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Abstract 

A Class of Petrov-Galerkin Finite Element Methods 

for the Numerical Solution of the 

Stationary Convection-Diffusion Equation. 

Andrew James Perella 

A thesis submitted in partial fulf i lment 

of the requirements for the degree of Doctor of Philosophy. 

September, 1996. 

A class of Petrov-Galerkin finite element methods is proposed for the numer

ical solution of the n dimensional stationary convection-diffusion equation. 

Af te r an in i t i a l review of the literature we describe this class of methods and 

present both asymptotic and nonasymptotic error analyses. Links are made 

w i t h the classical Galerkin finite element method and the cell vertex finite 

volume method. We then present numerical results obtained for a selection 

of these methods applied to some standard test problems. We also describe 

extensions of these methods which enable us to solve accurately for derivative 

values of the solution. 
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1.1 Introduction 

Many physical processes, in particular those arising from fluid flow problems, 

can be modelled as systems of partial differential equations. Consequently 

there is a great deal of interest in producing numerical methods which can 

approximate the solutions of these equations. 

However it has been well-known for some time that if there is a dominant 

convective term in the partial differential equation then standard numerical 

methods often fail to work well. The rapidly changing solutions which are 

common features in problems of this type cause standard classical numerical 

schemes (such as centred finite difference methods and Galerkin finite element 

methods) to yield solutions which suffer from very large, unrealistic, oscil

lations. Thus, many numerical methods have been devised to tackle these 

problems. Of these, the streamline diffusion method [23] and the cell vertex 

finite volume method [27] have been particularly successful. Although all of 

the specially designed methods have their strengths none are ideally suited to 

a large range of problems; indeed they are often designed with view to solving 

only a small class of problems. 

1.2 Convection—Diffusion Equation 

The incompressible Navier-Stokes equations [38]: 

^ + u . V P - a V 2 u = / , 

V - u = 0, 
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where u is a velocity field, P is the pressure and 1/a is the Reynolds/Peclet 
number, in conjunction with suitable boundary conditions (such as prescribed 
boundary velocities or normal derivatives of boundary velocities) model many 
important fluid-like flow problems (such as transonic airflow around an air
craft). Unfortunately the numerical solution of these equations has proved ex
tremely difficult especially in problems where the Peclet number is very large 
(typically this can be as large as 10^ or greater in transonic airflow problems.). 

While it is clearly desirable to be able to solve these equations we can have 

little hope of success over a whole range of problems unless we can adequately 

solve a simpler linear model. One such linear model is the convection-diffusion 

equation, an equation interesting in its own right. Like the Navier-Stokes 

equations the convection-diffusion equation is nonself-adjoint (there is a di

rectionality introduced by the presence of an odd order derivative) and as a 

result it inherits many of the important properties and difficulties of the more 

general nonlinear problem. 

In this thesis we shall consider new methods for the numerical solution of 

the stationary ?7-dimensionaI convection-diffusion equation. For the purpose 

of describing and analysing our methods we present the equation only with 

constant coefficients, although the methods are trivially applicable to the more 

general case. 

The convection-diffusion equation is: 

- V.(aVu) + V . ( b u ) = / m 0 C i?", (1.1) 

where a(-) is a constant n x n diffusion matrix and b(-) is a constant n x 1 

convection vector, with, for ease, homogeneous Dirichlet boundary conditions. 

To gain insight into the mechanisms involved in the convection-diffusion 
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equation we consider the following one dimensional example [44]: 

-au"{x) + u'{x) = 1 for 0 < x < 1, 

with u(0) = u( l ) = 0. In particular we are interested in the case when 

0 < a < < 1 as it is in this case that standard numerical methods fail to model 

the solution accurately. 

This equation yields the analytical solution 

uix x + 1 _ e-i/° 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 1.1: Solution plot for u{x) when a = 1/100 
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The first term is the solution of the initial value problem 

u'{x) = 1 on (0,1) with n(0) = 0. 

The second term is negligible for small a unless x is near 1. This term enables 

the second boundary condition to be satisfied. The third term is small. 

So we see that for small a the solution essentially satisfies a pure convection 

problem except in a region close to 1 and we say the solution exhibits an 

exponential boundary layer at x = 1. 

In higher dimensions, more compHcated situations can occur. In particular 

internal shear layers can be present, often due to discontinuous boundary data 

or to changes in sign of a [23]. These shear layers are characterized by a jump 

in the solution across the convective flow lines. Parabolic layers can also be 

present at boundaries where he flow is parallel to the boundary. These layers 

axe called 'parabolic' due to the parabolic nature of the differential equation 

in such regions. 

The following subsections explore the existence of solutions to the convection-

diffusion equation and also their uniqueness. 

1.2.1 Weak Form 

We shall introduce the concept of weak forms in the following abstract setting 

as described in [41 . 

Given a open and bounded region 0 in i?" with polygonal boundary F = 

Fi U F2 such that Fi and F2 are nonoverlapping, then if L is a second order 
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is continuous. The advantage of using weak solutions if they are unique is 
that it is easier to prove the existence of weak solutions than the existence of 
classical solutions. Moreover, since all strong solutions are also weak solutions, 
if we have a unique weak solution then there must be no more than one strong 
solution. 

1.2.2 Existence and Uniqueness 

Theorem 1 The Generalised Lax-Milgram Theorem [29] 

Suppose that B{-, •) is continuous, coercive, bilinear form on Hi x H2, where 

Hi and H2 are real Hilbert spaces. That is there exists two positive constants 

Ci and C2 such that 

\B{v,w)\ < CX\\V\\H,\\W\\H, yv e Hi,yw e H2, 

. \Biv,w)\ 
mi sup — j j - j — - | — > C2 

and 

sup \B{v,w) \ > 0 Vto ̂  0. 

Then V / G H'2 (the dual space of H2, that is the space of continuous linear 

functionals on H2), there exists a unique UQ G HI such that 

B{uo,w) = {f,w) VweH2 

and 

K l k < 7 7 - l l / l k -
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Note that 

m = sup 

Theorem 2 Existence and Uniqueness of the Convection-Diffusion Equation 

[29] 

Suppose that for problem (1.2) with 

Lu = —V. (aVt i — hu) 

with a > 0, / G b e [H^T, n.b > 0 on F2 and V • b = 0 (divergence free 

flow), then a unique weak solution u exists and satisfies 

B{u,v) = { f , v ) \JveHl 

Proof The proof follows from application of the Lax-Milgram theorem 

above with Hi = H2 = HQ. 

1.3 Motivation Behind Numerical Schemes 

Many different schemes exist for the numerical solution of the convection-

diffusion equation. These are described in the next chapter. 

It is apparent that while many of these schemes are very similar, the moti

vation behind their construction can be very different. Many of these methods 

can be split into two groups; one in which methods designed to work well for 

pure diffusion problems are modified (e.g. Galerkin finite element methods / 

cell-centred finite volume methods / central finite differences) and the other 
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where methods designed for pure convection problems are modified (Cell-
vertex finite volume methods/ upwind differences). A further motivation for 
most of these methods is the creation of a scheme which is nodally exact for 
a certain one-dimensional model problem (often where the source function / 
is zero.). In many cases however these methods are then used for problems 
bearing little or no resemblance to that original model problem rendering the 
motivation dubious or fallacious. Other methods have been designed with 
view to ensuring that they converge in a similar way for all problems ranging 
from pure diffusion to pure convection problems. These are known as globally 
uniform convergent schemes. 

In this thesis the motivation for the methods described in chapter three 

is that we aim to produce highly accurate solutions on subregions of one di

mension less than the original region. More explicitly, for one dimensional 

problems we aim to produce accurate solutions at a collection of nodes; in two 

dimensions we aim to produce accurate solutions on the element boundaries. 

This is a more realistic aim in n dimensions than producing nodally accurate 

solutions, as the concept of a nodal value has no meaning for functions in H^ 

when n > 1. Boundary values, however, are well defined for all n for functions 

in H^ via the trace theorem [5]. A byproduct of this paradigm is that the 

quality of the approximation is insensitive to the mesh; a highly sought after 

quality. 



Chapter 2 

A Review of Numerical 

Methods 

29 
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2.1 Introduction 

In this section we give a brief review of other work in this area. For clarity we 

have grouped methods into various classes. Firstly we describe finite difference 

and finite volume methods. Then we describe both conforming and noncon

forming finite element methods. Many of these methods have been compared 

in [31]. An entertaining survey paper can be found in [26] which vigorously 

attacks 'upwind' methods (We shall classify as 'upwind', any method whose 

difference scheme weights nodes in the upwind direction more than the down

wind direction where the direction of the 'wind' is defined by the convective 

term.). These attacks, although not without some justification, are proved 

unfounded by the many successes of modern methods (see for example [21]). 

2.2 Finite Difference Methods 

The method of finite differences aims to generate an approximation U to the 

solution of the strong form of the equation: 

- V.(aVu) + V . ( b u ) = / in ftcR", (2.1) 

at a set of points Xi G called nodes. An equation for Ui {Ui is the aj^prox-

imation to u(x;)) is found by replacing each of the derivatives of u by some 

approximation involving values of Ui. Usually the nodes are arranged in a 

regular grid pattern for both ease of use and higher accuracy. An equation 

like this is generated for every node and then the solution is found by solving 

these equations together simultaneously. 

For the purposes of this subsection we consider the following constant co-
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efBcient one dimensional problem: 

- au" + bu = / , (2.2) 

posed on [0,1] and discretized by the nodes Xi = ih, 

i — 0 , ? 2 where h = 1/n is the constant mesh spacing. 

2.2.1 Classical Finite Difference Method 

The classical central difference approach is to replace 

U,+i - 2U, + U,^i 
u [x) by — ,and 

u'{x) by 
2h 

A standard Taylor expansion argument shows that both of these approxima

tions are O(h^) accurate. From an M-matrix analysis [36], [44] we find that for 

stability of this scheme it is necessary to have h < 2a/b. When h < 2a/b this 

scheme does indeed produce reasonable results, however when h >> 2a/b as 

is almost always the case (for computational reasons), the scheme usually pro

duces wildly inaccurate oscillations. Stability can be regained for the method 

by the use of specially defined meshes (see section 2.2.6.) 

2.2.2 Upwind Methods 

A common technique employed to overcome the stabihty problems inherent 

in classical techniques is that of numerical upwinding, so called due to the 

fact stability can be achieved by taking a one-sided approximation of the first 
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derivative in the upstream/upwind direction. That is we replace (for the one 
dimensional case with node x; downstream from X j _ i ) 

/// X 1 Ui+i — 2Ui -f Ui-i u (x) by — as before, and 
/ 0 

u'{x) by 
h 

Analysis shows that the resulting scheme is stable [44] independent of the mesh 

spacing. However, by introducing this stability we lose an order of accuracy. 

Often a Hybrid Upwind Difference scheme is used where central differences 

are used for mesh Peclet numbers bh/a less than two, and upwind differencing 

otherwise. 

2.2.3 Exponentially Fitted Schemes 

One remedy for the lower accuracy of the upwind method is to still use up

wind one-sided differences for the first order term, but to modify the diffusion 

term by an exponentially fitted parameter which is chosen so that the method 

yields exact nodal solutions for one dimensional problems without any source 

functions on the right hand side of the equation. This method suffers in higher 

dimensions due to increased diffusion perpendicular to the flow direction. This 

is known as the Allen and Southwell scheme [2]. We also mention here, fitted 

methods [22] on arbitrary meshes (in one dimension) where the coefficients of 

all the terms in the difference scheme are chosen to ensure uniform convergence 

in some approi^riate norm with respect to the diffusion parameter. 
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2.2.4 Interpolation/Extrapolation Techniques 

Many techniques exist, where the convective term is obtained by interpolation 

of a given function through a number of upwind and downwind nodes. The 

diffusion term is usually treated by standard central differences. Examples of 

such schemes are the QUICK scheme [42] and the LUE/LLUE schemes [42 . 

The quadratic upwind interpolations (QUICK) scheme employs a quadratic 

variation fitted to the nodal values of the two closest upwind nodes and the 

closest downwind node. In the finear upwind extrapolation (LUE) scheme, 

nodal solution values are found from the linear function fitted to the two 

upwind nodes. Note that the standard upwind scheme also falls into this 

category. 

2.2.5 Artificial Diffusion 

The artificial diffusion approach is to solve a modified equation by the classical 

finite difference approach. Here an extra diffusion term {h/2)u" is added onto 

the convection-diffusion operator. For the one-dimensional problem, the re

sulting matrix equation is identical to that of the upwind scheme. Due to this 

order h perturbation this is limited only to first order accuracy. This approach 

can be extended more easily than the upwind method to higher dimensions 

where the extra diffusion can be added only in the direction of the streamlines. 

This can be derived as a finite element method within whose framework it is 

possible to prove greater than first order accuracy; See section 2.5.2. 
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2.2.6 Specially Designed Meshes 

It has been shown (see for example the references in [6]) that success can 

be found in using standard finite difference techniques by applying them on 

specially designed meshes. Notable success has been found in using piecewise 

uniform meshes [12]. Also the methods of exponential fitting can be applied in 

conjunction with specially designed meshes. Al l these methods are designed 

with a view to producing uniform convergence in some norm (usually the 

discrete norm, where = a<"<6l'^('^)l) ^^^^^ respect to the diffusion 

parameter. 

2.3 Finite Volume Methods 

Finite Volume methods [27] have been highly successful in the numerical solu

tion of partial differential equations, particularly in the solution of conserva

tion laws such as those that occur in fluid mechanics. These methods, broadly 

speaking, ca,n be divided into two types: cell-centred and cell-vertex methods. 

These methods try to solve the equation in conservation form - that is they 

approximate the solution of 

J V.(aVu + hu) dn = J f dfi. 

To solve this, finite volume methods split the domain f i into subregions f i , 

(intervals in one dimension , quadrilaterals in two dimensions) where [jCi^ = Q,. 

The integral equation is then posed on each of these domains (often called 

cells or finite volumes) individually and these equations are then solved by 

using Gauss' theorem to convert the integrals to surface integrals. It is in 

the approximation of u on these surfaces that differences appear between cell-
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centred and cell-vertex methods. 

2.3.1 Cell Centred Finite Volume Method 

In the cell-centred finite volume method values for the approximate solution 

Uk are held at the centres of these cells. Values of Uh on the surfaces are 

approximated by interpolation between these cell-centred values. Although 

this method is highly suited to the solution of pure diffusion equations as there 

is no directionality expressed, it has also been used successfully for convection-

diffusion problems. 

2.3.2 Cell Vertex Finite Volume Method 

Cell-vertex methods are particular useful for highly convective problems (such 

as the convection-diffusion equation with low diffusion) and so are more rele

vant to the content of this thesis. The cell-vertex finite volume method stores 

unknowns at the cell-vertices. The surface integrals are then calculated numer

ically by the trapezium rule for the approximation of u and by some suitable 

difference scheme for the approximation of Vu. The cell vertex finite volume 

method for a pure convective problem (so no approximation for V u is neces

sary) can be viewed as a Petrov-Galerkin finite element method [34]. Petrov 

Galerkin methods are described later in this chapter. 

Unlike cell-centred schemes the cell-vertex method suffers from 'counting' 

problems in that the number of unknowns will not, in general, match the 

number of cells (there will be one equation per cell). To overcome this problem 

either selected cells must be left out of the integration or some cells must be 

split. See [7] for more details. 
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2.4 Conforming Finite Element Methods 

The standard weak form of the convection-diffusion equation is: 

find u G H^{a) : a(u,u) + c{u,v) = i f , v ) V w G H^{n), (2.3) 

where a(u,v) = / aVu.Vv d^, 
JQ 

c{u,v) = / V.(hu)v dn, 
JQ 

{ f , v ) = [ fvdn, 

and i?o(n) is the usual Sobolev space. 

The Petrov-Galerkin method consists of choosing two finite dimensional 

spaces V, W C H^{^}) such that dim(V)=dim(W), and solving 

find U eV such that a(f/, w) + c{U, w) = ( / , w) V w e W. (2.4) 

The space V is known as the trial space and W is known as the test space. 

The finite element Petrov-Galerkin method consists of producing V and W to 

contain piecewise functions (usually continuous piecewise polynomials) defined 

over a mesh. 

These methods are referred to as 'conforming' finite elements as V , W C 

For a good review and a unifying apiaroach to finite element methods for 

convection-diffusion problems see [30 . 
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2.4.1 Galerkin Finite Element Method 

The Petrov-Galerkin finite element method reduces to the Galerkin finite ele

ment method when V = W. When a piecewise 72-linear trial and test space is 

used (in n dimensions), this creates a difference scheme which is qualitatively 

similar to that of central differences (although more points in the stencil are 

used) and so leads to oscillatory solutions in cases of low diffusion. 

The scheme reduces to finding U £ V such that 

B{U,v)^{f,v)yveV, 

where B{v, w) = a{v, w) + c{v, w). 

Defining the norm 

\V\\B^ = (a(t ; ,v))^ 

then for the case b = 0, the approximate solution satisfies 

\u - U\\B. = inf \\u - V\\B^. 

This optimal approximation property of the Galerkin method does not follow 

however in the case of non zero convection. For this case the error bound 

becomes 

W ~ U\\BI = (1 + C1/C2) inf ||u - • W I I B I , 

where Ci = a + | | b | | ( £ , o o)n and C2 = aC{0,) (see [ 3 2 ] ) are the constants in the 

Lax-Milgram theorem. By making standard assumptions about the approx

imation properties of the trial space, the constant of optimality (1 + C1/C2) 

can be refined (see [ 3 2 ] ) to 

1̂ + \\h\\(L'=o)nhla), 
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which depends on the size of the mesh Peclet number. 

2.4.2 Liouville Transform 

The one dimensional convection-diffusion equation can be symmetrized by the 

transform [29 

w(x) = exp{—bx/(2a))u{x) 

to remove the first order derivative term. The weak form can then be solved 

efficiently by the Galerkin finite element method. The problem with this seem

ingly powerful approach is that transforming back to the original variable is 

ill-conditioned. Any errors will be amplified by . Another problem of this 

approach is that the method produces best approximations in a weighted 

norm where the weighting is such that the approximate solution is more ac

curate upstream (where the solution should be accurate anyway as it is here 

that Dirichlet data is prescribed.) and less accurate downstream. 

2.4.3 Exponential Trial/Test Space IVIethods 

The exponential trial space method [29] is based on choosing a trial space in 

a Petrov-Galerkin finite element method so that the solution is exact for a 

model problem with nonzero Dirichlet data and no forcing function. Either 

the same space as used for the trial space is used for the test space (in which 

case we have a Galerkin method) or a standard piecewise hnear test space can 

be used [11], [14] and [28]. The exponential test space method [17] rehes on 

using a test space which contains the global Green's functions associated with 

each node. In one dimension these global functions can be split up into a sum 

of local exponential basis functions. This one dimensional method yields the 
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exact solution at the nodes. 

An extension of these methods are the LAM (localised adjoint method) and 

ELLAM ( Eulerian-Lagrangian locahsed adjoint method) [ 3 9 ] where the test 

function associated with node i is chosen to satisfy the homogeneous adjoint 

ec[uation L*u = 0 locally over each element. Note that the Green's function 

associated with the point satisfies this equation globally except at the point 

Xi- The motivation for this comes directly form the one dimensional use of 

Green's functions but here the adjoint equation is allowed to be violated at 

more points than just the nodes. More specifically the equation is violated on 

all the element boundaries. 

The methods that we describe in this thesis fall into this category although 

the motivation is very different. 

2.4.4 Artificial Diifusion 

The method of artificial diffusion can be used in conjunction with the Galerkin 

finite element method, where the diffusion parameter a is replaced by h when

ever a < h. This has the obvious consequence of introducing extra diffusion 

which 'smears out' any sharp fronts in the solution. This method is at best 

first order accurate due to this order h perturbation to the original problem. 

2.4.5 Polynomial Upwinding 

Many Petrov-Galerkin methods have been produced which use as a basis for 

the test space, functions which are polynomial perturbations of the standard 

linear trial basis functions on each element. The size of perturbation can 
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be chosen so that the resulting difference operator becomes the Allen and 
Southwell difference operator [2] in one dimension. These are discussed in [3], 
4], [8], [15], [16] and [47]. It has recently, however, been shown that simply 

extending these schemes to higher dimensions by using tensor products of the 
one dimensional schemes does not necessarily work well, especially when the 
convective field is variable [32 . 

As a one dimensional example we consider the following constant coefficient 

one dimensional problem: 

- au" + bu' = / , (2.5) 

posed on [—1,1] and discretized by the nodes = ih — 1, 

i = 0, ...,n where h = 2/n is the constant mesh spacing. 

In figures 2.1 and 2.2 we show the test basis function ̂ ^{x) as used in [15] 

generated by a quadratic perturbation acri{x) of the linear hat function (f>i{x). 

/ ( x - . T , _ i ) / / i , - l < x < 0 . 

'̂ '̂ '̂ ^ 1 ( x , + , - x ) A , o < . T < i . 

f - 3 ( x - x , _ i ) (x i - x)lh'' , - 1 < a; < 0. 

'̂ ^• '̂̂ ^ 1 - ' i { x , ^ r - x ) { x - X i ) l h \ { ) < x < \ . 

a = coth(5/i/2a) - {2a/bh). 
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0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 

Figure 2.1: Quadratic test function on [-1,1] {a = l,b = 2,h = 1) 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 2.2: Quadratic test function on [-1,1] (a = 1, 6 = 50, A = 1) 
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2.5 Nonconforming Finite Element Methods 

Nonconforming finite element methods are similar to the conforming methods 

described above, except the trial and test spaces are not restricted to being 

subspaces of HQ{^). Because of this, certain terms on the weak form do not 

mean anything in a strict mathematical sense. If we ignore such 'nonconform

ing' terms however the resulting numerical scheme can converge. 

2.5.1 Exponential Fitting On Triangles 

Recently a Galerkin finite element method has been developed [9] for the two 

dimensional convection-diffusion equation which uses a trial (and test) space 

based on a triangularisation of the domain. The trial functions are designed 

so that in each triangle they give the exact solution of the convection-diffusion 

equation with suitable boundary conditions. Due to the boundary conditions 

imposed, these functions are not continuous over element boundaries and so 

the method is nonconforming. The scheme has been modified in [40] to a 

nonconforming Petrov-Galerkin method by replacing the exponentially fitted 

test functions by the usual linear functions. 

2.5.2 Streamline Diffusion ]VIethod 

This is essentially an extension of the artificial diffusion idea. Here, extra 

diffusion is added only in the streamline direction, and so introduces much 

less crosswind diffusion. However this is still an order h perturbation of the 

original equation. 
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It is possible to generate this extra term without introducing an order h 
perturbation in the following way. We take piecewise n-linear trial space V, but 
use a test space W consisting of test basis functions v + ah.Vv corresponding 
to trial basis functions v E V. Then we have the following nonconforming 
Petrov Galerkin finite element method: 

Find U eV such that 

-a t t (V^t / , b.Vu) + a{VU, Vu) + (b.VC/, v + ah.Vv) = { f , v + ah.Vv) Vu e V. 

Often a is chosen so that a = O^a > h and a = Ch^a < / i , where h is the 

mesh spacing and C is some sufficiently small constant to be chosen. 

This is nonconforming as the test functions are not in H^. This adds a 

term —aa{V^U,h.Vv) which has no meaning in a strict mathematical sense 

and is ignored. (The order of this term is much less than 0(P) [24]). 

As a one dimensional example we consider the following constant coefficient 

one dimensional problem: 

- au" + bu' = / , (2.6) 

posed on [—1,1] and discretized by the nodes Xi = z/i — 1, 

i = 0, ...,n where h = 2/n is the constant mesh spacing. 

In figures 2.3 and 2.4 we show the test basis functions for this problem. 

2.6 Transient Methods 

Another, common approach to the solution of steady-state problems is to 

integrate a spatially discretised transient eciuation (with a iCt term) to steady 
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-0.4 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 2.3: Streamhne diffusion test function on [-1,1] (a = 1, 6 = 4, = 1) 

•-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 2.4: Streamline diffusion test function on [-1,1] [a = l,b = bO,h = 1) 
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state. As we are only concerned with the steady-state solution, the accuracy 
of the time stepping is not too important as long as convergence to steady 
state is achieved. Often methods which do not perform well on steady state 
problems can still yield good results when treated in this manner. 

2.7 Summary 

Although finite difference methods are simple to implement, difficulties arise 

in treatment of the boundary conditions. These difficulties are not present in 

the finite element method where boundary conditions are treated in a natu

ral manner. Although finite volume methods combine the advantages of both 

finite difference methods and finite element methods, the 'counting' problems 

can cause considerable difficulty. Clearly there is much greater cost in us

ing a transient method for steady state problems. Many of these methods 

(exponential trial and test space methods, polynomial upwinding, streamline 

diffusion) are designed to reproduce the same difference operator for the one 

dimensional convection-diffusion operator as the Allen and Southwell scheme 

[2]. However, these methods do differ in how they treat the source function 

/ . It is clear that these differences are very important and that it is perhaps 

naive to expect a method designed to perform well on a problem with / = 0 

will work well on problems with nonzero / . It is extremely important that the 

source function / is sampled by the numerical scheme sufficiently well. 



Chapter 3 

A Class Of Petrov-Galerkin 

Finite Element Methods 

46 
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3.1 Introduction 

In this chapter we shall describe a class of Petrov-Galerkin Finite Element 

methods for the convection-diffusion equation, as described in section 2.4, 

posed on arbitrary polygonal domains. We shall note that this class contains 

the standard Galerkin Finite Element method in the case of pure diffusion, 

and the Cell Vertex Finite Volume method in the pure convective case so long 

as the flow is not directed along a mesh boundary. We shall give example of 

methods from this class and some classical theoretical results. 

3.2 A Class Of Methods 

3.2.1 Definition of the Test Space 

Figure 3.1: Section of mesh 
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Definition 3 With each node i we associate a function Wi that has the prop
erties 

i) 10, is continuous on f i , 

ii) Wt = 1 at node z, 

iii) Wi = 0 on all elements not meeting at node i. 

iv) within each element having node z as a vertex, we have 

-V(aVu; , ) - h.Vw, = 0, 

(that is Wi is a solution of the homogeneous adjoint equations inside each 

element). 

Remark 4 Functions Wi exist since the adjoint equation has solutions if (1.1) 

has a solution [10]. Note that the above definition does not uniquely define 

lUi, because we have not defined its values on all element boundaries. 

Definition 5 Define P̂  as the boundary of f i , , where fli denotes element i. 

Define n, as the outward unit normal vector on P .̂ 

Theorem 6 Given a finite element mesh define a continuous trial sĵ ace V and 

a test space W = span{iyj-} where the Wi belong to the class defined above, 

and with dim(V)=dim(W). Then 

^ J ^ { u - U)Vw.n, dT, = Oy w e W , (3.1) 
elements ^' 

where the integration, for example, is taken in a counter-clockwise direction. 
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Remark 7 Theorem 6 says that the error on the boundaries projected (in the 
inner product) onto the jumps in the derivatives of the test functions is zero. 

Note, in particular that in one dimension the nodal solution is independent of 
the (continuous) trial space V. 

Proof of theorem 6 Setting v = lu in eciuation (2.3) and subtracting 

equation (2.4) gives 

a(u ~U,w) + c{u-U,w) = 0y w e W . 

We then break the integrals up into integrals over elements and write the 

bilinear forms explicitly: 

^ a\/iu-U).Vw + 

V.(b(u - U))w dfti = OVweW, 

and integrating by parts we obtain 

^ /' a{u - U)Vw.ni dT^ + 

(u ~ U)wh.ni dVi -

J2 f {u-U){v.(aVw) + h.Vw) dn, = O^weW. 

Use of property (iv) of definition 3 and noting that {u - U)w is continuous 

with lu = 0 on the boundary of f i , completes the proof. 
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Assuming uniqueness of the approximate solution we can make the follow
ing statement: 

Corollary 8 If the trial space contains a function v such that u = v on 

the element boundaries, then we obtain the exact solution on the element 

boundaries. This result also follows from the non-asymptotic error estimate 

in chapter 4. 

3.3 One Dimension 

Theorem 6 contains the result that in one dimension we reproduce the exact 

solution at the nodes. The proof is in some sense less elegant than the standard 

Green's function approach in one dimension but is, we believe, the natural 

generalisation of that result. Using Green's functions in higher dimensions (to 

try to achieve nodal, rather than boundary accuracy) is not viable due to their 

singular nature. For the Green's function approach it is necessary to show that 

the local Green's functions are decompositions of the global Green's functions. 

In this method we need only to calculate the local adjoint solutions. 

Remark 9 It is interesting to note that in one dimension the nodal solution 

values are independent of the trial space and in n dimensions the quality of 

the boundary solution depends more strongly on the test space than on the 

trial space. Note that we always assume that the trial space is continuous. 

The following subsections describe methods of this type and also consider 

the effect of introducing a zeroth order term into the differential equation. 



Class of Petrov-Galerkin Finite Element Methods 51 

3.3.1 Linear Trial Space/Exponential Test Space 

We need to solve the constant coefficient convection diffusion equation 

-au" + bu' ^ f in[0,l], (3.2) 

with some boundary conditions. 

Theorem 6 indicates that we should use test functions lu that satisfy the 

homogeneous adjoint equation, 

- aw" - bw' = 0, (3.3) 

on each element. So for a regular mesh, for example, in the elements 

(z — l ) / i , ih] and [ih, (i + l)h] we impose 

w ((z - l)h) = w{{t + l)h) = O,io(z/i) = 1 

and solve in each element. This gives unique w for this one-dimensional case, 

a property that is not present in higher dimensions. Use of these functions as 

a basis for W gives the exact solution at the nodes. 

3.3.2 Quadratic Trial Space/Exponential Test Space 

Theorem 6 also suggests that, if for example we use a piecewise quadratic 

trial space, we might still use a piecewise linear test space (see fig. 3.2) for 

Poisson's equation. The standard quadratic Galerkin method in one dimension 

will give exact solutions to Poisson's equation on the element boundaries. This 

Petrov-Galerkin method will , additionally, give exact solutions at the internal 
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Figure 3.2: Quadratic trial space/linear test space 

nodes. (Similarly for the convection-diffusion equation we can use a piecewise 

exponential test space with higher order trial spaces). 

Remarkably the matrix resulting from discretisation in this way is still 

symmetric despite the trial and test spaces being different. This result can be 

generalised to the following theorem. 

Theorem 10 If we discretise the equation 

—au" + cu = f 

by a Petrov-Galerkin finite element method where the basis functions of both 

the test and the trial space are themselves symmetric then the matrix resulting 

from the discretisation is symmetric. 

Proof The contribution from the term cu is clearly symmetric, so it suffices 

to consider the contribution from the au" term. 

Let g{x) denote our test basis function centred at x = h with compact 

support of width 2h. Let v{x) denote our trial basis function centred at .T = A 

with compact support of width 2A. 
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Let 

9i{x) = 'g{x), g2{x) = g{x + h) = gi{h - x) 

and 

vi{x) = v{x), V2ix) = v(x + X) = Vi(X - x). 

For the matrix to be symmetric we need to show that A = B and C ~ D 

where 

y/i r2h 
A = g[{x)v[{x) dx + g'^ix - h)v[{x) dx, 

Jo Jh 

B = t - (A - 2/z))t;^(.T) dx + g'Jx - (A - h))v'^{x) dx, 
JX-2h J\-h 

C = rg'2{x)v[{x) dx, 
Jo 

r-A 
D = / ' g[{x ~ {X - h))v2{x) dx. 

JX-h 

Proof that A = B and C = D follows immediately by the change of variable 

y = X-x and using the relationships gi{x) = g2{h - x) and Vi{x) = V2{X - x). 

3.3.3 Effect of Introducing a Zero Order Term 

It is sometimes necessary to solve a problem with a zero order term. If, for 

example, we need to solve the constant coefficient equation. 

au" + bu'+ cu = f in [0,1], (3.4) 
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with some boundary conditions then we can i^roceed, as before, by using test 

functions lu that satisfy the homogeneous adjoint equation. 

aw" — bw' + CIO = 0, (3.5) 

on each element. So for a regular mesh, for example, in the elements 

(i — l)h,ih] and [ih, (i + l)h] we impose 

w{{z - \)K) = w{ii + l)h) = 0,w{ih) = 1 

and solve in each element. 

Use of these functions as a basis for W will give the exact solution at the 

nodes. 

In figures 3.3 to 3.14 we show the test functions with a = IJi = 1 on 

[-1,1]-

Figure 3.3: 6 = 0,c = 0 
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Figure 3.4: 6 = 0,c = 10 

Figure 3.5: 6 = 0 , c= 100 

Figure 3.6: 6 = 0 , c = 1000 
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Figure 3.7: b = 3,c = 0 

Figure 3.8: 6 = 3,c = 3 

Figure 3.9: 6 = 3,c = 10 
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Figure 3.10: 6 = 3,c = 100 

Figure 3.11: b = 500, c = 0 

Figure 3.12: 6 = 500,c = 100 
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Figure 3.13: 6 = 500,c = 1000 

Figure 3.14: 6 = 500, c = 10000 
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3.4 Two Dimensions 

Example 11 

This example demonstrates that an exact solution can be obtained on the 

mesh lines with piecewise linear approximation if the solution is piecewise 

linear over the mesh lines. Take: 

- V ^ i + V.(bu) = finCl, (3.6) 

u = 0 on r , (3.7) 

where /(.r,?/; b) is chosen to give an exact solution of 

u = sin(7ra;) sin^iry) 

for arbitrary nonzero constant b and fi = [—1,1] x [—1,1]. Note that u is zero 

on X = 0 and y = 0. We partition into 4 elements as in figure 3.15. 

We need to find our test functions as solutions of 

-V^w-h.Vw = 0 onn,, (3.8) 

with w;(0, 0) = 1 and w(x,y) = 0 a.e. for {x,y) on T. There are infinitely 

many solutions, but we can, for example, choose one of the family of separable 

solutions as tensor products of the one-dimensional solutions. For example the 

test function has the form w[x, y) = X{x)Y[y) over [—1,1] x [—1,1], where 



Ciass of Petrov-Galerkin Finite Element Methods 60 

Figure 3.15: Mesh for example in two dimensions 

X{x) 

y{y) 

1 - exp(6i) 
exp( —6i x) — exp(--6i) 

1 - exp(-f i i ) 

exp(-62!/)-exp(6 2) 
l - exp(62) ) 

exp(-5]3/ ) - exp( -h2) 

l - e x p ( - i ) 2 ) 

l<x<0 

i < y < 

< y < i 

Then we have, 

{ f , i u ) = J TrX{x)sln{rx) dx J Y{y){Tr sm{Try) + b2COs{7ry)) dy + 

j TrY{y)sm{Try) dy J X{x){Trsm{TTx) + biCos{Trx)) dx. 
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Let, 

~ f {T^ sm{Tcx) + biCos{7rx)) dx 
Jb 

— — — (7rcos(7rx) — 61 sin(7ra;))]^, 
TT 

El = y (7rsin(7rx)-[-61 cos(7r.'c))e~* '̂'c?x 

= -cos(7ra;)e-^i'']^. 

Hence 

J X(x){Trsin{Trx) + b-LCOs{Trx)) dx = ^ ^^'1 ^ 

+ ( l + e - 6 n 1 

-2. 
1 - e''i 

-61 

+2 

0. 

A similar result clearly holds for the term involving Y(y). So we have that 

{f,w)=0 

and hence our approximation U = 0. This is the exact solution on the mesh 

boundaries. A similar scheme (although considered as a diiference scheme) has 

been considered by Hegarty, O'Riordan and Stynes [14] using a discrete i f ^ 

norm. This method, motivated by the exponential nature of the solution, uses 

an exponential trial rather than test space. They then suggest, from experience 
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with one-dimensional problems, that one should use the scheme presented here. 
Our motivation for using this scheme is very different however. 

3.4.1 Other Possible Schemes 

Due to the infinity of possible test spaces (for n > 1), that fit into this frame

work, a choice has to be made as to which one to use. So far we have only 

described the scheme based on tensor products of the one dimensional test 

space. However another obvious choice is one of the other separable solutions 

of the adjoint equation. 

So, for example in two dimensions, if our test functions are to satisfy 

- a\7^w - h.Vw = 0 on Q^, (3.9) 

then we can choose iv = X{x)Y{y) and obtain 

-aX" - biX' = OX, 

and 

-aY" - b2Y' = -CY. 

We refer to the arbitrary constant C as the 'splitting' or 'separation' con

stant. Note that i f we choose C = 0 we have our standard scheme based on 

tensor products of the one dimensional test functions. It is not obvious how 

to 'oistimally' choose C but from experience from numerical experiments we 

have been able to develop automatic choices of C that seem to work well. 

By making a choice of C = I 6 2 I — we have found it is possible to greatly 

diminish or even remove any oscillations near parabolic boundary layers and 
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shear layers. 

3.4.2 The Limits of Pure Convection and Pure Diffu

sion 

This section describes the link between the methods described in this thesis 

and both the cell vertex finite volume method and the Galerkin finite element 

method. The link is made only for methods with zero splitting constant and for 

problems with no zeroth-order term, discretised on Cartesian product meshes. 

When links are made with the cell vertex finite volume method, we assume 

that the trial space in the Cell Vertex Finite Volume Method (CVFVM) is 

(n — l)-hnear on the element boundaries ( for an n dimensional problem). 

When links are made with the Galerkin finite element method we assume we 

are using an n-linear trial space. 

For very high mesh Peclet numbers the test function resemble (see the 

figures in the next section) the test function used in the nonconforming Petrov-

Galerkin formulation of the CVFVM (that is the characteristic function of the 

upwind cell), excei^t for the cases b = 0 and when the flow is along a mesh line. 

It is in these last two cases that the CVFVM behaves poorly (or is undefined) 

unless a different test function is used (usually by taking a weighted average of 

adjacent cells [7]). In fact in the limit of no diffusion with nonzero convection 

this method tends to the CVFVM: 
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Consider the difference stencil for node 5 on a 2 x 2 mesh on [—1,1] x [—1,1 

with nodes numbered as shown below for both the CVFVM and the zero 

splitting constant method with bilinear trial space applied to a problem with 

no diffusion. 

( - 1 , 1 ) 

3 

1 

( 1 , 1 ) 

6 9 

5 (0,0) 8 

4 7 
( - 1 , - 1 ) ( 1 , - 1 ) 

Figure 3.16: Section of mesh with numbered nodes 

The difference scheme for the cell vertex finite volume method is 

z ^ ^ 
{bl + b2) 

t/5 + O.t/e + O.f/7 + O.t/g + O.t/g = / f dVt 
J[-I.0]x{-1,0\ 

This has been calculated from 

biU. + b^Uy dn= / f d n . 
[-1,0] X [-1,0] J[-1,0]X[-1,0] 
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We are interested in the difference scheme for the zero splitting constant 
method with a bihnear trial space in the hmit as the diffusion parameter a 
tends to 0. Firstly we note that terms of the form / aVUVw dO, can be ignored 
for we ha,ve with w = X(x)Y{y) defined in a similar way to example 11 but 
with a general diffusion constant 'a' 

J aVUVw dn = J aU^X{x):,Y{y) + aUyY{y)yX{x) dCl. 

But, 

J\xix).dx = - ^ ^ - ^ j \ - ^ ^ ^ f ^ dx 

^1 ' - ^ ) ( e - w » - i ; 
(1 _ e-bi/a)^ 6i 

= —a. 

Clearly as Ux is independent of x and Uy is indei5endent of y (note that U is 

bilinear in x and y) and X(x)and Y{y) are bounded above independent of a, 

we ha,ve that 

' aVUVw dn\ < Ca 

w here C is a constant independent of a. 

We now need to calculate lima_,o / Vf/.bio dCt. This involves only integrals 

of linear functions times exponentials. Hence we can take the limit inside the 

integral. Note that for bi and 62 both nonzero, tu = X{x)Y'{y) in the limit as 

a ^ 0 takes the value 1 on [—1,0] x [—1,0] and is zero elsewhere. Hence for 

non-mesh-aligned flow we have 

/ V[/.b(Hmu;) dn= [ b^U,. -f biUy dVt 
J a^o J[-ifi]x[-\fi] 

Hence our scheme becomes identical to that of the CVFVM in these cases. 
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N o t e t h a t i n l i m i t as a ^ 0 w i t h the flow along a mesh l ine ( tha t is one 

of t he components of b vanishes) we have a nonunique l i m i t (depending on 
the r a t i o of d i f f u s i o n t o convect ion along the mesh as a va ry ing f low moves 
towards a l i g n m e n t w i t h the mesh) . F igure 3 . f 7 show various test func t ions on 
[0, f ] ^ f o r th is m e t h o d . I n pa r t i cu l a r we note how figures 3.17(i i ) and 3.17( i i i ) 
difi 'er g rea t ly despite a ve ry s imi la r f l ow . I n the l i m i t i n g case we suggest the 
s y m m e t r i c l i m i t (see f igure 3.17 ( i i i ) ) . T h i s i n t e r p r e t a t i o n of our m e t h o d i n the 
l i m i t of no d i f f u s i o n indicates t h a t the C V F V M is ' ove rwinded ' fo r problems 
i n v o l v i n g d i f f u s i o n . I n fac t the averaging t h a t is sometimes p e r f o r m e d (see 

7]) cou ld be v iewed as ' d o w n w i n d i n g ' the ' ove rwinded ' test func t ions . These 

observat ions also h o l d f o r the Cel l Cent red F i n i t e V o l u m e M e t h o d f o r m u l a t e d 

as a P e t r o v - G a l e r k i n m e t h o d where the test space is based on a dual box mesh 

45] . 

W e no te fo r c l a r i t y t h a t f o r b o t h nonzero s p l i t t i n g constant and fo r a 

nonzero zero-order t e r m these test func t ions do not t end to the f i n i t e vo l 

u m e test f u n c t i o n s i n the l i m i t of no d i f f u s i o n . I n the l i m i t i n g case of pure 

d i f f u s i o n , t he m e t h o d becomes the s tandard Ga le rk in f i n i t e element m e t h o d . 
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( i ) a = l , h = l , b = ( 0 , 0 ) ( i i ) a = l , l i = l , b = ( 5 0 , 3 ) 

i l l 

( i i i ) a = l , h = l , b = ( 5 0 , 0 . 0 0 0 1 ) ( i v ) a = l , h = l , b = ( 5 0 , 5 0 ) 

F i g u r e 3.17: E x a m p l e tensor p r o d u c t test func t ions i n t w o dimensions fo r 

var ious f lows 
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3.4.3 Test Functions In Two Dimensions 

Presented here i n figures 3.18 t o 3.35 are test func t ions w i t h suppor t [0 ,1]^ 

f o r v a r y i n g b and s p l i t t i n g constant C. I n each case a = 1. W h e n bi = 62 we 

show the test f u n c t i o n s f o r C = 0, C = 10 and C = —10. W h e n bi ^ 62 we 

show the test f u n c t i o n s f o r C = 0 , C = I 6 2 I — and C = \bi\ — \b2\. Note , 

f r o m our experience, we r e c o m m e n d using C = I 6 2 I — 

Figure 3.18: Test f u n c t i o n : b = ( 0 , 0 ) , C = 0 

F igu re 3.19: Test f u n c t i o n : b = ( 0 , 0 ) , C = 10 
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F igure 3.20: Test f u n c t i o n : b = ( 0 , 0 ) , C -10 

4 r 

Figure 3.21: Test f u n c t i o n : b = ( 3 , 3 ) , C = 0 

F igure 3.22: Test f u n c t i o n : b = ( 3 , 3 ) , ( 7 = 10 
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F igure 3.23: Test f u n c t i o n : b = ( 3 , 3 ) , C = - 1 0 

mm 
Figure 3.24: Test f u n c t i o n : b = ( 7 , 5 ) , C = 0 

F igu re 3.25: Test f u n c t i o n : b = ( 7 , 5 ) , C = 2 
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F igu re 3.26: Test f u n c t i o n : b = ( 7 , 5 ) , C = - 2 

F igu re 3.27: Test f u n c t i o n : b = {bO,3),C = 0 

• ' ^ . „ - i -

Figu re 3.28: Test f u n c t i o n : b = (50, 3) , C = 47 
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F igu re 3.29: Test f u n c t i o n : b = (50 ,3 ) , C = - 4 7 

F igure 3.30: Test f u n c t i o n : b = ( 5 0 , 0 ) , C = 0 

F igu re 3.31: Test f u n c t i o n : b = ( 5 0 , 0 ) , C = 50 
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F igu re 3.32: Test f u n c t i o n : b = ( 5 0 , 0 ) , C = - 5 0 

F igu re 3.33: Test f u n c t i o n : b = (500,300) , C = 0 

F igu re 3.34: Test f u n c t i o n : b = (500,300) , C = 200 
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F igu re 3.35: Test f u n c t i o n : b = (500,300) , C = - 2 0 0 
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3.4.4 An Approximate Scheme For General Quadrilat
eral Meshes 

Despi te the existence of test spaces t h a t fit th is f o r m u l a t i o n , i t is no t possible 

t o describe t h e m i n closed f o r m f o r general quadr i la tera ls . One so lu t ion to this 

p r o b l e m w o u l d be t o solve the a d j o i n t equa t ion w i t h some sui table boundary 

cond i t ions on each element by some approx ima te m e t h o d . T h i s , however, is 

t i m e c o n s u m i n g on serial computers . T h i s m e t h o d w o u l d be sui ted to a par

al le l c o m p u t e r i m p l e m e n t a t i o n as each of these problems is en t i re ly local . We 

have adop ted a s imple r so lu t ion f o r our numer i ca l exper iments . T h i s consists 

of us ing test f u n c t i o n s w h i c h do not sa t isfy the homogeneous a d j o i n t equat ion 

exac t ly , b u t are 'close' enough fo r our purposes. For each quadr i l a te ra l con

t a i n i n g a p a r t i c u l a r node as a ver tex , we construct a rectangular region w h i c h 

is i n some sense s i m i l a r t o t h a t i r regular quadr i l a te ra l . T h e test func t ions can 

t h e n be def ined on these rectangles i n the usual way by using a local coordinate 

sys tem def ined by the sides of the rectangle. T h e func t ions are then mapped 

back t o the quad r i l a t e r a l i n the usual way [5 . 

To generate the rectangle (ABCD) f r o m the quadr i l a t e ra l (ABCD) we 

i n i t i a l l y cons t ruc t the diagonals of the quadr i l a t e ra l {AC,BD) (see fig. 3.36). 

W e t h e n ca lcula te 

_ {length of AC) + {length of BD) 

4 • 

W e t h e n choose the po in t s ABC and _D at a distance A f r o m 0 along the 

l i n e segments OA^ OB, OC and OD, where 0 is the p o i n t of in tersect ion of 

the diagonals . No te t h a t i f the o r ig ina l quadr i l a t e ra l is also a rectangle then 

A = A,B = B,C = C &nd D = D. 

I t is clear t h a t the s tandard G a l e r k i n finite element m e t h o d based on i r -
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regular q u a d r i l a t e r a l gr ids is a m e t h o d of this approx ima te type . 

F i g u r e 3.36: Rectangle cons t ruc t ion f r o m a general quadr i l a te ra l 
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4.1 Introduction 

I n th i s chapter we present a s y m p t o t i c (mesh spacing A —> 0) , nonasympto t i c 

and t r u n c a t i o n error analyses. I n i t i a l l y however we discuss, at a non technical 

level , various means at our disposal to produce error estimates. We present 

three me thods , v a l i d under ce r t a in assumptions. 

I n the f o l l o w i n g discussion the n o t a t i o n | | . | | denotes some n o r m w h i c h m a y 

be d i f f e r en t i n separate occurrences. However when necessary i t is assumed 

t h a t t w o d i f f e ren t | | . | | are equivalent . W e assume also t h a t the space V consists 

of piecewise n- i inear f u n c t i o n s defined over the mesh. 

W e are t r y i n g t o o b t a i n an es t imate fo r the difference between the ex

act so lu t i on u and the so lu t ion (assuming existence and uniqueness) to the 

apiaroximate p r o b l e m def ined i n section 2.4: find U ^ V such t h a t 

B{U,w) = {f,w)yw e W . 

W e assume t h a t B{.,.) cont inuous , t h a t is there is a pos i t ive constant ^ such 

t h a t 

B(v, w)\ < /3\\v\\\\w\\ 

N o t e t h a t the er ror u — U satisfies 

B(u-U,w) = 0 V ^ o e W . 
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4.1.1 Error bound assuming ellipticity of B(.,.) and a 
bounded mapping from V to >V 

T h e existence of a bounded m a p p i n g f r o m the t r i a l to the test space is very 

i m p o r t a n t i n the error analysis of P e t r o v - G a l e r k i n finite element methods . 

T h i s is discussed i n some d e p t h i n [31 . 

Assume there exists a constant a > 0 and a m a p p i n g g: v ^ w , ( v E : V , w ^ W ) 

such t h a t 

B{v,g{v))\ > allvW^Wv G V 

and 

\\g{v)\\ < 7 | | u | | , u e V . 

T h e n by d e f i n i n g U2 as the best a p p r o x i m a t i o n i n V of w i n the | | . | | n o r m , 

we have 

\\U2-U\\' < {l/a)\B{u2-U,g{u2-U))\ 

< {l/a)\B{u2-u,g{u2-U))\ 

< (^/3/a)\\u2-u\\\\u2-U\\ 

Hence, 

u -U\\< ( 1 + 7 / 9 / a ) | | u 2 
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4.1.2 Error bound assuming stability of the dual prob
lem 

W e w o u l d l i ke to be able t o solve the p r o b l e m : find u G W such t h a t 

B{v,u) = { f , v ) Vv e V. 

For th i s analysis we take the n o r m | | . | | t o be the ( X ^ ) " n o r m . Assume we have 

s t a b i l i t y of th i s dua l p r o b l e m . T h a t is t ha t there is a constant a > 0 such t h a t 

I H I < ( 1 / « ) I I / I | . (4.1) 

T h e n (assuming existence and uniqueness) we choose d E W such t h a t 

B{v,d) = (u2 -u,v)yvev 

w here 112 is the best a p p r o x i m a t i o n t o u f r o m V i n the (Z/^)" n o r m . 

T h e n by choosing v = U2 — U in the above equat ion we o b t a i n 

| U 2 - ? 7 | | ^ = B { u , - U , d ) 

- B{u2-it,d) 

< {f3/a)\\u2-u\\\\u2-U\\, 

where we have used equa t ion 4.1 t o b o u n d d above by ( l / a ) | | M 2 — C^ll- Hence, 

\\u-U\\ <{l+/3/a)\\u2-u\\. 
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4.1.3 Truncation Error estimate assuming stability 

T h e s t andard t r u n c a t i o n error analysis approach is based on the observat ion 

t h a t g iven s t a b i l i t y of the discrete p r o b l e m , a smal l t r u n c a t i o n error w i l l y i e l d 

a s m a l l g loba l error . Unde r reasonable s t a b i l i t y condi t ions (see [28] fo r a 

discussion of t h i s ) i t can be shown t h a t a local t r u n c a t i o n error of order h'^ 

yields an e r ror b o u n d of order h'^. I n section 4.5 we show t h a t the local 

t r u n c a t i o n error is of th i s order fo r ce r ta in methods . 

4.2 Asymptotic Error Analysis (h 0) 

Presented here is an a s y m p t o t i c error analysis fo r a tensor p roduc t ( w i t h zero 

s p l i t t i n g cons tan t ) P e t r o v - G a l e r k i n finite element m e t h o d . I t is presented i n 

t w o dimensions on a u n i t square mesh [0,1]^ a l though the technique is clearly 

app l i cab le i n h igher dimensions . W e w r i t e the convect ion vector b = (61,62)"^ 

and f o r s i m p l i c i t y take a = 1. 

L e t fl^ = {{xi,yj) : i,j = 0 , 1 , . . . , A^} be the set of mesh poin ts , and le t h 

be the mesh spacing w h i c h f o r s i m p l i c i t y we assume to be constant. 

T h e f u n c t i o n s 4't(x) and ^l)i(x) def ined by the f o l l o w i n g expressions are the 

de f in i t i ons of the equivalent t r i a l and test sjDace (respect ively) basis func t ions . 

L e t , 

( / ) I ( . T ) sa t i s fy <^i^,^ = 0 on (OJi) w i t h <?!'i(0) = 0 and <f)i{h) = 1. T h a t is 

(f)-i_{x) = x/h on [ 0 , h . 

(P2{x) sa t i s fy (j)2:,:, = 0 on ( 0 , / i ) w i t h (j)2{0) = 1 and (l)2{h) = 0. T h a t is 

(^2(.'c) = (h — x)lh on [ 0 , h . 
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(l)\y) satisfy (^l^ = 0 on (0, h) w i th ^^(0) = 0 and (f>\h) = 1. 

f { y ) satisfy (f^ly = 0 on (0, h) with (f>'^{0) = 1 and ^"^{h) = 0. 

^h{x,bi) e Ho{0,h} satisfy 9̂ 1(0) = 0 and = 1. 

^/'2(rc,6i) € //o(0,/«) satisfy (̂ 2(0) = 1 and (?!>2(/i) = 0. 

'0^(7/, 62) e H^{0,h) satisfy ^^(O) = 0 and (j)\h) = 1. 

7/)2(7/, 62) e /fo^(0, /i) satisfy .^^(o) = 1 and f { h ) = 0. 

Given u G V, let u e W be such that v = v a.t the nodes. Then, wi th 

obvious abuse of notation, 

B{v,v) = Y.^,,B{v,i;'i^,) 

T h e o r e m 12 / / we have two constants 7 i ( / i , b ) > 0 and 72(/ i ,b) > 0 such 

that 

\B{v,v)\ > 'y2\v\l \/v e V,v E. yV : V = V at the nodes, 

and, 

\B{v,id)\ < 7 i |u | i | '» ; | i e V,w e W 

where lu ^ V is defined suchthat w = w at the nodes. 

Then we have, 

| u - t / | i < ( l + ^ ) 
72 -y G V 
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P r o o f Define u* such that \u — u*\i < \u — v\x'iv £ V. We choose 6 W 
such that w = u* — U at the nodes. Then we have, 

l2\u*-U\l < \B{u*-U,€o)\ 

= B{u* — u, w) 

= 7 i | « * — ulilu* — U\i, 

The result follows from the triangle inequality. 

To apply this theorem we need to show the existence of these two constants. 

The existence of a 71 is t r iv ia l , but the existence of 72 is more complicated. 

To calculate 72 i t is helpful to make the following definitions: 

Def in i t ion 13 Let wi,w^,tU2, w'^, zi,z^,Z2, z'^ be defined f rom the following 8 

relations. 

aV'i:r(x) + h^^^{x) = (j)i:,{x)wi{bi,x) 

a^'y{y) + b2rP'iy) = <j>liy)w\b2,y) 

ai;'y{y) + b2^'{y) = cj>l{y)w'{b2,y) 

ipiix) = (j)i{x)zi{bi,x) 

1p2{x) = (I)2{x)z2{bi,x) 

i;'{y) = <f>\y)z\b2,y) 

i;\y) = fiy)z\b2,y) 

The motivation for the above definitions is that we would hke B{v,v) to 

be similar to the square of the seminorm. 
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Notat ion We w i l l use the following notation for the standard inner 
product : ( / , ( / ) = f{x)gix) dx. 

Then, 

i=0j=0 
N-1 N 

i=0 j=0 
N N-l 

+ J212 ^',j%j+iiBi + B2) 
i=0 j=0 
N-l N-l 

N-l N 

+ E E ^ M ^ » + l j - l ( A + Z ) 2 ) 
i=0 j=l 

where. 
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A i = 

/ {(t>lx hxWi){h, hz')\ 

+ {(f^lx hxWi){(l)'^, hz') 

+ {hx hxW2){h, hz') 

\ + {(f>2x 
{hx 

hxW2){h^, 
hxWi){h, 

ct>'z')) 
hz')\ 

+ {'t>2x-, hxWi){h, f z ' ) 

+ {<t>\x, hxW2){h, hz') 

\ + 
/ 

{<f>lx, 
{(f^lx, 

hxW2){h', 
hxWx){h, hz')\ 

+ hxWi){h-> f z ' ) 

+ {(t>2x-, hxW2){h, hz') 

i 
{<f>2x, 
{hx, 

hxW2){h, 
hxWi){h', 

<i?z')) 

u {hx, 
{hx, 

hxW2){(/>^, 
hxWi){h, u {hx. hxW2){h, hz')) 

W2 

A2 = 

Bo = 

C2 

D2 

/ {hy [h,hzi)\ 

+ { f y [h, hz2) 

+ {hy f-yw^) [h,hzi) 

\ + fyw^) 
fyw^) 

[h, hz2)) 
[h,hz\)\ 

+ hyw'){ [h, hz2) 

+ cf^^yw^) [h, hzi) 

\ + 
/ 

{h\ 
{<t>'\ 

hyw^)( 
h^w^)( 

h,hz2)J 
h,hzi)\ 

+ {</>'', hyiu^){ h, hz2) 

+ h,hzi) 

( 
{h\ 
{h\ 

fyw')i h, hz2) 1 
h,hz\)\ u 

{h\ 
hyw^){ h,hz2)J 

h,hz2)\ u fyio'-){h,hzi)) 

T h e o r e m 14 The following conditions are sufficient for the existence of a 

positive constant 72 satisfying the first condition of theorem 12. 

VOi, W2, Zx, Z2, W^.W^.Z^.z"^ > 0, 

A i + A2 < 0 

Bi+B2< 0. 

and 

P r o o f of theorem 14. 

We can rewrite \B{v,v)\ in a more useful manner: 
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\B{vrv)\- E E K . + - . W ^ ( - ^ ^ ) 

i=0 7=0 ^ 

+ E E K . - - . . . . . i r ( - ^ 4 ^ ) 
2=0 7=0 ^ 

^ D i n 

+ EEK.- -m,7-a)^( -^^4^) 
8=0 7=1 Z 

N-l N-l 

+ E E <7(̂ '̂ î + Ai + B, + Ci+D, + W2 + A2 + B2 + C2 + Do) 
1=1 7=1 ^ 

+ E « 7 + - k m + W2 + ^ L + i i + B 1 + B 2 + + ^^i±^) 

+ E \ < 0 + < A . ) ( H / l + l^2 + ^ + A 2 + ^ ? ^ ^ + ^ i ± ^ + ^ ^ L ^ 
2=1 2 ^ 2 ^ 2 ^ 

2 2 2 ^ 

+ {vkN + vl,)iWi + W2 + ^ ^ + ^ l ± ^ + 9l±Cl. 
2 2 2 ^ 

Firs t ly we note that, 

Wi +A1+B1+C1+D1 = ( ^ 1 , , <j>,,wi)({<p\ cf>h') + f z ' ) + {ct>\ f z ' ) + {<l>\ f z ' ) ) 
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H<P2., </>l.W,)((^' + <t>\ <l>'z^ + <f'z'') 
H<l>lcc,</>2.m)i<l>' + </>\fz' + f z ' ) 

= ihx + hx-, (f>lxlOl + hxW2){l, (ji^Z^ + (f^z"^) 

= 0. 

(We have used, in the above expressions, the fact that + <̂ 2 _ ^ ^nd also 

that (j)i^ + (j)2x = 0.) 

Similarly, W2 + A2 + ^ 2 + (^2 + I?2 = 0. 

Also since (f)!^ + 4)2x = 0, we have Wi = -Ai and W2 = -B2. 

Combining these give Bi + Ci + Di = A2 + C2 + D2 = 0. 

Use of these expressions yields, 

\B{v,v)\ = E E K . + - m . ) ^ ( - ^ H ^ ) 
1=0 7=0 ^ 
N N-l D I D 

i=0 7=0 
AT-l AT-i (J _^ Q 

+ E E - ^2+ i , j+ i )^ (—^) 
i=0 7=0 ^ 
w-1 iv n I n 

+ E E K - - 2 + i . - i r ( - ^ — ^ ) 
2=0 7 = 1 ^ 

2 2 ^H/l + ^ 1 

+ E K 7 + ^N,7)-^y^ 
J = l 

^ 2 ^ 2 . M V f j 4 2 
+ 2^iK0 + -i,N) ^ 
+ K j v + ^yv,o) ^ + 7) 
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+ {VN,N + -O,O)—^ + 2 

As ioi,W2,zi,Z2,w'^,iu^,z'^,z'^ > 0 by assumption and by the definition of 

(f),{x) the product (t)ix<i>2x < 0 we have that C i , C2, Di and D2 are negative and 

Wi,W2,Bi and A2 are positive. 

Hence 

Ci + C2 < 0, 

Di + D2< 0, 

VKi + 5 i > 0, 

W2 + A2> 0, 

M^i - > 0, 

M/2 - C2 > 0, 

Wi ~Di>0, 

W2 -D2>0. 

As all the individual terms in the equation for \B{v, v)\ are positive we can 

bound \B{v,v)\ below by 

\B{V,V)\>C2\V\1 

E x a m p l e 15 The tensor product methods (with splitting constant C = 0 and 

a = 1) described in the last chapter employ the following definitions: 

'tpi{x, hi) satisfies 
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^/'2(.^', ^ i ) satisfies 
-^2^x ~ ^i'02.^ = 0 071 (0, h) with ^2(0) = 1 and <j)2{h) = 0. 

62) satisfies 

-'I'm - ^2^^ = 0 on (0, / i ) tm^A <̂ i(0) = 0 and (t^\h) = 1. 

'^'^{y-, ^2) satisfies 

-i^ly - ^2^1 = 0 on (0, h) with (f)^{0) = 1 and (j)'^{h) = 0. 

// loe now choose hi = 1)2 = h then we can obtain, 

bh 
Wi = 

W2 

! = 

Z2 = 

1 - e-'''' 
bhe-'^^ 

1 -

h-x^ 1 - e-̂ '̂  ' 

T/ie above expressions are the products of positive factors and so satisfy the 

conditions of theorem I4 

Using (j)ix = —</>2a; dnd similar expressions we have that: 

B1 + B2 = A1 + A2. 

Ai+ A2 = ii(f)lx, h x W l ) + {hx, hxW2)){{(t)2, (t>lZl) + {<j>l, (f>2Z2) " (^^l, ?i ' l2l) - (</>2, ?i'222)) 

= ((<^1,T, (plxWl) + {<t>2x, (l>2xW2))i(l>lZl - '?!>2̂ 2, h " 

Writing p = bh, we can show that 

{<j>izi~hz2j2~<f>i) = {pe-' + 2e~' + p - 2 ) 
p [I e ) 
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L i m i t of p p = 0 p 0 0 

A i + A 2 
- 2 
3 

- 2 
Bi + B2 - 2 

3 
- 2 

C 1 + C 2 
- 2 
3 

2 - p 
Di+D2 - 2 

3 
0 

+ Bi 2 p 
W2 + B2 2 P 

-Ci 5 
3 P 

W2-C2 5 
3 P 

Wi - Di 5 
3 

1 + 2 ^ 2 

W2 - D2 5 
3 ^ ^ 2 

Table 4.1: Constant bounds above and below 

-2^p{l + exp{-p) 
P 2 (1 - ea;])(-p)) 

< 0. 

Therefore A i + A 2 < 0 and similarly Bi + B2 < 0. 

The expressions in table 4-1 were calculated in the computer package MAPLE 

and their limits in the mesh Peclet number p = bh calculated. They are all 

monotonic in p. 



Error Analysis 91 

4.3 Nonasymptotic Error Analysis 

Asymptot ic results are of l imited value as often a method w i l l not demon

strate the asymptotic rate of convergence unt i l the mesh spacing h becomes 

very small. I n fact asymptotic bounds are available for the standard Galerkin 

method, but are of ht t le use as the method works poorly for reasonable mesh 

sizes. Of more practical use is an error estimate which gives the error in any 

given problem as a mult iple of the smallest possible error for that problem. 

We present an error analysis for the two dimensional case, although the 

technique is t r iv ia l ly extendible to higher dimensions. 

4.3.1 A Mesh Dependent Inner Product and Norm 

Defini t ion 16 Setting, 

i 

we define the following mesh dependent inner product and its associated dis

crete L-^ norm, 

(ti, v)h = h uv dr, 

\\v\\^ = h J ^ v ^ dV. (4.2) 

li V Ei then \\v\\ is well defined which is not the case for the usual 

discrete L'^ norm. 
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4.3.2 Analysis 

Defini t ion 17 Let V be the space of functions defined on the mesh boundaries 

by taking the j ump in the normal derivative across F of functions w G W . Note 

that D is not continuous at the nodal points. 

For graphical examples of basis functions for various spaces V see section 

4.4. 

Defini t ion 18 Let C be the space of continuous piecewise linear functions 

defined on F such that c G C vanishes on the boundary of the domain H. 

The projection given in theorem 6 now becomes, 

J ^ { u -u)ddr = oy dev. 

Given c G C we define d* E V to be its projection in (•, into V, that is 

{d*,d), = {c,d)hydev. 

Note that ||f/*|| < ||c||. Also we can define [11 

k= i n f s u p i ^ ^ , c ^ O 
dev^^^ \\c\\ 

so that Vc G C we have 

| | c - ^ ^ * | | < ^ i | c | | . (4.3) 

We have 0 < k < 1. From now on we assume A; < 1. 
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Given the restriction of {u — U) to the element boundaries (which we w i l l refer 
to, by abuse of notation, as {u — U), we define c* to be its projection in (•, 
into C, that is 

{c*,c)h = {u-U,c)„VceC. 

Note that 

Now, 

c*|| < (4.4) 

\\u - u\\^ = h j^{u - u){u ~u - d) dvydev 

< \\u-u\\\\u-u-d\\y d e v . 

Hence, 

\\u~U\\ < \\u~U -d\\ y deV 

so we have that 

| | u - C / | | < i i u - f / - c * | | + | |c*-(^* | . 

Therefore using equations 4.3 and 4.4 

\\u-U\\ < \\u~U -c*\\ + k\\u-U\\, 

which impHes that, 

\u — U\\ < -\\u — Vw E C. 
1 — /c 

Note that as A; < 1 this implies that we get the exact solution on the mesh 

boundaries i f i t is possible to attain i t . For any given problem, we are able to 

calculate this constant. 
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4.3.3 Evaluation of the Optimal Constants 

From the definition of d* we have (setting d = f/*), 

^ cd* dT^ d*^ dr. 

Hence we may wri te 

c-d*f = \\cf + \\d*f -2j^cd* dV 

+ \\d*f -2 J^d*d* dV 

= c \'-\\d*\\\ 

This allows us to calculate k'^ in the following way [11 . 

Let and {ip^} be a basis for C and V respectively. We define three 

matrices 

A o = h ^iipj dT, 

Bij = h dT, 

Cij = h J^(f>i(j)j dr. 

Then we obtain. 

•y G C v'^Cv ' 

Since C is symmetric and positive definite we can compute the smallest 
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n 6i = 0,62 = 0 61 = 10,62 = 10 61 = 1000,62 = 1 
3 1.0 3.0 3.5 
4 1.7 7.5 5.0 
5 1.9 12.5 8.5 
6 2.1 18.2 12.9 
7 2.2 24.1 17.7 

Table 4.2: Values of for various problems 

eigenvalue A satisfying the generalised eigenvalue problem B^A~^Bv = XCv 

(see for example [46]) and hence find P = 1 — X. 

The constant measures how far the approximation error is f rom the 

best possible error in our mesh dependent L2-like norm. 

The following table shows the value of this constant for grids of n by n 

points on [—1,1] x [—1,1]. I n all cases a = 1, and the tensor product test 

space was used. 

R e m a r k 19 For Laplace's equation wi th n = 3 we see that we obtain the 

best possible L^ solution on the mesh. This is due to the fact that T> = C in 

this case. 

4.4 On The Nature of V 

Insight can be gained into the working of the these methods by examining the 

problem as an L^ projection as we have done in the preceding analysis. I t is 

interesting to examine more closely the fo rm that the space T> takes. Figures 

4.1 to 4.13 depict single basis functions (corresponding to the usual bihnear 

'hat ' basis functions) for various spaces V wi th flow direction b and splitting 
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constant C. In all examples, the diffusion coefficient a = 1 and the mesh 

spacing parameter h = 1. 

Figure 4.1: Test funct ion boundary jumps : b = (0 ,0) ,C = 0 

Figure 4.2: Test function boundary jumps : b = (0,0), C = 10 
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-1 -1 

Figure 4.3: Test funct ion boundary jumps : b = (0,0), C = —10 

Figure 4.4: Test funct ion boundary jumps : b = (7 ,5) ,C = 0 

-1 -1 

Figure 4.5: Test funct ion boundary jumps : b = (7 ,5 ) ,C = 2 
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Figure 4.6: Test funct ion boundary jumps : b = (7 ,5) ,C = —2 

- 1 

Figure 4.7: Test funct ion boundary jumps : b = (50,3), C = 0 

- 1 - 1 

Figure 4.8: Test funct ion boundary jumps : b = (50,0) ,C = 0 



Error Analysis 99 

Figure 4.9: Test funct ion boundary jumps : b = (50,0) ,C = 50 

- 1 -1 

Figure 4.10: Test funct ion boundary jumps : b = (50,0) ,C = —50 

Figure 4.11: Test function boundary jumps : b = (500, 300), C = 0 



Error Analysis 100 

Figure 4.12: Test funct ion boundary jumps : b = (500,300), C = 200 

Figure 4.13: Test funct ion boundary jumps : b = (500,300), C -200 
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4.5 Truncation Error Analysis 

In [28] a truncation error analysis is presented on a more general problem 

involving non constant coefficients. Presented here is a simpler estimate of the 

local truncation error for the problem in 2 dimensions. 

This local truncation error 

where Ih is the bilinear interpolation operator and is the local test basis 

funct ion centred at node k. 

In evaluating this, for simplicity of exposition we consider this integral over 

the 4 elements shown in figure 4.14 and calculate the bihnear fo rm f rom the 

boundary value formulation, ie 

B{u,Wk) = J ud dV 

where F is the mesh shown in figure 4.14 and d is the function obtained by 

taking the jumps in the normal derivative of Wk across F as defined in section 

4.3.2. 

For simplicity we now refer to the interpolation error {Ik — I)u as e. We 

calculate r/^,A: as the sum of four components r" ,̂ r^, and r'^. 

= ['e{-h,y)d{-h,y) + e{0,y)d{0,y) + e{h,y)dih,y) dy 
Jo 

= r e{-h, y)d{-h, y) + e(0, j/)c/(0, y) + e( / i , y)d{h, y) dy 
J — h 
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(-h,h) (0,h) (h,h) 

(-h,0) (0,0) (h,0) 

(-h,-h) (0,-h) (h,-h) 

Figure 4.14: Integration region for truncation error analysis 

rh 
= / e{x,—h)d{x,-h)^-e{x^Qi)d{x^^)-\-e{x,h)d[x,h)dx 

Jo 

e(x, —h)d{x, —h) + e(x, 0)(f(x, 0) + e(a;, h)d{x, h) dx 

As T\i — 1,2,3,4 are all of a similar fo rm i t suffices to calculate only 

for general flow directions. 

Fi rs t ly we note that e(., .) is zero at the mesh nodes. Hence we can define 

a funct ion 

yiy-h) 

Assume that e is such that g^[x,y) and ;g,̂ ,,;(x, ?/) for y G [0,h],x — —h,0,h 

can be bounded above by a constant independent of h. 

Then, 

T' = I y 
lo 

{y - h)[g{-h, y)d(-h, y) + (7(0, y)d{0, y) + g{h, y)d{h, y)] dy. 
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But , 

g { - h , y) = g{0, y) - hg^{0, y) + —gxx{(7i,y), - h < < 0, 

and 

g{h, y) = c?(0, y) + hg^{Q, y) + —gxx{(T2, y ) , 0 < a2 < h. 

So, 

r ' = [ \ i y - h ) [ { d i - h , y ) + d{0,y) + d{h,yMO,y) 
Jo 

+ {d{h,y) - d{~h,y))hgx{0,y) 

+ {d(h, y) + d{h, y))—{9xx{(y\,y) + 9xx{<72, y))] dy. 

I f we consider the standard tensor product method wi th zero splitt ing 

constant we can easily calculate that 

d{-h,y) = i , \ y M ) " 
( - 1 + e~)a 

_b^h 6 ih 

Oi e a — e a 

40,2/) = - V ' ( y , M 7 ( 

1 — e a a 

where tp^{y, ^2) is defined in section 4.2. 

Consequently i t is easy to show that, 

{d{-h,y) + d{0,y) + d{h,y)) = 0, 

\d{h,y)-d{-h,y)\ = ^'{yM)\bi\/a 
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and 

\d{h,y) + d{-h,y)\ < ^'{y,b2)i2/h + \h\/a) 

Then i t is immediately clear that 

< Ch\ 

where C(a, h) is a generic constant independent of h. 
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Numerical Results 

105 
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5.1 Introduction 

We begin this chapter w i t h a discussion of implementing the methods described 

so far on modern computer systems. Although so far we have considered only 

constant convection parameters, in practice the convective flow may vary. We 

carefully consider how to treat the convection term, especially i n cases where 

the flow varies rapidly over the space of a few elements or even where the flow 

(the direction of the convective field) is discontinuous. We show how correct 

treatment of this term can give us a method of producing exact nodal solutions 

to the pure diffusion equation in one dimension even when the convection term 

is a piecewise constant function. We then present numerical results for some 

standard test problems. Results are given for a variety of both zero and non

zero spli t t ing constant methods. 

5.2 Computer Implementation 

I t has long been thought impractical to employ the exponential test functions 

in one dimension due to the high order quadrature formulae that have to be 

used to calculate the large gradients involved wi th high mesh Peclet numbers. 

We have tried three different methods of coping wi th this. 

Firstly, integrals corresponding to terms in the bilinear form can be calcu

lated explici t ly and 'hard coded' into the program, thus leaving the relatively 

inexpensive and easier task of evaluating them. We have successfully em

ployed this method for both one and two dimensional problems. Alternatively 

the terms in the bilinear fo rm can be calculated as boundary integrals[18] by 

explici t ly calculating the jumps of the test functions across element bound

aries and then performing standard numerical integration techniques. A th i rd 
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method which I have found to be the simplest (though sti l l accurate) is to cal
culate the terms in the bilinear fo rm via standard numerical integration using 
many integration points. 

We note that due to the widespread availability of parallel computers, we 

are now prepared to spend a long t ime generating the finite element matrices 

accurately i n order to obtain a good solution on a relatively small mesh. The 

mat r ix assembly process is entirely parallelisable and needs no communication 

between the different processors/computers. 

Solution of the final matr ix equation is found either directly by Gaussian 

el imination or iteratively by Gauss-Seidel [43]. We note here that in our expe

rience the Gauss-Seidel method converges in surprisingly few iterations when 

aj^plied to the matr ix equations produced by these methods which suggests 

that the method is well conditioned. This is in stark contrast to the matr ix 

systems produced by classical methods for the convection-diffusion equation 

which invariably are very ill-conditioned. 

We remark here on another method we have successfully employed to re

duce oscillations in the solution to some problems. Problems involving both 

very high convective parameters and discontinuous boundary conditions give 

rise to large oscillations in the f ini te volume solution (and hence in our zero 

spli t t ing constant methods). Although, as discussed earlier, employing a test 

space w i t h a nonzero sialitting constant can vastly reduce these problems, i t 

is also possible to smooth out the solution by using a test space wi th zero 

spl i t t ing constant but which satisfies the homogeneous adjoint equation but 

w i t h a larger diffusion term. This is in some way similar (but perhaps more 

natural) to adding 'ar t i f ic ia l ' diffusion into the original equation. Results are 

not presented here for this method. 
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5.3 Numerical Treatment of the Convection 
Term 

As a reminder, we state the problem we are solving, 

- V . ( a V « ) + V . ( b u ) = / in O C i?". (5.1) 

Most finite element methods take a piecewise constant approximation to 

the funct ion b (or some other simple approximation) when solving this equa

t ion. This is acceptable i f b does not vary too rapidly. I f however b is t ruly 

a piecewise constant funct ion then great care must be taken to evaluate this 

term. I n the weak fo rm, this term becomes (V.(hU),iv). 

This term should be integrated by parts to give —{h.Vw,U) so that ap

proximation of b does not lose v i ta l information about its gradient. 

In fact i f this integration by parts is not performed, and i f we position 

element boundaries along the discontinuity, we w i l l instead obtain the solution 

of the vastly different equation 

-V.{aVu) + h.Vu = f in 0 C i?". (5.2) 

To stress the important differences between these two forms we state and 

plot the exact solutions to a one dimensional test problem in both cases. The 

problem is posed on [0,1] wi th boundary conditions tt(0) = 0 and u{l) = 1. 

We chose a diffusion coefficient a = 1 and let the convection parameter take 
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the discontinuous fo rm 

b{x) = 

0 for 0 < X < (1 - d) /2, 

\ for ( 1 - < i ) / 2 < .T < ( 1 + d ) / 2 , 

0 for ( l + d ) / 2 < x < l . 

The solution in both cases takes the form 

u{x) = 

for 0 < . T < ( l - d ) / 2 , 

'""''11'/"+'-̂  for (1 + (/)/2 < x < 1. 

where A and i? are constants which differ in the two forms. 

Case 1 

-u" + {hu)' = 0. 

A 

B 

( d - l ) e x p ( ( l - d ) / ( 2 c / ) ) 
~ 3 t / e x p ( ( l - c / ) / ( 2 f / ) ) - e x p ( ( l - d ) / ( 2 ^ ^ ) ) - ( ^ e x p ( ( c f + l ) / ( 2 ( ^ ) ) - exp((d + l ) / ( 2 ^ i ) ) ' 

{-deM{d + 1)1 m ) + 2(iexp(( l - d)l{2d)) - exp((t^ + l ) / (2^f ) ) ) 
' 3dexp( ( l - t/)/(2tZ)) - exp( ( l - d)l{2d)) - dexp((t^ + l)/(2cZ)) - exp((ci -F l ) / ( 2 d ) ) ' 
= 1 - A . 

Case 2 
i " - f 6(u)' = 0. 

A = 
- ( d - l ) e x p ( ( l - d ) / ( 2 ^ / ) ) 

dexp((c /+ l ) / ( 2 ( i ) ) -h exp((d-M)/(2c^)) - 3 i e x p ( ( l - d)l{2d)) + exp(( l - d)l{2d)y 
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B = 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 5.1: Case 1 d = 0.5 

dexp{{d+l)/{2d)) 

3dexp{il-d)/{2d)) + 2dexp{{d+l)/{2d))+ exp{il - d)/{2d))) 
l)/{2d)) + expi{d+l)/{2d)) - 3Jexp(( l - d)/{2d)) + exp(( l - d)/i2d)y 

I n figures 5.1 to 5.8 plot the solution for d = 0.5, d = 0.2, d = 0.1,d = 0.01 

and for both forms of the equation. 

I t is enlightening to investigate exactly how a numerical scheme wi l l differ 

when solving these two different forms of the equation. For simplicity we pose 

the problem on [—1,1] w i t h b = /3i when a; < 0 and 6 = ^2 when x > 0. 

When discretised by the standard Galerkin finite element method wi th 

two elements the term {bu)'w becomes (wri t ing the approximation to u{x) at 

Xi — ih — 1 as Ui) 
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Figure 5.2: Case 2 = 0.5 

Figure 5.3: Case 1 d = 0.2 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 5.4: Case 2 d = 0.2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 5.5: Case 1 <i = 0.1 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 5.6: Case 2 d = 0.1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Figure 5.7: Case 1 d = 0.01 

0.9 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 5.8: Case 2 d = 0.01 

However —huw' becomes 

Of course i f /?i = these two forms are identical, but otherwise they differ 

greatly. Similar differences appear in other discretisations. 

5.4 The limit of no diffusion with discontin

uous convection parameters 

I f we calculate the difference equations resulting f rom discretising the con

vection diffusion equation in one dimension by the method described in this 

thesis, we can generate a scheme for the pure convection equation by letting 
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the diffusion parameter tend to zero. 

As in the last section we shall consider a problem over two elements where 

the convection term b is piecewise constant over each element. Discretisation 

of {bu)'w yields the standard cell vertex finite volume approximation 

Ml - l^oUo. 

However, discretisation of —buw' yields the subtly different 

Let us consider the equation 

(bu)' = 1, M(0) = 0. 

where b = when x ^ + 1). We shall solve for Ui our approximation to 

u(xi) where Xi = i. The exact solution is discontinuous. 

The f ini te volume method would produce 

However our method would produce 

r/o = 0, = U2=2//32, t/3 = 3//?3 ... 

This solution is nodally exact in that i t produces the right-sided Hmit of the 

solution at Xi. The exact left-sided l im i t can be found f rom these values by 
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using the f ini te volume discretisation inside each of the unit intervals. 
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5.5 Semiconductor Test Problems 

Presented here are two test problems similar to the one dimensional example 

described in the last section involving discontinuous convective fields. Both 

l^roblems involve two regions of pure diffusion separated by a region of high 

convection w i t h a l i t t l e diffusion. They are: 

5.5.1 Test Problem One 

We h ave 

O = { ( x , y ) | 0 < a; < 1,0 < ?/< 1} (5.3) 

w i t h a convective field of 

b(x,2/) = ( c ( x ) , 0 f , (5.4) 

w here 
' 0 for 0 < a; < i ^ , 

cix) = i for < .X < i±^, 

0 for < a; < 1. 

The boundary conditions imposed are u{0,y) = 0,u{l,y) = 1 wi th ho

mogenous Neumann conditions on the other two edges. 

In figures 5.9 to 5.17 we present results for both forms of the equation 

(wi th the convection parameter inside and outside the derivative) when a = 1, 

d = 0.2, d = 0.05, J = 0.01 wi th a mesh spacing of hi = 1/3,/12 = 1/20. In all 

cases we choose a spli t t ing constant of zero. We shall refer to the two different 

forms of the problem as Case 1 and Case 2 as in the last section. 
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0 0 

Figure 5.9: Solution to semiconductor test problem one (Case 1) wi th d = 
0.2, a = 1 

We also present the solution of Case 1 for these values of d, hi and / i2 but 

w i t h a = 0.001. 

We note upon the high accuracy of these solutions even though the layer 

of convection is not even resolved by the mesh in some cases. 
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0 0 

Figure 5.10: Solution to semiconductor test problem one (Case 1) wi th d = 
0.05, a = 1 

Figure 5.11: Solution to semiconductor test problem one (Case 1) wi th d 
0.01,a = 1 
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0 0 

Figure 5.12: Solution to semiconductor test problem one (Case 2) wi th d = 
0.2,a = 1 

0 0 

Figure 5.13: Solution to semiconductor test problem one (Case 2) Avith d 
0.05, a = 1 
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Figure 5.14: Solution to semiconductor test problem one (Case 2) wi th d 
0.01, a = 1 

Figure 5.15: Solution to semiconductor test problem one (Case 1) wi th d 
0.2,a = 0.001 
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0 0 

Figure 5.16: Solution to semiconductor test problem one (Case 1) wi th d = 
0.05, a = 0.001 

0 0 

Figure 5.17: Solution to semiconductor test problem one (Case 1) wi th d 
0.01, a = 0.001 
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5.5.2 Test Problem Two 

We have 

n = {{x,y) I 0 < < 1, 0 < 1/ < 1} (5.5) 

w i t h a convective field of 

b(a;, y) = (c{r)x/r, c { r ) y / r f , (5.6) 

where = + ?/̂ , and 

• 0 for 0<r< 

c{r) = l l for 1 ^ < . < 1 ^ , 

[ 0 for i ± ^ < x < l . 

The boundary conditions imposed are of homogenous Neumann type ev

erywhere except for Dirichlet data of u{x,y) = 1 for x < 0.25,y — 0 and 

X = 0,y < 0.25. 

In figures 5.18 to 5.23 we present results for d = 0.2, d = 0.05, d = 0.01 wi th 

a mesh spacing of hi = 1/20, / i 2 = 1/20 and for both a = 1 and a = 0.00001. 

We note that this problem is not radially symmetric. The Dirichlet condi

tions are imposed where the convection term is nonzero leading to a (small) 

parabolic layer. We also note that due to the Neumann condition we cannot 

hope to calculate the solution on the outflow boundary accurately unless we 

capture the region of nonzero convection accurately wi th the mesh. The re

sults we show here do not attempt to resolve this region accurately but serve 

to give qualitative information about the fo rm of the solution. 
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0 0 

Figure 5.18: Solution to semiconductor test problem two wi th d = 0.2, a = 1 

0 0 

Figure 5.19: Solution to semiconductor test problem two wi th d = 0.05,a = 1 
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0 0 

Figure 5.20: Solution to semiconductor test problem two wi th d = 0.01, a = 1 

Figure 5.21: Solution to semiconductor test problem two wi th d = 0.2, a 
0.00001 
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0 0 

Figure 5.22: Solution to semiconductor test problem two wi th d = 0.05, a 
0.00001 

0 0 

Figure 5.23: Solution to semiconductor test problem two w i t h d = 0.01,a 
0.00001 
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5.6 l A H R / C E G B Test Problems 

Presented here are the numerical results for the standard test problems devised 

by the T h i r d Meeting of the International Association for Hydraulic Research 

Working Group on Refined Modelling of Flow [42]. 

For these test problems we have 

n = {{x,y)\~l<x<l,0<y<l} (5.7) 

w i t h convective field 

h{x, y) = {2y{l - x'), - 2 . T ( 1 - y ' ) f , (5.8) 

and w i t h a = 1 x 10~ \ 1 x 10"^, 2 x 10~^, I x 10~^. A l l solutions are obtained 

w i t h the zero spli t t ing constant test space. 

For the results obtained by other methods for these problems see [42] and 

[27]. There is l i t t le to say about our results presented in figures 5.25 to 5.30 

other than to remark on their exceptional accuracy - even on a 10 by 5 mesh. 

We draw attention to the high quality of the solution even away f rom the 

outflow boundary. We draw attention to the accuracy of the method over the 

whole range of mesh Peclet numbers. We remark here that the oscillations 

that occur at the internal layer i n the first test problem can be very much 

reduced by using a test space generated wi th a split t ing constant. 

5.6.1 Test Problem One 

For this problem the inlet boundary condition along 
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Figure 5.24: Streamhnes for the l A H R / C E G B test problems 

— 1 < a; < 0, ?/ = 0 is given by 

t / ( x , 0 ) = l + tanh[20a; + 10. (5.9) 

The boundary condition on the tangential boundaries, 

X = - l , y = 1 and x = 1 is given by U = 1 - tanh 10 = 0{8d.p.), and a 

homogeneous Neumann boundary condition is placed on the outflow boundary. 
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Figure 5.25: Inflow profile for l A H R / C E G B test problem 1 

5.6.2 Test Problem Two 

In this second test problem the boundary conditions are U = 0 on all bound

aries except for the outflow which is left as before, and on x = 1, where 

U = 100. 
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1/a=10 1/a=100 

1/a=500 1/8=1000000 

1 

o h=0.2, X h=0.1, + h=0.0667, * h=0.05 

Figure 5.26: Outflow profiles for lAHR/CEGB test problem 1 
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Figure 5.27: CEGB test problem 1 with a = 0.01,/i = 0.1 

5.7 Parabolic Layer Problems 

We present liere in example to show how the use of a 'splitting' constant can 

dramatically help in resolving parabolic boundary layers. Parabolic boundary 

layers can form when we have a flow which is parallel to a Dirichlet boundary. 

The test problem presented is taken from [13] where the solution is found with 

central differencing based on a specially grades mesh near the boundaries. 

The test problem is posed on a domain Q = [0,1] x [0,1] with flow field 

a diffusion parameter a = 0.0001 and with / = 0. The boundary conditions 
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Figure 5.28: CEGB test problem 1 with a = 0.000001, h = 0.1 

are 
u{x, 0) = x^; u{x, 1) = x"^; u{0, y) = 0; i t ( l , ?/) = 1. 

The solution to this problem is approximately 1 everywhere except 'close' to 

the boundaries at re = 0,y = 0 and y = 1. At the latter two boundaries a 

parabolic layer forms. 

We solve the problem on 6 X 6 and 10 x 10 regular meshes. The problem 

is solved twice on each mesh - with a zero and nonzero sphtting constant and 

are presented in figures 5.31 to 5.34. The value of b used is calculated as an 

average of the four nodal values for each element. Note that in each figure, 

the labels on the 'x ' and '?/' axes are values for i + 1 and j + 1 rather than 

.Tj and y^. We note that the nodal errors are effectively zero when we use 

an appropriate splitting constant but when we have a zero spHtting constant, 

overshoots appear in the vicinity of the parabolic layers. 
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Figure 5.29: Outflow profiles for lAHR/CEGB test problem 2 
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Figure 5.30: CEGB test problem 2 with a = 0.1, h = 0.1 
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0 1 

Figure 5.31: Parabolic layer test problem with splitting constant C 
h = l/6 

0 and 

0 1 

Figure 5.32: Parabolic layer test problem with splitting constant C = I62I - | ^ i | 
and h = l/Q 
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0 0 

Figure 5.33: Parabolic layer test problem with sphtting constant C 
h = 1/10 

0 and 

0 0 

Figure 5.34: ParaboHc layer test problem with spHtting constant C - \h2\-\h\\ 
and / i = 1/10 
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5.8 Three Dimensional Problems 

In this section we present three dimensional results for a simple extension 

of the first CEGB test problem. Due to the difficulty in representing three 

dimensional solutions on paper we take two dimensional slices through the 

problem regions and display contour plots of the solution on those slices. We 

also give a contour plot of inflow data and outflow solution. 

5.8.1 Extension of the C E G B Test Problem One 

We present the following example to show how well the method copes with 

face-aligned flow. (The method copes equally well with non-face-aligned flow.) 

For this test problem we have 

n = {{x,y,z)\- 1 < X < 1,0 < ?/ < 1,-1 < ^ < 1} (5.10) 

with convective field (see figure 5.35) 

h{x, y, z) = (22/(1 - x% -2x{l - y'), 0)^, (5.11) 

and with a = 1 X 10'^, I x 10-^,2 x 10-^ 1 x lO"''. 

The inflow profile (x < 0) is given by 

u{x) = (1 + tanh(20x + 10))(1 + tanh(-20 |2| + 10)). 

Due to the high quality of the solution at very modest mesh spacing we 
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0 -1 

Figure 5.35: Convective field for three dimensional CEGBl problem 

present results (see figures 5.36 to 5.43) only for cubic elements of width 0.25 

giving a mesh of 8 x 4 x 8 elements. Contours are plotted at intervals of 

0.25. Due to the symmetry about z — 0 (which is preserved by the numerical 

method) we show only slices through z = —1, 0.75,—0.5,—0.25,0. We also 

present inflow/outflow contour plots. In each figure the labels on the 

and 'z' axes are for values of i,j and k rather than for X i , j j j and Zk-
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4 

0 

Figure 5.36: Three dimensional CEGBl with a = 0.1, h = = h = 0.25 
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4 

0 

Figure 5.37: Three dimensional CEGBl with a = 0.01, h = h2 = h = 0.25 
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6 8 

Figure 5.38: Three dimensional CEGBl with a = 0.002, hi = h2 = = 0.25 
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4. 

2-

0 

2 4 6 8 

2 4 6 8 

Figure 5.39: Three dimensional CEGBl with a = 0.000001,/ti = /12 = = 
0.25 



Numerical Results 143 

1 2 3 4 5 6 7 8 9 

Figure 5.40: Inflow/Outflow contour with a = 0.1, hi = /i2 = ha = 0.25 
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2 3 4 5 6 7 8 

Figure 5.41: Inflow/Outflow with a = 0.01, hi = /i2 = ha = 0.25 
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Figure 5.42: Inflow/Outflow CEGBl with a = 0.002, hi = h2 = h = 0.25 
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1 2 3 4 5 6 7 8 9 

F i g u r e 5.43: I n f l o w / O u t f l o w w i t h a = 0.000001, h = hi = ha = 0.25 
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6.1 Introduction 

I n th i s chapter we describe a new m e t h o d fo r p roduc ing difference schemes 

f o r b o u n d a r y value prob lems t h a t y i e l d exact vahies fo r the so lu t ion and a l l 

o f i t s der iva t ives ( u p t o the order of the equat ion) at a set of nodes. W e 

f i r s t def ine the m e t h o d and then prove the exact accuracy by the p r inc ip le of 

m a t h e m a t i c a l i n d u c t i o n . 

W e t h e n describe an a l t e rna t ive der iva t ion of this m e t h o d and explore i t 

i n t he con tex t o f t he Poisson equa t ion . 

W e t h e n b r i e f l y discuss extensions t o higher d imensional problems. 

6.2 An exact difference scheme 

G i v e n an nth order l inear d i f f e r e n t i a l operator Lu = Y17=o ctt'i*'*' 3,nd the bound

ary value p r o b l e m 

Lu{x) = f { x ) i n n = [0 ,1 ] , 

w i t h app rop r i a t e bounda ry condi t ions we have the weak f o r m by m u l t i p l y i n g 

b o t h sides of the equa t ion by a test f u n c t i o n w f r o m some test space W . 

W e can now w r i t e 

f:a,(^|W,u;) = ( / , ^ o ) . 

i=0 

W e p a r t i t i o n fl i n t o ?n elements by the nodes X j , j = 0, . . . m . I f we res t r ic t 

W b y m a k i n g all w ^ W sa t i s fy the homogeneous ad jo in t equat ion on each 
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e lement . T h a t is, 

f 2 i - l y c ^ ^ ^ o ^ ' ^ = 0 for x G {x„x,+,) ,j = 0 , . . . , m - 1 (6.1) 

t h e n we can state the f o l l o w i n g theorem. 

T h e o r e m 20 Given a w as defined above, the problem Lu{x) = f { x ) i n f i = 

0,1] can be luritten as 

m-l ( n i-1 \ 

xohere 

T h e p r o o f of the above t h e o r e m is a t r i v i a l use of i n t eg ra t ion by parts and the 

a p p h c a t i o n of equa t ion 6 .1 . 

I f we chose a finite d imens iona l t r i a l space V of the same dimension as W 

i n such a way t h a t a l l the integrals make sense (i .e. € V is smooth enough at 

the e lement boundar ies) we have the f o l l o w i n g Pe t rov -Ga le rk in finite element 

m e t h o d . F i n d U £V such t h a t 

ra — l / n i — 1 \ 

E E E u^'-'''\u^'^ = ( / , t « ) , 

7 = 1 \ i = l k=0 / 

W e sp l i t the test space W i n t o n subspaces Wi i = (0, . . . , n — 1) and chose 

W by choosing each W i i n the manner described i n the f o l l o w i n g theorem. 

T h e o r e m 21 Choose W i so that for all Wi G W i , w\"' ^ is discontinuous 
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at element boundaries and lower derivatives are continuous at element bound
aries. 

If we assume that the Petrov-Galerkin -problem defined above has a unique 

solution then the approximate solution U and all of its derivatives up to n — 1 

luill be exact at the element boundaries. 

P r o o f 

L e t e = U — uhe the difference between the exact and approx ima te solu

t ions . 

Assume t h a t e''' = 0 at the element boundaries fo r i = 0,...,k — 1. T h e n 

a p p l y i n g the condi t ions of Wk i m m e d i a t e l y yields 

m-l 
E Me^'hor^-^') = 0. 
t = i 

Hence by the assumed uniqueness of the l inear system obta ined by va ry ing 

lUk we have t h a t e'*") — 0 at the element boundaries. 

However i f we app ly the condi t ions of Wo yields, 

TO —1 

J:Mewt'^) = 0. 

Hence e = 0 at the e lement boundaries . 

P r o o f fo l lows i m m e d i a t e l y by the p r inc ip l e of m a t h e m a t i c a l i n d u c t i o n . 

W e r e m a r k here how i t is possible to generate these exact difference schemes 

w i t h o u t e x p h c i t l y genera t ing the test space [25]. Th i s can be p e r f o r m e d even 

i f t he equa t i on is nonl inear . 
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6.3 An alternative derivation 

Presented here is an a l t e rna t ive de r iva t ion of these methods designed to give 

exact de r iva t ive i n f o r m a t i o n . T h e m o t i v a t i o n fo r th is work comes f r o m the 

observa t ion t h a t the exact so lu t ion u(x) can be w r i t t e n i n te rms o f the Greens 

f u n c t i o n associated w i t h the operator and the region of i n t eg ra t ion . 

u{x)= j G{x,y)f{y) dy. 

where G{x,y) is the Greens f u n c t i o n associated w i t h the operator L and the 

reg ion fi. 

I f we now d i f f e r en t i a t e b o t h sides of the equat ion w i t h respect to x n — 1 

t imes we o b t a i n , 

d'u{x) f d'G(x,y) 

dx' 

Hence i f we cons t ruc t a Pe t rov -Ga le rk in m e t h o d based on a set of nodes 

x^ (i = 0, ...,??i) us ing a t r i a l space V w h i c h is C^ (0 < i < n ) continuous 

at t h e nodes Xi and a test space W = span{ ^^'^j^j'^'^, i = l , . . . , m — 1} then 

the m e t h o d w i l l y i e l d a so lu t ion w h i c h has exact j ' t h derivatives at the nodes 

Xi. T h i s w i l l be a P e t r o v - G a l e r k i n finite element m e t h o d i f b o t h the t r i a l and 

test spaces can be cons t ruc ted f r o m a set of local basis func t ions defined over 

r e lements . A t first glance i t is no t clear t h a t the test space can be w r i t t e n 

as a s u m of loca l basis f u n c t i o n s and w h i l e th is is not necessary i t is h igh ly 

desirable f o r c o m p u t a t i o n a l reasons. I t is clear now t h a t we can ob t a in ^ - ^ ^ f ^ , 

j = 0, — 1 by us ing a test space W = s p a n { ^ ^ ^ ^ , i = 1, — l , j = 

0 , 7 2 — 1} and can recover values f o r ^ '^}^n'^^ d i r ec t l y f r o m the equa t ion i t se l f 

us ing the values f o r ^ - ^ f ^ , j = 0 , n — 1. 
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6.4 Exact derivative solution for the Poisson 
equation 

For s i m p l i c i t y we f i r s t present the m e t h o d i n the context of the Poisson equa

t i o n : . 

~u"ix) = f i x ) , 

on [0 ,1] w i t h zero D i r i c h l e t data . 

W e have, 

G{y,x) = y{l-y)(f){y), 

where (f){y) is t he s t andard hat f u n c t i o n w h i c h takes the value 0 at a; = 0, a; = 1 

and t h e value 1 at a; = ?/ (see figure 6.1). 

I n order to generate exact der iva t ive values at x = y we need to use the test 

f u n c t i o n '^'^^^^'^^ = 'ipix) where ip{x) = —a;,0 < x < y and tp(x) = 1 — x,y < 

X < 1 (see figure 6.2). 

Choosing a set of i n t e r n a l nodes Xi (i = 1 , 2 , ? ? ^ —1) we define ipi{x) = —x 

f o r 0 < X < x\ and ^,(.T) = 1 — a; f o r a;̂  < a; < 1. W e shall refer to the s tandard 

ha t f i m c t i o n s centred at node Xi as (f)i{x). 

U n f o r t u n a t e l y i t is no t possible to find a local basis fo r the space Ti. = 

span{ipi{x)] ( a l t h o u g h i t is possible to arrange fo r a l l b u t one of the test 

f u n c t i o n s t o be loca l ) so the p r o b l e m of finding the der iva t ive so lu t ion at the 

nodes is no t c o m p u t a t i o n a l l y very ef f ic ient . 

However i f we solve f o r exact f u n c t i o n values i n a d d i t i o n to exact der iva t ive 

values t h e n we can produce a local basis. Th i s is because we can use l inear 
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Figu re 6 .1 : P lo t of G{y,x) fo r y = 0.2,0.4,0.6 and 0.8 

combina t ions o f b o t h (f)i and ipi to produce a new basis. We generate a new 

loca l set of basis f u n c t i o n s Xt{x) = xl>i{x) + Y^^L-^ aj(j)j[x). T h e coefficients aj 

are chosen t o make Ai(.T) zero everywhere apart f r o m [ x j _ i , X j + i ] (see figure 

6.3). 

W e can m a k e a f u r t h e r s i m p l i f i c a t i o n by using the basis func t ions ji{x) = 

biXi(x) + Ci(f)i{x) where bi and Ci are chosen so t h a t the l e f t and r igh t l i m i t s of 

7 t ( . T ) at a; = are 1 and —1 (see figure 6.4). 
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F i g u r e 6.2: P l o t o f f o r y = 0 .2 ,0.4,0.6 and 0.8 

6.5 Extensions to higher dimensional prob

lems 

W e can e x t e n d th i s m e t h o d i n t o higher dimensions i n exact ly the same way 

t h a t the me thods i n the previous chapters are extensions of the one d imens ional 

n o d a l l y exact me thods . I n a s imi la r way, we o b t a i n an error equa t ion posed 

on the e lement boundar ies . I n pa r t i cu l a r we note t h a t i f the t r i a l space is 

capable of r ep roduc ing the exact so lu t ion and i ts derivatives on the element 

boundar ies , t h e n there w i l l be zero error on the element boundaries . 

W h a t is m o r e e x c i t i n g is t h a t as long as the numer i ca l p r o b l e m is reasonably 

stable and we can reproduce the so lu t ion values on the element boundaries 
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Figu re 6.3: P lo t of X^{x) fo r x, = 0.2,0.4,0.6 and 0.8 

t o a reasonable accuracy t hen we can also ob t a in good der iva t ive values of 

the s o l u t i o n j u s t i n s m a l l c r i t i c a l areas by add ing i n j u s t the 'de r iva t ive ' test 

f u n c t i o n s at those areas. 
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Figu re 6.4: P lo t of 7 i ( x ) fo r = 0.2,0.4,0.6 and 0.8 
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7.1 Summary 

I n th i s thesis we have described the problems associated w i t h the numer ica l 

so lu t i on of the convec t ion-d i f fus ion equa t ion and described the various tech

niques used t o overcome these problems. 

I t became clear t h a t none of these methods was ideal ly sui ted fo r a wide 

range of p rob lems . T h e need fo r a more generally applicable m e t h o d p r o m p t e d 

the c rea t ion of a class of Pe t rov -Ga le rk in finite element schemes designed to 

c o n t r o l the errors i n the n u m e r i c a l so lu t ion on the element boundaries of the 

finite e lement mesh. W e saw how a pa r t i cu la r case of this class, the ten

sor p r o d u c t case, p roduced h i g h l y accurate solutions to various s tandard test 

p rob lems . W e also saw t h a t t w o l i m i t i n g cases of the m e t h o d produced the 

s t andard G a l e r k i n finite e lement m e t h o d and also the cell ver tex finite vo l 

u m e m e t h o d . A s y m p t o t i c , n o n a s y m p t o t i c and t r u n c a t i o n error analyses were 

p e r f o r m e d on the m e t h o d . 

W e t h e n presented a class of schemes designed to produce exact n-tli deriva

t i v e values f o r t he so lu t ion of the one d imens ional boundary value problems. 

7.2 Suggestions for Further Work 

So f a r o n l y a basic p r e l i m i n a r y error analysis of the class of methods we have 

developed has been p e r f o r m e d . I t w i l l be useful fo r the j^rac t ica l app l ica t ion 

of these me thods t o have a t i g h t a pos ter ior i es t imate of the error. There is 

also m u c h scope f o r extensions of the exact der iva t ive methods t o be extended 

t o h igher d imens iona l p roblems. T h i s w o u l d be ex t remely useful fo r problems 

such as accura te ly ca lcu la t ing the stresses i n s t ructures . A n exc i t ing prop-
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e r ty of the one d imens iona l m e t h o d is t ha t ex t r a local basis func t ions can be 
p laced where accurate der iva t ive t y p e i n f o r m a t i o n is requi red w i t h o u t g lobal ly 
a d d i n g basis f u n c t i o n s where they are not needed. Extensions of this to higher 
d imensions w i t h the a id of an a pos ter ior i es t imate of the error, could lead 
to an adap t ive mesh re f inement s t ra tegy resu l t ing i n a h igh ly eff ic ient wide ly 
appl icab le n u m e r i c a l solver. 
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