
Durham E-Theses

Type theoretic semantics for semantic networks: an

application to natural language engineering

Shiu, Simon K.Y.

How to cite:

Shiu, Simon K.Y. (1996) Type theoretic semantics for semantic networks: an application to natural

language engineering, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5397/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5397/
 http://etheses.dur.ac.uk/5397/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

University of Durham

Type Theoretic Semantics for Semantic
Networks: An application to Natural Language

Engineering.

Simon K. Y. Shiu

Laboratory for Natural Language Engineering
Department of Computer Science

September 1996

Submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy
The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

H MI mi

Abstract

Semantic Networks have long been recognised as an important tool for natural

language processing. This research has been a formal analysis of a semantic network

using constructive type theory.

The particular net studied is SemNet, the internal knowledge representation

for LOLITA 1 : a large scale natural language engineering system. SemNet has been

designed with large scale, efficiency, integration and expressiveness in mind. I t

supports many different forms of plausible and valid reasoning, including: epistemic

reasoning, causal reasoning and inheritance.

The unified theory of types (UTT) integrates two well known type theories,

Coquand-Huet's (impredicative) calculus of constructions and Martin-Lof's (pred

icative) type theory. The result is a strong and expressive language which has been

used for formalization of mathematics, program specification and natural language.

Motivated by the computational and richly expressive nature of UTT, this re

search has used it for formalization and semantic analysis of SemNet. Moreover,

because of applications to software engineering, type checkers/proof assistants have

been built. These tools are ideal for organising and managing the analysis of Sem

Net.

The contribution of the work is twofold. First the semantic model built has

led to improved and deeper understanding of SemNet. This is important as many

researchers that work on different aspects of LOLITA, now have a clear and un-

ambigious interpertation of the meaning of SemNet constructs. The model has

also been used to show soundess of the valid reasoning and to give a reasonable

semantic account of epistemic reasoning. Secondly the research contributes to NLE

generally, both because it demonstrates that UTT is a useful formalization tool and

that the good aspects of SemNet have been formally presented.

Large-scale, Object based, Linguistic Interactor, Translator and Analyser

Acknowledgements

I would like to thank my supervisor Roberto Garigliano for his advice, support and

intellectual stimulation throughout my time at Durham.

Secondly I am extremely grateful to Zhaohui Luo who has given significant time

and help over the last two years.

Thank you to all members (past and present) of the Laboratory for Natu

ral Language Engineering who have helped in numerous ways, most recently by

commenting on various drafts of this thesis. Most significant to me has been the

extremely pleasant social environment which I will sorely miss.

Finally I would like to thank Donna, for her continuing support "whatever I

choose to do".

Declaration

The material contained within this thesis has not previously been submitted for a

degree at the University of Durham or any other university. The research reported

within this thesis has been conducted by the author unless indicated otherwise.

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should

be acknowledged.

Contents

1 Introduction 1

1.1 Methodology 1

1.1.1 Natural Language Engineering 1

1.1.2 Semantic Formalisation 3

1.1.3 Methodological Success Criteria 5

1.2 LOLITA and SemNet 7

1.2.1 The LOLITA architecture 7

1.2.2 SemNet principles and features 9

1.2.3 Project Aims and success criteria 10

1.3 Logical Progression of the Thesis 13

2 Formal Semantics for Semantic Networks 15

2.1 Issues in Semantic Networks for NLE 15

2.1.1 Defeasible Inheritance 16

2.2 KL-ONE 17

2.2.1 KL-ONE and SemNet 19

2.3 Conceptual Graph Theory 20

2.3.1 CGT basics 20

2.3.2 CGT formal aspects 21

2.3.3 CGT and SemNet 22

2.4 SNePS 22

2.4.1 SNePS basics and principles 23

2.4.2 Formal semantics for SNePS 25

CONTENTS vi

2.4.3 SNePS and SemNet 26

2.5 Review 26

3 Constructive Type Theory 27

3.1 Introduction 27

3.1.1 Type Theory as a Programming Language 28

3.1.2 Type Theory as a Logical Language 30

3.1.3 The dependent type constructors 30

3.1.4 Inductively Defined Types 32

3.2 Some versions of Constructive Type Theory 32

3.2.1 Martin-Lof's (predicative) type theory 33

3.2.2 Impredicative type theory 34

3.2.3 Luo's ECC and UTT 37

3.3 Theorem Proving and Lego 38

3.4 Abstract Theories 39

3.5 Subtyping 41

3.6 Constructive Type Theory for Natural language 42

3.7 Motivations for using UTT 45

4 SemNet 47

4.1 SemNet basics . . 47

4.1.1 Nodes and Arcs 48

4.1.2 Negation of events 49

4.2 KR and the world 51

4.2.1 SemNet and Language 52

4.2.2 Meaning as Location 52

4.3 Control Variables 53

4.4 Real and Hypothetical Events 53

4.5 Representation Issues 54

4.5.1 Observed Events 54

4.5.2 Quantification on the arcs 56

CONTENTS vii

4.5.3 Named Individuals and constants 57

4.6 Reasoning Mechanisms on SemNet 59

4.6.1 SemNet linear Notation 59

4.6.2 The Entity Hierarchy 60

4.6.3 The action hierarchy 62

4.6.4 Connective Reasoning 63

4.6.5 Epistemic reasoning 65

4.7 NLE principles 66

4.7.1 'Correctness' of Reasoning 66

4.7.2 Expressiveness for NLE 67

4.7.3 Developer comprehend-ability 68

4.7.4 Flexibility and Robustness 68

4.8 Distributedness 69

4.8.1 Distributedness of SemNet 69

4.8.2 Distributedness of other Semantic Networks 70

4.9 Review 72

5 Formalisation Issues 73

5.1 Set Theoretic Semantics 73

5.1.1 Soundness of the Inference Rules 78

5.2 Defined and Observed Events 79

5.3 Possible World Semantics 83

5.3.1 Intensionality of Universals 84

5.3.2 Intensionality of Propositions 85

5.4 Distributedness 89

5.4.1 Arc level analysis 90

5.5 Review 91

6 Formalisation of SemNet in U T T 93

6.1 Framework of the Formalisation 93

6.2 A simple Hierarchy - SemNeti 100

CONTENTS viii

6.2.1 Syntax for SemNeti 100

6.2.2 Implementation Analysis for SemNeti 101

6.2.3 Semantics for SemNeti 103

6.2.4 SemNeti discussion 107

6.3 Individuals and Instance events - SemNet2 108

6.3.1 SemNet2 Syntax 108

6.3.2 Semantics for SemNet2 109

6.3.3 SemNet2 discussion I l l

6.4 Standard Events - SemNet3 112

6.4.1 SemNet3 - Syntax 112

6.4.2 SemNet3 Semantics 114

6.4.3 SemNet3 discussion 117

6.5 Epistemic events - SemNet4 118

6.5.1 SemNet4 Syntax 118

6.6 Review 120

7 Formal type theoretic semantics 121

7.1 Type theoretic intuitions 121

7.2 Defined and Observed Events 123

7.2.1 Basic observing events 124

7.2.2 Complex observing events 125

7.3 Necessary statements 128

7.4 Intensionality of Propositions 130

7.4.1 Definitional Events are Distinguished 133

7.4.2 Semantic analysis of Epistemic Rules 134

7.4.3 Design/Prescription for Epistemic events 135

7.4.4 Impredicativity and Paradox 136

7.5 Distributedness 136

7.5.1 What makes SemNet distributed 137

7.6 Review 140

CONTENTS ix

8 Evaluation, Conclusion and Further work 142

8.1 Evaluation 142

8.1.1 The semantic model 142

8.1.2 Correctness of Reasoning 146

8.1.3 Expressiveness 146

8.1.4 Flexibility 147

8.1.5 Developer Comprehend-ability 147

8.1.6 Issues for SemNet 147

8.1.7 Contribution to NLE 148

8.2 Conclusions 150

8.3 Further Work 151

8.3.1 Implementing a Maths Vernacular 151

8.3.2 Further aspects of SemNet 151

8.3.3 The semantic model as a tool 152

References 153

List of Figures

1.1 Core NLE system for various applications 2

1.2 LOLITA architecture 8

2.1 The Bird/Penguin problem 17

2.2 'Black telephones' or ' A l l telephones are black' 17

2.3 CGT for 'John is going to Boston by bus' 21

2.4 Example SNePS graph for concept 'a yellow dog' 24

2.5 ANALOG graph for ' A l l men are mortal' 24

3.1 The A-cube 36

4.1 Basic SemNet graph 48

4.2 Negated Event 50

4.3 Logical Negation of an Event 51

4.4 Epistemic Event 53

4.5 Proposed SemNet graph for the 'donkey sentence' 55

4.6 SemNet graph, showing necessity 56

4.7 Current quantification scheme, example problem 57

4.8 New quantification scheme, solution 58

LIST OF FIGURES x i

4.9 Example showing names as properties 59

4.10 Section of the Entity hierarchy of SemNet 61

4.11 A section of the Action Hierarchy 63

4.12 An example logical event 64

4.13 CGT graph for the donkey sentence 71

4.14 ANALOG/SNePS graph for the donkey sentence 71

5.1 General Event Structure 75

5.2 Example of i l l defined concepts 77

5.3 SemNet representation of the Brother, Mother Parrot sentence. . . . 80

5.4 SemNet graph for the 'donkey sentence' 81

6.1 Framework for the formalisation 94

6.2 Abstract theories of SemNet 95

7.1 The 'semantic' type hierarchy 122

7.2 Proposed SemNet structure for Symmetric action 128

7.3 Proposed SemNet structure for Transitive action 129

7.4 Definitional Event, 'Men that like bikes' 133

7.5 Epistemic Action Hierarchy 135

Chapter 1

Introduction

The subject of this research is knowledge representation (KR) for natural language

engineering (NLE). More specifically how to reason about such representations in a

formal manner. This introductory chapter is in two parts. The first part discusses

methodological issues and assumptions. The general class of problems within which

this research fits, and how, in general, success should be measured is described. The

second part describes the specific problem addressed by this work, how it fits into

the general class of problems and more specific success criteria are given.

1.1 Methodology

1.1.1 Natural Language Engineering

The building of large scale natural language systems involves the integration of

a wide range of techniques and knowledge. In this respect it is a major task of

engineering [Grishman, 1986], [Garigliano, 1995], [Smith, 1995], and hence the

term NLE. It is clearly related to natural language processing, but differs, in the

emphasis given to, or recognition of the need for, an engineering approach.

The objective is to engineer products which deal with natural language and

Chapter 1: Introduction 2

which satisfy the constraints in which they have to operate. This distinguishes

the work from many works in computational linguistics which often emphasise

investigating (i.e. verifying or falsifying) a particular linguistic theory.

[Nettleton, 1997c] outlines the major principles of NLE, for example, use of

cost-benefit analysis, account taken of scale and resources, robustness, flexibility,

openness and efficiency. In most cases these do not differ much from 'classical'

engineering principles (as applied to, say, mechanical, civil or software engineering).

The point in stating them is that it is felt they are often ignored in the field of

NLP.

The starting point for an NLE project is the objective. This work is done under

the umbrella of a larger NLE project, the objective of which is to build a core system

with natural language competence, capable of supporting many different domains

and applications. It is an assumption of this work that to do this requires the

design of a KR language, used to represent 'knowledge'1 of the 'real' 2 world devoid

of linguistic aspects.

The solution to this NLE problem involves providing core mechanisms for re

trieving and reasoning about the knowledge, and providing core mechanisms for

converting to and from natural language statements.

NATURAL
LANGUAGE

KNOWLEDGE
REPRESENTATION

^ NATURAL
" LANGUAGE

RETRIEVAL &
INFERENCE

Dau S true tun;

() Mndule

Figure 1.1: Core NLE system for various applications.

Natural language products are built from the core either by using the core

x The K R is considered as being used by an agent. Here, knowledge represents a set of state
ments, which this agent believes.

2 Real in the sense that the agent using the representation believes it to be real

Chapter 1: Introduction 3

mechanisms or by interfacing with the KR directly. These requirements demand

that the KR should be designed to:

1. be expressive enough for the applications. This varies between applications.

The basic requirement is for first order quantification, but representations for

time, location, causality and belief may also be required.

2. allow efficient conversion to and from natural language. The main work here

is in applying techniques from the appropriate fields of parsing, semantic

analysis, and generation. This is helped though if there is a clear relationship

between linguistic structures and structures of the KR.

3. allow efficient and robust retrieval and inference of 'knowledge'. There are

likely to be many types of inference, some used more often than others. The

design should exploit this and be efficient in such cases.

4. be flexible enough to cope with different applications. This is tied to reuse

and efficiency. I f similar or related 'knowledge' is required for different tasks,

i t would be useful if they could both access the same structure in the way they

need to. A less flexible representation may require duplicating the knowledge

for each task.

5. be easily understood by developers working with i t . This is key for developers

of the core system but is also important when applications are built.

1.1.2 Semantic Formalisation

Formal semantics are provided by a mapping A4 between two structures.

M : X i—> y

X, often referred to as the syntactic or object language, is the language being

Chapter 1: Introduction 4

analysed, y, often referred to as the semantic language, usually has properties or

structures which allow aspects of syntax (as interpreted by A4) to be analysed.

The syntactic language will usually have identifiable well formed formulae (wff's)

and rules of inference or operations which define how new wff's can be derived from

given ones, thus defining proof within the language. The semantic language will

have some notion of truth so that the well formed formulae of the syntax map to

statements that are either true or false in the semantics.

Definition 1.1 (Soundness) A syntactic theory is sound with respect to its se

mantics if all provable formulae map to true statements in the semantics.

Definition 1.2 (Completeness) A syntactic theory is complete with respect to

its semantics if all true statements in the semantics are provable in the syntax.

If a theory is sound then proofs in the syntax are well founded (at least as far

as the semantic language is well founded). I f the theory is also complete then proof

can be equated with truth.

A useful and well known example is J-OVC which is usually interpreted into set

theory [Davis, 1989]. This interpretation is not often challenged and so probably

fits with most users' intuition of the meaning of J-OVC. Set theory is a well

established mathematical theory and so showing the rules of inference to be sound

and complete with respect to its interpretation is a meaningful result.

For this work, the syntactic language is the KR used in the parent project. This

in turn means that the analysis and results will mainly be applicable to the parent

project. However, the KR used does have similarities with a large proportion

of other KRs. Moreover, the KR used is felt (informally) to meet many of the

requirements for NLE listed above. Therefore the work will contribute to the field

more generally by interpreting and analysing aspects and structures that are used

by many representations and by showing, formally, how the KR achieves the above

requirements.

Chapter 1: Introduction 5

The choice of semantic language will be determined by the following require

ments:

1. 'Correctness' of reasoning results are required. This demands that the se

mantic language should be a well founded mathematical theory.

2. The language must be expressive enough to represent what the KR can rep

resent. Ideally this should be done using standard features of the semantic

language.

3. Because the KR is used as part of a large-scale engineering project (rather

than, say a cognitive modelling project), it will be useful if the theory can

assist in analysis and design of the KR.

Finally i t should be noted that one of the principles of NLE is the appropriate

use of the wide range of techniques that have been established in this field. This

principle means that in many cases the 'semantics' or behaviour cannot be captured

by a single simple theory. This is thought to be similar to natural language itself

which is extremely difficult to pin down as a single theory (as many linguists and

philosophers have found). This work aims for a framework theory which captures

the way the basic mechanisms work and can account for many of the rich aspects

of the KR in a coherent manner.

1.1.3 Methodological Success Criteria

The criteria given here are general and apply to any instance of the class of problems

described so far. They are used as a starting point for the specific success criteria

for this research, described in section 1.2.2.

A Formal Semantic model must be built

This will consist of:

Chapter 1: Introduction 6

• A formal syntactic definition for the KR. This should encompass what forms

a legal w f f , which subset of legal w f f s are in the KR, and how further w f f s

can be infered from the KR.

® A semantic domain, where each wff wil l have a semantic denotation.

Robustness of reasoning requires that the rules (for valid reasoning) should be

proven sound. To fully characterise the "inference" will also require completeness.

Without this there will be statements which are entailed (according to the seman

tics), but which cannot be deduced using the syntactic rules.

KR's often provide plausible reasoning rules and heuristics. Soundness and

completeness will not be relevant to these.

Improved Understanding of the K R

The model built should improve the understanding of the KR. I t is expected that

the model should fit broadly with the intuitions of the KR developers and users. If it

does not, then, improved understanding will come from analysing the discrepancy.

Assuming the model fits with the broad intuition of the KR developers and

users, then the model will provide an unambiguous, formal way of understanding

the KR. I t will be used as a tool to investigate any properties claimed of the KR,

in this case: 'expressiveness', 'closeness to natural language', and 'flexibility'.

Generalising the results

Performing a formalisation of this size is a major task which is relevant to other

NLE projects, therefore the methods and tools used will be of interest.

Secondly, assuming the KR has similarities with other representations, mod

elling i t will be of interest to these similar representations.

Chapter 1: Introduction 7

1.2 LOLITA and SemNet

This research is performed as part of the LOLITA 3 research programme. LOLITA

is a computer program built using natural language engineering principles. The

aim of the project is to develop a core system capable of supporting a variety of

natural language products [Garigliano et ai, 1993b], [Morgan et al, 1995], [Smith,

1995].

The KR of LOLITA is a graphical representation, SemNet. SemNet shares

many similarities with semantic networks [Lehmann, 1992]. Nodes and arcs of

SemNet correspond to concepts and relationships. There are nodes for 'entities'

and 'events' and they are organised into a hierarchy.

There are constructs for representing quantification, time and location, epis-

temic knowledge, events and causality. There are no primitive nodes and 'intu

itively' the meaning of a node is defined by its relationship with other nodes. The

full meaning of a node is only defined by the whole network.

1.2.1 The L O L I T A architecture

In the operation of LOLITA, SemNet is used in many ways and each module makes

assumptions about the meaning of sub-structures of SemNet (and to interpret the

ful l meaning requires traversal of the ful l graph).

Figure 1.2 shows the architecture of the core of the LOLITA system and how

some of its applications are built.

1. The Inference Engine. The inference engine retrieves and infers 'knowl

edge' contained in SemNet [Nettleton, 1997a]. The basic engine performs

valid 4 inference, based mainly on inheritance. There are also modules for

3Large scale, Object based, Linguistic Interpreter, Translator and Analyser
4 A t least it is intended to be valid, of course an aim for this work is to show more formally

that it is valid.

Chapter 1: Introduction 8

P A R S I N G &
N O R M A L I S A T I O N

N A T U R A L
S E M A N T I C & M O R P H O L O G I C A L

A N A L Y S I S
L A N G U A G E

P R A G M A T I C

A N A L Y S I S

I E N G I N E J

SEMNET
D A T A B A S E

I N T E R F A C E I

A P P L I C A T I O N I

[T E M P L A T E I

[A P P L I C A T I O N J
[G E N E R A T O R]

\
L A N G U A G E

Figure 1.2: LOLITA architecture.

plausible reasoning about epistemic knowledge and by analogy.

2. Syntactic Analysis. Syntactic analysis corresponds to modules text pre

processing, morphological analysis, parsing and normalisation in figure 1.2.

The combined modules transform free text into parse trees [Nettleton, 1997a].

The basic parser produces a large number of possible parse trees and there is

a system of features and penalties which discard syntactically unlikely results.

Normalisation removes redundant parse trees by converting them to normal

forms (e.g. converting passive to active, dative to non-dative, and filling in

implicit missing phrases).

3. Semantic Analysis Semantic analysis converts parse trees into SemNet

structure [Short, 1996]. This means mapping the grammatical structures

of the trees onto SemNet nodes. This involves determining if a node al

ready exists in the network, and if it doesn't then also building i t . This in

turn requires search and inference (i.e. the inference engine) and an implicit

interpretation of the meaning of constructs of SemNet.

Once built, pragmatic analysis [Nettleton, 1997a] and a source control system

[Bokma and Garigliano, 1992] are applied to see i f the new knowledge should

be accepted and with what level of belief.

4. Generation The role of generation is to convert SemNet structure into natu

ral language. Because there is no surface linguistic information the generator

Chapter 1: Introduction 9

has to make many decisions about 'how' to realise statements.

Since each node is defined by the whole network, to 'realise' a node fully

requires the whole of SemNet to be used. Indeed the whole of SemNet is

passed as an argument to the generator [Smith, 1995]. However, clearly

decisions have to be made about how much of a concept should be stated,

and this in turn makes assumptions about the meaning of subsections of

SemNet. These decisions are handled by the generator.

5. Applications The core LOLITA system has been applied in many situations

[Nettleton, 1997b] including Chinese tutoring [Wang, 1995], dialogue [Jones

and Garigliano, 1994], template filling [Costantino et ai, 1996], database

interfaces [Garigliano et ai, 1995] and content scanning [Garigliano et al.,

1993a].

The applications shown in figure 1.2 (database interfacing and template f i l l

ing) both take 'knowledge' from SemNet and convert it accordingly. The

same assumptions about interpretations of subsections of SemNet as used in

generation are applied by these modules.

1.2.2 SemNet principles and features

SemNet is a graphical representation language. Nodes represent concepts and arcs

represent relationships between them. There are nodes which represent entities

and events. The events correspond to statements or propositions, and can be

referred to just as any other nodes can. From now on this will be referred to as

the Propositions as nodes principle. It is a principle that there are no pre-defined

nodes in SemNet. The meaning of any node is determined by its relationship with

other nodes/concepts, i.e. by its location, and consequently is only fully defined

when the whole network has been interpreted. From now on this will be known

as the meaning as location principle. Al l the nodes are organised into a hierarchy

which allows for reasoning by inheritance.

Chapter 1: Introduction 10

The representation is free from linguistic styles and features. It has been de

signed using engineering principles to support the objectives of LOLITA. There is

no claim, or attempt to model cognitive behaviour.

The above architecture description has shown that SemNet and its intuitive

semantics are fundamental to LOLITA. This means that there are many subjective

views of the 'meaning' of SemNet structures, which can lead to incorrect assump

tions and code.

Formal semantics will remove this subjectivity and improve the general under

standing of SemNet. Furthermore a formal model will allow formal analysis of some

of the features which, in section 1.1, were said to be required of a KR for NLE.

For example, flexibility was listed as a key requirement. Clearly SemNet is being

used in many different ways throughout the LOLITA system, and so intuitively

must be flexible. By providing formal semantics it should be possible to add some

formality to this concept.

I t is outside the remit of this thesis to try to implement changes to LOLITA

based on the results of this work. The aim is quite specifically to understand what

is there and to make suggestions based on theoretical analysis. Decisions to change

LOLITA can then be made based on both the theory and pragmatic (engineering)

considerations.

1.2.3 Project Aims and success criteria

This section takes the general criteria given in section 1.1.3 and makes them specific

to this research.

Build a formal semantic model of SemNet

This must include:

• A syntactic definition of SemNet

Chapter 1: Introduction 11

To analyse the reasoning procedures there must be a clear definition of what

constitutes a legal SemNet, which syntactic structures form legal w f f s , how

it is determined which w f f s are in a SemNet and what rules can be applied

to allow new w f f s to be 'infered' from a SemNet.

To allow analysis of concepts such as: 'closeness to natural language', 'flexibil

ity ' , and 'meaning as location1 it will be necessary to clearly identify 'syntactic

substructures' which combine to form the w f f s .

• Semantic Domain and Denotations

An appropriate semantic domain must be given. This domain must have

a mathematical foundation which can be 'trusted'. I t must also be expres

sive enough analyse structures purporting to represent a significant subset of

natural language.

Each syntactic structure should have a semantic denotation, and each wff

should be interpretable as either true or false.

Meta theoretic results

The valid reasoning is mainly based on inheritance. The inheritance algorithms are

used in various guises throughout the core. Therefore it is extremely important to

show that inferences drawn are indeed valid. A soundness proof will provide this

(relative to the semantic domain).

To show that the semantics fully characterise the valid reasoning wil l require

a completeness proof. Whilst this will help understanding i t is not as useful as a

soundness proof, and also might not be possible.

Investigate the 'good features' of SemNet

• SemNet structure is close to natural language structure

To test this a comparison between the interpretation for different aspects of

Chapter 1: Introduction 12

SemNet and formal semantics for the 'equivalent' natural language statement

will be performed. As discussed in 1.3 this is not entirely satisfactory because

there is no agreed formal semantics for natural language and the usage of

'equivalent' is quite vague. However, a crude analysis should be possible.

• Meaning as Location

Is an interpreted node only fully defined when the whole network has been in

terpreted, and is the manner in which 'meaning' are built in SemNet reflected

in the model.

• Show how SemNet represents complex expressions.

It is claimed that SemNet can express and reason about epistemic knowledge,

i.e., statements about LOLITA's own beliefs and statements about other

agents beliefs. Also that sentences with complex anaphora and quantification

can be represented.

To show 'how' SemNet represents complex expressions it must first be es

tablished that it can represent such expressions. To do this they must of

course be representable in the semantic language. To test that the meanings

really have been captured the inferences and consequences of such statements

should be shown to follow.

To go further and show 'how' SemNet is representing this knowledge there

must be a similarity of structure between SemNet and the semantic language.

This will be judged subjectively again based on a comparison with natural

language semantics and the subjective opinions of LOLITA's designers.

• Show flexibility of SemNet

From the description given, it is clear that SemNet is being used in many

ways, and so is presumably flexible. A successful result will be a formal

property of the representation that shows iP/how it can be used in these

5 I n the case where there is a theoretical problem with the different ways modules use SemNet,
the property should be able to highlight this problem.

Chapter 1: Introduction 13

different ways.

Improve developer comprehend-abil i ty

A final measure of usefulness to the LOLITA project is to see how useful the

semantics are for designing and using SemNet, i.e. will the designers use the model

or will they continue to use their intuitive interpretations.

Extract aspects of the formalisation relevant to N L E

As will be discussed in chapter 2, there has been a lack of formal descriptions

for semantic networks. Therefore this work will already contribute to the wider

community by showing that such formalisations can be done, and that doing so

develops intuition. It is thought that there are aspects of SemNet which are useful

for NLE. It is thought that the formalisation will show why this is the case, e.g.

how i t represents complex expressions and how it achieves flexibility.

If the formalisation is successful then there will be some value in examining the

methods and tools used to perform the evaluation.

1.3 Logical Progression of the Thesis

Chapter 2 reviews related work. A brief review of research issues in semantic

networks is given. After this a critical review of the formal approaches taken for

modelling and reasoning about these networks is given. Aspects of networks which

are similar to, or held by SemNet are highlighted.

Chapter 3 gives an overview of constructive type theory. The chapter works

chronologically ending with Luo's UTT [Luo, 1994], which is the version of type

theory used for the formalisation. Type theory has many applications in computer

science and because of this many tools and techniques (such as machine assisted

Chapter 1: Introduction 14

proof development, and modular reasoning) have been developed which can be

used to help manage a formalisation task such as this one. A review of the work of

Ranta [Ranta, 1994] is also given, which shows how constructive type theory has

aspects for analysing and reasoning about natural language directly.

Chapter 4 is a detailed description of the principles and design of SemNet.

Although placed before the 'semantic model' chapters i t is considered a part of the

contribution of the thesis. The issues raised and the clearness of the description only

came as a result of the formal analysis described in later chapters. An informal

discussion of the good aspects (for KR and NLE) is given. The later chapters

formalise these aspects further.

Chapter 5 follows the methods of other researchers in building a semantic

model using classical techniques such as set theory and possible world semantics.

Many of the 'correctness' problems can be addressed by this model. However, i t is

argued that there are problems in manageability and differences in structure which

limit the usefulness of this model.

Chapter 6 describes the framework of the type theoretic formalisation. A

description of how the tools and techniques developed for type theory are used is

given. Soundness results for valid reasoning and a discussion of how 'similar' the

model can be made. A further aspect is that since type theory is a programming

language an analysis of the implementation can also be given. Finally a discussion

of the usage of Lego (a proof assistant based on type theory) is given.

Chapter 7 concentrates on showing the similarity in structure between SemNet

and the type theoretic semantic model. Specific issues addressed are a better

coverage of intensionality and complex quantification sentences.

Chapter 8 starts with an evaluation based on the criteria of section 1.3. Final

conclusions are drawn and a discussion of possible further work is given.

Chapter 2

Formal Semantics for Semantic

Networks

This chapter begins with a short history of semantic networks and concludes with

networks that are similar to SemNet. An overview of general research themes and

a more detailed coverage of three well known network representations is given. The

review concentrates on work related to formal understanding of network represen

tations. Each system covered is compared with the main principles of SemNet.

2.1 Issues in Semantic Networks for N L E

Semantic networks with the meaning as location principle, date back to Quillan's

work in the 60's [Luger and Stubblefield, 1993] pp 360. English words were defined

(like a dictionary) in terms of other words (words being nodes in a network) and

the meaning rather than involving primitives is defined by its location. A user

determines the meaning of a word by traversing the (perhaps circular) graph until

they are satisfied that they have understood the meaning of the original word.

This early work established ideas such as 'labelled arcs', hierarchical inheritance

and inference by graph traversal. Since then many systems have been defined and

Chapter 2: Formal Semantics for Semantic Networks 16

implemented with a variety of definitions and principles [Lehmann, 1992]. They

have been popular for NLP research since they are more readable and intuitive

than classical logic, and (seemingly) richly expressive and efficient. A continuing

theme is the need for formal semantics for these different schemas [Woods, 1975]

[Woods, 1991].

[Schubert, 1991] makes a call for a recognition of the fact that most networks (if

not all) are merely notational variants of first order logic. However, it is accepted

that networks organise 'knowledge' to allow certain types of inference procedure

(i.e. inheritance) to be performed efficiently. It is a claim of this work that networks

can also be organised to allow certain types expressions to be easily stated, and/or

more flexibly available than first order logic, (both of which are specifically required

by NLE). SemNet fits this category and formalisation will help to show the essence

of the 'organisation' needed to achieve the required behaviour.

2.1.1 Defeasible Inheritance

Many inheritance based network representations have developed schemes and rules

for handling defeasible inheritance. Defeasible inheritance allows plausible infer

ences to be drawn. Consider the following example1: from the inheritance network

in figure 2.1 it can be inferred that:

1. Tweety is a bird and so can fly.

2. Tweety is a penguin and so cannot fly.

The immediate reaction to this is to consider that the network is inconsistent,

and so useless. The problem is that the first conclusion, although invalid, is in

many cases plausible and useful to draw. Many inheritance systems resolve this

by allowing both conclusions to stand, but that i f they both appear, the inference

: The bird/penguin problem appears many times in the literature and is a standard way to
present the defeasible inheritance problem.

Chapter 2: Formal Semantics fo r Semantic Networks 17

ANIMALS

'a kind or link

t*- 'isa' link
BIRDS (GENERALLY CAN FLY)

inherited 'isa' link

PENGUINS (CANNOT FLY)

e. '
TWEETY

Figure 2.1: The Bird/Penguin problem

based on the most specific information would stand. In this case, since being a

penguin is more specific than being a bird, the second conclusion would stand.

There has been much research both formalising this type of reasoning [Touret-

zky, 1986], [Fahlman, 1979], and relating it to non-monotonic logics [Etherington,

1988] [Froidevaux and Kayser, 1988] [Shastri, 1988]. SemNet does not use such

formulations for plausible reasoning [Long and Garigliano, 1994] and so such works

are not yet relevant to this research.

2.2 K L - O N E

As has already been mentioned, Woods [Woods, 1975] made a call for a more formal

description of network constructs. For example, it should be made clear whether

the graph shown in figure 2.2 is making the assertion 'telephones are black, or i f is

defining the concept of black telephones.

B L A C K -* T E L E P H O N E

Figure 2.2: 'Black telephones' or ' A l l telephones are black'

Brachman [Brachman and Schmolze, 1985], in part response to this, developed

his theory of structured inheritance (SI) nets. This theory was adopted by the

KL-ONE project for natural language understanding.

To explain the theory of KL-ONE it is first necessary to explain frame based

systems [Luger and Stubblefield, 1993]. A frame based system consists of data

Chapter 2: Formal Semantics for Semantic Networks 18

structures organised into a hierarchy via ako (a kind of) and isa links. Data

structures are added to the hierarchy manually. The semantics of the hierarchy

is defined by the inheritance algorithms that operate on i t . There are no clearly

specified criteria for when and where a structure could be added to the hierarchy.

This meant that data had to be entered manually by a human expert, and worse

still as the network becomes more complicated it becomes harder to understand all

the ramifications of extending the network in a particular way.

KL-ONE changed this by insisting that there should be a 'criterial semantics' for

the structures of the hierarchy. The inheritance operations would then have to be

justified with respect to these criterial semantics. This meant that concepts could

be automatically classified into the hierarchy (KL-ONE was the first inheritance

network to achieve this [Brachman et ai, 1991]). Later work went further than

demanding criterial semantics and insisted on a model theoretic understanding for

the language [Woods and Schmolze, 1992]. For the basic hierarchy of concepts and

roles this was done by postulating a domain of individuals T>, and specifying an

function 2 £ which maps concepts to subsets of T> and roles to subsets of V x V. The

top concept mapped to D, and the top role to T> x T>. Basic concepts lower down

the hierarchy are defined by a role, an existing concept and a quantification symbol.

Such nodes are interpreted in terms of the interpretations of these concepts. For

example, a new concept "(V, r, c)" is interpreted as:

{x <E V | Vt/(z,y) € £(r) ->! /G £(c)}.

Informally, the concept is defined as the set of objects that are in the role 'r'

with all objects in 'c'. There is a problem with this formulation when there is a

cyclic/recursive dependency between definitions, for example if the interpretation

of 'c' were defined in terms of the concept (V, r, c). Nebel [Nebel, 1991] provides

an analysis of different methods of providing semantics for this situation, including

2 The function given is overloaded, in the sense that it takes objects of different types.

Chapter 2: Formal Semantics fo r Semantic Networks 19

fixed point methods, but ends concluding none of the methods analysed is obviously

superior.

Later work maintained the importance of the distinction between definition

and assertion. Indeed most KL-ONE systems are distinguished by having two

separate knowledge bases: a terminology box (T-box) containing the hierarchy of

concepts which make up the definitions of concepts, and an assertional box (A-box)

usually made up of first order statements based on concepts defined in the T-box.

Various papers have been published on the issue of how best to integrate the two

types of knowledge: Frisch [Frisch, 1991] describes a substitutional framework in

which the T-box is used to provide sortal information for the more standard first

order theorem proving algorithms. Work based on the LILOG project [Herzog and

Rollinger, 1991], argues that for natural language understanding applications data

is often updated in both 'boxes' and so a closer coupling of information between

the 'boxes' is needed [Beierle et a/., 1992].

There have been attempts to extend the basic KL-ONE language with modal

statements. [Graber et a/., 1995], uses them to integrate knowledge and belief

operators. For example, i f w f f is a statement (from either the T-box of the A-

box) then:

aK aB, • w f f
joe cans J J

would represent the statement "(agent) joe knows that (agent) chris believes w f f " .

This extension is given a Kripke style possible worlds semantics [Meyer and der

Hoek, 1995]. Soundness and decidability of a reasoning algorithm are shown.

2.2.1 K L - O N E and SemNet.

There are many similarities between KL-ONE and SemNet. In particular the T-

box defines concepts in a manner similar to SemNet (in terms of its position in the

Chapter 2: Formal Semantics for Semantic Networks 20

hierarchy and the events i t is involved in). Indeed there are very close similarities

between the model described for KL-ONE and the set theoretic semantics given for

SemNet 'entity' nodes in chapter 5. A problem with the SemNet model (and it is

presumably also a problem for the KL-ONE model) is that the model is extensional

and so does not distinguish 'intensionally' distinct concepts.

A major difference is that in SemNet statements (both taxonomic and asser-

tional) are represented by nodes. These are used to represent epistemic assertions

directly, which is quite different from adding modal operators. Nevertheless, a sim

ilar style possible worlds semantics have been developed as an attempt to model

these assertions.

2.3 Conceptual Graph Theory

Sowa [Sowa, 1984] introduced Conceptual Graph Theory (CGT) as a "natural"

formalism for representing knowledge. Since then many researchers have used

conceptual graphs as a starting point for knowledge based and natural language

processing systems. Different problems and issues have led to a wide range of

research [Nagle et ai, 1992] including:

• Expressiveness.

• Hierarchical reasoning.

• Representing temporal knowledge.

• Using CGT for NLP, i.e. parsing and semantics analysis into CGT, and

generating free text from CGT.

2.3.1 C G T basics

The basic system can be viewed as a sorted version of the graphical logic of Charles

Sanders Peirce.

Chapter 2: Formal Semantics for Semantic Networks 21

PERSON:John -* (A G N T) - " G O ^ (D E S T ^

(jNST^)

Figure 2.3: CGT for 'John is going to Boston by bus'

Concepts represented by rectangles (see figure 2.3) map to monadic (1-argument)

predicates and concepts represented by ellipses map to relations with as many ar

guments as there are arcs emanating from the corresponding node. The graph

shown in figure 2.3 maps to the TOVC formula:

3a:.3y person(John) A go(x) A city(Boston) A bus(y)

/\agnt(x, John) A inst(x, y) A dest(x, Boston)

There is a labelling system (labels on the concept) which allows concepts to

be referred to in different ways. The concepts are organised into a type hierarchy,

formally understood as a lattice. Types lower down the hierarchy are defined by

A-abstractions over types higher up. There has been work addressing reasoning on

the type hierarchy and how to couple the definitional and assertional information

which is connected to the KL-ONE type research.

CGT has a system of contexts, with a context representing a situation as in the

situation calculus [Barwise and Perry, 1985]. The contexts can represent negation,

modality and epistemic relations.

2.3.2 C G T formal aspects

The basic logic of CGT is isomorphic to TOVC. It therefore shares the same (set

theoretic) semantics and is sound and complete. The concept hierarchy is seen as

adding sorts to the language, which, as shown by Walther [Walther, 1987], can

C h a p t e r 2: F o r m a l Semant i c s f o r S e m a n t i c N e t w o r k s 22

significantly improve the efficiency of inference. I n C G T the hierarchy is defined

intensionally (through A abstractions) but there seems to be no formal semantic

modelling of this aspect.

The system of contexts is based on the situation calculus, but again there seems

to be no formal interpretation of constructs in to this language

2.3.3 CGT and SemNet.

There are many aspects of C G T which are similar to SemNet. For example, the

type hierarchy being defined by definitions is similar to SemNet. Moreover, since

they are defined by A abstractions, an obvious continuation is to model concepts

as types (see next chapter).

The system of contexts is quite different f r o m SemNet which i f adopted, as

discussed in section 4.5, would break distributedness. Since i t is based on the

situation calculus, this is clearly the semantic language which should be used to

understand i t . However, this does not mean that situation calculus w i l l be the best

tool to model the epistemic aspects of SemNet.

A f inal difference between the languages is that C G T reflects linguistic structure

more closely by using separate items to refer to the same concept (i.e. to model

anaphora). This is done using a system of co-reference links (drawn as broken

lines) which show when two apparently different nodes, actually refer to the same

concept.

2.4 SNePS

SNePS (for Semantic Network Processing System) [Shapiro and Rapaport, 1987],

[Shapiro, 1979], is a semantic network language w i t h facilities for building semantic

networks. There are fur ther facilities for retrieving and inferring information f r o m

the networks. Users can interact w i t h SNePS in a variety of ways including an

C h a p t e r 2: F o r m a l Semant i c s f o r S e m a n t i c N e t w o r k s 23

extendible fragment of English. I t has been used in many applications including

cognitive modelling and computational linguistics.

2.4.1 SNePS basics and principles.

The first principle of SNePS is that i t is a propositional network [Kumar and

Chalupsky, 1993]. This means that al l information, including propositions are

represented by nodes. I n K L - O N E propositions were represented by formulae, and

in CGT by 'proposition contexts'.

There is a principle that unique concepts are represented by unique nodes. This

means that nodes represent intensional objects.

SNePS s y n t a x .

Nodes are structured by the arcs which emanate f r o m them. They are divided into

atomic nodes (no arcs emanating f r o m them and so they have no structure):

• sensory nodes, which represent interfaces w i t h the real world. Typical ly words

used in some language.

• base nodes represent constant individuals.

• variable nodes represent arbitrary individuals and propositions,

and molecular (structured) nodes:

• structured individuals

e structured propositions.

Figure 2.4 shows how SNePS builds up complex concepts. In tui t ively m9 rep

resents the concept 'yellow' as indicated by its connection to the sensory node

C h a p t e r 2: F o r m a l Seman t i c s f o r Seman t i c N e t w o r k s 24

SUPERCLASS

o
d. ^ Senwcy nodes.

Figure 2.4: Example SNePS graph for concept 'a yellow dog'.

'yellow'. m l 2 represents the concept 'an individual yellow dog' and can be referred

to by other (propositional) nodes.

There are various reasoning mechanisms based on this representation, including

reduction and path based inference [Shapiro, 1991]. Bo th of these are described

as modelling subconscious reasoning, since they allow v i r tua l arcs to be inferred,

through the presence of others. For example, a M E M B E R arc can be inferred (by

reduction) to ' v i r tua l ly ' occur between m l 2 and m l 6 in figure 2.4. This is basically

inheritance, although i t is claimed that i t is more natural to consider them in this

way. The reasoning mechanisms are given a set theoretic interpretation.

A N A L O G

A N A L O G (for A N A t u r a l LOGic) [Al i and Shapiro, 1993] extends the SNePS

representation w i t h structured (molecular) variables.

1 men | (MT} „ " (v j) [roorti] |

Figure 2.5: A N A L O G graph for ' A l l men are morta l ' .

The node ' V I ' is a variable node, the all arc provides the quantification informa

t ion. The representation is described as being close to natural language, providing

C h a p t e r 2: F o r m a l Seman t i c s f o r Seman t i c N e t w o r k s 25

a direct mapping for anaphora (see the representation of the 'donkey sentence' in

chapter 4) and being able to represent 'branching quantifiers' such as those involved

in the sentence: "Some relative of each villager and some relative of each townsman

hate each other.

2.4.2 Formal semantics for SNePS

The semantics of SNePS are mainly based on Meinongian's theory of objects [Ra-

paport, 1981]. A Meinongian object is an object of thought. To give an example,

taken f r o m [Rapaport, 1981],

Suppose, e.g. I am th inking that the person in the next room is happy.

I f there is not such a person, then I am thinking at most of a Meinongian

object; i f there is such a person, then there is - in addit ion - an actual

object. ... Let us say that actual objects "exemplify" properties while

Meinongian objects are "constituted" by properties.

I t is held that any ' th ing ' which is an object of language (e.g. noun phrases or

sentences) must be an object of thought. [Shapiro and Rapaport, 1987] describes a

mapping of the nodes of SNePS into Meinongian objects, thus bui lding up a formal

intensional description of the network.

The interpretation does not cover base nodes, which are presumably considered

atomic. H i l l [H i l l , 1994] argues that base nodes should not be treated in this way.

Indeed, an argument is presented which discusses how the 'meaning as location'

principle of SNePS should be captured i n the semantics, and that base nodes both

influence nodes that point to them and have intrinsic meaning themselves. A n

elegant of interpretation these nodes as non well founded sets 3 [Aczel, 1988] is

given.

3 A modern version of set theory, which rejects the 'well founded' axiom and accepts sets that
can be members of themselves.

C h a p t e r 2: F o r m a l Semant ics f o r S e m a n t i c N e t w o r k s 26

2.4.3 SNePS and SemNet

There are many similarities between SNePS and SemNet. Most pertinent is the

proposition as nodes principle, which correspond directly w i th SemNet events. Also

similar are the principles of uniqueness and 'meaning through location.

SNePS has been designed to be cognitively realistic, rather than as an engi

neering system. The semantics defined is used to understand the network f r o m

this point of view. SemNet differs in being designed w i t h pragmatic and applica

t ion relevant aspects (e.g. f lexib i l i ty and efficiency). I t is not clear how Meinong

semantics could help in this endeavour.

2 o 5 Review

Semantic networks have a relatively long history i n art if icial intelligence, although

their actual distinction f rom other knowledge representation languages (specifically

first order logic) is disputed. Different versions w i t h different motivations have been

bui l t , each sharing many underlying themes.

Formal aspects and semantics have been applied in differing amounts to each

of the main systems, and i t is through these that differences i n structure and

assumptions become apparent.

SemNet shares the underlying themes, and also has aspects i n common w i t h

each of the main systems described. I t does have its own motivations and dis

tinctions, which are discussed in detail in chapter 4. Nevertheless i t is clear that

formal semantic analysis of SemNet is of wide interest to the semantic network

community.

Chapter 3

Constructive Type Theory

SemNet is formalised in the constructive type theory U T T (Unif ied Theory of

Types). As discussed in chapter 1, U T T is used to define the syntax and semantics

of SemNet. This chapter is a self contained introduction to constructive type theory

and U T T which explains all the features relevant needed in this work.

3 o l Introduction

Type theory is first understood in terms of two universes, one of 'objects' and one

of 'types'. A 'judgement' of type theory is a statement of the fo rm:

a : A

which should be read as 'object a is of type A ' . The simplest type constructor

is the funct ion constructor — K Given two types A and B, a new type A —> B can

be formed and its objects w i l l be functions that map objects of type A to objects

of type B .

Some principles of type theory (as i t is used here) are that

C h a p t e r 3: C o n s t r u c t i v e T y p e T h e o r y 28

1. Every object has a unique type.

For example, i f the object '4 ' is considered to be of type M (the type of

natural numbers), then 4 cannot also be considered to be of type 71 (the type

of rational numbers).

2. Types are understood extensionally, i.e. i f two types are inhabited by the

same objects then they are the same type. However, functions are intensional,

in that they reflect the computational behaviour of the funct ion.

This is different to set theory, where functions are represented by relations

(i.e. extensional sets).

The language is clearly more restrictive than set theory, which allows objects

to be members of any number of sets. By being more restrictive i t becomes more

manageable and so lends itself to many applications.

3.1.1 Type Theory as a Programming Language

The notion of computation is pr imi t ive i n type theory. Function types are inhabited

by lambda abstractions. For example an object of type A -> B (the type of

functions f rom objects of type A to object of type B) is an abstraction of the f o r m

Xx : A.B. Computation is defined by /? reduction [Hindley and Seldin, 1986].

D e f i n i t i o n 3.1.1 (f3 r e d u c t i o n) Any term of the form

(Xx : A.M)N

(with A a type and M and N terms) is called a redex.

[N/x]M

is called its contractum.

C h a p t e r 3: C o n s t r u c t i v e T y p e T h e o r y 29

(\x : A.M)N >p [N/x]M

defines 1-step j3 reduction.

D e f i n i t i o n 3.1.2 (C o m p u t a t i o n a l E q u a l i t y) Computational equality is defined

as the transitive, reflexive and symmetric closure of 1-step (3 reduction.

A = B

should be read as A is computationally equal to B.

D e f i n i t i o n 3.1.3 (C h u r c h - R o s s e r) Any two computationally equal terms can be

reduced to a common term:

V M l 5 M 2 . (M i S M 2) 3 M . (M X > M) A (M 2 > M)

D e f i n i t i o n 3.1.4 (S u b j e c t R e d u c t i o n) Computation is type preserving.

D e f i n i t i o n 3.1.5 (N o r m a l f o r m) A term is in normal form if and only if it

contains no redexes, i.e. it can only compute to itself.

D e f i n i t i o n 3.1.6 (S t r o n g N o r m a l i s a t i o n) Every computation starting from a

well typed term terminates, i.e. reaches a normal form.

Different formulations for type theories can be given (as described later i n this

chapter). For each i t is extremely useful i f the above properties can be established

as they w i l l lead to many desirable properties such as decidability, manageability

and implementability.

C h a p t e r 3: C o n s t r u c t i v e T y p e T h e o r y 30

3.1.2 Type Theory as a Logical Language

A key turning point for type theory is the p r o p o s i t i o n as t y p e s principle, as

discovered by Curry [Curry and Feys, 1958] and Howard [Howard, 1980].

The idea is that any proposition P corresponds to a type Pr f (P) , and a proof

of P corresponds to an object of type Pr f (P) .

For example, there is a correspondence between funct ion type symbol and the

implicat ion symbol of (intui t ionist ic) logic. I f A and B are types, then given objects

of a : A and / : A —> B, an object of type f(a) of type B can be constructed. This

coincides w i t h viewing A and B as propositions, a as a proof of A , f as a proof of

A —>• B, and being able to derive (or construct) a proof of B.

Again different formulations of type theory w i l l lead to different logics, w i t h

fur ther consequences for decidability and manageability.

3.1.3 The dependent type constructors

Constructive type theory allows richer type constructors. Two important ones are

the 'dependent product type' and the 'dependent strong sum type'.

T h e d e p e n d e n t p r o d u c t t y p e

The dependent product type has functions as objects. For a type A and any fami ly

of types B[x] indexed by arbitrary objects x of type A, n x : A . B (x) is the type of

functions ' f such that for any object a of type A , applying f to a yields an object

of type B[a]. The te rm dependent is used since the type of the resulting object

'depends' on the object the funct ion is applied to. In tui t ively i t represents the set

of (dependent) functions f r o m A to B[x] :

{ / | Va : A.f(a) : B[a}}

C h a p t e r 3: C o n s t r u c t i v e T y p e T h e o r y 3 1

I f the resulting type is always the same, say B , for all objects a, then the funct ion

type simplifies to the type A —> B. As an example of this concept, consider poly

morphic functions for programming languages. The polymorphic equality funct ion

Eq has type:

Eq : I L 4 : Type.(A -> A -> bool)

i.e. Eq takes a type as parameter and returns an equality funct ion for that

type, but the type of this funct ion 'depends' on the type (object) passed. Here the

parameter used to index the 'range' types is a type, but this need not be the case

for dependent types.

T h e S t r o n g S u m T y p e

Strong sum types are types of pairs of objects. For any type A and any fami ly of

types B[x] indexed by arbitrary object x of type A , Sx :A .B(x) is the type of pairs

(a,b) where a is an object of type A and b is of type B[a]. In tu i t ive ly i t represents

the set of (dependent) pairs of elements of A and B[x] :

{ (a , b) | a : A,b: B[a]}

The projection functions

T T I : (Ex : A.B(x)) -> A

TT2 : I I z : (Ex : A.B(x)).B(irl(z))

extract the first and the second entry of a pair, respectively. For example, i f

g : (Sx :A.B(x)) , then (irl g) :A. Because of the inherent dependency they are useful

for describing complex types.

C h a p t e r 3: C o n s t r u c t i v e T y p e T h e o r y 32

3.1.4 Inductively Defined Types

Types can be defined inductively. This is done by giving constructors to say how

objects of this new type can be formed. By making the definition inductive we are

saying that this is the only way in which canonical objects of this type can possibly

be formed, for example, the three judgements:

N Type

0 N

succ N ->• N

defines the type of natural numbers. By definit ion, the rules define, exhaus

tively, how objects of type N (natural numbers) may be constructed. Because the

rules are exhaustive, an associated el imination rule can be inferred.

Nelim : UC : N ^ Type.

C (0) - >

(Ux : N.C (x) -> C (succ (x))) ->•

I l n : N (C (n))

This gives a method for defining functions that operate on all objects of the

inductive type. For example, i n this case functions for addition, subtraction and

mul t ip l ica t ion can be defined. This method can be used to prove theorems about

this type N . I t turns out that Peano axioms can be proved for this type.

3 . 2 Some versions of Constructive Type Theory

There are different versions of constructive type theory. The main differences are

reflected in the different structures of their conceptual universe of types.

C h a p t e r 3: C o n s t r u c t i v e T y p e T h e o r y

3.2-1 Mart in-Lof ' s (predicative) type theory

Perhaps the best known is Mart in-Lof ' s type theory [Mart in-Lof, 1984] [Nordstrom

et a/., 1990]. This can be understood in a hierarchical way: one starts by intro

ducing various basic types (e.g. f ini te types, and natural numbers), and using type

constructors (in this case the dependent types I I and £) , builds up more complex

types, un t i l finally, one may introduce a type universe, which is the type consisting

of (the names of) each of the types so far introduced. Continuing in this way a

sequence of type universes can be bui l t up Type(0) : T y p e (l) : Type(2) : ... There

is not a type of all types, instead such a type is approximated by the (infinite)

sequence of universes.

I n this theory types are not distinguished f r o m propositions. Since there is not

a type of all types i t is not possible to quant ify over all propositions (although

quantification over any of the type universes is allowed).

The theory has been used as a foundational language for constructive mathe

matics [Bishop, 1967]. Universal quantification is represented by the H constructor

and existential quantification by the £ constructor. This 'strong' notion of existen

t ia l quantification ensures that an object can alway be extracted by the projection

funct ion 7rl. For example, in mathematics the statement

3n : N.Prime(n) A Even(n)

is informally read as 'there exists a natural number which is both even and

prime' . Whereas when the strong existential is used, i.e.

Tin : N.Prime(n) A Even(n)

the statement can only be realised (proved) by a pair of objects, one of which

is a natural number and the other being a proof that this number is both prime

C h a p t e r 3: C o n s t r u c t i v e T y p e T h e o r y 34

and even. For example,

(2,Proof that 2 is even and prime)

3.2.2 Impredicative type theory

The above theory was predicative, i n that there is no type which allows quantifi

cation over itself leading to the new object of the same type, i.e. no type T such

that:

(m : T.A) : T

Such an idea is incorporated in the polymorphic types of some lambda calculus.

P o l y m o r p h i c A-calculus

The A-calculus in its original f o r m is untyped. Any te rm can be applied to any

t e rm to derive a new object. This section discusses Church style typed systems 1.

Type systems are distinguished by which constructors are allowed into the the

ory. The simplest version of /am&G?a-calculus is A — K The only type constructor

for this theory is —>. The type format ion rule is:

r I - A : Type, T h B : Type
Type formation

r h (A - ^ f l) : Type

and i t is defined by the following introduction and el imination rules:

T\- M : (S - > T) t T h N : S
—• -elimination

r h (MN) : T

*As opposed to Curry style type systems [Barendregt, 1992].

C h a p t e r 3: C o n s t r u c t i v e T y p e T h e o r y 35

T,x:S\-M:T
-^--introduction

r h {\x : S.M) : S -> T

More generally functions are defined as the dependent product types. A new

sort ' K i n d ' is introduced where Type resides, i.e. Type:Kind. General T y p e / K i n d

format ion rules are of the f o r m :

r h A : s i , T,x : A h B : s2
Type/Kind formation

r h (ILr : A.B): s3

where s i , s2 and s3 range over Type and K i n d . Allowing the various combina

tions as rules leads to different theories (and their corresponding logics). Baren-

dregt [Barendregt, 1992] gives an elegant discussion of some of these systems show

ing how they f o r m a cube of type systems, w i t h A —> at the base and the calculus

of constructions at the peak, see figure 3.1. Each orthogonal direction represents

the inclusion of one of the above format ion rules.

For example A2 has the rule:

r h A : Kind, T, x : A h B : Type

r h (ILr : A.B) : Type

This allows the judgement:

(LTA : Type.A A) : Type

and therefore introduces impredicativity. I t corresponds to the 2nd order typed

A calculus [Girard, 1986].

AP adds the rule:

C h a p t e r 3: Cons truc t ive T y p e T h e o r y 36

r h A : Type, T, x : A h B : A'ind

T h (ILE : A . f i) : / f i n d

corresponds w i t h predicate logic and is used as the basis for the A U T O M A T H

project [de B r u i j n , 1980].

\u adds the rule:

r h A : Kind, T, x : A h B : Kind

r h (Tlx : A.JB) : A'mt/

Calculus of
Constructions.

*a Th

A,co

Figure 3.1: The A-cube.

C o q u a n d - H u e t ' s calculus of construct ions

I n the calculus of constructions (CC) there is a type Prop corresponding to the

type of propositions (i.e. not all types are propositions). Furthermore this type is

impredicative, e.g. H.P : Prop.P is also a proposition (object of type Prop). This

allows for the notion of predicates and relations over types, e.g. Pred : A —> Prop

C h a p t e r 3: Cons truc t ive T y p e T h e o r y 37

and Relation : A —> A —> Prop. The CC corresponds to the intuit ionist ic higher

order predicate logic. Dependent funct ion types are present but the dependent sum

type is not.

3.2.3 Luo's E C C and U T T

The Extended Calculus of Constructions (ECC) was developed in Luo's PhD thesis

[Luo, 1990]. I t can be viewed as a unification of Mar t in-Lof ' s type theory and

CC. ECC extends CC w i t h the notion of type universes and the £ type, and i t

extends Mar t in-L"of ' s type theory by adding the impredicative type Prop, of logical

propositions, inside the smallest type universe Type(0).

The strong sum (E) type constructor does not reside in Prop. Al lowing i t to do

so would cause the logic to become inconsistent. Instead the existential quantifier

is defined in terms of the other primitives.

The usual logical operators are defined as (following the usual formulat ion for

second order logic connectives as functions [Leviant, 1994]):

Vz : A.P(x) =def Tlx : A.P(x)

P ^ Q —def \ f x : P.Q

true =def VX : Prop.(X -+ X)

false =def \/X : Prop.X

PAQ =def VX : Prop.{P ^ Q ^ X) ^ X

PVQ =def VX : Prop.(P X) {Q => X) => X

->P —ief P false

3x : A.P(x) =def VX : Prop.(Vx : A.(P{x) X)) => X

a =A b =def yPred : A -+ Prop.Pred(a) => Pred(b)

Luo proved that ECC obeys the Church Rosser property, subject reduction and

strong normalisation, and uses these to prove the consistency of the internal logic

[Luo, 1994]. Computational equality and type checking are both decidable in ECC.

Chapter 3: Construct ive Type Theory 38

The unified theory of types (UTT) [Luo, 1994] is, essentially, ECC extended

with inductive types. Goguen established, through the use of an operational se

mantics, that UTT is strongly normalising [Goguen, 1994].

3,3 Theorem Proving and Lego

The meta-theoretic properties for ECC and UTT described above mean that type

checking is decidable. This means that an algorithm can be designed which given

a judgement a:A, will check whether the object 'a' really is of type 'A ' .

Since propositions are types (of their proofs) a proof checker can be written,

which will take a proposition P, and an object p, and determine whether p is a proof

of P. Lego [Pollack, 1989] [Luo and Pollack, 1992] is a proof assistant, using this

idea, based on ECC and UTT. I t assists a user (by providing tactics) in building a

proof of a proposition.

Other theorem provers have also been developed based on the different type

theories. Examples include NuPRL [Constable et a/., 1986], ALF [Augustsson et

ai, 1990], Coq [Dowek, 1990]. A nice bonus for the method is that the term

produced is independent of the program which produced i t . A user sceptical that

the object jreally does prove a theoremJs free to build their own typexhecker (a

relatively straightforward task) and to type check the object.

Chapter 3: Construct ive Type Theory 39

Example (P A Q) entails P

Set the proposition up as a goal. The objective is to find an object of

this type.

Goal :UP,Q: Prop.(P A Q) -> P

introduce arbitrary propositions A and B, Lego derives the new goal:

A, B : Prop

Goal : (A A B) -> A

expand the definition of A based on the definitions given above:

Goal : (IIC : Prop.(A -> B -> C) -+ C) -> A

introduce a proof of the expanded term, Lego infers the new goal:

H :(UC : Prop.(A -> B -> C) -> C)

Goal : A

Refine by H(A), i.e. use the object H(A) to infer the goal and make

the new goal the antecedent:

Goal . A ^ B ^ A

introduce arbitrary objects a:A and b:B, Lego infers the new goal:

a : A

b:B

Goal : A

Refine by a, i.e. use the object a to infer the Goal. This completes the

proof. Lego then works back through the steps and builds the proof

object:

XP, Q : Prop.XH : (P A Q).H(Xa : P.Xb : Q.a)

3.4 Abstract Theories

In doing proof development on a large scale it is useful i f a problem can be broken

down, and attacked in a modular way. This is particularly so in computer science

where the problem often involves reasoning about a class of data types, or code

that gets re-used significantly.

Chapter 3: Construct ive Type Theory 40

With this in mind Luo developed the abstract theory mechanism for modular

reasoning in UTT [Luo, 1994] [Luo, 1993].

The following notational convention shall be used for the rest of the thesis:

T,[xi : Aux2 • A2,...,xn : An]

will denote the sigma type:

E z i : AiH,x2 : A 2 , . . . ,^4„

and iri wil l represent the obvious projection function that retrieves the i ' th entry

of the (dependently typed) n-tuple.

Def in i t i on 3.4.1 (Abs t rac t Theory) An abstract theory T, is a 4-tuple

T = {Str[T],Ax[T],Thm[T],Prfs[T])

where

® StrfT] contains the structure of T (usually a ~£ type).

® AxfTj is a predicate over StrfT]. It defines some properties which T must

obey.

® ThmfTj is also a predicate over StrfT]. These are the theorems which are

provable about T.

© PrfsfTf is the abstract proof of the theorems of T. Its type is

Vt: Str[T].Ax[T](t) Thm[T](t)

For example, to define an abstract theory for semi-groups the structure type

would contain entries for the carrier set and the operation:

Chapter 3: Construct ive Type Theory 41

Str{G] = S [X : Type, * : X -> X -» X]

the axioms would be a predicate ensuring associativity, i.e. Vx, y, 2 : X.(x *(y*

z)) = {{x *y)* z). This then provides an abstract framework for proving theorems

about semi-groups.

Moreover, i f a homomorphic mapping can be defined between two abstract

theories then it is possible to inherit the theorems and proofs from one theory to

another.

For example, a theory for Groups could be defined following the same lines as

the theory for semi-groups, only with an extra entry in the structure for the identity

element, and an extra axiom corresponding to 'every element has an inverse'. There

is an obvious (forgetful) homomorphic map between the abstract theories which

allows proofs developed for semi-groups to be inherited by groups.

A framework similar to this will be used to allow for a modular approach to

reasoning about SemNet. Note that this framework explicitly uses both E types

and impredicative Prop (through predicates) so that it could not be defined in

either CC or Martin-Lof's type theory.

3.5 Subtyping

As discussed in the introduction type theory is more restrictive than set theory.

This results in a more manageable language with useful features (such as decid

ability of type checking).

A consequence of the restrictions is that type theory has no obvious equivalent of

the subset. This is serious for this work since the hierarchy is intuitively understood

as a subset hierarchy.

Chapter 3: Construct ive Type Theory 42

The problem also has implications for the role of type theory as a tool for

computer science, since a notion of subtype is extremely useful to model aspects

such as re-use. Therefore there is a lot of research being done to establish coherent

theories of subtyping that do not impinge on the 'useful properties' that type

theories have [Jones, 1996].

This work will make use of subtyping based on coercive functions [Luo, 1996].

Here the basic subtyping relation is generalised from a basic set of coercions. To

say A is a subtype of B:

A r< B

means that there is a (coercive) function K : A —> B and whenever an object

a:A is used where an object of type B is expected then n(a) is used. Uniqueness of

typing is lost, but it is replaced by a notion of all objects having a unique principal

type, where the principal type loosely corresponds to the 'smallest' type.

3.6 Constructive Type Theory for Natural lan

guage

As has already been outlined the main application of type theory has been for

formal methods for software development and for formalisation of constructive

mathematics. Indeed these applications have driven the design of the modern

versions of the theories.

An entirely separate application of type theory has been to use i t as a tool for

studying natural language. Natural language is extremely complicated with many

aspects. Cann [Cann, 1993] describes the task of formal semantics for natural

language as

"the study of meaning as expressed by the words, phrases and sentences

Chapter 3: Construct ive Type Theory 43

of Human languages. I t is, however, more usual within linguistics, to

interpret the term more narrowly, as concerning, the study of those as

pects of meaning encoded in linguistic expressions that are independent

of their use on particular occasions by particular individuals within a

particular speech community"

Simple type theory (i.e. without dependent types) has long been a tool in this

endeavour [Cann, 1993] [Dowty et a/., 1981]. Part of the reason for this is usage of

functions and for quantification over types.

Dependent types fo r quantif iers

More recently Ranta [Ranta, 1994] has shown that aspects of Martin Lof's type

theory are useful for categorising natural language. I t is argued that quantifiers for

noun phrases are better captured through the dependent types:

some

an £ — types

a certain

every

any > IT — types

each

Giving the following (loose) interpretations:

a man owns a donkey as T,x : man.Sy : donkey.owns(x,y)

every man owns a donkey as Hx : man.,£y : donkey.owns(x,y)

The £ type is also used to build up complex noun phrases. For example,

Chapter 3: Construct ive Type Theory 44

old man as Ex : man.old x

man that owns a donkey as Sx : man.Hy : donkey.owns(x, y)

In this way, such noun phrases can be treated directly as constituents (rather

than being dissolved as an antecedent in predicate calculus) of sentences. For

example, "every old man walks" can be interpreted as

Hz : (Ex : man.old x)walks nl z

rather than as Va; : man.old x walks x.

£ types model progression

A main argument for using the dependent types is that they can model progression

of a text or discourse. For example, to capture the conjunction and implication

involved in:

"a man walks and he whistles"

" i f a man walks he whistles"

The initial statement, in both cases, "a man walks" is interpreted as:

TiX : man.walks x

interpreting conjunction as a S — type and implication as a I I — type (rather

than as A and =>) means that the interpretations of the second statement, "he

whistles" can model the progression of the statements by extracting the relevant

parts of the initial statement (as occurs in natural language).

Chapter 3: Construct ive Type Theory 45

Hz : (Ex : man.walks x).whistles TTI Z

Hz : (T,x : man.walks x).whistles 7rl Z

Similarly the 'donkey sentence' can be interpreted as:

Hz : (T,x : man.Ey : donkey.owns(x,y)).beats(irl z,nl (ir2 z)) (3.1)

This aspect of dependent types is used in this work to model how SemNet builds

and re-uses concepts, see sections 7.2 and 7.5.

Contexts and possible wor ld semantics

Ranta also considers modelling statements of belief. Essentially each agent is as

signed a context consisting of judgements they have made. The contexts then act

like possible worlds [Meyer and der Hoek, 1995], except that since the context can

be progressive, later beliefs can depend on earlier ones. What the agent believes

are all the judgements that are provable in this context.

This is of course extremely relevant to this work. In particular SemNet has con

structs for representing the above features of language and so i t will be interesting

to see if the constructive aspects of UTT are useful for capturing these constructs.

3.7 Motivations for using U T T

In summary there seem to be many good reasons for attempting to formalise Sem

Net using UTT and Lego. These are summarised as follows:

o The intuitive meaning of SemNet nodes is defined by their properties, rather

than their extension. I t seems that type theory with intensionally defined

Chapter 3: Construct ive Type Theory 46

functions may provide a better tool for a better interpretation of nodes than

sets.

© Event nodes in SemNet correspond to statements. This causes difficulties in

set theory, as statements cannot naturally be interpreted as sets. However in

type theory propositions are first class objects (i.e. types) and so events can

be interpreted as objects of type Prop.

e The work of Ranta has shown that constructive type theory has features

that describe complex aspects of natural language. Since SemNet claims

to represent various complex aspects of natural language, constructive type

theory seems an ideal tool for testing this out.

• UTT is a well established mathematical theory with many useful properties,

including an internal logic which is consistent. As well as this research devel

oped for applications to computer science have left behind a useful legacy of

tools and techniques including:

— Abstract reasoning mechanism for modular approach to problem solving.

— The proof assistant, Lego, which helps in the development of proofs and

provides machine based proof (type) checking.

_— SemNet has been written_in Haskell [Hudak et al., 1992] , a-strongly

typed functional programming language [Bird and Wadler, 1988], [Holyer,

1991]. Therefore it may be straightforward to convert this code into Lego

code, and so apply techniques from formal methods.

Chapter 4

SemNet

The role of this chapter is to informally introduce SemNet and its associated rea

soning mechanisms. Unless stated the current implementation will be described.

Some representation issues are under current development and are described since

it is felt that the work of this thesis contributes to the discussion.

As discussed in chapter 1, a KR for NLE must be expressive, natural, readable,

efficient, robust, and flexible. In this chapter the aim will be to convince the

reader, intuitively, that SemNet meets these aims. A metric distributedness

which is directly related to these attributes is described. To show the relevance of

this metric a short analysis of its application to SemNeTand other representations

is described.

No formal attempt at interpretation is made in this chapter, however, in some

cases where ambiguity could arise, classical set theory is used to express informal

meanings.

4.1 SemNet basics

In common with semantic networks SemNet is a graph based representation, where

concepts and relationships are represented by nodes and arcs. "Knowledge" is

Chapter 4: SemNet 48

elicited by graph traversal. SemNet has been designed specifically for NLE [Shiu

et al., 1996], in particular i t needs to be expressive, efficient, robust, flexible and

easily integratable with other modules. SemNet supports many forms of reasoning

as well as fully exploiting inheritance. There are, for example, models of epis-

temic reasoning, time and location [Short, 1996], reasoning by analogy [Long and

Garigliano, 1994] and standard logical connective reasoning.

4.1.1 Nodes and Arcs

There are 3 types of nodes: entities, events (assertions) and actions. There are

3 types of directed arcs: subject, object and action which can be read/traversed

in either direction. Only event nodes can have a subject, object or action arc

attached. Only action nodes can be an action for an event node.

Figure 4.1 shows a section of SemNet graph. Event nodes correspond to state

ments. The event node E l states that "Every FARMER1 OWNS a D 0 N K E Y 1 " .

The two 'spec' links are a shorthand for events with 'specialisation' as action. From

now on such 'hierarchy' events wil l regularly be considered and drawn as links, and

will be termed 'event links' or 'hierarchy events'. The subject/object arcs deter

mine the direction of the statement. Intuitively events state that the referenced

-concepts are involved in-a relation (labelled by the action). On each node there is-

a quantification tag which makes explicit the way in which the referenced concept

is used.

FARMER[U] DONKEY[U]

spec spec

FARMER 1[U] DONKEY 1[E]

E l

act

OWNS

Figure 4.1: Basic SemNet graph

Chapter 4: SemNet 49

The meaning of the tags are as follows:

• Universal [U] refers to "instances" of the concept and says that all the

"instances" of the concept are involved in relationship specified by the event.

• Exis tent ia l [E] refers to the "instances" of the concept, but the "instance"

involved depends on the particular "instance" of some other universally quan

tified concept involved in the event.

• Framed Universal [FU] (not used in the diagram) is used when a depen

dency works in both directions, i.e. as a shorthand for having two Universal-

Existential events. For example, i f FARMER! and D0NKEY1 were both

tagged with FU quantifications, then the event would state that:

"Every FARMER1 OWNS a D 0 N K E Y 1 ' and 'every D0NKEY1 is

owned by a FARMER1"

• I nd iv idua l [I] (not used in the diagram) refers to the concept as a "whole"

and says that it is involved in the relationship specified by the event.

• Named Ind iv idua l [NI] (not used in the diagram) is the same as the indi

vidual tag except that the concept has a fixed name.

As well as making assertions, events define the concepts which they reference.

For example, FARMER1 is defined as the concept "farmers that own donkeys" and

D0NKEY1 as "donkeys owned by a farmer".

4.1.2 Negation of events

An action can be negated, so that an event states that the referenced concepts are

explicitly not in the labelled relationship.

For example, E l in figure 4.2 asserts that "Every FARMER2 does not own one

of the D0NKEY2's", thus defining FARMER2 as the "farmers that do not own all

Chapter 4: SemNet 50

F A R M E R [U] D O N K E Y [U]

spec spec

F A R M E R 2 [U] D O N K E Y 2 [E]

obj sub

E l

non
act

V
OWNS

Figure 4.2: Negated Event

donkeys" and DONKEY2 as the "donkeys that are not owned by some farmer".

In first order logic:

This is equivalent to insisting that negations can only be applied to 'atomic' 1

propositions in J-OVC. Therefore to negate an event, as well as negating the action

the quantification tags also need to be changed2. For example, the negation of E\

in figure 4.1 is E3 in figure 4.3. The 'inst' link is a shorthand for an event with

'instance' as action.

xThat is, an un-quantified proposition without any logical connectives.
2Except when the referred concept acts as a constant, e.g. if it is a Named Individual.

Vx3yFARMER2(x) (DONKEY2(y) A ^OWNS{x,y))

Chapter 4: SemNet 51

F A R M E R f U] D O N K E Y f U

spec spec

F A R M E R 1 U D O N K E Y ! [El

obj
E l inst

act

F3[I]
OWNS

non-act

E3

sub

Figure 4.3: Logical Negation of an Event

In first order logic:

3x.Vy(FARMERl(x) A DONKEY{y) A ->OWNS{x,y))

There is a negation function not : Event —» Event which implements this.

4.2 K R and the world

The information which is recorded within SemNet is intended to reflect the world

as it is understood by the agent that uses the network (LOLITA). No claim is made

that the representation reflects the world as it really is (if there is such a thing),

nor even that the representation reflects some consensus view of the way the world

is.

Chapter 4: SemNet 52

4.2.1 SemNet and Language

I t should be stressed that SemNet is intended to represent knowledge declaratively

and independently of natural language. As discussed in chapter 1, many of the

surface linguistic features of an utterance have been removed. For example, active

and passive versions of statements are normalised out during analysis and replaced

(according to requirements) during generation [Smith, 1995].

The concepts are finer grained than words, however, with the principle that

words only occur in a language when they correspond with a useful concept, many

of the nodes of SemNet correspond directly with words. WordNet [Miller, 1990]

has been used to help in building these concepts into SemNet.

4.2.2 Meaning as Location

No concepts have a pre-defined meaning in SemNet. The meaning of a node/concept

is defined by its location in the network3. For example, from figure 4.1:

FARMER! is the concept of 'FARMER'S that own a DONKEY'

but of course, FARMER and DONKEY have no pre-defined meaning, their

meaning is established by reading their local connections. Doing this defines

FARMER1 further, i.e.

FARMER1 is the concept of "HUMANs that own and cultivate a FARM'

that own a DONKEY"

and FARMER1 is only defined when FARMER and DONKEY are fully defined,

i.e. when the whole network has been read.

3This is an informal notion that will be investigated further in the later chapters.

Chapter 4: SemNet 53

4o3 Control Variables

Each node has an associated set of controls. Controls contain standard information

shared by a large number of nodes. For example, the type of a node (i.e. event,

action or entity), and the quantification tags of the entity nodes are stored as

controls.

In theory the information stored as controls could be expressed as part of

the graph. However, in each design decision based on the fact that this

information is looked up regularly, has been made to store the information lo

cally/internally.

4.4 Real and Hypothetical Events

FARMERfU]

spec

FARMER 1[U]

DONKEY[U]

spec

DONKEY 1[E]

OWNS

B E L I E V E S

ROBERTO[Nl]

Figure 4.4: Epistemic Event

It is possible for LOLITA to believe that another agent believes some event to

hold. For example, LOLITA may believe that "Roberto believes that every farmer

owns a donkey.", see figure 4.4. This syntax is similar to the 'proposition' nodes of

SNePS (see section 2.4!) and allows recursive nesting of beliefs.

According to the description given so far, there is no difference between the

Chapter 4: SemNet 54

way E i is represented when LOLITA believes it, and when it is there merely as a

part of some other event which LOLITA believes (of course it could be both). A

'status control' makes this distinction, status 'real' means that the event is part of

LOLITA's belief set (i.e. she believes it) and status 'hypothetical' means the event

is there merely as a substructure to some other 'real' event.

The above description is how SemNet is implemented currently. Some design issues

can already be discussed.

4=5.1 Observed Events

It is often useful to refer to complex concepts without affecting their meaning. For

example to represent the well known donkey sentence,

"Every farmer that owns a donkey beats it"

requires the concept of "farmers that own donkeys" as the subject for the beating

event, but_wjth the current structure, if a beating ev_ent is added, then the concept

is changed to "farmers that own and beat a donkey". The proposed solution is to

have a different event type, which makes assertions but does not define its reference

concepts, as in E2 in figure 4.5. This mimics the progression that occurs so often

in natural languages as discussed in section 3.6. By re-referring to the same node,

unique concepts for unique nodes is preserved, see section 2.3.3.

A further rule required here is that when a node is re-visited, then the reference

is to the same instance previously scoped. In this example this means that if E i

has been 'traversed' then a 'donkey owning farmer' and 'the donkey he owns' will

have been specified, after this if E 2 is 'traversed' the interpretation is that it is this

same 'donkey owning farmer' that 'beats' the same 'donkey'. Without this rule, E 2

4,5 Representation Issues

Chapter 4: SemNet 55

F A R M E R [U] D O N K E Y [U]

spec spec

V
F A R M E R 1 [U]

V
D O N K E Y 1[E]

E l

act

sub obj
O W N S

E 2
(observed)

act

B E A T S

Figure 4.5: Proposed SemNet graph for the 'donkey sentence'

would simply say that every 'donkey owning farmer ' beats some 'donkey owned

by a farmer'.

Connections wi th known networks

The separation of defining and observing events is the same distinction made be

tween T-box statements and A-box statements in KL-ONE (see section 2.2). How

ever in SemNet both event types are subject to the same semantic analysis and

inference engine modules so that there is a very close coupling between the two

sorts of information, as demanded by [Beierle et a/., 1992].

Defined Events and Necessity

Observed events have a different effect on the meaning of a concept. In figure 4.6

node X can be interpreted as: "Computer Science staff that play football", and it

is an observed fact that "all X's study A I " . It is reasonable to state that:

"all X's necessarily play football"

Chapter 4: SemNet 56

COMPUTER SCIENTIST
AT DURHAM

STUDY PLAYS

su

E2(Observ«J) EI(Dcfincii)

obj obj

I

FOOTBALL

Figure 4.6: SemNet graph, showing necessity

but it is not reasonable to state that:

"all X's necessarily study AI"

Algorithms which need this distinction (e.g. causality [Poria and Garigliano,

1996] and generation) should use the observed event accordingly.

4.5.2 Quantification on the arcs

A concept can be referred to by many events. It is possible that a node be referenced

with different quantifications. For example to represent the sentence:

"Every mother has a brother each of whom owns a parrot."

The concept for brother is used twice, once as an existential concept and once

as a universal. Since quantification is tied to the concept the only way this can be

done at the moment is to make two copies of the concept see figure 4.7. Clearly

this is not efficient in terms of net size. Alternative solutions are to move the

quantification tags on to the arcs, see figure 4.8, or to have them as controls on the

event.

Chapter 4: SemNet 57

MOTHER[U] BROTHER[E]

BROTHER OF copy

PARROTfU]

obj sub.

BROTHER[U]

act

OWNS

Figure 4.7: Current quantification scheme, example problem.

The hierarchy events actually treat 'Universal' concepts as 'Individual' since

they refer to the 'set' as a whole. Changing the scheme will allow a more general

approach to concept referencing.

From now on it is assumed that quantification is attached to the event node.

4.5.3 Named Individuals and constants

An initial, intuitive interpretation for concepts might be to treat individuals as

variables and named individuals as constants.

For example, interpretations for E i and E 2 in figure 4.9 could be:

Chapter 4: SemNet 58

MOTHER
obj

U]
E l

sub

act
[E

BROTHER BROTHER OF

U

sub

E2 act

\ obj

OWNS

E
PARROT

Figure 4.8: New quantification scheme, solution.

Ei = Vx.x € dogs Likes(Sanjay,x)

E2 = By.Vx.x G dogs —> Likes(y,x)

Further analysis shows the situation to be more complex. If an individual is

referred to by an observed event, then it too behaves like a constant, e.g. E3 refers

to the constant 'man that likes all dogs' (i.e. MAN1) and states that he 'hates all

cats'. Also the concept 'Sanjay' is not defined at all by event Ei, it is denned as

the concept with name 'Sanjay'. Therefore, quantification and 'naming' of concepts

are separate. For the remainder of this thesis it will be assumed that if a concept

is named, this will be stored as a control on the node (effectively a shorthand to

say this concept is defined as the concept with this name). The 'named individual'

quantification will not be used.

Chapter 4: SemNet 59

HATES MAN U N CAT obj act

E3 inst

sub

I
inst E2

MAN1 obj I
act

LIKES DOG

U SANJAY
act

NI
sub

E l

E l defining

E2 defining

E3 observing

Figure 4.9: Example showing names as properties

4.6 Reasoning Mechanisms on SeniNet

As stated there are many inference algorithms that have been designed and im

plemented for SemNet. All reasoning proceeds by passing an event (intuitively a

proposition) to SemNet and an algorithm determines whether the event (proposi

tion) or its negation is entailed (validly or plausibly) by SemNet. Before allowing

an event to be added to SemNet the reasoning mechanisms first check that neither

it or its negation can be inferred^ _ _ —

4.6.1 SemNet linear Notation

To list the inference rules, the following notation will be used:

Chapter 4: SemNet 60

R2, R3, ••• will represent arbitrary actions

A, B, C, D (occasionally indexed) will represent arbitrary entities

a, b, c will represent individual nodes

(when it is clear that a node is an individual)

Ei, E2, E3,... will represent arbitrary events

bb will represent arbitrary boolean values

Qit Q2, Q31 • •• will represent arbitrary quantification tags

The structure of events will be written as:

{Ri,bb,A,QhB,Qk)

For example, (OWNS,true,FARMERl,U,DONKEYl,E), represents Ex in fig

ure 4.1. Occasionally, when no confusion can arise the boolean and quantification

values will be omitted. For example, (BELIEVES,ROBERTO, El) represents E 2

in figure 4.4. Hierarchy events will be written as:

4.6.2 The Entity Hierarchy

All the entity concepts lie in a hierarchy. There is a top concept (called "Entity")

and all the other entities are either specialisations or instances of "Entity", see

figure 4.10. Specialisation and instances may usefully be interpreted as the subset

and membership relations of set theory, however, since entities will be formally

interpreted as types, this will not be strictly correct. Again the specialisation

and instance events have been drawn as links. Negated occurences here actually

a £ A

A ^ B

a e A

- (A hs B)

informally, B is a specialisation of A

informally B is not a specialisation of A

informally, a is an instance of A

informally, a is not an instance of A

Chapter 4: SemNet 61

correspond to the logical negation, as the entities are referred to as constants.

E N T I T Y

spei

THING

THING 1 ANIMAL

spec

M A M M A L

\spec

HUMAN

insl / \ spa
notspa

FIDO HUMAN 1 ... FARMER

Figure 4.10: Section of the Entity hierarchy of SemNet

Each event which is explicitly present in the network is treated as an axiom,

and so can immediately be inferred. There are two rules for deriving spec events:

4.1
A ys B, B >zs C

AhsC
4.2

Ahs B,^{A hs C)
hs C)

At this stage there is no closed world assumption, so that the second rule is the

only way in which a nonspec relation can be inferred. Inheritance rules for the

basic events are:

4.3
fc€ B,A hs B

be A
4.4

a £ A, A ys B

a <fc B

4.5
A hs B,(R,bb,A,U,C,Q)

(R,bb,B,U,C,Q)

file:///spec

Chapter 4: SemNet 62

a e A,(R,bb,A,U,C,Q)
4.6

(R,bb,a,I,C,Q)

D C,(R,bb,C,E,A,U) 4.7
(72, bb,D,E,A, U)

a e A, (R, bb, A,U,B, E)
4.8 j(a) new

f (a) € B , (R , b b , a , I J { a) , I)

These rules allow for very efficient inference by searching up and down the

hierarchy. The above operate only on the subject of each event and there are an

equivalent set of rules for the objects.

The intuition behind these rules is as follows:

4.5 captures the inheritance involved in inferring that

"all HUMANs eat food" implies "all FARMER'S eat food".

4.6 captures the inheritance involved in inferring that

"all DOG's like food" implies "Fido likes food".

4.7 captures the inheritance involved in inferring that

"There is a DOG that likes all HUMANs" implies "There is an

ANIMAL that likes all HUMANs".

4.8 captures the inheritance involved in inferring that

"All DOGS like a HUMAN" implies "There is a HUMAN that FIDO likes"

4.6.3 The action hierarchy

As well as the entity hierarchy there is an action hierarchy.

Writing an action spec event as

Ri ^ SQ Rj

The associated inference rules are:

Chapter 4: SemNet 63

CHANGE

HEAT

COOK BURN

FRY B A K E

Figure 4.11: A section of the Action Hierarchy

2 hsa Ri,{Ri,true,A,Qi,B,Q2)
4.9

(R2,true, A,Q1,B,Q2)

R2 hsa Ru (R2, false, A, Q u B, Q2)
4.10

(Ri, false, A,QUB,Q2)

4.9 captures the intuition behind inferring

"Simon fries an egg" implies "Simon cooks an egg"

4.10 captures the intuition behind inferring

"Simon did not cook an egg" implies "Simon did not fry an egg"

4.6.4 Connective Reasoning

A further type of events are the logical connective events. £ 3 in figure 4.12 is a

logical connective event with action 'Implies'.

The logic actions are: Implies, Or, and And. Their intended meanings are the

standard logical connectives of relevant propositional logic [Anderson and Belnap,

Chapter 4: SemNet 64

R O B E R T O [N I] D O N K E Y l [I]

OWNS

I M P L I E S

Figure 4.12: An example logical event

1975]. The associated inference rules ('not' is the negation function discussed in

section 4.1.2) are:

ModusPonens
(implies, E±, E2), E\

E2

ModusTolens
[implies, E\, E2), not(E2)

not(Ei)

(or, E1,E2),not(El)

E2

E\,E2

(and, Ei,E2)

E,

(or,EuE2)

There is a 'Cause' action which behaves similarly to 'Implies' except that it is

intended to capture the situation where there is a temporal dependency between

the referenced events, [Short, 1996].

Chapter 4: SemNet 65

Since 'Implies' is used relevantly, rules such as:

E2

[implies, Ei, E2)

are not valid. Capturing the meaning of relevant implication formally is difficult

since its derivation is not truth functional.

Many of the other representations which could be used in inference, such as:

(and, Ei,E2)

are not listed as they are normalised out during the analysis phase.

4.6.5 Epistemic reasoning

Epistemic events have an agent as subject, an event as object and an epistemic

relation (for example, know, believe or think) as action, see figure 4.4. Currently

all epistemic relations (i.e. know, believe and think are treated in the same way).

It plausibly follows that a man that believes that "all farmers own a donkey"

also believes that "all small farmers own a donkey". The intuition behind the

epistemic rules are that LOLITA assumes that all agents are capable of making

the same inferences as she can. Therefore there is an epistemic rule for each of the

rules previously described, essentially allowing LOLITA to assume that the agent

can apply that rule. For example, the epistemic version for rule 4.1 (transitivity of

spec relations) is:

{ R e p i , Agent, (A hs B)), (R e p i , Agent, (B y s C))
4.11

(Repi, Agent, (A >zs C))

Chapter 4: SemNet 66

which captures the intuition in the above inference.

As well as these there are also rules which assume that if 'an agent believes

something' then 'the agent believes that they believe that something', i.e.

(Repi, Agent, E)
4.12

(Repi, Agent, (R e p i , Agent, E))

and that ' if an agent believes 'E is not the case" then 'the agent does not believe

that 'E is the case", i.e.

(Repi, true, Agent, not(E))

(Repi> false, Agent, E)

4.7 NLE principles

Chapter 1 outlined the aim of adding formality to the intuitive good points of

SemNet. These were based around the NLE principles. Having described SemNet

in more detail, we are now in a position to describe (although still informally) how

it meets some of these principles. These will motivate the areas which this project

will attempt to formalise.

4.7.1 'Correctness' of Reasoning

In order to be more formal, a mapping to a formal language needs to be given. The

rules should then be shown to be sound with respect to this formal interpretation.

If the rules are not sound then it might be expected that the rules correspond to

some intuitively plausible sequence/operation in the semantics.

The other aspect of correctness that could be looked at is how well the imple

mentation corresponds to the definitions given. Ideally there would be a translation

to some programming language structures and a proof that the code implements

Chapter 4: SemNet 6T

the declarative rules.

4,7.2 Expressiveness for NLE

This chapter has shown that SemNet can represent basic relationships, and state

ments with anaphora and complex dependent quantifications (including the well

known problematic 'donkey sentence' structure).

Mechanisms are provided to represent and reason about epistemic statements

and the standard logical connectives.

SemNet defines concepts in terms of their properties (which result from their

location in the network). Some properties are necessary facts and some are not.

To show this more formally a semantic model is required. To analyse the above

aspects the semantic language must be capable of 'expressing' each of them. Anal

ysis, apart from establishing that the different structures have a clear and distin

guished interpretation, will involve giving semantic counterparts to any algorithms

which operate on these structures.

It would be useful if the manner in which these aspects are built is similar in

both SemNet and its semantic counterpart. To give a straightforward example, if

the semantic language were TOVC the logical action 'AND' will clearly map to

the logical connective 'A'. This correspondence means that syntactic operations

involving this 'action' are easily understood in terms of the formal semantics.

As discussed in chapter 2, there has been much research investigating the idea

that semantic networks give up expressiveness in order to gain tractable sound

and complete reasoning (something not possible for full TOVC). Instead various

heuristics are used for various efficiency reasons and no claim is made for complete

ness. With this in mind it is still interesting to attempt some form of metric for how

expressive SemNet is. The formal model will consist of a mapping of all SemNet

structures into a language. This will serve as a starting point for considering an

inverse mapping from the semantic language into SemNet structures. This in turn

Chapter 4: SemNet 68

will be a starting point for measuring the expressiveness of SemNet.

4.7.3 Developer cQHiprehend=ability

Subjectively, SemNet is readable and easily comprehendible. It is important from

a team development (and hence engineering/pragmatic) viewpoint that this is so.

However, again, as the scale and complexity increases there is a danger that differ

ent developers have different interpretations which could lead to incorrect assump

tions and code.

A formal semantic model will address this problem as it provides an unambigu

ous reference point for the meaning of constructs.

4.7.4 Flexibility and Robustness

Information is retrieved and inferred from SemNet by graph traversal. Intuitively

there is a lot of flexibility in the structure. It seems that any node can be picked and

from there any arc can be traversed (in any direction) and 'reasonable' information

can be 'read'.

Such flexibility is extremely useful since it allows the inference engine designer

the freedom to choose the most appropriate path for any inference algorithm with

out worrying about the interpretation. Similarly the generator can take any amount

of the net and 'say' it, and rely on it being a reasonable part of the belief set of

LOLITA.

This flexibility is useful from a robustness point of view as if it is necessary to

stop traversing a graph (for whatever reason) the information gained is still reliable.

The next section elaborates on these informal notions, starting to build a proper

theory for it.

Chapter 4: SemNet 69

4»8 Distributedness

This section is a cut down description of the work described in [Short et ai, 1996].

A network is said to be distributed if any section of network gives meaningful

information which is sound with respect to the full reading of the network.

If a formal semantic model were in place, 'full reading' could be defined as the

full model of the network, and the interpretation of any section should be entailed

by the full model.

Distributedness is related to compositionality, which demands that the full

meaning of the network should be a function of the meaning of its syntactic sections.

Distributedness adds the requirement that not only must they be an argument of

the function, but must also be sound with respect to the result of the function.

4.8.1 Distributedness of SemNet

In SemNet a single node (say El in figure 4.1) tells us nothing, except that some

concept exists. Its controls will specify its type (event, real in this case). Every

arc attached to the node specifies Ei further: the action arc specifies the relation,

the subject arc specifies that it is all the instances of FARMERi that participate

in the owning relation in the subject role, and the object arc specifies that there is

a (scoped) instance of DONKEYi which participates in the relation in the object

role. This information is a sound sub-part of the interpretation that all instances

of FARMERx own a (scoped) instance of DONKEYi Thus each arc conveys an

independent and sound piece of information about the node. As a further exam

ple, the spec link tells us that FARMERi is a 'subset'4 of FARMER which only

adds to the interpretation. Ei is still not entirely defined: each node is only fully

defined by the whole semantic network. Information which must be picked up to

preserve soundness of interpretation is the control determining whether an event is

4 The terms subset and superset are used loosely here; formal interpretations are considered in
chapters 5, 6 and 7.

C h a p t e r 4: SemnNet 70

hypothetical or real, as i t can be discarded i f i t is hypothetical.

This aspect is exploited by the inheritance algorithm. Although the rules are

listed i n terms of fu l l y defined events, the implementation (of say rule 4.1) relies on

the 'subject' of an event being read independently f r o m the rest of i t . For example,

i f the subject is 'universal' then the inheritance algori thm w i l l search 'up ' the enti ty

hierarchy, whatever the object and actions are.

4.8.2 Distributedness of other Semantic Networks

The remainder of this section describes some in i t ia l investigations into the dis

tributedness of other representations. This is done not as a cri t icism of other

networks, but to test out the relevance of these new properties and also to t r y and

show where SemNet differs f r o m other well known networks.

I t is perhaps easiest to consider TOVC. A knowledge base of TOVC would be

a list of statements.

\/xVy(Farmer(x) A Donkey(y) A Owns(x, y)) —> Beats(x,y)

Distributedness is the extent to which subsections of this can be taken and inter

preted. Each individual statement can be taken and used independently. However,

in most cases, i t w i l l not be possible to take a subsection of a TOVC statement

and consider i t as a sound part of the knowledge base. For example, i f the in i t i a l

segment of the above statement is taken, i.e.

^x\/y{Farmer{x) A Donkey(y) A Owns(x,y))

this is clearly not something that follows f r o m the f u l l knowledge base.

The T-Box of K L - O N E based systems [Woods and Schmolze, 1992], [Beierle et

C h a p t e r 4: S e m N e t 71

al., 1992] is Semantic Net based, the A-Box usually consisting of F O L statements.

Thus the A-Box suffers f r o m the same problems as above. However the T-Box

which defines concepts can be traversed, seemingly in an unrestricted way. This

shows that this aspect of K L - O N E could be distributed, although to show this

formal ly the semantic model described in section 2.2 would need to be used.

DONKEY FARMER STAT OWN PTNT

^STAT^ *- ^ P T N ^ » PTNT STAT B E A T

Figure 4.13: CGT graph for the donkey sentence

C G T [Sowa, 1984] builds complex logical assertions using contexts. Figure 4.13

shows how the donkey sentence is represented by C G T . This use of contexts requires

the whole context to be read/traversed for any sense to be made. For example, the

innermost sub-context is interpreted as "Farmers do not beat Donkeys". I f this

is read independently f r o m the rest, the interpretation derived is not sound w i t h

respect to that provided by the f u l l context. For C G T the independent pieces of

network must be at the level of a context rather than its components. This is less

distributed than SemNet, where arcs f o r m the smallest independent pieces of the

network.

o 0 action acl Ml BEAT

agent object

0 O o o some
f±U3 class V2 V I

member member

agenl object al

o o action OWN act

Figure 4.14: ANALOG/SNePS graph for the donkey sentence

C h a p t e r 4: S e m N e t 72

Figure 4.14 shows how A N A L O G represents the donkey sentence. This rep

resentation is similar to SemNet. The structured variable nodes V I and V2 are

defined by their outgoing arcs. These defined V I as: "the intersection of all fa rm

ers and all things that own a donkey" and V2 as "some donkeys, scoped by the

variable V I " . These variables are re-used by M l which states the beating event.

As in SemNet, a rule is needed to state that the beaten donkey is the same donkey

that is owned by the farmer.

In tui t ively each arc can be read independently and soundly. However i t is

not clear how negative statements are made in A N A L O G . I n SemNet, negation is

always attached to the action (i.e. the relation), so that other information can be

read independently. SNePs would also have to mimic this to be distributed.

4.9 Review

This chapter has given a description of the structure of SemNet. In particular

more detail has been added to the proposition as types and meaning as location

principles. A n explanation of the hierarchy, the inference engine and some of the

current research issues of SemNet have been described. I t should be stressed again

that performing the semantic analysis has changed the authors view of i t leading

to better understanding, hopefully more abstract and hopefully a better exposition

of i t .

For the rest of this thesis, this aspect of the contribution w i l l not be fur ther

expanded. Instead, two models w i l l be bu i l t , one set theoretic and one type the

oretic and they w i l l be judged by how well they formalise the intui t ive concepts

described here.

Chapter 5

Formalisation Issues

The role of this chapter is to highlight some of the problems involved in formalising

SemNet. A set theoretic semantic model of SemNet is developed. This is then used

to analyse some of the properties of SemNet, including distributedness.

5.1 Set Theoretic Semantics

I n chapter 4 the pr imi t ive syntactic objects of SemNet were the three node types

(entity, event and action) and the three arc types (subject, object and action). The

inference rules were each given in terms of f u l l y defined events. Their substructures

(defined by the arcs) were not used. Since the first objective of the formalisation

is to understand the inference engine, arcs w i l l not be interpreted.

I t turns out that concepts which are quantified w i t h 'Universal ' and 'Existential '

tags behave differently f r o m those w i t h ' Indiv idual ' tags. These are split into two

fur ther primitives universals and individual concepts (nodes).

SemNet is re-defined as:

• a set of universal concepts, CU

• a set of individual concepts, C I

C h a p t e r 5: Formal isat ion Issues 74

© a set of action concepts, CA

o a set of event concepts, CE (defined in terms of the other concepts)

As indicated in 4.4.1 the natural starting point is to interpret universal concepts

as sets, and the enti ty hierarchy as subset and membership statements.

More formally, postulate a set of objects, V which fo rm the domain of discourse.

A model of SemNet is formed by a set of mapping functions AA.Sindex which map

the concepts into the following types 1 :

MSU : CU -+ P(V)

MSi :CI->V

MSa : CA P(V x V)

MSe : CE —> {true, false}

The hierarchy events map to subset and membership statements:

MSe{AhsB) i—>• (MSU(A) D MSU(B))

MSe(a(EA) ^ {MSi{a) e MSU(A))

Basic events take the dual role of making assertions and defining concepts. For

example, the nodes in figure 4 .1: F, F i , D , and D i (for F A R M E R , F A R M E R 1 ,

D O N K E Y , and D 0 N K E Y 1) map to subsets of D , and 0 (for OWNS) into D x D .

E i defines D i as:

MSU{DX) = {x | x € D A 3y(y G F A 0(y, x))}

and makes the statement:

Where V returns the power set (i.e. set of subsets) of a set.

C h a p t e r 5: Formal i sa t ion Issues 75

Ex = Vx3y{x e F ^ i y e D A 0{x, y)))

I n general the assertions and definitions made by an event w i l l depend on the

quantifications involved, see figure 5.1.

A' B >

spec

sub

qi
obj

spec

—*~ B
q2

act

R

Figure 5.1: General Event Structure.

E v e n t s w i th a bounded existential

I f q l is universal and q2 is existential, then E is interpreted as:

(\/x3y(x G A-t (y € B

AR(x,y))))

{x | x e A' A 3y(y e B'

AR(x,y))}

{x | x 6 B' A 3y(y e A

AR{y,x))}

Notice that A is defined in terms of A', B' and R, whereas the definit ion of

(R,true,A,U,B,E) h-> «

The statement:

defining A as

defining B as:

C h a p t e r 5: Formal i sat ion Issues 76

B uses A. Essentially, A must be bui l t and defined before i t can be validly used

to bui ld and define B . Wi thou t this distinction their definitions would depend,

recursively on each other. The event would also be symmetrical.

E v e n t s w i th an indiv idual

I f q l is universal and q2 is individual , then E is defined as

(R,true, A, U, B,I)t-^ <

The statement: 3yVx(x G A) ->• (y G B' A R(x, y))

defining B as: Be B'

defining A as: {a; | x G A' A R(x, B)}

Individuals are interpreted as arbitrary, but specified, members of the set meet

ing the definition provided by the defining event. Named individual concepts map

to constants, as they are already defined as being the concept w i t h the specified

name.

U n i v e r s a l - U n i v e r s a l E v e n t s

Intui t ively events w i t h just universals would map as:

(R,true,A,U,B,U) •-»• <

The statement: Vx\/y((x G A) A (y 6 B))

-> Act(x, y)

defining A as: {a; | x G X A Vy € B

(Act(x,y))}

and B as: {x \ x G X A Vy G A

{Act(y,x))}

except that the definitions of A and B depend recursively on each other. This is

exactly the problem mentioned in section 2.2 and discussed in [Nebel, 1991]. The

problem is best highlighted by an example. Consider the graph in figure 5.2.

C h a p t e r 5: Formal i sat ion Issues 77

C H I L D R E N

spec

T O Y S

spec

(Defined)

act

L I K E S

Figure 5.2: Example of i l l defined concepts

I f the concepts are interpreted as:

Children = {Simon, Daniel, Amanda}

Toys = {Car, Soldier, Doll}

and suppose that:

Simon likes the car and the soldier

Daniel likes the soldier and the doll

Amanda likes the car and the doll

In this case the concepts C and T ' are undefined, and there is no way of inferring

whether or not Simon is in C . Therefore an event should never define two universal

nodes.

C h a p t e r 5: Formal i sa t ion Issues 78

Events w i th non-actions map to equivalent formulas, except that the 2-place

relation is negated. For example, E l in figure 4.2 is mapped to:

V.-r3y(x e F2 -> (y G D2 A -i0(a:,y)))

Act ion spec events map to the subset relation between 2-place relations over V.

The logical actions OR and A N D map to the usual logical connectives:

MSe{Rx hs* R2) ^ MSa(Ri) 2 MSa(R2)

MSe(OR,EuE2) ^ ^ v ^)

Me(AND,ElyE2) ^ MeiE^ A Me(E2)

As mentioned in chapter 4, the implicat ion action of SemNet is intended to

reflect 'relevant' implicat ion. Relevant implicat ion is not t r u t h theoretic and so

cannot be captured by classical logic. There is a wide community of researchers

working on how the meaning of relevant impl icat ion can be captured [Anderson

and Belnap, 1975], [Dunn, 1986]. For this project i t is observed that the oper

ations performed by SemNet should certainly be sound w i t h respect to material

implicat ion. Further analysis w i l l not be considered.

Hypothetical events are mapped as above except that they are not necessarily

' true' in the set theoretic model.

5.1.1 Soundness of the Inference Rules

Given this interpretation i t is straightforward to show the soundness of the inheri

tance rules. Each rule has to be ' t rue ' for each event type. For example, the (set

theoretic) semantic counterpart rule 4.5 applied to the bounded existential case is:

C h a p t e r 5: Formal i sat ion Issues 79

B C A , (Vx3y(.T e A ->• (y € C A i2(ar, y))))

Va:3y(a: G B -> (1/ G C A R(x,y)))

We prove this as follows:

T h e o r e m 5.1.1 (Soundness of R u l e 4.5) Given any sets A, B and C, if B C

A and Va;3y(x £ i (j / G C A i2(s, y))) then

Wx3y(x G f l - ^ (t / G C A R(x,y)))

P r o o f

For any x:

x € B x e A since B C A

=>• 3y(y € C A R(x,y)) f r o m 2nd assumption

and so

Vx3y(:r 6 5 -> (y G C A R{x,y)))

a

5.2 Defined and Observed Events

I t seems straightforward to extend these semantics to cover defined and observed

events. The only difference is to ensure that 'observing' events do not 'define' the

nodes they are connected to. I n this sense observed events do not contribute to

the meaning of nodes, which seems converse to the meaning as location principle.

C h a p t e r 5: Formal i sat ion Issues 80

Assuming SemNet is extended to include defined and observed events, the effect

on this principle needs to be understood.

For example, returning to the sentence:

"Every mother has a brother each of whom owns a parrot."

The SemNet representation given in figure 5.3 is repeated 2.

M

Figure 5.3: SemNet representation of the Brother, Mother Parrot sentence.

The events can now be interpreted as follows:

The statement: \/x3y(x <= M ->• (y £ B A BO(x, y)))

defining Bx as: {x \ x € B A (3y(y G M A BO(x,y)))}

i.e. brothers of a mother

2 With M, B, B i , P, P i , O, and BO for M O T H E R , B R O T H E R , B R O T H E R 1 , P A R R O T ,
PARROT1 OWNS, and B R O T H E R - O F respectively

C h a p t e r 5: Formal i sa t ion Issues 81

The statement: Va;3y(x € Bx - » (y 6 P A 0(ar ,y)))

2 ^ - defining P j as: {x \ x £ P A (3y(y G 5 i A 0 (y , x))) }

I i.e. Parrots owned by a B\

E\ only observes for M and E2 only observes for B\. Otherwise the statements

would be about mothers that have brothers, and brothers of mothers that own a

parrot.

This example seems to work well, but there are more problematic cases. Con

sider again the donkey sentence, see figure 5.4.

"Every farmer that owns a donkey beats i t "

FARMER[U] DONKEYfU]

spec spec

FARMER 1[U] DONKEY 1 [E]

E

act

obj sub
OWNS

E2 \ E2 '
(observed)

act

BEATS

Figure 5.4: SemNet graph for the 'donkey sentence'

which i n the model defined would have interpretation:

VzVy(.T <=FAyeDA 0(x, y)) -¥ B(x, y)

where F is the subset of T> corresponding to farmers, D to donkeys, 0 to Owning

C h a p t e r 5: Formal i sa t ion Issues 82

relations and B to Beating relations. As discussed earlier there has been much

research into sentences w i t h this construction. The general problem is to find a

satisfactory account for why i t is necessary to have a universal scoping for the owned

(and therefore beaten) donkey, when in tu i t ion suggests i t should be an existential.

SemNet seems more in tui t ive by representing the donkeys as existentials. Fig

ure 4.5 is interpreted as:

The statement: Vx3y(x G i * \ -> (y G D A 0(x,y)))

Defines F i as: {x | x G F A (3y(y G D A 0(x, y)))}

Ei \ i.e. 'farmers that own a donkey':

Defines as: {a; | x G D A (3y(y G F A 0 (y , x)))}

i.e. 'donkeys owned by a farmer'

E2 being an observed event makes no definitions. Naively i t would be inter

preted as:

E2 = Vx3y(x G F i ^ d / G D i A B(x,y)))}

but this corresponds to saying that "every 'farmer that owns a donkey' beats

a 'donkey owned by a farmer" ' . I t does not capture the additional aspect that

'farmers beat the same donkey that they own' . I n SemNet there is a rule which

allows the owned donkey to be extracted and referred to again. I n the model this

corresponds to assuming a funct ion f (:i*\ —> Di) which given a 'donkey owning

farmer' w i l l return 'the donkey the farmer owns', so that E<i can be defined as:

E2 = Vx(x G Fi -> fl(x,/(&)))

Therefore to replicate the way SemNet builds the meaning of the donkey sen-

C h a p t e r 5: Formal isat ion Issues 83

tence, a structure wi th a (witness extracting) funct ion such as f is needed 3.

The formulat ion used so far does not distinguish statements of necessity. For

example, the events of figure 4.6

Ex = Vx{x e l 4 PLAYS{x, FOOTBALL))
<

E2 = Vx{x e X STUDIES(x, Al))

are both ' t rue ' statements i n the semantics, and thus indistinguishable. To

represent this behaviour a richer semantics is required.

5.3 Possible World Semantics

The set theoretic semantics defined so far are reasonable for capturing and analysing

the extensional aspects of SemNet. However, in chapter 4, i t was claimed that

SemNet defines concepts by their properties. This is close i n spirit to the definition

of intensionality as discussed i n [Woods, 1991]. To add formal i ty to this claim, the

semantic model should also be able to make this distinction. As discussed there

are not many operations on SemNet that rely on these distinctions, however, this

work now moves f r o m the realm of checking that the past work is well founded, to

paving the way for future versions and algorithms which w i l l work on SemNet.

The set theoretic model described in the previous section assumed a single 'real'

world, where each proposition is either ' t rue ' or 'false', and each concept can be

identified w i t h a single object or set of objects.

The classical way [Meyer and der Hoek, 1995], [Moore, 1995], to define the

intension of a concept is to postulate a set of situations (possible worlds), where

that concept may have an extension. Two concepts are said to be intensionally

equivalent i f and only i f they have the same extension in all the possible worlds.

3 This could be done, but in section 7.2.2 it is shown that U T T provides just such a function,
naturally.

C h a p t e r 5: Formal i sa t ion Issues 84

Often there is a certain world (intui t ively the 'real ' one, or the one which some agent

believes in) distinguished, and two concepts are said to be extensionally equivalent

i f and only i f they have the same extension in this 'real ' world.

More formally, postulate a set of world W and a domain T>. The new semantic

mapping functions M.VWSindex have types:

• MVWSu : C£/ W P(V)

• MVWS{ :CI->W^V

• MVWSa :CA-*W P(V x V)

• MVWSe : CE -»• W -> {true, false}

A particular world wr G W is distinguished as 'real ' . The previous interpreta

tions are now taken to be ' t rue ' in wr.

5.3.1 Intensionality of Universals

Returning to the example of figure 4.6, possible world semantics can be used to

distinguish the ' intension' of the concept X f r o m its 'extension'.

MVWSU(X) : W -> P(V)

The defined event E i is interpreted as:

Ww 6 W.Vx(x € MVWSu X w ^ PLAYS(x, FOOTBALL))

i.e. all instances play football in all possible worlds.

The observed event E 2 is interpreted as:

C h a p t e r 5: Formal i sat ion Issues 85

Vx(x G MVWSu X wr -> STUDIES{x,AI))

i.e. all instances study A l i n the 'real ' world. A statement is said to be 'neces

sarily true ' i f i t is ' t rue ' in al l possible worlds.

The possible worlds interpretation succeeds in distinguishing the concepts, how

ever, as before there seems to be a difference in the way the semantic language (now

possible world structures) distinguish objects, and the way in which SemNet does

(by the defining properties of nodes). I t would be more ideal i f the semantic lan

guage could mimic this notion.

A second problem is that possible worlds do have their l imitat ions, (albeit

seemingly pathological). For example i t is easy to conceive mathematical cases

of concepts which have the same extension in all possible worlds, and yet have

different intensions, which manifest themselves occasionally.

For example, consider the concepts:

1. The first two natural numbers.

2. The first two powers of 2.

These w i l l both have the same extension in all possible worlds, i.e. { 1 , 2 } but

they clearly have different intensions.

5.3.2 Intensionality of Propositions

As discussed earlier the extension of a proposition is just whether i t is true or false.

In many cases inference only involves the extension of a proposition (event). As the

' t r u t h ' of an event w i l l usually depend only on the t r u t h of other related events.

However, there are cases where the intension (the idea formed by a mind using

SemNet) of an event is important .

C h a p t e r 5: Formal i sat ion Issues 86

I n this case there are algorithms in SemNet which rely on these differences. For

example, the epistemic events and associated inference rules. Naively epistemic

actions (such as believes) are mapped to relations over the mappings of the events

subject and object. I f the extensional interpretations of events is used this results

in :

Believes (->• T> x {true, false}

so that any events that have the same t r u t h value i n the 'real ' world are indis

tinguishable. Clearly this cannot account for the epistemic inference rules.

To give a t r u t h theoretic account for epistemic events, the 'agent' (the concept

w i t h the belief) is postulated to 'believe' that a subset of W are possible (and the

rest are not) , and the 'agent' believes the event i f its interpretation is true i n all

the worlds the agent deems as possible.

More formally for each agent a (an individual concept, CI) there is a subset of

W 4 defined by the semantic mapping funct ion MVWSi : CI -> P (W) .

The meaning of an epistemic event can then be defined by the funct ion:

M(Bel,A,I,E{) = \/v e (MVWSi(A)).MVWSe{Euv)

Intui t ively this states that such an epistemic event is true i f and only i f E\

is true in all the worlds that the agent A deems possible. A l l defining events are

mapped to statements which are ' t rue ' in all worlds, and so are necessarily believed

by all agents. Hypothetical events must be ' t rue ' in some world. Observed events

are ' t rue ' in the real world.

The nodes in figure 4.4 can now be interpreted as:

4Usually an agent is identified with a relation R„, and there is a notion of accessibility between
worlds based on this relation

C h a p t e r 5: Formal isat ion Issues 87

Roberto i-> RR0berto(a subset of W)

#x H> F (: W->> {<r«e , /a / se}

E2 l-> V t) € RRoberto-F V

Intui t ively, E2 is ' true' i f and only i f E\ is ' t rue ' i n all the worlds in Roberto-

Inference rules 4.11 and 4.13 can be shown sound w i t h respect to these seman

tics.

T h e o r e m 5.3.1 (Soundness of rule 4.11) For all A,B,C G CU

(M(Bel(Agent, A h s B)) A M(Bel(Agent, B hs C)))

M(Bel(Agent, A hs C))

P r o o f

(M{Bel(Agent, A hs B)) A M(Bel(Agent, B hs C)))

=» Bel(Agent, (A C B)) A Bel(Agent, (B C C))

Vttf G fl^en^A C B) A V W € RAgent-(B C C)

^ V t O G i2>|ffen<.(A C C)

M(Bel(Agent, A hs C)) •

T h e o r e m 5.3.2 (Soundness of rule 4.13.) For all events E G CE:

M(Bel(Agent, ->E)) ~-{M{Bel(Agent, E)))

C h a p t e r 5: Formal i sa t ion Issues 88

P r o o f

MBel(Agent,->E)

V«J G RAgent--'E

3u; G RAgent-^E (assuming the agent believes i n a possible world)

=> - (V w G R A g e n t . E)

^MBel(Agent,E) •

But w i t h rule 4.12 the situation is not so clear. There is nothing in the structure

described so far that relates the ' t r u t h ' of an assertion in a world, and the ' t r u t h ' of

an agent 'believing the assertion' i n this same world. Bu t there is nothing naturally

recursive in the possible worlds framework to capture the 'c irculari ty ' of this rule.

The system does not recognise all intensional differences. For example, all

tautologies (facts) w i l l be true i n all possible worlds and so w i l l be indistinguishable,

and yet intui t ively:

I understand "2 + 2 = 4"

I understand "Fermats' last theorem"

should have different interpretations. I n SemNet when an event is definitional

i t is a tautology, so possible worlds cannot distinguish between any of these, even

when they are hypothetical.

Finally as before, although in general the semantics does succeed in distinguish

ing, what for SemNet are distinct concepts, i t does not do so in a similar way to

SemNet. The in tu i t ion behind the epistemic events of SemNet is that their meaning

comes f r o m their structure and relationship w i t h other concepts rather than requir

ing an external set of worlds. A better model would map events to propositions

which take their meaning more directly f r o m related interpreted concepts.

C h a p t e r 5: Formal i sa t ion Issues 89

5»4 Distributedness

For ease of notation, the semantic counterpart to any node X w i l l be wr i t ten as

X M .

Although the semantic model of SemNet has a very different structure f r o m

SemNet, i t does s t i l l provide a formal model of the meaning of SemNet. Therefore,

in theory, i t can be used to analyse the distributedness of SemNet. However,

because the model considers SemNet as a list of events (rather than as a set of

l inks), i t does not allow for analysis of meaning of subparts of events. Therefore

distributedness can only be established at this level of granularity.

The ' f u l l model of SemNet' is defined as 'the conjunction of meanings of the

'real' events of the network'. From now on this w i l l be known as the f u l l model

Mfuii.

The 'meaning of a section of SemNet' is defined as the conjunction of meanings

of the real events w i th in the section. From now on an interpretation for an arbitrary

section 'S', w i l l be wr i t t en as M.section(S).

Distributedness can be formal ly defined as:

V S : SectionMjuii =>• Msection{S)

The result (at this level) is t r i v i a l . Essentially the interpretation of the section

postulates the existence of various concepts which M.provides.

For example, i f the immediately adjacent nodes of an existential event are in

terpreted, (R, true, A, U, B, E), the interpretation is (in the 'real ' world):

(AM,BM CV)A

(RM C D 2) A

\/x3y(x e AM -> (y € BM A RM(x, y))

C h a p t e r 5: Formal i sa t ion Issues 90

and clearly M.fuii w i l l contain a statement the same as this w i th A M , BM and

RM f u l l y specified, so that:

M full -> Msection(-#, i rue , A , £/, B, E)

as required.

Similarly for an epistemic event (Bel, A, Ei), the interpretation w i l l be:

E™ G Statements^

AM C (W x W) A

V™ G (M ^ W S ^ A)) -> £ f * H

for which the f u l l reading w i l l contain the above w i t h f ? f and AM f u l l y specified.

5.4.1 Arc level analysis

The above analysis was largely t r i v i a l , as the section interpretations were conjuncts

of the f u l l reading. The in tu i t ion behind distributedness went much fur ther , claim

ing that sub parts of events could be read independently and reliably. To show

this, a formal interpretation to the sub-parts of events (i.e. arcs) must be given. I t

is then shown that i f an arc a is part of an event E then Ai(E) M.(a), so that

M. juii =^ M(a) and that SemNet is distributed at the level of the arcs.

A n arc is interpreted as a an open proposition which when fu l l y read would

fo rm one of a set of alternative propositions. For example interpreting a universal

subject arc between and event E and an enti ty C, gives:

C h a p t e r 5: Formal i sat ion Issues 91

3R,X C,X CV,RCV xV

Vc(c € C (3x(x e X A R(x, c)))

V(Vx(x G X A R{x,c))))

V

3R,X x e v , c CV,RCV xV

Vc(ce C -> R{c,X))

and whatever the f u l l reading is, i t w i l l certainly imply the above situation (as

i t w i l l be an expansion of one of the disjunction of situations).

The above analysis is straightforward, but extremely messy. I t is improved i f

quantification is moved onto the event. I n such a situation the controls of the event

would state whether i t is 'real' or 'hypothetical ' , 'defined' or 'observed', and what

the quantifications of the 'subject' and 'object ' are. For example, i f E were 'real ' ,

'observed', universal subject and individual object, the interpretation would be:

The situation becomes complex again i f epistemic events are considered, as R

and X w i l l have different 'types' i f E is epistemic. However, the results are s t i l l

straightforward. Thus i t can be claimed that SemNet is distributed w i t h respect

to these semantics.

5.5 Review

The classical approach to formalising SemNet has delivered many benefits. I t pro

vides a rigourous and unambiguous way of understanding the meaning of SemNet

structures. As outlined at the beginning this has resulted, i n general, improved

3R,X: X eV,C CV,RCVxV

Vc(cG C R(c,X))

C h a p t e r 5: Formal i sa t ion Issues 92

understanding and presentation of SemNet. In addition the problem of ill-defined

concepts has arisen.

Soundness of reasoning and a semantic foundation for intensionality have been

given. The interpretation given to defined and observed events has shown that

their introduction w i l l affect the meaning as location principle. Overall problems

w i t h the semantic model have been pathological and, perhaps, are not objections

that w i l l lead to serious repercussions for N L E .

The main problem w i t h the semantics is that i t captures the meaning in a

different way f r o m SemNet. The main motivation for bui lding a semantic model

in type theory is that there seem to be constructions which could allow for more

direct interpretation of SemNet.

Chapter 6

Formalisation of SemNet in U T T

This chapter describes how U T T is used in the formalisation of SemNet. I t is

a major extension of the work described in [Shiu et ai, 1996]. Essentially the

mechanism for defining theories as described in 3.4 is used to define syntactic

(object) and semantic (meta) versions of SemNet, thus allowing modular reasoning.

The internal logic of U T T is used to reason directly about these models.

Two fur ther aspects of U T T which are exploited by this work are that i t is

a programming language and so can be used to reason directly about the imple

mentation of SemNet, and that the logic is supported by the proof assistant Lego

[Pollack, 1989].

The a im is very much to show the applicability of the type theory framework,

including use of the abstract theory mechanism and Lego, rather than to show that

type theory is an appropriate semantic language. This latter task is postponed un t i l

the next chapter.

6.1 Framework of the Formalisation

Figure 6.1 shows the four versions of SemNet, they are described as:

C h a p t e r 6: Formal i sat ion of S e m N e t in U T T 94

MPLEMENTED
SEMNET

I INTUITIVE \
V SEMNET J

NTurr VE
SEMNET

SYNTACTIC
SEMNET

SEMANTIC
SEMNET

TYPE THEORY

Figure 6.1: Framework for the formalisation

» Implemented SemNet refers to the actual Haskell data structures and as

sociated functions that f o r m SemNet i n the L O L I T A system.

• Intui t ive SemNet refers to the informal concept of SemNet that exists amongst

the L O L I T A group members. This is what was described in chapter 4, i.e.

the graphical structures and the declarative rules of inference. There is an

informal l ink between this and the implemented SemNet, as this is what the

designers had in mind as i t was bu i l t .

e Syntac t i c SemNet refers to the abstract theory of U T T which defines Sem

Net in U T T . I t consists of declarative rules of inference which correspond

to the in tu i t ive SemNet, and algorithms (based on U T T as a programming

language) that correspond closely to the implemented SemNet. This latter

correspondence is informal but can be considered as closer than the other

links as both algorithms are wr i t t en i n functional languages and so can be

viewed in terms of lambda calculus.

• Semant ic SemNet refers to the abstract theory of U T T which formal ly cap

tures the intended meaning of SemNet i n U T T . There are functions of U T T

which map between the syntactic and semantic SemNet and so this corre

spondence is formal .

C h a p t e r 6: Formal i sa t ion of S e m N e t in U T T 95

The U T T models are packaged as 'knowledge base theories' similar to the ab

stract theory mechanism described in section 3.4. This allows a theory for a simple

version of SemNet to be developed, and the results inherited by more complex

versions. See figure 6.2.

SYNTACTIC SEMNET 1

(spec events only)

Forgetful
Mapping

SYNTACTIC SEMNET2

(inst events added)

Forgetful
Mapping

Type Theoretic
Semantics

-** Type Theoretic

Semantics

SYNTACTIC SEMNET3
(basic events added)
SYNTACTIC SEMNET3
(basic events added)

Type Theoretic
Semantics

Figure 6.2: Abstract theories of SemNet

The abstract 'knowledge base theory' type is:

KBT

w f f : Type

kb: w f f - + Bool

IR: wff—> Prop

The wff type represents objects which make legal statements. The kb type

represents a distinguished set of these 'statements' which are explici t ly included in

the knowledge base. The I R type represents the declarative inference rules for the

theory, thus establishing which 'statements' are entailed by the 'knowledge base'.

I R w i l l be defined by a set of functions irindex one for each inference rule.

A separate predicate over the K B T type is used to ensure that the knowledge

base meets any specified requirements.

C h a p t e r 6: Formal i sat ion of S e m N e t in U T T 96

cond : KBT —> Prop

I n this work this is used to ensure that the specialisation events f o r m a legal

hierarchy, but i t could be used for other properties, e.g. to ensure consistency.

To prove soundness and completeness theorems, i t needs to be assumed that

the I R functions are the only way in which such propositions can arise. Therefore

the rules are defined as inductive relations, and the corresponding elimination rule

can be inferred as discussed in 3.1.4.

Functions that (are intended to) implement the inference rules can be converted

to functions in U T T (Lego) w i t h type:

Soundness and completeness of the implementation of the rules are defined by

the propositions 1:

Proving soundness would show that F (the functional algori thm) w i l l only f ind

proofs that follow f r o m IR (the inference rules) and completeness would show that

F w i l l f i nd all possible proofs based on IR. They should not be confused soundness

and completeness w i t h respect to type theoretic semantics.

Type theoretic semantics are defined by meaning functions w i t h types:

1iscase : Bool —> Prop

F:Uk: KBT.wff[k] Bool

Soundlmp

Complmp

= Uk : KBT.Ilw : wff{k).iscase(F{k,w)) -> IR[k](w)

= Uk : KBT.Uw : wff[k].IR[k](w) -» iscase(F(w,k))

C h a p t e r 6: Formal i sa t ion of S e m N e t in U T T 97

Mkb • KBT Prop

M w f j :Uk : K B T . w f f [k] ^ Prop

Soundness and completeness of the rules w i t h respect to the type theoretic

semantics are defined by:

SoundSem = Ilk : KBT.Ilw : wff[k].IR[k](w) -> (Mkb -> Mw}i[k](w))

CompSem = lik : KBT.TLw : w f f [k] . (M k b -> MwfJ[k](w)) -> IR[k]{w)

C h a p t e r 6: Formal i sat ion of S e m N e t in U T T 98

Propos i t ional C a l c u l u s E x a m p l e

To define a simple version of propositional calculus, (w i th only nega

t ion and implicat ion symbols). The wf f type would be defined induc

tively w i t h two constructors:

w f f : Type

Pi : w f f (i G Nat)

: w f f ->• w f f -> w f f

: w f f ->• w f f

I f the only inference rules are that a wf f is explici t ly in the knowledge

base, or i t is inferred by modus ponens, then inference is defined by

the inductive relation:

w f f —>• Prop

UP : wff.iscase(kb(P)) -» IR(P)

UP, Q : w f f . I R (P) -> IR(=> (P, Q) -> IR(Q)

To prove an implementation of the inference rules, F , is complete there

are two cases to prove:

UP : wff.iscase(kb(P)) ->• iscase(F(P))

UP,Q : wff.iscase{F(P)) -+ iscase{F(=> (P,Q)) ->• iscase(F(Q))

and similarly to prove the semantics sound:

nP : wff.iscase(kb(P)) -> (Mkb(kb) -> M w f J { P))

UP,Q : w f f . I R (P) IR{=> (P,Q) -+ (M M (A : &) -> M*,//((}))

Having defined a (basic) K B T , a richer theory can be defined by extending the

wff type.

1 n

ir

C h a p t e r 6: Formal i sa t ion of S e m N e t in U T T 9 9

E x a m p l e continued

Let p c i : K B T be the theory defined earlier and suppose that a new

' w f f constructor' is to be added for conjunction:

A new wff type is defined based on wf f\pc\\

e

n

Type

wff\pci] -> w f f 2

w f f 2 ->• w f f 2 ->• w f f 2

Essentially wf f\pc\\ is a subtype of wf f 2 w i t h e as coercion. A knowl

edge base can be defined which extends fc6[pci] i n the natural way.

Further inference rules can be added for the 'new' wff ' s

IR\pc2]{P)

» ' » W :IIP,Q: wff\pc2].IR[pc2](n(P, Q)) -+ IR\pc2](P)

ir2,andr :UP,Q: wff\pc2}.IR\pc2}(n{P, Q)) -> IR\pc2](Q)

I n this way a new object pc2 : K B T , can be defined which is a natural

extension of pc\.

I n the formulat ion of SemNet, wff ' s defined in later/complex versions do not

effect those defined in earlier/simpler versions. Because of this when a version of

SemNet is extended to handle richer structures (wff 's and inference rules) a new

and separate K B T object is defined, and sits alongside the original.

KBT2 =
ki : KBT

k2 : KBT

k2 is defined in terms of objects and structures of k\, but the properties of k\

itself are not affected. Properties proved about ki are then t r iv ia l ly inherited to

objects of type KBT2.

C h a p t e r 6: Formal i sat ion of S e m N e t in U T T 1 0 0

As well as being a formal and declarative description of SemNet, the syntac

tic model is a formal bridge between the implementation and the type theoretic

semantics. I t allows a formal mapping to the semantic model to be defined, and

for reasoning about (abstracted, but very close) versions of the algorithms used on

SemNet.

The semantic SemNet models are a formal representation of the meaning of

SemNet structures. They correspond to the set theoretic model developed in chap

ter 5.

The remainder of this chapter is devoted to describing the structure of these

models, although of course extensive appeal to the intui t ive SemNet w i l l be made

to keep the reader aware of which aspects are being formalised.

6.2 A simple Hierarchy - SemNeti

In this model only universal (CU) nodes and specialisation events between them

are considered. The wf / 's w i l l be the links, the structure conditions ensure the

links f o r m a hierarchy, and the reasoning rules w i l l correspond to rules 4.1 and 4.2.

6.2.1 Syntax for SemNeti

The only pr imi t ive needed for this structure w i l l be a node type, C U . Specialisation

links are defined as 3-tuples CU x CU x Bool. The entries representing subject,

object and polari ty of the statement respectively.

For example, (Man, Mammal , true) represents the statement "men are mam

mals" .

The knowledge base (a funct ion of type w f f - » Bool) is implemented via a

list of links and a membership funct ion. To fo rm a hierarchy there must be a

designated ' top ' node and a proof that all the other nodes are 'below' this node.

C h a p t e r 6: Formal i sa t ion of S e m N e t in U T T 1 0 1

More formally w i t h s x = SemNetx (: K B T) ,

CU : Type

topSl : CU

w f f S l = CU xCU x Bool

KSl = l i s t (w f f S l) (i.e. a list of 3-tuples)

kbai (w) = member w Kai

condSl K = P(KSl,topSx)

where, w is of type w f f S l , member is the usual list membership function, P is a

predicate that ensures K forms a hierarchy and that topSl is the top node.

The inference rules (corresponding to the declarative rules 4.1 and 4.2) are

defined inductively:

IRSl : w f f S l ->• Prop

ir : Ilw:wffSl.(iscase(kbSl(w)))—>IRSl(w)

in : TlA,B,C:CU.{IRSl(A,B,true))->(IRSl(B,C,true))

->• {IR8l(A,C,true))

ir2 : IIA,B,C :CU.{IRS1(A, B, true)) ^ (IRSi(A,C, false))

->• (IRSl(B,C, false))

ir states that any event present i n the knowledge base can be inferred. ir\

states that 'positive' spec links are transitive. ir2 states that 'negative' spec links

can be inferred i n a similar way 2

6.2.2 Implementation Analysis for SemNeti

The algorithms for adding Links to SemNet and for inferr ing Links f rom SemNet

can be given counterparts i n Lego. A problem in converting algorithms is that

2 The Lego module for handling inductive types does not pattern match against the link type,
and so a function for building the link type is used.

C h a p t e r 6: F o r m a l i s a t i o n o f S e m N e t i n U T T 102

U T T is a decidable language and all algorithms must terminate. Therefore gen

eral recursive functions need to be converted (i f possible) to well founded versions

[Wand, 1992], [Hoffman, 1992].

I n this work the method used (as described in [Wand, 1992]) is to provide an

explicit complexity measure which reduces on each recursive call to the funct ion.

W i t h this in m i n d the structural condition type for SemNeti included a com

plexity measure funct ion:

wSl : CU -> Nat

which has constraints:

wSl top = 1

RA.wSl A < wSl (Gen A)

where Gen :CU —>• C U , is a funct ion defined on SemNeti which returns the

node immediately above in the hierarchy.

w is used by all functions that search up and down the hierarchy recursively.

For example, i n pseutlo Haskell notation:

AllUp : CU -+ [CU]

AllUp top = [top]

AllUp A = cons A (AllUp (Gen A)

is actually implemented using w on each CU to ensure that the recursive func

t ion w i l l reach the top node and terminate.

The inference funct ion is defined as:

C h a p t e r 6: F o r m a l i s a t i o n o f S e m N e t i n U T T 103

I n f t
-»• Bool

In f S l (A, B, true) =Ae AllUp B

(A , B, false) = A <E AllDown (NotGen B)

where AllDown : CU -> [CU] searches down rather than up the hierarchy, and

NotGen : CU —» CU returns a node (i f there is one) which is explici t ly not its

generalisation.

6.2.3 Semantics for SemNeti

Previously CU nodes were interpreted as sets and spec links as subset relations.

Analogously i n type theory nodes w i l l be interpreted as types and the links as

subtype judgements.

As discussed in chapter 3 subtyping is a current research topic for type theory.

I n this section when one type A , is said to be a subtype of another B , B >z A , then

i t is assumed that there is an impl ic i t coercion K : A —> B between them and a:A,

can operate as an object of type B , wi thout the need to specify that the object

used is really « (a) , [Luo, 1996].

In tu i t ive ly each node is interpreted in terms of its parent node and the events its

involved in (not present i n this case). The top node is interpreted as an arbitrary

type T . Since the events are not present, the predicates can only be impl ic i t . They

are defined by an impl ic i t funct ion ImpPred : CU —> (T -> Prop).

A l l nodes are then defined i n terms of their impl ic i t predicate and the predicates

of all their parents. More formal ly :

M u CU -+ Type

M u top = T

M u n : T.(Mpl n) x

C h a p t e r 6: F o r o i a l i s a t i o n o f S e m N e t i n U T T 104

where

M p i : CU -> (T ->• Prop)

-M.pl top = Xx : T.true

M p i A = Xx : T . (M p l ((Gen x) x)) A (ImpPred A x)

From now on, where the meaning is clear, subscripting w i l l be used to represent

the semantic interpretation of syntactic structures. For example, A m w i l l represent

M.u A , and Aprei w i l l represent ImpPredA.

I n t u i t i v e E x a m p l e

The node for M A M M A L which appears below animal i n the hierarchy

(see figure 4.10) w i l l be interpreted as:

MAMMALm = Ex : T.MAMMALpred(x)

i.e. an instance of a M A M M A L is an object of type T , together

w i t h a proof that this object meets all the requirements for being a

M A M M A L . The requirements are encoded in MAMMALpred which

is defined as:

MAMMALpred = Xx : T.ANIMALpred(x) A PredMAMMAL(x)

where ANIMALpred specifies conditions for being an animal (i.e. an

organised being endowed w i t h l ife, sensation and voluntary motion) ,

and MAMMALpred specifies further conditions for being a mammal

(i.e. has mammae for nourishment of young).

Intui t ively M.p\ should map to a predicate, i.e. T —> Prop, but in some cases a

witness extraction funct ion is required, see section 7.2. Where possible a shorthand

notation for expressing semantic counterparts of concepts, i.e. the subscripted

notation given above.

http://-M.pl

C h a p t e r 6: F o r m a l i s a t i o n o f S e m N e t i n U T T 105

The coercive funct ion between the meaning of a node and its 'parent' is a

forgetful map that forgets the node specific predicate.

The links of the syntax are the statements and so map to objects of type Prop.

As constructed they map to the judgement that the two types are i n a subtype

relation, or not as the case may be. This is a 'higher t r u t h ' i n the sense that such

judgements are axioms in type theory, however i t is helpful for the analysis i f a

proposition can be extracted f r o m the judgement, and so links are interpreted as

follows:

M spec

: w f f S l -»• Prop

MSpec (A, B, true) = Rx : Bm.Bpred x ->• A p r e d x

Mspec {A, B, false) — 3x : B m . (B p r e d x) A -<(Apred x)

The in tu i t ion here is that when a spec occurs the predicate of a node w i l l entail

that of its parent (clearly true for mammals and animals, see above example).

The meaning of the whole network is the conjunction of the meanings of the

links of the knowledge base.

Mkb • KS1 Prop

Mkb k = Avtuefc wm

Soundness of S e m N e t i

Soundness of the inference rules w i t h respect to the semantics is characterised in

the following:

T h e o r e m 6.2.1 (Soundness of Spec Inher i tance)

Uw : w f f S l . I R S l (w) -> K

C h a p t e r 6: Formal i sat ion of S e m N e t in U T T 106

P r o o f

This is an informal version of the Lego proof.

Assume (introduce) k : kbsi, w : wf f S x . Proceed by induction on the structure

of IRSx. There are 3 cases:

C a s e 1 : ir

ir =>• iscase (kbSl w)

=>• w m £ k m

=> k m w m

C a s e 2 : iri w = (A,C,true)

tVi => 3B:CU. (IR (A,B, t rue) and I R (B,C,true))

k m -».

(A , B , t r u e) m A (B , C , t r u e) m

=> k m -»•

(I I x : B m . (B p r e (i x) ->• (A p r e d x)

A

(I I x : C T O . (C p r e (i x) - » (B p r e (i) x)

k m ->

(n x : C m . (C p r e (i x) —> (Apred x)

k m w m

C a s e 3 : zr 2 similar to case 2! • .

Completeness of SemNetx

The Completeness theorem is characterised in :

Ilw : u ; / / [s 1] . (A ' [a i] m -> w m) -»• 7# [s i] (w)

C h a p t e r 6: Formal i sa t ion of S e m N e t in U T T 107

This has not been proved. Wi thou t this result i t is not known that all entail

ments (that follow f r o m the rules of U T T) would be realised by the spec inference

rules of SemNeti . Lacking this result does not, of course, invalidate the meaning of

the soundness result above, i.e. that all proofs i n SemNeti are valid w i t h respect

to U T T .

6.2.4 SemNeti discussion

SemNeti is a concrete realization of the framework shown in figure 6.1. There

has been a thorough attempt to analyse al l the aspects discussed in 6.1. There

are syntactic and semantic versions of the enti ty hierarchy of 4.6.1 w i t h functions

between them providing a formal interpretation, and algorithms that correspond

to the implemented code of L O L I T A . The logic of U T T has been used to reason

directly about this model.

The semantics defined may seem disproportionately complicated w i t h respect to

the in tu i t ive ly simple enti ty hierarchy, especially when compared w i t h the straight

forward subset interpretation. The motivat ion for using type theory was to exploit

its ' intensionality' . Because i t is intensional i t is less natural to use i t to model

the 'extensional' behaviour of inheritance. However, the soundness result shows

that the interpretation does f i t w i t h the in tu i t i on T and that i t is reasonable t o bui ld

fur ther semantic structure to reason about richer aspects of SemNet. This has

significance beyond pure inheritance as these rules are used many times over by

other inference algorithms and other modules.

I n this model i t has been possible to bu i ld counterparts to L O L I T A functions

and to reason about their behaviour. A n abstracted version of the inference al

gor i thm for spec events has been bui l t and is available for analysis. However, the

problem of dealing w i t h general recursion adds a significant amount of work to this

process. Since more complex structures can only mean more problems, and this

for code that is used less often, i t was decided, based on pragmatic grounds, no

further implementation analysis would be done.

C h a p t e r 6: F o r r n a l i s a t i o n o f S e m N e t i n U T T 108

6o3 Individuals and Instance events - SernNet2

In tu i t ive ly this abstraction is SemNeti w i t h instance events and individual con

cepts. The only new pr imi t ive is the Individual node type (CI) . The new w f f

type 'Instance' links w i l l also be defined as 3-tuples, CU x CI x Bool, for example

(Man,Roberto,true) represents the statement "Roberto is a man". The new knowl

edge base w i l l be a list of the new l ink type, there are no structural conditions.

The inference rules w i l l correspond to rules 4.3 and 4.4.

6.3.1 SemNet2 Syntax

More formally:

CI Type

(s i , s 2) S2 =

where si is defined as i n 6.2 and:

: KBT

w f f S 2 =CU x C I x Bool

KS2 •• [w f f S 2]

kbSo w = Member w K.

The new rules corresponding to rules 4.3 and 4.4 are defined by

C h a p t e r 6: F o r m a l i s a t i o n o f S e m N e t i n U T T 109

w f f 3 2 -»• Prop

Uw : wffS2.iscase(kbS2(iv)) -» IRS2(w)

IIA,B: CU.Ua : CI.IRS2(A,a,true) -+ IRSl(B, A, true)

—> IRS2(B,a,true)

LL4, B : CU.Ua : CI.IRS2{A, a, false) ->• IRSl {A, B, true)

—>• IRS2(B,a, false)

Note that IRS2 is defined in terms of IRSl but not vice versa. Precisely the

same functions are used to implement inference on si, so that results are clearly

inherited.

I n f l A = I n f , Orl(S 2)))

New functions inferring Inst links are defined:

Inf2,s2 • w f f S 2 ->• Bool

6.3.2 Semantics for SemNet2

Continuing the analogy wi th set theory, individuals w i l l be interpreted as objects

(of types) and Inst events as typing judgements. Once again there w i l l be some

work to extract propositions out of the judgements.

The individuals are interpreted as being (arbitrary, but specified) objects of

their 'parent' type, but which are also objects of an impl ic i t subtype defined by the

defining event. This assumes that this subtype, is non-empty and that an arbitrary

member can be selected. This is not possible for all types (or else all propositions

would be provable and the logic inconsistent). However the type of non-empty

types can be defined:

IRS2

tr2,basic

ir3

ir4

C h a p t e r 6: F o r m a l i s a t i o n o f S e m N e t i n U T T 110

NonEmpty = S T : Type.T

and a choice funct ion C can be defined for this type:

C : UN : NonEmpty.N

C N = T T 2 N

Throughout this section i t w i l l be assumed that all Nodes w i t h an instance l ink

w i l l be interpreted as NonEmpty types so that the funct ion C can be applied.

The semantic functions are defined as:

Mu,s2 : CU -> Type

Mu<s2 A = M U } S 1 A

MtyPe,s2 • CI -» Type

Mtype,S2
 a = T,X : T.aprec[X

M i i S 2 •• Tlx : CI.MtyPe,s2 x

A^,-,52 a = C a t y p e

Ms,s2 : w f f i s i] -+ Prop

Ms,s2 w = Ms,Sl w

Mi,s2 • w f f s 2 -»• Prop

Mi,s2 (A, a, true) = a p r e d (am)

Mi,s2 (A, a, false) = -^apred (am)

where a p r e (/ is given by an impl ic i t funct ion for the impl ic i t defining event.

C h a p t e r 6: Formal i sa t ion of SermNet in U T T 111

Intui t ive E x a m p l e

Taking an instance of the CU node D O G (wi th name F I D O , as in

figure 4.10).

FIDOm = C{Zx : T.FIDOpred(x))

where

FIDOpred = Xx : T.DOGpred(x) A PredFIDO{x)

i.e. FIDOm is an object of type T , together w i t h a proof that this

object 'obeys' the 'being a dog' predicate and the 'being F I D O ' pred-

icate.

Theorems proved for SemNeti are inherited as discussed. Further theorems for

irZ and irA are that the code implements them soundly and that they are sound

wi th respect to the type theoretic semantics.

6.3.3 SemNet2 discussion

As discussed in 6.2.3 no further analysis of L O L I T A algorithms has been done.

However, the new rules defined by IR[s2] are defined in terms of IR[si] and the

results of analysing the implementation of IR[si] are relevant to this model.

There are two comments to make on the semantics. Firstly, to note that this

semantic model merely extends the hierarchy w i t h fur ther extensional aspects. The

domain V of set theory has been replaced w i t h an arbitrary type T . However, i t

is interesting that a 'choice' funct ion has been required. Up un t i l now types have

been entirely arbitrary, but by specifying that some types are inhabited, and that

arbitrary objects can be chosen f r o m these types two assumptions have been made.

First there is an commitment that these non-empty types correspond to objects

that 'exist in the real wor ld ' i n some sense. Second, the use of a choice funct ion

C h a p t e r 6: Formal i sat ion of S e m N e t in U T T 112

corresponds to assuming the 'axiom of choice' of ZF set theory [Fraenkel and Bar-

Hi l le l , 1958]. This axiom is provable wi th in type theory [Mart in-Lof, 1982] (since

i t is constructive). The point is noted as an aspect of SemNet that assumes some

essence of 'constructivism'. I n chapter 7, fur ther observations along these lines are

made.

6.4 Standard Events - SemNet3

The next abstraction includes the basic events. Basic events are all defining and

real. They include all the possible quantification combinations.

There are two new pr imi t ive types CA and CE. There is a choice in level of

abstraction i n deciding how to bui ld the syntactic statements (u>// 's) . Either to

ignore the substructure of events and define SemNet3 as a list of events or to model

the implemented SemNet directly, as a set of subject, object and action links, w i t h

events extracted f r o m out of these links.

Choice 1 has the advantage of comprehend-ability and manageability.

Choice 2 allows for proper modelling, but in tu i t ion is lost. Also the rules were

specified for events not for links, and so to keep w i t h the knowledge base structure

events must be abstracted out.

As an attempt to get the best of both worlds, the model is f irst detailed as a set

of links, as i t is done in L O L I T A . Events are then abstracted out of this structure

and these f o r m the knowledge base.

6.4.1 SemNet 3 - Syntax

More formally:

C h a p t e r 6: Formal i sat ion of S e m N e t in U T T 113

CA : Type

CE : Type

SemNet3 = S3 = (si,s2,s3) : KBT3

where s\ and 52 are defined as i n 6.2 and 6.3 and s3 is defined as follows:

Links are defined inductively

Link

Subject

Object

Role

Type

CE -> (CU \CI)->Q-+ Link

CE -> (CU \CI)-*Q-> Link

CE^CA-> Bool Link

w i t h Q a type for quantification tags. A Net is then a sum type:

Net = Era : (list(Link)).P(n)

where P is a predicate that ensures that the links fo rm legal events.

A n inductive type (for what w i l l be the new i w / / S 3 ' s) is defined:

C h a p t e r 6: Formal i sa t ion of S e m N e t in U T T 114

Event Type(0)

Euu CU --> CU ->• CA-> Bool Event

Eue CU -->CU ^ C A ^ Bool --> Event

Eeu CU - CU ->• C A ->• Boo/ --> Event

Eiu : C I -> C t / ->• C A -> 5oo/ -•> Event

Eui : CU-->CI^CA^> Bool -•> Event

Eii : C I ->CI->CA-^ Bool -• Event

The knowledge base k b S 3 w i l l be extracted f r o m Ne t S 3 as the set of events that

are explici t ly present. The new inference rules, corresponding to rules 4.5 - 4.8, are

defined inductively. For example for rule 4.5:

IRS3 : Event -> Prop

ir5 : TLA, B, C : CU.UR : CA.Ubb : Bool.

(IRS3 (Euu A C R bb)) -> (IR3l (A, B, true))

IRS3 (Euu B C R bb)

Note that this rule uses, but does not affect, IR[s i] . The previous functions for

inferring on the hierarchy can be-used. I n theory inference functions could be bui l t

for this model, but for pragmatic reasons this has not been done, see discussion at

the end of this chapter.

6.4.2 SemNet3 Semantics

As w i t h the set theoretic model, actions w i l l be left as impl ic i t relations (over the

top type T) .

M 3 : CA -> (T -> T -> Prop)

C h a p t e r 6: F o r m a l i s a t i o n o f S e m N e t i n U T T 115

(6.1)

In this interpretation CU and C I w i l l be interpreted as before, except that

the events w i l l be used to bui ld the M.v predicates. Events w i l l be interpreted as

propositions. More formal ly:

M : Event -» Prop

M (Euu A B R bb) = Ux : Am.Uy : Bm.

Rm x y

M (Eue A B R bb) = Ux : Am3y : Bm.

R m x y

M (Eeu A B R bb) = Uy : Bm3x : Am.

R m x y

M. (Eiu a A R bb) — Ux : Am.Rm am x

M. (Eui A a R bb) = Ux : Am.Rm x am

M (EH a b R bb) = R

As well as all the quantification cases there w i l l be separate functions defining

predicates, dependent on whether the concept is use as a subject or an object by

the defining event. Its type w i l l be:

Predi : Event (T Prop)

assuming that the concept is the subject of an event which has 'universal sub

ject ' and 'existential object ' then the predicate is defined as:

Pred^EueiA.B^R.bb) = ILc : T3y : Bm.Rm(x,y) (6.2)

C h a p t e r 6: Formal i sat ion of S e m N e t in U T T 116

Intu i t ive E x a m p l e

For example, consider again the nodes in figure 4.1,

Elm = ILr : Flm3y : Dlm.Om x y

where

Flm = Ex : T.Fpred(x) A (3y : Dm.Om(x,y))

Dlm = Ex : T.Dpred(x) A (3y : Fm.Om{y,x))

i.e. an object of type F\m is an object of type T paired w i t h a proof

that i t 'obeys' the predicate for 'being a farmer' (i.e. F p r e d) and i t

'obeys' the predicate for 'owning a donkey' (as defined by the event

E l) .

Elm makes the statement that each of these objects 'owns' an object

of type Di. I t does this without using any logical connectives such as

—» and A which were used in the set theoretic counterpart, see section

5 .1.

Soundness of the basic rules 4.1 and 4.2 can be ' inherited' f r o m the results of

SemNetl and SemNet2.

T h e o r e m 6.4.1 (Soundness of rule universal inheri tance)

UA, B, C : Node.UR : CA.Ubb : Bool. [M(Euu AC R bb))

-» (M{A,B,true))

->• M(Euu B C Rbb)

P r o o f

This is an informal version of the Lego proof.

Assume (introduce) A ,B ,C:CU; bb:Bool;

HI : ILc : AmUy : Cm.Rm(nl(x),irl(y)y,

C h a p t e r 6: Formal i sa t ion of S e m N e t in U T T 117

H2 : Ilx : T B p r e d (x) -> Apred(x);

b : Bm = T,x : T.Bpred(x);

c '. Cm — Sa; : T .Cpred(x)

The new goal is to prove (f ind a term of type) :

Rm(irl(b),irl(c))

From the assumptions we can bui ld an object of type Am:

a = (TT1(6), # 2 (7 r l (&) , TT2(6)))

and then

Hl{a,c) : ^ (7 1 - 1 (6) , T T 1 (C))

as required • .

6.4.3 SemNet3 discussion

I n this model the previously impl ic i t predicates have been made explicit (by being

defined in terms of the defining events). The only remaining ' impl ic i t ' objects are

the postulated domain type T , and the relations over these (T x T —> Prop) that

correspond to actions.

Although the hierarchy interpretations may have seemed less in tui t ive than their

set theoretic counterparts, the reverse could be said for basic event interpretations.

For example, there are no logical connectives used in an interpretation for a basic

event. This is expanded in chapter 7.

In tui t ively theorem 6.4.1 is straightforward. I t states that i f something holds for

all objects of a type, then i t holds for al l objects of subtypes of this type. I t should

be straightforward, as the in tu i t ion behind the inheritance is straightforward. The

result gives fur ther evidence that the semantic model given does actually capture

the intended meaning of SemNet.

The only change required to handle defined and observed events i n the above

Chapter 6: Formalisat ion of SemNet i n U T T 118

model is to label some links 3 as observed. Semantically, the corresponding events

would be mapped to propositions in the same way, but would produce vacuous

(i.e. always true) predicates so that the interpretation of entities is not effected.

Because of the problem of recursive definitions (see section 5.1), Euu events cannot

be defining for both the subject and the object.

6.5 Epistemic events - SemNet4

To treat epistemic events as a new w f f type, there must be a new primitive

type, CEE and a corresponding new link type for those links involving CEE nodes.

As with SemNet3 a new inductive type is defined and legal epistemic events are

extracted from a set of 'new' links.

Correspondingly condS 4 wil l need rules to ensure that a given network (list of

links) corresponds to a set of legal epistemic events. Finally of course IR S 4 wil l

define rules corresponding to 4.11.

6.5.1 SemNet4 Syntax

More formally:

CEE : Type

CEA : Type

The new link type is defined inductively:

3Since an event could be defining for its subject, but not for its object.

Chapter 6: Formalisation of SemNet i n U T T 119

EpLink

EpSubject

EpObject

Type

CEE -> (CU | CI) EpLink

CEE -> {CU | C7) -> EpLink

CEE -)• C £ A -»• tfpimfc EpAction

wff S 4 = EpEvent where EpEvent is defined inductively as:

EpEvent Type

EErec

EEspec

EEinst

EEbasic

CI -»• u>// S l -» Boo/ -> EpEvent

CI -+ w f f S 2 ->• Boo/ -» EpEvent

CI ->CE -> Boo/ EpEvent

CI -»• C E E -»• Boo/ -> EpEvent

The inference rules for 4.11, 4.12 and 4.13 are defined by:

7B S 4 : EpEvent —• Prop

»Vn : no : C/.IIA, B, C : CU.IR(EEspec a (A, B, true) true)) -»

IR(EEspec a (B, C, true) true) ->•

IR(EEspec a (A, C, true) true))

»>i2 : na : C/.IIe : CE.IR (EEbasic a e true)->

iris : Ua : CI.Tie : CE.IR (EEbasic a -e true)->>

IR (EEbasic a e false)

The semantics of SemNet4 involves exploiting the intensionality of Prop. It is

postponed to the next chapter.

IR (EErec a (EEbasic a e true) true)

Chapter 6: Formalisat ion of SemNet i n U T T 120

6.6 Review

Performing a formalisation of this size is a large and complicated task. This chapter

has shown that the techniques and tools of type theory can help to break such

problems and allow modular and machine assisted development of ideas and proofs.

The closeness of UTT code and Haskell code did allow for some formal analysis

of LOLITA algorithms, although because of the difficulties of recursion, this is only

feasible from an engineering standpoint i f there is a serious need.

The basic syntactic and semantic models have now been defined. Chapter

7 takes the semantic model and the motivation that there are many similarities

between SemNet and UTT to analyse some of the richer aspects of SemNet.

Chapter 7

Formal type theoretic semantics

As outlined in the opening chapters, much of this research was motivated by the

idea that the constructive and intensional aspects of type theory would make it

a suitable semantic language for analysing SemNet. This chapter describes how,

because of these aspects, the semantic models developed in chapter 6 are able to

model SemNet more directly than set theory.

7.1 Type theoretic intuitions

The starting point for building a set theoretic model in chapter 5, was the intuition

that the entity hierarchy formed a set hierarchy. I f instead events are considered

first, it is observed that the interpretations are mainly of the form:

Vx.x G A -> (...)

3x.x e A A (...)

This suggests that the underlying form for the logic is sorted, and that the

intended statement is about all objects of 'sort A ' rather than all objects in some

universe. In chapter 6, this more intuitive interpretation has been achieved.

Chapter 7: Formal type theoret ic semantics 122

It may seem that the subtyping scheme described in chapter 6 is more complex

and less intuitive than viewing the hierarchy as a partial order defined by the

subset relation. But this is not really so, as the type theoretic interpretations can

be viewed in terms of sets with extra structure attached, see figure 7.1.

The intuitive
Spec Hierarchy

The Semantic
Type Hierarchy

A

spec

B

spec

Meaning Function

Meaning Function

Meaning Function

x.T.R x

Coercive
function

2̂ x.T.^g x

Coercive
function

S xiT.Rx

Figure 7.1: The 'semantic' type hierarchy.

Each type corresponds to a 'subset' of the type T, together with a proof of some

property about each of the objects in the subset. Thus the interpretation preserves

the intuition of the subset relation and carries further structure which is exploited

by other aspects of the model.

Chapter 7: Formal type theoretic semantics 123

7 o 2 Defined and Observed Events

As with the set theoretic model (see section 5.2) the observed events do not affect

the definition (i.e. meaning) of refered subjects and objects. Thus as was concluded

with the set theoretic model i f observed events are introduced to SemNet then

the meaning as location principle only applies as far as defining events. A fuller

discussion is given in section 8.1.1.

Intuitively the CU nodes of SemNet represent noun phrases in natural language.

The 'defined' events define such nodes and the 'observed' events refer back to them.

In section 3.6 it was shown how dependent types are able to model this 'progression'

which manifests itself many times in natural language. In section 6.2 CU nodes

were interpreted as £ types of the form

S[s : T,jt)i : Pi(x), : Pn(x)}

with Pi-.T-t Prop1.

With this interpretation, each of the predicates can be referred to by 'future'

UTT statements in the same way as was done in section 3.6.

However, Ranta uses Martin-Lof's type theory, which uses the S type directly

as a 'constructive' existential quantifier. This was used to interpret the 'donkey

sentence', see equation 3.1. It turns out that to model 'directly' the way in which

SemNet represents this sentence the same quantifier is needed. Therefore a slight

change in the interpretation is needed.

For a universal-existential event the defining predicate needs to allow the exis

tential 'witness' to be extracted. To allow this instead of interpreting as in equa

tion 6.2, it is interpreted as:

1The predicates were actually packaged together as a conjunction, but this does not affect our
present purpose.

Chapter 7: Formal type theoretic semantics 124

Pred2{Eue A B R bb) = \x : T.(Sy : Bm.Rm(x,y))

This means that the type changes, (P r e ^ : Event —> (T —> Type)). But the

proposition given in equation 6.2 can be extracted so that the soundness results

proved in chapter 6 still hold.

From now on CU nodes will be interpreted as:

where Qi : T Type. Moreover the initial segment can be packaged as a single

type, so that the node for, say, a mammal can be written as:

7.2.1 Basic observing events

In section 5.2 an attempt to model the SemNet representation of the 'donkey sen

tence' was given. In type theory the analysis follows the same lines, the 'predicate'

for an event is only used if the event is defining for the entity concept. For example,

the nodes of figure 5.3 are interpreted as:

E[.x : T,qt : Qi(x) , ...,qn : Qn(x)}

Ere : Animalm.Mammalpre(i(x)

El {

The statement: Ux : M3y : B.BO{x, y)

Every mother has a brother,

defining B l as: Ex : B.T,y : M.BO{y, x)

Brothers of a mother.

Chapter 7: Formal type theoretic semantics 125

E2 H->> i

The statement: Tlx : Bl.By : P.O(x,y)

Every 'brother of a mother' owns a parrot,

defining P I as: Ex : P.Zy : Bl.O{y,x)

Parrots owned by a 'brother of a mother'.

7.2.2 Complex observing events

Interpreting the donkey sentence graph

In section 5.2 it was shown that to replicate the way in which SemNet builds the

meaning of the 'donkey sentence' a witness extracting function is needed. Since

UTT (via the Strong sum type, and its associated projection functions) has such

a function the SemNet graph can be handled directly:

El I (7.1)

The statement: Ux : F1.3y : D.O(x,y)

Every F l owns a donkey,

defining F l as: Ea; : F.Ey : D.O(x,y)

Farmers that own a donkey,

defining D l as: Ex : D.T,x : F.O(x,y)

Donkeys owned by a farmer.

As before, intuitively E2 should be interpreted as "Fl's beat the donkey that

they own". This time, because of the constructive nature of type theory, the witness

of the existential can be extracted:

E2 i—y Ux : FI.B(X,TT1(TT2(X))) (7.2)

Chapter 7: Formal type theoretic semantics 126

Complex Actions

Although this may seem an esoteric example, which does not affect the general

working of LOLITA, there is an immediate application. A current design problem

is how to capture 'structural' facts about actions. For example, the action 'is

ancestor o f is transitive, and the action 'is cousin o f is symmetric. Such rules are

easy to specify in TOVC.

A relation R is transitive if and only if:

VxVyVz((R(x, V) A R(y, z)) => R(x, z)) (7.3)

A relation R is symmetric i f and only if:

VxVy(R(x,y)=>R(y,x)) (7.4)

It is not clear how such statements could be captured in SemNet. One problem

is that the statements appear to be untyped, secondly it is not clear what the

definition of the subject and objects of any events should be.

Starting from the formulation of the donkey sentence in TOVC and considering

its counterpart in UTT:

VxVy{F(x) A D(y) A 0{x, y)) B{x, y)

Ux : F.Uy : D.O{x,y) -+ B(x,y)

it is observed that this is isomorphic to:

Ilz : (Ex : F.Zy : D.0{x,y))B{nl(z),irl(n2(z)))

Chapter 7: Formal type theoretic semantics 127

(equivalent to the formulation given by Ranta, see section 3.6) from which

types equivalent to F l and D l can be extracted. Following a similar pattern for

equation 7.4 gives, R is symmetric i f and only if:

Uf : (E x : T.Ey : T . i2(x,y)) i2(7rl(7r2(/)) ,7r l(/))

From which subject and object concepts can be extracted as:

X = Ex : T.Ey : T.R(x,y)

Y = Ey : T.Ex : T.R(x,y)

and the statement becomes2:

Tlx : X.R{nl{x), 7rl(7r2(x))) (7.5)

which can be converted to SemNet, as in figure 7.2

Similarly the transitive statement gets converted to:

11/ : (Ex : T.Sy : TXz : T.(R(x, y) A R(y, z)))R(nl(f), 7r2(7rl(/))) (7.6)

from which the following relevant types can be extracted:

X = Ex : T.Ey : T.Ez : T.(R(x, y) A R{y, zj)

Y = Ey : T.Ex : T.Ez : T.(R{x, y) A R(y, z))

Z = Ez : T.Ey : T . E x : T.(R(x,y) A R(y,z))

A problem here is that each of these types is defined by a conjunction of rela-

2The implicit subtyping assumed in chapter 6, avoided the use of the projection functions

Chapter 7: Formal type theoretic semantics 128

T

spe pec

X
FU

FU FU sub obj

E l

act
obj sub

R

act

E 2
(observed)

Figure 7.2: Proposed SemNet structure for Symmetric action

tions, leading to the graph in figure 7.3. Here E3 is the defining event for each of

the entity concepts X, Y and Z, but E3 is not directly connected to any of them.

Therefore i f SemNet is to represent transitive relations (actions) in this way some

extension to the representation is needed.

7.3 Necessary statements

Section 5.3 discussed how possible world semantics could be used to give a semantic

account for 'necessarily true' statements. Here it is shown how the semantics

defined so far can account for necessity. Consider again the nodes from figure 4.6.

Xm = Ex : T.CS(x) A PF(x)

Chapter 7: Formal type theoretic semantics 129

spec
spec

X
FU

FU sub obi FU ub

E l E2

ct ac

R obi
obi sub

sub

act E3

act

AND E4
(observed)

Figure 7.3: Proposed SemNet structure for Transitive action

where CS is a predicate for 'being a computer scientist at Durham', and PF is

a predicate for 'plays football'. The events are interpreted as:

Ex = Ux : Xm.PF{x)

E2 = Ux: Xm.AI(x)

where A I is a predicate for 'studies A I ' . The difference between these statements

is that Ex is a tautology and so is a necessary truth.

Chapter 7: Formal type theoretic semantics 130

7 o 4 Intensionality of Propositions

As discussed in chapter 5, the intuitive interpretation for the epistemic actions

is as relations over the domains of the subject and object. The problem there

was that, propositions are only interpreted extensionally, i.e. as members of the

set {true,false}. This time however, the initial semantics have mapped events to

objects of type Prop in UTT. Therefore there is an intensional distinction between

objects. For example:

(Repi, Roberto, El) \-t Believes(Robertom, Elm) (7 7)

(Repi, Roberto, E2) (->• Believes(Robertom, E2m)

(with Believes : (T x Prop) —> Prop). This seems reasonable since Elm and

E2m are distinct types (propositions).

In this section rather than leaving the relation implicit (as was done with ordi

nary actions) epistemic relations are defined explicitly as the inductive relation 3:

Define a relation relation B,

B (T x Prop) —> Prop

b. 'spec

inst

'basic

Yla : CI.He : wff[si].IR(EEspec(a, e,true)) —» B(am, e,

Ila : CI.He : wff[s2].IR(EEinst(a, e, true)) —> B(am, e,

Ha : CI.Tle : CE.IR(EEbasic(a, e, true)) —> B(am, em)

•m

m)

)

EEvents are interpreted by a recursive function over this structure.

3With am and em being the semantic counterparts of a and e.

Chapter 7: Formal type theoretic semantics 131

•M-eevent EEspec(a, e, true)

EEinst(a, e, true)

EEbasic(a, e, true)

EEspec(a, e, false)

EEinst(a, e, false)

EEbasic(a, e, false)

EErec(a, e, true)

EErec(a, e, false)

— B(am^em)

= B(am,em)

— B(am, em)

— ~nB(am) Cm)

= ->B(am,em)

= -<B(am, e m)

= B(am,Meevent(e))

- ->B(am,Meevent{e))

The 'complexity measure function' w : EEvent —> not is easily defined on the

structure of EEvent.

w EEspec = zero

w EEinst = zero

w EEbasic = zero

w EErec(a,e,bb) suc(w(e))

Chapter 7: Formal type theoretic semantics 132

Intuitive Example

For example, consider the events:

E l (Likes,Man,U,Dog,U)

E2 (Roberto <= Man)

E3 (Likes,true,Roberto,I,Dog,U)

E4 (R e p t-,Rick,El)

E5 (R e p t,Rick,E2)
with interpretations:

Al l men like all dogs.

Roberto is a man.

Roberto likes all dogs.

Rick believes 'all men like all dogs'.

Rick believes 'Roberto is a man'.

Elm = Ux : Manm.Ily : Dogm.Likesm(x,y)

E2m = Manpred{Robertom)

E3m = Ux : Dogm.Likes(Robertom,y)

E4m = B(Rickm,Elm)

E5m = B(Rickm, E2m)

Operationally the rules of 7i2[s4] entail the event:

E6 (R e pi,Rick,E3) Rick believes 'Roberto likes all dogs',

and so by definition semantically the proposition:

is entailed.

This may seem like the problem of semantics has been avoided, and that ' t ruth '

has been directly equated with proof. To a certain extent this is the case. However

some advantages have been accrued. In fact the interpretation reflects the semantics

of epistemic events directly, since the true (operational) semantics of epistemic

events is defined by the inference rules. By 'shifting' these rules into the world of

'Prop' in UTT, the 'meaning' can be analysed in terms of formal logical propositions

of UTT. This is done in two phases, first a description of the current rules is given,

and then an analysis of richer epistemic statements is given.

E6m = B(Rickm, E3m) (7.8)

Chapter 7: Formal type theoretic semantics 133

7.4.1 Definitional Events are Distinguished

It has already been established that the interpretation distinguishes interpretations

for different events, see equation 7.7. In fact the distinction is finer grained than

might be expected as even the definitional events (which are all tautologies) are

distinguished.

For example, consider the interpretations for E l in equation 7.1 and for E2 in

the following:

MAN B I C Y C L E

spec

MAN1

spec

BIKE1

(U) sub obj
(E)

E l

act

LIKES

Figure 7.4: Definitional Event, 'Men that like bikes'.

E2 ^ I

The statement: IIx : M\m3y : Bm.Lm(x,y)

Every M l likes a bike.

defining M l m as: Ex : M m . £ y : Bm.Lm(x,y)

Men that like a bike.

defining B l m as: Ex : B.Ex : Mm.Lm(x,y)

Bikes liked by a man.

The statement E2 is proved by an object such as:

Ax : Ml m .L m (x , 7r l (7 r2 (x)))

Chapter 7: Formal type theoretic semantics 134

This is a different object from a proof of E l , thus showing that E l and E2 are

different types.

7.4.2 Semantic analysis of Epistemic Rules

The intuition behind the basic epistemic rules, is that they assume all agents are

able to use all the rules of inference known to LOLITA. Since these rules have been

shown to be sound with respect to type theory, the assumption seems reasonable.

The more general rules involving internal relationships of B are open to analysis.

For example, rule 4.12 (corresponding to ir\2) is interpreted as:

This rule is harder to state in possible worlds semantics (see 5.3.2), but, because

of the impredicativity of Prop, it can be made directly in UTT.

Finally rule 4.13 (corresponding to irlS) is interpreted as:

This rule translated as something that is true (provable) in PWS. It is inter

esting that this proposition is not provable in UTT (from the rules given). This

means that there is the flexibility in this model of allowing inconsistent agents, i.e.

for some agent a, and some event e LOLITA could believe:

UP : Prop.Ua : T.B(a, P) -> B(a, B(a, P)) (7.9)

UP : Prop.Ua : T.B(a,^P) - 5 (a , P) (7.10)

B(am,e. m) A B(am,^e m

without her own beliefs being inconsistent. Its not clear if this is directly ap

plicable, but it is certainly true that many agents express contradictory utterances

and beliefs, and so in the longer term it may be useful to give a semantic account

Chapter 7: Formal type theoretic semantics 135

of this behaviour.

7.4.3 Design/Prescription for Epistemic events

The current implementation of SemNet treats all epistemic actions in the same way.

Intuitively there are some relationships which can be made between the actions.

For example, if you know a fact, then you presumably believe that fact, although

the converse may not hold, i.e.

Ua : T.UP : Prop.Knows(a, P) -> Believes(a, P)

this corresponds to an epistemic action hierarchy shown in figure 7.5.

B E L I E V E

Act
spec

KNOW

Figure 7.5: Epistemic Action Hierarchy.

Other expressions which are easily stated in the semantics include:

Simon believes everything that Donna believes,

which is stated as:

UP : Prop.B(Donna,P) -t B(Simon,P)

This time the counterpart in SemNet is not so obvious as there is no mechanism

Chapter 7: Formal type theoretic semantics 136

for treating events as parameters. However, the semantics are in place for such a

structure.

7.4.4 Impredicativity and Paradox

The danger/difficulty of treating events as parameters, especially when impred

icativity has been allowed into the language, are paradoxes. It is perhaps worth

noting that (seemingly) paradoxical statements such as:

"This statement is not true."

which are discussed extensively in [Barwise and Etchemendy, 1987] cannot be

stated in SemNet. This is because the recursive epistemic events (i.e. statements

of belief about belief) are all grounded by basic epistemic events.

7.5 Distributedness.

Distributedness of SemNet (with respect to the set theoretic model) was established

in section 5.4. In this section rather than giving a fu l l analysis (which would mostly

repeat points already made) an interpretation of the 'syntactic arcs' of sections 6.4

and 6.5 are given. It is clear that the interpretation of each arc is 'sound' with

respect to the fu l l event and so to the ful l net.

It is assumed (to save space) that quantifications are stored on the events rather

than on the arcs and for the basic events the values are only given for Eue events.

The result for basic events is similar to those for set theoretic semantics, however,

because of the similarity in structure between epistemic events and their semantics

the results for epistemic events are much clearer.

Chapter 7: Formal type theoretic semantics 137

Munk '• Link —> Prop

Munk {Subject, Eue, A) = 3R! : (T2 -»• Prop).Ex : Am.

3y:T.R'{x,y)

M H n k {Object, Eue, B) = 3R' : (T 2 Prop)3X : Type.Ux : X.

3y : Bm.R'{x,y)

Munk {Action, Eue, R) = 3X,Y : T.Ilx : X3y : Y.

R{x,y)

with X and Y subtypes of T. For epistemic links:

Mepiink '• EpLink —> Prop

Mepiink {EpSubject{E,a)) = 3P : Prop.B{am, P)

Mepiink {EpObject{E, e)) = 3a : T.B{a, em)

Mepiink {EpAbject{E, Repi)) = 3P : Prop.3a : T.B{a, P)

This shows that SemNet is distributed with respect to the type theoretic model.

7.5.1 What makes SemNet distributed

As discussed in chapter 1 semantic nets have been described as notational variants

of set theory or classical logic [Schubert, 1991]. It is usually accepted that they are

organised so that commonly used inferences can be performed efficiently. In section

4.8 it was claimed that SemNet went further, in being designed to be distributed

it is organised so as to be flexible and robust for NLE in ways that classical logic

cannot be. Having defined and formally analysed distributedness, this section looks

for aspects of the representation that make it distributed.

UTT (like classical logic) is only distributed as far as separate statements. The

method will be to look at UTT interpretations of SemNet structures and to consider

whether statements of these forms are somehow more distributed than other UTT

Chapter 7: Formal type theoretic semantics 138

statements.

Consider the events of this chapter and their type theoretic interpretations, i.e.

equations 7.1, 7.2, 7.5 and 7.8:

Tlx : Flm.3y : Dlm.Om(x,y)

Ux : Flm.Beats(x, f(x)) (/ : Flm -> D\m)

Ux : (Ex : T.Ey : T.R(xty)).R{irl(x), (pil(pi2{x))) (f,g:X->T)

B(am,Em) (Em : Prop)

and considering the structures of interpretations for basic events, from equa

tion 6.1:

Ilx : Am.Uy : Bm.R
m •£ y

Tlx : Am.3y : Bm.R
m % y

Ux : Bm3y : Am.R
m y ^

Uy : Bm.R
m am y

Ux : Am.R
Rjn ®m bm

Pre-Event forms

The general pattern seems to mirror the intuition that SemNet builds complex con

cepts and allows 'new' events to refer to these concepts, events. In each case there

is a 'quantification structure' (from now on the prefix) where types are defined,

and a 'statement structure' (from now on the matrix) which refers to objects built

by the prefix. Each of the above statements are convertible to a type in pre-event

form:

Tlx : (Structure).R(f(x),g(x)) (7.11)

Chapter 7: Formal type theoretic semantics 139

The question is whether statements in such a form are more distributed than

general UTT statements.

The 'matrix' of 7.11 can be read independently from the prefix. I t states that

two things are in the relationship R.

For example, the matrix of equation 7.1 states that some x 'Owns' some y but

the types and quantifications of x and y are unknown without the prefix.

The types and quantifications of the statement are implicit in the prefix. In

SemNet the corresponding event specifies the types and quantifications locally.

To mimic this, similar tagging mechanisms would be needed, e.g. add type and

quantification tags to the referenced variable:

\pr&flx'}R(f(x')quant,typei 9 {^) quant,type)

for the example from equation 7.1

Ux : Flm3y : Dm.Bm(xViFi,yEtD)

This extra tagging is not needed for distributedness, as the matrix can be read

independently anyway. However, there is value in adding the tags as this makes

the interpretation more useful.

The 'prefix' consists of type judgements and quantifications. It defines types in

terms of other types and event structures. I t can be read independently from the

matrix, but it makes no statement.

For example, the prefix of equation 7.5, defines the structure required to make

the statement, irl(x) defines those objects that are the subject of a relation R, and

7rl(7r2(a;)) defines those objects which are the object of a relation R

Chapter 7: Formal type theoretic semantics 140

Coverage of Pre-Event Forms

Pre-event forms may seem restricted to statements involving binary relations, and

these relations being restricted to types 'below' T in the subtype hierarchy. How

ever, it does not seem difficult to widen the definition of an event to allow for as

many (labelled) arcs as are required, thus being interpreted as n-ary relations (for

any n). Also in theory the types need not be drawn from the entity hierarchy,

indeed the epistemic relations have already shown that they can be proposition

types as well.

The main aspect missing from general UTT statements are the logical connec

tives. But then these will clearly interpret the logical connective events of SemNet.

It is not claimed here that all statements in pre-event form have a counterpart

in SemNet. Indeed the statement for transitivity is of this form and yet because of

the problem of defining concepts via a 'conjunction' event, it is not clear how the

current SemNet should represent i t .

7.6 Review

This chapter has focussed on how features of UTT have been exploited to model

and understand SemNet semantically. This has been shown in four distinct areas:

1. The sigma type has been used to allow a mimicking of the strong existential

quantification which seems to be assumed in the representation of the 'donkey

sentence'.

2. The intensionality of types has been exploited to show how intensional aspects

of entity concepts can be distinguished.

3. The intensionality of propositions has been used to model the epistemic rea

soning of SemNet.

Chapter 7: Formal type theoretic semantics 141

4. Sigma types have been used to model how SemNet builds up and re-uses

complex concepts.

Chapter

Evaluation^ Conclusion and

Further work

This chapter begins with an evaluation of the project based on the original ob

jectives. A conclusion section is given and finally some suggestions for further

work.

8.1 Evaluation

This evaluation section is structured to fit the methodological success and project

specific criteria described in chapter 1.

8.1.1 The semantic model

A type theoretic semantic model has been built. Each of the basic constructs

of SemNet have an interpretation in UTT. The success of the project rests on

how closely the model fits the subjective 'intuitions' of the meaning of SemNet

constructs. As was pointed out in chapter 1, this is almost as difficult as trying to

establish an agreed semantics for natural language, nevertheless a crude analysis is

Chapter 8: Evaluation, Conclusion and Further work 143

attempted.

Basic events

The interpretation of the basic events seems entirely reasonable as an interpretation

for their natural language counterparts. The examples below show each of the event

types, a natural language statement that would be represented by such an event,

and the type theoretic semantics for the event. Each type theoretic statement

seems a reasonable interpretation.

Eui There is a toy that every child likes. 3y : T.Hx : C.L(x,y)

Eii There is a child that likes all toys. 3a: : C.Hy : T.L(x,y)

Where C, T, L are the obvious counterparts/types for children, toys and liking.

As outlined in 7.1 there are arguments for suggesting that these interpretations

capture the English statements more intuitively than their set theoretic counter

parts since the quantifications are over the concepts involved, rather than over a

universe.

The hierarchy

There can be little argument that the developers of LOLITA consider the entity

hierarchy as a subset and membership hierarchy. However, the subtype hierarchy

can be viewed as a subset hierarchy (over the type T of chapter 6, as opposed to

the set theoretic domain V of chapter 5) except that the 'sets' lower down the

hierarchy are paired with properties which they hold. In this sense it can be seen

that the underlying semantics are the same, it is just that more structure is added

Euu

Eue

Al l children like all toys.

Every child likes a toy.
n.T : C.Ily:T.L(x,y)

llx : C.3y:T.L(x,y)

Chapter 8: Evaluation, Conclusion and Further work 144

to the concepts lower down the hierarchy. With this proviso the subtype hierarchy

meets the developers' intuitions.

Meaning as location.

A major principle of SemNet is that no nodes have a pre-defined meaning and

the meaning of a node depends on how it is related to the other nodes, i.e. on

its location. Moreover, the ful l meaning of a node can only be determined by

interpreting the whole network.

In type theory an entity node A, is interpreted as a type:

Am = : T.P(x)

where P is a predicate over T. This is a partial interpretation, as P is implicit,

to interpret more (find out more about P) the defining event must be interpreted

(as Epred), giving:

Ux : T.(Epred x A Pi x)

where Pi is an implicit predicate over T, which is defined by the nodes 'above' A

in the hierarchy. Again this is only partial and to interpret more involves interpret

ing the defining events for the generalisations of the original node. A fu l l definition

is reached once the top entity node is reached. A similar analysis could be per

formed for events, which require their subject and object nodes to be interpreted

fully before they are fully defined.

The idea of meaning as location is certainly captured by the semantics. A

local interpretation is possible, and this can be built upon by reading more nodes.

However, not all the nodes are required to reach a fu l l interpretation. Observed

events (if introduced) and nodes 'below' an entity in the hierarchy do not seem to

Chapter 8: Evaluation, Conclusion and Further work 145

be required. For example, the interpretation of the node for M A M M A L is not used

at all to define the type for ANIMAL. This seems reasonable, unless it is insisted

that a part of the meaning of A N I M A L is that some of them are MAMMALs.

Complex Concepts

Intuitively SemNet builds complex statements by building up complex concepts

(nodes) through defining events and allowing new events to refer to them. The

type theoretic semantics models this with all interpretations being in pre-event

form (see equation 7.11).

Furthermore, in representing the 'donkey sentence' SemNet assumes that the

witness of a previous existential can be extracted. Constructive type theory models

this directly, and as discussed in 7.2, this leads to a statement that is isomorphic

to Ranta's interpretation of the 'donkey sentence'.

Belief as a relation

Intuitively actions are relations over the subject and object of the event. This

is also true for epistemic events. This is modelled directly in type theory by the

inductively defined relation B : (T x Prop) -> Prop.

Moreover, the rules of inference are reflected directly in B, since B is defined

by them. Therefore, in this case even if B does not reflect intuitions, it does reflect

directly the meaning of epistemic events.

Summary

The above analysis shows, intuitively, that the model reflects SemNet. However,

simply mapping to a type theoretic model does not ensure that SemNet is well

founded in any sense. This can only be established by analysing the model in

terms of the logic of type theory.

Chapter 8: Evaluation, Conclusion and Further work 146

Of course it is also intuitive that SemNet meets many of the properties described

and so showing this in the semantics model adds further verification that the model

captures the intuitive SemNet.

8.1.2 Correctness of Reasoning

The 'valid' inference rules have been interpreted into type theory and shown to be

sound.

There is the added element that the proofs have been machine assisted checked.

Furthermore, an abstraction of the algorithm for implementing inheritance has been

shown to implement rules 4.1 and 4.2 soundly and completely.

8.1.3 Expressiveness

The three aspects of SemNet related to expressiveness that were analysed were

rich quantification, epistemic knowledge and intensionality. These have all been

analysed as follows.

The analysis of the 'donkey sentence' representation (see section 7.2) shows

that SemNet can express the quantification needed here. In particular the whole

sentence is represented, but also all the substructures involved represent statements

that are entailed by the fu l l sentence.

The analysis of epistemic actions showed that the rules used are reasonable

(when considered in the impredicative world of Prop).

The analysis of entities showed that although the inheritance works extension-

ally, the structure does contain the information to make intensional distinctions.

Chapter 8: Evaluation, Conclusion and Further work 147

8.1.4 Flexibility

In chapter 4 distributedness was put forward as a reasonable measure of how flexible

a network is. To show SemNet is distributed required a formal semantic model,

and this was completed for both models developed.

Essentially distributedness shows that information can be gleaned at various

levels of granularity. The point is that different algorithms have the flexibility

to choose the 'depth' of information that they require right down to the level of

individual nodes and arcs.

8.1.5 Developer Comprehend-ability

The project has contributed to developer comprehend-ability. As discussed from

the beginning it should be emphasised that the exposition given of SemNet in

chapter 4 was not a starting point for the thesis. The presentation given and issues

raised were mainly the result of the semantic analysis presented in later chapters.

For a newcomer to the project chapter 4 serves as the best way to understand,

intuitively how SemNet operates. When a developer is writing algorithms that

operate on SemNet they should now use the formal semantics developed in chapter

6, as the intended meaning of the constructs.

For example, in semantic analysis when deciding whether a concept exists al

ready, the verification should be considered in relation to the semantics of the nodes

concerned.

8.1.6 Issues for SemNet.

The main issues raised by the work were outlined in section 4.5. The semantic

model may contribute further, by providing a semantic basis for decisions. Of

course all decisions will have to be weighed up against engineering principles such

as cost-benefit, resource constraints and so on.

Chapter 8: Evaluation, Conclusion and Further work 148

• Semantic analysis (see section 7.2) has shown that it is equally meaningful to

place the quantification tags on the links, entities or events of SemNet, but

that each effects interpretation efficiency.

• The mapping of epistemic actions to a relation over Prop and T was so

successful that it is easy to consider extensions to the epistemic reasoning

module in the semantics (see section 7.4).

8.1.7 Contribution to N L E .

The main contribution to NLE has been to give a formal presentation for SemNet,

which is an extremely powerful KR language. This meets the criticism discussed

in chapter 2, that semantic networks are often presented informally with unclear

semantics.

Secondary to this is that type theory has many features that are extremely

useful for formalisation work in NLE. In this section an evaluation of this claim is

given.

Semantic Similarities

Many of the a priori reasons for using UTT as a semantic language for SemNet were

because of similarities in structure between these two specific languages. Whether

the work is relevant to other networks rests on how similar SemNet is to other

networks.

The model of the hierarchy is of the most general interest. In both KL-ONE

and CGT concepts lower down the hierarchy are defined by the 'parent' nodes and

by the roles they play. In CGT these roles are defined by lambda abstractions. By

defining the nodes as types this captures this definition precisely.

The notion of defined and observed events is actually very similar to the tax

onomy and assertion distinctions of KL-ONE type systems. This suggests that

Chapter 8: Evaluation, Conclusion and Further work 149

the section modelling building and re-use of concepts may be applicable to these

networks.

As discussed in section 4.8.2, SNePS represents the 'donkey sentence' in a man

ner very similar to SemNet. By re-referring to the variable 'donkeys owned by

a farmer' and claiming the graph represents the donkey sentence, then a witness

extracting function is being assumed. Therefore the constructive interpretation

provided by UTT is ideal for capturing this.

Also relevant to the SNePS representation is the interpretation of event nodes

as objects of type Prop in UTT. This allowed for example, an interpretation for

the recursive nesting of propositions.

The work of Ranta [Ranta, 1994] shows that many aspects of natural language

can be treated naturally in constructive type theory. This work found similarities

between results there and how SemNet operated. Since other networks have been

designed with natural language understanding in mind these similarities should

manifest themselves here as well.

Manageability aspects

Performing a large analysis such as this is a major task. Type theory through its

'manageability' features provided many tools and methods which helped to break

the task down.

The abstract theory mechanism helped to bring a modular approach to the

problem. In this work it was fortunate that the hierarchy was entirely independent

of the basic events, and that they in turn independent of the epistemic events.

Otherwise the results achieved for SemNeti in section 6.2 would have to be re-

analysed when basic events were considered. But in the end this just helped in

the presentation (i.e. chapter 6, could present the model of SemNet in distinct

phases). The modular approach would still have helped to establish some results

for the hierarchy before seeing how 'basic events' effected their behaviour.

Chapter 8: Evaluation, Conclusion and Further work 150

Machine assistance was occasionally useful. Lego did stop some analysis from

going further and demanded closer inspections, of course this generally occured

when some aspect had been overlooked.

8.2 Conclusions

As has been stated the major result of this work is the provision of a formal

semantics for SemNet. This is significant as many networks are put forward without

proper regard for a formal account of meaning. The work has shown, formally, that

SemNet has many features which help overcome some of the problems of KR for

NLE. In particular:

• SemNet is richly expressive, being able to represent intension, epistemic

knowledge and complex quantification.

• SemNet's basic reasoning mechanisms are sound with respect to the internal

logic of UTT.

• SemNet is distributed. This means that 'knowledge' can be retrieved in

a flexible manner, as is required by the different modules of a large-scale

natural language system.

The work has also shown that constructive type theory has many features which

make it a useful tool for studying aspects of NLE. For example:

• It can express many aspects of natural language in a natural manner. More

over, these are the same aspects that are often expressed in semantic networks

(or more generally KR's for NLE).

• It has useful meta-theoretic properties which have lead to tools and techniques

developed for formal methods. These tools are useful for NLE.

Chapter 8: Evaluation, Conclusion and Further work 151

The work has also characterised aspects of SemNet which are of more general

interest to the semantic network community, in particular formally interpreting

nodes in hierarchies as 'intensional' types, a constructive witness extracting func

tion, and a direct interpretation for representing nodes as propositions.

8.3 Further Work

8.3.1 Implementing a Maths Vernacular

A research proposal has been written [Luo et ai, 1996] and accepted to implement

a mathematical vernacular. The idea is to integrate theory and technology in

Computer-Assisted Formal Reasoning (CAFR) and Natural Language Processing.

More specifically the project will attempt to provide type theoretic semantics for

a 'subset' of natural language (i.e. the mathematical vernacular). This semantics

wil l then be the focal point for linking the work of Lego (which is based on type

theory) and LOLITA (which now has a type theoretic semantics). The longer term

aim is to provide natural language support and capability to CAFR technology.

Although this work will not feed this project directly, (as i t provides a for-

malisation of SemNet itself, rather than the knowledge it represents), it was the

original motivation, and it is expected that a great deal of the modelling work will

be re-usable for the 'linking' work.

8.3.2 Further aspects of SemNet

The original aim for this work was to better understand how SemNet represents

and reasons with knowledge. The foundation for this is in place, and the basic

mechanisms have been interpreted and understood. Two modules which build on

the basic model are 'the reasoning by analogy module' and 'reasoning about time

and location module'. A possible further project could consider these modules and

Chapter 8: Evaluation, Conclusion and Further work 152

what their operations 'mean' in the type theoretic model

8.3.3 The semantic model as a tool

Finally, it has been mentioned that the semantic model has raised some issues for

SemNet, and also that i t has a role to play in the future development of SemNet

and LOLITA. To ensure this happens there is further work to be done, working

out how the model could best be communicated, stored and updated so that it

performs this role in the future.

References

[Aczel, 1988] P. Aczel, Non-Well-Founded Sets, Number 14, CSLI lecture notes,

1988.

[Ali and Shapiro, 1993] S. S. Al i and S. C. Shapiro, "Natural Language Processing

Using a Propositional Semantic Network with Structured Variables", Minds and

Machines, 3, No 4, 1993.

[Anderson and Belnap, 1975] A. R. Anderson and N. D. Belnap, Entailment: The

logic of relevance and necessity., volume 1, Princeton University Press, 1975.

[Augustsson et al., 1990] L. Augustsson, T. Coquand, and B. Nordstrom, "A short

description of another logical framework.", in G. Huet and G. Plotkin, editors,

Preliminary Proceedings of Logical Frameworks, 1990.

[Barendregt, 1992] H. P. Barendregt, "Lambda Calculi with Types", in Handbook

of Logic in Computer Science, Volume 2. Background: Computational Struc

tures, Clarendon Press, 1992.

[Barwise and Etchemendy, 1987] J. Barwise and J. Etchemendy, The Liar: An

Essay on Truth and Circularity, Oxford University Press, 1987.

[Barwise and Perry, 1985] J. Barwise and J. Perry, Situations and attitudes, M I T

press, Cambridge, 1985.

[Beierle et al., 1992] C. Beierle, U. Hedstuck, U. Pletat, P. H. Schmitt, and J. Siek-

mann, "An order-sorted logic for knowledge representation systems", Artificial

Intelligence, 55, 1992.

References 154

[Bird and Wadler, 1988] R. Bird and P. Wadler, Introduction to Functional Pro

gramming, International Series in Computer Science, Prentice Hall, 1988.

[Bishop, 1967] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill,

1967.

[Bokma and Garigliano, 1992] A. Bokma and R. Garigliano, "Uncertainty Man

agement through Source control: A heuristic approach", Proceedings, Interna

tional Conference on Information Processing and Management of Uncertainty in

knowledge based systems, Mallorca, Spain., 1992.

[Brachman and Schmolze, 1985] R. J. Brachman and J. Schmolze, "An overview

of the KL-ONE knowledge representation system", Cognitive Science, 9, 1985.

[Brachman et al., 1991] R. J. Brachman, H. Levesque, and R. Reiter, "Introduc

tion to the special volume on Knowledge Representation", Artificial Intelligence,

49, 1991.

[Cann, 1993] R. Cann, Formal Semantics, An Introduction, Cambridge University

Press, 1993.

[Constable et al., 1986] R. L. Constable, S. F. Allen, H. M . Bromley, et al., Im

plementing Mathematics with the NuPRL Proof Development System, Prentice

Hall, 1986.

[Costantino et al,, 1996] M . Costantino, R. Collingham, and R. G. Morgan, "Fi

nancial Information Extraction at the University of Durham", Proceedings, II

International Meeting of Artificial Intelligence in Accounting, Huelva, Spain,

1996.

[Curry and Feys, 1958] H. B. Curry and R. Feys, Cominatory Logic, volume 1,

North Holland Publishing Company, 1958.

[Davis, 1989] R. E. Davis, Truth, Deduction and Computation: Logic and Seman

tics for Computer Science, Computer Science Press, 1989.

References 155

[de Bruijn, 1980] N. G. de Bruijn, "A survey of the project AUTOMATH." , in

J. Hindley and J. Seldin, editors, To H. B. Curry: Essays on Combinatory logic,

Lambda Calculus and Formalism, Academic Press, 1980.

[Dowek, 1990] G. Dowek, "The Coq Proof Assistant: User's Guide (version 5.6)",

Technical report, INRIA-Rocquencourt and CNRS-ENS Lyon, 1990.

[Dowty et ai, 1981] D. R. Dowty, R. E. Wall, and S. Peters, Introduction to

Monatgue Semantics, Texts and studies in Linguistics and Philosophy, D. Reidel

Publishing Company, 1981.

[Dunn, 1986] J. M. Dunn, "Relevance logic and Entailment.", in D. M . Gabbay,

editor, Handbook of Philosophical Logic, D. Reidel Publishing Company, 1986.

[Etherington, 1988] D. W. Etherington, Reasoning With Incomplete Information,

Reasearch Notes In Artificial Intelligence, Pitman, 1988.

[Fahlman, 1979] S. E. Fahlman, NETL: A system for representing and Using Real

World Knowledge, The M I T press, 1979.

[Fraenkel and Bar-Hillel, 1958] A. R. Fraenkel and Y. Bar-Hillel, Foundations of

Set Theory., North Holland Publishing Company, 1958.

[Frisch, 1991] A. Frisch, "The substitutional framework for sorted deduction: fun

damental results in hybrid reasoning", Artificial Intelligence, 49, 1991.

[Froidevaux and Kayser, 1988] C. Froidevaux and D. Kayser, "Inheritance in Se

mantic Networks and Default Logic", in P.Smets, E. H. Mamdani, D. Dubois,

and H. Prade, editors, Non-Standard Logics for Automated Reasoning, Academic

Press, Harcourt Brace Jovanovich Publishers, 1988.

[Garigliano et ai, 1993a] R. Garigliano, R. Morgan, and M . Smith, "LOLITA as a

content scanning tool", Proceedings, 13th International conference on Artificial

Intelligence, Expert Systems and Natural Language Processing, Avignon, France.,

1993.

References 156

[Garigliano et al., 1993b] R. Garigliano, R. Morgan, and M . Smith, "LOLITA

progress report", Technical report, University of Durham, 1993.

[Garigliano et al., 1995] R. Garigliano, R. Morgan, M . Smith, and S. P. Jones,

"DEAR project summary", Proceedings, 1st AIKMS conference, Oxford., 1995.

[Garigliano, 1995] R. Garigliano, "Editorial", Natural Language Engineering, 1,

part 4, 1995.

[Girard, 1986] J. Y. Girard, "The system F of variable types, fifteen years later.",

Theoretical Computer Science, (45), 1986.

[Goguen, 1994] H. Goguen, A Typed Operational Semantics for Type Theory, PhD

thesis, University of Edinburgh, 1994.

[Graber et al, 1995] A. Graber, H. J. Burckert, and A. Laux, "Terminological

Reasoning with Knowledge and Belief", in Knowledge and Belief in Philosophy

and Artificial Intelligence, Akadamie Verlag, 1995.

[Grishman, 1986] R. Grishman, Computational Linguistics, Cambridge University

Press, 1986.

[Herzog and Rollinger, 1991] 0 . Herzog and C. R. Rollinger, editors, Text under

standing in LILOG (Integrating Computational Linguistics and Artificial Intel

ligence. Final report on the IBM LILOG-Project, Springer-verlag, 1991.

[Hill, 1994] R. K. Hi l l , Issues of Semantics in a Semantic-Network Representation

of Belief, PhD thesis, University of Buffalo, New York, 1994.

[Hindley and Seldin, 1986] J. R. Hindley and J. P. Seldin, Introduction to Com-

binators and lambda calculus, London Mathematical Society Student texts, 1,

Cambridge University Press, 1986.

[Hoffman, 1992] M . Hoffman, "Formal development of functional programs in type

theory - a case study.", Technical Report ECS-LFCS-92-228, LFCS: Edinburgh

University, 1992.

References 157

[Holyer, 1991] I . Holyer, Functional Programming with Miranda, Pitman Publish

ing, 1991.

[Howard, 1980] W. A. Howard, "The formulae-as-types notion of construction",

in J. Hindley and J. Seldin, editors, To H. B. Curry: Essays on Combinatory

Logic, Academic Press, 1980.

[Hudak et al, 1992] P. Hudak, S. P. Jones, P. Wadler, et al., "Report on the

Programming language. A Non-strict, purely functional language, version 1.2",

Technical report, Glasgow University, 1992.

[Jones and Garigliano, 1994] C. Jones and R. Garigliano, Dialogue Structure Mod

els: An engineering approach to the analysis and generation of natural english

dialogues, PhD thesis, University of Durham, 1994.

[Jones, 1996] A. Jones, "The addition of subtyping to the Unifying Theory of

dependent Types: A literature survey", Technical report, University of Durham,

1996.

[Kumar and Chalupsky, 1993] D. Kumar and H. Chalupsky, "Guest Editorial for

Special Issue on Propositional Knowledge Representation", Journal of Experi

mental and Theoretical Artificial Intelligence, 5, No 2 and 3, 1993.

[Lehmann, 1992] F. Lehmann, "Semantic Networks", in F. Lehmann, editor, Se-

mantic Networks in Artificial Intelligence (part 1), volume 2-5 of Computers and

mathematics with applications, Pergamon Press, 1992.

[Leviant, 1994] D. Leviant, "Higher Order Logic", in D. M . Gabbay, C. J. Hogger,

and J. A. Robinson, editors, Handbook of logic in Al and Logic programming,

volume 2, Clarendon Press, 1994.

[Long and Garigliano, 1994] D. Long and R. Garigliano, Reasoning By Analogy

And Causality: A model and application, Artificial Intelligence, Ellis Horwood,

1994.

References 158

[Luger and Stubblefield, 1993] G. F. Luger and W. A. Stubblefield, Artifi

cial Intelligence: structures and stragies for complex problem solving, Ben-

jamin/Cummings, 1993.

[Luo and Pollack, 1992} Z. Luo and R. Pollack, "Lego proof development system:

Users Manual", Technical Report ECS-LFCS-92-211, LFCS, Edinburgh Univer

sity, 1992.

[Luo et al., 1996] Z. Luo, R. Garigliano, and S. Shiu, "Research Proposal: Com

puter Aided Reasoning with Natural Language: Implementing a Maths Vernac

ular", Technical report, University of Durham, 1996.

[Luo, 1990] Z. Luo, An Extended Calculus of Constructions, PhD thesis, University

of Edinburgh, 1990.

[Luo, 1993] Z. Luo, "Program specification and data refinement in type theory.",

Mathematical Structures in Computer Science, 3, 1993.

[Luo, 1994] Z. Luo, Computation and Reasoning: A Type Theory for Computer

Science, Oxford Science Publications, 1994.

[Luo, 1996] Z. Luo, "Coercive subtyping in Type Theory.", submitted Proceedings,

Computer Science Logic '96, Utrecht., 1996.

[Martin-Lof, 1982] P. Martin-Lof, "Constructive Mathematics and Computer Pro

gramming", in L. J. Cohen, editor, Logic, Methodology and Philosophy of Sci

ence, North-Holland, 1982.

[Martin-Lof, 1984] P. Martin-Lof, Intuitionistic Type Theory, Bibliopolis, 1984.

[Meyer and der Hoek, 1995] J. J. C. Meyer and W. V. der Hoek, Epistemic Logic

in Al and Computer Science, Cambridge tracts in Computer Science, Cambridge

University Press, 1995.

[Miller, 1990] G. Miller, "Wordnet: An online lexical database.", International

Journal of Lexicography., 1990.

References 159

[Moore, 1995] R. Moore, Logic and Representation, CSLI Lecture Notes, 39, 1995.

[Morgan et al., 1995] R. Morgan, R. Garigliano, et al., "Description of the LOLITA

system as used in MUC-6", in Proceedings Sixth Message Understanding Con

ference (MUC-6), 1995.

[Nagle et al., 1992] T. E. Nagle, J. A. Nagle, L. L. Gerholz, and P. W. Eklund,

editors, Concpetual Structures: current research and practice, Ellis Horwood,

1992.

[Nebel, 1991] B. Nebel, "Terminological Cycles: Semantics and Computational

Properties", in J. F. Sowa, editor, Principles of Semantic Networks: Explorations

in the Representation of Knowledge, chapter 11, Morgan Kauffman, 1991.

[Nettleton, 1997a] D. J. Nettleton, editor, The LOLITA book volume 1: System

Core., To be published, Springer-Verlag, 1997.

[Nettleton, 1997b] D. J. Nettleton, editor, The LOLITA book volume 2: Applica

tions., To be published, Springer-Verlag, 1997.

[Nettleton, 1997c] D. J. Nettleton, editor, The LOLITA book volume 3: Philosophy

and Methodology., To be published, Springer-Verlag, 1997.

[Nordstrom et al., 1990] B. Nordstrom, K. Petersson, and J. Smith, Programming

in Martin-Lofs Type Theory: An Introduction, Oxford University Press, 1990.

[Pollack, 1989] R. Pollack, "The theory of LEGO", Technical report, University

of Edinburgh, 1989.

[Poria and Garigliano, 1996] S. Poria and R. Garigliano, "An Exploration of Ex

planation.", submitted to 9th European Conference on Machine Learning, 1996.

[Ranta, 1994] A. Ranta, Type-Theoretical Grammar, Oxford Science Publications,

1994.

[Rapaport, 1981] W. Rapaport, "How to make the world fi t our language: An

essay in Meinongian semantics.", Grazer Philosophiche Studien, (14), 1981.

References 160

[Schubert, 1991] L. K. Schubert, "Semantic Nets Are in the Eye of the Beholder",

in J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the

Representation of Knowledge, chapter 2, Morgan Kauffman, 1991.

[Shapiro and Rapaport, 1987] S. C. Shapiro and W. J. Rapaport, "SNePS consid

ered as a fully intensional propositional semantic network", in N. Cercone and

G. McCalla, editors, The Knowledge Frontier, Springer-Verlag, 1987.

[Shapiro, 1979] S. C. Shapiro, "The SNePS Semantic Network Processing Sys

tem", in N. Findler, editor, Associative Networks: Representation and use of

Knowledge by Computers, Academic Press, 1979.

[Shapiro, 1991] S. C. Shapiro, "Cables, Paths and "Subconscious" Reasoning in

Propositional Semantic Networks", in J. F. Sowa, editor, Principles of Semantic

Networks, Morgan Kaufmann, 1991.

[Shastri, 1988] L. Shastri, Semantic Networks: An Evidential formalization and

its connectionist realization, Research Notes In Artificial Intelligence, Pitman,

1988.

[Shiu et al., 1996] S. Shiu, Z. Luo, and R. Garigliano, "Type theoretic semantics

for SemNet", in D. M . Gabbay and H. J. Ohlbach, editors, Practical Reasoning,

International Conference on Formal and Applied Practical Reasoning, FAPR'96,

Bonn, Germany, Lecture Notes in Artificial Intelligence 1085, subseries of Lec

ture notes in Computer Science, Springer-Verlag, 1996.

[Short et al., 1996] S. Short, S. Shiu, and R. Garigliano, "Distributedness and

Non-Linearity of LOLITA's Semantic Network", in COLING96, 1996.

[Short, 1996] S. Short, Knowledge Representation of Lolita, PhD thesis, (to be

submitted) Department of Computer Science, University of Durham, 1996.

[Smith, 1995] M . H. Smith, Natural Language Generation in the LOLITA Sys

tem: An Engineering Approach, PhD thesis, Department of Computer Science,

University of Durham, Apri l 1995.

References 161

[Sowa, 1984] J. F. Sowa, Conceptual Structures: Information Processing in Mind

and Machine, The Systems Programming Series, Addison Wesley, 1984.

[Touretzky, 1986] D. Touretzky, Mathematics of Inheritance systems, Research

Notes In Artificial Intelligence, Pitman, 1986.

[Walther, 1987] C. Walther, A Many-Sorted Calculus Based on Resolution and

Paramodulation, Reasearch Notes In Artificial Intelligence, Pitman, 1987.

[Wand, 1992] P. Wand, "Functional Programming and Verification with Lego:

MSc. Project Report", Technical report, LFCS, University of Edinburgh, 1992.

[Wang, 1995] Y. Wang, An intelligent computer based tutoring approach for the

management of negative transfer, PhD thesis, Department of Computer Science,

University of Durham, 1995.

[Woods and Schmolze, 1992] W. A. Woods and J. G. Schmolze, "The KL-ONE

Family", Computers Mathematics and Applications, 23, No 2 and 3:133-177,

1992.

[Woods, 1975] W. A. Woods, "Whats in a link: Foundations for semantic net

works.", in D. G. Bobrow and A. M . Collins, editors, Representation and Un

derstanding, Academic Press, 1975.

[Woods, 1991] W. A. Woods, "Understanding Subsumption and Taxonomy: A

Framework for Progress", in J. F. Sowa, editor, Principles of Semantic Networks:

Explorations in the Representation of Knowledge, chapter 1, Morgan Kauffman,

1991.

