
Durham E-Theses

Synthesis of highly functionalised tetrathiafulvalenes

Marshallsay, Gary John

How to cite:

Marshallsay, Gary John (1994) Synthesis of highly functionalised tetrathiafulvalenes, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5505/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5505/
 http://etheses.dur.ac.uk/5505/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 

SYNTHESIS OF HIGHLY FUNCTIONALISED 

TETRATHXAFULVALENES 

Gary John Marshallsay, B.Sc. (Hons.) 

(St. Aidan's College) 

Department of Chemistry 

University of Durham 

A thesis submitted for the degree of Doctor of Philosophy 

at the University of Durham 

April 1994 

2 7 JUN 1994 



DECLARATION 

The work described in this thesis was carried out by the author, in the 

Department of Chemistry, University of Durham and at the Kemisk 

Institut, Odense Universitet, Denmark, between October 1990 and 

September 1993. It has not been submitted previously for a degree at this, or 

any other, University. 

STATEMENT OF C O P Y R I G H T 

The copyright of this thesis rests with the author. No quotation from 

it should be published without his prior written consent, and information 

derived from it should be acknowledged. 

i i 



ACKNOWLEDGEMENTS 

This thesis could not have been completed without the help of the 
following people, to whom I express my thanks and gratitude: 

My supervisor, Dr. Martin Bryce, for his thoughts and 
encouragement during the course of this research. 

Dr. Adrian Moore for practical advice and useful discussions, 
particularly in those early days. 

The staff in the Chemistry Department who have helped in any way, 
in particular: Dr. Ray Matthews for advice and assistance with NMR, Dr. 
Mike Jones and Miss Lara Turner for obtaining mass spectra, and Mrs. Molly 
Cocks, Mrs. Jarka Dostal and Miss Judith Magee for microanalyses. 

Dr. Colin Reynolds and Stephen Wood (Liverpool John Moores 
University) for performing X-ray structural analyses. 

My supervisor in Odense, Prof. Jan Becher, for his guidance and 
enthusiasm during my time there. Particular thanks also to Dr. Thomas 
Hansen and Tine Jergensen, with whom I was fortunate to work in both 
Durham and Odense, resulting in a most productive collaboration. Thanks 
also to the Department of Molecular Biology in Odense for the use of PDMS. 

For the provision of financial support I am grateful to the Science and 
Engineering Research Council (SERC), in particular for funding my visit to 
Denmark, and to Forskerakademiet (DK). 

I would like to thank the many people in Durham, particularly those 
I met in St. Aidan's College, in Gilesgate, within the Chemistry Department, 
and those I have met through rowing on the River Wear, who have helped 
to make my last six years so enjoyable. Special thanks also to everyone I met 
in Odense, especially to those in 'Becher's Lab.' for making my stay such a 
happy and memorable one. 

I am most indebted to the doctors and nursing staff at Sunderland Eye 
Infirmary and Sunderland General Hospital for their care and attention 
during a difficult time; without their help, the preparation of this thesis 
would not have been finished. 

Finally, I would like to thank my parents, for their love and support 
throughout my time in Durham. 

i i i 



ABSTRACT 

Synthesis of H igh ly Functionalised 

Tetrathiafialvalesies 

by 

Gary John Marshallsay, B.Sc. (Hons.) 

A thesis submitted for the degree of Doctor of Philosophy 

at the University of Durham 

April 1994 

A range of functionalised symmetrical and unsymmetrical 
tetrathiafulvalene (TTF) derivatives containing substituted 4,5-(propylene-
1,3-dithio) units fused to the T T F framework has been prepared. In 
particular, T T F derivatives bearing hydroxy or ketone functionality have 
been obtained. Cyclic voltammetric studies establish that the new T T F 
derivatives are efficient Tt-electron donors; they undergo two reversible, 
single-electron redox waves. 

A series of new bis- and tris-tetrathiafulvalene derivatives has been 

prepared. The TTF-thiolate anion has been used as a key intermediate and 

shown to be a particularly versatile reagent for this purpose. 4-(Benzoylthio) 

tetrathiafulvalene has been prepared and serves as a convenient shelf-stable 

precursor of the TTF-thiolate anion. A novel pentakis-tetrathiafulvalene 

macromolecule has been efficiently synthesised. The solution 

electrochemistry of the new multi-TTF derivatives has been studied by 

cyclic voltammetry, which reveals that the TTF moieties do not interact to 

any significant extent. 

Methodology has been developed for the preparation of highly 

functionalised analogues of T T F containing the 9,10-bis(l,3-dithiol-2-

ylidene)-9,10-dihydroanthracene unit. These are versatile electron donor 

systems and have been used in the construction of novel redox assemblies. 
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CHAPTER ONE 

INTRODUCTION 



L I GENERAL I N T R O D U C T I O N 

This thesis is concerned with the synthesis of highly functionalised, 

redox-active organic compounds. Such compounds can act as potential 

building blocks for incorporation into a variety of novel organic materials, 

whose applications will appeal to a diverse range of chemists and material 

scientists. Particular interest should stem from scientists engaged in the 

design and synthesis of highly conducting organic materials (both crystalline 

and thin films) and from those whose research lies within the areas of 

polymer, macrocyclic and supramolecular chemistry. 

All the key compounds described in this thesis have one structural 

feature in common - they can be regarded as derivatives of the same parent 

system, namely, tetrathiafulvalene (TTF) 1. 

It is the remarkable properties of this particular system which has lent 

tetrathiafulvalene and its derivatives to thorough investigation, not just 

from chemists, but from physicists and material scientists alike. This 

collaboration has been most productive and has led to important 

discoveries and advances both within the fields of synthetic and solid-state 

chemistry. 

1.2 T E T R A T H I A F U L V A L E N E A N D ITS R E D O X B E H A V I O U R 

The parent molecule T T F 1 was first synthesised in 1970 by Wudl et 

a\y along with the chloride salts of the corresponding radical cation and 

dication species*. The crystal structure, obtained the following year 3, showed 

#The first TTF derivative, dibenzo-TTF, had however, been reported 44 years earlier by 
Hurtley and Smiles2. 

OO 
Tetrathiafulvalene (TTF) 1 
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the neutral T T F molecule to be nearly planar and highly symmetric. T T F 

consists of two fused 1,3-dithiole rings and has a highly conjugated n-

system. Due to the presence of the sulphur atoms, the molecule is highly 

polar izable. 

The efficiency of TTF as a re-electron donor can be attributed to the 

resonance stabilisation associated with the dithiolium cation formed upon 

oxidation. The ability of the sulphur atoms to accommodate much of the 

spin-density also accounts for the high thermodynamic stability of the 

radical species. The redox behaviour of T T F is illustrated in Figure 1.1. 

Oxidation of the neutral molecule to the radical cation results in a 

resonance-stabilised, 6re Hiickel-type aromatic system. Further oxidation to 

the dication affords a system containing two linked 6jc-electron moieties. 

This redox behaviour is in general reversible. Consequently, reduction of 

the dication will afford initially the radical cation, with further reduction 

yielding the neutral species. 

neutral TTF radical cation dication 

non-aromatic 6rc . 7n 6rt 6JC 
aromatic non- . aromatic aromatic 

aromatic 

Figure 1.1. - The redox behaviour of TTF. 

1.3 O R G A N I C M E T A L S 

It is within the field of conducting organic materials that TTF and its 

derivatives have made their biggest contribution4. In fact, were it not for the 

unusual solid-state properties exhibited by such compounds, it is almost 

certain that our knowledge on the synthesis and construction of 

tetrathiafulvalenes would not have arrived at the level it has reached today. 

3 



This is an area of research still actively being pursued by both chemists and 

physicists alike. A brief account of the theory and concepts behind these 

'organic metals' is given below 5. 

1.3.1 Historical perspective 

The first conducting molecular compound was reported in 1954 - an 

unstable perylene-bromine salt 6, discovered by Japanese workers (ort = ca. 1 

Scm" 1). Following the synthesis of the new powerful electron acceptor, 

7,7,8,8-tetracyano-p-quinodimethane (TCNQ) 27, the early 1960's produced a 

number of semi-conducting charge-transfer salts 8 containing the T C N Q 

anion radical. 

1.3.2 The complex of T T F and T C N O - the prototype organic metal 

It was not until 1973 that the foundation stone for the science of 

organic conductors was laid, with the preparation of the first true 'organic 

metal'. This was the stable, crystalline 1:1 charge-transfer complex formed 

between the newly synthesised donor tetrathiafulvalene (TTF) 1 and the 

acceptor tetracyano-p-quinodimethane (TCNQ) 2. This complex exhibited 

metallic behaviour - a room temperature conductivity of art = 500 S a n - 1 , 

rising to a maximum of Omax = 10 4 Scnr 1 at 59K. 

The metallic complex formed between T T F and T C N Q illustrated the 

general features common to all conducting charge-transfer salts. The X-ray 

structure of the complex 1 0, shows that in the crystal lattice, the nearly planar 

TTF and TCNQ molecules crystallise into two well defined segregated stacks 

- one composed of the donor (TTF) molecules, the other of acceptor (TCNQ) 

molecules. The planes within which the molecules lie are tilted with respect 

CN 

NC CN 

7,7,8,8-tetracyano-p-quinodimethane (TCNQ) 2 
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to the stacking axis, the tilt of the donor molecules being in the opposite 

direction to that of the acceptor molecules. This gives rise to the so-called 

'herringbone structure' (Figure 1.2.). 

Figure 1.2. - 'Herringbone' stacking in crystals of TTF-TCNQ. 

Within these segregated donor and acceptor columns, the molecules 

do not lie directly on top of one another. There is a lateral displacement so 

that the exocyclic carbon-carbon double bond of one molecule, lies directly 

over the ring of the molecule adjacent to it in the stack : the so called 'ring-

over-bond' overlap (Figure 1.3.). This structure results in only weak inter-

stack interactions, but gives rise to strong intra-stack interactions. 

5 



Figure 1.3. - 'Ring-over-bond' overlap in crystals of TTF-TCNQ. 

Close face-to-face stacking within these columns leads to extensive re-

electron overlap and derealization, resulting in the formation of an energy 

band along the stacking axis. Consequently, the conductivity is highly 

anisotropic, being highest along the stacking axis and several orders of 

magnitude lower in the remaining two crystal axis directions. Many organic 

metals are, therefore, termed 'pseudo-one-dimensional' conductors. 

For a metallic donor-acceptor complex of 1:1 stoichiometry there 

must be partial charge-transfer from donor to acceptor. The partial transfer 

of electrons is crucially important for the system to be an organic metal. This 

requires a delicate balance between the ionisation potential of the donor and 

the electron affinity of the acceptor. For the TTF-TCNQ complex, the degree 

of charge-transfer is 0.59 (as ascertained by infra-red spectroscopy 1 1 and 

diffuse X-ray scattering techniques 1 2) i.e. 0.59 electrons are transferred, on 

average, from each T T F to each T C N Q molecule. So, with both bands 

partially filled, both stacks contribute to the conduction process. 

6 



L3o3 Snalpto-foaged systems amd organic smpeireondmcHvifty 

A most significant advance in the field of organic conductors has 

been the discovery of organic superconductivity (the conduction of 

electricity without resistance). In 1980, collaboration between Bechgaard and 

Jerome led to superconductivity being observed in the hexafluorophosphate 

radical ion salt of tetramethyltetraselenafulvalene with a superconducting 

transition temperature ( T c ) of I K under 12 kbar pressure 1 3 . Super­

conductivity has since been observed in many tetramethyltetraselena-

fulvalene (TMTSF) 3 salts, with (TMTSFhClC^ being a superconductor (T c = 

1.2K) at ambient pressure. 

Since the discovery in 1983 of superconductivity in salts of 

bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) 4 1 4 , sulphur-based 

systems have attracted the most attention. Several superconducting salts of 

BEDT-TTF 4 are now known 1 5 , and their structures are characterised by 

short two- and three-dimensional sulphur-sulphur interactions. Those with 

highest T c values do not comprise stacks or sheets of the donors but, instead, 

interacting dimers which are positioned approximately orthogonal to each 

other, forming a conducting two-dimensional S—S network. Currently, the 

highest T c organic superconductor at ambient pressure is (BEDT-

TTF) 2Cu[N(CN)2]Br with T c = 11.6^6. 

\ ^ S e S e ^ 

Se Se Me Me 

Me Me 

Tetramethyltetraselenafulvalene (TMTSF) 3 

Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) 4 
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Many other sulphur-carbon organic donors that are variants of TTF 1 

or BEDT-TTF 4 have been reported recently 1 7. Only one of these, methylene-

dithio-tetrathiafulvalene ( M D T - T T F ) 5 has provided new super­

conductors 1 8. It is interesting to note that neither of the parent symmetrical 

donors, i.e. TTF 1 and bis(methylenedithio)tetrathiafulvalene (BMDT-TTF) 

6, yield superconductors. The discovery of this type of superconductor based 

on an unsymmetrical donor has therefore shown the need for efficient 

synthetic routes to unsymmetrical systems. 

<X>^J OC >=<X > 
MDT-TTF 5 BMDT-TTF 6 

1.4 A P P L I C A T I O N S O F T H E T E T R A T H I A F U L V A L E N E U N I T I N 

M O D E R N M A T E R I A L S S C I E N C E • 

The l,3-dithiole-2-ylidene heterocyclic ring system has found 

widespread use in modern materials science 1 9. As such, its chemistry has 

been the subject of great interest and the fundamental properties of this ring 

system intensively investigated 2 0 . The main feature which makes the 

dithiole system so interesting is the different oxidation states that are 

possible for this ring system. 

The basic TTF framework has been electronically and structurally 

modified in several ways to give new functionalised rc-donor systems useful 

for specific applications. These modifications can be summarised as shown 

in Figure 1.4. 
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heteroatom exchange non-covalent 
interactions 

< 

1 

conjugated spacer 
units \ 

substituents 
macrocyclic ring 

or ligand 

Figure 1.4. - Modifications of the basic TTF framework. 

Although the mainstream focus has been on new T T F donors, new 

materials based on the versatile l,3-dithiole=2-ylidene unit have been 

developed in the last decade. These other applications seem likely to 

develop further because of the intrinsic molecular properties of the 

fundamental dithiole building block. A few brief examples of some of the 

applications of the TTF framework in modern materials science follow: 

i) New donors. Early efforts in the area of dithiole based donors were 

towards centrosymmetric, substituted T T F derivatives. This was later 

extended towards their selenium and tellurium analogues. Studies on these 

materials has contributed significantly to the present knowledge of low-

dimensional conductors and much work has been done on the modification 

of the basic T T F unit. The introduction of conjugated or heterocyclic spacer 

groups between the dithiole units has recently been investigated. A n 

example of such a system is the thiophene derivative 7 2 1 . Another current 

development in this field is towards "multiple-TTFs", for example 

compound 8 2 2 . 

9 
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ii) Sensors. A "molecular sensor" based on a T T F derivative has been 

reported recently 2 3. The model compound 9 is a hybrid between T T F and a 

crown ether. In the presence of sodium ions the first redox potential of 9 is 

shifted by 80mV to a more positive potential; the second potential remains 

unchanged. This indicates a non-covalent interaction between a sodium 

cation present in the crown ether cavity and the T T F radical cation. 

Although the stability constant was rather low, this might be enhanced by 

future synthesis of an all-oxygen crown TTF. 

O £ s o 

iii) Molecular Shuttles. A spectacular use of a T T F derivative has 

recently been reported by Stoddart et al.24 in a [2] rotaxane with "molecular 

shuttling" properties (Figure 1.5.). The presence of different donor residues 

in the chain not only makes self-assembly of the rotaxane possible, but also 

enables the controlled shuttling of the tetracationic macrocycle along the 

chain. This can be achieved by electrochemical control of the redox state of 

the donor residues along the chain. The chemically stable and fully 

reversible redox-active T T F unit, make it particularly attractive for such 

applications, as well as in systems such as TTF catenanes and rotaxanes. 

H j 
s 

8 
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6 s s 

4 re 

Figure 2.5. - T/ie "molecular shuttle" concept applied to TTF systems. 

iv) Elecfcroactive Langmmr-Blodgett Films. TTF derivatives are at the 

forefront of attention in the application of the Langmuir-Blodgett (LB) 

technique to organic electron donor and electron acceptor molecules at the 

molecular level. The aim here is to produce highly conducting ultrathin 

films suitable for incorporation into molecular electronic devices. In the LB 

technique, amphiphilic molecules are spread onto a surface of ultrapure 

water to form a monolayer. This layer can be deposited onto a solid support 

with a well-defined multilayer structure. In our own group, we have 

recently reported 2 5 the synthesis of the long chain T T F system 10 and 

characterisation of its LB films. Although the conductivity values obtained 

were quite high (iodine doping resulted in conductivities up to a m a x = 1.0 ± 

0.2 Scm" 1), there are stability problems associated with this technique. 

However, the potential applications of cheap, conducting thin films are 

certainly important and research in this area is still being actively pursued. 

v) C60 C o m p l e x e s . Izuoka et al. have recently reported 2 6 the 

preparation of a charge-transfer (CT) complex between BEDT-TTF 4 and the 

fullerene Qo- The (BEDT-TTF)2C60 C T complex appears as black needles and 

the X-ray crystallographic study reveals remarkably short S - C60 

S 

0-Cr 0-(CH2)i5CH3 

10 
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intermolecular distances. The parent TTF does not give a similar CT 

complex and the complex formation is likely to be a result of the flexibility 

of the BEDT-TTF molecule. It will be interesting to learn more about the 

properties of this new type of complex. 

L 5 SYNTHETIC ROUTES T O TTF DERIVATIVES 

In this section, a brief account of the different synthetic routes for the 

construction of tetrathiafulvalenes will be given. A number of extensive 

review articles on this subject have appeared 2 7 , reflecting the tremendous 

amount of work that has been put into this area within the last couple of 

decades. 

The methods for the synthesis of tetrathiafulvalenes (as outlined in 

Figure 1.6.) can be classified according to the part of the T T F molecule that is 

constructed in the last step. There are three general categories, in which the 

last step involves: 

Type A - the functionalisation of TTF or side chain modification of 

its analogues (Section 1.5.1); 

Type B - formation of the dithiole rings (Section 1.5.2); 

Type C - formation of the central double bond (Section 1.5.3). 

Type B (formation of 
Type A (side chain modification) dithiole rings) 

\ 

Type C (formation of central 
double bond) 

Figure 1.6. - Synthetic routes to TTF derivatives, ordered according to 
the part of the molecule that is constructed in the last step. 
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1.5.1 Type A - The fnnriflonalisation of TTF ®z side daaim modification of its 

analogues 

This approach to tetrathiafulvalene synthesis utilises starting 

materials in which the central TTF-unit is already in place. The simplest 

examples of this type of reaction are those that start from TTF itself. 

1.5.1.1 The TTF anion and its chemistey 

The first monofunctionalised T T F derivatives prepared directly from 

T T F 1 were reported by G r e e n 2 8 , via formation of tetrathiafulvalenyl-

lithium 11. The T T F monoanion 11 was generated by the use of 

butyllithium, and trapped with CO2 and Et30FF6 to give modest yields of 

the acid and ethyl derivatives, respectively. 

Green later showed 2 9 that formation of the T T F anion 11 could be 
1 

accomplished via the action of either w-BuLi or lithium diisopropylamide 

(LDA) in ether at -78°C, and trapped with a wide range of electrophiles, to 

give mono-substituted derivatives in modest yields (Scheme 1.1.). 

CHO 

C02Et Et OCT A 
l.BMF 
2.H,0 acOoEt EuOPE 

C02H CKJ CO, LDA 
T T F T T F - L i 

11 
HCHO MeC(0)a 

Me,SQ 
C(0)Me CH2OH CKT Me 

Scheme 1.1. - Substituted tetrathiafulvalenes via the TTF - anion 
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Strict temperature control is essential for the success of this reaction. 

At temperatures above =78°C, disproportionation of the TTF monoanion 11 

occurs readily, to give multi-lithiated species (and therefore multi-

substituted products) along with TTF 1 (Scheme 1.2.). However, if the 

temperature is carefully maintained at -78°C, this technique allows a wide 

range of functional groups to be introduced, to give mono-functionalised 

derivatives, in a one-pot procedure direct from commercially available TTF. 

2 

1 

Li Li 

1 Li 

11 
11 

Li Li 

X X X X X L 

11 Li Li Li 

Scheme 1.2. - The disproportionation of the TTF anion. 

The presence of substituents on TTF exerts an important directional 

effect, allowing control over the position of metallation. The presence of an 

electron donating substituent on one of the rings (e.g. an alkyl group), 

decreases the acidity of the adjacent proton (by inductively destabilising the 

formation of the corresponding anion) and hence favours metallation (and 

therefore substitution) on the other ring. Conversely, the presence of an 

electron withdrawing substituent on one of the rings (e.g. an ester group), 

increases the acidity of the adjacent proton, hence favouring substitution on 

the same ring (Scheme 1.3.). 

It has been shown that all four protons of T T F 1 can be readily 

removed by the reaction of four equivalents of L D A or phenyllithium at 

-78°C, and the resultant tetra-anion reacts with elemental sulphur, 

selenium or tellurium, followed by alkyl halides, to yield T T F derivatives 

substituted with four thioalkyl, selenoalkyl or telluroalkyl chains 3 0 . 

14 



Me Ma X>0 • h i X LDA/ether 
Li 

78 U C 

C0 2Et C0 2Et cvoc y 0 0 LDA/ether 
78 "C 

Li 

Scheme 13. - The directional effect of substituents towards further 
substitution on TTF. 

In recent years, a number of new, monofunctionalised T T F 

derivatives have been reported. These have all been formed from the TTF-

monoanion, and are summarised in Scheme 1.4. 

R, = Meo. Me-,C0H Hal = Q, Br, I 2M8"37 

S i R 3 Hal ^ - S S — y ( H T CKT 
12 13 

p-toluenesulphonyl RaSi.Cl 
halide 

T T F - L i 

11 
\ R 3 S 1 y R,SnCl 

R 

SnFfe 

(XT N 

14 15 

R,R'= Me, Me; -(CH 2 ̂ -; R = nBu, Me 
Me, CH2Ph 

Scheme 1.4. - Recent mono-functionalised TTF derivatives from TTF-
anion 11. , 

In our own laboratory the TTF-monoanion 11 has been reacted with 

silicon reagents to yield the first mono-silylated TTF derivatives 12 3 1 . These 
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compounds serve as efficient, shelf-stable equivalents of the T T F -

monoanion 11. For example, reaction of 12 with acetyl chloride, neat at 20°C 

affords acetyl-TTF 16 in good yield (Scheme 1.5.). 

Scheme 1.5. - Mono-silylated derivatives serve as an equivalent of the TTF-

A series of halogenated tetrathiafulvalenes has been prepared 3 2 . 

Reaction of tetrathiafulvalenyl-lithium 11 with the appropriate p-toluene-

sulphonyl halide yields the corresponding mono-halo TTFs 13 in 34-48% 

yield. 

The f irst synthesis of N,N-disubst i tuted aminomethyl 

tetrathiafulvalene derivatives has been reported by Garin et a i . 3 3 . These 

were prepared by reaction of 11 with Eschenmoser's salts to afford the 

corresponding derivatives 14 in reasonable yield. This method increases the 

limited number of synthetic routes to nitrogen substituted 

tetrathiafulvalenes. 

Finally, Japanese workers have recently reported the preparation of 

tr ia lkyls tannyl- tetrathiafulvalenes 3 4 . Reaction of 11 with trialkyltin 

chlorides affords the corresponding trialkylstannyl-TTFs 15 in 75-85% yield. 

Subsequent reaction with aryl halides in the presence of Pd(PPh3)4 in 

refluxing toluene, gives the corresponding aryl-tetrathiafulvalene in good 

yield (Scheme 1.6.). 

S i R 3 MeCOCI 
neat, 20 °C 

Me 

12 16 

monoanion. 

SnR* Ar 0-Cr Pd(PPh3)4 

ArBr 
toluene/reflux 

AT = Ph, P-CNQH4-, 

2-pyridyl, 2-thienyl 

Scheme 1.6. - Cross-coupling reactions of trialkylstannyl-TTFs. 
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1.5.1J2 Sid® chain modMicaftiom of SetafiMaftalvalenes 

Other reactions leading to functionalised T T F derivatives are those 

which involve a modification of one or several functional groups on the 

starting tetrathiafulvalene. Many accessible functionalised T T F derivatives 

can be converted to other TTF derivatives using standard reactions 3 5. Such 

an approach is possible in basic or weakly acidic media because the TTF unit 

is stable under these conditions. Transformations that can be accomplished 

include the hydrolysis of ester groups and the formation of anhydrides, 

amides and alcohols (Scheme 1.7.). 

AcOOO^^s 

MeOO 
COOMe 

HOOC. 

i) NaOH 
ii) HC1 

^ ) = = ( TrCOOH 

AczO 

I H "3L COOAC 

PhNH 2 

(PhO)2POH, pyr 

PhHNOCL^ s I H CONHPh 

H O H 2 C N ^ s v 

CH2OH 

s s-

Scheme 1.7. - Standard reactions compatible with the central TTF unit. 

1.5.1.3 The TTF-tetrathiolate intermediate 

Since the discovery of superconductivity in salts of BEDT-TTF 4, 

considerable efforts have been invested in synthesising T T F derivatives 
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substituted with sulphur atoms in all four positions. Some of these make 

use of the TTF-tetrathiolate intermediate 17, several routes to which have 

been reported, and these are outlined in Scheme 1.8. 

Compound 18, reported by Schumaker et al. in 1977 3 6, is converted 

into TTF-tetrathiolate 17 by treatment with nucleophiles (e.g. NaOEt, MeLi). 

This is also the case for compounds 20 (developed by Hansen and co­

w o r k e r s 3 7 in 1991) and compound 21 (made by Kilburn et al. in 1992 3 8). 

Deprotection of 19 (synthesised by Zambounis et al. in 1991 3 9) is achieved 

using tetrabutylammonium fluoride. The TTF-tetrathiolate 17 can then be 

trapped with electrophiles such as 1,2-dibromoethane and iodomethane, to 

afford BEDT-TTF derivatives. One disadvantage of all these routes is that 

unsymmetrical products cannot be formed specifically. 

1.5.2 Type B - Formation of the dithiole rings in the final step 

Syntheses in which the dithiole rings are formed in the final step are 

relatively few. In 1926, Hurtley and Smiles reported that sodium o-

benzenedithiolate reacts with tetrachloroethylene to give dibenzo-

tetrathiafulvalene in 16% yield 2 (Scheme 1.9.). This represents the first 

published synthesis of any tetrathiafulvalene derivative. 
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SEM = Me3SiCH2CH 2OCH 2 -

SEM yxx. S-SEM -OO-CC- SEM-S S-SEM 
19 18 

or 
MeLi/THF NaOEt/EtOH Bu4NF/THF 20"C 

TTF-fteteathiolate 

17 
NaSlBu NaOEt/EtOH THF/-l(fC 

50"C 

X, I 
Ph Ph 

Ph Ph R-S 
r 21 20 

R = p-AcOQH4CH2-

Scheme 1.8. - Alternative routes to the TTF-tetrathiolate intermediate. 

cc * x cxxc> 
Scheme 1.9. - The original Hurtley-Smiles synthesis of dibenzo-TTF. 

This method can be used to obtain the unsymmetrical dibenzo-TTFs 

starting from tetrachloroethylene and two variously substituted o-

benzenedithiols (Scheme 1.10.). This synthesis is not selective and leads to a 

mixture of different benzo-tetrathiafulvalenes from which the desired 

derivatives can be separated 4 0. 
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SH Mê . ^SH C | C | 

X X + 
cr ci SH ^ SH 

R = H, Me 

Scheme 1.10. - This non-selective synthesis leads to a mixture of different 
benzo-TTFs. 

Attempts at the synthesis of mixed tetrathiafulvalenes, especially 

monobenzo-TTFs have been generally unsuccessful 4 1. Another example of 

this type of synthesis (formation of the dithiole rings in the final step), is the 

reaction of electrophilic or strained acetylene derivatives with carbon 

disulphide. This reaction is attractive because it allows one to obtain 

tetrathiafulvalenes substituted by electron-withdrawing groups. For 

example, dimethyl acetylenedicarboxylate reacts with CS2 under 5000 arm. 

pressure at 100°C to give tetrakis(carbomethoxy)tetrathiafulvalene in 87% 

yield (Scheme l . l l . ) 4 2 . 

C02Me 
I M e 0 2 C s _ S S ^ / c ° 2 M e 
C + 5000 atm. , J W T 

C 100°C,24hn, M e o 2 c ^ ^ S ^ c 0 2 M e 
C02Me 

Scheme 1.11. - Reaction of an electrophilic acetylene with CS2 under high 
pressure. 

1.5.3 Type C - Formation of the central double bond in the final step 

This approach to T T F synthesis is the most important and constitutes 

the largest number of methods. The Tt-bond is formed via an elimination 
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reaction, involving loss of either protons or heteroatoms. In addition, the a-

and jc-bonds can be formed simultaneously by a coupling reaction of two 

carbenes. 

l.S.3.1 i ) Via el iminat ion off a proton i n the last step 

This route involves the reaction of a carbene or of a phosphorus ylide 

with a 1,3-dithiolium salt possessing a hydrogen at carbon-2. The adduct is 

usually transformed into the heterofulvalene by an amine, which acts as a 

base. The dithiolium salt can be obtained via alkylation of l,3=dithiole-2-

thiones (Scheme 1.12.) or via l /3-dithiole-2-immium salts (Scheme 1.13.). 

-JSU f ^ - s M , r [V 
SMe 

Scheme 1.12. - Synthesis of the dithiolium salt via alkylation of 1,3-dithiole-
2-thiones43. 

+ / S ^ NaBH4/EtOH 

s R 

R=p-AcOC6H4- HC10 4 

(Vn cio, 

Scheme 1.13. - Synthesis via l^-dithiole-2-iminium salts35. 

Reaction of base with a mixture of two different symmetrical 1,3-

dithiolium salts gives a mixture, often purifiable, of the three possible 

tetrathiafulvalenes 4 4 (Scheme 1.14.). 
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base 

( X K J O • <XK3 • CK^ 
Scheme 1.14. - Product mixtures from two different, symmetrical 1,3-

dithiolium salts. 

2-Triphenylphosphirto-l /3-dithioles react with 1,3-dithiolium salts to 

give products which, on treatment with base (e.g. Et$N) at low temperature, 

give tetrathiafulvalenes4 5 (Scheme 1.15.). This method permits the selective 

preparation, from variously substituted 1,3-dithioles, of unsymmetrical 

tetrathiafulvalenes in which the two heterocycles can be substituted with 

hydrogens, aryl, alkyl or cycloalkyl groups. 

P P h 3 

R 00- R P P h 3 

H 

Et iN 

Scheme 1.15. - Synthesis involving the elimination of a proton and 
triphenylphosphine in the final step. 

1.5.3.2 ii) Synthesis of tetrathiafulvalenes by elimination of two 

heterosubstituted entities in the final step 

The trivalent derivatives of phosphorus react at ca. 80°C with 2-oxo-, 

2-thioxo-, and 2-selenoxo-l,3-dithioles to give the corresponding fulvalenes 
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in various yields (Scheme 1.16.) 4 6. This method is attractive because it 

allows access to a large variety of tetrathiafulvalenes bearing unsubstituted 

rings or rings substituted by either electron-donating groups (alkyls, 

cycloalkyls) , electron-withdrawing groups (nitriles, esters or 

trifluoromethyl) or by aromatic rings. 

X X S f ) 
0 = P ( O E t ) 3 

P(OEt) X X 
R 

w 
X s 1 S 1^ s 

P(OEt) 3 PO(OEt) 

thermal 
elimination 

T 
5x 

R (EtO) 3P 

nucleophilic 
attack 

( E t O ) 3 P — j - O 

x ^ s s^S, 

R 
PO(OEt) 

TTF derivative 

Scheme 1.16. - Mechanism of phosphite-induced coupling. 

Triphenylphosphine and phosphites have been used as 

desulphurizing agents, although the latter have been shown to be the most 

efficient. Unsymmetrical l,3-dithiole-2-thiones (or their oxo- or selenoxo-
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analogues) react with phosphines or phosphites to give a mixture of the two 

possible isomers, whereas reaction with mixtures of l,3=dithiole-2-thiones 

gives a mixture of all possible tetrathiafulvalenes. 

Desulphurization can also be achieved by the use of certain transition 

metal complexes. Thus, treatment of l,3-dithiole=2-thiones with dicobalt 

octacarbonyl in refluxing benzene or toluene solutions, affords 

tetrathiafulvalenes directly in modest y ie lds 4 7 . This desulphurization 

reaction seems general, and has been applied to l,3=dithiole-2-thiones with 

various substituent groups (Scheme 1.17.). 

tf^S toluene/A F T " " S S " " ^ R 

R = H, Me, Ph, -CH 2CH 2CH r , C0 2Me 

Scheme 1.17. - Coupling via dicobalt octacarbonyl. 

Tetrathiafulvalenes are also accessible by thermal decomposition of 

the corresponding hexathioorthooxalates4 8. The presence of a trace of p-

toluenesulphonic acid lowers the decomposition temperature and increases 

the rate of reaction. This reaction can be applied not only to symmetrical 

hexathioorthooxalates, but also to those possessing two differently 

substituted heterocycles (Scheme 1.18.). 

The reactions outlined above detail the major synthetic routes to 

tetrathiafulvalenes. Other, less common methods, which have found 

limited use include electrochemical reduction 4 9, photochemical coupling 5 0 

and electrochemical oxidative dimerization 5 1. 

Co2(CO) 8 

toluene/A 
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FT 

TO S H 

,SMe MeLi 

5 ^ S Li 

.SMe 

ii) Mel 

V 

trace p-toluene 
sulphonic acid 

SMe 

X I C l C H 2 C H 2 a / A 

SMe 

Scheme 1.18. - TTF synthesis via thermal decomposition of 
hexathioorthooxalates. 

1.6 E X T E N D E D T T F SYSTEMS 

As an alternative to placing different substituents around the 

periphery of the TTF unit, it is also possible to synthesise new donors by 

changing the basic skeletal structure. Thus, recent work has concerned 

modification of the TTF framework by extending the rc-electron conjugation 

between the two 1,3-dithiole rings. This has been achieved by the 

incorporation of cyclic or vinylogous 'spacer' groups. 

Interest in these systems stems from the significantly different redox 

and conformational properties they should display compared to T T F 1. 

Extending the conjugation between the 1,3-dithiole rings should modify the 

system in three ways: 

i) stabilisation of the radical cation state due to extended 

conjugation and greater derealization; 

ii) separation of the dithiole rings reduces on-site, intramolecular 

Coulombic repulsion and hence stabilises the dication state; 

iii) due to rotation about the units linking the dithiole rings, these 

new derivatives may no longer be planar. This may induce 
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novel inter- and intra-molecular interactions, although major 

deviations from planarity may inhibit such effects. 

The initial research in this area concerned the insertion of aromatic 

spacer units, such that the neutral donors are in a quinonoid form 

(compounds 22-24) 5 2 . Oxidation to the radical cation and dication species 

affords aromatisation of the system. This stabilises the oxidised states, 

resulting in lower oxidation potentials of the neutral donors compared to 

TTF 1. In the case of donors 22 and 23, the oxidation potential is lowered to 

such an extent, that they undergo air-oxidation. In fact, many donors of this 

type only show one single, two-electron oxidation, directly yielding the 

dication species. Accordingly, the donors with quinonoid structures form 

dications more readily upon oxidation due to the decreased Coulombic 

repulsion. 

& 
22 23 24 

Another group of extended donors are those in which the dithiole 

rings are separated by a polyene spacer unit. The simplest examples are 

those in which two or four sp 2 carbon atoms are inserted between the 1,3-

dithiole rings. Both of these (compounds 25 and 26) have been reported by 

Yoshida's group 5 3 . This increased conjugation has two effects on the donor 

properties of the molecule. Firstly, the oxidation potentials are lowered 

compared to those of TTF, demonstrating that the vinylogues are more 

powerful rc-electron donors. The second effect is to decrease the separation 
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of the two oxidation potentials. In the case of compound 26, this separation 

is eliminated and a single, two-electron oxidation is observed. This clearly 

indicates the decrease in Coulombic repulsion in the dication states of these 

systems, compared with the doubly-ionized state for TTF. 

V7 C O N C L U S I O N 

The suitability of the redox-active T T F unit for use in modern 

materials science and supramolecular chemistry has been demonstrated, 

widespread applications having already been found. The use of the general 

T T F framework is likely to remain an important theme in the ongoing 

search for new electron donor systems and research into advanced materials 

in the future. 

Modification of the T T F unit changes the redox characteristics of the 

system and hence its donor properties. There remains, however, the need 

for continued investigation into new synthetic methodology towards the 

assembly and functionalisation of the basic tetrathiafulvalene system. 

0 0 < I 
25 26 
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CHAPTER TWO 

FUNCTIONALISED TETRATHIAFULVALENE 

SYSTEMS DERIVED FROM 4,MPROPYLENE=l,3»DITHIO)= 
1,3-DITHIOLE UNITS 
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2.1 I N T R O D U C T I O N 

The design and synthesis of new re-electron donor molecules which 

form stable radical cations is central to the development of new organic 

metals and organic superconductors. Particular attention has recently been 

directed to the tetrathiafulvalene system substituted with fused heterocycles. 

Prime examples are the donors BEDT-TTF 4 and BPDT-TTF 27, comprising 

the C6Ss core, and their unsymmetrical analogues 5 4. The attachment of 

chalcogen atoms to the TTF frame can lead to an increase in intra-stack re-

interactions and induce inter-stack interactions. This has the effect of 

increasing the dimensionality of these materials and thus helping to 

stabilise the metallic state by suppressing lattice distortions. 

*\ 
(CH2) n 

s' 
4 n=2 BEDT-TTF 

27 n=3 BPDT-TTF 

BEDT-TTF 4 has attracted considerable attention, due to the fact that it 

has formed so many superconducting salts. Various modifications have 

been made to the BEDT-TTF structure: 

i) the attachment of oxygen atoms to the periphary of TTF to give 

bis(ethylenedioxo)TTF (BEDO-TTF) 28, reported in 1989 by Wudl 

et al55; 

ii) the replacement of the ethylene bridges with vinylene units, in 

order to increase the planarity of the BEDT-TTF structure, giving 

donor 29, synthesised by Japanese workers in 1987 5 6; 

oxo &xo 
28 29 

29 

xx n(CtM 



iii) replacing the outer sulphur atoms w i t h larger selenium and 

tellurium atoms to afford compounds such as 3 0 5 7 and 3 1 5 8 . 

Se Se MeTe' 

MeTe. 

TeMe 

TeMe 

30 31 

These modifications were carried out to investigate the effect of the 

changes on the physical properties of cation radical salts and charge-transfer 

complexes of the new donors. This chemistry lies within Tib's traditional 

area of research - that of organic conductors or 'organic metals'. 

22 NEW B U I L D I N G B L O C K S I N A D V A N C E D M A T E R I A L S S C I E N C E 

In the last few years, it has been recognised that the chemical stability 

and fully reversible redox-activity of the Tib unit, make it a particularly 

attractive building block in the development of new molecular materials 

with specific applications. A few examples of such applications in modern 

materials science have already been given in Section 1.4. 

However, until recently, T T F derivatives endowed with 

functionalised substituents have been largely neglected. The attachment of 

suitable substituents to the TTF core, would provide compounds which can 

act as building blocks for incorporation into the following classes of 

materials: 

i) salts and complexes with increased inter- and intra-stack 

interactions e.g. hydrogen bonding; 

ii) macrocyclic and supramolecular T T F derivatives; 

iii) electroactive Langmuir-Blodgett films; 

iv) oligomeric and polymeric T T F derivatives. 
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In this context, a range of symmetrical and unsymmetrical 

tetrathiafulvalene derivatives containing funcfionalised propylenedithio 

units fused to the TTF framework has been prepared. 

2.2.1 Symfeegis of 4.S42-(hydroxy)prop;^^ 

33 

4,5-[2-(Hydroxy)propylene-l,3-dithio]-l,3-dithiole-2-thione 33 was 

identified as an attractive building block for functionalised TTF derivatives 

for the following reasons: 

i) the compound should be readily available in large quantities from 

either the zincate salt 3 2 5 9 or from the caesium salt 36 6 0 ; 

ii) the hydroxy group should serve as a reactive liandle' enabling a 

variety of substituents to be attached to the system; 

iii) the coupling of derivatives of 33 should proceed under standard 

conditions to yield T T F derivatives. 

X> - v 
OH 

33 

The preparation of compound 33 has been achieved by three different 

routes (Scheme 2.1.). The reaction of the zincate salt 32 (prepared by reaction 

of carbon disulphide with sodium in the presence of D M F 5 9 ) with 1,3-

dibromopropan-2-ol in refluxing acetonitrile affords compound 33 in 66% 

yield. A second highly insoluble product was obtained from this reaction. 

Mass spectrometry gave an E I molecular ion peak at 508 (M + ) tentatively 

identifying it as the macrocyclic compound 34. This was formed in 5-10% 

yield, its formation arising from the template effect of the zinc metal ion, to 

which two dithiolate units are co-ordinated. 
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Alternatively, caesium salt 36 [prepared from di(benzoylthio) 

derivative 3 § 6 0 ] reacted with 1,3-dicHoropropan-2--o! to afford compound 33 

in 60% yield. Since the templating effect of the zinc metal ion is now 

removed, the formation of macrocycle 34 is not observed. 

While this work was in progress, an alternative route to compound 

33 (by reduction of compound 70) was reported by Russian workers 6 1 . We 

have also used this route and found it to be appropriate for the preparation 

of large-scale batches (ca. lOg) of alcohol 33. 

2.2.2 X°Ray crystal structure of compound 33 

The structure of compound 33 has been examined by single crystal X-

ray analysis. Compound 33 was studied to establish the solid state 

conformation of the molecule and the preferred configuration of the 

hydroxy group. The molecular structure of compound 33 is shown in Figure 

2.1. Atoms S(3), S(4) and S(7) are in the same plane as the 1,3-dithiole ring. 

Bond angles at S(3) and S(4) are 100.5° and 101.9°, respectively. The fragment 

0(2)-C(4)-C(5)-S(4) is exclusively in the s-trans configuration. The only 

intermolecular contact that is significantly shorter than the sum of the van 

der Waals radii is the S( l )—S(l ) distance of 3.335A. The shortest 

intermolecular sulphur-oxygen distances are S(7)~0(2) 3.364A and S(2)— 

0(2) 3.405A, which are indicative of very weak interactions between these 

atoms. 
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8 CSj + 8 N a 
DMF 

•*» 2 S = < I] ' + 2 S=\ 

i) ZnCl 2 
ii) Et 4 NBr 

2NaBr + 2 N a C l + s < V % > n . ; ' T V s 

s^s ^s^s 
32 

N E t 4

+ 

B r — ' 

MeCN 
A 

<o OH 

OH + S 

33 5-10% 
OH 

34 

ci > OH SC(0)Ph S" Cs + -ex - A CsOH a 
*~ 33 6 s , 

DMF SC(0)Ph S Cs 

36 

-CO NaBH 4 

^ 33 
MeOH 

S " 

70 

Scheme 2.1. - Synthetic routes to 4£-[2-(hydroxy)propylene-l,3-dithio]-l£-
dithiole-2-thione. 
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Figure 2.1. - X-Ray molecular structure of compound 33 and 
crystallographic numbering scheme. 

2.2.3 Reactions of compound 33 

To explore the versatility of alcohol 33 as a potential reactive liandle' 

in further synthesis (in particular, once incorporated into a T T F 

framework), the hydroxy group has been reacted with a variety of 

electrophiles, affording the functionalised derivatives 37 - 42, as shown in 

Scheme 2.2. 

Reaction of alcohol 33 with acryloyl or benzoyl chloride at room 

temperature, in the presence of triethylamine, affords the acrylate and 

benzoyl ester derivatives 37 and 38, respectively, in ca. 75% yield. 2-

Chloroethylisocyanate reacted with alcohol 33, under similar conditions, to 

give urethane derivative 39 in 56% yield. The tosylate derivative 40 was 

obtained in 74% yield by reaction of alcohol 33 with tosyl chloride at 0°C, in 

the presence of sodium hydride. Finally, silyl derivative 41 was formed in 

98% yield by reaction of alcohol 33 with ferf-butyl-diphenylchlorosilane in 

DMF in the presence of imidazole. 
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Ph 2
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s 
42 

'-CO-1 S = < || y«~OSiPltfBu 
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41 

Scheme 2.2. - Reactions of 4,5-[2-(hydroxy)propylene-l,3-dithio1-l,3-
dithiole-2-thione. 

These transformations demonstrate the facile reactivity of the 

secondary alcohol group with acid and sulphonyl chlorides, isocyanates and 

chlorosilanes. However, despite this reactivity with these functional groups, 

exhaustive attempts to generate and subsequently trap the corresponding 

alkoxide, largely failed. Treatment of alcohol 33 with a variety of bases, 
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followed by the addition of alkyl halide gave none of the desired product. 

Similar results were observed on treatment of 33 with base in the presence 

of the alkyl halide, in an attempt to trap the alkoxide in situ. In each case, 

T L C showed small traces of the starting alcohol, the major product 

remaining on the base line. 

This observation is best explained by ring opening of the 1,3-dithiole-

2-thione unit, which is known to occur under basic conditions 3 6, generating 

the corresponding dithiolate species (Scheme 2.3.). In this case, the reagent 

base or small traces of initially formed alkoxide could be responsible for the 

ring opening reaction. 

RS RS 

X base 

RS RS 

Scheme 2.3. - Ring opening of 1,3-dithioles under basic conditions. 

The methyl ether derivative 42, however, could be obtained, though 

in only 5% yield, by reaction of alcohol 33 with sodium metal in toluene in 

the presence of iodomethane. 

Attempts to displace the tosylate group of 40 with nucleophiles were 

unsuccessful. For example, both sodium bromide and sodium azide failed to 

react with tosylate 40. In both cases the starting material was recovered. 

Inspection of C P K molecular models of 40 suggests that the lack of reactivity 

towards substitution is because the tosylate group of 40 is sterically very 

hindered to displacement, due to the folded conformation of the seven-

membered ring (cf. the X-ray crystal structures of compounds 33 and 82). 

2.2.4 T T F synthesis using silyl-protected 1.3-dithiole half-unit 41 

The attempted self-coupling of both acrylate and urethane derivatives 

37 and 39, respectively, using neat triethylphosphite to give directly the 

corresponding symmetrical bis-functionalised T T F derivatives was 
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unsuccessful; no TTF derivative was detected. Likewise, although alcohol 33 

self-coupled to give bis[2-(hydroxy)propylene-l,3-dithio]TTF 45, the yield 

was very low (< 5%). This illustrates the incompatibility of the acrylate, 

urethane and hydroxy functional groups with the triethylphosphite 

coupling reagent and conditions. T T F derivative 45 can be more efficiently 

synthesised via a two-step procedure by self-coupling the silyl derivative 41, 

to yield 44, followed by removal of the terf-butyl-diphenylsilyl (ferf-BDPSi) 

protecting group with fluoride ion (Scheme 2.4.). 

In our experience, coupling of l,3-dithiole-2-thiones normally 

proceeds in low yield compared to the corresponding l,3-dithiole-2-ones. 

Conversion of the trithiocarbonate functionality of 41 to the corresponding 

dithiocarbonate 43 was achieved in quantitative yield using mercuric acetate 

in chloroform /acetic acid. It is noteworthy that the fert-BDPSi protecting 

group withstands both these acidic and phosphite coupling conditions, 

which probably would have caused cleavage of silyl ethers with less bulky 

alkyl substituents. The self-coupling of ketone 43, under the same 

conditions, afforded 44 in 50% yield, compared to a 33% yield for the 

corresponding thione 41. 

Diol 45 is only sparingly soluble in most common organic solvents. 

Nonetheless, both hydroxy groups of 45 could be functionalised to yield 

compounds 46 and 47 in ca. 70% yield, by reaction with acetyl and 4-

bromobutyryl chloride, respectively, in refluxing toluene containing 

imidazole. 

Due to the fact that the C-2 carbon atom in the propylene-dithio 

bridge of compounds 41 and 43 is prochiral, compound 44 is formed as a 

mixture of diastereomers. Consequently, the derived products 45-47 are also 

obtained as a diastereomeric mixture. Additionally, two conformational 

isomers of compounds 44-47 can exist. The presence of isomers is confirmed 

by the 1 H NMR data. The hydroxy protons of diol 45 appear as two separate 

doublets in the 250 MHz 1 H NMR spectrum, most likely arising from the 
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two conformational isomers present. Furthermore, the 500 MHz *H NMR 

spectrum of compound 44 shows two sets of complex multiple! systems, at 

very similar chemical shift values, from the methine protons. It was not 

considered necessary at this stage of our studies on these compounds to 

attempt to separate the diastereomers, which appear as one product on T L C . 

OSiP^'Bu 

41 

Hg(OAc) 2 

CHC1 3 /AcOH 

43 

OSiP^Bu 

(EtO) 3PN 

130°C 
(EtO) 3P 

130°C 

1 BuPf^S 

44 

Bu 4NF THF 

OSiP^Bu 

RC(0)C1 
PhMe 
imidazole 
A 

•A<IKX> /" 
46 R = C H 3 

47 R = - C H 2 C H 2 C H 2 B r 

Scheme 2.4. - Synthesis of symmetrically functionalised TTF derivatives. 
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Cross-coupling of ketone 43 with 4,5-dimethylthio-l,3=dithiole-2-one 

48 in the presence of triethylphosphite yielded the unsymmetrical T T F 

system 49 in ca. 30% yield (Scheme 2.5.). This compound could not be 

completely separated from self-coupled products, even after extensive 

chromatography. Deprotection of derivative 49 afforded the TTF-alcohol SO 

in ca. 67% yield, which could be obtained analytically pure. 

Functionalisation of the alcohol group of T T F derivative SO can be 

achieved under the same conditions used to prepare the corresponding 1,3-

dithiole half-units. Hence the T T F acrylate S I and urethane 52 were 

obtained by reaction of alcohol 50 with acryloyl chloride (31% yield) and 2-

chloroethylisocyanate (80% yield), respectively, in the presence of 

triethylamine. 

2.2.5 T T F systems containing the 4.5°f2-(hydroxvmethyl)propylene-1.3-

dithiol unit 

The lack of reactivity of the tosylate group of compound 40 towards 

nucleophilic substitution severely limits the use of this compound as a 

potential starting material for further functionalisation and subsequent 

incorporation into more complex T T F systems. As explained earlier, this 

lack of reactivity is probably due to the folded conformation of the seven-

membered ring making the tosylate group sterically very hindered to 

displacement. It was considered that the introduction of a methylene spacer 

unit between the hydroxy group and the seven-membered ring could 

overcome this problem, by removal of the reactive site from the steric 

hindrance of the ring. The formation of a primary rather than a secondary 

functional group should also increase the general reactivity of such 

derivatives. 
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Scheme 2.5. - Synthesis of unsymmetrically functionalised TTF derivatives. 

The synthesis of symmetrical and unsymmetrical T T F derivatives 

containing the 4,5=[2-(hydroxymethyl)propylene=l,3-dithio] unit is outlined 

in Scheme 2.6. The starting 3-bromo-2-(bromomethyl)propan-l-ol 54 was 

prepared by borane reduction of commercially available 3-bromo-2-
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(bromomethyl)propanoic acid 53 in ca. 96% y ie ld 6 2 . The sequence of 

reactions leading to the symmetrical dihydroxy- and unsymmetrical 

monohydroxy-TTF derivatives 59 and 61, respectively, is analogues to those 

for the 4^-[2-(hydroxy)propylene-l,3-dithio] systems (Schemes 2.4. and 2.5.). 

Reaction of 3-bromo-2-(bromomethyl)propan-l-ol 54 with zincate salt 32 in 

refluxing acetonitrile afforded 4,5-[2-(hydroxymemyl)propylene-l,3-dithio]-

l,3-dithiole-2-thione 55 in 79% yield. Protection of the hydroxy group as its 

ferf-butyl-diphenylsilyl ether was achieved in 83% yield using terf-butyl-

diphenyl-chlorosilane in DMF in the presence of imidazole to give thione 

56. Oxidation of the trithiocarbonate functionality of 56 to the corresponding 

dithiocarbonate 57 using mercuric acetate in chloroform/acetic acid 

proceeded in 97% yield. 

Self-coupling of 57 in the presence of triethylphosphite at 130°C gave 

the disilyl derivative 58 in 55% yield, which, on removal of the ferf-BDPSi 

protecting groups with fluoride ion afforded, in 57% yield, the symmetrical 

dihydroxy-TTF derivative 59. As with disilyl derivative 44, compound 58 is 

formed as a mixture of diastereomers resulting from the prochiral carbon 

atom at C-2 in the propylene-dithio bridge. Additionally, two 

conformational isomers can exist. The derived product 59 consequently also 

exists as a mixture of both diastereomeric and conformational isomers. 

Cross-coupling of 57 with 4,5-dimethylthio-l,3-dithiole-2-one 48 

under the same conditions, gave compound 60 which, on deprotection, 

afforded the unsymmetrical hydroxy-TTF derivative 61 in 34% overall yield 

for the two steps. 
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Scheme 2.6. - Synthesis of symmetrical and unsymmetrical TTF derivatives 
containing the 4,5-[2-(hydroxymethyl)propylene-l,3-dithio] 
unit. 
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2.2.6 Reactions off c o m p o m d 61 mA ite dgriyativeg 

To investigate the effect of the incorporation of the methylene spacer 

unit on the reactivity of derivatives towards nucleophilic substitution, the 

corresponding p-toluene- and methyl-sulphonate esters of compound 61 

were prepared (Scheme 2.7.). 

s s ̂ s J 

Me 
CH 2OTos 

MeS 
62 

NMs 
TosQ 

C H , a 
N 20°C 

xxx. > MeS 

CH 2OH 
MeS 

61 CH,CI 
NM9 20°C 

"XXX}" 
s s s x s 

Me 
CH2OMes 

MeS TosCl CH,C1 
Et,N 64 

XKX> MeS 
CH2CI + tosylate 62 

MeS 
28% 63 45% 

Scheme 2.7. - Reactions of compound 61. 

Reaction of alcohol 61 with p-toluenesulphonyl chloride at 20°C in 

the presence of 4-dimethylaminopyridine (DMAP), afforded the required 
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tosylate 62 in 55% yield. In an attempt to increase the yield of this reaction, 

triethylamine was used as base and the reaction refluxed in 

dichloromethane for 48 hours. Investigation of the reaction mixture after 

this time showed that the desired tosylate was present, but in only 28% 

yield, the major reaction product being the corresponding chloride 

derivative 63, formed in 45% yield. The observation of this product can be 

explained by nucleophilic substitution by chloride ion on the initially 

formed p-toluenesulphonate ester. The mesylate derivative 64 was 

prepared, in 76% yield, by reaction of alcohol 61 with methanesulphonyl 

chloride, at 20°C, in the presence of DMAP. 

The formation of chloride 63 from tosylate 62 shows the reactivity of 

the -CH2OT0S group in compound 62 towards nucleophilic substitution. 

Thus, the introduction of the methylene spacer group has overcome the 

lack of reactivity towards displacement observed earlier for compound 40. 

2.2.7 Attempts to synthesise a T T F primary amine 

There are very few synthetic routes to nitrogen substituted 

tetrathiafulvalenes 3 3 . It was therefore considered an attractive target to 

convert the hydroxy group of alcohol 61 to a primary amine functionality. 

This amine should lend itself to incorporation into TTF systems containing, 

in particular, the amide link. Three different methodologies were tried in 

an attempt to synthesise such an amine system. 

Reaction of mesylate 64 with sodium azide in toluene/water in the 

presence of a phase transfer catalyst afforded the azide derivative 65 

(Scheme 2.8.). However, treatment with either lithium aluminium hydride 

or sodium borohydride failed to reduce the azide to the amine group 66; no 

T T F derivative could be isolated from the reaction mixture. 
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Scheme 2.8. - Attempts to synthesise an amine substituted 
tetrathiafulvalene. 
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In an attempt to perform a Gabriel synthesis, the phthalimide 

derivative 67 was prepared, in 40% yield, by reaction of chloride 63 with 

potassium phthalimide. However, treatment with hydrazine followed by 

acidification failed to yield the desired amine 66. As before, no T T F 

derivative could be isolated. 

Finally, although reaction of mesylate 64 with sodium cyanide 

afforded the nitrile derivative 68 in 66% yield (Scheme 2.9.), attempts to 

reduce the cyano functionality to the corresponding amine 69 with lithium 

aluminium hydride, were unsuccessful. Therefore, although different 

approaches have been tried, it has not been possible to prepare a T T F 

primary amine by functionalisation of the hydroxy group of alcohol 61. 

1 K X > 
s s s N

s—/ 

Me 

CH2OMes 
MeS 

64 

NaCN DMF 

> CH 2 C=N 

Me 

68 

4* LiAlH 

MeS 

CH 2 CH 2 NH 2 

Me 

69 

Scheme 2.9. - Attempted amine synthesis via hydride reduction of a nitrile 
functionality. 
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2^.8 1 T F synthesis rasing ketal-protected 1.3°dithloIe half-unit 72 

The reactions of 1,3-dithiole derivative 70 have also been explored 

with the aim of obtaining propylenedithio-TTF derivatives with exocyclic 

ketone functionality. The zincate salt 32 reacted with 1 ,3-dichloropropan-2= 

one to yield keto-thione derivative 70 in 76% yield (Scheme 2.10.). 

Conversion into the diketone 71 was achieved in quantitative yield by 

mercuric acetate oxidation. Attempts to self-couple either thione 70 or 

ketone 71, using triethylphosphite, gave complex product mixtures from 

which no TTF derivative could be isolated. This result again illustrates the 

incompatibility of certain functional groups (in this case, the ketone group) 

towards the phosphite coupling reagent and conditions. 

However, the exocyclic ketone group of compound 71 could be 

selectively protected, in 84% yield, as the ketal 72 by reaction with ethylene 

glycol in refluxing toluene in the presence of an acid catalyst. Self-coupling 

of 72 under the same conditions, proceeded smoothly to afford the 

symmetrical T T F derivative 73 in 66% yield. Removal of the ketal 

protecting group of 73 required remarkably harsh conditions. Compound 73 

was recovered unchanged from refluxing in a 10% solution of hydrochloric 

acid in THF. However, upon refluxing in a 15% solution of sulphuric acid 

in T H F , the symmetrical diketone-TTF derivative 74 was obtained in 87% 

yield (an overall yield of 37% from zincate salt 32). It is noteworthy that the 

C6S8 core of the T T F unit is able to withstand these strongly acidic 

conditions. This is a result of the attachment of sulphur atoms to the 

periphery of T T F increasing its resistance to chemical oxidation under such 

conditions. 
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Scheme 2.10. - Synthesis of a symmetrical TTF derivative containing 
exocyclic ketone functionality. 

Attempts were made to convert the carbonyl groups of compound 74 

to their corresponding thiocarbonyl system. However, although a variety of 

methods were tried (phosphorus pentasulphide, Lawesson's Reagent, 

Davy's Reagent and hydrogen sulphide), in each case, the unreacted starting 

material was recovered, with none of the desired symmetrical dithione 75 
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being formed (Scheme 2.11.). It is suggested that the lack of reactivity may 

result from the insolubility of diketone derivative 74, which was found to 

be readily soluble only in DMSO and hot 1,1,2-trichloroethane. 

-C CKX> 
74 

i) P2%/FhMe/A 

ii) Lawesson's Reagent 
PhMe/A 

4* 
iii) Davy's Reagent / QH 3 C1 3 

iv) H 2 S / E t O H / H C l 

x > 0-0 s 

75 

Scheme 2.11. - Attempted thionation of symmetrical diketone-TTF 
derivative 74. 

The ketal-protected half-unit 72 has been cross-coupled with 1,3-

dithiole-2-thione (or 2-one) derivatives 48 and 76-78 to give the 

unsymmetrical T T F derivatives 79-82 in 18-37% yields (Scheme 2.12.). For 

these reactions, the yield of the desired cross-coupled product was optimised 

by using the thione derivatives 76 and 77 of the unsubstituted and 4,5-

dimethyl substituted half-units, respectively (3 mol equivalents), and the 

ketone derivatives 48 and 78 of the 4,5-alkylthio substituted half-units (1 

mol equivalent). Deprotection was achieved using the same acidic 

conditions as for the symmetrical diketone analogue 74, to afford the 

unsymmetrical ketone-substituted TTF donors 83-86 in high yield. 
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Scheme 2.12. - Synthesis of unsymmetrical TTF derivatives containing 
exocyclic ketone functionality. 

2.2.9 X°Ray crystal structure of compound 82 

The structure of compound 82 has been examined by single crystal X-

ray analysis. This was determined for the following reasons: (i) relatively 

few structural studies have been reported on neutral, unsymmetrical T T F 

derivatives, although their potential in the construction of organic 

conductors is well recognised 6 3; (ii) compound 82 provides a unique 

opportunity to study the effect of spiro substitution on the crystal packing of 

the molecules, and (iii) it was considered that possibly the oxygen atoms of 

the ketal group might engage in close intermolecular O—S contacts. Such 

interactions have been observed recently in the structure of 
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bis(ethylenedioxo)TTF / (BEDO-TTF) 2 8 5 5 and it would, therefore, be of 

interest to find other TTF systems possessing similar O—S contacts. 

The molecular structure of compound 82, and the atom numbering 

scheme are shown in Figure 2.2. The TTF framework of compound 82 

adopts a non-planar, boat-like conformation, which is typical of many 

neutral (symmetrical) T T F derivatives, e.g. B E D T - T T F 4 6 4 : the central 

tetrathioethane fragment of compound 82 is essentially planar with both 

1,3-dithiole rings folded in the same direction, by 15° along the S(l)—S(2) 

axis, and by 20° along the S(5)—S(6) axis. The conformation of the seven-

membered ring is essentially identical to that of compound 33, and the six-

membered ring of compound 82 is a similar shape to that of BEDT-TTF 4^, 

with bond angles C(9)-S(7)-C(ll) and C(8)-S(8)-C(10) of 102.3° and 97.5°, 

respectively. The bond angles at the spiro centre C(4) are in the range 107-

115°, the angle C(5)-C(4)-C(6), within the seven-membered ring, showing the 

largest deviation from tetrahedral geometry. 

ss 
§3 02 

C2 C8 C6 C13 C4 C7 
CIO 

01 CI 

CS C9 C3 C12 C l l SI §6 
S4 S7 

Figure 2.2. - X-Ray molecular structure of compound 82 and 
crystallographic numbering scheme. 

The packing of the molecules of compound 82 within the crystal is 

shown in Figure 2.3. Centrosymmetrically related pairs of molecules are 

arranged in columns along the c axis of the crystal, with the axes of the TTF 

framework at 45° and 135°, respectively, in adjacent columns. This results in 
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the arrangement of molecules along the b direction forming a 'herring-

bone'-like packing. The closest intermolecular contacts involving sulphur 

and oxygen are as follows: S(D—S(l) 3.498A, S(2)-~S(4) 3.475A, S(3)--0(l) 

3.390A and Oil)—O(l) 3.3lA, none of which is significantly shorter than the 

sum of the van der Waals radii for the two atoms (I.80A for sulphur and 

1.40A for oxygen). 

\ ?4 fi "A 

\ 1 
Figure 2.3. - X-Ray crystal structure of compound 82 projected along the a 

axis. 

2.2.10 Further synthesis of unsymmetrical T T F derivatives 

The ketone group of compound 84 was cleanly reduced, in 90% yield, 

with lithium aluminium hydride to yield the unsymmetrical T T F alcohol 

87 (Scheme 2.13.). This route, via the ketal protected ketone functionality, 

therefore provides an alternative route to mono-alcohol substituted T T F 

systems. This pathway therefore complements the previously described 

route (Scheme 2.5.), in which a silyl ether derivative was employed as a 

protecting group. 
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Scheme 2.13. - Synthesis of a mono-alcohol TTF system via hydride 
reduction of a ketone group. 

Cross-coupling of the silyl-protected half-unit 43 with the ketal-

protected half-unit 72 proceeded, in 37% yield, to afford the T T F derivative 

88 (Scheme 2.14.). This unsymmetrical T T F is a particularly attractive 

system, since it should be possible to selectively remove the two different 

hydroxy protecting groups, thereby providing an efficient method for 

unsymmetrical functionalisation of TTF-diol 45. 

(EtO) 3P 

43 

OSiPh^Bu 

130°C 

y==^J^^y~ OSiP^Bu 

88 

Scheme 2.14. - Synthesis of a 'TTF-dioV with two different hydroxy 
protecting groups. 

2.2.11 Electrochemical redox properties of the new T T F derivatives 

The solution redox chemistry of the new T T F derivatives 45, 50-52, 

59, 61, 74 and 83-86 has been studied by cyclic voltammetry. Each donor 

shows two, single-electron, reversible redox waves at the expected potentials 

for TTF derivatives with a C6S6 or C6Ss core 6 5 (Table 2.1.). These data are a 
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reliable confirmation that the TTF system has remained intact during all the 

synthetic transformations accomplished at the periphery of the molecule. 

The oxidation potential of a T T F derivative is known to be raised by the 

attachment of alkylthio substituents due to destabilisation of the radical-

cation and dication species by the electron-withdrawing effect of the sulphur 

atoms. Conversely, the attachment of alkyl groups lowers the oxidation 

potential of a T T F derivative through inductive stabilisation of the radical-

cation and dication species by the electron-donating effect of the 

substituents. Thus, within the series of donors with exocyclic ketone 

functionality, compound 84, which carries two methyl substituents, is the 

most easily oxidised. The oxidation potentials are not affected by the 

presence of the substituents on the propylenedithio bridge(s), which are 

electronically isolated from the TTF core in all the new derivatives. 

Donor Solvent EiV2/v E 2 l / 2 / v 

45 CH 2 c l 2 
0.66 1.03 

50 CH2C12 0.56 0.92 

51 CH2CI2 0.57 0.93 

52 CH2CI2 0.56 0.92 

59 CH2CI2 0.51 0.92 

61 CH2CI2 0.55 0.92 

74 CHCI2CH2CI 0.68 1.04 

83 CHCI2CH2CI 0.60 0.91 

84 CHCI2CH2CI 0.51 0.96 

85 CHCI2CH2CI 0.64 0.98 

86 CHCI2CH2CI 0.64 1.02 

Table 2.1. - Cyclic voltammetric data for TTF derivatives. 
Data were obtained at 20°C versus Ag/AgCl, under argon using a 
platinum button electrode and a platinum wire counter electrode, 
ca. 5 x 2(H M compound, 0.1 M tetrabutylammonium 
hexafluorophosphate, scan rate 100 mVsec1, using a BAS 100 
Electrochemical Analyser. 
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23 CONCLUSION 

A range of functionalised symmetrical and unsymmetrical 

tetrathiafulvalene derivatives containing substituted propylenedithio units 

fused to the T T F framework has been prepared. As well as potential 

components of charge-transfer and radical-cation salts within the field of 

'organic-metals', compounds 45, 50, 59, 61 and 87 bearing hydroxy 

functionality, can act as building blocks for incorporation into new classes of 

redox-active materials. Until recently, the construction of such materials has 

been largely neglected, due to the lack of suitably functionalised T T F 

derivatives. Work in our own laboratory and by T. Jergensen at the 

University of Odense, Denmark, has already led to a number of exciting 

results. 

Derivatives of diol 45 have been incorporated into macrocyclic and 

supramolecular sys tems 6 6 . Alcohol 61 has been used as the starting 

monomer unit in the construction of redox-active dendritic 

macromolecules 6 7 . By a convergent synthetic strategy, the symmetrical 

dendrimer 89 containing 12 T T F units at the periphery of the 

macromolecule, has been assembled. This is the first example of a dendritic 

macromolecule containing T T F units and is an important advance in the 

supramolecular aspects of T T F chemistry. Dendrimer 89 exhibits the 

characteristic redox behaviour typical of the TTF system. 
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The unsubstituted analogue of TTF-alcohol 50 has been synthesised 

by G. Cooke at Durham and used in the preparation of the amphiphilic 

derivative 9 0 6 8 , which is being evaluated in the formation of conducting 

Langmuir-Blodgett films. Finally, the synthesis of TTF-acrylate 51 has 

provided a material that could potentially act as a monomer unit in the 

preparation of redox-active polymeric materials. 

O NH-(CH 2)i7CH 3 

90 

In summary, the successful synthesis of suitably functionalised 

tetrathiafulvalene derivatives described in this chapter, should find 

widespread use in ,the construction of new, redox-active molecular 
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materials. The first few examples, paving the way for future derivatives, 

have already become apparent during the course of this work. 
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CHAPTER THREE 

MULTIPLE TETRATHIAFULVALINES 

AND THE TTF-THIOLATE ANION 
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3.1 I N T R O D U C T I O N 

The tetrathiafulvalene ring system has been extensively modified in 

recent years in the search for new donor molecules suitable for the 

formation of low dimensional organic metals 2 7. Following the suggestion of 

Wudl et al. that molecules containing two, or more, linked donor units 

might yield complexes of higher than one-dimensionality6 9, there has been 

consistent interest in the synthesis of covalently-linked dimers, and higher 

multiples, of TTF. As well as challenging synthetic targets, both the 

structural and electronic properties of such systems are of interest. 

These systems have the special feature that by varying the linking 

group it is possible to control the relative juxtaposition of neighbouring TTF 

units in the crystal structure 7 0, and this may be a means of regulating the 

band filling in derived salts 7 1 . Also, these systems could display novel 

multi-stage redox behaviour with high oxidation states being accessible at 

relatively low potentials. The solution electrochemical properties of some 

covalently tethered TTFs are considerably more complex than monomelic 

TTFs, probably due to a combination of both inter- and intra-molecular 

interactions 7 1 ' 7 2 . These materials are also of bourgeoning interest in the 

wider context of supramolecular chemistry, where the construction of 

multi-stage redox assemblies is a topical theme, e.g. molecular wires and 

switches, of relevance to the development of molecular electronic devices 7 3. 

Within this context, T T F moieties have been joined by a variety of 

linking groups. The [2.2]- and [3.3]tetrathiafulvalenophanes 91 and 92, 

respectively, have been reported by Ippen et al. 7 4 . Although the products 

are formed as a mixture of isomers, a crystal structure of 91 has been 

obtained, confirming the molecule has the step-like anti-conformation. No 

redox behaviour was reported for these "TTF-phanes". The synthesis of the 

chalcogen bridged bis-TTFs, T T F - X - T T F (X=S, Se, Te), 93-95 has been 

achieved 7 0 3'*. The X-ray crystal structure of sulphide 93 reveals a remarkable 
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network of very close, intermolecular S—S interactions in the solid state. 

The solution electrochemistry of the series of donors has been studied by 

cyclic voltammetry. In each case, three distinct oxidation waves are 

observed. The first two oxidations are electrochemically reversible and are 

both one-electron processes consistent with the sequential formation of 

mono- and di-cationic species TTF-X-TTF+- and TTF+-X-TTF"5"-, respectively. 

Further oxidation to the tri- and tetra-cationic species, ( T T F ^ X 3 + - and 

( T T F ) 2 X 4 + , is observed as a single, irreversible, two-electron wave. The 

separation between the potentials of E i 1 / 2 and E 2 1 / 2 is probably due to intra-

(or inter-) molecular Coulombic effects. 

Tatemitsu et al. have reported 7 5 the synthesis of 96 and the spiro 

"TTF-dimers" 97 and 98, all three donors showing reversible redox potential 

waves. Compound 96 exhibits three redox waves, the first and second 

involving one-electron transfer with the third indicating a two-electron 

reaction. Therefore, as with the chalcogen bridged bis-TTFs 93-95, more 

complex redox behaviour is observed for electronically coupled bis-TTFs 

than when the T T F units are electronically isolated. 

XtX> (CH,) (CH,) 2'n 

93 X=S 
94 X=Se 
95 X=Te 

91 n=2 
92 n=3 

SMe 

MeS 
SMe 

Me 
96 
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97 R = H 
98 R-R = - S C H 2 C H 2 S -

Japanese workers have recently reported 3 4 the synthesis of the bis-

TTFs 99-101. However, although the T T F moieties are electronically linked, 

all three compounds exhibit only two redox waves, corresponding to two 

two-electron transfers. Therefore, the compounds 99-101 are oxidised by two 

two-electron steps. 

c 
99 

101 

Mullen et al. have reported 7 6 the preparation of the conjugated bis-

and tris-TTF systems 102 and 103, respectively. The T T F 'dimer7 102 can be 

charged reversibly up to the tetra-cation in four separate potential steps, 

whereas the 'trimer' 103 can be oxidised to a hexa-cation. 
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P(TTF>3 104, a unique electron-rich phosphine has been efficiently 

synthesised by Fourmigue et ah 7 0 c A j n cydic voltammetry experiments, 

two reversible oxidation waves are observed, at very similar values to those 

for TTF, under the same experimental conditions. This demonstrates that 

the three TTFs do not interact strongly with each other across the 

phosphorus atom. 

A series of alkylthio bridged bis-TTFs 105-111 have been prepared by 

M. Jargensen et al.72, in order to investigate the mutual effect on the redox 

potentials of the close proximity of two T T F moieties. The electrochemistry 

of the bis-TTF series shows some interesting effects. In most cases (107-111) 

both T T F moieties are oxidized at the same potential and only two two-

electron oxidation waves are seen. However, a broadening of the first 

v 
104 
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oxidation wave is observed for compounds 107 and 109 in which the spacer 

groups are propylene or a,a'-o-xylene. In compounds 105 and 106, where the 

two TTF-thio moieties are separated by a methylene or an ethylene group, 

respectively, three oxidation steps are seen. Also, the first oxidation 

potentials of compounds 105 and 106 are lower than those of 107-111 i.e., the 

proximity of the second T T F somehow makes the removal of the first 

electron easier. 

The explanation given for these findings is that for compounds 105 

and 106 the two T T F moieties form a "sandwich complex" with some degree 

of sharing of the 7t-electrons, which may lower the first oxidation potential 

by stabilising the mono radical cation. Removal of the second electron from 

the molecule causes the dimer to 'unfold' because of the Coulombic 

repulsion between the two T T F units. The TTFs now behave like individual 

molecules and the third and the fourth electrons are removed at the same 

potential. When the spacer becomes longer, the distance between the TTFs 

will increase together with the number of degrees of freedom for the 

molecule and hence the "sandwich effect" becomes less pronounced. The 

implication from these results is that the interaction does not occur through 

bonds to any significant extent. 

M < K ^ S V S ^ M e M e ^ o s ^ - M e 

R R 

105 - C H 2 - 109 a,a!- o -xylene 
106 - (CH 2 ) 2 - 110 a,cc'- m -xylene 
107 - (CH 2 ) 3 - 111 a,^- p -xylene 
108 - (CH 2 ) 1 0 -

Finally, Mizutani et al. have synthesised the novel donor 112, which 

contains two conjugated T T F moieties linked with divinyl xylene 7 7 . The 

cyclic voltammogram exhibits two sharp oxidation peaks and one broad 
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oxidation peak, all of which are irreversible. This indicates that the donor 

cannot be described in terms of two independent T T F units and there is %-

conjugation extending between the T T F moieties. 

Me 

s $r Me 

112 

3.2 T H E T T F - T H I O L A T E A N I O N 

It has been shown that all four protons of T T F 1 are removed by 

reaction with four equivalents of L D A at -78°C, and the resultant tetra-anion 

can be treated with elemental sulphur, selenium or tellurium, followed by 

alkyl halides, to yield T T F derivatives substituted with four thioalkyl, 

selenoalkyl or telluroalkyl chains 3 0 . This work established that the T T F -

chalcogenate anions are considerably more reactive towards electrophiles 

than are lithiated TTF species; for example, metallated T T F will not react 

with alkyl halides, whereas TTF-chalcogenate anions are readily alkylated. 

However, prior to the present work, the synthesis of mono-alkylthio T T F 

derivatives via insertion of elemental sulphur into the carbon-lithium 

bond of mono-lithiated TTF, was virtually unexplored. 

Previous workers in our group had successfully synthesised the first 

mono(alkylchalcogeno)-TTF derivatives in the preparation of amphiphilic 

materials 3 1. However, the yields of these reactions were very poor (10-15%) 

which, at the time, was ascribed to an inefficient chalcogen insertion step. 

More recently though, 4-[2-(hydroxy)ethylthio]tetrathiafulvalene 113 has 

been efficiently synthesised in 65% yield via the same sulphur insertion 

methodology 7 8. It is now considered that the low yields in the preparation 
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of amphiphilic derivatives are probably due to the poor solubility of the 

alkyl halide at low temperatures, possibly combined with steric factors 

associated with the conformational flexibility of the long-chain alkylating 

agent. 

3.3 M U L T I P L E T E T R A T H I A F U L V A L E N E S Y S T E M S 

The high reactivity of the TTF-thiolate anion 114 has been developed 

for covalently linking T T F units via a range of spacer groups. This approach 

to multi-TTF systems is quite distinct from previously reported routes and 

has provided a number of symmetrical dimeric and trimeric 

tetrathiafulvalenes. 

3.3.1 Bis- and tris-TTFs derived from reactions of the TTF°thiolate anion 

Mono-lithiated T T F 11 was generated using standard conditions 2 9 

and treated with one equivalent of elemental sulphur at -78°C, affording the 

intermediate TTF-thiolate anion 114 which can be treated in situ with a 

range of electrophiles. Trapping with l,3-bis(bromomethyl)benzene and 

l,3,5-tris(bromomethyl)benzene yields the aryl-bridged bis- and tris-TTF 

derivatives 115 and 116, respectively, in 10-17% yields (Scheme 3.1.). 

In an attempt to form bis-TTF 117, in which two tetrathiafulvalene 

units are linked by an ethylenedithio bridge, 1,2-dibromoethane (0.5 

equivalents) was added to the TTF-thiolate anion 114. Investigation of the 

reaction mixture showed that none of the desired bis-TTF 117 had been 

formed. However, the known donor 4,5-(ethylenedithio)tetrathiafulvalene 

(EDT-TTF) 118 was isolated in 10-20% yield (Scheme 3.2.). This is a new, one-

SCH 2 CH 2 OH fXT 
113 
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pot route to the unsymmetrical donor 118, that although the yield is very 

low, is considerably shorter than the previous method which involved 

phosphite-mediated cross-coupling of two 1,3-dithiole half units 7 9 . 

0-0 L D A / E t , 0 / -78 " C / 45 mins 
Li 

1 11 

Ss/Et20/-78vC/7hrs 

114 

, o . . . Br Br Br 

JX Br Br 

115 

s -i 

XK3 
116 

Scheme 3.1. - Synthesis of aryl-bridged multi-TTFs. 
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The sequence of events leading to the formation of the disubstituted 

product 118 is unclear. Disproportionation of lithiated T T F 11 and 

chalcogenated TTF anion 114 may occur to yield transient dianion species. 

A n alternative, and perhaps more likely mechanism, does not involve 

dianion species, but, instead, alkylation of species 114 occurs prior to the 

second deprotonation and chalcogenation of the T T F system. The directing 

influence of an alkylthio substituent on further substitution onto the T T F 

ring has not been investigated previously. 

In early work, Green established that attachment of an electron-

withdrawing substituent (e.g. an ester group) to T T F activated the adjacent 

position to metallation, affording 4,5-disubstituted products, while an 

electron-donating substituent (e.g. a methyl group) directed a second 

substitution into the 4' or 5' positions (i.e. on the other dithiole ring, 

Scheme 1.3.) 2 9. The formation of the 4,5-disubstituted compound 118 is, 

therefore, consistent with other work on the di-substitution of T T F , given 

the electron-withdrawing nature of the alkylthio substituent. 

+ 
i ) LDA/Et 2 0/-78°C/45mins 

i i ) S8/Btfi/-78°C/7bn 
i i i ) B r C H 2 C H 2 B r (0.5equiv) 

TTF 1 

l,xj tK* CKX 
117 118 

Scheme 3.2. - One-pot route to the unsymmetrical donor EDT-TTF. 
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The computer program C A M E O has been used to examine the effect 

that a range of substituents on the TTF frame has on the pKa values of the 

remaining T T F protons. It has been shown previously that there is 

agreement to within 1-2 p K a units between calculated and experimental 

values for protons on unsaturated sites adjacent to su lphur 8 0 . The 

calculated data for TTF derivatives are collated in Table 3.1. It can be seen 

that attachment of an electron-withdrawing ester or acyl substituent 

increases the acidity of the adjacent proton by 3 p K a units; a bromine atom 

or a methylthio group has less effect, but, nonetheless, the data for these 

compounds are consistent with deprotonation being favoured at the 

adjacent site, giving rise to the observed 4,5-disubstituted product. A methyl 

substituent on TTF does not change any of the p K a values of the remaining 

ring protons. 

*XKX" 
R 5-H 4'-H 5'-H 

H 48 48 48 

Me 48 48 48 

C(0)OMe 45 48 48 

C(0)Me 45 48 48 

Br 47 48 48 

SMe 47 48 48 

Table 3.1. - pKa Values of hydrogen atoms in TTF derivatives, calculated 
using the computer program CAMEO. 

The observation of disubstituted products makes the generation of 

the TTF-thiolate anion from T T F 1, inappropriate for the formation of 

certain mono-alkylthio substituted derivatives. In order to perform such 
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reactions it was necessary to prepare a convenient shelf-stable equivalent of 

the TTF- monothiolate. Shelf-stable precursors of 4,5~dithiolato~l ,3-dithiole-

2-thione 1 1 9 8 1 and TTF-tetrathiolate 1 2 0 3 7 were already known, being 

readily generated from the corresponding benzoylthioesters 35 and 20, 

respectively, under basic conditions (Scheme 3.3.)-

S"Na Ph 
NaOEt 

Y 
o 

Ph S Na 

35 119 

O 

A o 
Ph Ph S Na Na XX >-OC NaS'Bu 

Ph Y 
o 

S N a Ph Na Y 
O O 20 O 120 

Scheme 33. - The use of benzoylthioesters as precursors to thiolate 
anions. 

The TTF-thiolate anion 114 was generated (by base treatment of T T F 

1, followed by elemental sulphur) and acetyl chloride added to afford 

thioester 121 in 79% yield (Scheme 3.4.). The corresponding reaction with 

benzoyl chloride gave thioester 122 in 70-78% yield. These yields are much 

higher than the analogous reactions for the TTF-anion (typically 20-40%) 

indicating the enhanced reactivity of the TTF-thiolate anion towards 

electrophiles. 
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o o 
R RC(0)C1 

114 121 R - Me 
122 R - P h 

Scheme 3.4. - The preparation of thioesters from the TTF-thiolate anion. 

The TTF-thiolate anion can be efficiently regenerated (as the sodium 

salt) by treatment of benzoyl ester 122 with sodium ethoxide, in ethanol, at 

-10°C; this was established by trapping anion 123, generated in this way, with 

iodomethane, which gave 4-(methylthio)TTF 124 in 96% yield (Scheme 3.5.). 

The same reaction at 20°C gave compound 124 in only 41% yield. The lower 

yield obtained at 20°C is probably due to decomposition of the intermediate 

TTF-thiolate species 123, which is suppressed at low temperature. Benzoyl-

thio ester 122 serves, therefore, as a convenient shelf-stable equivalent of 

the TTF-thiolate anion. This methodology has the added advantage of 

avoiding the use of ether at -78°C, conditions which can give rise to poor 

solubility and low reactivity of certain reagents. 

S Na Ph CXX (XT NaOEt 

EtOH/-10"C 

122 123 

Mel 

SMe CHT 
124 

Scheme 3.5. - Benzoylthio-TTF as a shelf stable precursor to the TTF-
thiolate anion. 
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The slow addition of thiolate anion 123, generated from reagent 122, 

to an excess of 1,3-diiodopropane and 1,4-diiodobutane yielded iodides 125 

and 126, respectively, in 43-50% yields (Scheme 3.6.). The analogous reaction 

with 1,2-diiodoethane to afford 4- [2-(iodo)ethyIthio] tetrathiafulvalene failed 

to give any of the desired product. Iodides 125 and 126 represent compounds 

in which a redox-active T T F unit and a leaving group (halogen) are 

incorporated into the same molecule. There are very few examples of such 

systems and, as such, these materials should find use in the future 

construction of larger redox-active assemblies. 

o 
Ph NaOEt 

EtOH/-10°C s s-
122 123 

S S ^ / s " N a + 

X S . I ( C H 2 ) n I ^ \ S ^ S ( C H 2 ) n l 125 n=3 
126 n=4 inv. add" 

Scheme 3.6. - Synthesis of TTF iodides from the benzoylthio ester. 

Reaction of iodides 125 and 126 with a second equivalent of thiolate 

anion 123 (also generated from thioester 122) proceeded less efficiently to 

provide the bis-TTF systems 127 and 128, respectively, in 11-26% yield 

(Scheme 3.7.). This two-step route was more efficient than one-pot syntheses 

of 127 and 128 (from two equivalents of thiolate 123 and one equivalent of 

diiodoalkane) which proceeded in only ca.5% yield. 

S ^ S ( C H 2 ) n l [ TTFS" Na + | S ^ S ( C H 2 ) n S ^ s , CKX J — 1 Q-cr X 
125 n=3 127 n=3 
126 n=4 128 n=4 

Scheme 3.7. - Synthesis of alkylthio-bridged bis-TTFs. 
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It is interesting to note the effect of the alkylthio substituent on the 

chemical shift of the adjacent T T F proton in the 1 H NMR spectra. The 

observed chemical shifts for some of the alkylthio substituted TTFs are 

collated in Table 3.2. In each case, the chemical shifts of the protons on the 

unsubstituted dithiole ring (8 Hb,c) are unaffected by the nature of the 

substituent. However, whereas for compounds U S , 116 and 124 the single 

proton singlet is at a lower chemical shift than the two proton singlet, for 

compounds 125-128 the single proton resonates at a higher frequency. 

Therefore, despite the presence of the (normally) electron-withdrawing 

sulphur atom, the relative positions of the proton chemical shifts is 

dependant on the nature of the alkyl group. 

H e ^ S S ^ S C H 2 R 

Cmpd. R SHa(s) 5H b , c ( s ) 

115 3-(TTFSCH2)C6H4 6.11 6.30 

116 3,5-(TTFSCH2)2C6H3 6.13 6.32 

124 H 6.28 6.32 

125 CH2CH2I 6.38 6.32 

126 CH2CH2CH2I 6.37 6.32 

127 CH2CH2STTF 6.39 6.32 

128 CH2CH2CH2STTF 6.36 6.32 

Table 32. - Observed chemical shifts of TTF protons in various alkylthio 
substituted derivatives (CDCI3 solvent). 

3.3.2 Other approaches to multi-TTF systems 

To investigate further the reactivity of T T F derivative 125, this 

compound was reacted with 3,5-dihydroxybenzyl alcohol in the presence of 

potassium carbonate and 18-crown-6 (acetonitrile solvent) to afford the bis-
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T T F 129 in 20% yield (Scheme 3.8.). Despite the rather low yield of this 

reaction, compound 129 is potentially a building block in the construction of 

higher redox assemblies (e.g. dendritic systems) by using the hydroxy group 

as a 'reactive handle' for further functionalisation. The possibility of the 

removal of the acidic methylene protons adjacent to the sulphur atom on 

the thioalkyl chain of 125, could account for the disappointing yield of this 

reaction. 

S(CH 2) 

f \ HO 
TTF-S(CH 2 ) 3 I 

K2Ca/18-C-6 125 MeCN S(CH 2 ) 3 0 CKX 
129 

CH 2OH 

Scheme 3.8. - Synthesis of a bis-TTF suitable for further functionalisation. 

Another approach towards a multi-TTF system is outlined in Scheme 

3.9. The synthesis of a molecule such as compound 132 should, via a 

phosphite mediated coupling, allow the construction of the tris-TTF 133. 

The sodium thiolate salt 123 (generated from thioester 122) on addition to 

an excess of 1,3-dichloroacetone afforded 130 in 44% yield. However, 

although 130 on reaction with the potassium salt of O-ethylxanthic acid 

afforded 131 (71% yield), treatment with phosphorus pentasulphide in 

refluxing toluene failed to give the desired dithiole-thione 132. No TTF 

derivative could be isolated from the reaction mixture and the conditions 

were considered too harsh for 131 to withstand the thionation and 

cyclisation step. 
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o 
A 

TTF-S Ph 
122 

NaOEt 
EtOH 

TTF-S" Na 

123 

xs. aCH 2 C(0)CH 2C1 

130 

s ^ ^ S C H 2 C ( 0 ) C H 2 a KSC(S)OEt/acetcme 

S S ^/SCH 2C(0)CH 2SC(S)OEt 

131 

P 2 S 5 

PhMe/A 

TTF-SCH 

132 

P(OEt) 3 TTF-SCHay^S^ yS ^ 

^ s ^ " s ^ " C H 2 S T T F 

133 

Scheme 3.9. - Synthesis of a 'tris-TTF' via coupling of a dithiole-thione. 

Finally, the tris-TTF 134 was formed, in 59% yield, by 3-fold 

esterification of 1,3,5-benzenetricarbonyl trichloride with T T F alcohol 61 in 

the presence of 4-dimethylaminopyridine (Scheme 3.10.). 
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CI 

Me 
CH2OH 

Q Me 
61 CI CI 

6 
N 

7 

MeS SMe 

S' s 

M 
: S V 

CH 2 

CH 2 CH 

Xh 
SMe MeS 134 

MeS SMe 

Scheme 3.10. - A tris-TTF via 3-fold esterification. 

3.3.3 Electrochemical studies of the multi-TTFs 

The electrochemical redox properties of all the new T T F derivatives 

have been investigated by cyclic voltammetry; these data, along with those 

of the reference compound T T F 1, are collated in Table 3.3. The monomeric 

T T F derivatives 121,122 and 124-126 display two, reversible, single-electron 
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oxidation waves, typical of the TTF system. Predictably, the values of E i and 

E2 are raised slightly by the alkylthio substituesit. The symmetrical dimers 

I I S and 127-129 and the symmetrical trimers 116 and 134 each show two 

reversible redox waves at very similar potentials to the monomers, due to 

simultaneous oxidation of the two or three T T F units at the same 

potentials. Thus, the dimers sequentially form dications and tetracations, 

and the trimers form trications and hexacations, with no intermediate 

oxidation states being detected. 

Donor E i V 2 / v E2V2/V 

TTF 1 0.34 0.71 

115 0.45 0.79 

116 0.47 0.81 

121 0.45 0.84 

122 0.45- 0.81 

124 0.42 0.80 

125 0.46 0.86 

126 0.44 0.81 

127 0.44 0.78 

128 0.44 0.81 

129 0.41 0.76 

134 0.52 0.83 

Table 3.3. - Cyclic voltammetric data for TTF derivatives. 
Data were obtained at 20°C versus Ag/AgCl, in dry 
dichloromethane under argon using a platinum button electrode 
and a platinum wire counter electrode, ca. 5 x 10~4 M compound, 
0.1 M tetrabutylammonium hexafluorophosphate, scan rate 100 
mVsec1, using a BAS 100 Electrochemical Analyser. 

There is no apparent broadening of either of the two oxidation waves, 

suggesting that there are no inter- or intra-molecular Coulombic repulsion 

effects between charged TTF moieties and that the individual T T F units are 
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electronically isolated by the spacer groups and do not interact to any 

significant extent. Previous workers on bis-TTF systems have observed 

intramolecular effects in cyclic voltammetric studies, but only when shorter 

spacer groups 7 2, or single atoms 7 0 a ' c ' d ' f , are bridging the T T F units. 

3.4 TETEATHIAFULVALENE M A C R O M O L E C U L E S 

A particularly attractive target to us in the development of 

supramolecular assemblies based on T T F units, was a system in which 

tetrathiafulvalene units are linked through a central T T F core (Figure 3.1.). 

The solid-state structure of such a system could display novel 

macromolecular architecture. In particular, the effect of a particular T T F 

unit on the stacking of its neighbours in the system, and the possibility of 

the packing of the molecules in both the neutral donors and their charge-

transfer salts to form "pillars" of stacking units, would be of special interest. 

TTF TT 

TTF TTF 

Figure 3.1. - A supramolecular assembly based on TTF units. 

3.4.1 The assembly of TTF macromolecules 

The first approach towards such a system utilised T T F iodide 125. 

Reaction of zincate salt 32 with iodide 125 in refluxing acetonitrile afforded 

the bis-TTF 135 in 20% yield (Scheme 3.11.). This system links two T T F units 

to a l,3-dithiole-2-thione moiety. Unfortunately, attempts to self-couple 135 

using triethylphosphite under standard conditions failed to give the desired 

penta-TTF 137. A n unidentified phosphorus-containing product was 

obtained which could not be characterised. The attempted conversion of the 

trithiocarbonate functionality of 135 to the corresponding dithiocarbonate 
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136 was unsuccessful. On the addition of mercuric acetate to a solution of 

thione 135, an immediate colour change from orange to deep green was 

observed. It is suggested that oxidation of the TTF units has occurred (no 

product was seen to move by TLC) as a result of the oxidative conditions of 

the mercuric acetate. 

2-

A 
s (Euvr) TTF-S MeCN 

125 
32 

CK1 

135 

Hg(OAc), 

TTF-S P(OEt) 

TTF 

136 

P(OEt) 

TTF-S 
125 PhH 

phase transfer 
reagent 

S-TTF TTF-S I K X 
s ^ - s 

-TTF TTF 
137 

Scheme 3.11. - Syntheses of bis-TTF 1^-dithioles. 
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The bis-TTF ketone 136 could be synfchesised, in 50% yield, by the 

addition of an aqueous solution of sodium carbonate to the TTF iodide 125 

and lA^-tetrathiapentalene-ljS-dione in the presence of a phase-transfer 

reagent. However, the attempted self-coupling of ketone 136 to give penta-

TTF 137 also failed. As before, treatment with triethylphosphite gave a 

product which could not be identified. This approach to the synthesis of a 

penta-TTF macromolecule, via coupling of two 1,3-dithiole half-units, was 

now abandoned. 

The second approach to the synthesis of a supramolecular assembly 

based on T T F units proved to be more successful and involves 

tetrafunctionalisation of a central TTF core unit. The key starting material 

in the synthesis is 4,5-di(benzoylthio)-l,3-dithiole-2-thione 3 5 8 1 which was 

readily deprotected and reacted with 2=chloroethanol via the transient 

sodium salt 119 to afford 4,5-bis[2-(hydroxy)ethylthio]-l,3-dithiole-2-thione 

138 in high y ie ld 8 2 (Scheme 3.12.). The attempted direct coupling of 138 to 

142 using triethylphosphite failed, indicating the incompatibility of the 

hydroxy groups with the coupling reagent and conditions. Consequently, a 

suitable protection of the hydroxy groups as the ierf-butyl-diphenylsilyl 

ether was carried out using ferf-butyl-diphenylchlorosilane in DMF in the 

presence of imidazole. The silylation reaction afforded 139 in quantitative 

yield at 20°C. Conversion of the trithiocarbonate functionality of 139 to the 

corresponding dithiocarbonate 140 was achieved, in quantitative yield, 

using mercuric acetate in chloroform/acetic acid. The protected compound 

140 self-coupled smoothly under standard conditions, in 62% yield, to give 

the T T F derivative 141. Deprotection of 141 was achieved, in 75% yield, 

using tetrabutylammonium fluoride in T H F , affording the desired 4,4',5,5'-

tetrakis[2-(hydroxy)ethylthio]tetrathiafulvalene 142. [This compound has 

previously been prepared by Russian workers 9 2 , although via a different 

route.] Tetrahydroxy-TTF derivative 142 was designed to serve as a core unit 

in the multiple-TTF system 143. 
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O S i P ^ u 
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HO S ' s s 

^ 142 

S OH 

S OH 

Scheme 3.12. - Synthesis of a tetrafunctionalised TTF core unit. 

Assembly of the penta-TTF macromolecule 143 by four-fold 

esterification of compound 142 with TTF-carbonyl chloride 8 3 was achieved, 

in 57% yield, using DMF as solvent and triethylamine as base (Scheme 

3.13.). Elemental analysis, Plasma Desorption Mass Spectrometry (PDMS), 

* H NMR and IR spectroscopic data for compound 143 were all entirely 

consistent with its assigned structure. 
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H OH 
142 

« DMF / Et 3 N 

o s 

3̂  L>=<1 143 

Scheme 3.23. - Assembly of a penta-TTF macromolecule. 

3.4.2 Solution redox behaviour 

The redox behaviour of compounds 142 and 143 has been 

investigated by cyclic voltammetry and the data are collated in Table 3.4. 

Compound 142 exhibits two quasi-reversible redox couples typical of the 

TTF system, occuring at a higher potential than the parent T T F 1 in accord 

with the presence of four thioalkyl substituents attached to the T T F frame. 

The penta-TTF 143 shows three quasi-reversible redox couples (Figure 3.2.). 

The first couple corresponds to the first oxidation of the four peripheral 

TTF-units to form a tetracation by simultaneous loss of four electrons. The 

first oxidation of the central TTF-core with loss of one electron gives rise to 

the second couple. The second oxidations of the central T T F and the four 

peripheral TTFs appear to coincide to give the third redox couple, 

generating a species bearing ten positive charges. 
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Donor Eiox/V E 2

0 x / V E 3 0 X / V E i « d / V E 2

r e d / V E 3

r « W | 

TTF 1« 

M 2 a 

1 143b 

0.36 

0.57 

0.63 

0.75 

0.80 

0.75 0.95 

0.30 

0.51 

0.56 

0.69 

0.72 

0.72 

-
0.90 1 

Table 3A. - Cyclic voltammetric data. 
Data were obtained at 20 °C versus standard calomel, using 
platinum working and counter electrodes, ca. 1 x 10~5 M 
compound, 0.1 M tetrabutylammonium hexafluorophosphate, 
scan rate 100 mVsec1. arecorded in MeCN; brecorded in THF. 

+ve 

® 

o 0 

ve 

+0.4 +0.8 +1.2 +1.6 

Potential / V 

Figure 3JZ, - Cyclic Voltammogram of compound 243. 
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3.4.3 Atemptedl ocysftal growftlh amdl dhagjgg-teaKiigfa &a3lft foaafai 

The solid state structures of both the neutral donor and charge-

transfer salts of compounds 142 and 143 have the potential to display novel 

macromolecular architecture. TTF-tetraol 142 could display an extensive 

network of intra- and/or inter-molecular hydrogen bonding. The powder 

and single crystal conductivities of charge-transfer salts would also be of 

interest. 

Unfortunately, it was not possible to obtain X-ray quality crystals of 

either of the neutral donors 142 and 143. Attempts to complex the donors 

with the electron acceptors 7,7,8,8-tetracyano-p-quinodimethane (TCNQ), 

tetracyanoethylene (TCNE) or 2,3-dichloro-5,6-dicyano-l,4-benzoquinone 

(DDQ) also proved unsuccessful. Although a colour change was observed on 

mixing donor 143 with DDQ, no charge-transfer salt could be isolated. 

3.5 CONCLUSION 

New methodology has been developed for the construction of redox-

active multi-TTF systems. The TTF-thiolate anion 114 has been shown to be 

a particularly versatile reagent for this purpose: it should enjoy future use 

in the preparation of new systems of this type. The efficient synthesis of the 

novel pentakis-tetrathiafulvalene 143 is a significant step forward in the 

development of supramolecular assemblies based on T T F units. Multistage 

redox systems and dendritic macromolecules incorporating T T F derivatives 

may be prepared using building blocks reported in this chapter. 
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CHAPTER FOUR 

HIGHLY FUNCTIONALISED ANTHRACENEDIYLIBENE 

fE-ELECTRON DONORS 
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4.1 INTRODUCnON 

Redox-active building blocks with reactive functional groups are of 

importance in supramolecular chemistry 7 3. In this context, the synthesis of 

functionalised tetrathiafulvalene systems is not straightforward and very 

few methods are available for constructing the T T F ring from highly 

substituted components. There is, therefore, a need to explore new re-

electron donor systems that can be readily functionalised. 

From this viewpoint, 9,10-bis(l,3-dithiol-2-ylidene)=9,10=dihydro= 

anthracene 24, which is an analogue of T T F with extended conjugation 

between the two 1,3-dithiole rings, has attracted recent attention. The parent 

system 24 and the tetramethyl derivative 144 have been studied as new n-

donor components for the formation of organic meta l s 5 2 ' 8 4 . A notable 

consequence of the extended conjugation is the reduction of on-site, 

intramolecular Coulombic repulsion (due to a greater separation of charges) 

and hence increased stability of dication states, relative to the parent donor 

T T F 1. Many of these molecules undergo single- or multi-stage redox 

reactions at relatively low oxidation potentials (Section 1.6). 

24 R = H 
144 R = Me 

The first functionalised derivatives of system 24 were recently 

synthesised in our group 8 5 . Compound 145 is the key intermediate with the 

hydroxymethyl substituent providing a versatile 'handle' for further 

elaboration. The suitability of compound 145 as a building unit for highly 
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functionalised Jt-donor systems was demonstrated by efficient reactions to 

afford the acrylate and urethane derivatives M(S and M7, respectively. 

SMe Me 

CH2OR MS R = H 
146 R = C(0)CH=CH 
147 R = C(0)NHCH 2CH 2C1 

MeS SMe 

The alcohol 145 also reacted with ferrocenecarbonyl chloride to 

furnish the multi-stage redox assembly 148. 

SMe Me 

52 
Fe 

MeS SMe 

148 

4.2 F U N C T I O N A L I S E D A N T H R A C E N E D I Y L I D E N E D O N O R S 

The present work set out to extend this methodology for the 

preparation of highly functionalised analogues of T T F , as versatile electron 

donor systems. In particular, the synthesis of bis-substituted derivatives and 

multi-stage redox assemblies was to be pursued. 
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4L2.1 Systems aroitainfag ftmctionaltty <m ttw smteaceme m i t 

Compound 157 was targeted, since the-hydroxy substituents can 

provide a suitable 'handle' for further reactions. Methylthio substituted 1,3= 

dithiole rings were chosen for three reasons: (i) the Horner-Wittig reagent 

IBS is readily available from cheap starting materials, (ii) the methylthio 

substituents have the benefit of raising the oxidation potential (compounds 

24 and 144 are both very easily oxidised 5 2 ) and thereby increasing the 

stability of the anthracenediylidene system in air, and (iii) the solubility of 

such systems is improved by the presence of the methylthio groups. 

Reagent 153 was prepared, in four steps 8 6, as outlined in Scheme 4.1. 

Thione 149 (prepared by alkylation of zincate salt 32 with iodomethane) was 

methylated using neat dimethylsulphate to yield the dithiolium cation, 

which was isolated, after anion exchange, as the tetrafluoroborate salt 150. 

Reduction of cation salt 150, in ethanol, with sodium borohydride gave 

thioether derivative 151, which, on treatment with tetrafluoroboric acid, 

gave dithiolium cation salt 152. Salt 152 reacted with triethylphosphite in 

the presence of sodium iodide to afford phosphonate ester 153. 

MeS X Me i) (MeO)2SO NaBH 

i 
SMe 

EtOH ii) HBFA-EtoO BE MeS Me 

149 150 

MeS 

s ^ s ] 

MeS S, .SMe HBEt-Et->0 P(OEt),/NaI 
H 

Ac 2 0 MeCN H BE Me MeS 

151 152 

MeS Xxl P(OEt)2 

MeS 

153 

Scheme 4.1. - Preparation of the 4,5-dimethylthio substituted Horner-
Wittig reagent. 
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2,6-Dihydroxyanthraquinone 1S4 reacted with ter£-butyl=diphenyl-

chlorosilane in the presence of imidazole to afford, in 61% yield, the disilyl 

ether derivative 155 (Scheme 4.2.). 

O 
OH OSiPtb'Bu t PhoBuSiCl 

DMF 
t HO imidazole Pffe BuSi 

IS 154 

SMe Me 

H Me P(OEt)a 

OSiPfteBu 153 
MsS 

n BuU/THF/20°C t Pte1 BuSi 

MeS SMe 
Bu 4NF 

156 THF 

MeS SMe 

OH 

MeS SMe 

157 

Scheme 4.2. - Synthesis of an extended-TTF with functionality on the 
anthracene unit. 
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Two-fold reaction of the quinone IBB with the phosphorus-stabilised 

carbanion generated from reagent 1SS, using butyllithium at 20°C, gave the 

anthracenediylidene derivative 15<& in 59% yield. Deprotection to give the 

diol 157 (ca. 70% yield) was achieved using tetrabutylammonium fluoride in 

T H F . The product was found to be only sparingly soluble in common 

organic solvents. It was not possible to obtain the compound analytically 

pure and its insolubility precluded its use in further reactions. 

However, the insolubility of this 'extended-TTF dial' did not prevent 

the synthesis of derivatives of this system. Due to the nature of the silyl 

protecting group, the solubility of compound 156 in common organic 
i 

solvents is very good. Functionalisation could be achieved from silyl 

derivative 156, in a one-pot procedure, by treatment with fluoride ion in the 

presence of an acid chloride and triethylamine as base. This method 

deprotects the silyl ether and traps in situ without the need to isolate the 

insoluble diol 157. Accordingly, reaction with ferrocene and T T F carbonyl 

chlorides furnished the multi-stage redox assemblies 158 (55% yield) and 159 

(30% yield), respectively, both of which could be obtained analytically pure 

(Scheme 4.3.). These reactions demonstrate the suitability of compound 157 

as a building unit for highly functionalised 7t-donor systems, albeit from 

silyl protected derivative 156. 
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M®S SMe SMe 

O 

o Fe 

Fe O 

Fc-C(0)Cl 

BuxNF EtaN 
MeS SMe THF 

156 158 

TTF-C(0)C1 
Et oN Bu 4NF 

SiVIe Me THF 

xr>0 
o H 

MeS SMe 

159 
Scheme 4.3. - Synthesis of multi-stage redox assemblies. 

4.2,2 Solution electrochemistry 

The solution electrochemistry of compounds 158 and 159 has been 

studied by cyclic voltammetry, and the data are collated in Table 4.1. The 

cyclic voltammogram of compound 158 is shown in Figure 4.1. Oxidation of 

the 9/10-bis(l,3-dithiol-2-ylidene)-9,10-dihydroanthracene moiety occurs as a 

single, two-electron, quasi-reversible wave ( E i o x = 0.61V, E i r e d = 0.32V) to 

yield the dication species. Simultaneous oxidation of the two ferrocene 

units gives the ferrocene /ferrocinium redox couple, observed as a cleanly 

90 



reversible wave at E 1 / 2 = 0.75V, to afford a system bearing four positive 

charges. 

Donor Eiox/V E 2

0 X / V E i ^ / V E2

Ted/V 
-

Rfed/y 

158 0.61 1 0.78 0.32 0.73 -
159 0.50 J 0.94 0.36 0.42 0.82 

Table 4.1. - Cyclic voltammetric data. 
Data were obtained at 20°C versus Ag/AgCl, in dry 
dichloromethane under argon using a platinum button electrode 
and a platinum wire counter electrode, ca. 5 x 10'4 M compound, 
0.1 M tetrabutylammonium hexafluorophosphate, scan rate 100 
mVsec1, using a BAS 100 Electrochemical Analyser. 

The cyclic voltammogram of compound 159 is shown in Figure 4.2. 

The two-electron oxidation of the anthracenediylidene and the first 

oxidation of the two TTF units (neutral TTF -> TTF +) are not resolved and 

occur as a single, broad peak at E i o x = 0.50V. The second oxidation of the TTF 

units (TTF-+ -> T T F 2 + ) occurs as a quasi-reversible couple (E2 o x = 0.94V, E 3 r e d 

= 0.82V) to generate a system bearing six positive charges. The reduction of 

the TTF radical cations to neutral TTF and the two-electron reduction of the 

anthracenediylidene moiety are just resolved, occuring at E 2 r e d = 0.42V and 

E i r e d = 0.36V, respectively. 

For both compounds there are no apparent inter- or intra-molecular 

interactions between the different redox moieties in the system which are 

electronically isolated from each other by the spacer groups. The 

irreversibility of the anthracenediylidene oxidation process arises jointly 

from a change in conformation and aromatic stabilisation87. At the dication 

redox stage there is a gain in aromaticity of the newly-formed anthracene 

system, together with the additional stabilisation within the 6it, 1,3-

dithiolium rings. The marked conformational change that must occur on 

reduction (planar anthracene -> buckled anthraquinodimethane) is the 

other factor accounting for the observed redox behaviour in this system. 
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Figure 4.1. - Cyclic voltammogram of compound 158. 
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Figure 4.2. - Cyclic voltammogram of compound 159. 
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A related system to be investigated as a functionalised analogue of 

TTF, was the extended donor 16§, in which 2-(hydroxy)propylene=lJ3"(iithio 

units are fused to the dithiole rings. This compound is the 

anthracenediylidene analogue to the previously prepared TTF-diol 4§. The 

key intermediate is the silyl protected Horner-Wittig reagent 1(53 whose 

synthesis (Scheme 4.4.) utilises the thione 41 reported earlier. 

PIV BuSiO*«/~~ ) = S P ^ ' B u S i O ^ ^ ^ ^—SMe 

^ - S S U 4 S S BF4" 

41 160 

NaBH, / N^*sv .SMe HBF 
Pttf BuSi ••ox THF/2-propanoI \ _ H E t 2 ° 

161 

_ S s + P(OMe)3 s s 5? 

p ^ B u S i O - / T ) - H — p ^ ' B u S i o K ^ y p < 0 M e > 2 

162 163 

Scheme 4.4. - Synthesis of silyl protected Horner-Wittig reagent. 

Methylation of thione 41 in neat dimethylsulphate, followed by 

anion exchange with tetrafluoroboric acid afforded, in 81% yield, the 

tetrafluoroborate salt 160 of the dithiolium cation. Reduction to the 

thioether derivative 161 was achieved, in 95% yield, by the use of sodium 

borohydride in THF/2-propanol. Initial attempts to reduce 160 in ethanol 

afforded the product in which the cation salt had been attacked by the 

solvent. Treatment of 161 with tetrafluoroboric acid gave, in 72% yield, the 

dithiolium cation salt 162 which, on reaction with trimethylphosphite in 
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the presence of sodium iodide afforded, in 82% yield, the desired 

phosphonate ester 163. 

As a result of the prochiral carbon atom at 0 2 in the propylene-1,3-

dithio bridge, compounds 161 and 163 are formed as a mixture of isomers. 

This is confirmed by the *H NMR data which show two sets of signals for 

each of the expected proton resonances, one from each of the isomers 

obtained. 

Two-fold reaction of anthraquinone with the phosphorus-stabilised 

carbanion generated from the Horner-Wittig reagent 163, using 

butyllithium at 20°C, afforded the extended-TTF derivative 164 in 47% yield 

(Scheme 4.5.). Deprotection to diol 16S was achieved, in 71% yield, by the use 

of tetrabutylammortium fluoride in THF. The suitability of diol 165 as a 

building unit for highly functionalised systems was demonstrated by the 

efficient reaction with acetyl chloride in the presence of 4-

dimethylaminopyridine to afford the diester derivative 166 in 79% yield. 

As with the analogous non-extended TTF systems, compound 164 is 

formed as a mixture of both diastereomeric and conformational isomers. 

Consequently, the derived products 165 and 166 are also obtained as 

isomeric mixtures. The presence of isomers is confirmed by the 1 H NMR 
i 

data. This is best illustrated in the 250 MHz *H NMR spectrum of diol 165. 

The hydroxy protons clearly appear as two separate doublets at 8 = 5.63 and 

5.44 ppm. (Figure 4.3.). The doublet arises from coupling to the single proton 

in the adjacent methine group. The inequivalence of the peak intensities of 

the two doublets suggests that each corresponds to one of the two 

conformational isomers present, rather than arising from the 

diastereomers. No attempt was made to separate the diastereomers, which 

appear as one product on TLC. 
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s S • ,P(0Me)2 n BuLi t + PtV BuSi 

THF/20°C S " 

163 

OSiPfvBu OH A 
Bu 4NF 

THF 

V 
OSiPiyBu OH 

OC(0)Me 165 164 

S. £ 

W 

MeC(0)Cl 
166 NM9 6 C H ,C1 

S 'S V 
OC(0)Me 

Scheme 4.5. - Synthesis of extended-TTF derivatives with functionalised 
1,3-dithiole units. 
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Figure 4.3. - Part 1H NMR spectrum of diol 165 showing the two separate 
doublets of the . hydroxy protons. 

4.3 CONCLUSION 

Methodology has been developed for the preparation of highly 

functionalised analogues of TTF containing the 9,10-bis(l,3-dithiol-2-

ylidene)-9,10-dihydroanthracene unit. These are versatile electron donor 

systems and can be used in the preparation of novel redox assemblies such 

as 158 and 159. 

It should be possible to combine the silyl protected anthraquinone 

and Horner-Wittig reagents 155 and 163, respectively, to produce an 

extended-TTF containing functionality, both on the anthracene unit and 

attached to the dithiole rings. Such a donor could find widespread use in 

the future construction of macrocyclic and supramolecular systems. 

96 



CHAPTER FIVE 

EXPERIMENTAL 
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Sd GENERAL METHODS 

Melting points were recorded on a Kofler hot-stage microscope 

apparatus and are uncorrected. 

Infra-red spectra were recorded on Perkin-Elmer 377,547,577 and 1720 

FT-IR spectrophotometers; samples were either embedded in KBr discs, 

nujol mulls or analysed neat between KBr plates, as indicated. 

Proton NMR spectra were recorded on Bruker AC 250 and Varian 

Gemini 200 instruments. 1 3 C NMR spectra were recorded on a Varian Unity 

500 spectrometer. Chemical shifts are quoted in ppm, relative to 

tetramethylsilane (TMS) as internal reference (0 ppm). 

Mass spectra were obtained on VG 7070E and Varian MAT 311A 

instruments, with ionisation modes as indicated; ammonia was used as the 

impingent gas for chemical ionisation mode. Plasma Desorption Mass 

Spectrometry was carried out on a Biolon 10 K time of flight instrument 

(Biosystems, Uppsala, Sweden) over 5 x 105 fissions (2 5 2Cf). 

Elemental analyses were performed on a Carlo-Erba Strumentazione 

or at the Microanalytical Lab., University of Copenhagen. 

Column chromatography was carried out using Merck silica gel (70-

230 mesh) or Merck alumina (activity II to III, 70-230 mesh), the latter 

neutralised by pre-soaking in ethyl acetate overnight. All solvents were 

distilled prior to use in chromatography. 

Nitrogen was dried by passing through a column of phosphorus 

pentoxide. Solvents were dried over and distilled from the following 

reagents, under a dry nitrogen atmosphere: diethyl ether and THF (sodium 

metal); benzene and toluene (lithium aluminium hydride); chlorocarbons 

(phosphorus pentoxide); acetonitrile (calcium hydride); acetone (potassium 

carbonate); methanol (magnesium methoxide) and ethanol (magnesium 

ethoxide). All other reagents were reagent grade and used as supplied, 

unless otherwise stated. 
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EXPERIMENTAL TO CHAPTER TWO 

T t̂eaeShylfflmmosMum bi^(13°dISliiol(S=2=el!Mom®°i,§=difeliii©) zlmcafeg 32 was 

prepared following the literature procedure 5 9 by reaction of carbon 

disulphide with sodium in the presence of DMF (ca. 80% yield). 

4,S=Dimefchy!ttiio=lj3°diftMole°2''OJie 48 was prepared by mercuric acetate 

oxidation of 4,5-dimethylthio-l/3-dithiole-2-thione88 (ca. 100% yield). 

3-Bromo-2-(bromomethyl)propan°l°ol S4 was prepared following the 

literature procedure62 by borane reduction of 3=bromo-2=(bromomethyl)-

propanoic acid (ca. 95% yield). 

4 /5=DimethyH^=dithiole°2°tMone 77 was prepared following the literature 

procedure8 9 from 3-chloro-2-butanone, O-ethylxanthic acid potassium salt 

and phosphorus pentasulphide (ca. 85% yield). 

4,5=Ethylenedithio=l,3=dithiole=2=one 78 was prepared following the 

literature procedure 5 4 8 from zincate salt 32 and 1,2-dibromoethane, 

followed by mercuric acetate oxidation (ca. 90% yield). 

4,5-[2°(Hydroxy)propylene-l>-ditWo]-13-dithiole--2--tMone 33. 

Method (a): from caesium salt 36. Caesium salt 36 6 0 (9.20 g, 0.02 mol) 

was dissolved in dry dimethylformamide (100 mL); l,3-dichloropropan-2-ol 

(5.00 g, excess) was added and the mixture stirred under nitrogen at 20°C for 

16 h. Precipitated caesium chloride was removed by filtration and the filtrate 

was evaporated to dryness in vacuo. The brown product was washed 

sequentially with water and ether, then recrystallised from ethanol, using 

decolourising charcoal, to afford compound 33 (3.00 g, 59%) as a yellow solid, 

m.p. 188-189°C. (Found: C, 28.4; H, 2.4; S, 63.2; C 6 H 6 O S 5 requires C, 28.4; H, 
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2.4; S, 63.0%); m / z (EI) 254 (M+); SHKCDsbSO] 5.62 (1H, broad s), 4.04 (1H, m), 

3.05 (2H, m) and 2.64 (2H, m); v m ajc(KBr)/cm° 13436 (OH) and 1056 (C=S). 

Method (b): from zincate salt 32. To a solution of zincate salt 32 (8.20 g, 

11.4 mmol) in dry acetonitrile (150 mL), l,3-dibromoprQpan=2-ol (5.00 g, 22.9 

mmol) was added and the mixture was refluxed with stirring under 

nitrogen for 4 h. A highly insoluble yellow precipitate was removed by 

filtration and tentatively identified as macrocycle 34 (0.58 g, 10%), m.p. 

>350°C; m/z (EI) 508 (M +). Evaporation of the filtrate in vacuo, followed by 

purification of the residue on silica gel, eluent dichloromethane afforded 

compound 33 (3.83 g, 66%) identical with the sample described above. 

Compounds 37°3S>. General Procedure. To a solution of alcohol 33 (500 mg, 

1.97 mmol) in dry dichloromethane (80 mL) was added either acryloyl 

chloride (0.19 mL, 2.34 mmol), benzoyl chloride (0.28 mL, 2.40 mmol) or 2-

chloroethylisocyanate (0.20 mL, 2.35 mmol) followed by dry triethylamine 

(0.55 mL, 3.95 mmol). The mixture was stirred under nitrogen at 20°C for 16 

h. Water (50 mL) was added and the mixture extracted into 

dichloromethane (2 x 50 mL). The combined organic extracts were water 

washed, dried (MgSO-j) and solvent removed in vacuo. Chromatography of 

the residue on silica gel, eluent cyclohexane/dichloromethane (2:1 v/v) 

afforded compounds 37-39. There was obtained: 

4/5-[2=(Acrylate)propylene=l^-dithio]°13°dithidle-2-thione 37. 

A yellow solid (450 mg, 74%), m.p. 122-123°C (from dichloromethane/ 

hexane). (Found: C, 34.9; H, 2.6. C9H8O2S5 requires C, 35.0; H, 2.6%); m/z 

(DCI) 309 (M++1); 5H(CDC1 3) 6.46, 6.12 and 5.92 (3H, ABX, JAX = 17.2, J B x = 

10.3 and JAB = ca. 1.0 Hz), 5.37 (1H, m), 3.09 (2H, m) and 2.80 (2H, m); v m a x 

(nujoD/cm"1 1715,1410,1295,1200,1070,980,970 and 810. 
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4,!H2=(!®M©afe)propyl®i&®°l^date^ 38. 

A yellow solid (520 mg, 74%), m.p. ISS-IST^C (from dichloromethane/ 

hexane). (Found: C, 43.4; H , 2.7. C13H10O2S5 requires C, 43.5; H , 2.8%); m / z 

(DCI) 359 (M++1); 5 H (CDCl3) 8.04 (2H, m), 7.61 (1H, m), 7.49 (2H, m), 5.58 (1H, 

m), 3.19 (2H, m) and 2.94 (2H, m); v m a x ( n u j o l ) / c m = 1 1720, 1600, 1340, 1270, 

1235,1100,1065 and 710. 

4,M2~(2°GM©ffoefeylcaAamate)pff©p 

fthione 39. 

A yellow solid (395 mg, 56%), m.p. 222°C (sublimes) (from 

dichloromethane/hexane). (Found: C , 29.7; H , 2.7; N , 3.8. C9H10CINO2S5 

requires C , 30.0; H , 2.8; N , 3.9%). m / z (DCI) 360 (M++1); 8 H ( C D C 1 3 ) 5.30-5.20 

(2H, m), 3.63 (2H, m), 3.55 (2H, t, J = 5.5 Hz), 3.08 (2H, m) and 2.79 (2H, m); 

Vmax(nujol)/cm- 1 3320,1690,1545,1265,1240,1150,1060 and 1020. 

4,5=[2=(p=Toluenesulphonate)propylene'=l^='dithio]=l^=ditliiole=2=thion® 40. 

To a suspension of sodium hydride (60% dispersion in mineral oil, 90 

mg, 2.25 mmol) in dry T H F (100 mL) cooled to 0°C under nitrogen, was 

added alcohol 33 (500 mg, 1.97 mmol) and the mixture was stirred at 0°C for 

1.5 h. Tosyl chloride (450 mg, 2.36 mmol) was added and the mixture 

allowed to warm to 20°C overnight. Work-up and purification as described 

for compound 37, afforded compound 40 (595 mg, 74%) as an orange solid, 

m.p. 107-109°C (Found: C , 38.2; H , 3.0. C13H12O3S6 requires C , 38.2; H , 3.0%); 

m / z (DCI) 409 (M++1); 8 H ( C D C 1 3 ) 7.82 ( 2 H , d, J = 8.3 Hz), 7.39 ( 2 H , d, J = 8.0 

Hz), 4.96 ( 1 H , m), 3.02 (2H, m), 2.73 ( 2 H , m), and 2.48 ( 3 H , s); v m a x ( n u j o l ) / 

cm"11600,1360,1335,1190,1175,1065,900 and 870. 
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fiMom© 41. 

Alcohol 33 (2.3 g, 9.0 mmol) was dissolved in dry DMF (200 mL); 

imidazole (7.0 g, 0.10 mol) and fer^butyl-diphenylchlorosilane (3.0 g, 0.01 

mol) were added and the mixture stirred at 20°C for 16 h. Dichloromethane 

(250 mL) was then added and the organic layer separated and washed 

sequentially with ice-cold hydrochloric acid (3 M, 3 x 50 mL) and water (50 

mL). The organic layer was separated, dried (MgS04) and solvent removed 

in vacuo. Chromatography of the residue on silica gel, eluent 

dichloromethane/cydohexane (1:1 v/v) afforded compound 41 (4.4 g, 98%) 

as a yellow solid, m.p. 109-111°C (Found: C, 53.9; H, 5.0. C22H240S5Si 

requires C, 53.7; H, 4.9%); m/z (EI) 492 (M+); 8H(CDC13) 7.62-7.48 (10H, m), 

4.28 (1H, m), 2.94 (2H, m), 2.77 (2H, m) and 1.04 (9H, s); v m a x(KBr)/cm- 1 1060 

(C=S). 

4,S-[2=(Me0iioxy)propylene°13=ditMo]=l^-diftMole-2'-thiome 42. 

To a solution of alcohol 33 (500 mg, 1.97 mmol) and iodomethane 

(0.12 mL, 1.97 mmol) in dry toluene (50 ml), was added sodium shavings 

(200 mg, excess) and the mixture was heated at reflux for 24 h. Filtration 

removed excess sodium, and aqueous work-up of the filtrate, followed by 

chromatography on silica gel, eluent toluene afforded compound 42 (27 mg, 

5%) as a yellow solid, m.p. 76-79°C. (Found: C, 31.1; H, 2.9. C7H8OS5 requires 

C, 31.3; H, 3.0%); m/z (DCI) 269 (M++1); 8H(CDC1 3) 3.79 (1H, m), 3.45 (3H, s), 

3.06 (2H, m) and 2.61 (2H, m); vm a x(nujol)/cm- 1 1060 (C=S). 

4/S°[2-(teff-Butyl-diphenylsOyloxy)propylene-l>ditldo]-l>difthiole-2-

one 43. 

To a solution of thione 41 (4.5 g, 9.0 mmol) in chloroform/glacial 

acetic acid (100 mL, 3:1 v/v), mercuric acetate (7.0 g, excess) was added and 

the mixture was stirred at 20°C for 16 h after which time a white precipitate 
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had formed. The precipitate was removed by filtration, and the filtrate 

washed sequentially with saturated sodium hydrogencarbonate (3 x 100 mL) 

and water (100 mL), dried (MgS04) and solvent removed in vacuo to yield a 

colourless oil which crystallised upon storage in vacuo. There was obtained 

compound 43 (4.3 g, 100%), m.p. 119-120°C. (Found: C, 55.2; H , 4.9. 

G 22H 240 2S4Si requires C, 55.5; H , 5.0%); m/z (DC!) 477 (M++1); 8H(CDC1 3) 

7.63 (4H, m), 7.46 (6H, m), 4.20 (1H, m), 2.82 (2H, m), 2.61 (2H, m) and 1.04 

(9H, s); VmaxfaujoD/cnr1 3040,1670,1610,1430,1110,1055,840 and 740. 

Bis[2°(terf=butyl°diphenykny!oxy)propyleiie=l^ditMo]tetratMaMvalene 44. 

Thione 41 (4.0 g, 8.5 mmol) or ketone 43 (4.0 g, 8.1 mmol) were 

suspended in triethylphosphite (10 mL) under nitrogen and the mixture 

was slowly heated to 130°C and then held at that temperature for 45 min. 

The mixture was cooled to 20°C and chromatographed on silica gel, eluent 

cyclohexane/toluene (4:1 v/v) to afford compound 44 (1.3 g, 33%, from 
i 

thione 41; 1.8 g, 50%, from ketone 43) as an orange solid, m.p. 201-202°C 

(from dichloromethane/methanol). (Found: C, 57.4; H, 5.3. C44H4sD2S8Si2 

requires C, 57.4; H, 5.2%); m/z (EI) 920 (M+); 8H(CDC13) 7.61 (8H, m), 7.40 

(12H, m), 4.16 (2H, m), 2.70 (4H, m), 2.48 (4H, m) and 1.06 (18H, s). 

Bis[2-(hydroxy)propylene-l^-dithio]tetrathiafulvalene 45. 

To a solution of compound 44 (200 mg, 0.22 mmol) in THF (50 mL) 

under nitrogen, tetrabutylammonium fluoride (270 mg, 0.44 mmol) was 

added and the mixture stirred at 20°C for 2 h. Solvent was removed in 

vacuo and the resulting orange solid was washed with methanol and ether 

to afford compound 45 (80 mg, 80%), m.p. >230°C (decomp.). (Found: C, 32.4; 

H, 3.0. C12H12O2S8 requires C, 32.4; H, 2.7%); m/z ( D C I ) 445 (M++1); 8H 

[ (CD 3 ) 2 SO] 5.61 (d, J = 5.0 Hz) and 5.52 (d, J = 5.0 Hz) [together 2H], 3.93 (2H, 

m), 2.93 (4H, m) and 2.49 (4H, m); vmax(nujol)/cm"l 3300 (OH). 
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Compounds 4<S and 47. General Procedure. To a stirred suspension of diol 45 

in dry toluene (50 mL) under nitrogen, was added acetyl chloride or 4~ 

bromobutyryl chloride (an excess) followed by imidazole (1.00 g), and the 

mixture refluxed for 16 h. After hot filtration of the precipitate, the toluene 

was removed in vacuo and the residue purified by chromatography on silica 

gel, eluent dichloromethane. There was obtained: 

BM2=(aceMe)pmpylme4.^ditM^ 4<§„ 

From diol 45 (220 mg) and acetyl chloride (5 mL) as an orange solid 

(180 mg, 69%), m.p. >230°C. (Found: C , 36.3; H , 3.0. QfcHieCUSg requires C , 

36.4; H , 3.0); m/z (EI) 528 (M + ); 5 H (CDC1 3 ) 5.30 (2H, m), 2.92 (4H, m), 2.60 (4H, 

m) and 2.08 (6H, s). 

Bis[2=(4-bromobutanoafte)propylene°l^difthio]tetatMafulvalene 47. 

From diol 45 (140 mg) and 4-bromobutyryl chloride (3 mL), as an 

orange solid (100 mg, 43%), m.p. 224-225°C (from toluene). (Found: C , 32.4; 

H , 3.1%. C20H22Br2O4S8 requires C , 32.4; H , 3.0%); m / z (EI) 742 (M + ) ; 6H 

(CDCI3) 5.30 (2H, m), 3.61 (4H, t, J = 6.5 Hz), 2.92 (4H, m), 2.55 (4H, m), 2.51 

(4H, m) and 2.10 (4H, m); V n ^ n u j o D / a r r 1 1733 (C=0). 

4,§=DmefthyltMo=4^J'~[2=(£(^butyl^ 

teteathiafulvalene 49. 

Ketone 43 (3.45 g, 7.25 mmol) and ketone 48 (1.52 g, 7.24 mmol) were 

suspended in triethylphosphite (8 mL) and the mixture warmed to 130°C 

with stirring under nitrogen, whereupon dissolution of the ketones was 

complete. After 2 h at 130°C the deep red reaction mixture was cooled to 

20°C and chromatographed on silica gel, eluent cyclohexane/toluene (3:1 

v / v ) to afford the product as an orange solid. Compound 49, which could 

not be completely separated from self-coupled products ( T L C and mass 

spectroscopic evidence) even after repeated chromatography, was obtained 
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(ca. 1.43 g, 30%). m / z ( B C D 655 (M++1); §H(CDC13> 7.62 (4H, m), 7.41 (6H, m), 

4.12 (1H, m), 2.72 (2H, m), 2.49 (2H, an), 2.38 (6H, s) and 1.06 (9H, s). 

ietraftMafalvalssie 50. 

To a solution of compound 49 (1.43 g, 2.18 mmol) in THF (80 mL), 

tetrabutylammonium fluoride trihydrate (1.38 g, 4.37 mmol) was added and 

the reaction mixture was stirred under nitrogen at 20°C for 16 h. Water (50 

mL) was then added and the mixture extracted with dichloromethane (2 x 80 

mL). The combined extracts were washed with water, dried (MgSC»4) and 

solvent removed in vacuo. Chromatography of the residue on silica gel, 

eluent dichloromethane afforded compound 50 (610 mg, 67%) as an orange 

solid, m.p. 143-144°C (from dichloromethane/hexane). (Found: C, 31.6; H, 

2.8. C n H i 2 O S 8 requires C, 31.7; H, 2.9%); m/z (DCI) 417 (M++1); 6H(CDC13) 

4.39 (1H, m), 3.47 (1H, broad), 2.82 (4H, m) and 2.41 (6H, s); Vmax(nujol)/cm-l 

3440,1290,1170,1030,970,900,855 and 765. 

Compounds 51 and 52. General Procedure. To a solution of compound 50 

(200 mg, 0.48 mmol) in dry dichloromethane (80 mL) was added either 

acryloyl chloride (0.05 mL, 0.61 mmol) or 2-chloroethylisocyanate (0.05 mL, 

0.59 mmol) followed by dry triethylamine (0.13 mL, 0.93 mmol) and the 

mixture stirred at 20°C for 16 h. Water (50 mL) was then added and the 

mixture extracted with dichloromethane (2 x 50 mL). The combined extracts 

were washed with water, dried (MgSC>4) and solvent removed in vacuo. 

Chromatography of the residue on silica gel, eluent dichloromethane 

afforded the product. There was obtained: 
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4,S=DimethyltMo=4'<,5'=[2-=(acrylate)propyk!ie°l^dithio] 

fefaatMafulvalen® 51. 

A yellow solid (70 mg, 31%), m.p. 156-157°C (from dichloromethane/ 

hexane). (Found: C , 35.5; H , 3.0. C14H14O2S8 requires C , 35.7; H , 3.0%); m/z 

(DCI) 471 (M++1); 5H(CDC1 3) 6.45, 6.11 and 5.90 (3H, ABX, JAX = 17.0, JBX = 

10.7 and JAB = ca. 1.0 Hz), 5.30 (1H, m), 2.95 (2H, m), 2.67 (2H, m) and 2.41 

(6H, s); v m a x (nujo l ) /cm-l 1720,1620,1425,1410,1330,1270,1195 and 1045. 

4^DimefhyltMo^^5M2^2-cMoroethylcarbamate)propylene-l/3°dittuo] 

tetrathiafulvalene 52. 

A yellow solid (200 mg, 80%), m.p. 219-221 °C (from dichloromethane/ 

hexane). (Found: C, 32.0; H , 3.0; N , 2.7. C14H16CINO2S8 requires C, 32.3; H , 

3.1; N , 2.7%); m/z ( D C I ) 522 (M++1); 8H(CDC13) 5.16 (2H, m), 3.62 (2H, m), 

3.54 (2H, t, J = 5.5 Hz), 2.95 (2H, m), 2.64 (2H, m) and 2.41 (6H, s); v m a x 

(nujoD/cm- 1 3300,1695,1550,1270,1240,1150,1020 and 770. 

4,5-[2-(Hydroxymethyl)propylene=l^-dithio]-l^-dithiole-2-thione 55. 

To a solution of zincate salt 32 (6.97 g, 9.73 mmol) in dry acetonitrile 

(100 mL), 3-bromo-2-(bromomethyl)-propan-l-ol (4.51 g, 19.44 mmol) was 

added and the reaction refluxed with stirring under nitrogen for 4-5 h. 

Chromatography of the crude reaction mixture on silica gel, eluent 

dichloromethane/acetone (5:1 v / v ) afforded compound 55 (4.10 g, 79%) as 

an orange solid, m.p. 128-130°C. (Found: C , 31.6; H, 3.0; C7H8OS5 requires C , 

31.3; H, 3.0%); m/z ( D C I ) 269 (M++1); 5 H[(CD 3)2CO] 4.07 (1H, t, J = 5.2 Hz), 3.71 

(2H, m), 3.16 (2H, m), 2.81 (2H, m) and 2.47 (1H, m); VmaxfoujoD/cm-1 3300, 

1265,1230,1060,1025,1005,895 and 815. 
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2=£Mon® 56. 

To a solution of alcohol 55 (700 mg, 2.61 mmol) in D M F (80 mL), tert-

butyl-diphenylchlorosilane (1.44 g, 5.24 mmol) and imidazole (1.78 g, 26.2 

mmol) was added and the reaction stirred under nitrogen at 20°C for 16 h. 

The DMF was removed in vacuo and the residue dissolved in 

dichloromethane, washed with water, dried (MgS04) and solvent removed 

in vacuo. Chromatography of the residue on silica gel, eluent 

dichloromethane/cyclohexane (1:1 v / v ) afforded compound 56 (1.10 g, 83%) 

as a viscous orange oil. m/z ( D C I ) 507 (M++1); 5H(CDC13) 7.63 ( 4 H , m), 7.38 

(6H, m), 3.73 (2H, d, J = 6.1 Hz), 2.96 (2H, m), 2.66 (2H, m), 2.52 (1H, m) and 

1.06 (9H, s); v m a x (nujo l ) /cm- 1 3070,1430,1110,1090,1065,830,820 and 700. 

4,5-[2°(t^=Buftyl-diphenylsMyloxymethyl)propylene=l^-diftMo]-l^ditMole-

2-one 57. 

To a solution of thione 56 (1.10 g, 2.17 mmol) in chloroform/glacial 

acetic acid (100 mL, 3:1 v /v ) , mercuric acetate (an excess) was added and the 

reaction stirred under nitrogen at 20°C for 16 h. Water was added and the 

reaction mixture stirred for an additional 0.5 h whence the resulting white 

precipitate was removed by filtration. The organic phase was washed with a 

solution of sodium hydrogencarbonate, dried (MgSC»4) and solvent 

removed in vacuo to afford compound 57 (1.03 g, 97%) as a viscous 

colourless oil. m/z (DCI) 508 (M++18); 8H(CDCl3) 7.64 (4H, m), 7.39 (6H, m), 

3.73 (2H, d, J = 5.9 Hz), 2.93 (2H, m), 2.62 (2H, m), 2.46 (1H, m) and 1.06 (9H, s); 

Vmax(nujol)/cm-l 3070,1670,1620,1430,1100,820,735 and 700. 

Bis[2^tert-butyl=diphenylsilyloxymethyl)propylene=l/3=dithio] 

tetrathiafulvalene 58. 

A solution of ketone 57 (1.28 g, 2.61 mmol) in neat triethylphosphite 

(5 mL) was heated to 130°C and held at this temperature with stirring under 
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nitrogen for 2 h. Chromatography of the crude reaction mixture on silica 

gel, eluent dichloromethane/cyclohexane (1:1 v / v ) afforded compound 58 

(680 mg, 55%) as an orange solid, m.p. 72-74°C. (Found: C, 58.1; H , 5.6. 

C46H5202Si2S8 requires C, 58.2; H , 5.5%); m/z (DCI) 949 (M+4-1); 5H(CDCl3) 

7.63 (8H, m), 7.42 (12H, m), 3.69 (4H, m), 2.86 (4H, m), 2.62-2.45 (6H, m) and 

1.04 (18H, s); v m a x (KBr) / cm- 1 3068,2928,2855,1427,1111,824,702 and 504. 

To a solution of compound 58 (600 mg, 0.63 mmol) in THF (50 mL), 

tetrabutylammonium fluoride (1 M in THF, 2.53 mL, 2.53 mmol) was added 

and the reaction stirred under nitrogen at 20°C for 16 h. The solvent was 

removed in vacuo and methanol added to precipitate an orange solid. 

Stirring in methanol was continued for 1 h after which the product was 

filtered off and washed with ether and methanol to afford compound 59 

(170 mg, 57%) as an orange solid, m.p. >230°C (decomp.). (Found: C, 35.3; H , 

3.4. C14H16O2S8 requires C, 35.6; H, 3.4%); m/z (EI) 472 (M+); 8 H[(CD 3)2SO] 

4.83 (2H, m), 3.53 (d, J = 6.2 Hz) and 3.46 (d, J = 6.3 Hz) [together 4H], 2.93 (4H, 

m), 2.55 (4H, m) and 2.22 (2H, m); v m a x ( K B r ) / c m - 1 3400, 2917, 1399, 1384, 

1062,1031,894 and 771. 

4,5=DimethyltMo^^5 ,°[2=(ferf°butyl=diphenylsUyloxvmethyl)propylene=l^° 

dithioltetrathiafulvalene 60 and 4,5-Dimethylthio-4 /

/5'-[2=(hydroxymethyl) 

propylene-l,3-dithio]tetrathiafulvalene 61. 

A suspension of ketone 48 (430 mg, 2.05 mmol) and ketone 57 (1.00 g, 

2.04 mmol) in neat triethylphosphite (5 mL) was warmed to 130°C upon 

which dissolution was complete. The reaction was maintained with stirring 

under nitrogen at this temperature for 2 h after which time the solution had 

turned deep red. Chromatography of the crude reaction mixture on silica 

gel, eluent cyclohexane/dichloromethane (3:1 v /v ) afforded a mixture of the 
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cross-coupled product 60 along with self-coupled products, which could not 

be separated by chromatography. 

The mixture of products was dissolved in THF (50 mL) and 

tetrabutylammonium fluoride (1 M in THF, 4.10 mL, 4.10 mmol) was added 

and the reaction stirred under nitrogen at 20°C for 16 h. Chromatography of 

the crude reaction mixture on silica gel, eluent dichloromethane/acetone 

(5:1 v / v ) followed by recrystallisation from dichloromethane/hexane 

afforded compound 61 (300 mg, 34% overall yield) as an orange solid, m.p. 

128-130°C. (Found: C, 33.0; H , 3.2. C12H14OS8 requires C, 33.5; H , 3.3%); m/z 

( D C I ) 431 (M++1); 5H(CDC1 3) 3.78 (2H, d, J = 6.0 Hz), 2.89 (2H, m), 2.58 (2H, 

m), 2.45 (1H, m) and 2.41 (6H, s); v m a x ( n u j o l ) / c m - 1 3300, 1310, 1280, 1060, 

1030,960,890 and 770. 

4,5-Dimethylthio^%S'°[2°(methyl=|?4oluenesulphomte)propylene-l^=«iiftMol 

tetrathiafulvalene 62. 

To a solution of alcohol 6 1 (400 mg, 0.93 mmol) in dry 

dichloromethane (60 mL), tosyl chloride (240 mg, 1.26 mmol) followed by 4-

dimethylaminopyridine (140 mg, 1.15 mmol) was added and the reaction 

stirred under nitrogen at 20°C for 16 h. Chromatography of the crude 

reaction mixture on silica gel, eluent dichloromethane followed by 

recrystallisation from dichloromethane/hexane afforded compound 62 (300 

mg, 55%) as a yellow solid, m.p. 135-136°C. (Found: C, 39.0; H , 3.5. 

C19H20O3S9 requires C, 39.0; H , 3.5%); m/z ( D C I ) 585 (M++1); 5 H ( C D C 1 3 ) 7.77 

(2H, d, J = 8.2 Hz), 7.36 (2H, d, J = 8.1 Hz), 4.23 (2H, d, J = 3.5 Hz), 2.78 (2H, m), 

2.67-2.54 (3H, m), 2.45 (3H, s) and 2.39 (6H, s); v m a x ( K B r ) / c m - 1 2918, 1597, 

1360,1174,970,821,665 and 553. 
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4>Dimethyl tW^5 '42°(chloromethyl)propylene°l>difMo] 

tetorthiafulvalene 63. 

To a solution of alcohol 61 (600 mg, 1.40 mmol) in dry 

dichloromethane (60 mL), tosyl chloride (400 mg, 2.09 mmol) and dry 

triethylamine (1.95 mL, 14.0 mmol) was added and the reaction refluxed 

under nitrogen with stirring for 48 h. Chromatography of the crude reaction 

mixture on silica gel, eluent dichloromethane/hexane (1:1 v / v ) afforded 

in i t i a l ly chloride 63 (280 mg, 45%). Continued elut ion w i t h 

dichloromethane gave tosylate 62 (230 mg, 28%). Compound 63:- an orange 

solid, m.p. 147-149°C. (Found: C, 32.1; H , 2.9. C12H13CIS8 requires C, 32.1; H , 

2.9%); m/z (DCI) 449 (M++1); 8H(CDC13) 3.78 (2H, d, J = 5.6 Hz), 2.93 (2H, m), 

2.77-2.62 (3H, m) and 2.42 (6H, s); v m a x ( K B r ) / c m - 1 2915,1426,1411,1267,898, 

882,768 and 753. 

4 /5-Dimethylthio-4' /5'-[2-(methyl-methanesulphonate)propylene-l^-dithio] 

tetrathiafulvalene 64. 

To a solution of alcohol 61 (500 mg, 1.16 mmol) in dry 

dichloromethane (60 mL), methanesulphonylchloride (0.10 mL, 1.29 mmol) 

followed by 4-dimethylaminopyridine (175 mg, 1.43 mmol) was added and 

the reaction stirred under nitrogen at 20°C for 16 h. Chromatography of the 

crude reaction mixture on silica gel, eluent dichloromethane afforded 
i 

compound 64 (450 mg, 76%) as an orange oil. The product was characterised 

by *H NMR and then immediately used in further reactions. 8H(CDC13) 4.46 

(2H, broad s), 3.05 (3H, s), 2.88 (2H, m), 2.79-2.67 (3H, m) and 2.40 (6H, s). 

4,5-DimethyltWo-4,

/5,-[2-(N-methyl-phthalimide)propylene-l^-dithio] 

tetrathiafulvalene 67. 

To a solution of chloride 63 (200 mg, 0.45 mmol) in dry DMF (50 mL), 

potassium phthalimide (110 mg, 0.591 mmol) was added and the reaction 

refluxed with stirring under nitrogen for 3 h. Water was added and the 
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product extracted into dichloromethane, washed with water, dried (MgS04> 

and solvent removed in vacuo. Chromatography of the residue on silica gel, 

eluent dichloromethane afforded compound €7 (100 mg, 40%) as an orange 

solid, m.p. 180-182°C. (Found: C, 42.8; H , 3.0; N , 2.4. C20H17NO2S8 requires C, 

42.9; H , 3.1; N , 2.5%); m/z (DCI) 560 (M++1); 8H(CDC13) 7.84 (2H, m), 7.75 (2H, 

m), 3.86 ( 2 H , broad s), 2.87 ( 2 H , m), 2.73-2.52 ( 3 H , m) and 2.41 ( 6 H , s); v m a x 

(KBr)/cm-l 2917,1710,1431,1397,1367,1046,899 and 718. 

4,5-Dimethyltlno-4',5'-[2°(cyanometliyl)propylene-l^-ditiiiol 

tetrathiafulvalene 68. 

To a solution of mesylate 64 (720 mg, 1.42 mmol) in dry DMF (40 mL), 

sodium cyanide (90 mg, 1.84 mmol) was added and the reaction heated to 

90°C and maintained at this temperature with stirring under nitrogen for 2 

h. The solvent was removed in vacuo and dichloromethane added. The 

product was washed with water, dried (MgSC»4) and solvent removed in 

vacuo. Chromatography of the residue on silica gel, eluent 

dichloromethane followed by recrystallisation f rom dichloromethane/ 

hexane afforded compound 68 (410 mg, 66%) as an orange solid, m.p. 166-

168°C. (Found: C, 35.2; H , 2.9; N , 3.0. C13H13NS8 requires C, 35.5; H , 3.0; N , 

3.2%); m/z (DCI) 440 (M++1); 8H(CDC1 3) 2.95-2.68 (7H, m) and 2.41 (6H, s); 

VmaxtKBrVcnr1 2918,2247,1422,1283,1174,976,881 and 769. 

4,5-[2-(Oxo)propylene-l>dithio]-l/3-dithiole-2-thione 70. 

To a solution of the zinc complex 32 (1.17 g, 1.64 mmol) in dry 

acetonitrile (100 mL), 1,3-dichloroacetone (0.50 g, 3.94 mmol) was added and 

the reaction refluxed with stirring under nitrogen for 2-3 h, after which time 

the solution had changed from a deep red to an orange colour. Acetonitrile 

was removed in vacuo and the residue dissolved in dichloromethane and 

washed wi th water, dried (MgSC»4) and solvent removed in vacuo. 

Chromatography of the residue on silica gel, eluent dichloromethane 
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afforded compound 7(D) (630 mg, 76%) as an orange solid, m.p. 153-156°C. 

(Found: C, 28.8; H , 1.5. QH4OS5 requires C, 28.5; H , 1.6%); m/z (EI) 252 (M + ) ; 

SH (CDC1 3 ) 3.50 (4H, s); 6c(CDCl3) 42.71 ( C H 2 ) , 138.% (C=C), 200.24 (C=0) and 

208.72 (C=S); v m a x ( n u j o l ) / c m - 1 1705, 1670, 1405, 1250, 1180, 1150, 1050 and 

1020. 

4,S=[2=(Oxo)propyleme=l^diOMo]=l^idilMol®=2=®sa(S 71. 

To a solution of compound 70 (100 mg, 0.40 mmol) in chloroform/ 

glacial acetic acid (30 mL, 3:1 v /v ) , mercuric acetate (an excess) was added. 

The reaction was stirred under nitrogen at 20°C for 2 h, after which time a 

white precipitate had formed. The precipitate was removed by filtration and 

the filtrate washed sequentially wi th water and a solution of sodium 

hydrogencarbonate, dried (MgSC>4) and solvent removed in vacuo. 

Chromatography of the residue on silica gel, eluent dichloromethane 

afforded compound 71 (95 mg, 100%) as a white solid, m.p. 184-187°C 

(decomp.). (Found: C, 30.8; H , 1.9. C6H4O2S4 requires C, 30.5; H , 1.7%); m/z 

(EI) 236 (M+); 6H(CDC1 3) 3.46 (4H, s); 8C(CDC1 3) 42.80 (CH 2), 130.60 (C=C), 

187.39 (C=0) and 200.85 (C=0); VmaxGiujoD/cnr1 1700,1670,1610,1250,1200, 

1160,895 and 750. 

4,5°[2=(Ethyleneketal)propylene=13°dithio]=l,3=dithiole"2-one 72. 

To a solution of compound 71 (130 mg, 0.55 mmol) in dry toluene (50 

mL), ethylene glycol (0.04 mL, 0.66 mmol) and cone, sulphuric acid (3 drops) 

were added. A Dean-Stark apparatus was assembled and the reaction 

refluxed with stirring under nitrogen for 2-3 h. The organic phase was 

washed with a solution of sodium hydrogencarbonate, dried (MgSC>4) and 

solvent removed in vacuo to afford compound 72 (130 mg, 84%) as a white 

solid, m.p. 143-145°C. (Found: C, 34.4; H , 2.8. C8H8O3S4 requires C, 34.3; H, 

2.9%); m/z (CI) 280 (M+); 8H(CDC13) 4.03 (4H, s) and 2.75 (4H, s); V j W n u j o l ) / 

cm"1 1670,1615,1250,1110,1080,1025,980 and 900. 
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Compound 72 (0.75 g, 2.68 mmol) was placed in triethylphosphite (8 

mL) and the mixture heated to 130°C, upon which dissolution occurred. The 

reaction mixture was maintained at this temperature with stirring under 

nitrogen for 2 h. The solution was allowed to cool to 20°C and methanol 

added. The precipitated solid was fi l tered off and pur i f ied by 

chromatography on silica gel, eluent dichloromethane to afford compound 

73 (465 mg, 66%) as a yellow solid, m.p. > 230°C. (Found: C, 36.0; H , 2.9. 

Ci6Hi 60 4S8 requires C, 36.3; H , 3.1%); m/z (DCI) 529 (M++1); 5H(CDC13) 3.93 

(8H, s) and 2.53 (8H, s); v m a x(nujo l ) /cm- 1 1250, 1110, 1020, 980, 945, 895, 720 

and 670. 

Bis[2=(oxo)propylene=l^dithio]tetrathiafulvalene 74. 

A solution of compound 73 (100 mg, 0.19 mmol) in THF (75 mL) was 

acidified with cone, sulphuric acid (10 mL) and the reaction mixture 

refluxed with stirring under nitrogen for 16 h. The solution was cooled to 

20°C and the precipitated solid filtered off and washed with methanol to 

afford compound 74 (75 mg, 87%) as an orange solid, m.p. >340°C. (Found: 

C, 32.5; H, 1.7. C12H8O2S8 requires C, 32.7; H , 1.8%); m/z (DCI) 441 (M++1); 5H 

[(CD3)2SO] 3.46 (8H, s); VmaxCnujoD/cnr1 1705,1250,1190,1160,1060,900,770 

and 720. 

Compounds 79-82. General Procedure. A mixture of compound 72 (1 mol 

equiv) and either thione 76 or 77 (3 mol equiv) or ketone 48 or 78 (1 mol 

equiv) were suspended in triethylphosphite (ca. 5 mL) and heated to 130°C 

with stirring under nitrogen and maintained at this temperature for 2 h. 

The solution was cooled to 20°C and dichloromethane added. The solution 

was washed with water, dried (MgSC>4) and solvent removed in vacuo. 

Chromatography of the residue on silica gel, eluting initially with hexane/ 
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dichloromethane (3:1 v / v ) gradually changing to hexane/dichloromethane 

(1:1 v / v ) afforded the required products. There was obtained: 

4,5424EShylm<£ke^)propylmrf 72>. 

[From compound 72 (250 mg, 0.89 mmol) and compound 7<S (360 mg, 

2.69 mmol)] an orange solid (120 mg, 37%), m.p. 200-203°C. (Found: C, 35.8; 

H , 2.8. C11H10O2S6 requires C, 36.0; H , 2.7%); m/z (DCI) 367 (M++1); S R 

[(CD3)2CO] 6.66 (2H, s), 4.05 (4H, s) and 2.87 ( 4 H , s); v m a x ( n u j o l ) / c m - 1 3070, 

1410,1250,1100,1020,985,900 and 795. 

1 

4,S=DimethyM%SM2^ethyleneketal)propylesiie=13=^ithio] 

tetxathiafulvalene 80. 

[From compound 72 (160 mg, 0.57 mmol) and compound 77 (280 mg, 

I . 73 mmol)] an orange solid (45 mg, 20%), m.p. 218-220°C (Found: C, 39.4; 

H , 3.6. C13H14O2S6 requires C, 39.6; H , 3.6%); m/z (DCI) 395 (M++1); 6 H 

(CDCI3) 4.05 (4H, s), 2.70 (4H, s) and 1.93 (6H, s); v m a x (nu jo l ) / cm- 1 1250,1100, 

1020,970,950,900,775 and 720. 

4,5-Dimeftylthio-4 #,5 /°[2-(ethyleneketal)propylene-l^-dithio] 

tetrathiafulvalene 81. 

[From compound 72 (300 mg, 1.07 mmol) and compound 48 (225 mg, 

I . 07 mmol)] an orange solid (90 mg, 18%), m.p. 152-154°C. (Found: C, 34.0; 

H , 3.2. C13H14O2S8 requires C, 34.0; H , 3.1%); m/z (DCI) 459 (M++1); 8H 

(CDCI3) 4.06 (4H, s), 2.72 (4H, s) and 2.41 (6H, s); v m a x(nujo l ) /cm- 1 1250,1110, 

1090,1020,980,940,910 and 770. 

4,5-Ethylenedithio-4' /5 /-[2-(ethyleneketal)propylene-l^-dithio] 

tetrathiafulvalene 82. 

[From compound 72 (400 mg, 1.43 mmol) and compound 78 (300 mg, 

I . 44 mmol)] an orange solid (165 mg, 25%), m.p. 226-228°C. (Found: C, 34.0; 

114 



H , 2.5. C13H12O2S8 requires C, 34.2; H , 2.6%); m / z (DCI) 457 (M++1); 8H 

( C D C I 3 ) 4.07 (4H, s), 3.29 (4H, s) and 2.72 (4H, s); v m a x(nujol) /cm" 1 1245,1100, 

1080,1015,975,940,890 and 765. 

Compounds 83-86. General Procedure. A solution of ketal 79=82 in T H F was 

acidified with cone, sulphuric acid and the mixture refluxed with stirring 

under nitrogen for 16 h. Water was added and the product extracted into 

dichloromethane. The organic layer was separated, washed with a solution 

of sodium hydrogencarbonate, dried (MgS04) and the solvent removed in 

vacuo. The products were purified by chromatography on silica gel with 

dichloromethane/hexane mixtures as the eluting solvent. There was 

obtained: 

4,5-[2-(Oxo)propylene-l,3-ditWo]tetrathiafulvalene 83. 

[From compound 79 (70 mg, 0.19 mmol) in THF (50 mL) and cone, 

sulphuric acid (5 mL)] as an orange solid (58 mg, 94%) which exhibits two 

distinct crystalline forms: needles, m.p. 186-187°C (decomp.) and cubes, m.p. 

179-182°C (decomp.). (Found: C, 33.7; H , 1.7. C 9 H 6 O S 6 requires C, 33.5; H , 

I . 9%); m/z (DCI) 323 (M++1); 8H(CDC1 3) 6.35 (2H, s) and 3.34 (4H, s); v m a x 

(nujoD/cm"1 3060,1700,1415,1400,1180,795,770 and 660. 

4,5-Dimethyl-4',5'-[2-(oxo)propylene-13-dithio]tetrathiafulvalene 84. 

[From compound 80 (40 mg, 0.10 mmol) in THF (25 mL) and cone, 

sulphuric acid (3 mL)] as a red solid (33 mg, 93%), m.p. 220-222°C. (Found: C, 

37.8; H , 3.0. C n H i 0 O S 6 requires C, 37.7; H , 2.9%); m/z (DCI) 351 (M++1); 8 H 

( C D C I 3 ) 3.33 (4H, s) and 1.96 (6H, s); VmaxfaujoD/cnr1 1700, 1250,1180, 1150, 

1090,900,775 and 720. 
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4,fH3am@ithyEiOM(D^ 85. 

[From compound 81 (60 mg, 0.13 mmol) i n THF (30 mL) and cone, 

sulphuric acid (4 mL)] as an orange solid (50 mg, 92%), m.p. 175-178°C. 

(Found: C, 31.9; H, 2.5. CnHioOSs requires C, 31.9; H, 2.4%); m / z ( D C I ) 415 

( M + + l ) ; §H(CDC13) 3.35 (4H, s) and 2.43 (6H, s); v m a x ( n u j o l ) / c m " 1 1700,1245, 

1185,1060,960,895,885 and 760. 

[From compound 82 (140 mg, 0.31 mmol) in THF (100 mL) and cone, 

sulphuric acid (10 mL)] as a yellow solid (120 mg, 95%), m.p. 218-220°C. 

(Found: C, 31.8; H, 1.8. CnHsOSg requires C, 32.0; H , 2.0%); m/z (DCI) 413 

(M++1); 8H(CDC1 3) 3.34 (4H, s) and 3.30 (4H, s); v m a x(nu jo l ) / an - 1 1710,1405, 

1300,1250,1180,1105,1060 and 770. 

i 

4,5=Dimethyl=4',S'=[2=(hydroxy)propylene°l^ditMo]teteathiffif!dvalene 87. 

To a solution of compound 84 (60 mg, 0.17 mmol) in dry THF (60 

mL), lithium aluminium hydride (an excess) was added and the mixture 

stirred at 20°C for 1 h. Water was slowly added and the product extracted 

into dichloromethane, washed with water, dried (MgSC»4) and solvent 

removed in vacuo. Chromatography of the residue on silica gel, eluent 

dichloromethane afforded compound 87 (55 mg, 90%) as a dark orange solid, 

m.p. 207-210°C. m/z (DCI) 353 (M++1); 8 H(CDC1 3) 4.39 (1H, m), 3.48 (1H, 

broad), 2.81 (4H, m) and 1.94 (6H, s); VmaxtnujoD/cm"1 3400, 2920,1410,1380, 

1285,1260,1175 and 1060. 

4,5=[2-(Ethyleneketal)propylene=l>'dithio]-4' /5'-"[2=(te»f-butyl-diphenyl-

sUyloxy)propylene-l,3-dithio]tetrathiafulvalene 88. 

Compound 43 (1.0 g, 2 mmol) and compound 72 (0.6 g, 2 mmol) were 

suspended together in triethylphosphite (10 mL) following the procedure 

reported for compound 49 and heated to 130°C with stirring under nitrogen 
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for 2 h. Chromatography on silica gel, eluent dichloromethane/hexane (1:1 

v / v ) cleanly separated compound 88 from the self-coupled products 44 and 

73. Compound 88 was isolated (270 mg, 37%) as an orange solid, m.p. >230°C. 

(Found: C, 49.5; H, 4.4. CaoffeOsSsSi requires C, 49.7; H, 4.4%); m/z (EI) 724 

(M+); 5H(CDC1 3 ) 7.62 (4H, m), 7.41 (6H, m), 4.09 (1H, m), 4.05 (4H, s), 2.70 (6H, 

m), 2.52 (2H, m) and 1.05 (9H, s). 

5.3 EXPERIMENTAL TO CHAPTER THREE 

l,3,5-Tris(bromomethyl)benzene was prepared following the literature 

p r o c e d u r e 9 0 by reductive bromination of trimethyl 1,3,5-benzene-

tricarboxylate (ca. 60% yield). 

3,5-Dihydroxy-benzyl alcohol was prepared following the literature 

procedure*!. M.p. 187-189°C (lit. 189°C91). 

4 /5-Bis[2-(hydroxy)ethylthio]-l,3-dithiole-2-thione 138 was prepared 

following the literature procedure8 2 from 4,5-di(benzoylthio)-l,3-dithiole-2-

thione 35 and 2-chloroethanol (ca. 80% yield). 

Tetrathiafulvalene carbonyl chloride was prepared following the literature 

procedure8 3 from TTF-carboxylic acid and oxalyl chloride (ca. 60% yield). 

General Procedure. Generation and Trapping of TTF-thiolate Anion 114. 

Preparation of Compounds 115 and 116. Into a stirred solution of TTF 1 (500 

mg, 2.5 mmol) in dry ether (50 mL) at -78°C under nitrogen, was syringed a 

freshly-prepared solution of LDA [obtained from di-isopropylamine (0.40 

mL, 2.9 mmol) and w-butyllithium (1.6 M, 1.80 mL, 2.9 mmol) in dry ether (7 

mL) at -78°C] over a period of 10 min. A yellow precipitate of monolithiated-

TTF began to form after ca. 10 min, and stirring was continued for a further 
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45 min at -78°C. Elemental sulphur (100 mg, 3.1 mmol) was then added in 

one portion against a positive pressure of nitrogen and stirring was 

continued at -78°C for 7 h, after which time either l,3=bis(bromomethyl) 

benzene (320 mg, 1.2 mmol) or l,3,5-tris(bromomethyl)benzene (175 mg, 0.5 

mmol) was added. The mixture was stirred at -78°C for 2 h and then slowly 

warmed to 20°C over 12 h. Water (60 mL) was added and the mixture 

extracted into dichloromethane (4 x 50 mL), the combined extracts were 

washed with water (50 mL), dried (MgS04) and the solvent removed in 

vacuo. Chromatography of the residue on silica gel, eluting first with 

hexane/dichloromethane (4:1 v / v ) gave unreacted TTF 1 (ca. 100 mg, 20%) 

then with dichloromethane to afford the products. There was obtained: 

a /a'°Bis(tetrathiafulvalenyIthio)°m°xylene 115. 

A yellow solid (70 mg, 10%), m.p. 73-75°C (from ether/methanol). 

(Found: C, 41.4; H , 2.3. C20H14S10 requires C, 41.8; H , 2.5%); m/z ( D C I ) 575 

(M++1); 5H(CDC13) 7.28-7.13 (4H, m), 6.30 (4H, s), 6.11 (2H, s) and 3.89 (4H, s); 

VmaxOKBrVcm-1 3060,1085,930,790,770,730,700 and 630. 

a,a',a"-Tris(tetrathiafulvalenylthio)=mesitylene 116. 

An orange solid (70 mg, 17%), m.p. 49-52°C (from ether/methanol). 

(Found: C, 39.1; H , 2.1. C27H18S15 requires C, 39.4; H , 2.2%); 8H (CDC1 3 ) 7.06 

(3H, s), 6.32 (6H, s), 6.13 (3H, s) and 3.86 (6H, s); v m a x ( K B r ) / c m - 1 3060, 1600, 

930,790,770,730,705 and 640. 

4,5-(Ethylenedithio)tetrathiafulvalene 118. 

To an ethereal slurry of anion 11 [obtained from TTF 1 (250 mg, 1.23 
1 

mmol) as described above] at -78°C, was added elemental sulphur (60 mg, 

1.84 mmol) and the reaction mixture was maintained at -78°C for 7 h. 1,2-

dibromoethane (0.1 mL, 1.23 mmol) dissolved in dry ether (2 mL) was added 

dropwise over 2 min. The resulting orange solution was allowed to warm to 

118 



20°C over 16 h. Standard aqueous workup, wi th extraction into toluene, 

followed by chromatography on silica gel, eluent cydohexane/toluene (3:1 

v / v ) gave an analytically pure product (35-75 mg, 10-20%), m.p. 199°C ( l i t . 7 9 

200°C). 

Compounds 121 and 122. General Procedure. Reaction conditions and molar 

ratios were identical with those described above for the preparation of 

compounds 115 and 116 using either acetyl chloride (0.21 mL, 2.94 mmol) or 

benzoyl chloride (0.34 mL, 2.92 mmol). There was obtained: 

4=(AcetyltMo)tetrathia£ulvalene 121. 

A n orange solid (540 mg, 79%), m.p. 109-110°C ( f rom 

dichloromethane / hexane). (Found: C , 34.2; H , 2.1. CgfWSs requires C , 34.5; 

H , 2.2%); m/z ( D C I ) 279 (M++1); 8H(CDC1 3 ) 6.50 (1H, s), 6.32 (2H, s) and 2.39 

(3H, s); VmaxfaujoD/cm-1 3060,1700,1110,940,795,780,660 and 610. 

4°(Benzoylthio)tetrathiafulvalene 122. 

A n orange solid (650 mg, 78%), m.p. 126-127°C ( f rom 

dichloromethane/cyclohexane). (Found: C, 45.6; H, 2.2. C13H8OS5 requires C , 

45.8; H , 2.4%); m/z (DCI) 341 (M++1); 8H(CDCl3) 7.93 (2H, m), 7.63 (1H, m), 

7.48 (2H, m), 6.60 (1H, s) and 6.32 (2H, s); v m a x ( n u j o l ) / c m - 1 3060, 1680, 1210, 

1180,895,800,680 and 640. 

Compounds 124-126. General Procedure. A suspension of thioester 122 (200 

mg, 0.59 mmol) in dry ethanol (100 mL) was cooled to -10°C under nitrogen 

and sodium ethoxide (4.6 mL of an 0.14 M solution in dry ethanol, 0.64 

mmol) was added and the mixture stirred at -10°C for 0.5 h. This solution 

was then added dropwise to an excess of the electrophile (either 

iodomethane, 1,3-diiodopropane or 1,4-diiodobutane) over a period of 0.5 h. 

The reaction mixture was stirred at -10°C for 2 h and then allowed to warm 
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to 20°C. Ethartol was removed in vacuo and the residue dissolved in 

dichloromethane, washed with water, dried (MgS04) and solvent removed 

in vacuo. Chromatography of the residue on silica gel, eluent cydohexane/ 

toluene (3:1 v /v ) afforded the products. There was obtained: 

4=(M®ftyl6Mo)6®forafthiafiffllvsil(S2iie 124 

An orange oil (142 mg, 96%). m/z (DCI) 251 (M++1); § H (CDC1 3 ) 6.32 

(2H, s), 6.28 (1H, s) and 2.39 (3H, s); v m a x (nea t ) /cm- 1 3060, 2920, 1520, 1430, 

1310,930,790 and 770. 

4=[3-(Iodo)propyltMo]tetatMaifoalvalene 125. 

A yellow oil (120 mg, 50%). m/z (DCI) 405 (M++1); 8H(CDC13) 6.38 (1H, 

s), 6.32 (2H, s), 3.28 (2H, t, J = 6.8 Hz), 2.85 (2H, t, J = 6.9 Hz), 2.11 (2H, pentet, J 

= 6.8 Hz); VmaxfaeatVcm-1 3060,1530,1420,1210,930,800,775 and 640. 

4=[4=(Iodo)butyltWo]tetrathra£ulvalene 126. 

A yellow oil (106 mg, 43%). m/z (DCI) 419 (M++1); 8H(CDC13) 6.37 (1H, 

s), 6.32 (2H, s), 3.19 (2H, t, J = 6.8 Hz), 2.76 (2H, t, J = 7.1 Hz), 1.93 (2H, m) and 

1.74 (2H, m); v m a x (neat)/cm- 1 3060,1525,1265,1200,930,795,775 and 640. 

Compounds 127 and 128. General Procedure. To a solution of the sodium 

thiolate salt 123, generated from thioester 122 (100 mg, 0.29 mmol) as 

described above for compounds 124-126, was added either TTF derivative 

125 (120 mg, 0.30 mmol) or 126 (125 mg, 0.30 mmol). The mixture was stirred 

under nitrogen at -10°C for 2 h, then allowed to warm to 20°C over 16 h. 

Aqueous work-up as described for compounds 124-126, followed by 

chromatography on silica gel, eluent cyclohexane/toluene (3:1 v / v ) afforded 

the products. There was obtained: 
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l^BSs(teteaMafalval(gEayl&M@)pir©paa® 12.7* 

An orange oil (40 mg, 26%). m / z (DO) 513 (M^+l) ; §h(CDC13) 6.39 

(2H, s), 6.32 (4H, s), 2.83 (4H, t, J = 7.0 Hz) and 1.95 (2H, pentet, J ^ 7.0 Hz). 

l,4°Bk(feeteatMaMval(gsaylftM©)biataa(g 128= 

An orange solid (17 mg, 11%), m.p. 124-126°C. (Foimd: C , 36.3; H , 2.5. 

C16H14S10 requires C , 36.5; H , 2.7%); m/z ( D C I ) 527 ( M + + l ) ; 6H(CDC13) 6.36 

(2H, s), 6.32 (4H, s), 2.75 (4H, m) and 1.74 (4H, m). 

3,5=Bk[3-(tetratMa£iilvalenylthio)propoxy]=berizyl alcohol 129. 

To a solution of compound 12 S (350 mg, 0.87 mmol) in dry 

acetonitrile (80 mL), 3,5-dihydroxy-benzyl alcohol (60 mg, 0.43 mmol), dried 

potassium carbonate (150 mg, 1.09 mmol) and 18=crown=6 (25 mg, 0.09 

mmol) was added and the reaction refluxed with stirring under nitrogen for 

16 h. Chromatography of the crude reaction mixture on silica gel, eluent 

cyclohexane/toluene/acetone (2:1:1 v / v / v ) afforded compound 129 (60 mg, 

20%) as a yellow oil. m/z (DCI) 693 (M++1); 8 H [ ( C D 3 ) 2 C O ] 6.73 (2H, s), 6.63 

(4H, s), 6.55 (2H, m), 6.39 (1H, m), 4.56 (2H, d, J = 5.3 Hz), 4.23 (1H, t, J = 5.8 

Hz), 4.10 (4H, t, J = 6.0 Hz), 3.01 (4H, t, J = 7.1 Hz) and 2.10 (4H, pentet, J = 6.6 

Hz); VmaxfaeaO/cnr1 3440 (OH). 

4=(3=Chloro-2-oxo-propylthio)tetrathiafulvalene 130. 

A solution of the sodium thiolate salt 123, generated from thioester 

122 (380 mg, 1.12 mmol) as described above for compounds 124-126, was 

added dropwise to a solution of 1,3-dichloroacetone (1.42g, 11.2 mmol) in 

dry ethanol (10 mL) with stirring under nitrogen. The reaction was stirred at 

20°C for 16 h, after which chromatography of the crude reaction mixture on 

silica gel, eluent toluene/cyclohexane (1:1 v / v ) followed by recrystallisation 

from dichloromethane/hexane afforded compound 130 (160 mg, 44%) as an 

orange solid, m.p. 82-85°C. (Found: C, 32.5; H , 2.1. C9H7CIOS5 requires C, 
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33.1; H, 2.2%); m/z (DO) 327 (M+-S-1); fiirfCDCb) 6-50 (1H, s), 6.31 (2H, s), 4.24 

(2H, s) and 3.75 (2H, s); v m a x (nujol) /an- 3 3060,1725,1210,1150, 930, 800, 775 

and 655. 

To a solution of compound 130 (200 mg, 0.61 mmol) in dry acetone 

(50 mL), O-ethylxanthic acid potassium salt (120 mg, 0.75 mmol) was added 

and the reaction stirred under nitrogen at 20°C for 16 h. Aqueous workup of 

the reaction mixture (extraction into dichloromethane) followed by 

chromatography on neutral alumina, eluent dichloromethane/cydohexane 

(1:1 v/v) afforded compound 131 (180 mg, 71%) as an orange/brown oil. m/z 

(DCI) 413 (M++1); 8 H ( C D C 1 3 ) 6.49 (1H, s), 6.31 (2H, s), 4.61 (2H, q, J = 7.1 Hz), 

4.11 (2H, s), 3.76 (2H, s) and 1.41 (3H, t, J = 7.1 Hz). 

Tris{4,5°dimethyltMo^',S,=[2°(methylene)propylene°l^=ditMo] 

tetrathiafulvalene}=l,3,5-ben2enetricarboxylate 134. 

To a solution of alcohol 61 (200 mg, 0.47 mmol) in dry 

dichloromethane (50 mL), 1,3,5-benzenetricarbonyl trichloride (37 mg, 0.14 

mmol) followed by 4-dimethylaminopyridine (70 mg, 0.57 mmol) was added 

and the reaction stirred under nitrogen at 20°C for 16 h. Chromatography of 

the crude reaction mixture on silica gel, eluent dichloromethane followed 

by recrystallisation from dichloromethane/hexane afforded compound 134 

(120 mg, 59%) as an orange solid, m.p. 133-135°C. (Found: C , 37.7; H , 3.0. 

C45H42O6S24 requires C , 37.3; H , 2.9%); m/z (PDMS) 1448.4 (M+). Calc. for 

C45H42O6S24 1448.3; 6H(CDC13) 8.73 (3H, s), 4.57 (6H, broad s), 2.96 (6H, m), 

2.78-2.66 (9H, m) and 2.40 (18H, s); VmaxCKBrVcnr1 2915,1728,1416,1235,998, 

893,771 and 737. 
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To a solution of iodide 125 (230 sng, 0.57. mmol) in dry acetonitrile 

(100 mL), zincate salt 32 (100 mg, 0.14 mmol) was added and the reaction 

refluxed with stirring under nitrogen for 16 h after which time the solution 

had changed colour from deep red to orange. Chromatography of the crude 

reaction mixture on silica gel, eluent cydohexane/toluene (2:1 v/v) afforded 

compound 135 (42 mg, 20%) as an orange oil. 8H(CDC1)3 6.40 (2H, s), 6.32 (4H, 

s), 2.98 (4H, t, J = 7.0 Hz), 2.87 (4H, t, J = 6.9 Hz) and 1.99 (4H, pentet, J = 6.9 

Hz); VmaxfaeaO/cnr1 3060,2920,1250,1060,795,770,730 and 640. 

4,5-Bis[3°(tetratMa£idvalenyltMo)propylthio]-=l>ditMoie-2-one 136. 

A solution of l,3,4,6-tetrathiapentalene-2,5-dione (30 mg, 0.14 mmol), 

iodide 125 (120 mg, 0.30 mmol) and tricaprylmethyl-ammonium chloride 

(140 mg, 0.28 mmol) in benzene (60 mL) was degassed by bubbling nitrogen 

through the solution for 10 min. A solution of sodium carbonate (62 mg, 

0.58 mmol) in distilled water (10 mL) was slowly added with stirring at 40°C. 

Vigorous stirring was maintained under nitrogen at 40-45°C for 2 h and 

then at 20°C for 16 h. The organic layer was separated, washed with water, 

dried (MgS04) and solvent removed in vacuo. Chromatography of the 

residue on silica gel, eluent dichloromethane/cyclohexane (1:1 v /v) 

afforded compound 136 (51 mg, 50%) as a yellow oil. 8H(CDC13) 6.39 (2H, s), 

6.32 (4H, s), 2.96 (4H, t, J = 7.0 Hz), 2.88 (4H, t, J = 7.0 Hz) and 1.98 (4H, pentet, J 

= 7.1 Hz); VmaxfaeaO/cm-1 3060,2905,1665,1610,880,790, 770 and 640. 

4,5-Bis[2-(terf-butyl"diphenylsilyloxy)ethylthio] l,3»dithiole-2-thione 139. 

To a solution of 4,5-bis[2-(hydroxy)ethylthio]-l,3-dithiole-2-thione 138 

(3.00 g, 10.5 mmol) in D M F (200 mL) was added sequentially tert-butyl-

diphenylchlorosilane (6.92 g, 25.2 mmol) followed by imidazole (14.27 g, 0.21 

mol) and the mixture stirred under nitrogen at 20°C for 16 h. The solvent 

was removed in vacuo and the residue dissolved in dichloromethane. The 
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product was washed with water (3 x 100 mL), dried (Na2SQ»4) and the solvent 

evaporated. Chromatography of the residue on silica gel, eluent 

dichloromethane afforded compound 139 (7.96g, 100%) as a viscous yellow 

oil. m/z (EI) 762 (M + ) ; 8H(CDC13) 7.64 (8H, m), 7.38 (12H, m), 3.80 (4H, t, J = 

6.7 Hz), 2.93 (4H, t, J = 6.7 Hz) and 1.05 (18H, s); vm ax(neat)/cm- 1 3070, 2931, 

2858,1471,1428,1112,1068 and 702. 

4/5°!is[24£^=foiafcyMiphenyls%ta 140. 

To a solution of thione 139 (7.96 g, 10.4 mmol) in chloroform/glacial 

acetic acid (300 mL, 3:1 v/v), mercuric acetate (an excess) was added and the 

mixture stirred under nitrogen at 20°C for 16 h. Water (100 mL) was added 

and stirring continued for 0.5 h. The heavy white precipitate was removed 

by filtration and the organic phase of the filtrate washed with sodium 

hydrogencarbonate solution (1 M , 3 x 100 mL), dried (Na2S04) and the 

solvent removed in vacuo to afford compound 140 (7.82 g, 100%) as a 

viscous colourless oil. m/z (EI) 746 (M+); 8H(CDC1 3) 7.64 (8H, m), 7.38 (12H, 

m), 3.80 (4H, t, J = 6.8 Hz), 2.92 (4H, t, J = 6.8 Hz) and 1.05 (18H, s); Vmax(neat)/ 

cm-1 3071,2931,2857,1672,1472,1428,1110 and 702. 

44^5/5'°Tetrakis[2=(tert''butyl-'diphenylsilyloxy)ethylthio] 

tetrathiafulvalene 141. 

A stirred solution of compound 140 (7.82 g, 10.5 mmol) in neat, 

freshly distilled triethylphosphite (20 mL) under nitrogen, was heated to 

130°C and maintained at this temperature for 2 h after which time the 

reaction mixture was deep red in colour. Chromatography of the crude 

reaction mixture on silica gel, eluent dichloromethane/cyclohexane (1:1 

v/v) afforded compound 141 (4.75 g, 62%) as a viscous orange oil. m/z 

(PDMS) 1461.0 (M+). calc. for C78H92O4S8SU 1462.5; 5H(CDC13) 7.64 (16H, m), 

7.34 (24H, m), 3.80 (8H, t, J = 6.7 Hz), 2.91 (8H, t, J = 6.8 Hz) and 1.04 (36H, s); 

VmaxdieatJ/cm-1 3071,2917,2849,1472,1428,1110,824 and 702. 
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44^^ '°T<stakM2°(hyto^ M2. 

To a solution of compound M l (3.16 g, 2.16 mmol) in THF (150 mL), 

tetrabutylammonium fluoride hydrate (3.62 g, 13.0 mmol) was added and 

the mixture stirred under nitrogen at 20°C for 16 h. Removal of the solvent 

in vacuo afforded a viscous orange oil. Addition of hexane (20 mL) followed 

by ether (100 mL) precipitated a waxy solid. Filtration, followed by 

recrystallisation from methanol afforded compound 142 (820 mg, 75%) as an 

orange solid, m.p. 140-141°C (Lit.?2 137=138°C). (Found: C, 32.9; H, 3.9. 

C14H20O4S8 requires C, 33.0; H, 4.0%); m/z (EI) 508 (M +); 8H[(CD3)2SO] 5.06 

(4H, s), 3.56 (8H, t, J = 6.7 Hz) and 2.93 (8H, t, J = 6.7 Hz); VmaxOCBrycnr1 3367, 

2919,1398,1296,1065,1010,892 and 770. 

4/4^5y5'-Tetra]!ds[2^tetiatfaiafulvalenecarboxylate)ethylthio] 

tetratMafulvalene 143. 

To a stirred solution of compound 142 (150 mg, 0.30 mmol) in dry 

DMF (10 mL) under argon at 20°C was added TTF-carbonyl chloride83 (400 

mg, 1.50 mmol) in one portion, followed by triethylamine (2 drops, excess). 

The reaction was stirred for 3 h, after which the solvent was removed in 

vacuo and the residue dissolved in dichloromethane (20 mL). The product 

was washed with water (3 x 20 mL), dried (MgSCXj) and the solvent 

evaporated. Chromatography of the residue on silica gel, eluent 

dichloromethane afforded compound 143 (240 mg, 57%) as a red-orange 

solid, m.p. 191-195°C. (Found: C, 35.3; H, 2.0. C42H28O8S24 requires C, 35.3; H, 

2.0%); m/z (PDMS) 1429.7 (M+). Calc. for C42H28O8S24 1430.2; 5H(CDC13) 7.35 

(4H, s), 6.31 (8H, broad), 4.43 (8H, t, J = 6.6 Hz) and 3.13 (8H, t, J = 6.6 Hz); Vmax 

(KBrJ/cm-1 3069,1703,1538,1273,1196,1075,728 and 647. 
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SA EXPERIMENTAL TO CHAPTER FOUR 

2=Bieth®jq^foo§pfo©]ry!=4,§=to 153 was prepared, in 

four steps, following the literature procedure 8 6 starting from 4,5= 

dimethylthio-l>dithiole-2-thione 149 (ca. 75% yield). 

Ferrocene carfoonyl chloride was prepared following the literature 

procedure93 from ferrocene carboxylic acid and phosphorus pentachloride 

(ca. 50% yield). 

2,6°Di(t^=biatyl=diphenylsUyIoxy)anthraqiiirione 155. 

To a solution of 2,6-dihydroxyanthraquinone (5.00 g, 20.8 mmol) in 

DMF (250 mL), terf-butyl-diphenylchlorosilane (13.75 g, 50.0 mmol) followed 

by imidazole (14.17 g, 208 mmol) was added and the reaction stirred under 

nitrogen at 20°C for 16 h. DMF was removed in vacuo and the residue 

dissolved in dichloromethane, washed with water, dried (MgSC»4) and 

solvent removed in vacuo. Chromatography of the residue on silica gel, 

eluent hexane/dichloromethane (2:1 v/v) afforded compound 155 (9.05 g, 

61%) as a yellow solid, m.p. 226-228°C. (Found: C, 77.0; H, 6.2. C46H44C»4Si2 

requires C, 77.0; H, 6.2%); m/z (DCI) 717 (M++1); 8H(CDCl3) 7.95,7.63 and 6.94 

(2 x AMX each 3H, JAX = 8.4, J M X = 2.7 and JAM < 1 Hz), 7.70 (8H, m), 7.40 

(12H, m) and 1.13 (18H, s); v m a x (KBr)/cm- 1 3070, 2931, 2857, 1672,1587,1313, 

904 and 701. 

2,6-Di(terf=butyl-diphenylsOyloxy)=9,10=bis(4,5-dimethylthio=l,3-dithiol»2= 

ylidene)-9/10-dihydroanthracene 156. 

To a solution of Horner-Wittig reagent 153 (4.65 g, 14.0 mmol) and 

compound 155 (4.01 g, 5.60 mmol) in dry THF (150 mL) at 20°C, n-butyl-

lithium (1.6 M, 9.63 mL, 15.4 mmol) was added dropwise with stirring under 

nitrogen over 10 min. Stirring was continued for 16 h after which time 
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chromatography of the crude reaction mixture on silica gel, eluent hexane/ 

dichloromethane (2:1 v/v) afforded compound IB€> (3.52 g, 59%) as a yellow 

solid, m.p. 242-244°C. (Found: C , 62.9; H, 5.4. C56H5602SsSi2 requires C , 62.6; 

H, 5.3%); m/z ( D O ) 1073 (M++1); SR(CDC13) 7.74 (8H, m), 7.39 (12H, m), 7.19, 

6.93 and 6.66 (2 x A M X each 3H, JAX = 8.6, JMX = 2.6 and JAM < 1 Hz), 2.34 (6H, 

s), 2.27 (6H, s) and 1.11 (18H, s); v m a x (KBr)/cm- 1 3070, 2928, 2856,1465,1312, 

1226,1110 and 705. 

2,6-Dmydroxy^,10=bis(4,5^imeUiyltMo=l>ditMol°2=ylidene)^,10= 

dihydroanthracene 157. 

To a solution of compound 156 (520 mg, 0.49 mmol) in THF (60 mL), 

tetrabutylammonium fluoride (1 M in THF, 1.94 mL, 1.94 mmol) was added 

dropwise over 10 min and stirring continued under nitrogen at 20°C for 16 

h. Removal of the solvent in vacuo followed by chromatography of the 

sparingly soluble residue on silica gel, eluent acetone afforded compound 

157 (cfl. 205 mg, 70%) as an orange solid. The compound could not be 

obtained analytically pure and its insolubility precluded its use in further 

reactions, m/z (DO) 597 (M++1); 8 H [(CD3)2CO] 8.99 (2H, s), 7.40,7.05 and 6.86 

(2 x A M X each 3H, JAX = 8.5, JMX = 2.3 and JAM < 1 Hz) and 2.41 (12H, s); v m a x 

(KBrJ/cnv1 3369,2919,1564,1539,1456,1289,1221 and 1099. 

2,6-Bis(ferrocenecarboxylate)-9,10-bis(4,5-dimethylthio-13-dithiol-2-ylidene)-

9,10-dihydroanthracene 158. 

To a solution of compound 156 (250 mg, 0.23 mmol) in dry THF (60 

mL) at 20°C, ferrocene carbonyl chloride93 (140 mg, 0.56 mmol) followed by 

dry triethylamine (0.08 mL, 0.58 mmol) were added. Tetrabutylammonium 

fluoride (1 M in THF, 0.93 mL, 0.93 mmol) was added dropwise over 10 min 

and stirring continued under nitrogen at 20°C for 16 h. Chromatography of 

the crude reaction mixture on silica gel, eluent dichloromethane followed 

by recrystallisation from dichloromethane/hexane afforded compound 158 
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(130 mg, 55%) as a yellow solid, m.p. > 200°C (decamp.). (Found: C , 53.9; H , 

3.5. C46H36Fe204S8 requires C , 54.1; H , 3.6%); m/z ( D C I ) 1021 (M++1); 

§H(CDCl3) 7.60,7.40 and 7.16 (2 x AMX each 3H, JAX = 8.3, JMX = 1.7 and JAM 

< 1 Hz), 5.00 (4H, broad s), 4.53 (4H, broad s), 4.34 (10H, s), 2.41 (6H, s) and 2.38 

(6H, s); VmaxOKBrVcm-1 2920,1735,1450,1262,1193,1152,1110 and 1088. 

2,64H§(tefcratMa£Mvalen®carb©^ 

yMd@mis)^4^dihydroamtfaacesie 159. 

To a solution of compound 156 (340 mg, 0.32 mmol) in dry THF (60 

mL) at 20°C, TTF carbonyl chloride83 (200 mg, 0.75 mmol) followed by dry 

triethylamine (0.11 mL, 0.79 mmol) was added. Tetrabutylammonium 

fluoride (1.1 M in THF, 1.15 mL, 1.26 mmol) was added drop wise over 10 

min and stirring continued under nitrogen at 20°C for 16 h. 

Chromatography of the crude reaction mixture on silica gel, eluent 

dichloromethane afforded compound 159 (100 mg, 30%) as an orange solid, 

m.p. 178-180°C. (Found: C , 43.5; H, 2.4. C38H24O4S16 requires C , 43.2; H, 2.3%); 

m/z (PDMS) 1057.6 (M+). Calc. for C38H24O4S161057.6; 8H[(CD 3 ) 2 SO] 8.15 (2H, 

s), 7.57 (2H, m), 7.38 (2H, m), 7.28 (2H, m), 6.79 (4H, s) and 2.40 (12H, s); v m a x 

(KBrJ/cm-1 3066,2916,1720,1534,1461,1256,1223 and 1186. 

2-Memylthio^,5-[2-(t^-butyl=diphenylsilyloxy)propylene'-l^dithio]-l>' 

dithiolium tetrafluoroborate 160. 

A suspension of thione 41 (6.00 g, 12.2 mmol) in neat 

dimethylsulphate (10 mL) was heated to 100°C with stirring under nitrogen 

and maintained at this temperature for 40 min after which dissolution was 

complete. The reaction was allowed to cool to 20°C and then placed in an ice 

bath. Tetrafluoroboric acid (in ether, an excess) was added followed by dry 

ether (250 mL). The precipitated salt was stirred for 30 min, then filtered off, 

washed with dry ether to afford compound 160 (5.87 g, 81%) as a yellow 

solid, pure enough for further reaction. Further purification can be achieved 
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by dissolution in acetonitrile and repredpitation by addition of ether. M.p. 

149-152°C (Found: C, 46.0; H, 4.2. Czs^BHftOSsSi requires C, 46.4; H, 4.6%); 

6 H ( C D 3 C N ) 7.71 (4H, m), 7.49 (6H, m), 4.42 (1H, broad s), 3.07 (2H, m), 3.06 

(3H, s), 2.81 (2H, m) and 1.09 (9H, s); vm a x(KBr)/cm" 1 3070, 2931, 2857,1428, 

1084,837,705 and 509. 

diihiole 161. 

To a suspension of salt 160 (5.00 g, 8.42 mmol) in THF/2-propanol 

(250 mL, 4:1 v/v) , powdered sodium borohydride (an excess) was slowly 

added portionwise and the reaction stirred at 20°C for 2-3 h. The solvent was 

removed in vacuo and the residue dissolved in dichloromethane (200 mL), 

washed with water (3 x 100 mL), dried (Na2SC>4) and solvent evaporated. 

Chromatography of the residue on silica gel, eluent dichloromethane/ 

cyclohexane (2:1 v/v) afforded compound 161 (4.06 g, 95%) as a viscous 

colourless oil. m/z (EI) 508 (M+); 8H(CDC13) 7.63 (4H, m), 7.40 (6H, m), 5.80 (s) 

and 5.51 (s) [together 1H], 4.26 (m) and 4.05 (m) [together 1H], 2.74-2.57 (m) 

and 2.43-2.33 (m) [together 4H], 2.29 (s) and 2.14 (s) [together 3H] and 1.09 (s) 

and 1.05 (s) [together 9H]; vm a x(neat)/cm- 1 3069, 2932, 2859, 1429, 1083, 839, 

741 and 708. 

4/5-[2-(terf-Butyl-diphenylsUyloxy)-propylene-l^dithiol-l^-dithiolium 

tetrafluoroborate 162. 

To a solution of compound 161 (3.91 g, 7.70 mmol) in dry ether (10 

mL) cooled to -40°C, tetrafluoroboric acid (in ether, an excess) followed by 

dry ether (200 mL) was added. Within a few minutes a white precipitate had 

formed. The suspension was stirred under nitrogen at 20°C for 16 h, after 

which the solid was filtered off and washed with dry ether to afford 

compound 162 (3.02 g, 72%) as a white solid. Darkening of the product 

occurs on standing and the salt was used within a few hours with no further 
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purification. SH(CD3CN) 10.78 (1H, s), 7.72 (4H, m), 7.49 (6H, m), 4.50 (1H, m), 

3.15 (2H, m), 2.92 (2H, m) and 1.10 (9H, s); VmaxCKBrJ/cm-1 3048, 2931, 2857, 

1428,1084,839,704 and 509. 

2°Oiimetfo®3^ho§pfo©ryl^,^^ 

dittiiol-l^-dilihiole 163. 

To a solution of salt 162 (2.83 g, 5.16 mmol) in dry acetonitrile (200 

mL), trimethylphosphite (0.61 mL, 5.17 mmol) followed by sodium iodide 

(0.93 g, 6.20 mmol) was added and the reaction stirred under nitrogen at 

20°C for 16 h. Chromatography of the crude reaction mixture on neutral 

alumina, eluent ethyl acetate/cyclohexane (1:1 v/v) afforded compound 163 

(2.43 g, 82%) as a viscous colourless oil. 5H(CDC13) 7.62 (4H, m), 7.41 (6H, m), 

4.93 (d, J = 6.1 Hz) and 4.51 (d, J = 5.5 Hz) [together 1H], 4.19 (m) and 4.05 (m) 

[together 1H], 3.88 (d, J = 10.6 Hz) and 3.80 (d, J = 10.5 Hz) [together 6H], 2.71-

2.62 (2H, m), 2.56-2.33 (2H, m) and 1.07 (s) and 1.05 (s) [together 9K]; v m a x 

(KBrVair 1 3071,2956,2857,1258,1112,1056,838 and 704. 

9,10°Bis{4,5-[2"(tert"butyl"diphenyl§ilyloxy)propylene-13=ditWo]=l^»dithiol= 

2-ylidene}°9,10°dihydroanthracene 164. 

To a solution of anthraquinone (390 mg, 1.87 mmol) in dry THF (150 

mL), the phosphonate ester 163 (2.38 g, 4.17 mmol) was added and the 

mixture stirred under nitrogen at 20°C. n-butyllithium (1.6 M, 3.13 mL, 5.01 

mmol) was added dropwise over 10 min and the reaction maintained with 

stirring at 20°C for 16 h. Chromatography of the crude reaction mixture on 

silica gel, eluent cyclohexane/dichloromethane (2:1 v/v) followed by 

removal of the solvent in vacuo gave a yellow oil. Crystallisation was 

achieved by the addition of methanol to afford compound 164 (960 mg, 47%) 
i 

as a yellow solid, m.p. 246-250°C. (Found: C , 63.8; H, 5.4. C58H5602SsSi2 

requires C , 63.5; H, 5.2%); m/z (EI) 1096 (M + ) ; 5H(CDC13) 7.63-7.24 (28H, m), 
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4.09 (2H, m), 2.73 (4H, m), 2.51 (4H, m) and 1.06 (18H, s); v m a x (KlBr)/cm-l 

3070,2921,2852,1626,1428,1112,1068 and 703. 

dahydroasafthffacem® 165. 

To a solution of compound 164 (500 mg, 0.46 mmol) in THF (50 mL), 

tetrabutylammonium fluoride hydrate (380 mg, 1.36 mmol) was added and 

the reaction stirred under nitrogen at 20°C for 16 h. Chromatography of the 

crude reaction mixture on silica gel, eluent dichloromethane/acetone (4:1 

v/v) afforded compound 165 (200 mg, 71%) as a yellow solid, m.p. 234=237°C. 

(Found: C , 49.9; H, 3.1. C26H20O2S8 requires C, 50.3; H, 3.2%); m/z (EI) 620 

(M+); 6H[(CD 3 ) 2 SO] 7.58-7.36 (8H, m), 5.63 (d, J = 4.9 Hz) and 5.44 (d, J = 4.7 Hz) 

[together 2H], 4.07 (m) and 3.89 (m) [together 2H], 2.95 (4H, m) and 2.61-2.40 

(4H, m); VmaxOCBri/cnv1 3436,3061,1631,1537,1504,1446,1055 and 756. 

9,10-Sis{4,H2^acetate)propylene=l>dithioH>dithiol°2=ylidene}=9,10-

dihydroanthracene 166. 

To a solution of diol 165 (100 mg, 0.16 mmol) in dry dichloromethane 

(60 mL), freshly distilled acetyl chloride (0.05 mL, 0.70 mmol) followed by 4-

dimethylaminopyridine (80 mg, 0.66 mmol) was added and the reaction 

stirred under nitrogen at 20°C for 16 h. Chromatography of the crude 

reaction mixture on silica gel, eluent dichloromethane, followed by 

removal of solvent in vacuo and the addition of methanol, crystallised 

compound 166 (90 mg, 79%) as a yellow solid, m.p. 196-200°C. (Found: C , 

50.8; H, 3.2. C30H24O4S8 requires C , 51.1; H, 3.4%); m/z (EI) 704 (M+); 8 H 

(CDCI3) 7.55-7.27 (8H, m), 5.29-5.13 (2H, m), 2.94 (4H, m), 2.76-2.57 (4H, m) 

and 2.07 (6H, s); vm ax(KBr)/cm- 1 1743, 1537, 1446, 1370, 1225, 1022, 756 and 

644. 
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A.1.1 QystaMographic dafia $os 4,S-[2^hydroj£y)piopylen(e"l /3-di4Mo]»l /3-

dithiole=24hioiie 33 

02 
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Figure A.1.1. - X-Ray molecular structure of compound 33 and 
crystallographic numbering scheme. 

Crystal Data 
Empirical Formula 
Formula Weight 
Crystal Colour, Habit 
Crystal Dimensions (mm) 
Crystal System 
Lattice Parameters 

Space Group 

Z value 

D c a i c 

Fooo 

U(MoKa) 

S 5 C 6 OH6 
254.41 
yellow, prism 
1.000x0.600x0.150 
tri clinic 
a = 9.390(6) A 
b = 11.295(6) A 

c = 4.553(4) A 
a = 94.96(7)° 
p = 91.05(6)° 
y = 78.29(6)° 
P i (#2) 
2 
I . 793 gan- 3 

260 
I I . 29 cm- 1 

Intensity Measurements 

Radiation 

Temperature 

20max 

MoKa a = 0.71069 A) 

-100°C 
50.0° 
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No. of Reflections Measured Total: 1763 

Unique: 1651 

Structure Solution 
Refinement 
Residuals: R; R w 

Goodness of Fit Indicator 

Direct Methods 
Full-matrix least-squares 
0.049; 0.060 
2.88 

Bond Lengths ( A ) 

S(l)-C(l) 1.726(5) 
S(l)-C(3) 1.741(5) 
S(2)-C(l) 1.731(5) 
S(2)-C(2) 1.748(5) 
S(3)-C(2) 1.751(5) 
S(3)-C(6) 1.825(5) 
S(4)-C(3) 1.760(5) 

S(4)-C(5) 1.832(5) 
S(7)-C(l) 1.659(5) 
Q(2)-C(4) 1.422(6) 
C(2)-C(3) 1.356(7) 
C(4)-C(5) 1.526(7) 
C(4)-C(6) 1.525(7) 

Bond Angles (°) 

C(l)-S(l)-C(3) 97.6(2) 
C(l)-S(2)-C(2) 97.9(2) 

C(2)-S(3)-C(6) 100.5(2) 
C(3)-S(4)-C(5) 101.9(2) 
S(l)-C(l)-S(2) 112.7(3) 
S(l)-C(l)-S(7) 122.6(3) 
S(2)-C(l)-S(7) 124.6(3) 

S(2)-C(2)-S(3) 118.8(3) 
S(2)-C(2)-C(3) 115.2(4) 

S(3)-C(2)-C(3) 126.0(4) 
S(l)-C(3)-S(4) 117.7(3) 

S(l)-C(3)-C(2) 116.6(3) 
S(4)-C(3)-C(2) 125.7(4) 
0(2)-C(4)-(C5) 110.5(4) 
0(2)-C(4)-C(6) 105.3(4) 
C(5)-C(4)-C(6) 114.7(4) 
S(4K(5)-C(4) 116.2(3) 
S(3)-C(6)-C(4) 115.6(3) 

Intennolecular Distances (A) 

S(l)-S(l) 3.335(3) 
S(l)-S(7) 3.496(3) 
S(l)-S(7) 3.591(4) 
S(2)-0(2) 3.405(5) 

S(4)-S(4) 3.500(4) 

S(7)0(2) 3.364(5) 
0(2)-C(6) 3.464(8) 
CK2)-C(6) 3.475(7) 

143 



AX2 CsysfcallograpMc date for 4,5^fthylimei^ftMo=4',§,'°[2°feffliiyles4ekefeal)° 
propylene-l^ditMolteteaOmfialvaligEi® 82 
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Figure A.1.2. - X-Ray molecular structure of compound 82 and 
crystallographic numbering scheme. 

Crystal Data 
Empirical Formula 
Formula Weight 
Crystal Colour, Habit 
Crystal Dimensions (mm) 
Crystal System 
Lattice Parameters 

Space Group 

Z value 

DCalc 
Fooo 
WMoKa) 

C13H12O2S8 
456.72 
amber, plate 
0.200 x 0.100 x 0.600 
monoclinic 
a = 6.59(1) A 
b = 19.865(8) A 
c = 13.947(8) A 
(3 = 91.68(9)° 
P2 i /n (#14) 
4 

1.662 gem' 3 

936 
9.44 cm- 1 

Intensity Measurements 
Radiation 
Temperature 

20max 
No. of Reflections Measured 

MoKa ft = 0.71069 A) 
24°C 
50.0° 
Total: 3632 
Unique: 3328 
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Stractoe Sohrtion.and Refffaememft 

Structure Solution Direct Methods 
Refinement Full-matrix least-squares 

Residuals: R; R w 0.058; 0.063 
Goodness of Fit Indicator 2.61 

Bond Lengths ( A ) 

S(l)-C(l) 1.75(1) 
S(l)-C(3) 1.77(1) 
S(2)-C(l) 1.77(1) 
S(2)-C(2) 1.77(1) 
S(3)-C(2) 1.76(1) 
S(3)-C(6) 1.79(2) 
S(4)-C(3) 1.73(1) 
S(4)-C(5) 1.81(1) 
S(5)-C(7) 1.76(1) 
S(5)-C(8) 1.78(1) 
S(6)-C(7) 1.76(1) 
S(6)-C(9) 1.77(1) 
S(7)-C(9) 1.75(1) 
S(7)-C(ll) 1.78(2) 

S(8)-C(8) 1.73(1) 
S(8KX10) 1.77(2) 
CK1)-C(4) 1.42(1) 
0(1)-C(12) 1.43(2) 
0(2)-C(4) 1.41(2) 
0(2)-C(13) 1.41(2) 
C(l)-C(7) 1.33(2) 
C(2)-C(3) 1.33(2) 
C(4)-C(5) 1.53(2) 
C(4)-C(6) 1.53(2) 
C(8)-C(9) 1.32(2) 
C(10)-C(ll) 1.44(2) 
C(12)-C(13) 1.48(2) 

Bond Angles (°) 

C(l)-S(l)-C(3) 94.8(6) 
C(l)-S(2)-C(2) 93.6(5) 
C(2)-S(3)-C(6) 104.7(6) 
C(3)-S(4)-C(5) 102.7(6) 
C(7)-S(5)-C(8) 94.0(6) 
C(7)-S(6)-C(9) 94.4(6) 
C(9)-S(7)-C(ll) 102.3(7) 
C(8)-S(8)-C(10) 97.5(7) 
C(4)-0(l)-C(12) 105(1) 
C(4K)(2)-C(13) 108(1) 
S(l)-C(l)-S(2) 113.2(7) 
S(l)-C(l)-C(7) 124.8(9) 
S(2)-C(l)-C(7) 121.8(9) 

OU)-C(4)-C(5) 111(1) 
0(1)-C(4)-C(6) 108(1) 
0(2)-C(4)-C(5) 107(1) 
0(2)-C(4)-C(6) 108(1) 
C(5)-C(4)-C(6) 115(1) 
S(4)-C(5)-C(4) 118(1) 
S(3)-C(6)-C(4) 118(1) 
S(5)-C(7)-S(6) 112.8(7) 

S(5)-C(7)-C(l) 122.2(9) 
S(6)-C(7)-C(l) 125(1) 
S(5)-C(8)-S(8) 115.8(8) 
S(5)-C(8)-C(9) 117(1) 
S(8)-C(8)-C(9) 127(1) 
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S(2)-C(2)-S(3) 116.0(7) S(6)-C(9)-S(7) 115.8(7) 
S(2)-C(2)-C(3) 117.2(8) S(6)-C(9)-C(8) 117(1) 
S(3)-C(2)-C(3) 126.8(9) S(7)-C(9)-C(8) 127(1) 

S(l)-C(3)-S(4) 117.4(7) S(8KX10)-C(11) 117(1) 
S(l)-C(3)-C(2) 116.8(9) S(7)-C(ll)-C(10) 122(1) 
S(4)-C(3)-C(2) 125.8(9) 0(1>C(12K:(13) 105(1) 
0(l)-C(4)-0(2) 108(1) 0(2)-C(13K:(12) 106(1) 

Intermolecular Distances (A) 

S(l)-S(l) 3.498(7) CK1)-C(12) 3.33(2) 
S(2)-S(4) 3.475(7) O(2)-C(10) 3.35(2) 
S(3)-0(l) 3.390(9) 0(2)-C(ll) 3.57(3) 
0(1)-0(1) 3.31(2) 
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APPENDIX TWO 

RESEARCH COLLOQUIA, SEMINARS, 
LECTURES AND CONFERENCES 



AJL1 Lisfc of Reseagch CoIIoqMia. Semin ro <m& Lectoes 

There follows a list of research colloquia, seminars and lectures that 
have been addressed by external speakers and arranged by the Department of 
Chemistry during the period of the author's residence as a postgraduate 
student. 

* Denotes presentations attended by the author. 

Academic Year 1990=1991 

11.10.90 Dr. W. A. MacDonald (I.C.I. Wilton) 

Materials for the Space Age. 

24.10.90* Dr. M. Bochmann (University of East Anglia) 

Synthesis, Reactions and Catalytic Activity of Cationic 

Titanium Alkyls. 

26.10.90* Prof. R. Soulen (South Western University, Texas) 

Preparation and Reactions of Bicycloalkenes. 

31.10.90* Dr. R. Jackson (University of Newcastle upon Tyne) 

New Synthetic Methods: a-Amino Acids and Small Rings. 

01.11.90* Dr. N. Logan (University of Nottingham) 

Rocket Propellants. 

06.11.90* Dr. P. Kocovsky (University of Uppsala) 

Stereo-Controlled Reactions Mediated by Transition and 

Non-Transition Metals. 

07.11.90 Dr. D. Gerrard (British Petroleum) 

Raman Spectroscopy for Industrial Analysis. 

08.11.90 Dr. S. K. Scott (University of Leeds) 

Clocks, Oscillations and Chaos. 
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14.11.90* Prof. T. Bell (S.U.N.Y., Stoney Brook, New York) 

Functional Molecular Architecture and Molecular 

Recognition. 

21.11.90 Prof. J. Pritchard (Queen Mary and Westfield College, London) 

Copper Surfaces and Catalysts. 

28.11.90 Dr. B. J. Whitaker (University of Leeds) 

Two-Dimensional Velocity Imaging of State-Selected 

Reaction Products. 

29.11.90* Prof. D. Crout (University of Warwick) 

Enzymes in Organic Synthesis. 

05.12.90"* Dr. P. G. Pringle (University of Bristol) 

Metal Complexes with Functionalised Phosphines. 

13.12.90 Prof. A. H. Cowley (University of Texas) 

New Organometallic Routes to Electronic Materials. 

15.01.91 Dr. B. J. Alder (Lawrence Livermore Labs., California) 

Hydrogen in all its Glory. 

17.01.91 Dr. P. Sarre (University of Nottingham) 

Comet Chemistry. 

24.01.91 Dr. P. J. Sadler (Birkbeck College, London) 

Design of Inorganic Drugs: Precious Metals, Hypertension and 

HIV. 

30.01.91* Prof. E . Sinn (University of Hull) 

Coupling of Little Electrons in Big Molecules. Implications for 

the Active Sites of Metalloproteins and other Macromolecules. 

31.01.91 Dr. D. Lacey (University of Hull) 

Liquid Crystals. 

06.02.91* Dr. R. Bushby (University of Leeds) 

Biradicals and Organic Magnets. 

14.02.91 Dr. M. C. Petty (University of Durham) 

Molecular Electronics. 
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20.02.91* 

28.02.91* 

06.03.91 

07.03.91* 

24.04.91 

25.04.91 

20.06.91 

29.07.91 

17.10.91* 

31.10.91* 

06.11.91 

07.11.91* 

Prof. B. L . Shaw (University of Leeds) 

Syntheses with Coordinated, Unsaturated Phosphine Ligands. 

Dr. J. Brown (University of Oxford) 

Can Chemistry Provide Catalysts Superior to Enzymes? 

Dr. C. M. Dobson (University of Oxford) 

NMR Studies of Dynamics in Molecular Crystals. 

Dr. J. Markam (I.C.I. Pharmaceuticals) 

D N A Fingerprinting. 

Prof. R. R. Schrock (Massachusetts Institute of Technology) 

Metal-Ligand Multiple Bonds and Metathesis Initiators. 

Prof. T. Hudlicky (Virginia Polytechnic Institute) 

Biocatalysis and Symmetry Based Approaches to the Efficient 

Synthesis of Complex Natural Products. 

Prof. M. S. Brookhart (University of North Carolina) 

Olefin Polymerisations, Oligomerisations and Dimerisations 

Using Electrophilic Late Transition Metal Catalysts. 

Dr. M. A. Brirhble (Massey University, New Zealand) 

Synthetic Studies Towards the Antibiotic Griseusin-A. 

Academic Year 1991-1992 

Dr. J. A. Salthouse (University of Manchester) 

Son et Lumiere: A Demonstration Lecture. 

Dr. R. Keeley (Metropolitan Police, Forensic Science Dept.) 

Modern Forensic Science. 

Prof. B. F. G. Johnson (University of Edinburgh) 

Cluster-Surface Analogies. 

Dr. A. R. Butler (University of St. Andrews) 

Traditional Chinese Herbal Drugs: a Different Way of Treating 

Disease. 
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13.11.91* Prof. D. Gani (University of St. Andrews) 

The Chemistry of PLP-Dependent Enzymes. 

20.11.91* Dr. R. More OTerrall (University College, Dublin) 

Some Acid-Catalysed Rearrangements in Organic Chemistry. 

28.11.91 Prof. I. M. Ward (University of Leeds, LR.C.) 

The SCI Lecture. Science and Technology of Orientated 

Polymers. 

04.12.91* Prof. R. Grigg (University of Leeds) 

Palladium-Catalysed Cyclisation and Ion-Capture Processes. 

05.12.91* Prof. A. L . Smith (formerly of Unilever) 

Soap, Detergents and Black-Puddings. 

11.12.91* Dr. W. D. Cooper (Shell Research) 

Colloid Science: Theory and Practice. 

22.01.92 Dr. K. D. M. Harris (University of St. Andrews) 

Understanding the Properties of Solid Inclusion Compounds. 

29.01.92* Dr. A. Holmes (University of Cambridge) 

Cycloaddition Reactions in the Service of the Synthesis of 

Piperidine and Indolizidine Natural Products. 

30.01.92* Dr. M. Anderson (Shell Research, Sittingbourne) 

Recent Advances in the Safe and Selective Chemical Control 

of Insect Pests. 

12.02.92* Prof. D. E . Fenton (University of Sheffield) 

Polynuclear Complexes of Molecular Clefts as Models for 

Copper Bio-sites. 

13.02.92* Dr. J. Saunders (Glaxo Group Research Ltd.) 

Molecular Modelling in Drug Discovery. 

19.02.92* Prof. E . J. Thomas (University of Manchester) 

Applications of Organostannanes to Organic Synthesis. 
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20.02.92 

25.02.92 

26.02.92 

05.03.92 

11.03.92 

12.03.92* 

18.03.92* 

07.04.92 

13.05.92* 

15.10.92 

Prof. E . Vogel (University of Cologne) 

The Musgrave Lecture. Porphyrins: Molecules of 

Interdisciplinary Interest. 

Prof. J. F. Nixon (University of Sussex) 

The Tilden Lecture. Phospha-Alkynes: New Building Blocks 

in Inorganic and Organometallic Chemistry. 

Prof. M. L . Hitchman (University of Strathclyde) 

Chemical Vapour Deposition. 

Dr. N. C . Billingham (University of Sussex) 

Degradable Plastics - Myth or Magic? 

Dr. S. E . Thomas (Imperial College) 

Recent Advances in Organoiron Chemistry. 

Dr. R. A. Harm (I.C.I. Imagedata) 

Electronic Photography - An Image of the Future. 

Dr. H. Maskill (University of Newcastle upon Tyne) 

Concerted or Stepwise Fragmentation in a Deamination-Type 

Reaction. 

Prof. D. M. Knight (University of Durham, Dept. of 

Philosophy) 

Interpreting Experiments: the Beginning of Electrochemistry. 

Dr. J.-C. Gehret (Ciba Geigy, Basel) 

Some Aspects of Industrial Agrochemical Research. 

Academic Year 1992-1993 

Dr. M. Glazer and Dr. S. Tarling (University of Oxford & 

Birkbeck College) 

The Chemist's Role as an Expert Witness in Patent Litigation. 
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20.10.92 Dr. H . E . Bryndza (Dupont Central Research) 

Synthesis, Reactions and Thermochemistry of Metal (Alkyl) 

Cyanide Complexes and Their Impact on Olefin 

Hydrocyanation Catalysis. 

22.10.92 Prof. A. Davies (University College, London) 

The Ingold-Albert Lecture. The Behaviour of Hydrogen as 

a Pseudometal. 

28.10.92 Dr. J. K. Cockcroft (University of Durham) 

Recent Developments in Powder Diffraction. 

29.10.92 Dr. J. Emsley (Imperial College, London) 

The Shocking History of Phosphorus. 

04.11.92 Dr. T. P. Kee (University of Leeds) 

Synthesis and Coordination Chemistry of Silylated Phosphites. 

05.11.92* Dr. C . J. Ludman (University of Durham) 

Explosions: A Demonstration Lecture. 

11.11.92* Prof. D. Robins (University of Glasgow) 

Pyrrolizidine Alkaloids: Biological Activity, Biosynthesis and 

Benefits. 

12.11.92 Prof. M. R. Truter (University College, London) 

Luck and Logic in Host-Guest Chemistry. 

18.11.92 Dr. R. Nix (Queen Mary College, London) 

Characterisation of Heterogeneous Catalysts. 

25.11.92* Prof. Y. Vallee (University of Caen) 

Reactive Thiocarbonyl Compounds. 

25.11.92 Prof. L. D. Quin (University of Massachusetts, Amherst) 

Fragmentation of Phosphorus Heterocydes as a Route to 

Phosphoryl Species with Uncommon Bonding. 

26.11.92* Dr. D. Humber (Glaxo, Greenford) 

AIDS - The Development of a Novel Series of HTV Inhibitors. 
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