. synthetic 

neurons). Each unit converts the incoming signals that it receives into a single outgoing activation 

that it broadcasts to other units. It performs this conversion in two steps. First, it multiplies each 

incoming activation by the 

weight on the connection and INPUT WEIGHT UNIT OUTPUT 

adds together all these weighted 
Input 1 w1 Output 1 

inputs to get a total input (or lnput2 Output2 

lnput3 
total activation). This process 

ACTIVATION 
FUNCTION 

wn can be modelled by an overall 
lnputn Outputm 

input function. Second, the unit 
!Figure 5.1 Synthetic neuron model 

uses an activation function to 

transform the total input into 

the outgoing activity (e.g. Figure 5.1). With such a network, a 'knowledge database' can be learned 

(taught) and stored, and later when it is stimulated with (similar) input it can use the knowledge 

stored as weights to give the desired output, or even be able to be re-trained to adapt new 

knowledge. Recently progress in this field has been summarised by Rumelhart & McClelland 

(1986) and McClelland & Rumelhart (1988). 

The neuron inputs may be real or Boolean numbers. The total input function usually has the form 

/i = Iwuoi +biasi 
j 
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where /i is the overall input, wu is the connection weight between the ith unit the jth, and oi is the 

output from the jth unit to the ith unit. The biasi is the bias term of the unit which incorporates 

some a priori information such as that the unit has a preference to be turned on or off. The 

s(x) sigm(x) 

(2) 

h(x) sign(x) 

(3) (4) 

+1 

0 

-1 

figure 5.2 Examples of activation function for neural networks: (1) linear threshold function; (2) 
sigmoid function; (3) and (4) binary functions. (after Rumelhart & McClelland 1986) 

activation function is generally chosen to be monotonic and odd (with thresholds), for example, the 

linear threshold function s(x), the sigmoid function sigm(x) and the binary functions h(x) or sign(x) 

as shown in Figure 5.2. The commonly applied activation function for layered neural networks is 

the sigmoid function with the form: 

1 
f(x)= 

1 
-x 

+e 

5.5.1 Mulftolayer Model 

(5.48) 

Although neurons may be connected to each other in many different ways, only two types of 

architecture are frequently used; the multilayer model and the Hoptield model (e.g. McClelland & 
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Rumelhart, 1988; Hopfield & Tank, 1985). The Hopfield model, in which the neurons are fully 

interconnected, will not be considered here because it is still under development. Instead, the 

multilayer model is examined. In the simple multilayer model the network is arranged into 

successive layers of neurons and the connections are only allowed to be between consecutive layers 

(see Figure 5.3). The information transmission is in one direction only, i.e. each layer receives 

input hidden output 

IFIQJUII'® 5.3 An example of multilayer neural network 
model. 

signals only from the previous layer and transmits to the following one. More recent models permit 

the connections within each layer and the feedback from outputs. The two outermost layers are 

called the input layer, which receives inputs from the external world, and the output layer which 

outputs the results of processing, respectively. The intermediate layers are called hidden layers. 

When inputs are presented, the network will propagate the signals from input through hidden layers 

to the output layer. The input and output activations for each neuron can be calculated from 

equations (5.47) and (5.48). This process can be operated in parallel mode or serial model. 

Suppose that time is discrete and each time step is marked by a clock tick. In parallel mode, at 
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each clock tick each neuron calculates its new input activation (when it is available) and its output, 

and transmits it to the next neurons which it connected. In serial model, each time only one neuron 

performs such actions. The intrinsic parallelism of neural networks implies that the parallel model 

can be easily implemented on parallel computers or hardware neural networks. 

Association is the main power of such multilayer neural models, i.e. it can associate the inputs to 

the outputs. For this reason, it is usually used in classification and pattern recognition. However, 

the layered neural network may also be suitable for resistivity image reconstruction. That is, it 

may be possible to design such a multilayer neural network such that after training (see next 

section) its output is the reconstructed image when the boundary potential measurements are 

presented to its input layer. The nonlinear features between measured data and resistivity 

structures are then reflected on the hidden layers. There are at least two advantages with such an 

approach. First, the reconstruction process is fast because it involves only a one-step forward 

propagation of signals through the network. Second, the training data may be taken from not only 

resistivity forward modelling but also from field measurements, or even from laboratory 

experiments. Therefore deficiencies due to the use of a simplified physical model for resistivity 

structures used in forward modelling may be avoided. 

5.5.~ l®®mnll'll~ ~~§i©rri~~m: rsla©~~ll'©paga~o©n 

The learning algorithm generally used for a multilayer model is the error back-propagation method 

which is the extension of the Widrow-Hoff rule (or delta rule) for a single layer model (e.g. 

McClelland & Rumelhart, 1988). Before training, the network weight<> are usually initiated with 

random numbers. The training process has two stages. First, a training example is presented to 

the input layer of the network. The actual outputs are computed from current network weights, 

proceeding in order from the input layer, through intermediate layers, to the output layer. This is 

referred to as 'forward propagation'. Next, the total error between desired outputs and actual 

outputs is calculated. The error then is backpropagated from the output layer, through 
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intermediate layers in turn, to the input layer, leading to the modification of each connection 

weight. This process is repeated, with the same example or a set of examples in turn, until the 

minimum error is reached. 

Mathematically, the training (or learning) is a function minimisation (or optimisation) problem 

with the objective function similar to equation (5.10), i.e. 

m 

E(w) = ~Ek(w) (5.49a) 
k=l 

where 

II 

Et(w) = ~(laJ _ Y~ir)2 (5.49b) 
i=l 

and Yidesir and y;aJ are the desired outputs and the calculated outputs of the network with the kth 

example presented, respectively. The error function Et ( w) can be minimised by a gradient 

descent procedure 

aE" 
w .. (k) = w .. (k-1)-ro-

" I) a wii 
(5.50) 

where ro is the step size and wii is the connection weight between the ith neuron to the jth neuron. 

Rumelhart & McClelland (1986) have deduced that equation (5.50) is equivalent to 

(5.51) 

where o j is the output from the jth neuron to the ith neuron and 
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(output layer) (5.52) 

O; = J'(l;)'J2Bhwh; (hidden layer) (5.53) 
h 

The f' U; ) is the derivation of the activation function of the ith neuron and I; is the total input of 

neuron i. The variable h ranges over the number of neurons to which neuron i sends signals (see 

Figure 5.4 ). As indicated above, for carrying out the gradient descent procedure it is necessary to 

start from the output layer, recursively computing the 0; error term in a successive and backward 

way. For this reason, the gradient descent procedure here is referred as an error backpropagation 

method. 

In resistivity image reconstruction, both the measured data and the image parameters can vary 

over a large range and hence it is necessary to map them into a regular range, say [0, 1], for 

training and reconstruction. 

Neural network theory is a relatively young field. Although it has been proved to be useful in a 

number of problems, it still has some limitations and difficulties which are not yet resolved. First, 

there is no theoretical basis nor even a satisfactory empirical rule suggesting how a network should 

be constructed to solve a particular problem. Second, the backpropagation, deduced from the 

gradient descent method, is a local optimisation method. It therefore may converge to a local 

minimum or even not converge at all. Third, in spite of its intrinsic parallelism, neural networks 

implemented on conventional computers are still working in serial mode and the backpropagation, 

operating on a large scale network or a large training data set, requires large computing resources. 
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Perhaps the most difficult problem is that there are so many resistivity structures, with different 

geometries and resistivities that it may prove impossible to train the network with adequate 

examples. Experience suggests that the multilayer neural networks only work best for structures 

within the scope of the training set and otherwise they may fail. 
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In the past, 2D resistivity structures were shown as a tabulated list of resistivity values or a 

contour map (e.g. Oristaglio & Worthington, 1980). More recently they are represented as grey­

scale or pseudo-colour images. By comparison, the method of tabulation is the most difficult to 

visualise when the number of resistivity values is large although it maintains all reconstructed 

information, such as the parameter values and their corresponding coordinates. The contoured 

map can at best be viewed as a crude image with a relatively low spatial resolution and it is still 

difficult to visualise although it has the advantage that the image values can easily be estimated 

from the values on the contouring lines. Recent development of using colours or grey scales to 

shade the areas between contour lines makes it more visual. However, for higher spatial 

resolution, a grey-scale or pseudo-colour image may be the best for representation of 20 

structures. 

This chapter will discusses some problems associated with the image representation of 2D 

resistivity structures. First, the method of the image representation of resistivity structures using 

grey-scale and pseudo-colour is presented. Then the image enhancement techniques are discussed, 

such as the histogram equalisation and logarithmic transformation methods. 

6.1 IMAGE REPRESENTATION 

6.1.1 Grey scale image 

In this method, resistivity structures are shown as a grey-scale image (i.e. graded black to white 

image). As shown in Figure 4.1, the subsurface section is divided into small cells. If the resistivity 

value of each cell is transformed into a grey value (i.e. luminance intensity), it is then possible to 
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present the subsurface resistivity structure as a grey-scale image on a display device such as a 

computer monitor or printer. 

Suppose the resistivity values cover a range (pmin, Pmax) and the display device can show grey 

levels from m toM (from the lightest to the darkest grey). The transformation is then 

( ) (p(x,z)-pmin)(M )+ n
8 

x,z = -m m 
(Pmax - Pmin) 

(6.1) 

where n
8
(x,z) is the grey level corresponding to resistivity value p(x,z) of the cell at (x,z). A 

modern display device, such as a VGA computer monitor or a laser printer, may be able to display 

up to 256 grey scales or more but human eyes may only be able to distinguish less than one 

hundred grey levels. 

For a VGA computer monitor, a Pascal program has been written to display the reconstructed 

resistivity structure as a 16 grey-scale image. A postscript printer driver has also been developed 

to download the image to a postscript laser printer in this thesis. 

The reconstructed resistivity distribution can also be shown as a 2D pseudo-colour image in a 

similar way as the grey-scale image. Instead of mapping the resistivity value of each cell into a 

single grey level, it is necessary to transform this resistivity value into a set of three numbers (r, g, 

b) where r, g and b represent the intensity of red, green and blue respectively (i.e. the colour 

palette). It is therefore difficult to define an optimum mapping, not only because of the non-unique 

choices of one dimension (resistivity value) to three dimensions (r, g, b intensity) mapping but also 
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because of the effects of colour perception. In general, the use of colour in representation of 2D 

resistivity structures is limited only by artistic imagination. 

However, in practice it may be argued that some constraints should be imposed on the mapping. 

First it is desirable that the target in the image is represented by a colour (and intensity) which is 

different from its background and hence stands out more clearly to a human viewer. Therefore the 

mapping may need to be adjusted according to the problem at hand. Second, the change of colour 

and its intensity from one to another should be smooth. Otherwise it will lead an image with 

artefacts of colour boundaries. The mapping of resistivity values into different r, g, b values can 

be accomplished by two steps. Initially, the resistivity values are transformed into grey levels by 

equation (6.1). Then these grey levels n
8 

are mapped into different colour intensities, for example, 

by a sine function: 

r = N, x Sin( n81t) 
ngmax 

(6.2a) 

(6.2b) 

b=Nbx Sin 11 +-( 
n1t 1t) 

3n11max 15 
(6.2c) 

where r, g and b are the intensities of red, green and blue respectively, the N,, N
11 

and Nbare 

maximum values of r, g, b respectively. The n
8

IIUIX is the maximum value of grey levels. The 

above mapping produces a colour palette that varies smoothly from blue to dark red. Another 

method is to use a pre-specified colour palette, for example that in Table 6.1. 
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l'~IM® ~- ~ Grey seals to colour palette mapping. (after Hall, 1979, p286) 

Grey 
Red Green Blue 

Level 
Grey 

Red Green Blue 
Level 

1 1 255 255 32 1 255 1 
2 1 238 255 33 17 255 1 
3 1 221 255 34 34 255 1 
4 1 204 255 35 51 255 I 
5 1 187 255 36 68 255 I 
6 1 170 255 37 85 255 1 
7 1 153 255 38 I02 255 1 
8 1 136 255 39 119 255 1 
9 1 119 255 40 136 255 1 
10 1 102 255 41 153 255 1 
11 1 85 255 42 170 255 1 
12 1 68 255 43 187 255 1 
13 1 51 255 44 204 255 1 -

14 1 34 255 45 22I 255 1 
15 1 17 255 46 238 255 1 
16 1 1 255 47 255 255 1 
17 1 17 238 48 255 238 1 
18 1 34 238 49 255 221 I 
19 1 51 221 50 255 204 1 
20 1 68 204 51 255 I87 1 
21 1 85 187 52 255 170 1 
22 1 102 170 53 255 153 1 
23 1 119 153 54 255 136 1 
24 1 136 136 55 255 119 1 
25 1 153 119 56 255 102 1 
26 1 170 102 57 255 85 1 
27 1 187 85 58 255 68 1 
28 1 204 68 59 255 51 1 
29 1 221 51 60 255 34 1 
30 1 238 34 61 255 17 1 
31 1 255 17 62 255 1 1 

63 255 1 1 

The great strength of pseudo-colouring is that the subtle variations within an image can be more 

easily distinguished because the human .visual system is highly sensitive to colour. In addition, 

colour images are generally much more pleasant to view than black-white images. It is through 

this aesthetic aspect of colour that the pseudo-colouring method is often referred to as an 'image 
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enhancement' technique. Alternatively, this strength can also be a disadvantage of using colours 

because if the colour palette is not arranged properly, it may emphasis some features of an image 

which may be undesirable, for example, the artefacts of the reconstruction, at the expense of 

others. Therefore the pseudo colouring should be used cautiously with a carefully arranged colour 

palette. 

A Pascal program has been developed to display a reconstructed resistivity image on a colour VGA 

monitor using a colour palette of 14 mapped by equations (6.2a-c). The pseudo-colour image can 

also be download to a colour printer using the mapping relationship of equations (6.2a-c) or Table 

6.1. A comparison of a grey scale image and pseudo-colour images for the same image data are 

shown in Figure 6.1. 

Image enhancement is the processing of images to improve their appearance to human viewers. 

Methods and objectives of image enhancement vary with applications. For example, low pass 

filtering may remove some noise in an image and hence improve its visual quality. If image 

intensities (grey values) in some region are sufficiently high that features with low image intensities 

cannot be displayed on a given device, then a logarithmic transformation of contrast may be 

desirable. The criteria for enhancement are often subjective because they rarely can be qualified by 

a useful objective measure. Various image enhancement methods have been developed (e.g. Hall 

1979, p158~214) but only the contrast transformation, histogram equalisation and image smoothing 

methods-are considered here. 

6.2.1 Logarithmic transformation 

The dynamic range of a grey-scale image is very limited because the human visual system can 

probably only distinguish tens of grey levels, as mentioned above. However, the subsurface 
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resistivity values may change from a few ohms to -103 ohm·m or much more. If such high 

contrasts occur even in a small region of an image, the structures with low grey values will be 

overshadowed, making them invisible on such an image. In such cases, it may be better to show 

the resistivity image on a logarithmic scale, i.e. the resistivity values are transformed into a 

logarithmic scale before being mapped into the grey scale by equation (6.1): 

p(x,y) = logp(x,z) (6.3) 

where p(x,z) and p(x,y) are the original and the transformed resistivities respectively. This is 

usually referred as logarithmic contrast transformation in standard image enhancement methods. 

Logarithmic transformation is nonlinear which expands the contrast of the small grey values and 

compresses that of large values. It improves an image appearance by making the low-contrast 

detail more visible. In addition, it transforms multiplicative noise of an image into additive noise. 

Figure 6.2 compares an image with high resistivity contrast to its logarithmic transformation. The 

structures with small grey values in the original image are hardly visible but they are clearly 

indicated on the transformed image. 

6.2.2 Histogram equalisation 

A more general grey scale transformation is the histogram modification. The histogram of an 

image, denoted by p(f), represents the number of cells that have a specific intensity f (grey 

level) as a function of f (see Figure 6.3). The histogram modification is to transform grey scales 

of an image to produce a desired histogram. If the desired histogram is uniformly distributed (i.e. 

constant, see Figure 6.3), the histogram modification is called histogram equalisation. Such a 

modification can be carried out in two steps. First the cumulative histograms, S(/) for the 

original image and Sig) for the desired image, are computed 
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f f 

S(j) = j p(t)dt = L p(j) 
0 ,\:;0 

(6.4) 

Sig) = 1 pd(t)dt = tpd(g) 
0 ,\:;0 

(6.5) 

p(f) Pa(g) 

:Lilli! ~ I f 
:~IJIIIIII g 
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Figure 6.3 Illustration of histogram equalisation of an image: (a} the original 
histogram and (c) its cumulation; (b) the desired histogram and (d) its cumulation; (e) 
grey scale transformation function. 
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where the p(/) and pd(g) are the original and desired histogram respectively. Then the grey 

scale transformation g = T[f] is 

(6.6) 

where S~1 is the inverse function of Sig). The above transformation is exact only if the 

histogram functions are continuous. In practice, histogram functions are usually discrete and the 

transformation g = T[f] can be obtained by choosing g for each/ such that Sig) is close to 

S(/) (see Figure 6.3). 

Images processed by histogram equalisation typically have more contrast than unprocessed images. 

However, such transformation is neither physically based nor mathematically well defined, for 

example, compared to the logarithmic transformation mentioned above. The processed images may 

appear somewhat unnatural. It, therefore, may be argued that the logarithmic transformation may 

be better in processing resistivity images. 

6.2.3 lm~ge t.lmoothing 

In addition to enhancement of images by modifying their contrast and dynamic range, images can 

also be enhanced by reducing random noise through image smoothing. Instead of incorporating the 

spatial smoothing into the reconstruction process as mentioned in Chapter 5, the spatial smoothing 

methods can be applied after the reconstruction simply as an image processing technique (see 

Chapter 5). 
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In deternlining the behaviour of the electrical resistivity reconstruction algorithms stated above, it 

is important to apply the algorithms to synthetic data corresponding to models with known 

parameters. In this way, the data noise level and complexity of model structures are controllable 

and hence it is possible to investigate whether a particular algorithm converges. In t}lis chapter the 

algotithms proposed in previous chapters will be tested against the synthetic data from several 

resistivity model structures. The aim is to evaluate the advantages and the weakness of the 

different algorithms and to investigate how the changes of some algorithm parameters will affect 

the reconstruction. The tests will focus on the Born inversion and the regularised non-linear least 

squares algorithm with different choice of regularisation functions and spatial smoothers. Firstly, 

the problem of how to choose a suitable regularisation parameter is investigated. The influence of 

different choice of regularisation functions is then demonstrated. The effects of data and model 

parameter scaling and the influence of initial model choices are also illustrated. As it has been 

mentioned in Chapter 2, one data set may perform better than others in the image reconstruction 

and this will also be investigated. Finally, a comparison is made between images reconstructed 

from the one-step Born inversion and the non-linear iterative algorithms. 

A detailed evaluation of the use of genetic algotithms and neural networks in solving the problem 

of electrical resistivity tomography requires large computing resources and hence a detailed 

evaluation will not be made. 

As it has been mentioned in previous chapters, for this research the subsurface is divided into 

rectangular (cylinder) cells in both the Born procedure and the method of regularised non-linear 

least squares. In the follow experiments, the mesh for Born inversion is 52xll (572 cells) while 

the forward modeling and inverse meshes for the method of regularised non-linear least squares are 
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56x13 and 48x9 respectively. All horizontal dimensions of cells are equal except in the first and 

the last several columns of the mesh where the cells are gradually enlarged to simulate the infinity. 

The vertical dimensions of the cells are enlarged downwards in an approximately logarithmic scale 

(e.g. Figure 3.6). 

One of the convergence criteria is the data residual or fitting error. In the following experiments, 

the data residual or fitting error is measured as 

J M ( u?bs - u!''e )2 E = -~ I I 

d Mb obs 
i=l U; 

(7.1) 

where M is the number of data and utbs and uf'e are the observed data and the calculated data, 

respectively. The Ed is also known as the root-mean-square error (rms). 

In the regularised iterative algorithm, the data residual or data fitting error is an important criterion 

of convergence but it is not the only one since a small data residual does not always imply that the 

resulting image is close to the true solution. The smoothness of the reconstructed image is another 

criterion and hence the iteration is convergent if both the data residual and image roughness are 

relatively small. While the criterion of a small data residual may be specified uniformly without 

considering the image structures, for instance, 5% or 10%, the criterion for small roughness is 

context dependent and therefore cannot be specified without a priori information. However, if the 

algorithm is known to have the characteristics of strong smoothness constraints and it is unlikely to 

produce an image with a high level roughness, one may then argue that a small data residual can 

alone be taken as the only measure of convergence. 
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The iteration will be terminated if one of following events happen: 

(1) data residual Ed is less than a desired level, for example 5% or 10%; 

(2) relative change in data residual Ed is less than 1% for three successive iterations; 

(3) number of iterations exceeds a maximum number allowed. 

It is found that sometimes the final solution at the termination of iteration is not necessarily the 

'best' result during the iteration according to a priori knowledge and hence in the study all 

intermediate images during the iteration were recorded for later examination. 

The regularisation parameter is normally referred to as the Lagrange multiplier in Tikhonov (1963) 

regularised minimisation problems. The discussion here will include the threshold of singular 

values for Born inversion given in Chapter 4 because it has similar effects as the regularisation 

parameter in reducing the roughness in the recovered image. For the convenience of comparison, 

synthetic data from the model shown in Figure 7.1 will be used throughout the following sections 

where a linear array of 20 electrodes equally spaced at 1m is spread from the left to the right. All 

data are assumed to be gathered by the circulating dipole-dipole (cCCPP) electrode configuration 

unless otherwise specified. 

"1.2.1 Choice of threshold of singular' values in Born inversion 

As it has been mentioned in Chapter 4, the choice of threshold of singular values for Born inversion 

is a balance of image resolution and distortion. Lower threshold results in higher resolution but it 

may also lead to higher frequency oscillation in the reconstructed image. Notice that the threshold 

of singular values A., is normally expressed as a fraction of the largest singular values, for 

example, A., = 1. 0 X 1 o-3 A. max , where A. max is the largest singular value of the sensitivity matrix. 
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The term A. max will be omitted in the following discussion. Because the Born inversion is fast if the 

weighting function is pre-calculated, it seems best to select the threshold interactively, i.e. a 

threshold is chosen, say between 1.0 x 10-3 and 1.0 X 10-4, and a reconstruction is carried out and 

the resulting image is then examined; this process is repeated until a satisfactory threshold is 

obtained. As an illustration, Figure 7 .2. shows four images reconstructed from the same cOCPIP 

data set with thresholds A., =4.5x10-3
, 4.5x10-4, 4.5xlo-s and 4.5x10--6 respectively. All 

images have been smoothed by a 3-by-3 spatial median filter. When A., =4.5xl0-3
, the image is 

smooth and the two targets are clearly visible but their vertical positions are not well resolved since 

the apparent targets are displayed upwords by about O.Sm (Figure 7.2(a)). As A., decreases, the 

positions of the targets are better resolved at the cost of increasing oscillation in the image (Figure 

7.2(b), (c)). When A., =4.5 X 10--6, the oscillation is so strong that the targets are hardly visible 

(Figure 7.2 (d)). Therefore A., =4.5x 10-4 see1ns to be the best choice in this case. It is also 

noticed that as the threshold A., decreases, the resistivity values of the whole image increase 

because the effect of the variable offset term b (see equation 4.14). This emphasises the fact that 

images from a Born inversion can only show the relative variation of resistivities, not their absolute 

values. 

7 .2.2 Choi(!e of regularisation parameter 

The regularisation parameter A. regulates the trade-off between the data residual and roughness 

penalty tn resularised non-linear least squares methods (see equation (5.27)). Experience shows 

that a good choice of the regularisation parameter has a crucial importance for the success of the 

algorithm. In the following discussion, several methods for choosing the parameter A. mentioned in 

Chapter 5 will be evaluated. Unless it is specifically indicated, the voltage data from a cCCPP 

electrode configuration are assumed and the iterative procedure of the zero-order regularisation 

method plus median filter is applied as the reconstruction procedure (see equation (5.39)). 
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1 Marquardt's strategy and its modified version. 

As it has been mentioned in Chapter 5, the success of the Marquardt's method depends on the 

initial choice of regularisation parameter A. as well as its reduction and expanding factors a and ~. 

Two imaees reconstructed by this method are shown in Figure 7.3 (al) and (a2). The initial value 

for A. is selected as 105 and the reduction and expanding factors are fixed as ex=0.2 and ~=5 

respectively. Figure 7.3 (a1) is the image after 3 iterations and has a data residual of 9.8% and 

Figure 7.3 (a2) is the image after 11 iterations with a data residual of 5.6%. The targets are visible 

in the images but the distortion is high, creating some undesired artefacts. The reason is that the 

conventional Marquardt's strategy is designed to chose A. as small as possible. This is equivalent to 

setting the roughness penalty as small as possible and it therefore produces images with strong 

oscillation structures. Figure 7.4 shows the changes of A. during the iteration and it indicates 

another disadvantage of such strategy: 1.. 
100®0 

when A. is reduced to its lower 0 succeeded trial 

boundary, the choice of A. will wander 101100 -3. D failed trial 

~ ~ 
_\. I\ _1__\ 

"\-1 ~ -'-~ _L_ ~_L_ about the boundary and about half of 
1000 

iterations will fail. 
~ 

100 

Various modified versions of the above 10 

1 2 3 4 8 6 7 8 9 10 11 12 13 14 15 16 17 

strategy are possible. For example, if a Sequence number of Iterations 

higher roughness penalty is-desirable, as 

in the case of 2D resistivity image 

reconstruction, one can start with a high 

Figure 7.4 The variation of regularisation parameter 
A. during iterations in Marquardt's method. About half 
of iterations failed at later stage of the iterative process 
because the A. wandered about its lower boundary. 

initial A. value and allow it to decrease only after several successive reductions have occurred in 

data residual but increase it whenever the residual stops decreasing. The images reconstructed by 

such a strategy are shown in Figure 7.3 (b1) and (b2) where the initial A., a and~ are the same as 

the above example but the A. is reduced only after 4 successive decreases in data residual. It is 

evident that the images (bl) and (b2) are much better than image (al) and (a2) in terms of 
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distortion although the fitting errors from the two strategies are nearly identical: images (a1) and 

(bl) have a fitting error of 9.8% and 10% respectively and images (a2) and (b2) have a fitting 

error of 5.6% and 5.7% respectively. It is noticed from above example that the fitting error as the 

only measure of fitting goodness is inadequate here because of under-determination and ill­

posedness of the problem. 

In general, Marquardt-like methods of choosing A. tends to put smoothing constraints as small as 

possible and therefore the reconstructed image may have large fluctuations. 

2 Choosing A as a constant value 

If a priori knowledge of model smoothness is available, the regularisation parameter A can be 

fixed as a constant value for ail iterations (e.g. Sasaki, 1992). Such a priori knowledge may be 

gained by testing the algorithm with several different A. values ranging from small to very large 

before actually carrying out the reconstruction. Experience shows that a good result can be 

obtained if a suitable A value is selected. The computation cost is relatively low because no 

additional function trials are needed for selecting A. . Figure 7.5 shows such an example in which 

A. is fixed as 105
• A total of 20 iterations were carried out and all of them are successful. 

However, numerical experiments indicate that a good choice of A. is context dependent and there is 

no uniformly good A for all problems. Although the algorithm is fast if a good choice of A. has 

been made, in some cases the overall cost of computing may be not much lower than the method 

mentioned above (or below) if the computing cost of selecting A. is taken into account. 

3 Choosing A. by 1 D search methods 

An 'optimal' A. may be selected at each iteration if it is allowed to sweep from near zero to infinity. 

The automatic implementation of such a procedure requires adding a lD optimisation search at 

each iteration. As it has been mentioned in Chapter 5, the criterion for a good A. may be the 

minimizer of either data residual or GCV function (see equations (5.40) and (5.41)). The lD 
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search method used here is the golden section search described by Press et al. (1989, p277). As a 

comparison, Figure 7.6 shows two images (a) and (b) reconstructed by selecting A. through 

minimising the data residual and the GCV function respectively. It is shown that the image (b) has 

a relatively poor quality in terms of contrast and geometric resolution, for example, although the 
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Figure 7. 7 The changes of data residual and regularisation parameter A during 
iterations: (a) is the data residual and (b) is its corresponding A which is obtained 
by minimising the data residual in each iteration; (c) and (d) have the same 
relationship as (a) and (b) but the A has been selected by minimising the GCV 
function. 
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horizontal geometric positions of the targets are well recovered, the vettical positions of the targets 

seems to move upward by one cell. The reason is that GCV method tends to choose a very large A 

after just several iterations even when the data residual is still high (see Figure 7.7). Consequently 

the iterative process is terminated because the stepsize of model parameter correction, which is 

roughly proportion to 1/A., is too small. Other experiments with different regularisation functions 

also indicate that the GCV method of choosing A. tends to produce an over-smoothed image. In this 

test, the method of choosing A as the minimizer of data residual at each iteration performs better 

than the GCV method. 

One may suspect that the A chosen by minimising the data residual is not necessarily appropriate at 

all because it only emphasises the fit to the data rather than minimising both the data residual and 

the rouahness of the imaBe, as required by the underlying principle of regularisation methods. 

However, eJtperience indicates that such approach does produce sufficiently smooth images in most 

cases although it fails occasionally. Several numerical experiments were carried out to investigate 

how the data residual and the image roughness vary as a function of A during iterations. Figure 7.8 

shows a typical example of the data residual and the image roughness as a function of 

regularisation parameter A.. From Figure 7.8 following observations can be made: 

(1) A small A leads to a larger data residual and sometimes also a larger image roughness than 

a large A. 

(2) When the A is too large, the data residual will increase slowly. 

(3) The choice of A as a minimizer of data residual normally produces an image with relatively 

small roughness. 
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Figure 7.8 The data residual and the image roughness as a function regularisation 
parameter A. during iterations: (a) data residual; (b) image roughness where D is an 
identity matrix (zero-order smoothing constraints) 
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The slow change of data residual and image roughness at large A also implies that the 

regularisation parameter may be chosen as a constant value as stated above. In practice, the A can 

be chosen as a constant value between 105 to 106 if the resolution is not the major concern. 

Choosing A by a lD search method may produce a high resolution image but the iteration may not 

be so stable. 

There are several regularisation functions which can be chosen and therefore it is necessary to 

investigate their effects on the reconstructed image. As it has been stated in Chapter 5, there are 

basically two choices of image functions to which the smoothness constraints can be imposed 

during successive iteration, namely, the image vector p and the iterative correction stepsize OKJl, 

while the choice of the smoothing operator ][) can be a zero-, first- or second-order of spatial 

difference. In addition, a median or spatial average filtering operation can be applied to the image 

vector during each iteration. The following experiments will examine the effects of different 

smoothness constraints on the reconstructed image. 

'7 .3.Jl. Smoothing image p or stepsize op 

A choice to impose smoothness constraints on the image vector p or the iterative stepsize op will 

lead to two different iterative procedures (5.30) and (5.32) respectively. Numerical experiments 

show that the algorithms which require a smoothing p appear to converge slightly faster but that 

higher quality images seem to result from algorithms which impose smoothness on op, as indicated 

in Figure 7.9. In addition, if Jl) is a zero-order differential operator, experiments show that the 

iterative procedure which imposes smoothness on p normally does not converge while the 

algorithm which constrains the roughness of op does. The algorithm which puts penalty on the 

roughness of op appears to be more stable. 
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7 .3.2 !Effects of «llnffeD"~!l!Ua sm«mihing on»eraaors 

The choice of different smoothing operators in iterative procedures (5.38) and (5.39) may have 

different effects on the recovered image. The following experiments address this problem. For the 

reason stated above, only the iterative procedure (5.39) which imposes smoothness constraints on 

6jp) will be considered here. Different choice of spatial smoother § and difference operator ][)) in 

the procedure (5.39) would result in more than 6 different iterative algorithms but only five of them 

will be tested, namely, 

(1) the zero-order regularisation or damped least squares method (DLS); 

(2) DLS plus median image filter; 

(3) DLS plus spatial average image filter; 

( 4) the fll'st-order regularisation method; 

(5) the second-order regularisation method. 

Figure 7.10 shows images recovered by the above five algorithms from noise-free data 

respectively. The images recovered from noisy data (5% Gaussian noise) are shown in Figure 

7 .11. The maximum number of iterations allowed was 20 and the initial model was a homogenous 

half space having a resistivity of 100 O.m. The test results can be summarised as: 

1 Zero-order regularisation or damped least squares method (DLS) 

The zero-order regularisation or DLS method alone seems to have the highest resolution in terms of 

image value and geometrical information but it is less stable. It tends to overfit the data by 

generating some isolated spikes in the image, especially when noisy data are present. Figure 7.11 

(a) shows the result after 11 iterations. In fact, all 20 iterations were successful. However, whilst 

the data residual still shows a decrease during further iteration, pixel values for the high resistivity 

target approach infinity. Therefore the image after 11 iteration is not realistic because it is known 
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that the highest resistivity in the model used to produce the voltage data is 500 ohm-m (see Figure 

7.1). 

2 DLS plus median filter (DLSM) 

The DLS plus median filter method appears to produce the best images from both noise-free and 

noisy data, compared with the original model, as shown in Figures 7.10 (b) and 7.11 (b). The 

isolated spikes from DLS are removed effectively while the boundaries of the targets are preserved. 

The images are relatively smooth and the positions of the targets are well resolved in comparison 

with the other methods. The pixel values of the targets are under estimated but this is reasonable 

because such an algorithm is unlikely to be capable of recovering all information due to the 

smoothness constraints and the underdetermined and ill-posed nature of the problem. 

3 DLS plus spatial average filter (DLSA) 

The method of DLS plus the spatial average filter produces the smoothest images and therefore it is 

the most stable algorithm. In fact the two images in Figures 7.10(c) and 7.11(c) are nearly 

identical, despite the fact that one was recovered from the data with 5% Gaussian noise while the 

other was noise-free. The price paid for the higher stability is a lower image resolution, i.e. the 

images appear to be over-smoothed. However, as will be seen later, the algorithm is remarkably 

stable when different initial models are applied. 

4 First-order regularisation 

The first-order regularisation performs well with noise-free data as it is shown in Figure 7.10(d). 

The image of the low resistivity target appears to be over-smoothed but the high resistivity target is 

clearly indicated. However, it is unstable when 5% Gaussian noise is added to the data and it 

performs just a little better than DLS method as it is indicated in Figure 7.11(d). The problem is 

similar to that of the DLS algorithm where the data residual shows a continuous decrease during 

20 function trials but the pixel values (resistivities) for the high resistivity target rise to 
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unrealistically high levels after 13 iterations. In addition a distinct 'salt and pepper' like noise is 

present in the image. 

5 Second-order regularisation 

The second-order regularisation method yields moderate resolution and stability (see Figures 

7.10(e) and 7.1l(e)). There are some artefacts in both images recovered from noise-free and noisy 

data but they are not very significant. For noisy data, the image reconstructed is better than those 

recovered by DLS, DLS-plus-spatial-average and first-order-regularisation methods 

The test results indicate that the method of DLS plus median filter performs best while the DLS 

alone and first-order regularisation methods produce relatively poor images if the data are noisy. 

However, the choice of smoothing operators may be best understood to be context dependent. For 

example, if the data noise level is known to be low, then the DLS method may be chosen to take 

advantage of high achievable resolution. The method of DLS plus spatial average filter may work 

well if the resistivity variation of the subsurface is low whereas when targets have clear boundaries 

the method of DLS plus median filter may be optimal. 

The above experiments clearly demonstrate the necessity for a trade-off between stability and 

resolution in electrical resistivity reconstruction. They also illustrate that although the data 

residual (or misfit) is an important measure of an algorithm's performance, it is not the only 

measure, for instance, in the DLS method the data residual can be very small but the corresponding 

image may have unrealistic fluctuations. It is also noticed that an overfit of the data and an over­

smoothness of the image may result from excessive number of iterations and therefore it is 

recommended that all intermediate images be recorded for later evaluation. 
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The data residual can be scaled or weighted if some data are considered to be more reliable than 

others and hence worthy of greater influence on the solution. An obvious measure of reliability is 

the standard deviation of the data but it is rarely available in practice. Alternatively, the data 

residual may be scaled by the measurements themselves as has been stated in equation (5.19b). 

The argument behind such scaling is that a given percent difference between the measured and 

calculated data for each data point should have the same influence on the data residual regardless 

of its signal level (Hohmann 

& Raiche, 1988). For similar 

reasons, the model parameters 

can also be scaled or 

weighted. A widely applied 

scaling method of model 

parameters in electrical 

resistivity inversion is the 

logarithm transformation (see 

equation (5.19b)). Several 

experiments have been carried 

out to test the effects of such 

scaling and Figure 7.12 shows 

one of the resulting images. 
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!Figur® 7.13 A comparison of data residual of the algorithm 
with and without scaling during the first 15 iterations. The 
algorithm used is the method of damped least squares plus a 
2D median filter. 

The experiments indicate that although the algorithms with such scaling methods do converge, they 

tend to produce some undesirable artefacts in the images (see Figure 7.12) and that they converge 

more slowly than the algorithms without scaling as shown in Figure 7.13. 
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It is known that the final solution in non-linear iterative algoritluns may depend on the initial 

model from which the iteration starts and thus the solution may not be unique (e.g. Menke, 1989, 

p153a156). The underlying reason is that the data residual function may have more than one 

minimum point and therefore the algorithm may be trapped in any one of them. Such an example 

is shown in Figures 7.14 and 7.15 where the initial model R0 is assumed to be a homogeneous half 

space with resistivity 20, 50, 100, 200 and 500 Om respectively. Figure 7.14 shows that all 

iterations may be regarded as having converged in terms of the data residual except when 

Error(%) 

1000 - - - ~ Rll=20ohm.m 

~ R0"50ohm.m 

~ -=0=- Rll=100 ohm.m 

~ --D-- ROo200 ohm.m 

~ =-<>=- R0•500 ohm.m 

100 

A. e. ... ~ -~ <a 
.~ =-- ~ 

10 E~' ' ~ J;o;L .... ---- 'E!!!o.'ffi ·- ·A· ·A 

--...... ~ - . .;;.-:9. 

. . . . . 
3 s 1 a 11 13 15 11 19 21 23 25 21 29 

Iterations 

Figure 7.14 The variation of data residual during iterations when the iterative process 
started from different initial models. The initial model is a homogenous half space with a 
resistivity RO. 

R0 = 200m in which the iteration was trapped in a local minimum with about 50% data residual. 

The initial model with R0 = lOOOm can be taken as the closest to the true solution among the five 
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models since the initial data residual is small and the algorithm converges rapidly. The initial 

models with R0 = 200Qm and 500Qm are 'far' away from the true solution in terms of initial 

data residuals but the algorithm did finally converge, indicating that the algorithm has a certain 

degree of robustness towards different initial models. In the case of R0 = 50.Qm, the algorithm 

behaved in a more complex manner: the data residual decreased very quickly within the first 

several iterations and then decayed very slowly. An examination of the resulting images in Figure 

7.15 indicates that the algorithm in this case actually converged to the 'wrong' image, i.e. it 

converged to a local minimum with small data residual (about 4%). In summary, if the data 

residual is the only convergence criterion, the non-linear iterative algorithm may follow three 

patterns when initial model is 'far' away from the true solution: 

(a) It does converge towards the rrue solution but requires more iterations to reach a desirable 

data residual, as in the case of R0 = 200Qm or 500Qm. 

(b) It does not converge at all or converges to a local minimum with a high data residual (e.g. 

R0 ::;; 209m). This problem normally can be easily identified and a new initial model can 

be tried. 

(c) It converges to a local minimum with a small data residual. This problem is difficult to 

identify, especially when field data with noise are applied. A small data residual would 

lead one to believe that the true solution has been obtained but in reality the result may be 

totally irrelevant because a small difference in data residual may lead to a big difference in 

the solution due to the ill-posedness and under determination of the inversion. 

The above example clearly demonstrates the importance of the initial model and the associated 

problem of non-uniqueness for the non-linear iterative algorithm. If a priori information is 

available, the initial model may be appropriately designed. In the absence of such knowledge, the 

apparent resistivity pseudosection or images from Born inversion may be used to estimate the 

initial model. In practical applications, it is recommended that several initial models should be 
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tried. However, one must bear in mind that there are no simple methods for determining whether 

the iterative algorithm does converge globally or not without a priori information. 

It was found that in some cases the iterative algorithm failed to produce a desired image because it 

generated some highly oscillatory image structures at an early stage and could not remove them in 

successive iterations, i.e. the reconstruction was under-smoothed. In such cases, a stronger 

smoothing constraint may improve the results. For instance, in the above example where the initial 

model is 50.Qm, the true image structures are shadowed by a strong artefact at the bottom of the 

image (see Figure 7.15(a)) This problem can be solved by imposing stronger smoothness 

constraints, for example, using the method of DLS plus spatial averaging filter. Figure 7.16 

indicates that such an approach does remove the artefact although some of the image resolution is 

lost 

The influence of initial models on the images reconstructed from Born inversion seems not so 

significant As shown in Figure 7.17, the images from initial models of 20, 50, 100, 200.Qm are 

nearly identical. The image recovered with the initial model of 500.Qm is also close to the others if 

one excludes the pixel rows near the surface which show a regular fluctuation, probably due to the 

inaccuracy in the approximation of the weighting function in this region. 

7.6 COMPARISON OF IMAGES RECONSTRUCTED FROM DIFFERENT 
DATA SETS 

As stated in Chapter 2, there are various data sets which may be used as the inputs to the ERT 

inversion and hence a question may arise as to their relative merits. To answer this question, an 

experiment was carried out to invert various data sets with and without adding noise to the data. 

Specifically, the following data sets were evaluated: 
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(1) five complete data sets, namely, pole-pole (ClP), circulating pole-dipole (cClP'lP'), 

circulating dipole-dipole (cCClP'lP'), circulating PCPC (clP'CJ!DC) and circulating CPPC 

(cCIP'lP'C) data sets; 

(2) two conventional data sets, namely, the Wenner data set (i.e. data in Wenner 

pseudosection) and the dipole-dipole data set (CCIP'lP'). 

In the first case, the data were generated from the model shown in Figure 7 .1. The experiment 

indicates that all images from complete data sets are nearly identical if the data are noise free (see 

Figure 7.18). However, if a 5% Gaussian noise is added into each data, the images show 

considerable variations as indicated in Figure 7.19: the image produced from cCC.IPP data set is 

most close to the true image while the image produced from ciPCJPC seems to be the second best, 

with the objects apparently moving upward nearly two cells. Ali other images have strong 

distortions which overshadow the true structures. Therefore the cCCJPJP data set performs best in 

this test. 

The images reconstructed from Wenner and dipole-dipole data sets are shown in Figure 7.20 which 

indicates that with noise free data, both data sets produce images resembling to the true structure 

but that the image from the Wenner data set shows a lower resolution in terms of geometric 

position and resistivity contrast. When a 5% Gaussian noise is added, the CCIPP data set still 

produced a reasonable image while the Wenner data set failed because of extreme image distortion. 

One of the reasons may be that the number of data in the Wenner data set is too small and hence 

the inversion is severely under-determined: in this case the number of data in the dipole-dipole data 

set is only 10% less than that of the complete data set of a four electrode configuration whilst the 

number of data in the Wenner data set is 66% less for a linear array of 20 electrodes. 

However, the number of data is not the only factor which influences the fmal result, although it 

may be an important one. As it has already been demonstrated in Figure 7.19, a larger data set 
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does not always produce a better image, for instance, the CJP and cCJPJP data sets have about 10% 

more data than the cCCl?lP data set while they still show a poor perfonnance when noise is present 

in the data. One of the underlying reasons may be that the data sets from different electrode 

configurations are not equally sensitive for the same resistivity structures. In the above example, it 

is found that the CIJD data set shows about 4% difference on average when compared with that of 

lOO.Qm homogenous half space whilst the cCCIJDIJD data set presents about 12%. Therefore, in this 

case a 5% Gaussian noise may overshadow most of infonnation contained in a CIJD data set but not 

that in a cCCIJDJP> data set. 

Clearly, the sensitivity distribution of a data set is associated with the electrode configuration and 

varies with the geometric position of the image cells (see equation (4.8) in Chapter 4). A large 

current electrode spacing may enable more current to be injected to greater depths and therefore is 

more sensitive to deep targets when compared with smaller electrode spacings. Thus one may 

argue that the choice of data sets is also context dependent. Figure 7.21 shows four images of a 

vertical boundary reconstructed from four data sets with 5% noise added, namely pole-pole, 

cCCPP, dipole-dipole and Wenner data sets, respectively. The vertical boundary is lOrn from the 

left and the resistivity is lOO.O.m left of the boundary and 500.Qm to the right. It is shown that 

although the cCCPP data set still gives the best overall perfonnance, the lower part of boundary 

seems to be better resolved in the image reconstructed from a pole-pole data set if the image 

oscillations due to the noise are excluded. The dipole-dipole data set also performs well except that 

the reconstruction at the two lower corners of the image is inadequate. This seems to suggest that 

the additional data in a cCCPP data set contains some infonnation which is lost in the dipole­

dipole data set. The Wenner data set perfonns reasonably well, considering the relatively small 

number of data used, although the area at the lower right hand corner of the image is clearly under­

estimated. 
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Various numerical experiments indicate that the cCCIPIP data set usually produces the best image if 

the targets are within a depth of 2 or 3 inter-electrode spacings for a linear array of 20 electrodes. 

Other data sets may contain more information about deeper targets but they appear to be not so 

suitable for image reconstruction if noise is present. One of the problems in using the cCCIPIP data 

set is that some of the data may be too small to be measured accurately because of the rapid decay 

of voltage with the increase of electrode spacing between current and potential electrodes. For a 

homogeneous half space having a resistivity of p, the smallest voltage V min in the cCCIPIP data set 

for a linear array of 20 electrodes is 

V. = /p =5.48x10_5 /p 
mm 7tXaX17X18X19 a 

(7.2) 

where I=eurrent strength, a= inter-electrode spacing. Therefore, a liner array of 20 electrodes is 

about the maximum size (in term of number of electrodes) applicable if 1=20mA, p=lOO.Qm and 

a= 1-5m, giving V min =0.1-0.02m V, since the resistivity meters normally only have a precision of 

O.Ol-0.05mV. 

1.1 COMPARISON Of THE ~MAGE ~ECONSlrtlllCTED IBV !BORN 
~NVERSION AND NON~UNEAR ~EGULAR~SATiON METHODS 

7. 7.1 Effects of noise 

It is anticipated that the data noise will have a strong influence on the reconstructed image because 

of the ill-posedness of the problem. Imposing stronger smoothness constraints on the image would 

reduce such effects but then there will be a trade-off in the resolution. In general, the one-step 

Born inversion (or 'backprojection') is more susceptible to data noise than regularised iterative 

algorithms. For instance, if the cCCPP data set from the model shown in Figure 7.1 is applied, a 

10% Gaussian noise in the data would destroy the image reconstructed by Born inversion while the 
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targets are still visible on the image recovered by the regularised iterative algorithm (see Figure 

7 .22). However, if the image structure is simple, the Born inversion may also produce a result 

comparable to that of regularised iterative algorithms even when the data are noisy. Figure 7.23 

shows such an example where the resistivity model can be regarded as an oil pollution problem. 

The Born inversion produces a clean image with 1% data noise (Figure 7.23 (b)). When 10% 

Gaussian noise is added into the data, the image recovered by the Born inversion is blurred but it is 

nearly as clear as the image reconstructed by the regularised iterative algorithm (see Figure 7.23 

(c) and (d)). 

It is also noticed that in the Born inversion the pixel values of the image will increase as a function 

of the data noise because they are summations of weighted data deviations between the true and the 

reference models and hence the data noise in such cases is directly coupled into the pixel values 

(see equation 4.13). Such effects are not significant in the regularised iterative algotitllms for there 

is no direct coupling between data noise and pixel values. 

7. 7.2 Resolution 

The resolution of the electrical resistivity image can be described in two separate contexts: (1) the 

spatial resolution which indicates the smallest region (pixel) in which the resistivity can be 

determined independently, or more loosely, how well the positions of the targets are resolved; (2) 

the resistivity value resolution which can be measured as the percentage error of resistivity in each 

cell relative to its true resistivity value. Because of the complex non-linear relationship between 

the data and the reconstructed image, it is difficult to describe the resolution in terms of closed 

analytic functions. It may only be inferred from numerical experiments. 

Figures 7.24 presents the images reconstructed from the cCCIP.IP data set of a fault model by the 

Born inversion and the regularised nonlinear least squares algorithm. A model of two dykes 

intruded into the lower of two horizontal layers is shown in Figure 7.25 (a) and its reconstructed images 
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are shown in Figure 7.25 (b) and (c). All data are contaminated with 5% Gaussian noise. The 

results appear to indicate: 

( 1) Regularised nonlinear algorithm has better overall resolution than the Born inversion. 

In the fault model, the Born inversion can only indicate the position of the fault, not the relative 

variation of resistivity values from the left to the right hand side and in the near surface layer of the 

model, while the regularised nonlinear method does resolve such information although it is not fully 

recovered (Figure 7.24). In the dyke model (Figure 7.25), the Born inversion clearly resolves the 

spatial information of two layer structure but fails to show the two dykes embedded within the 

lower layer. The regularised nonlinear algorithm resolves both the layer structure and the dykes 

with a certain degree of smoothness. 

(2) Born inversion normally can only provide the spatial information of the targets or 

relative variations of resistivity distribution, not the absolute resistivity values. 

As is apparent in Figure 7.24 (b), although there are indications of low resistivity in the image area 

of the fault, the resistivity values in these areas are far from the true resistivities of the fault. As 

already mentioned above, the overall pixel values of an image will increase as a function of data 

noise level and hence the images reconstructed by such methods can at best be regarded as semi­

quantitative. 

( 3) Resolution decreases with increase of smoothness constraints. 

The resolution in regularised nonlinear algorithm usually has to be trade-off of smoothness to 

achieve a reasonable stability. It may be argued that the images reconstructed by the method of 

least squares plus spatial average smoother in Figures 7.24 and 7.25 are over-smoothed. In fact, a 

higher resolution can be achieved if the method of regularised non-linear least squares plus median 

smoother is applied. The problem is that the resistivities at the high resistivity area of the image 
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will rise to unrealistic high values at the later stage of the iteration while the data residual still 

decreases. 

(4) Resolution decreases with the increasing depth. 

This is clearly indicated in Figure 7.24 (c) where lower part of the fault appear much wider than its 

upper part. 

7. 7.3 Effects of inaccuracy of forward mod elBing 

The ill-posedness of ERT implies that the FDM forward modelling in the iterative algorithm has to 

be highly accurate because a small difference in the data may imply a large difference in the model 

parameters. Barber (1989) suggests that voltage data have to be accurate to 1% or 2%. 

Experience indicates that such an accuracy is difficult to achieve without high cost of computation. 

In the experiments, the FDM forward modelling is implemented on a mesh of 56x13 and only has 

about 3% accuracy when tested against analytic resistivity models of a three layered earth with 

contrasts ranging from 0 to ±0.82. This proved to be a problem when the signal from resistivity 

structures is small, for example, when their dimensions or contrasts are small compared with the 

inter-electrode spacing or their burial depth is large. As an illustration, Figure 7.26 shows two 

images reconstructed from a cCCPP data set in which the data only have about 1% difference on 

average to that of homogenous half space of 100!lm. The regularised iterative algorithm failed to 

resolve the target because the forward modelling error (about 3%) is large in comparison to the 

signal (Figure 7.26 (a)). As a comparison, the image reconstructed by the Born inversion is shown 

in Figure 7.26 (b) which clearly shows the target. The resistivity model is a 2mxlm prism of200 

Om embedded in 1000m medium. The prism has a burial depth of 1m and 160m long in the strike 

direction. The linear array bisects the prism at a right angle to its strike. The cCCPP data set is 

generated by the finite boundary method with a symmetric error of 0.15% (i.e. the error results 

from the inter change of the positions of current and potential electrodes). 
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However, if the signal from the targets is strong and only a smooth image is required, the accuracy 

of forward modelling is not so significant. Figure 7.27 shows two images reconstructed from the 

synthetic data (cCCIPIP data set) of a three layer model. For the image 7.27 (b), the data can be 

regarded as highly accurate for the inversion because they are computed by the same forward code 

used in the iterative algorithm, although they have about 3% error on average when compared to 

the data in the image 7.27 (c) which are computed by the method proposed by Mooney & Orellana 

(1966) and are accurate to 0.1 %. It is shown that there is no significant difference between images 

(b) and (c) in Figure 7.27: the main feature of the three layer structures is shown in both images 

although the boundaries and the resistivity values of layers are not well resolved, partly due to the 

smoothness constraints. 

'1. '1.~ Im2ging 3D strll!ctll!res 

Subsurface geologic and archaeological structures are commonly 3D. In some cases a 3D 

structure may well be approximated as a 2D structure while in other cases such an approximation 

may not be justified It is therefore interesting to know how the 2D algorithm developed so far will 

react when the data from 3D structures are to be reconstructed. 

The data from a 3D prism of 2mx 1m with three different lengths in Y (strike) direction, namely 

40m, 20m and 2m, were used to evaluate the abilities of the algotithm to resolve the resistivity 

distribution which is not strictly two-dimensional. In each case the prism (200Qm) is embedded in 

a lOO!lm half space and is buried at 1m depth beneath the middle of the section. The linear array 

bisects the cylinder resistivity with a right angle to its strike and the boundary data are collected by 

the cCCPP electrode configuration and computed by the finite boundary method with a symmetric 

error less than 1%. The reconstructed images are shown in Figure 7.28 in which images (a), (b) 

and (c) are recovered by Born inversion and image (d) by the method of regularised non-linear 

LSQ plus spatial average smoother with an initial model of 200.Qm homogeneous half space. The 

results indicate that for the Born algorithm the image contrast decreases and artefacts increase, 
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both slightly, with the reduction of the length of the cylinder and hence it may be applied to image 

2D as well as 3D structures. The iterative algorithm in such cases has the tendency to produce 

smooth and blurred images with low contrast. For instance, when the length of cylinder L=2m, the 

reconstructed image nearly reaches the homogeneous background with resistivities ranging only 

from 94 to 108 (see Figure 7.28 (d)). It seems that the regularised iterative algorithm is not so 

sensitive to 3D structures in comparison to the one-step Born inversion. 

1.1.§ §peed of nHDVCil"SiOHD 

If the weighting coefficients are pre-computed, the Born inversion can be carried out on PC 

computers with each inversion taking about two minutes. The non-linear iteration algorithms 

currently can only be carried out on the SUN or HP workstations. The Jacobian matrix is both 

computation and memory demanding and hence the algorithms cannot yet be impiemented on PC 

computers. In the iterative algorithm, the mesh size (cells) of finite difference forward modelling is 

56 X 13 and the number of unknowns in the inversion is 432 (i.e.48 X 9 ). Tests on the HP-

9000nl 0 workstation shows that the CPU time for each iteration is about 553s in which more than 

half of the time (387s, i.e. 70% of total) is spent on computation of the Jacobian matrix and only 

about 2s (0.4% of total) on forward calculation of voltage data. It is clear that the major 

computing cost goes to the Jacobian matrix. 

The genetic algorithm (GA) is not efficient in terms of computation in comparison to the 

algorithms base on gradient information such as the LSQ method. For example, for a three layer 

structure, the damped least squares method may invert the data with 5 to 20 function trials whilst 

the GA may require 100 to 1000 function trials to reach a similar result. Essentially, the GA is a 

Monte Carlo like procedure and therefore the number of function trials will increase rapidly with 

the increasing number of unknowns. For this reason, in the test the 432 cells mentioned above are 
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grouped into 45 large cells (9><5) to reduce the number of unknowns while the mesh for forward 

modelling is still56x13. The GA parameters used in the test are 

population size n = 100 

crossover probability Pc = 0. 6 

mutation probability Pm ~ 0.001 

length of binary code string for each unknown= 10 

Figure 7.29 shows the resistivity model and its image reconstructed by GA after 500 generations. 

The whole process takes about 60 hours on the HP9000n3o workstation. The target is visible on 

the image but there are strong artefacts beneath and around it. Further iteration may improve the 

result but the computing cost is already too high. In general, although the GA may be robust and 

may eventually produce a better result than the regularised non-linear least squares method, the 

computing cost is too high to be practicable. 

7.9 NIEURAl NETWORK 

It is difficult to construct a neural network 

for imaging a general 2D resistivity 

distribution in a half space because of the 

large scale of the required network and the 

difficulties in training. For this reason, the 

primary test of a neural network was limited 

to three layered earth models. The neural 
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Figure 7.30 Neural network used in processing 
network tested is shown in Figure 7.30. It Wenner and Offset Wenner sounding data over three 

layered earth models. Rl, R2, ... , R17 = apparent 
has four layers and a total of 72 neurones, resistivities; hI and h2= thickness of first and second 

layer respectively; rl, r2 and r3 = the resistivities of the 
of which 17 input units receive the first, second and third layer respectively. 
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resistivity sounding data and 5 output units give the predicted model parameters. The rest of the 

units are equally distributed within two hidden layers. The sounding data consist of 9-point 

Wenner and 8-point Offset Wenner soundings corresponding to inter-electrode spacing of a = 1, 

1.5, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256 (i.e. the spacing is expanded at a ln2 

interval on a logarithmic scale). The 5 outputs are: 

~ = thickness of the first layer; 

~ I~ = thickness ratio of the second layer to the first layer; 

r1 = resistivity of the first layer; 

r2 /1j = resistivity ratio of the second layer to the flrst layer; 

r3 I r2 =resistivity ratio of the third layer to the second layer. 

Table 7.1 Resistivities of three layer models used to generate sounding 
data for the training of the neural network. The thickness of the flrst 

layer ~=1Om and that of the second layer ~=1OOm. 

r3/ r2 
rl r2/'i 

(Qm) a b c 

10 10 5 1/3 
10 5 5 1.5 1/3 
10 3 5 1.5 1/3 
10 2 5 1.5 
10 1.5 5 1.5 1/3 
10 1/3 5 1.5 1/3 
5 10 5 1.5 

Note: r1 , r2 and r3 are the resistivities of the first, second and third layers 

respectively. 

An interactive back propagation program implemented by McClelland and Rumelhart (1988) was 

used in the experiment. A total of 18 resistivity models listed Table 7.1 were presented to the 

network in sequence or selected at random, during the training. The learning converged after 2500 
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iterations with the total sum of square errors of 0.145. An attempt to train the network over 500 

different models failed to converge, possibly due to the small size of the network. 

Several tests were carried out to see whether the network can predict the source models when it 

was presented with the sounding data from resistivity models for which it was not taught. The first 

two models tested are close to what have be taught where it was found that the network predicted 

the models fairly accurately (see Table 7.2 (a) and (b)). In the second two test models ((c) and (d) 

'll'abne 7.2 The three layer resistivity models and their predictions when the sounding data are 
presented at the input units of the neural network. 

(a) (b) 

Model Prediction Error(%) Model Prediction Error(%) 

~ 
10.0 10.0 0.0 10.0 10.0 0.0 

h,.I'2J 10.0 10.0 0.0 10.0 10.0 0.0 

rt 10.0 9.99 1.1 10.0 10.0 0.0 

r2 I 1j 
10.0 9.96 0.45 2.0 2.07 -3.6 

r3 I r2 
0.667 0.682 -2.3 0.667 0.683 -2.5 

(c) (d) 

Model Prediction Error(%) Model Prediction Error(%2 

~ 5.0 10.0 -100 3.0 10.0 -233 

h,.lh., 5.0 10.0 -100 3.0 10.0 -233 

rt 10.0 10.0 0.0 5.0 9.92 -98 

r2 I r1 
0.667 0.698 -4.8 10.0 10.0 0.0 

r3 I r2 
0.667 0.673 -0.9 5.0 0.67 87 

in Table 7.2), the thickness of first layer and its ratio to that of second layer are out of the range of 

what have been taught and hence the network fails to predict them. However, the resistivities in 
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case (c) of Table 7.2 are predicted within 5% error, indicating that the neural network is robust 

when dealing with new data for which it has not been taught 

The experiments seem to suggest that the network works well if the model to be predicted is close 

to, or within the range of, the models used in training and otherwise it may fail. This produces a 

major difficulty for its use in electrical resistivity tomography (ERT) because a geological 

resistivity distribution is a complex problem which can be hardly described by a few models even 

for simple three layer structures. The neural network analogy is still at its primary stage of 

development and there are some problems remaining to be solved as has mentioned in Chapter 5. 

Its application to ERT problems may rely on its development in the future. 
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This chapter presents results of several field tests obtained by using the techniques discussed in the 

previous chapters. An attempt has been made to cover applications ranging from relatively large 

scale problems such as geological investigations to small scale archaeological applications and 

from typical 2D structures such as dykes to the nearly 3D or dynamic structures encountered in 

environmental problems. In the experiments, some of the target structures are known and can thus 

be used to evaluate the algorithm while others are less well understood and the results have to be 

interpreted in the light of any other information available. 

In all experiments, the field instrumentation system used is the ABEM Terrameter SAS300B 

resistivity meter which multiplexes to an equally spaced linear array of 20 electrodes through a 

mechanical switching box or computer controlled multi-cable system provided by Geoscan 

Research. During the data collection, some of the measurements were randomly repeated to check 

the data quality and reproducibility. 

The meshes used here are the same as these have been stated in Chapter 7: in the method of 

regularised non-linear least squares, the forward modeling and inverse meshes (cells) are again 56x 

13 and 48x9 respectively. In the Born inversion, the mesh is 52xll. 

8.1 GEOlOGICAliNVE:STIGATIONS 

8.1.1 Cave detection 

The electrical potential data over surveyed subsurface structures would be very valuable for 

evaluating the algorithms developed so far. Ideally the structure should be simple 2D with known 

geometry and resistivity contrast. Its depth should be moderate so that it is detectable by the 

surface linear array. Its geographical position is known and hence the electrode array can be 

accurately located with respect to the target. It was decided that a segment of the Long Chum 
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Cave System, near Ingleborough, Yorkshire would fulfil these requirements because it was 

explored and surveyed (Milner & Milner, 1977). 
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Figure 8.1 The position of a linear array of 20 electrodes in relation to the large chamber (Dr Bannister's 
Hand Basin) in the Upper Long Churn Cave system. The inter-electrode spacing is 5m and the pole-pole 
electrode configuration was applied, with two additional electrodes placed 750m away from the array on 
opposite directions. 

The Long Churn Cave System is developed within the limestones of Carboniferous age which in 

this area form a unit dipping gently north-east. The limestones, known as the Great Scar 

Limestone, are about 200m thick and made up of limestones of great vertical variation but little 

lateral variation (Sweeting, 1974). The vertical variation in the beds of the Great Scar Limestone 

in the north-west Yorkshire is a fundamental feature in the development of both the relief and caves 

of the region. The ground surface at the test site is flat except that the limestones are partially 
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exposed, forming clints and grykes with soil filled clints. The location of the test was made by 

reference to the survey compiled by Milner & Milner (1977). 

A linear array of 20 electrodes with a Sm inter-electrode spacing was placed crossing the position 

of a large chamber approximately 20m from the upstream entrance to the Upper Long Churn Cave 

(Figure 8.1). Installing the array at this site presented some problems due to the restricted choice 

of soil pockets among the limeliltone pavement and the whole array was carefully located to avoid 

the electrodes being planted on the grykes. A total of 190 potential data was collected by a pole­

pole electrode configuration where the two 'infinite' electrodes were placed 750m away from the 

linear array in two opposite directions. Field data checks showed that the potential reproduction 

error was less than 2%, indicating that the electrical noise level at the site was low. 

The first image shown in Figure 8.2(a) was reconstructed from the data on a laptop computer 

immediately after the field work using the Born inversion. The singular value threshold A.,=4.5x 

1Q-4A.max and the initial model was a uniform half space with a resistivity of 3000 ohm-m, 

estimated from the Wenner apparent resistivities. The data was then inverted on a HP workstation 

using the method of zero-order regularised least squares plus a spatial averaging smoother. 

Starting from the same initial model of 3000 ohm-m with an initial data residual of 30%, the 

convergence was achieved with arms of 8.5% after 9 iterations and the resulting image is shown in 

Figure 8.2(b). The regularisation parameter A. was automatically selected as the minimizer of data 

residual function during each iteration. 

On the image reconstructed by the Born inversion (Figure 8.2(a)), the passage is clearly visible as 

a diffuse, high resistivity anomaly directly beneath the midpoint of the multielectrode array with a 

dimension of about 40mx15m and lOrn in depth to the top of the cave chamber. The small, high 

resistance features which appear to extend almost to the surface may represent open joints in the 

roof of the chamber, or alternatively, they may be the image artefacts. Both the dimensions and the 
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depth to the top of the cave are larger than those estimated from published swveys which indicate 

that the cave has a dimension of llmx6m and a depth to the roof of 8m. This error almost 

certainly arises from the assumption made in the Born procedure that the distortion of current paths 

due to the inhomogeneities is negligible: the air tilled chamber has a resistivity of infinity and hence 

the assumption is severely violated. The success in resolving the cave passage with such a high 

resistivity contrast indicates the robustness of the method. The resolution can be improved by the 

regularised non-linear iteration method as shown in Figure 8.2 (b) in which both the horizontal and 

vertical dimensions of the cave appear to be about 10m. The burial depth and the height of the 

cave are slightly larger than the published data, possibly due to both the decay of the resolution and 

the rather coarse model cells used along vertical direction. As a comparison, the data of a Wenner 

pseudosection over the same array were produced from field data by superposition and the results 

are shown in Figure 8 (c). In tlrls image the cave is hardly visible. 

8.Jl.l Dyke detection 

The Hett Dyke is one of the major whin dykes of N .E. England and near to Hamsterley village in 

South Durham it was thought that a more complex structure might occur (Goodwillie, 1988). An 

electrical resistivity survey was carried out on tl1e Black Hill Top farm land to investigate this 

matter. In addition, the dyke is a typical 2D geological structure and hence it is an ideal test site 

for the algorithms, although its exact geometry is unknown because it is beneath the weathered 

zones at the site. The main aims of the experiments were: 

i) To test whether the algorithms developed in previous chapters can resolve the Hett Dyke at 

the site. 

ii) To investigate whether the Hett Dyke at the site has a more complicated structure than a 

single, vertical 2D structure as it was previously thought. 

iii) To reconstruct the electrical resistivity image of the dyke so that the dimensions and the 

depth to the top of the dyke can be estimated. 
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iv) To carry out an experiment of the data transfonn method described in Chapter 2 by 

collecting two different data sets on the same section and then transfonning one into the 

other to see if the method does work with field data. 

The geological map of north-east Ensland indicates that the test area is covered by the Coal 

Measures of Carboniferous age, which mainly consists of interbedded sandstone and mudstone 

with seatearths and coal seams. The Hett Dyke is known to be a quartz-dolerite dyke which was 

intruded along tension fissures during the late Carboniferous earth movements and it traverses 

across the field on a strike of approximately 070°. The test site is covered by a weathered zone of 

several metres deep and slopes away to the North at about 8°. 

N 

Rockwood Hill 

FIGURE KEYS 
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Contour of Magnetic 
Anomalies 

Geographic Boundaries 

Figure 8.3 The electrode array position with respect to the magnetic anomalies and geographic locations. 
The first electrode is at the south end of the profile while the last at the north end. The contour map of 
magnetic anomalies is adapted from Goodwillie (1988). The unit of magnetic anomalies are nano-Tesla. 
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A linear array of 20 electrodes equally spaced at 5m intervals was planted northward crossing the 

position of the dyke indicated by a magnetometer survey (see Figure 8.3). The position was 

located by reference to the pit lay during the magnetic survey. A total of 170 potential data was 

collected by the cCCPJP electrode configuration and the results are shown in Figure 8.4 in which 

images (a) and (b) are reconstructed by Born inversion and the method of zero-order regularised 

least squares plus a spatial averaging smoother respectively. The initial model for both Born 

inversion and the iterative algorithm was a homogeneous half space with a resistivity 300 ohm-m. 

The data residual (or nns) decreased from 25.4% to 12.6% after 4 successive iterations and further 

iterations showed no improvement. Such a data residual appeared to be relatively high and 

therefore several other initial models were tried to check if the iteration was trapped at a local 

minimum of high data residual. It was found that the resulting images resembled image (b) in 

Figure 8.3 but with even higher data residual. The relatively high data residual may be attributable 
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Figure 8.5 Depth to rock head near the Hett Dyke along the electrical resistivity survey line 
interpreted from seismic refraction surveying (after Todd, 1988). 

to the errors in the forward modeling which was known to be relatively high for a cCCPP electrode 

configuration and the inconsistency between the physical model, including the smoothness 

constraints, and the real earth. Nevertheless, the dyke seems to have been located satisfactorily. 
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Figure 8.3 shows that the dyke appears as a vertical high resistivity zone with a width of about 8m 

and a depth of about 5m to its top, suggesting that it is indeed a simple vertical sheet-like dyke. 

Although the dyke is not detectable beyond a depth of 20m on both images (a) and (b), this is 

probably due to the rapid decay of resolution with increasing depth, rather than to a genuine 

change in the structure. This aspect has been mentioned in the previous chapters which showed 

that data from an equally spaced linear surface array of 20 electrodes may only be able to recover 

adequately structures to a depth of about three inter-electrode spacings if the resistivity contrasts 

and the dimensions of the targets are not large. The low resistivity zones on both sides of the dyke 

are considered to be a weathered layer which has been measured by a seismic refraction survey 

(see Figure 8.5). Hydrologically, the dyke could be an impermeable barrier to the ground water at 

the test site because it cuts the north-downwards slope at nearly a right angle and it is therefore 

possible that the low resistance block towards L1e left hand (south) side of the dyke is also due to 

ground water accumulated along the upper slope side of the dyke. 

The dyke width (-8m) and depth to its top (-5m) estimated from resistivity images (a) and (b) 

seems comparable to the results from magnetic and seismic refraction surveys near the ERT 

profile: the 2D magnetic modelling yielded a dyke width of 13m and a depth to its top of 6m while 

the seismic refraction gave 10m and 4m respectively (Goodwillie, 1988; Todd, 1988). 

In the field survey, after the cCCPP data set was collected, the electrodes of the same array were 

multiplexed to the resistivity meter to collect the data set of a Wenner pseudo-section. The result is 

shown in Figure 8.4 (c) which also indicates the presence of high resistivity dyke and the low 

resistivity weathered layer. A comparison of the data collected and those superposed from cCCPP 

data set has been shown in Table 2. 7 of Chapter 2 which indicates that the difference on average is 

about 1.5%, suggesting that the data transform method can be applied in practice. 
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The Roman fort of Longovicium is sited beside the B6296 road, 0.8km west ofLanchester, County 

Durham. The most extensive excavations were made by Kenneth Steer in 1937 and he concluded 

that the first occupation of the fort was Hadrianic on the basis of pottery, the style of the gateways, 

the probable orientation of the interior and structural analogies with Hadrian's Wall (Noel, 1990). 

Most sources state that the fort was left unoccupied from c.190-240 AD and when under the 

Emperor Gordian Til (238-244) there was a period of rebuilding which included the defences, 

principia and armouries along with the construction of a new bath house with basilica. The soil 

which covers the fort is an acid sandy clay with a subsoil of yellow clay overlying sandstone and 

brash within the Upper Coal Measures of Carboniferous age (Noel, 1990). 

Noel (1990) mapped the site with a fluxgate magnetic gradiometer at a resolution of 0.5mx0.5m. 

On his geomagnetic map, most of the individual building structures appear to be recognisable but 

their vertical extension, burial depth and exactly geometry remain unknown. It was thought that 

the ERT methods could provide such information and therefore a field experiment was carried out 

at the site. 

A linear array of 20 electrodes with 1m inter electrode spacings was placed at a right angle to the 

two parallel linear structures which were thought to be two separate walls at the south side of the 

headquarters building (see Figure 8.6). The array position was located by reference to the pegs 

which were put down to locate during the magnetic survey. A pole-pole electrode configuration 

was used where the two remote electrodes were planted about 300m away from the array at 

opposite directions. A total of 190 potential data was collected. The image was then reconstructed 

from the data by the method of zero-order regularised least squares plus a spatial averaging 

smoother. The initial model was 100 ohm-m homogeneous half space and after 11 iterations the 

data residual reduced from 22% to 7%. The resulting image is shown in Figure 8.7 where the two 
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blurred, hiBh resistivity objects are buried about 2m deep with approximately 1.5 to 3m in width. 

The distortions near the surface and the upper left comer of the image may be attributed to the data 

noise or the localised inhomogeneity of the soil. 

Barnard Castle is one of the most important historic remains in the North England and was 

constructed in the 11th century. An electrical resistivity survey was carried out to investigate 
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Figure 8.8 The array position in relation to the east curtain wall of Barnard Castle. 

whether there is a ditch outside its East curtain wall and whether a tower, thought to exist at the 

postern, is indeed present (see Figure 8.8). A linear array of 20 electrodes equally spaced at lm 
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intervals was placed eastward across the wall as shown in Figure 8.8 and 170 data were collected 

by the clPCJP>C electrode configuration. The image reconstructed by the Born inversion is shown in 

Figure 8.9 where a low resistivity zone appeared in the middle, with approximately 4m in width 

and l.Sm in depth from the surface to the top. This seems to suggest the presence of a defence 

ditch. The curtain wall, which is still partially visible at the site, is shown on the image as a high 

resistivity block of about 2mxlm, near to the surface at 7m from left. The other near surface high 

resistivity features are considered to be the recently backfilled materials such as bricks which are 

still visible. These localised, near surface high resistive, inhomogeneous materials are considered 

to be the main cause of the failure of the regularised non-linear least squares method in this test: the 

iteration was terminated with a very high data residual. No firm evidence was found for the 

foundation courses of the postulated tower. 
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Ground water and soil pollution problems have gained a great deal of attention in recent years and 

hence it would be very useful to test if the methods developed in previous chapters can be applied 

to investigate such environmental problems. A test site was made available by British Gas at an 

old industrial site where lagoons were used to receive separator sludge and spent clay resulting 

from a lube oil finishing process which ended in 1963. The exact location is confidential. Previous 

trial pit survey indicated that the contaminates are mainly the localised spent clay severely 
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Figure 8.10 The array positions in relation to the spent clay pit. 
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contaminated with oil and the widely distributed, less oil-contaminated sands and gravels. The 

study found that the contaminated spent clay is strongly hydrophobic, with oil comprising about 

20% by weight, and thus likely to have a higher electrical resistivity than the clean soil or the 

underlying clay unit. The aims of the electrical resistivity survey were: 

i) To investigate the lateral and vertical extension of the contamination within the spent clay 

pit. 

ii) To see if there is any indication that the contamination has been migrated across the west 

boundary of the spent clay pit into the neighbouring soil. 

Figure 8.10 shows the positions of resistivity survey lines with respect to the boundaries of the 

sludge dump and spent clay pit which was reconstructed from old records and aerial photographs. 

The cCC'I?IP electrode configuration was applied and two separate but related field experiments 

were carried out: 

a) Long traversing line 

This is a baseline which was established extending from post J1 0 to cover the west boundary of the 

spent clay pit and consists of five short sections (1.1 + 1.2+ 1.3+ 1.4+ 1.5), as shown in Figure 8.11. 

Each short section has a length of 19m, with a lm overlap between successive sections and a lm 

inter-electrode spacing. The objective of the experiment was to investigate whether the 

contamination has migrated westwards across the spent clay pit boundary and if it has, how far it 

has extended. The lm overlap between successive sections was designed to check the edge 

distortion in the reconstructed images which may appear. Data from each of the five sections were 

inverted by the Born procedure to produce the image shown in Figure 8.12. 
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Two sets of data were obtained with the array placed parallel to the baseline but displaced, first 

lOrn to the south and then 10m to the north (sections 2.1 and 2.2). The midpoints of these arrays 

were coaxial with the midpoint of section 1.4. The objective of such section layouts was to explore 

the changes in subsurface resistivity on the two sides of the baseline. The inter-electrode spacing 

was again lm and the images were reconstructed by the Born procedure. The results are shown in 

Figure 8.13 in which the image of section 1.4 is included again for the convenience of comparison. 

Two characteristics appear on all reconstructed images: a relatively lower resistivity layer extends 

from the surface to 1-2m depth and some artefacts appear on the two upper corners of each image. 

Experience suggests that such image artefacts usually arise in Born inversion when some of the 

readings in a cCCPP data set are too small to be measured accurately, mainly those readings with 

large electrode spacings. The low resistivity layer probably reflects the less contaminated 

materials saturated with water after several weeks of heavy rain prior to the survey (the pools of 

water were visible on the site). Because of this near surface low resistivity layer, some of the meter 
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readings approached zero. These very small, inaccurate data are considered to be the main cause 

of the artefacts as mentioned above. 

In spite of the image artefacts, the major contamination still seems to be located and they appear as 

irregular and diffuse high resistivity blocks extending from near surface down to about 4m. The 

contamination is mainly within the spent clay pit, as shown on the image sections 1.3, 1.4. 1.5, 2.1 

and 2.2. On the long traversing line, the image sections 1.1 and 1.2 seem to comprise a two-layer 

structure with some image artefacts and thus they appear to suggest that there is no major 

contamination outside the west boundary of the spent clay pit. The boundary of the spent clay pit 

is about 11m from west on the image section 1.3 in which the contamination appears mainly on the 

east side of the boundary, i.e. within the spent clay pit, extending from near surface to about 4m 

deep. The image section 1.3 also seems to suggest that part of the contamination has diffused 

westward across the pit boundary. The contamination on the image section 1.3 extends into image 

section 1.4 horizontally but it is not continuous. On the image section 1.5, near to the upper left 

hand side there is low resistivity block extending from near the surface to about 2m and 

immediately beneath this is a high resistivity block. This image structure may be interpreted as 

less contaminated materials saturated with water which sit on the top of the highly contaminated 

spent clay with a lower permeability. Alternatively, this feature may simply be the image artefacts 

which are known to be relatively strong at these positions in the image. 

Although there are high resistivity zones on the two short parallel image sections, no obvious 

correspondence even is seen between these zones beneath the section 2.1, 2.2 and the baseline 

section 1.3, suggesting that the contamination is localised on a horizontal scale which is smaller 

than the separation of these sections (lOrn), i.e. it is three dimensional. 

Attempts to reconstruct the images by the methods of regularised non-linear least squares have 

proved unsuccessful, probably due to the 3D nature of the contamination while the iterative 
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algorithms developed here assume that the data are collected over 2D structures. The iterations 

were normally terminated at as high as 60% misfit error. 

Environmental monitoring often requires measurement of dynamic changes of ground water. 

Recent laboratory experiments on sandstone and clay samples indicated that both the organic and 

inorganic contamination will cause a change of resistivity (Bomer et a/., 1993). Therefore 

electrical resistivity survey methods can be used to monitor the dynamic change or motion of 

subsurface water in and around waste dump sites in order to provide information about pollution 

leakage or migration. Several field experiments have been carried out to assess the usefulness of 

electrical resistivity methods in this area. For example, Bevc and Morrison (1991) conducted an 

experiment in which saline water was injected 

into a fresh acquifer while the resistivity was 

monitored using a multichannel borehole to 

borehole system; Van et al. (1991) monitored 

the leaks from storage ponds using resistivity 

methods. However, near the University of 

Durham, there is no waste disposals available for 

an experiment It was thus decided to simulate 

the case by a watering experiment, i.e. to create 

dynamic resistivity change of the subsurface soil 

by watering the ground. A data set was collected 

before watering and another after. Then two 

images corresponding to the two data sets can be 

reconstructed and their differences may indicate 

the dynamic resistivity change. 
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Figure 8.14 The vertical section of soils at the 
Botanic Garden, University of Durham. The 
sampling position is at the middle of the electrode 
array in the watering experiment. 
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The experiment site was selected at the Botanic Garden, University of Durham, for its relatively 

low noise level and readily available fresh water (tap) supply. The experiment area is covered by 

soil and samples from a shallow auger survey indicated that the top soil layer of about 40cm thick 

is loose and beneath this there is a more condensed layer of soil underlain by a thin clay unit with a 

total thickness of about 70cm (see Figure 3.14). The depth to the top of the weathered sandstone is 

about l.lm. 

A linear array of 20 electrodes equally spaced at lm intervals was setup and 170 data were 

collected using the cCCPJP electrode configuration. Then the fresh water of about 0.61tm3 was 

injected from the ground surface in the middle of the array at a speed of 0.785m3/h for about 47 

minutes. After about 20 minutes, another data set was collected with the same electrode array at 

the same position. The 20 minutes delay between the end of the watering and the beginning of the 

second data set collection was considered to allow the fresh water within the soil to reach a 

relatively stable status. The sequence of the experiment is shown in Figure 8.15. 

Water rate: 0.785m3 /h Total water injected: 0.611m3 

SURVEY 1 I I WATERING SURVEY2 

--~I~IL_L_J__L~~~~LI~ __ L_L_J__LI~I~L_L_J__L~---D> 

4:30 5:30 6:30 7:30 time 

Figure 8.15 IThe time sequence of the watering experiment: an electrical resistivity survey was 
carried out before the watering and another afterward. 

The images (a) and (b) in Figure 8.16 were reconstructed by Born inversion from the two data sets 

while the image (c) is a result of image (b) minus image (a). The resistivity changes due to the 

water injection are hardly visible on image (b) but they are clear indicated as a low resistivity block 
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at the middle of the array, spreading downward about 1.5m and horizontally about 2m. The 1.5m 

vertica1 extension of the low resistivity block suggests that the water flow was stopped when it 

reached the clay which is less permeable. 
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In the previous chapters, the methods of electrical resistivity image reconstruction using linear 

surface arrays have been developed and tested. The techniques include data collection methods, the 

linearised and the non-linear image reconstruction algorithms and image presentation methods. 

From the discussions in previous chapters, the following conclusions can be made: 

1 A complete or primary data set which contains all linearly independent measurements of 

apparent resistivity can be collected using two, three or four electrode configurations on a 

linear array placed on the ground surface. From this complete data set, it has been shown 

that any other data sets obtainable on the linear array can be synthesised through a process 

of superposition. If the array is required to be moved along a traversing line in order to 

cover a broader area, the minimal redundancy and the completeness of the data set can be 

achieved by the roll-along data collection method. The number of independent data in a 

complete data set is normally larger than that of conventional data sets, such as the data 

set used to compute a Wenner pseudosection. 

2 In most cases, the complete data set is likely to produce a better inversion or image than 

conventional data set for pseudo-section generation. Among the complete data sets, the 

circulating dipole-dipole (cCCPP) data set usually produces the best results in the 

presence of data noise although the number of independent data is less than that of pole­

pole data set. 

3 In comparison to the regularised non-linear least squares algorithms, the Born inversion is 

fast and not so sensitive to the reference (or initial) models and can achieve modest 
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resolution if the resistivity structure is not complicated. It can also be applied to image the 

cross-section of 3D structures or dynamic changes of resistivities. The application of Born 

inversion is limited by its lack of resolution when a resistivity structure is complicated or 

resistivity contrast is high. It is also relatively sensitive to noise. Another drawback of 

Born inversion is that it can only recover relative variation of resistivities, not their 

absolute values. 

4 The algorithms of the regularised non-linear least squares plus various spatial smoothers 

normally produce better results than Born inversion if the following conditions are 

satisfied: (i) the initial model is not far away from the true solution; (ii) the balance 

between the image resolution and the image smoothness is properly regulated. This 

includes a proper choice of regularisation parameter A. and the smoot..lllng functions, 

including spatial smoothers, for the problem at hand; (iii) the forward modelling is 

accurate enough. Experiments indicate 

a) The choice of regularising parameter A. has a crucial importance for the success of the 

iteration. It is context dependent and thus a priori knowledge is desirable. The 

conventional Marquardt's strategy of choosing A. usually failed when substantial noise 

is present in the data. Better results can be obtained by choosing A. as a minimizer of 

the data residual or GCV functions although there is no guarantee that these strategies 

are suitable for all cases. The A. can also be chosen as a constant value by experiments 

although it should be adjusted according to the data noise level and the roughness of 

the geologic structures being investigated. 

b) Among the various choices of smoothing functions, the zero-order regularisation 

function plus spatial smoothers seem to provide a better balance of the stability and 

resolution. The spatial median smoother can effectively filter out the isolated spikes of 
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the image during the iterations while it still preserves the sharp boundaries which may 

exist. However, the spatial averaging smoother, weighted by cell size, imposes 

stronger smoothing constraints on the solution and the corresponding algorithm (the 

method of regularised least squares plus spatial averaging smoother) has the highest 

stability among the tested algorithms. 

c) Experiments indicate that the stronger smoothing constraints not only produce a stable 

image in the presence of data noise but also reduce the influence of the initial model on 

the fmal results. In the absence of any knowledge of the underlying geologic structures 

and the data noise level, the image reconstructed under stronger smoothing constraints 

is thus more reliable. 

5 Image resolution decays rapidly with increasing depth in both Born inversion and 

regularised non-linear least squares algorithms. Although no analytic formulation is 

developed to characterised such decays, experience suggest that these methods may only be 

able to image objects within a depth of 2-3 inter-electrode spacings for an equally spaced 

linear surface array of 20 electrodes. Deeper structures may only be visible on the image 

if their dimensions are large or resistivity contrasts are high. 

6 Initial numerical experiments suggest that although the genetic algorithms or neural 

network methods may be applied to process the data over 20 resistivity structures in the 

future, currently their use in practice is severely limited by the high cost of computation. 

9.2 SUGGESTIONS FOR FUTURE WORK 

Although some encouraging results have been obtained using the algorithms developed so far, the 

method of ERT is still at its early stage of development and more field experiments should be 

carried out to test their performance on different geologic and archaeological problems. Further 
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improvement in the algorithms is also desirable in the future development First, the non-linear 

iterative algorithms developed in the previous chapters are still slow and can only be implemented 

on workstation class computers. It is possible to transfer the program to a personal computer by 

re-coding the algorithm to reduce computing costs, in both speed and memory. For example, it is 

possible to increase the speed by eliminating the redundant computations during iterations currently 

in the program. As the Jacobian matrix is the most intensive task of the computation, special 

efforts should be made to ensure that the matrix is computed most efficiently. Secondly, the results 

may be improved by increasing the accuracy of forward modelling in the iterative algorithms. 

Thirdly, a robust strategy for the selection of regularisation parameter, which can take account the 

data noise level and image complexity, is still desirable. 

The methods developed so far focus on the use of a linear array on the ground surface alone. A 

natural extension of current work would be to expand the data collection techniques and the image 

reconstruction algorithms to the cross borehole and borehole to surface geometries. The data 

collection methods developed in Chapter 2 could also be extended to the situation where the array 

is distributed as a 2D pattern and the corresponding data processing methods have not been 

explored yet 

In the development of the image reconstruction algorithm, there are some other possibilities which 

may be explored in the future. For example, it may be possible to develop a 'ray-tracing algorithm' 

for electrical resistivity image reconstruction if the voltage between two current transmitters can be 

measured accurately. If the task is to reconstruct a dynamic resistivity image, a conformal 

transformation may be applied to transfer the subsurface (half space) into a circular region and 

then the fast algorithm for medical imaging (Barber & Brown, 1984) may be applied. Finally, the 

developments of relative fast and yet reliable data collect system is important for the practical 

application ofERT. 
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