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A B S T R A C T 

The nonlinear optical phenomena which occur in semiconductor materials on 

a femtosecond to picosecond timescale have recently generated much interest, es

pecially in the field of telecommunications where the development of all-optical 

switching devices based on semiconductors promises a considerable reduction in 

the complexity of design coupled with a large increase in the speed of operation. 

This thesis examines the underlying ultrafast physical processes with the aim of 

providing a clear understanding of the mechanisms involved. 

The two main regimes of operation are investigated, namely off-resonance ex

citation where virtual processes are important and on-resonance excitation where 

real carriers are photogenerated, and in each case a particular system of interest is 

studied. For the virtual regime of operation, a recent proposal is examined which 

suggests the use of bandstructure engineering for a semiconductor quantum well in 

order to enhance the nonlinear optical response by the introduction of additional 

resonant transitions between subbands. A number of descriptions of the device 

are presented, and it is concluded that the technique does not necessarily lead to 

an improved response. An example of on-resonance phenomena is provided by the 

modelling of the fast refractive index changes in semiconductor laser amplifiers 

which have been observed in recent experiments. A simple physical model is de

veloped which predicts the behaviour seen in the experimental observations. The 

nonlinear optical response of the laser amplifier promises the development of fast 

all-optical switching based on these devices. 

The thesis also examines the difficulties associated with describing the interac

tion of semiconductor material and electromagnetic field, and in particular looks 

at the formulation of a gauge invariant procedure for calculating values of the sus

ceptibility. The propagation of a light beam along the plane of a semiconductor 

quantum well is discussed, and the gauge invariance of susceptibility calculations 

performed in the so called A . p and E.r gauges is explicitly demonstrated. Finally, 

a brief exploration is undertaken of the eff"ects of bandstructure on the optical 

response of a semiconductor, and two quantum well models for the calculation of 

a more realistic bandstructure are presented which employ infinite and finite wells 

respectively. 
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'God said, "Let there be light." 

And there was light.' 

Genesis 1 3 
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C H A P T E R O N E 

Introduction 

The advent of the laser with the inherent strong fields that it provides has 

provoked much interest in the study of nonlinear optics in various material sys

tems. Of particular interest here are semiconductor materials and microstructures 

and their potential use in integrated all-optical switching systems for applications 

in the field of telecommunications. The current approach is to use transducers 

to interface optical and electronic subsystems but an integrated all-optical design 

would reduce the overall complexity of the system and also promises much faster 

speeds of operation. Electronic technology currently limits transmission rates to 

around one gigahertz, but switching with optical pulses of picosecond duration or 

less is theoretically practicable. In this thesis a study is made of the so called ul

trafast nonlinear processes in semiconductor materials and microstructures (which 

typically occur on the timescale of lOfs to lOps), with the aim of understanding 

these processes for eventual use in novel all-optical switching devices. 

The second chapter of the thesis is devoted to providing a basic understand

ing of the theoretical concepts and calculation techniques required in the study 

of ultrafast nonlinear optical phenomena. In chapter three, consideration is given 
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to the problem of describing the interaction of the semiconductor material system 

with the electromagnetic field of an intense light beam. In particular the issues 

relating to the choice of electromagnetic gauge are examined and the gauge invari-

ance of the susceptibility calculations is demonstrated in an example of practical 

importance. 

Chapters four and five contain the major investigations of the thesis. Chapter 

four looks at off-resonance phenomena where optical excitation of the semicon

ductor is produced by radiation at a frequency slightly below the absorption band 

of the material, and a detailed discussion of the response in this so called virtual 

carrier regime is presented by employing a perturbative approach. In chapter five, 

on-resonance phenomena are considered where the excitation occurs within the 

absorption band of the material. In this case the perturbative approach of chapter 

four is no longer satisfactory and the use of the Bloch equations to model the 

resonant excitation is necessary. Chapter five is dedicated to modelling the fast 

refractive index changes in semiconductor laser amplifiers that have been observed 

in recent experiments, and it considers the effects of thermal relaxation of carriers 

within the device to equilibrium energy distributions. 

In chapter six, the approximation of parabolic bands is questioned and a more 

realistic bandstructure is calculated for a typical quantum well structure. The 

chapter also examines the variation of optical response over the Brillouin zone 

and how this is influenced by the plane of the polarisation of the light beam. 

2 



Throughout the thesis the Coulombic interactions which lead to the formation of 

excitonic states are neglected, but chapter seven outlines how such eff̂ ects may be 

included within the framework presented here. Also the thermal relaxation pro

cesses discussed in chapter five are modelled using a number of phenomenological 

time constants, and chapter seven briefly examines some theoretical techniques for 

the calculation of the scattering rates involved in these processes. 



C H A P T E R T W O 

Fundamentals of ultrafast nonlinear optics 

This chapter provides a brief introduction to the basic concepts and methods 

of calculation applicable to a study of ultrafast nonlinear optics. The first section 

describes the wave equation for a light beam propagating through a semiconductor 

material and extends the ideas of linear optics to the nonlinear regime. The con

stitutive relation between electric field and induced polarisation is presented, and 

the susceptibility coefficients x̂ *̂ ^ are defined. Next the density matrix formalism 

is developed and the calculation of the density matrix from the Liouville equation 

is discussed. For a semiconductor illuminated by a light beam, the density matrix 

permits the determination of the electronic state occupation probabilities and also 

of the optically induced polarisation for the semiconductor material. A diagram

matic approach for the rapid calculation of the maximally resonant contributions 

to the density matrix is described. The final section examines ultrafast pulses and 

introduces the notion of optically generated virtual carriers. 



Section 2.1. The wave equation and the constitutive relation. 

The wave equation [1-3] in free space is given by 

a^E 
V X ( V X E ) + eono-g^ = 0 (2.1) 

where the electric field vector E ( r , f ) is a function of position r and time t, and 

£o and ^0 are the permittivity and permeability of free space respectively. Now 

consider a field E = E Q exp[z(ko.r — wi)] which propagates in the direction defined 

by ko perpendicular to E Q . From the wave equation (2.1) it follows that the field 

travels at the velocity of light 

w 1 , , 
c = - = — = 2.2 

However when a light beam is incident on a material, the electric field of the light 

is responsible for inducing a displacement of charge within the material which 

varies in sympathy with the incident field. This polarisation of the material can 

be described for sufficiently low values of the incident field by a linear relationship 

between the incident field E ( r , t ) and the induced polarisation P(r , t ) namely 

P = e o x E (2.3) 

where the constant of proportionality x is known as the susceptibility. The oscil

lating polarisation of charge corresponds to a current 



which modifies the wave equation 

5 ^ E 5^P 
V X ( V X E ) + ^ o M o ^ = -f^o-^ (2.5) 

to account for the current source term. However, substituting for P from equa

tion (2.3) reproduces the wave equation in free space but with the free space 

permittivity EQ replaced by e:o(l + x)- Thus the presence of the material increases 

the eff'ective permittivity by a factor = 1 + x, the relative permittivity, which in 

semiconductors typically has a value of = 3.5. The eff'ect of the polarisation is 

to alter the velocity of the light propagating through the material via the relations 

- = 7 = = - (2-6) 
k ^eoErii-o n 

where n = y/e^ is the refractive index of the material. If a light beam propagates a 

given distance L in the material it undergoes a phase shift Acj) which depends di

rectly on the refractive index. For the plane wave solution E = EQ exp [t(k.r — ut) 

of equation (2.5) the phase shift is /S.(f> = kL = nkoL. As described in chapter one 

this refractive index dependent phase shift is useful in optical switching devices. 

Further if the frequency of the light is such that the photon energy lies in the 

absorption band of the material this results in a component of the polarisation 

oscillating in quadrature to the applied electric field. The corresponding compo

nent of the current is in phase with the field as would be expected for a dissipative 

process. The quadrature component of the polarisation contributes an imaginary 

part to the relative permittivity and equation (2.6) shows that the wavevector 
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k of the light is consequently a complex quantity. Now k = nko + ia so that after 

a distance L the exponential term in the plane wave solution contributes a factor 

exp[iA<p — aL], Hence the real part of the wavevector determines the velocity of 

propagation of the light, whilst the imaginary part describes the absorption of the 

light beam with 2a being the intensity absorption coefficient. 

Now if the intensity of the light beam is increased the relationship between 

the electric field and the induced polarisation becomes nonlinear. However, the 

polarisation may be expressed as a power series in the electric field 

P = eox'^^^E + eox^^^E^ + eoX^^^E^ + ••• (2.7) 

which is known as the constitutive relation [4-6], and where x̂ *̂ ^ is the r*** order 

susceptibility. It is assumed that in the semiconductor materials considered the 

induced polarisation is collinear with the electric field so that the tensorial nature 

of the susceptibility may be neglected. It is further assumed that the materials 

possess inversion symmetry so that if a field E induces a polarisation P then a 

field — E wil l induce a polarisation —P and consequently x̂ ^̂  = 0- In this case 

P = eoix^'^ + x^^^E')E (2.8) 

to third order. The response of the material at the driving frequency of the electric 

field is of concern here so that, for example, the description of third harmonic 

generation by x̂ ^̂  is not considered. Thus the nonlinear relative permittivity may 

be defined as 

= 40) ^ ^(2)^2 (2.9) 
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and has a constant component ei^^ together with a term which depends on the 

intensity of the incident field. Hence by varying the intensity of the light beam (or 

perhaps by employing a separate control beam) it is possible to influence the re

fractive index or the absorption experienced by the beam as it peisses through the 

material. Later chapters of this thesis concentrate on examining these particular 

effects in more detail, although it should be noted that many other processes [4,7 

(such as harmonic generation, Raman frequency shifting and parametric amplifi

cation) are also possible in the nonlinear regime. 



Sect ion 2.2. Liouvi l le ' s equation and the density m a t r i x . 

The evolution of the quantum mechanical state of a semiconductor system sub

ject to illumination by a light beam may be described by the system wavefunction 

^ ( i ) calculated from the Schrodinger equation [8,9 

= [Ho + HI) * W (2.10) 

where î o is the Hamiltonian of the unperturbed material system whose eigenstates 

are used as basis states and where Hj is the interaction Hamiltonian which 

describes the influence of the electromagnetic field on the material system. The 

wavefunction ^'(f) may be used in the calculation of the expectation value of 

some observable with corresponding quantum mechanical operator O through the 

standard relation 

( 0 ( 0 ) - j <b*{x,t)0{t)^{x,t)dx (2.11) 

where the wavefunction ^ ( x , i ) is normalised to unity 

I <if*{x,t)^{x,t)dx = 1 (2.12) 

Alternatively the evolution of the system may be described in terms of the 

density matrix [7-9] of the system whose operator in the Schrodinger picture is 

PS = Eprtm\-^n){^m\ (2.13) 
n,Tn 

This is particularly useful in the problems considered here as there is a clear cor

respondence between certain elements of the density matrix and the light-induced 

9 



polarisation of a material with inversion symmetry. Also the density matrix formal

ism allows external effects (such as electron-hole pair recombination and thermal 

scattering processes) to be easily included in the equations. The matrix elements 

in the basis {'^n} are clearly pnm- The interpretation of the density matrix el

ements is best made by considering an ensemble of identical systems. Then the 

diagonal matrix element pnn describes the probability of finding a system in the 

basis state whilst the oflF-diagonal matrix element pnm describes the probability 

of finding a system whose wavefunction includes a coherent mixture of the basis 

states ^'n and ^'m-

Now if the system wavefunction is ^' then the density matrix may be written 

as 

PS = | * ) ( * | (2.14) 

Also the Schrodinger equation is 

^ • ^ ^ = ^51*) (2.15) 
dt 

and its complex conjugate is 

- i h ^ = (* | i?5 (2.16) 
dt 

where Hs = Hq + Hj is the total Hamiltonian in the Schrodinger picture. It 

follows from equations (2.14) to (2.16) that 

..dps ..d^f),^ ^,d{<i> 
dt dt ^ ' dt 

10 



= -^5^5 - PsHs 

= {Hs,Ps] (2.17) 

where use is made of the commutator notation. This is the Liouville equation [7-

9] for the density matrix which will be used extensively throughout this thesis to 

describe the evolution of the quantum mechanical state of a semiconductor system 

subjected to pulsed electromagnetic radiation. Further the expectation value of 

an observable O as defined in equation (2.11) may be calculated as 

(O) = (^ |0 |*) 

= X ] ( * | o [ * „ ) ( * „ [ * ) 
n 

= ^ ( * „ | * ) ( ^ | 0 [ * „ ) 
n 

= E ( * n PSO 
n. 

^ Trace {psO) (2.18) 

so that once the density matrix has been determined the expectation value of 

the observable may be obtained directly by using the trace operation. Hence the 

density matrix provides a complete description of a quantum mechanical system 

and offers an alternative to the wavefunction approach. The Liouville equation is 

employed in preference to Schrodinger's equation when external events influence 

the development of the state of some otherwise isolated system. The advantages 

of the Liouville equation are particularly apparent in chapter flve where thermal 

11 



effects are considered. 

Now to establish the connection between the density matrix and the polarisa

tion of the material system noted previously, consider the simple example of a two-

level system perturbed by a periodic electromagnetic interaction E = Eocoswpi 

with photon energy Ep = hojp close (but not equal) to the energy separation 

Eg = hojg of the two states. The ground state is assumed to have odd par

ity (as for a p-like valence state in a semiconductor) and the excited state ^'i is 

assumed to have even parity (as for an s-like conduction state). The system is 

initially in the ground state, and at time t the system wavefunction consists of a 

mixture of the two states 

* ( i ) = *oe"^'^°* + a{t)^ie-''^'^ (2.19) 

where a{t) is small for a low intensity electric field and hui is the energy of state 

From elementary time-dependent perturbation theory [8,9] a{t) is given by 

^ ( ^ i | ^ / ( ^ p ) l ^ o ) , - t K - . , ) ^ (2.20) 

where Hj{up) exp{—iupt) is the interaction Hamiltonian written to explicitly show 

the periodic time dependence at frequency Wp. The current operator (discussed 

further in chapter three) may be written as J = — (e/m)p and equation (2.18) 

may be used to calculate the expectation value 

(J) = -(e/m)(poiPio + PioPoi) (2.21) 

12 



Also from equations (2.14) and (2.19) it follows that pio = 'p^ — a{t) exp{—iujgt) 

where the bar denotes complex conjugation. Thus the first term in equation (2.21) 

describes the response at frequency —Wp whilst the second term describes the 

response at frequency +Up, and the current oscillates at the driving frequency in 

sympathy with the electric field. The induced current is in fact in quadrature with 

the driving field (see equation (3.56)) and so the interaction produces a refractive 

index change with no absorption. 

The mixing of the basis states is a coherent eff'ect and is subject to external 

influences (for example the interaction of an electron with other electrons or with 

phonons) which tend to force the system wavefunction to correspond to definitely 

one or other of the two states. This destruction of mixing between states is known 

as dephasing [4]; in the above example it removes the phase coherence of the two 

states ^0 and apparent in equation (2.19) which is induced by the electromag

netic interaction. With a system comprising a number of individual subsystems 

(as with electrons in a semiconductor), the total polarisation is the resultant of all 

individual polarisations and once the applied field has been removed it decays to 

zero under the influence of dephasing. 

13 



Sect ion 2.3. In troduc t ion to double F e y n m a n diagrams. 

The Liouville equation (2.17) presented in section 2.2 is described as being in 

the Schrodinger picture [8,9] which is denoted by the subscripts 5 . The relations 

= U^qfs (2.22) 

and 

0 / = U^OsU (2.23) 

where 

U = exp{Hot/ih) (2.24) 

transform the wavefunctions and the operators O from the Schrodinger picture 

to the interaction picture [8,9]. Applying the transformation in equation (2.23) to 

the operators O5 = Hj and O5 = ps allows the Liouville equation to be written 

in the interaction picture 

i h ^ = [Hi,Pi] (2.25) 

In a similar fashion to the expansion (2.7) of the polarisation in powers of the 

electric field, the density matrix may also be expanded in a perturbation series 

« = . r ' + . l " + P ? ' + . r ' + . . . (2.26) 

where p^p depends on the r'^ power of the electric field E''. Now omitting the 

I subscript on the density matrix elements and concentrating on just r*'' order 

terms in the Liouville equation gives 

r / .̂ 1 
(2.27) 

J ( 0 
.. dp)irn 
in ;— 

dt 
14 



which may be integrated to obtain 

"»»=i £ ? (̂ "'"S"" - ''»'"'̂ "») * 
In this form the Liouville equation may be particularly easily solved through the 

use of a pictorial method involving double Feynman diagrams. Single Feynman 

diagrams [10] represent the evolution of a wavefunction in time by a series of 

smooth propagations (shown as straight line segments) interrupted by perturbing 

interactions (shown as nodes between line segments). Double Feynman diagrams 

7,11-14] represent the evolution of the density matrix in a similar fashion, but 

with the evolution of both the ket-vector [^) and the bra-vector (^[ depicted. 

Thus for the perturbation calculation of the density matrix elements pnmy the 

Feynman diagrams consist of a pair of vertical lines representing the bra and ket 

parts of the density matrix together with one electromagnetic interaction node 

for each stage of the perturbation calculation. At the r*^ stage of the calcula

tion the (r — 1)*^ order density matrix p^j has already been determined and 

equation (2.28) is used to calculate the r"^ order density matrix p^p. The term in

volving Hnip\l^ represents an interaction with the ket part of the density matrix 

causing a transition from the ket-state to the ket-state |^n). This is depicted 

by the diagram in figure 2.1a where the optical field at frequency Jl acts via the 

operator Hni{Q) = {^n\Hl{^)\'^l) on the (r - 1)**̂  order density matrix element 

p\m produce the r'^ order density matrix element pnm- The photon involved 

in the interaction has frequency Cl and is depicted in the figure by the wavy photon 

15 



n 

piim 

( r - 1 ) 
Plm 

m 

( * m 

Figure 2.1a. Interaction involving a photon of frequency fl (represented by the wavy photon 

arrow) which results in a transition of the density matrix from ket-state l̂ f/) to ket-state 

[^n). The vertical lines depict the propagation through time of the bra- and ket-parts of 

the density matrix. 

Hnm 

( r - 1 ) 

n 

Figure 2.1b. Interaction involving a photon of frequency CI which results in a transition of 

the density matrix from bra-state (^f/l to bra-state.("I'm[• 



arrow. The convention adopted is that 0 is positive when the direction of the pho

ton arrow is towards the right. Similarly the term involving p^^^^^Him is depicted 

in figure 2.1b where the interaction operator is i f ;^(n) . Note that interactions 

occuring on the right of the diagram introduce a minus sign in the corresponding 

algebraic expression. Higher order density matrix elements may be obtained by 

extending the diagram upwards, adding an interaction on the left or on the right 

of the diagram at each stage. 

To illustrate the above ideas consider as an example the two-level system of sec

tion 2.2 with the ground state initially occupied and no coherence between states 

so that p^QQ is the only non-zero density matrix element to zero order. Suppose that 

the system is illuminated by light with electric field vector E = Eocoswpf where 

Ep = hijjp is close (but not equal) to the energy separation Eg = hug of the two 

states. Then the frequency components of the interaction Hamiltonian are Hi{LJp) 

and Hj{—ujp). The calculation of the first order density matrix element p^^Q uses 

the double Feynman diagram shown in figure 2.2a which depicts an interaction of 

the ket-state with the electromagnetic field at the frequency f i i . The magnitude 

of the first order interaction depends on the energy difference h{ujp — ujg) which 

appears in the denominator of equation (2.20). For u>p ~ Ug the magnitude of 

the interaction becomes large and this is consequently termed a resonant interac

tion. In fact the expression in equation (2.20) neglects a non-resonant term which 

involves the denominator h{u>p +(jjg). Thus in figure 2.2a a resonant interaction 

16 



I * l > 

l * o > 

Poo 

( ^ 0 

Figure 2.2a. Feynman diagram depicting the resonant contribution to the first order density 

matrix element p[^J. 

4 ? 

( * 1 

( ^ 0 

Figure 2.2b. Feynman diagram depicting the resonant contribution to the first order density 

(1) matrix element 



is obtained with fii = ~ u!g and a non-resonant interaction is obtained with 

Cli — —ojp. The calculation of the first order density matrix element p^^^ uses the 

double Feynman diagram shown in figure 2.2b. In this case fii = —Up ~ —Ug 

gives the resonant interaction and Hi = u>p gives the non-resonant interaction. 

The general rule is that the sum of the frequencies X)i=i from the bottom of a 

diagram to the top must be compared with the frequency difference Unm = i^n—^^m 

associated with the density matrix element pLm at the top of the diagram in order 

to determine if the diagram represents a resonant interaction. In figure 2.2a the 

frequency difference associated with the matrix element p[ô  is wio = whilst in 

figure 2.2b the frequency difference associated with PQI is OJQI = —Ug. It is possible 

to calculate higher order density matrix elements retaining only resonant diagrams 

at each stage; the resultant matrix elements are termed maximally resonant. For 

(2) 

example figure 2.3 shows a maximally resonant contribution to p\i where fi i = u/p 

and Cli + CI2 = 0-
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Pll 

* l ) 

O i = ojp 

l ^ o ) 
(0) 

Poo 

{ ^ 0 
1̂ 2 = ~OJp 

Figure 2.3. Feynman diagram depicting a maximally resonant contribution to the second 

order density matrix element p j j^ 



Sect ion 2.4. Fermi ' s Go lden rule and ul trashort pulses. 

This section examines the applicability of Fermi's Golden rule [15] to the de

scription of pulsed excitations. For a semiconductor excited by continuous-wave 

electromagnetic radiation at a single frequency Wp the rate R of transfer of an 

electron from an initial state to some final state is given by Fermi's Golden 

rule 

27r f 

72 = "2 / \Hio\^8{wi - wo ± Wp)p(wi)o(u;i (2.29) 

where HIQ = (^'i|if/|^'o) is the interaction Hamiltonian, KUQ and hui are the 

energies of initial and final states, and p{u!i) is the density of final states. 

Now consider the excitation of the two-level system of previous sections by a 

pulsed electromagnetic interaction having gaussian envelope with time constant r 

E = Eo cos ujpt exp{-t'^/T^) (2.30) 

And following the method of derivation of Fermi's Golden rule suppose that 

H,o{t) = Fio(0)e-^""'e-''/^' (2.31) 

and 

* = *oe"''^°* + a{t)^ie'"^'^ (2.32) 

where all time dependence is shown explicitly. Assuming that initially the ground 

state is occupied so a{t = —oo) = 0, then a{t) may be determined from 

Schrodinger's equation 
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= iTio(0)e*(''io-'^'')'e-*^/^' (2.33) 

Now integrating over all time 

th J-oo 

? i ^ V ^ e - ^ ^ ^ V 4 (2.34) 
in 

where A = Wp — UJIQ. S O the eventual occupation probability of the excited state 

* i is given by 

Pii(oo) = |a(oo; |2 

_ 7r |glo(0)|V^ _ ^ 2 , 2 / 2 
-e-^ ^ (2.35) 

n 

Also from equation (2.31) it follows that 

\H,o{t) fdt - [ F i o ( O ) \ h J ^ (2.36) 
J-oo 

and by writing 

^(A) = (2.37) 

then equation (2.35) may be expressed as 

Pn{oo) = -^ \H,o{t)\'dt6{A) (2.38) 

If the pulse width is assumed to be large then by noting that 

/

+ 00 

6{A)dA = 1 (2.39) 
-oo 
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and 

(5(A 7^ 0) ^ 0 as r oo (2.40) 

it is clear that (5(A) approximates to a delta function. In this regime Fermi's 

Golden rule is applicable so that equations (2.29) and (2.38) are equivalent. How

ever, the result in equation (2.35) is directly applicable to ultrashort pulses and 

agrees with values calculated from Liouville's equation by numerical methods (see 

figure 2.4). In this regime (5(A) no longer approximates to a delta function and 

now represents the spectral dispersion of the ultrashort pulse. Figure 2.4 shows 

that significant absorption of the pulse is avoided only if [Arj » 1, that is if the 

detuning A = cjp — wio is much greater than the spectral width of the pulse ~ l / r . 

Further the r dependence of Pii(oo) provides some indication of the population 

of the excited state throughout the pulse. This is particularly apparent for a square 

pulse since if the pulse is turned on at t = 0 then the excitation produced up to 

time t — T IS exactly the same as that produced by a complete pulse of width T. 

For such a pulse 

Pn(oc) = l : ^ # ^ r W ( A r / 2 ) (2.41) 

or alternatively 

Pii(oo) = T2 / \Hw{t)\'dt6iA) 
n J-oo 

(2.42) 

where 

(5(A) = — s i n c 2 ( A r / 2 ) 
2TV 
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A = 0 

A r | = 1 

0.7 X 10-6 

A r | = 2 

A r | = 3 

Figure 2.4. Relationship between the final occupation probability pii(oo) of the excited state 

5̂ 1 and the pulse width r , for various values of the detuning A. The continuous curves 

show values determined by equation (2.35) whilst the discrete points show values calculated 

numerically using Liouville's equation. A value of i?io(0) = lO^'^^J is used throughout. 



Now suppose that an ensemble of two-level systems, all initially in the ground 

state ^ ' O J are excited by the pulse. At the start of the pulse (cf. short pulses) the 

populations of the ground and excited states are determined by the factor in 

equation (2.41) so that some of the systems are initially excited, but as the pulse 

continues (cf. longer pulses) the sinc^(Ar/2) factor becomes more important and 

the number of excited systems starts to decrease. If the condition | A r | !» 1 is met 

then there are practically no systems in an excited state after the pulse has ended. 

The condition on A r is closely related to the uncertainty principle connecting 

energy and time, which allows non-conservation of energy on a sufficiently short 

timescale. The transiently generated excitations which exist only during the pres

ence of the pulse are termed virtual excitations. In the semiconductor context of 

excitation across the band gap, the production of virtual excitations corresponds 

to the generation of virtual electrons in the conduction band and of virtual holes 

in the valence band. 
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C H A P T E R T H R E E 

Elec tromagnet ic gauge theory 

In this chapter the description of the electromagnetic interaction with the 

semiconductor system is considered in more detail. The electromagnetic fields 

may be described in terms of vector and scalar potentials and these are to some 

extent arbitrary. To specify the potentials exactly requires a particular choice of 

gauge, so the question of the choice of gauge is considered with particular attention 

paid to the two usual choices of gauge which give the so called A . p and the E . r 

interactions. It is shown that the expectation values of observables (which are 

the only physically meaningful quantities) are unaffected by the choice of gauge, 

although a particular choice of gauge may provide a more elegant method for 

obtaining the result. As an example of gauge invariance there is a discussion on the 

connection between the susceptibility calculations performed in the A . p and E . r 

gauges. Finally, an explicit expression is derived for the interaction Hamiltonian 

Hi in the electric dipole approximation for use in later chapters. 
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Sect ion 3.1. G a u g e theory and Schrodinger's equation. 

The propagation of an electromagnetic wave through a material is described 

by Maxwell's equations 

V x E = - ^ (3.1) 

— V x B = ^ o - ^ + J (3.2) 

e V . E = p (3.3) 

V . B = 0 (3.4) 

The electric and magnetic fields E and B may be described [1-3] in terms of a 

vector potential A and a scalar potential ^ 

E = -V<f>-— (3.5) 

B = V X A (3.6) 

These descriptions contain an element of arbitrariness in that the vector and scalar 

potentials are not completely determined by the electromagnetic fields. The choice 

of particular functions A and <f) constitutes a choice of gauge. Consider two gauges I 

and I I related by the gauge transformation function A(r, i ) . Suppose that A and 

(f) are the potentials in gauge I , then the potentials A and 4> in gauge II are given 

by the relations 

A = A + V A (3.7) 

* = * - f (3.8) 
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The transformation from one gauge to the other has no effect on the physically 

observable quantities which are the electric and magnetic fields. Thus 

= - V * - f (3.9) 

and 

B = V X A 

= V X (A + VA) 

= V X A (3.10) 

since V x V A = 0. 

The transformation function A also defines the transformation of a quantum 

mechanical operator O in gauge I to the corresponding operator O in gauge II 

through the relation [16,17 

O = UOU^ (3.11) 

where 

U = exp[-qA/ih) (3.12) 

and q is the charge on the particle described by the operators O and O. For an 

electron with charge g = —e, the velocity operator v = (p + e A ) / m in gauge I 

transforms to the operator v = (p + e A ) / m in gauge II [18-20 . 
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Thus 

exp [ekjih] (p + eA) exp [-ekjih] 

= p + eA -I- exp {eA/ih) {—ihV exp {—eA/ih)) 

= p + eA (3.13) 

Similarly the energy operator O = ihj^ + e(^ in gauge I transforms to O = ihj^+e4> 

in gauge I I [18-20 . 

. ( d \ 
ex-p{eA/ih) ih—+ ecp exp {—eA/ih) 

\ dt J 

^ ^ / (.^d[exp{-eA/ih)]\ 
= th—+ e(f) + exp {eA ih) ih —-

at \ at j 

= ih— + e~4> (3.14) 

The time dependent Schrodinger equation for an electron in a semiconductor sub

jected to an electromagnetic field described by the potentials A and ^ is 

H{AA)^ = i h ^ (3.15) 
at 

where 

H{A,(t>) = (p + eA)2 + F - e<?i (3.16) 
2m 

and V is the potential energy of the unperturbed material system. The formulation 

of the Schrodinger equation should yield physically observable results which are 

not dependent on the choice of gauge. In gauge I the Schrodinger equation may 

be written as 5 ^ = 0 where 

S = 
1 9 d ^ 

— (p + e A ) ' + 7 - i h - + e4> 
Zm \ at I 

(3.17) 

25 



and for gauge invariance the Schrodinger equation should be expressible in gauge II 

as S'^' = 0 where 

S = — (p-t-eA) +V - ih— +e(f> 
2m ^ ' \ at i 

(3.18) 

Indeed equations (3.13) and (3.14) show that S = USU^ and it follows that the 

wavefunctions ^ and * in the two gauges are related by 

* = C / * (3.19) 

where 

U = exp {eA/ih) (3.20) 

Further, the expectation value of an operator O in gauge II is given by 

and hence equals the expectation value of the operator O in gauge I. This shows 

that the expectation value of an operator is independent of gauge provided that 

the appropriate potentials (dependent on gauge) are used in the definition of the 

operator. Thus the operator O should be the same function of A and (f) as the 

operator O is of A and 4>, as for example is the velocity operator discussed earlier. 
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Sect ion 3.2. T h e use of gauges in per turbat ion theory. 

The previous section discussed the application of gauge theory to the exact 

solution of the Schrodinger equation. This section shows how the results can be 

applied when calculating expectation values to some arbitrary order of pertur

bation theory [21]. The wavefunctions for the two gauges I and II discussed in 

section 3.1 may be expanded as perturbation series 

* = + + * ( 2 ) _̂  . . . 3̂ 22) 

^ = ^(o) + ^(i) + * ( 2 ) + . . . (3.23) 

where '̂('•) and *(^) have r**' order dependence on the electromagnetic perturba

tion. The exponential U = exp{eA/ih) may be expanded as a power series 

U = C/(°) + [ / ( I ) + C/(2) + . . . (3.24) 

to define the coefficients 

and from ^ = U'^ in equation (3.19) it is reasonable to assume that the pertur-

bative terms for the two wavefunctions are related by 

s=0 

In the exact solution 

5 * = USU^U<i! = U[S^] (3.27) 
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which implies that in the perturbative solution 

s=0 

(3.28) 

for r = 0 , 1 , 2 , . . . However, it remains to define the perturbative Schrodinger equa

tions = 0 and [5^]('') = 0 for gauges I and II in a gauge invariant manner 

and to check that all definitions are consistent. So consider the Schrodinger equa

tion 5 ^ = 0 in gauge I and extract all terms from the left-hand side which have 

r**' order dependence on the electromagnetic perturbation to define [S l̂̂ *") as 

d 5 * ] W = — + v - ih— 
2m dt 2m 

(A.p -h p .A) - e4> ^ ( r - i ) + £ j i ! ^ ( r - 2 ) 

2m 

(3.29) 

Then [̂ Ĵ̂ *") = 0 is the r*^ order Schrodinger equation in gauge I. Similarly in 

gauge II [5^[(''^ may be defined as 

.2 Q 
[5*]W = — + V- ih-

2m dt [2m 
(A.p + p .A) - e(f> ^ ( r - i ) + £ j i ! ^ ( ^ - 2 ) 

2m 

(3.30) 

so that [5^]^''^ = 0 is the r*^ order Schrodinger equation in gauge II . To show that 

these definitions are consistent, suppose that . . . are solutions of 

the perturbative Schrodinger equations in gauge I 

5 * | ( ° ) = 0 

5 * = 0 

[ 5 * ] ( 2 ) = 0 

: (3.31) 
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Then the wavefunctions ^(° ) , . . . which are defined by equation (3.26) 

should be solutions of the perturbative Schrodinger equations in gauge II 

5§] ( ° ) = 0 

= 0 

5 ^ ] ( 2 ) = 0 

(3.32) 

The basic approach is to assume that [5'I']('') = 0 for r = 0 ,1 ,2 , . . . and to show 

that 

[5^]W = ^f/(^-^)[5*](^) (3.33) 
s=0 

and hence that [5*]('') = 0. Firstly, it is neccessary to derive a few operator 

identities 

2m 

1 
2m 

1 
2m 

.{-ihVU^'^ + C/Wp) - U^'^p''' 

p.(-z/iV[/('-)) + (-z/iVt/('-)).p 

= [p.(C/('- i)VA) + (t/('-^)VA).p 
2m •' 

^ (p .VA + VA.p)C/( ' - i ) + ^VA.{-ihVU^'-'^) 

,2 
2m 

= _ _ L ( p . V A + VA.p)C/( ' - i ) - — ( V A . V A ) f / ( ' - 2 ) (3.34) 
2m 2m 

and 

A . p + p . A , C/W] = A.( - i / lVC/( ' ' ) ) + {-ihVU^'^).A 

= - e ( A . V A + V A . A ) [ / ( ' - ^ ) 

29 

(3.35) 



and 

dt' dt 
(3.36) 

Now consider 

^ f / ( r - s ) [ 5 ^ ] ( « ) 

= y u^'-') ( ^ + v] *(^) + y t / ( ' - i - ^ ) - ^ ( A . p -I- p.A)*(^) + y i 7 ( ' - 2 - « ) — * w 

t o V2m ; t o 2m^ ^ ^ ^ .t̂ o 2m 

(3.37) 
s^O s=0 

s=0 

B y using the operator identities (3.34), (3.35) and (3.36) this may be written as 

^j7('--s)[5^](^) 
0 

— - ^ v \ y t / ( ' -^)*W -f- — ( V A . p + p .VA) Z7(^-i-^)*(^) + - f l v A . V A r U^'-'^-')<i^' 
V 2 ^ y.=o 2m ^ ^;eo 2m 

+ ^ ( A . p + p . A ) E C/('"'"'^*^'^ + ^ ( A - V A + V A . A ) ^ C^^'-'-^)*^^) 

,2^2 r-2 

s=0 s=0 

e<j>yU^'-^-''>^^'^ (3.38) 

Finally, collecting terms in and ^ ( ^ - 2 ) defined by equation (3.26) 

and using the transformation relations (3.7) and (3.8) for the vector and scalar 

potentials gives 

^C/ (^-^) [5*] (« ) 

s=0 

= {J^+V\ + — ( A . p + p . A ) * ( - l ) + i A ^ ( - 2 ) _ -^-J^ _ ^^^(r- l ) 

y2m j 2m 2m dt 
= (3.39) 
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Hence [5*]('') = 0 and so for r = 0,1, 2 , . . . as defined by equation (3.26) are 

indeed solutions of the perturbative Schrodinger equations (3.32) in gauge II . 

Finally, it remains to show the equivalence of the r*^ order expectation values 

(0)('') and (6)('') of an operator calculated in gauges I and II . So define 

(*]*) 

/ (iV(°) ( O ) , . . . , iV -̂-) (O), M'Hl)) (3.40) 

where iVW(0) = is the sum of all s^^ order terms from The 

function / represents a binomial expansion of the denominator and the arguments 

of / with 6 = 0 derive from the numerator whilst those with ^ = 1 derive from 

the denominator. The term N^^\9) is expanded as 

iV(^)(^) = X^(*(^-')|[^|^)](0 (3.41) 
1=0 

whilst the expansion of [^]*)] '̂̂  depends on the explicit form of the operator 6. 

For 6 equal to the total operator S in the Schrodinger equation the expansion is 

given by equation (3.29). Now in gauge II the r'*̂  order expectation value is 

)W 
(0)W 

(*]d]*) 

= / ( i V ( ° ) ( 6 ) , . . . , iV(^)(6), iV(o) ( l ) , . . . , i vW( l ) ) (3.42) 

where N^'^d) is defined in an analogous manner to N^^\6). Because the same 

function / appears in gauges I and II it follows that (0)(^) and (0)(^) are equivalent 

if M'\e) = N^'\0). So assume that 

in) (3.43) 
n=0 
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This has just been demonstrated for the operators S and S (see equation (3.33)) 

and also holds for the operators of interest here, such as the velocity operator. 

Hence 

= ^(^(-0|p|^)]('^ 

s s-l I 

n=0 t;=0 w=0 
s s—n 

= E E(*^'""""^l'5''o[^l*) 
n=0 t;=0 

= E E E(*^"'̂ F '̂~'""'''̂ '̂"''M^I*)]^"^ 
1=0 m=0 n=0 

= E E [ l̂*)! '̂'̂  

in) 
r I ' / i 

= E(*̂ ~̂"'̂ l 1̂ 1̂)]̂ "̂  
n=0 

= iV(^)(^) (3.44) 

Thus iV(^)(0) = iV(^)(^) and (O)̂ '") = {O)^'^ so that the expectation values are 

independent of gauge to any order of perturbation theory. 
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Sect ion 3.3. T h e A . p a n d E . r gauges. 

In this section the general results of the previous section are exemplified with 

the aid of an example of practical importance, namely that of the connection 

between calculations performed in two particular gauges I and II which give the 

so called A . p and E . r interactions [22,23]. Consider a plane electromagnetic wave 

propagating in the z-direction 

E = E{uj) [ê 'C^̂ --̂ ') + e-̂ '̂ ^̂ -"̂ )̂] ê  (3.45) 

B = B{u) [ê (̂ -̂'̂ 0 + e-'('=̂ -'̂ 0] ey (3.46) 

where E{u) = {u/k)B{u). Suppose that the wave propagates in the plane of a 

semiconductor quantum well with the electric field vector oriented in the quanti

sation direction Bx of the quantum well. It is assumed that the electronic states 

{^'/} are bound in the x-direction so that matrix elements of the position operator 

X are defined and the standard relation [8,9 

{^m\p'\<fl) = imuJmli^M'^l) (3-47) 

is applicable. Also suppose that initially the system is in the electronic state * s 

and is subsequently perturbed by the electromagnetic wave. The fields can be 

described by the gauge 

(f) = 0 (3.48) 

(3.49) A = ^ ^ i { k z - ! j j t ) _ ^ - i { k z - w t ) 
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The first order Schrodinger equation in this gauge is 

^ 0 ^ ( 1 ) + - i A . p * ( ° ) = ih-
m dt 

(3.50) 

where the electromagnetic interaction is provided by the (e/m)A.p term, so that 

gauge I is commonly called the A.p gauge. The zero order wavefunction is 

*(o)(e) = e-̂ ''̂ '**. (3.51) 

and the first order wavefunction may be expanded over the orthonormal basis set 

of time independent states as 

* W ( i ) = E « r ( 0 * / 

Substituting into the first order Schrodinger equation (3.50) gives 

tmu) 

, i ( w , , - w ) « X ikz _ i{wi,+w)t X - i k z 

SO that by integration 

(1) _ eE{u) 
ihmu 

-i(wa-{-U))t _ ., - i ( w , - w ) f 
X ikz _ f X - i k z 

m^ms 

The first order current may be calculated as 

(3.52) 

(3.53) 

(3.54) 

j( i ) = _^(p + eA)(i) 
m 

e 
m 

(*|p + e A | * ) (1) 

A[(^(i)|p|^(o)) + (^(o)|p|*(i)) + ( * ( 0 ) | e A | * ( ° ) ) 
m '• 

e 
m 

E (»!"pi.e-"-' + e~-'p„a!" 
m 

(3.55) 
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Now considering just the component at frequency w gives 

Uis+OJ imu 
'SS 

(3.56) 

and the time integral of the current provides the polarisation 

1 ^ Jkzx 1 E „ikz X _ I 
J2 PslPfr. 

Jkz 
2 ^ss 

(3.57) 

With the polarisation in gauge I determined, suppose that gauge II is defined by 

the transformation function A = — A . r . In gauge II the dominant electromagnetic 

interaction term is provided by —e4> = e E . r so that gauge II is commonly called 

the E . r gauge. The scalar and vector potentials for the plane electromagnetic 

wave of equations (3.45) and (3.46) are given in gauge II by 

A = - — E{oj) Ukz-..t)^^-^{kz-.t) 

(3.58) 

(3.59) 

and the first order Schrodinger equation in this gauge is 

Ho¥'^ - e^*(°) + - ^ A . p * ( ° ) + - ^ * ( ° ) p . A = i h ^ ^ (3.60) 
m 2m at 

The zero order wavefunction is unchanged from equation (3.51). The first order 

wavefunction may again be expanded over the basis set {^'z} as 

*0) = Eap)*z 
I 

(3.61) 
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and the coefficients determined by substitution into the Schrodinger equation (3.60) 

(1) _ _ £ ^ M 
h al' = 

+ 

+ 

ekEju) 
hmu) 

2mu) 

ikz 

g- i (w , -w) f 

g-t(ws-w)t 

-ikz z 
m^mn t'ns 

-ikz (3.62) 

As in the first gauge the polarisation may be obtained f r o m the time integral of 

the current 

+ -

ihmoj 

E 

E 

1 

m^ms 

1 1 
E 4m^mlPls - E PslXl 

ikz 

e'^kE{w) 

irnu)'-

Jkz, (3.63) 

From the general discussion given in section 3.2 the two expressions (3.57) and 

(3.63) for the polarisation should be equivalent, but this can be demonstrated 

explicit ly. Consider the expression (3.57) for the polarisation derived in gauge I 

and substitute for and p f ^ by means of the standard relation = i m w ^ / i ^ / 

of equation (3.47) before employing the relations 

[uis + <jj) + w u { u j i s + u j ) w 
(3.64) 

and 

m 1 ms 
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to obtain 

p ( i ) ( , ) = _ ! ! ^ V Jkz^ 

I 

E (eii 

(3.66) 

Now consideration of [Ho,exp{±ikz)] yields the relations 

hk' , 
e 

2m 
(3.67) 

and 

ijtz ikz z ikz 

which may be substituted into the expression (3.66) for p\^\u}) to obtain 

(3.68) 

1 + -

+ p i 

—T~ E esm2;^;P/3 ^ E Psl^lm^'J^s 

(3.69) 

Final ly expanding the commutator 

1 

ih J ss + ikJ2 (3.70) 

and comparing equation (3.69) w i t h equation (3.63) shows that P / ^ ( w ) = P / / ( w ) 

so that the value calculated for the first order polarisation is independent of the 

gauge. 
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Now Ehrenfest's theorem [8,9] states that for a bound system the time deriva

tive of the expectation value of the position operator r equals the expectation 

value of the velocity operator v , that is 

d_ 
dt 

( ^ | v | ^ ) 

( * l * > 

(3.71) 

Thus for the quantum well system considered above the polarisation in the i -

direction may be calculated directly as 

P = -e (x) (3.72) 

and Ehrenfest's theorem guarantees that this gives the same result as obtaining 

the polarisation through time integration of the current since 

P = j Jdt = -ej{v)dt = -e (x) = P (3.73) 

This w i l l be demonstrated for the example problem shortly, but first i t is shown 

that the first order polarisations calculated f r o m equation (3.72) are equivalent in 

the two gauges I and I I . Thus taking the wavefunction coefficients a^^ in gauge I 

f r o m equation (3.54) the polarisation in the i -di rect ion is given by 

(1) 

(3.74) 

Similarly taking the wavefunction coefficients a] ' in gauge I I f r o m equation (3.62) 

the polarisation is given by 

h E 
I 

ikz 
m^ms 
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e^kEju) 

hmuj E ^ E Psn^nm^ml^ls + E ^slXlm^mlPr. 

2moj 

1 
5 ^ ^sm-^"i'* '̂s 

ikz 
E ^sl^lm^ms 

(3.75) 

Now applying the standard relation p^^ = zmw^^x^/ of equation (3.47) to sub

st i tute for and pf^ in the expression (3.74) for Pj^\u) and using the rela

tions (3.64) and (3.65) gives 

E 
/ L 

1 Jkz. 1 

e^Eju) 

e^Eju) 

hu 

E 

E(' 
l,m 

1 

E ef^XmlXis + E ^sl^lme 

1 

ikz 
m^ms 

OJls+OJ 

ikz ikz\ 
ms J (3.76) 

and then using the relations (3.67) and (3.68) gives 

P f ) ( . ) 
e'^Eju) 

h 

e^kEju) 

hmu! 

E 

E 
I 

1 ^ Jkz„ „ , 1 V ^ ^ Jkz 
m^ms 

1 

E ^fm^mlXls + E ^slXl 

2mcj ^ E W/s+W ^ W/s-W rn 

E Pfnenm^m/2;/s + — E 3;5/3;/me'^^p^3 

e'^l'^) Lik 
hu 

(3.77) 

and since the commutator [exp(iA;2)x, x] = 0 then comparison w i t h equation (3.75) 

shows that P\^\u}) = PjJ^(u;). 

Earlier i t was shown that the calculation of polarisation by time integration 

of the current yields identical results in gauges I and I I , so that p j^^ — P / ) ^ Also 

the values obtained in the two gauges by direct calculation of the polarisation are 
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equivalent, so that p j ^^ = P f f . I t remains to show that p)^^ = p)^^ so that all 

four methods of calculating the polarisation produce the same result. So consider 

Pj^^ f r o m equation (3.74) and use the relations 

+ - (3.78) 

and 

-Usl 1 
u>is—oj w(w/s — w) U> 

(3.79) 

to obtain 

1^ {^smPml^ls - ^slPlm^ms) (3.80) 
Lm 

and then the standard relation pf^ = trnw/^x/^ of equation (3.47) shows that 

' E &mlPls + E P^lPfm<^ 

+ e-~p~,x (3.81) 

and the commutator is 

ih = —e 
ikz (3.82) 

so comparmg equations (3.81) and (3.57) shows that P} ' = P} ' as required, and 

all four methods of calculating the polarisation are equivalent. 
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S e c t i o n 3.4. T h e e lec t r i c d i p o l e a p p r o x i m a t i o n . 

The electric dipole approximation [4,24] neglects the ^-dependence of the elec

tromagnetic wave defined in equations (3.45) and (3.46) so that exp{ikz) = 1. The 

magnetic field B is neglected and the electric field 

E = E{u) e- i ' - ' + e*"' e . (3.83) 

polarises the quantum well system in the x-direction. The first order polarisation 

in gauge I may be approximated using p j ^^ whilst the first order polarisation in 

gauge I I may be approximated using Pj]^- Thus f r o m equation (3.57) 

e^Eju) 
hm'^u^ E Ps/Pfs I PMs e^E[u) 

(3.84) 

Also using the relations (3.67) and (3.68) then equation (3.75) gives 

Pn H - ^ 

e^E{u) 

E 
/ L 

E 
/ L 

UJia+U 

CO., 
+ 

1 

XslXls ^ XslXis 

W/s-W rn 

OJr. 

(3.85) 

B y application of the sum rule [8,9 

^ [ p f j 2 _ hm 
(3.86) 

to the last t e rm in equation (3.84) the polarisation in the first gauge may be 

approximated by 

e^Eju) 

hm^u)"^ 

e^Eju) 
hm? 

E 1 1 
+ 

E 1 1 
+ 

IP; 
X ,2 2 e 2 £ ( u ; ) ^ |pf^ X 12 

hm'^uj^ 
-2 2 

(3.87) 
Is 
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so that the two gauges produce identical results. However, i f a two-level approx

imat ion is made directly f r o m equations (3.84) and (3.85) to obtain the suscepti

bilit ies 

1 1 
+ Lwio + CJ OJio - OJ 

P 
X 2 
10 9 (3.88) 

and 

r 1 
+ 

1 
(3.89) 

then the first result produces a dependence for small frequencies whilst the 

second result does not. Further, near resonance (w wio) the last term in equa

t ion (3.88) may be neglected to obtain the dubious result X/^^(w) = (^10/^)^X7/^(w)-

As the equivalence of equations (3.85) and (3.87) indicates, these inconsistencies 

are not a direct consequence of using different gauges but result f r o m the two-level 

approximation. 
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or 

^ , = 5 i ^ ( A . p + p . A ) + ^ - . # (3.96) 

The potentials for the first gauge are given by equations (3.48) and (3.49) (so that 

p . A = A . p ) whilst the potentials for the second gauge are given by equations 

(3.58) and (3.59). I n the electric dipole approximation the vector potential A 

in the first gauge becomes a funct ion of time only so that in the second gauge 

^ = - E . r and A = 0. Further, because the term j^m is a funct ion of time 

only, i t commutes w i t h the density mat r ix operator and so may be neglected in 

the calculations. Hence the interaction Hamiltonians for the two gauges are taken 

as 

Ei = —A.p (3.97) 
m 

and 

Hj = eE.r (3.98) 

in the Schrodinger picture, whilst in the interaction picture these become 

HI = exp{-Hot/ih) ( ^ A . p ) exp{Hot/ih) (3.99) 

and 

HI = exp{-Hot/ih) (eE.r) exp{Hot/ih) (3.100) 

I t should be noted that equations (3.97) and (3.99) must be used when extended 

states are involved and that equations (3.98) and (3.100) are appropriate for use 

w i t h bound state systems only. 
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C H A P T E R F O U R 

Of f - r e sonance p h e n o m e n a 

I n this chapter the response of a semiconductor system to an ultrashort optical 

pulse is considered for the case of excitation slightly off-resonance w i t h the allowed 

transitions, that is w i t h a photon energy just below the bandgap energy. A t mod

erate i l luminat ion levels this results in the generation of v i r tua l carriers whilst at 

very high intensities i t is possible to produce real carriers by an effect analogous 

to the Landau-Zener transitions found in atomic systems. The usefulness of oper

ating in the v i r t ua l regime is apparent for ultrafast switching devices where device 

recovery t ime is not l imited by the recombination rate for electron-hole pairs. A 

proposal for enhancing the effectiveness of the nonlinear response in this regime 

by tai lor ing the conduction bandstructure of a quantum well device has recently 

been pu t forward by Morrison and Jaros [25-29], and the viabi l i ty of this proposal 

is examined in the final section of the chapter. 
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S e c t i o n 4 . 1 . M o d e l o f a t w o - b a n d s e m i c o n d u c t o r sy s t em. 

The model used here of a typical semiconductor quantum well employs a simpli

fied bandstructure as depicted in figure 4 .1 . In each of the valence and conduction 

bands only a single subband is considered and these are labelled n = 0 and n = 1 

respectively. In subband re at a parallel wavevector k the Bloch funct ion *„i , is a 

solution of the Schrodinger equation 

i J o ^ n . = ^ n ( k ) * „ k (4.1) 

where HQ is the Hamil tonian of the unperturbed system. I t is assumed that the 

in-plane dispersion of the energy £ '„(k) w i t h electron wavevector k is parabolic, 

£ „ ( k ) = E^{0) + (4-2) 
2 m „ 

where m* is the electron effective mass for the subband. In chapter six a more 

realistic bandstructure w i l l be considered but the present model allows consider

ation of the essential physical processes. The response of the material system to 

optical excitation can be described using the Liouville equation for the density 

ma t r ix operator p as discussed in chapter two. The usual approximation that the 

optical interactions do not change electron wavevector (because the photons have 

very small wavevectors in comparison) is adopted and the differential equations 

for the density mat r ix are consequently assumed to decouple at each particular 

value of electron wavevector. I t is thus possible to consider the optical interaction 

at each value of k separately, and so for a given value of k the Liouville equation 
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siibband n = I 

Ei{k)-Eo{k) 

subband n = 0 

F i g u r e 4.1. In-plane bandstructure of a semiconductor q u a n t u m well wi th one valence 

subband (n = 0) and one conduct ion subbamd {n = 1). 



in the interaction picture may be wr i t t en as 

in—;— 
dt 

(4.3) 

where pLm is the r**' order perturbative term in the density matr ix element between 

states and '^rnv- The interaction Hamiltonian is taken f r o m equation (3.99) 

or (3.100) and has mat r ix elements 

Hnm^ —•^•Pnm^^V{i^nmi) (4-4) 
m 

or 

-ffnm = eE . r „^exp(za ;nmO (4-5) 

dependent on gauge and the energy separation between states is hujnm = En{k) — 

E,riO^)- The bandstructure influences the optical response in a number of ways. 

First ly, the energy dispersion w i t h i n a subband results in variation of the detuning 

A = Up — Ufim where Up is the photon frequency. Secondly, the matr ix elements 

-prim and Vfim are dependent on the semiconductor wavefunctions which in tu rn 

depend on the wavevector k . However, this variation of the matr ix elements is 

neglected in this chapter. Finally, the density of electronic states ^ (k) determines 

the relative influence of the interactions throughout the Br i l louin zone. 

The optical per turbat ion is taken to be an ultrafast pulse w i t h a gaussian 

envelope 

E ( i ) = Eo cos Upt exp{-t'^/T^) (4.6) 

47 



which represents a plane-polarised light beam whose orientation is determined by 

the vector E Q and whose centre frequency is Wp. I t is pulsed w i t h time constant r 

and thus has a frequency spectrum distributed about Wp w i t h bandwidth of order 

1/r. The pulse duration is made sufficiently short that all thermal processes may 

be neglected and so the decoupling of the Liouville equation assumed in equation 

(4.3) is indeed val id . The pulse time constant is taken as r — lOOfs and for optical 

excitation below the bandgap energy, the thermal scattering typically occurs on 

the picosecond timescale. The photon energy Ep is set below the bandgap energy 

Eg and the curvature of the subbands further increases the detuning as k moves 

away f r o m the Br i l lou in zone centre. For Eg — Ep » h/r this ensures operation in 

the v i r t u a l excitation regime w i t h practically no photogeneration of real carriers. 

A t each value of k , the response of the subsystem is examined in terms of the 

electron occupation of the two states *o and ^E'l and of the electronic polarisation 

produced by the mixing of these states through interaction w i t h the electromag

netic field. The electron occupation varies on the timescale of the pulse envelope 

whilst the polarisation follows the more rapidly oscillating electric field vector. The 

electron occupation probabil i ty for the valence state ^'o is given by poo and that 

for the conduction state ^ ' i is given by pu. The polarisation may be calculated 

f r o m the off-diagonal density ma t r ix elements poi and piQ. The linear response is a 

polarisation of the in i t ia l electron population. There is also a transient generation 

of electron-hole pairs and the nonlinear response arises f rom a polarisation of this 
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photogenerated population. These phenomena are discussed at some length in the 

fol lowing three sections. 
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S e c t i o n 4 .2 . P h y s i c a l d e s c r i p t i o n o f t h e o p t i c a l i n t e r a c t i o n . 

Suppose that ini t ia l ly the valence state of the subsystem is occupied, so that the 

subsystem wavefunction is given by ^ '( io) = *o- The eff"ect of the electromagnetic 

interaction is to mix in some of the conduction state so that 

* ( f ) = *o + a ( i ) ^ i (4.7) 

where a{t) is small and may be calculated by elementary perturbation theory 

8,9]. As discussed in chapter two, this mixing of states results in a polarisation 

of the subsystem when the dipole matr ix element between the states is non-zero. 

Hence the linear response is a polarisation which arises f rom the introduction of 

an admixture of the conduction state to the in i t ia l valence state wavefunction as 

depicted in figure 4.2a. The system is now prepared to make an upward transition 

f r o m the valence state to the conduction state by a fur ther interaction w i t h the 

electromagnetic field. 

Alternat ively suppose that the system is somehow arranged wi th the electron 

in i t ia l ly occupying the conduction state so that * ( i o ) = ^ i - The effect of the 

electromagnetic interaction is now to mix in some of the valence state so that 

* ( i ) = * i - a ( f ) * o (4.8) 

I n this case the response is a polarisation which prepares for a downward transition 

f r o m the in i t i a l conduction state population to the valence state. This is depicted 

in figure 4.2b. Note that the polarisation induced when the electron is init ial ly in 
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* 1 

0 

Figure 4.2a. Polarisation of the initial valence state population resulting in an induced dipole 

moment p. 

^ 1 

0 

Figure 4.2b. Polarisation of the initial conduction state population resulting in an induced 

dipole moment —p. 

T 
= Af 

p £ ' = - A / 

Figure 4.2c. Polarisation of the photogenerated populations resulting in a change in induced 

dipole moment —2pA/. 



the valence state is in antiphase with the polarisation induced when the electron 

is initially in the conduction state. Thus if a dipole moment p is induced in the 

former case, then a dipole moment —p is induced in the latter case. 

Now returning to the case where all electrons are initially in the valence sub-

band, the optical pulse produces a transient change in the electron population of 

the states in each two-level subsystem, decreasing the valence state population by 

A / and increasing the conduction state population by A / . This results in two 

equal contributions to the nonlinear polarisation depicted in figure 4.2c. Firstly the 

reduced valence state population decreases the number of possible upward tran

sitions, and secondly the optically generated conduction state population makes 

downward transitions possible. Thus the dipole moment induced by polarisation 

of the photogenerated electron-hole pairs is —2pAf and the nonlinear polarisation 

is in opposition to the linear polarisation. 

The generation of virtual carriers as the conduction subband is transiently 

populated with electrons is depicted in figure 4.3 for a typical case (bandgap energy 

Eg = 1.5eV, photon energy Ep = 0.9Eg, combined effective mass m* = 0.045m, 

maximum electronic wavevector /cniax = O.OSA , gaussian pulse time constant 

T = lOOfs). A corresponding transient population of holes appears in the valence 

subband. The figure shows the time evolution of the virtual carrier population 

pii{k)g{k) which has been weighted by the density of states function g{k) ~ k. It is 

assumed that the bandstructure is isotropic so that the response is dependent only 
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Figure 4.3. Transient generation of v i r tua l electrons throughout the conduction subband 

as a func t ion of t ime. The carriers are produced through excitation by a gaussian light 

pulse of t ime constant T = lOOfs and centre frequency Wp = 0.9wg detuned below the 

bandgap {Eg = 1.5eV). The value of Ar̂ ax is O.OSA-^ 



on the magnitude k of the wavevector. As a function of k the form of the response 

is determined by the increasing detuning at large k which reduces the response, 

and by the density of states which tends to zero at the Brillouin zone centre. 

The real part of the frequency spectrum for the nonlinear polarisation is shown 

(3) (3) (3) 
in figure 4.4. The polarisation is calculated as = —dyt(pio (^) +Poi (^))&(^) 

(3) 

where is the dipole matrix element at electronic wavevector k and P\Q' and 

Poi are third order density matrix elements discussed further in section 4.3. The 

Fourier transform of Pk provides the frequency spectrum about u = Up. The 

imaginary part of the frequency spectrum is not shown as the pulse detuning is 

sufficiently large to ensure no significant excitation of real carriers. The spectrum 

is distributed around the optical centre frequency Up with a spread of order 1/r, 

and the response is again weighted with the density of states function. The figure 

shows the relative contributions due to polarisation of carriers throughout the 

Brillouin zone and the shape is again determined by increasing detuning at large 

k and by decreasing density of states at small k. 
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~ 5 / r 

3fe P f („) 

Figure 4.4. Frequency domain response of the quantum well showing the nonlinear polar

isation of the two-band system subject to excitation by a gaussian light pulse of time con

stant r = lOOfs and centre frequency Wp = 0.9wy detuned below the bandgap [Eg = 1.5eV). 

The relative contr ibut ion to the polarisation f r o m different points in the Bri l louin zone is 

depicted for electronic wavevectors up to /cmax = 



Sect ion 4.3. F e y n m a n d iagram description of the opt ical interaction. 

The linear and nonlinear responses of the system are now examined using a 

more mathematical approach. The maximally resonant terms can easily be selected 

with the help of double Feynman diagrams as described in chapter two. They are 

identified by considering only resonant transitions at each step of the perturbation 

calculation. It is assumed that all electrons are initially in the valence subband 

and that there is no phase coherence between states, so PQQ = 1 and the other 

zero order density matrix elements P Q ° \ P^^Q and p ĵ̂  are zero. The linear response 

is a polarisation of the equilibrium population which introduces an admixture of 

the conduction state to the initial valence state wavefunction. The mixing of the 

two states is described by the first order density matrix elements p^^J and PQJ^ 

for which the Feynman diagrams are shown in figures 4.5a and 4.5b respectively. 

The resonant response for p\S results from the positive frequency term whilst 

the resonant response for PQJ^ results from the negative frequency term. This is 

illustrated in the figure by the direction of the arrow for the photon involved in 

the interaction. From the density matrix elements the linear polarisation can be 

calculated directly by means of the trace operation 

^Hnearit] = ' 6 j Trace[rp^'^)g{k)dk 

= - e j (roip^y + riopi;^)3(k)dk (4.9) 

where g{k) is the density of states function. The matrix elements may be written 
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l * o ) ( * 0 

Figure 4.5a. Feynman diagram for the calculation of the first order density matrix 

element p[]^. 

Poi 

(0) 
Poo 

Figure 4.5b. Feynman diagram for the calculation of the first order density matrix 

element p^^^. 



directly from the diagrams in figure 4.5 as 

P['^it) = Pff (0 = ^ £ H,o{ti)p'Sdh exp(-tu;ioO (4.10) 

where f^io is given by equation (4.4) or (4.5) and the bar denotes complex conju

gation. Alternatively the linear current can be calculated as 

Jlinearit) = j Trace{pp^%{k)dk 

= - ^ l iPoip['J + Piopi\^)gik)dk (4.11) 

where the plasma term is neglected as it provides only a non-resonant contribution. 

The linear polarisation may then be obtained as a time integral of the linear 

current. 

Now consider the nonlinear terms, starting with those second order terms 

which describe the photogeneration of virtual carriers. Figure 4.6a shows the 

diagrams which relate to the generation of holes in the valence subband whilst fig

ure 4.6b shows the diagrams for generation of electrons in the conduction subband. 

The density matrix elements p^Q^ and p^^^ are given by the expressions 

+ 7 ^ f Hio[h) Hoi{h)p^oodtidt2 (4.12) 
(tn)^ Jto Jto 

Figure 4.7 shows the nonlinear response due to the polarisation of these carriers. 

Note the similarity of figures 4.7a and 4.7b to figure 4.5 which is attributable to 

the linear response being a polarisation of the equilibrium population whilst the 
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Poo 

Poo 

Poo 

(*o| 

(^ol 

(2) Figure 4.6a. Feynman diagrams for the calculation of the second order density matrix element p̂ g 

P^ 

l ^ l ) 

l*o) 
Poo 

^ 2 

(*o| 

Pn 

l ^ i ) 

W W -

l*o> 
p S 

(^1 

(*ol 

Figure 4.6b. Feynman diagrams for the calculation of the second order density matrix element 



W W 

l ^ o ) 

(3) 
PlO 

(2) 
( ^ o | l ^ o ) 

(3) 

(2) 
Poo 

0 , 

Figure 4.7a. Feynman diagrams for the calculation of the contribution to the th i rd order 

density matr ix elements p^^Q and Pqj^ due to polarisation of photogenerated holes in the 

valence band. 

PlO 

p ^ 

^ i ) 

Poi 

p ^ 

Figure 4.7b. Feynman diagrams for the calculation of the contr ibut ion to the th i rd order 

density matr ix elements p[o' L̂ud p^^^ due to polarisation of photogenerated electrons m 

the conduction band. 



nonlinear response is a polarisation of the photogenerated population. These dia

grams give a nonlinear response in opposition to the linear response either because 

(2) 

PQQ is negative after removal of electrons from the valence subband (figure 4.7a), 

or because the polarisation prepares for a downward transition from the con

duction subband to the valence subband (figure 4.7b). The third-order nonlinear 

polarisation is given by 

^nonlinearit) = -e J {roipf^ + r,oP^^^)g{k)dk (4.13) 

or may be obtained from time integration of the nonlinear current 

Jnonlinearit) = / (POIpSo + PWPoi)g{^)dk (4.14) 
m J 

The third-order matrix elements are 

P?^{t) = pS? (0 = 4 H,oits)p'iJ{h)dt^exp{-iurot) (4.15) 

which may be written directly from figure 4.7. 
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Sect ion 4.4. O p t i c a l S t a r k shift description of the opt ical interaction. 

A n alternative point of view is provided by the concept of dressed states [30,31 . 

Instead of considering the electromagnetic interaction as producing a change in the 

occupancy of the 'bare' electronic states and ^^i, it can be regarded as producing 

a set of 'dressed' states of the quantum well. These are states of the combined 

system of semiconductor and electromagnetic radiation, whose electronic parts are 

mixtures of the bare states. The shift in transition energy when bare states are 

replaced by dressed states is termed the optical Stark shift [31-36]. The energy shift 

provides an alternative (but equivalent) description of the nonlinear polarisation 

to that provided by the state filling mechanism described in the previous sections. 

The connection between the two descriptions is further discussed by Burt [37]. 

The dressed states may be assigned a 'quasi-energy' which depends on the 

magnitude of the optical electric field. With zero applied electric field the energy 

levels Ĵ o and Ei are replicated at energy steps determined by the photon energy 

Ep to form a pair of energy ladders EQ + nEp and Ei + nEp for n = 0, ± 1 , ± 2 , . . . 

shown in figure 4.8a. When the energy separation Eg = Ei — EQ is near to the 

photon energy, this brings pairs of energy levels (one from each ladder) into close 

proximity. As the magnitude of the applied electric field is increased from zero, 

this proximity of energy levels results in a splitting of the levels and produces 

the Stark shift illustrated in figure 4.8b. To calculate these energy shifts [38-40], 

suppose that the Hamiltonian Hs = Ho + Hj of the interacting system is periodic 
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E ^ 

E Q + Ep 

E i - E , 

Er 

El - 2Er 

Eo-Ep 

Figure 4.8a. Energy ladders £'0 + nEp and Ei + nEp showing quasi-energies of the dressed 

states at zero electric field. 

Eg — Ep Eg ~ Ep + Est3,rk 

increasing electric field 

Figure 4.8b. Spl i t t ing of a pair of adjacent quasi-energy levels as the electric field is increased 

f r o m zero. 



in time with period T — 27r/u;p but otherwise does not vary in time (i.e. there 

is no pulse envelope). Then the matrix elements of Hs over the basis of time-

independent states { ^ ' n } defined in equation (4 .1 ) are E^m = ( ^ n | - f ^ 5 | * m ) and 

these may be expanded as a Fourier series 

^ n r . = E^ae'-''' (4-16) 
r 

Further, the theorem of Floquet states that an eigenvector ^ of Es may be written 

as 

* = e-''?'$ (4 .17) 

where $ is periodic in time with period T — jbj^ and 9 is a constant determined 

uniquely modulo Wp. This is closely related to the theorem of Bloch where the 

periodicity occurs in space rather than in time. Hence, expanding $ as a Fourier 

series 

(v^„|*) =^$We- '^p«e-^'^* (4 .18) 

and equating coefficients of exp(trwpf) in the time-dependent Schrodinger equation 

Es-^ = ih— (4 .19) 

gives 

Y: K-^) + rhup6rs6nm] = hq^l:^ (4 .20) 
s,m 

which may be written as 

E M(^rn){sm)^{sm) = Eg^(rn) (4-21) 
(sm) 
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so that Eq is the eigenvalue of the eigenvector $, and is known as the quasi-energy 

of the Floquet state. For the two-level system the matrix M may be written as 

M = 

E, 0 — Ep 0 0 HQI 0 0 
0 El - Ep 0 0 0 
0 HQI Eo 0 0 HQI 

Hio 0 0 El HlQ 0 
0 0 0 HQI EQ + Ep 0 
0 0 Hio 0 0 Ei + Ep 

(4.22) 

where HIQ = HQI = (^'i Hi{±ujp) ^o) are the frequency components of the inter

action terms. Now referring to figure 4.8 and concentrating on the interaction of 

a single pair of levels in close proximity, the matrix M may be truncated to 

M = El — Ep HiQ 
HQI EQ 

(4.23) 

and the eigenvalue problem det(M - Egl) = 0 solved to obtain 

Eq = EQ - — ± + \HIQ\' 

1/2 

(4.24) 

where A = Ep- Eg is the detuning and A < 0 in this case. For zero field \HIQ\ = 0 

and Eq = EQ or Eq = EQ - A which are the unshifted energy levels. And for low 

fields with |f/"io| < | A | then 

1^101' En = Eo + 
A 

(4.25) 

or 

Eq = E Q - A -
HIQI"^ 

A 
(4.26) 

so that the energy levels split as shown in figure 4.8b and the Stark shift is 

•E'stark 
2|gio|^ 
E„ — E„ 

(4.27) 
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Now returning to the case of pulsed illumination, if the pulse envelope does not 

vary too rapidly (such that h/r <C Eg — Ep) then the response is adiabatic and the 

quasi-energies calculated for the continuous-wave case are valid. Figure 4.9 shows 

how the curve of quasi-energies is traced out as the pulse amplitude increases 

and then is retraced as the pulse amplitude decreases back from its maximum 

to zero. There is a similar adiabatic evolution of the dressed wavefunctions as 

the illumination is pulsed on and off. Initially the dressed state comprises just 

the ground electronic state, but as the dressed state evolves a contribution of the 

excited electronic state is introduced during the pulse, and then finally after the 

pulse is ended the dressed state returns to its original composition with just the 

ground electronic state present. This provides an alternative way to view the 

processes described in section 4.2, where mixing of the bare electronic states here 

corresponds to variation of the electronic components of the adiabatically changing 

dressed state. 

However, this approach also allows consideration of effects which occur for 

very high illumination levels. As the amplitude of the electric field is increased 

it is necessary to return to the large matrix M of equation (4.21) and solve the 

eigenvalue problem det(M — Egl) = 0 numerically. The results for an example 

three-level system are shown in figure 4.10a where uio = 10w2i = 1-lwp = lO^^s"^ 

and the matrix elements of the interaction Hamiltonian are related by EIQ = 

H20 = 10.^^21- From the figure it is clear that the quasi-energies are periodic in 
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c 

Figure 4.9a. Var ia t ion in time of the electric field amplitude as the light is pulsed on and 

off. 

Figure 4.9b. Variat ion in time of the quasi-energy of the dressed state of the system 

(points A-E correspond to figure 9a). 



Er 

E2 - 2E, 

see figure 4.10b 

•\ f-

1—I—I—I—I—I—I—i—1—\—1—I I "I i — r I I I I 

i ^ j = 0 Hr = 5 x I O - 2 0 J 

Figure 4.10a. Quasi-energy plot for three-level system with uio = 10w2i = lO'^s"' and 

uip — 0.9 wio for a range of values of the interaction Hamiltonian H[ = Hio = H20 = ^0H2i-

A E 

E. anticross 

Figure 4.10b. Magnified view of anticrossing region taken from figure 4.10a. 



energy w i t h period equal to the photon energy Ep. Also for larger electric fields 

the quasi-energy curves anticross at certain values of the electric field -Eanticross as 

shown in figure 4.10b. I n this case the anticrossing occurs between quasi-energy 

curves which for zero optical interaction relate to the ground state '^o and to the 

second excited state "if2- I f the amplitude of the pulse is varied slowly through 

one of these anticrossing regions then the adiabatic approximation st i l l holds [41-

45]. Indeed i t continues to hold as long as h/r <^ AE where AE is the energy 

gap between the two quasi-energy curves shown in figure 4.10b. The reponse at 

low fields is just a special case where AE = Eg — Ep is the difference between 

the excitation energy of the material system and the photon energy. However, i f 

the electric field amplitude varies rapidly through the anticrossing region then the 

wavefunction continues as a mixture of the two dressed states which correspond to 

the two anticrossing quasi-energy curves [41-45]. There is a similar effect when the 

electric field ampli tude decreases back through the anticrossing region, at which 

point the (Berry) phases of the two parts depend on the behaviour of the amplitude 

in the intervening period. When the electric field amplitude finally returns to zero 

the wavefunction has consequently been split into two parts. One of these parts 

corresponds to the ground state (as for the v i r tua l carrier case) but the other 

part corresponds to an excited state. Hence there is some probability of making 

a transi t ion f r o m the ground state to an excited state even though the photon 

energy is less than the energy gap between the two states. Figure 4.11 depicts 
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Figure 4.11. Occupation probabilities poo, P a and P22 of the three-level system as a function 

of time showing the two cases E„^^ < ^'anticross (left) and £^niax > •̂ 'anticroBs (right). 



the response of the example system of figure 4.10 to an optical pulse w i t h peak 

electric field Emax. and rapidly changing envelope. The figure shows the occupation 

probabilities of the three states "^o, and ^ 2 as they vary in time subject to 

the optical excitation for the two cases j^max < -E'anticross and Emsx > -E'anticross-

The cr i t ical value £'anticross is defined as the electric field amplitude at which the 

anticrossing occurs in figure 4.10. As noted above the anticrossing occurs between 

quasi-energy curves which at zero optical interaction correspond to the states *o 

and ^ 2 , so that i n the case £ 'max > -E'anticross there is a residual occupation of the 

excited state ^̂ 2 (and not ^ 1 ) . 
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S e c t i o n 4 .5 . E n h a n c e m e n t o f o p t i c a l n o n l i n e a r i t y . 

I t has recently been suggested [25-29] that the bandstructure of a quantum well 

may be engineered to provide a second conduction subband which w i l l contribute 

resonantly to the nonlinear susceptibility and consequently enhance the nonlinear 

response. So suppose that as for the two subband system the energy dispersion of 

the subbands is given by 

^;„(k) = ^;„(o) + ^ (4.28) 

for n = 0 ,1 ,2 . The proposal is to ensure that the principal energy gap £ ' 2 ( 0 ) — 

£ ^ 1 ( 0 ) between the upper and lower conduction subbands is equal to the principal 

energy gap £ ' i ( 0 ) — £ ^ 0 ( 0 ) between the lower conduction subband and valence 

subband. As w i t h the two band system i t is possible to consider each point in the 

Br i l l ou in zone separately and restrict attention to the subsystem of three states, 

one f r o m each subband, at a given value of electronic wavevector k. However, due 

to the curvature of the bands, the energy separations of the two states are equal 

only at the Br i l lou in zone centre. 

Suppose that the subsystem is somehow arranged w i t h the electron placed in 

the lower conduction state. The presence of the upper conduction state allows 

polarisation of the system in preparation for an upward transition between the 

conduction states as shown in figure 4.12a, and results in an induced dipole mo

ment p'. Thus the introduction of the upper conduction state permits an extra 

contr ibut ion to the n o n l i n e a r response because the optically generated popula-
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- * 1 

Figure 4.12a. Polarisation of the initial lower conduction state population across the 

transition between conduction subbands resulting in an induced dipole moment p'. 

^ 1 

Figure 4.12b. Polarisation of the photogenerated population across the transition between 

conduction subbands resulting in a change in induced dipole moment p 'A/ . 



t i on i n the lower conduction state may be polarised in preparation for an upward 

t ransi t ion to the upper conduction state, as depicted in figure 4.12b. This leads to 

a simple physical picture for the nonlinear response. As previously discussed there 

is the reduction in polarisation across the lower transit ion due to the production of 

electron-hole pairs, but this is opposed by polarisation of the optically generated 

populat ion across the upper transition and the presence of the th i rd level actually 

reduces the nonlinear response f r o m —2pAf to - ( 2 p — p ' ) A f . 

The relevant Feynman diagrams are shown in figure 4.13. They result in 

a nonlinear response which is very like the linear response in figure 4.5 except 

that i t arises f r o m polarisation of the photogenerated population across the upper 

t ransi t ion instead of polarisation of the equil ibrium population across the lower 

t ransi t ion. The additional nonlinear polarisation corresponding to these diagrams 

is 

nonlinear I r(0 = - e / { v u p S + r2JS)9ik)dk (4.29) 

or may be calculated f r o m the nonlinear current 

Jnonlinear(0 = f ( P l 2 P ^ ? + P2lpS?)?(k)rfk (4.30) 

where 

= Pnit) = ^ £ Hn{t3)pZ\h)dt,exp{-iu2it) (4.31) 

and Pii^( i) is given by equation (4.12). 

As well as providing an additional way to polarise the photogenerated carriers 
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^ i ) 

P?^ 

0 ' 

Figure 4.13. Feynman diagrams for the calculation of the contribution to the third order 

density matrix elements p^2i and p^^2 '^^^ to polarisation of the photogenerated population 

Pj^^ across the transition between conduction subbands. 



in the lower conduction state, the presence of the upper conduction state also per

mits second-order mixing to occur. The linear response of the system consists of a 

polarisation (shown in figure 4.14a) which prepares for an upward transition f rom 

the valence state to the lower conduction state. However, instead of making this 

t ransi t ion the system can move f r o m participation in a one-photon interaction to 

part ic ipat ion in a two-photon interaction as shown in figure 4.14b. In the linear 

case the electromagnetic field introduces an admixture of the lower conduction 

state v ia a one-photon interaction, whereas in the nonlinear case the electromag

netic field introduces an admixture of the upper conduction state via a two-photon 

interaction. The existence of the lower conduction state makes this two-photon 

process possible (by providing allowed transitions) and its midway position en

hances the interaction. The two-photon process prepares for the movement of 

an electron directly f r o m the valence state to the upper conduction state by the 

process of two-photon absorption. This should be contrasted w i t h the four th-

order t e rm derived f r o m figure 4.12b where the electron is moved f r o m the valence 

state to the upper conduction state via the lower conduction state in a series of 

two one-photon absorptions. The nonlinear polarisation which results f r o m the 

second-order mix ing consists of two terms shown in figures 4.15a and 4.15b. The 

corresponding nonlinear polarisation is given directly by 

^nonlinearit) = -e j (roipg^ + ^lOP^Ol + ^UP^l + r2lP^3)9{^)d^ (4-32) 

or i t may be calculated f r o m the nonlinear current. 
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* 1 

(0 ) 

Poo 

Figure 4.14a. One-photon interaction which introduces an admixture of the lower conduction 

state to the initial valence state wavefunction. 

^ 1 

Figure 4.14b. Two-photon interaction which introduces an admixture of the upper 

conduction state to the initial valence state wavefunction. 
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Figure 4.15a. Feynman diagrams for the calculation of the contribution to the third order density matrix 

elements pf^ and p^^^ due to second-order mixing. 
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Figure 4.15b. Feynman diagrams for the calculation of the contribution to the third order density matrix 

elements p^^i ̂ -fd p[^2 '^^^ second-order mixing. 



The nonlinear current is 

Jnonlinear{t) = / (POlPio + PlOPoi^ + Pl2P21^ + P2lPu)9Wdk (4.33) 
m J 

and in equations (4.32) and (4.33) the density matr ix elements are 

Pio (0 = Poiii) = 7 ^ / ^12(^3) [ ' ^^2i(t2) / ' Hio{ti)p'Sdhdt2dt3exp{-iuiot) 
[la) Jto Jto Jto 

(4.34) 

and 

= / ' i ? ( 0 = - T ^ u ^01(^3) H2i{t2) H,o{ti)p'Sdtidt2dhexp{-iu2it) 
[in) Jto Jto Jto 

(4.35) 

The contributions f r o m equations (4.34) and (4.35) tend to cancel so that the 

second-order mix ing makes only a small contribution to the nonlinear polarisa

t ion . Indeed for 0̂ 21 = u>io (as at the Br i l louin zone centre) the two contribu

tions cancel exactly regardless of the dipole matr ix elements for the two transi

tions. The nonlinear polarisation is separated into the three terms correspond

ing to equations (4.13), (4.29) and (4.32). The real part of the frequency spec

t r u m for each of these terms is shown in figures 4.16a-4.16c respectively where i t 

has been assumed that the electromagnetic interaction terms for the two transi

tions are equal. The electron eff"ective masses are taken to be rriQ = —0.5m and 

ml = ml — 0.05m, the pulse t ime constant is r = lOOfs and the transition fre

quencies are U21 = wio = 1.1 Wp = lO^^s"^ Figure 4.16a shows the only nonlinear 

polarisation present wi thout the upper conduction subband, figure 4.16b shows 
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0.0 

-1.0 . ^ ^ ^ ^ 

Figure 4.16a. Frequency domain response showing nonlinear polarisation of virtual carriers 

across the lower transition. 

0.6 

0.0 

Figure 4.16b. Frequency domain response showing nonlinear polarisation of virtual carriers 

across the upper transition. 

0.0 

-0.1 . .^^^^ 

Figure 4.16c. Frequency domain response showing nonlinear polarisation due to second-order 

mixing. 



polarisation of the v i r tua l carriers across the upper transit ion, and figure 4.16c 

shows the nonlinear polarisation arising f r o m second-order mixing. The results 

are given in units normalised so that the peak response in the two band case is 

— 1.0 units. Al though the introduction of the upper conduction subband produces 

addit ional contributions to the nonlinear polarisation, figure 4.16 clearly shows 

that for a plane-polarised electric field i t does not enhance the nonlinear proper

ties of the device. As noted above the contribution due to second-order mixing 

is small despite variation in the detuning energy across the Bri l louin zone, and 

the polarisation of the v i r tua l carriers across the upper transition serves only to 

oppose the nonlinear polarisation already present. 

However, i t may be possible to utilise the additional flexibility provided by the 

t h i r d band by, for example, the use of unequal energy separations at the Bri l louin 

zone centre. I f second-order mixing is ignored the following results (derived in 

chapter five) for the low-intensity adiabatic response are applicable here 

_(2) _ _ f2) _ 1 _ 1 
Pii — Poo — 2 2 V ^ i o . 

1 - 1 / 2 2 

^ (4.36) 
2A 10, 

pg) = 0 (4.37) 

''So = i ^ ) - p S i ^ ) eM-^-.t) = - 2 f - | ^ ) pŜ ^ exp ( -^ . ,0 (4.38) 

4 i ^ = ( ^ ) ( p S i ^ - P S ) expi-zupt) = ( ^ ] p^S expi-iupt) (4.39) 

where Anm = Wp - Unm and 

Pr^m = {e/h)Eo.v^m exp{-t'/T') (4.40) 
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or 

0nm = {e/hm)AQ.pnmexp{-t /T ) (4.41) 

is the Rabi frequency. Hence making A21 positive (whilst keeping A i o negative) 

should provide an enhancement of the nonlinear response, certainly for a three-

level system. I n a quantum well , where there is energy dispersion, the problem is 

absorption, but i t may be possible to make Aio negative, A21 positive and sti l l 

avoid absorption provided that 1020 > 2wp. 

Alternatively, a number of light beams oriented in different directions may be 

employed and several studies have been performed for this situation by Jaros and 

co-workers [26,29,95-96]. In these studies the influence of the bandstructure on the 

optical ma t r ix elements is important and chapter six briefly considers such effects. 
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C H A P T E R F I V E 

On-resonance phenomena 

I n this chapter on-resonance optical phenomena are considered w i t h particu

lar emphasis on modelling the optical response of semiconductor laser amplifiers. 

Recent experimental investigations [46-53] have indicated that such devices are 

capable of providing a large nonlinear refractive index and if suitably biased they 

can also provide recovery times on the order of picoseconds. The model must in

clude a description of on-resonance excitation where the photon energy coincides 

w i t h an allowed transit ion of the semiconductor material. The assumptions made 

in previous chapters which allowed a perturbative approach to be adopted are not 

applicable here and i t is necessary to return to the exact Liouville equation and 

make a different set of s implifying assumptions. The first section of the chapter 

introduces the formalism required to describe resonant transitions in a two-level 

system. The bandstructure of the semiconductor material is modelled as a collec

t ion of two-level systems. Next follows a consideration of thermal eff"ects as these 

can no longer be neglected when i l luminat ion occurs in the absorption band of a 

semiconductor. Finally, the newly discussed techniques are applied to a descrip

t ion of the laser amplifier and a comparison is made w i t h experimental results. 
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The laser amplifier possesses a nonlinear response which is generally greater than 

that provided by the ofF-resonance mechanism of virtual carriers, and despite rel

atively long recovery times it is nonetheless of considerable practical interest for 

the design of fast all-optical switching devices. 
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Section 5 . 1 . The Bloch equations and Rab i frequency. 

In this section the Liouville equation is taken as the starting point for the 

derivation of the Bloch equations [4] which describe the state occupation prob

ability and electronic polarisation of a two-level system subject to on-resonance 

optical excitation. The Liouville equation in the Schrodinger picture is 

i h ^ = [Ho + Hi,ps] (5.1) 

where HQ is the unperturbed Hamiltonian and Hj describes the optical interaction. 

The various components may be written explicitly as 

ih^^ = piohuio + Hio [poo - Pn) (5.2) 
at 

ih^^ = poihujQi + Hoi (Pii - Poo) (5.3) 
at 

= ^oiPio - PoiHio (5.4) 
at 

{fl^flL ^ Hiopoi - PIQHQI (5.5) 
at 

where the subscripts refer to the states and * i which are separated in energy 

by huiQ and which have HIQ as the optical interaction matrix element. Suppose 

that HQI = Hio = Hex^y cosupt (for a pulsed interaction /fenv(0 describes the 

variation of the pulse envelope) and define /? = H^nv/h and A = Wp — WIQ. Also 

introduce two new real functions u and v such that 

Pio + *'̂ ) exp(-za;pi) (5.6) 

so that using pio — Joi the functions u and v may be expressed as 

u = ;,ioe'""' + Poie-'""^ (5.7) 
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IV = ploe '•'̂ p* - Poie"''""^ (5.8) 

Also note the relation 

* (pio — Poi) = ttsinwp^ — vcosbjpt (5.9) 

Now take /Q = 1 — poo and / i = pn so that /o measures hole occupancy in the 

ground state ^'o and fi measures electron occupancy in the excited state ^ i . Then 

differentiating equations (5.7) and (5.8) and substituting from equations (5.2) and 

(5.3) gives 

du 

— = -Av + l3sm2ojpt{l-fo-fi) (5.10) 

dv 
— = Au - /? (1 + cos 2ojpt) ( 1 - / 0 - / 1 ) (5.11) 

Also equations (5.4) and (5.5) may be rewritten using equation (5.9) as 

dfo dfi Bv , s 0u , , 
= = " 2 + '̂̂ P̂ ^ + 2 ' ' ' ' ^""'^ ^^-^^^ 

The terms in sin2a;pi and cos2wpi result in rapid oscillations of u,v and / o , / i 

but for excitation near resonance {up ~ wio) the magnitude of the oscillations is 

negligibly small and the terms containing sin2u!pt and cos2wpi may be dropped 

from the equations. This is the rotating frame approximation [4] and is equivalent 

to the omission of non-resonant terms in the solution of the Liouville equation as 

discussed in chapter two. The equations (5.10) to (5.12) become 

du 
- = - A . (5.13) 

^ = A u - / J ( l - / o - / , ) (5.14) 
dt 

dfo^df^^_Pv 

dt dt 2 ^ ^ 
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which are amenable to the inclusion of thermal scattering effects as discussed in 

the next section. As expected the equations predict that the optical excitation 

generates equal numbers of electrons and holes since /o = fx- Further if the 

substitution w = 1 — fo — fi is made then the Bloch equations 

du 
- = - A . (5.16) 

^=^Au-f3w (5.17) 
at 

are obtained and these may be written in a particularly compact form by em

ploying vector notation. Hence defining rBioch = i'^^f^^f^] and 0 = (/?,0, A) the 

equations (5.16) to (5.18) become 

= I-BIoch (5.19) 

The Bloch vector rBioch rotates about the axis specified by the vector CI (in a man

ner analogous to magnetic spin precession). The magnitude of rBioch is constant 

since 

= 2rBloch- X fBloch) 

= 0 (5.20) 

The frequency of rotation is given by the magnitude of the vector 0 and is called the 

Rabi frequency [4]. Since Q = (/?,0, A) it follows that for exact resonance (A = 0) 
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the Rabi frequency is given by (3 whilst for A 7̂  0 it is given by + A2) \ As 

the vector rgioch rotates about f l there is a periodic variation in the coordinate 

= Poo — Pii and this describes the continual movement of electrons between 

the ground and excited states. This phenomenon is illustrated in figure 5.1 which 

shows the time variation of the occupation probabilities of the two states for a 

particular case. The ground state ^'o is initially occupied but an on-resonance 

optical pulse excites the electrons back and forth between the two states *o and 

^ ' i so that Rabi oscillations are clearly visible. The interaction Hamiltonian has a 

gaussian envelope î env with time constant r = lOOfs and peak value iyenv(peak) = 

10~^°J at time t = Q. Note that the frequency of the Rabi oscillations is lower 

during the time when the pulse is rising and falling, whilst near the pulse maximum 

t — 0 the Rabi oscillations become more rapid. The final occupancies of the 

states depend on the integral of the Rabi frequency /?(t) over the whole of the 

pulse duration. 

Although it is primarily applicable to the study of on-resonance phenomena, 

the formalism developed here may also be applied to the virtual carrier regime 

considered in the previous chapter. Suppose that the system is initially in the 

ground state with /o = / i = 0 ( w = l ) and that there is no phase coherence 

between states so that equations (5.7) and (5.8) give u = u = 0. Then for a 

pulsed interaction with the photon energy detuned below the energy gap (A < 0), 

the vectors H and TBioch are initially collinear with = (0,0, A) and TBioch -

73 



1.0 

Pn 

0.0 

Occupation probability 
of state 

1 I I I I ' I ^ i ^ i~Tn I i r i i \~i I r~r~| I I I 

t = -300fs t = 0 t = +300fs 

1.0 

Poo -

0.0 

Occupation -probability 
of state 

I I I I I I I I I I I ' ' ' I ' ' ' I I' I I I I I ' I I I I 

-300fs t = 0 t = +300fs 

Figure 5.1. Occupation probabilities of the two states '̂o (bottom) and (top) plotted 

against time t. The ground state *o is initially occupied and the system is subject to a 

pulsed excitation with gaussian envelope Henv having time constant r = lOOfs and a peak 

value of 10""^°J at time t = 0. 



(0,0,1). I f the pulse amplitude increases sufficiently slowly then the Bloch vector 

is able to follow the motion of = {/3,0, A) and the two vectors remain collinear 

(although with A < 0 they point in opposite directions). This is known as the 

adiabatic following regime [54-55]. Also rBioch initially has unit magnitude and 

equation (5.20) shows that thenceforth it has constant magnitude. Hence 

r B l o c h = ( / ? ' + A 2 ) " ' ^ ' ( - / 3 , 0 , - A ) (5.21) 

From equations (5.21) and (5.6) it follows that 

/o - / i = 

1 
2 

w 
~2 
1 
2 l A , 

1-1/2 

(5.22) 

and 

PlO 2A (poo - Pii) e -tUnt (5.23) 

which may be used to derive the low intensity results with (/?/A) <. 1 that were 

presented at the end of chapter four. 
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Section 5 . 2 . The rma l effects i n the relaxat ion approximat ion . 

In the previous chapter the effect of thermal interactions on the optical re

sponse of the system was neglected because the thermal scattering rates of virtual 

carriers were assumed to be slow in comparison with the pulse width. However, 

when considering illumination by a light beam where the photon energy lies in 

the absorption band of the semiconductor, it is no longer possible to the neglect 

the thermal effects due to carrier-carrier and carrier-phonon scattering. These 

processes occur on a timescale of approximately 10 femtoseconds to picoseconds 

56-57] which is comparable with the shortest pulse widths currently available. 

Thus i t is necessary to find some way to include the effects of the scattering pro

cesses within the Liouville-Bloch formalism. The relaxation approximation [58-63] 

provides a simple method for inclusion of these effects, whereby the density ma

tr ix elements are allowed to relax to equilibrium values at rates determined by a 

number of phenomenological time constants. 

In the semiconductor model the two states ^'o and ^ ' i of section 5.1 are as

sumed to correspond to the valence and conduction states at a particular electronic 

wavevector k in a two-band model. The off-diagonal matrix elements pio and poi 

(and hence u and v) decay due to dephasing, that is the phase coherence between 

the states ^'o and is destroyed by thermal interactions at a rate T{dephasing). 

The density matrix elements poo and pn (or equivalently fo and f i ) are affected 

by thermal processes which act to redistribute the carriers within a band so as to 
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form various quasi-Fermi distributions. In addition electron-hole recombination 

removes carriers from the bands (and current injection replaces them). Hence in 

the relaxation approximation the Bloch equations (5.13) to (5.15) can be written 

as 

— = —Av — T{dephasing)u (5-24) 
dt 

dv 
dt 

= A u - /3 (1 - /o - / i ) - T{dephasing)v (5.25) 

^ = T{hole — hole) (/o — fo{hole — hole)) 
dt 2 

— T{electron — hole) (/o — fo{electron — hole)) 

— V{hole — phonon) (/o — fo{hole — phonon)) 

— T[recombination) (/o — fo{recombination)) (5.26) 

= —— — T{electron — electron) ( / i — fi{electron — electron)) 
dt 2 

— r{electron — hole) { f \ — fi{electron — hole)) 

— T{electron — phonon) ( / i — /-[{electron - phonon)) 

— T(recombination) [ f \ — fi[recombination)) (5-27) 

In addition to the dephasing effects, there are four thermal relaxation processes. 

Firstly, there is carrier-carrier scattering within each band at a rate V [carrier — 

carrier) to a distribution /{[carrier — carrier) which is a quasi-Fermi distribution 

determined by the number of carriers in the band and their total energy. Secondly, 

there is electron-hole scattering between the carriers in the two bands at the rate 

T[electron —hole) to quasi-Fermi distributions f{[electron —hole) which again are 
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determined by the number of carriers in each band but now by the combined en

ergy of both types of carrier. These two scattering processes are assumed to be 

elastic so that in each case the total energy of the carriers involved is a conserved 

quantity. Thirdly, there is carrier-phonon scattering as the carriers equilibrate 

their temperature T with that of the lattice To, thus relaxing to a distribution 

/{{carrier — phonon) at a rate T{carrier— phonon). The quasi-Fermi distributions 

f{{carrier — phonon) are determined by the number of carriers in each band but 

the total energy of the carriers changes and is eventually set by the lattice temper

ature TQ. Finally, recombination between the two bands restores the equlibrium 

distributions f{{recombination) at a rate V{recombination). These quasi-Fermi 

distributions are determined by the lattice temperature TQ and by the number 

of carriers pumped into the bands by some external mechanism such as injected 

electrical current. 

To calculate the distribution 

f{(carrier — phonon](k) = , , ,.——r (5.28) 
^ ' 1 + Aex^{E{k)lkBTo) ^ ^ 

requires determination of the constant A = exp(—E'^r/ZtsTo) where Ep is the quasi-

Fermi energy of the distribution and ks is Boltzmann's constant. A parabolic band 

model is assumed so that E{k) = h^k'^/2m* with m* the effective mass of the 

band. The number of carriers n in each band is not altered by the carrier-phonon 

scattering and so may be calculated from 

roo 
n= / h{k)g{k)dk (5.29) 

Jo 
roo 

10 
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where g[k) is the density of states function including spin. For a quantum well 

g[k) is given by 

9{k) = ( ^ 2 7 r A ; (5.30) 

and for the bulk by 

The number of carriers n may then be used to find A by inverting the integral 

relation 

rOO 
n = f{[carrier — phonon) [k)g[k)dk 

Jo 
X Q ^ 7 I for Q W 

X B „ \ , 7 2 for Bulk 
(5.32) 

where the constants K are 

m*kBTo 

and 

^ Q W = (5-33) 

r, 2 t 3 

i^Bulk = , (5.34) 
[2m*kBTo)^^' 

The integral If is defined as 

_ r°° 2x''dx 
^'~Jo 1 + Aexp(x2) ^^-^^^ 

In the case of a quantum well the inversion may be achieved through the relation 

n i f q w = log(l + 1/A) but for the bulk the inversion is most easily performed 

numerically. 
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Now to find the distribution 

requires determination of the two constants A (related to the quasi-Fermi energy) 

and T (the carrier temperature). The number of carriers n in each band is again 

given by equation (5.29) and the conservation of this quantity yields the relations 

n 
rOO 

= / /{[carrier — car rier)[k)g[k)dk 
Jo 

K^l^fh for QW 
K^ly,f^l''h for Bulk 

(5.37) 

A 

where T = T/To is the carrier temperature normalised to the lattice temperature 

TQ. A S before, in the quantum well case the relation may be written as nXqw = 

T'log(l + l/.A) which is easily inverted. Further, since the carrier-carrier scattering 

is elastic the total energy of carriers in each band is also conserved and may be 

calculated (in units of ksTo) as 

U[k)EB[k)g[k)dk (5.38) 

where EB[k) = h'^k^/2m*kBTo. The relations 
roo 

E— /{[carrier - carrier)[k)EB[k)g[k)dk 
Jo 

K^^T'h for QW 

K^l^^pl'^h for Bulk 
(5.39) 

may be solved numerically to find f by substituting for A from equation (5.37) and 

then finally A may be calculated from equation (5.37) using the appropriate value 
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of T. The case of electron-hole scattering may be treated in a similar fashion 

except that the total energy of both electrons and holes together is conserved. 

Thus a common value of T may be found which is applicable to both valence 

and conduction bands and from which the individual quasi-Fermi energies can be 

calculated. 

Finally, the distribution 

f{{recomb^nat^on) = ^ + ^ (5-40) 

is entirely determined by the number of carriers n that is established by the com

peting forces of recombination and current injection. The integral relation 

roo 
n = I fi{recombination){k)g{k)dk (5.41) 

Jo 

may be inverted to calculate A. 
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Section 5 . 3 . A p p l i c a t i o n to laser amplif iers . 

Recent experimental investigations [46-53] have studied the ultrafast optical 

response of semiconductor laser amplifiers. The results show a large nonlinear re

fractive index {An ~ 10"" )̂ and if the device is biased for unity gain (transparency) 

the recovery time is on the order of picoseconds. This sort of response would be 

particularly useful in the design of fast all-optical switching devices based on semi

conductors. The basic experiment is to send pump and probe pulses through the 

laser amplifier with orthogonal polarisations (so that there is little direct opti

cal coupling from the intense pump beam to the much weaker probe beam) and 

to vary the time delay between the pump and probe beams. The measurements 

use a novel time division interferometry technique [64,65] which employs a third 

reference pulse to determine the phase shift of the probe pulse. The pulses are 

sufficiently short (around 100-500 fs) that it is possible to resolve the temporal 

changes in absorption coefficient and refractive index experienced by the probe 

beam due to the carrier dynamics of the semiconductor material. 

The formalism developed in the previous two sections is now used to model 

the experiments described above in an attempt to understand some of the results 

observed. The Bloch equations with relaxation terms included may be used to first 

calculate the effects of the pump beam on the carrier population in the valence and 

conduction bands. The probe beam is then assumed to be sufficiently weak that 

it has no further effect on the carrier populations, but simply produces a linear 
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polarisation of the particular carrier distribution generated by the pump pulse. 

The polarisation due to the probe is assumed to have a gaussian envelope like the 

incident field and an amplitude PQ corresponding to the electric field amplitude EQ 

of the probe. The standard linear relation connnecting PQ and EQ is PQ = ^oX-̂ o 

where eo is the permittivity of free space and x is the complex susceptibility. The 

relative permittivity is = 1 + X and from this may be calculated the refractive 

index n = Re^/e^ and the intensity absorption coefficient a — [2uplc)Imy/e'r 

where c is the speed of light. The electric field of both the pump and probe pulses 

has the form 

E =^ Eocosupte-^^/'^ (5.42) 

although the pump field amplitude EQ is greater and the pump pulse envelope is 

displaced in time relative to that of the probe pulse. As a rapid dephasing rate 

wil l be used in the model, the polarisation induced by the probe is assumed to 

have a similar form 

P = Po cos [upt + e) e~'̂ /̂ ^ (5.43) 

where 0 determines the phase of the polarisation relative to the electric field of 

the probe beam. The value of 6 depends on the time delay between the pump 

and probe pulses. The Bloch equations (5.24) to (5.27) are solved to find the 

populations /o and / i induced by the pump field and then are re-solved for the 

probe field using the values of /o and / i calculated for the pump field in order 

to find values of u and v appropriate to the probe field. The Brillouin zone is 
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divided into discrete regions (spherical shells for the bulk and circular rings for the 

quantum well) with steps Ak in the magnitude of the wavevector between regions, 

and values Uk and Vk are calculated for each region. The total polarisation is then 

P{t)=J2Pk{t)9{k)Ak (5.44) 
k 

where 

Pl({t) = —dk {ukcosujpt + Vks'mupt) (5.45) 

and dk is the dipole matrix element at a given wavevector k. In the case of a 

quantum well d^ must be divided by the well width in order to obtain P{t) as 

a dipole moment per unit volume. The Fourier transform of the polarisation is 

calculated as 

^ - E j ^ i ^ k + ivk)g{k)AkAt (5.46) 
k,t 

Finally from equation (5.43) PQ = (4\/7r/'")P(wp) so that 

P, = -J2A={y'k + ivk) g{k)AkAt (5.47) 
k,t T 

From this expression the values of the refractive index and absorption coefficient 

experienced by the probe pulse may be predicted. The results for a variety of 

situations comparing bulk and quantum well laser amplifiers are presented below. 

For both the bulk and quantum well studies the energy gap at the Brillouin 

zone centre is taken as Eg = 1.5eV, and the effective masses for the valence and 
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conduction bands are taken as ITIQ = 0.5 and = 0.05 respectively. The dipole 

m a t r i x element dk is assumed independent of k w i t h a value of = 10~^^Cm cor

responding to an electronic displacement of about lOA. In the case of the quantum 

well this is divided by the well w i d t h of lOOA. The pump beam has a gaussian 

envelope of t ime constant T = lOOfs and the peak value of the pump beam elec

tr ic field is £ ' 0 = l O ^ V / m . The probe beam is much weaker ( £ ' 0 ~ l O ^ V / m ) and 

is displaced in t ime relative to the pump beam in the range Ips ahead of the 

pump to 5ps after the pump. Experimental observations [56,57] have indicated 

tha t rapid dephasing occurs and a value of T[dephasing) = lO^^s"^ is used in 

the model. For the sake of simplicity, the carrier-carrier scattering is l imited to 

jus t the electron-hole scattering as this is the only one of the three carrier-carrier 

processes discussed in section 5.2 to include both electrons and holes. A scattering 

rate of T{electron — hole) = lO^^s"^ is chosen. The electron-electron and hole-hole 

scatterings are ignored and further calculations are required to determine their 

influence on the optical response. The carrier-phonon scattering rate in each band 

is taken as T{carrier — phonon) = 10^^s~^. A l l calculations are performed w i t h a 

lattice temperature To = 300K. In the numerical calculations, the discretization 

in reciprocal space and in time uses steps of AA; = 4.5 x lO'^m"^ and At = Ifs 

respectively. 

For the pump photon energy equal to the bandgap energy [Ep = Eg), the 

model predicts that the laser amplifier achieves transparency (i.e. the injected 
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carrier density is unchanged after the pump pulse) when the bulk carrier density 

is around A^Bulk = 6 x lO^^m"^ whilst for the lOOA quantum well device the model 

predicts that transparency is achieved w i t h an injected carrier density of around 

• ^ Q W = 2.5 X lO^^m"^. These values agree w i t h the typical values seen in actual 

devices. The dis t r ibut ion of holes /o(A;) and of electrons /i(A;) corresponding to 

these injected carrier concentrations are depicted in figure 5.2 which shows that 

the electrons are to be found nearer to the Br i l louin zone centre due to the higher 

curvature of the conduction band. Figure 5.2 also shows the funct ion fo + f i which 

determines whether absorption or stimulated emission occurs at a particular value 

of electronic wavevector k. This funct ion appears in equation (5.25) and as ex

pected results in stimulated emission when /o + / i > 1 and in absorption when 

fo + f i < 1- Hence carriers (holes in the valence band and electrons in the con

duct ion band) are removed near the Br i l lou in zone centre where the pump beam 

stimulates recombination and are generated fur ther out in the zone {k > 0.05k) 

where /o + / i < 1- The changes in the bulk carrier densities relative to the init ial 

values obtained f r o m figure 5.2 are shown in figures 5.3 and 5.4 for holes and elec

trons respectively. The quantum well model provides qualitatively similar results. 

I t is possible to see the recombination-generation response described above (par

t icular ly in figure 5.4 which depicts electrons) but w i th in 0.5ps the distr ibution is 

smoothed by the carrier-carrier scattering to a quasi-Fermi distr ibution at temper

ature r . Over the next 5ps the carrier-phonon scattering equilibrates the carrier 
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Figure 5.2a. Transparency carrier distributions plotted against wavevector k showing holes 

in the valence band /o and electrons in the conduction band / i for the bulk. 
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Figure 5.2b. Transparency carrier distributions plotted against wavevector k showing holes 

in the valence band /o and electrons in the conduction band / i for the quantum well. 
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Figure 5.3. Two views of the change in bulk hole density as a function of electron wavevector 

k and time t. At each value of k the graphs show the density of holes with a wavevector 

in the rauige A: to A; -f AA:. 
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Figure 5.4. Two views of the change in bulk electron density as a function of electron 

wavevector k and time t. At each value of k the graphs show the density of electrons with 

a wavevector in the range A: to A; + AA:. 



temperature T w i t h the lattice temperature TQ. Because figures 5.3 and 5.4 show 

the response at transparency, the change in the total number of carriers in each 

band is zero. Hence when T reaches TQ the in i t ia l carrier distr ibution is restored 

and the change in carrier density is zero at all values of electronic wavevector. 

The variat ion of the carrier temperature as a funct ion of time is shown in fig

ure 5.5. The pump beam excites carriers high in the band and removes carriers 

lower i n the band, thus the average energy of the carriers increases and their tem

perature rises. Due to the higher curvature of the conduction band the electrons 

in i t ia l ly reach a higher temperature than the holes, but the inclusion of electron-

hole scattering in the model means that the two carrier temperatures are quickly 

brought together. I n the following few picoseconds the carrier temperature drops 

back to the lattice temperature as the carrier-phonon scattering takes eff'ect. Fig

ure 5.6 shows the changes in the bulk hole density for the injected carrier densities 

-^Bulk = 4 X lO^'^m"^ and A^Bulk =̂  8 x lO^^m""^. In the first case the injected 

carrier density is below the transparency value so that more absorption occurs 

than st imulated emission and there is an increase in the final carrier density of 

some states. Conversely in the second case more carriers are removed by stim

ulated emission than are generated by absorption so that there is a decrease in 

the final carrier density of some states. These changes in the carrier density are 

eventually removed by recombination (or injection) but this occurs on the much 

longer timescale of nanoseconds. 
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Figure 5.5. The variation in time of the carrier temperatures T h o l e and Te i ec t roa - The lattice 

temperature is TQ = 300K. 
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Figure 5.6. The change in bulk hole density as a function of electron wavevector k and time t 

showing an increase of the total hole density for ^ B u l k = 4 x lO^-'m-^ (top) and a decrease 

of the total hole density for A^Bulk = 8 x lO^V"^ (bottom). 



The absorption coefficient a and refractive index n experienced by the probe 

beam are shown in figures 5.7 and 5.8 for the bulk and in figures 5.9 and 5.10 for 

the quantum well . The photon energy Ep of both the pump and probe beams is 

equal to the bandgap energy Eg. The optical response is plotted as a function 

of t ime delay between pump and probe beams relative to the response at large 

negative t ime delay and the three cases of injected carrrier density above, at and 

below the transparency value are considered. In all three carrier density regimes 

the absorption coefficient increases around zero t ime delay, although the size of 

this increase becomes smaller as the injected carrier density is reduced. A t trans

parency the absorption coefficient returns to its in i t ia l value, but w i t h a lower 

injected carrier density the final value of the absorption coefficient is reduced and 

w i t h a higher density i t is increased. (Strictly speaking the values are ' f ina l ' only 

on a picosecond timescale as recombination and current injection restore the ini t ial 

value eventually, but this effect is ignored here). The changes in absorption coef

ficient are explained by the final changes in carrier density (depicted in figure 5.6) 

induced by the pump beam which tend to move the absorption coefficient towards 

its value at transparency. Similarly, in all three regimes the refractive index shows 

a temporary increase w i t h the format ion of the quasi-Fermi distributions at the 

elevated carrier temperature T. The final value of the refractive index depends 

on whether the to ta l carrier density has been increased or decreased by the pump 

beam. I n chapter four i t was shown that for below-resonance excitation the gen-
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Figure 5.7. The variation of the absorption coefficient experienced by the prote pulse against 

time delay of the probe relative to the pump. 
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Figure 5.8. The variation of the refractive index experienced by the probe pulse against time 

delay of the probe relative to the pump. 
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Figure 5.9. The variation of the absorption coefficient experienced by the probe pube against 

time delay of the probe relative to the pump. 
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Figure 5.10. The variation of the refractive index experienced by the probe pulse against 

time delay of the probe relative to the pump. 



eration of carriers leads to a decrease in the refractive index whilst a reduction 

in the number of carriers produces an increase in the refractive index (and that 

for above-resonance excitation the converse is t rue) . These relationships can also 

be applied here so that , for example, w i t h an injected carrier density above the 

transparency value the carrier density is reduced by the pump beam and this leads 

to a final increase in the refractive index. 

The theoretical results may be compared (at least qualitatively) w i t h the ex

perimental measurements of Hultgren and Ippen [53 ] reproduced in figure 5 . 1 1 . 

The figure shows the pulse transmission coefficient and phase shift for propagation 

through a SOO/zm AlGaAs diode laser amplifier. A l l of the features noted above 

are reproduced in the experimental observations, but there is another feature seen 

in the experiments which does not appear in the theoretical results presented so 

fax. This is the occurrence of a negative spike in the refractive index at zero time 

delay. However, this feature is also predicted by the model described here if the 

photon energy Ep is increased above the bandgap energy Eg so that there is a 

larger contr ibut ion f r o m the absorptive region of the Br i l lou in zone. The changes 

in the electron and hole densities near transparency (A''QW = 2 .6 x 10^®m~^) are 

shown in figure 5 . 1 2 for the quantum well system w i t h Ep ~ l.OZEg. A n additional 

feature (cf. figures 5.3 and 5 . 4 ) is apparent near t = 0 (particularly in the hole 

dis t r ibut ion) and this is responsible for generating the negative spike in the refrac

tive index before i t is destroyed by the carrier-carrier scattering. The absorption 
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Figure 5.11. Experimental results of Hultgren and Ippen (Appl. Phys. Lett. 59 635) 

showing probe transmission coefficient and phase shift for propagation through a 300^m 

AlGaAs diode la^er amplifier. 
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Figure 5.12. The change in quantum well electron (top) and hole (bottom) densities plotted 

as functions of electronic wavevector A; and time t. At each value of k the graphs show the 

density of carriers with a wavevector in the range A; to A; -|- AA;. 



coefficient and refractive index experienced by the probe beam at the new photon 

energy are shown in figures 5.13 and 5.14 respectively. The theoretical results 

now display all of the major features exhibited by the experimental observations 

depicted in figure 5.11. 
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Figure 5.13. The variation of the absorption coefficient experienced by the probe pulse 

against time delay of the probe relative to the pump. 
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C H A P T E R S I X 

T h e e f fec t s o f b a n d s t r u c t u r e o n o p t i c a l response 

I n previous chapters the ultrafast nonlinear optical response of various semi

conductor systems has been examined using a simple parabolic band model for 

bo th the valence and conduction bands. Whils t this is a reasonable approxima

t ion for the conduction band, the proximity of the heavy and light hole subbands 

near the valence band edge produces significant mixing of nearby states resulting 

in a strong non-parabolicity of the energy dispersion for the valence subbands. 

Further, i t has previously been assumed that the optical mat r ix elements are in

dependent of the in-plane electronic wavevector ky and of the orientation of the 

electric field vector of the i l luminat ion. In this chapter two k . p based models 

are described which can provide a more realistic bandstructure. The first model 

employs an inf ini te well approximation and has the advantage of being relatively 

simple to implement computationally, whilst the second model takes into account 

the penetration of the wavefunctions into the barrier regions that occurs w i t h a 

finite quantum well . The final section discusses the calculation of optical matr ix 

elements f r o m the wavefunctions obtained using these models and presents a brief 

investigation into the effects of bandstructure on optical response. 
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S e c t i o n 6 . 1 . I n f i n i t e w e l l b a n d s t r u c t u r e . 

The two k . p models described in this chapter bo th employ a quantum well 

of w i d t h L grown in the 2-direction. The calculations involve the construction 

of quantum well wavefunctions f r o m linear combinations of bulk wavefunctions. 

The quantum well bandstructure is determined by f ix ing the in-plane wavevector 

k| | and scanning through energy E to find values at which i t is possible to con

struct wavefunctions that satisfy the boundary conditions of the quantum well. 

The inf ini te well model described here [66-70] has been developed in collaboration 

w i t h G. C. Crow. I t retains the assumption of parabolic energy dispersion in the 

conduction band but examines the mixing of light and heavy hole states in the 

valence band. The spin spli t-off band is neglected. When the double degeneracy of 

spin is taken into account this leads to a four band model of the valence subbands. 

Suppose that X"^, F"*", Z'^ and X~,Y~, Z~ denote p-orbitals oriented along the x-, 

y- and 2;-axes w i t h positive and negative spin respectively, then taking the 2-axis 

as the reference direction the basis states 

ui = ( X + + t T + ) (6.1) 

«2 = ^ ( x + - z T + ) + y | z - (6.2) 
V6 

uz = - ^ { x - + iY-) + ^Z^ (6.3) 

tZ4 = ^ {X- - ^ •y - ) (6.4) 

represent states w i t h angular momentum quantum numbers j = 3/2 and my = 

± 1 / 2 , ± 3 / 2 . The k . p Hamil tonian in this basis has a f u l l 4 x 4 mat r ix but a block 
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diagonal representation may be obtained through a unitary transformation of the 

basis set. The new basis {vi} is given by Vi = T ^ i i i m where [66-68 

0 0 a ' 

T = 
a 
0 0_ 0 
0 - p P 0 

-a 0 0 a 

(6.5) 

and 

a = ^ exp [i{3n/4 - 3(f)/2) 

/? = - ^ e x p [ t ( -7r /4 + <^/2)] 

(6.6) 

(6.7) 

w i t h (f> defining the direction of the in-plane wavevector ky = {kx,ky) through 

kx — k\\ cos (/) and ky — kn sin In the new basis the matr ix of the k .p Hamiltonian 

becomes [66-68 

E 
0 

0 (6.8) 

w i t h 

2m 

(71 + I2)kl + ill - 2-i2)kl ( \ /3/2) ((72 + 73)fc|| - 4i^3k\ik^) 

(v/3/2) ((72 + I3)kl + iiisk^ik,) (71 - I2)kl + (71 + 272)̂ :̂  

(6.9) 

and 

2m 

ill - l2)kl + ill + 272)A;2 (n/3/2) ((72 + 73)fc|| - 4i^3k\ik,) 

(^/3/2) ((72 + l3)kl + 4z73A:||A;,) (71 + 72)A;|| + (71 - 272)^^ 

(6.10) 

where 71,72,73 are the Lutt inger parameters [71] and kz is the perpendicular com

ponent of the wavevector. The bulk state *y(k| | , /^^(y)) at given in-plane wavevec

tor k|| may be expanded over the basis {vi} as 

* y ( k | | , A;^(y)) = ^t-y'^i exp(ik| | . r | | ) exp{ikzU)z) for i = 1,8 ( 6 . I I ) 
1=1 
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where the ma t r ix Fj-y follows the block diagonal structure of the transformed Hamil

tonian so that the states ^ ^ i , . . . ,^^4 are combinations of the basis states vi and 

V2 whilst the states * 5 , . . . , ^ ' 8 are combinations of the basis states V3 and V4. 

The columns Fy of the mat r ix Fj-y are determined by the eigenvalue equations 

{H — EI)Fj = 0 where H is the Hamiltonian and E is the energy of the state * y . 

To obtain a non-zero solution for Fy requires that de t ( i J — EI) = 0. In the calcu

la t ion of bulk bandstructure i t is usual to fix k|| and kz and to find E such that the 

determinant is zero, but here quantum well wavefunctions are constructed f rom 

bulk wavefunctions having particular values of k|| and E so that i t is more useful 

to fix k|| and E and to determine kz. The choice of basis reduces the problem of 

finding kz to the solution of two (identical) quadratic equations in kl 

4(7? - 472̂ )] kt + 8 [{^l + 2^1 - 6^l)kl - kl 

+ [(4(7? - l l ) - 3(72 + 73)') fcj - S^ik'kj + Ak'] = 0 (6.12) 

where k"^ — 2mE jh^. Hence for a fixed value of ky i t is possible to scan through 

values of energy E and to determine the corresponding values of kz which are 

labelled fci,..., fcg w i t h fcy+4 = fcy. 

W i t h the bulk states determined, the quantum well states may be obtained as 

linear combinations of the bulk states at the chosen in-plane wavevector ky 

4 8 

= exp(ik | | . r | | ) E E Fij-^i^i exp{ikjz) (6.13) 
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There are two independent solutions for the vector Aj corresponding to two energy 

degenerate states. The block diagonal structure of the matr ix F allows the first 

solution to be chosen as a combination of the states ' ^ i , . . . , ^ 4 whilst the second 

solution is taken to be a combination of the states ^ ^ 5 , . . . , ^ 8 - Thus 

j=i 

and 

= (6.15) 

I n the inf ini te well approximation there is no penetration of the wavefunctions into 

the barriers so that ( ± L / 2 ) = 0 and {±L/2) = 0 where L is the well wid th . 

Hence requiring that the coefficients of each u,- should separately vanish gives 

FijAj exp (±ikjLl2) = 0 for z = 1,2 (6.16) 
y=i 

and 

Y FijAj exp ( ± % L / 2 ) = 0 for t = 3,4 (6.17) 

Each of equations (6.16) and (6.17) leads to a set of four linear equations in the 

coefficients Aj which may be expressed in matr ix f o r m as MA — 0 w i t h 

M 

F i i exp(iA;iL/2) F12 exp(«7c2L/2) Fi3exp{ikzL/2) Fi4exp{ik4L/2) 
F2iexp{ikiL/2) F22 exp(iA;2L/2) F2zexp[iksL/2) F24 exp(zA;4L/2) 

F i i e x p ( - t A ; i L / 2 ) F12 exp(-tA;2 V 2 ) F13 exp(-tA:3L /2) F14 exp(-t 'fc4L/2) 
F2iexp{-ikiL/2) F22 exp(- iA;2L /2) î 23 e x p f - i T c g ^ 2 ) ^24 exp(-i /( ;4L/2), 

(6.18) 

for equation (6.16) and similarly for equation (6.17) but w i t h kj^4 and -F'3,y+4 

and F 4 J + 4 replacing kj and Fij and F2j respectively. Now except at the zone 
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centre where the basis states are decoupled i t is possible to set Fij — 1 and to 

define Fy = F2j (or to set Fsj = 1 and to define Fj = F4j). Also by ordering 

the wavevectors kz so that kj+2 = -kj the value of d e t M may be obtained f r o m 

equation (6.18) as 

det M = 2 (F i - F2) (F3 - F4) cos [{ki + ^2) L 

+ 2{Fi-F3) ( F 4 - F 2 ) 

+ 2 (F i - F4) (F2 - F3) cos [{k, - k2) L] (6.19) 

A point on the quantum well bandstructure may be found by scanning through 

energy F at a fixed in-plane wavevector ky to find values of E for which det M = 0. 

When a bandstructure point has been found the corresponding wavefunctions 

may be determined by calculating the Ay coefficients. First ly choose the in

dices { a , y9,7,<5} = {1 ,2 ,3 ,4} for the wavefunction or choose the indices 

{ a , ^ , 7 , (5} = { 5 , 6 , 7 , 8 } for the wavefunction ^7/. Then set Ag = 1 and calculate 

Aa (and equivalently Ap and A^) using the formula 

Act — 
(^7 - F5)sin -ks)L/2 

(^7 — Fa)s in - ka)L/2 
(6.20) 

which is obtained f r o m equation (6.16) or (6.17) by elimination. Now transforming 

back to the original basis { u j } and defining Gjj and G f j by 

= exp({k| | . r | | ) E E 4 u : e x p ( % z ) (6.21) 

and 
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= exp(zk||.r| |) E E Giluiexp{ik,z) (6.22) 
1=1 y=i 

the wavefunctions and "^^^ may be combined to give definite parity states 

4 4 

* = exp(tk| | . r | | ) E E ^ t j ^ t - e x p ( % z ) (6.23) 
i=i y=i 

So suppose that the envelope functions are defined as 

^i = j:Gi,expizk,z) (6.24) 
y=i 

= E G-'y exp(^A:,^) (6.25) 
y=i 

then definite par i ty envelopes are obtained f rom the combinations 

$°dd ^ ;^odd^/ (g_27) 

by ensuring that $?^^"(z) = $ f « " ( - z ) and ^f'^{z) = -^f'^{-z). In fact the 

envelopes f o r m two pari ty sets P i — {^1,^2} and P2 = { $ 3 , ^ 4 } such that the 

ratios A i f ^ ^ / A f ^ ^ " and /i^'*'*/A9'^<^ depend only on whether $ i 6 P i or G P2. 

Further if G P i and 6 P2 then 

^even/^even ^ ^odd/^odd (6 28) 

and 

,,odd/\odd ,,even/\ even fa oc\\ 

Thus definite pari ty states * may be obtained w i t h the envelopes $1 and $2 of even 

par i ty and the envelopes $ 3 and $ 4 of odd parity, or vice versa. The wavefunction 
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^ is normalised using 

= 1̂1 E E E GijGij.L.y (6.30) 
, = i y = i y ' = l 

where 

f+L/2 |. _ , 
Ljji — J ^ ^ ^ P *(^y' ~ kj)z dz 

= Lsinc [{kj> - kj)L/2] (6.31) 

and A| | = / (ir|| is the cross-sectional area of the quantum well. From these definite 

par i ty wavefunctions the optical matr ix elements of the quantum well may be 

calculated as discussed in section 6.4. 
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S e c t i o n 6 .2 . F i n i t e w e l l b a n d s t r u c t u r e . 

I n the finite well model the wavefunctions extend f r o m the well region into the 

barrier regions so that i t is necessary to consider the f o r m of the wavefunctions 

in eax:h of these regions and to determine the matching conditions which must be 

met at the interfaces between them. W i t h simplicity no longer paramount i t is 

appropriate to extend the model f r o m four to eight bands w i t h the inclusion of 

the spin spli t-off and conduction bands in addition to the light and heavy hole 

bands. The model presented here develops the earlier work of Wood [72]. The 

same procedure is used to calculate the bulk wavefunctions as for the infinite well 

model 

8 
^j{kpkz{j)) = E ^ i ; " i e x p ( t k | | . r | | ) e x p ( z A ; 4 j » for j = 1,16 (6.32) 

t=l 

where the basis states 

ui = S 

U4 

U7 

(6.33) 

(6.34) 

s-

(6.35) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 
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of the well and barrier materials are expressed in terms of the appropriate p-

orbitals X^,Y^,Z^ and s-orbitals 5 ^ . The additions to the basis set t i i , U 5 and 

U4,us are the zone centre conduction states and spin split-off states respectively. 

Now in comparison to the infini te well calculations i t is rather more diff icult to 

determine the values of k^ corresponding to given values of energy E and in-plane 

wavevector ky. The columns Fy of the matr ix Fij may be determined f r o m the 

m a t r i x equation 

{H2kl + Hikz + Ho- EI)Fj = 0 (6.41) 

where the Hamil tonian H has been wr i t t en to explicit ly show its dependence on 

the powers of kz. Together w i t h the t r iv ia l relation kzFj = kzFj this equation 

may be rewri t ten in the f o r m 

0 1 
-H^^ {Ho - EI) -H^^Hi 

F — Ic F 
kzFj — nz kzFj_ (6.42) 

which is an eigenvalue problem for kz that can be solved by the usual methods. 

The ma t r ix —-H^^^ is block diagonal 

-ffblock 0 
0 -ffblock 

(6.43) 
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where 

H 

-f^block - T2" 
2m 

(1) 
inv 
0 

0 

0 

0 
(2) 
inv 
0 

0 

0 

0 

0 
Er(3) ir(5) 
^inv -"inv 

(5) rrW 0 H:' H 
inv ^ ' inv J 

The components of .ffblock are given by the relations 

(6.44) 

= (71 + 472)-^ 

-"inv - -5 

= (71 - 272) -1 

inv '1 inv " i n v 

^ = ( 7 i + 2 7 2 ) 4 3 ^ S 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

(6.50) 

where s is the conduction band s-parameter and 71,72,73 are modified Luttinger 

parameters [73,74] which explicit ly include the influence of the conduction band 

in the Hamil tonian. The product mat r ix -H^^HQ may be wr i t t en as the sum of 

a block diagonal mat r ix w i t h 

-H b̂lock — T2" 
2m 0 

0 

0 

0 0 
0 0 
0 0 

0 
0 

-AH; 

0 0 - A ^ T 

(5) 
inv 
(4) 

(6.51) 

which is independent of kii = {kx,ky) plus the product matr ix -H^ ^HQ shown 

overleaf. 
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b /Cparl XZjjjy ^|\iaPk,,rH[2 0 

- y ^ m P ^ p a r 4 v -(71 + 72) |A;par| '4v 0 

0 

0 

0 

0 

0 

0 

0 \k,.A'{-l^Hl:l-,2Hi!l) - 3 x / 2 7 l 7 2 | f c p a r l ^ 4 ° i i j S 

0 - 3 v / 2 7 i 7 2 | V r | ^ 4 ° i 4 l ^ l V r p ( - 7 i 4 v ^ + 2 7 2 4 ° i 

0 ^/licyPk,.rHl'J V^^'^J'fcparHiS 

0 V3{-l2^ekl^, x/6(-723?eA;2 

- ^ 7 3 S m f c y < ) 

^ m P V r ^ S v/3(723?eA:2^, 0 

+ n 3 S m / c 2 ^ r ) 4 ' v 

^ i a P f c p a r / r S V^(723JeA;2^, 0 

+h3Qmkl,,)HQ 

0 N/3(723?eA;2,, 

-n3^mkl,,)Hl 

- ^ / i m P V r ^ v \/3(-723?eA:2^r 0 

+ n 3 S m A : J , , ) 4 ^ ) 

. - y ^ m P ^ p a r ^ r S V6(-723?eA;2,, 0 

+ t 7 3 S m f c 2 j 4 2 ) 

"par 

- t 7 3 5 m (2) 
inv 

0 

0 

-^/liaPk,,rHl2 

VQ{l2^ekl, 

(2) 
inv 

"par 

-z73SmA;5a,)4v 

- ^ m P f c p a r i ? i S - ( 7 l + 7 2 ) | V r P ^ ^ i ' 
(2) 
inv 

0 

0 

0 

0 

0 

0 

U Kpar 7 l^ inv ^^^invJ •5V'i7l72 Kpar -"inv^inv 

0 - 3 ^ / 2 7 l 7 2 | V r l ' 4 ° v 4 v I V r P ( - 7 i ^ S + 272^; 

(6.52) 

r(0) 
'inv 
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where a = 2mIh? and fcpar is the complex quantity /jpar — kx + iky. The constant 

Eg is the bandgap energy, A is the spin orbit spl i t t ing and P is the Kane momen

t u m parameter [75] w i t h P — —(^^/m)(5+|p^[X"*') . Similarly the product matr ix 

—Ho^Hi can be wr i t t en as the sum of a block diagonal matr ix w i th 

_ 2m 
block — .2 

0 0 - v i ^ p i ? i : i V ^ ^ P 4 ^ ) 

(0) 
0 
0 

0 
0 

0 
0 

(0) 

(6.53) 

which is independent of kn plus the product mat r ix 

0 
0 

0 2v/373fcpari?i 

0 -V6l3kp^rH 
0 

(0) 

0 
0 
0 

0 

inv 
(0) 
inv 

0 
2\/373A:parfl'i 

0 
0 
0 
0 

(2) 
inv 

0 
-V^lskp^rHl 

0 
0 
0 
0 

(2) 
inv 

U U 

- 3 x / 2 7 3 f c p a r 4 v 3 ^ / 2 7 3 A ; p a r ^ i S 

-3N/273fcpar^i ' n i 3 V273A;par^i^iS 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 

0 
0 

0 2VSl3kp^rHl 

0 - \ /673fcpari f i 

(0) 

u u 
3v/273^par^i2 - 3 \ ^ 7 3 ^ p a r ^ i S 

3V^73A;par^^iS -3V^73A;par^f iS 
0 0 

2x/373A;pariIiS - \ / 6 7 3 A : p a r ^ S 

0 
(0) 
inv 

0 
0 0 

(6.54) 

The bulk wavefunctions for the well and barrier materials may be obtained f rom 

the eigenvector equation (6.42). As the barriers are semi-infinite in extent a re

s t r ic t ion must be placed on the bulk solutions used in each barrier and only those 

wavefunctions whose kg value ensures a decay w i t h distance f r o m the well are re

tained. The set of sixteen values of kz derived f r o m the eigenvalue problem are 
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thus separated into two sets of eight, one set for each of the barriers on either side 

of the well . The wavevectors on the negative z side of the well have SmA;^ < 0 

and are labelled k^,...,k^ whilst those on the positive z side of the well have 

3m/c^ > 0 and are labelled k f , . . . ,kfQ. A similar division of kz values is also 

made in the well region w i t h the set of wavevectors for which S m kz > 0 being la

belled kY, • • . , and those for which Sm/^z < 0 being labelled ^ ^ j ^ + i ) • • • » ^ i 6 -

This division is made to assist in the avoidance of a numerical problem which 

is fu r ther discussed in section 6.3. W i t h the well extending f r o m z = zieft to 

z = bright, the barrier wavefunctions ^ ' lef t l^ < ^left) and b r i g h t > bright) and the 

well wavefunction ^welll^^left < z < bright) may be wr i t t en in the fo rm 

8 8 
*left = exp(»k| | . r | | ) Y: E K - 2left)J F.^^fui (6.55) 

t = i y=i 
8 16 

b r i g h t = exp(ik| | . r , | ) J2 E exp [ikfiz - ^ n g h t ) ] F.^Afu^ (6.56) 
i=l j=9 

8 3 mid 

^'weU = exp(zk||.r| |) J2 J2 exp [ikf {z - 2ieft)J Ui 
1=1 j=i 
8 16 

+ exp(tk| | . r | | ) E E exp [ i k f i z - ^Hght ) ] F^Afui (6.57) 

where the superscripts B and W denote values in the barrier and well respectively. 

The first boundary matching condition is that the wavefunctions match at the 

two interfaces so that * l e f t (2 l e f t ) = 'Jewell(^left) and ^rightC^^right) = *weu(2^nght)-

Thus assuming that the basis states U j (for i = 1 to 8) are comparable in the well 

and barrier materials 

E ^ ; f ^ f = E ^ ; T < + E F ! j A j e . p { - i k f L ) (6.58) 
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16 Jmid 16 

i = 9 J = l J = J m i d + l 

w (6.59) 

where L — bright ~ - l̂eft is the well w i d t h . The second boundary condition is that 

the derivatives of the wavefunctions w i t h respect to z match at the interfaces. 

W i t h one complete basis set applicable to both materials this is satisfied i f the 

derivatives of the envelope functions match at the interfaces [76], and although 

used in conjunct ion w i t h two incomplete basis sets the relations 

E A ? < = E A T - ^ f + E D r , A f e . , ( - , k f L ) (6.60) 
y = i y = i y=;mid+i 

E A ? ^ f = E A T ^ r e x p ^ ^ L ) + i : DY^aJ (6.61) 
y=9 y = i y = j m i d + i 

are nevertheless applied here w i t h Dij = ikjFij. Indeed calculations w i t h other 

matching conditions [72] suggest that the exact choice of the derivative matching 

condit ion does not have much effect on those subbands employed in section 6.4 for 

the calculation of optical mat r ix elements. The equations (6.58) to (6.61) may be 

w r i t t e n in a more compact matr ix f o r m 

FbAb = Fw-^w 

DbAb = DwAw 

(6.62) 

(6.63) 

where 

and 

Fb = 
0 

Fw = 
^ e x p ( ^ . - L ) G - f J ^ G . - ^ , . ) 

(6.64) 

(6.65) 
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and similarly for Db and D\^. The two boundary matching equations (6.62) and 

(6.63) may be combined to give 

F^^FbD^^DwAw = Aw (6.66) 

and by defining M = F^^FbD^^Dw — I the bandstructure at a given value of 

in-plane wavevector ky may be determined by scanning through energy E and 

looking for d e t M = 0 as in the case of the infinite quantum well model. This 

produces doubly degenerate states \ [ '^ and "if^^ which may be combined to obtain 

definite par i ty states of the f o r m 

8 8 
* l e f t = exp(zk||.r| |) exp [ikf{z - ZMt)] Cf^Ui (6.67) 

1 = 1 y = i 
8 16 

b r i g h t = exp(ik | | . r | | ) Yl H exp [ikf{z - ^Hght ) ] OfjUi (6.68) 
1=1j=9 

8 Jmid 
* w e l l = exp(ik | | . r | | ) Y J2 exp [ikf {z - ZMt) 

t = i y = i 
8 16 

+ exp(zk||.r| |) Y ^^vyikj [z - z,;^^^)\GYjUi (6.69) 
1=1 y = y m i d + i 

As w i t h the inf ini te well , the envelope functions f o r m pari ty sets P i = $ 2 , ^ 7 , ^ s } 

and P2 = { $ 3 , $ 4 , $ 5 , $ 6 } so that a definite parity state ^ has envelopes f r o m one 

set tha t are of even pari ty whilst those f r o m the other set have odd parity. The 

wavefunction * may be normalised using the relation 

( * ! * ) = ^11 E EEGijG,,'L,,> (6.70) 
region i=l 

w i t h 

Ljji — / exp ikji{z - Zji) - ikj{z - Zj) dz (6-71) 
J region ^ 
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where Zj — Zji — ^left i f the region is the left barrier and Zj = Zji = 2right i f i t i IS 

the r ight barrier. For the well region the values of Zj and Zji depend on whether 

j < imid or j > Jmid- Hence defining ki[f[ = kji — kj then for the left barrier 

(6.72) 

and for the r ight barrier 

(6.73) 

I n the well Ljji takes the values 

exp{ikiiffL) - 1] /z^diff for < imid 

exp{-tkjL) - exp{-ikj,L) / t^diff for j < jmid < f 

exp{ikj,L) - exp{ikjL) /ikdm for j' < jmid < j 

1 - exp{-ikiiffL)]/ikiis for j^id < 

(6.74) 

but i t is possible that fcdjff = 0 in the well and then 

Ljji = L exp —ikji[zji — Zj) (6.75) 

The use of the normalised wavefunctions to calculate optical matr ix elements is 

considered in section 6.4. 
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S e c t i o n 6.3. N u m e r i c a l cons ide ra t i ons . 

The first problem in implementing the bandstructure techniques described 

above is to determine a method to search for det M = 0. As det M is a complex 

quant i ty i t is not possible to look for zero crossings directly (although for the 

inf ini te well case d e t M makes abrupt changes f r o m being wholly real to wholly 

imaginary and vice versa which simplifies the problem). A n alternative is to look 

for m i n i m u m values of | det M | and then check that these occur for det M = 0. 

The search procedure is divided into two steps. Firstly the energy range of interest 

is scanned through in small steps of energy ~ 0.1 eV. Then a bisection technique 

is used to narrow down the accuracy of the energy value for the bandstructure 

to the order of micro-electronvolts. This degree of accuracy is required to avoid 

numerical inaccuracies in the calculation of the wavefunctions. Assume that three 

values f{a),f{b),f{c) of | d e t M | have been calculated at equally spaced points 

a, 6, c such that f{b) < / ( a ) and f{b) < / ( c ) . This is a region where a minimum 

value occurs and so the bisection technique is started by calculating two new values 

f{d) and / ( e ) at the points d = {a + b)/2 and e = (6 + c) /2. I f f{d) < f{b) then the 

three in i t i a l values may be replaced by f{a),f{d),f{b). Otherwise if / (e) < f{b) 

then the three in i t ia l values may be replaced by / ( 6 ) , / ( e ) , / ( c ) . I f neither of these 

inequalities hold then the three new values are / ( d ) , / ( 6 ) , / ( e ) . I n any case the 

size of the interval has been halved and the procedure may be iterated to increase 

the accuracy to the desired level. 
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One numerical dif l icul ty in the finite well calculations is the evaluation of ex

ponential terms exp[ikzz) at the well edges z = zjgft and z = Znght for wavevectors 

w i t h large values of ]$ym A;̂ ] and the avoidance of this problem is the reason that the 

f o r m of the wavefunctions given in equations (6.55) to (6.57) is adopted. However, 

as the wavevectors kz change w i t h changing energy E this approach constantly 

redefines the coefficients and A i y which appear in equations (6.62) and (6.63). 

So suppose that A ^ and A\Y are subject to the linear transformations 

AB = ABAB (6.76) 

Aw = Aw Aw (6.77) 

This requires that the matrices F and D used for the boundary matching also be 

transformed as 

FB = FBAB' (6.78) 

Fw = FwA^' (6.79) 

DB = DBAB' (6-80) 

bw = DwA^' (6.81) 

Then 

d e t M = det [f^^FBDS^DW - I 

= det AWF^^FBAQ^ABD'^^DWA^^ — I 

= det F^'FBDZ'DW - I 

d e t M (6.82) 
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so that the transformation does not affect the value of d e t M . Hence, the intro

duct ion of the arbi t rary phase factors exp(—iTsaXieft) and exp(—ifc^^j-jght) (and even 

the re-ordering of the wavevectors kz) has no effect on det M and thus does not 

interfere w i t h the scanning technique described above. 

Final ly a well-known numerical problem appears in the finite well bandstruc

ture calculation where the value of ] det M ] becomes very large at particular values 

of energy E. I n general the funct ion ] d e t M ] is very smooth but spurious spikes 

appear at unpredictable energy values. I f the value of E is changed by an ex

tremely small amount (on the order of nano-electronvolts) the spike is avoided 

and the solution adopted was to calculate a number of values for j d e t M ] near to 

the chosen value of E and then to pick a value which produced a smooth func

t ion . The three previously calculated points / ( a ) , / ( 6 ) , / ( c ) were used to obtain 

a parabolic extrapolation (or interpolation) to predict the value of the next point 

to be calculated. Whi ls t stepping through in equal energy steps the value nearest 

to / ( a ) - 3/(6) + 3 / (c) was chosen and during the bisection phase the values of 

(3 / ( a ) + 6/(6) - / ( c ) ) /8 and ( - / ( a ) + 6/(6) + 3/(c)) /8 where used to pick the 

values for f{d) and / (e ) respectively. 
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S e c t i o n 6.4. C a l c u l a t i o n o f o p t i c a l m a t r i x e lements . 

I n this section the wavefunctions obtained using the techniques of the previous 

sections are used to investigate the effects of bandstructure on the optical response 

of a semiconductor quantum well . Of particular interest are the non-parabolicity 

of the energy subbands and the variation of the optical matr ix elements in relation 

to the in-plane electronic wavevector ky and to the orientation of the electric field 

E of the l ight. For definiteness an 80A (unstrained) quantum well of Ino.53GcLo.47As 

sandwiched between barriers of Ino.75Gao.25 Aso.55Po.45 is investigated. This system 

is of practical interest as i t emits light in the 1.55/xm window suitable for optical 

fibre communications. The material parameters used for the well and barriers are 

tabulated below [77,78 . 

Ino.53Gao.47 As Ino.75Gao.25Aso.55Po.45 

Eg 0.75eV 0.99eV 

A 0.33eV 0.25eV 

m^[00l ] 0.42 0.47 

m ^ [ l l l ] 0.95 0.90 

ml 0.052 0.078 

0.16 0.17 

m* 0.041 0.059 

The effective masses m\ and rh\ (heavy hole), mj" (light hole), m*^ (spin spl i t -off ) , 

m* (electron) are used in the calculation of the parameters 5, 71, 72, 73, P for the 
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finite quantum well model [73,74]. 

s = — - { l + 
m 

li = 

'72 = -

El. 
2A 

3Eg 

2A 

— + — 
nil 

— + — 
2 / A \ 

73 

A 

EL 
2A 

1 

ml mj m: 
1 + 

E„ 

71 
m 

= 1 + 
En 
A 

3A£;, 

2m 2 

1 J 2 

m *̂ m* 
1/2 

m hi 

(6.83) 

(6.84) 

(6.85) 

(6.86) 

(6.87) 

(6.88) 

The data values above are used in conjunction w i t h equations (6.83) to (6.88) to 

obtain the fol lowing parameter values used in the calculations. 

Ino.53Gao.47As Ino.75Gao.25Aso.55Po.45 

71 

72 

73 

-14 .2 

1.76 X 10-28 Jm 

-3 .52 

-2 .94 

-2 .28 

- 2 . 7 

1.42 X 10-28 Jm 

0.36 

-0 .89 

-0 .38 

The bandstructure near the band edges is shown in figure 6.1. The interband 

energy gap is O.SOeV which corresponds to a wavelength of 1.55/xm. The conduc

t i on subband is essentially parabolic whilst the valence subbands display strong 

non-parabolicity w i t h the first two subbands anti-crossing at a parallel wavevector 

of /b|| ~ O.O2A \ Figure 6.2 depicts the envelope functions of states at the Br i l louin 
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Figure 6.1. Bandstructure of an 80A Ino.53Gao.47As - rno.75Gao.25Aso.55Po.45 quantum well 

showing conduction subbands (top) and valence subbands (bottonn) near the band edge. 
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Figure 6.2. Envelope functions of zone centre states f rom the first conduction subband 

(top) and f r o m the first valence subband (bottom) of figure 6.1 plotted against distance 

z in the growth direction (wi th the well edges at ± L / 2 ) . The units are arbitrary but 

common to figures 6.2 and 6.3. 



zone centre and shows that the conduction subband state consists principally of 

the conduction envelope $ i w i t h smaller contributions f r o m the valence envelopes 

$ 3 and # 4 . As a result of the energy degeneracy there is a complementary state 

(not shown) comprising of the envelopes $ 5 , $ 7 and $ 8 - Figure 6.2 also shows 

tha t the only significant envelope funct ion of the zone centre state f r o m the first 

valence subband is $ 2 - (The other energy degenerate state has $ 6 as the only 

significant envelope). Further f r o m the zone centre the states of the first valence 

subband exhibit increasingly large contributions f r o m the envelopes $ 7 , $ 3 and 

$ 6 (see figure 6.3) as the anti-crossing of valence subbands results in a mixing of 

adjacent energy states. 

Now to calculate some optical matr ix elements using the A . p approach dis

cussed in chapter two. Consider two normalised wavefunctions 

^region = exp(tk| | .r | | ) Y Gij'^i ^^P [ikj[z - Zj)\ (6.89) 

and 

^region = exp(ik | | . r | | ) Y G,>j>u,, exp \ikj,[z - Zj,)] (6.90) 
i'd' 

which have the same in-plane wavevector k|| . For the infinite well model the z 

co-ordinate is measured relative to Zj = 0, whilst for the finite well model i t is 

measured relative to Zj = 2;ieft or Zj = Zj-jght dependent on the value of Smfcy as 

described in section 6.2. The momentum matr ix element may be calculated f r o m 

(^regionlp] ^region) ^ Y ^ijCiiyY^^V Vkj>[Zn - Zj,) - ikj[zn - Zj)] I « , ( ? + h\^j,)uifd^T 
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Figure 6.3. Influence of energy anti-crossing on first valence subband state showing increasing 

mixing w i t h second valence subband state at larger values of /cm. 



^11 J2 GijGi,jiLjji{Kkiii+ Kkji6iii) (6.91) 

where 

Ljji— I exp ikji{z — Zji) — ikj{z — Zj) dz (6.92) 
J region '• 

may be evaluated by substi tuting kji for kji in equations (6.31) and (6.72) to 

(6.75). Also k y / = k | | -(- kji^z and the momentum mat r ix element for the unit cell 

is defined by Kkai — (u i |p |u j / )ce i i - The values of KYai are determined f rom the 

bcLsis states in equations (6.1) to (6.4) for the infinite well and in equations (6.33) 

to (6.40) for the finite well using the relations 

{S^\p'\X^) = (5+|p5'|y+) = (5+|p^|Z+) 

m P 
= {S-\p^\X-) ^ {S-\py\Y-) = { S - \ f \ Z - ) = — - (6.93) 

in 

where P is the Kane momentum parameter and w i t h all other momentum ma

t r i x elements between S^,X^,Y^, being zero. The term containing / i k , ^ is 

the dominant t e rm in equation (6.91). The momentum matr ix element ( * | p | ^ ) 

is calculated using wavefunctions and obtained for the Ino.53Gao.47As -

Ino.75Gao.25Aso.55Po.45 quantum well presented above. Although the energy dis

persion is essentially isotropic in k y space, the value of ( ^ | p | ^ ) does depend on 

the orientation of k y . For k | | taken along the kx direction and w i t h the states 

^ ( k | | ) and ^ ( k | | ) taken f r o m the first conduction and valence subbands respec

tively, the values of | ( ^ ' | E . p | ^ ) | are shown in figure 6.4 for E (the electric field 

direction of the light) oriented along the x-, y-, and 2-axes. The scale of the graphs 
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|(v^|E.p|^)] 

= 0.03A-1 

Figure 6.4. Variation w i t h in-plajie wavevector (along the axis) of the magnitude of the 

optical mat r ix element for three orientations of the electric field vector. 



is of the order 10"24 kg g - i which corresponds to an electronic displacement 

of the order of lOA. For E = the magnitude of the optical matr ix element is 

zero at the Br i l lou in zone centre. Figure 6.2 shows that the valence state *(0) 

comprises only the envelope $ 2 (or ^e) and hence only the p-orbitals X and Y 

but (5)p^|X) = {S\p^\Y) = 0 so that for E = the optical matr ix element 

(^ (0 ) ]E .p ]^ (0 ) ) must be zero. As the in-plane wavevector is increased along the 

kx axis, the magnitude of optical matr ix element increases for E = e^, whilst for 

E = ej; the magnitude decreases and for E = ej, i t remains approximately constant 

over the range considered. I f ky is instead taken along the ky direction, the graphs 

for E = Ga; and E = ej, appearing in figure 6.4 are interchanged whilst that for 

E = is unaffected, as would be expected f r o m symmetry considerations. This 

behaviour has been described J79] for a simple parabolic band model which yields 

the relations 

(^r]p^|^) = M ( c o s ^ c o s ( ^ - t s i n ( ^ ) (6.94) 

(*|p^]4') = M (cos ̂  sin ^ - h I cos <?!>) (6.95) 

(ilrjp^]^) = - M s i n ^ (6.96) 

where 6 and <j> are the polar and azimuthal angles of the wavevector k = ky -|- kzBz 

and M is constant. For example, along the kx direction cf) = 0 and 

(^f]p^|^r)| = iMjcos^ (6.97) 

(*]p!/]^)] = ] M ] (6.98) 
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( * | p ^ | ^ ) | = | M | s i n 5 (6.99) 

A t the zone centre ^ = 0, and 6 increases w i t h kj, so that equations (6.97) to (6.99) 

describe qualitatively the behaviour seen in figure 6.4. 

The non-parabolicity of the valence subbands causes the first valence subband 

to be relatively flat over the region shown in figure 6.1. The effect on the optical 

response is to reduce the detuning in this region and hence to increase the mag

nitude of the contributions for these values of wavevector. Figure 6.4 shows that 

the orientation of the electric field does influence the optical response and fur

ther investigations are necessary to determine, for example, the nonlinear effects 

achievable w i t h several l ight beams oriented in different directions. A number of 

studies w i t h this arrangement of light beams have been performed by Jaros and 

co-workers [26,29,95-96] using pseudopotential bandstructure calculations. Finally, 

the equations (6.94) to (6.96) show that different regions of the Br i l louin zone can 

contribute responses w i t h different phases and the influence of this on second order 

mix ing , for example, offers another possibility for investigation. 
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C H A P T E R S E V E N 

C o n c l u s i o n 

The work presented in this thesis has been directed at establishing a clear 

physical picture of the ultrafast nonlinear optical phenomena which occur in semi

conductor materials. I n particular the two main regimes of operation have been 

examined, namely off-resonance excitation where v i r tua l processes are important 

and on-resonance excitation where real carriers are photogenerated. 

The difficulties in obtaining gauge invariant results when using the so called 

A . p and E . r gauges were investigated in chapter three, and the equivalence of first 

order susceptibilities obtained using the two gauges was explicitly demonstrated. 

The study of off-resonance phenomema in chapter four centered on two- and three-

level quantum well systems, and i t was shown that the concept of state-filling which 

is commonly used to describe a two-level system can be extended to the three-level 

model provided that second order mixing contributions can be neglected. The 

modelling of recent experimental investigations into the ultrafast optical properties 

of semiconductor laser amplifiers presented in chapter five provides a clear physical 

picture of a mechanism which predicts the observed behaviour. However, other 

theoretical explanations for the experimental observations have recently appeared 
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i n the li terature [80,81]. Whatever its origins, the nonlinear optical response of the 

laser amplifier promises the development of practical all-optical switching systems 

based on these devices. Finally, in chapter six a brief exploration of the effects 

of bandstructure on optical response has been made, and this has prompted a 

number of suggestions for fur ther research. 

The model of thermal relaxation processes developed in chapter five employed a 

number of phenomenological time constants, but i t is possible to formulate theories 

of the scattering rates for these processes which start f r o m first principles [82-84 . 

A deeper study of the scattering mechanisms and their relation to the optical 

response would be of interest, especially on the origins of the destruction of phase 

coherence (dephasing). A more complex description of spectral broadening than 

tha t provided by a Lorentzian line-shape has also been proposed [85-86]. 

Throughout this thesis, the influence of excitonic effects arising f r o m Coulom-

bic interactions has been neglected. In the study of the three-level systems pro

posed by Morrison and Jaros [25-29], this can be just if ied by arguing that such 

effects are small in the narrow bandgap materials capable of providing the equal 

spacing of energy levels required. Whils t w i t h the work on laser amplifiers, the high 

carrier densities w i l l substantially screen the influence of the Coulombic attractions 

between electron-hole pairs. Nevertheless, there has been much work devoted to 

investigating many-body effects and their influence on the optical properties of 

semiconductors [34-36,55,87-94] and these include the use of a density matr ix de-
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scription which could be employed to extend the model presented here. 
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