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Abstract 

Software testing is important throughout the software life cycle. Testing is 

the part of the software development process where a computer program is sub

ject to specific conditions to show that the problem meets its intended design. 

Building a testing oracle is one part of software testing. An oracle is an external 

mechanism which can be used to check test output for correctness. The charac

teristics of available oracles have a dominating influence on the cost and quality 

of software testing. In this thesis, methods of constructing oracles are investi

gated and classified. There are three kinds of method of constructing oracles: the 

pseudo-oracle approach, oracles using attributed grammars and oracles based on 

formal specification. 

This thesis develops a method for constructing an oracle, based on the Z 

specification language. A specification language can describe the correct syntax 

and semantics of software. The contextual part of a specification describes all the 

legal input to the program and the semantics part describes the meaning of the 

given input data. Based on this idea, an oracle is constructed and a prototype is 

implemented according to the method proposed in the thesis. 
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c h a P t e r 1 

Introduction 

1.1 Purpose of the Research 

Program proofs and program testing are two methods used to evaluate program 

"correctness". Program proof assures the correctness of a program using a math

ematical method of verifying the logic and the function of a program or program 

part. Proofs are expensive and minor changes in a program may require extensive 

change in its proof. 

Program testing is the process of evaluating a program, with or without 

execution, to verify that it satisfies specified requirements. Although it is thought 

that testing can only expose errors of program and not demonstrate their absence 

[32], program correctness is most often evaluated via this technique. In the field 

of software engineering, testing generally contains four tasks: 

1. Select a set of input data according to a suitable testing strategy 

2. Obtain actual output data by executing program on input data 

3. Derive expected output data 
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4. Compare the actual output results and expected output results, in order to 

validate the program. 

In the testing literature, the third and fourth tasks are known as the ora

cle problem. Oracles are an external source which, for any given input descrip

tion, can provide a complete description of the corresponding output behaviour 

(ie. expected outputs) and determine whether the test output conforms with the 

expected output. Generally, a programmer serves as a test oracle, calculating 

expected output data from the specification by hand, comparing actual outputs 

with their expected outputs and agreeing too eagerly with the results of program 

execution. 

A definition of the expected output or result is a necessary part of the soft

ware testing. This obvious principle is one of the most frequent mistakes in soft

ware testing and i t is something that is based on human psychology. If the ex

pected result of a test has not been predefined, chances are that a plausible, 

but erroneous result will be interpreted as a correct result[32]. Therefore, more 

attention should be paid to deriving the expected output of test data. Properly 

exploited, an automated oracle can improve not only testing productivity but also 

its efficacy. 

In this thesis, the construction of an automated testing oracle is proposed, 

and this is an alternative to a human oracle. This automated oracle integrates 

formal specification techniques with the process of software testing. The greatest 

advantage of this technique is the generation of an oracle which functions inde

pendently of human decisions. This provides a strong foundation upon which to 

build a complete testing system. The generation of a complete testing system 

from a formal specification would provide a greatly enhanced tool. 
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1.2 Scope of the Thesis 

The central aim of the research described in this thesis is to look at methods for 

constructing an automated testing oracle. The work is divided into two parts: 

1. the development of a testing oracle construction method, and 

2. the design and implementation of a prototype automated oracle based on 

the Z specification language. 

In a formal specification, a context-free grammar can be defined with the 

addition of synthesised and inherited attributes. The attributes provide the in

formation required to generate meaningful test cases. Input test data points and 

the corresponding expected outputs are then generated either randomly or sys

tematically from the grammar. Following this idea, a construction method of an 

automated oracle is proposed and implemented based on the Z formal specification 

language. The system consists of two basic components: a parser to generate the 

parse tree of the Z specification in Lex and YACC, and an interpreter to generate 

expected outputs of the software in the C programming language. 

The scope of this work has been limited to simple and small specifications 

written in the Z specification language. It is not intended to produce a tool for 

large complex Z specifications which is an issue for future research. 

1.3 Thesis St ructure 

Chapter 2, Software Engineering and Testing, gives the definition of soft

ware engineering and testing and describes the importance of testing in software 

engineering. 
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Chapter 3, Software Testing, provides an overview of software testing, 

introduces and evaluates techniques in software testing, and shows that testing is 

necessary at all stages of the software life cycle. 

Chapter 4, Testing Oracles, surveys related research in testing oracle, gives 

definitions of testing oracles, and introduces testing techniques and current re

search in the area of testing oracles. 

Chapter 5, Construct ion of an Automated Oracle, proposes a method 

of constructing an automated testing oracle based on the Z specification language, 

and introduces theories, concepts and tools related to constructing an automated 

testing oracle. 

Chapter 6, Implementa t ion , describes the implementation of the prototype 

components designed in chapter 4. 

Chapter 7, Result and Evaluat ion, presents an example of the result of 

using the system and evaluates the research in the thesis. 

Chapter 8, Conclusions, summarises the thesis, assessing the research car

ried out in thesis against the proposed criteria and suggesting areas for future 

research. 
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Chapter 

©ftware Engineering and 

Testln 

.1 D e f i n i t i o n o f Software Engineering 

As software systems have grown more sophisticated and complex, software devel

opers have sought new methods for their development. Software engineering is a 

response to that need. 

The IEEE standard Glossary of Software Engineering terminology (IEE83) 

defines software engineering as: "The systematic approach to the development, 

operation, maintenance, and retirement of software", where software is defined as: 

"Computer programs, procedures, rules, and possibly associated documentation 

and data pertaining to the operation of a computer system." 

From this definition, we know that software engineering is the technological 

and managerial discipline concerned with systematic production and maintenance 

of software products that are developed and modified on time and within cost 

estimates [16]. 

Software engineering is a new technological discipline distinct from, but based 
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on the foundations of, computer science, management science, economics, com

munication skills, and the engineering approach to problem solving. 

Because software engineering is concerned with the development and main

tenance of technological products, problem-solving techniques common to all en

gineering disciplines are utilised. Engineering problem-solving techniques provide 

the basis for project planning, project management, systematic analysis, method

ical design, careful fabrication, extensive validation, and ongoing maintenance ac

tivities. Appropriate notations, tools and techniques are applied in each of these 

areas. Furthermore, engineering, scientific principles, economics, and communi

cation skills are combined within the framework of engineering problem solving. 

The result is software engineering. 

The term "computer software" is often taken to be synonymous with "com

puter program" or "source code". Rigorously, "computer software" is synony

mous with "software product". Thus computer software includes the source code, 

and all the associated documents and documentation that constitute a software 

product. Requirement documents, design specifications, source code, test plans, 

principles of operation, user manuals, installation instruction, and training aids 

are all components of a software product. Software products include system-level 

software as well as application software developed to solve specific problems for 

end users of computing systems [16]. But in this thesis, 'software' just means a 

'program'. 

2.1.1 The Software Life Cycle 

Like all other large-scale systems, large software systems take a considerable time 

to develop and are in use for an even longer time. A number of distinct stages in 

this period of development and usage must be identified. The most commonly used 
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stages in the software development life cycle are problem definition, requirement 

analysis, specification, design, testing, and operation and maintenance [21] [47]. 

The waterfall model of software life cycle is illustrated in Figure 2.1. Software 

development cascades from the highest phase to more detailed implementations. 

1. Problem definition 

The goal of problem definition is to define the problem in user terms as 

precisely as possible. Problem definition also helps the user to better un

derstand the problem. 

The result of this phase is a document that defines the problem in terms of 

the user's objectives and major constraints. 

2. Requirement Analysis 

The requirement analysis represents a period of interaction between the user 

and the analyst, the latter being the computer professional assigned to work 

with the user during this phase. The original requirements are examined 

and tested for internal consistency. In other words, any contradictions or 

ambiguities in the requirements are discussed with the user until they are 

resolved to the satisfaction of both parties. The requirements are then re

fined until the user and analyst are in complete agreement as to the expected 

detailed behaviour of the new software. 

3. Specification 

The objectives of the specification phase are to describe what the solution 

looks like: 

o what input the system is going to process 

e what function i t will perform for each input 
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Figure 2.1: The Waterfall Software Life Cycle Model 
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o what the corresponding output will be, and 

o whether the specified system meets the requirements and whether its 

further development satisfies to the project plan or whether the project 

plan must be altered. 

A specification of a program may serve different purposes [26]: 

o Specifications are used for program documentation. 

o Specifications serve as a mechanism for generating questions. The con

struction of specifications forces the designers to think about the re

quirement definition and the intrinsic properties and functionalities of 

the software system to be designed. 

o A specification can be considered as a kind of contract between the 

designers of a program and its customers. 

o Specifications are a powerful tool in the development of a program 

during its software life cycle. The presence of a good specification 

helps not only designers, but also implementors and maintainers. 

o With regard to program validation, specifications may be very helpful 

to collect test cases to form a validation suite for the software system. 

4. Design 

With the commencement of the design stage the attention of software de

velopers focus on the question of how the user's requirements are to be 

implemented. This means that ideas on the structure of the programs and 

the data structures on which they will work are generated, and the best ideas 

are selected for further development. Design does not involve a completely 
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systematic way of working backward from the requirements. It requires 

iteration, synthesis and analysis. 

In the process of software design, there are three distinct types of activities: 

external design, architectural design and detailed design. Architectural de

sign and detailed design are collectively referred to as internal design. 

External design of software involves conceiving, planning out, and specifying 

the externally observable characteristics of a software product. These char

acteristics include user displays and report formats, external data source and 

data sinks, and the functional characteristics, performance requirements, 

and high level process structure for the product. External design begins 

during the analysis phase and continues into the design phase. 

Internal design involves conceiving, planning out, and specifying the inter

nal structure and processing details of the software product. The goals of 

internal design are to specify internal structure and processing details, to 

record design decisions and indicate why certain alternatives and trade-offs 

were chosen, to elaborate the test plan, and to provide a blueprint for im

plementation, testing, and maintenance activities. The work products of 

internal design include a specification of architectural structure, the details 

of algorithms and data structures, and the test plan. 

5. Implementation 

The implementation phase of software development is concerned with trans

lating design specification into source code. The primary goal of implemen

tation is that debugging, testing, and modification are eased. This goal 

can be achieved by making the source code as clear and straightforward as 

possible. Simplicity, clarity, and elegance are hallmarks of good programs; 
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obscurity, cleverness and complexity are indications of inadequate design 

and misdirected thinking. 

6. Testing 

The written code should be tested rigorously based on the required quality 

characteristics. This is the objective of the test phase. Testing usually 

proceeds in several steps. As soon as code has been written, it should be 

tested. First pieces (modules) are tested in isolation. This is called unit 

testing. 

Later, modules are tested in groups to see whether they interact properly. 

This is called integration testing. In most instances, the newly developed 

software system must be tested in its actual running environment. If there 

are several environments, each must be tested in what is called system test

ing. 

Software testing is important throughout the software life cycle. It can be 

seen that some form of testing is necessary at all stage of the life cycle 

(Figure 2.1). The terms "validation" and "verification" can be looked upon 

as various forms of testing; they are defined fully in Section 2.3. 

7. Operation and Maintenance 

Normally this is the longest life cycle phase [40]. The system is installed 

and put into practical use. The maintenance phase focuses on change that 

is associated with error corrections, adaptations required as the software's 

environment evolves, and modifications due to enhancements brought about 

by changing customer requirements. The maintenance phase reapplies the 

steps of the definition and development phases, but does so in the context 

of existing software. Three types of change are encountered during the 
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maintenance phase: 

Correction. Even with the best quality assurance activities, it is likely that 

the customer will discover defects in the software. 

Adaptation. Over time the original environment (e.g., C P U , operating sys

tem, peripherals) for which the software was developed is likely to change. 

Enhancement. As software is used, the customer/user will recognise addi

tional functions that would provide benefit. 

2 o 2 Software Engineering and Testing 

The software engineering life cycle shows that some form of testing is carried 

out throughout the life time of a software product. It can be seen that some 

form of testing is necessary at all stages. Testing typically consumes an enormous 

proportion (sometimes as much as 50 %) of the effort of developing a system [4] 

therefore we need to improve techniques to tackle the problem. 

Software testing is part of the validation process which is normally carried 

out during implementation and also in a different form, when implementation 

is complete. Testing involves exercising the program using data, observing the 

program outputs and inferring the existence of program errors or inadequacies 

from anomalies in that output. 

Testing requires a test plan that describes what is to be tested and when 

and how it is to be tested. In its most detailed form, the test plan includes a 

specification of the test cases and the expected outputs. 

Although only a part of the overall validation process, program testing is the 

only technique used to validate a program in most programming organisations. 

Program verification is a widely used validation technique. After testing, the soft-
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ware system is delivered to the customer. Some testing techniques are described 

in detail in the next section. 

2 c 3 Defini t ion of Software Testing 

Testing is a term with varied meanings, there are other related terms, such as 

validation, verification, certification, and debugging. It is important to give a 

clear definition of terms used in software testing. 

In this thesis, the following definitions will be used for testing, validation, 

verification, and debugging [31,40]: 

o Testing — Testing is the process of evaluating a program, with or without 

execution, to verify that it satisfies specified requirements. It is the process 

of feeding sample input data into a program, executing it, and inspecting 

the output and/or behaviour for correctness. Testing is exercising different 

modes of a computer program's operation through different combinations of 

input data (test cases) to find errors. 

o Validation — Validation is the process of checking that system and its struc

ture as implemented meets the specifications of the user ('Are we imple

menting the right product?'). The process includes ensuring that specific 

program functions meet their requirements and specification. Validation 

also includes the prevention, detection, diagnosis, recovery and correction 

of errors. Validation is more difficult than the verification process since 

it involves questions about the completeness of the specification and envi

ronment information. The validation of a software is a continuing process 

through each stage of the software production. 
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o Verification — Verification is the process of ensuring that the system and 

its structure meet the functional requirements of the baseline specification 

document ('Are we implementing the product right?'). Verification is usu

ally only concerned with the software's logical correctness (i.e., satisfying 

the functional requirements) and may be a manual or a computer based 

process (i.e., testing software by executing it on a computer). Now, the 

post-implementation validation and verification technique rely on program 

testing. 

Q Certification — Certification extends the processes of verification and valida

tion to an operational environment; confirms that the system is operationally 

effective; is capable of satisfying requirements under specified operating con

ditions; and finally guarantees its compliance with requirements in writing. 

Certification usually implies the existence of an independent quality control 

group for the acceptance testing of the overall system. The acceptance test

ing may be accomplished by operational testing, and/or placing the system 

in simulated operation. Certification is the formal demonstration of system 

acceptability to obtain authorisation for its operational use. 

• Debugging —- Debugging occurs as a consequence of successful testing. That 

is, when a test case uncovers an error, debugging is the process that results 

in the removal of the error. The debugging process will always have one of 

two outcomes: (1) the error (cause of the system) will be found, corrected, 

and removed, or (2) the error will not be found. 

An error is a mistake by a programmer or designer. It may result in textual 

problem with the code called a fault. A failure occurs when a program computes 

an incorrect output for an input in the domain of the specification [33]. 
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A test case is a detailed design, consisting of both the required input data for 

program execution, and a precise description of the correct output of the program 

for that set of input data. 

The term software testing is often used to describe techniques of checking 

software by executing it with input data. A wider meaning would be: testing 

includes any techniques of checking software, such as symbolic execution and 

program proving as well as the execution of test cases with data. The expected 

outputs derived by tester are based on the specification derived manually. 
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Chapter 

Review of Software Testing 

3.1 Strategies of Software Testing 

There are many widely differing testing techniques, but for all the apparent diver

sity they cluster or separate according to test case design. A test case is a detailed 

design, consisting of both the required input data for program execution, and a 

precise description of the correct output of the program for that set of input data. 

Selecting test input data, like other processes that attempt to make the best 

choices, must be based on all available information of facts rather than coincidence, 

myth or guesswork. There are a number of sources of information about a program 

or a program unit. The source code is a source of information, if it is available to 

the testers. Another main source of information is the functional specification of 

the program or module. These two main sources of information give rise to two 

main streams of testing approaches, structural testing and functional testing. 

Once a strategy or a combination of strategies is decided, there are a number 

of established techniques which can be followed to design test cases. Some of 

these techniques require the execution of the program and some do not. Therefore, 

testing techniques can also be classified as either dynamic or static. Static analysis 
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is any testing technique that does not involve the execution of the program under 

test. Dynamic analysis is any testing techniques that requires the program to be 

executed. 

3 o 2 Functional Testing 

A testing strategy may be based upon one of two starting points: either the 

specification or the software is used as the basis for testing. Starting from the 

specification the required functions are identified. The software is then tested to 

assess whether they are provided. This is known as functional testing. 

Functional testing involves two main steps. Firstly, it is to identify the 

functions which the software is expected to perform. Secondly, it is to create test 

data which will check whether these functions are performed by the software. No 

consideration is given to how the program performs these functions. 

Functional testing has been termed a black box approach as it treats the 

program as a box with its contents hidden from view. The tester submits test 

cases to the program based on their understanding of the intented function of the 

program. An important component of functional testing is an oracle. An oracle 

is someone which can state precisely what the output of a program execution will 

be for a particular test data. Useful techniques in performing functional testing 

include[12]: 

e Random testing 

® Adaptive perturbation testing 

© Cause-effect graphing testing 
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Random Testing Random testing produces test data without reference to the 

code or the specification. The main software tool required is a random number 

generator. Potentially, there are some problems for random testing. Most sig

nificantly it may seem that there is no guarantee for a complete coverage of the 

program. For example, when a constraint on a path is an equality e.g. A = B+5 

the likehood of satisfying this constraint by random generation is low. Alterna

tively, if complete coverage is achieved then it is likely to have generated a large 

number of test cases. The checking of the output from the execution would require 

an impractical level of human effort. 

Adaptive Perturbation Testing This technique is based on assessing the effective

ness of a set of test cases. The effectiveness measure is used to generate future 

test cases with the aim of increasing the effectiveness. 

The cornerstone of the technique is the use of executable assertions which 

the software developer inserts into the software. An assertion is a statement about 

the reasonableness of values of variables. The aim is to maximise the number of 

assertion violations recorded. Each test case is now considered in turn. The single 

input parameter of the test case that contributes least to the assertion violation 

count is identified. Optimisation routines are then used to find the best value to 

replace the discarded value such that the number of assertions is maximised. 

Cause-effect Graph Testing The strength of cause-effect graphing lies in its power 

to explore input combinations. The graph is a combinatorial logic network, mak

ing use of only the Boolean logical operators AND, O R and N O T . Meyers [32] 

describes a series of steps for determining cases using a cause-effect graph as fol

lows: 
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o Divide the specification into workable pieces. A workable piece might be the 

specification for an individual transaction. This step is necessary because a 

cause-effect graph for a whole system would be too unwieldy for practical 

use. 

o Identify causes and effects. A cause is an input stimulus, e.g. a command 

typed in at a terminal, an effect is an output response. 

o Construct a graph to link the cause and effects in a way that represents the 

semantics of the specification. This is the cause-effect graph. 

o Annotate the graph to show impossible effects and impossible combinations 

of causes. 

o Convert the graph into a limited-entry decision table. In this case, condi

tions represent the causes; actions represent the effects and rules (columns) 

represent the test cases. 

The purpose of the cause-effect graph is to identify a small number of useful 

test cases. 

3 0 3 Structural Testing 

The opposite to the black box approach is the white box approach. Here testing 

is based upon the detailed design rather than on the functions required of the 

program, hence the name structural testing. Structural testing is concerned with 

testing its implementation. Although used primarily during the coding phase, 

structural testing should be used in all phases of the life cycle where the software 

is represented formally in some algorithmic, design, or requirements language. 
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There are three kinds of structural testing methods based on the process of 

generating test data: 

o Statement testing: the design of test data in order that all statement in the 

program should be executed at least once. 

o Branch testing: enough test data to be written so that all branches in the 

program should be executed at least once. 

© LCSAJs testing: enough test data required to be written so that all linear 

code sequence and jumps ( L C S A J s ) should be executed at least once. 

Computation testing is another form of structural testing. This uses the 

structure of the program and select paths which are used to identify domains. 

The assignment statements on the paths are used to consider the computations 

on the path. These approaches also make use of the ideas of symbolic execution. 

Computation testing strategies focus on the detection of computation errors. 

Test data for which the path is sensitive to computation errors are selected by 

analysing the symbolic representation of the path [11]. 

There are other software testing techniques. They are either functional test

ing or structural testing depending on the generation of test data. They may 

be thought as another kind of testing techniques. In some of these approaches, 

the input space of a program is partitioned into path domains, i.e. subsets of 

the program input domain that cause execution of each path and the program 

is executed on test cases which are constructed by picking test data from these 

domain. Examples of such techniques are symbolic testing, algebraic program test

ing, grammar-based testing and data-flow guide testing. Another approach is to 

instrument the program by recording processes which do not affect the functional 

behaviour, but record properties of the executing program. 
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There are another two important testing techniques: domain testing and 

mutation testing. 

In domain testing there are two methods to select test data. In the first 

method, test cases are created based on informal classification of the require

ments into domain; either data or function may provide the basis for the domain 

partitioning. The test cases are executed and compared against the expectation 

to determine whether faults have been detected. In the second method, test cases 

are created based on the observation that points close to, yet satisfying bound

ary conditions are most sensitive to domain errors[ll]. An error in the border 

operator occurs when an incorrect relation operator is used in the corresponding 

predicate, and an error in the position of the border occurs when one or more 

incorrect coefficients are computed for the predicate interpretation. The domain 

testing strategy selects test data on and near the boundaries of each path domain. 

Mutation testing is not concerned with creating test data and demonstrating 

that the program is correct. It is concerned with the quality of a set of test data[8] 

[7]. While other forms of testing use the test data to test the program, mutation 

testing uses the program to test the test data. 

High quality test data will exercise a program thoroughly. To provide a 

measure of how well the program has been exercised, mutation testing creates 

many, almost identical, programs. One change is made per mutant program. 

Each mutant program and the original program are then executed with the same 

set of test data. The output from the original program is then compared with the 

output from each mutant program in turn. If the outputs are different then that 

particular mutant is of little interest as the test data has discovered that there is 

difference between the programs. This mutant is now dead and disregarded. A 

mutant which produces output that matches with the original is interesting. The 
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change has not been detected by the test data, and the mutant is said to be alive. 

Once the output from all the mutants has been examined, a ratio of dead 

to live mutants will be available. A high proportion of live mutants indicates a 

poor set of test data. A future set of test data must be devised and the process 

repeated until the number of live mutants is small, indicating that the program 

has been well tested. 

Mutation testing is highly promising technique for judging the effectiveness 

of test data. In some cases it can be used to prove the correctness of certain types 

of programs. The major stumbling block is the problem of equivalent mutants. 

For example, if a P A S C A L program contained the statements: 

REPEAT 

read (X) 

S := S + X 

UNTIL S > P 

and the program was mutated to contain the fragment 

REPEAT 

read (X) 

S := S + X 

UNTIL S > Q 
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and, if in the program p and q were set to the same value then the mutant 

and the original program are equivalent. It requires the tester to examine the 

original and the mutant to check for equivalence. No test data would be able to 

distinguish between them. If a large number of equivalent mutants are created a 

considerable amount of work will be needed. 

3 o 4 Static Analysis 

A testing technique that does not involve the execution of the software with data 

is known as static analysis. In static analysis, the requirements and design docu

ments and the code are analysed, either manually or automatically, without actu

ally executing the code. Common static analysis techniques include such compiler 

tasks as syntax and type checking. Only limited analysis of programs containing 

array references, pointer variables, and other dynamic constructs is possible us

ing these techniques. The static analysis techniques include requirement analysis, 

design analysis, code inspections, proof of correctness and walkthroughs. 

S o 5 Dynamic Analysis 

Dynamic analysis requires that the program testing be executed, and hence follows 

the traditional pattern of program testing, in which the program is run on some 

test cases and the results of the program's performance are examined to check 

whether the program has operated as expected. 

Functional testing may dictate the set of test cases. The execution of these 

test cases may then be monitored by dynamic analysis. The program can also be 

examined structurally to determine test cases which will exercise the code left idle 

by the previous test. This dual approaches results in the program being tested 
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for the function required and the whole of the program being exercised. The 

latter feature ensures that the program does not perform any function that is not 

required. 

3 , ( 8 Testing Tools 

Testing is an important and budget-consuming part of the program development 

cycle. The manual testing process is especially tedious and error-prone. All or 

part of this process should be automated in order to reduce the number of errors. 

Automated testing tools should be able to analyse a program, delete some type of 

errors, generate test case, initiate program execution, log test results, and compare 

test results with expected results. 

Testing tools are software tools that assist the testing of programs, such as 

analysing program structure, generating test data and recording test execution. 

They should be more cost effective to obtain a general program which can perform 

its function in a variety of test situations. The tools cover a wide range of activities 

and are applicable for use in all phases of the software development life cycle. 

Some perform static testing and others dynamic; while some evaluate the system 

structure, and others the system function. 

A tool is a vehicle for performing a test process. The tool is a resource to 

the tester, but by itself is insufficient to conduct testing. A testing technique 

is a process for ensuring that some aspect of an application system functions 

properly. There are few techniques, but many tools. The concept of tools and 

techniques is important in the software testing process. It is a combination of the 

two that enable the test process to be performed. We should first understand the 

testing techniques and then understand the tools that can be used with each of 
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the techniques. 

3.6.1 Static Analysis Tools 

A static testing tool (static analyser) is a program that analyses source code to 

reveal errors or dangerous constructs without actually executing the code. A static 

analyser is mainly used to check certain global aspects of program logic, syntactic 

errors, coding styles, and interface consistency. The information revealed by static 

analysers include: 

s Syntactic error messages, 

o Number of occurrences of source statements by type. 

© Cross-reference maps of identifier usages, 

e Analysis of how the identifiers are used in each statement (data source, data 

sink, calling parameter, dummy parameter, subscript, etc), 

® Subroutines and functions call by each routine, 

© Uninitialised variables, 

© Variables set but not used, 

s Isolated code segments that cannot be executed under any set of input data, 

• Departures from coding standards (both language standards and local prac

tice standards), and 

* Misuse of global variables, common variables, and parameter lists (incorrect 

number of parameter). 
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There are many kinds of static testing tools which have been used, for exam

ple: Front End Language Processor; Acceptance Test Criteria; Data Flow Anal

yser; Control Flow Analyser; Error Analyser; Report Generator, etc. 

Because the exact value of the variable may not be known until the execution 

time, one cannot generally know which array element is being referenced or defined 

in a statement. Therefore all static analysis tools are limited by the problem of 

identification when the subscript is a variable. 

3.6.2 Dynamic Analysis Tools 

Dynamic analysis tools provide support for testing by direct execution of the pro

gram being tested. The range of functions supported by a dynamic tool is broad. 

Systems, which generate and evaluate test data using any one or a combination 

of the testing techniques have been implemented and used in a variety of setting. 

Dynamic analyser tools can be divided into four parts: symbolic evaluators, test 

data generators, program instrumenters, and program mutation analysers. 

1. Symbolic Evaluators — Symbolic evaluators are programs that accept sym

bolic value for some of the inputs and algebraically manipulate these sym

bols. They perform operations symbolically as if the program were executing 

and derive output values as symbolic expressions including the input vari

ables. 

2. Test Data Generator — A test data generator is a tool which assists a 

user in the generation of test data for a program or module. The purpose 

is to relieve the effort required in generating a large volume of test data, 

and in the case of automatic test data generation, to avoid programmer's 

bias in preparing his own test data. The same way that manual testing 
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can be regarded as two distinct approaches — functional and structural — 

automated generation of test data may be categorised into three types: 

(a) Pathwise test data generators 

(b) Data specification systems 

(c) Random test data generators. 

3. Program Instrumenters — Program instrumenters are systems that insert 

software probes into source code in order to reveal their internal behaviour 

and performance. Their main applications are coverage analysis, assertion 

checking, and detection of data flow anomalies. There are three types of 

program instrumenters: (1) dynamic execution verifiers, (2) self-metric in

strumenters and (3) dynamic assertion processors. 

4. Mutation Testing Tools — An automatic mutation system is a test entry, 

execution, and data evaluation system that evaluates the quality of test 

data based on the results of program mutation. In addition to a mutation 

"source" that indicates the adequacy of the test data, a mutation system 

provides an interactive test environment and reporting and debugging op

erations which are useful for locating and removing errors. 

3 o 7 Summary 

Testing is necessary at all stages of the software life cycle. Testing is an activity 

that requires a great deal of planning. It uses information from all previous 

phases. Therefore the test plan is a crucial document in the software development 

life cycle. It is very important to plan for proper testing, to work with objective 

27 



testing criteria, to combine functional and structural testing, and to control the 

testing process as any other phase in the development life cycle. 

Structural and functional testing are not competing approaches. Both meth

ods are essential. Both are effective, and both have limitations. The two concepts 

actually represent the extreme points of a spectrum between structure and func

tion. Unit testing tend to be more structural than functional, while the converse 

is true for system testing. Functional testing can in principle detect all bugs, but 

would take an infinite amount of time to do so. Structure testing cannot detect 

all bugs even if completely executed. 

Strategically speaking, i t is important to develop a reliable and effective func

tional test approach because, first, functional testing can address errors of emis

sion whereas most other test approaches cannot, and secondly, because bought-in 

software parameterised packages and some "generated" software cannot really be 

tested by other means [1]. Howden suggests functional testing be taken further 

[28]. 

The requirement for a test oracle derived from the above survey on software 

testing is useful in the development of the testing approach. A program can only 

be tested properly if the tester has the exact knowledge about what the program 

under test should and should not do. This justifies the requirement for a test 

oracle for all test cases. Such information, for deciding if a program is behaving 

correctly, can generally be derived from the specification of the program. 
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Chapter 4 

Testing Oracles 

4 . 1 Introduct ion 

Software testing is an important stage in the software life cycle. Once the software 

is implemented in machine-executable form, it must be tested to uncover defects 

in function, in logic and in implementation. 

Almost all of the research on software testing focuses on the development 

and analysis of theory of input data selection criteria and particular criteria such 

as path testing, data flow testing functional testing, and random testing. Methods 

have been developed for the automatic generation of input data satisfying these 

criteria. Many schemes which propose large quantities of test input data, do not 

address the problem of getting expected outputs to check the resulting outputs 

for correctness. In particular there is an underlying assumption that once the 

phase of selecting test data is completed, the remaining tasks are straightforward. 

But it is frequently more difficult to obtain the expected output. Consequently, 

ad hoc methods of getting the expected output often must be used including 

hand calculation, simulation and alteration. Researchers have been searching for 

mechanisms that can derive the expected output of each input of a program, which 
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is usually known as the oracle problem. 

Oracles are an external source or a process of examination which, for any 

given input description, can provide a complete description of the corresponding 

output behaviour (i.e., expected outputs) and determine whether the test output 

confirms with the expected output. The oracle may be a program, a program 

specification, a table of examples, a body of data that specifies the expected output 

of a set of test data as applied to a tested program, or simply the programmer's 

knowledge of how a program should operate. The oracle may take a variety of 

forms, including: 

1. Manual examination of each output from each test run — this is the form 

of oracle that is widely used. Generally, the tester serves as this kind of 

oracle. The expected outputs are computed by hand or derived from a 

specification. Actual outputs are compared visually. It is commonly called 

the human oracle. 

2. Manual generation of each output once, to be compared automatically with 

the output from each test run — this kind of oracle is generally used in 

dual coding (Two programs are produced using the same specification. The 

definition will be given in the next section). In dual coding technique, the 

comparison of the outputs of two programs must be done accurately and 

efficiently, since there are a lot of outputs from two programs. A monitor is 

needed to run the two versions of the programs, and compare their outputs. 

3. Programs which generate < x, y > pairs, where y is the correct output from 

input x — some test case generators can get test input and expected output 

pairs in terms of the testing technique. The generator can serve as this form 

of oracle. 
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4. Programs which generate the correct output y for any input x — this is an 

ideal oracle. In this kind of oracle, expected output can be generated for 

any test input. 

5. Programs which determine the correctness of any input/output pair < x, 

y > — this is a testing tool, called a comparator. It is used to compare and 

check actual output with expected output. 

The characteristics of the available oracles have a dominating influence on 

the cost and quality of software testing. 

4 o 2 Pseudo-oracle Approaches 

A -pseudo-oracle is an independently produced program intended to fulf i l l the same 

specification as the original program [13]. This technique is frequently called dual 

coding, and has been historically used only for highly critical software. The two 

programs which are to be produced in parallel by totally independent program

ming teams, are run on identical sets of input selection which must satisfy some 

pre-determined test data adequacy criterion. If the outputs are the same (or 

acceptably close in the case of numerical programs), the original program is con

sidered to be validated. If, on the other hand, the outputs of the two programs do 

not agree, the two programs are examined using standard debugging techniques. 

The process is repeated until all discrepancies are resolved. [13] describes a tech

nique for producing pseudo-oracles. Such a technique has been used in producing 

ultra-reliable software system. This technique has been used to build a system of 

automatic program testing in [3,27,35,37]. 

Since the research into the pseudo-oracles involves the comparison of the 

outputs of two programs, it must be possible to do this accurately and efficiently. 
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The comparison might be done manually, although frequently a monitor which 

runs the two versions of the programs, and compares their outputs will be also 

necessary. 

Another method uses very high level programming language as a pseudo-

oracle. This method is similar as the dual programming method. The functional 

specification is given to two programmers and each of whom independently code 

a separate program using a different programming language. There are some 

languages by which it is relatively easy to construct program quickly. They can 

offer as much as a ten to one reduction in lines of code written as compared 

with conventional programming languages, e.g., building a high level language 

for testing on assembly language program. Typical very high level languages are: 

SETL, which is based on the storage of data in mathematical objects known as 

sets [39]; APL, which is based on the storage of data in arrays and PROLOG, 

which is based on logic. Girard and Rault described a project in [22] which used 

APL as a medium for producing oracles. 

Although very high level languages are able to offer large reductions in pro

gramming time they do suffer from the disadvantages that the programs con

structed tend to be inefficient. However, these programs can be used as oracles 

during the development of the more efficient production software. 

The methods for constructing a pseudo-oracle are expensive, but it might be 

necessary for non-testable programs [46]. The following classes of programs are 

identified as being non-testable programs according to the definition given: 

1. Programs which were written in order to determine the answer in the first 

place. There would be no need to write such programs, if the correct answers 

were known. 

2. Programs which produce so much output that it is impractical to verify all 
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of i t . 

3. Programs for which the tester has a misconception. This may be thought 

of as a case in where there are two distinct specifications. The tester is 

comparing the outputs against a specification which is different from the 

original (given) specification. 

For those programs deemed non-testable due to a lack of knowledge of the 

correct answer in general, there are nonetheless, frequently simple cases for which 

the exact correct result is known. In the case of programs which produce excessive 

amounts of output, testing on simplified data might involve minor modifications 

of the program. The problem with relying upon results obtained by testing only 

on simple cases is obvious. It is frequently the 'complicated' cases that are most 

error-prone. I t is common for central cases to work perfectly where boundary 

cases cause errors. A pseudo-oracle may be necessary for these programs. 

In order that a pseudo-oracle be useful in practical contexts, certain assump

tions must be fulfilled [13]: 

1. Independence of the pseudo-oracle 

This assumption is really central to our proposed methodology. The two (or 

several) programs must be developed completely independently by different 

programming teams. This is essential in order to eliminate the possibility of 

the some programmer's misconceptions being inserted into both the original 

program and the pseudo-oracle. 

2. Availability of a convenient very high level language 

Obviously the team charged with the development of the pseudo-oracle must 

have an available compiler for a language in which code can only be written 
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quickly and easily. The compiler should have substantial debugging features 

in order to facilitate the development. 

3. Extensive use envisioned for original program 

The overhead involved in producing a second program (even in a very high 

level language) can only be justified if the original program is intended to 

be run often or in a safety critical environment. 

4. Complete and precise specification 

There must be a complete and precise specification available to both pro

gramming teams. This is obviously crucial; it is hardly to be expected that 

two (or more) programs written to meet some vague incomplete specification 

will turn out to be equivalent. 

4 o S > A t t r ibu ted Grammar Approaches 

This method for producing oracle uses a.n attributed context-free grammar as the 

basic mechanism for describing and generating test inputs and expected outputs. 

The attributes provide the context sensitive information necessary to generate 

semantically meaningful test cases. 

4.3.1 Context-free Attributed Grammars 

A context-free grammar is important concept for constituting an oracle in this 

thesis. This concept is defined here and will be used in the next chapters. 
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Sentence 

An alphabet is a collection of characters. The ASCII character set is a good 

example of an alphabet. A string or word (token) is a specific sequence of symbols 

from an input alphabet. A language is a set of words, and a sentence is a sequence 

of one or more of the words within the sentence, and that is where a grammar 

comes into play. A formal grammar is a system of rules (called productions) in 

which the order of words may occur in a sentence. 

The syntax of a sentence determines the relationships between the words and 

phrases in a sentence. That is, the syntax of a language controls the structure of 

a sentence. 

Context-free Grammar 

A context-free grammar is a system of definitions that can be used to break up a 

sentence into phrases solely on the basis of the sequence of strings in the input 

sentence. A context-free grammar is usually represented in Backus-Naur form 

(BNF). This notation has a number of significant advantages as a method of 

specification for the syntax of a language[2]. 

1. A grammar gives a precise, yet easy to understand, syntactic specification 

for the programs of a particular programming language. 

2. An efficient parser can be constructed automatically from a properly de

signed grammar. Certain parser construction processes can reveal syntactic 

ambiguities and other difficult-to-parse constructs which might otherwise go 

undetected in the initial design phase of a language and its compiler. 

3. A grammar imparts a structure to a program that is useful for its translation 

into object code and for the detection of errors. 
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In general, BNF involves four quantities: terminal, non-terminal, a start 

symbol, and productions. The basic symbols of which strings in the language are 

composed we shall call terminals. The word "token" is a synonym for "terminal" 

when we are talking about programming languages. Non-terminals are special 

symbols that denote sets of strings. The terms syntactic 'variable' and syntactic 

categories 'statement', 'expression', and 'statement-list' are non-terminals; each 

denotes a set of strings. One non-terminal is selected as the start symbol, and it 

denotes the language in which we are truly interested. The other non-terminals 

are used to define other sets of strings, and these help to define the language, they 

also help to provide a hierarchical structure for the language at hand. 

The productions define the ways in which the syntactic categories may be 

built up from one another and from the terminals. Each production consists of a 

non-terminal, followed by the symbol " : :=" , followed by a string of non-terminals 

and terminals. 

For example, consider the following grammar for simple arithmetic expres

sions. The non-terminal symbols are 'expression' and 'operator', the 'expression' 

being the start symbol. The terminal symbols are 

ID + - * / ( ). 

The productions are: 

expression ::= expression operator expression 

expression ::= ( expression ) 

expression ::= -expression 

expression ::= ID 

operator ::= + 

operator ::= -

operator ::= * 

36 



operator ' ••=/• 

A t t r i b u t e Grammar 

An attribute grammar provides a formal method for specifying the semantics of 

sentences in a language which is defined by context-free grammar [24]. An at

tribute grammar consists of a set of context-free productions each of which has an 

associated set of rules expressed in the form of semantic functions. The attribute 

grammar associates a finite set of attributes with each grammar symbol. The 

semantic functions specify the way in which the attributes of particular symbols 

are to be evaluated from the attributes of other symbols in the same production. 

An attribute grammar gives a theoretical basis for the computation of seman

tic attributes, and assist in the semi-automatic production of semantic analysers. 

In time, the automatic production of semantic analysers from attribute gram

mars may become as commonplace as the production of table-driven parsers from 

context-free grammars is at present. 

The attribute grammar specifies the semantic attributes of any sentence in 

terms of purely local properties. Attribute values only depend on the attributes 

of neighbouring nodes in the tree. In effect, the semantic properties of a language 

are reduced to stepwise computations in exactly the same way as the productions 

of a context-free grammar reduce the syntax of a language to computations which 

are performed one production at a time. 

4.3.2 Attributed Grammar Oracles 

An example of BNF is shown below: 

< digit > : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

< integer > ::= < digit > | < digit > < digit > . 
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This shows the rules forming an integer in a programming language. The first 

rule states that a digit is either a zero, a one, a two, etc. The second rule states 

that an integer can either be a digit or a digit followed by an integer. Thus 372 is 

an integer. It consists of a 2 which is a digit and hence an integer. The integer 2 is 

preceded by the digit 7 which makes 72 an integer. The integer 72 is preceded by 

the digit 3 which makes 372 an integer. A compiler for a programming language 

can use such rules in order to process programs. 

The method for producing oracles using attributed grammar reverses this 

process. A tester defines a test grammar. The basic test grammar is written 

using an extended BNF. The generation process for a grammar starts with an 

empty string and then generates an example of start symbol. I t does this by 

choosing one of the rules for the start symbol. The choice procedure is described 

as follow. Once a group of symbols occurring to the left of the predicate in the 

rule. The guard may also involve the value of the current terminal or any of its 

synthesised attributes. If the guard has a true value then the rest of the term is 

evaluated, otherwise it is not and the next alternative term, if any, is processed. 

As with compilers, action routines are used to produce an output string 

corresponding to the generated input string. Action routines are allowed any place 

in the right-hand-side of the rules, and these action routines and their attributes 

specify those actions necessary to produce the output string. 

Suppose to generate a test case involving N ( < N_MAX) integers from the 

range V_MIN to V_MAX. Basing attributed grammar method on the output, a 

sort list of numbers will be generated for the output file. The output string is 

presented by the context-free grammar: 

sort_output ::= empty ) sort_output "element" sort_output 

The attributes will be used to ensure that the output string is given length 
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and that the element are sorted. The following attributed grammar is defined. 

ATTRIBUTED TEST GRAMMAR 

1. test-case ::= [# N in O..MAX_N]@init sort_output(N, V_MIN, VJVIAX). 

2. sort_output(N, A, B) ::= [? N = 0] empty | [? N > 0][# I in A..B; j in 0..N-1] 

sort_output(J, A, I) "elemental) @put_element (I) sort_output(N - J - 1, I , B). 

ACTION 

init: initialises the input string to be empty. 

put_element(I): puts the integer I into some random free location in the 

string. 

Since the grammar productions are carried out in a top-down, left-to-right 

fashion, the grammar will build the output string from left to right. The two 

grammars above will work well enough with test data. 

Several approaches for producing oracles involve the use of this technique. 

But more approaches focus on automated testing and test case generation. Gen

erally, the approaches to oracle construction are tackled as part of the test gener

ation. 

Duncan and Hutchison presented this method for generating test cases in 

[15]. The user of a test case generator using attributed grammars defines the 

grammar of the test data to be generated, then takes this grammar and produces 

test data together with expected output. 

Using this technique, Panzl [34] reported on-regression testing of FORTRAN 

subroutines. He presented a test case description language and a program to 

automatically execute the cases, monitoring actual versus expected behaviours. 

Jagota and Rao [30] have developed a test case language and an interpreter, 

specifically designed for testing microprocessor operating systems. Camuffo et. al. 

[9] proposed the description of the functional specifications of a program (syntax 
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and semantics) using a formalism based on two-level grammars. Some tools, 

which can generate automatically both test data and related expected output are 

implemented. Elsewhere, attributed grammars have been used both as test-case 

generators and test oracles. 

The method for producing test cases using attributed test grammar is quite 

expressive, but is not very user-friendly in appearance. One disadvantage of this 

method is that the generated test case, while syntactically correct, can be se-

mantically wrong [29]. Another is that the tester needs to write the attributed 

test grammar. As yet there has been very little experience in the use of such 

grammars. For example, it is still not yet clear whether for production quality 

programs the complexity of the grammar produced will be so large as to make the 

technique unfeasible. 

4 0 4 Formal Specification Approaches 

4.4.1 Formal Specification Languages 

A formal specification will describe the following: 

e what input the system is going to process, 

© what function it will perform for each input, and 

• what the corresponding output will be. 

Any specification must be in a specification language. Specification lan

guages may be classified into two major classes: formal specification languages 

and informal specification languages . 

Formal specifications have a mathematical (usually formal logic) basis and 

employ a formal notation to model system requirements. 
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Informal specification languages, on the other hand, use a combination of 

graphics and semiformal textual grammars to describe and specify system re

quirements. Given the graphical and "English-like" nature of these languages, 

they provide a vehicle for eliciting user requirements and communicating the an

alyst's understanding of the requirements back to the user for verification. 

The two approaches have complementary strengths and weaknesses. Whereas 

informal specifications have advantages for requirements elicitation, ease of learn

ing, and communication, formal languages provide conciseness, clarity, and pre

cision, and are more suitable for analysis and verification. Therefore, formal and 

informal specifications must not be regarded as competitive but rather as com

plementary. 

4.4.2 Oracles Based on Formal Specification 

Specifications are of great importance in testing, for they determine what the 

software ought to do and must necessarily form the basis for the testing of the 

functionality of software. 

The formal specification language has two major components: syntactic spec

ifications and semantic specifications. The syntactic specifications provide syn

tactic and type-checking information, and range of operations. Semantic specifi

cations define the meaning of the operations by starting, in the form of axioms, 

the relationships of the operations with each other. The formal functional speci

fications describe the program behaviour, i.e., syntax part describes all the legal 

input to the program, together with the 'meaning' of each given by the semantic 

part. 

For formal specifications, we can use formal specifications as an oracle in one 

of two ways: 
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o to check the result, and 

o to predict the result. 

Checking the result seems in principle easier. The alternative would seem to 

use the specification to calculate or predict the output that should be expected, 

but that requires an executable specification, and many specifications will be 

essentially non-executable. There are some approaches for producing oracles using 

formal specifications, typically the oracle problem is tackled as part of the test 

case generation activity. 

Day and Gannon implemented a test oracle based on formal specification [14]. 

This system translates a formal specification of input-output data into an auto

mated oracle. The generated oracle will validate the consistency of an unlimited 

number of program inputs and outputs with the specification. The specification 

language used in the system is intended to describe a problem domain limited to 

programs written in CF PASCAL (Character File Pascal). CF PASCAL is a Pas

cal subset which allows the programmer only the two primitive data type, CHAR 

and TEXT, with all program inputs and outputs in the form of text files. Strictly 

speaking, CF PASCAL is not a formal specification language. The specification 

used does not give enough semantics attributes so that a user must define func

tions to specify other semantic attributes. The users must understand attribute 

evaluation and bottom-up parsing, and attribute-evaluation software would have 

to be written. The following example shows that Day and Gannon gained a test 

oracle based on their own formal specification. 

This example is a specification for a program which is to remove extra blanks 

which separate the words in the input file. 

PROBLEM: Write a program to take as input a line of text and output the text 

with a single blank between each word. A l l initial blanks should also removed 
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form the line. 

SYNTAX SECTION 

<nlein>:: = <wblist> <eoln> 

| <blank> <wblist> <eoln> 

| <wblist> <blanks> <eoln> 

| <blanks> <wblist> <blanks> <eoln> 

| <blanks> <eoln> 

| <eoln> 

<wblist> ::= <wblist> <blanks> <word> | <word> 

<word> ::= <char> <word> | <char> 

<blanks> ::= <blank> <blanks> | <blank> 

<fileout>::=: <wlist> <blanks> <eoln> | <blanks> <eoln> 

<wlist> ::= <wlist> <blank> <word> | <word> 

<word> ::= <char> <word> | <char> 

<blanks> ::= <blank> <blanks> | <lambda> 

The addition of the semantic rule finishs the section. 

SEMANTIC SECTION 

List(Words(Fileout)) = List(Words(Filein)) 

An execution of the generated oracle for the insert blanks problem-is showed 

below. Note that the output file is incorrect; the extra blanks were all inserted 

after the first word. 

Width : / 

Filein : List of words separated by one blank/ 

Fileout: List of words separated by one blank/ 

Oracle Run: Siblanks 

Checking Syntax Rule 1. 
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Data Meets Specification SYNTAX RULE 1. 

Checking Syntax Rule 2. 

Data Meets Specification SYNTAX RULE 2. 

Checking Syntax Rule 3. 

Data Meets Specification SYNTAX RULE 3. 

Checking Semantic Rule 1. 

Data Meets Specification SEMANTIC RULE 1. 

Checking Semantic Rule 2. 

Data Meets Specification SEMANTIC RULE 2. 

Checking Semantic Rule 3. 

Data Meets Specification SEMANTIC RULE 3. 

Checking Semantic Rule 4. 

Semantic Error: SEMANTIC RULE 4. 

There are other approaches for producing an oracle based on formal specifi

cation language as part of test case generation. 

Frankl [18] has developed a schema for object-oriented testing using algebraic 

specifications to test an object 0. The specification is used to generate pairs of 

equivalent call sequences to instances of 0 and one of the call sequences is executed 

on each instance. Object behaviour is deemed correct i f the two instances are left 

in the same internal state. With the Mockingbird system [23], the specification for 

a message protocol is transformed to a constraint logic program which can serve 

as a validator and generator of test data. As a generator, the program produces 

messages conforming to the specification, as well as syntactically and semantically 

incorrect messages. As a validator the program serves as the test oracle, Choquet 
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[10] and Pesch [36] used specifications to generate test input and expected output. 

To obtain the test cases from these specifications particular values are substituted 

for variable in parts of the specification, it is the tester's responsibility to generate 

the appropriate instantiations. Gerhart [19] describes an interactive system for 

generating test data using Prolog. The user of the system identifies important 

conditions in the specification of a program and provide a generator for test data. 

The system then generates a set of test data that covers as many combinations 

of the conditions as possible. Tsai [44] described a system of automated test case 

generation for programs specified by relational algebra (RA) queries. To automate 

test case generation, limiting the expressive power of the specification language 

(relational algebra RA) is used. 

At present, creating test cases from formal specifications is a complicated and 

poorly understood information-processing technique requiring extensive human 

expertise. Thus the specification language which is used for producing oracles has 

to be limited by the expressive power. 

405 A Summary of the Approach to the Con

struction of Oracles 

In general, we can classify oracles into four kinds in terms of their construc

tion: human oracles, pseudo-oracles and oracles using attributed grammars and 

specification-based oracles. For human oracles, one method is that expected out

put is derived manually from specification, but this approach can be quite expen

sive especially when a large mass of test cases must be executed, as is normally the 

case, for example, with random testing; another method is that expected output 

is not derived at all and the effective actual output is inspected by the operator: 
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this may be a dangerous testing practice since the testing evaluation becomes de

pendent on the competence and the fairness of the operator [6]. Even so, human 

oracles are frequently used in software testing. 

The use of a pseudo-oracle for testing may not be practical. Obviously such 

a treatment requires a great deal of overhead. At least two programs must be 

written, and if the output comparison is to be done automatically three programs 

are required to produce what one hopes will give identical result. It has been 

argued [20] that writing multiple versions of software, even when the language 

used is not a very high level language, does not add substantially to the cost of 

a software system. Two programs developed in similar ways may contain similar 

errors. In addition, the construction of multiple versions of software as oracle 

reduces the large amount of effort expended during testing. 

With the development and application of a formal specification language, the 

approach of using specifications as an oracle has received a lot of attention. But 

these approaches have not been sufficiently well-defined to be generally applicable 

[38]. There has been very little experience of using attribute grammars. Besides, 

the specifications which are used in the above approaches are test specifications. 

These specification languages are only used to ease software testing and they may 

not be useful for other purposes. Thus, the extension of these methods will be 

restricted, and an extra cost will be paid for writing extra testing specification. 
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Chapter 

The Construction of am 

Auitomated Oracle 

5.1 A Scheme for an Automated Oracle 

Specifications are of great importance in testing, for they determine what the 

software ought to do and must necessarily form the basis for the verification 

testing of the functionality of the software [25]. The use of a formal specification 

allows the development phase and test preparation to be performed due to the 

proper advantages of formal specification. For a formal specification, i t must have 

a mathematical ( usually formal logic ) basis and employs a formal notation to 

model a system. The advantages of using formal specification [40] are as follows: 

e The development of a formal specification provides insights into and under

standing of the software requirements and the software design. 

o Given a formal system specification and a complete formal programming 

language definition, i t may be possible to prove that a program conforms to 

its specification. Thus, the absence of certain classes of system error may 
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be demonstrated. 

o Formal specifications may be automatically processed. Software tools can 

be built to assist their development, understanding and debugging. 

o Depending on the formal specification language used, it may be possible to 

animate a formal system specification to provide a prototype system. 

o Formal software specifications are mathematical entities and may be studied 

and analysed using mathematical methods. 

o Formal specifications may be used as a guide to the tester in identifying 

appropriate test cases. 

We can consider making use of formal specifications to construct an auto

matic oracle for checking or predicting the expected output of a software system. 

A formal specification language is needed to describe both the syntactical 

(also for contextual parts ) and semantic aspects of the software. The contextual 

part of a specification describes all the legal input to the program, the semantics 

part describes the meaning (expected output) of each given input data. In terms 

of this idea, an oracle can be constructed from a context-free grammar, together 

with the related "meaning". Figure 5.1 shows a schema of the technique. 

A scanner is a program which performs lexical analysis of source language, as 

opposed to syntactic analysis and semantic analysis. Lexical analysis is that part 

of the compiler which reads the original source language character by character and 

translates it into a sequence of primitive units called tokens or terminal symbols. 

The function of a scanner is to take an input source language and produces as 

output a stream of tokens suitable for the syntax analyser or parser. There are only 

a small number of tokens for any language and they are conveniently represented 
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Figure 5.1: A Scheme of Automatic Oracle 
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by small integers. The scanner can recognise symbols normally defined by a 

context-free grammar. 

A scanner is often sufficiently simple that it can be written for example 

straight as a straightforward C program. Such a scanner (lexical analyser) consists 

of a loop containing a single switch statement which decides what the next token 

being read is by looking at the next character. It takes as input the source text and 

produces as output a list of tokens. There are suitable tools for the construction 

of a lexical analyser, of which Lex [5] is one of them. Lex automaticly generates 

lexical analysers and it will be described in the next section. 

A parser is a program which performs syntax analysis. A parser determines 

whether the stream of tokens from the scanner forms a valid sentence in the source 

language grammar. If so, a parse tree can be unambiguously derived. 

There are two obvious ways of building up a parse tree. One is to start with 

the sentence symbol and build downwards to the terminals; the other is to start 

at the terminal and build upwards to the sentence symbol. These are known as 

top-down and bottom-up parser methods respectively. 

In the top-down parsing, the LL(1) parsing method is widely used. The 

LL(1) parser means a parser in which we read the source text from the left (the 

L), and then produce a left-most (the L) derivation. We recognise non-terminal 

in turn, starting with sentence symbols to form the parse tree. 

In the bottom-up parsing, the LR(k) shift-reduce parser is used. There 

are three types of LR parser: canonical LR (k), simple SLR(k) and lookahead 

LALR(k). In general, we are interested in the case where k = l . 

With shift-reduce parsing, we use a stack to hold symbols. At any stage, we 

have principally two options: 

50 



o Push the current token onto the top of the stack and call the lexical analyser 

to get a new token. The token is said to be shifted onto the stack. 

o Decide for the token on the top of the stack from a valid right-hand side of a 

production. Pop them off the stack and replace with the non-terminal on the 

left-hand side of the production. This is known as reduce using production. 

Some parser generators are widely used now. A parser generator is a complete 

programming language which can generate automatically a parse table. YACC [5] 

is an outstanding one. YACC is widely available under Unix and some other oper

ating systems. YACC takes a specification of a programming language grammar 

and semantic actions and produces an L A L R ( l ) parsing table and a shift-reduce 

parser. The source program is read as a stream of tokens. A lexical analyser must 

be provided separately, typically using the Lex lexical analyser generator. 

A test data generator is a program that can generate syntactically and con-

textually correct test data (input data) through a right-most derivation of the 

attribute syntax given in the specification. Given the syntax and a representation 

for the test-domains, the algorithm for generating the test domain partition is 

produced for a particular specification. Typical test data are selected in terms of 

the given test domain partition. The work of this part focuses on how to generate 

test input data. In this thesis, we only pay our attention to how to get expected 

output from the input data which has been given. 

An interpreter is a program that simulates the behaviour of the software un

der validation, by 'execution' of the semantics, and produces the expected results 

relating to the test domain. It needs to give special semantics to a formal speci

fication language and then interpret the formal specification language using this 

semantics. YACC provides a function for semantic action. The user may specify 

actions that are executed whenever a rule (production) or part of rules, is recog-
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nised. These actions can return values and access values returned by previous 

actions. These features of YACC can also be used to write an interpreter in C. 

A manager is a program that aggregates the generated test data and expected 

outputs, and prints an testing oracle in the form of a case table. 

According to this idea, an expected output related test-domain can be ob

tained from a formal specification. The pre-requisite would be the description of 

syntax of the specification language. The Z specification language has concrete 

syntax and semantics, and is almost fully defined [41,42] so it is used in this thesis. 

5.2 Z Specification Language 

5.2.1 Features of Z Specification Language 

There are two approaches to formal specification languages which fundamentally 

affect the way in which a system is specified, the model-oriented and algebraic 

approach: 

9 A model-oriented specification aims to construct an explicit 

abstract model of an information system in terms of well-understood math

ematical entities such as sets whose semantics are formally defined. 

• An algebraic approach specification involves creating objects which represent 

some real world entities, and model them in terms of the operations which 

can be performed on them. 

Z is a model-based specification language. Z specifications are more intuitive 

to non-scientists since it models real-world entities directly using relatively simple 

mathematical objects. 
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Z is a formal specification language devised by Jean-Raymond Abrial and 

developed by the Programming Research Group at Oxford University in the early 

80s. It is still a topic of research at Oxford and other institutions, and has been 

the centre of interest to the non-academic world. 

Z has been used to specify several non-trivial information systems. It is 

mainly used for safety-critical projects at present, but this situation will hopefully 

change as more and more people use Z. 

Z is of interest to academics because of its mathematical foundations, and the 

promise of being able to bring a degree of rigour to a software engineering project. 

However, there is some doubt whether this can be achieved universally. This is 

probably right, but that does not detract from the very real benefits discussed in 

the previous section. These benefits could be secured by sing Z in the real world. 

One of the biggest advantages of Z as a language for specifying medium 

to large-size systems is its in-built schema calculus. This provides a mechanism 

for easily decomposing specifications into smaller, more manageable units called 

schemas. A schema consists of a collection of named objects with a relationship 

specified by some axioms, and Z provides notions for them in various ways, so 

that a large specification can be built up in stages. Schemas can have generic 

parameters, and there are operations in Z for creating instances of generic schemas. 

Schemas give Z specifications a modular property, something which has long been 

recognised as a powerful aid when dealing with complicated problem domains. 

It helps the analyst to build a correct specification, and allows the reader to be 

gently introduced to a new specification by gradually unravelling the model. I t 

basically reflects the human shortcoming of only being able to deal with a few 

new concepts at any one moment in time. 
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5.2.2 Examples of Z 

This example specifies a simple banking system[41]. We begin by deciding that 

the state of the system consists of the balance of each account 

Bank 

bal : ACCT ^ N 

The arrow i—• indicates a function from ACCT to N (natural number). 

When the operation changes the states, we use A BANK to indicate i t . 

When the operation does not change the states, we use S BANK to indicate i t . 

bal represents the state before an operation and baV represents the state after an 

operation. 

A BANK = BANK A BANK' 

H BANK = [ A BANK | bal' = bal ] 

The balance is in number of pence. We suppose that the bank manager is 

mean enough to never allow overdrafts. 

One possible operation is to transfer some money from one account src to 

another dst: 

Transferl 

A Bank 

amount? : N 

src?, dst? : ACCT 

src? 7̂  dstl 

bal(srcl) > amount? 

bal' = bal ® {src? \—> bal(src?) — amount?, 

dst? i—> bal(dst?) + amount?} 
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By convention names in the declarations ending in '?' are input data, and 

names ending in '!' are output data; the '?' '!' are otherwise just part of the 

name. 

The operator 0 ( function overriding ) combines two functions of the same 

type to give a new function. The function f © g is defined as x if either f or g are 

defined, and will have a value of g(x) if g is defined at x; otherwise it will have a 

value of f(x) . That is 

dom(f © g) = dom(f) U dom(g) 

x G dom(g) =• (f © g)(x)=g(x) 

x £ dom(g) A x G dom(f) (f © g)(x)=f(x) 

We might describe also the operations of depositing and withdrawing money 

from the bank, asking for the current balance of an account, and so on, then turn 

later to the reporting of invalid operations. To do this, we add an extra output 

report! to each operation, and arrange such that this has a value 'OK' after every 

successful operation: 

Ok 

reportl : MESSAGE 

reportl = "ok" 

For unsuccessful operations, we report the reason for failure with an appro

priate message, and constrain the final state of the banking system to be the same 

as the initial state. The two possible errors in a Transfer operation occur when 

the source and destination accounts are the same, and when the source account 

does not contain enough money: 
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SameAcct 

EBANK 

src?, det? : ACCT 

report* : MESSAGE 

src? = dst? 

reportl = "Same account for src and dst" 

NotEnough 

"EL Bank 

amount! : N 

src?, det? : ACCT 

reportl : MESSAGE 

src? 7̂  dst? 

bal(src?) < amount? 

reportl = "Not enough money in src" 

The transfer operation, complete with error reporting, can now be specified 

by combining these schemas: 

Transfer = ( Transferl A OK ) V SameAcct V NotEnough. 
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Transfer 

A Bank 

amount! : N 

src!,det! : ACCT 

report* : MESSAGE 

src! ^ dstl 

bal(srd) > amount! 

bal1 = bal © {src? t-> bal(srrf) — amount!, 

<fsi? i—> bal(dst!) + amount!} 

report! : "OA*" 

V 

src? = <fsi? 

reporf! = "Same account for src and dst" 

V 

src? ^ c?si? 

bal(srd) < amount! 

report\ = "Not enough money in src" 

5.2.3 Identifying the test cases using Z 

The most important consideration in program testing is the design or invention 

of effective test cases [32]. The typical test case design of functional testing tech

niques is equivalence partit ioning. Equivalence partitioning is a technique for 

determining which classes of input data have common properties. The equiva

lence classes must be identified by using the program specification. There are two 

considerations for equivalence partitioning: 
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1. Each test case should invoke as many different input condition as possible 

in order to minimise the total number of test cases necessary. 

2. One should try to partition the input domain of a program into a finite 

number of equivalence classes such that one can reasonably assume that a 

test of a representative value of each class is equivalent to a test of any other 

value. That is, if one test case in an equivalence class detect an error, all 

other test cases in the equivalence class would be expected to find the same 

error. 

Using the equivalence partitioning techniques, we look for a partition of 

the input and output sets and states. These are given in the declaration parts 

of the specification, and the conditions contained in the predicates parts of the 

specification. In this particular case this can lead to the table below 

bal bal > A m o u n t bal < A m o u n t 

Amount? N N N 

src? dst? src? 7^ dst? src? = dst? src? 7̂  dst? 

report! O K same account not enough money 

bal' baT = bal © sth bal' = bal bal' =bal 

Note: 

bal' = bal © sth is in above table: 

bal' = bal © {src? i—• bal (src? - amount?, dst? (-> bal(dst?) + amount? } 

The report! and bal' are just expect outputs relating to inputs src?, dst?, 

amount? for the banking system. How to use this table will be discussed in the 

next chapter. 
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5 o 3 Lex 

Lex is a lexical analysis generator. 

The general format of Lex source is 

{ definition } 

%% 

{ rules } 

%% 

{programmer subroutines} 

The definition section is used to define variables for the program and for 

use by Lex. It may also contain other commands, including the section of a host 

ianguage, a character set table, a list of start conditions, or adjustments of the 

default size of arrays within Lex itself for large source programs. 

The rules section of a Lex input consists of a regular expression and an 

action. A regular expression specifies a set of strings to be matched. It also 

contains text characters (which match the corresponding characters in the strings 

being compared) and operator characters(which specify repetitions, choices, and 

other features). When an expression is matched, Lex executes the corresponding 

action, There is a default action, which consists of copying the input to the output. 

In Lex, the actions are written in C. 

The third section is used for any subsidiary code that the user needs. This 

section can hold whatever auxiliary procedures are need by the action. Alterna

tively this part can be complied separately and loaded with the lexical analyser. 

Lex accepts a high-level, program-oriented specification for character strings 

matching, and produces a program in a general purpose language which recognises 

regular expressions. The regular expressions are specified by the programmer in 

the source specifications given to Lex. The Lex written code recognises these ex-
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pressions in an input stream and partitions the input stream into strings matching 

the expression. At the boundaries between strings, program sections provided by 

the programmer are executed. As each expression appears in the input to the 

program written by Lex, the corresponding fragment is executed. 

Lex does not worry about ambiguity. It will always select the longest possible 

match. If two matches are the same length, the first is used. 

Lex is designed to simplify interfacing with Y A C C . What Lex writes is a 

program named yylex(), the name require by Y A C C for its analysis. 

5 o 4 YACC—Yet Another Compiler-Compiler 

Y A C C is a parser generator which automatically generates L A L R ( l ) parsing tables 

and a shift-reduce parser from a specification of the grammar and associated 

semantic actions. A Y A C C specification has three parts like 

declaration 

%% 

rules 

%% 

programs. 

The declaration part contains the declarations of all tokens that will be 

passed from the lexical analyser and used in the rules and programs sections. 

The rule section is made up of one or more grammar rules and the associated 

semantic action. A grammar rule has the form 

A : B O D Y ; 

A represents a nonterminal name, and B O D Y represents a sequence of zero 

or more name and literals. The colon and semicolon are Y A C C punctuations. 
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Names may be of arbitrary length, and may be made up of letters, dot and 

non-initial digits. Upper and lower case letters are distinct. The name used in the 

body of a grammar rule may represent tokens or nonterminal symbols. A literal 

consists of a character enclosed in single ' ' ' s . As in C , the backslash ' \ ' is an 

escape character within literals, and all the C escapes are recognised. 

With each grammar rule the programmer may associate actions to be per

formed each time the rule is recognised in the input process. These actions may 

return values , and may obtain the values returned by previous actions. More

over, the lexical analyser can return values for tokens, if desired. An action is an 

arbitrary C statement, and as such can have input and output, call subprograms, 

and alter external vectors and variables. An action is specified by one or more 

statements, enclosed in curly braces ' { ' and ' } ' . 

The third section of the Y A C C specification consists of supporting C routines 

to support the semantic actions defined in the rule section. 

Y A C C provides a general tool for imposing structure on the input to a com

puter program. The Y A C C programmer prepares a specification of the input pro

cess; this includes rules describing the input structure, code to be invoked when 

these rules are recognised, and a low-level routine to do the basic input .YACC 

then generates a function to control the input process. This function, called a 

parser, calls the programmer-supplied low-level input routine ( the lexical anal

yser ) to pick up the basic items ( tokens ) from input stream. These tokens are 

organised according to the input structure rules, called grammar rules; when one 

of these rules has been recognised, the programmer code supplied for this rule, an 

action, is invoked; actions have the ability to return values and make use of the 

values of other actions. 

Since Y A C C uses an L A L R ( l ) parsing table, both shift-reduce and reduce-
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reduce conflicts may occur. With shift-reduce conflicts Y A C C uses a shift in favour 

of a reduction. With reduce-reduce conflicts Y A C C uses the production declared 

first in the rules section. Both conflicts are permissible in programming language 

grammars. 

A lexical analyser by the name yylex() must be provided. The lexical analyser 

yylexQ returns tokens consisting of token type and attribute value pairs. If a token 

type value is returned as digit, the token type must be declared in the first section 

of the Y A C C specification. The attribute value is communicated to the parser by 

a Y A C C defined variable yyval. 

The next chapter will discuss how to use L E X and Y A C C to implement an 

automatical oracle based on Z formal specification language. 
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Chapter (6 

Implementation 

The idea of constructing an automatic oracle is to make use of two features of 

the Z formal specification language — the concrete syntax and the semantics 

of the language. In this thesis, an automatic oracle generation consists of four 

parts. Figure 6.1 shows this system with four parts: a scanner, a parser, a syntax 

checker and an expected output generator. In this system, the input of the system 

is a particular specification written in Z; the output is the printed Z specification 

schema in boxes and a table of expected output related input-domain for this 

particular specification. 

The scanner used for the lexical analysis is written in Lex. The parser is 

written in Y A C C . The parser reads a stream of tokens from the scanner and 

produces a symbol table in terms of Z grammars. The arrows between the scanner 

and the parser indicates the parser invoking the scanner and the lexical analyser 

returning the current token to the parser. The syntax checker utilises an existing 

tool — fuzz, fuzz is a package for checking Z specifications with the Z scope and 

types, and printing them with l&TppC. fuzz can be decomposed into two parts: one 

part is a program for analysing and checking specifications expressed as M g X 

input files; the other part is a J&TgXstyle option, containing environments for the 
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major constructs of Z and commands for the mathematical symbols. 

The expected output generator (interpreter) is written in C. It consists of 

several semantic routines including action parts of Y A C C . In the semantic analysis, 

Z is interpreted using specific semantics of Z. The expected output generator 

produces a test case table and prints it. 

6.1 Lexical Analysis and Scanner 

Lexical analysis is the part of a complier which reads the original source program 

character by character and translates it into a sequence of primitive units called 

tokens or terminal symbols [17]. In this case, the original source program is a 

particular specification written in Z. Traditionally the program which performs 

this function is called a scanner. Thus a scanner performs a lexical analysis of the 

Z language. 

The scanner is relatively straightforward to produce using Lex together with 

grammar and concrete syntax given in reference [42] and [43]. The diagram of 

the scanner is shown in Figure 6.2. The first phase predefines strings that will 

be used in phase two. For example, the Z lexical analyser includes the following 

definitions: 

whitespace {delimiter}+ 

alpha [a-zA-Z_] 

alphanum [a-zA-Z_0-9] 

digit [0-9] 

integer {digit}+ 

Each definition consists of a name being denned on the left and its definition 

on the right. 
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The second phase is where the patterns corresponding to each token defined 

in Y A C C are defined. When a pattern is matched, a corresponding action included 

in braces (some C code) is executed. 

The subsidiary routine ( lookup() ) is then called, to recognise a token or a 

variable. When a variable is recognised, its name is saved in the symbol table. An 

external variable yylval is used to return a simple mapping for the value of each 

"integer". During the translation of the mathematical symbols into their A S C I I 

representation, the l&TgXsymbols as tokens are used: 

0 to be translated to O P L U S 

G to be translated to IN, etc. 

( S o 2 Syntax Analysis and Parser 

The purpose of syntax analysis is to determine whether the stream of tokens from 

the scanner forms a valid sentence in the Z specification language grammar. If 

so, its parse tree and symbol table is derived. The parser for Z is generated using 

Y A C C (See Appendix B ) . The diagram of parser is shown in Figure 6.3: 

In phase 1, the tokens used in the grammar are declared. For example: 

%token B E G I N _ Z E D 

%token E N D _ Z E D etc. 

The grammars given in [43] are ambiguous grammars. For the ambiguous 

grammars, Y A C C resolves the ambiguity by specifying the precedence and asso

ciation of tokens, rather than merely rewriting unambiguous grammars. For the 

association, using "%left token-name" declaration for operators associated to the 

left; using "%right token" declaration for the operator associated to the right. 

Operators that have same the precedence appear in the same declaration. 
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In the second phase, the grammar of the Z specification given in [43] is 

defined. A production in Y A C C has the form: 

non-terminal : right hand side { actions }; 

Each grammar rule given in [43] should be converted from B N F notation into 

the format expected by Y A C C as outlined below: 

o The B N F define symbol "::=" becomes ":". 

o The B N F concatenation symbol "," is simply omitted. 

o An "underscore" character is substituted for each space that occurred within 

the meta identifiers. 

o References to terminal symbols become references to the corresponding to

kens provided by the scanner, for example: 

"begin{schema}" becomes B E G I N J 3 C H E M A ; 

"end{schema}" becomes E N D _ S C H E M A . 

o An additional rule, of the following form, is written for all optional syntactic 

items: 

rule-name : f optionaLitems J ; will become 

rule-name : optional items 

I ; 

e For all syntactic items that may occur one or more times, an additional rule 

of the following form is written: 

rule-name : syntactic-items rule-name 

| syntactic-name; 
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o Any grammar rules that use parenthesis for grouping are rewritten in their 

expanded form, for example 

rule ::= a(b|c); will become 

rule : ab | ac; 

The action part in Y A C C defines semantics routines. When a rule is matched, 

the corresponding semantics routine is called. 

6.2.1 Shift-Reduce and Reduce-Rednce Conflicts 

The original grammar expressed in [43] contains 103 rules, these rules are trans

lated into a Y A C C grammar consisting of 219 rules. When this version of the 

grammar is used to produce a parser, Y A C C reports 90 reduce-reduce conflicts 

and 119 shift-reduce conflicts. The main reason for these conflicts is that the 

grammar of Z contains a great deal of ambiguity and is not suitable for parsing 

by an L A L R ( l ) parser. 

In principle, Y A C C applies two straightforward rules to resolve these two 

types of conflict: 

o With shift-reduce conflicts, Y A C C will use a shift in favour of a reduction. 

o With reduce-reduce conflicts, Y A C C will use the production declared first 

in the grammar definition. 

Of the two types of conflict, reduce-reduce conflicts are important and usually 

indicate a probable error in the grammar. They arise because there are two or 

more possible grammar rules that can be applied to the same input sequence. 

Sometimes, rewriting of the grammar is needed to avoid reduce-reduce conflicts. 
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Shift-reduce conflicts can often be accepted as a rule of thumb and they can 

often be resolved using precedence and association. So they are disregarded until 

the reduce-reduce conflicts have been addressed. 

Reduce-reduce conflicts When the original version of parser is executed, Yacc 

report 109 reduce-reduce conflicts. For example, the rules schema_name and ident 

are as shown below 

schema_name : word ; 

word : V A R I A B L E ; 

ident : word decoration ; 

opt^strokeJist : "' 

| '?' 
I 
| SUB 

I ; 
When rule opt-stroke-list is empty, a parsing conflict arose because, after 

reading a ';' the parser does not know whether to reduce the rule schema-name 

or ident. For this parsing conflict, the grammar is rewritten using a rule and a 

new token as follow: 

: sword ; 

: S V A R I A B L E 

: V A R I A B L E ; 

: word decoration ; 

schema name 

word 

word 

ident 

opt jtroke_list 

' ? ' 

SUB 
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This change removes all reduce-reduce conflicts. 

Shift -reduce conflicts After all the reduce-reduce conflicts have been removed 

attention is then focused on the shift-reduce conflicts. 

In the declaration section of parser, the relative precedence and association 

for all the relevant terminal symbols are declared. This then automatically assigns 

precedence levels to certain grammar rules as follows: 

Each rule is given the precedence level associated with the last terminal 

symbol mentioned in its components. Consequently, rules which do not contain 

a terminal symbol or whose last terminal symbol does not have a declared prece

dence, are not assigned a precedence level. 

Parsing conflicts are then resolved by comparing the precedence of the gram

mar rule being considered with that of the look-ahead token: 

1. If the precedence of the look-ahead token is higher then the parser will shift. 

2. If the precedence of the rule is higher then the parser will shift. 

3. If they have equal precedence then the choice is based on the association of 

that precedence level. 

4. If neither the rule nor the look-ahead has precedence then the default is to 

shift. 

After the relative precedence and association for all the relevant terminal 

symbols have been declared, 68 shift-reduce conflicts are removed, and the parser 

still has 41 shift-reduce conflicts. Consider the fragment of the original grammar 

for expression given below: 

expression : expression in_gen expression; 
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in_gen : R E L 

| P F U N 

| F U N 

| P I N J 

| I N J 

| P S U R J 

| SURJ 

| B I J 

| F F U N 

| F I N J ; 

I t can obviously be seen that the rule expression does not contain a terminal 

symbol, consequently, i t does not have an associated precedence level. Hence, 

Y A C C is unable to use precedence and association information to resolve the 

parsing conflicts. In order to resolve these parsing conflicts, the rule expression is 

rewrit ten as follow: 

expression : expression REL expression 

| expression P F U N expression 

| expression F U N expression 

| expression P I N J expression 

| expression I N J expression 

| expression PSURJ expression 

| expression B I J expression 

| expression SURJ expression 

| expression F F U N expression ; 

These changes remove another eight shift-reduce conflicts. 

This method of inserting some terminal symbols is also used to enforce the 
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predecence and association to the following rule 

expression^! : expression^! in—fun expression—1. 

These changes again remove another eight shift-reduce conflicts. But there 

are st i l l 25 shift-reduce conflicts which have not be been removed. Because a shift 

i n favour of a reduction can be used to resolve shift-reduce conflicts, the following 

rules are introduced: 

i tem : ident A D E F branch_list 

def_Jhs : ident in_gen ident 

var_name : ident 

W i t h these rules, ten more conflicts are resolved. Finally, the remaining 15 

parsing conflicts are also resolved by introducing similar rules as those three rules 

just introduced above. 

6.2.2 Error Handling and Recovery 

The parser generator must be capable of handling and recovering all syntax errors. 

During the parser generation, there are syntax errors i n the overall structure of 

the program. Common examples are omi t t ing a semicolon between statements or 

forgetting a closing section bracket. For the syntax errors, there are four types of 

error recovery which are possible to use in combination. 

• Panic mode recovery — The input tokens are discarded un t i l a token that 

signifies a consistent position is reached. This method is simple and w i l l not 

get stuck in a loop. 

• Phrase level recovery — Local alternations are made to the input tokens 

to obtain a valid phase that would allow parsing to continue. Inserting 

deleting, changing and swapping tokens are all possible. The method works 
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poorly when the error occurred some way back in the input . 

o Error productions — This method uses a grammar w i t h productions to pick 

up some errors and construct a parser using this grammar. 

o Global error correction — This method seeks to transfer a source program 

to a program that can be parsed correctly. This is far too expensive to be 

used. 

Y A C C provides error handling which makes use of error productions. In this 

thesis, panic mode and error productions are used in combination. The general 

f o r m is: 

non-terminal : error synchronising set 

The synchronising set is a set of symbols. On encountering an error, YAGC 

discards input tokens un t i l i t finds one in the synchronising set, or, i f there are 

non-terminals i n the synchronising set, one that can eventually be reduced to one 

in the synchronising set. I t can then shift the token and eventually reduce the 

error production, allowing parsing to resume. 

The major dif f icul ty associated w i t h error recovery is the question of where 

to restart parsing after a syntax error has been deleted. I f parsing restarts at an 

inappropriate phase then the first syntax error is likely to lead a whole stream of 

connected syntax errors. 

Perhaps the most straightforward strategy relies on the presence of a single 

token used to mark the end of each statement. I n this situation when a syntax 

error has been detected, all tokens are simply ignored un t i l the end of statement 

marker is found and then restart parsing. Unfortunately the Z specification lan

guage does not have end of statement markers, which makes error recovery more 

complicated. 
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In this parser, the error recovery strategy is highlighted below: 

o For each grammar rule, a synchronising set is defined. Some of the synchro

nising sets contain terminals and nonterminals and some are empty. 

o For terminals i n the synchronising set, the parser discards input tokens un t i l 

i t finds one in the synchronising set; for non-terminals in the synchronising 

set , i t can eventually be reduced to one in the synchronising set, the parser 

can then shift the token and eventually reduce the error production, allowing 

parsing to resume. 

o For the empty synchronising set, the parser can immediately reduce by error 

production. 

To illustrate this strategy consider the following example. I f an error occurs 

in the rule basic_decl then all tokens are discarded un t i l one of the following is 

found: 

o any of the nonterminal "ident", "schema-ref", "op_name", indicating the 

end of the current section of basic_decl; 

o the token " W H E R E " , indicating the end of the decl-part. 
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The grammar rules that incorporate error recovery are listed in table 2 along w i t h 

a list of the terminals and nonterminals which w i l l cause parsing to resume. 

unboxed_para E N D _ Z E D 

i tem ' ] ' , schema_name, ident, predicate, END_ZED 

axiomatic-box E N D _ A X D E F 

generic_box E N D _ G E N D E F 

decLpart W H E R E , ident, schema-ref, op-name 

axiom_part END_SCHEMA, E N D _ A X D E F F , END_GENOEF, ' } ' , 

N L , ALSO, PRE, T R U E , FLUSE, L N O T , F O R A L L , 

EXISTS, E X I S T _ 1 , schema_ref, ' ( ' , ' ) ' 

def lhs D D E F 

schema_exp END_ZED, F O R A L L , EXISTS, E X T S T _ 1 , ' [ ' , 

' ] ' , ' ( ' , ' ) ' , L N O T , PRE 

schema_text ident, ' ] ' 

predicate END_SCHEMA, E N D _ A X D E F F , END_GENOEF, ' } ' , 

N L , ALSO, PRE, T R U E , FLUSE, L N O T , F O R A L L , 

EXISTS, E X I S T _ 1 , schema_xef, ' ( ' , ' ) ' 

expression POWER, pre_gen, I N T E G Y , M I N U S , L A N G , 

R A N G , L B A G , R B A G , ' ( ' , ' ) ' , T H E T A ' { ' , 

' ] ' , L A M D A , M U 

set-ref T 
Table 2: The Grammar Rules for Error Recovery 

77 



( B o 3 Semantics Analysis and Expected Output 

Generator 

I t is customary to distinguish between the syntax and the semantics of a pro

gramming language. The syntax is concerned w i t h the grammatical structure of 

programs. The semantics is concerned w i t h the meaning of grammatically correct 

programs [45]. 

Semantic analysis is concerned w i t h the identifiers and constants that appear 

in a source program. "Literal" constants are usually recognised by the scanner. 

Their attributes are deduced f r o m their forms. Thus for identifiers we must: 

1. on encountering the declaration of each identifier, create a new identifier 

structure containing its attributes; 

2. whenever the identifier subsequently occurs, locate the appropriate identifier 

structure and inspect its structure; 

3. i n certain circumstances, locate the identifier as i n 2 above and update some 

or all of its attributes. 

I n this thesis, semantics analysis is concerned w i t h constructing a test case 

table and getting expected output related to the test-domain f r o m a specification 

wr i t ten in Z. The diagram of semantics analysis is showed i n Figure 6.4. 

Specifications of large systems in Z are often buil t up by specifying smaller 

sub-systems using schema calculus. A schema of a module i n Z can be expressed 

as: 
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Specification 

Declaration Part 

Declaration 

Analyser 

Parser 

Predicate Part 

Table 
Producer 

Predicate 

Analyser 

Test-case Table 

Figure 6.4: Semantic Analyser 
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Schema — name 

declaration — part 

predicate — part 

In the declaration-part of the schema, all names of inputs, outputs and states 

are given. By convention names ending in '?' are input data; names ending in '!' 

are output data; names ending in "' are updated states; and names ending in '?', 

'! ' and " ' are otherwise just part of the name. A symbol table which holds names, 

values and types of input data, output and states are bui l t as the following: 

typedef struct idnames { 

idptr inext; 

typeptr itype; 

int ivalue; 

char i n a m e [ L E N G T H + l ] ; 

idptr i lef t ; 

idpt r irght; 

} idnames 

1. inext is used to temporarily chain together the identifiers in a decl-part. 

2. itype points to the type structure for this identifier. 

3. ivalue is its value. 

4. iname is the spelling of this identifier. 

5. ileft is the left l ink i n the binary tree. 

6. iright is the right l ink in the binary tree. 
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When the keyword W H E R E is encountered, it indicates the end of the 

declaration-part and the beginning of the predicate-part. When a lookahead sym

bol is the keyword " W H E R E " , routine columnl() is called to get the first column 

of the test case table. The predicate-part consists of a series of predicates. Test-

domain and expect output are given from these predicates. The keyword L O R 

is a partition of the test domain. If there are m L O R in the predicate-part of 

the specification, then there are m+1 test-domain partitions. In each test-domain 

partition, a symbol table is built as the following: 

typedef Struct tests { 

typeptr itype; 

int ivalue; 

char iname[LENGTH+1]; 

idptr ileft; 

idptr irght; 

} tests. 

1. itype points to the type structure for this identifier. 

2. ivalue is its value. 

3. iname is the spelling of this identifier. 

4. ileft is the left link in the binary tree. 

5. iright is the right link in the binary tree. 

When a keyword L O R and E N D _ S C H E M A is recognised, the routine test-

domainQ is called to get the test-domain and the expected output related to this 

test-domain. A test case table can be built using this information. 
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6 o 4 Summary 

The implementation of the oracle prototype was described in this chapter, includ

ing the implementation of a scanner and a parser used for the Z specification, 

using Lex and YACC. This utilised an existing Fuzz tool to f u l f i l l syntax checking 

and pr int ing the Z specification in the box style. Parts of semantics analysis are 

also implemented for the Z specification. When a given fo rm of the Z specifica

t ion file is input to the prototype, the prototype can check the syntax of the Z 

specification and print out the Z specification in a standard box style, as well as 

pr int ing out the expected outputs related to the input test domain. This is the 

f o r m of oracle which was designed in this thesis. The corresponding test case can 

be obtained f r o m the table. 

However this prototype can only work on some simple textbook examples. 

Further research needs to be carried out for more complicated and practical exam

ples. Nevertheless, i t looks promising i n that the Z Specification can be interpreted 

using a special semantics and the feasibility of this needs further exploration. 
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Chapter 7 

Results amid Evaluation 

In this chapter, an example is first presented as the result of using the prototype, 

followed by an evaluation of the research is given. Finally the value of formal 

specifications i n software testing is discussed. 

7.1 A n Example of the Use of the Oracle 

I n chapter 4, an example of a banking system for transferring money fo rm source 

account to destination account was given. For that particular example, the input 

file of the specification can be wr i t ten as: 

\begin{schema}{Transfer} 

\Delta Bank \\ 

amount?: \nat \\ 

s r c ? , det?: ACCT\\ 

report!: MESSAGE 

\where 

s r c ? \neq dst? \\ 

b a l ( s r c ? ) \geq amount? \\ 

83 

file:///Delta
file:///where


b a l ' = bal \oplus \ { s r c ? \mapsto bal ( s r c ? ) - amount?, \\ 

dst? \mapsto b a l ( d s t ? ) + amount? \ } \\ 

report!: "OK" \\ 

\ l o r \ \ 

s r c ? = dst? \\ 

report! = "Same \ account \ f o r \ s r c \ and \ dst" \\ 

\ l o r \ \ 

s r c ? \neq dst? \\ 

b a l ( s r c ? ) \ l e q amount? \\ 

report! = "Not \ enough \ money \ i n \ s r c " \\ 

\end{schema} 

When this file is input to the system, i f there is any syntax error i n the file, 

the system w i l l report the syntax error, otherwise, a specification and test case 

table are printed as follows respectively: 
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file:///oplus
file:///mapsto
file:///mapsto


Transfer 

A Bank 

amount? : N 

src?, det? : AGGT 

report*. : MESSAGE 

src? ^ dst? 

bal(src?) > amount? 

bal' = bal © {src? H-> bal(src?) — amount?, 

dst? i—> bal(dst?) + amount?} 

reportl : " O t f " 

V 

src? = <fsf? 

reportl = "Same account for src and dst" 

V 

src? ^ dst? 

bal(src?) < amount? 

reportl = "Not enough money in src" 

bal bal > A m o u n t bal > A m o u n t bal < A m o u n t 

Amount? N N N 

src? src? ^ dst? src? = dst? src? 7^ dst? 

dst? src? 7^ dst? src? = dst? src? ^ dst? 

report! O K same account not enough money 

bal ' bal ' = bal © sth bal ' = bal bal ' = b a l 

The bal ' = bal 0 sth i n the above table is: 
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bal ' = bal 0 {src? i—> bal (src? - amount?, dst? i—> bal(dst?) + amount? } 

7 o 2 Using Test Case Table (Test Case Seleo 

Having established the test-domains table as in the previous section, the next step 

w i l l be to select typical test cases f r o m the set. The process is: 

1. Assign a unique number to each equivalence class, 

2. U n t i l all valid equivalence classes have been covered by test cases, cover as 

many of the uncovered value equivalence classes as possible, 

3. U n t i l all invalid equivalence classes have been covered by test cases, write a 

test case that cover one, and only one of the uncovered invalid equivalence 

For a Z specification, selection w i l l be the chosen state. I n the previous 

example on the banking system, the state bal of the system consists of the balance 

of each account is: 

bal : ACCT H-> N 

thus, we might select the state first to be 

bal: 

4256 - f 200 

8957 —• 320 W i t h this state, the first set of data can be chosen as below: 

Testdata 1: 

t ion) 

classes. 

, Bank 
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src? = 4256 -» 200 

drc? = 8957 -> 320 

Amount : = 100 

Testdata 2: 

src? = 4256 - » 200 

drc? = 4256 -> 320 

Amount : = 100 

Testdata 3: 

src? = 4256 ->• 200 

drc? = 8957 -> 320 

Amount : = 500 

A test case table is thus obtained: 

T D _ 1 T D _ 2 T D _ 3 

bal as above as above as above 

amount 100 100 500 

src? 2546 2546 2546 

dst? 8957 2546 8957 

report! ok same account not enough money 

bal ' 4256 100 

8957 -> 420 

not changed not changed 

From the above table, we know, that the expected outputs should be 

Testdata 1: report! =ok 

bal ' : 

src' = 4256 - • 100 

dst' = 8957 - * 420 
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Amount : = 100 

Testdata 2: 

report! = same account 

bal ' = bal not changed 

Testdata 3: 

report! = not enough money 

bal ' = bal not changed 

Therefore, report 'and bal' are expected outputs. Unfortunately, the expected 

output bal' must be worked out by hand for this system at present. 

7 , 8 Evaluation 

A prototype based on the research in this thesis has been implemented on a SUN 

workstation and experiments show that the prototype can work on examples like 

the one presented in the previous section. From the above example, we know, 

when the test data are selected f rom input condition, the expected output is 

automatically given i n the oracle table. 

For this prototype, i t is a try-on to use Z formal specification to gain auto

matically the expected output - the oracle table. A t present, i t can only accept 

similar cases like the example just shown as input . I t needs a further work to 

accept complex case as its input . 

The advantage of this approach is the generation of an oracle which is func

tionally independent of any human decisions. This provides a strong foundation 

upon which a complete testing system can be bui l t , i.e., by adding test case gen

eration and gathering test coverage information. Addi t ional ly the system can 

provide motivation for generation of a formal specification during the software 
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development cycle. The system integrates Z formal specification techniques w i t h 

the process of software testing. 

The implementation is independent of other tools, in particular a compiler. 

A n oracle is generated to model the particular specification expressed, instead of 

requiring compiler extensions to drive test cases through the program. But the 

system can only automatically generate an oracle for small and comparatively 

simple Z specifications. 

7 » 4 The Value of Formal Specification in Soft

ware Testing 

A formal specification readily lends itself to test generation. I t has the additional 

validation value of being implementation independent, as specifications are gen

erally not wr i t t en i n a programming language. A functional testing approach 

has the advantage that testing oracles as well as test inputs are obtainable f r o m 

the specification. A structural test approach would st i l l require some f o r m of 

specification for a test oracle. 

The generation of a complete testing system f r o m a formal specification would 

provide a greatly enhanced tool. A program specification provides rules for de

scribing its inputs syntactically, which can provide a basis for the generation of 

test cases. A n exhaustive approach which generates all possible inputs is not feasi

ble. However, certain boundary information does appear to be present i n the B N F 

grammars themselves. I t may be possible to generate an interesting set of test 

cases and to bui ld an automated testing system. The advantages of automated 

testing f r o m a formal specification are as follows: 

1. Test cases are available immediately after the specification is developed and 
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thus can be applied to incomplete or part ial ly designed and coded programs. 

This i n tu rn gives the abil i ty to catch faults early in the development cycle 

and to reduce the amount of expensive recoding and redesign. 

2. Automated testing f r o m formal specifications does not require a human 

tester to have a complete understanding of the program specification or the 

code to generate test cases. This is important for a complex specification or 

for convoluted code. 

3. Unlike most testing methods, automated testing f r o m formal specifications 

does not require a tester to manually derive expected outputs for represen

tative sets of test inputs. This is especially important for new systems for 

which no good test cases are known. 

7 o 5 The Limitation of Formal Specification in 

Software Testing 

There are some limitations when formal specification is used in software testing. 

The prototype bui l t i n this thesis cannot accept a complex example as input at 

the moment. A test oracle derived alternatively f r o m Z specification means that 

Z formal notation have to be executed. I t required that formal semantics w i l l be 

defined for Z specification. Further work needs to be done in order to deal w i t h 

more complicated examples. 

To use Z formal notation as an oracle, the concrete input and output must be 

converted into their abstract representations. I n many cases i t would be diff icul t 

to get a test oracle without having other operations on the data type available. 

For more complex data types, the Z formal notation leads to be simpler. 
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This thesis has demonstrated how a test oracle for a simple example can be 

derived f r o m its formal specification. I t has been shown that specification-based 

testing must be fur ther developed and should be incorporated into the software 

development lifecycle. this requires the use of formal specification languages in 

the specification and design phase and implementation. We intend to explore the 

possibility of exploring specification languages to incorporate test case descriptions 

that the user can specify the environment can generate automatically. We believe 

that developers w i l l be less reluctant to use formal specification languages i f we 

can demonstrate concrete advantages to be gained f r o m their use i n testing. 
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Chapter 

Ccmckasioiis 

8 . 1 Review of Project 

Software testing has been identified as an expensive phase of the software life cycle. 

Therefore, research into the development of testing tools used by testers is needed. 

I n particular, automated software testing tools for functional or structural testing 

are urgently needed. 

A number of authors have suggested methods for functional testing, and there 

are also a substantial number of systems based on this approach. Functional test

ing depends on the availability of a test oracle used to determine the correctness 

of the output for a particular test input. A program can only be tested properly 

i f the tester has the exact knowledge about what the program under test should 

and should not do. This justifies a need for a test oracle. Such information, for 

determining i f a program is behaving correctly, can generally be derived f r o m the 

specification of the program. 

Practical issues of testing and the techniques of formal specification are of

ten regarded as incompatible and irrelevant to one another. Some software testing 

techniques based on specifications make use of either informal specifications, or a 
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specific specification which is wr i t ten for software testing. This thesis has demon

strated that this need not be the case, by constructing a prototype oracle based 

on the Z formal specification language. 

8 c 2 Assessments Achievements 

The following have been achieved during the project: 

o A n overall review of the software testing strategies and testing techniques 

was conducted, which analysed their strengths and weaknesses, and indi

cated the importance of functional testing in software testing. 

o A n overall survey of the testing oracles was carried out, which classified 

testing oracles, and assessed the existing oracles. 

o A method was proposed for constructing an automatic oracle based on the 

Z formal specification language and a design was constructed. 

o A n investigation into relevant tools was done for constructing the proposed 

oracle, e.g. fuzz, Lex, Y A C C , etc. 

o A parser was constructed for the Z specification language to develop an 

automatic testing oracle. 

o a prototype of the testing oracle was constructed based on a formal specifi

cation in Z. 

o experiments were carried out w i t h the prototype, 

o the results of the experiments were evaluated. 
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8 o 3 > Assessments Criticisms 

A n ideal system could translate a formal specification such as Z into an auto

matic correctness oracle. This automatic correctness oracle would validate the 

consistency of an unl imited number of program inputs and outputs w i t h the spec

ification. A complete tool implementation is beyond the resource constrains of this 

thesis. I n this thesis, only a number of experiment examples have been considered. 

For the given syntax and a representation for the test-domain, the specification 

was parsed, then the at tr ibuted grammar style operations were used to develop the 

par t i t ion moving down and up the parse tree. The specification was interpreted 

to get some expected output related to test-domain using special semantics for Z. 

I f we consider more different representations , i t is not simple. There is a sense i n 

which we must "execute" the specification. Superficially i t seems promising, but 

needs exploration further to ascertain its feasibility. Even though the specification 

need not itself to be executed, i t would s t i l l be possible to carry out the l imi ted 

experiments f r o m the execution required here. 

8 o 4 Future Directions 

I t has been seen f r o m the discussions i n previous chapters that constructing an 

automatic oracle using formal specification is potentially of interest i n software 

testing. To jus t i fy the arguments proposed in this thesis, fur ther implementation 

of the tool and experimenting w i t h using the tool w i l l be the main direction for 

future research. 

The formal semantics of Z notation is given in [41]. The formal semantics 

provides a foundation for a logical calculus for reasoning about a specification and 

deriving consequences f r o m them. The successful application of formal methods in 
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industry w i l l be helped by a software tool [41]. Perhaps a fu ture research project 

is to use the formal semantics of Z ( such as denotational semantics and axiomatic 

semantics ) to construct an automated testing tool . 

The formal specification means that all the early parts of the testing pro

cedure are easy to carry out. The functions have been identified, w i t h their 

parameters ( and the environment conditions, i f they are regarded as different ) 

so the first stages have already been done. The formal specification means that 

valid results for each test case can be worked out w i t h certainty. Thus the for

mal functional testing w i l l become important i n software testing. Perhaps the 

most important fu ture direction is the need to carry out fu ture research into the 

construction of a completely automated tool based on a Z specification. 
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A p p e n d i x A 

The -Lexical Analyser o f 
Specification 

u 
/ * s c a r i n e r — l e x i c a l a n a l y s i s */ 
#include 
#define 
extern char 
extern i n t 
% } 

d e l i m i t e r 
whitespace 
alpha 
alphanum 
a s c i i _ c h a r 
escape_char 
digit_ 
integer 

"y.tab.h" 
token(X) 
yytext [] ; 
y y l v a l ; 

[ \t\n] 
{d e l i m i t e r } + 
[a-zA-Z_] 
[a-zA-Z_0-9] 
[~\"\n] 
\\n|\\\" 
[0-9] 
{ d i g i t } + 

/# generated by yacc */ 
X 

whitespace { 
{alpha}{alphanum} 
integer { 

"<>' 

y y l v a l 
{ return 
{ return 
{ return 

{ return 
: a t o i ( y y t e x t ) 

ADEF ;} 
DDEF ;} 
NEQ ;} 

lookup(VARIABLE); } 
return(INTEGER);} 



" < = " 
"> = " 

{ return 
{ return 
{ return 

LEQ;} 
GEO,;} 
yytext [ 0 ] ; } 

n 
/* reserved word */ 

#define 
extern char 

token(X) 
yytext [] ; 

s t a t i c s t r u c t keyword /* reserved word table */ 

char 
i n t 

} keytable[] = 

*name; /* representation */ 
token_yylex; /* y y l e x O value */ 
/* sorted */ 

"\begin{zed}", token(BEGIN_ZED), 
"\end{zed}", token(END_ZED), 
"\begin{axdef}", token(BEGIN_AXDEF), 
"\end{axdef}", token(END_AXDEF), 
"\where", token(WHERE), 
"\begin{schema}", token(BEGIN_SCHEMA), 
"\end{schema}", t oken(EWD_ SCHEMA), 
"\a l s o " , token(ALSO), 
"\bejin{gendef}", token(BEGIN_GENDEF), 
"\end{gendef}", token(END_GENDEF), 
"\defs", token(DEFS), 
"\l d a t a " , token(LDATA), 
"\rdata", token(RDATA), 
"\pre", token(PRE), 
" Y f o r a l l " , token(FORALL), 
" \ e x i s t s " , token(EXISTS), 
" \ e x i s t s _ l " , token(EXISTS_l), 
"\lnot", token(LNQT), 
" \ l p r e " , token(LPRE), 
"\land", token(LAND), 
" \ l o r " , token(LOR), 
"\implies", token(IMPLIES), 
" \ i f f " , t o k e n ( I F F ) , 
"\project", token(PROJECT), 
"\hide", token(HIDE), 
"\semi", token(SEMI), 
"\true", token(TRUE), 

file:///where
file:///also
file:///defs
file:///ldata
file:///rdata
file:///exists
file:///exists_l
file:///lnot
file:///lpre
file:///land
file:///implies
file:///project
file:///hide
file:///semi
file:///true


" \ f a l s e " , 
" \ i n " , 
" \ X i " , 
"\Delta", 
"\lambda", 
"\mu", " 
"\theta", 
"\power", 
"\limg", 
"\rimg", 
"Mangle" , 
"\rangle", 
"\lbag", 
"\rbag", 
"\bsup", 
"\esup", 
"\notin", 
"\empty", 
"\subseteq", 
"\subset", 
"\neq", 
"\ l e q " , 
"\geq", 
"Apart i t ion", 
"\inbag", 
" \ d i s j o i n t " , 
"\power_l", 
"\cross", 
"\cup", 
"\cap", 
"\ c a t " , 
"\setminus", 
"\bigcup", 
"\bigcap", 
" \ f i n s e t " , 
" \ f i n s e t . l " , 
" \ r e l " , 
"\mapsto", 
"\upto", 
"\uplus", 
"\div", 
"\mod", 
" \ f i l t e r " , 
"\dom", 

token(FALSE) , 
token(IM), 
token(XI), 
token(DELTA), 
token(LAMBDA), 
token(MU), 
token(THETA), 
token(POWER), 
token(LIMG), 
token(RIMG), 
token(LANGLE), 
token(RAMGLE), 
token(LBAG), 
token(RBAG), 
token(BSUP), 
token(ESUP), 
token(NQTIN), 
token(EMPTY), 
token(SUBSETEQ), 
token(SUBSET), 
token(NEQ), 
token(LEQ), 
token(GEQ), 
token(PARTITION), 
token(INBAG), 
token(DISJOINT), 
token(POWER.1), 
token(CROSS), 
token(CUP), 
token(CAP), 
token(CAT), 
token(SETMINUS), 
token(BIGCUP), 
token(BIGCAP), 
token(FINSET), 
token(FINSET.l), 
token(REL), -
token(MAPSTO), 
token(UPTO), 
token(UPLUS), 
token(DIV), 
token(MOD), 
token(FILTER), 
token(DOM), 

file:///false
file:///Delta
file:///lambda
file:///theta
file:///power
file:///limg
file:///rimg
file:///rangle
file:///lbag
file:///rbag
file:///bsup
file:///esup
file:///notin
file:///empty
file:///subseteq
file:///subset
file:///inbag
file:///disjoint
file:///power_l
file:///cross
file:///setminus
file:///bigcup
file:///bigcap
file:///mapsto
file:///upto
file:///uplus


"\rag", 
"\comp", 
" \ c i r c " , 
"\dres", 
" \ r r e s " , 
"\ndres", 
"\nrres", 
"\oplus", 
"\plus", 
" \ s t a r " , 
"\beq", 
"\pfun", 
"\fun", 
" \ p i n j " , 
" \ i n j " , 
" \ p s u r j " , 
" \ b i j " , 
" \ s u r j " , 
"\ffun", 
" \ f i n j 
"\inv", 
"\plus", 
"\nat", 
"\riat_l", 
"\num", 
"\sub", 

token(RAG), 
token(COMP), 
token(CIRC), 
token(DRES), 
token(RRES), 
token(NDRES), 
token(NRRES), 
token(OPLUS), 
token(PLUS), 
token(STAR), 
token(BEQ), 
token(PFUN), 
token(FUN), 
token(PINJ), 
token(INJ), 
token(PSURJ), 
token(BIJ), 
token(SURJ), 
token(FFUN), 
token(FINJ), 
token(INV), 
token(PLUS), 
token(NAT), 
token(NAT_1), 
token(NUM), 
token(SUB), 

lookup ( t ) 
in t t ; 
{ 

r e g i s t e r s t r u c t keyword *p; 

p = keytable; 

while (p->name) 
i f (!strcmp(yytext), p->name) 

return p->token_yylex; 
e l s e 

p++; 

return t ; 
} 

file:///comp
file:///circ
file:///dres
file:///rres
file:///ndres
file:///nrres
file:///oplus
file:///plus
file:///star
file:///pfun
file:///pinj
file:///psurj
file:///surj
file:///ffun
file:///plus
file:///riat_l


Appendix B 

The Semantic Analyser of 
Specification 

/* parser f o r Z s p e c i f i c a t i o n */ 

u #include <stdio.h> 
#include <ctype.h> 
#include "lex.yy.c" 

i n t y y l v a l ; 

'/} 

'/token BEGIN.ZED 
'/token END_ZED 
/otoken BEGIN_AXDEF 
70token END.AXDEF 
'/token WHERE 
'/otoken BEGIN.SCHEMA 
%token END.SCHEMA 
'/token ALSO 
'/token VARIABLE 
'/token BEGIN_GENDEF 
'/token END_GENDEF 
'/token FORALL 
'/token DEFS 
'/token BBAR 
'/token LDATA 
'/token RDATA 



%token PRE 
'/token ADEF 
%token DDEF 
'/.token EXISTS 
'/token EXISTS.l 
'/token LNOT 
'/token LPRE 
'/token LAND 
'/token LOR 
'/token IMPLIES 
%token IFF 
'/token PROJECT 
'/token HIDE 
'/token SEMI 
'/token TRUE 
'/token FALSE 
'/token IN 
'/token XI 
'/token LAMBDA 
'/token MU 
'/token DELTA 
'/token THETA 
'/token POWER 
%token LIMG 
'/token RIMG 
'/token LANGLE 
'/token RANGLE 
%token LBAG 
'/token RBAG 
'/token BSUP 
%token ESUP 
'/token NOTIN 
'/token SUBSETEQ 
'/token SUBSET 
'/token NEQ 
'/token LEQ 
y.token GEQ 
'/token PARTITION 
'/token INBAG 
'/token DISJOINT 
%token P0WER_1 
'/token CROSS 
'/token CUP 
'/token CAP 



'/.token SETMINUS 
°/0token NL 
'/.token BIGCUP 
'/.token BIGCAP 
'/.token FINSET 
'/.token FINSET.1 
"/.token MAPSTO 
'/.token UPTO 
'/.token UPLUS 
'/.token DIV 
'/.token MOD 
'/.token FILTER 
'/.token DOM 
'/.token RAG 
'/.token COMP 
'/.token CIRC 
'/token DRES 
'/,t oken RRES 
'/Otoken NDRES 
%token NRRES 
°/0token OPLUS 
'/.token PLUS 
'/.token STAR 
'/.token BEQ 
'/.token REL 
'/.token PFUN 
'/.token FUN 
'/.token PINJ 
'/.token INJ 
'/.token PSURJ 
'/.token BIJ 
'/.token SURJ 
'/otoken FFUM 
'/.token FINJ 
'/.token INV 
'/.token PLUS 
'/.token CAT 
%token EMPTY 
%token NAT 
%token NAT_1 
%token NUM 
'/token DCAT 
'/.token INTEGER 
'/.token SUB 



'/.token MINUS 
'/.token S VARIABLE 

/* precedence */ 

°/.left MAPSTO 
'/.left UPTO ESUP 
'/.left > — > CUP SETMINUS 

CAT UPLUS 
'/.left > * > DIV MOD CAP 

COMP CIRC FILTER 
'/.left OPLUS DRES RRES NDRES 

NRRES 
'/.left NEQ NOTIN SUBSETEQ SUBSET 

LEq GEQ 
PARTITION INBAG 

'/.left REL PFUN FUN PINJ 
INJ PSURJ SURJ BIJ 
FFUN FINJ 

'/.left LAND LOR IFF PROJECT 
HIDE SEMI 

°/.right INV PLUS BSUP STAR 
°/.right MINUS DISJOINT LNOT PRE 
'/.right POWER.1 ID FINSET FINSET.l 

SEQ SEq.l ISEQ BAG 
•/.right IMPLIES 

-%start s p e c i f i c a t i o n 

'/.% 

/* rules section */ 

sp e c i f i c a t i o n : paragraph.list ; 

paragraph_list : paragraph 
I paragraph paragraph_list ; 

paragraph : unboxed_para 



I axiomatic_box 
I schema_box 
I generic_box ; 

unboxed.para : BEGIN.ZED 
item_sep_list item 
END_ZED 

item_sep_list : item 
I item sep item_sep_list ; 

item : ' [ ' i d e n t . l i s t ' ] ' 
I schema_name opt_gen_formals DEFS schema_exp 
I def_lhs DDEF expression 
I ident ADEF branch_list 
I predicate ; 

i d e n t _ l i s t : ident 
I ident ',' i d e n t _ l i s t ; 

opt_gen_formals : gen_formals 

branch _ l i s t : branch 
I branch BBAR branch_ l i s t ; 

axiomatic.box : BEGIN^AXDEF 
decl_part 

opt_axiom_part 
END_AXDEF; 

schema_box : BEGIN_SCHEMA ,{'schema_name ,} , opt_gen_formals 
decl_part 
opt_axiom_part 
END.SCHEMA ; 

generic_box : BEGIN_GENDEF opt_gen_formals 
opt_axiom_part 
END_GENDEF ; 

opt_axiom_part : WHERE 
axiom_part 



d e c l _ p a r t b a s i c _ d e c l _ l i s t ; 

b a s i c _ d e c l _ l i s t : b a s i c _ d e c l 
I b a s i c _ d e c l sep b a s i c _ d e c l _ l i s t ; 

axiom_part : p r e d i c a t e _ l i s t ; 

p r e d i c a t e _ l i s t : p r e d i c a t e 
I p r e d i c a t e sep p r e d i c a t e = l i s t ; 

sep 
I NL 
I ALSO ; 

d e f l h s : var.name opt_gen_formals 
I pre.gen i d e n t 
I i d e n t i n_gen i d e n t ; 

branch : i d e n t 
I var_name LDATA e x p r e s s i o n RDATA ; 

schema.exp 

schema_exp_l 

: FORALL schema.text schema_exp 
I EXISTS schema_text ' @' schema.exp 
I EXISTS_1 schema_text '0' schema.exp 
I schema.exp.l ; 

' [ ' schema.text ' ] ' 
I -schema.ref 
I LNOT schema.exp_l 
I PRE schema.exp.l 
I schema.exp.l LAND schema.exp.l 
I schema.exp.l LOR schema.exp.l 
I schema.exp.l IMPLIES schema.exp.l 
I schema.exp.l IFF schema.exp.l 
I schema.exp.l PROJECT schema.exp.l 
I schema.exp.l HIDE ' ( ' d e c l . n a m e . l i s t 
I schema.exp.l SEMI schema.exp.l 
I ' ( ' schema.exp ' ) ' ; 



schema_text : d e c l a r a t i o n o p t . p r e d i c a t e ; 

d e c l a r a t i o n : b a s i c _ d e c l _ l i s t 

o p t . p r e d i c a t e : '|' p r e d i c a t e 
I ; 

schema.ref : schema.name d e c o r a t i o n o p t . g e n . a c t u a l s 

o p t . g e n . a c t u a l s : g e n . a c t u a l s 
I J 

b a s i c . d e c l : d e c l . n a m e . l i s t ':' e x p r e s s i o n 
I schema.ref ; 

p r e d i c a t e : FORALL schema.text '@' p r e d i c a t e 
I EXISTS schema.text '@' p r e d i c a t e 
I EXISTS.l schema.text '<3' p r e d i c a t e 
I p r e d i c a t e . l ; 

p r e d i c a t e . l : e x p r e s s i o n . r e l . l i s t 
I p r e . r e l e x p r e s s i o n 
I schema.ref 
I PRE schema.ref 
I TRUE 
I FALSE 
I LNOT; predicate.l-'/.prec LNOT 
I p r e d i c a t e . l LAND p r e d i c a t e . l 
I p r e d i c a t e . l LOR p r e d i c a t e . l 
I p r e d i c a t e . l IMPLIES p r e d i c a t e . l 
I p r e d i c a t e . l IFF p r e d i c a t e . l 
I ' ( ' p r e d i c a t e . l ; 

e x p r e s s i o n . r e l . l i s t : e x p r e s s i o n r e l e x p r e s s i o n 
I e x p r e s s i o n r e l e x p r e s s i o n . r e l . l i s t ; 

r e l ' = > 

I IN 



I i n _ r e l ; 

d e c l _ n a m e _ l i s t : decl.name 
I decl.name ',' d e c l _ n a m e _ l i s t ; 

expression.O : LAMBDA schema_text e x p r e s s i o n 
I MU schema.text o p t _ s _ e x p r e s s i o n 
I e x p r e s s i o n ; 

o p t _ s _ e x p r e s s i o n : ' @' e x p r e s s i o n 
I ; 

e x p r e s s i o n : e x p r e s s i o n REL e x p r e s s i o n 
I e x p r e s s i o n PFUN e x p r e s s i o n 
I e x p r e s s i o n FUN e x p r e s s i o n 
I e x p r e s s i o n PINJ e x p r e s s i o n 
I e x p r e s s i o n INJ e x p r e s s i o n 
I e x p r e s s i o n PSURJ e x p r e s s i o n 
I e x p r e s s i o n BIJ e x p r e s s i o n 
I e x p r e s s i o n SURJ e x p r e s s i o n 
I e x p r e s s i o n FFUN e x p r e s s i o n ; 
I e x p r e s s i o n FINJ e x p r e s s i o n 
I e x p r e s s i o n _ l _ l i s t ; 
I e x p r e s s i o n . ! 

e x p r e s s i o n _ l _ l i s t : e x p r e s s i o n . l CROSS e x p r e s s i o n . l 
I e x p r e s s i o n . l CROSS e x p r e s s i o n . l . l i 

e x p r e s s i o n _ l : e x p r e s s i o n _ l CUP e x p r e s s i o n _ l 
I expression.,! CAP e x p r e s s i o n _ l 
I e x p r e s s i o n . l SETMINUS e x p r e s s i o n _ l 
I e x p r e s s i o n _ l MAPSTO e x p r e s s i o n . 1 
I e x p r e s s i o n _ l UPTO e x p r e s s i o n _ l 
I e x p r e s s i o n _ l UPLUS e x p r e s s i o n _ l 
I expression,.! DIV. e x p r e s s i o n . ! 
I e x p r e s s i o n . ! MOD e x p r e s s i o n . ! 
I e x p r e s s i o n . 1 FILTER e x p r e s s i o n . ! 
I e x p r e s s i o n . ! COMP e x p r e s s i o n . ! 
I e x p r e s s i o n . ! CIRC e x p r e s s i o n . ! 
I e x p r e s s i o n . ! DRES e x p r e s s i o n . ! 
I e x p r e s s i o n . l RRES e x p r e s s i o n . ! 
I e x p r e s s i o n . l NDRES e x p r e s s i o n . l 
I e x p r e s s i o n . l NRRES e x p r e s s i o n . l 
I e x p r e s s i o n . l OPLUS e x p r e s s i o n . ! 



I expression_l CAT expression_l 
I expression_l expression_l 
I expression.! ' e x p r e s s i o n _ l 
I expression_l '*' expression_l 
I POWER expression_3 
I pre.gen expression„3 
I MINUS expression_3 %prec MINUS 
I expression_3 LIMG expression_0 RIMG 
I expression_2 ; 

expression_2 : expression_2 expression_3 
I expression_3 ; 

expression_3 : var_name opt_gen_actuals 
I number 
I set_exp 
I LANGLE opt_expression_list RANGLE 
I LBAG opt_expression_list RBAG 
I ' ( ' expression•',' expression_list 
I THETA schema_name decoration 
I expression_3 '.' var_name 
I expression_3 post_fun 
I expression_3 BSUP expression ESUP 
I ' ( ' expression^ ' ) ' ; 

opt_expression_list: expression_list 
I ; 

expression_list : expression 
I expression ',' expression_list ; 

set_exp : ' { ' opt_expression_list ' } ' 
I ' { ' schema_text opt_s_expression 

ident : word decoration : 

decl_name : ident 
I op_name ; 

var.name : ident 



I ' ( ' op_name ' ) ' ; 

op_name : '_'in_sym ;_' 
I pre_sym '_' 
I '_' post.sym 
I '_'LIMGV_'RTMG 

in_sym : i n _ f u n 
I i n _ geh 
I i n _ r e l ; 

pre_sym : pre.gen 
I p r e . r e l ; 

post.sym : p o s t . f u n ; 

d e c o r a t i o n 

gen_formals 

g e n _ a c t u a l s 

o p t . s t o r k e _ l i s t 

schema_name 

sword 

word 

number 

i n _ f u n 

: o p t _ s t o r k e _ l i s t ; 

: ' [' i d e n t . l i s t ' ] ' ; 

: 1 [ ' e x p r e s s i o n . l i s t '] ' ; 

. J t > 

I ' ? ' 
I 
I SUB 
I ; 

: sword ; 

: SVARIABLE; 

: VARIABLE ; 

: INTEGER; 

: MAPSTO 
I UPTO 
I ' + ' 
I '_' 
I CUP 
I SETMINUS 



post_fun : INV 

CAT 
UPLUS 
> *» 
DIV 
MOD 
CAP 
COMP 
CIRC 
FILTER 
OPLUS 
DRES 
RRES 
NDRES 
NRRES : 

PLUS 
ESUP 
STAR 

m_gen 

pr e _ r e l 

REL 
PFUN 
FUN 
PINJ 
INJ 
PSURJ 
SURJ 
BIJ 
FFUN 
FINJ ; 

DISJOINT ; 

i n r e l NEQ 
-NOTIN-
SUBSETEQ 
SUBSET 

LEQ 
GEQ 
PARTITION 



I INBAG ; 

pre_gen 

7.7. 

POWER_i 
ID 
FIMSET 
FINSET.l 
SEq 
SEQ_1 
I SEQ 
BAG : 

main() 
{ 
yyparseQ ; 


